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Preface

Antanas Žilinskas was born on January 5, 1946, in Lithuania. He graduated with a
gold medal from 2nd Kaunas Gymnasium in 1963 and with a distinction diploma
of Electrical Engineering from Kaunas University of Technology in 1968. His
Ph.D. studies (aspirantura) at Lithuanian Academy of Sciences lasted from 1970
to 1973. The Candidate of Sciences (Ph.D.) degree in Technical Cybernetics
(1973) has been received from Kaunas University of Technology. The Doctor of
Mathematical Sciences degree (Habilitation, 1985) has been received from St.
Petersburg (Leningrad) University. The title Senior Research Fellow (1980) has
been conferred by the Presidium of Academy of Sciences, and the title Professor
(1989) by Vilnius Pedagogical University. He has been awarded (with V. Šaltenis
and G. Dzemyda) Lithuanian National Award for scientific achievements of 2001
for the research on “Efficient optimization methods and their applications.”

A. Žilinskas joined the Institute of Mathematics and Informatics in 1973 starting
with a position of junior research associate and worked as a senior research
associate reaching the highest rank of principal researcher which is his main
position now. Apart from working in the research institute, he was a lecturer at
Vilnius Pedagogical University in 1986–1988, where he founded the Department of
Informatics in 1988 and held a position of professor and head of this department
in 1988–1993. He worked later as a professor of this department until 2000. He
founded the Department of Applied Informatics at Vytautas Magnus University
in 1994 and was holding a position of professor and head of this department.
A. Žilinskas taught optimization theory and methods at all levels; operations
research; analysis of algorithms at all levels; and calculus, statistics, and linear
algebra for undergraduates.

A. Žilinskas held a visiting Konrad Zuse professorship at Dortmund University
(1990/1991 academic year). As a visiting research professor, he worked at Åbo
Akademi, Technical University Aachen, Copenhagen University, University College
London, and Cardiff University.
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A. Žilinskas is a member of Lithuanian Academy of Sciences. He is a member
of editorial boards of Journal of Global Optimization, Control and Cybernetics,
Informatica, The Open Cybernetics and Systemics Journal, and International Jour-
nal of Grid and High Performance Computing. He is a member of IFIP working
group Optimization-Based Computer-Aided Modeling and Design and of American
Mathematical Society. He is a reviewer for Mathematical Reviews, Zentralblatt für
Mathematic, book section of INFORMS Interfaces.

Many projects were fulfilled by A. Žilinskas for industry in the 1970s and the
1980s; e.g., the results of optimal design of magnetic deflection systems of color TV
sets and of optimal design of pigment mixtures for paint technology are referenced
in the book Global Optimization, Springer, 1989, written with A. Törn. He was
a chairman of Lithuanian part of international project Computing, Information
Services and the Internet, which was fulfilled in 1996–1997 cooperating with Växjo
University (Sweden). He was a managing director of TEMPUS project Modelling
of Economics and Business Systems funded by EU in 1997–2000 with participation
of Vytautas Magnus University, Kaunas University of Technology from Lithuania,
Copenhagen University (Denmark), and Maastricht University (the Netherlands)
from EU. He was a partner (with Prof. J. Calvin) in the project Probabilistic Analysis
of Global Optimization Algorithms funded by National Research Council (USA)
under Collaboration in Basic Science and Engineering Program 1998–2000.

A. Žilinskas has published more than 200 papers mainly on statistical global
optimization theory, algorithms, and applications, 6 monographs, and 6 textbooks;
the titles of the monographs are:

• Žilinskas, A.: Global Optimization: Axiomatic of Statistical Models; Algorithms;
Applications. Mokslas (1986) (in Russian)

• Törn, A., Žilinskas, A.: Global Optimization. Springer (1989)
• Šaltenis, V., Žilinskas, A.: Search for Optimum. Nauka (1989)
• Zhigljavsky, A., Žilinskas, A.: Methods of Search for Global Extremum. Nauka

(1991) (in Russian)
• Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer (2008)
• Pardalos, P.M., Žilinskas, A., Žilinskas, J.: Non-Convex Multi-Objective Opti-

mization. Springer, New York (2016)

Current research interests of A. Žilinskas are statistical theory of global optimiza-
tion, multi-objective optimization, optimization-based modeling and design, and
analysis of multidimensional data by means of visualization. Research is oriented
to development of statistical models for global optimization, implementation and
investigation of the corresponding algorithms, and application of these algorithms
to practical problems.

This book is dedicated to A. Žilinskas on the occasion of his 70th birthday. The
chapters cover some of the research interests of A. Žilinskas. The book is divided
into three parts: I. Theory and Algorithms for Global Optimization; II. Applications
of Global Optimization; and III. Multi-Objective Global Optimization.
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On behalf of all the contributors of this Festschrift, we would like to congratulate
Antanas Žilinskas on the occasion of his 70th birthday and wish him well and
continued success in his scientific career.
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Jolita Bernatavičienė, Gintautas Dzemyda, Olga Kurasova,
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On the Asymptotic Tractability of Global
Optimization

James M. Calvin

Abstract We consider the intrinsic difficulty of global optimization in high
dimensional Euclidean space. We adopt an asymptotic analysis, and give a lower
bound on the number of function evaluations required to obtain a given error
tolerance. This lower bound complements upper bounds provided by recently
proposed algorithms.

Keywords Lower complexity bounds • Tractability • Adaptive algorithms

Introduction

In this chapter we consider the following optimization problem. Given a twice-
continuously differentiable function f : [0,1]d → R, we can evaluate the function
at points t1, t2, . . . , tn ∈ [0,1]d, where tk = tk(t1, f (t1), t2, f (t2), . . . , tk−1, f (tk−1)) for
2≤ k ≤ n. The goal is to make the error

Δn(f )≡ min
1≤i≤n

f (ti)− min
t∈[0,1]d

f (t)

small.
Results on the worst-case intractability of global optimization are well known.

The following is a specialization of a result from [4]; see [8]. Let F(k,p) denote
the class of k-times continuously differentiable functions on the d-dimensional unit
cube [0,1]d with the property that

∣
∣
∣
∣

dk

dtk f (x+ tu)

∣
∣
∣
∣
≤ p

for all x∈ [0,1]d for any unit vector u. Let A be any optimization algorithm that uses
information obtained by evaluating f and its partial derivatives, and assume that for

J.M. Calvin (�)
New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
e-mail: calvin@njit.edu

© Springer International Publishing Switzerland 2016
P.M. Pardalos et al. (eds.), Advances in Stochastic and Deterministic Global
Optimization, Springer Optimization and Its Applications 107,
DOI 10.1007/978-3-319-29975-4_1
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4 J.M. Calvin

any f ∈ F(k,p), A is guaranteed to identify an x such that f (x)− f ∗ ≤ ε. Then there
exists a function f ∈ F(k,p) such that algorithm A requires at least

Cd,k ·
(p

ε

)d/k

evaluations for input f [8]. This shows that even with uniform bounds on the deriva-
tives, the worst-case number of required function evaluations grows exponentially
in the dimension d of the domain.

Global optimizers need not be deterred by this intractability; it is merely a reflec-
tion of the fact that a worst-case analysis is inappropriate for global optimization of
large classes of continuous functions. If the algorithm has to work with n values of
an arbitrary continuous function, no matter how that information is processed the
error of any approximation can be arbitrarily large.

If we know that f is convex, then there exist algorithms which obtain an ε

approximation with a number of evaluations that is polynomial in d and in log(p/ε)
[8]. For non-convex functions, the number of evaluations is exponential in d and in
log(p/ε).

Thus the curse of dimension can be broken by restricting to convex functions. We
are interested in alternative ways that do not restrict the functions so much. There
are at least three ways to proceed. Each starts with the assumption that the function
to be minimized is a member of some given class F.

1. One approach is to fix the objective function and randomize the optimization
algorithm. Then when applied to a suitable objective function, the random time
until an ε approximation is obtained can be analyzed. This is the approach taken
in [3, 7]. Examples of randomized algorithms include simulated annealing and
genetic algorithms, but we are unaware of error bounds of the type considered
here for those methods.

2. Another approach is to randomize the objective function; that is, view the
objective function as a sample path of a stochastic process or random field. Much
of the work in this area has been initiated by A. Žilinskas, including [10–12].
The questions center on the average number of function evaluations required
to obtain an ε-approximation. Studies have shown that global optimization is
average-case tractable in the univariate setting, and that adaptive methods are
much more powerful than nonadaptive methods in this case.

Adaptive algorithms choose the next function evaluation point as a function
of all previous information, while nonadaptive algorithms choose points inde-
pendently of past information. Examples of the latter class of algorithms are
algorithms that choose points independently according to some fixed probability
distribution, or according to a fixed grid. Nonadaptive global optimization
algorithms are seldom used in practice, and there are good theoretical reasons
for why that is the case if we adopt a worst-case perspective. Suppose that
our objective function f is in some class of functions F, and assume that F
is convex and symmetric. That is, for 0 ≤ λ ≤ 1 and f ,g ∈ F, −f ∈ F and
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λ f +(1−λ )g ∈ F. This type of class of objective functions provides a natural
setting for global optimization problems (for example, k-times continuously
differentiable functions). For such a class, adaptive algorithms are essentially
no more powerful than nonadaptive algorithms. For any adaptive algorithm
that obtains an error of at most ε with n function evaluations, there exists a
nonadaptive algorithm using no more than n+ 1 function evaluations that also
obtains an error of at most ε [6].

3. A third approach is to fix the objective function and analyze the asymptotic
error as the number of function evaluations tends to infinity. The motivation is
that algorithms that are efficient from an asymptotic point of view are likely to
be efficient for a moderate number of function evaluations as well. Numerical
experiments with algorithms developed with this approach (reviewed below)
indicate that they are efficient compared to a sample of alternative algorithms
that have appeared in the literature.

In this chapter we adopt the third viewpoint, considering asymptotic error for a
certain class of functions. In addition to recalling an algorithm that gives an upper
error bound, we describe a lower bound for adaptive algorithms.

Background

The Euclidean norm is denoted by ‖·‖. Let F = C2
(

[0,1]d,R
)

denote the
set of twice-continuously differentiable real-valued functions defined on the
d-dimensional unit cube. For f ∈ F, let f ∗ = mint∈[0,1]d f (t) denote the global
minimum of f . Let F1 ⊂ F denote the subset of functions that have a unique global
minimizer x∗ in the interior of [0,1]d. Let n(ε,d, f ) be the minimal number of
function evaluations needed to obtain an approximation to the minimum with error
at most ε for f defined on [0,1]d.

A two-dimensional algorithm based on Delaunay triangulations was presented
in [1]. That algorithm has the property that for large enough n (depending on f ), the
error after n function evaluations is at most

c1 exp(−c2
√

n)

for c1,c2 depending on f . The algorithm presented in [1] was based on a Delaunay
triangulation of the domain and the error bound could only be proved for dimension
d = 2, due to the fact that the algorithm required a certain quality guarantee for the
triangulations which could not be proved for higher dimensions.

In [2] a rectangular decomposition was used instead of the Delaunay decomposi-
tion. The main result on the convergence rate of the error for that algorithm follows.

Suppose that f ∈ F1. There is a number n0(f ) such that for n≥ n0(f ),

Δn ≤
1
8

∥
∥D2f

∥
∥

∞,[0,1]d (q ·d)exp
(

−
√

nβ (f ,d)
)

,
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where
∥
∥D2f

∥
∥

∞,[0,1]d is a seminorm measuring the size of the second derivative of f
(defined at (3) below), q≈ 1.27 is a numerical parameter, and

β (f ,d) =

⎛

⎝

exp
(

− 3
4 −

16
q

)

Γ (1+d/2)
(

det(D2f (x∗))
)1/2

d2 (2πqd2)d/2

⎞

⎠

1/2

.

Note that the limiting error is smaller, the larger the determinant of the second
derivative at the minimizer; a larger second derivative allows the search effort
to concentrate more around the minimizer. The convergence rate in terms of the
number of function evaluations n is quite fast, but the term β (f ,d) decreases

exponentially fast as d increases: as d→ ∞, β (f ,d) = O
(

d−(d+3)/2
)

.

Bounds for Nonadaptive Algorithms

The dispersion of a set of points Pn = {x1,x2, . . . ,xn} ⊂ [0,1]d is given by

dPn = sup
x∈[0,1]d

min
1≤i≤n

‖x− xi‖ ;

this is the radius of the largest ball in [0,1]d that contains no point of Pn. (See [5];
here we consider only the Euclidean metric.) For any n≥ 1 the dispersion is bounded
below by dPn = Ω

(

n−1/d
)

([5], p. 150). In particular, for any sequence,

dPn ≥
(

Γ (1+d/2)

πd/2

)1/d

n−1/d. (1)

Let f ∈ F1; recall that this means that f ∈ C2
(

[0,1]d
)

and that f has a unique
minimizer x∗ in the interior of the cube. Denote the matrix of second-order
partial derivatives by D2f (x∗), which is positive definite since f ∈ F1. Denote the
eigenvalues of D2(x∗) by

λ1 ≥ λ2 ≥ ·· · ≥ λd > 0.

For any nonadaptive algorithm, there exists a function f ∈ F for which the
following lower bound on the error holds:

Δn ≥ λd

(
Γ (1+d/2)

πd/2

)2/d

n−2/d.

The bound follows from Taylor’s theorem and the lower bound for dispersion given
at (1). This means that for any nonadaptive method, for small enough ε > 0, about

(
1
ε

)d/2(λd

π

)d/2

Γ (1+d/2)

function values are needed to obtain an error of at most ε.
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Using Stirling’s approximation for the gamma function,

Γ (1+d/2)∼
√

2π/(1+d/2)

(
1+d/2

e

)d/2

, (2)

we can express the last bound as

(
1
ε

)d/2(λd

π

)d/2√
2π/(1+d/2)

(
1+d/2

e

)d/2

.

We therefore see that for nonadaptive methods, global optimization suffers from a
“curse of dimension”: The number of function evaluations increases exponentially
in the dimension d.

Bounds for Adaptive Algorithms

For a compact set K and f ∈ C2(K), define the seminorm

∥
∥D2f

∥
∥

∞,K ≡ sup
x∈K

sup
u1,u2∈R2

‖ui‖=1

|Du1Du2 f (x)| , (3)

where Dyf is the derivative of f in the direction y. An equivalent definition is

∥
∥D2f

∥
∥

∞,K ≡ sup
x∈K

sup
u∈Rd

‖u‖=1

∣
∣u′D2f (x)u

∣
∣ .

This is a measure of the maximum size of the second derivative of f over K.
The following result is a corollary of a theorem proved in [9].

Lemma 1. Consider a regular simplex T and function f ∈ C2(T). Let R denote the
radius of the smallest sphere that circumscribes T. Let L denote the linear function
that interpolates the values of f at the vertices of the simplex. Then we have the
sharp bound

max
x∈T
|f (x)−L(x)| ≤ 1

2
R2

∥
∥D2f

∥
∥

∞,T . (4)

Lower Error Bound

In this section we derive an asymptotic lower bound for n(ε, f ,d) for f ∈ F1.
Let B(x,y) denote the ball of radius y centered at x:

B(x,y) = {z ∈ R
d : ‖x− z‖ ≤ y}.
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For f ∈ F1, there exist positive numbers η and c such that

f (x)≥ f (x)≡ f ∗+ c‖x− x∗‖2

for x ∈ B(x∗,η). Extend the definition of f to the remainder of [0,1]d in such a way
that f ∈ C2 and f (x) ≥ f ∗+ cη2 for x ∈ [0,1]d \B(x∗,η). We obtain a lower bound
for n(ε, f ,d) by obtaining a lower bound for the number of function evaluations
required for an ε approximation of the minimum f ∗ = f ∗ of f on B(x∗,η). For any
set of evaluations, the error on the ball for f will be at least the error for f , and so it
suffices to prove a lower bound for f on B(x∗,η). For f , we have

∥
∥D2f

∥
∥

∞,K
= 2c, det(D2f (x∗)) = (2c)d

for any compact K.
For a set of n points {x1,x2, . . . ,xn} ⊂ [0,1]d, let {Ti : 1 ≤ i ≤ s(n)} denote the

Delaunay triangulation of the points. The number of simplexes s(n) has the bound
s(n) = O(n�d/2�). Furthermore, define

f i = max
x∈Ti

f (x), vi = |Ti| , Mn = min
1≤i≤s(n)

f (xi), Δn = Mn− f ∗,

where |Ti| denotes the volume of Ti. For Δn ≤ ε, we require that for each i,

f i−max
x∈Ti

∣
∣L(x)− f (x)

∣
∣≥Mn− ε,

or equivalently

f i−Mn + ε≥max
x∈Ti

∣
∣L(x)− f (x)

∣
∣ .

The most favorable geometry of the simplexes, from the point of view of
interpolation, is that of the regular simplex. This is not attainable for all the {Ti}, but
since we seek a lower bound on the number of function evaluations let us assume
that all the simplexes are regular.

Consider a regular simplex in R
d with edge length h. The outer radius is

Rd(h)≡
(

d
2(d+1)

)1/2

h (5)

(Jung’s theorem) and the volume is

Vd(h)≡
√

d+1

d!2d/2
hd. (6)
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From Lemma 1 we have the tight bound

max
x∈Ti

∣
∣L(x)− f (x)

∣
∣≤ 1

2
R2

Ti

∥
∥D2f

∥
∥

∞,Ti
,

where RTi is the radius of the smallest sphere containing the regular simplex Ti.
Using (5) and (6) we can relate the radius RTi to the volume vi of the simplex by

R2
Ti
= v2/d

i

(
d!√
d+1

)2/d ( d
d+1

)

.

Therefore, Δn ≤ ε entails that

2
∥
∥D2f

∥
∥

∞,Ti

≥
(

d!√
d+1

)2/d ( d
d+1

)
v2/d

i

f i−Mn + ε
,

or

vi

(f i−Mn + ε)d/2
≤ 2d/2

∥
∥D2f

∥
∥d/2

∞,Ti

((
d!√
d+1

)2/d ( d
d+1

))−d/2

= c−d/2

((
d!√
d+1

)2/d ( d
d+1

))−d/2

for each i≤ s(n). Summing over all simplexes gives

s(n)

∑
i=1

vi

(f i−Mn + ε)d/2
≤ s(n)c−d/2

((
d!√
d+1

)2/d ( d
d+1

))−d/2

.

Letting

In(ε)≡
s(n)

∑
i=1

vi

(f i−Mn + ε)d/2
,

this implies the bound

s(n)≥ In(ε)c
d/2

((
d!√
d+1

)2/d ( d
d+1

))d/2

.
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Since n = Ω(s(n)2/(d+1)), we have (ignoring a constant term and using Stirling’s
approximation),

n≥ In(ε)
2/(d+1)cd/(d+1)

((
d!√
d+1

)2/d ( d
d+1

))d/(d+1)

≥ In(ε)
2/(d+1)cd/(d+1)

(
2πd
d+1

)1/(d+1)(d
e

)2d/(d+1)( d
d+1

)d/(d+1)

.

The lower bound will involve the function

If (ε)≡
∫

[0,1]d

dx

(f (x)− f ∗+ ε)d/2

for ε > 0.
The following lemma is proved in [2].

Lemma 2. For f ∈ F1,

lim
ε↓0

If (ε)

log(1/ε)
=

d(2π)d/2

2Γ (1+d/2)
·
(

det(D2f (x∗))
)−1/2 ≡ α(f ,d).

For f we have

α(f ,d) =
d(π/c)d/2

2Γ (1+d/2)
.

Since In(ε)∼I (ε) as ε→ 0 and n→ ∞, we have

n≥ In(ε)
2/(d+1)cd/(d+1)

(
2πd
d+1

)1/(d+1)(d
e

)2d/(d+1)( d
d+1

)d/(d+1)

=

(
In(ε)

If (ε)

)2/(d+1)( If (ε)

log(1/ε)

)2/(d+1)

log(1/ε)2/(d+1)

·cd/(d+1)
(

2πd
d+1

)1/(d+1)(d
e

)2d/(d+1)( d
d+1

)d/(d+1)

∼ α(f ,d)2/(d+1) log(1/ε)2/(d+1)cd/(d+1)
(

2πd
d+1

)1/(d+1)(d
e

)2d/(d+1)( d
d+1

)d/(d+1)



Asymptotic Tractability 11

=

(

d(π/c)d/2

2Γ (1+d/2)

)2/(d+1)

log(1/ε)2/(d+1)cd/(d+1)
(

2πd
d+1

)1/(d+1)

(
d
e

)2d/(d+1)( d
d+1

)d/(d+1)

= π2−1/(d+1) d3

d+1
log(1/ε)2/(d+1)

Γ (1+d/2)2/(d+1)
.

It follows from (2) that

Γ (1+d/2)2/(d+1) =Θ(d)

as d→ ∞, and so we obtain the lower bound

n = Ω
(

d · log(1/ε)2/(d+1)
)

.

Note that our assumptions on f are favorable. In the case of constant f (f (x)≡ C
for x ∈ [0,1]d), the value of I (f ) = ε−d/2 and we obtain a lower bound that grows
exponentially with d.

The fact that the lower bound given above does not grow exponentially in
d of course does not imply that we should expect algorithms that have similar
complexity. The assumption of regular simplexes in the Delaunay triangulation is
unrealistic and only used to derive a lower bound.

Conclusions

Global optimization is intractable if we restrict ourselves to nonadaptive algorithms.
In that case, n(ε,d, f ) increases exponentially in the dimension of the domain.

In this paper we have considered asymptotic bounds for a class of twice-
continuously differentiable functions with a unique global minimizer. Adaptive
algorithms exist for which n(ε,d, f ) grows only logarithmically in ε−1 but with a
constant factor growing exponentially in dimension d. We presented a lower bound
that does not grow exponentially in dimension, though it is not clear that there can
be an algorithm that does not have a bound growing exponentially in the dimension.

Acknowledgements The motivation for this investigation grew out of discussions with
A. Žilinskas.
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Combining Interval and Probabilistic
Uncertainty: What Is Computable?

Vladik Kreinovich, Andrzej Pownuk, and Olga Kosheleva

Abstract In many practical problems, we need to process measurement results.
For example, we need such data processing to predict future values of physical quan-
tities. In these computations, it is important to take into account that measurement
results are never absolutely exact, that there is always measurement uncertainty,
because of which the measurement results are, in general, somewhat different from
the actual (unknown) values of the corresponding quantities. In some cases, all we
know about measurement uncertainty is an upper bound; in this case, we have an
interval uncertainty, meaning that all we know about the actual value is that is
belongs to a certain interval. In other cases, we have some information—usually
partial—about the corresponding probability distribution. New data processing
challenges appear all the time; in many of these cases, it is important to come up
with appropriate algorithms for taking uncertainty into account.

Before we concentrate our efforts on designing such algorithms, it is important
to make sure that such an algorithm is possible in the first place, i.e., that the
corresponding problem is algorithmically computable. In this paper, we analyze
the computability of such uncertainty-related problems. It turns out that in a naive
(straightforward) formulation, many such problems are not computable, but they
become computable if we reformulate them in appropriate practice-related terms.
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Formulation of the Problem

Need for Data Processing In practice, we are often interested in a quantity y which
is difficult to measure directly. Examples of such quantities are distance to a star,
amount of oil in the well, or tomorrow’s weather. This is important, since one of the
main objectives of science is to predict future values of different quantities.

To estimate such quantities, we find easier-to-measure quantities x1, . . . ,xn which
are related to y by a known dependence y = f (x1, . . . ,xn). For example, to predict
the future values of important quantities, we can use the known relations between
the current and future values of different quantities.

Once such a relation is known, we measure the auxiliary quantities xi and use
the measurement results x̃i to compute an estimate ỹ = f (x̃1, . . . , x̃n) for the desired
quantity y. For example, to predict the future values of physical quantities, we use
the results x̃i of measuring the current values xi of these (and related) physical
quantities and the known relations y = f (x1, . . . ,xn) between the current (xi) and
future (y) values of different quantities.

The corresponding estimation is what constitutes data processing.

Need to Take Uncertainty into Account When Processing Data The resulting
estimates are never 100 % accurate:

• measurements are never absolutely accurate,
• physical models used for predictions are usually only approximate, and
• sometimes (like in quantum physics) these models only predict the probabilities

of different events.

It is desirable to take this uncertainty into account when processing data.
In some cases, we know all the related probabilities; in this case, we can

potentially determine the values of all statistical characteristics of interest: mean,
standard deviation, correlations, etc.

In most practical situations, however, we only have partial information about
the corresponding probabilities. For example, for measurement uncertainties, often,
the only information that we have about this uncertainty is the upper bound Δ
on its absolute value; in this case, after we get a measurement result X̃, the only
information that we have about the actual (unknown) value of the corresponding
quantity X is that it belongs to the interval [X̃−Δ , X̃ +Δ ]. We may know intervals
containing the actual (unknown) cumulative distribution function, we may know
bounds on moments, etc. In such situations of partial knowledge, for each statistical
characteristic of interest, we can have several possible values. In such cases, we
are interested in the interval of possible values of this characteristic, i.e., in the
smallest and the largest possible values of this characteristic. In some cases, there are
efficient algorithms for computing these intervals, in other cases, the corresponding
general problem is known to be NP-hard or even not algorithmically computable;
see, e.g., [3].
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Studying computability—just like studying NP-hardness—is important, since it
prevents us from vain attempts to solve the problem in too much generality, and
helps us concentrate on doable cases. In view of this importance, in this paper, we
describe the most general related problems which are still algorithmically solvable.

What Is Computable: A Brief Reminder

What Is Computable: General Idea We are interested in processing uncertainty,
i.e., in dealing with a difference between the exact models of physical reality and
our approximate representation of this reality. In other words, we are interested in
models of physical reality.

Why do we need mathematical models in the first place? One of our main
objectives is to predict the results of different actions (or the result of not performing
any action). Models enable us to predict these results without the need to actually
perform these actions, thus often drastically decreasing potential costs. For example,
it is theoretically possible to determine the stability limits of an airplane by applying
different stresses to several copies of this airplane until each copy breaks, but, if
we have an adequate computer-based model, it is cheaper and faster to simulate
different stresses on this model without having to destroy actual airplane frames.

From this viewpoint, a model is computable if it has algorithms that allow us
to make the corresponding predictions. Let us recall how this general idea can be
applied to different mathematical objects.

What Is Computable: Case of Real Numbers In modeling, real numbers usually
represent values of physical quantities. This is what real numbers were originally
invented for—to describe quantities like length, weight, etc., this is still one of the
main practical applications of real numbers.

The simplest thing that we can do with a physical quantity is measure its value.
In line with the above general idea, we can say that a real number is computable if
we can predict the results of measuring the corresponding quantity.

A measurement is practically never absolutely accurate, it only produces an
approximation x̃ to the actual (unknown) value x; see, e.g., [6]. In modern computer-
based measuring instruments, such an approximate value x̃ is usually a binary
fraction, i.e., a rational number.

For every measuring instrument, we usually know the upper bound Δ on the

absolute value of the corresponding measurement error Δx
def
= x̃− x: |Δx| ≤ Δ .

Indeed, without such a bound, the difference Δx could be arbitrary large, and so,
we would not be able to make any conclusion about the actual value x; in other
words, this would be a wild guess, not a measurement.

Once we know Δ , then, based on the measurement result x̃, we can conclude that
the actual value x is Δ -close to x̃: |x− x̃| ≤ Δ . Thus, it is reasonable to say that a
real number x is computable if for every given accuracy Δ > 0, we can efficiently
generate a rational number that approximates x with the given accuracy.
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One can easily see that it is sufficient to be able to approximate x with the
accuracy 2−k corresponding to k binary digits. Thus, we arrive at the following
definition of a computable real number (see, e.g., [8]):

Definition 1. A real number x is called computable if there is an algorithm that,
given a natural number k, generates a rational number rk for which

|x− rk| ≤ 2−k.

Comment. It is worth mentioning that not all real numbers are computable. The
proof of this fact is straightforward.

Indeed, to every computable real number, there corresponds an algorithm, and
different real numbers require different algorithms. An algorithm is a finite sequence
of symbols. There are countably many finite sequences of symbols, so there are no
more than countably many computable real numbers. And it is known that the set
of all real numbers is not computable: this was one of the first results of set theory.
Thus, there are real numbers which are not computable.

How to Store a Computable Number in the Computer The above definition
provides a straightforward way of storing a computable real number in the actual
computer: namely, once we fix the accuracy 2−k, all we need to store in the
corresponding rational number rk.

What Is Computable: Case of Functions from Reals to Reals In the real world,
there are many dependencies between the values of different quantities. Sometimes,
the corresponding dependence is functional, in the sense that the values x1, . . . ,xn

of some quantities xi uniquely determine the value of some other quantity y. For
example, according to the Ohm’s Law V = I ·R, the voltage V is uniquely determined
by the values of the current I and the resistance R.

It is reasonable to say that the corresponding function y = f (x1, . . . ,xn) is
computable if, based on the results of measuring the quantities xi, we can predict
the results of measuring y. We may not know beforehand how accurately we need
to measure the quantities xi to predict y with a given accuracy k. If the original
accuracy of measuring xi is not enough, the prediction scheme can ask for more
accurate measurement results. In other words, the algorithm can ask, for each pair
of natural numbers i ≤ n and k, for a rational number rik such that |xi− rik| ≤ 2−k.
The algorithm can ask for these values rik as many times as it needs, all we require is
that at the end, we always get the desired prediction. Thus, we arrive at the following
definition: [8]:

Definition 2. We say that a function y = f (x1, . . . ,xn) from real numbers to real
numbers is computable if there is an algorithm that, for all possible values xi, given a
natural number �, computes a rational number s� for which |f (x1, . . . ,xn)−s�| ≤ 2−�.
This algorithm,

• in addition to the usual computational steps,
• can also generate requests, i.e., pairs of natural numbers (i,k) with i≤ n.
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As a reply to a request, the algorithm then gets a rational number rik for which
|xi− rik| ≤ 2−k; this number can be used in further computations.

It is known that most usual mathematical functions are computable in this sense.

How to Store a Computable Function in a Computer In contrast to the case
of a computable real number, here, even if we know the accuracy 2−� with which
we need to compute the results, it is not immediately clear how we can store the
corresponding function without explicitly storing the while algorithm.

To make storage easier, it is possible to take into account that in practice, for each
physical quantity Xi, there are natural bounds Xi and Xi: velocities are bounded by
the speed of light, distances on Earth are bounded by the Earth’s size, etc. Thus, for
all practical purposes, it is sufficient to only consider values xi ∈ [Xi,Xi]. It turns out
that for such functions, the definition of a computable function can be simplified:

Proposition 1. For every computable function f (x1, . . . ,xn) on a rational-valued
box [X1,X1]× . . .× [Xn,Xn], there exists an algorithm that, given a natural number
�, computes a natural number k such that if |xi− x′i| ≤ 2−k for all i, then

|f (x1, . . . ,xn)− f (x′1, . . . ,x
′
n)| ≤ 2−�.

This “� to k” algorithm can be effectively constructed based on the original one.

Comment. For reader’s convenience, all the proofs are placed in the special Proofs
section.

Because of this result, for each �, to be able to compute all the values f (x1, . . . ,xn)
with the accuracy 2−�, it is no longer necessary to describe the whole algorithm, it
is sufficient to store finitely many rational numbers. Namely:

• We use Proposition 1 to find select a value k corresponding to the accu-
racy 2−(�+1).

• Then, for each i, we consider a finite list of rational values

ri = Xi, ri = Xi +2−k, ri = Xi +2 ·2−k, . . . ,ri = Xi.

• For each combination of such rational values, we use the original function’s
algorithm to compute the value f (r1, . . . ,rn) with accuracy 2−(�+1).

These are the values we store.
Based on these stored values, we can compute all the values of the function

f (x1, . . . ,xn) with the given accuracy 2−�. Specifically, for each combination of
computable values (x1, . . . ,xn), we can

• compute 2−k-close rational value r1, . . . ,rn, and then
• find, in the stored list, the corresponding approximation ỹ to f (r1, . . . ,rn), i.e., the

value ỹ for which |f (r1, . . . ,rn)− ỹ| ≤ 2−(�+1).

Let us show that this value ỹ is indeed the 2−�-approximation to f (x1, . . . ,xn).
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Indeed, because of our choice of �, from the fact that |xi− ri| ≤ 2−k, we conclude
that |f (x1, . . . ,xn)− f (r1, . . . ,rn)| ≤ 2−(�+1). Thus,

|f (x1, . . . ,xn)− y| ≤ |f (x1, . . . ,xn)− f (r1, . . . ,rn)|+ |f (r1, . . . ,rn)− ỹ| ≤

2−(�+1) +2−(�+1) = 2−�,

i.e., that the value ỹ is indeed the desired 2−�-approximation to f (x1, . . . ,xn).

A Useful Equivalent Definition of a Computable Function Proposition 1 allows
us to use the following equivalent definition of a computable function:

Definition 2′. We say that a function y = f (x1, . . . ,xn) defined on a rational-valued
box [X1,X1]× . . .× [Xn,Xn] is computable if there exist two algorithms:

• the first algorithm, given a natural number � and rational values r1, . . . ,rn,
computes a 2−�-approximation to f (r1, . . . ,rn);

• the second algorithm, given a natural number �, computes a natural number k
such that if |xi− x′i| ≤ 2−k for all i, then

|f (x1, . . . ,xn)− f (x′1, . . . ,x
′
n)| ≤ 2−�.

Comment. As a corollary of Definition 2′, we conclude that every computable
function is continuous. It should be mentioned, however, that not all continuous
function is computable. For example, if a is a non-computable real number, then a
linear function f (x) = a · x is clearly continuous but not computable. Indeed, if the
function f (x) was computable, we would be able to compute its value f (1) = a, and
we know that the number a is not computable.

Not All Usual Mathematical Functions Are Computable According to Defini-
tion 2′, every computable function is continuous. Thus, discontinuous functions are
not continuous, in particular, the following function:

Definition 3. By a step function, we mean a function f (x1) for which:

• f (x1) = 0 for x < 0 and
• f (x1) = 1 for x1 ≥ 0.

Corollary. The step function f (x1) is not computable.

Comment. This corollary can be proven directly, without referring to a (rather
complex) proof of Proposition 2. This direct proof is also given in the Proofs section.

Consequences for Representing a Probability Distribution: We Need to Go
Beyond Computable Functions We would like to represent a general probability
distribution by its cdf F(x). From the purely mathematical viewpoint, this is indeed
the most general representation—as opposed, e.g., to a representation that uses a
probability density function, which is not defined if we have a discrete variable.
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Since the cdf F(x) is a function, at first glance, it may make sense to say that
the cdf is computable if the corresponding function F(x) is computable. For many
distributions, this definition makes perfect sense: the cdfs corresponding to uniform,
Gaussian, and many other distributions are indeed computable functions.

However, for the degenerate random variable which is equal to x = 0 with
probability 1, the cdf is exactly the step function, and we have just proven that
the step function is not computable. Thus, we need to find an alternative way to
represent cdfs, beyond computable functions.

What We Do in this Chapter In this chapter, we provide the corresponding
general description:

• first for case when we know the exact probability distribution, and
• then for the general case, when we only have a partial information about the

probability distribution.

What We Need to Compute: An Even Briefer Reminder

The ultimate goal of all data processing is to make decision. It is known that a
rational decision maker maximizes the expected value of his/her utility u(x); see,
e.g., [2, 4, 5, 7]. Thus, we need to be able to compute the expected values of different
functions u(x).

There are known procedures for eliciting from the decision maker, with any given
accuracy, the utility value u(x) for each x [2, 4, 5, 7]. Thus, the utility function is
computable. We therefore need to be able to compute expected values of computable
functions.

Comment. Once we are able to compute the expected values E[u(x)] of different
computable functions, we will thus be able to compute other statistical characteristic
such as variance. Indeed, variance V can be computed as V = E[x2]− (E[x])2.

Simplest Case: A Single Random Variable

Description of the Case Let us start with the simplest case of a single random
variable X. We would like to understand in what sense its cdf F(x) is computable.

According to our general application-based approach to computability, this
means that we would like to find out what we can compute about this random
variable based on the observations.

What Can We Compute About F(x)? By definition, each value F(x) is the
probability that X ≤ x. So, in order to decide what we can compute about the value
F(x), let us recall what we can compute about probabilities in general.
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What Can We Compute About Probabilities: Case of an Easy-to-Check Event
Let us first consider the simplest situation, when we consider a probability of an
easy-to-check event, i.e., an event for which, from each observation, we can tell
whether this event occurred or not. Such events—like observing head when tossing a
coin or getting a total of seven points when throwing two dice—are what probability
textbooks start with.

In general, we cannot empirically find the exact probabilities p of such an
event. Empirically, we can only estimate frequencies f , by observing samples of
different size N. It is known that for large N, the difference d = p− f between the
(ideal) probability and the observed frequency is asymptotically normal, with mean

μ = 0 and standard deviation σ =

√

p · (1−p)
N

. We also know that for a normal

distribution, situations when |d − μ | < 6σ are negligibly rare (with probability
< 10−8), so for all practical purposes, we can conclude that |f −p| ≤ 6σ .

If we believe that the probability of 10−8 is too high to ignore, we can take 7σ ,
8σ , or k0 ·σ for an even larger value k0. No matter what value k0 we choose, for any
given value δ > 0, for sufficiently large N, we get k0 ·σ ≤ δ .

Thus, for each well-defined event and for each desired accuracy δ , we can find
the frequency f for which |f −p| ≤ δ . This is exactly the definition of a computable
real number, so we can conclude that the probability of a well-defined event should
be a computable real number.

What About the Probability that X ≤ x? The desired cdf is the probability that
X ≤ x. The corresponding event X ≤ x is not easy to check, since we do not observe
the actual value X, we only observe the measurement result X̃ which is close to X.

In other words, after repeating the experiment N times, instead of N actual values
X1, . . . ,Xn, we only know approximate values X̃1, . . . , X̃n for which

|X̃i−Xi| ≤ ε

for some accuracy ε . Thus, instead of the “ideal” frequency f = Freq(Xi ≤ x)—
which is close to the desired probability F(x) = Prob(X ≤ x)—based on the
observations, we get a slightly different frequency f = Freq(X̃i ≤ x).

What can we say about F(x) based on this frequency? Since |X̃i−Xi| ≤ ε , the
inequality X̃i ≤ x implies that Xi ≤ x + ε . Similarly, if Xi ≤ x− ε , then we can
conclude that X̃i ≤ x. Thus, we have

Freq(Xi ≤ x− ε)≤ f = Freq(X̃i ≤ x)≤ Freq(Xi ≤ x+ ε).

We have already discussed that for a sufficiently large sample, frequencies are δ -
close to probabilities, so we conclude that

Prob(X ≤ x− ε)−δ ≤ f ≤ Prob(X̃i ≤ x)≤ Prob(Xi ≤ x+ ε)+ ε .
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So, we arrive at the following definition:

Definition 4. We say that a cdf F(x) is computable if there is an algorithm that,
given rational values x, ε > 0, and δ > 0, returns a rational number f for which

F(x− ε)−δ ≤ f ≤ F(x+ ε)+δ .

How to Describe a Computable cdf in a Computer How can we describe
a computable cdf in a computer? The above definition prompts us to store the
algorithm computing f , but algorithms may take a long time to compute. It is
desirable to avoid such time-consuming computations and store only the pre-
computed values—at least the pre-computed values corresponding to the given
accuracy. We cannot do this by directly following the above definition, since this
definition requires us to produce an appropriate f for all infinitely many possible
rational values x. Let us show, however, that a simple and natural modification of
this idea makes storing finitely many values possible.

Indeed, for two natural numbers k and �, let us take ε0 = 2−k and δ0 = 2−�. On
the interval [T,T], we then select a grid x1 = T , x2 = T +ε0, . . . Due to Definition 4,
for every point xi from this grid, we can then find the value fi for which

F(xi− ε0)−δ0 ≤ fi ≤ F(xi + ε0)+δ0.

Let us also set up a grid 0, δ0, 2δ0, etc., on the interval [0,1] of possible values fi,
and instead of the original values fi, let us store the closest values f̃i from this grid.

Thus, for each pair (k, �), we store a finite number of rational numbers f̃i each
of which take finite number of possible values (clearly not exceeding 1+ 1/δ0 =
2�+ 1). Thus, for each k and �, we have finitely many possible approximations of
this type.

Let us show that this information is indeed sufficient to reconstruct the com-
putable cdf, i.e., that if we have such finite-sets-of-values for all k and �, then, for
each rational x, ε > 0, and δ > 0, we can algorithmically compute the value f needed
in the Definition 4.

Indeed, for each ε0 and δ0, we can find the value xi from the corresponding grid
which is ε0-close to x. For this xi, we have a value f̃i which is δ0-close to the fi for
which

F(xi− ε0)−δ0 ≤ fi ≤ F(xi + ε0)+δ0.

Thus, we have

F(xi− ε0)−2δ0 ≤ f̃i ≤ F(xi + ε0)+2δ0.

From |xi−x| ≤ ε0, we conclude that xi+ε0 ≤ x+2ε0 and x−2ε0 ≤ xi−ε0 and thus,
that F(x−2ε0)≤ F(xi− ε0) and F(xi + ε0)≤ F(x+2ε0). Hence,

F(x−2ε0)−2δ0 ≤ f̃i ≤ F(x+2ε0)+2δ0.
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So, if we take ε0 and δ0 for which 2ε0 ≤ ε and 2δ0 ≤ δ , then we get

F(x− ε)≤ F(x−2ε0)−2δ0 ≤ f̃i ≤ F(x+2ε0)+2δ0 ≤ F(x+ ε)+δ ,

i.e., we have the desired double inequality

F(x− ε)−δ ≤ f̃i ≤ F(x+ ε)+δ ,

with f = f̃i.

Equivalent Definitions Anyone who seriously studied mathematical papers and
books have probably noticed that, in addition to definitions of different notions
and theorems describing properties of these notions, these papers and books often
have, for many of these notions, several different but mathematically equivalent
definitions. The motivation for having several definitions is easy to understand: if
we have several equivalent definitions, then in each case, instead of trying to use
the original definition, we can select the one which is the most convenient to use. In
view of this, let us formulate several equivalent definitions of a computable cdf.

Definition 4′. We say that a cdf F(x) is computable if there is an algorithm that,
given rational values x, ε > 0, and δ > 0, returns a rational number f which is δ -
close to F(x′) for some x′ for which |x′ − x| ≤ ε .

Proposition 2. Definitions 4 and 4′ are equivalent to each other.

To get the second equivalent definition, we start with the pairs (xi, f̃i) that we
decided to use to store the computable cdf. When fi+1− fi > δ , we add intermediate
pairs

(xi, fi +δ ),(xi, fi +2δ ), . . . ,(xi, fi+1).

We can say that the resulting finite set of pairs is (ε ,δ )-close to the graph

{(x,y) : F(x−0)≤ y≤ F(x)}

in the following sense.

Definition 5. Let ε > 0 and δ > 0 be two rational numbers.

• We say that pairs (x,y) and (x′,y′) are (ε ,δ )-close if |x−x′| ≤ ε and |y−y′| ≤ δ .
• We say that the sets S and S′ are (ε ,δ )-close if:

• for every s ∈ S, there is a (ε ,δ )-close point s′ ∈ S′;
• for every s′ ∈ S′, there is a (ε ,δ )-close point s ∈ S.

Comment. This definition is similar to the definition of ε-closeness in Hausdorff
metric, where the two sets S and S′ are ε-close if:

• for every s ∈ S, there is a ε-close point s′ ∈ S′;
• for every s′ ∈ S′, there is a ε-close point s ∈ S.
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Definition 4′′. We say that a cdf F(x) is computable if there is an algorithm that,
given rational values ε > 0 and δ > 0, produces a finite list of pairs which is (ε ,δ )-
close to the graph {(x,y) : F(x−0)≤ y≤ F(x)}.
Proposition 3. Definition 4′′ is equivalent to Definitions 4 and 4′.

Comment. Proof of Proposition 3 is similar to the above argument that our computer
representation is sufficient for describing a computable cdf.

What Can Be Computed: A Positive Result for the 1-D Case We are interested
in computing the expected value EF(x)[u(x)] for computable functions u(x). For this
problem, we have the following result:

Theorem 1. There is an algorithm that:

• given a computable cdf F(x),
• given a computable function u(x), and
• given (rational) accuracy δ > 0,

computes EF(x)[u(x)] with accuracy δ .

What If We Only Have Partial Information About
the Probability Distribution?

Need to Consider Mixtures of Probability Distributions The above result deals
with the case when we have a single probability distribution, and by observing larger
and larger samples we can get a better and better understanding of the corresponding
probabilities. This corresponds to the ideal situation when all sub-samples have
the same statistical characteristics. In practice, this is rarely the case. What we
often observe is, in effect, a mixture of several samples with slightly different
probabilities. For example, if we observe measurement errors, we need to take into
account that a minor change in manufacturing a measuring instrument can cause a
slight difference in the resulting probability distribution of measurement errors.

In such situations, instead of a single probability distribution, we need to consider
a set of possible probability distributions.

Another case when we need to consider a set of distributions is when we only
have partial knowledge about the probabilities. In all such cases, we need to process
sets of probability distributions. To come up with an idea of how to process such
sets, let us first recall how sets are dealt with in computations. For that, we will start
with the simplest case: sets of numbers (or tuples).

Computational Approach to Sets of Numbers: Reminder In the previous sec-
tions, we considered computable numbers and computable tuples (and computable
functions). A number (or a tuple) corresponds to the case when we have a complete
information about the value of the corresponding quantity (quantities). In practice,
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we often only have partial information about the actual value. In this case, instead
of single value, we have a set of possible values. How can we represent such sets in
a computer?

At first glance, this problem is complex, since there are usually infinitely many
possible numbers—e.g., all numbers from an interval, and it is not clear how to
represent infinitely many numbers in a computer—which is only capable of storing
finite number of bits.

However, a more detailed analysis shows that the situation is not that hopeless:
infinite number of values only appears in the idealized case when we assume that
all the measurements are absolutely accurate and thus, produce the exact value.
In practice, as we have mentioned, measurements have uncertainty and thus, with
each measuring instrument, we can only distinguish between finitely many possible
outcomes.

So, for each set S of possible values, for each accuracy ε , we can represent this
set by a finite list Sε of possible ε-accurate measurement results. This finite list has
the following two properties:

• each value si ∈ Sε is the result of an ε-accurate measurement and is, thus, ε-close
to some value s ∈ S;

• vice versa, each possible value s ∈ S is represented by one of the possible
measurement results, i.e., for each s ∈ S, there exists an ε-close value si ∈ Sε .

Comment. An attentive reader may recognize that these two conditions have already
been mentioned earlier—they correspond to ε-closeness of the sets S and Sε in terms
of Hausdorff metric.

Thus, we naturally arrive at the following definition:

Definition 6. A set S is called computable if there is an algorithm that, given a
rational number ε > 0, generates a finite list Sε for which:

• each element s ∈ S is ε-close to some element from this list, and
• each element from this list is ε-close to some element from the set S.

Comment. In mathematics, sets which can be approximated by finite sets are known
as compact sets. Because of this, computable sets are also known as computable
compacts; see, e.g., [1].

So How Do We Describe Partial Information About the Probability Distri-
bution We have mentioned that for each accuracy (ε ,δ ), all possible probability
distributions can be represented by the corresponding finite lists—e.g., if we use
Definition 4′′, as lists which are (ε ,δ )-close to the corresponding cdf F(x).

It is therefore reasonable to represent a set of probability distributions—
corresponding to partial knowledge about probabilities—by finite lists of such
distributions.
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Definition 7. A set S of probability distributions is called computable if there is an
algorithm that, given rational numbers ε > 0 and δ > 0, generates a finite list Sε ,δ
of computable cdfs for which:

• each element s ∈ S is (ε ,δ )-close to some element from this list, and
• each element from this list is (ε ,δ )-close to some element from the set S.

What Can Be Computed? For the same utility function u(x), different possible
probability distributions lead, in general, to different expected values. In such a
situation, it is desirable to find the range ES[u(x)] = [ES[u(x),ES[u(x)]] of possible
values of EF(x)[u(x)] corresponding to all possible probability distributions F(x)∈ S:

ES[u(x)] = min
F(x)∈S

EF(x)[u(x)]; ES[u(x)] = max
F(x)∈S

EF(x)[u(x)].

It turns out that, in general, this range is also computable:

Theorem 2. There is an algorithm that:

• given a computable set S of probability distributions,
• given a computable function u(x), and
• given (rational) accuracy δ > 0,

computes the endpoints of the range ES[u(x)] with accuracy δ .

Comment. This result follows from Theorem 1 and from the known fact that there
is a general algorithm for computing maximum and minimum of a computable
function on a computable compact; see, e.g., [1].

What to Do in a General Case (Not Necessarily 1-D)

Need to Consider a General Case What if we have a joint distribution of several
variable? A random process—i.e., a distribution on the set of functions of one
variable? A random field—a probability distribution on the set of functions of
several variables? A random operator? A random set?

In all these cases, we have a natural notion of a distance (metric) which is
computable, so we have probability distribution on a computable metric space M.

Situations When We know the Exact Probability Distribution: Main Idea In
the general case, the underlying metric space M is not always ordered, so we cannot
use cdf F(x) = Prob(X ≤ x) to describe the corresponding probability distribution.

However, what we observe and measure are still numbers—namely, each mea-
surement can be described by a computable function g : M → R that maps each
state m ∈M into a real number. By performing such measurements many times, we
can get the frequencies of different values of g(x). Thus, we arrive at the following
definition:
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Definition 8. We say that a probability distribution on a computable metric space
is computable if there exists an algorithm, that, given:

• a computable real-valued function g(x) on M, and
• rational numbers y, ε > 0, and δ > 0,

returns a rational number f which is ε-close to the probability Prob(g(x) ≤ y′) for
some y′ which is δ -close to y.

How Can We Represent this Information in a Computer? Since M is a
computable set, for every ε , there exists an ε-net x1, . . . ,xn for M, i.e., a finite list of
points for which, for every x ∈M, there exists an ε-close point xi from this list, thus

X =
⋃

i

Bε(xi), where Bε(x)
def
= {x′ : d(x,x′)≤ ε}.

For each computable element x0, by applying the algorithm from Definition 8 to
a function g(x) = d(x,x0), we can compute, for each ε0 and δ0, a value f which is
close to Prob(Bε ′(x0)) for some ε ′ which is δ0-close to ε0.

In particular, by taking δ0 = 2−k and ε0 = ε+2 ·2−k, we can find a value f ′ which
is 2−k-close to Prob(Bε ′(x0)) for some ε ′ ∈ [ε+2−k,ε+3 ·2−k]. Similarly, by taking
ε ′0 = ε+5 ·2−k, we can find a value f ′′ which is 2−k-close to Prob(Bε ′′(x0)) for some
ε ′′ ∈ [ε +4 ·2−k,ε +6 ·2−k].

We know that when we have ε < ε ′ < ε ′′ and ε ′′ → ε , then

Prob(Bε ′′(x0)−Bε ′(x0))→ 0,

so the values f ′ and f ′′ will eventually become close. Thus, by taking k = 1,2, . . .,
we will eventually compute the number f1 which is close to Prob(Bε ′(x1)) for all ε ′
from some interval [ε1,ε1] which is close to ε (and for which ε > ε).

We then:

• select f2 which is close to Prob(Bε ′(x1)∪Bε ′(x2)) for all ε ′ from some interval
[ε2,ε2]⊆ [ε1,ε1],

• select f3 which is close to Prob(Bε ′(x1)∪Bε ′(x2)∪Bε ′(x3)) for all ε ′ from some
interval [ε3,ε3]⊆ [ε2,ε2],

• etc.

At the end, we get approximations fi− fi−1 to probabilities of the sets

Si
def
= Bε(xi)− (Bε(x1)∪ . . .∪Bε(xi−1))

for all ε from the last interval [εn,εn].
These approximations fi − fi−1 form the information that we store about the

probability distribution—as well as the values xi.
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What Can We Compute? It turns out that we can compute the expected value
E[u(x)] of any computable function:

Theorem 3. There is an algorithm that:

• given a computable probability distribution on a computable metric space,
• given a computable function u(x), and
• given (rational) accuracy δ > 0,

computes the expected value E[u(x)] with accuracy δ .

What If We Have a Set of Possible Probability Distributions? In the case of
partial information about the probabilities, we have a set S of possible probability
distributions.

In the computer, for any given accuracies ε and δ , each computable probability
distribution is represented by the values f1, . . . , fn. A computable set of distributions
can be then defined by assuming that, for every ε and δ , instead of a single tuple
(f1, . . . , fn), we have a computable set of such tuples.

In this case, similar to the 1-D situation, it is desirable to find the range
ES[u(x)] = [ES[u(x),ES[u(x)]] of possible values of EP[u(x)] corresponding to all
possible probability distributions P ∈ S:

ES[u(x)] = min
P∈S

EF(x)[u(x)]; ES[u(x)] = max
P∈S

EF(x)[u(x)].

In general, this range is also computable:

Theorem 4. There is an algorithm that:

• given a computable set S of probability distributions,
• given a computable function u(x), and
• given (rational) accuracy δ > 0,

computes the endpoints of the range ES[u(x)] with accuracy δ .

Comment. Similarly to Theorem 2, this result follows from Theorem 3 and from the
known fact that there is a general algorithm for computing maximum and minimum
of a computable function on a computable compact [1].

