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Abstract We investigate the impact of different sampling techniques on the
performance of multi-objective optimization methods applied to costly black-box
optimization problems. Such problems are often solved using an algorithm in which
a surrogate model approximates the true objective function and provides predicted
objective values at a lower cost. As the surrogate model is based on evaluations of
a small number of points, the quality of the initial sample can have a great impact
on the overall effectiveness of the optimization. In this study, we demonstrate how
various sampling techniques affect the results of applying different optimization
algorithms to a set of benchmark problems. Additionally, some recommendations
on usage of sampling methods are provided.

Keywords Design of experiment • Space-filling • Low-discrepancy • Efficient
global optimization

Introduction

A plethora of practical engineering problems involve multiple conflicting objectives
which have to be optimized simultaneously. Solving such problems requires more
effort than single-objective optimization as they usually have many (possibly
infinite) optimal solutions; such solutions compose the so-called Pareto optimal set.

To add further to the challenge, for many real-world optimization problems there
is also an absence of algebraic objective or response function definitions. Examples
are crash tests, chemical reactions, many laboratory experiments, etc. Therefore
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an important challenge in optimization practice is how to solve an optimization
problem in the absence of an algebraic model of the system to be optimized. Such
optimization problems are called black-box as the available information is just
input–output data without prior knowledge of the characteristics or physics of the
relationships involved.

Due to the lack of an analytical description of the objective functions, deriva-
tives are unavailable and derivative-based optimization methods cannot be used.
Moreover, in many practical applications, the objective functions (or the associated
constraints) are very costly to evaluate and it is desirable to limit the number
of evaluations. Consequently, for costly black-box multi-objective optimization
problems, the main concern is to find the Pareto optimal set with as few function
evaluations as possible. Traditional derivative-free methods based on direct search
or gradient estimation via numerical differentiation are not usually viable as they
require many more function evaluations than can be comfortably afforded.

A popular and successful approach for derivative-free optimization of costly
black-box functions is to construct response surface models known as surrogate
models (or metamodels) that mimic the behavior of the real-word process as
closely as possible while being less resource-demanding to evaluate. Surrogate-
based optimization methods became popular a few decades ago even though they
were proposed much earlier [20]. Among the various potential surrogate models,
polynomial response surface models [3], kriging [36], and radial basis functions
(RBF) [6] are widely used in solving costly black-box optimization problems.

In recent years, much attention has been devoted to develop multi-objective
optimization methods (e.g., see [31, 41, 49]) to deal with real-world applications
characterized as costly multi-objective black-box optimization problems using sur-
rogate models to replace the unknown objective functions. However, little attention
has been focused so far on the impact of the initial sample on the performance
of the developed algorithms. Every black-box optimization algorithm starts the
optimization process with an initial sample, usually a very limited one in the case of
expensive function evaluations. The initial sample provides some knowledge for the
method to further investigate the decision space with the aim of finding the global
optimum. When the evaluation of objective functions is costly, these evaluated
points are usually fed to a surrogate model to predict the real response function
values of unevaluated points. An inexpensive surrogate model is constructed based
on an initial sample; the model is then used in a search for the next points to evaluate.
This approach decreases the number of resource-consuming function evaluations,
but suggests that the initial sample selected to build a surrogate model can strongly
impact the efficiency of optimization. This consideration motivates our analysis of
the sampling effect on the optimization search.

Sampling methods have been used for a wide range of purposes ranging from
censuses and surveys [1, 48] to numerical and computational studies [5, 9] to
experimental investigations in industry and science [11, 24, 29, 35]. In general,
sampling methods can be used in two main types of studies: observational and
experimental studies [4]. Observational studies aim to draw inferences about an
entire space from a sample [34], whereas experimental studies aim to identify the
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cause–effect relationship between input and output variables through controlled
experiments [40]. In the first case, sampling methods must provide a representative
sample of the entire space; in the second case, sampling methods must provide a
small informative sample selected from the set of feasible experiments (the decision
space). It is the latter experimental scenario that is relevant when using sampling
methods in an optimization context.

