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Abstract This chapter discusses a generalization of the expected improvement
used in Bayesian global optimization to the multicriteria optimization domain,
where the goal is to find an approximation to the Pareto front. The expected
hypervolume improvement (EHVI) measures improvement as the gain in dominated
hypervolume relative to a given approximation to the Pareto front. We will review
known properties of the EHVI, applications in practice and propose a new exact
algorithm for computing EHVI. The new algorithm has asymptotically optimal time
complexity O(n logn). This improves existing computation schemes by a factor
of n/ logn. It shows that this measure, at least for a small number of objective
functions, is as fast as other simpler measures of multicriteria expected improvement
that were considered in recent years.

Keywords Bayesian Global Optimization • Expected Hypervolume Improve-
ment • Computation Complexity

Introduction

In the 1970s several new ideas for global optimization were proposed. Among these
the idea of Bayesian Global Optimization (BGO) was proposed by the Lithuanian
research group Jonas Mockus and Antanas Žilinskas [14, 15, 21, 25]. It had a lasting
impact on the development of both deterministic and stochastic global optimization
techniques. Today variations of this idea are known under various names, such as
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Efficient Global Optimization [9] or Expected Improvement Algorithm [22]. In these
techniques the goal is to find the extremum of a function f : X → R where X is a
compact subspace of Rd. BGO assumes that the objective function is the realization
of a Gaussian random field. This random field can be conditioned by the knowledge
of f (x(i)) at some points x(i) ∈ X , i = 1, . . . ,n. Under this assumption, measures
such as the expected improvement of a new design point are well defined, and can
be used to guide search towards the global optimum.

In this chapter we describe a generalization of this approach to multicriteria
optimization. It iteratively evaluates points from X and finds a well distributed
subset of the Pareto front of a multicriteria optimization problem. The algorithm
is based on a generalization of the expected improvement, which is based on the
hypervolume indicator, the so-called Expected Hypervolume Improvement (EHVI)
[3]. It has attractive theoretical properties [23], but so far its computation time
was considered to be expensive. In this chapter it is shown that, for bicriteria
optimization, a fast algorithm exists for computing EHVI that has only linear time
complexity in the size of the intermediate approximation to the Pareto front, given
that the Pareto front is given as a sorted set. It is shown that this algorithm has
asymptotically optimal time complexity.

This chapter is organized as follows: section “Bayesian Global Optimization”
introduces the framework of BGO. Section “Multicriteria Optimization” shows how
this framework can be generalized to multicriteria optimization. Section “Expected
Hypervolume Improvement” defines the EHVI, discusses some of its theoretical
properties, and reviews recent applications of it. Section “Efficient Exact
Computation” outlines the new, asymptotically efficient algorithm for its exact
computation and proves that it has an asymptotically optimal time complexity
for bicriteria problems. A numerical example is discussed in section “Numerical
Example”. Section “Application Notes and Further Reading” points to some recent
applications and related work. Finally, section “Summary and Outlook”, concludes
with a summary and discusses open questions.

Bayesian Global Optimization

In BGO the goal is to solve d-dimensional global optimization problems of the type:
Find x∗ with

x∗ ∈ arg min
x∈X

f (x),X = [xmin,xmax]⊂ R
d (1)

(Without loss of generality we consider minimization only.)
In order to do so, a sequence {x(t)}t=1,2,... of points is computed such that

x(t) ∈ argmax
x∈S

(E(I(x)|(x(1), f (x(1)), . . . ,(x(t−1), f (x(t−1))) (2)

Here E(I(x)|(x(1), f (x(1)), . . . ,(x(t−1), f (x(t−1)) denotes the expected improvement
measure that measures how promising the new point x is, given t − 1 previous
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evaluations of f at x(1), . . . ,x(t−1). This expected improvement is an expected value
of a random variable, here called I(x) that requires further explanation.

In BGO one makes the assumption that the function f is the realization of a
Gaussian random field F. A Gaussian random field is an infinite set of random
variables. Each random variable in F is identified by its spatial index x ∈ R

d. We
will denote it with Fx. It is assumed that the random variables share the same global
mean value β and global variance s2. Moreover, a correlation ρ(Fu,Fv) is defined
for every pair of indices u ∈R

d and v ∈R
d. This correlation depends on the relation

between u and v. A typical family of correlation functions is

ρ(Fu,Fv) = exp

(
−

d

∑
i=1

θi|ui − vi|qi

)

It is important that this correlation function is positive definite. It obtains the value
of 1, if v = u and gets smaller with increasing distance between v and u. The
parameters qi and θi are either set by the user or obtained from data fitting. The
parameters θi are positive.