Proofs

Proof of Proposition 1

1◦. Once we can approximate a real number x with an arbitrary accuracy, we

can always find, for each k, a 2−k-approximation rk of the type
nk

2k for some

integer nk.
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Indeed, we can first find a rational number rk+1 for which |x− rk+1| ≤
2−(k+1), and then take rk =

nk

2k where nk is the integer which is the closest

to the rational number 2k · rk+1. Indeed, for this closest integer, we have
|2k · rk+1− nk| ≤ 0.5. By dividing both sides of this inequality by 2k, we get

|rk+1− rk|=
∣
∣
∣rk+1−

nk

2k

∣
∣
∣≤ 2−(k+1), and thus, indeed,

|x− rk| ≤ |x− rk+1|+ |rk+1− rk| ≤ 2−(k+1) +2−(k+1) = 2−k.

2◦. Because of Part 1 of this proof, it is sufficient to consider situations in which,
as a reply to all its requests (i,k), the algorithm receives the approximate value

rik of the type
nik

2k .

3◦. Let us prove, by contradiction, that for given �, there exists a value kmax that
bounds, from above, the indices k in the all the requests (i,k) that this algorithm
makes when computing a 2−�-approximation to f (x1, . . . ,xn) on all possible
inputs.

If this statement is not true, this means that for every natural number x,

there exists a tuple x(k) = (x(k)1 , . . . ,x(k)n ) for which this algorithm requests an

approximation of accuracy at least 2−k to at least one of the values x(k)i .
Overall, we have infinitely many tuples corresponding to infinitely many

natural numbers. As a reply to each request (i,k), we get a rational number of

the type rik =
nik

2k . For each natural number m, let us consider the value
pi

2m

which is the closest to rik. There are finitely many possible tuples (p1, . . . ,pn),
so at least one of these tuples occurs infinitely many times.

Let us select such a tuple t1 corresponding to m = 1. Out of infinitely many
cases when we get an approximation to this tuple, we can select, on the level
m = 2, a tuple t2 for which we infinitely many times request the values which
are 2−2-close to this tuple, etc. As a result, we get a sequence of tuples tm for
which |tm− tm+1| ≤ 2−m +2−(m+1).

This sequence of tuples converges. Let us denote its limit by t = (t1, . . . , tn).
For this limit, for each k, the algorithm follows the same computation as the k-th
tuple and thus, will request some value with accuracy ≤ 2−k. Since this is true
for every k, this means that this algorithm will never stop—and we assumed that
our algorithm always stops. This contradiction proves that there indeed exists
an upper bound kmax.

4◦. How can we actually find this kmax? For that, let us try values m = 1,2, . . . For
each m, we apply the algorithm f (r1, . . . ,rn) to all possible combinations of

values of the type ri
pi

2m ; in the original box, for each m, there are finitely many

such tuples. For each request (i,k), we return the number of the type
nik

2k which

is the closest to ti. When we reach the value m = kmax, then, by definition of
kmax, this would mean that our algorithm never requires approximations which
are more accurate than 2−m-accurate ones.
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In this case, we can then be sure that we have reached the desired value
kmax: indeed, for all possible tuples (x1, . . . ,xn), this algorithm will never request
values beyond this m-th approximation—and we have shown it for all possible
combinations of such approximations. The proposition is proven.

Direct Proof of the Corollary to Proposition 1 The non-computability of the step
function can be easily proven by contradiction. Indeed, suppose that there exists an
algorithm that computes this function. Then, for x1 = 0 and � = 2, this algorithm
produces a rational number s� which is 2−2-close to the value f (0) = 1 and for
which, thus, s� ≥ 0.75. This algorithm should work no matter which approximate
values r1k it gets—as long as these values are 2−k-close to x1. For simplicity, let us
consider the case when all these approximate values are 0s: r1k = 0.

This algorithm finishes computations in finitely many steps, during which it can
only ask for the values of finitely many such approximations; let us denote the
corresponding accuracies by k1, . . . ,km, and let K = max(k1, . . . ,km) be the largest
of these natural numbers. In this case, all the information that this algorithm uses
about the actual value x is that this value satisfies all the corresponding inequalities
|x1− r1kj | ≤ 2−kj , i.e., |x1| ≤ 2−kj . Thus, for any other value x′1 that satisfies all these
inequalities, this algorithm returns the exact same value s� ≥ 0.75. In particular,
this will be true for the value x′1 = −2−K . However, for this negative value x′1, we
should get f (x′1) = 0, and thus, the desired inequality |f (x′1)−y�| ≤ 2−2 is no longer
satisfied. This contradiction proves that the step function is not computable.

Proof of Proposition 2 It is easy to show that Definition 4′ implies Definition 4.
Indeed, if f is δ -close to F(x′) for some x′ ∈ [x− ε ,x+ ε ], i.e., if F(x′)− δ ≤ f ≤
F(x′) + δ , then, due to x− ε ≤ x′ ≤ x+ ε , we get F(x− ε) ≤ F(x′) and F(x′) ≤
F(x+ ε) and thus, that

F(x− ε)≤ F(x′)−δ ≤ f ≤ F(x′)+δ ≤ F(x+ ε)+δ ,

i.e., the desired inequality

F(x− ε)≤ f ≤ F(x+ ε)+δ .

Vice versa, let us show that Definition 4 implies Definition 4′. Indeed, we know
that F(x+ ε)−F(x+ ε/3)→ 0 as ε → 0. Indeed, this difference is the probability

of X being in the set {X : x+ ε/3 ≤ X ≤ x+ ε}, which is a subset of the set Sε
def
=

{X : x < X ≤ x+ ε}. The sets Sε form a nested family with an empty intersection,
thus their probabilities tend to 0 and thus, the probabilities of their subsets also tend
to 0.

Due to Proposition 4, for each k = 1,2, . . ., we can take εk = ε · 2−k and find fk
and f ′k for which

F(x+ εk/3)−δ/4≤ fk ≤ F(x+(2/3) · εk)+δ/4
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and

F(x+(2/3) · εk)−δ/4≤ f ′k ≤ F(x+ εk)+δ/4.

From these inequalities, we conclude that

−δ/2≤ f ′k− fk ≤ F(x+ εk)−F(x+ εk/3)+δ/2.

Since F(x + εk)− F(x + εk/3) → 0 as k → ∞, for sufficiently large k, we will
have F(x+ εk)−F(x+ εk/3) ≤ δ/4 and thus, |f ′k − fk| ≤ (3/4) · δ . By computing
the values fk and f ′k for k = 1,2, . . ., we will eventually reach an index k for
which this inequality is true. Let us show that this fk is then δ -close to F(x′) for
x′ = x+(2/3) · εk (which is εk-close—and thus, ε-close—to x).

Indeed, we have

fk ≤ F(x+(2/3) · εk)+δ/4≤ F(x+(2/3) · εk)+δ .

On the other hand, we have

F(x+(2/3) · εk)−δ/4≤ f ′k ≤ fk +(3/4) ·δ

and thus,

F(x+(2/3) · εk)−δ ≤ fk ≤ F(x+(2/3) · εk)+δ .

The equivalence is proven.

Proof of Theorem 1 We have shown, in Proposition 1, that every computable
function u(x) is computably continuous, in the sense that for every δ0 > 0, we can
compute ε > 0 for which |x− x′| ≤ ε implies |u(x)−u(x′)| ≤ δ0.

In particular, if we take ε corresponding to δ0 = 1, and take the ε-grid
x1, . . . ,xi, . . ., then we conclude that each value u(x) is 1-close to one of the values
u(xi) on this grid. So, if we compute the 1-approximations ũi to the values u(xi),

then each value u(x) is 2-close to one of these values ũi. Thus, max
x
|u(x)| ≤ U

def
=

max
i

ũi + 2. So, we have a computable bound U ≥ 2 for the (absolute value) of the

computable function u(x).
Let us once again use computable continuity. This time, we select ε correspond-

ing to δ0 = δ/4, and take an x-grid x1, . . . ,xi, . . . with step ε/4. Let G be the number
of points in this grid.

According to the equivalent form (Definition 4′) of the definition of computable
cdf, for each of these grid points xi, we can compute the value fi which is
(δ/(4U ·G))-close to F(x′i) for some x′i which is (ε/4)-close to xi.

The function u(x) is (δ/4)-close to a piece-wise constant function u′(x) which
is equal to u(xi) for x ∈ (x′i,x

′
i+1]. Thus, their expected values are also (δ/4)-close:

|E[u(x)]−E[u′(x)]| ≤ δ/4.
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Here, E[u′(x)] = ∑
i

u(xi) · (F(x′i+1)−F(x′i)). But F(x′i) is (δ/(4U ·G))-close to fi

and F(x′i+1) is (δ/(4U ·G))-close to fi+1. Thus, each difference F(x′i+1)−F(x′i) is
(δ/(2U ·G))-close to the difference fi+1− fi.

Since |u(xi)| ≤ U, we conclude that each term u(xi) · (F(x′i+1) − F(x′i)) is
(δ/(2G))-close to the computable term u(xi) · (fi+1− fi). Thus, the sum of G such
terms—which is equal to E[u′(x)]—is (δ/2)-close to the computable sum

∑
i

u(xi) · (fi+1− fi).

Since E[u′(x)] is, in its turn, (δ/4)-close to desired expected value E[u(x)], we thus
conclude that the above computable sum

∑
i

u(xi) · (fi+1− fi)

is indeed a δ -approximation to the desired expected value.
The theorem is proven.

Proof of Theorem 3 The proof is similar to the proof of Theorem 1: we
approximate the function u(x) by a (δ/2)-close function u′(x) which is piece-wise
constant, namely, which is equal to a constant ui = u(xi) on each set

Si = Bε(xi)− (Bε(x1)∪ . . .∪Bε(xi−1)).

The expected value of the function u′(x) is equal to E[u′(x)] = ∑
i

ui ·Prob(Si).

The probabilities Prob(Si) can be computed with any given accuracy, in par-
ticular, with accuracy δ/(2U · n), thus enabling us to compute E[u′(x)] with
accuracy δ/2.

Since the functions u(x) and u′(x) are (δ/2)-close, their expected values are also
(δ/2)-close. So, a (δ/2)-approximation to E[u′(x)] is the desired δ -approximation
to E[u(x)].

The theorem is proven.

Conclusions

When processing data, it is important to take into account that data comes from mea-
surements and is, therefore, imprecise. In some cases, we know the probabilities of
different possible values of measurement error—in this case, we have a probabilistic
uncertainty. In other cases, we only know the upper bounds on the measurement
error; in this case, we have interval uncertainty.
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In general, we have a partial information about the corresponding probabilities:
e.g., instead of knowing the exact values of the cumulative distribution function (cdf)
F(x) = Prob(X ≤ x), we only know bounds on these values—i.e., in other words,
an interval containing such bounds. In such situations, we have a combination of
probabilistic and interval uncertainty.

The ultimate goal of data processing under uncertainty is to have efficient
algorithms for processing the corresponding uncertainty, algorithms which are as
general as possible. To come up with such algorithms, it is reasonable to analyze
which of the related problems are algorithmically solvable in the first place: e.g., is
it possible to always compute the expected value of a given computable function?

In this chapter, we show that a straightforward (naive) formulation, most
corresponding problems are not algorithmically solvable: for example, no algorithm
can always, given the value x, compute the corresponding value F(x) of the cdf.

However, we also show that if we instead formulate these problems in practice-
related terms, then these problems become algorithmically solvable. For example, if
we take into account that the value x also comes from measurement and is, thus, only
known with some accuracy, it no longer makes sense to look for an approximation to
F(x); instead, it is sufficient to look for an approximation to F(x′) for some x′ which
is close to x, and it turns out that such an approximation is always computable.
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Survey of Piecewise Convex Maximization
and PCMP over Spherical Sets

Ider Tseveendorj and Dominique Fortin

Abstract The main investigation in this chapter is concerned with a piecewise
convex function which can be defined by the pointwise minimum of convex
functions, F(x) = min{f1(x), . . . , fm(x)}. Such piecewise convex functions closely
approximate nonconvex functions, that seems to us as a natural extension of the
piecewise affine approximation from convex analysis. Maximizing F(·) over a
convex domain have been investigated during the last decade by carrying tools based
mostly on linearization and affine separation. In this chapter, we present a brief
overview of optimality conditions, methods, and some attempts to solve this difficult
nonconvex optimization problem. We also review how the line search paradigm
leads to a radius search paradigm, in the sense that sphere separation which seems
to us more appropriate than the affine separation. Some simple, but illustrative,
examples showing the issues in searching for a global solution are given.

Keywords Piecewise convex • Nonconvex optimization • Nonsmooth optimiza-
tion

Introduction

Convexity is a central concept in optimization. Solving optimization problems
somehow leads to separate the constraint set and the set of points no worse than a
given candidate. In the convex optimization case, both sets are convex which makes
the separation affordable by a hyperplane. However, when one deals with nonconvex
optimization problems, one needs more appropriate tools because both sets or at
least one of them can be nonconvex. A decade-long effort for finding such tools is
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presented briefly in the beginning of the chapter. The second part of the chapter
is mainly devoted towards the ways of use spherical sets for the separation in
nonconvex optimization instead of hyperplanes used in convex optimization.

We consider a nonconvex nonsmooth optimization problem:

{
maximize F(x)
subject to x ∈ D,

(PCMP)

where D is a nonempty compact in Rn and F : Rn → R is a piecewise convex
function.

Definition 1. A function F is called a piecewise convex function iff it can be
decomposed into the pointwise minimum of convex functions, namely:

F(x) = min{fj(x) | j ∈M},

where all functions fj : Rn→R are convex j ∈M := {1,2...,m}.
Convex functions, concave functions are particular cases of piecewise convex
functions, since clearly F is a convex when m = 1 and a concave whenever all
functions fj are affine.

For any real number α ∈ R the Lebesgue set of a function f is defined like

Lf (α) = {x | f (x)≤ α}.

A quasiconvex (in particular convex fj) function has the property that its Lebesgue
set (in particular Lfj(α) ) is a convex set. Piecewise convex functions have a nice
geometrical interpretation that the Lebesgue set of such function is the union of a
finite number of convex sets

LF(α) =
m
⋃

j=1

Lfj(α).

For a given y ∈ Rn the Lebesgue set LF(F(y)) defines also, in the sense of
maximization, the set of points no better than y. The Lebesgue sets of piecewise
convex function LF(F(y)) are generally nonconvex and can be disconnected or
even discrete sets. As a result, the nonconvexity of the objective function F(·) poses
the major difficulty for solving piecewise convex maximization problems since they
generally have a large number of local optima which are not global optima.

Before solving an optimization problem it is useful to investigate the information
about where global optima are attained? At some extreme points, on the boundary,
or in the interior of the feasible set, etc. With this respect, it is well known
[10, 11, 17, 22] that the global maximum occurs at an extreme point for convex
maximization over a convex set while a solution to DC (difference of convex)
optimization lies on the boundary of the feasible set. As regards (PCMP), in general,
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its large number of local optima including the global maximum can lie anywhere in
D. As such, it is computationally very difficult to solve, especially if one wishes to
find the global optimum.

The space of piecewise convex functions has been studied in [8]; any continuous
nonconvex function can be approximated by piecewise convex one. In addition vir-
tually many optimization problems can, theoretically, be approximated by (PCMP).
Indeed, the latter justifies the importance of this class of optimization problems as a
powerful tool in nonconvex optimization.

The reader is referred to [2, 11, 13, 15, 17, 18, 22, 26] for finding out the
close relationship between (PCMP) and the other nonconvex optimization problems
like convex maximization, reverse convex minimization, DC, Lipschitz optimiza-
tion, etc.

Despite the concerns mentioned above, (PCMP) does not seem to have been
extensively studied.

The purpose of this chapter is twofold:

• to present a brief survey of some useful results, optimality conditions, methods,
ideas for (PCMP);

• to propose a novel approach of solving (PCMP) based on nonlinear separation
and consider piecewise convex maximization problems over spherical sets (balls,
spheres) which play the key role for this new research direction.

A Survey of Studies on PCMP

During the last decade we have been focusing on tools for solving (PCMP). This
section provides a brief survey of optimality conditions, methods, and some useful
ideas for (PCMP).

Global Optimality Conditions

Let us quote the article [20] for the global optimality conditions. First, we define an
active index set at any z by

I(z) = {i ∈M | fi(z) = F(z)}

and at given k ∈M,z ∈ D a special subset of D by

Dk(z) = {x ∈ D | fj(x)> F(z) for all j ∈M \{k}}.

The following results summarize our findings on optimality conditions so far:

Proposition 1 ([20]). If z∈D is a global maximum of (PCMP) then for all k ∈ I(z)
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∂ fk(y)
⋂

N(Dk(z),y) �= /0 for all y such that fk(y) = F(z)

Theorem 1 ([20]). Let z ∈ D and assume there exist k ∈ I(z) and v ∈Rn such that
fk(v)< fk(z). Then a sufficient condition for z to be the global maximum for (PCMP)
is

∂ fk(y)
⋂

N(clco(Dk(z)),y) �= /0∀y such that fk(y) = F(z).

Here cl, co stand for a closure and a convex hull of a set, respectively.
These necessary and sufficient conditions show that solving (PCMP) leads to

choose one function fk and to maximize it over Dk(·) or over clco(Dk(·)). This is the
well known convex maximization problem

{
maximize f (x)
subject to x ∈ D,

(CM)

its optimality conditions have been obtained in [19]

∂ f (y)
⋂

N(D,y) �= /0 such that y such that f (y) = f (z).

In [20], one can find geometric interpretation of the optimality conditions along with
their illustrations in some examples.

Methods

Linearization Oriented Algorithm

To our knowledge, the first algorithm for solving (PCMP) has been presented in
[4]. The article provides an algorithm based on optimality conditions (Proposition 1
and Theorem 1.) presented in the previous subsection. For the sake of simplicity of
presentation it is assumed that functions fj(·), j ∈M are strongly convex quadratic,
the domain D a full dimensional polytope.

Quadratic convex maximization problems (the particular case of (PCMP) when
m = 1) are normally classified as NP-hard. Furthermore, just finding a local
maximum of a nonconvex quadratic programming problems is NP-hard too. Thus,
even the local solution search for (PCMP) is not trivial. At the same time an efficient
algorithm for finding local maxima may be the crucial factor in design of the global
maximum search stage. Therefore, in [4] a local search algorithm for (PCMP)
has attracted considerable attention. For this important issue of the local search,
an algorithm derived from linearization of convex functions is proposed, and its
convergence is examined carefully.

Assume that we are given a local solution y ∈ D. In order to improve the best
known local solution, according to the optimality conditions, one should look for a
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point in Dk(y). Then a practical global search algorithm is provided which combines
the local search algorithm with successive inner and outer approximations to Dk(·).

Computational experiments on small examples in R2,R3 are reported, which
show the efficiency of the approach. One can find also therein some details of
implementation as well as new notions like an intersection graph on the Lebesgue
sets Lfj(F(·)), the relationship of the optima of (PCMP) with Helly’s theorem from
discrete geometry.

Piece Adding TeCHnique (PATCH for Short)

For nonconvex optimization problems, many standard techniques rely on local
search and the challenge still remains to escape from a local maximum area.

Among other things the question about how to escape from a local maximum
area was investigated in article [8]. The authors first studied the space of piecewise
convex functions and showed that this class is closed under operations like addition,
positive scalar multiplication, operations “min”, F+,F−. One can add missing
operation “max” into the above list of operations, which has been observed recently.

The following one dimensional example given in [7] well illustrates the idea
behind, so-called, the piece adding technique.

{
maximize x2−2x,
subject to 0≤ x≤ 3.

Obviously, x = 0 is a local maximum, (but not the global !), an accumulation point
of local search algorithms with a starting point x0 ∈ [0,1] and there is no clear way to
escape from its region, once one is therein. The main idea for escaping is, it makes
sense first to add into the objective function a convex piece x2− 4 issued from the
local solution x = 0, then solve the following problem

{
maximize min{x2−2x,x2−4},
subject to 0≤ x≤ 3.

Notice that the previous local solution x = 0 is a minimum of the new convex piece
x2− 4. Now it is clear (Fig. 1) that any local search will not get back to x = 0 and
easily finds the global solution x = 3 from any starting point.

Similarly for escaping from a local solution y of (PCMP), it is proposed to solve
the following problem

maximize min{F(x)−F(y),p(x)}, subject to x ∈ D (PP)

where p(x) is a convex function, that will be specified hereafter.

Remark 1. Here we underline that by adding a convex piece into objective func-
tion
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Fig. 1 Piecewise Adding Technique (PATCH) idea

• one cuts off virtually from D a subset of points no better than y; (“virtual cut” in
the sense that we add a convex piece in objectives rather than a reverse convex
constraint p(x)≥ 0)

• the objective function remains piecewise convex;
• the space of the problem is unchanged.

The function p(·) may be defined in different ways among which we select two.

Definition 2. Let z be the global solution to (PCMP). A strictly convex function
py : Rn→R is called a patch around a local solution y of the problem (PCMP) iff

• py(y)< 0;
• py(x)≥ 0 for all x ∈ D such that F(x)> F(y);
• moreover py(z)> 0

We notice that the conditions for patches are not easy to verify with respect to
unknown global solution z, therefore we weaken those conditions and introduce
a relaxed function with almost the same features.

Definition 3. A strictly convex function pv : Rn →R is called a pseudopatch at
v ∈ D iff

• pv(v)< 0 and
• there is u ∈ D such that F(u)> F(v) and pv(u)≥ 0.

Unlike the patch, the virtual cutting pv(x) ≥ 0 defined by the pseudopatch could
cut a feasible point v together with some better points (even the global solution!)
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but it should leave at least one better point. For practical purposes, pseudopatches
are added in the objective function temporarily then, after they are dropped at each
improvement since the global solution z can be incidentally cut off by a pseudopatch.

Outline of algorithm

1. Compute a local solution yk (k = 1,2, . . . ) obtained from a feasible point u ∈ D;
2. Construct a strictly convex function pk(·) as a pseudopatch or a patch around yk;
3. Solve

maximize Φk(x), subject to x ∈ D, (Pk)

where

Φk(x) := min{F(x)−F(yk),p1(x),p2(x), . . . ,pk(x)}.

Let u be an optimal solution to (Pk);
4. If pk(·) is a pseudopatch then drop it from Φk(x);
5. Repeat the sequence with k = k+1

In a like manner, after one iteration we either obtain a better point due to
pseudopatch or reduce virtually the domain by new patch pk(·) around yk.

For ease of presenting the main result, let consider two problems for a given local
solution y:

maximize F(x)−F(y), subject to x ∈ D, (PCMP)

and

maximize Φ(x) subject to x ∈ D, (PP)

where Φ(x) := min{F(x)−F(y),py(x)}, py(·) is a patch around y.

Assumption 1. Let us assume that py(z)≥ F(z)−F(y) at the global solution z.

Proposition 2. If z is a global solution to (PP) and py(·) is a patch satisfying
Assumption 1 then z solves globally (PCMP) too.

This technique aims also at carrying piecewise affine approximation from convex
optimization to piecewise convex approximation for the nonconvex case; since
among others DC and Lipschitz functions have locally tight piecewise convex
majorants, it shows the potential strength of this approach.

The key tool lies behind the virtual cutting function; we call it either a patch to
avoid cycling through the same local solutions or a pseudo patch to early detect a
better point.
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Attractive Force Search Algorithm

Newton’s law of universal gravitation states that any two bodies in the universe
attract each other with a force that is directly proportional to the product of their
masses and inversely proportional to the square of the distance between them.

F = G
m1×m2

r2

defines the attractive force between two bodies that possess masses m1,m2, respec-
tively.

Inspired by the well known law, the authors provided an algorithm in article [9]
that calculates an improvement from a current local solution y of (PCMP) by using
some analogy of Newton’s attractive force.

How does one search for an improvement from a feasible solution x? Up until
now, there have been used a local solution search algorithm to find a local solution
y with subsequent checking the inclusion D ⊂ LF(F(y)) for a possible further
improvement. Of course, one can check also the inclusion D ⊂LF(F(x)) directly
at x ∈ D. On the other hand, since

LF(F(·)) =
m
⋃

i=1

Lfi(F(·))

an improvement can occur when

D �⊂
m
⋃

i=1

Lfi(F(·)).

Anyway, for an improvement we seek a point in D, but outside of all the Lebesgue
sets Lfi(F(·)).

If we imagine each of these nonempty Lebesgue sets Lfi(F(y)) as a convex body
that possesses mass, then a direction of improvement at a current point y could be
calculated by analogy to Newton’s attractive force.

In [9] a feasible set is assumed to be a full dimensional polytope defined by linear
constraints

D =
{

x ∈Rn | Ax≤ b}= {x ∈Rn | 〈aj,x〉 ≤ bj, j = 1,2, . . . ,k
}

.

To deal with the polyhedral domain we consider implicitly convex functions that
approximate linear functions: fj(x)≈ bj−〈aj,x〉. The linear constraints bj−〈aj,x〉 ≥
0 in the domain, may be seen as the linearization of reverse convex constraints
fj(x) ≥ 0 for some strictly convex quadratic functions fj(·); (a huge flat ellipsoid).
This viewpoint looks strange at first sight, however, it turns all the Lebesgue sets of
constraints, objective functions into convex bodies. The interaction between these
convex bodies seems to be related to Newton’s law, which gives the main idea of our
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Fig. 2 Newton’s
gravitational force

y

f j (x) ≥ 0

〈a j ,x〉 ≤ b j

fk(x) = �

fi(x) = �

algorithm. At a given point y, two kind of forces can be involved from each body
(the Lebesgue set): attracting and repelling forces.

An example, given in Fig. 2, shows for y

• a repelling force from Lfi(�) body,
• an attracting force from Lfk(�) body

since fi(y) < � and fk(y) > �, and in addition, a repelling force from the constraint.
More precisely, we select respectively

• the gradient of the function at y multiplied by a positive (resp. negative) scalar in
repelling (resp. attracting) case as an analogy for the direction of Newton’s force;

• the distance from y to Lfi(�) as an analogy for the distance between the masses.

Now at y, we are able to compute a gravitational force as the weighted sum of all
attracting/repelling forces from each body similarly with Newton’s attractive force
model:

G(y) = ∑
i∈M

F(Prfi(y))−F(y)

‖ Prfi(y)− y ‖2

∇fi(y)
‖ ∇fi(y) ‖

,

where Prfi(y) stands for projection of y on the Lebesgue set PrLfi
(�)(y) with �, the

best known level set value.

Remark 2. When i is active i ∈ I(y), in other words fi(y) = � the projection is
replaced by ci the center of Lfi(�) which is a minimum of fi(·) and the gradient by
the direction x− ci (the mass of the convex body is supposed at center). For active
linear constraints, the center is assumed at infinity so that no attracting/repelling
force contributes to G(x).

Before describing the algorithm, let us introduce a set which appears very conve-
nient in data structure.
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Definition 4. The resolving border of F(·) at level set value � is defined like the set
of points:

rb(F, �) =
{

x ∈Rn | ∃i, fi(x) = �,F(x)≤ �
}

.

For each i, we may distinguish three parts:

1. fi(x) = �, fj(x)> � for all j �= i
2. fi(x) = �, fj(x)≥ � for all j �= i
3. fi(x) = �, fj(x)> � for some j �= i.

We notice that cases (1.) and (2.) easily lead to a better point.
A resolving border data structure stores points according to active functions

ordered by decreasing values of F(·).
For sake of consistency with previous versions of global search algorithm [4, 8]

we still refer to Newton’s Attractive force Search Algorithm as a local search, but
it clearly outperforms a strict local searching since it cruises in the surroundings of
the resolving border.

PCMP local Search (Newton’s Attractive force Search Algorithm)

- (D,M,wj ∈ D)
- Initialize RB=(key,sortedset) associating map
- y1=setAndBetter(wj,RB)
- if y1 not null then return y1

- dir = G(wj); Newton attraction at wj

- u = wj +α dir ; α > 0 gives the nearest intersection with the resolving border
- y2=setAndBetter(u,RB)
- if y2 not null then return y2

- else return findBetter(RB)

Relationship with Other Optimization Problems

• Combinatorial Optimization Many practical problems give rise to combinato-
rial optimization problems can be formulated by the binary constraint x∈ {0,1}n,
by the permutation constraint like the assignment problems. The following
two articles [5, 6] are devoted to continuous approaches for combinatorial
optimization problems. The hardness of these problems consists in nonconvex
domains. The current subsection highlights a couple of ideas about how to solve
some combinatorial optimization problems using (PCMP).

We consider the multiknapsack problem [5]

⎧

⎨

⎩

max 〈c,x〉
s.t. Ax≤ b

x ∈ {0,1}n
(MKP)
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Since the binary constraint xi ∈ {0,1} can be written like

xi(xi−1)≥ 0,0≤ xi ≤ 1,

(MKP) has an equivalent continuous formulation

⎧

⎪⎪⎨

⎪⎪⎩

max 〈c,x〉
s.t. Ax≤ b

x ∈ [0,e]
xi(xi−1)≥ 0,∀i = 1, . . . ,n,

where e = (1, . . . ,1)� ∈Rn. Introducing a function

ϕ(x) = min{xi(xi−1) | i = 1,2, . . . ,n},

we replace n constraints xi(xi− 1) ≥ 0, i = 1, . . . ,n with a constraint ϕ(x) ≥ 0
and obtain an equivalent to (MKP) problem

⎧

⎪⎪⎨

⎪⎪⎩

max ϕ(x)
s.t. Ax≤ b

x ∈ [0,e]
〈c,x− y〉 ≥ 0.

for an admissible point y of (MKP). The latter is the piecewise convex maximiza-
tion problem with n pieces.

Let assume that there is suitable index set’s division J1, . . . ,Jm such that
⋃m

i=1 Ji = {1 . . .n} and Ji∩ Jj = /0, ∀i �= j. Then it holds also

x ∈ {0,1}n⇔ f1(x)≥ 0, . . . , fm(x)≥ 0,0≤ x≤ e,

where fi(x) denotes fJi(x) defined like

fJ(x) = Σi∈J

(

xi−
1
2

)2

− |J|
4

for any J ⊆ {1 . . .n} of |J| elements. In this way we obtain (PCMP) where
number of pieces m much less than the dimension of the problem (m < n)

⎧

⎪⎪⎨

⎪⎪⎩

max min{fi(x) | i = 1 . . .m}
s.t. Ax≤ b

x ∈ [0,e]
〈c,x− y〉 ≥ 0.
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But, in practice, the nature of pieces as well as a number of pieces are crucial
for solving (PCMP). One can find in [5] a practical algorithm with m = 2 of
this approach along with computational results in contrast with the best known
solutions found by heuristics from combinatorial optimization.

What concerns the permutation constrained problems investigated in [6], in
order to retain our focus on common features of continuous optimization, first,
we study shortly relationship between (PCMP) and DC optimization, then as a
result (PCMP) formulation for the well known quadratic assignment problems
(QAP) is given. We consider a problem of maximization of a difference of two
convex functions f ,g over a convex compact D⊂Rn

max f (x)−g(x)
s.t. x ∈ D.

It is straightforward to turn it into (PCMP) of dimension n+ 1 by introducing
another variable t = g(x) and splitting the equality constraint into a convex
constraint g(x)− t ≤ 0 while the converse inequality is dualized to add a new
piece as F(x, t) = min

{

f (x)− t,g(x)− t
}

. Then, it is equivalent to solving the
following problem

max F(x, t)
s.t. x ∈ D, t ∈R

g(x)− t ≤ 0.

• Multicriteria Optimization
We consider multicriteria optimization problem

{
minimize Ω(x),
subject to x ∈ D

(MOP)

where Ω(·) is a vector valued function from Rn to Rm whose components are
the convex functions fi(·), i ∈M = {1,2, . . . ,m} namely :

Ω(x) = (f1(x), . . . , fm(x))
� ∈Rm.

Let us formally recall the definition of Pareto optimal solutions.

Definition 5. A solution y ∈D is called Pareto optimal, if there is no x ∈D such
that fi(x)≤ fi(y), i = 1, . . . ,m and fj(x)< fj(y) for some j ∈M.

An interesting relationship between (PCMP) and multicriteria optimization is
presented [21] and afterwards in [9].

We recall also some basic definitions and results from multicriteria
optimization.
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Definition 6.

– y ∈ D is called weakly Pareto optimal if there is no x ∈ D such that

fi(x)< fi(y), ∀i = 1, . . . ,m

– y ∈ D is called strictly Pareto optimal if there is no x ∈ D,x �= y such that

fi(x)≤ fi(y), ∀i = 1, . . . ,m and fj(x)< fj(y) for some j ∈M.

We define also so called the level curve, the strict level set of f (·) at α
respectively

L =
f (α) = {x | f (x) = α}, L <

f (α) = {x | f (x)< α}

Theorem 2 ([1], Chap. 2). Let y ∈ D then

1. y is strictly Pareto optimal if and only if

m
⋂

i=1

Lfi(fi(y)) = {y}.

2. y is Pareto optimal if and only if

m
⋂

i=1

Lfi(fi(y)) =
m
⋂

i=1

L =
fi (fi(y)).

3. y is weakly Pareto optimal if and only if

m
⋂

i=1

L <
fi
(fi(y)) = /0.

The following results summarize our findings so far:

Proposition 3. If y is local maximum to (PCMP) such that y ∈ int(D) then for
some ε > 0

F(y) = min
x∈B(y,ε)

max{fi(x) | i ∈ I(y)},

where B(y,ε) stands for the ball of radius ε , centered at y.

Let us denote ΩN(·) ∈R |N| with corresponding components fi(·) for i ∈ N ⊂
M. Proposition 3 together with Theorem 2 provide the following relationship.

Theorem 3. If y is local maximum to (PCMP) such that y ∈ int(D) then y is
strictly Pareto optimal to the following multicriteria optimization problem:
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{
minimize ΩI(y)(x),
subject to x ∈ D

Remark 3. Weakly Pareto optimality of y is implied by Proposition 6.5 from [1].

Abstract Nonlinear Covering Method

The remainder of the chapter is devoted to new approach of solving (PCMP).
For all maximization problems, in particular for (PCMP), clearly, z is the global

maximum iff all points of the domain are no better than z, in other words:

D⊂LF(F(z)).

Since as we observed early LF(F(y)) =
⋃m

i=1 Lfi(F(y)). the above inclusion means
that

• for all x no better than z (i.e. F(x)≤ F(z)) there exists j ∈M such that

x ∈Lfj(F(z)),

• if there is u ∈ D better than z (i.e. F(z) < F(u)) then u does not belong to any
Lebesgue set:

u /∈Lfi(F(z)) for all i ∈M.

In order to present the main idea of a new approach for solving (PCMP), we give
a definition along with an abstract result on an equivalence of problems.

Definition 7. An open subset C satisfying conditions

C ⊂LF(F(y)) and C �= int(LF(F(y)))

is called a covering set at level F(y).

Proposition 4. Let y be a feasible point for (PCMP) such that

F(y) = max{F(x) | x ∈ D}−δ

for some δ > 0. Let also C be a covering set at level F(y). Then the following
problem is equivalent to (PCMP):

{
maximize F(x)
subject to x ∈ D\C.

(CC)

The main algorithmic feature now looks like
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• to cover the feasible set (the domain) by a union of covering sets.
• if the domain is covered by C totally, then stop and the global optimum is found.
• otherwise, solve problem (CC) for an improvement.

In other words, one have to construct an “(union of covering sets)” such that

D⊂ (union of covering sets)⊂LF(F(z)).

Starting with an initial guess of covering sets, a method bootstraps its way up to
ever more accurate “sandwich” approximations to answer “the global optimum” or
“improvement”. What concerns the covering set, the first that comes to mind, is use
balls (spherical set) as a simpler nonlinear shape.

(PCMP) over Spherical Sets

Let S(c;ρ) and B(c;ρ) be respectively a sphere and a ball of center c and radius ρ .
This section is devoted to the following two (PCMP), solutions of them are going
to be key tools in nonlinear separation as stated in previous section.

{
maximize F(x),
subject to x ∈ S(c;ρ),

{
maximize F(x),
subject to x ∈ B(c;ρ).

We turn our attention to the problem over a sphere, that is a problem of piecewise
maximization over a nonconvex feasible set with an empty interior. Since all feasible
points are degenerated even the local search for this problem is worth-while to study.
We consider a convex function f and notice that the KKT optimality condition for an
optimizer of f (either min or max) over S(c,ρ) implies collinearity of gradient ∇f (u)
and u− c. It is well known that the projected gradient method, from a reasonably
good starting point, quickly converges to the optimal solution. If no meaningful
guess is known, the gradient ∇f (c) is a good ray direction to find a starting point
for maximizing f over the sphere; for minimizing we start from the antigradient
−∇f (c).

Since F(x) = min{f1(x), . . . , fm(x)} a piecewise convex function; using 2×m
times the above optimization paradigm (for both lj = argminS fj(x) and uj =
argmaxS fj(x)) yields a sparse set of points which the actual values F(lj) and F(uj)
may be computed for all j= 1, . . . ,m. We call for the best value of max{F(li),F(uj) |
i, j = 1, . . . ,m} as sparse piecewise convex maximization value over a sphere and
denote by z the point of this value.

Now we borrow from [9] the resolving border heuristic that focuses on points on
the level set in the vicinity of Dk(·) for some k that are likely to improve the easy
sparse optimizers.

We use the following two examples as the main lead to illustrate the different
steps in Piecewise Convex Maximizing:
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Algorithm 1 PCMP-over-sphere: Resolving border for arglocmaxx∈S F(x)
Input: c,ρ ,F = {fj | j = 1,m}
Output: z = arglocmaxx∈S F(x)

pq=PriorityQueue(sparseoptimize(S,F)) // decreasing values of sparse arglocmax
while pq �= /0 do

u =pop(pq)
if F(u) better then

z = u
end if
for m = 1,M do

v = Prfj(x)=F(z)(u)

uj = c+ρ v−c
‖v−c‖ push(pq,F(uj),uj) //enqueue value for unprocessed points only

end for
end while
return z

F2D
1 = min

{

x2
1 +(x2 +4)2−36,
(x1 +8)2 +(x2−3)2−36,
x2

1 +(x2−8)2−16,
(x1−8)2 +(x2−3)2−53,
(x1−10)2 +(x2 +10)2−4

}

,

F2D
2 = min

{

x2
1 +(x2 +2)2−9,

9(x1 +3)2 +4x2
2−36,

(x1 +1)2 +(x2−4)2−4,
1
9 (x1−3)2 + 1

36 (x2−4)2−1,
(x1−5)2 +(x2 +5)2−1

}

respectively in spherical domain (spheres/balls) with (c,ρ) = ([0,0],4).
Despite there is no proof of global optimality, we experimented an effective

behavior to find points on the sphere well ordered by the priority queue and likely
to lay close to ∩Dj(z) (the best z found is drawn as a blue dot on Fig. 3).

In the remainder we concentrate on elementary coding steps, starting on opti-
mization over a sphere towards more involved recursive calls of (PCMP) over a ball.

There is a subtlety when v = c for defining w; we choose w = z+c
2 betting on a

point in ∩Dk(z) (early detection of a better point). In both cases Figs. 3 and 4 blue
points were found quickly which localize the global solution areas.

Concluding Remarks

In this chapter we have presented an overview of studies on piecewise convex
maximization problems: necessary and sufficient global optimality conditions,
methods including linearization oriented algorithm, piece adding technique (patch
for short), and Newton’s attractive force search algorithm (nasa for short). A novel
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Fig. 3 Maximize F2D
i over a sphere, i = 1,2 (left, right)
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Fig. 4 Maximize F2D
i over a ball, i = 1,2 (left, right)

approach of solving (PCMP) based on a nonlinear separation (instead of the
traditional affine separation) has been proposed. We call it a nonlinear covering
method. As a rule the approach opens up a field which should be investigated more
thoroughly: a choice of the covering sets, algorithms of solving subproblems over
them, etc.

Our aim is now to construct an “(union of covering sets)” such that

D⊂ (union of covering sets)⊂LF(F(z))

to check the global optimality of z for (PCMP).
As a preliminary we have considered piecewise convex maximization problems

over spherical sets (balls, spheres) which play the key role for this new research
direction. Algorithms along with some computational results with simple, but
illustrative, examples have been reported.
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Algorithm 2 PCMP-over-ball: Recursive radius search for arglocmaxx∈B F(x)
Input: c,ρ ,F = {fj | j = 1, . . . ,m}
Output: z = arglocmaxx∈B F(x)

r = ρ
z = c
for l = 1,maxiterations do

if r ≤ ε then
return z

end if
z = PCMP-over-sphere(S(c;r),F) // z = arglocmaxS F State locz = z
for j = 1,m do

v = Prfj(x)=F(z)(u) // projection on non active function
if d(v,z)≤ ε or d(v,z)> 2r then

continue // skip projection too close or too far
end if
if d(v,c)> r then

w = c+ r
d(v,c) (v− c) // outside B(c;r)⇒ w ∈ S(c;r)

else
w = z+ d(v,z)

r (c− z) // inside B(c;r)⇒ w ∈ B(c;r)
end if
if w better locz then

locz = w
end if

end for
if locz better z then

ρ = min{‖ z− locz ‖,‖ c− locz ‖}
z=PCMP-over-ball(B(locz,ρ),F)
r = ‖ c− z ‖

else
r = r

2 // halve radius
end if

end for
return z
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Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global
Optimization. Nonconvex Optimization and its Applications, vol. 33. Kluwer Academic
Publishers, Dordrecht (1999)



Survey of Piecewise Convex Maximization and PCMP over Spherical Sets 51

4. Fortin, D., Tsevendorj, I.: Piecewise-convex maximization problems: algorithm and computa-
tional experiments. J. Global Optim. 24(1), 61–77 (2002). doi:10.1023/A:1016221931922.
http://dx.doi.org/10.1023/A:1016221931922

5. Fortin, D., Tseveendorj, I.: Piecewise convex maximization approach to multiknapsack.
Optimization 58(7), 883–895 (2009). doi:10.1080/02331930902945033. http://dx.doi.org/10.
1080/02331930902945033

6. Fortin, D., Tseveendorj, I.: A trust branching path heuristic for permutation problems. Int.
J. Pure Appl. Math. 56(3), 329–343 (2009)

7. Fortin, D., Tseveendorj, I.: Piece adding technique for convex maximization problems.
J. Global Optim. 48(4), 583–593 (2010). doi:10.1007/s10898-009-9506-z. http://dx.doi.org/
10.1007/s10898-009-9506-z

8. Fortin, D., Tseveendorj, I.: Piecewise convex maximization problems: piece adding technique.
J. Optim. Theory Appl. 148(3), 471–487 (2011). doi:10.1007/s10957-010-9763-5. http://dx.
doi.org/10.1007/s10957-010-9763-5

9. Fortin, D., Tseveendorj, I.: Attractive force search algorithm for piecewise convex maximiza-
tion problems. Optim. Lett. 6(7), 1317–1333 (2012). doi:10.1007/s11590-011-0395-y. http://
dx.doi.org/10.1007/s11590-011-0395-y

10. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 2nd edn. Springer, Berlin
(1993). doi:10.1007/978-3-662-02947-3. http://dx.doi.org/10.1007/978-3-662-02947-3

11. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Nonconvex
Optimization and its Applications, vol. 48, 2nd edn. Kluwer Academic Publishers, Dordrecht
(2000). doi:10.1007/978-1-4615-0015-5. http://dx.doi.org/10.1007/978-1-4615-0015-5

12. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I. Basic Theory
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 330. Springer, Berlin (2006)
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Assessing Basin Identification Methods
for Locating Multiple Optima

Simon Wessing, Günter Rudolph, and Mike Preuss

Abstract Basin identification is an important ingredient in global optimization
algorithms for the efficient use of local searches. An established approach for
this task is obtaining topographical information about the objective function from
a discrete sample of the search space and representing it in a graph structure.
So far, different variants of this approach are usually assessed by evaluating the
performance of a whole optimization algorithm using them as components. In this
work, we compare two approaches on their own, namely topographical selection
and nearest-better clustering, regarding their ability to identify the distinct attraction
basins of multimodal functions. We show that both have different strengths and
weaknesses, as their behavior is very dependent on the problem instance.

Keywords Basin identification • Multi-local optimization • Topographical
selection • Nearest-better clustering • Sampling

Introduction

Two-stage algorithms for global optimization are meta-heuristics consisting of a
global and a local stage, which are executed alternatingly [25, p. 14]. The global
stage is responsible for exploration, the local one for exploitation, as, for example,
in the algorithm in [13]. The local stage is usually understood as a local search
algorithm started at a certain point and running until convergence is detected. As this
is quite expensive in terms of function evaluations, the global stage ideally has the
capability of carefully selecting promising starting points [25, p. 66]. This task shall
be denoted as basin identification [16, Sect. 3.2]. Originally, it was accomplished
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by conventional clustering methods [25, pp. 95–116], but nowadays more refined
methods have been developed, which are not necessarily clustering methods in a
strict sense anymore [22].

In this work, we directly compare two basin identification methods regard-
ing their ability to detect distinct attraction basins. Correspondingly, the task
of approximating all or at least several local optima of a multimodal objective
function in one optimization run has received increased attention of the optimization
community in recent years. We collect appearances of this topic in the classical
global optimization literature in section “Literature Report” and try to reconstruct
why it has somehow become known under the term multimodal optimization in the
evolutionary computation community [7]. We propose to use the term multi-local
optimization instead.

Anyway, it is clear that the aim of finding, say, the best k optima is only
a slight shift in perspective, as global optimization is a special case of it. This
change in perspective may be partly due to the rise of a-posteriori approaches
for multiobjective optimization, where it is considered a critical property of the
algorithms that they are able to generate whole Pareto front approximations, and
it is left to the user to finally choose one of the available solutions. In order to
enable an informed decision, it was already argued in [17] that alternative solutions
in the search space are valuable in multiobjective optimization, even if one point in
objective space has been selected. The same argument may be utilized for multi-
local optimization, such that one wants to obtain the set of best solutions not only
for finding the global optimum therein but also to have alternatives at hand when
the seemingly best solution cannot be implemented [2, 15].

The remainder of this chapter is structured as follows. In the next section, we
give an overview of previous work dealing with the topic of identifying several
optima. Then, the two investigated basin identification methods are presented in
section “Basin Identification Methods”. In section “Sampling Algorithms”, we give
attention to sampling algorithms, which are needed to have something to select from
in the first place, and explain the recent development maximin reconstruction [28,
pp. 70–76]. Then, two experiments follow in section “Experiments”. The first has
the goal of finding regression models to predict favorable parameter settings for
the basin identification methods. In the second one, the enhanced methods are
tested on different optimization problems. The chapter ends with our conclusions
in section “Conclusion”.

Literature Report

According to Zentralblatt Math Database the article [29] by Antanas Žilinskas
in 1978 was the first publication whose title contained the term multimodal
optimization. Although not explicitly mentioned, the final goal in this work was the
development of a method to locate the global optimum of a multimodal function.
Thus, the term multimodal optimization in [29] described the task to find the global
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optimum of a multimodal function; the detection of several local optima only was a
side effect of the particular optimization strategy.

In the field of evolutionary computation the term multimodal optimization
apparently appeared about one decade later (1987) for the first time in the title
of a paper by Goldberg and Richardson [9]. In this paper the term is not defined
explicitly, but it is clear that the authors aimed at developing a method to find the
best peak of a multimodal function. For that purpose they introduced a mechanism
gleaned from nature, in which the population of solutions is separated into niches
which in turn should represent the basins of local optima. If such a mechanism is
successful the population concentrates on the best local optima. Again, the detection
of several local optima only was a side effect of the particular optimization strategy.

In 1993 Beasley et al. [5] proposed a niching strategy that explicitly aimed at
locating all local optima of a multimodal function. Although they did not state that
this task is the meaning of multimodal optimization, this paper may have had some
bearing on the misconception of the authors (and reviewers!) of subsequent papers
in bio-inspired optimization that the term multimodal optimization stands for finding
all local optima. As can be extracted from Zentralblatt Math Database the semantic
shift of the term began around 2000 and the new meaning was apparently established
in 2011 in a survey paper on evolutionary multimodal optimization [7].

This process of an unnecessary semantic shift of a scientific term is the more
remarkable, as the task of finding all local optima was explicitly termed multi-local
optimization [12] in 1998 already. Actually, this notion can be traced back in the
context of semi-infinite optimization at least to a PhD thesis [18] from the year 1992.
Therefore we strongly support the initiation of a process of reversing the semantic
shift and encourage the usage of the term multi-local optimization in future.

Basin Identification Methods

In this work, we consider the two basin identification methods: topographical
selection and nearest-better clustering (NBC). The fitness criteria employed by the
two are quite complementary: the former uses the number of nearest neighbors that
are not better, the latter calculates the distance to the next better solution. So, both
effectively utilize the same amount of information, namely the distances between
solutions and their objective values.

Topographical Selection

Topographical selection (TS), as proposed by Törn and Viitanen [22], is described
in Algorithm 3. It is designed to identify distinct local optima from a uniform
sample of the search space. This works by building a directed graph containing
for each point edges to its k nearest neighbors. The direction of the edges is always
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Algorithm 3 Topographical selection
Input: points P = {x1, . . . ,xN}, number k of nearest neighbors
Output: nodes of the topograph with no outgoing edges
1: create a directed graph G = (V,E) with V = {v1, . . . ,vN} and E = /0
2: for all i ∈ {1, . . . ,N} do
3: J← indices of the k nearest neighbors of xi

4: for all j ∈ J do
5: if f (xj)< f (xi) then
6: E← E∪{(vi,vj)} // add edge to graph
7: else if using all edges, f (xi)< f (xj) then
8: E← E∪{(vj,vi)} // add edge to graph
9: end if

10: end for
11: end for
12: return {v ∈ V | deg+(v) = 0} // select nodes with no outgoing edges

pointing towards the better solution. (Note that we inverted the meaning of the edge
direction in comparison to the original paper, to have a consistent definition of edges
throughout all methods presented in this work.) The algorithm selects all points,
whose nodes v in the graph have an outdegree deg+(v) = 0.

Törn and Viitanen [22] suggest to store the graph in a (N× k) matrix, with the
indices to the k nearest neighbors in each row and using positive/negative signs to
indicate the direction of the edges. They argue that it is less effort to only consider
the respective row than to search the whole matrix for deciding if a point shall
be selected. However, we would like to stress that by using adjacency lists as
data structure to store the edges, this argument ceases to apply. We simply have
to determine for each node if it has outgoing edges, which can be done in O(1)
with conventional adjacency lists. There also should be no other reason to restrict
the topograph to “positive” edges, as Törn and Viitanen [23] already noted that
differences between the two methods can be eliminated by appropriate choices of k.

Nearest-Better Clustering

NBC relies on the concept of the nearest-better neighbor

nbn(x,P) = arg min
y∈P
{d(x,y) | f (y)< f (x)}

of a point x, where P is typically a finite set of points. The distance to this point
shall be denoted dnb(x,P) := d(x,nbn(x,P)). The conventional nearest-neighbor
distance will be named dnn(x,P) in the following.

Algorithm 4 contains detailed pseudocode for NBC. In a first step, it creates
a spanning tree consisting of edges from points to their nearest-better neighbors.
Afterwards, the tree is divided into several connected components by removing
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Algorithm 4 Nearest-better clustering
Input: points P = {x1, . . . ,xN}, parameter φ
Output: clusters in form of connected components of a graph
1: create a weighted, directed graph G = (V,E) with V = {v1, . . . ,vN} and E = /0
2: for all i ∈ {1, . . . ,N} do
3: if nbn(xi,P) exists then
4: xj← nbn(xi,P)
5: ei← (vi,vj) // create edge
6: wei ← d(xi,xj) // set weight equal to distance
7: E← E∪{ei} // add edge to graph
8: end if
9: end for // G is now a spanning tree

10: wmax← φ ·dref // calculate weight threshold for rule 1
11: E′ ← E
12: let e = (vi,vj)
13: if deg−(vi)≥ 3 then
14: let e−1 , . . . ,e

−
k be the incoming edges of vi

15: if we/median{we−1
, . . . ,we−k

}> b then
16: E← E \{e} // remove edge (rule 2)
17: end if
18: end if
19: if we > wmax then
20: E← E \{e} // remove edge (rule 1)
21: end if
22: return G

“long” edges. The run time is governed by the quadratic number of distance
computations necessary for building the graph.

For characterizing edges as long, two heuristics exist, which are called rule 1 and
rule 2 in the pseudocode. Rule 1 simply removes all edges whose length exceeds
the threshold wmax. Rule 2 was added later. It is only applied to edges e whose tail v
has an indegree deg−(v)≥ 3. The rule states to cut such an edge e if its length we is
more than b times longer than the median of the incoming edges of v. The parameter
b has been derived by extensive experimentation and is actually dependent on the
number of points and the dimension [16, Sect. 4.5]:

b(N,n) = (−4.69 ·10−4n2 +0.0263n+3.66n−1−0.457) · log10(N)

+7.51 ·10−4n2−0.0421n−2.26n−1 +1.83.

The aim of this involved rule 2 is to produce a correction yielding more clusters for
large random uniform samples on highly multimodal functions, while not detecting
more than 1.1 clusters on average in the case of unimodal functions [16, Sect. 4.5].