To our knowledge, there exist only a few studies investigating the impact of
sampling methods in the context of single-objective surrogate-based optimization
[26, 44] and multi-objective optimization [30]. With regard to the multi-objective
field, Poles et al. [30] focused on evolutionary optimization algorithms. Evolu-
tionary algorithms require thousands of function evaluations to achieve a good
approximation of the Pareto optimal set; therefore, they are not suitable for costly
optimization. Instead, we focus on methodologies that require hundreds of function
evaluations. Indeed, this study aims to investigate the effect and importance of
initial sampling techniques on methods suitable for costly multi-objective black-box
optimization.

The remainder of this chapter is as follows. In section “Problem Description”,
we recall the basic concepts related to black-box and multi-objective optimization.
Widely used sampling methods and the concepts behind them are outlined in sec-
tion “Sampling Methods”. In section “Experiments”, we present the experimental
setup used in the study and we illustrate the experimental results. Section “Conclu-
sions” summarizes the results obtained, provides insights and suggestions for future
research directions, and draws some final conclusions.

Problem Description

The multi-objective optimization problem comprises multiple objective functions
which are to be minimized simultaneously. It can be expressed in the following
form:

min f(x) =
(
f1(x), . . . , fm(x)

)T
subject to x ∈ S, (1)

where S ⊂ R
d is the feasible set and fi :→ R, i = 1, . . . ,m (m ≥ 2), are objective

functions to be minimized simultaneously. All objective functions are represented
by the vector-valued function f : S → R

m. A vector x ∈ S is called a decision vector
and a vector z = f(x) ∈ R

m is called an objective vector.
We assume that at least one of the functions fi is “costly”; that is, its evaluation

requires a significant amount of resources and no analytic expression is available.
Therefore, problem (1) is called a costly multi-objective black-box optimization
problem.

In multi-objective optimization, the objective functions f1, . . . , fm in (1) are
typically conflicting. In that case, there does not exist a decision vector x̄ ∈ S such
that x̄ minimizes fi in S for all i= 1, . . . ,m, but there exist a number (possibly infinite)
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of Pareto optimal solutions. In mathematical terms, a decision vector x̄ ∈ S and its
image z̄ = f(x̄) are said to be Pareto optimal or nondominated if there does not exist
a decision vector x ∈ S such that fi(x) ≤ fi(x̄) for all i = 1, . . . ,m and fj(x) < fj(x̄)
for some j = 1, . . . ,m. If such a decision x ∈ S does exist, x̄ and z̄ are said to be
dominated by x and its image z = f(x), respectively. The Pareto optimal set in the
objective space is also called the Pareto optimal front.

Sampling Methods

Sampling methods for experimental studies have been attracting a great deal of
attention since the 1800s and have resulted in a dedicated field of research known as
Design of Experiments. Their importance directly relates to the efficient collection
of informative data, allowing for the quick delivery of robust results. This translates
into considerable savings that minimize costs and time related to both physical (real-
world) and computer-based experimentation.

Many sampling methods assume that the unknown objective function can be
approximated by a simple model (e.g., linear or quadratic) and recommend samples
located on the boundary of the design space. This assumption can be safely made
if some knowledge exists of the objective function or if the approximation occurs
locally (i.e., in a relatively small sub-area of the decision space) [17]. In black-box
optimization, no knowledge exists regarding the objective function and the entire
decision space is typically searched. Therefore, sampling methods are required to
provide samples that are spread out across the entire decision space. Two such
classes of methods are space-filling methods and low-discrepancy sequences. Space-
filling methods aim to generate widespread samples using a range of different
criteria including equally spaced intervals and distance measures. On the other
hand, low-discrepancy sequences use a measure of uniformity (discrepancy) that
minimizes the difference between the percentage of points falling in a particular
region on a unit cube and the percentage of volume occupied by this region. The
main space-filling designs and low-discrepancy sequences are reviewed below and
investigated in our computational study.

Simple Random Sampling

In simple random sampling (SRS), N decision vectors are randomly sampled from
the decision space [39]. Decision vectors have the same probability of being chosen;
the constant chance of selection extends to pairs, triplets, and so on (e.g., any given
pair of decision vectors has the same chance of selection as any other pair).