The Gaussian random field can be viewed as a multivariate Gaussian distribu-
tion of infinite dimension. We can use well-known expressions for the marginal
distributions of the multivariate distribution to find the conditional distribution,
given that some of the realizations of one dimensional random variables are known.
That is, given the prior information Fx(1) = f (x(1)), . . . ,Fx(t−1) = f (x(t−1)) we can
compute the parameters μ (conditional mean) and σ2 (conditional variance) of the
conditioned random variable:

Fx | Fx(1) = f (x(1)), . . . ,Fx(t−1) = f (x(t−1)) (3)

As a shortcut we will denote this random variable with Fx |X, f (X), where X =
(x(1), . . . ,x(t−1)) denote the indices for which we know realizations and the values
of the corresponding realizations are abbreviated with

f (X) =
(

f (x(1)), . . . , f (x(t−1))
)

The estimation of hyperparameters θi and qi, i = 1, . . . ,d, of the correlation
function, as well as the global variance and mean can be accomplished by maximum
likelihood methods. For details on the computations of the parameters of the
conditional distribution we refer to the specialized literature [19].

Now, the expected improvement can be defined: The improvement of a function
value y ∈ R is defined as

I(y) = max{0,ymin − y)} (4)

where ymin = min{f (x(1)), . . . , f (x(t−1))}. Then the expected improvement is
defined as
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E(I(Fx|X, f (X)) =
∫ ymin

y=−∞
I(y)PDFx|X,f (X)(y)dy (5)

Here PDFx|X,f (X) is the probability density function of Fx |X, f (X).

Multicriteria Optimization

A continuous m-dimensional multicriteria optimization problem is a problem where
multiple objective functions, say f1 :X →R, . . . , fm :X m →R, are to be minimized
simultaneously, X ⊆ R

m.
In the a posteriori approach to multicriteria optimization an approximation to

the Pareto front of the problem is computed first. Based on this, the trade-off is
analyzed and a solution is selected by the decision maker. To define a Pareto front,
we introduce the Pareto dominance order ≺ on R

m, with ∀y,z ∈ R
m : y ≺ z ⇔

(∀i ∈ {1, . . . ,m} : yi ≤ zi) and y �= z. The non-dominated subset of a multiset of
vectors Y = {y(1), . . . ,y(m)} is defined as nd(Y) = {y ∈ Y | � ∃z ∈ Y : z ≺ y}. Given
a multicriteria optimization problem, the image of X is defined as Y = {f(x) | x ∈
X }. The Pareto front of a multicriteria optimization problem is defined as Ynd :=
nd(Y ). An important special case is bicriteria optimization, where m = 2.

One way to generalize the BGO algorithm is to compute the expected improve-
ment of the hypervolume indicator. The hypervolume indicator is the m-dimensional
Lebesgue measure λm of the dominated subspace limited from above by some
reference point rm. More precisely the hypervolume indicator is defined as

hv(Y) = λm ({y ∈ R
m | ∃z ∈ Y : z ≺ y∧y ≺ r}) = λm

(⋃
y∈Y

[y,r]

)
(6)

In Fig. 1 the hypervolume indicator is illustrated for a Pareto front approximation
with nine points and two objective functions (m = 2). Given a problem with a Pareto
front bounded above by the reference point, sets that maximize the hypervolume
indicator are well distributed subsets of the Pareto front [1]. This is why finding
the Pareto front is sometimes recast as the problem of maximizing the hypervolume
indicator over the set of all subsets of X . We will call this problem hypervolume
maximization.

Expected Hypervolume Improvement

For hypervolume maximization problems the generalization of the improvement
function is straightforward. We generalize the best solution found up to iteration
t−1, namely ymin,t−1, to

Ynd,t−1 = nd
(
{y(1), . . . ,y(t−1)}

)
(7)
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Fig. 1 Hypervolume indicator of Pareto front approximation

The improvement function is generalized by the following definition of an m-
dimensional improvement:

Im(y,Ynd,t−1,r) := hv(Ynd,t−1 ∪{f(x)})−hv(Ynd,t−1) (8)

It is easy to show that this Im specializes to the improvement function in one
dimension, if we chose r1 to be sufficiently large.

In order to compute the expected improvement in the multicriteria case, we
need also to generalize the assumption on the Gaussian random field. For this, we
consider one Gaussian random field per objective function and assume that there
is no correlation between random variables from different random fields. For every
point x ∈X we obtain an m-dimensional random variable conditioned on previous
information, that is given by X and f(X) = (f(x(1), . . . , f(x(t−1)).