Historically, the reference distance dref in line 10 of Algorithm 4 was always
calculated as the mean weight of all edges, i. e., dref,old = 1/|E|∑|E|i=1 wei . As these
weights are simply nearest-better distances, the value of dref,old is dependent on
the problem’s number of optima. Investigations in [28, pp. 100–104] indicate that



58 S. Wessing et al.

the effect is opposite to what would be advisable, namely selecting the more
points, the more optima exist. Thus we introduce dref,new = 1/N ∑N

i=1 dnn(xi,P)
as an alternative definition of reference distance here. By only considering the
conventional nearest-neighbor distances, the influence of the problem’s landscape
is eliminated.

The pruning rules are another issue. NBC with rule 1 alone can be used more
flexibly than NBC with rules 1 and 2 (and TS), because one does not have to
explicitly construct the graph G for applying rule 1. It is sufficient to calculate the
key figure dnb for each point and sort the sample accordingly. The threshold wmax

then only determines how many points of this ranking are selected. If the graph is
explicitly constructed, NBC also yields a hierarchical clustering of the points. This
is possible because the initial graph is a spanning tree, which can be divided into
several connected components by removing edges. We regard this flexibility as a
conceptual advantage over TS.

Sampling Algorithms

As sampling algorithms, we regard simple random uniform sampling (SRS), gen-
eralized Halton sequences [8], and the maximin reconstruction (MmR) algorithm
recently proposed in [28, pp. 70–76]. The core property of the used point samples
for this application should be their uniformity [4, 22, 24]. While SRS provides some
kind of baseline, Halton sequences asymptotically obtain a lower deviation from
uniformity [8]. MmR explicitly optimizes the uniformity for the requested number
of points, so it should offer the highest uniformity of the three.

Maximin Reconstruction

This algorithm is basically a variation of the “reconstruction algorithm” as described
in [10, pp. 407–417]. The general idea of the reconstruction approach is to imitate
a measured point process by minimizing the deviation of summary characteristics
between the measured and the simulated point process. A common approach is to
use a local search that exchanges one point per iteration and accepts the modification
if the objective is improved. The references [19, 20] contain some more pointers to
such exchange algorithms for experimental designs.

The pseudocode is outlined in Algorithm 5. The number of points is fixed in
advance and the algorithm iteratively tries to replace one of the current points
with a randomly chosen one. Instead of imitating an existing point set, we want
to simply maximize uniformity. Thus, potentially existing fixed points are not taken
as a reference set, but assumed to belong to the whole set, whose uniformity is
to be maximized. Every improvement of the minimal distance between points in
the set is accepted. In case no improvement is found, there is another extension of
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Algorithm 5 Maximin reconstruction algorithm
Input: initial points P = {x1, . . . ,xN}, distance criterion d(·)
Output: uniformly distributed points
1: A←{1, . . . ,N} // indices of candidates for replacement
2: i← random element of A // choose arbitrary candidate
3: A← A\{i} // remove used index
4: repeat
5: y← random point in X // sample potential substitute
6: if [ thenif improvement found]d(y)≥ d(xi)
7: xi← y // replace the point in P
8: A←{1, . . . ,N}\{i} // distances have changed, reset the available indices
9: else if [ thentry to find point that is easier to replace]A �= /0

10: i′ ← random element of A
11: A← A\{i′}
12: if [ thenif xi′ is easier to replace]d(xi′ )≤ d(xi)
13: i← i′ // use it as new candidate for replacement
14: end if
15: end if
16: until termination
17: return P

the basic algorithm. Instead of choosing the candidate for replacement randomly,
we compare the current candidate with another one of the remaining, untested
points in P . The one with the smaller nearest-neighbor distance is chosen as the
candidate for replacement in the next iteration. If the sequence of failed attempts is
long enough, we will eventually find the point in P with the (currently) minimal
nearest-neighbor distance, and replace it in one of the next iterations. Thus, we have
a true maximin approach [11], and therefore the algorithm shall be called MmR.
The attractiveness of the algorithm lies in its relatively economical use of distance
computations without the need for a sophisticated data structure. Note, however, that
we do not intend to produce the exact optimum, because we want to retain a rest
of irregularity of the point set. If we disregarded this aspect, we would approach
the topic of optimal sphere packing, for which certainly better local optimization
algorithms could be devised for the last stage of optimization [1].

We still have to discuss the concrete definition of the distance criterion d(·)
used in Algorithm 5. In its most basic form, d(x) = dnn(x,Q), where Q = P ,
or, if additionally a set of fixed points A has to be considered, Q = P ∪A .
Unfortunately, maximin approaches are known for a drift towards the boundary [11],
which means that the point density at the boundary is higher than in the interior [10,
p. 145]. One possible remedy is to use periodic edge-correction (PEC) [10, p. 184].
For this purpose, an Lp torus distance

dtorus(x,y) =

(
n

∑
i=1

min{|xi− yi|,ui− �i−|xi− yi|}p

)1/p
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is assumed as the internal distance in dnn. In this case, the resulting sample is
expected to be very uniform in the cuboid defined by the ui and �i values, because
edge effects are eliminated.

MmR’s asymptotic run time is O(t(N + |A |)n) if t is the number of iterations
and we want to generate N new points, while there are already |A | existing points,
because the algorithm needs N+ |A | distance computations in successful iterations
and at most 2(N + |A |) in unsuccessful iterations.

Experiments

Determining Regression Models

Research Question Which heuristics should be used to set the values of the
methods’ numerical parameters appropriately?

Pre-experimental Planning The existing literature [16, 22] and our preliminary
experiments suggest that both basin identification methods are very dependent on
their numerical parameters. Thus it seems ill-advised to compare the two methods
with fixed parameter values. Instead we try to first find some regression models to
predict an appropriate parameter value for a given problem. What complicates
this experiment is that both methods have more than one nested factor, i. e.,
parameters that only apply to one of the two approaches. Thus we split the data
analysis into two phases. First, we verify if our preferred categorial factor levels
are competitive, then we try to determine the optimal numerical parameters for our
favorite configurations.

Task As the identification of local optima is essentially a classification problem,
we use the two simple measures precision and recall [14, p. 155] from the domain
of information retrieval for evaluation. Recall has also become known as the peak
ratio in the optimization community [21]. It uses the number of found optima

o = |{x∗ ∈ O | dnn(x∗,P)≤ r}| ,

where O is the set of desired optima, P is the approximation set obtained by some
algorithm, and r is a user-defined threshold parameter. The peak ratio is then o/|O|,
while precision is calculated as o/|P|. We presume that precision is more important
than peak ratio in our application, so in the first part of the analysis, the performance
is assessed by a lexicographic ordering with these priorities. If there are several
optimal configurations, we average the φ and k values over them. Linear regression
models shall be fitted to the data of these optimal configurations by using ordinary
least squares. The actual regression formula is chosen by manual experimentation
considering the coefficient of determination R2 and the model complexity as criteria.
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Table 1 Factors for the experiment in section “Determining Regression Models”

Top-level factors Type Symbol Levels

Problem topology Non-observable {random, funnel}
Number of local optima Non-observable ν {5,10,20,50}
Number of variables Observable n {2,3,5,10,15,20}
Number of points Observable N {10n,20n,50n,100n}
Sampling algorithm Control {SRS, GHalton, MmR}
Basin identification Control {TS, NBC}

Nested factors Type Symbol Levels

Threshold factor (NBC) Control φ {1.2,1.3,1.4,1.5,1.6,1.8,
2.0,2.25,2.5,2.75,3.0}

Used rules (NBC) Control {{1}, {1,2}}
Reference distance (NBC) Control {dref,old, dref,new}
Considered edges (TS) Control {all, positive}
Number of neighbors (TS) Control k {1,2, . . . ,14,16,18,20,

25,30,35,40,50}

Setup Table 1 shows the factors of our experiment. We randomly create artificial
test instances with the generator from [27] to be able to control many problem fea-
tures. Four environmental factors that are important for the problem difficulty [26]
are varied. Only two of them are observable in the real world (n and N) so the
regression models can use them as inputs. The other two are the number of local
optima ν = |O| and the global structure (topology) of the objective function.
The number of points N is not added to the control factors, because we assume
that we always employ the maximally possible budget, which would be limited
through external circumstances. We further assume that we can sample the function
ourselves, so the sampling algorithm is a controlled factor. This way, it is justified
to build individual regression models for each sampling algorithm. To have some
ground truth, we explicitly add all optima positions to the point samples. The
remaining N − ν points are chosen by the respective sampling algorithm. For
MmR we can explicitly consider the optima positions as fixed points in its distance
calculations, so the overall distribution will be still very uniform. The generalized
Halton sequence uses the implementation from https://github.com/fmder/ghalton,
version 0.6. It is randomly initialized for every run. Note that the setup allows a few
configurations with N ≤ ν ; these are completely dismissed.

If a practitioner was confronted with a pre-built point set, it might be helpful to
calculate the standard deviation of nearest-neighbor distances to get an idea which
sampling the point set is similar to. The measure indicates the irregularity of the
point set, which is somewhat antithetic to uniformity [28, pp. 47–48].

For each basin identification method, we carry out a full-factorial experiment
over the top-level factors and its respective nested factors. There are 192 different
configurations of environmental (observable and non-observable) factors. For each
of them, we make 50 stochastic replications using common random numbers.

https://github.com/fmder/ghalton
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Fig. 1 Distribution of the best configurations on the categorial factors. (a) Nearest-better cluster-
ing. (b) Topographical selection

Results Figure 1 contains bar charts illustrating how often there is at least
one optimal configuration for each categorial factor, depending on the sampling
algorithm. Figure 2 shows the influence of n, N, and the irregularity of the sample
on the optimal φ and k. The black regression lines in this figure are obtained
by locally weighted scatterplot smoothing (LOESS). The same data was used to
build the parametric regression models in Fig. 3, whose formulas and coefficient of
determination R2 are reproduced in Table 2.

Observations Figure 1 shows that for all configurations of categorial nested
factors, there is at least one optimal setting of φ or k in the vast majority of the
192 · 50 = 9600 cases. So, the raw data does not privilege any configuration over
the other. However, a preliminary analysis (not shown) indicates that the range of
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Fig. 3 Linear regression models on the data of Fig. 2. (a) Models for NBC. (b) Models for TS

Table 2 The formulas of the regression models in Fig. 3 and for the combined data
sets

NBC TS

Sampling Formula R2 Formula R2

SRS 1.144+2.288N−1 +0.541n−1 lnN 0.61 0.215n+0.740N1/2 0.86

GHalton 1.224+3.150N−1 +0.308n−1 lnN 0.42 0.292n+0.680N1/2 0.86

MmR 1.269+4.127N−1 +0.127n−1 lnN 0.18 0.293n+0.697N1/2 0.86

All 1.345+5.863N−1 +0.285n−1 lnN 0.20 0.333n+0.777N1/2 0.77

admissible φ values is larger for NBC variants including rule 2, compared to those
without rule 2. This is not surprising as the term b(N,n) was fitted to experimental
data in a very similar way as we do now for φ and k. But for the sake of brevity and
in an attempt to compare the pure approaches first, we restrict the remainder of the
analysis to the configurations we rated as more straightforward in section “Basin
Identification Methods”. This was NBC without rule 2, but with the new reference
distance, and TS considering the topograph with all edges.

Under these circumstances, Fig. 2 shows that the optimal k is much less depen-
dent on the sampling algorithm than the optimal φ , as indicated by the regression
lines. This is confirmed by the fitted models, which are almost identical for TS,
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while those for NBC differ considerably between the sampling algorithms, because
the optimal φ grows with irregularity of the point sample (see Fig. 3). Also the R2 of
the NBC models becomes worse with increasing uniformity, which is not the case
for TS models (see Table 2).

Another interesting observation are the two horizontal clusters appearing in the
scatter plots of Fig. 2 when the number of points N is 20n or lower. For φ , they
are more pronounced in higher dimensions, but for k they only appear in low
dimensions. A closer inspection of the data (not shown) reveals that the clusters
of higher φ and k values almost exclusively pertain to runs on funnel problems,
while the lower clusters contain both topologies.

MmR obtains the least irregularity of all sampling algorithms on average,
followed by the generalized Halton sequence and SRS. However, the variance is
quite high, so the distributions of the three sampling algorithms are overlapping,
especially in low dimensions.

Discussion The choice of k for TS seems to be relatively independent of the
sampling algorithm. This might be a good sign, as it is desirable to have a robust
basin identification method. For NBC, the number of points seems to have only
little influence, especially if the point set is very regular. This may be a hint to
prefer NBC for very large point sets. However, there remain the problem topology
and the number of optima as problem properties which severely affect the prediction
accuracy. So far, we have no means to treat their influence.

Validation

To validate the regression models from Table 2, we carry out another experiment
using different random numbers and different values for ν and n than before.
Table 3 shows the used configurations. The numerical parameters φ and k are
now determined by the regression models. The integer k is obtained by rounding
the model’s response up. The optima are not included in the point sets in this
experiment. Therefore, we now calculate the two performance measures from
section “Determining Regression Models” with the number of basins defined as

o =
|O|

∑
i=1

min

{

1,
|P|

∑
j=1

b(xj,x∗i )

}

,

where

b(x,x∗) =

{

1 if x ∈ basin(x∗),

0 else

is an indicator for membership in the attraction basin of optimum x∗, realized as
described in [27].
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Table 3 Factors for the validation experiment in section “Validation”

Top-level factors Type Symbol Levels

Problem topology Non-observable {random, funnel}
Number of local optima Non-observable ν {3,12,25,75}
Number of variables Observable n {2,4,8,16,24,32}
Number of points Observable N {10n,20n,50n,100n}
Sampling algorithm Control {SRS, GHalton, MmR}
Basin identification Control {TS, NBC}
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Fig. 4 The number of selected points for the tuned basin identification methods. Linear regression
lines illustrate the general trend. NBC (circles) and TS (plus signs) show opposite behavior

With this setup we let NBC and TS again try to identify the basins. Figure 4
shows that the two methods react differently to a varying dimension, even though
they are both using parameters optimized for the same criterion. NBC selects many
points in low dimensions and reduces the number for growing n. TS shows exactly
the opposite behavior. This difference between the two methods is also transferred
over to the quality indicators precision and recall/basin ratio, as illustrated by Fig. 5.
NBC obtains a lower precision and higher basin ratio in low dimensions, for TS the
same can be said in high dimensions. We can also see that while the precision of
TS is independent of the sampling algorithm, NBC scores the better, the lower the
irregularity is.

The contrasting behavior of the two methods may be caused by the curse of
dimensionality, which probably affects both methods differently. It is well known
that the variation of Euclidean distances between pairs of uniformly distributed
points vanishes with increasing dimension [6]. This probably has the effect that
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Fig. 5 Precision and basin ratio on the validation set. (a) Simple random sampling. (b) General-
ized Halton. (c) Maximin reconstruction
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it becomes increasingly unlikely for a nearest-better distance to exceed the given
threshold. On the other hand, the k nearest neighbors of a point are probably a rather
arbitrary choice in high dimensions, because the space is only sampled very sparsely
anyway. So, it will often happen by chance that a point is selected by TS because
none of its neighbors is better.

Conclusion

The basin identification methods’ strong dependence on parameters is a nuisance.
Some knowledge or at least a hypothesis about the problem’s number of optima
would be very helpful in determining the right parameter values. In absence of
this knowledge, we can only try to employ the dimension of the space and the
sample size as input to our prediction models, as done in this work. We admit that
the resulting prediction models are still very rough and somewhat depend on the
number of optima employed in the experiments. However, we think the relatively
low values chosen by us for this parameter correspond to a realistic application
scenario. In the future, it should be advisable to also incorporate features as the
uniformity of the sample. A challenge in this regard is to find indicators yielding
results that are comparable between different numbers of dimensions. Additionally,
we repeat the recommendation to always use a sampling as uniform as possible,
because this increases the precision of the basin identification. By using a more
expensive sampling algorithm, such as maximin reconstruction, it is possible to
further improve the performance as against quasirandom sequences. If it is not
possible to control the sampling, a basin identification method robust to outliers
must be sought. TS already seems to meet this demand. It may also be beneficial to
somehow combine the concepts of NBC and TS into one method. Using Manhattan
(or maybe even non-metric) distances also might be a simple way to further improve
the stability of both methods [3].

One also has to consider that in global optimization algorithms, where basin
identification methods are typically employed, it may be advisable to carry out
at least a minimum number of local searches per iteration, in recognition of the
uncertainty generally associated with the basin identification. In this case, the
decision how many points to select would not be left completely to the basin
identification component. This can be realized easy by using NBC with rule 1, which
can also provide a ranking of the sample, from which a decision maker can select
an arbitrary number of points according to his preference. In the case of TS, the
number of neighbors would have to be adapted iteratively to approximate a given
number of points to select, which is more cumbersome.
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Cloud Computing Approach for Intelligent
Visualization of Multidimensional Data

Jolita Bernatavičienė, Gintautas Dzemyda, Olga Kurasova,
Virginijus Marcinkevičius, Viktor Medvedev, and Povilas Treigys

Abstract In this paper, a Cloud computing approach for intelligent visualization
of multidimensional data is proposed. Intelligent visualization enables to create
visualization models based on the best practices and experience. A new Cloud
computing-based data mining system DAMIS is introduced for the intelligent data
analysis including data visualization methods. It can assist researchers to handle
large amounts of multidimensional data when executing resource-expensive and
time-consuming data mining tasks by considerably reducing the information load.
The application of DAMIS is illustrated by the visual analysis of medical streaming
data.

Keywords intelligent visualization • cloud computing • dimensionality reduc-
tion • medical streaming data

Introduction

One of the significant steps in the process of knowledge discovery in datasets is
multidimensional data visualization. The visualization is grounded on the idea to
present data in such a visual form that allows to gain insight of the data, and
to influence a further process of data mining and decision making [1, 11]. The
perception and extraction of useful information from the graphical representation
of data is much easier than it could be done from raw domain data. It is the
benefit of visualization. Ability to visualize multidimensional data is one of the
basic functionalities for the data analysis tools. Despite the fact that most of the
multidimensional data analysis methods were proposed a few decades ago, they
remain popular and are continually improved in order to create more effective ways
of dimensionality reduction-based visualization. Another direction of researches is a
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software development for multidimensional data visualization. Recent technological
possibilities of Cloud computing enable to speed up time-consuming data analysis.
However, convenient, powerful, and user-friendly tools for such an analysis are still
missing. The goal of this paper is to introduce a Cloud computing approach for
intelligent visualization of multidimensional data. As noted in [3], the intelligent
analysis is a carefully planned and considered process of deciding what will be
most useful and revealing. This approach is illustrated by the analysis of medical
streaming data.

Multidimensional Data Visualization

In this paper, we focus on visualization methods that reduce data dimensionality
from the original high-dimensional space to the target dimension (2D in the
visualization case). The goal of dimensionality reduction is to represent the input
dataset in a lower-dimensional space so that certain properties (e.g., clusters and
outliers) of the structure of this dataset were preserved as faithfully as possible.
Another reason for reducing the dimensionality is to reduce the computational
load for further data processing. Today’s big multidimensional datasets contain a
huge amount of data so that it becomes almost impossible to analyze them by
conventional ways with a view to extract valuable information. We require more
effective ways to display, analyze, and interpret the information contained within
them.

The data from the real world can usually be described by an array of features
x1,x2, . . . ,xn. A combination of values of all features characterizes a particular data
object Xj = (xj1,xj2, . . . ,xjn), j∈ {1, . . . ,m}, from the whole set X1,X2, . . . ,Xm, where
n is the number of features and m is the number of analyzed objects. If X1,X2, . . . ,Xm

are described by more than one feature, the data are called multidimensional data, if
n is large enough, then the data are called big multidimensional data. Often Xj, j =
1, . . . ,m, are interpreted as points in the multidimensional space.

Visualization Methods Based on Dimensionality Reduction

Several approaches have been proposed for transforming nonlinear high-
dimensional structures into a lower-dimensional space. A comprehensive review of
the dimensionality reduction-based visualization methods is presented in [8, 11].

Principal component analysis (PCA) [14] is a well-known method for dimen-
sionality reduction. It can be used to display the data as a linear projection in a
subspace of the original data space so that it preserves the variance of the data at
best. However, the interpretation of the principal components can be difficult at
times. Moreover, PCA cannot embrace nonlinear structures, consisting of arbitrarily
shaped clusters or curved manifolds, since it describes the data in terms of a linear
subspace.
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An alternative approach to dimensionality reduction is multidimensional scaling
(MDS) [5]. It is a classical approach which maps the original high-dimensional
space to a lower-dimensional one by using the information on the distances between
the objects in the original space so that the distances of the corresponding data points
in a lower-dimensional space are preserved. Thus, the so-called Stress function
(projection error) is minimized. There exists a multitude of variants of MDS with
different Stress functions and their optimization algorithms [5, 24–26]. Commonly
MDS Stress function is minimized using the SMACOF algorithm based on iterative
majorization. It is a popular optimization algorithm suitable for solving such type of
minimization problems. The method is simple and powerful, because it guarantees
a monotonic convergence of the Stress function. Diagonal majorization algorithm
(DMA) is a modification of the SMACOF algorithm. DMA attains a slightly worse
MDS projection error than SMACOF, but computations are faster and require
less computer memory resources. Therefore, the DMA algorithm can be used for
visualizing big datasets. It is worth to mention that MDS does not offer a possibility
to project new and previously unseen points on the existing set of the mapped points.
To get a mapping that presents the previously mapped points together with the new
ones requires a complete re-run of the MDS algorithm on the newly formed set
of new and mapped data points. The relative MDS can be used for visualizing the
new data points on the fixed mapping as well as for visualizing big datasets. The
relative MDS algorithm gives a precise mapping and saves much computing time
as compared with the MDS algorithm. Other local and global optimization methods
for minimizing MDS Stress are investigated and discussed in [11, 24–26].

Artificial neural networks may also be used for multidimensional data visualiza-
tion. Several neural network-based methods for visualizing big multidimensional
datasets have been proposed, including SAMANN [19, 21] and SOM [15]. Mao and
Jain have proposed in [19] a neural network implementation for multidimensional
data visualization. The back propagation-like learning rule SAMANN has been
developed to allow a feed-forward artificial neural network to learn MDS-based
Sammon’s mapping in an unsupervised way. After training the neural network is
able to project previously unseen points using the obtained generalized mapping
rule. It has been concluded in [19] that the SAMANN network preserves the data
structure, cluster shape, and interpattern distances better than a number of other
multidimensional visualization methods.

Self-organizing map (SOM) is another type of neural networks suitable for
multidimensional data visualization [15]. It is also used for data clustering. SOM is
a set of neurons, connected one to another via a rectangular or hexagonal topology.
Each neuron is defined by its place in SOM and by the so-called codebook vectors.
At each learning step, a multidimensional point Xj, j = {1, . . . ,m}, is presented to
the neural network. The codebook vectors of neurons are adapted according to the
defined learning rule. The neuron, whose the codebook vector is with the minimal
Euclidean distance to Xj, is designated as a winner. After SOM learning phase, the
analyzed data X1,X2, . . . ,Xm are presented to SOM and winning neurons are found
for each object. In such a way, the objects are distributed on SOM and some data
clusters can be observed. Besides, according to the position on the grid, the neurons
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are characterized by n-dimensional codebook vectors. An intuitive idea comes to
apply the dimensionality reduction methods to additional mapping of the codebook
vectors of the winning neurons on the plane. The MDS method may be used to this
end. Moreover, the number of winning neurons is smaller than the number of data
points, so a smaller dataset should be visualized by MDS than in the case where the
whole dataset is analyzed by MDS. The ways of combining SOM and MDS have
been proposed and investigated in [7, 18].

Cloud Computing Tools for Multidimensional Data Visualization

Over the years data mining software has been developed with the view to facilitate
solving data mining problems such as classification, clustering, and prediction.
Many of the solutions are open sourced and available for free, therefore they
have become very popular among researchers. Usually only PCA, MDS, and SOM
are implemented in the open source data mining tools: WEKA [12], Orange [6],
KNIME [4], RapidMiner [13], and R. Commercial statistics software, such as
Statistica (StatSoft), SAS/STAT, IBM SPSS Modeler (Clementine) as well as
MATLAB, have possibilities to make data analysis by PCA and MDS.

Cloud-based technologies become available to assist in creating scalable, exten-
sible, interoperable, modular, and easy-to-use data mining tools and to apply them
not only in solving data mining problems, but also in intelligent visualization of
multidimensional data. The new sophisticated instrument, the so-called scientific
workflow, can be used to form and execute a series of data analysis and computation
procedures in scientific application. The usage of scientific workflows allows
researchers to compose convenient platforms for experiments by retrieving data
from databases and data warehouses and running data mining algorithms in the
Cloud infrastructure. Another way to make the visualization intelligent is to use
a web service, which describes a set of packed functions with a single public
interface. If this public interface is published in the network, it might be used by
other applications through a standard protocol. Such approach allows to integrate
heterogeneous platforms and applications while keeping it simple to the end user.

Orange4WS [22] is an extension of the well-known data mining toolbox
Orange [6], in which some new features, including web services, are implemented.
Other open source tools for data mining are provided by KNIME Analytics Plat-
form [4]. KNIME also provides commercial extensions such as Cluster Execution
and Big Data Extensions in order to increase the performance by integrating the
advanced hardware and infrastructure capabilities.

ClowdFlows is an open source Cloud-based web application platform for
composition, execution, and sharing of interactive machine learning and data
mining workflows [16, 17]. A part of data mining algorithms from Orange and
WEKA is implemented as local services. DAME (DAta Mining and Exploration)
is an innovative web-based, distributed data mining infrastructure, specialized in
exploration of big datasets by various data mining methods [20]. DAME provides
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a user-friendly and standardized scientific gateway to ease the access, exploration,
processing, and understanding of big datasets.

From the point of view of intelligent visualization, the aforementioned data
mining tools have the following drawbacks:

• There is a lack of intelligent visualization approaches. It is useful to have
a wider set of implemented multidimensional data visualization methods of
various nature and additional utilities collected in one toolbox. The set of
implementations, organized in such a way, would allow to get the diverse
knowledge on the research object.

• Most of the data mining tools are not web applications and there is no possibility
to use them directly from the web. The advantage of web applications is that they
are used and controlled by a web browser integrating advantages provided by
Cloud technologies.

• There are no user-friendly instruments to exploit benefits provided by Cloud
computing for solving time- and resource-consuming visualization problems
without specific knowledge on parallel and distributed computing.

DAMIS: Implementation of Intelligent Visualization

To create an approach for intelligent visualization of multidimensional data with
intention to avoid drawbacks of the existing data mining tools, a new Cloud-
based web application, called DAMIS (DAta MIning System), is being developed.
The initial idea for visualization of large-scale multidimensional data, using web
service technologies, has been proposed in [9, 10]. The open source DAMIS
software (http://www.damis.lt) implements data mining solution as a service for
the end user and has a graphical user-friendly interface which allows researchers
to carry out data analysis tasks, to visualize multidimensional data, to investigate
multidimensional data projections and data item similarities as well as to identify
the influence of individual features and their relationships by applying various
data mining algorithms and taking the advantage of Cloud computing. DAMIS is
also available in the Lithuanian national open access scientific information archive
MIDAS (https://www.midas.lt) and serves as the data analysis toolbox for MIDAS
users.

The components of DAMIS and the relations between them are presented in
Fig. 1. The relation between the implemented data mining algorithms and the
graphical user interface is assured by usage of SOAP protocol-based web service.
The algorithms for multidimensional data preprocessing, clustering, classification,
and dimensionality reduction-based visualization have been implemented. To ana-
lyze the data by the implemented data mining algorithms, the user initializes and
manages an experiment by constructing scientific workflows, i.e. the order in which
the data mining algorithms are executed. The user can modify the created workflow
by adding or removing nodes and reuse the created workflow for other data analysis.

http://www.damis.lt
https://www.midas.lt
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Fig. 1 DAMIS architecture

DAMIS provides Cloud computing solutions useful to solve complicated and
time-consuming data mining problems. For big data analysis the user can select
computing resources from the proposed alternatives and utilize them on demand.
With the view to ensure the mobility and the independence of workplaces of
researchers, a data repository on the web is available. After uploading data files, they
become a part of the data web repository, and the user has a possibility to manage
these files and perform different experiments with the same data. The results of data
mining can be saved either in a user’s computer or in other external system such as
the Lithuanian national open access scientific information archive MIDAS. DAMIS
gains an advantage over the competitive data mining tools and can be an attractive
alternative for users involved in data mining.

The proposed data mining system aggregates a set of the methods for data
preprocessing, clustering, classification, and visualization. The following dimen-
sionality reduction-based methods for multidimensional data visualization are
implemented:

• Principal component analysis (PCA),
• Multidimensional scaling (SMACOF-MDS),
• Diagonal majorization algorithm (DMA),
• Relative MDS,
• Artificial neural network for Sammon’s mapping (SAMANN),
• Combination of the self-organizing map with multidimensional scaling (SOM-

MDS).

Thus, DAMIS is a tool for intelligent visualization, which can help researchers
to considerably reduce the information load and to handle large amounts of
multidimensional data when solving time-consuming and resource-expensive data
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mining tasks. Such an intelligent visualization allows to look inside the data and to
create the visualization model, based on the best practices and recommendations.

DAMIS Application for Visual Analysis of Medical Streaming
Data

The range of applications of DAMIS is wide and this system can be useful for
researchers of various scientific fields. For the purpose to illustrate the DAMIS
system functionality to visualize multidimensional data, the application for visual
analysis of medical streaming data is presented. The similarity search in multivariate
physiological time series which consists of medical observations over a period of
time is investigated. Data are collected using sensors by recording some predefined
personal medical features. The goal of the research is to compare a subsequence of
the multivariate time series, that corresponds to the current health state of a patient,
with chronologically collected historical data and to find the most similar one [2].

The data from the PhysioNet/Computing in Cardiology Challenge are used in this
research (http://www.physionet.org/challenge/2012/). All the records were collected
in the intensive care unit. It was selected a set Ya, containing multivariate time
series of 50 patients of the same age. Thus, we have 50 different multivariate time
series Ya

i , i = 1, . . . ,50, each of them consists of 48 observations (Ta = 50×48) of
p = 4 features: non-invasive diastolic arterial blood pressure, non-invasive systolic
arterial blood pressure, heart rate, and temperature, Ya = {Ya

i , i = 1, . . . ,50}. The
analyzed dataset can be downloaded from the open access scientific information
archive MIDAS: http://dx.doi.org/10.18279/MIDAS.duomenys.zip.1814.

To detect events in multivariate time series, it is necessary to compare time
series using the appropriate similarity measure. Different techniques and similarity
measures are introduced [23] and used for comparison of multivariate time series of
different nature. In this research, five similarity measures are used: Frobenius norm,
Matrix Correlation Coefficient, PCA similarity factor, multidimensional dynamic
time warping (MDTW), and Extended Frobenius norm (EROS). All these similarity
measures are described in detail in [2].

Let us have:

• a multivariate time series Ya of p features and Ta observations;
• a sample Yb of p features and Tb observations—a subsequence of the multivariate

time series—which corresponds to the current health state of a patient; and
• n similarity measures which will be used for comparison of subsequences.

The procedure which prepares multidimensional data from multivariate physio-
logical time series for visual analysis can be generalized as follows [2]:

1. The sample Yb is compared with all the subsequences of Ya by using m similarity
measures. The subsequences are obtained by moving the time window in Ya from
beginning to end. The content of such a window is a matrix of n rows. Denote the

http://www.physionet.org/challenge/2012/
http://dx.doi.org/10.18279/MIDAS.duomenys.zip.1814
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matrix by Yw. The width of the window (the number of columns of Yw) is adapted
to the sample Yb, its width is equal to Tb. For each measure, k subsequences are
chosen most similar to the sample. Therefore, the total number of subsequences
for a further analysis is equal to kn.

2. Each comparison of the sample with a subsequence, chosen in the way defined
in the step above, produces an n-dimensional point Xs = (xs1,xs2, . . . ,xsn), where
s = 1, . . . ,kn. Let us derive two additional points: X0 = (x01,x02, . . . ,x0n) is
the array of values of all similarity measures, computed for the subsequence,
that is ideally coincident with the sample (the array of the best values of n
similarity measures); Xc = (xc1,xc2, . . . ,xcn) is the weight center of Xs,s =
1, . . . ,kn. Therefore, the total number of n-dimensional points for discovering
subsequences most similar to the sample is m = kn+2.

3. Each point Xs is marked by a class label that indicates the similarity measure
according to which the subsequence falls among the most similar ones. The class
label of the point Xc is marked as “weight center,” and that of the point X0—
“ideally coincident.”

After such data preparation, the obtained multidimensional points, which corre-
spond to different comparisons of the sample with other subsequences, are analyzed
using the DAMIS software. In accordance with each of the 5 similarity measures, 10
subsequences, most similar to the sample, are chosen for a further analysis, k = 10.
Therefore, the total number of Xs subsequences is equal to 50, s= 1, . . . ,50. With the
two additional points X0 and Xc, the total number of five-dimensional points is m =
52. Thus, the whole set of multidimensional data is X = {X1,X2, . . . ,X50,X0,Xc}.

A scientific workflow for the medical data mining, which includes visualization,
is formed and presented in Fig. 2. The workflow consists of the connected nodes.
Each node corresponds to either data preprocessing or data mining algorithm. The
nodes for data file uploading and viewing the results are also used for workflow
construction.

The multidimensional points are normalized by z-score and visualized on the
plane using PCA (Fig. 3), MDS (Fig. 4), and SAMANN (Fig. 5). A point on
the plane represents projection result of a five-dimensional point. It depicts the
comparison result of the sample with the particular subsequence by five similarity
measures. In total there are 52 points on the plane. Each point is colored according
to the class it represents.

It is assumed that the subsequence, the corresponding point of which on a plane
is closest to the projection of X0, is most similar to the sample X0. Moreover, the
subsequences are assumed to be similar to the sample, if the Euclidean distance
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Fig. 2 DAMIS scientific workflow for medical data mining

between the projections, corresponding to such subsequences, and the projection of
X0 is less than the distance between the projections of X0 and XC. In each of Figs. 3,
4, and 5, there is a part of the red, green, and yellow points, the distances of which
to the blue point (X0) are smaller than the distance between the blue (X0) and violent
(XC) points. In the case of MDS (Fig. 4), this part of points is framed. It may state
that the subsequences, corresponding to these points, are most similar to the sample
considering a combination of all the five similarity measures. Most of the points in
the frame are yellow, and there are no light blue points in Fig. 4. It means that the
PCA similarity factor demonstrates the worst results, while the Extended Frobenius
norm (EROS) shows the best ones. Such coloring allows to compare the different
similarity measures and disclose which are more effective.

The results obtained by different visualization methods and presented in Figs. 3,
4, and 5 are quite similar; however, some differences can be observed. Such
information can be useful for researchers with a view to gain a deeper insight into
the analyzed data and to evaluate the similarity of subsequences with the selected
sample from different standpoints.
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Fig. 3 Visualization results of the medical streaming data, obtained by PCA

Conclusions

The Cloud computing ideas and concepts may be successfully spread to intelligent
visualization of multidimensional data. With the view to assist researchers by
considerably reducing the information load and to allow them to handle large
amounts of multidimensional data, when solving time-consuming tasks, a Cloud
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Fig. 4 Visualization results of the medical streaming data, obtained by MDS

Fig. 5 Visualization results of the medical streaming data, obtained by SAMANN

computing-based data mining system DAMIS has been developed. The system puts
emphasis on the service for the intelligent visualization. The researcher can choose
the desired computing resources and utilize them on demand. One more advantage
is that its interface meets the scientific workflow construction principle.

The visual analysis of medical streaming data has been made by applying the
Cloud computing-based intelligent visualization. As a result, the possibility to
visually compare a subsequence of the multivariate time series is disclosed, which
corresponds to the current health state of a patient, with chronologically collected
historical data. Such a visual analysis allows to detect several subsequences in the
time series, similar to the current health state in accordance with several (in our
case—five) measures what leads to a better final decision.
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Comparative Study of Different Penalty
Functions and Algorithms in Survey Calibration

Gareth Davies, Jonathan Gillard, and Anatoly Zhigljavsky

Abstract The technique of calibration in survey sampling is a widely used
technique in the field of official statistics. The main element of the calibration
process is an optimization procedure, for which a variety of penalty functions can
be used. In this chapter, we consider three of the classical penalty functions that
are implemented in many of the standard calibration software packages. We present
two algorithms used by many of these software packages, and explore the properties
of the calibrated weights and the corresponding estimates when using these two
algorithms with the classical calibration penalty functions.

Keywords Survey calibration • Optimization • g-Weights

Introduction

Calibration of sample surveys is one of the key operations of official statistics.
The problem of calibration can be defined informally as follows. Suppose some
initial weights d1, . . . ,dn are assigned to n objects of a survey. Suppose further
that there are m auxiliary variables whose values on the sample are known, either
exactly or approximately. The calibration problem seeks to improve the initial
weights d1, . . . ,dn, by finding new weights w1, . . . ,wn that incorporate this auxiliary
information. The sample size n can be large; the number of auxiliary variables m
can also be large although it is usually much smaller than n.

There are three main motivations for the use of calibration in the practice of
official statistics (see, for example, [3, 27]). The first of these is to produce estimates
consistent with other sources of data. Indeed, when a statistical office publishes
the same statistics via two sources, the validity will be questioned if there are
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contradictions between sources for the same statistics. We consider consistency as
the primary motivation for the use of calibration throughout. The second reason
for the use of calibration is to reduce the sampling variance of estimates. The
inclusion of additional calibration information can lead to a reduction in the
variance of estimates (see, for example, [22]). We shall see this in Example 2
from section “Example 2: Investigation of Calibrated Weights at Each Iteration of
Algorithms 1 and 2”. The third argument for the use of calibration is a reduction of
the coverage and/or non-response bias of the survey estimates. See [19] for a more
detailed discussion. This application of calibration will not be considered here.

In this chapter, we consider the use of Lagrange multipliers and Newton’s method
[38] for solving the calibration problem as motivated in [9]. Two of the most
common algorithms will be presented. We show that the Jacobian matrix used in
these algorithms has the form A′H(s)A, with a specific choice of the matrix H(s). We
explore various choices for the matrix H(s) and investigate convergence properties
of the calibration algorithms in each case.

We consider solving the calibration problem for three of the classical functions,
namely the quadratic, raking, and logit functions. The case of bounds on the g-
weights will be of particular interest. For the logit function, these bounds are
automatically satisfied by definition of the function. However, for the quadratic and
raking functions, projections are required to satisfy these imposed bounds.

The structure of the chapter is as follows. Section “Calibration as an Optimization
Problem” gives an introduction to the calibration problem and presents survey
calibration as an optimization problem. We define the Lagrangian for this calibration
problem and derive an iterative method for finding the Lagrange multipliers based
on Newton’s method. Section “Algorithms” presents two of the main algorithms
described in the calibration literature and implemented in the statistical packages.
We explore the convergence properties and the behavior of these algorithms for
several examples in section “Examples”. Section “Calibration Packages” gives a
brief overview of the existing software packages that implement the calibration
algorithms described in section “Algorithms”. We conclude the chapter in sec-
tion “Conclusion”.

Calibration as an Optimization Problem

Mathematically, calibration is a large-scale convex optimization problem with linear
constraints, amenable to modern methods of optimization [36, 40, 44, 45]. In this
section, we formulate survey calibration as an optimization problem and consider
various choices of the objective function that can be used. We present an approach
for solving this calibration problem that uses Lagrange multipliers together with the
Newton–Raphson method.
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Formulation of the Problem

A vector of initial sample weights D = (d1, . . . ,dn)
′ is given. The initial weights di

are always assumed to be positive: di > 0 for all i. The aim of calibration is to adjust
these initial weights in view of some additional information. The vector of calibrated
weights will be denoted by W = (w1, . . . ,wn)

′. For a more detailed discussion of
calibration as an optimization problem, see [8]. The ratios of the weights wi and di

are usually considered rather than the weights wi themselves. Hence, in this chapter,
we deal with the so-called g-weights gi = wi/di. Denote the vector of g-weights by
G = (g1, . . . ,gn)

′.

Notation

We use the following key notation throughout the chapter:

D = (d1, . . . ,dn)
′ Vector of initial weights,

W = (w1, . . . ,wn)
′ Vector of calibrated weights,

G = (g1, . . . ,gn)
′ Vector of the g-weights gi = wi/di (i = 1, . . . ,n),

L = (l1, . . . , ln)′ Vector of lower bounds for the g-weights,

U = (u1, . . . ,un)
′ Vector of upper bounds for the g-weights,

A = (aij)
n,m
i,j=1 Given n×m matrix,

T = (t1, . . . , tm)′ Arbitrary m×1 vector,

G Feasible domain in the calibration problem,

0 = (0, . . . ,0)′ n-vector of zeros,

1 = (1, . . . ,1)′ n-vector of ones,

In n×n identity matrix.

The Main Constraint

Let X = (xij)
n,m
i,j=1 be a matrix of realizations of m auxiliary variables. The (i, j)-th

entry xij of X denotes the value which the i-th member of the sample takes on the
j-th auxiliary variable. Formally, X is an arbitrary n×m matrix.

Given the vector T = (t1, . . . , tm)′, exact (hard) constraints can be written as
X′W = T . These constraints are used for calibration of the weights. As di > 0 for
all i, the hard constraints X′W = T can be written in the form A′G = T , where the
matrix A = (aij)

n,m
i,j=1 has elements aij = dixij.

Sometimes, soft constraints X′W � T (or, equivalently, A′G� T) are also used in
the practice of calibration. We do not consider this case for two reasons: firstly, soft
constraints are much less popular in the practice of official statistics and secondly,
the optimization issues are very similar to the ones in the hard constraints case,
see [8]. For an overview of calibration using soft constraints see [3].
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Additional g-Weight Constraints

There are more constraints on G, in addition to A′G = T , that can be imposed. It
is desirable for the calibrated weights to be non-negative; that is, gi ≥ 0 for all i
(see, for example, [1, 2, 13]). Moreover, much of the calibration literature, including
[4, 34], recommends imposing stricter constraints on the g-weights G of the form
L ≤ G ≤ U, where L = (l1, . . . , ln)′ and U = (u1, . . . ,un)

′ are some given n× 1
vectors such that 0≤ li < 1 < ui ≤ ∞ for all i. That is, the g-weights should satisfy
li ≤ gi ≤ ui for some sets of lower and upper bounds li and ui. If li = 0 and ui = ∞
for all i, then the constraint li ≤ gi ≤ ui coincides with the simple non-negativity
constraint gi ≥ 0. In the majority of practical problems, li = l and ui = u for all i
with 0≤ l < 1 < u≤∞, where strict inequalities l > 0 and u < ∞ are very common.

The three possible choices (the most commonly used) of the vectors L =
(l1, . . . , ln)′ and U = (u1, . . . ,un)

′ are

(a) no constraints: li =−∞ and ui = ∞ for all i;
(b) non-negativity constraint: li = 0 and ui = ∞ for all i; and
(c) general constraints: 0≤ li < 1 < ui ≤ ∞.

Statement of the Problem

The feasibility domain G for the vector of g-weights G is defined to be

G= {G = (g1, . . . ,gn)
′ : L≤ G≤ U and A′G = T} , (1)

where L,U ∈ R
n, T ∈ R

m, and A ∈ R
n×m are all given. Note that if the bounds

L≤ G≤ U for G are too narrow, then the feasible domain G may be empty.
In the process of calibration, the weights W have to stay as close as possible to

the initial weights D. Equivalently, the g-weights G have to stay as close as possible
to the n-vector of ones, denoted by 1 = (1, . . . ,1)′. To measure the closeness of G
and 1, it is customary to use the function

Φ(G) = Φ(g1, . . . ,gn) =
n

∑
i=1

qiφ(gi) , (2)

where φ(·) is a univariate, strictly convex function with φ(1) = 0, and q1, . . . ,qn are
given non-negative numbers; typically, qi = di for all i.

The function (2) plays the role of the objective function in the following
optimization problem:

Φ(G)→ min
G∈G

, where Φ(·) and G are defined in (2) and (1), respectively. (3)
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This optimization problem is exactly the problem of calibration we are interested in.
This problem will be fully defined if we specify the function φ in (2). This is done
in the next section.

Choice of the Function φ in (6.2)

There are two natural conditions on the function φ in (2):

(a) for a given l and u, φ(·) is twice differentiable and strictly convex on its domain
and

(b) φ(1) = 0 and φ ′(1) = 0, where the derivatives are taken with respect to the
argument of the function φ(g).

Effectively, these are the conditions also given in [10].

The Function φ

In the practice of calibration in official statistics, the following three functions φ are
most commonly used:

(1) Quadratic:

φ (Q)(g) =
1
2
(g−1)2 ;

(2) Raking:

φ (R)(g) = g ln(g)−g+1;

(3) Logit:

φ (L)(g; l,u) =
1
C

[

(g− l) ln

(
g− l
1− l

)

+(u−g) ln

(
u−g
u−1

)]

;

where C = u−l
(1−l)(u−1) .

In this chapter, the derivatives and inverse of the derivatives of the functions φ
will also be important. Firstly, let us consider the derivatives of each of the functions
listed above:

(1) Quadratic:

φ ′(Q)(g) = g−1;



92 G. Davies et al.

(a) (b)

Fig. 1 Classical calibration penalty functions and their derivatives. (a) Functions φ (Q) (line), φ (R)

(dash), and φ (L) (dot-dash). (b) Derivatives of the functions φ (Q) (line), φ (R) (dash), and φ (L) (dot-
dash)

(2) Raking:

φ ′(R)(g) = ln(g);

(3) Logit:

φ ′(L)(g; l,u) =
1
C

[

ln

(
g− l
1− l

)

− ln

(
u−g
u−1

)]

.

In Fig. 1, we plot each of the functions φ (Q), φ (R), and φ (L) and their correspond-
ing derivatives.

We have argued in [8] that there are other functions φ that satisfy the conditions
(a) and (b) above, and have some additional attractive properties that can be more
natural for use in (3) than the classical functions (1), (2), and (3). In particular, the
function

φ(g; l,u) =
(g−1)2

(g− l)(u−g)

has a very attractive property of equally penalizing g and 1/g in the case l = 1/u
(which is a common case in practice). Recall that gi = wi/di is the ratio of the
calibrated weight wi to the initial weight di. Therefore, the multiplicative scale for
measuring deviations of gi from 1 is the most appropriate.

In this chapter, however, we do not pursue these arguments further. Whilst it
could be argued that the quadratic function φ (Q)(g) = 1

2 (g−1)2 is the most popular
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and commonly used calibration function, there are recommendations against it. The
function may lead to negative and/or extreme weight adjustments (see, for example,
[6, 17]). On the other hand, while using the logit function, the g-weight constraints
L≤ G≤ U can be taken into account automatically.

The shape of the quadratic function φ (Q) is arguably unnatural for the opti-
mization problem (3). When using the quadratic function with general constraints
L ≤ G ≤ U, the function does not take these constraints into account. The shape
of the function results in a lack of penalty for extreme weights. This is due to the
finite values of both the function φ (Q) and its derivative at li and ui. Therefore,
optimization algorithms for solving the problem (3) have to be modified in this case
to take these constraints into account. Projection algorithms are used to satisfy these
constraints. The comments made here can also be applied to the function φ (R) in the
case of general constraints.

By contrast, the derivatives of the logit function φ (L) tend to negative and positive
infinity as one approaches li and ui, respectively. Despite having a finite function
value at li and ui, the infinite derivatives do not allow optimization algorithms to
give g-weights outside of the range L ≤ G ≤ U. However, it could be argued that a
more natural optimization function would be such that both its value and derivative
tend to infinity at li and ui, respectively. See, for example, functions φ (7) and φ (8)

in [8].

The Function h

Let h(x) = (φ ′)−1(x), i.e. h is the inverse of φ ′. From the strong convexity of φ ,
we have that φ ′(g) is strictly increasing and so the inverse function h is uniquely
defined. It can be seen from Fig. 1b, that for each of the functions φ considered in
section “The Function φ”, their derivatives are strictly increasing.

For the functions φ (Q), φ (R), and φ (L) introduced in section “The Function φ”,
the corresponding h-functions are

(1) Quadratic:

h(Q)(x) = 1+ x;

(2) Raking:

h(R)(x) = exp(x);

(3) Logit:

h(L)(x; l,u) =
l(u−1)+u(1− l)exp(Cx)
(u−1)+(1− l)exp(Cx)

;

where C is defined as in section “The Function φ”.



94 G. Davies et al.

Lagrangian for the Calibration Problem (6.3)

Returning to the calibration problem (3), let Λ = (λ1. . . . ,λm)
′ be the m-vector

of Lagrange multipliers. We can write the Lagrangian for the problem (3) with
function (2) and constraints (1) as

L (G,Λ) = Φ(G)−Λ ′(A′G−T) =
n

∑
i=1

φ(gi)−
m

∑
j=1

λj

(
n

∑
i=1

aijgi− tj

)

.

Set φ ′(gi) =
∂φ(g)

∂g

∣
∣
∣
g=gi

. Differentiating L (G,Λ) with respect to gi (i = 1, . . . ,n)

we have

∂L (G,Λ)

∂gi
= φ ′(gi)−

m

∑
j=1

λjaij.

Let ai denote the i-th row of A, i = 1, . . . ,n so that A =

⎛

⎜
⎜
⎜
⎝

a1

a2
...

an

⎞

⎟
⎟
⎟
⎠

and

ai = (ai1, . . . ,aim). Setting ∂L (G,Λ)
∂gi

= 0 gives

φ ′(gi) =
m

∑
j=1

λjaij = aiΛ . (4)

Recall from section “The Function h” that h(x) = (φ ′)−1(x). Then (4) implies
that the g-weights gi (i = 1, . . . ,n) corresponding to the vector Λ of Lagrange
multipliers are given by

gi = h(aiΛ) for i = 1, . . . ,n. (5)

Let us consider the calibration constraint A′G = T . Using (5) we can write

A′G = T ⇐⇒
n

∑
i=1

a′igi = T ⇐⇒
n

∑
i=1

a′ih(aiΛ) = T. (6)

We wish to solve the equation

n

∑
i=1

a′ih(aiΛ) = T, (7)
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with respect to Λ . Upon solving for Λ , we can derive the calibrated weights G =
(h(a1Λ), . . . ,h(anΛ))′ as given by (5).

We consider algorithms for solving (7) with respect to Λ that use a Newton–
Raphson method [38] as described in [9]. The algorithms we shall consider have the
form

Λ (s+1) = Λ (s) + (A′H(s)A)−1(T−A′G(s)), for s = 0,1,2, . . ., (8)

where Λ (0) = 0, G(s) denotes the updated vector of g-weights at iteration s, and H(s)

is an n×n diagonal matrix to be specified (see section “The Matrix H(s)”).

First Iteration

Setting s = 0, the first iteration in (8) can be written as

Λ (1) = Λ (0) + (A′H(0)A)−1(T−A′G(0)).

For the algorithms we shall consider in this chapter, Λ (0) = 0, H(0) = In, and
G(0) = 1. Thus we can write the first iteration as

Λ (1) = (A′A)−1(T−A′1). (9)

We remark that Λ (1) is independent of the choice of the function φ . It is easy
to see that (9) coincides with the vector Λ that solves (7) in the case of function
h(Q) with no constraints (that is, li = −∞ and ui = ∞ for all i). Also, it is well
documented that the calibrated weights W = (d1h(Q)(a1Λ (1)), . . . ,dnh(Q)(anΛ (1)))′

are equivalent to the weights obtained using the generalized regression estimator
(GREG), see [28].

Jacobian

Let J(Λ) denote the Jacobian of ∑n
i=1 a′ih(aiΛ) considered as a function of Λ . It

is easy to see that J(Λ (s)) = A′H(s)A, where H(s) = diag(h′(a1Λ (s)), . . . ,h′(anΛ (s)))

and h′(aiΛ) = ∂h(x)
∂x

∣
∣
∣
x=aiΛ

. Applying the Newton–Raphson method [38] to solve (7)

for Λ gives the iterative procedure:

Λ (s+1) = Λ (s) + (J(Λ (s)))−1(T−A′G(s)). (10)

This is a particular case of (8) with H(s) defined as above. This Newton–Raphson
approach is proposed in [9]. In the next section, we consider various choices of the
matrix H(s).
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The Matrix H(s)

The following three forms of H(s) appear in the literature and existing software.

Choices of the Matrix H(s)

Newton–Raphson H(s) = diag(h′(a1Λ (s)), . . . ,h′(anΛ (s))) as described in sec-
tion “Jacobian”. The method (10) requires computation of J(Λ (s)) =A′H(s)A at each
iteration. The method converges quickly in an ideal situation when computation is
exact, but in practice this choice of H(s) can lead to an unstable algorithm.

Identity Matrix H(s) = In for all s, which means that, at each iteration, the initial
Jacobian J(Λ (0)) = A′A is used.

Matrix with g-Weights on the Diagonal H(s) = diag(h(a1Λ (s)), . . . ,h(anΛ (s)));
the diagonal entries of H(s) are simply G(s), the values of the calibrated weights G at
the s-th iteration. Since these weights are computed as part of the algorithm at each
iteration, the matrix H(s) does not require additional computations, unlike the first
method.

In section“Example 3: Convergence Properties of Algorithms 1 and 2 for Various
Choices of H(s)”, we consider the convergence properties of the iterative procedure
(8) for these three forms of the matrix H(s).