SRS is among the most popular sampling methodologies thanks to its simplicity
and low computational demand. One drawback of SRS relates to its vulnerability
to sampling error; indeed, the randomness of its selection process may result in
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a sample that is not evenly spread throughout the entire decision space. This is
particularly true for small samples in high-dimensional regions that often exhibit
apparent clustering and poorly covered regions [37]. Systematic and stratified
sampling techniques have been developed to overcome this issue and choose a
“more representative” sample.

Latin Hypercube Sampling

Latin hypercube sampling (LHS) is a stratified sampling technique. LHS controls
how random samples are generated from a given probability distribution (usually
uniform). To generate a sample of N decision vectors, the domain of each decision
variable is divided into N equally spaced and non-overlapping intervals; then,
one value is selected at random from each such interval. Random permutation of
the resulting values for all decision variables results in a random Latin hypercube
sample.

LHS originated in 1979 for computer-based experiments in order to address the
need for a better and more efficient coverage of the decision space [22]. The authors
showed that LHS reduces the variance in their chosen application of Monte Carlo
integration.

The main advantage of LHS over SRS derives from its one-dimensional projec-
tion property: a Latin hypercube sample projected into one dimension results in a set
of evenly distributed points in all dimensions separately. Due to this property, LHS is
the most commonly used stratified sampling technique in many areas of computer-
based experiments. Despite this, different studies show that it is not always the best
choice [43, 44]. Indeed, LHS does not guarantee a uniform coverage (i.e., a good
spread) of the decision space as (sometimes large) areas of the decision space might
remain unexplored. Two such examples are reported in Fig. 1 showing an LHS in
two dimensions with six intervals per decision variable. In both cases, there is a
large area of the decision space that is not explored; therefore, if we use such a
sample to develop a prediction model, then the prediction will be poor in those
unexplored areas. In the worst case scenario (b), LHS can generate a sample with
two perfectly correlated decision variables; such a sample causes the effects of the
two variables to be completely confounded. To overcome these limitations, LHS
methods have been improved through the adoption of an additional criterion; such
improvements resulted in maximin distance and minimum correlation LHS (C-LHS)
methods described later on.

Maximin Sampling

Maximin sampling belongs to the class of distance-based sampling methods.
Distance-based sampling methods make use of the Euclidean distance to prevent
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Fig. 1 Two LHS configurations with two variables in six intervals (a) a non space-filling LHS (b)
a worst case LHS

sampled points from clustering too close together so that they over-represent some
regions of the design space.

The aim of maximin sampling is to scatter points in the decision space
such that the minimal pairwise distance between points is maximized. Let
xj = (xj1,xj2, . . . ,xjd) and xk = (xk1,xk2, . . . ,xkd) be two different decision vectors in
a sample D(N,S), where N is the sample size and S is the d-dimensional feasible
set. The following mathematical problem must be solved:

max min s2(xj,xk) (2)

where

s2(xj,xk) =
d

∑
i=1

(
xji − xki

Ui −Li

)2

and xj,xk ∈ D(N,S), j,k = 1,2, . . . ,N (j �= k), Ui and Li are the upper and lower
limits of the ith variable. Therefore, a maximin sample of size N contains minimum
pairwise distances that are maximum compared to any other N-sized sample.

Maximin sampling was first introduced by Johnson et al. [14]. It is among the
best methods to obtain an even coverage of the decision space. However, it tends
to prioritize decision vectors that are located near the boundary of the decision
space. Also, despite computational efficiency in low dimensions, the method is
very demanding in high dimensions. To overcome this issue, various approximate
maximin sampling methods have been developed. Approximate methods use con-
ventional nonlinear programming algorithms to reduce the computational cost of
the procedure at the expense of potentially providing solutions that are not globally
optimal, only locally optimal.

Here, we propose a simple approximation method we call “Nearly maximin”
consisting of the following steps:
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Step 1 Randomly generate a decision vector x1 from the decision space and
choose it as the first element of the sample;

Step 2 Randomly generate n decision vectors from the decision space and for
each vector, calculate the Euclidean distance to the closest element of the
existing sample; and

Step 3 Choose the one having the maximum distance out of the n decision vectors
as the next element of the sample;

Repeat Step 2 and Step 3 until the sample comprises N decision vectors.
In a preliminary study that will be published elsewhere, the Nearly maximin

method showed extremely promising results. It will be used in our computational
study to allow for the investigation of high-dimensional test problems.