The resulting EHVI can be denoted with

E(Im ((F1(x), . . . ,Fm(x)) | X, f(X),Ynd,t−1,r) =∫
y∈Rm

Im(y,Ynd,t−1,r)PDFx|X,f(X)(y)dy (9)

and it is a generalization of the single objective expected improvement, if we
consider ymin,0 = r1.
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Efficient Exact Computation

In this section the problem of computing the EHVI is studied and a new, efficient
algorithm for bicriteria optimization will be derived. Fast algorithms for computing
the EHVI are important, because in BGO a large number evaluations of the EHVI
are performed in each iteration when searching for its maximizer. Although the
BGO algorithm is typically used in the context of expensive function evaluations,
the optimization of the EHVI can significantly contribute to the total running time
of the algorithm. For instance, this was recently reported as a major drawback of
using EHVI in [12], even when considering only the two dimensional case.

A simplified notation will be used in the following. It focuses only on the
elements that are relevant for the EHVI computation.

Symbol Type Description

μ R
m Mean values of predictive distribution

σ (R+
0 )

m Standard deviations of predictive distribution

Y (Rm)n Sequence of mutually non-dominated points
(Pareto front approximation in t−1)

y(1), . . . ,y(n) R
m The vectors in Y

r R
m Reference point

For computing integrals of the expected improvement it is useful to define the
function Δ . For a given vector of objective function values y ∈ R

m, Δ(y,Y, r) is the
subset of the vectors in R

m which are exclusively dominated by a vector y and not
by elements in Y and that dominate the reference point, in symbols

Δ(y,Y,r) = λm{z ∈ R | y ≺ z and z ≺ r and � ∃q ∈ Y : q ≺ z} (10)

In order to simplify notation, we will write Δ(y) whenever Y,r are given by the
context.

Based on this, we can now concisely (re-)define the EHVI function as

EHVI(μ,σ ,Y,r) =
∫ ∞

y1=−∞
· · ·

∫ ∞

ym=−∞
λm(Δ(y))PDFμ ,σ (y)dy1 . . .dym (11)

Example 1. An illustration of the EHVI is displayed in Fig. 2. The light gray area is
the dominated subspace of Y = {y(1) = (3,1)�, y(2) = (2,1.5)�, y(3) = (1,2.5)�}
cut by the reference point r = (4,4)�. The bivariate Gaussian distribution has the
parameters μ1 = 2, μ2 = 1.5, σ1 = 0.7, and σ2 = 0.6. The PDF of the bivariate
Gaussian distribution is indicated as a 3-D plot. Here y is a sample from this
distribution, and the area of improvement relative to Y is indicated by the dark
shaded area. The variable y1 stands for the f1 value and y2 for the f2 value.
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Fig. 2 Expected hypervolume improvement in 2-D (cf. Example 1)

State of the Art

To compute the EHVI (9) Monte Carlo integration is suggested in [3, 4]. Exact
algorithms for computing EHVI for m = 2 are derived in [5] and for m > 2 in [2].
A different algorithm is described in [7].

Fast algorithms have been proposed in [2] and even faster algorithms for
m = 2,3 in [8]. So far the best known bounds for the time complexity of exact
computations are O(n2) for m= 2, and O(n3) for m= 3. It is notable that the number
of transcendental function evaluations scales only linearly in n in the algorithm
presented in [8]. A lower bound of Ω(n logn) is provided for unsorted Y. However,
it makes sense to assume that Y is sorted in the first coordinate. In that case, as will
be shown, a lower bound of Ω(n) still holds. None of the algorithms found so far
for EHVI reach these lower bounds. In this paper we will present an algorithm for
m = 2 that does so.

Next an algorithm is outlined that reaches the lower bound time complexity
of Ω(n logn). We thereby prove that the time complexity of EHVI is Θ(n logn).
However, this complexity stems from the complexity that is inherent to sorting Y by
the first coordinate.

To keep Y sorted in the first coordinate requires an effort of amortized time
complexity O(logn) per iteration. It makes therefore sense to assume a sorted Y.
For this case we can show that the time complexity is Θ(n). To do so, we will first
establish a lower bound of Ω(n) for this case:
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Lemma 1. The computational time complexity of computing the EHVI for a set Y
that is sorted by the first coordinate is bounded from below by Ω(n).