H(s) for Various Calibration Functions

We now consider the forms of the matrix H(s) for the three calibration functions
outlined in section “The Function φ”. We consider the quadratic function φ (Q) in
the case of no constraints and general constraints, the raking function φ (R) in the
case of non-negativity constraints and general constraints, and the logit function
φ (L) in the case of general constraints.

Function φ (Q) with No Constraints In this case, the iterative method (8) converges
in one iteration. The g-weights derived from this method correspond to the weights
using the generalized regression estimator (see [28]). Note that, in this case, the
Newton–Raphson and identity matrix are equivalent, since h′(Q)(x) = 1 for x ∈ R.
Since h(Q)(0) = 1, the matrix with g-weights on the diagonal is equivalent to the
identity matrix for the first iteration. Since we only perform one iteration for φ (Q)

with no constraints, this means that these two cases are also equivalent. Hence, for
φ (Q) with no constraints, all three cases of H(s) outlined in section “Choices of the
Matrix H(s)” are equivalent.

Function φ (Q) with General Constraints In this case, the iterative method (8)
may not converge in one iteration. A projection algorithm is used to ensure any g-
weights gi (i = 1, . . . ,n) that fall outside of the interval [li,ui] are projected back to
this interval. Informally, if gi < li, we project it such that gi = li; similarly, if gi > ui,
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we project it such that gi = ui. The algorithm is then updated to account for this
projection and the calibration is continued. See section “Algorithm 2: Projections to
the Additional Constraints Required” for a full description of the algorithm. Note
that in this case, the Newton–Raphson and identity matrix are equivalent, since
h′(Q)(x) = 1 for x ∈ R. However, as we now perform more than one iteration, the
matrix with g-weights on the diagonal will be different to the other matrices from
the second iteration onwards.

Function φ (R) with Non-Negativity and General Constraints The comments
made in this section regarding H(s) for the function φ (R) apply in both the cases
of non-negativity constraints and general constraints. Observe that for x ∈ [0,∞) we
have h′(R)(x) = h(R)(x) = exp(x), hence the Newton–Raphson matrix and matrix
with g-weights on the diagonal are equivalent. However, since exp(x) �= 1 for all
x ∈ [0,∞), the identity matrix form of H(s) will be different to the other matrices
from the second iteration onwards (note that, since exp(0) = 1, all the matrices
will be equal to the identity matrix at the first iteration). Due to the function
definition, the non-negativity constraints are automatically taken into account with
function φ (R). However, for general constraints, the projection algorithm outlined
in section “Algorithm 2: Projections to the Additional Constraints Required” is
required.

Function φ (L) with General Constraints We remark that, for the function φ (L),
the corresponding function h(L)(x) is such that h′(L)(x) �= h(L)(x) for all x ∈ [li,ui],
hence the Newton–Raphson matrix and matrix with g-weights on the diagonal are
not equivalent. Note also that h′(L)(x) and h(L)(x) are not equal to 1 for all x ∈
[li,ui], hence the identity matrix form of H(s) will be different to the other two forms
from the second iteration onwards. Note that h′(L)(0) = h(L)(0) = 1, hence all three
matrices will be equivalent for the first iteration.

Table 1 summarizes this section. We give the functions, the constraint cases
considered, and the relationships between the various forms of the matrix H(s).

We shall consider convergence properties of (8) for all forms of the matrix H(s)

in section “Example 3: Convergence Properties of Algorithms 1 and 2 for Various
Choices of H(s)”. However, before considering several examples, we fully describe
the algorithms for solving (7) using the iterative procedure (8).

Table 1 Comparisons of the three forms of the matrix H(s) for the
classical calibration functions in various constraint cases

Newton–Raphson (I), Identity (II),

Function Constraints and matrix with g-weights (III)

φ (Q) No (I) = (II) = (III)

φ (Q) General (I) = (II) �= (III)

φ (R) Non-negativity (I) = (III) �= (II)

φ (R) General (I) = (III) �= (II)

φ (L) General (I) �= (II) �= (III)
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Algorithms

In this section, we consider specific algorithms for solving the Eq. (7) using the
iterative procedure (8).

The Main Algorithms

In this chapter, we consider two main algorithms for the calibration problem (3).
Some alternative algorithms that we do not present in this chapter are briefly
described in section “Other Algorithms”.

Any specific algorithm of the form (8) will be characterized by the following:

• Choice of the function φ ;
• Choice of the matrix H(s);
• Choice of the constraints on G additional to the main constraint A′G = T (that is,

choice of L and U); and
• Choice of an appropriate stopping rule.

There are three main choices for the function φ ; see section “The Function
φ”. There are also three choices for the matrix H(s); see section “The Matrix
H(s)”. The three choices of the vectors L = (l1, . . . , ln)′ and U = (u1, . . . ,un)

′ were
described in section “Additional g-Weight Constraints”. The stopping rule used in
all the algorithms described in this section is of the following type: STOP if either
A′G(s) = T to within a pre-specified accuracy or the maximum number of iterations
is met.

We consider two algorithms used in many of the standard calibration packages
(see section “Calibration Packages” for a further discussion of these packages).
Algorithm 1 is applicable to the function φ (L) in the case of general constraints, and
to function φ (R) in the case of non-negativity constraints. Algorithm 2 is applicable
to the functions φ (Q) and φ (R) in the case of general constraints.

Algorithm 1: No Projections Needed

Input Matrix A, vector T , vectors L = (l1, . . . , ln)′ and U = (u1, . . . ,un)
′, the form

of the matrix H(s), and the function φ (either φ (L) or φ (R)). For the function φ (R), we
can only use li = 0 and ui = ∞ for all i = 1, . . .n. For the function φ (L), li ≥ 0 and
ui < ∞ for all i = 1, . . .n.

Output The vector G(s+1) computed at the final iteration; this vector is the
(approximate) solution of the calibration problem (3) for the chosen function φ .



Comparative Study of Penalty Functions and Algorithms in Survey Calibration 99

Algorithm 1

1. Set s = 0,Λ (0) = 0,G(0) = 1, and H(0) = In.
2. Compute Λ (s+1) = (λ (s+1)

1 , . . . ,λ (s+1)
m )′ using (8).

3. Compute G(s+1) = (g(s+1)
1 , . . . ,g(s+1)

n )′ by g(s+1)
i = h(aiΛ (s+1)).

4. Compute H(s+1) as outlined in section “Jacobian” using one of the three forms
of H(s).

5. STOP if the stopping criterion is satisfied. Otherwise, set s→ s+1 and return to
Step 2.

Algorithm 1 is characterized by the following: an input matrix A, an input vector
T , the form of the matrix H(s), the function φ (L) or φ (R), the vectors L and U in the
case of function φ (L), and the constraints for gi used. This algorithm cannot be used
for φ (Q) (unless we do not impose any constraints on gi and in this case the solution
is obtained in the first iteration, see section “Algorithm 1a: Quadratic Function φ (Q)

with No Constraints”). For the function φ (R), Algorithm 1 can only be used if the
required constraint is the non-negativity constraint.

Remark. Algorithm 1 cannot be used for φ (Q) unless we do not impose any
constraints on gi, see case (a) in section “Additional g-Weight Constraints”; in this
case, the solution is obtained in the first iteration, see Algorithm 1a below.

Algorithm 1a: Quadratic Function φ (Q) with No Constraints

This method is non-iterative and contains the following two steps only:

1. Compute Λ (1) from (8) using G(0) and H(0).
2. Compute G(1) = 1+A′Λ (1).

For the functions φ (Q) and φ (R) with general constraints, Algorithm 2 described
below should be used.

Algorithm 2: Projections to the Additional Constraints Required

Input Matrix A, vector T , vectors L = (l1, . . . , ln)′ and U = (u1, . . . ,un)
′ such that

0≤ li < 1 < ui ≤∞ for all i = 1, . . .n, form of the matrix H(s), and function φ (either
φ (Q) or φ (R)).

Output The vector G(s+1) computed at the final iteration; this vector is the
(approximate) solution of the calibration problem (3) for the chosen function φ .

Algorithm 2

1. Set s = 0, n0 = n, Λ (0) = 0,G(0) = 1, H(0) = In, A(0) = A, T(0) = T , L(0) = L, and
U(0) = U.

2. Compute Λ (s+1) = (λ (s+1)
1 , . . . ,λ (s+1)

m )′ by

Λ (s+1) = Λ (s) + ((A(s))′H(s)A(s))−1(T(s)− (A(s))′G(s)), (11)
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which is the formula (8) with A = A(s) and T = T(s).
3. Use Algorithm 2’ below to compute ns+1 , matrix A(s+1) of size ns+1 ×m, vector

T(s+1) of size m, and vectors L(s+1), U(s+1), and G(s+1) of size ns+1 .
4. Compute the matrix H(s+1) of size ns+1 × ns+1 as outlined in section “Jacobian”

with A=A(s+1) and n= ns+1 . For s> 0, the matrix H(s) is computed as outlined in

section “The Matrix H(s)” using one of the three forms of H(s). Here a(s)i denote

i-th rows of A(s) so that a(s)i = (ai1, . . . ,aim), i = 1, . . . ,ns .
5. STOP if the stopping criterion is satisfied. Otherwise, set s→ s+1 and return to

Step 2.

Algorithm 2’: Performing Step 3 in Algorithm 2

Input Matrix A(s) = (a(s)ik )i,k of size ns×m, vector T(s) of size m, the vectors L(s) =

(l(s)1 , . . . , l(s)ns
)′ and U(s) = (u(s)1 , . . . ,u(s)ns

)′ of size ns.

Output Integer ns+1 ≤ ns , matrix A(s+1) of size ns+1 ×m, vector T(s+1) of size m,
vectors G(s+1), L(s+1), and U(s+1) of size ns+1 .

Algorithm 2’

1. Compute vector G̃(s+1) = (g̃(s+1)
1 , . . . , g̃(s+1)

ns
)′ of size ns by g̃(s+1)

i =

h(a(s)i Λ (s+1)), i = 1, . . . ,ns .

2. If l(s)i ≤ g̃(s+1)
i ≤ u(s)i for all i = 1, . . . ,ns , then set ns+1 = ns, A(s+1) = A(s),

G(s+1) = G̃(s+1), T(s+1) = T(s), L(s+1) = L(s), and U(s+1) = U(s). Otherwise go to
the next step.

3. Define

γ(s+1)
i =

⎧

⎪⎨

⎪⎩

g̃(s+1)
i if l(s)i ≤ g̃(s+1)

i ≤ u(s)i ;

l(s)i if g̃(s+1)
i < l(s)i ;

u(s)i if g̃(s+1)
i > u(s)i .

(12)

The map (12) produces a split of the set of indices Ω (s) = {1,2, . . . ,ns} into three

subsets: Ω (s)
l , Ω (s)

u , and Ω (s)
m .

Define ns+1 to be the number of times the equality γ(s+1)
i = g̃(s+1)

i holds.

Let Ω (s)
m = {i1, i2, . . . , ins+1

} be the ordered set of indices such that the equality

γ(s+1)
i = g̃(s+1)

i holds for i = ij, j = 1, . . . ,ns+1 . The indices in Ω (s)
m are ordered so

that ij < ij+1 for all j.

Similarly, Ω (s)
l and Ω (s)

u are defined as the ordered sets of indices such that

the inequalities g̃(s+1)
i < l(s)i or g̃(s+1)

i > u(s)i hold, respectively, for the indices in

Ω (s)
l and Ω (s)

u .
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4. Define the matrix A(s+1) = (a(s+1)
jk )j,k of size ns+1 ×m by a(s+1)

jk = a(s)ijk
for j =

1, . . . ,ns+1 such that ij ∈ Ω (s)
m . Similarly, we compute vectors G(s+1) = (g(s+1)

j )j,

L(s+1) = (l(s+1)
j )j, and U(s+1) = (u(s+1)

j )j of size ns+1 as follows: g(s+1)
j = γ(s+1)

ij
,

l(s+1)
j = l(s)ij

, and u(s+1)
j = u(s)ij

for j = 1, . . . ,ns+1 such that ij ∈Ω (s)
m .

5. Let ñs = ns−ns+1 . Form Ω (s)
l ∪Ω (s)

u = {i1, i2, . . . , iñs
}, the set of indices such that

either of the inequalities g̃(s+1)
i < l(s)i or g̃(s+1)

i > u(s)i hold for i = il, l = 1, . . . , ñs .

6. Define matrix Ã(s+1) = (a(s+1)
lk )l,k of size ñs ×m by a(s+1)

lk = a(s)ilk
for l = 1, . . . , ñs

such that il ∈Ω (s)
l ∪Ω (s)

u . Similarly, we compute vector G̃(s+1) = (g(s+1)
l )l of size

ñs as g(s+1)
l = γ(s+1)

il
for l = 1, . . . , ñs such that il ∈Ω (s)

l ∪Ω (s)
u .

7. Compute T(s+1) = T(s)− (Ã(s+1))′G̃(s+1).

Other Algorithms

Whilst we have considered the algorithms that are arguably most commonly used
in the calibration software, there are several algorithms that we have not considered
in this chapter. The first of these is the scale modified quadratic algorithm. This
algorithm uses projections to satisfy the calibration constraints A′G = T at each
iteration, continuing until the range restrictions L≤ G≤ U are met to within a pre-
specified accuracy. The algorithm is applied only in the case of function φ (Q) with
general constraints. This algorithm is attributed to [16]. The method is outlined in
[32] (see Method 3) with further information in Sect. 2.2 of [26]. This algorithm is
used in the calibration software BASCULA (see section “Details of the Calibration
Packages” for further information).

The shrinkage minimization method uses a similar algorithm to the scaled
modified quadratic algorithm, but we do not consider it here as it is not used by
any of the packages considered in this chapter. See Method 4 of [32] and Sect. 2.4
of [26] for more information on the shrinkage minimization method.

Finally, the so-called projection method algorithm, attributed to [14] with details
outlined in [11], is another algorithm that is only used for the case of the quadratic
function φ (Q) with general constraints. This algorithm is used in Statistics Canada’s
GES software (see section “Details of the Calibration Packages” for further details).

In the next section, we present several examples that use Algorithms 1 and 2
described in section “The Main Algorithms”.

Examples

We consider various examples to explore the convergence properties of the algo-
rithms described in section “The Main Algorithms”. We begin by considering
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Algorithm 1 for function φ (L) with general constraints. We shall show that, for
this case, there are three types of convergence. In the second example, we explore
properties of the calibrated weights at subsequent iterations of Algorithms 1 and 2.
We conclude by exploring convergence properties of both Algorithms 1 and 2 for
all possible combination of functions with various choices of the matrix H(s).

Example 1: Convergence Properties of Algorithm 1 for φ (L) with
General Constraints

In this section, we explore the behavior of Algorithm 1 for the function φ (L). We
shall illustrate that there are three interesting cases:

1. If the constraint A′G = T cannot be satisfied, then the algorithm does not
converge and gives bad or no results.

2. If the constraint A′G = T can be satisfied but some of the weights gi tend to li or
ui, then the algorithm gives slow or no convergence.

3. If A′G = T can be satisfied and all the weights gi remain well within the bounds
imposed by li and ui, then the algorithm converges quickly.

We illustrate each of these cases using a small example. We fix T = (6.4,12.2)′

and l1 = l2 = l = 0.5. We use Algorithm 1 with the function φ (L) and general
constraints (type (c) in section “Additional g-Weight Constraints”). We shall only
consider the Newton–Raphson form of the matrix H(s) in this example. We take the
matrix A = (a1,a2)

′ where a1 = (2,6) and a2 = (3,5). We shall vary the value of
u1 = u2 = u to illustrate each of the three cases described above.

For comparison purposes, we shall also consider the convergence properties of
Algorithm 2 for the function φ (Q) in the case of general constraints. However, as we
shall see, for Algorithm 2 using φ (Q) there are only two cases—convergence or no
convergence.

Case 1: Fast Convergence We begin by taking u = 2. After five iterations of
Algorithm 1, the vector A′G− T has both elements of order 10−8, thus after five
iterations we have essentially satisfied the constraints. The algorithm continues
to improve in accuracy, and after 11 iterations of Algorithm 1, A′G − T has
infinitesimally small elements. The determinant of the final Jacobian matrix is
approximately 8.55. Since the g-weights do not approach l or u, there are no issues
with infinite values appearing in the Jacobian matrix (recall that the derivative of
φ (L) is infinite at l and u). For this case, the weights converge to G = (0.575,1.75)′

very quickly. We plot the weights for each iteration of Algorithm 1 in Fig. 2a (circle,
line, black). Contrast this to the weights in Fig. 2b, where we see that Algorithm 2
for φ (Q) has converged after one iteration.

Case 2: Slow Convergence We now change the value of u to 1.75, the value to
which the larger weight converged in Case 1. Re-running Algorithm 1 in this case
gives much slower convergence. After five iterations of Algorithm 1, the vector
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Fig. 2 Plot of g-weights for the first five iterations of Algorithm 1 for φ (L) and Algorithm 2 for
φ (Q) in different cases of convergence; convergence when u = 2 (black, circle, line), convergence
when u = 1.75 (red, square, dash) and convergence when u = 1.4 (blue, diamond, dot-dash). (a)
g-weights using Algorithm 1 for φ (L). (b) g-weights using Algorithm 2 for φ (Q)

A′G−T has elements −0.007 and −0.012. The determinant of the Jacobian matrix
is 0.319, which is much smaller than the corresponding value in Case 1. After
12 iterations of Algorithm 1, G = (0.575,1.749)′. The elements of A′G− T are
of order 10−5, larger than the values of A′G− T after five iterations in Case 1.
The determinant of the Jacobian matrix after 12 iterations is 2.91 ×10−4. This
continues to decrease with subsequent iterations, reaching an infinitesimally small
value after 50 iterations. The algorithm continues to move slowly towards the
solution G= (0.575,1.75)′; however, the algorithm fails to reach the upper bound of
1.75, since reaching this upper bound would lead to an infinite value in the Jacobian
matrix (recall that the derivative of φ (L) is ∞ at u). We plot the weights for the first
five iterations of Algorithm 1 in Fig. 2a (square, dash, red). Contrast this with the
weights for Algorithm 2 with function φ (Q), plotted in Fig. 2b, where once again the
algorithm converges in one iteration.

Case 3: No Convergence We now change the value of u to 1.4. In this case,
the algorithm runs for three iterations. At the third iteration, the value of the
weights are G = (0.576,1.400)′; however, the entries of A′G− T are −1.049 and
−1.746. Therefore, the calibration constraints are not satisfied. The determinant of
the Jacobian matrix after three iterations is 2.75× 10−7. This small value of the
determinant, together with the upper weight virtually reaching the upper bound
of 1.4, causes the algorithm to fail when trying to invert the Jacobian matrix.
The matrix will have an infinitely large entry as well as an infinitesimally small
determinant, both of which cause the algorithm to fail. We plot the trajectory of
the weights in this case in Fig. 2a (diamond, dot-dash, blue). Figure 2b shows
the trajectory of the weights for Algorithm 2 with function φ (Q), which also runs
for three iterations but fails to converge. We observe that the weights at the third
iteration for Algorithm 2 with function φ (Q) are different to those for the third
iteration of Algorithm 1 with function φ (L). The algorithms are behaving differently
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Table 2 Convergence properties of Algorithm 1 for
φ (L) in Example 1 for various values of u with
l = 0.575

Case u No. of iter A′G−T

Fast convergence 2 5 10−8

Slow convergence 1.75 11 10−5

No convergence 1.4 3 (then stop) 1

in an attempt to find a solution to the calibration problem which, in this case, does
not have a solution.

Table 2 summarizes the key points from this example. We conclude this section
with some brief remarks regarding Algorithms 1 and 2.

Multi-Start We started Algorithms 1 and 2 for various Λ (0) in both Cases 1 and 2
above. For suitable choices of Λ (0) (in particular, such that h(aiΛ (0)) gave weights gi

in the range li ≤ gi ≤ ui, i = 1, . . . ,n), the algorithms converged to the same solution.
The final g-weights gi (i = 1, . . . ,n) and the Lagrange multipliers Λ were the same
in all cases (to within computer accuracy).

Derivatives The identities φ ′(gi) = aiΛ and gi = h(aiΛ) were confirmed for the
final value of the Lagrange multipliers Λ and the calibrated weights gi given by
Algorithms 1 and 2. This allows us to conclude that the algorithms have converged
to a (local) minimum.

Example 2: Investigation of Calibrated Weights at Each
Iteration of Algorithms 1 and 2

In this example, we further explore the convergence properties of Algorithms 1 and 2
by considering the calibrated weights at each iteration of the algorithms.

Data

In this example, we consider the Belgian municipalities dataset included in the
“sampling” package in R (see [35] for more details). The dataset provides informa-
tion about the Belgian population on July 1st 2004 compared with July 1st 2003, and
includes financial information about the municipality incomes at the end of 2001.
Data is available for the 589 municipalities in Belgium. There are 17 variables in
the dataset, including the municipality name and province number. However, the 8
variables of interest in this example are the number of men on July 1st 2003, the
number of women on July 1st 2003, the difference in the number of men on July 1st
2003 and July 1st 2004, the difference in the number of women on July 1st 2003
and July 1st 2004, total taxable income in Euros in 2001, total taxation in Euros



Comparative Study of Penalty Functions and Algorithms in Survey Calibration 105

in 2001, average of the income-tax return in Euros in 2001, and the median of the
income-tax return in Euros in 2001.

We take a simple random sample of size 200 and assign initial weights di = N/n
where N is the size of the population and n is the sample size (in this example
N = 589 and n = 200). These would be the weights used in the Horvitz–Thompson
estimator [15]. The values of the 8 variables of interest for each of the 200 sample
members are used to form the 200× 8 matrix X. The matrix A is formed using
the relationship aij = dixij as introduced in section “The Main Constraint”. Using
Algorithm 1, we wish to calibrate this sample to the known totals for each of the 8
variables. These known totals are used to form the 8×1 vector T . We take li = l =
0.73 and ui = u = 1.3 for i = 1, . . . ,200.

Calibrated Weights

Figure 3 shows histograms and the corresponding density plots of the weights at
iteration 1 (see Fig. 3a), iteration 5 (see Fig. 3b), and the final, eighth, iteration
(see Fig. 3c) of Algorithm 2 (and 2’) using the quadratic function φ (Q) with general
constraints. The values of ||A′G−T||F and φ (Q) at that iteration are included below
the plots. For the first iteration of Algorithm 2, most of the g-weights stay close to
their initial value of 1. Figure 3a shows a uni-modal distribution of the g-weights
after the first iteration with the mode approximately 1.

However, there are small peaks at both ends of the histogram. This is due to
some of the calibrated weights being projected to the bounds in Algorithm 2’. As
the number of iterations increases, more weights are projected to the bounds of
l = li = 0.73 or u = ui = 1.3 (for all i = 1, . . . ,n), leading to a bi-modal distribution
with modes at l and u. After the first iteration, there are approximately 5 % of the
weights at each bound; however, there are over 30 % of the weights at each bound
by the final iteration. As the number of iterations increases, there are fewer weights
between l and u. Observe that the value of ||A′G−T||F decreases over subsequent
iterations whilst the value of φ (Q) increases.
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Fig. 3 Histogram (red) and density plot (blue line) of g-weights for the quadratic function φ (Q) at
iterations 1, 5, and 8 with the values of ||A′G−T||F and φ (Q) at that iteration. (a) g-weights at the
first iteration. (b) g-weights at the fifth iteration. (c) g-weights at the final (eighth) iteration
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Fig. 4 Histogram (red) and density plot (blue line) of g-weights for the logit function φ (L) at
iterations 1, 5, and 9 with the values of ||A′G−T||F and φ (L) at that iteration. (a) g-weights at the
first iteration. (b) g-weights at the fifth iteration. (c) g-weights at the final (ninth) iteration
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Fig. 5 Investigating g-weights for the quadratic and logit functions in the case of general
constraints. (a) Plot of g-weights for φ (Q) (red) and φ (L) (blue) against 1 (black). (b) Scatter-plot
of g-weights for φ (Q) against g-weights for φ (L)

Figure 4 shows histograms and the corresponding density plots of the g-weights
at iteration 1 (see Fig. 4a), iteration 5 (see Fig. 4b) and the final, ninth, iteration
(see Fig. 4c) of Algorithm 1 using the logit function φ (L) with general constraints.
The values of ||A′G− T||F and φ (L) at that iteration are included below the plots.
After the first iteration, most of the g-weights stay close to their initial value of 1.
The density plot for the first iteration shows a uni-modal distribution with the mode
approximately 1.

The plot in Fig. 4a is similar to that in Fig. 3b. However, observe that there are
fewer weights near the bounds l and u when using the logit function compared to
using the quadratic function. For the logit function, no projections to the constraints
were required. As we perform subsequent iterations of Algorithm 1, the weights
begin to move towards the lower and upper bounds l and u, respectively. This leads
to a bi-modal distribution with modes near l and u. Note that the modes are not
at l and u, since the infinite derivative of φ (L) at l and u prevents the g-weights
from reaching those values. Once again, we observe that the value of ||A′G−T||F
decreases over subsequent iterations whilst the value of φ (L) increases.
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Fig. 6 Scatter-plot of weights for the quadratic function φ (Q) at the ith iteration compared with
the (i− 1)-th iteration (i = 2,6,8). (a) g-weights at the second iteration against the first iteration.
(b) g-weights at the sixth iteration against the fifth iteration. (c) g-weights at the eighth iteration
against the seventh iteration

In Fig. 5a, we plot the weights for the quadratic function φ (Q) and the logit
function φ (L) ordered by size. The red curve in Fig. 5a corresponds to the weights
(ordered by size) obtained using the quadratic function φ (Q) with Algorithm 2 in
the case of general constraints. Observe the horizontal lines at l = 0.73 and u = 1.3.
These show the weights that have been projected to the bounds. In contrast, the
blue curve in Fig. 5a, corresponding to the weights obtained using the logit function
φ (L) with Algorithm 1, has l = 0.73 and u = 1.3 as asymptotes (recall that using
Algorithm 1 for φ (L) with general constraints cannot give weights at the bounds).

Figure 5b shows a scatter-plot of the calibrated weights for the quadratic function
φ (Q) with general constraints using Algorithm 2, against the calibrated weights for
the logit function φ (L) with general constraints using Algorithm 1. These are the
weights given in Figs. 3c and 4c, respectively. Observe that there is a cluster of
points that are horizontal in the upper right and lower left of the plot. This shows the
weights that were projected to the bounds for the quadratic function φ (Q), but were
not able to reach these bounds when the logit function φ (L) was used.

To further investigate how Algorithms 1 and 2 perform, let us consider how
the calibrated weights behave between subsequent iterations of the algorithms. We
remark here that scatter-plots of g-weights from the first iteration against the initial
g-weights would give a vertical line of points at 1 on the horizontal axis. This is due
to the fact that G(0) = 1.

Figure 6 shows scatter-plots of the weights using Algorithm 2 (and 2’) for the
quadratic function φ (Q) with general constraints at the ith iteration against the
weights obtained at the (i− 1)th iteration for i = 2,6,8 (note that 0th iteration
here refers to the initial weights). Observe the horizontal lines in Fig. 6a, b. These
correspond to weights that were projected to the boundary values of l and u at the i-th
iteration, which were not necessarily at the bounds at the (i−1)-th iteration. There
are many of these weights in Fig. 6a, with fewer in Fig. 6b, and none in Fig. 6c.
During the final iteration, there are few changes in the weights, as the algorithm has
almost converged to the true solution.

Figure 7 shows scatter-plots of the weights using Algorithm 1 for the logit
function φ (L) with general constraints at the ith iteration against weights at the
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Fig. 7 Scatter-plot of weights for the logit function φ (L) at the ith iteration compared with the
(i− 1)-th iteration (i = 2,6,9). (a) g-weights at the second iteration against the first iteration. (b)
g-weights at the sixth iteration against the fifth iteration. (c) g-weights at the ninth iteration against
the eighth iteration
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Fig. 8 Empirical cumulative distribution function (ECDF) of the g-weights for functions φ (Q) and
φ (L). (a) ECDF of the g-weights for φ (Q) using Algorithm 2. (b) ECDF of the g-weights for φ (L)

using Algorithm 1

(i− 1)th iteration for i = 2,6,9 (note again that 0th iteration here refers to the
initial weights). Unlike the scatter-plots in Fig. 6, the scatter-plots in Fig. 7 do not
have horizontal lines of weights. Instead, the arrangement of points resembles an
“elongated-S” (see Fig. 7a, b). This curvature of the points shows the weights that
have moved nearer the bounds than in the previous iteration. However, these weights
have not reached the boundary due to the infinite derivatives of the function φ (L)

at l and u. There is little change in the calibrated weights as the algorithm nears
convergence. See Fig. 6c where almost all of the points lie on the main diagonal
(see Fig. 7c).

Figure 8a shows the empirical cumulative distribution function (ECDF) for the
weights in Fig. 3c; that is, the weights at the final iteration of Algorithm 2 for
the quadratic function φ (Q) with general constraints. Note that the distribution is
discontinuous at the lower and upper bounds of l = 0.73 and u = 1.3, respectively.
This is because many of the weights have been projected to the bounds.
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In contrast, consider the ECDF in Fig. 8b corresponding to the weights in Fig. 4c
for the final iteration of Algorithm 1 using the logit function φ (L) with general
constraints. There is a continuous distribution from l to u, with the distribution curve
becoming steeper near the bounds of l and u. This plot further shows that, in the case
of the logit function, the weights are tending to but cannot reach the bounds (due to
the infinite value of the derivative of the function at the bounds).

Comparison of Calibrated Weights When Projected to the Lower and
Upper Bounds

We have seen that the calibrated weights obtained using the logit function φ (L) often
tend towards, but cannot reach, the lower and upper bounds. This is in contrast to
the weights obtained using Algorithm 2 for φ (Q) with general constraints where the
algorithm may lead to g-weights that do not satisfy the constraints L ≤ G ≤ U. In
this case, Algorithm 2’ is used to project any weights back to the nearest bound,
before adjusting the remaining weights to satisfy the constraint A′G = T .

Let us consider a similar procedure for the logit function φ (L). In this case,
we explore the effect of projecting some of the calibrated weights to the lower
bound l and the upper bound u. We then re-calibrate the weights that have not been
projected to satisfy the constraint A′G = T (as in Algorithm 2’). In Table 3, we
give the function value φ (L), the Frobenius norm of the distance from constraints
||A′G−T||F , and the coefficient of variation (CoV) of calibrated weights in various
cases of projection. We remark here that the CoV of the calibrated weights is related
to variance of the corresponding calibration estimators. See, for example, [18] for
further details.

From Table 3, we can see that the value of the objective function φ (L) has
increased in all cases of projections. Since the function φ (L) has infinite derivative
at l and u, the function increases sharply near the bounds. Hence, any projection of
weights is likely to increase the value of the objective function. However, the CoV
of the weights is smaller when projections are used than in the case of no projection.
As the projection moves the projected weights to the bounds, the remaining weights

Table 3 Values of objective function φ (L), Frobenius distance from constraints
||A′G−T||F , and coefficient of variation (CoV) for various cases of projections
of weights to the lower and upper bounds

Projection φ (L)(G) ||A′G−T||F CoV

No projection 91.74 3.04×10−19 50.74

The 45 largest and 45 smallest weights 92.43 1.04×10−17 50.50

Weights within 0.05 of l and u 92.94 4.73×10−19 50.38

The lower and upper 25 % of the weights 92.69 9.75×10−17 50.67

Weights below l/0.975 and above 0.975u 92.04 6.11×10−12 50.62
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that are re-calibrated move nearer to 1 to account for this adjustment. This leads to
a reduced variance and hence reduced CoV of the weights.

Estimating the Total Number of People

Whilst the g-weights play an important role in the calibration problem, the main
use of these weights is to estimate some quantity of interest. The properties of
this estimator are often more interesting to practitioners than the properties of
the weights themselves. We are going to use the calibrated weights to estimate
the number of people living in Belgium in 2004. To do this, we take 10,000
random samples from the Belgian municipalities dataset. We shall consider three
estimators:

1. The Horvitz–Thompson estimator Y ′D;
2. The calibration estimator Y ′W for the calibrated weights W using Algorithm 2

with the quadratic function φ (Q) in the case of general constraints; and
3. The calibration estimator Y ′W for the calibrated weights W using Algorithm 1

with the logit function φ (L) in the case of general constraints.

For each estimator, we consider properties of the estimates obtained when taking
simple random samples of size 75, 100, and 200.

Figure 9 shows the distribution of the estimates for the true value of 10,417,122
when using the Horvitz–Thompson estimator Y ′D using samples of size n = 75
(Fig. 9a), n = 100 (Fig. 9b), and n = 200 (Fig. 9c). As expected, the distribution
has a smaller variance as the sample size is increased. Observe that the distribution
of estimates using the Horvitz–Thompson estimator is skewed to the left, with the
mode of the distribution to the left of the true value. This skewness reduces as the
sample size increases.

From the estimates shown in Fig. 9, we compute the mean, bias, median,
variance, and MSE of the estimates. These values are given in Table 4. Surprisingly,
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Fig. 9 Histogram (orange) and density plot (blue line) of estimates of the total number of people
in Belgium in 2004 using g-weights from 10,000 random samples of size 75, 100, and 200 using
the Horvitz–Thompson estimator; actual total = 10,417,122 (red line). (a) Sample size n = 75. (b)
Sample size n = 100. (c) Sample size n = 200
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Table 4 Values of mean, bias, variance, and mean-squared error (MSE) for
the estimates of the total number of people in Belgium in 2004 using 10,000
random samples of size 75, 100, and 200 using the Horvitz–Thompson
estimator; actual total = 10,417,122

Horvitz–Thompson n = 75 n = 100 n = 200

Mean 10,425,081 10,439,499 10,437,165

Bias 7959 22,377 20,043

Median 10,146,880 10,236,770 10,355,954

Variance 3.10475 ×1012 2.21299 ×1012 9.38258 ×1011

MSE 3.10481 ×1012 2.21349 ×1012 9.38660 ×1011
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Fig. 10 Histogram (orange) and density plot (blue line) of estimates of the total number of people
in Belgium in 2004 using g-weights from 10,000 random samples of size 75, 100, and 200 for the
quadratic function φ (Q); actual total = 10,417,122 (red line). (a) Sample size n = 75. (b) Sample
size n = 100. (c) Sample size n = 200

the bias is smallest when using the smallest sample size. However, the variance and
MSE of the estimates decrease as the sample size increases, as expected. The median
of the weights moves closer to the true value as the sample size increases.

Figure 10 shows the distribution of the calibrated estimates for the true value
of 10,417,122 using Algorithm 2 for the quadratic function φ (Q) with general
constraints. We take 10,000 random samples of size n = 75 (Fig. 10a), n = 100
(Fig. 10b), and n = 200 (Fig. 10c). The range of the estimates in this case is
approximately 170 times smaller than the range of the estimates using the Horvitz–
Thompson estimator. Again, the distribution has a smaller variance as the sample
size is increased. The distribution of the estimates in this case is less skewed than
for the Horvitz–Thompson estimator, with the mode of the estimates close to the
true value in all cases.

From the estimates shown in Fig. 10, we compute the mean, bias, median,
variance, and MSE of the estimates. These values are given in Table 5. The bias,
variance, and MSE all decrease as the sample size increases. These values are
smaller than the corresponding values for the Horvitz–Thompson estimator. The
median of the estimates is also near the true value in all cases, providing a better
estimate of the true value than the corresponding medians using the Horvitz–
Thompson estimator.
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Table 5 Values of mean, bias, variance, and mean-squared
error (MSE) for the estimates of the total number of people
in Belgium in 2004 using 10,000 random samples of size
75, 100, and 200 for the quadratic function φ (Q); actual
total = 10,417,122

φ (Q) n = 75 n = 100 n = 200

Mean 10,414,658 10,414,928 10,415,853

Bias −2464 −2194 −1269

Median 10,414,893 10,415,008 10,415,837

Variance 8.14258×107 5.83535×107 2.38957×107

MSE 8.74984×107 6.31651×107 2.55059×107

1.038 × 107 1.041 × 107 1.044 × 107
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Fig. 11 Histogram (orange) and density plot (blue line) of estimates of the total number of people
in Belgium in 2004 using g-weights from 10,000 random samples of size 75, 100, and 200 for the
quadratic function φ (L); actual total = 10,417,122 (red line). (a) Sample size n = 75. (b) Sample
size n = 100. (c) Sample size n = 200

Figure 11 shows the distribution of the calibrated estimates for the true value of
10,417,122 using Algorithm 1 for the logit function φ (L) with general constraints.
We take 10,000 random samples of size n = 75 (Fig. 11a), n = 100 (Fig. 11b), and
n = 200 (Fig. 11c). Again, the range of the estimators in this case is approximately
170 times smaller than the range for the estimates using the Horvitz–Thompson
estimator. The range of the estimates is also slightly smaller than the range of the
estimates for the quadratic function φ (Q). The figures show that the distribution of
the estimates has smaller variance as the sample size is increased. The distribution of
the estimates in this case is less skewed than for the Horvitz–Thompson estimator,
with the mode of the estimates close to the true value in all cases.

From the estimates shown in Fig. 11, we compute the mean, bias, median,
variance, and MSE of the estimates. This information is given in Table 6. The
bias, variance, and MSE all decrease as the sample size increases. These values are
also smaller than the corresponding values for the Horvitz–Thompson estimator.
The median of the estimates is also closer to the true value in all cases, being
a much better estimate of the true value than the corresponding medians using
the Horvitz–Thompson estimator. We remark that the values for the mean, bias,
median, variance, and MSE are very similar to the values obtained using the
estimates for the quadratic function φ (Q). This agrees with the assertion in [9] that,
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Table 6 Values of mean, bias, variance, and mean-squared
error (MSE) for the estimates of the total number of people
in Belgium in 2004 using 10,000 random samples of size
75, 100, and 200 for the quadratic function φ (L); actual
total = 10,417,122

φ (L) n = 75 n = 100 n = 200

Mean 10,414,669 10,414,918 10,415,888

Bias −2453 −2204 −1234

Median 10,415,042 10,414,850 10,415,894

Variance 8.27775 ×107 5.93664 ×107 2.40143 ×107

MSE 8.87961 ×107 6.42240 ×107 2.55367 ×107

under certain regularity conditions, the calibration estimators are asymptotically
equivalent independent of the chosen penalty function.

In this section, we have seen that the Horvitz–Thompson estimator gives
estimates with a larger variance than for the calibration estimators. This supports the
second motivation for calibration from the introduction that the use of calibration
can lead to a reduction in the sampling variance of the estimates. In this example, the
range of the Horvitz–Thompson estimates was approximately 170 times larger than
the range of the calibrated estimates. The calibrated estimates generally perform
better for estimating the true value than the estimates using the Horvitz–Thompson
estimator (despite the Horvitz–Thompson estimator being unbiased, see [15]).
However, in this example, we saw that the choice of the penalty function had little
effect on the properties of the resulting estimates.

Example 3: Convergence Properties of Algorithms 1 and 2 for
Various Choices of H(s)

The labour force survey (LFS) is arguably one of the most important social surveys
conducted by the Office for National Statistics (ONS). It is a household survey,
where participants are asked about labor force characteristics and related topics.
One labor force characteristic of interest is employment status, since this key
information is used to calculate estimates of the UK employment and unemployment
rate, statistics that are of interest to government, businesses, and even the general
public.

Since 1992, the LFS has been carried out quarterly. Each selected household
remains part of the sample for five consecutive quarters. This means one fifth of the
sample needs to be replaced every quarter. The original purpose of the survey was
to investigate characteristics for cross-sectional data. However, since households
are retained in the survey for five consecutive quarters, it was recognized that the
LFS could also be used to investigate characteristic changes of individuals across
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quarters. Sample members who respond in all five consecutive quarters can be linked
and combined to give the so-called five-quarterly longitudinal LFS datasets.

The quarterly LFS began, in its current form, during the Spring of 1992.
However, the rotating panel design of the sample (i.e., retaining households for
five consecutive quarters and updating a fifth of the sample each quarter) was not
established until Spring 1993, with the first five-quarterly LFS dataset considering
households over the five-quarter period from Spring 1993 to Spring 1994. Every
quarter, a new five-quarterly LFS dataset is produced as another cross-sectional
dataset becomes available.

However, combining five consecutive quarters’ worth of cross-sectional datasets,
and including only those sample members who responded in all five quarters, can
lead to methodological issues and result in a sample that is unrepresentative of the
true population. These issues can be classified by two main problems: firstly, this
linking of the five datasets can result in bias due to non-response and attrition of the
sample; secondly, there is the issue of bias that can occur due to response errors,
since these can have a major effect on the estimates of changes in the characteristics
of interest. See [33] for details of existing methodologies to deal with these issues.

The primary purpose of the longitudinal datasets is to produce estimates of flows,
i.e. changes in characteristics over the five-quarterly period. In particular, the labor
force flows are of particular interest, since these show patterns of people moving
between states of employment, unemployment, and inactive as well as highlighting
changes in the numbers of those who are of working age. For the five-quarterly
LFS datasets, the flow characteristics can be considered as measuring the change in
characteristics over a 12-month period.

As the dataset in consideration is used for forming estimates related to the
working age population, that is, all males and females who are aged 16–69, only
sample members who responded to all five waves of the LFS who were aged
between 15 and 69 at wave 1 are included.

In this example, we consider the five-quarterly longitudinal dataset for the five
quarters from April 2012 to June 2013 (see [25]). The working age population is
estimated to be 44,443,746 from census data. There are 4538 sample members in
the dataset. For each of these sample members, we calibrate on 61 constraints. These
constraints include satisfying known population totals in 28 age–sex categories, 18
region groups, and ensuring that the estimate of numbers of people in the three
employment statuses (employed, unemployed, and inactive) matches each of the
totals for each of the five quarters used to form the dataset.

Therefore, for this dataset, we have n = 4538 and m = 61. The main purpose of
the calibration here is consistency between the estimates of the population totals
for each of the 61 constraints and their known totals. However, calibration can
also help to deal with biases arising from non-response and sample design (see,
for example, [22]).

Forming estimates of changes in employment status forms an important part
of government policy, since the statistics produced highlight how employment has
changed over the 12-month period. The estimates also show the numbers of those
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moving into and out of working age, which forms a key basis for government policy
on pensions and retirement age.

To obtain estimates of the changes in employment status, calibration is used
to assign an appropriate weight to each sample member. Extreme weights are
undesirable here, since that could lead to certain flow rates being over-estimated if
certain sample members dominate. Much time is spent in designing the survey and
sampling scheme to ensure that the sample is as representative as possible of the
true population. Allowing weights to move close to 0 means that the corresponding
sample member’s contribution to the survey is removed. It would, effectively, have
not been worth the cost of interviewing them and observing their characteristics,
since they contribute very little to the subsequent estimates. This argument can also
be applied to negative weights.

Therefore, taking all of this into account, we wish to estimate the employment
flows such that

1. There is a close match between the sample estimates and known population
totals;

2. There are non-extreme weights, i.e. not too large so that sample members
dominate, and not too small or negative so that sample members are effectively
unimportant to the estimates; and

3. The estimate of the flows is reliable, in a sense that we shall define later.

To begin, let us consider all possible combinations of algorithms and functions
we have introduced throughout this chapter. We consider the following five cases:

1. Algorithm 1a for function φ (Q) with no constraints;
2. Algorithm 1 for function φ (R) with non-negativity constraints;
3. Algorithm 2 (and 2’) for function φ (Q) with general constraints;
4. Algorithm 2 (and 2’) for function φ (R) with general constraints; and
5. Algorithm 1 for function φ (L) for general constraints.

For this example, we consider general constraints with li = 0.5 and ui = 2.4 for
all i = 1, . . . ,n.

In Table 7, we consider convergence of the algorithms in all five cases listed
above when using the Newton–Raphson form of the matrix H(s). We give the
number of iterations (Iter), the minimum and maximum values of the g-weights
obtained, as well as the mean, standard deviation (SD), coefficient of variation
(CoV), skewness (Skew.), and kurtosis (Kurt.) of the weights. We also list the 1st-
percentile (1st %), the median (med), and the 99th-percentile (99th %) of the weights
in each case.

Observe that there are negative g-weights for the function φ (Q) with no con-
straints. There were six negative weights in this case. This is undesirable since we do
not want sample members to be under-represented in the estimates. Use of the raking
function with non-negativity constraints has resulted in g-weights as large as 4.85.
This is undesirable since we do not want individual sample members to dominate
in the estimates. We observe that Algorithm 2 for φ (R) with general constraints
failed to converge (after running the algorithm for 100,000 iterations). The general
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constraints li = 0.3 and ui = 4 were required so that Algorithm 2 converged in this
case. In practice, the general constraints for the raking function need to be less
“severe” than for the quadratic or raking functions, in the sense of a smaller lower
bound and/or a larger upper bound. This is due to the nature of the derivative of φ (R)

(as plotted in Fig. 1b). The resulting h-function is such that its domain is smaller
than for the quadratic and logit functions, despite having the same range.

There are several weights at the bounds in the case of the quadratic function,
since the minimum and 1st-percentiles, and maximum and 99th-percentile are equal
to the lower and upper bounds, respectively. In contrast, the minimum value of the
g-weights for the logit function is greater than the lower bound, and the maximum
g-weight is less than the upper bound.

In Table 8, we consider convergence of the algorithms in all five cases listed
above when using the g-weights form of the matrix H(s). We give the number of
iterations (Iter), the minimum and maximum values of the g-weights obtained, as
well as the mean, standard deviation (SD), coefficient of variation (CoV), skewness
(Skew.), and kurtosis (Kurt.) of the weights. We also list the 1st-percentile (1st %),
the median (med), and the 99th-percentile (99th %) of the weights in each case.

Observe that the cases of the quadratic function with no constraints and the
raking function with non-negative constraints lead to the same results as in Table 7.
However, convergence for both the quadratic and logit functions with general
constraints took more iterations than in the case of the Newton–Raphson form of
H(s). The algorithm has converged to the same place and the solutions are virtually
identical in both cases.

In Table 9, we consider convergence of the algorithms in all five cases listed
above when using the g-weights form of the matrix H(s). We give the number of
iterations (Iter), the minimum and maximum values of the g-weights obtained, as
well as the mean, standard deviation (SD), coefficient of variation (CoV), skewness
(Skew.), and kurtosis (Kurt.) of the weights. We also list the 1st-percentile (1st %),
the median (med), and the 99th-percentile (99th %) of the weights in each case.

In this case, the quadratic function with no constraints gives the same results
as in Tables 7 and 8. The quadratic function with general constraints converged
in the same number of iterations as for the Newton–Raphson method considered
in Table 7, since the matrices H(s) are equivalent in both cases. However, the
algorithm failed to converge for the raking function in both the non-negativity and
general constraint cases. The logit function with general constraints took longer
to converge than for the Newton–Raphson form of the matrix H(s) considered in
Table 7; however, using the identity matrix form of H(s) took less iterations to
converge than for the g-weights form of H(s) considered in Table 8.

For a general discussion on measuring numerical complexity of an optimization
problem see [23, 42, 43]. For a discussion on choosing test functions for optimiza-
tion problems see [41].

In Fig. 12, we plot a box-plot of the calibrated weights considered in Table 7. We
also include the calibrated weights for the quadratic and logit functions using the
general constraints li = 0.3 and ui = 3 (the raking function with general constraints
failed to converge in this case).
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Fig. 12 Box-plot of g-weights for: 1. φ (Q) with no constraints, 2. φ (R) with non-negativity
constraints, 3. φ (L) with general constraints (l = 0.5 and u = 2.4), 4. φ (L) with general constraints
(l = 0.3 and u = 3), 5. φ (Q) with general constraints (l = 0.5 and u = 2.4), and 6. φ (Q) with general
constraints (l = 0.3 and u = 3)
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Fig. 13 Histogram (orange) and density plot (blue line) of the calibrated weights for the
truncated quadratic function φ (Q) and the logit function φ (L) for the general constraints li = 0.5
and ui = 2.4. (a) g-weights using Algorithm 2 with φ (Q). (b) g-weights using Algorithm 1
with φ (L)

In Fig. 13, we plot histograms of the weights obtained using Algorithm 2 for
function φ (Q) (Fig. 13a) and Algorithm 1 for function φ (L) (Fig. 13b) in the case of
the general constraints li = 0.5 and ui = 2.4. These correspond to cases 5 and 3,
respectively, in Fig. 12. From Fig. 13a, we can see that many of the weights have
been projected to the boundaries. In contrast, Fig. 13a shows that many g-weights
approach, but do not reach, the bounds. This supports our comments from Example
2 in section “Example 2: Investigation of Calibrated Weights at Each Iteration of
Algorithms 1 and 2”.

In Fig. 14, we plot histograms of the weights using Algorithm 2 for function
φ (Q) (Fig. 14a) and Algorithm 1 for function φ (L) (Fig. 14b), both in the case of
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Fig. 14 Histogram (orange) and density plot (blue line) of the calibrated weights for the truncated
quadratic function φ (Q) and the logit function φ (L) for the general constraints li = 0.3 and ui = 3.
(a) g-weights using Algorithm 2 with φ (Q). (b) g-weights using Algorithm 1 with φ (L)

the general constraints li = 0.3 and ui = 3. These correspond to cases 6 and 4,
respectively, in Fig. 12. The histogram in Fig. 14b shows that there are fewer weights
with values at the lower and upper bounds. Contrast this to Fig. 14a, where the
histogram shows that there are many weights with values at the lower and upper
bounds.

For the histograms in Fig. 13, most of the weights are at or near the boundaries,
with few weights in between. However, as the difference between the bounds is
increased, fewer weights move towards these bounds. The resulting distribution is
uni-modal or bi-modal depending on the nature of the imposed bounds.

We can summarize this example as follows:

Algorithm 1a for Function φ (Q) with No Constraints All three forms of H(s) are
equivalent and the algorithm gives the same solution.

Algorithm 1 for Function φ (R) with Non-negativity Constraints The Newton–
Raphson and g-weights form of the matrix H(s) are the same and the algorithms
converge to the same solution in the same number of iterations for both cases.
However, the algorithms failed to converge in the case of the identity matrix.

Algorithm 2 (and 2’) for Function φ (Q) with General Constraints The algorithm
converged in the fewest iterations in the case of the Newton–Raphson and identity
forms of H(s). The algorithm converged to the same solution using the g-weights
form of H(s), but took more iterations to converge.

Algorithm 2 (and 2’) for Function φ (R) with General Constraints There was no
convergence for any case of H(s). This is likely to be due to the general constraints
being too restrictive for this choice of function.

Algorithm 1 for Function φ (L) for General Constraints Converged in the fewest
iterations for the Newton–Raphson version of H(s). The identity matrix version of
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H(s) was the second fastest in terms of the number of iterations, with the g-weights
version of H(s) requiring the most iterations to converge.

Calibration Packages

We now present details of the various packages that perform calibration, along with
the algorithms and calibration functions they implement.

Summary of the Calibration Packages

Table 10 gives a summary of some of the packages that implement the calibration
algorithms presented in this chapter. In the table below, we refer to the three
functions φ presented in section “The Function φ”, namely the quadratic function
φ (Q), the raking function φ (R), and the logit function φ (L). For the various functions,
the packages implement the different cases of the g-weight constraints outlined in
section “Additional g-Weight Constraints”. In Table 10, we refer to each of the
constraint cases by the letters (a), (b), and (c), corresponding to the labels used
in the list given in section “Additional g-Weight Constraints”. The case (a) refers
to no constraints, case (b) refers to non-negativity constraints, and case (c) refers
to general constraints. We also refer to the three versions of the matrix H(s) as
introduced in section “The Matrix H(s)”. Recall that the three versions are the
Newton–Raphson matrix, identity matrix, and matrix with g-weights on the diagonal
(g-weights matrix).

Details of the Calibration Packages

This section expands on the information presented in Table 10 of section “Summary
of the Calibration Packages”. All packages give the option to use Algorithm 1a
(see section “Algorithm 1a: Quadratic Function φ (Q) with No Constraints”) for
the quadratic function with no constraints. We provide an overview of each of the
programs and the algorithms they implement.

Calib This is a function that is part of the “sampling” package [35] in R. It uses
Algorithm 1 for the functions φ (L) and φ (R), and Algorithm 2 (and 2’) for the
function φ (Q). The algorithm uses the g-weights form of H(s) for the logit and raking
functions and the identity matrix form of H(s) in the case of the quadratic function.

Calibrate This is an R function contained within the “survey” package [21]. The
package has the options to use Algorithm 1 for the functions φ (L) and φ (R) in the case
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Table 10 Summary of the main calibration packages and the algorithms they implement

Package Program Functions Constraints Matrix H

CALIB R φ (Q) (a) and (c) Identity matrix

(sampling) φ (R) (b) g-Weights matrix

φ (L) (c) g-Weights matrix

CALIBRATE R φ (Q) (a) and (c) Newton–Raphson

(survey) φ (R) (b) and (c) Newton–Raphson

φ (L) (c) Newton–Raphson

ReGenesees R φ (Q) (a) and (c) Newton–Raphson

φ (R) (b) Newton–Raphson

φ (L) (c) Newton–Raphson

CALMAR SAS φ (Q) (a) and (c) Newton–Raphson

CALMAR 2 φ (R) (b) Newton–Raphson

φ (L) (c) Newton–Raphson

g-CALIB-S SPSS φ (Q) (a) and (c) Newton–Raphson

φ (R) (b) Newton–Raphson

φ (L) (c) Newton–Raphson

GES SAS φ (Q) (a) and (c) Projection method algorithm

BASCULA Blaise φ (Q) (a) and (c) Scale modified quadratic

of general constraints and non-negativity constraints, respectively, and Algorithm 2
(and 2’) for the functions φ (Q) and φ (R) in the case of general constraints. The
Newton–Raphson form of H(s) is implemented in all cases. There is the option for
the user to input his/her own calibration functions; however, this requires stating the
function h, i.e. the inverse of the derivative of the function φ .