Maximin LHS

Both LHS and maximin sampling produce samples with attractive properties.
LHS guarantees that the one-dimensional projection of the sample presents an
even spread in the variables’ domains; maximin guarantees that no two elements
(decision vectors) in the sample are close together. However, both methods suffer
from limitations. In particular, LHS might occasionally generate samples with
points that are close to each other as in the examples of Fig. 1, whereas maximin
tends to select samples that are located near the boundary of the decision space.

To overcome these limitations, Morris and Mitchel [25] suggested that LHS be
combined with the maximin criterion. The resulting method is known as Maximin
LHS (M-LHS). It consists of (a) generating the maximum number of possible LHS
samples, (b) measuring their maximin distances, and (c) selecting the most evenly
spread sample (optimal sample).

M-LHS preserves the one-dimensional projection property of LHS while ensur-
ing that no two points in the LHS design are very close to each other. Therefore, a
good spread of decision vectors is achieved not just in each single variable domain
but also in the entire decision space. Also, the decision vectors in the sample
are preferentially located in the interior of the decision space thus providing a
compromise between maximin property and good projective properties in each
dimension (as guaranteed by Latin hypercubes) [25]. Unfortunately, constructing
samples by M-LHS can be quite time consuming when the number of dimensions
and design points increase. Indeed, there exist (N!)d−1 LHS samples for N divisions
and d dimensions; for each such sample, the maximin distances need to be
calculated in order to identify the optimal one.
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Correlation LHS

To find optimal LHS Iman and Conover [12], Owen [28], and Tang [42] proposed
to use a criterion minimizing correlation between the factors. This is useful in
applications requiring a sample to be composed of decision vectors without (or with
small) correlation. Owen proposed to measure the goodness of LHS with respect to
a criterion of minimum pairwise correlations which is defined as follows:

ρ2 =
∑d

i=2 ∑i−1
j ρ2

ij

d(d−1)/2
, (3)

where ρij is the pairwise correlation between columns i and j of the design, and
ρij ∈ [0,1]. The smaller the ρ2 is, the weaker the pairwise correlation is.

In C-LHS method suggested by Owen [28], the sum of between-column squared
correlation is decreased by alternating forward and backward Gram–Schmidt
orthogonalization. In our computational study we used the Matlab implementation
of Owen’s method.

One might think that minimizing the correlation should spread out the points
and maximizing the distance between the points should reduce the correlation.
However in practice, there is no one-to-one relationship between the two, and
designs obtained by these two criteria can be quite different [15]. In other words,
C-LHS not necessarily provides a well spread sample.

Halton Sequence Sampling

The Halton sequence sampling method generates quasi-random numbers of high-
dimensionality with a high level of uniformity across the space. Halton sequence
is constructed according to a deterministic method that uses different prime bases
for different dimensions to create a d-dimensional low-discrepancy sequence [7, 19,
21]. The method is based on the fact that each non-negative integer can be expanded
using a prime base. Construction of Halton sequence in d-dimensional space is as
follows:

1. Choose d prime integers p1,p2, . . . ,pd (usually the first primes p1 = 2, p2 = 3, . . . ,
are selected).

2. To generate the i-th sample, consider the base p representation for i in which:

i = a0 +a1p+a2p2 +a3p3 + . . .

where each aj is an integer in [0,p−1].
3. The next point in [0,1] is achieved by reversing the order of the bits and moving

the decimal point:
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r(i,p) =
a0

p
+

a1

p2 +
a2

p3 +
a3

p4 + . . .

4. Starting from i = 0, the i-th sample in the Halton sequence is

(r(i,p1),r(i,p2), . . . ,r(i,pd)) (4)

Halton is an extension of the Van der Corput sequence, which was originally
introduced for one dimension and a base of 2. The Van der Corput sequence is
obtained by using p= 2. However, Halton sequences based on large primes (d > 10)
can be highly correlated, and their coverage can be worse than that of the pseudo-
random uniform sequences.