Proof. An adversary argument can be used to prove this statement. The algorithm
has to “look at” all n points. If one point is not used, it could be moved by an
adversary and this move will not be noticed by the algorithm; a move of any single
point can, in general, change the EHVI. �

Efficient Algorithm

For m = 2 the expected improvement can be computed in linear time, given that Y
is already sorted by the first coordinate. Next, a formula will be derived that consists
of n+1 integrals, each of which can be solved in constant time.

The starting point of the derivation is to partition the objective space into n+ 1
disjoint rectangular stripes S1, . . . , Sn+1, as indicated in Fig. 3 (left). In order to
define the stripes formally, augment Y with two sentinels: y(0) = (r1,−∞) and
y(n+1) = (−∞,r2). The stripes are now defined by

Si =

((
y(i)1
−∞

)
,

(
y(i−1)

1

y(i)2

))
, i = 1, . . . ,n+1

We can now express the improvement of a point y ∈ R
2 by

I2(y,Y,r) =
n+1

∑
i=1

λ2[Si ∩Δ(y)] (12)
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Fig. 3 Left: partitioning of the integration region into stripes. Right: new partitioning of the
reduced integration region after first iteration of the algorithm
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This gives rise to the compact integral for the original EHVI, y = (y1,y2):

EHVI(μ,σ ,Y,r) =
∫ ∞

y1=−∞

∫ ∞

y2=−∞

n+1

∑
i=1

λ2[Si ∩Δ(y1,y2)] ·PDFμ ,σ (y)dy (13)

It is observed that the intersection of Si with Δ(y1,y2) is non-empty if and only
if y = (y1,y2) dominates the upper right corner of Si. In other words, if and only if
y is located in the rectangle with lower left corner (−∞,−∞) and upper right corner

(y(i−1)
1 ,y(i)2 ). See Fig. 3 (right) for an illustration. Therefore

EHVI(μ,σ ,Y,r) =
n+1

∑
i=1

∫ y(i−1)
1

y1=−∞

∫ y(i)2

y2=−∞
λ2[Si ∩Δ(y1,y2)] ·PDFμ ,σ (y)dy (14)

In (14) also the summation is done after integration. This is allowed, because
integration is a linear mapping.

Details of the Constant Time Integration

EHVI(μ,σ ,Y,r) =
n+1

∑
i=1

∫ y(i−1)
1

y1=−∞

∫ y(i)2

y2=−∞
λ2[Si ∩Δ(y1,y2)] ·PDFμ,σ (y)dy (15)

=
n+1

∑
i=1

∫ y(i)1

y1=−∞

∫ y(i)2

y2=−∞
λ2[Si ∩Δ(y1,y2)] ·PDFμ,σ (y)dy+

n+1

∑
i=1

∫ y(i−1)
1

y1=y(i)

∫ y(i)2

y2=−∞
λ2[Si ∩Δ(y1,y2)] ·PDFμ ,σ (y)dy.

(16)

Recall the definition of the standard Gaussian PDF and CDF: φ(x) =
1√
2π

exp(−x2/2), Φ(x) =
1
2
(1+ erf(

√
2)), and a function Ψ that was defined in

[8] as follows:

Ψ(a,b,μ ,σ) =
∫ b

−∞
(a− z)

1
σ

φ
(

z−μ
σ

)
dz.



238 M. Emmerich et al.

Moreover it can be shown that

Ψ(a,b,μ,σ) =
∫ b

−∞
(a− z)

1
σ

φ
(

z−μ
σ

)
dz = σφ

(
b−μ

σ

)
+(a−μ)Φ

(
b−μ

σ

)
.

Then the first summand of (16) can be written as follows:

=
n+1

∑
i=1

∫ y(i)1

y1=−∞

∫ y(i)2

y2=−∞
λ2[Si ∩Δ(y1,y2)] ·PDFμ ,σ (y)dy,

=
n+1

∑
i=1

∫ y(i)1

y1=−∞
(y(i−1)

1 − y(i)1 ) ·PDFμ1,σ1(y1)dy1

∫ y(i)2

y2=−∞
(y(i)2 − y2) ·PDFμ2,σ2(y2)dy2,

=
n+1

∑
i=1

(y(i−1)
1 − y(i)1 )

∫ y(i)1

y1=−∞
PDFμ1,σ1(y1)dy1

∫ y(i)2

y2=−∞
(y(i)2 − y2) ·PDFμ2,σ2(y2)dy2,

=
n+1

∑
i=1

(y(i−1)
1 − y(i)1 ) ·Φ

(
y(i)1 −μ1

σ1

)
·Ψ(y(i)2 ,y(i)2 ,μ2,σ2). (17)

And the second summand of (16) can be written as follows:

=
n+1

∑
i=1

∫ y(i−1)
1

y1=y(i)

∫ y(i)2

y2=−∞
λ2[Si ∩Δ(y1,y2)] ·PDFμ,σ (y)dy,

=
n+1

∑
i=1

∫ y(i−1)
1

y1=y(i)
(y(i−1)

1 − y1) ·PDFμ1,σ1(y1)dy1 ·
∫ y(i)2

y2=−∞
(y(i)− y2) ·PDFμ2,σ2(y2)dy2,

=
n+1

∑
i=1

(
Ψ(y(i−1)

1 ,y(i−1)
1 ,μ1,σ1)−Ψ(y(i−1)

1 ,y(i)1 ,μ1,σ1)
)
·Ψ(y(i)2 ,y(i)2 ,μ2,σ2).

(18)

The C++ and MATLAB source-code for computing the EHVI is made available
under http://moda.liacs.nl or on request by the authors. The code has been compared
to results of Monte Carlo integration and earlier implementations of the exact EHVI.

Numerical Example

The behavior of the BGO based on the EHVI will be illustrated by a single numerical
experiment.

The numerical example is visualized in the plots of Fig. 4.The bicriteria opti-
mization problem is: f1(x) = ||x − 1|| → min, f2(x) = ||x + 1|| → min, and x ∈
[−2,2]× [−2,2] ⊂ R

2. The Pareto front is the line segment from (0,2 · √2) to

http://moda.liacs.nl
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Fig. 4 Example run of multicriteria Bayesian global optimization

(2 · √2,0), the efficient set is the line segment that connects (−1,−1) and (1,1).
The metamodel used is a Gaussian random field model with Gaussian correlation
function exp(−θ ||x(1)− x(2)||2), for x(1) ∈ R

m and x(2) ∈ R
m. We set θ = 0.0001,

which was estimated by maximum likelihood method for initial sample. An initial
set of 10 points was evaluated, indicated by the dark blue squares. From this starting
set 15 new points were generated using the EHVI. The maximizer of the expected
improvement was found using a uniform grid. In total each objective function was
evaluated 25 times.

The results of the experiment are depicted in plots. In all pictures, points that
have been evaluated are indicated by triangles. The points from the initial set
are additionally marked by squares. Efficient points are surrounded by circles.
The top row depicts the mean value of the Gaussian random field model at x ∈
[−2,2]× [−2,2] for f1 and f2, resp. Likewise, the middle row depicts the variance
of the Gaussian random field model at x ∈ [−2,2]× [−2,2] for f1 and f2, resp. On
the left-hand side of the bottom row the hypervolume-based expected improvement
values after 25 iterations are shown. The final set of points in the objective space and
the Pareto front approximation is seen in the plot in the lower right corner. Using
only 25 evaluations of the original objective functions, the algorithm finds a good
approximation to the Pareto front.



240 M. Emmerich et al.

Application Notes and Further Reading

In addition to this experiment, other applications of the EHVI have been recently
reported. It was first used as selection criterion in evolutionary optimization [3] and
in the context of airfoil design [4] and quantum control [18]. To our knowledge, it
was used for the first time in BGO in the context of airfoil optimization in [13]
and conceptually compared other multicriteria infill criteria, including proposal
made in [11], [10], and in [23]. Other applications are robotics [20], biogas
plant controllers [6], event detection in water quality management [24], structural
design optimization [17], and tuning of machine learning tools [12]. An empirical
comparison with other infill criteria is found in [16].

Summary and Outlook

This chapter described the EHVI as a multicriteria generalization of the expected
improvement used in BGO. This generalization is based on the hypervolume
indicator, which is a quality indicator for Pareto front approximations. It has recently
served as an infill criterion in a number of BGO case studies, but was criticized
for its high computational complexity. In this chapter, the time complexity of the
2-D EHVI was shown to be only Θ(n). The linear time algorithm presented in this
paper improves upon previously proposed algorithms which required quadratic time
complexity. It assumes a sorted Pareto front (otherwise its complexity is O(n logn)),
which is typically given in BGO. During a single iteration of BGO a large number of
evaluations need to be performed, in order to find a minimizer based on the Gaussian
random field model. Therefore the fast algorithm will be of great benefit for reducing
the running time of multicriteria BGO based on EHVI.

Future research will investigate in more depth the theoretical properties of the
EHVI. For the first results in this direction refer to [5], where it was shown that the
2-D EHVI is monotonic in the mean values and variance. Also it will be interesting
to analyze the time complexity of EHVI for more than two objective functions.
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