ReGenesees This is an R package [39] developed by the Italian Statistical Office,
ISTAT, that implements the function ecalibrate. The user may choose from the
quadratic, raking, and logit functions. Algorithm 1 is performed for functions
φ (L) and φ (R) in the case of general constraints and non-negativity constraints,
respectively, whilst Algorithms 2 (and 2’) are used for the quadratic and raking
functions φ (Q) and φ (L) with general constraints. The Newton–Raphson form of the
matrix H(s) is implemented for all functions.

CALMAR The software CALMAR (CALibration of MARgins) is used by the
Office for National Statistics in the UK, the Central Statistical Office in Ireland,
and many other statistical offices throughout the world. The package was developed
by Sautory [29] at the French National Institute for Statistics and Economic Studies
(INSEE). The software uses a SAS Macro [30] to perform Algorithm 1 for functions
φ (L) and φ (R) in the case of general constraints and non-negativity constraints,
respectively, as well as Algorithms 2 (and 2’) for function φ (Q) with general
constraints. The Newton–Raphson form of H(s) is used for all functions.

CALMAR2 This is a modified version of the SAS macro CALMAR introduced
above. Sautory [20] enhanced several aspects of the original CALMAR code,
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allowing the user to perform simultaneous calibration at different levels of a survey,
and use generalized calibration adjustment for total non-response (see [31] for
further information). CALMAR2 also includes a new function referred to as the
hyperbolic sine function. It is not widely used in practice, and so has not been
discussed in this chapter. CALMAR2 is used at INSEE, as well as several other
statistical offices worldwide. With the exception of the new hyperbolic sine function
(which we do not discuss here), the functions and algorithms implemented are as
described for CALMAR.

g-CALIB-S This is an SPSS package developed at Statistics Belgium. The package
is very similar to CALMAR, in that Algorithm 1 may be used for functions φ (L) and
φ (R) in the case of general constraints and non-negativity constraints, respectively,
as well as Algorithms 2 (and 2’) for function φ (Q) with general constraints. The
Newton–Raphson form of H(s) is used for all functions. This package is well
documented in [37].

GES The generalized estimation software (GES) was developed by Statistics
Canada, and uses a projection method algorithm (see section “Other Algorithms”)
for the quadratic function φ (Q) with general constraints (see [12] for a more detailed
discussion). The package is used by the Office for National Statistics (ONS) in the
analysis of quarterly LFS datasets. We note, however, that for the longitudinal five-
quarterly datasets as considered in section “Example 3: Convergence Properties of
Algorithms 1 and 2 for Various Choices of H(s)”, the ONS currently uses CALMAR
rather than GES.

The paper of Brodie and Cotterell [5] compares the GES algorithm with a so-
called new algorithm. This algorithm is equivalent to Algorithm 2 (and 2’). It is
shown in [5] that the “new” algorithm converges in fewer iterations than the GES
algorithm. They also show that, when the bounds are tightened, the time taken for
the “new” algorithm to converge decreases. This is a consequence of the algorithm
setting more weights to the bounds at earlier iterations.

It is argued in [5] that an “obvious” advantage of the CALMAR algorithm is that
it gives a solution that lies entirely within or on the boundary values. Therefore,
the bounds will be satisfied exactly. However, for the projection method algorithm
used by GES, the bounds are not met exactly and are only satisfied to within the
convergence level specified by the user. Despite this, it is argued that when the
calibration problem with bounds is not solvable, the projection method algorithm
is better than the “new” algorithm, in that the projection method algorithm will give
an approximate solution. However, caution should be taken here as the algorithm
may not have given a valid approximation to the solution of the calibration problem
in this case.

It could also be argued that soft calibration is a useful method of obtaining
an approximate solution when the hard calibration problem cannot be solved. See
Sect. 5 of [8] for further information regarding soft calibration.

BASCULA This program implements the scale modified quadratic algorithm
attributed to [16] for the function φ (Q) with general constraints. This algorithm is
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equivalent to Method 3 considered in [32]. The package was developed by Statistics
Netherlands and is well documented in the Bascula 4.0 User Guide [24]. There
has been criticism of the convergence properties of this algorithm (and hence the
BASCULA package), see, for example, the technical paper [7].

Conclusion

In this chapter, we have considered two of the most common algorithms for
performing calibration in survey sampling. In the case of no constraints, the
quadratic function can lead to negative and/or extreme weights. In the case of
non-negative constraints, the raking function can lead to extreme weights. This
motivates the need for general constraints on the g-weights. The logit function
φ (L) can automatically take these constraints into account. However, in practice,
algorithms using this function may converge slowly when the weights approach the
bounds imposed by these constraints.

For the quadratic and raking functions, Algorithm 2 is required in the case of
general constraints. This involves projecting any of the g-weights not satisfying the
constraints so that they satisfy these constraints. We have seen that Algorithm 2
for function φ (R) with general constraints does not perform well in terms of
convergence, performing much worse than Algorithm 2 when using the quadratic
function φ (Q) with general constraints. The algorithms using the quadratic or logit
functions often converge for more restrictive bounds than for the raking function.
This is due to the shape of the functions and their derivatives.

We have considered various versions of the Jacobian matrix used in the method
for determining the Lagrange multipliers. It is not surprising that the true Jacobian
gave the fastest convergence in all cases. However, the g-weights form of the
Jacobian was no better than using the initial Jacobian in the case of the quadratic
function with general constraints. The g-weights form of the Jacobian performed
worse than simply using the initial Jacobian in the case of the logit function with
general constraints. It is therefore recommended that the g-weights version of the
Jacobian matrix should not be used as a substitute for the Newton–Raphson matrix.
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Multidimensional Scaling for Genomic Data
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Abstract Scientists working with genomic data face challenges to analyze and
understand an ever-increasing amount of data. Multidimensional scaling (MDS)
refers to the representation of high dimensional data in a low dimensional space
that preserves the similarities between data points. Metric MDS algorithms aim to
embed inter-point distances as close as the input dissimilarities. The computational
complexity of most metric MDS methods is over O(n2), which restricts application
to large genomic data (n 106). The application of non-metric MDS might be
considered, in which inter-point distances are embedded considering only the
relative order of the input dissimilarities. A non-metric MDS method has lower
complexity compared to a metric MDS, although it does not preserve the true
relationships. However, if the input dissimilarities are unreliable, too difficult to
measure or simply unavailable, a non-metric MDS is the appropriate algorithm.
In this paper, we give overview of both metric and non-metric MDS methods and
their application to genomic data analyses.
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Introduction

Representing high dimensional data in a low dimensional space is an important
task, since it is easier to study the information structure when the dimension
is greatly reduced [8, 32]. Multidimensional scaling is a method that represents
measurements of (dis)similarity among pairs of objects as distances in a space
of lesser dimensionality [4]. With the dimensional reduction, it is possible to
cluster the data relationships exploiting their distribution in the low dimensional
space, and explore significant patterns. When the data configuration is Euclidean,
multidimensional scaling (MDS) is similar to principal component analysis (PCA),
which can remove inherent noise with its compact representation of data [32].
However, when the data configuration is nonlinear, MDS can be applied for a better
understanding of the embedded data structure [30, 32].

Torgerson [31] proposed the first MDS method based on the Euclidean distance,
and a complete symmetric similarity matrix (with no missing data). In 1964, Kruskal
[13] formulated MDS as a problem of minimization of the STRESS function. Since
then, various MDS approaches have been developed and applied to many fields,
e.g., pattern recognition, stock market analysis, molecular conformational analysis,
medicine, pharmacology, and environmental monitoring [8].

Nowadays, due to the larger computational power, multidimensional scaling is
widely used as a tool for visualization of genomic data. Recent high-throughput
next generation sequencing (NGS) technologies are spreading at very fast pace
in the fields of genomics and functional genomics. These new methodologies
produce large amounts of short reads, i.e. nucleotidic (DNA) or amminoacidic
(protein) sequences. These extremely large datasets should be stored and properly
processed to extract relevant knowledge, and require appropriate bioinformatics and
computational biology strategies. MDS, as a tool for the dimensionality reduction,
is of great interest not only for the visualization of large amounts of data, but also
to reveal the data structure by clustering them based on their distribution in the
low dimensional space. Indeed, MDS techniques may greatly help researchers in
exploring significant patterns in multidimensional data.

Figure 1 shows the application of metric MDS to visualize complex 3D data,
namely a Möbius strip, a surface with only one side and only one boundary, in a
space of lower dimension (2D).

Multidimensional scaling algorithms fall into two broad classes: metric
algorithms, which seek an embedding with inter-point distances closely matching
the input dissimilarities; and non-metric algorithms, which find an embedding
respecting only the relative ordering of the input dissimilarities [1]. In this paper,
we give overview of both metric and non-metric MDS methods and their application
to genomic data analyses.
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Fig. 1 2D visualization of 3D data. Here metric MDS is used on a Möbius strip with a Euclidean
distance metric

Metric MDS

The objective of MDS is to find a configuration in a low dimensional space so that
the distances among the points in this configuration, dij, are as close as possible in
value to the distances δij, i, j = 1, . . . ,n, in the original space. The input to MDS
is a matrix of pairwise dissimilarities δij, with δij > 0, symmetric and with zero
diagonal. When the original data are set of points in a multidimensional space R

d,
the dissimilarities are defined as distances in that space.

For visualization purposes, the embedding space is usually chosen to be two-
dimensional (m= 2); however, greater dimensionalities (m< d) might be interesting
for some applications. The embedding points xi ∈ R

m must preserve the inter-
point distances of the input data. This problem might be solved in several ways
[4, 6, 38]. One of the most used methodologies is based on an iterative approach in
which, starting from an initial configuration, the positions in the destination space
are changed until a suitable configuration is found. This goal might be reached by
minimizing the STRESS objective function f (X) [7] defined as follows

f (X) =
n

∑
i=1

n

∑
j=1

wij (dij(X)−δij)
2 , (1)

where X = (x1,x2, . . . ,xn) and dij (X) denotes appropriate distance between the
points xi and xj, i, j = 1, . . . ,n, such as Euclidean, Manhattan (city block), Bray,
or some other distance. Weights are assumed to be positive wij > 0.

Given that δij and dij are zero diagonal symmetric and wij = wji, it is possible to
sum up i < j or j < i elements, obtaining the formula of raw STRESS
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fr(X) = ∑
i<j

wij (dij(X)−δij)
2 (2)

and, respectively, the normalized STRESS

fn(X) =
∑i<j wij (dij(X)−δij)

2

∑i<j wijδ 2
ij

. (3)

To obtain inter-point distances in lower dimensional spaces the STRESS function
must be minimized. Mathematically the optimization problem to solve is the
following

f ∗ = min f (X), (4)

where f (X) is a nonlinear objective function f : Rn → R of continuous variables
X and n is the number of variables. The goal is to find all X∗ where the objective
function is minimal, i.e.

X∗ : f (X∗) = f ∗. (5)

The goodness-of-fit of the found solution(s) might be assessed by defining a relative
error calculated as

EM(X) =

√

f (X)

∑n
i=1 ∑n

j=1 wijδ 2
ij

. (6)

Depending on the problem, it is also possible to consider an everywhere differen-
tiable S-STRESS function

fS(X) = ∑
i<j

wij
(

d2
ij(X)−δ 2

ij

)2
(7)

or, instead of the least-squares STRESS, the least absolute deviation (L1-norm)
STRESS function

fL1(X) = ∑
i<j

wij
∣
∣dij(X)−δij

∣
∣ . (8)

Although the STRESS function is defined by the analytic formula (2), which
seems rather simple, it may have many local minima. The minimization problem
is highly dimensional, with the number of variables equal to n×m. Moreover, at
some points the function f (X) might be not differentiable. These features make the
minimization of f (X) a difficult task [35, 37]. The optimization problem without any
assumption about unimodality is called global optimization problem. In Dzemyda
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et al. [7] various approaches of global optimization methods applied to metric MDS
are described.

The computational complexity of most metric MDS methods is over O(n2),
similar to the complexity of the distance geometry problems, e.g., to the problems
of molecular conformation [20]. Therefore the application of metric MDS to large
genomic data (n 106) might be computationally challenging, and the use of high
performance parallel environment might be essential [8], as well as the application
of non-metric MDS.

Non-metric MDS

Non-metric MDS has been extensively used in the psychometrics and psychophysics
communities. In those sciences the magnitude of the input dissimilarities δij could
be unreliable, too difficult to measure, or simply unavailable [1]. Therefore the δij

can be interpreted only in an ordinal sense. In such cases, the dissimilarities δij are
replaced by disparities, d̂ij, and the STRESS function can be written as

fd(X) = ∑
i<j

wij
(

dij(X)− d̂ij
)2
. (9)

For the assessment of goodness-of-fit, it is possible to define the function

ENM(X) =

√
√
√
√∑i<j wij

(

dij(X)− d̂ij
)2

∑i<j dij(X)2 . (10)

The aim is to find such a configuration that dij are in the same rank order as the
original δij in the ordinal or non-metric space. In metric MDS the disparities are
related to the dissimilarities by a specific continuous function, whose calculation is
carried out using least-squares monotonic regression.

Ordinal models typically require that if δij < δkl, then d̂ij < d̂kl, with no particular
order of the distances for δij = δkl.

Nominal MDS models are obtained when the distances are presented as the qual-
itative distinctiveness, and the disparities are restricted by if δij = δkl, then d̂ij = d̂kl.
A word of caution should be given, since in nominal MDS the interpretation in
which the closer the points are, the more similar objects they represent, does not
hold anymore.
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MDS for Genomics Data

NGS techniques are producing a tremendous amount of genomic data at an impres-
sive pace. Storage, transmission, analyses, and visualization of these information is
a daunting and challenging process [15, 33].

A typical NGS experiment produces billions of genomic sequences (reads) [17]
that need Gigabytes of memory to be stored and processed. New computational
infrastructure and methodologies are needed to extract meaningful information from
the overwhelming amount of big data produced [19].

MDS might represent an invaluable tool to address this need, since it permits
to detect complex data structures and visualize them in low dimensional (2D/3D)
spaces [38].

The input to both metric and non-metric MDS is a pairwise dissimilarity matrix
of size [n× n], with n number of input samples. The computational complexity
of MDS is over O(n2), although it might be reduced to O(n

√
n) using hybrid

approaches [18]. Non-metric MDS might be faster than metric MDS, but since it
preserves only the order of similarities instead of their original scale it is somehow
considered as not fully reliable [32].

Many novel algorithms and approaches are addressing the problem of reducing
the computational complexity of MDS, to allow its application also to large genomic
datasets. Hughes et al. [12] propose an interpolative approach to reduce the size of
the input matrix. They use metric MDS to perform clustering of DNA sequences
based on a pairwise genetic distance. They were able to rapidly process with the
proposed algorithm a dataset of 105 sequences. Tzeng et al. [32] propose a novel
method based on dividing the initial problem into smaller, easier problems. Then
the global solution is built combining the results obtained for the sub-problems.
They were able to build a correlation map of about 16× 103 genes using more
than 2000 annotations coming from the Gene Ontology database. Stanberry et al.
[29] developed a methodology based on interpolation, to reduce the size of input
data, and on parallelization, to reduce the computation time. They were able to
process and visualize about 104 protein sequences, with the aim to support their
functional annotation. Taguchi and Oono [30] describe a novel, extremely non-
metric algorithm to perform unsupervised data mining on gene expression time
series. They used Pearson correlations as a dissimilarity measure to process about
500 genes in 11 time points. Park et al. [21] describe CFMDS-CUDA, a parallel
computing architecture for metric MDS that exploits the power of GPUs (graphical
processing unit) and a divide-and-conquer approach. They tested it on mouse
microarray data of size 104×1000.

Other improvement directions take into account the quality of the obtained
solution depending on the initial condition as in Becavin et al. [3], or the use of
genetic algorithms to avoid local minima as in Žilinskas and Žilinskas [36].

Table 1 lists some papers that use MDS for genomic analyses. The table shows
the data size in terms of the number of inputs, n, and features, m. Thus, the
dissimilarity matrix given as input to the MDS algorithm is of size [n×n]. Genomic
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Table 1 List of papers using MDS on genomic datasets

Paper
reference

Data type and size
[n × m]

Type
IDF

Purpose
OF

Heinrich
[11]

Genome vs
SNPs NM

Genotype-weighted
stress

Exome genotyping
accuracy assessment

[1063 × 35×106]

Hughes [12]
DNA vs DNA
alignments M Genetic distance stress Sequence clustering

[100,000 × 1]

Malaspinas
[14]

Genomes vs
SNPs M

Allele-sharing
stress

Ancestry calling for
low-depth data

[950 × 600,000]

McCue [16]
Genomes vs
SNPs M Genetic distance stress

Inbreeding
evaluation

[335 × 54,000]

Ruan [25]
DNA vs DNA
alignments M Percent identity stress

Clustering and 3D
phylograms building

[1306 × 1]

Park [22]
Cells vs gene
expression NM

Spearman correlation
stress

Single cell
phenotype
determination[150 × 48]

Schloss [27]
OTUs vs
conditions NM

ThetaYC
stress

Sequencing quality
assessment

[∼40 × 12]

Staley [28]
OTUs
vs sites NM

Bray–Curtis
stress

Impact of land use
on bacterial
communities[280× 10]

Stanberry
[29]

Protein vs protein
sequences M

Protein similarity
Summon’s loss

Visualization and
annotation of
proteins[10,000 × 720]

Taguchi [30]
Gene expressions
vs time NM

Pearson correlations
Kendall statistics

Unsupervised data
mining

[517 × 11]

Tzeng[32]
Gene names vs
GO annotation M

Euclidean
stress

Individuation of
gene correlation
maps[16,502 × 2168]

Zhu [34]
DNA sequences vs
SNPs NM

Taxonomic distance
stress

Improvement of
association mapping
results[216 × 2000]

Data type specifies the genomic data used as input (here OTU stands for operational taxonomic
unit). Data size is also shown, as [n×m]. The MDS type is either metric (M) or non-metric (NM).
The input dissimilarity function (IDF) and the optimized function (OF) used in each paper are also
shown. Lastly, a brief description of the purpose of the performed analyses is given
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data range from a small number of input points and features, as in Schloss et al. [27]
where MDS is used alongside other tools to visualize sequenced data and assess
their quality, to very large datasets as in [12, 29, 32].

Several of this works use MDS to process DNA sequences. It is interesting to
note that both metric and non-metric MDS are used, with a wide range of different
dissimilarity measures. When performing genotyping, in which the DNA sequences
of one or more organisms are compared against lists of known mutations (called
SNPs, single nucleotide polymorphisms), Malaspinas et al. [14] and McCue et al.
[16] rely on metric MDS where dissimilarity between sequences is calculated using
two different, genetic-based distances. Instead, Heinrich et al. [11] and Zhu [34]
use non-metric MDS with a genetic-based and, respectively, a taxonomy-based
dissimilarity. In all the cases a STRESS objective function is minimized. DNA vs
DNA sequence comparison is performed by both Hughes et al. [12] and Ruan et al.
[25] using metric MDS, with the aim to cluster together similar sequences. In the
latter a distance based on the percentage of identical nucleotides across sequences
is used to build 3D philograms of the input data, whereas the former relies on a
different genetic-distance based metric.

Gene expression data processing is addressed with non-metric MDS both in Park
et al. [22] and in Taguchi et al. [30]. The first group use Spearman correlation
as a dissimilarity measure and minimize a classic STRESS function, to assess
the phenotype of single cells. Instead, Taguchi et al. rely on Pearson correlation
to perform unsupervised data mining. Interestingly, they minimize an objective
function based on Kendall statistics.

Another field in which MDS is widely used is the analysis of microbiomes, in
which operational taxonomic units (OTUs; a microbial diversity unit of measure)
are compared across different conditions or places. Non-metric MDS is used in the
work of both Schloss et al. [27] and Staley et al. [28], where ThetaYC and Bray–
Curtis dissimilarity measures are used, respectively. See also Gonzalez et al. [10]
for an interesting review on the relationships between microbiota analysis results
and different MDS approaches.

Stanberry et al. [29] propose a tool to visualize and annotate clusters of proteins.
Their work is based on metric MDS in which the dissimilarity measure is given
by protein sequence distance, and a Summon’s loss function is minimized. Lastly,
Tzeng et al. [32] use MDS to build correlation maps based on gene names and
Gene Ontology (GO) annotations. They use Euclidean distance and classic STRESS
function.

Software

Multidimensional scaling is becoming a tool of standard use in genomic analyses.
Many software suites and packages, expressly tailored on the needs of bioinformati-
cians and computational biologists, offer MDS-based functions as a standard tool
not only for data visualization but also to perform more sophisticated analyses such
as unsupervised mining. In some cases MDS analyses are a part of a larger pipeline,



Multidimensional Scaling for Genomic Data 137

as in MOTHUR [26], an open-source software designed to support the study of
microbial communities. The analyses described in Staley et al. [28] and in Schloss et
al. [27] are both performed using the MOTHUR software. Similarly, in Malaspinas
et al. [14] metric MDS is a part of bammds, a more complex tool developed to assess
the ancestry of low-depth whole-genome data. PLINK [23] is a tool, largely used
for whole-genome association and population-based linkage analyses, that offers
the possibility to perform also MDS analyses. DACIDR [24] is a tool designed to
cluster microbiota sequences into OTUs. METAGENassist [2] includes MDS as an
analysis and visualization tool for metagenomics studies. METAREP [9] is a similar
tool, also designed to compare and annotate metagenomic datasets. PRIMER6 [5]
is a commercial software package used for analyzing species or sample abundance.
Lastly, the biologists’ reference language R provides two distinct packages, namely
stats and MASS, to perform both metric and non-metric MDS analyses.
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Solving Stochastic Ship Fleet Routing
Problems with Inventory Management
Using Branch and Price

Ken McKinnon and Yu Yu

Abstract This chapter describes a stochastic ship routing problem with inventory
management. The problem involves finding a set of least cost routes for a fleet of
ships transporting a single commodity when the demand for the commodity is uncer-
tain. Storage at supply and consumption ports is limited and inventory levels are
monitored in the model. Consumer demands are at a constant rate within each time
period, and in the stochastic problem, the demand rate for a period is not known until
the beginning of that period. The demand situation over the time periods is described
by a scenario tree with corresponding probabilities. A decomposition formulation is
given and it is solved using a Branch and Price framework. A master problem (set
partitioning with extra inventory constraints) is built, and the subproblems, one for
each ship, are solved by stochastic dynamic programming and yield the columns
for the master problem. Each column corresponds to one possible tree of actions for
one ship giving its schedule loading/unloading quantities for all demand scenarios.
Computational results are given showing that medium sized problems can be solved
successfully.

Keywords Stochastic Dynamic Programming • Branch and Price • Ship Rout-
ing • Inventory Management.

Introduction

The marine shipping industry has experienced an unprecedented boom over the past
decade. This is not only because of the rapid growth of the requirements to transfer
more and more energy and commercial commodities from one location to another,
but also because the characteristics of the ocean shipping industry, with its low
transportation costs and huge loading capacity, are suitable for cheaply transporting
huge amounts of products.
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The classical routing and scheduling problem for vehicles and ships is important
part of the general transportation problem, and has received a great deal of attention
in academic research. A large number of possible solution approaches have been
presented in the literature, involving either exact optimization methods or heuristic
algorithms. A comprehensive review is provided in [10]. This focuses on literature
about ship routing and scheduling published between the years 1990 and 2003. The
survey is presented in several different parts: strategy planning problem, tactical
and operational planning problems, naval problems, and other related problems.
A survey of different solution methods in the literature is also presented in the
review. A mixed integer programming (MIP) model is described in [25] for the
problem of transporting different bulk products from a set of origins to a set of
destinations by a fleet of ships. A ship has separate compartments for different
products. A ship’s voyage goes from a single loading port to a single discharging
port. A cost-based heuristic algorithm is also presented to obtain acceptable solution
quickly. Sherali et al. [26] have presented an MIP model for the Kuwait Petroleum
Corporation (KPC) problem. Because of the integrality conditions and the large
number of demand contract scenarios, the problem cannot be solved to optimality
by the MIP model. An alternative aggregated model is then formulated and solved
by a specialized rolling horizon heuristic method to make the problem solvable. In
the ocean shipping industry, expert opinion is an important factor. Crary et al. [11]
introduce a model integrating the expert opinion and MIP model for the problem
of sizing the US destroyer fleet. MIP models for SRP are also built in [3, 24, 27].
Heuristics are developed in [19] in order to obtain an acceptable solution within
reasonable time when solving the MIP model.

The Dantzig–Wolfe decomposition approach has proved to be successful for the
vehicle routing problem with time windows. Desrochers et al. [14] were the first to
propose a set partitioning model for the vehicle routing problem with time windows
solved by column generation, and this appears to be an efficient way of finding the
optimal solution. As for the ship routing problem, it is also a good solution approach.
There is much literature on solving the problem by Dantzig–Wolfe decomposition.
Early papers [1, 2] describe a typical tramp ship scheduling problem, which were
the first works to use a Dantzig–Wolfe decomposition approach for ship routing and
scheduling. The master problem is the linear relaxation of a set partitioning problem
and subproblems are shortest path problems. But the algorithm presented cannot
guarantee optimal integer solutions. In [5, 8, 9], the demand is regarded as a constant
and Branch and Price is used to solve the problem. The problem is decomposed
into a ship route subproblem for each ship and a port inventory subproblem for
each port. The approach presented in this chapter is closest to that used in their
paper. Compared to their papers, the present chapter deals with different inventory
situations, and solves the stochastic problem rather than deterministic problem.

In realistic shipping operations, especially for ocean shipping, much of the
planning data is uncertain. Deterministic models for ship routing and scheduling
are sometimes inappropriate, and there is a need to develop stochastic model.
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The stochastic vehicle routing problem (SVRP) without inventory constraints and
with simple recourse actions is discussed extensively in the literature. A Branch and
Price algorithm for vehicle routing problem with stochastic demands is presented
in [7]. In this paper, the expected number of failures and the corresponding penalty
cost are considered in the objective function and a two stage stochastic program with
fixed recourse and capacity constraints is built. A straight-forward modification of
the Clark and Wright savings algorithm for the SVRP based on a discussion of
route failure is presented in [16]. In [18, 20], an integer L-shaped method is used
to solve SVRP to optimality. In [4] an a priori sequence among all customers of
minimal expected total length is proposed, and a variety of theoretical approaches
are analyzed as well. In addition, several solution frameworks for the stochastic
vehicle routing with stochastic demands are discussed in [17].

There are few references in the literature to stochastic ship routing problems with
inventory. A robust ship scheduling with multiple time windows is presented in [6].
This uses a set partitioning approach with the columns found a priori to minimize
the chances that ships stay idle in ports during the non-working days. A Markov
decision process model of the stochastic inventory routing problem is introduced in
[23], and approximation methods are used to find acceptable solutions.

This chapter considers the problem of optimizing the distribution of a single
commodity by a fleet of ships when there is limited storage at the supply and
consumption ports and the consumer demand is uncertain. Consumer demand is
described by a scenario tree and demand is assumed to be constant within each
period. A solution consists of a tree of schedules for each ship, where a schedule
for a ship specifies the loading and unloading quantities at each port visited and
the start time of each such operation (which we refer to as a service). These ship
schedules must be such that the storage limits at ports are satisfied at all times.
The problem is formulated as a multistage stochastic programming problem and is
solved by Branch and Price—a Branch and Bound method that uses Dantzig–Wolfe
decomposition to solve each node. The master problem is a set partitioning problem
with extra inventory constraints. Each column in the master problem corresponds
to a tree of schedules for a ship. Attractive columns are generated by a stochastic
dynamic programming using a backward labelling method.

The structure of the rest of the chapter is as follows. Section “Decomposition
Approach for the Stochastic Ship Routing Problem” introduces the Dantzig–
Wolfe decomposition approach and describes the structure of the master and
subproblems. This section also describes the techniques used to eliminate cycles.
Sections “Branch and Bound” gives the Branch and Bound algorithm and “Exam-
ples and Results” present computational results, and section “Conclusion” gives the
conclusion.
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Decomposition Approach for the Stochastic Ship
Routing Problem

Assumptions

The ocean transportation problem is too complex to consider every factor in the
real world when modelling the problem. In this chapter we make the following
simplifying assumptions:

• At each consumer port, the rate of demand is constant within a period, but can
change between periods.

• At each port, loading and unloading rates are constant.
• At most one ship can be loading or unloading at any given time. This assumption

avoids the overlap of services at a port.
• For each ship the travel time and cost between any two ports are fixed.
• A service at a port must start and finish within a period. Note, however, this is not

a practical limitation as the service can continue without a break in the following
period.

Solution Framework

A Branch and Price algorithm is used in this chapter. This consists of a master
problem which is solved by Branch and Bound (B&B), with each node in the
B&B tree being solved by Dantzig–Wolfe (DW) decomposition. Each column in the
master problem corresponds to a tree of schedules for a ship. There is a huge number
of these columns and if all were included explicitly the master problem would be
impossible to solve. However the DW approach only generates the small subset
of them that are needed, and is thus able to solve the full problem at each B&B
node. In each iteration of DW a subproblem is solved for each ship to generate an
attractive tree of schedules for that ship. In this chapter the subproblems are solved
by stochastic dynamic programming.

At any stage in the solution of a master problem at a B&B node, a (finite) subset
of the columns will have been generated. This problem, called a restricted master
problem, is solved and the shadow prices of the constraints are then used to find
the most negative reduced cost from among the columns that have not yet been
generated. This can be done without explicitly generating any columns by solving
a stochastic dynamic programming problem separately for each ship. The solution
gives the tree of schedules for the ship. If this added as a column to the master
problem, it would have the most negative reduced cost among all the possible
columns for that ship. This procedure continues until no column with negative
reduced cost can be generated, at which stage the master problem for that B&B
node has been solved.



Ship Routing with Stochastic Demand 145

Master Problem

The detail formulation of a master problem is introduced here. A port can be visited
several times within the time window of a scenario tree node, so an index for visit
number is needed. In the model, many objects are indexed by the triple (Port, Visit,
Scenario node) which is referred as a port visit. For any ship, there are a set of trees
of schedules for it. The problem is to choose one tree of schedules for each ship. We
introduce the details of master problem as below.

Indices

i port
k scenario tree node
a(k) predecessor node of node k in scenario tree
m the order of the visit to a port within a scenario tree node (i.e., the current

visit is the mth time the port has been visited in this node)
v ship
s tree of schedule for one ship
(i,m,k) a port visit

Sets

N set of ports
V set of ships
K set of scenario tree nodes
KT set of scenario tree nodes in final period
P set of port visits
Rv set of tree of schedules for ship v

Parameters

Asvimk the number of times in tree of schedules s for ship v that it makes port visit
(i,m,k) (must be 0 or 1 to be feasible)

Csv expected cost if ship v takes the tree of schedules s
Qsvimk quantity unloaded by ship v in port visit (i,m,k) if ship makes that port visit

in schedule tree s, and 0 otherwise (value is negative if ship is loading)
Tsvimk the start service time for ship v in (i,m,k) if the ship makes that port visit

in schedule tree s, and 0 otherwise
Bk end of the time period which includes scenario tree node k
Wi unloading rate from ship to port i (value is negative if ship is loading)
M the maximum number of visits to any port in a scenario tree node
Dik demand rate in port i in node k (value is negative at a supply port)
Si initial stock level in port i
S̄i upper bound for storage in port i
Si lower bound for storage in port i

The values of parameters Asvimk, Qsvimk, and Tsvimk are found by solving
subproblems. These three parameters represent the route information and all three
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are either zero or all three are nonzero. Asvimk is the number of times ship v makes
port visit (i,m,k) in schedule s, and to be feasible this must either be 0 or 1. However
during the solution process there may be cycles of port visits, and this leads to values
of Asvimk greater than 1. Such infeasible schedules cannot be included in the final
optimal solution. Parameters Qsvimk and Tsvimk represent, respectively, the quantity
loaded and the start service time for this port visit.
Variables

xsv 1 if ship v takes schedule tree s, and 0 otherwise
yimk 1 if some ship makes port visit (i,m,k), and 0 otherwise
qimk amount of commodity unloaded from a ship during port visit (i,m,k) (value

is negative if ship is loading)
tS
imk the start of service time in port visit (i,m,k)

tE
imk the end of service time in port visit (i,m,k)

hS
imk the stock level at time tS

imk
hE

imk the stock level at time tE
imk

Formulation of Master Problem

min ∑
v∈V

∑
s∈Rv

Csvxsv (1)

∑
v∈V

∑
s∈Rv

Asvimkxsv = yimk ∀(i,m,k) ∈ P (2)

∑
v∈V

∑
s∈Rv

Qsvimkxsv = qimk ∀(i,m,k) ∈ P (3)

∑
v∈V

∑
s∈Rv

Tsvimkxsv +(1− yimk)Bk = tS
imk ∀(i,m,k) ∈ P (4)

∑
s∈Rv

xsv = 1 ∀v ∈ V (5)

xsv ≥ 0 ∀v ∈ V,s ∈ Rv (6)

{xsv : s ∈ Rv} yield a valid tree of schedules for ship v, ∀v (7)

yimk ∈ {0,1} ∀ (i,m,k) ∈ P (8)

tE
imk = tS

imk +qimk/Wi ∀(i,m,k) ∈ P (9)

tE
i,m−1,k ≤ tS

imk ∀(i,m,k) ∈ P, m > 1 (10)

yimk ≥ yi,m+1,k ∀(i,m,k) ∈ P (11)

hE
imk = hS

imk− (tE
imk− tS

imk)Dik +qimk ∀(i,m,k) ∈ P (12)

hE
iMk− (Bk− tE

iMk)Dik ≥ 0 ∀i ∈ N, k ∈ KT (13)

hS
imk = Si− tS

imkDik ∀i ∈ N, m = 1, k = 1 (14)

hS
imk = hE

i,m−1,k− (tS
imk− tE

i,m−1,k)Dik ∀(i,m,k) ∈ P, m > 1 (15)
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hS
imk = hE

i,M,a(k)− (Ba(k)− tE
i,M,a(k))Di,a(k)

− (tS
imk−Ba(k))Dik ∀i ∈ N,m = 1,k > 1 (16)

Si ≤ hS
imk, hE

imk ≤ S̄i ∀(i,m,k) ∈ P (17)

In (1) we minimize the total expected cost. Constraints (5) and (6) result in a convex
combination of schedule trees for each ship v, and to be valid must yield a single
schedule tree. This can only happen if all schedule trees for ship v corresponding
to xsv > 0 follow the same tree of routes and the cost functions are linear over the
convex hull (as the cost functions are in our examples). Constraint (2) calculates
the number of occurrences of a port visit and ensures that each port visit occurs
at most once. The variable yimk is 0 if there are fewer than m ship visits at port
i in scenario node k and is 1 otherwise. Constraint (3) calculates the loading or
unloading quantity and constraint (4) calculates the start of service time for each
port visit. If port visit (i,m,k) occurs, then the first term in (4) gives the start time
for that service and the second term is zero. If port visit (i,m,k) does not occur, then
the first term will be zero and the second term will be Bk, i.e., the end of the period
for node k. Constraint (9) calculates the end of service time and (10) guarantees that
there is no overlap between two services, i.e., a later port visit can only be served
after the service of previous visit has been finished. Constraint (11) ensures that if
a port is visited m+ 1 times in a scenario node, it must be visited m times in that
scenario node. Constraints (12)–(17) are the inventory constraints. They ensure that
the storage level is between the upper and lower bound of the storage tank at the start
and end of each service. Since all flow rates are constant within a scenario node, the
inventory level will change linearly between the start and end service times. So the
constraints ensure that the inventory is within the bounds all the time within the
whole planning period.

Reduced Cost

After a restricted master problem is solved (i.e., a master problem with a subset
of the possible columns), dual variables will be known. These dual variables are
denoted by dA

imk, dQ
imk, dT

imk, and dS
v for constraints (2)–(5), respectively. The reduced

cost Ĉsv can then be calculated as follows:

Ĉsv = Csv− ∑
i,m,k

(AsvimkdA
imk +QsvimkdQ

imk +TsvimkdT
imk)−dS

v

= ∑
(i,m,k)→(i′,m′,k′)∈Es

PkCii′v − ∑
(i,m,k)∈Ns

(dA
imk−dQ

imkQsvimk +dT
imkTsvimk)−dS

v (18)

where Pk is the cumulative probability from start to node k that defines the scenario
tree, Es the set of edges, and Ns the set of port visits defining the tree of schedules
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s, and Cii′v is the travelling cost along the edge i→ i′ for ship v. Constraint (18)
expresses the reduced cost as the sum of terms over the edges and nodes in the tree
of schedules.

Ship Routing Subproblems

The parameters Qsvimk and Tsvimk as well as set Es and Ns in (18) represent the route
information generated by subproblems and are not given in advance. We wish to
generate a column with the minimum reduced cost so we replace these parameters
with variables qvimk and tS

vimk and also a variable route, which is specified by variable
sets of edges E and nodes N that will define the schedule tree. For a ship v, the
objective of the subproblem can be formulated as follows:

C̄v = min
E,N

min
q

min
tS

(

∑
(i,m,k)→(i′,m′,k′)∈E

PkCii′v

− ∑
(i,m,k)∈N

(dA
imk +dQ

imkqvimk +dT
imktS

vimk)

)

−dS
v (19)

In formulation (19), we try to find a physical visiting sequence and the correspond-
ing values of qsvimk and tS

svimk for each port visit in the sequence so as to minimize the
reduced cost given in (18). The dS

v term in (18) does not need to be considered in the
subproblems. It can be subtracted from the objectives after solving the subproblems.

A ship subproblem can then be formulated as a shortest tree problem and solved
by stochastic dynamic programming. The solution of the shortest tree problems is a
tree of schedules with the least reduced cost, and yields a column that can be added
into the master problem as a column. The state in the DP is (i,m,k,g, t), where i is
the port, m is the order of the visit, k is the node of scenario tree, g is the amount
of commodity on board the ship v when the ship arrives at port visit (i,m,k), and
t is the start service time for the port visit (i,m,k). Both start service time, t, and
the quantity on board the ship, g, are continuous quantities. However within the DP
step they have to be restricted to discrete values, and this may lead to slight sub-
optimality. If a service time is between two grid points, it will be delayed to the next
grid point, and a regular grid is used for values of g so that there is no inaccuracy
in accounting for the amounts on board ships. However, using discrete values for
g and t does not mean that our model can only generate the solution with these
discrete values. In fact, the master problem may choose several columns with the
same physical tree of routes but different time and loading quantities and use the
average of these columns as the solution, which may have the start service times
and loading quantities different from discrete values.
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Fig. 1 Structure of a DP network showing demand scenario parts as circles and alternative upper
and lower demand level branches in each period

Dynamic Programming Network

In this section, we describe the DP network for the ship subproblems. For each port
visit in the network, there is a start service node and an end service node related
to it. The costs in the objective are assigned to edges in the network. The DP
network for a ship subproblem is related to the scenario tree which describes the
pattern of consumer demands. We divide the network into several parts, each part,
called a demand scenario part, represents a node in the demand scenario tree in the
corresponding time period so that the DP network has the same top level structure
as the demand scenario tree. See Figs. 1, 2, and 3 for examples.

In a DP network, a ship starts from the dummy start node, makes a set of port
visits in different demand scenario parts of the network, and finishes the trip when
it arrives at the dummy final node. When the ship is at a start service node, it makes
decisions about how much to load or unload at the current port visit. When the ship
is at an end service node it has a choice of three different actions: it can sail to
another port visit in the same demand scenario part, it can stay at the current port
visit until the future information is available before deciding which port to visit in
the next period, or it can leave the current port visit immediately and sail to a port in
the next period, in which case the future information about demand will be revealed
during sailing but the ship will not change its destination port in response.
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Fig. 3 Detailed demand part of DP network with two ports, A and B, and two possible port visits
per port
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Figure 2 is a simple example of a DP network with two time periods. There are
three demand scenario parts in the network. The start node corresponds to the initial
status of the ship. Its status is defined by its position (in some port or at a position
at sea) and the amount of cargo on the ship. Figure 3 shows a fuller example of a
single demand scenario part of a network.

Table 1 DP network node types

Node Type Description

s decision node start service node: decision made is how
much to load or unload during the port visit

e decision node end service node: decision made is the
choice of next port visit or to delay until
more information is available

sum-up node forms the expected future value in port i at
current time given the decision to sail to
port j in next period

sum-up node forms the expected future value in port i at
end of current period before the decision of
which port to visit next

decision node split node: decision at current time of
which port visit of a given port to visit first
in the next period

decision node split node: decision at end of current period
of which port to visit in the next period and
which is the first port visit for that port

The different types of nodes in DP networks are listed in the Table 1. Nodes s ,
e and and the dummy start node are the decision nodes, and remaining nodes

are sum-up nodes. Each port visit (i,m,k) has a start service node s and an end

service node e . For each boundary between two periods there is one
i−j

node for
every pair of ports i and j. This is associated with a journey from port i to port j in
a later period starting before the period boundary at which the demands in the next

period will be revealed. Each
i−j

node is linked to a set of
i−j

decision nodes,
one for each demand scenario node in the following period, and its action is to sum

up the expected costs at these nodes. Each is associated with one future demand
scenario part and one port and selects the first port visit for that ship at that port.
For example, in Fig. 2, a ship can go from end service node of port visit (A,1,1) to

sum-up node
A−B

and sail to the start service node related to physical port B in
period 2 through the split nodes. (However in this example there is only one port
visit per port in period 2, so unlike the more general case shown in Fig. 3, there is no
choice in this example at the split node.) The horizontal line inside the node is used
to signify that the time window of this node is the whole period including the node.
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Table 2 Edge costs and times in DP network

Edges Edge costs Min edge time

s → e −dQ
imk(g−g′)−dT

imktS
imk−dA

imk |g−g′|/Wv

→ s PkCii′v T̃ ii′v

e → s PkCii′v T̃ ii′v

Another sum-up node
i
is on the boundary between two periods. This is associated

with a journey from port i to any port in the next period after the demands in next

period are known. Each
i
node is linked to a set of

i
nodes, one for each demand

scenario part. The decision made of which port to sail first at a node depends on
the future demands in its scenario, so can be different in different demand scenario
parts. The dot inside the node is used to signify that the arrival time at this node is

fixed on the period boundary. In the DP network the decision nodes are s and e

and : s and e relate to decisions within the current demand scenario part and
to the initial visit decisions in the following period.
Within a demand scenario part of the network, there can be edges from end

service nodes e to start service nodes s . These edges are the travelling edges,

and they have the associated travelling times and costs. Each end service node e

(related to physical port i) is linked with several sum-up nodes
i−j

and one sum-up

node
i
. The port visits of the same physical port share the same sum-up nodes.

For example, in Fig. 3, both end service nodes of port visit (A,1,k) and (A,2,k)

are linked with sum-up nodes
A−B

and
A

. Since a sum-up node is on the

boundary between periods, its time is fixed so the edges from node e to node
may have nonzero transition times on them. This corresponds to ships delaying their
journeys until more demand information is available.

The edge costs in the DP network are derived from the objective function (19)
of the ship routing subproblem, and are listed in the Table 2. Here g is the amount
of commodity on board the ship when it arrives at start service node (i,m,k), while
g′ is the amount of commodity on board the ship at end service node (i,m,k). So
the difference between them, |g− g′|, is the loading or unloading quantity in port
visit (i,m,k). Wv is the (constant) loading or unloading rate for ship v, Pk is the
cumulative probability of reaching node k in the demand scenario tree, Cii′v is the
travelling cost from port i to port i′ by ship v, and T̃ ii′v is the (undelayed) sailing
time from port i to port i′. Other edges which are in the network but not included
in the above table have zero costs and zero minimum edge times and are used to
define the stochastic structure of the network.

Every node in the network has a window for its visit time, so this is a stochastic
DP problem with time windows. The time window for nodes is the single time of
its period boundary, and the time window of every other node is initialized to be the
same as the period in which it lies. However if there are more restrictive windows
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for some nodes defined in the problem, the time windows on these nodes would be
reduced, and all windows can also be reduced in the course of the solution by the
B&B method.

Dynamic Programming Formulation

Since there are many different types of nodes in the DP network it is convenient
to be able to refer to any node by a general single index, l. Each node l in the DP
network for ship v has a function, denoted by flv(t,g), giving the expected cost to
the final node from node l when the node visit time is t and the amount on the ship
is g. In our problem, there is a time window for the visit time at each node (i.e.,
t ∈ [Ãlv, B̃lv]). Since a sum-up node is on the boundary between periods its time
is fixed and so its time window has zero width and there is only one time point in its
cost function, which therefore only depends on the quantity on board. Treating both
t and g as continuous quantities makes the problem difficult to solve, so instead we
restrict (t,g) to a discrete grid of values, T×Gv. Consequently the loading quantity
is also discrete as it is the difference in g between the start and end service nodes.
An example of part of the T×Gv grid and a port service are shown in Fig. 4. This

shows the expected cost f1 in a start service node s at start of service time t1 with

quantity g1 on board a ship, and the state reached in the end service node e for
two of the possible loadings that will be considered in calculating the best value of
f1. For instance, point (t4,g3) corresponds to a service lasting t4− t1 with the ship’s
load increased by g3−g1.

The direction of solving stochastic dynamic programming is from dummy final
node to the dummy start node. In the dummy final node L the cost function fLv(t,g)
is initialized to zero and on all other nodes is initialized to infinity (however, if we
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want to give a reward for a ship finishing early or having cargo on board at the end,
then a more general fLv(t,g) can be defined).

The values of flv(t,g) are calculated recursively as follows, the calculations being
for all ships v, all nodes l, all t ∈ T ∩ [Ãlv, B̃lv], and all g ∈ Gv.

• For l a s start service node and l′ the corresponding end service node e :

flv(t,g) = min
g′∈Gv:g′≥g

{

fl′v(T̃ lv(t,g
′ −g), g′) −dQ

l (g
′ −g)−dT

l t−dA
l

}

,

where T̃ lv(t,Δg) = min{t′ ∈ T : t′ ≥ t+ |Δg|/Wv} is the loading time rounded
to the closest higher discrete time, and assuming node l corresponds to a visit to
port i , dQ

l = dQ
i , dT

l −dT
i , and dA

l = dA
i as given in Table 2. The recurrence above

refers to a supply port. For a demand port the g′ ≥ g is replaced by g′ ≤ g.

• For l a split node or e end service node:

flv(t,g) = min
l′:l→l′

min
max{Ãl′v,t+T̃

ll
′ }≤t′≤B̃l′v

{fl′v(t′,g)+ C̃ll′v},

where if node l corresponds to a visit to port i, C̃ll′v is the cost of edge l→ l′ for

ship v as shown in the Table 2, and T̃ ll′ is the transition time from a s node l to

a e node l
′
, and for other cases is zero.

• For l a or sum-up node:

flv(t,g) = ∑
l′:l→l′

fl′v(t,g)

The goal is to find the cost function fFv(t) at the start dummy node F and the tree
of schedules for the ship, which can be found by tracking forward from F.

Algorithm for Solving Subproblems

The most common algorithms for the shortest path problem with time windows
are labelling algorithms, see [12, 13, 15]. These algorithms assign a label to each
node in the network giving the cost of the currently known shortest path from
the node to the final node. The algorithms repeatedly recalculate the labels for all the
nodes in the network (in an order determined by some heuristic rules), until there is
no improvement in the label of any node.

In this chapter we are considering a stochastic model whose objective is to
minimize the expected cost. This requires the problem of finding a single shortest
path which occurs in the deterministic case to be replaced by the problem of finding
a tree of shortest paths. Each label associated with a node is now the lowest expected
future cost known from the node to the end of the planning horizon for a specific
node visit time and quantity on board. The set of all labels at a node therefore
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Cost

Visit Time

Fig. 5 Cost function

define this expected cost as a function of the visit time and quantity on board. An
example of dependency of a cost function with visit time is shown in Fig. 5. The
cost functions in our problem are increasing functions of time. In a deterministic DP
network the shortest path calculation can be performed either from the start or from
the terminal nodes. In the stochastic case where the expected costs are required the
calculation starts at the terminal nodes. The iteration is started by setting the cost
function to zero at this dummy final node and to infinity at all other nodes. The
stochastic DP calculation then iteratively updates the cost function on each node in
the network from all the nodes on its outgoing edges.

Because the graphs in our problems contain directed cycles, we may not be able
to finish the updating by going through the network only once. We therefore have
to update the node cost functions iteratively and be prepared to update the cost for
one node several times. In an iteration of updating, we go through each node in
the network, and for each node we consider all the outgoing edges from the node.
If there has been any updating in the end node of an outgoing edge in last iteration,
we will update the cost of the start node of the edge using the cost function of the
end node. For the sum-up nodes, if one of the corresponding split nodes is updated
in the previous iteration, the sum-up node will be updated in the current iteration.
Therefore, we use a flag for each node to indicate whether or not the node is updated
in the last DP iteration.

The number of iterations required during the updating is highly dependent on
the order in which the nodes of the network are updated. Before starting to update
the cost functions we order the nodes as follows. First we calculate the minimum
number of directed edges from each node to the final dummy node. Then the nodes
are ordered so that nodes closer to the final dummy vertex have lower index than
those farther away. Then in each iteration the costs are updated in order of increasing
node index. Once there has been no change in the cost of any node in a complete
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Fig. 6 Cycles of Type I and II

pass through all the nodes, then the optimal costs have been found and we choose
the least cost from the cost function of the dummy start node in the network and
track the shortest tree through the network from the dummy start node.

Cycle Elimination

Because there are several port visits for each port and the order of port visits to
different ports is not predetermined by the structure of the network, it is possible
to generate port visit paths which are not logically possible. There are two types of
such impossible paths. Type I means that the ship returns to some port visit which
occurred for that ship before, while Type II means that the ship route contains a port
visit (i,m1,k) and a later port visit (i,m2,k) where m2 ≤ m1. Examples of these two
situations are shown in Fig. 6. We refer to both of these cases as cycles even though
Type II may not include a cycle in the graph of port visits.

When there is a cycle of Type I, a port visit occurs more than once, and in this
case the value of Asvimk will be greater than 1 and equal to the number of times the
port visit occurs. Also the Tsvimk and Qsvimk quantities will be the total over all the
times the port visit occurs. Allowing cycles gives a relaxation of the true situation in
our model, so bounds allowing them are still valid. However, a solution with cycles
is not logically feasible. However allowing cycles gives a relaxation of the true
situation, so we do not need to eliminate all the cycles when solving subproblems
and can add the tree of routes including cycles into the master problem. Then we
can eliminate cycles in the B&B algorithm by splitting a time window.

A K-cycle is defined to be a cycle of length K and elimination of K-cycles is well
described in the literature, by Irnich and Villeneuve [22] and Irnich and Desaulniers
[21]. However, it is not easy to avoid all the cycles with different lengths when
solving the subproblems, and doing that is time consuming. We therefore only
eliminate the 2-cycles. In our DP network, we divide a port visit into two nodes,
a start service node and an end service node, so a 2-cycle in our problem is different
from its original definition. See Fig. 7 for example. In the example, the start service
and end service nodes for a port visit are regarded as a big node, and the definition
of a 2-cycle is based on the corresponding port visits rather than the real nodes of
the network.
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Fig. 7 A Type I cycle in our DP network

In our problem, cycles can only occur within a demand scenario part of the DP
network, and there is no cycle crossing the period boundary or between different
scenarios at the same period. Hence we only need to consider cycle elimination for
start and end service nodes in the network. To eliminate 2-cycles using the method

introduced in [22], at each s and e node and for every time, we store the next port
visit following the current one for the best and second best path for each time point.
If there is a cycle when using the best solution, we use the second best solution
instead. This usually allows us to avoid 2-cycles of Type I and II and we call paths
satisfying this rule allowed paths. Note that all legal paths are allowed paths. We
need to keep updating the best and second best solution on each node during the
updating. The best path is the best among all allowed paths, while the second best
is the best among all allowed paths where the next port visit is different from the
best path.

Branch and Bound

The optimal solution of the stochastic ship routing problem must generate feasible
schedules of all ships. However the master problem is a relaxation and may yield
an infeasible ship schedule, either because the schedule is a mixture of schedules
with different sequences of port visits or because it contains a cycle of port visits.
To avoid this we use B&B. At each node of B&B tree a master problem with
the discrete requirements relaxed is solved using column generation method. If the
solution of this problem is not feasible, we branch so as to eliminate one of these
infeasibilities. The columns generated from subproblems are kept in the master
problem for other B&B nodes, only the infeasible column is deleted by setting the
upper bound of the column to zero.