Hammersley Sequence Sampling

The Hammersley sequence [8, 21] belongs to the class of low-discrepancy
sequences, and is closely related to the Fibonacci series. The Hammersley sequence
is an adaptation of the Halton sequence (4) when the required sample size N is
known. In such a case, a better uniformly distributed sample can be obtained by
using only d − 1 distinct primes. In a Hammersley sequence with N elements and
starting from i = 0, the i-th d-dimensional vector will be

(
i
N
,r(i,p1),r(i,p2), . . . ,r(i,pd−1)

)
for i = 0,1,2, . . . ,N −1. (5)

Hammersley sequence sampling provides better uniformity properties over LHS
[23]; in particular, the chance of samples with clustered decision vectors is lower.
Also, compared to other conventional techniques, Hammersley sampling requires
far smaller samples to approximate the mean and variance of distributions based on
empirical studies [16].

Sobol Sequence Sampling

Sobol sequence sampling is an improved version of the Halton and Hammersley
methods. Indeed, despite the Halton and Hammersley methods being relatively
simple and efficient, they suffer from a common pitfall—the performance of
these two sampling methods degrades substantially in higher dimensions. Sobol
sequences have been proposed to approximate the integral over the d-dimensional
unit cube:
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lim
n→∞

1
n

n−1

∑
i=0

f (xi) =
∫

[0,1]d
f (x)dx

where f is a real integrable function over a d-dimensional unit hypercube and
x0, . . . ,xn−1 are n points in [0,1]d comprising a “Sobol sequence.” The Sobol
sequence, as originally defined by Sobol [38], is generated from a set of special
binary vectors of length w bits, vj

i, i = 1,2, . . . ,w, j = 1,2, . . . ,d. These numbers, vj
i,

are called direction numbers. To generate them for dimension j, one should begin
with a primitive polynomial over the finite field F2 with elements {0,1}. Let us
assume that the primitive polynomial is

pj(x) = xq +a1xq−1 + · · ·+aq−1x+1.

Then we use its coefficients to define a recurrence relation for calculating vj
i,

the direction number in dimension j. It is generated using the following q-term
recurrence relation:

vj
i(x) = a1vj

i−1 ⊕a2vj
i−2 ⊕·· ·⊕aq−1vj

i−q+1 ⊕ vj
i−q ⊕ (vj

i−q/2q),

where i > q, ⊕ denotes the bitwise XOR operation, and the last term is vi−q

shifted right q places. The initial numbers vj
1 ·2w,vj

2 ·2w, . . . ,vj
q ·2w can be arbitrary

odd integers smaller than 2,22, . . . ,2q, respectively. The Sobol sequence xj
n (n =

∑w
i=0 bi2i, bi ∈ {0,1}) in dimension j is generated by

xj
n = b1vj

1 ⊕b2vj
2 ⊕·· ·⊕bwvj

w.

Different primitive polynomials should be used to generate Sobol sequence in each
dimension. Currently there are more efficient ways of generating Sobol sequences
proposed in the literature (see, e.g., [27]).

Summary of Sampling Methods

This section outlines the main characteristics of sampling methods discussed above.
Table 1 summarizes the sampling methods in terms of their main features. Samples
consisting of 32 points in two-dimensional space, and generated by different
sampling methods, are presented in Fig. 2 for a visual comparison.

An important consideration relates to the methods’ computational cost in the con-
text of costly optimization. For those methods that demand moderate to intensive
computational efforts, it is important to investigate the compromise between (a) the
time required to generate the sample and (b) the sample quality. The sample quality
is its ability to decrease the number of further function evaluations without affecting
the results of the optimization procedure. Obviously, if function evaluations are
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Fig. 2 Initial sample in 2D, number of points = 32

highly costly and involve resources other than time, even a small decrease in the
number of function evaluations justifies the higher computational time required to
generate the optimal sample.

Experiments

The impact of sampling method on multi-objective optimization algorithm effi-
ciency is evaluated by means of a comprehensive benchmark problem set. The
design of the experimental study is described in section “Experimental Setup”.
Section “Test Problems” gives an overview of the benchmark problems. The
major part of this section is devoted to discussion of the obtained results and the
appropriate observations. This is covered in section “Results”.

Optimization Algorithms Considered

In our study, we considered three algorithms designed for costly multi-objective
optimization problems, namely ParEGO, SMS-EGO, and ε-EGO. These algorithms
were selected due to their available implementation in the R package mlrMBO [2].