There are many possible choices for the branching strategy. We branch on
infeasibilities in the following order.
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If there are columns with positive weight in the solution that correspond to a
path with a cycle, then we first branch on a time window so as to eliminate a cycle.
Assume that port visit (i,m,k) is involved in a cycle. Let {tS1

imk, . . . , t
SK
imk} be discrete

start service times associated with the port visit (i,m,k). Let t̄imk = 1/K ∑
y=1...K

tSy
imk

denote the average of these start service times. We do branching by splitting the
time window [Ã, B̃] for the start service time of port visit (i,m,k). Since the width
of the port visit time window is also reduced in child nodes, there is less chance of
getting other cycles later in the solution.

If there are no cycles in the solution but there are fractional port visit variables,
then a branch is made so as to either force a port visit to occur or not to occur. For
a port i and node k, the set of port visit variables yimk satisfies yi1k ≥ yi2k ≥ yi3k ≥
·· · ≥ yi,M−1,k ≥ yiMk and to be feasible all values must be 0 or 1. We first calculate
for each combination of (i,k) the difference between consecutive pairs of variables
and choose the maximum difference:

Yi,k = max
1≤m≤M−1

{yi,m+1,k− yi,m,k}

We then choose the minimum value for Yi,k, and choose the maximum value of yimk

which is less than 1 and branch on that variable. If the chosen yimk ≥ 0.5, we branch
first on yimk = 1 and the other branch is yimk = 0. If the value of chosen yimk < 0.5,
we branch first on yimk = 0 and the other branch is yimk = 1.

When in a branch where yim′ k is set to 0, no port arrivals (i,m,k) can occur for

m≥ m
′
. So we delete all the port arrivals (i,m,k) (where m≥ m

′
) as well as all the

edges linked with these port arrivals from the network of each ship. If yim′ k is set to
1 in a branch, no update happens for the structure of the ship networks. However, a
small artificial negative cost is added to each edge from the start service node of port
visit (i,m

′
,k) to its end service node, which makes port visit (i,m

′
,k) more attractive

than port arrivals (i,m,k) for m≥ m
′
.

If there are no cycles or non-integer yimk, then we calculate the flow ximkjnlv,
where ximkjnlv = ∑s∈Rv;(i,m,k)→(j,n,l)∈Es xsv. This quantity defines whether or not ship
v sails from port visit (i,m,k) to port visit (j,n, l). For each (j,n, l), we find the
maximum fractional value for ximkjnlv. Then from these maximum values we choose
the minimum value over (j,n, l). The formulation for this process is shown as
follows:

min
j,n,l

max
i,m,k,v

{ximkjnlv}

If the value of the chosen variable is less than 0.5, we branch first on ximkjnlv = 0
and ximkjnlv = 1 on the other branch. In the branch where ximkjnlv is set equal to 0,
the ship v does not sail from (i,m,k) to (j,n, l). Hence all corresponding edges are
deleted from the network of ship v. In the branch where ximkjnlv set to 1, we delete
all the edges for ship v coming out of (i,m,k) except those going into (j,n, l). For all
other ships, the edges from (i,m,k) to (j,n, l) are deleted from the networks.
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Table 3 Properties of test examples

EX Ports Max arrival Scenario nodes in tree Planning periods Branches Ships

a1 3 2 3 2 2 2

b1 5 3 3 2 2 2

b2 5 3 3 2 2 2

b3 5 3 3 2 2 2

c1 5 3 7 3 2 2

c2 5 3 7 3 2 2

c3 5 3 7 3 2 2

d1 6 4 7 3 2 3

d2 6 4 7 3 2 3

d3 6 4 7 3 2 3

f1 5 3 13 3 3 2

f2 5 3 13 3 3 2

g1 6 3 13 3 3 3

g2 6 3 13 3 3 3

g3 6 3 13 3 3 3

h1 8 4 40 4 3 3

h2 8 4 40 4 3 3

Stochastic ship routing problems are computationally demanding, and as a result
there is the danger that the B&B search may terminate because of time or memory
limits before finding an acceptable feasible solution. Depth-first search, although not
the fastest B&B search strategy for proving optimality, has the advantage of finding
feasible solutions early. Best-first B&B algorithm is a better strategy for proving
optimality, and both strategies can be combined by first using depth-first search to
find an early integer solution and then switching to best-first search to produce better
bounds. This mixed strategy worked well on some examples; however, all the results
reported in the next session use depth-first search only and were solved to zero gap.

Examples and Results

To test the models and solution methods developed in this chapter, a set of test
problems has been built. The implementation is written in C and CPLEX10.0 is
used to solve the sequence of LPs in each B&B node of the master problem. The ship
subproblems are independent of each other and are solved in parallel using OpenMP
on a 4-core processor. The data structures needed to represent the networks in the
subproblems are generated once only before the start of the optimization.

Table 3 gives the characteristics of each test problem. Example a1 is very small
and is used to illustrate the details of a solution, including the visit sequences,
start service time, quantity on board each ship, and the storage levels. All of these
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Fig. 8 Scenario tree of Example g1

Table 4 DP and master problem dimensions

EX Nodes Edges (i,m,k) Combinations Constraints

a1 56 82 18 152

b1 137 706 45 372

b2 137 706 45 372

b3 137 706 45 372

c1 347 1786 105 862

c2 347 1786 105 862

c3 347 1786 105 862

d1 416 2335 126 1033

d2 416 2335 126 1033

d3 416 2335 126 1033

f1 632 3421 195 1607

f2 632 3421 195 1607

g1 758 3421 234 1928

g2 758 4477 234 1928

g3 758 4477 234 1928

h1 3170 23,481 960 7898

h2 3170 23,481 960 7898

details are given as an example later in this section. The examples named with
the same first letter are problems with the same physical ports layout and the
same demand scenario tree structure, but different initial inventory levels and
demand rate situations at each port. The “Max Arrival” column gives the maximum
number of possible arrivals for each port in each demand scenario part, which is
the parameter M in the formulation introduced in section “Master Problem”. The
“Scenario Nodes”, “Planning Periods” and “Branches” columns give the structure
of the scenario tree. For example, in example g1, there are 13 demand scenario parts,
3 time periods, and 3 branches for each period in the scenario tree, which indicates
a scenario tree as shown in Fig. 8 (Table 4).
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Table 5 Computational results (elapsed time in sec)

EX B&B nodes Columns Total time Subprob time Master iters

a1 6 56 0.8 0.6 24

b1 78 1251 13 11 497

b2 177 3079 31 25 1407

b3 219 4204 47 41 1973

c1 81 2435 20 18 879

c2 87 3948 26 21 1633

c3 237 4757 57 48 1978

d1 564 6206 120 103 2649

d2 63 1353 15 14 284

d3 750 6945 138 105 2954

f1 405 9034 439 379 3799

f2 138 3623 126 118 1181

g1 342 7241 403 352 2805

g2 624 11,557 705 611 4731

g3 132 4109 181 161 1298

h1 3598 30,753 3690 3112 43,850

h2 2987 31,983 3371 2958 40,791

The computational results given in Table 5 are: the number of branch-and-
bound nodes used to find the optimal discrete solution, the total number of columns
generated from the subproblems, the total solving time, the elapsed time for solving
the subproblems, and the total number of column generation iterations in the
master problem. Examples a1–c3 are relatively small and can be solved within a
minute. However, when the problem size is increased, the solving times for the
later examples increase sharply. Another factor which may effect the solving time
is the initial storage levels and demand situations. For instance, examples f1 and
f2 have the same problem structure, but different initial storage levels and demand
situations, and f2 is solved much faster than f1. This is because the initial storage
levels and demand situations are related to the number of visits to each port in each
demand scenario part. If there is sufficient initial storage at a port, fewer visits may
be required, which reduces the length of the visiting sequences for ships and makes
the problem easier to solve.

As previously discussed, because of the size of the DP networks, the major
solving time in each example is taken in solving the ship subproblems, and Table 5
indicates that this takes around 75–94 % of the total time. In the tests the ship
subproblems are solved in parallel using one core per ship.

Some detailed solutions are given based on two of the above examples. In exam-
ple c1, there are 5 ports, and ports A, B, and C are customer ports and ports D and E
are supply ports. The left-hand side of Fig. 9 shows the demand scenario tree of the
example, and the demand trend changes in each demand scenario part. The tree of
routes on the right-hand side of Fig. 9 shows the ship routes in the solution of c1. In
the figure, ships choose different routes according to the different demand situations
in each period. For instance, ship 1 visits the different ports in the upper and lower
cases of period 2, since in the upper case the demands at ports A and B go up while
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Fig. 9 Solution of Example c1

the demand at port C goes down, and in the lower case the demand situations are just
the opposite. In period 3, ship 1 does nothing in the lower case, and this is because
all of the demands are satisfied in the case so that there is no need to travel any
further.

Figure 10 shows the optimal solution for b1. The physical routes, inventory
levels, and quantities on board ships are shown. The changes in the storage of each
consumer port and on ships as a function of time can be clearly seen. In period 1,
ship 1 sails the route D→A→D. There is an unloading service made by the ship at
port A so that there is an increase in the storage level at port A. There are also two
visits made by ship 2 to port C, so the storage level of port C goes up twice during
the period. There is no visit to port B for the whole period, and the stock level of port
B goes down throughout the period because of the constant demand rate. A similar
situation can be seen in period 2 from the same figure.

Conclusion

In this chapter, we propose a solution approach to solve the stochastic ship routing
problem with inventory management at the ports. The only uncertainty considered is
the demand levels at the ports. A Branch and Price algorithm is presented. A master
problem is formulated as a set partitioning model including inventory constraints,
while a subproblem for each ship is solved by dynamic programming to find the
least reduced cost columns for the master problem. The optimal integer solution is
searched along the B&B tree and column generation method is used to solve the
relaxed LP iteratively in each B&B node.

The ship routing subproblems are stochastic dynamic programming problems,
and they are solved by a backward labelling algorithm. The method we use is
analogous to the methods that have been used in the deterministic case, but have
had to be extended to deal with the scenario branching in the stochastic case. The
minimum expected costs from the start node to the final dummy node is calculated.
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Fig. 10 Solution of Example b1

Because of the complicated DP network, there are many possible cycles (which are
not feasible in a solution). Two-cycles are eliminated when solving the subproblems
and other cycles with length greater than 2 are eliminated during the B&B algorithm
by splitting the time windows. Because the ship subproblems are independent of
each other, OpenMP is used to solve them in parallel on a multi-core computer.

From the computational experience, our decomposition method is able to solve
medium sized examples. A set of test examples with different geographical port
layouts, number of ships, scenario trees, and initial storage situations were built
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and were solved by the decomposition method. Our computational experience
shows that around 75–94 % of the elapsed time to solve the problem is used to
solve the ship subproblems, even when subproblems are solved in parallel. The rest
of the elapsed time is used to do B&B administration and solve the LPs. Because
of the need to model on entire scenario tree, the stochastic problems become large,
even for a small transport network, and this limits the size of problem that can be
solved. Generating useful columns in a heuristic way a priori is a possible area for
further work. The generated columns can be added into the master problem to give
a warm start, which should reduce the solution times and allow larger problems to
be solved.

The methods in this chapter naturally extend to cases where ships can divert
during sailing (when new demand information becomes available) and cases where
ships can alter their speed. These cases give rise to nonlinear subproblems (with
whole problem becoming a stochastic nonlinear integer programming problem).
However because the subproblems can be solved by discretization and DP the
solution approach given in this chapter can still be applied.
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Investigation of Data Regularization
and Optimization of Timetables by Lithuanian
High Schools Example

Jonas Mockus and Lina Pupeikiene

Abstract In practice, we must first assign teachers and students to subject-groups
for school applications. In the Lithuanian high schools, the number of subject-
groups can be very large, since students are free to select just a small subset of
optional subjects.

The experimental investigation of this chapter did show that in such conditions,
some regularization of subject-groups is needed for prior to optimization. The regu-
larization is a sequential elimination of the timetable-breakers. A timetable-breaker
is a student or teacher the presence of which in a subject-group is most harmful
for the timetable. The automatic elimination of breakers is difficult due to many
subjective factors. In practice it is done by an expert trying to change the subject-
group accordingly. In the case of teachers the personal communication is used, if
the group changes do not help.

The application of optimization algorithms for timetabling data regularization is
the new result of this work. New also is the experimental investigation applying
optimization algorithms in 39 Lithuanian high schools.

Keywords School Timetabling • Optimization • Data regularization • Experi-
mental investigation

Introduction

No polynomial time algorithms are known for exact optimization of timetables in
real high schools. Thus, approximations and heuristics are applied. Efficiency of
calculations is the main objective, convergence to an exact solution is a desirable
property.

In this chapter, the experimental comparisons of the efficiency of timetable data
regularization and optimization are performed. The algorithms are compatible with
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the Lithuanian high school practice and flexible enough for adaptation to different
high schools.

The necessary timetabling conditions are represented as hard constraints. Penalty
points for violation of soft constraints in the general framework of Pareto optimality.

The school timetable d can be described formally as a binary four-dimensional
array representing decisions of timetable developers

d = [dm,s,r,t]M×S×R×T , (1)

where M is a set of teachers, S is a set of students, R is a set of classrooms, and T is
a set of weekly time-slots.

For example, the decision dm,s,r,t = 1 defines a lesson of a teacher m attended by
a student s in the room r at the time t. The decision dm,s,r,t = 0 means no lesson.
Denote by A a set of feasible timetables that satisfy the hard constraints. The
theoretical aim is to define such feasible timetable d∗ ∈ A which minimizes the soft
constraint violations.

A straightforward way to estimate the harmful effects is a sum of penalty points
for violation of soft constraints. However, in practice a hard constraint defining the
maximal daily hours should be lifted including the unfeasible hours as important
penalty factor. Up to 15 daily hours were reached using the initial subject-group
formations.

In practice, we must first assign teachers and students to subject-groups for
school applications. The mapping g = g(v) defines a subject-group (a group of
students selecting an optional subject v and a teacher of this subject). Using the
subject-groups g instead of students s and teachers m, we can transform the original
decision array (1) into the subject-group decision array as follows:

dg = dg
v,g,r,t, v ∈ V, g ∈ G, r ∈ R, t ∈ T. (2)

Here G is a set of subject-groups.
In the Lithuanian high schools, the number of subject-groups can be very

large, since students are free to select just a small subset of optional subjects
In such conditions, some regularization of subject-groups is needed for prior
to optimization. The regularization is a sequential elimination of the timetable-
breakers. A timetable-breaker is a student or teacher the presence of which in a
subject-group is most harmful for the timetable.

The results of experiment investigation of 39 high schools are presented. They
show that an expert regularization improves the final optimization results several
times (from 160,000 to 40,000 penalty points in large schools). Comparing with
an expert decisions the advantage of automatic optimization is speeding up the
scheduling process (from 20–60 h to 15–20 min). Unexpected result was that the
main advantage of optimization algorithms was speeding-up the subject-group
regularization by indicating the timetable-breakers and estimating their harmful
effects (saving at least a half of 160–240 h manual work of a good expert).
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Overview of Publications

A survey on educational timetabling problems [16] gives an overview of the
literature up to 2010. A new survey is in [17]. Different theoretical and practical
aspects of school timetabling are regarded in [1–3, 7–9, 18, 22, 26, 30–33]. New
developments are described in [4, 8, 10, 11, 13–15, 19, 20, 24, 25].

The web-based software for high school timetabling is described in [6, 28]. In
[28], building a master schedule involves assigning courses, teachers, and rooms to
time- slots, maximizing usage of resources, and fulfilling student course requests.
It is one of most complex tasks performed by administrators at a school each
year. This is particularly true for secondary schools in the USA where the number
and the variety of constraints (such as multi-day rotation, combined courses, room
capacities, teacher teaming, and student grouping, etc.) increase the complexity of
the scheduling process.

According to [29] the process of timetable construction is a common and
repetitive task for high schools worldwide. In this chapter a generic approach is
presented for Greek high schools organized around the idea of solving a significant
number of tractable integer programming problems. Variables of the underlying
mathematical model correspond to daily teacher schedules while a number of hard
and soft constraints are included so as for the model to handle practical aspects that
manifest themselves in Greek high schools. By selecting better teacher schedules
that exist in subproblems the quality of the overall solution gradually improves. The
collected results which are obtained within reasonable time are most promising.
The strength of the approach is supported by the fact that it managed to find the
best known results for two public instance problems included in the Benchmarking
Project for High School Timetabling (XHSTT-20121).

In [27], a general model for the timetabling problem of high schools in Denmark
is introduced, as seen from the perspective of the commercial system Lectio,
and an adaptive large neighborhood search (ALNS) algorithm is proposed for
producing solutions. Lectio is a general-purpose cloud-based system for high
school administration (available only for Danish high schools), which includes
an embedded application for creating a weekly timetable. Currently, 230 high
schools are customers of Lectio, and 191 have bought access to the timetabling
software. This constitutes the majority of high schools in Denmark. This large
customer base entails a need for a model of the problem which is general enough
to suit many different requirements, while still remains tractable by computer aided
solution methods. This supports the recent trend of developing general models for
timetabling problems.

In [20], authors present the progress on the benchmarking project for high school
timetabling that was introduced at PATAT 2008. In particular, they announce the
High School Timetabling Archive XHSTT-2011 with 21 instances from 8 countries
and an evaluator capable of checking the syntax of instances and evaluating the
solutions.
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The GA approach was used to evolve timetables for a South African primary
and high school [23, 24]. In this paper, one or more of the low-level construction
heuristics, namely, the largest degree, split degree, and saturation degree, was/were
used to construct timetables during initial population generation of the first phase.

In [25], the school timetabling problem is solved in two phases, both of which
employ integer programming. The first phase focuses on day allocations and the
second phase solves the rest of the problem. The approach was applied to a test
problem.

In [11], a tabu search is applied, to induce school timetables for three Vietnam
high schools. Firstly, a greedy search is used to create an initial timetable. This
timetable is then improved using tabu search. The moves performed by the tabu
search include single moves, swaps, and block moves.

In [8], the KHE general problem solver for school timetabling problems is
described. KHE employs the coarse grained parallel processing model and facilitates
the sharing of instances and the independent creation of multiple solutions in
parallel.

In [14], an XML format is presented for both timetabling and scheduling
problems.

In [10], polymorphic ejection chains are introduced, and applied to the problem
of repairing time assignments in high school timetables while preserving regularity.
An ejection chain is a sequence of repairs, each of which removes a defect intro-
duced by the previous repair. Just as the elements of a polymorphic list may have
different types, so in a polymorphic ejection chain the individual repairs may have
different types. Methods for the efficient realization of these ideas, implemented in
the author’s KHE framework, are given, and some initial experiments are presented.

Most of the implementations are specifically designed for particular cases of
timetabling and an objective comparison of the methods is difficult. In [7], the data
formats are proposed for exchange of timetabling instances and solutions.

On Optimization Algorithm

Different algorithms were applied, mostly well known, in school timetabling publi-
cations, including ones in [12]. Here is a short description. Multi-start algorithms are
a simple way to provide the convergence when the number of uniformly distributed
starting points is large. A disadvantage is a slow convergence.

The next improvement is two algorithms of simple local search, considering only
the closest timetables in a deterministic (LD) or random (LR) way. The local search
is improved further using an algorithm similar to simulated annealing (SA) with
fixed parameters. In SA, permutations are limited to the closest timetables and are
performed by closing the gaps between lectures for students and teachers.

In the final improvement, in order to provide independence of the human
operators, to save operators’ time, and to increase the efficiency of search, the
initial temperature and the annealing rate of SA are optimized using the Bayesian
approach (BA). The advantage of BA is that it filters-out random deviations.
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However, the best results were obtained using greedy heuristics to generate initial
timetables and permutation heuristics to optimize the initial schedule. Both heuris-
tics were improved and adapted to Lithuanian high schools by a long experimental
work using data of 39 high schools of different sizes. Here is a short description of
these heuristics.

Greedy Heuristic for Initial Timetables

1. Creating a random list of subject-groups.
2. Adding to the first group the first lesson and the first feasible cabinet (if not

feasible, then adding one with minimum violations).
3. Repeating the step 2 using the remaining groups.
4. Repeating step 3 using the remaining lessons.
5. Calculating the penalty points of the initial timetable.

Permutation Heuristic for Optimization of Initial Timetables

1. Saving the initial timetable with the name BEST.
2. Creating a list of non-feasible groups.
3. Selecting with equal probabilities one of three following actions:

(a) Setting randomly the new teaching time of randomly selected group from the
list 2.

(b) Interchanging the teaching times of two groups randomly selected from the
list 2.

(c) Interchanging the teaching times of three groups randomly selected from the
list 2.

4. If the new timetable is better, it replaces the BEST, otherwise the step 3 is
repeated for 60 s.

5. If no improvement, then two or three identical subjects are detected and
interchanged.

6. If timetable is improved, the step 3 is repeated, otherwise the step 5 is repeated.
7. Optimization stops after some fixed time, depending on the school size.

The necessary timetabling conditions are represented as hard constraints. Desir-
able conditions are included as penalty points in the general framework of Pareto
optimality. Different schools give different weights to various constraints. The
software for evaluating real timetables is included to compare with the results of
optimization.
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On the Formal Definition of High School Timetabling Problem

This section is meant for a formal description of objectives and constraints that are
implemented in the software. The description reflects the conditions of two upper
classes of Lithuanian high schools. We think that the formal expressions (an updated
version of those in [12]) are necessary for an exact understanding of the new results
of this chapter.

Hard Constraints

The school timetable d can be described formally as a binary four-dimensional array
[12, 21] representing decisions of timetable developers

d = [dm,s,r,t]M×S×R×T , (3)

where M is a set of teachers, S is a set of students, R is a set of classrooms, and T is
a set of weekly time-slots.

For example, the decision dm,s,r,t = 1 defines a lesson of a teacher m attended
by a student s in the room r at the time t. The decision dm,s,r,t = 0 means no lesson.
Denote by A a set of timetables that satisfy the hard constraints. The hard constraints
are mandatory therefore the set A of feasible timetables is well defined. Here is a
formal definition of the hard constraints:

h1(d) = ∑
s,r

dm,s,r,t ≤ 1, for all m, t, h2(d) = ∑
m,r

dm,s,r,t ≤ 1, for all s, t, (4)

h3(d) = ∑
m,s,r∈Rj

dm,s,r,t ≤ Rmax
j , for all t, j ∈ J, (5)

h4(d) = ∑
s

dm,s,r,t ≥ Smin, for all m,r, t, (6)

h5(d) = ∑
s

dm,s,r,t ≤ Smax, for all m,r, t, (7)

h6(d) = ∑
m,s,t∈Ti

dm,s,r,t ≤ Tmax, for all r, i ∈ I, (8)

where the symbol Ti denotes a set of time-slots of the ith week-day, I is a set of
week-days, J is a set of integers denoting different classrooms, Tmax limits daily
time-slots, Rj is a set of rooms of type j, and Rmax

j is the number of available j-rooms.
Condition (4) means no simultaneous lessons for teachers. Condition (4) denotes no
simultaneous lessons for students. Condition (5) limits the number of classrooms of
type j. Conditions (6) and (7) set the lower and upper class-size limits, and condition
(8) limits the maximal number of daily time-slots.
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These inequalities are written assuming “one-to-one” teacher–subject relation:
teacher⇔ subject.

The limit Tmax of daily time-slots is an important hard constraint. However, it is
convenient to regard it as a soft constraint with a large violation penalty. The reason
is that schools may accept an extra hour if that improves the general timetable.

The decision array dm,s,r,t is for timetable developers. Students select subjects v=
v(m), they do not select teachers m(v) of these subjects. Under the teacher⇔ subject
assumption, the decision array (1) can be directly transformed into the following
decision array:

dv = dv
v,s,r,t, v ∈ V, s ∈ S, r ∈ R, t ∈ T, (9)

where v = v(m) denotes a subject of the teacher m and V is a set of subjects.
Now we define some hard constraints specific to the upper classes of high schools.
Denote by c = c(v) students’ reward for selecting an optional subject v. Denote by
V1 ⊂ V a set of optional subjects, by V2 ⊂ V a set of mutually exclusive optional
subjects, and by V3 ⊂ V a set of mandatory subjects. Denote a decision array of
the student s as ds

v,s, where ds
v,s = 1, if the student s selects the subject v, otherwise

ds
v,s = 0.

Then the condition that a timetable should be based on students’ decisions can be
defined by the following hard constraint:

ds
v,s = ∑

r,t
dv,s,r,t, for all v,s, (10)

or

h7(d) = ds
v,s−∑

r,t
dv,s,r,t = 0, for all v,s. (11)

A set of hard constraints is defined by the demand for students of upper classes to
earn specific rewards:

h8(d) = ∑
v∈V1,r,t

dv,sc(v) = C1, for all s, (12)

h9(d) = ∑
v∈V2,r,t

dv,sc(v) = C2, for all s, (13)

h10(d) = ∑
v∈V3,r,t

dv,sc(v) = C3, for all s. (14)

Here C1 is the sum of rewards a student needs to obtain by selecting a subset
of optional subjects, C2 is the reward for selecting one of the optional mutually
exclusive subjects, and C3 is the sum of rewards for mandatory subjects. Expressions
(12)–(14) define hard constraints for students to obtain the prescribed rewards.
Attribution of rewards to subjects is presented in the form of a table.
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The numbers of weekly working days and teaching hours are defined by
the initial data and remain unchanged during optimization. We considered only
individual teachers and students so far.

We must assign teachers to subjects and students to subject-groups for school
applications. Assigning teachers to subjects is straightforward if a subject is
assigned to no more than one teacher. We assume that at present.

The mapping g = g(v) defines a subject-group (a group of students selecting an
optional subject v). Using the subject-groups g and subjects v instead of teachers
m and students s, we can transform the original decision array (1) into the group
decision array as follows:

dg = dg
v,g,r,t, v ∈ V, g ∈ G, r ∈ R, t ∈ T. (15)

Here G is a set of groups.

Soft Constraints

We use penalty points [5] to balance conflicting desires represented by soft
constraints.

Compactness of the timetable is a desirable property. The compactness can be
improved by reducing the number of gaps between lessons by moving lectures in
time while obeying the hard constraints:

∑
i∈I

∑
g,r,t∈Ti

|dg
v,g,r,t+1−dg

v,g,r,t|= B(v,d),

for a subject v. (16)

∑
i∈I

∑
v,r,t∈Ti

|dg
v,g,r,t+1−dg

v,g,r,t|= C(g,d),

for a group g, (17)

where I is a set of week-days. The numbers of gaps B(v,d) and C(g,d) in timetables
d are defined for subject-groups g and subjects v, assuming that the names of
teachers and students are irrelevant. Then the total number of gaps in the timetable
d can be expressed in such a way:

B(d) = ∑
v

B(v,d), (18)

C(d) = ∑
g

C(g,d). (19)

Another indicator of timetable d compactness is the number of free week-days for
teachers:
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W(v, i,d) = ∑
g,r,t∈Ti

dg
v,g,r,t, i ∈ I. (20)

The week-day W(v, i,d) is a free week-day for the subject v if the indicator
W(v, i,d) = 0, otherwise, it is a working week-day. Denote as Iv

w(v,d) a set of working
week-days for the subject v in the timetable d. A set of working days in the timetable
d for the teacher m is a union of working week-days for a set of subjects V(m)
delivered by the teacher m

Iw(m,d) = ∪v∈V(m)I
v
w(v,d). (21)

Compactness is improved by reducing the number of working week-days in the
timetable d for the teachers Iw

Iw(d) = ∑
m∈M

Iw(m,d). (22)

In the upper classes of high schools, subject-groups are different from the traditional
classes. The traditional classes can be regarded as social groups. A subject-group
involves students from different classes united by a set of selected subjects. The
simplest subject-group is an individual student.

In Lithuanian schools the smallest subject-group is five students, otherwise, the
subject is closed. The subject-groups are split into two parallel sub-groups, if the
number of students exceeds the classroom limits, 30 students, as usual. The splitting
may change the composition of groups while closing the gaps between the lessons
of students. For example, if there are two groups for the same subject, then a gap of
some first group student can be closed by swapping this student with some student
for the second group.

That is not convenient for teachers. A source of the instability is the student
swaps between the parallel subject-groups. However, preventing the swaps we
may increase some other undesirable factors. Thus, we consider the subject-group
stability as a soft constraint that depends on the policies of a local school. At present,
most of the schools regard the stability of subject-groups as a hard constraint.

Formally the desire to stabilize the groups can be expressed as the total number of
swaps δ (d) in the timetable d. Denote by L a set of parallel subject-groups. Denote
a group-change indicator for some parallel group L1 ∈ L and some student s ∈ L1
by this expression

l(t,s,L1) = 0, if s ∈ L1 and s̄ ∈ L̄1 at a time t, (23)

= 1, if s ∈ L̄1 and s̄ ∈ L1at a time t.

Here s̄ is an exchange student while swapping s ∈ L1 with some s̄ ∈ L̄1. Denote the
group L1 change at a time t as the difference

δ (d, t,s,L1) = |l(t,s,L1)− l(t+1,s,L1)|. (24)
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Then the group-change indicator is the total number of group changes in the
timetable d:

δ (d) = ∑
t∈T, L1∈L

δ (d,s, t,L1). (25)

We represent different soft constraints as different objectives fj(d), j = 1, . . . ,6, for
example:

f1(d) = B(d), (26)

f2(d) = C(d), (27)

f3(d) = Iw(d), (28)

f4(d) = δ (d), (29)

f5(d) = Tmax. (30)

Formally Tmax represents hard constraint (8). However we include it into a set of
soft constraints, because by exceeding this constraint we can improve the general
timetable. Didactic constraints, such as a desirability of higher proportion of difficult
subjects earlier and higher proportions of easy subjects later, are not mandatory
in Lithuanian schools. Thus, they create an additional set of soft constraints. It is
assumed that the “hard” subjects, such as mathematics, physics, chemistry, and
information technology, are more difficult. The humanities, such as ethics and arts,
are regarded as less difficult. The sports is an example of an easy subject.

Denote by p = p(v) the priority of subject v and by Tt the number of lesson hours
at time t. Denote by τt = Tt/5 the length of one priority slot. Set the priority indicator
qt(v) = 5, if the subject v is in the morning priority slot, set qt(v) = 1 if v is in the
evening slot, and set qt(v) = 4 or 3 or 2, if v is between the morning and evening
priority slots.

Then we can write the soft priority constraint as follows:

f6(d) = ρ(d) = ∑
v∈V, t∈T

|pt(v)−qt(v)|. (31)

By minimizing this soft constraint we may reduce the number of priority violations.

On the Experimental Results

In practice, we must first assign teachers and students to subject-groups for school
applications. In the Lithuanian high schools, the number of subject-groups can be
very large, since students are free to select just a small subset of optional subjects.
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The experimental investigation of this chapter did show that in such conditions,
some regularization of subject-groups is needed for prior to optimization. The
regularization is a sequential elimination of the timetable-breakers. The automatic
elimination of breakers is difficult due to many subjective factors. In practice it is
done by an expert who tries to change the subject-group accordingly. In the case of
teachers the personal communication is used, if the group changes do not help.

A straightforward way to estimate the harmful effects is a sum of penalty points
for violation of soft constraints. However, in practice a hard constraint defining the
maximal daily hours should be lifted including the unfeasible hours as important
penalty factor. Up to 15 daily hours were reached using the initial subject-group
formations.

The results of experiment investigation of 39 high schools are presented. They
show that an expert regularization improves the final optimization results several
times (from 160,000 to 40,000 penalty points in large schools). Comparing with
an expert decisions the advantage of automatic optimization is speeding up the
scheduling process (from 20–60 h to 15–20 min). Unexpected result was that the
main advantage of optimization algorithms was speeding-up the subject-group
regularization by indicating the timetable-breakers and estimating their harmful
effects (saving at least a half of 160–240 h manual work of a good expert).

Figures 1 and 2 show how the average optimization results depend on school size
and optimization method.

The four groups of columns in Fig. 1 correspond to schools of different sizes,
the middle columns show optimization without regularization, the right columns
show optimization after regularization, and the left column represents actual expert
decisions of the real schools.

The three groups of columns in Fig. 2 show the same results arranged in different
ways. The middle chart shows optimization without regularization, the right chart
shows optimization after regularization, and the left chart represents actual expert
decisions of the real schools. Different columns represent schools of different sizes:
from the largest to the smallest ones.

Fig. 1 Average optimization results, initial representation
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Fig. 2 Average optimization results, transformed representation

Conclusions

The results of experiment investigation of 39 high schools show that an expert
regularization improves the final optimization results several times (from 160,000
to 40,000 penalty points in large schools).

Comparing with an expert decisions the advantage of automatic optimization is
speeding up the scheduling process (from 20–60 h to 15–20 min).

Unexpected result was that the main advantage of optimization algorithms was
speeding-up the subject-group regularization by indicating the timetable-breakers
and estimating their harmful effects (saving at least a half of 160–240 h manual
work of a good expert).
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Abstract Engineers seek optimal solutions in designing systems but a crucial
element is to ensure bounded performance. For example, chemical reactors are often
very heavy energy users so it is important to find designs that minimize energy use
but the solution must be within strict safety limits.

Currently, the deterministic solution of dynamic systems to global optimality
can only be addressed for small problems. The solution of the ordinary differential
equation (ODE) systems in a verified way is only able to address low dimensional
problems mainly because the integration has to be stopped early due to the
overestimation generated by the verified method. Chemical engineering researchers
have used a range of techniques to tackle this problem using ways of finding
tight over/under-estimators. This chapter will review research work in chemical
engineering for such problems and present results of work we are undertaking using
interval methods.

In our work a verified solver that constructs upper and lower bounds on the
dynamic variables of initial value problem (IVP) for ODEs is used in a dynamic
global optimization method (sequential approach). Particular attention is paid to
the reduction of the overestimation by means of interval contractors. The solver
is used to provide guaranteed bounds on the objective function and on the first
order sensitivity equations in a branch and bound framework. Uncertainty can be
introduced in the dynamic constraints of the dynamic optimization problem and
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Introduction

Dynamic optimization arises in many practical applications. Optimization problems
can be formulated for dynamic processes depending on the application, e.g., the
parameter estimation problem for model development can be addressed if we
formulate an optimization problem in order to minimize the weighted squared errors
between the observed values and those predicted by the model. Another example
is the optimal control problem for which we wish to obtain the best paths of the
control variables in a given trajectory that minimize a certain function (resources
consumption, total time, and cost).

Direct and indirect methods are available for solving these problems. On one
hand, indirect methods involve solving the necessary conditions of optimality which
often results in a two-point boundary-value problem that is very difficult to solve.
On the other hand, direct methods are far more widely used mainly because they take
advantage of modern nonlinear programming (NLP) techniques. Regarding direct
methods there are two main approaches relying on discretization: the simultaneous
and sequential approach.

In the simultaneous approach (or orthogonal collocation or complete collocation
or full discretization) both the state and control variables are discretized yielding a
large-scale NLP problem [3] that does not require inner loops of ordinary differential
equations (ODEs) solvers. This kind of approach is an infeasible path method,
i.e., the problem is only feasible at the converged solution of the NLP. Large-
scale problems can be solved as it saves computational cost avoiding the ODE
integrations.

The sequential approach (also known as control vector parametrization or single-
shooting) requires the discretization of the control variables. This approach is a
feasible path method which means that the ODEs are satisfied at each iteration of
the NLP algorithm hence path constraints can be incorporated in this approach. The
method takes as inputs the control parameters and initial conditions to solve the
ODE model while the control variables are updated using the NLP solver. They can
solve relatively small scale problems because they require multiple computationally
demanding numerical integrations of the ODE model and the gradients of the
objective function.

This work starts by giving a review of dynamic optimization in chemical engi-
neering (section “Global Optimization of Dynamic Process Systems”). Specifically,
works where a deterministic approach is used to solve the problem in a guaranteed
way by means of verified ODE solvers. In section “Enclosing the Solutions of IVPs
for ODEs” various bounding techniques that have recently been contributed by
several research groups are described. Section “ITS Method with Overestimation
Reduction” describes the approach developed by our research group that uses an
interval Taylor series with interval contractors to address the dynamic optimization
problem. Section “Global Optimization Algorithm Using ITS with Overestimation
Reduction” incorporates the verified method proposed in a branch and bound
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method for global optimization. Results of the use of the branch and bound
algorithm with the proposed verified ODE solver are presented in section “Results”.
Finally, conclusions and research directions are provided in section “Conclusions”.

Global Optimization of Dynamic Process Systems

In chemical engineering dynamic processes arise in many applications and often
an optimal trajectory is sought. For example, we need the control path for optimal
resource consumption in changes of product grade on polymer plants. Some other
examples of applications are: state estimation for process control as well as in model
building applications [5, 37], design of distributed systems in chemical engineering,
including reactors and packed column separators [2], trajectory optimization in
chemical processes for transitions between operating conditions and to handle load
changes [7], off-line and online problems in process control, particularly for mul-
tivariable systems that are nonlinear and output constrained [10, 28], and optimum
batch process operating profiles, particularly for reactors and separators [24].

There are many problems that require guaranteed bounded performance along
the whole trajectory mainly because of safety critical and environmental limits. In
these applications, it is not admissible to allow a certain variable to go beyond some
prescribed limits. For example, the content of a certain compound in a stream is
not allowed to be present in a higher concentration than the level permitted by the
environmental regulator who might otherwise oblige the plant to shut down. The
engineer has to make sure that this concentration is within the admissible limits at
all times, however, he/she must do it without compromising too much the cost of the
plant operation and the qualities of all products. Safety critical plants require that
the variables of interest, for example, temperature or pressure of plant equipment,
be within prescribed limits for the whole time of operation.

Obtaining the optimal performance is not an easy task since dynamic models in
chemical engineering exhibit non-convexities due to the combination of nonlinear
terms, and thus, multiple local minima arise in the model. Deterministic global
optimization techniques are developed and used. Stochastic methods are also used
although they are not able to provide a guarantee that the global optima have been
found. Hybrid approaches for global optimization have also been developed. In [47]
and [46] a method that uses balanced random interval arithmetic is described and
used in optimization examples, respectively. In this technique a trade-off between
efficiency and robustness is proposed; however, the guarantee of finding the global
optimum is sacrificed.

Moreover, to guarantee that we are within limits we are required to rigorously
make sure we are including all possible solutions taking into account approximation
and truncation errors in the numerical computations. Computations can be made to
rigorously determine the optimal solution and are able to guarantee the best bounded
performance.
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This can be achieved if we obtain bounds on the dynamic variables that are
mathematically verified to be within a safe operating range. A direct sequential
approach with a verified method can be used to obtain such bounds. In this approach
a verified ODE solver is used to provide bounds in which all the possible solutions
are guaranteed to be contained. However, an important challenge in this field is the
overestimation generated in the integration process that causes the bounds to be
useless because they are very conservative or in the worst case they tend to ±∞ and
the simulation has to be stopped. The tightness of these bounds directly affects the
global optimization algorithm. Žilinskas and Žilinskas [48] proved experimentally
for relatively small problems how using exact bounds results in approximately twice
as efficient than using interval arithmetic inclusions.

Several chemical engineering researchers have devoted their efforts to solve the
guaranteed global optimization problem for dynamic systems and most of these
research works implement an extensive search NLP such as a branch and bound
framework together with a guaranteed ODE solver within a sequential approach.
A branch and bound framework was used with the αBB method [1] in a sequential
approach and applied to four different optimal control problems including the
optimal control of batch and semi-batch processes [5], and to parameter estimation
problems to determine reaction kinetic constants from time series data [6]. In
principle the method of Esposito and Floudas [5, 6] provides a guaranteed global
optimum. The rigorous underestimators needed are hard to obtain and here only
sampling approaches were proposed. Another sequential approach implementing
a branch and bound framework was developed with a convex underestimating
procedure [25] which they applied to parameter estimation, chemical kinetics and
modelling, and optimal control problems. Some years later, again using a sequential
approach and a branch and bound framework, Papamichail and Adjiman [26]
used McCormick relaxations and constant and affine bounds in the solution
of parameter estimation and optimal control problems. The approach used by
Papamichail and Adjiman [25, 26] is computationally expensive in constructing
tight affine underestimators and overestimators. Singer and Barton [36] presented a
sequential approach using another branch and bound framework for problems with
an integral objective function. This algorithm implements McCormick relaxations to
construct the convex relaxations and the method was applied to parameter estimation
and optimal control problems. The dynamic optimization problem has also been
addressed using Taylor Models in a sequential approach and a branch and bound
framework with focus on the tightness of the ODEs state bounds. This method uses
Taylor Models method with an interval remainder term and was applied to several
parameter estimation problems [14]. Later, they applied the same method but this
time with a branch and reduce approach using a domain reduction technique [15]
and the applications were an optimal control and a final time formulation of the oil
shale pyrolysis problems. The later method was extended to account for inequality
path constraints in a rigorous way [43] and was applied to three semi-batch reactor
problems.

Only a few research groups have worked on this problem and they have mainly
made use of a branch and bound framework in a sequential framework. The available
methods for solving optimization of dynamic systems to global optimality are only
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able to address low dimensional problems (of the order of 4–6 state variables). In
these methods one of the main challenges to overcome is on the construction of
effective and efficient bounds for the ODE system since tight and computationally
cheap bounds are needed. This problem arises because of the overestimation
produced while constructing the bounds due to the dependency property in interval
arithmetic as well as the wrapping effect.

Enclosing the Solutions of IVPs for ODEs

The mathematical form of the problem that this section considers is as follows:

ẏ = f(y,θ), y(t0,θ) = y0(θ), y0 ∈ Y0, θ ∈Θ (1)

where t ∈ [t0, tf ], θ represent the time-invariant parameters with Θ = [θ ,θ ], y
represent the vector of state variables, and y0 are the initial conditions at time t0
with Y0 = [y0,y0]. Boldface characters are used to denote vector valued quantities
unless otherwise noted.

In this work the functions mid(X) and w(X) represent the midpoint and the
wideness of the interval or interval vector, respectively. In the case of the interval
vector these functions are obtained componentwise. They are given by

w(X) = X−X

mid(X) =
X+X

2

where X and X are the lower and upper endpoints, respectively.
Finding bounds that enclose the state variables of the dynamic optimization in a

reliable way is a difficult task. The solution tools are often based on methods that
rely on some implementations of interval analysis that are subject to overestimation
specially when it is desired to propagate these bounds introducing uncertainty in
the system parameters and initial conditions. The overestimation in these methods
is produced mainly because of the so-called dependency problem and wrapping
effect.

Dependency Problem

The dependency problem arises in interval analysis because the method does not
account for the dependency of multiple repetitions of the variables in a mathematical
model. In order to manage this problem ways of reducing to a minimum the number
of repetitions of the same variable are sought. The next example illustrates the
dependency problem.
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Example 1. Consider the following function: f (x) = xx and the ranges of X =
[−1,1]. The natural interval extension of f using X yields

f (X) = X X = [−1,1][−1,1] = [−1,1]

However, if we rewrite the function as f (x) = x2 and perform the natural interval
extension again the result is different

f (X) = X2 = [−1,1]2 = [0,1]

The first time the function was evaluated the true range of the function was
overestimated but in the second case the exact range was obtained.

Wrapping Effect

The wrapping effect is caused by the introduction of excess points, points that
do not belong to the solution set, into the wrapping of a set. In most interval
arithmetic algorithms wrapping operations enclose those excess points. These points
collectively are called wrapping excess and contribute to the wrapping effect.

In the next subsections different existing approaches to enclose the solutions of
initial value problems (IVPs) for ODEs are described and their main properties are
discussed.

Interval Taylor Series

The first method for constructing bounds for ODEs using interval analysis was
devised by Moore [21]. His method consists of two stages:

1. In the first stage the existence and uniqueness of the solution is validated by
means of the Banach fixed-point theorem and the Picard–Lindelof operator.
A Taylor series enclosure is used in the Moore algorithm to do this.

2. In the second stage a refinement of the solution is obtained using a high order
Taylor series method.

The main challenge in methods based on interval arithmetic and high order Taylor
series is on the reduction of the overestimation caused by the wrapping effect.

The Interval Taylor Series (ITS) method has been used in its traditional form
with an interval remainder term. However, convex and concave bounds have been
obtained using the McCormick relaxation rules where the underlying interval
bounds are computed using an ITS method. In the next two sections “Interval
Remainder Term” and “McCormick Relaxation Technique”, the ITS method and
the method with McCormick relaxations are presented, respectively.
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Interval Remainder Term

The interval Taylor series method has been traditionally used with an interval
remainder term. The algorithms of [4, 12, 21], and [17] are an example of this. It is
the simplest way to evaluate the remainder term as only upper and lower bounds that
include the solution are needed. The first and second stages of a general ITS method
that includes parameter dependence are described by the following equations.

A Priori Enclosure

Ỹj = Yj +
k−1

∑
i=1

[0,hj]
if[i](Yj,Θ)+ [0,hj]

kf[k](Ỹ0
j ,Θ)⊆ Ỹ0

j (2)

Computing a Tighter Enclosure

uj+1 = ŷj +
k−1

∑
i=1

hi
jf
[i](ŷj, θ̂) (3)

Sy
j+1 = I+

k−1

∑
i=1

hi
j
∂ f[i]

∂y
(Yj,Θ) (4)

Sθ
j+1 =

k−1

∑
i=0

hi
j
∂ f[i]

∂θ
(Yj,Θ) (5)

Zj+1 = hk
j f[k](Ỹj,Θ) (6)

Yj+1 = uj+1 +Sy
j+1(Yj− ŷj)+Sθ

j+1(Θ − θ̂)+Zj+1 (7)

The product Sy
j+1(Yj− ŷj) in (7) is rearranged in the following way to reduce the

wrapping effect

Γ j+1 = A−1
j+1(Zj+1− ẑj+1)+A−1

j+1(S
y
j+1Aj)Γ j +(A−1

j+1Sθ
j+1)(Θ − θ̂) (8)

Yj+1 = uj+1 +(Sy
j+1Aj)Γ j +Sθ

j+1(Θ − θ̂)+Zj+1 (9)

where I is the identity matrix and ŷj is the midpoint of Yj. Here, the Taylor
coefficients f[i] are computed using automatic differentiation, Γ 0 = Y0− ŷ0, A0 = I,
and Aj+1 is chosen as the Qj+1 matrix of the QR factorization (Qj+1Rj+1) of the
midpoint of Sy

j+1Aj, the parallelepiped enclosure of Γ j+1. Here, Rj+1 represents the
upper triangular matrix.

McCormick Relaxation Technique

The interval Taylor series method has also been considered using the McCormick
relaxation rules. The idea here is to use McCormick relaxations in all the elementary
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operations of a factorable function in a recursive way so as to construct convex
and concave relaxations of the original ODE system, that are useful in global
optimization. The method assumes that interval bounds are available. Therefore,
these convex and concave bounds are guaranteed to be at least as tight as the interval
bounds [32]. The use of McCormick bounds typically increases the computational
time by a factor of 2 when compared to interval bounds. The first and second
stages are illustrated by (10) and (12). In these equations the superindexes cv
and cc are used to denote the convex underestimator and concave overestimator
(convex/concave relaxations), respectively. The ! operator is used here to denote
that the operation yields concave and convex bounds.

A Priori Enclosure

ỹcv
j , ỹcc

j t(θ) =
k−1

∑
i=0

[0,hj]
i! [f[i],cv, f[i],cc](ycv

j (θ),ycc
j (θ),θ)

+ [0,hj]
kf[k](Ỹ0

j ,Θ)

(10)

Computing a Tighter Enclosure

[μcv
j ,μcc

j ](θ) = ỹj +[0,1]! ([ycv
j ,ycc

j ](θ)− ỹj)

[ρcv,ρcc](θ) = θ̂ +[0,1]! (θ − θ̂)

[Sy,cv
j+1 ,S

y,cc
j+1 ](θ) =

k−1

∑
i=0

hi
j

[

∂ f[i],cv

∂y
,

∂ f[i],cc

∂y

]

([μcv
j ,μcc

j ](θ), [ρcv,ρcc](θ))

[Sθ ,cv
j+1 ,S

θ ,cc
j+1 ](θ) =

k−1

∑
i=0

hi
j

[

∂ f[i],cv

∂θ
,

∂ f[i],cc

∂θ

]

([μcv
j ,μcc

j ](θ), [ρcv,ρcc](θ))

[Zcv
j+1,Z

cc
j+1](θ) = hk

j [f
[k],cv, f[k],cc](ỹcv

j (θ), ỹcc
j (θ),θ)

[ycv
j+1,y

cc
j+1](θ) = uj+1 +[Sy,cv

j+1 ,S
y,cc
j+1 ](θ)! ([ycv

j ,ycc
j ](θ)− ŷj)

+[Sθ ,cv
j+1 ,S

θ ,cc
j+1 ](θ)! (θ − θ̂)+ [Zcv

j+1,Z
cc
j+1](θ) (11)

The term [Sy,cv
j+1 ,S

y,cc
j+1 ](θ)! ([ycv

j ,ycc
j ](θ)− ŷj) is rearranged since it is an important

contributor to the wrapping effect

[Γ cv
j+1,Γ

cc
j+1](θ) = A−1

j+1! ([Zcv
j+1,Z

cc
j+1](θ)−mid(Zj+1))

+[A−1
j+1! ([Sy,cv

j+1 ,S
y,cc
j+1 ](θ)!Aj)]! [Γ cv

j ,Γ cc
j ](θ)

+A−1
j+1! ([Sy,cv

j+1 ,S
y,cc
j+1 ](θ))! (θ − θ̂)
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ycv
j+1,y

cc
j+1t(θ) = uj+1 +[Zcv

j+1,Z
cc
j+1](θ)

+([Sy,cv
j+1 ,S

y,cc
j+1 ](θ)!Aj)! [Γ cv

j ,Γ cc
j ](θ)

+ [Sθ ,cv
j+1 ,S

θ ,cc
j+1 ](θ)! (θ − θ̂)

(12)

The matrix Aj+1 is chosen again as the Qj+1 matrix of the QR factorization of the
midpoint of Sy

j+1Aj.

Interval Hermite–Obreschkoff

The software VNODE-LP [23], which is one of the best known software packages
for this purpose, makes an implementation of the interval Taylor series method with
the Hermite–Obreschkoff scheme (IHO). It consists of two stages as the interval
Taylor series method; in the first stage, the validation of existence and uniqueness
is carried out and a suitable step size and a priori enclosure are chosen and in the
second stage an Hermite–Obreschkoff scheme which uses a predictor and corrector
steps is used. Usually, this package represents a benchmark for other packages for
the same purpose.

A Priori Enclosure
This stage is computed as in the ITS method with (2).

Computing a Tighter Enclosure

Predictor The second phase consists in a predictor and a corrector steps where a
representation of the solution Y∗j+1 is obtained and then refined as Yj+1, respectively.

ûj+1 = uj +
k

∑
i=1

hi
jf
[i](uj) (13)

zj+1 = hk+1
j f[k+1](Ỹj) (14)

Uj+1 = I+
k

∑
i=1

∂ f[i]

∂y
(Yj) (15)

Xj+1 = (Uj+1Ŝj)α +{(Uj+1Aj)Ω j∩ (Uj+1Qj)Ω QR,j} (16)

with α = Y0−u0. Ω j, Âj and Ω QR,j,Q̂j correspond to the modifying terms of the
parallelepiped and QR factorization methods [17], respectively.

A predicting enclosure Y∗j+1 is obtained with (17)

Y∗j+1 = (ûj+1 + zj+1 +Xj+1)∩ Ỹj (17)
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Corrector The corrector step uses the solution obtained in the predictor step Y∗j+1
and refines it.

ŷ∗j+1 = mid(Y∗j+1) (18)

ck,p
i =

k!(k+p− i)!
(p+ k)!(k− i)!

k,p, i≥ 0 (19)

Bj+1 =
k

∑
i=0

(−1)ick,p
i hi

j
∂ f[i]

∂y
(Y∗j+1) (20)

Fj =
p

∑
i=0

ck,p
i hi

j
∂ f[i]

∂y
(Yj) (21)

b̂j+1 = mid(Bj+1) (22)

Sj+1 = (b−1
j+1Fj)Ŝj (23)

Aj+1 = (b̂−1
j+1Fj)Âj (24)

Qj+1 = (b̂−1
j+1Fj)Q̂j (25)

γp,k =
k!p!

(p+ k)!
(26)

Ej+1 = (−1)kγp,khp+k+1
j f[p+k+1](Ỹj) (27)

ĝj+1 =
k

∑
i=0

cp,k
i hi

jf
[i](ûj)−

p

∑
i=0

(−1)if[i](ŷ∗j+1) (28)

Dj+1 = ĝj+1 +Ej+1 (29)

Wj+1 = b̂−1
j+1Dj+1 +(I− b̂−1

j+1Bj+1)(Y∗j+1− ŷ∗j+1) (30)

Lj+1 = (Aj+1Ω j)∩ (Qj+1Ω QR,j) (31)

The tight enclosure obtained with the corrector step is represented by (32).

Yj+1 = (ŷ∗j+1 +Sj+1α +Lj+1 +Wj+1)∩Y∗j+1 (32)

For the next time step a series of new values are needed for

ûj+1 = mid(Yj+1)

Ŝj+1 = mid(Sj+1)

Vj+1 = ŷ∗j+1− û+(Sj+1− Ŝj+1)α +Wj+1

Âj+1 = mid(Aj+1)
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Ω j+1 = (Â−1
j+1Aj+1)Ω j + Â−1

j+1Vj+1

Q̂j+1 is chosen as the orthogonal matrix in the QR factorization as in the previous
methods.