ParEGO is a state-of-art algorithm developed by Knowles [18]. It uses the
augmented Tchebycheff norm to convert a multi-objective problem into a scalarized
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one:

fλ (x) = max
j=1,...,m

(
λjfj(x)

)±ρ
m

∑
j=1

λjfj(x), (6)

where ρ > 0 is a small positive number and λ is a weight vector. ParEGO randomly
selects w from a uniformly distributed set in each iteration. Then a surrogate model
is fitted to the respective scalarized problem. At each iteration of the algorithm,
a different weight vector is drawn uniformly at random from the set of evenly
distributed vectors allowing the model to gradually build up an approximation to
the true Pareto set. Before scalarization, the objective functions are normalized with
respect to the known (or estimated) limits of the objective space to the range [0,1].
At each iteration, the method uses a genetic algorithm to search for the solutions
that maximize an infill criterion, called expected improvement, with respect to a
surrogate model. Only the best solution is evaluated on the actual problem. After
evaluation of the selected solution on the real expensive function, ParEGO updates
the GP surrogate model of the landscape and repeats the same steps.

The other two algorithms do not convert a multi-objective optimization problem
to a single optimization problem but use a multi-objective optimization of infill
criteria on each objective in order to obtain a candidate set for evaluation. SMSEGO
[31] optimizes the hypervolume and ε-EGO [45] looks at search solutions with
respect to the additive ε-indicator which has been introduced by Zitzler et al. [51].
An additive ε-indicator of approximation set A gives the minimum value ε by
which each point in the real front R can be added such that resulting transformed
approximation is dominated by A.

Test Problems

The test set consists of different benchmark problems with a variety of character-
istics in both the decision and objective spaces. The objectives of test problems
can be either unimodal (U) or multimodal (M). Multimodal problems are more
difficult than unimodal problems, and more representative of real-world problems.
The Pareto optimal front can be convex, linear, concave, disconnected, or some
combination of the former. It is well known that the type of Pareto front can directly
affect the performance of the optimization algorithms. For example, disconnected
Pareto fronts can increase the likelihood that an algorithm will fail to find all regions
of the Pareto optimal front. The fitness landscape may be one-to-one or many-to-one
and the latter property impacts some algorithms’ ability to find multiple, otherwise
equivalent optima. For a more detailed discussion on test problems properties
we refer readers to [10].

Our test set includes the following benchmark problems:
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• OKA2 m= 2, d = 3. The true Pareto optimal set for this problem is a spiral shaped
curve in the decision space, and the density of the Pareto optimal solutions in the
objective space is low.

• Kursawe This problem has a scalable number of decision variables. In our
experiment we used d = 3, m = 2. Its Pareto optimal set is disconnected and
symmetric in the decision space, and disconnected and concave in the objective
space.

• Viennet m= 3, d = 2. The true Pareto optimal set is convex in the objective space.
• ZDT family: ZDT problems share such characteristics as multimodality, discon-

tinuity, and possession of multiple Pareto fronts; for all problems, m = 2 and d is
scalable, however we used d values suggested by the authors.

– ZDT1: d = 30; Pareto optimal set in the objective space is convex.
– ZDT2: d = 30; Pareto optimal set in the objective space is nonconvex.
– ZDT3: d = 30; Pareto optimal set is disconnected in both objective and

decision spaces. Pareto optimal set consists of one mixed convex/concave
component and several convex components in the objective space.

– ZDT4: d = 10; first objective function is unimodal, while the second objective
function has multiple local optima and therefore is highly multimodal. Its
Pareto optimal set in the objective space is convex [10].

– ZDT6: d = 10; it has a nonuniform search space, i.e., the Pareto optimal
solutions in the decision space are non-uniformly distributed along the global
Pareto set, and also the density of the solutions is lowest near the Pareto
optimal set and highest away from it. Pareto optimal set in the objective space
is concave.

• DTLZ1: It is a scalable problem in both objective and decision space and has
multiple global optima. Thus, the only difficulty provided by this problem is
convergence to the Pareto optimal hyperplane. We solved three sizes of this
problem: (1) m = 4 and d = 13; (2) m = 6 and d = 15; and (3) m = 8 and d = 17.

The major characteristics of the selected benchmark problems are summarized
in Table 2.

Performance Assessment

In multi-objective optimization, the definition of solution quality is substantially
more complex than for single-objective problems as the optimization goal itself
consists of several objectives such as convergence to the true Pareto frontier, uniform
distribution of obtained nondominated solutions, and maximum extent of obtained
nondominated set with respect to each objective. Therefore, a number of quality
metrics usually taking into account one solution quality characteristic have been
proposed (see, e.g., [13, 47]). The most widely used performance metric is a
hypervolume (HV) indicator (also known as an S-metric) [50] which defines the
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size of the region dominated by the relevant Pareto set approximation. As such it
provides information about closeness and diversity at the same time. In addition, it
possesses a desirable property: whenever one approximation completely dominates
another approximation, the HV of the former will be greater than the HV of the
latter [52]. The HV metric corresponds to the size of the region of the objective
space bounded by a reference point. In our study, we calculated the HV metric using
normalized values of the objective functions.

Experimental Setup

In this study we control: (a) the size of the initial sample, (b) the optimization
budget, (c) the dimension of decision space, and (d) the dimension of objective
space.

The initial design size was set to ninit = 11d− 1 based on the recommendations
in [18]. An example of the initial samples generated by different sampling methods
for two decision variables is given in Fig. 2. The number of optimization iterations
was restricted to 200 resulting in a total budget of ntotal = 200+11d−1. Taking into
account the different number of dimensions, the algorithms were evaluated on the
11 test problems discussed in section “Test Problems”.

The Pareto front approximations of the algorithms were compared not only at
the last iteration (n = 200) but as well at intermediate iterations (n = 50, 100, and
150) with respect to the HV metric. For each test function the reference point was
estimated based on the nondominated set of initial samples.

With regard to the sampling methods, it is important to point out the following
aspects. It can be computationally very expensive to achieve optimal maximin
and low C-LHS samples; therefore, we have chosen the best sample out of
1000 randomly generated LHS samples with regard to the corresponding criterion
(maximin or minimum correlation). The low-discrepancy sampling methods (i.e.,
Hammersley, Halton, and Sobol sequences) are deterministic (rather than stochastic)
as there is no run-to-run difference between generated samples; therefore, we
have used the “random-start sequence” trick [46]. By defining random starts
for generation of these samples, the sequences differ in each run resulting in
stochasticity of the samples.

Results

This section elaborates on a detailed analysis of the results from the experiments
performed. In each numerical experiment an initial sample was generated by one
sampling method running it 100 times. Then an optimization search was performed
by each algorithm over these runs. Their performance has been estimated with
respect to the HV metric.
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Fig. 3 ParEGO performance on OKA2 problem

Corresponding results of each sampling method were compared to those of the
other seven methods, to determine if its results had a statistically significant advan-
tage. Comparisons were performed using the unpaired t-test [32] and differences
were deemed statistically significant at the 0.01 significance level. The significance
was tested multiple times, i.e., after 50, 100, 1500, and 200 function evaluations.

The average performance of optimization algorithms against sampling methods
on different test problems is represented in Figures 3, 4, 5, 6, and 7. However,
in real-world applications, to know the average performance is not enough and
usually the worst case scenarios are taken into account as well. The worst case
scenario provides some additional information but sometimes it is considered as
too conservative. Instead of the worst case scenario, we may want to know the
mean of the realizations above a specified quantile; i.e., the conditional value-at-risk
(CVaR) introduced in [33]. We calculated CVaR with a selected confidence level of
0.05, giving the average value over a distribution tail consisting of the 5 % worst
realizations. Due to space limitations, we could not provide the graphs of all the
optimization algorithms and test problems considered. Therefore, we have selected
the ones providing most of the information and supporting the main observations.

We have noticed that the largest variability over 100 runs is produced by
Hammersley, Sobol, and Halton sequences which by nature are deterministic
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Fig. 4 SMS-EGO performance on Kursawe problem

methods as sequences are finite. However, in order to generate 100 runs we used
Matlab functions with various leap and skip parameters values which produce
different subsets of these sets, sometimes not fully covering the whole decision
space. To our knowledge, there is no recommendation on how to select these
parameters. Therefore, the average performance of the deterministic sampling
methods is influenced by some initial samples not spread throughout the entire
space.