Ω QR,j+1 = (Q̂−1
j+1Qj+1)Ω QR,j + Q̂−1

j+1Vj+1

Taylor Models

The Taylor Models (TM) method is based on Remainder Differential Algebra
(RDA) operations [19] which are used in the Taylor Model arithmetic. The Taylor
Models method is currently one of the best ways to deal with the dependency
problem in verified solution of ODEs mainly because Taylor Models of functions
represent Taylor polynomials in symbolic form with an interval remainder term;
however, their computation results in high computational cost. Taylor Models have
been studied using different techniques such as the traditional interval remainder
(section “Interval Remainder Term”), McCormick relaxations (section “McCormick
Relaxation Technique”), and ellipsoidal calculus (section “Ellipsoidal Remainder
Term”). A Taylor Model of a function is represented by a qth order truncated Taylor
series polynomial Pf and a remainder term Rf .

Tf = (Pf ,Rf ) (33)

and B(Pf ) is the interval bound of the polynomial. Bounds on the Taylor Model
can be computed by B(Tf ) = B(Pf )+Rf .

Interval Remainder Term

Similar to the ITS method with an interval remainder term the easiest way to
construct bounds in Taylor Models is by considering its remainder term in the form
of an interval. This approach is used in VSPODE [16], and COSY [20].

A Priori Enclosure
An a priori enclosure can be computed following a high order enclosure approach
either by (2) [16] or by Taylor Models (34) [33].

Tỹj(θ) =
k−1

∑
i=1

[0,hj]
iTf[i] (Tyj(θ),θ)+ [0,hj]

kf[k](Ỹ0
j ,Θ) (34)

However, the use of (2) over (34) does not usually have a big impact in the two-stage
method.
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Computing a Tighter Enclosure According to [16]

P̂Uj+1 = P̂yj +
k−1

∑
i=1

hi
jTf̂[i] +hk

j f[k](Ỹ0
j ,Θ) (35)

R̂yj = Tyj −P̂yj (36)

Tyj+1 = P̂Uj+1 + R̂Uj+1 +Sy
j+1R̂yj (37)

where mid(R̂Uj+1) = 0 and P̂Uj+1 is the polynomial part with the constant term
conveniently modified, the centered polynomial.
Rearranging the product Sy

j+1R̂yj .

Vj+1 = (A−1
j+1Sy

j+1Aj)Vj +A−1
j+1R̂Uj+1

Tyj+1 = P̂Uj+1 +{Aj+1vj+1|vj+1 ∈ Vj+1} (38)

Yj+1 = B(P̂Uj+1)+Aj+1Vj+1 (39)

where V0 = 0, A0 = I, Aj+1 =Qj, and (Qj,Rj) =mid(Sy
j+1Aj), the QR factorization.

Computing a Tighter Enclosure According to [33]

TVj+1(θ) =
k−1

∑
i=0

hi
jTf[i] (P̂yj(θ),θ) (40)

TRj+1(θ) = hk
j Tf[k] (Tỹj(θ),θ) (41)

TJj+1(θ) =
k−1

∑
i=0

hi
jT ∂ f[i]

∂y

(Tyj(θ),θ) (42)

Tyj+1(θ) = TVj+1(θ)+TJj+1(θ)R̂yj +TRj+1(θ) (43)

As in the previous cases the rearrangement of the term TJj+1(θ)R̂yj is carried out in
order to avoid the wrapping effect.

TΔ j+1(θ) =
{

A−1
j+1

[

TJj+1(θ)Aj

]}

TΔ j(θ)

+A−1
j+1

[

TRj+1(θ)+TVj+1(θ)−P̂xj+1(θ)
] (44)

Tyj+1(θ) = TVj+1(θ)+TRj+1(θ)+
[

TJj+1(θ)Aj

]

TΔ j(θ) (45)

The matrix Aj+1 is chosen once more as the midpoint of the product Sy
j+1Aj.
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McCormick Relaxation Technique

McCormick relaxations have been used with Taylor Models in an approach called
McCormick–Taylor Model. In this approach the convex/concave bounds are com-
puted alongside the interval bounds [33].
A McCormick–Taylor Model is defined as

MT f(θ) = Pf(θ)+MRf(θ) (46)

MRf(θ) = {[rL
f ,r

U
f ], [r

cv
f ,rcc

f ](θ)} (47)

A Priori Enclosure

Mỹj(θ) =
k−1

∑
i=1

[0,hj]
iMf[i] (Myj(θ),θ)+ [0,hj]

kf[k](Ỹ0
j ,Θ) (48)

Computing a Tighter Enclosure

MT Vj+1(θ) =
k−1

∑
i=0

hi
jMT f[i] (P̂yj(θ),θ)

MJj+1(θ) =
k−1

∑
i=0

hi
jM ∂ f[i]

∂y

(Myj(θ),θ)

MRj+1(θ) = hk
j Mf[k] (Mỹj(θ),θ)

MT yj+1(θ) = MT Vj+1(θ)+MJj+1(θ)×M̂Ryj
+MRj+1(θ) (49)

The wrapping effect needs to be mitigated as in the previous cases by modifying the
term MJj+1(θ)×M̂Ryj

MΔ j+1(θ) =
{

A−1
j+1

[

MJj+1(θ)Aj

]}

MΔ j(θ)

+A−1
j+1

[

MRj+1(θ)+MVj+1(θ)−P̂xj+1(θ)
] (50)

MT yj+1(θ) = MT Vj+1(θ)+
[

MJj+1(θ)Aj

]

MΔ j(θ)+MRj+1(θ) (51)

where MΔ0(θ) = M̂Ry0
(θ). The matrix A−1

j+1 is obtained by computing the QR

factorization of the midpoint of Sy
j+1Aj.
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Ellipsoidal Remainder Term

On top of that ellipsoidal remainder bounds have been used in Taylor Models. This
new approach can guarantee the propagation of stable bounds for asymptotically
stable systems and with a given level of uncertainty [40].

E T f = Pf ⊕E (Qf ) (52)

Here, ⊕ stands for the Minkowski sum of two sets, E (Qf ) is an ellipsoid centered

at the origin and is defined as {Q
1
2
f v|v ∈Rn : vTv≤ 1} where Qf is an n-dimensional

positive semi-definite symmetric shape matrix.
The way in which this method proceeds is different to the previous ones in that

a predicting enclosure is computed first and then a step size for which the predictor
gives a guaranteed enclosure is computed by solving an optimization problem [8].

In order to compute a Taylor Model with ellipsoidal remainder for the function:
f[i] (Taylor coefficients), the following steps are needed.

Obtain the Taylor Model with ellipsoidal remainder of yj as

E T yj(θ) = Pyj(θ)⊕E (Qyj) (53)

The Taylor Model of f[i] can be obtained with the polynomial part of (53)

Tf[i] (Pyj(θ),θ) = Pf[i] (θ)⊕Rf[i] (54)

Obtain the interval hull of E (Qyj)

Ryj = B(E (Qyj))

Compute the derivative functions G1 and G2

G1 =
∂ f[i]

∂y
(B(Pyj(θ))) (55)

G2 =
1
2

∂ 2f[i]

∂y2 (B(E T yj(θ))+B(E (Qyj)))B(E (Qyj))B(E (Qyj)) (56)

where

B(E T yj(θ)) = B(Pyj(θ))+B(Qyj)

and

B(Qyj) = [−1,1]
(√

Q1,1 . . .
√

Qn,n

)T
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Af[i] = mid(G1) (57)

Nf[i] = Rf[i] ⊕ (G1−Af[i] )Ryj ⊕G2 (58)

Find Qf[i] such that E (Af[i]QyjA
T
f[i]
)⊕Nf[i] ⊆ E (Qf[i] )

Qf[i] =
1
λ0

Af[i]QyjA
T
f[i] +

n

∑
ic=1

1
λic

rad(Nf[i],ic)
2eiceT

ic, ic = 1, . . . ,n (59)

Here, the unitary vector is represented by e= (1, . . . ,1)T =∑ic eic. Also, ∑n
i=0 λi≤ 1.

The scalars λ0,λ1 . . .λn can be chosen as

λ0 =

√

Tr(Af[i]QyjA
T
f[i]
)

√

Tr(Af[i]QyjA
T
f[i]
)+∑n

k=1 ‖rad(Nf[i],k)‖2

(60)

λic =
‖rad(Nf[i],ic)‖2

√

Tr(Af[i]QyjA
T
f[i]
)+∑n

k=1 ‖rad(Nf[i],k)‖2

(61)

The Taylor Model with ellipsoidal remainder of the ith Taylor coefficient f[i] is

E T f[i] (E T yj(θ),θ) = Pf[i] (θ)⊕E (Qf[i] ) (62)

First Stage
The first stage consists in determining a predicting enclosure of the solution for all
h ∈ (0, tf − t]

E T yj+1(θ) =
k−1
⊕

i=0

hi
jE T f[i] (E T yj(θ),θ)⊕hδ [−e,e] (63)

with a tolerance δ > 0.

Second Stage
In the second stage a time step h̄ > 0 is computed such that the predicting enclosure
(63) is guaranteed to provide a valid enclosure of the solution.

The iteration formula is initialized with

h0 = ρ
(

δ
‖r(0)‖

) 1
k−1

(64)

where r(h) = Tf[k] (B(E T yj+1(θ)),θ).



196 C. Pérez-Galván and I.D.L. Bogle

When the inclusion hk−1r(h) ⊆ δ [−e,e] is met h0 is chosen otherwise the time
step is modified with the adjusting factor ρ . If successful, the algorithm yields a
valid enclosure of the solution.

Differential Inequality Bounds

As its name implies this method is based on the theory of differential inequal-
ities [42]. Here the system of ODEs with interval values (initial conditions or
parameters) is decomposed into an upper and lower bounding system. The resulting
system of ODEs is twice as large as the original system and has to be solved by
a conventional ODE solver; this is why this method is regarded as a non-verified
method.

The upper and lower bounding ODEs are as follows. For i = 1 . . .nx,
with initial conditions: y0 ⊆ [yL(0),yU(0)]

ẏL
i (t)≤ min

z∈[yL(t),yU(t)],θ∈Θ
zi=yL

i (t)

fi(t,z,θ)

ẏU
i (t)≥ max

z∈[yL(t),yU(t)],θ∈Θ
zi=yU

i (t)

fi(t,z,θ)
(65)

y(t) ⊆ [yL(t),yU(t)]. The differential inequalities approach has been used with
McCormick relaxations as well [34, 35]. This approach yields lower and upper
relaxations of the ODE system which are convex and concave, respectively.
Moreover, a generalized differential inequality has been proposed. This method
allows the use of interval bounds as well as ellipsoidal set-propagation techniques
[41].

Approximate Solution with Verified Enclosure

The ValEncIA-IVP [31] software package makes an implementation of an approx-
imate solution with guaranteed exponential enclosure method. The software has
recently been extended to solve differential-algebraic equations (DAEs) [29, 30].
In this method a nonguaranteed solution for the ODE system is obtained and
taken as a reference solution and then an iterative computation of an interval
enclosure is carried out, the enclosure obtained is then integrated in a verified
way to obtain a guaranteed error bound. Finally, the Picard iteration is used to
generate a solution where the part of the overestimation produced is avoided
using a guaranteed exponential enclosure. This method does not make use of
Taylor coefficients; it only uses derivatives to compute the Jacobian matrix of the
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function. However, the method heavily relies on the quality of the nonguaranteed
initial approximation since smaller deviations between the unknown exact solution
and its initial approximation lead to tighter enclosures of the solution with less
computational effort.

The enclosure is defined by

Y(t) = yapp(t)+R(t) (66)

Initialization of the algorithm with Rl(0) = Rl+1(0) = Y0−yapp

Ṙl+1(t) =−ẏapp(t)+ f(yapp(t)+Rl(t)) = r(Rl(t)) (67)

Equation (67) takes as inputs values for R(t) and Ṙ(t) and if the inclusion Ṙ1 ⊆ Ṙ0

holds, then the iteration can be continued. Otherwise, the initial guesses of R(t) and
Ṙ(t) have to be modified.

A non-verified solver is used to obtain yapp as well as the step sizes; however, in
(67) an analytic expression is required for yapp and its time derivative ẏapp so linear
interpolation is used between grid points.

Rl+1(t) = Rl+1(0)+
∫ t

0
r(Rl([0;T]))ds (68)

Rl+1(t)⊆ Rl+1(0)+ r(Rl([0;T])) · t (69)

Rl+1(t) = Rl+1([0;T]) (70)

Yl+1(t) = Yapp(t)+Rl+1(t) (71)

For the reduction of the overestimation a mean-value evaluation and a monotonicity
test are performed.

Exponential State Enclosures
In order to prevent the growth of the overestimation an exponential state enclosure
was proposed [30].

Y(t) = eΛ ·t ·Y(0) (72)

where Λ = diag{[λi]} i = 1, . . .nx is the diagonal matrix.
Here Y(t) is obtained by evaluating the iteration formula

[λi,l+1] =
fi(e(Λl·[0;T]) ·Y(0))

e[λi,l]·[0;T] ·Yi(0)
i = 1, . . . ,nx (73)

This iteration formula is only applicable if 0 /∈ Yi(t) for all i = 1, . . . ,nx.
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ITS Method with Overestimation Reduction

Reduction of the overestimation is an important issue in verified simulation.
Several ways to tackle this problem are addressed by the techniques discussed in
section “Enclosing the Solutions of IVPs for ODEs”. In [45] an interesting way
to reduce the dependency problem by using inner interval arithmetic in a balanced
interval arithmetic approach is used to calculate ranges of functions. The ranges
obtained are tighter but the computations used are no longer verified. In this chapter
we make use of a verified approach. The method for which we present numerical
experiments uses interval contractors [9] for the reduction of the overestimation.
In this method an interval Taylor series as in section “Interval Remainder Term” is
used.

Let us consider an implicit form of (7) for the second stage of the ITS method.
If we make this reformulation, it is possible to consider the new implicit equation
as a constraint satisfaction problem (CSP) in the form of f(y) = 0, y ∈ Yj. The
formulation is the following

g(y) = uj+1 +[Sy
j+1Aj]Γ j +Sθ

j+1[Θ − θ̂ ]+Zj+1−Yj+1 = 0, y ∈ Yj (74)

however this reformulation does not yield the form as in f(y) = 0 as the subtraction
of identical vectors in interval arithmetic is not equal to 0 but an interval vector. So
a midpoint evaluation is performed and we get

g(ŷj) =uj+1(ŷj, θ̂)+{[Sy
j+1(ŷj,Θ)]Aj}Γ j +[Sθ

j+1(ŷj,Θ)][Θ − θ̂ ]

+Zj+1(ỹj,Θ)− Ŷj+1(Yj,Θ) = 0
(75)

which has the form of f(y) = 0. Now since

Ŷj+1(Yj,Θ) = uj+1(ŷj, θ̂)+ ẑj+1(Ỹj,Θ)

we have

g(ŷj) =uj+1(ŷj, θ̂)+{[Sy
j+1(ŷj,Θ)]Aj}Γ j +[Sθ

j+1(ŷj,Θ)][Θ − θ̂ ]

+Zj+1(ỹj,Θ)− [uj+1(ŷj, θ̂)+ ẑj+1(Ỹj,Θ)] = 0

={[Sy
j+1(ŷj,Θ)]Aj}Γ j +[Sθ

j+1(ŷj,Θ)][Θ − θ̂ ]

+Zj+1(ỹj,Θ)− ẑj+1(Ỹj,Θ) = 0

Also recalling (8)

Γ j+1 = A−1
j+1(S

y
j+1Aj)Γ j +(A−1

j+1Sθ
j+1)(Θ − θ̂)+A−1

j+1(Zj+1− ẑj+1)
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We get that

g(ŷj) = Aj+1Γ j+1(ŷj,Θ) (76)

which corresponds to the global error in the verified simulation [17].
Now when there is no uncertainty then g(ŷj) = Aj+1Γ j+1(ŷj,Θ) = 0. In the

present work uncertainty has been considered in the initial conditions and param-
eters of the ODEs and it will be shown in the next section that when a number of
iterations of the Newton step are used in (76) reduction of the overestimation is
achieved.

In summary, since (76) is defined at each time step it is possible to implement
the contractors as in an equation of the form of f(y) = 0. In this way at each time
step the interval Taylor series method obtains an interval (Yj+1) that encloses the
solution of the problem. The midpoint Ŷj+1 is then used to define (75). After a
number of iterations if sufficient reduction is achieved, the verified method obtains
a new Yj+1 and the contraction step is repeated; otherwise, the algorithm returns the
best Yj+1 found so far. According to our previous work comparing the Krawczyk
and Newton/Gauss–Seidel contractors, the Newton/Gauss–Seidel contractor proved
to be superior in several models from chemical and biochemical engineering. Thus,
only the Newton/Gauss–Seidel contractor is considered in this work [27].

Newton/Gauss–Seidel Contractor

We consider a CSP as in f(y) = 0 and apply the mean-value theorem to obtain

(f(ŷj)+Jf (ξξξ )(yj− ŷj) = 0, yj ∈ Yj, ξξξ ∈ Yj) (77)

The CSP in (77) can be arranged as

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Ap+ f(ŷj) = 0
p = (yj− ŷj)

A = Jf (ξξξ )
b =−f(ŷj)

yj ∈ Yj, ξξξ ∈ Yj

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(78)

In this way, a linear contractor can be used such as the Gauss–Seidel contractor. The
Gauss–Seidel contractor is able to contract domains of linear systems of the form

Ap−b = 0 (79)

If A is square, it can be decomposed as the sum of a diagonal matrix and a matrix
with zeroes on its diagonal (extdiag):
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diag(A)p+ extdiag(A)p = b (80)

Also if A is invertible, then (80) can be rewritten as

p = (diag(A))−1(b− extdiag(A)p) (81)

Hence, the solution of the Gauss–Seidel contractor is defined as the intersection of
the original domain p and the new p calculated with (81). This results in

p← p∩ (diag(A))−1(b− extdiag(A)p) (82)

Finally, the Gauss–Seidel contractor solution in (82) is used to update Yj and the
intersection Yj← Yj∩ (p+ ŷj) is obtained to finish with the Newton procedure.

Global Optimization Algorithm Using ITS
with Overestimation Reduction

A sequential approach has been implemented to address the dynamic optimization
problem. The formulation of the dynamic optimization problem can be stated as

min
θ

φ(z(ti,θ), θ ; i = 1, . . . ,ns)

s.t. ż = f(z,θ)

z(t0,θ) = z0(θ)

t ∈ [t0, tf ]

θ ∈Θ

(83)

where φ is the objective function, Θ is an interval vector, and f is assumed to be
continuously differentiable with respect to z and θ . When a sequential approach
is used a verified ODE method is applied to the dynamic part of the optimization
problem leaving a problem only constrained by the system parameters θ .

Branch and Bound Algorithm

The spatial search procedure used was similar to a standard branch and bound
algorithm by Moore et al. [22]. The global optimization method considers a problem
of the form:
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min
x

φ = f (x)

s.t. x ∈ X
(84)

1. The problem is first solved by a non-verified solver and the solution obtained
(local minimum) is used as an initial upper bound, if no local solution can be
obtained, then a first approximation of the upper bound can be obtained by
F(mid(X0)).

2. The initial interval vector is taken as the next box to be processed.
Set X← X0

3. Create two lists L and C; initially, these lists are empty.
4. Bisect X in the appropriate coordinate direction i such that w(Xi) = w(X) =

max1≤i≤nw(Xi) : X = X(1)∪X(2)

5. Update the upper bound on the global optimum.
fub = min{fub,F(mid(X(1))),F(mid(X(2)))}

6. IF max{F(X(1)),F(X(2))}−min{F(X(1)),F(X(2))}< ε, then

(a) Test if 0 belongs to the gradient of the objective function and discard any box
that does not satisfy this condition

(b) Place X(1) and X(2) into C in order
(c) IF L is not empty, then

(i) remove the first item from L and place its box into X;
(ii) IF F(X)> fub, then

RETURN with LB equal to lower bound on the first box in C and with
the lists C and L
END IF

ELSE
RETURN with LB equal to the lower bound on the first list in C and with

list C
END IF

ELSE

(a) Test if 0 belongs to the gradient of the objective function and discard any box
that does not satisfy this condition

(b) enter the items (X(1),F(X(1))) and (X(2),F(X(2))) in proper order in the list L;
(c) set X← the argument (first member of the pair) of the first item in the list L

(with the lowest F(X)) and remove the item (X,F(X)) from the list;

END IF
7. IF L is not empty, then return to step 4.

This is the global optimization method that has been used in the numerical
experiments. In this algorithm each time a box is branched new bounds are needed
and so the bounding routine is called for each box. This call represents the most
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expensive part in the branch and bound framework. Therefore it is needed to reduce
the number of calls by discarding as many boxes as possible prior to the bounding
step. A condition that tests whether or not zero is contained in the gradient of the
objective function is being used in this algorithm (in order to compute the gradient
the first order sensitivity equations are solved). Another way to discard boxes is
by means of the second order sensitivities. With this information one can test for
convexity of the function.

Results

The dynamic optimization method features a method that enhances the overestima-
tion capabilities of a traditional method for verified simulation (ITS) and makes it
suitable for its application in the solution of dynamic optimization problems.

The next three examples were solved in a sequential approach and using
the interval Taylor series with the Newton/Gauss–Seidel contractor to bound the
dynamic variables. The CPU times are for an IntelTM CoreTM i5 with 8 GB RAM,
running Ubuntu 14 and gcc 4.8.4. The programs were written in C++ and the third
party libraries FADBAD++ [38] and Profil/Bias [11] were used for the automatic
differentiation and the interval arithmetic operations, respectively. The Profil/Bias
library was used since it is faster when only interval arithmetic operations and the
square function are needed [44] as in the examples considered.

First Order Irreversible Series Reaction

A first order irreversible chain reaction taken from [39] considers the following
reaction

A
k1−→ B

k2−→ C

The procedure developed in section “ITS Method with Overestimation Reduction”
is applied to the parameter estimation problem with two parameters and two
dynamic variables. The experimental data has been taken from [6]. The problem has
been solved to global optimality using an absolute tolerance εabs = 10−4 in 5.39 s.
[14] solved the problem with a relative tolerance εrel = 10−3 and exactly (ε = 0) in
0.023 and 0.059 s, respectively. The machine used was an Intel Pentium 4 3.2 GHz.
Singer and Barton [36] solved the problem with an absolute tolerance εabs = 10−4

in 0.036 s in an AMD Athlon XP2000+ 1667 MHz. However, the differential
inequalities approach is used in this work in which the auxiliary system is solved
by a conventional solver and hence the solution is not computationally verified.
Papamichail and Adjiman [26] solved the problem in 9 and 11 s using constant, and
constant and affine underestimation schemes, respectively. The tolerance they used
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was εrel = 10−7 in an UltraSPARC-II 2×360 MHz.

min
k

φ =
10

∑
j=1

2

∑
i=1

(xi(tj)− xexp
i (tj))

s.t. ẋ1 =−k1x1

ẋ2 = k1x1− k2x2

x1(0) = 1, x2(0) = 0

t ∈ [0,1]

k ∈ [0,10]× [0,10]

(85)

Oil Shale Pyrolysis

The optimal temperature profile in a plug flow reactor is considered. The reactions
involved and the model of the problem are shown in (86). In the model only
components A1 and A2 are included and the objective is to maximize the production
of A2. Here u is the adjustable parameter and is taken as a piecewise constant profile.

min
u

φ =−x2(tf )

A1
k1−→ A2 s.t. ẋ1 =−k1x1− (k3 + k4 + k5)x1x2

A2
k2−→ A3 ẋ2 = k1x1− k2x2 + k3x1x2

A1 +A2
k3−→ 2A2 ki = aie

( −bi/R
698.15+50u

)

, i = 1, . . . ,5

A1 +A2
k4−→ A3 +A2 x1(0) = 1, x2(0) = 0

A1 +A2
k5−→ A4 +A2 t ∈ [0,10]

u ∈ [0,1]

(86)

The dynamic optimization problem has been solved to global optimality using an
absolute tolerance of εabs = 10−3 in 116.62 s. The same problem was solved by [13]
in 3.2 s using εabs = 10−3 and an Intel Pentium 4 3.2 GHz. Singer and Barton [36]
solved the problem in a non-verified manner in 27.30 and 26.20 s without and
with heuristics, respectively. The machine used was an AMD Athlon XP2000+
1667 MHz.
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Singular Control Problem

The procedure from section “ITS Method with Overestimation Reduction” is
applied to a nonlinear singular control problem taken from [18].

min
u

φ =
∫ tf

t0
[x2

1 + x2
2 +0.0005(x2 +16t−8−0.1x3u2)2]dt

s.t. ẋ1 = x2

ẋ2 =−x3u+16t−8

ẋ3 = u

x1(0) = 0, x2(0) =−1, x3(0) =−
√

5

t ∈ [0,1]

u ∈ [−4,10]

(87)

The sequential approach was used to provide a solution for this problem. The
computational time the method took in solving the problem was 18.95 s with an
absolute tolerance of εabs = 10−3. The problem was also solved by Lin and Stadtherr
[15] in 0.02 s with the same absolute tolerance. It is worth mentioning that their
global optimization algorithm implements a branch and reduce approach and is able
to reduce the search space. The machine used was an Intel Pentium 4 3.2 GHz. Also
[36] provided a (non-verified) solution for the problem with the same tolerance
in 2 and 1.8 s without and with heuristics. They used an AMD Athlon XP2000+
1667 MHz to solve the problem.

While the method presented is not faster than the method that features Taylor
Models it provides the ideas of an interval contracting technique that can be
extended to other verified simulation methods (Taylor Models and differential
inequalities) and in turn other dynamic optimization methods.

Conclusions

The reduction of the overestimation by means of the interval Newton/Gauss–Seidel
contractor allowed the use of an ITS method in the solution of dynamic optimization
problems. This suggests that the application of these kinds of contracting techniques
to other verified simulation methods could improve the performance when address-
ing dynamic optimization problems.

The method proposed is able to solve dynamic optimization problems to global
optimality in a verified way. More sophisticated global optimization strategies such
as the branch and reduce approach can be implemented as the comparisons show
that the times are an order of magnitude bigger or more with respect to other works.
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So far there is no universal technique that is able to provide acceptable bounds
for all kinds of problems and thus more research is being carried out. The main
challenges are the scalability of these kinds of methods to higher dimensional
problems and significant uncertain amounts. For the method presented we would
expect it to be easier to scale since it does not need the symbolic computations
which Taylor Models do.

Finally, for future research directions the use of interval contractors in the Taylor
Models method seems to be promising for the reduction of the overestimation. Some
other techniques that take advantage of the constraint satisfaction problem could be
implemented; for example, constraint propagation, linear programming, and other
types of contractors.
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On the Least-Squares Fitting of Data
by Sinusoids

Yaroslav D. Sergeyev, Dmitri E. Kvasov, and Marat S. Mukhametzhanov

Abstract The sinusoidal parameter estimation problem is considered to fit a sum
of damped sinusoids to a series of noisy observations. It is formulated as a
nonlinear least-squares global optimization problem. A one-parametric case study
is examined to determine an unknown frequency of a signal. Univariate Lipschitz-
based deterministic methods are used for solving such problems within a limited
computational budget. It is shown that the usage of local information in these
methods (such as local tuning on the objective function behavior and/or evaluating
the function first derivatives) can significantly accelerate the search for the problem
solution with a required guarantee. Results of a numerical comparison with
metaheuristic techniques frequently used in engineering design are also reported
and commented on.

Keywords Nonlinear regression • Least-squares fitting • Lipschitz-based deter-
ministic methods • Metaheuristics • Numerical comparison

Introduction

A general nonlinear regression model can be often considered in the form of fitting
a sum of damped sinusoids to a series of observations corrupted by noise (see,
e.g., [2, 5, 10, 16, 31]). The sinusoidal functions are frequently used in many real-life
applications such as signal processing (see, e.g., [6, 7, 9, 14, 19, 33, 39]). Parameters
x of these functions (consisting of amplitudes, frequencies, and phases) can be
estimated by solving the following minimization problem:
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f (x∗) = f ∗ = min
x∈D

f (x), f (x) =
T

∑
i=1

(yti −φ(x, ti))2, x ∈ D⊂ R
n, (1)

where

φ(x, t) =
s

∑
l=1

ale
dlt sin(2πω lt+θl), t = t1, . . . , tT , (2)

and s ≥ 1 is a fixed integer, x = (a,d,ω,θ) with a = (a1, . . . ,as), d = (d1, . . . ,ds),
ω = (ω1, . . . ,ωs), and θ = (θ1, . . . ,θs).

It is supposed that real-valued observations yti are affected by noise:

yti = φ(x̄, ti)+ξ ti , i = 1, . . . ,T, (3)

where x̄ is the true vector of parameters (it coincides with the estimator x∗ from (1)
in the case of noise-free observations) and ξ ti , i = 1, . . . ,T , are independently and
identically distributed random variables with zero mean and a given variance σ2.

In spite of the practical importance of problem (1)–(3), not so many publications
that discuss the behavior of the objective function (1)–(2) are available (see, e.g.,
[15, 17, 18, 22, 29, 54, 60]). For example, in [16, 17], its multiextremal character
is observed and it is experimentally demonstrated that the noise-free part of the
objective function dominates its total shape. Noise-corrupted data in (1)–(3) increase
furthermore the complexity of the objective function (see, e.g., [1, 3, 4, 57]). As
observed, e.g., in [15, 17], the optimization problem (1)–(3) is difficult even in the
case s = 1 in (2) since the objective function possesses many local minima and a
guarantee on the found solution to the problem is required in practice. Even though
the function to be minimized in (1) is Lipschitz-continuous and differentiable (see,
e.g., [18, 28, 36, 47, 55, 59]), its Lipschitz constant is very high (as well as that
of the function derivatives) and rapidly increases with the number of observations
T in (3). Moreover, a higher number of observations lead to a more oscillating
objective function with a higher number of local minima. Therefore, efficient global
optimization approaches should be adopted to solve problem (1)–(3).

In [15], it is shown that Lipschitz-based deterministic algorithms can be success-
fully used for studying the stated global optimization problem, since these methods
can often provide a solution to the problem together with its global optimality
certificate (see, e.g., [34, 35, 38, 46, 49, 52, 53, 55, 56]). In this chapter, we will
further analyze the usage of Lipschitz global optimization methods for solving
problem (1)–(3), illustrating their numerical performance on specific instances
of the problem. A particular attention will be dedicated to a number of local
tuning techniques improving the performance of the methods and allowing one to
accelerate the search of the optimal parameters x∗ in terms of the number of function
evaluations (which can be often computationally expensive).

The rest of this chapter is structured as follows. In the next section “Case Study”,
some benchmark one-parametric instances of the general regression problem (1)–(3)
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are described. In section “Univariate Lipschitz Global Optimization Methods”,
a general algorithmic scheme of Lipschitz-based deterministic methods is given
and some approaches for the usage of local information within this scheme are
indicated. Results of numerical experiments with the Lipschitz-based methods on
the problems from section “Case Study” and their comparison with some widely
used metaheuristic methods are reported and discussed in section “Univariate
Lipschitz Global Optimization Methods”. Section “Conclusions” concludes the
chapter.

Case Study

As a case study to illustrate the performance of various techniques for solving the
global optimization problem (1)–(3), let us consider the sine function with unknown
frequency only in (2) [i.e., s = 1 and a1 = 1, d1 = 0, θ1 = 0 in (2)] over uniformly
sampled observations yi, i = 1, . . . ,T in (3). In this case, the vector of parameters
x consists of only one component x := ω = ω1. In spite of its apparent simplicity,
such a problem is however representative from the practical point of view (see,
e.g., [2, 10, 39]) and useful to obtain conclusions on the problem behavior that can
be then generalized to a general multiparametric model (1)–(3).

Problem (1)–(3) is thus reduced to the following one-dimensional global mini-
mization problem:

f (x∗) = f ∗ = min
x∈[a,b]

f (x), f (x) =
T

∑
i=1

(yi− sin(2πx i))2, x ∈ [a,b]⊂ R, (4)

where for any fixed number of observations T the function f (x) is Lipschitzian with
the Lipschitz constant L, 0 < L < ∞, and continuously differentiable (see [15, 18])
with the Lipschitz constant K, 0 < K < ∞, for its Lipschitzian first derivative f ′(x)
over the search interval [a,b] [taken here as [0,1] due to the periodicity of the sine
function in (4)].

By changing the number of observations T in (3), the objective functions (4) of
different shapes can be obtained, with the number of local minima and the average
function value proportional to T . In our case study, the values T = 10, 50, and
100 were considered. The noise-free observations yi, i = 1, . . . ,T , were obtained
numerically to keep the estimator x∗ in (4) equal to the true parameter x̄ = 0.7
with f (x∗) = 0. The noisy observations were then produced by adding random
variables ξi, i= 1, . . . ,T , taken from normal distribution (N(0,σ2)) with σ2 = 9 (see,
e.g., [16, 17] for other noise parameters), to the corresponding noise-free values.
Consequently, the global minimizer x∗ in (4) was shifted from the true parameter
value x̄ (see the second column in Table 1) and the (non-normalized) objective
function (4) became more erratic (with an unknown positive minimum value f ∗).
The search for the global minimizer x∗ from (4), rather than for the true parameter
value x̄, was performed in this case too, in order to estimate the behavior of the
numerical methods from the global optimization viewpoint.
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Table 1 The Lipschitz constants L and K for the objective functions f (x)
from (4) and their derivatives f ′(x), respectively, considered in our case study
with different numbers of observations T , noise terms from normal distribution
N(0,σ2), and the true frequency value x̄ = 0.7

Function (T,σ2) x∗ Lipschitz constant L Lipschitz constant K

(10,0) x̄ 354.1 30,567.2

(50,0) x̄ 7216.4 3,390,330.5

(100,0) x̄ 28,126.7 26,717,323.0

(10,9) 0.6126936 978.2 47,952.8

(50,9) 0.7650428 19,486.4 6,602,640.8

(100,9) 0.3055982 56,272.4 26,724,566.7

Hence, six particular functions (4) were considered in our study: three of them
were based on noise-free terms in (3) and the other three—on the corresponding
noisy observations. In what follows, these functions are labelled as pairs (T,σ2),
with T = 10,50, and 100 and σ2 = 9. The values (determined over 10−7 grid) of the
Lipschitz constants L and K for f (x) and f ′(x), respectively, are reported in Table 1.
It can be seen from this table how the complexity of the functions increases both
with the increasing of T and with adding the noise. Moreover, high values of the
Lipschitz constants (especially, for K) can be observed from Table 1: they make
the usage of Lipschitz global optimization methods challenging to solve the stated
problem either in its one-parametric variant (4) or in its general form (1)–(3).

The complexity of the considered instances of problem (1)–(3) from the global
optimization point of view can be also seen from the graphs of the objective
functions f (x) from Table 1 and their first derivatives reported in Figs. 1 and 2 for
the cases of noise-free (σ2 = 0) and noisy (σ2 = 9) observations, respectively. As
one can note, the objective functions are highly multiextremal and irregular, with
the global minimizers having narrow attraction regions, although well separated
with respect to the global minimum values for higher numbers of observations T .
Hence, already for our case study which is a relatively simple case with respect to
the general problem (1)–(3), a particular attention should be paid to the choice of
numerical methods able to tackle efficiently the stated global optimization problem.

Univariate Lipschitz Global Optimization Methods

To obtain guaranteed estimates of the global solution to problem (4) within a
finite number of function evaluations, as required in many engineering design
problems (including the stated one), the framework of Lipschitz global optimization
can be used since the Lipschitz-continuity property often appears naturally in
practical optimization (see, e.g., [8, 26, 27, 38, 46, 51, 52, 55, 56]). Lipschitz global
optimization methods can have an intuitive geometric interpretation and many of
them can be successfully described and studied in a unique theoretical framework
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Fig. 1 Graphs of the objective functions (left column) and their first derivatives (right column) for
the considered noise-free problems from Table 1

as, e.g., in the framework of divide-the-best algorithms (see, e.g., [32, 38, 43, 46]).
Therefore, we will apply them to solving problem (4) (both in the case of derivative-
free methods when the information on the function derivatives is not available for
some reason and in the case when this information is taken into consideration during
the work of an algorithm). A particular attention will be paid to the usage of local
properties of the objective function (4) in the scheme of a global optimization
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Fig. 2 Graphs of the objective functions (left column) and their first derivatives (right column) for
the considered noisy problems from Table 1

method. This kind of local approach is able to tune the algorithm’s execution on
the objective function behavior and to determine the global solution with both a
smaller number of function evaluations and a higher precision.

The Lipschitz global optimization methods proposed for solving one-
dimensional problem (4) can be described by the following general scheme [in
what follows, the term trial will indicate the operation of evaluating the objective
function, and also its first derivative if required by a particular algorithm, at a point
of the search interval [a,b] from (4)].
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Step 0. (Initialization.) Perform the first two trials at points a and b: x1 := a,
z1 := f (x1) (and, in case the algorithm uses derivatives in its work, dz1 := f ′(x1));
x2 := b, z2 := f (x2) (and dz2 := f ′(x2)). Set the iteration counter k := 2.
The next (k+1)th iteration is realized as follows.

Step 1. (Reordering trial points.) Renumber the trial points x1, . . . ,xk and the
corresponding functions values by subscripts so that a = x1 < .. . < xk = b.

Step 2. (Estimating the Lipschitz constants.) Calculate the current estimates Lj

or Kj of the Lipschitz constants L or K for f (x) or f ′(x) over each sub-interval
[xj−1,xj], j = 2, . . . ,k, in one of the following ways.

Step 2.1. (A priori estimate.) Take some a priori given value L or K (as, for
example, those from Table 1 in section “Case Study”) as an estimate of the
Lipschitz constant for f (x) or f ′(x) over the whole search interval [a,b] from
(4), i.e., set Lj := L or Kj := K.

Step 2.2. (Global estimate.) Set Lj := r ·max{Hk,η} or Kj := r ·max{Gj,η},
where r > 1 is the reliability parameter of the method under consideration
and η is a small technical parameter (set here as η = 10−8), and, for every
sub-interval j, 2≤ j≤ k:

Hj =
|zj− zj−1|
xj− xj−1

, (5)

with

Hk = max{Hj : j = 2, . . . ,k} (6)

(for the case of a derivative-free algorithm); or

Gj =
|2(zj−1− zj)+(dzi +dzi−1)(xj− xj−1)|+δj

(xj− xj−1)2 , (7)

with

δj = {[2(zj−1− zj)+(dzj +dzj−1)(xj− xj−1)]
2+

+ (dzj−dzj−1)
2(xj− xj−1)

2}1/2

(for the case of an algorithm using the first derivative information).
Step 2.3. (“Maximum” local tuning.) In the case of a derivative-free algo-

rithm, set Lj := r ·max{λj,γj,η}, where

λj = max{Hj−1,Hj,Hj+1},

with Hj from (5), when j = 2 or j = k then just two respective values of Hj are
used in this formula, and
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γj = Hk xj− xj−1

Xmax ,

where Hk is from (6), Xmax = max{xj− xj−1 : j = 2, . . . ,k}, and r and η have
the same sense as for global estimates (see Step 2.2).
In the case of an algorithm using the first derivative information, set the
estimate Kj := r ·max{Λj,Γj,η}, where

Λj = max{Gj̃ : 2≤ j̃≤ k, j−1≤ j̃≤ j+1},

Γj = max{Gj : j = 2, . . . ,k} · (xj− xj−1)/Xmax,

with Gj from (7), Xmax = max{xj− xj−1 : j = 2, . . . ,k}, and r and η have the
same sense as for global estimates (see Step 2.2).

Step 3. (Calculating the characteristics.) For each sub-interval [xj−1,xj], j =
2, . . . ,k, compute its characteristic Rj (see, e.g., [21, 46, 52] for more details on
the characteristic global optimization methods) by using one of the following
rules (see Steps 3.1 and 3.2 for a derivative-free algorithm and Step 3.3 for an
algorithm using the first derivative information).

Step 3.1. (Geometric characteristics.)

Rj =
zj + zj−1

2
−Lj

xj− xj−1

2
.

Step 3.2. (Information characteristics.)

Rj =−Lj(xj− xj−1)−
(zj− zj−1)

2

Lj(xj− xj−1)
+2(zj + zj−1).

Step 3.3. (Smooth characteristics.) The lower bound of a smooth auxiliary
function over each sub-interval j, 2≤ j≤ k, can be calculated by using an esti-
mate Kj of the Lipschitz constant K for f ′(x), as reported, e.g., in [25, 42, 46].

Step 4. (Sub-interval selection.) Select the sub-interval [xt−1,xt] such that t =
t(k) = argmin{Rj : j = 2, . . . ,k} (the most “promising” sub-interval for a sub-
sequent subdivision).

Step 5. (Internal stopping criterion.) If

xt− xt−1 ≤ ε , (8)

where ε > 0 is a given search accuracy, then Stop the algorithm and take the value
f ∗k = min{zj : j = 1, . . . ,k} as an estimate of the global minimum f ∗ from (4) and
the value x∗k = argmin{zj : j = 1, . . . ,k} as an estimate of the global minimizer x∗

from (4). Criterion (8) can be considered as a global optimality certificate of
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the solution x∗k , f
∗
k (when the global convergence conditions are satisfied: see the

related discussion in [15, 27, 28, 45, 46, 52]).
Otherwise, go to Step 6.

Step 5. (New trial.) Perform the next trial either at the point

xk+1 =
xt + xt−1

2
− zt− zt−1

2Lt
,

for a derivative-free algorithm or at the point providing the minimum value of
the current smooth auxiliary function (see Step 3.2) which can be calculated by
an explicit formula (see [25, 42, 46] for details).
Update the iteration counter k := k+1 and go to Step 1.

The following Lipschitz global optimization methods belonging to this general
scheme were used in our study:

Geom-AL: Geometric derivative-free method with A priori given Lipschitz
constant L (see, e.g., [8, 46, 52, 53]): see Step 2.1 and Step 3.1 in the general
scheme.

Geom-GL: Geometric derivative-free method with the Global estimate of the
Lipschitz constant L (see, e.g., [38, 46, 49, 52]): see Step 2.2 and Step 3.1 in
the general scheme.

Inf-GL: Information-statistical derivative-free method with the Global estimate
of the Lipschitz constant L (see, e.g., [49, 52]): see Step 2.2 and Step 3.2 in the
general scheme.

Geom-LTM: Geometric derivative-free Local Tuning method with the Maxi-
mum convolution product of local and global estimates of the Lipschitz constant
(see, e.g., [40, 41, 46, 49, 50]): see Step 2.3 and Step 3.1 in the general scheme.

Smooth-AK: Geometric method constructing Smooth auxiliary functions based
on the usage of the first derivative information f ′(x) and A priori estimate of the
Lipschitz constant K for f ′(x) (see, e.g., [11, 42, 46, 52]): see Step 2.1 and Step
3.3 in the general scheme.

Smooth-LTM: Geometric derivative-based method constructing Smooth aux-
iliary functions and using the Local Tuning technique with the Maximum
convolution product of local and global estimates of the Lipschitz constant for
f ′(x) (see, e.g., [40, 41, 46, 49]): see Step 2.3 and Step 3.3 in the general scheme.

As established by a thoroughly developed convergence theory of the reported
general scheme (see, e.g., [21, 43, 46, 49, 52]), a suitable value of the reliability
parameter r of the considered methods can be always found which guarantees the
convergence of trial points only to the global minimizers x∗ from (4). General non-
convex constraints can be also treated within their general scheme (see, e.g., [20, 48,
52]). These methods can be generalized to the multidimensional case by different
approaches (see, e.g., [12, 23, 37, 38, 44, 46, 52, 55, 58, 60]) that allow their usage
in the study of the general multiparametric identification problem (1)–(3).
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Numerical Experiments

In order to estimate the behavior of the Lipschitz global optimization meth-
ods described in the previous section “Univariate Lipschitz Global Optimization
Methods” on the problem instances from section “Case Study”, some widely
used metaheuristic algorithms were taken for the comparison, namely: Differential
Evolution (DE), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC),
and FireFly (FF) algorithms (see, e.g., [24, 28] for their detailed description).

Parameters of these methods were chosen as follows (see, e.g., [24, 28]; all
the parameters were thoroughly studied to respect the multiextremal character of
the objective functions, as suggested in the literature). For the DE algorithm, the
differential weight F was set equal to 0.7; the crossover rate CR was set equal to
0.5; and the mutation strategy DE/rand/1/exp was used as one of the most powerful
strategies. For the PSO algorithm, the static inertia weight ω was set equal to 0.6;
the cognitive φl and social φg parameters were set both equal to 2.0; and the velocity
vmax was set equal to 15 % of the search interval. For the ABC method, the number
of the employed bees was set equal to the number of the onlooker bees and was
equal to half population; the number of scout bees was set equal to 1; and the limit
parameter was set equal to the number of food sources (candidate solutions) as half
population. Finally, for the FF algorithm, the randomization parameter α was set
equal to 0.005(b− a); the absorption coefficient γ was set equal to 0.01/

√
b−a;

and the attractiveness parameter β0 was set equal to 1.
The reliability parameter r of the considered Lipschitz global optimization

methods (except the methods with a priori given Lipschitz constants) was set close
to 1 (namely, 1.1) for the geometric methods Geom-GL, Geom-LTM, Smooth-
AK, and Smooth-LTM and to 2.0 for the Inf-GL method, as recommended by the
convergence study of these algorithms.

For all metaheuristic algorithms the population size was set equal to 10, the
number of runs was set equal to 100 (i.e., each metaheuristic algorithm was launched
100 times for a given problem), and for all the methods the maximal number of
trials was set equal to 10,000. Since the metaheuristic methods do not have any
internal stopping criterion, each of their run was arrested when a trial point in an
ε-neighborhood of the global minimizer x∗ (known for the considered benchmark
instances) was generated. In what follows, such a stopping criterion will be termed
as the first-successful-point stopping criterion.

The results of the experiments are presented in Tables 2, 3, 4, and 5. Particularly,
the numbers of trials generated by the considered Lipschitz global optimization
methods when using their internal stopping criterion (aiming at the global optimality
certification) with different accuracy coefficients ε are given in Tables 2 and 3. It can
be seen from Tables 2 and 3 that the usage of the local information (as in the methods
Geom-LTM, Smooth-AK, and Smooth-LTM) allowed us to solve the problems by
executing less trials with respect to the methods that used in their work only global
information (as the Geom-AL, Geom-GL, and Inf-GL methods). Moreover, the local
tuning methods were less sensitive (in terms of the performed trials) to increasing
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Table 2 Number of trials for the considered Lipschitz methods
stopped by their internal stopping criterion (8) with ε = 10−4

Func
Geom- Geom- Inf- Geom- Smooth- Smooth-

AL GL GL LTM AK LTM

(10,0) 109 83 72 45 26 21

(50,0) 149 130 116 80 128 65

(100,0) 273 173 185 150 250 128

(10,9) 113 87 111 50 23 17

(50,9) 199 191 188 145 116 84

(100,9) 329 315 323 290 149 138

Avg 195.3 163.2 165.8 126.7 115.3 77.5

Table 3 Number of trials for the considered Lipschitz methods
stopped by their internal stopping criterion (8) with ε = 10−6

Func
Geom- Geom- Inf- Geom- Smooth- Smooth-

AL GL GL LTM AK LTM

(10,0) 677 535 668 66 32 23

(50,0) 433 395 353 101 135 67

(100,0) 452 352 385 174 256 129

(10,9) 845 763 730 73 28 21

(50,9) 513 501 424 165 120 85

(100,9) 545 511 516 314 153 141

Avg 577.5 509.5 512.7 148.8 120.7 77.7

the accuracy (compare Tables 2 and 3). In this context, it would be interesting to
notice that the functions based on T = 50 and T = 100 observations were solved (in
the case of a higher precision ε = 10−6; see Table 3) faster by the three methods
Geom-AL, Geom-GL, and Inf-GL than the functions with the smaller observations
number T = 10. This happened because the functions (50,σ2) and (100,σ2) had the
global minimum values much smaller than the mean function values (proportional
to T) and, thus, the functions (10,σ2) were more difficult for the methods using only
global information during the search. It should be also noted that due to extremely
high values of the Lipschitz constants K for f ′(x) in our case study (see Table 1
in section “Case Study”), the first derivative information gave less advantage with
respect to the situations when more regular objective functions are minimized.

Results of the numerical comparison of all the methods when using the first-
successful-point criterion with different accuracy coefficients ε are shown in
Tables 4 and 5, where all the average values for the metaheuristic algorithms were
calculated without taking into consideration the failed runs. Even in this condition
advantageous for the metaheuristics, their performance was worse than that of the
Lipschitz-based methods in our case study.

The distribution of trial points generated by all the methods when minimizing
the functions (50,0) (T = 50 noise-free observations) and (50,9) (T = 50 noisy
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PSO 383
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ABC 470

Fig. 3 Distribution of trial points generated by the tested methods when minimizing the function
(50,0) with the accuracy ε = 10−4 in the first-successful-point stopping criterion

observations) with the first-successful-point stopping criterion and two different
accuracy coefficients ε = 10−4 and ε = 10−6 is illustrated in Figs. 3 and 4 (for
ε = 10−4) and Figs. 5 and 6 (for ε = 10−6), respectively.

Conclusions

As it follows from the results of numerical experiments, the performance of
Lipschitz global optimization methods seems to be very promising with respect to
the considered metaheuristic algorithms in our case study. Moreover, the Lipschitz-
based algorithms give the possibility to obtain the solution to the studied problem
with some guaranteed gap, which is important from the practical point of view.
The usage of local information in these methods (as in the local tuning Geom-LTM
algorithm and in the Smooth-AK and Smooth-LTM algorithms with the usage of
the first derivative information) can be a subsequent step in the increasing efficiency
of the search for the optimal parameters. As it has been recently shown, there exist
local improvement techniques (see, e.g., [13, 30, 49, 50]) that can produce even more
acceleration effect on the considered methods.

Acknowledgements This work was supported by the Russian Science Foundation, project
number 15-11-30022 “Global optimization, supercomputing computations, and applications.”
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Fig. 4 Distribution of trial points generated by the tested methods when minimizing the function
(50,9) with the accuracy ε = 10−4 in the first-successful-point stopping criterion
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Fig. 5 Distribution of trial points generated by the tested methods when minimizing the function
(T = 50,σ2 = 0) with the accuracy ε = 10−6
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Fig. 6 Distribution of trial points generated by the tested methods when minimizing the function
(T = 50,σ2 = 9) with the accuracy ε = 10−6
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A Multicriteria Generalization of Bayesian
Global Optimization

Michael Emmerich, Kaifeng Yang, André Deutz, Hao Wang,
and Carlos M. Fonseca

Abstract This chapter discusses a generalization of the expected improvement
used in Bayesian global optimization to the multicriteria optimization domain,
where the goal is to find an approximation to the Pareto front. The expected
hypervolume improvement (EHVI) measures improvement as the gain in dominated
hypervolume relative to a given approximation to the Pareto front. We will review
known properties of the EHVI, applications in practice and propose a new exact
algorithm for computing EHVI. The new algorithm has asymptotically optimal time
complexity O(n logn). This improves existing computation schemes by a factor
of n/ logn. It shows that this measure, at least for a small number of objective
functions, is as fast as other simpler measures of multicriteria expected improvement
that were considered in recent years.

Keywords Bayesian Global Optimization • Expected Hypervolume Improve-
ment • Computation Complexity

Introduction

In the 1970s several new ideas for global optimization were proposed. Among these
the idea of Bayesian Global Optimization (BGO) was proposed by the Lithuanian
research group Jonas Mockus and Antanas Žilinskas [14, 15, 21, 25]. It had a lasting
impact on the development of both deterministic and stochastic global optimization
techniques. Today variations of this idea are known under various names, such as
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Efficient Global Optimization [9] or Expected Improvement Algorithm [22]. In these
techniques the goal is to find the extremum of a function f : X → R where X is a
compact subspace of Rd. BGO assumes that the objective function is the realization
of a Gaussian random field. This random field can be conditioned by the knowledge
of f (x(i)) at some points x(i) ∈X , i = 1, . . . ,n. Under this assumption, measures
such as the expected improvement of a new design point are well defined, and can
be used to guide search towards the global optimum.

In this chapter we describe a generalization of this approach to multicriteria
optimization. It iteratively evaluates points from X and finds a well distributed
subset of the Pareto front of a multicriteria optimization problem. The algorithm
is based on a generalization of the expected improvement, which is based on the
hypervolume indicator, the so-called Expected Hypervolume Improvement (EHVI)
[3]. It has attractive theoretical properties [23], but so far its computation time
was considered to be expensive. In this chapter it is shown that, for bicriteria
optimization, a fast algorithm exists for computing EHVI that has only linear time
complexity in the size of the intermediate approximation to the Pareto front, given
that the Pareto front is given as a sorted set. It is shown that this algorithm has
asymptotically optimal time complexity.

This chapter is organized as follows: section “Bayesian Global Optimization”
introduces the framework of BGO. Section “Multicriteria Optimization” shows how
this framework can be generalized to multicriteria optimization. Section “Expected
Hypervolume Improvement” defines the EHVI, discusses some of its theoretical
properties, and reviews recent applications of it. Section “Efficient Exact
Computation” outlines the new, asymptotically efficient algorithm for its exact
computation and proves that it has an asymptotically optimal time complexity
for bicriteria problems. A numerical example is discussed in section “Numerical
Example”. Section “Application Notes and Further Reading” points to some recent
applications and related work. Finally, section “Summary and Outlook”, concludes
with a summary and discusses open questions.