According to the obtained results regarding the average performance of the
optimization algorithms based on a normalized HV metric, we can observe some
trends. Generally, it can be noticed that sampling methods do not affect optimization
algorithm performance significantly (the difference of HV metric values over 100
runs is not statistically significant at the 1 % level) on the problems with objective
and decision space dimensions both lower or equal to three. Also, we discovered that
algorithm performance is very similar when using samples generated by stochastic
sampling methods (namely, SRS, LHS, M-LHS, and C-LHS) on the bi-objective
problems with high-dimensional decision space, and there is no statistically signif-
icantly difference among them as illustrated in Figs. 5 and 6. The ParEGO method
with initial samples generated by LHS has not demonstrated the best performance
on any single problem, while its improved versions (i.e., M-LHS and C-LHS) have
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Fig. 5 ε-EGO performance on ZDT1 problem

shown very good performance on bi-objective problems with a larger number of
decision variables. Hammersley sequence sampling and ParEGO showed the best
performance or close to it on unimodal bi-objective problems of low-dimensionality
with continuous Pareto front. Halton sequence sampling in conjunction with any
of the considered optimization algorithms in most of the cases performed poorly,
especially with a larger number of decision variables, except for low-dimensional
problems with a convex Pareto front. Also, it has been outperformed by the other
two deterministic techniques quite a number of times. M-LHS sampling technique
paired with SMS-EGO proved to behave well on the problems with a larger amount
of decision variables and is outperformed by other sampling techniques on smaller
problems. All optimization algorithms demonstrated better average performance on
problems with more than three objectives when using maximin for initial sampling
(see, e.g., Fig. 7). SRS method can be considered an appropriate choice because the
performance of selected optimization algorithms in most cases was not significantly
worse than other stochastic sampling methods. Although, there is one exception
for Kursawe problem optimized with SMS-EGO algorithm (see Fig. 4), where its
initial samples lead to the statistically significant worst performance with respect to
Hammersley and Halton sequences as well as maximin sampling method.
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Fig. 6 SMS-EGO performance on ZDT2 problem

Conclusions

This section draws some conclusions and provides some recommendations based
on the experiments performed and the results obtained. In addition, we shed some
light on the impact of the selected sampling techniques on costly black-box multi-
objective optimization, and discuss some future research questions which we leave
for further investigation.

To summarize, sampling methods have no statistically significant impact (with a
significance level 0.01) on the algorithm performance measured by the HV metric
for low-dimensional problems, i.e., m,d ≤ 3. Therefore, SRS can be considered as
an appropriate choice for low-dimensional problems.

Also, when using deterministic sampling methods, one has to check that
the initial sample is a good representative sample in the sense of covering the entire
decision space. Otherwise a “bad” initial sample can cause the optimization outcome
to deteriorate significantly; i.e., the variance of the deterministic methods is larger
than the stochastic sampling methods. Although, LHS is often used as a default
sampling method in multi-objective optimization, the obtained results did not
confirm it to outperform other sampling methods; one could use M-LHS or C-LHS
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Fig. 7 ParEGO performance on DTLZ1 problem with 8 objectives and 17 decision variables

instead as these sampling methods obtain better results in many cases. For high-
dimensional problems, in both objective and decision spaces, deterministic methods
led to large variability which resulted in significantly lower average algorithm
performance compared to stochastic sampling methods. In particular, the maximin
sampling method outperformed other stochastic methods though this advantage was
not statistically significant.

We plan to continue research on a larger set of test problems with a larger number
of both objective and decision variables possessing a variety of properties. Hope-
fully, this will provide greater insights and enable us to determine more concrete
recommendations. Our conclusion for now is that choice of initial sample matters
in higher dimensions. In this work, we have studied the algorithm performance with
respect to the most widely used performance metric HV. It would be interesting to
investigate the impact of sampling methods with respect to other metrics. Moreover,
the question of what initial sample size one should use and how it affects the
optimization results is also open. Clearly, there is a trade-off involved between the
size of an initial sample and the number of evaluations used to run an optimization
algorithm when dealing with costly real-world optimization problems. Thus, this
research direction will be considered in the future as well.
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