Bayesian Global Optimization

In BGO the goal is to solve d-dimensional global optimization problems of the type:
Find x∗ with

x∗ ∈ arg min
x∈X

f (x),X = [xmin,xmax]⊂ R
d (1)

(Without loss of generality we consider minimization only.)
In order to do so, a sequence {x(t)}t=1,2,... of points is computed such that

x(t) ∈ argmax
x∈S

(E(I(x)|(x(1), f (x(1)), . . . ,(x(t−1), f (x(t−1))) (2)

Here E(I(x)|(x(1), f (x(1)), . . . ,(x(t−1), f (x(t−1)) denotes the expected improvement
measure that measures how promising the new point x is, given t− 1 previous
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evaluations of f at x(1), . . . ,x(t−1). This expected improvement is an expected value
of a random variable, here called I(x) that requires further explanation.

In BGO one makes the assumption that the function f is the realization of a
Gaussian random field F. A Gaussian random field is an infinite set of random
variables. Each random variable in F is identified by its spatial index x ∈ R

d. We
will denote it with Fx. It is assumed that the random variables share the same global
mean value β and global variance s2. Moreover, a correlation ρ(Fu,Fv) is defined
for every pair of indices u∈Rd and v∈Rd. This correlation depends on the relation
between u and v. A typical family of correlation functions is

ρ(Fu,Fv) = exp

(

−
d

∑
i=1

θi|ui− vi|qi

)

It is important that this correlation function is positive definite. It obtains the value
of 1, if v = u and gets smaller with increasing distance between v and u. The
parameters qi and θi are either set by the user or obtained from data fitting. The
parameters θi are positive.

The Gaussian random field can be viewed as a multivariate Gaussian distribu-
tion of infinite dimension. We can use well-known expressions for the marginal
distributions of the multivariate distribution to find the conditional distribution,
given that some of the realizations of one dimensional random variables are known.
That is, given the prior information Fx(1) = f (x(1)), . . . ,Fx(t−1) = f (x(t−1)) we can
compute the parameters μ (conditional mean) and σ2 (conditional variance) of the
conditioned random variable:

Fx | Fx(1) = f (x(1)), . . . ,Fx(t−1) = f (x(t−1)) (3)

As a shortcut we will denote this random variable with Fx |X, f (X), where X =
(x(1), . . . ,x(t−1)) denote the indices for which we know realizations and the values
of the corresponding realizations are abbreviated with

f (X) =
(

f (x(1)), . . . , f (x(t−1))
)

The estimation of hyperparameters θi and qi, i = 1, . . . ,d, of the correlation
function, as well as the global variance and mean can be accomplished by maximum
likelihood methods. For details on the computations of the parameters of the
conditional distribution we refer to the specialized literature [19].

Now, the expected improvement can be defined: The improvement of a function
value y ∈ R is defined as

I(y) = max{0,ymin− y)} (4)

where ymin = min{f (x(1)), . . . , f (x(t−1))}. Then the expected improvement is
defined as
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E(I(Fx|X, f (X)) =
∫ ymin

y=−∞
I(y)PDFx|X,f (X)(y)dy (5)

Here PDFx|X,f (X) is the probability density function of Fx |X, f (X).

Multicriteria Optimization

A continuous m-dimensional multicriteria optimization problem is a problem where
multiple objective functions, say f1 : X →R, . . . , fm : X m→R, are to be minimized
simultaneously, X ⊆ R

m.
In the a posteriori approach to multicriteria optimization an approximation to

the Pareto front of the problem is computed first. Based on this, the trade-off is
analyzed and a solution is selected by the decision maker. To define a Pareto front,
we introduce the Pareto dominance order ≺ on R

m, with ∀y,z ∈ R
m : y ≺ z ⇔

(∀i ∈ {1, . . . ,m} : yi ≤ zi) and y �= z. The non-dominated subset of a multiset of
vectors Y = {y(1), . . . ,y(m)} is defined as nd(Y) = {y ∈ Y | � ∃z ∈ Y : z≺ y}. Given
a multicriteria optimization problem, the image of X is defined as Y = {f(x) | x ∈
X }. The Pareto front of a multicriteria optimization problem is defined as Ynd :=
nd(Y ). An important special case is bicriteria optimization, where m = 2.

One way to generalize the BGO algorithm is to compute the expected improve-
ment of the hypervolume indicator. The hypervolume indicator is the m-dimensional
Lebesgue measure λm of the dominated subspace limited from above by some
reference point rm. More precisely the hypervolume indicator is defined as

hv(Y) = λm ({y ∈ R
m | ∃z ∈ Y : z≺ y∧y≺ r}) = λm

(

⋃

y∈Y

[y,r]

)

(6)

In Fig. 1 the hypervolume indicator is illustrated for a Pareto front approximation
with nine points and two objective functions (m = 2). Given a problem with a Pareto
front bounded above by the reference point, sets that maximize the hypervolume
indicator are well distributed subsets of the Pareto front [1]. This is why finding
the Pareto front is sometimes recast as the problem of maximizing the hypervolume
indicator over the set of all subsets of X . We will call this problem hypervolume
maximization.

Expected Hypervolume Improvement

For hypervolume maximization problems the generalization of the improvement
function is straightforward. We generalize the best solution found up to iteration
t−1, namely ymin,t−1, to

Ynd,t−1 = nd
(

{y(1), . . . ,y(t−1)}
)

(7)
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Fig. 1 Hypervolume indicator of Pareto front approximation

The improvement function is generalized by the following definition of an m-
dimensional improvement:

Im(y,Ynd,t−1,r) := hv(Ynd,t−1∪{f(x)})−hv(Ynd,t−1) (8)

It is easy to show that this Im specializes to the improvement function in one
dimension, if we chose r1 to be sufficiently large.

In order to compute the expected improvement in the multicriteria case, we
need also to generalize the assumption on the Gaussian random field. For this, we
consider one Gaussian random field per objective function and assume that there
is no correlation between random variables from different random fields. For every
point x ∈X we obtain an m-dimensional random variable conditioned on previous
information, that is given by X and f(X) = (f(x(1), . . . , f(x(t−1)).

The resulting EHVI can be denoted with

E(Im ((F1(x), . . . ,Fm(x)) | X, f(X),Ynd,t−1,r) =
∫

y∈Rm
Im(y,Ynd,t−1,r)PDFx|X,f(X)(y)dy (9)

and it is a generalization of the single objective expected improvement, if we
consider ymin,0 = r1.
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Efficient Exact Computation

In this section the problem of computing the EHVI is studied and a new, efficient
algorithm for bicriteria optimization will be derived. Fast algorithms for computing
the EHVI are important, because in BGO a large number evaluations of the EHVI
are performed in each iteration when searching for its maximizer. Although the
BGO algorithm is typically used in the context of expensive function evaluations,
the optimization of the EHVI can significantly contribute to the total running time
of the algorithm. For instance, this was recently reported as a major drawback of
using EHVI in [12], even when considering only the two dimensional case.

A simplified notation will be used in the following. It focuses only on the
elements that are relevant for the EHVI computation.

Symbol Type Description

μ R
m Mean values of predictive distribution

σ (R+
0 )

m Standard deviations of predictive distribution

Y (Rm)n Sequence of mutually non-dominated points
(Pareto front approximation in t−1)

y(1), . . . ,y(n) R
m The vectors in Y

r R
m Reference point

For computing integrals of the expected improvement it is useful to define the
function Δ . For a given vector of objective function values y ∈ R

m, Δ(y,Y, r) is the
subset of the vectors in R

m which are exclusively dominated by a vector y and not
by elements in Y and that dominate the reference point, in symbols

Δ(y,Y,r) = λm{z ∈ R | y≺ z and z≺ r and � ∃q ∈ Y : q≺ z} (10)

In order to simplify notation, we will write Δ(y) whenever Y,r are given by the
context.

Based on this, we can now concisely (re-)define the EHVI function as

EHVI(μ,σ ,Y,r) =
∫ ∞

y1=−∞
· · ·

∫ ∞

ym=−∞
λm(Δ(y))PDFμ ,σ (y)dy1 . . .dym (11)

Example 1. An illustration of the EHVI is displayed in Fig. 2. The light gray area is
the dominated subspace of Y = {y(1) = (3,1)�, y(2) = (2,1.5)�, y(3) = (1,2.5)�}
cut by the reference point r = (4,4)�. The bivariate Gaussian distribution has the
parameters μ1 = 2, μ2 = 1.5, σ1 = 0.7, and σ2 = 0.6. The PDF of the bivariate
Gaussian distribution is indicated as a 3-D plot. Here y is a sample from this
distribution, and the area of improvement relative to Y is indicated by the dark
shaded area. The variable y1 stands for the f1 value and y2 for the f2 value.
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Fig. 2 Expected hypervolume improvement in 2-D (cf. Example 1)

State of the Art

To compute the EHVI (9) Monte Carlo integration is suggested in [3, 4]. Exact
algorithms for computing EHVI for m = 2 are derived in [5] and for m > 2 in [2].
A different algorithm is described in [7].

Fast algorithms have been proposed in [2] and even faster algorithms for
m = 2,3 in [8]. So far the best known bounds for the time complexity of exact
computations are O(n2) for m= 2, and O(n3) for m= 3. It is notable that the number
of transcendental function evaluations scales only linearly in n in the algorithm
presented in [8]. A lower bound of Ω(n logn) is provided for unsorted Y. However,
it makes sense to assume that Y is sorted in the first coordinate. In that case, as will
be shown, a lower bound of Ω(n) still holds. None of the algorithms found so far
for EHVI reach these lower bounds. In this paper we will present an algorithm for
m = 2 that does so.

Next an algorithm is outlined that reaches the lower bound time complexity
of Ω(n logn). We thereby prove that the time complexity of EHVI is Θ(n logn).
However, this complexity stems from the complexity that is inherent to sorting Y by
the first coordinate.

To keep Y sorted in the first coordinate requires an effort of amortized time
complexity O(logn) per iteration. It makes therefore sense to assume a sorted Y.
For this case we can show that the time complexity is Θ(n). To do so, we will first
establish a lower bound of Ω(n) for this case:
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Lemma 1. The computational time complexity of computing the EHVI for a set Y
that is sorted by the first coordinate is bounded from below by Ω(n).

Proof. An adversary argument can be used to prove this statement. The algorithm
has to “look at” all n points. If one point is not used, it could be moved by an
adversary and this move will not be noticed by the algorithm; a move of any single
point can, in general, change the EHVI. �

Efficient Algorithm

For m = 2 the expected improvement can be computed in linear time, given that Y
is already sorted by the first coordinate. Next, a formula will be derived that consists
of n+1 integrals, each of which can be solved in constant time.

The starting point of the derivation is to partition the objective space into n+ 1
disjoint rectangular stripes S1, . . . , Sn+1, as indicated in Fig. 3 (left). In order to
define the stripes formally, augment Y with two sentinels: y(0) = (r1,−∞) and
y(n+1) = (−∞,r2). The stripes are now defined by

Si =

((

y(i)1
−∞

)

,

(

y(i−1)
1

y(i)2

))

, i = 1, . . . ,n+1

We can now express the improvement of a point y ∈ R
2 by

I2(y,Y,r) =
n+1

∑
i=1

λ2[Si∩Δ(y)] (12)
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Fig. 3 Left: partitioning of the integration region into stripes. Right: new partitioning of the
reduced integration region after first iteration of the algorithm
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This gives rise to the compact integral for the original EHVI, y = (y1,y2):

EHVI(μ,σ ,Y,r) =
∫ ∞

y1=−∞

∫ ∞

y2=−∞

n+1

∑
i=1

λ2[Si∩Δ(y1,y2)] ·PDFμ ,σ (y)dy (13)

It is observed that the intersection of Si with Δ(y1,y2) is non-empty if and only
if y = (y1,y2) dominates the upper right corner of Si. In other words, if and only if
y is located in the rectangle with lower left corner (−∞,−∞) and upper right corner

(y(i−1)
1 ,y(i)2 ). See Fig. 3 (right) for an illustration. Therefore

EHVI(μ,σ ,Y,r) =
n+1

∑
i=1

∫ y(i−1)
1

y1=−∞

∫ y(i)2

y2=−∞
λ2[Si∩Δ(y1,y2)] ·PDFμ ,σ (y)dy (14)

In (14) also the summation is done after integration. This is allowed, because
integration is a linear mapping.

Details of the Constant Time Integration

EHVI(μ,σ ,Y,r) =
n+1

∑
i=1

∫ y(i−1)
1

y1=−∞

∫ y(i)2

y2=−∞
λ2[Si∩Δ(y1,y2)] ·PDFμ,σ (y)dy (15)

=
n+1

∑
i=1

∫ y(i)1

y1=−∞

∫ y(i)2

y2=−∞
λ2[Si∩Δ(y1,y2)] ·PDFμ,σ (y)dy+

n+1

∑
i=1

∫ y(i−1)
1

y1=y(i)

∫ y(i)2

y2=−∞
λ2[Si∩Δ(y1,y2)] ·PDFμ ,σ (y)dy.

(16)

Recall the definition of the standard Gaussian PDF and CDF: φ(x) =
1√
2π

exp(−x2/2), Φ(x) =
1
2
(1+ erf(

√
2)), and a function Ψ that was defined in

[8] as follows:

Ψ(a,b,μ ,σ) =
∫ b

−∞
(a− z)

1
σ

φ
(

z−μ
σ

)

dz.
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Moreover it can be shown that

Ψ(a,b,μ,σ) =
∫ b

−∞
(a− z)

1
σ

φ
(

z−μ
σ

)

dz = σφ
(

b−μ
σ

)

+(a−μ)Φ
(

b−μ
σ

)

.

Then the first summand of (16) can be written as follows:

=
n+1

∑
i=1

∫ y(i)1

y1=−∞

∫ y(i)2

y2=−∞
λ2[Si∩Δ(y1,y2)] ·PDFμ ,σ (y)dy,

=
n+1

∑
i=1

∫ y(i)1

y1=−∞
(y(i−1)

1 − y(i)1 ) ·PDFμ1,σ1(y1)dy1

∫ y(i)2

y2=−∞
(y(i)2 − y2) ·PDFμ2,σ2(y2)dy2,

=
n+1

∑
i=1

(y(i−1)
1 − y(i)1 )

∫ y(i)1

y1=−∞
PDFμ1,σ1(y1)dy1

∫ y(i)2

y2=−∞
(y(i)2 − y2) ·PDFμ2,σ2(y2)dy2,

=
n+1

∑
i=1

(y(i−1)
1 − y(i)1 ) ·Φ

(

y(i)1 −μ1

σ1

)

·Ψ(y(i)2 ,y(i)2 ,μ2,σ2). (17)

And the second summand of (16) can be written as follows:

=
n+1

∑
i=1

∫ y(i−1)
1

y1=y(i)

∫ y(i)2

y2=−∞
λ2[Si∩Δ(y1,y2)] ·PDFμ,σ (y)dy,

=
n+1

∑
i=1

∫ y(i−1)
1

y1=y(i)
(y(i−1)

1 − y1) ·PDFμ1,σ1(y1)dy1 ·
∫ y(i)2

y2=−∞
(y(i)− y2) ·PDFμ2,σ2(y2)dy2,

=
n+1

∑
i=1

(

Ψ(y(i−1)
1 ,y(i−1)

1 ,μ1,σ1)−Ψ(y(i−1)
1 ,y(i)1 ,μ1,σ1)

)

·Ψ(y(i)2 ,y(i)2 ,μ2,σ2).

(18)

The C++ and MATLAB source-code for computing the EHVI is made available
under http://moda.liacs.nl or on request by the authors. The code has been compared
to results of Monte Carlo integration and earlier implementations of the exact EHVI.

Numerical Example

The behavior of the BGO based on the EHVI will be illustrated by a single numerical
experiment.

The numerical example is visualized in the plots of Fig. 4.The bicriteria opti-
mization problem is: f1(x) = ||x− 1|| → min, f2(x) = ||x + 1|| → min, and x ∈
[−2,2]× [−2,2] ⊂ R

2. The Pareto front is the line segment from (0,2 ·
√

2) to

http://moda.liacs.nl
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Fig. 4 Example run of multicriteria Bayesian global optimization

(2 ·
√

2,0), the efficient set is the line segment that connects (−1,−1) and (1,1).
The metamodel used is a Gaussian random field model with Gaussian correlation
function exp(−θ ||x(1)− x(2)||2), for x(1) ∈ R

m and x(2) ∈ R
m. We set θ = 0.0001,

which was estimated by maximum likelihood method for initial sample. An initial
set of 10 points was evaluated, indicated by the dark blue squares. From this starting
set 15 new points were generated using the EHVI. The maximizer of the expected
improvement was found using a uniform grid. In total each objective function was
evaluated 25 times.

The results of the experiment are depicted in plots. In all pictures, points that
have been evaluated are indicated by triangles. The points from the initial set
are additionally marked by squares. Efficient points are surrounded by circles.
The top row depicts the mean value of the Gaussian random field model at x ∈
[−2,2]× [−2,2] for f1 and f2, resp. Likewise, the middle row depicts the variance
of the Gaussian random field model at x ∈ [−2,2]× [−2,2] for f1 and f2, resp. On
the left-hand side of the bottom row the hypervolume-based expected improvement
values after 25 iterations are shown. The final set of points in the objective space and
the Pareto front approximation is seen in the plot in the lower right corner. Using
only 25 evaluations of the original objective functions, the algorithm finds a good
approximation to the Pareto front.
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Application Notes and Further Reading

In addition to this experiment, other applications of the EHVI have been recently
reported. It was first used as selection criterion in evolutionary optimization [3] and
in the context of airfoil design [4] and quantum control [18]. To our knowledge, it
was used for the first time in BGO in the context of airfoil optimization in [13]
and conceptually compared other multicriteria infill criteria, including proposal
made in [11], [10], and in [23]. Other applications are robotics [20], biogas
plant controllers [6], event detection in water quality management [24], structural
design optimization [17], and tuning of machine learning tools [12]. An empirical
comparison with other infill criteria is found in [16].

Summary and Outlook

This chapter described the EHVI as a multicriteria generalization of the expected
improvement used in BGO. This generalization is based on the hypervolume
indicator, which is a quality indicator for Pareto front approximations. It has recently
served as an infill criterion in a number of BGO case studies, but was criticized
for its high computational complexity. In this chapter, the time complexity of the
2-D EHVI was shown to be only Θ(n). The linear time algorithm presented in this
paper improves upon previously proposed algorithms which required quadratic time
complexity. It assumes a sorted Pareto front (otherwise its complexity is O(n logn)),
which is typically given in BGO. During a single iteration of BGO a large number of
evaluations need to be performed, in order to find a minimizer based on the Gaussian
random field model. Therefore the fast algorithm will be of great benefit for reducing
the running time of multicriteria BGO based on EHVI.

Future research will investigate in more depth the theoretical properties of the
EHVI. For the first results in this direction refer to [5], where it was shown that the
2-D EHVI is monotonic in the mean values and variance. Also it will be interesting
to analyze the time complexity of EHVI for more than two objective functions.
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Understanding the Impact of Constraints:
A Rank Based Fitness Function for Evolutionary
Methods

Eric S. Fraga and Oluwamayowa Amusat

Abstract There are design problems where some constraints may be considered
objectives as in “It would be great if the solution we obtained had this characteristic.”
In such problems, solutions obtained using multi-objective optimisation may help
the decision maker gain insight into what is achievable without fully satisfying one
of these constraints. A novel fitness function is introduced into a multi-objective
population based evolutionary optimisation method, based on a plant propagation
algorithm extended to multi-objective optimisation. The optimisation method is
implemented and applied to the design of off-grid integrated energy systems for
large scale mining operations where the aim is to use local renewable energy
generation, coupled with energy storage, to eliminate the need for transporting
fuel over large distances. The latter is a desired property and in this chapter is
treated as a separate objective. The results presented show that the fitness function
provides the desired selection pressure and, when combined with the multi-objective
plant propagation algorithm, is able to find good designs that achieve the desired
constraint simultaneously.

Keywords Multi-objective optimization • evolutionary methods • plant propaga-
tionalgorithm • process design • integrated energy systems • Pareto extremes

Introduction

Model based process design is often formulated as an optimization problem. The
problem definition includes one or more objective functions and both equality and
inequality constraints. In process design, many of the constraints originate from
underlying physical laws. For instance, the temperature of a distillation plate at
equilibrium is described by Raoult’s law, an equality constraint, or the amount of
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mass in a vessel must be greater than 0, an inequality constraint. These constraints
cannot be violated if the design obtained is to be realizable physically.

However, there are other types of constraints. Some constraints are of the form of

It would be great if the solution we obtained had this characteristic.

Examples include: the temperature of the room in the dwelling should be 20 ◦C;
the purity of this by-product should be at least 90 %; the pressure changes should
be less than some amount specified; and so on. Constraints such as these can
be reformulated as objectives and then either incorporated into a single objective
function using a penalty term or the problem is transformed into a multi-objective
problem. The use of penalty terms (or weighted objective functions equivalently for
multi-objective formulations) using difficult due to the need to choose the penalty
weights. Defining the problem as a multi-objective optimization problem and using
multi-objective solution methods is therefore more attractive.

There are many methods for multi-objective optimization; see, for instance, [3]
for a selected review, concentrating on evolutionary methods. Multi-objective opti-
mization methods will traditionally attempt to generate a population of solutions that
consist of non-dominated solutions and therefore represent an approximation to the
Pareto front [8], assuming that they are able to identify globally optimal solutions
[10]. As such, in principle, any multi-objective method is suitable for tackling the
types of problems noted above. On the other hand, multi-objective problems that
are derived from relaxing a desirable constraint are subtly different from more
general multi-objective problems: the original single objective is somehow more
important. Therefore, it is desirable to have a multi-objective optimization method
that emphasizes solutions that have more favorable values for that objective. The
aim is to provide the design engineer with insight into how the relaxation of the
desirable constraint affects the main objective function.

The aim of this chapter is to present a fitness function that provides the selection
pressure on population based evolutionary optimization methods to generate solu-
tions with a preference for those that improve the main objective function but not
at the expense of ignoring the other objectives completely. We illustrate this fitness
function using a new multi-objective evolutionary method adapted from an existing
single objective plant propagation algorithm [9].

The novel multi-objective optimization method is presented and is applied to the
problem of designing an integrated energy generation and storage system for off-
grid mining operations. Although the design objective is to minimize capital cost,
there is a requirement imposed to design the system so that it needs no fuel brought
in from off-site. This requirement is a desired property and in this chapter is treated
as a separate objective. The results presented show that a multi-objective approach
does provide for a better understanding of what is possible and hence what may be
desirable as the final solution.
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A Multi-Objective Rank Based Fitness Function for Pareto
Extremes

Consider the set of points shown in Fig. 1 which plots the points in the space of
objective function values for a bi-criteria problem. The assignment of fitness values
to these points can be done in a variety of ways. Typically, the non-dominated
solutions will all be given the same fitness value, the best fitness when compared
with the fitness assigned to dominated points. The dominated points will then be
assigned fitness values in different ways. One approach is to remove the non-
dominated points from the set, find the now non-dominated points, and assign
these all the same fitness value, one that is worse than that assigned to the original
non-dominated points. Then repeat the same process until no points are left. An
alternative is to assign a fitness to the originally dominated points based on the
distance of these points to either an approximation to the Pareto front defined by the
piecewise linear fit to the non-dominated points or by the distance to the nearest
non-dominated point [5]. The aim of these fitness methods is to emphasize the
non-dominated points and hence drive an evolutionary algorithm towards a good
approximation to the Pareto front.

Although the Pareto front is of interest, for the design problems described above,
we are particularly interested in at least one of the end-points of this front. End-
points correspond to the solution of individual single criterion problems. We are
interested in these end-points because they correspond either to the original design
criterion or to one or other design constraints that we have relaxed to gain an
understanding of the impact of these criteria. Therefore, although the Pareto front
as a whole is of interest, the end-points are particularly relevant. We therefore wish
to define a fitness function that emphasizes the end-points and hopefully drives the
evolutionary algorithm to improve these as much as possible but without sacrificing

Fig. 1 Simple scatter plot
with non-dominated points
indicated by blue squares and
dominated points by red
triangles, assuming that the
goal is to minimize both
objectives, z1 and z2
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Table 1 Points and their
fitness for the illustration
example in Fig. 1 sorted in
decreasing order according to
the rank based fitness

z1 z2 I1 I2 I1! I2 f

5 1 6 1 6 0.93

1 8 1 7 7 0.91

3 3 3 3 9 0.89

7 2 8 2 16 0.80

2 9 2 8 16 0.80

4 6 4 5 20 0.75

6 4 7 4 28 0.65

5 7 5 6 30 0.63

9 9 9 9 81 0.00

the Pareto front completely. If the Pareto front were not of interest, we could simply
solve a set of single criterion problems.

To achieve the desired fitness values that emphasize not only the Pareto front but
especially the end-points of that front, we have defined a rank based fitness function
which combines the ranks assigned to each point with respect to each criterion
individually:

f = 1− I1! I2! . . .! Inc

nnc
p

where ! represents the element-wise or Hadamard product of two vectors. The
vectors Ij, j = 1, . . . ,nc, each of length np, are the indices for each point of their
position when the points are sorted with respect to criterion j. If two or more points
have the same objective function value, they are implicitly coalesced prior to the
assignment of rank for that objective function and hence given the same ranking.
The product of the individual rankings denotes the fitness fi ∈ [0,1) for i = 1, . . . ,np

where larger values indicate better fitness. np is the number of points and nc the
number of criteria.

Table 1 illustrates the values of the various vectors for the points shown in Fig. 1
sorted according to the fitness value assigned to the points. The best fitness values
are for the two extreme points (5,1) and (1,8) with the next best point being the
remaining non-dominated point (3,3).

In general, the largest fitness value achievable is

1− 1
nnc

p

which approaches 1 asymptotically as np → ∞. This value can only be achieved if
one point dominates all the rest. The lowest fitness value is 0, illustrated in the table
by the last row, a point that is worst in both criteria. For a population that consists
solely of non-dominated points, the fitness along the Pareto front would start at a
maximum value and decrease until the middle point of the set is reached and would
then start increasing again. The maximum fitness achievable, in this case, will be
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Fig. 2 The fitness of solutions along the Pareto front if all solutions are non-dominated. In the
plot, the solutions have been sorted according to the first objective function

fmax = 1− 1

nnc−1
p

and the minimum fitness

fmin = 1− 1

4nnc−2
p

.

With nc = 2 and np = 100, fmax = 0.99 and fmin = 0.75. This is illustrated in Fig. 2.

A Multi-Objective Plant Propagation Algorithm

The fitness function defined in the previous section could be used with most
population based evolutionary algorithms, such as a genetic algorithm. However,
we have had good experience with the Strawberry algorithm [9], an implementation
of a plant propagation nature inspired evolutionary method. Further evidence of the
power of this approach has been provided by Merrikh-Bayat [6].

The Strawberry algorithm was originally implemented for single criterion opti-
mization so it has been extended here for multi-objective problems. This extended
algorithm is shown in Algorithm 6. The basic premise is that plants that are
in a good position (fertile soil and plenty of water) will reproduce with greater
probability but will tend to do so in the vicinity of where they are. Less often, plants
which are not well situated will reproduce through longer distance methods. In the
Strawberry algorithm, both single and multiple objective versions, each member
of the population can generate a number of runners, proportional to that member’s
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Algorithm 6 The Strawberry plant propagation algorithm [9] extended for multi-
objective optimization
Given: f (x), a vector function; ng, number of generations to perform, np, the propagation size;

nr , maximum number of runners to propagate.
Output: z, vector approximation to Pareto front.

p← initial random population of size np

for ng generations do
prune population p, removing similar solutions
N← fitness(p) � Use rank based fitness
p̃← φ � Empty set
for i← 0 . . .np do

x← select(p,N) � Tournament fitness based selection
for each runner to generate do � Number proportional to fitness rounded up

x̃← new solution(x,1−N) � Distance inversely proportional to fitness
p̃← x̃∪ p̃ � Add to new population

end for
p← p\x � Remove from old population

end for
p← p̃∪ Nondominated(p) � New population with elitism

end for
z← Nondominated(p)

fitness, to define new points a distance away proportional to 1 minus the fitness, with
all values randomly chosen.

Case Study: Off-Grid Energy Systems Design with Renewable
Energy

Mining operations often are located in geographically remote regions of the planet.
These operations are seldom connected to grid supplies of energy, either electrical
or fuel. As a result, the operations typically require transport of fuel, e.g., diesel,
over large distances using trucks or equivalent. There is a desire to reduce the need
for the transport of fuel and one possibility is the use of local energy generation.
This local generation can be one of solar photovoltaic (PV), solar thermal or wind
turbines, or a combination of these. Local generation may or may not have economic
benefits but such generation will usually have a positive environmental impact when
compared with transporting fuel.

Beyond the economics of the choice of generation technology, whether to
generate locally at all is the key issue of continuous operation. Many mining sites
operate 24 h a day. A distinguishing factor of the renewable energy generation
technologies mentioned above is that they have variable output. Solar based
technologies obviously do not generate energy when the sun is not in the sky. Wind
turbines can generate energy through day and night but the amount will vary from
one moment to the next.
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The variability of generation requires changing the design of the mining opera-
tion to incorporate energy storage. A number of storage options can be considered
for large scale operations: molten salts, pumped hydraulic and compressed air.
The design problem then requires identifying the appropriate combination of both
generating and storage technologies to minimize the cost of the mining operation.
We have previously addressed the minimization of capital cost [2].

The optimization problem for the design problem included a constraint that
specified that the power and heat demands of the mining operation had to be satisfied
fully from local generated energy from renewable sources. However, in practice, due
to the variability of the energy supplies, even with storage, designing for complete
reliance on local generation will lead to over-design. Instead, it is more appropriate
to design for almost complete reliance on local generation but allowing for the use
of fuel brought in from off-site. In other words, from an optimization point of view,
it may be useful to relax the constraint and gain insight into how much impact
allowing the use of off-site energy sources, hopefully infrequently, may have.

An analysis of the impact of the constraint was undertaken using a scenario
based approach [1]. In this approach, a set of scenarios was generated, with each
having a different solar profile over the period of time considered. Each profile was
generated randomly. The single objective optimization problem was solved for each
scenario and the resulting design analyzed in terms of how likely it was to not meet
the demand under different solar profiles. Although this approach was useful, it
did not necessarily represent the best solutions possible in a probabilistic sense.
A more rigorous approach would be to consider relaxing the demand satisfaction
constraint and treating the design problem as a bi-criteria optimization problem, as
discussed above. The demand constraint is a desired attribute of a design but not a
hard constraint.

Using the models developed by Amusat et al. [1] and adding the probability of
not meeting demand as a second objective, the problem is now

min
d

z =

{
c(d)
p(d)

(1)

where d are the design variables, c(·) is the capital cost of the energy generation
and storage systems, and p(·) is the probability of not meeting the demand fully
with local generation sources. The probability is 1 minus the reliability. Reliability
is a measure of the ability of an energy system to deliver power to all points
of consumption with the frequency, the duration, and the extent required by the
operation [7].

The evaluation of the objective functions proceeds as follows:

1. For a given d, the generation and storage technologies are defined, resulting in
an energy system for the mining operation.

2. The resulting design is then evaluated over a number of randomly generated
scenarios based on a probability distribution function describing the variability
of solar irradiance for each hour of each day in the period of operation.
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Fig. 3 Final sets of non-dominated points resulting from 5 attempts at the off-grid design problem
using NSGA-II [4] where the probability is the likelihood of not satisfying the energy demands of
the mining operation with only local energy generation

3. The probability of not meeting demand is simply the ratio of the number of
scenarios where the demand was not met for design d, for at least one time period,
and the number of total scenarios. A value of 0 means that the design is able to
meet the demand under all likely solar conditions; a value of 1 means that the
design never fully meets the demand, always requiring the import of off-site fuel
for at least one time period over the full duration for each scenario.

As a starting point, we have solved this bi-criteria problem of dimension 8 using
NSGA-II [4] with population size 100, 150 generations, crossover rate of 0.25,
mutation rate of 0.25, with binary tournament selection, intermediate crossover,
and Gaussian mutation. The non-dominated objective function values for 5 attempts
are presented in Fig. 3. At the scale used, NSGA-II appears to identify the set of
non-dominated designs well. From an engineering point of view, we do see that the
designs are not that sensitive to the variability in solar irradiance. This is not entirely
surprising as the case study consists of the Collahuasi mine located in the Atacama
region of Chile where most days have completely clear skies and so the irradiance
is relatively constant and predictable.

Figure 4 shows the different sets of non-dominated points for the left side of the
plot shown in Fig. 3. It is this part of the plot we are most interested in as the designs
here are those that will not very often require off-site fuel. By zooming in, we see
that the solutions obtained are similar in objective function value from one attempt
with NSGA-II to another.

For comparison, we have also applied the Strawberry method using the rank
based fitness function described above with population size 100, 150 generations,
and nr = 5. The aim of this fitness function is to emphasize the end-points of the
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Fig. 4 A zoomed in view of Fig. 3

Pareto front and, due to the asymmetry in evaluation, particularly the left end-point.
Figure 5 shows the resulting solutions. Of note,

1. The Strawberry algorithm is less consistent over the full range of probability
values.

2. The number of points in the set of non-dominated points is small compared with
the sets generated by NSGA-II.

3. The distribution of points is less even than it is for the NSGA-II case with points
concentrated more towards the extremes of the Pareto front than towards the
center. Note that the use of diversity control reduces the number of points at the
right extreme.

4. The cost objective function values obtained are lower than those obtained using
NSGA-II.

If we zoom in as we did for the NSGA-II results, we see (Fig. 6) that the cost
objective function is often better than what is obtained with NSGA-II.

Analysis of the Designs

The aim of using a multi-objective approach to solve the constrained single objective
design problem is to gain insight into the impact of the particular constraint on the
designs obtained. In the off-grid design problem, the question the design engineer
would like to answer is: Does the constraint of not using any off-site fuel lead to a
significant over-design?

Table 2 shows the values of the first 6 design points, counting from the left, from
the bottom graph in Fig. 6. The cost does not include the actual cost of the off-site
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Fig. 5 Final sets of non-dominated points resulting from 5 attempts at the off-grid design problem
using the new multi-objective Strawberry algorithm where the probability is the likelihood of not
satisfying the energy demands of the mining operation with only local energy generation

Fig. 6 A zoomed in view of Fig. 5

fuel and the cost of transporting that fuel so this table (and the results discussed
earlier) only allows us to analyze the impact on the physical structure of the mining
operation’s energy systems.

The final row shows the variation as a percentage of the maximum value for
each design variable and objective function. From the first design through to the last
one, there is a change of 1 % in cost. Some variables are stable whereas the uses of
photovoltaic generation and compressed air storage have large changes: the feasible
design does not include either of these technologies. Introducing them allows the
cost to be reduced but at the expense of not meeting demands in all scenarios.
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Table 2 Design points with low probability of not meeting the demand for the mining
operation

GPT SMS EMS GPV SPS EPS SCA ECA c

(MW) (MWh) (MW) (MW) (MWh) (MW) (MWh) (MW) p 106

1257 6022 180 0.00 2746 89.2 0.00 60.26 0.000 1396

1246 6036 177 0.00 2740 94.8 0.00 64.80 0.010 1390

1238 6000 179 0.00 2749 96.4 25.98 64.73 0.030 1388

1235 6021 179 0.87 2839 93.5 1.44 58.34 0.033 1383

1232 6029 177 1.54 2795 93.6 0.00 59.79 0.043 1381

1228 6021 179 0.00 2736 89.8 0.00 65.10 0.063 1376

Δ (%) 2 1 2 100 4 7 100 10 100 1

The first row is a design which should always meet the demand and the second row is
one in which the demand will be met all but 1 % of the possible solar profiles that could
be encountered. The G columns are generation (power tower, PT, and photovoltaic, PV).
The S columns refer to storage: MS for molten salts, PH for pumped hydro, and CA for
compressed air. Finally, E columns indicate the peak electricity release rate from storage

For the design engineer, the main conclusion is that the feasible design is not
over-specified. In fact, some of the slightly less expensive designs introduce more
complexity by the incorporation of further alternative technologies. Generally, the
simpler the design, the more attractive it is so the feasible design is favored even
more.

The ability to perform this analysis enables the engineer to have the confidence
necessary to move to the next stage of design: the detailed specification of the
individual technologies and further modelling, simulation, and optimization.

Conclusions

The use of multi-objective optimization can provide useful insight into the impact
of constraints on designs. By converting a constraint to an extra objective, the
approximation of the Pareto front for the design problem will help determine, for
instance, whether the “feasible” design is over-constrained or not. To ensure that
the impact of the relaxation of a constraint is understood, it is necessary to have a
good approximation to the Pareto front at the extremes. This motivates the definition
of a fitness function to provide the appropriate selection pressure for evolutionary
methods.

A rank based fitness function has been presented. An implementation has been
incorporated in a new multi-objective plant propagation algorithm based on the
existing single objective Strawberry algorithm [9]. The procedure has been applied
to a problem in off-grid operation of large scale mining where there is a desire
to reduce the cost and environmental impact of using fuel brought in from a long
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distance away. The results demonstrate the effectiveness of both the fitness function
and the multi-objective Strawberry method.
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Estimating the Pareto Front of a Hard
Bi-criterion Competitive Facility Location
Problem

Algirdas Lančinskas, Pascual Fernández, Blas Pelegrín, and Julius Žilinskas

Abstract We deal with the location problem for a franchise type expanding firm in
competition with other firms in a geographical area. The firm aims at maximization
of the market share captured by the new facilities and minimization of the lost
market share of the old facilities caused by the entering of the new facilities in
the market. The market share of each facility is estimated assuming that customers
are served by the most attractive facility. A new tie breaking rule is introduced to
serve the customers for which there are more than one facility with the maximum
attraction, which leads to a hard nonlinear bi-objective optimization problem.
A heuristic algorithm is proposed which obtains a good approximation of the Pareto
front when the new facilities have to be selected from a finite set of candidates.

Keywords competitive facility location; firm expansion; multi-objective
optimization

Introduction

The location of facilities is a strategic decision for a firm that competes with other
firms to provide goods or services to the customers in a given geographic area.
Different location models and solution procedures have been proposed to cope with
these problems which vary depending on the ingredients to be considered such as
location space, facility attraction, customer patronizing behavior, demand function,
decision variables, and so on (see, for instance, survey papers [10, 13, 26, 29]).

Most of the models in the literature deal with the location problem for an
entering firm that will compete for the market in a certain region where other firms
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offering the same goods or services are already established. The entering firm aims
at maximization of market share, or profit, by taking into account the patronizing
behavior of customers. Some variants of the attraction model proposed by Huff [18]
have been used as choice rules to estimate the market share among the competing
facilities. In this type of models, the attraction of a facility depends on the distance
between the customer and the facility, as well as on some characteristics of the
facility defined through a parameter called the quality of the facility. The most
common customer choice rules are the ones called proportional and binary. The
proportional rule means that the customer patronizes all the facilities in proportion
to facility attraction (see, for instance, [8, 24, 31]). The binary rule means that the
customer patronizes the most attractive facility (see [16, 34, 35]).

The case of an expanding firm has received less attention in the location literature.
In this case the firm is already in the market, but it is interested in increasing its
market share by opening new facilities. As a result of the entrance of new facilities,
the old facilities owned by the firm might lose part of their market. This effect is
called cannibalization and it was studied for the first time in franchise systems
in [14]. In discrete location space, the cannibalization effect is considered in a single
objective location model with variable expenditure functions in [2]. In this model
the effect is not explicitly presented, but the cannibalized facilities may increase
their demand due to market expansion. Another model was studied in [1] where the
cannibalization effect is considered to simultaneously optimize location and quality
of the new facilities. In planar location space, the problem has been studied for a
single new facility as a bi- objective optimization problem by using a lexicographic
approach and interval analysis (see [11, 27]).

Real-world facility location problems are often multi-objective; i.e., several
criteria, such as market share, costs for establishment and maintenance, or any
undesirable effects, are taken into account when determining locations for the new
facilities. See [7, 9] for recent instances of multi-objective facility location problems
as well as [3, 4, 41]—for concept and developments in solution of multi-objective
optimization problems.

The multi-objective nature also occurs in the location problem for an expanding
firm when the facilities in the expanding firm have different owners, as it occur in
franchise systems. Then the aim of the owners of the new facilities is market share
maximization while the aim of the owners of the old facilities is cannibalization
minimization, which lead to a bi-objective optimization problem. In this paper
we deal with this bi-objective competitive location problem when multiple new
facilities are located in discrete location space and customers use the binary choice
rule. When the binary rule is used one open question is how to solve ties when
more than one facility have the maximum attraction for a given customer. Usually
ties are broken by assigning 1/2 of the customer demand to a new facility with
the maximum attraction. In this case some integer linear programming formulations
of the problem for an entering firm have been proposed (see, for instance, [32]).
However, the number of tied facilities may vary depending on the location of the
new facilities. Thus, if there are three tied facilities, one of them is owned by the
expanding firm and the other two are owned by its competitors, the expanding firm
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would get 1/3 of the demand instead of 1/2. We consider a different approach for tie
breaking proposed in [25], which consists of dividing the customer demand among
the tied facilities. This leads to solve a bi-objective nonlinear optimization problem
which is hard to solve even in discrete location space.

Finding the Pareto-optimal front is difficult and time consuming, therefore
algorithms providing an approximation of the true Pareto front are used. One well
known class of such algorithms are evolutionary algorithms (EAs), which require
little knowledge about the problem being solved—to solve a certain optimization
problem, it is enough to be able to evaluate the objective functions for a given set of
input parameters. Furthermore EAs are well suited to multi-objective optimization
problems as they are fundamentally based on biological processes which are
inherently multi-objective. Multi-Objective EAs (MOEAs) can yield to a whole set
of potential solutions—which are all optimal in some sense—and give the option to
assess the trade-offs between different solutions. A number of different MOEAs
have been proposed in the literature [5]; however, most popular of them are
Vector Evaluated Genetic Algorithm (VEGA) [30], Strength Pareto Evolutionary
Algorithm (SPEA and SPEA2) [39, 40], Pareto Archived Evolutionary Strategy
(PAES) [19], and Non-dominated Sorting Genetic Algorithm (NSGA and NSGA-
II) [6, 33].

Various MOEAs have been applied to solve various multi-objective optimization
problems in facility location. For example, Redondo et al. [28] proposed a general
multi-objective optimization heuristic algorithm, suitable to continuous multi-
objective optimization problems; Huapu and Jifeng [17] utilized SPEA to solve
a bi-level programming model to optimize the location problem of distribution
centers, where the upper level consists of two objectives—minimization of cost of
construction and distance between distribution center and customers, whereas the
lower level minimizes the transportation cost; Villegas et al. [36] utilized NSGA-
II to solve a bi-objective facility location problem by minimizing operational cost
of Colombian coffee supply network and maximizing the demand; Liao [22] used
NSGA-II to optimize the location for distribution centers with respect to two
objectives—maximization of customers service and minimization of the total cost;
Medaglia et al. [23] utilized hybrid NSGA-II and with mixed-integer programming
approach to solve bi-objective obnoxious facility location problem related to the
hospital waste management network.

This paper shows that NSGA-II with local search is able to find a good
approximation of the Pareto front of the proposed bi-objective location problem.
The problem will be formulated in the next section. Section “Approximation of the
Pareto Front” describes preliminaries of application of NSGA-II to solve discrete
optimization problems and its improvement by our proposed local search strategy.
Section “Numerical Experiments” consists of description and discussion of the
results of the experimental investigation performed to investigate the performance
of the derived algorithm by solving different instances of the discrete bi-objective
competitive facility location problem. Finally, some conclusions are presented in
section “Conclusions”.
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The Location Problem

Let us consider several firms which provide some goods or services to customers in
a certain geographical area. One of the firms, called the expanding firm, denoted by
A, wants to locate new facilities in order to increase its market share in that area. The
new facilities may capture customers who were served by the other firms as well as
customers who were served by the old facilities of the expanding firm. Therefore,
the firm A is also interested in minimizing the loss of market share of its old facilities
caused by the expansion (cannibalization effect). Thus the firm A is interested in the
Pareto solutions to this bi-objective location problem.

The customers are spatially separated and they are aggregated at geographic
demand points in order to make the problem computationally tractable (see [12]).
The customers patronize the most attractive facility to be served. If ties in the
maximum attraction for a customer occur, then the buying power is equally divided
among the most attractive facilities. This new rule for tie breaking allocates a
variable market share to the expanding firm depending on the number of tied
facilities owned by the firm. This rule is different from the classical tie breaking
rules for which the market share allocated to the expanding firm is fixed. Without
loss of generality the other existing competing firms can be considered as one firm
called B.

Notation

The following notation will be used in this paper.

Indices:

i—index of the demand point and
j—index of the facility.

Data:

I = {1,2, . . . ,n}—the set of the demand points;
n—the number of the demand points;
FA—the set of existing facilities owned by the firm A;
FB—the set of existing facilities owned by the firm B;
nA—the number of existing facilities owned by the firm A;
nB—the number of existing facilities owned by the firm B;
L = {1,2, . . . ,k}—the set of location candidates for the new facilities;
k—the number of location candidates for new facilities;
r—the number of new facilities to be located;
aij—attraction of the i-th demand point for the j-th facility;
dij—distance from the location of the i-th demand point to the j-th location; and
wi—buying power at the i-th demand point.
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Decision variable:

X—the set of locations for the new facilities.

Miscellaneous:

FX—the set of new facilities;
ai(F) =max{aij : j∈F}—the maximum attraction of demand point i for facilities

in set F ⊂ (FA∪FB∪FX);
ni(F) = |{j ∈ F : aij = ai(F)}|—the number of facilities in F which are the most

attractive to demand point i.

Market Share

The set of demand points which are totally captured by the new facilities after the
expansion is

It(X) = {i ∈ I : ai(FX)> ai(FA∪FB)}. (1)

The set of demand points which are partially captured by the new facilities (share
their demand with other preexisting facilities) is

Ip(X) = {i ∈ I : ai(FX) = ai(FA∪FB)}. (2)

Then the market share captured by the new facilities is given by

m(X) = ∑
i∈It(X)

wi + ∑
i∈Ip(X)

ni(X)
ni(X)+ni(FA∪FB)

·wi (3)

Cannibalization

Before the expansion, the set of demand points which are totally captured by the
firm A is

It = {i ∈ I : ai(FA)> ai(FB)} (4)

and the set of demand points which share their buying power between firms A and
B is

Ip = {i ∈ I : ai(FA) = ai(FB)}. (5)

A part of the market share of the old facilities of the firm A may be lost due to the
entrance of the new facilities. The lost market share is obtained as follows:
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(i) if i ∈ It, the lost market share is

{

wi if ai(FX)> ai(FA),
ni(FX)

ni(FX)+ni(FA)
·wi if ai(FX) = ai(FA);

(6)

(ii) if i ∈ Ip, the lost market share is

⎧

⎨

⎩

ni(FA)
ni(FA)+ni(FB)

·wi if ai(FX)> ai(FA),
ni(FA)ni(FX)

(ni(FA)+ni(FB))·(ni(FX)+ni(FA)+ni(FB))
·wi if ai(FX) = ai(FA).

(7)

Let

Ia
>(X) = {i ∈ Ia : ai(FX)> ai(FA)} (8)

and

Ia
=(X) = {i ∈ Ia : ai(FX) = ai(FA)}, (9)

where a = t,p.
Then the lost market share of the old facilities is given by

c(X) = ∑
i∈It

>(X)

wi + ∑
i∈It

=(X)

ni(FX)

ni(FX)+ni(FA)
·wi

+ ∑
i∈Ip

>(X)

ni(FA)

ni(FA)+ni(FB)
·wi (10)

+ ∑
i∈Ip

=(X)

ni(FA)ni(FX)

(ni(FA)+ni(FB)) · (ni(FX)+ni(FA)+ni(FB))
·wi.

Bi-objective Problem

Thus the firm A is interested in finding the Pareto solutions to the following bi-
objective optimization problem:

Maximize m(X),
Minimize c(X),
s.t. X ⊂ L, |X|= r.

To our knowledge, this bi-objective location problem for an expanding firm is
considered for the first time in the location literature with the new tie breaking rule.
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Approximation of the Pareto Front

The simplest way to determine the Pareto front is to enumerate all possible solutions
and select non-dominated ones. The number of possible function evaluations is
the number of combinations Cr

k, which means that this method can be very
time consuming and sometimes it is impossible to consider (or even define) all
possible solutions in a reasonable time. Moreover, for some practical problems
it is not necessary to find the exact Pareto front, but rather its approximation.
Therefore heuristic algorithms, such as MOEAs, can be used to solve multi-
objective optimization problems.

Although there exist many techniques to design MOEAs which have different
characteristics, the advantages of a particular technique can be better utilized by
hybridizing two or more different techniques; see [15, 21, 23] for examples of hybrid
MOEAs.

Non-dominated Sorting Genetic Algorithm

One of the first and best-known evolutionary algorithms for global multi-objective
optimization is NSGA, which was presented by Srinivas and Deb [33]. However it
had some drawbacks such as a high computational complexity of non-dominated
sorting of population of candidate solutions, lack of elitism, and need for specifying
a sharing parameter.

An updated version of the algorithm—NSGA-II—has been presented by
Deb et al. [6]. The NSGA-II can be applied to solve various optimization problems
as it requires a little knowledge about the problem being solved, as well as it is
suitable for parallel computing; see [20] for the example of application of the
NSGA-II to solve multi-objective competitive facility location problem using the
high performance computing system.

The algorithm begins with an initial population Q1 consisting of N randomly
generated solutions. Genetic operators crossover and mutation are used to generate
a child population Q2, usually of the same size N as the parent population. The
crossover operator is based on combining elements (variables) of two different
solutions in order to obtain a third one, and the mutation is a small change of each
variable with a predefined probability. A particular way to perform the crossover
and mutation in solving the relevant discrete BCFLP will be described in detail in
section “Application of NSGA-II to Solve BCFLP”. After a new child population
is generated, both populations Q1 and Q2 are combined into one population Q =
Q1∪Q2, which is used to produce a new parent population for the next generation.
The new population is formed using the specific non-dominated sorting procedure
which is based on breaking down the general population Q into subsets of equally
dominated (having the same number of dominators) individuals and selection of
N individuals with the lowest number of dominators. In case of choosing between
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equally dominated solutions, the Crowding Distance operator is applied to choose
the most promising ones. The latter procedure as well as Crowding Distance
operator is described in detail in [6].

Application of NSGA-II to Solve BCFLP

One of the main problems in the usage of evolutionary algorithms is representation
of solutions—how the solutions will be represented in numerical fashion. Since
the relevant optimization problem deals with the selection of a combination of
different locations from a given set of candidates L ⊂ I, it is natural to represent
the solution as a vector of indices of candidate locations for the new facilities.
For example, in the case of selecting a combination of three locations from a set L
consisting of 100 candidate locations, the solution x can be represented as a vector
x = (1,15,98), representing that the 1st, 15th, and 98th candidate locations in L will
form the solution. Note that both objectives of the problem are commutative since
two solutions (1,15,98) and (98,1,15) will provide the same market share and
cannibalization. We will also assume that no more than one new facility can be
located per candidate demand point, i.e., solutions representing two or more equal
demand points are not feasible. These two main restrictions should be taken into
account while generating a new solution.

An initial population Q1 of N solutions is randomly generated taking into account
the latter properties of the problem. Each member of a new child population Q2 is
generated by applying crossover and mutation operators to two different solutions

x(1) and x(2) randomly chosen from parent population Q1. Each element x(3)i of the

new child solution x(3) = (x(3)1 ,x(3)2 , . . . ,x(3)r ) is chosen at random from {x(1)i ,x(2)i },
where r denotes the number of problem variables (the number of new facilities
expected to locate), and i = 1, . . . ,r.

The second step in generation of child solution is mutation which plays an
important role in obtaining a good approximation of the Pareto front. The idea of
mutation is to make changes to elements of a child solution to extend the variance in
exploring the search space. Usually each element of the solution is mutated with a
predefined probability called the mutation rate. A larger mutation rate leads to more
significant mutation and more global search. On the other hand if the mutation rate
is too small the search is restricted to only recombination of elements of the parent
population. In our experimental investigation we will use the value of the mutation
rate equal to 1/r. Such a value of the mutation rate leads to an average mutation of
one variable.

Mutation of the i-th element of the child solution x(3)i is performed by changing

the index of location x(3)i ∈ L to the index of another location from L, which is not
represented in x(3):

x(3)i ∈ {l ∈ L : l �= x(3)j , j = 1, . . . ,r}. (11)
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On one hand the new location l can be chosen at random from all possible candidate
locations; however, such a strategy leads to a chaotic mutation. We propose to define

a neighborhood of x(3)i —a subset L(h)(x(3)i ) ⊂ L of h locations which are nearest to

the location x(3)i —and perform mutation within the neighborhood as follows:

x(3)i ∈ {l ∈ L(h)(x(3)i ) : l �= x(3)j , j = 1, . . . ,r}. (12)

An important factor is the value of h which can vary from 1 to |L|. Usage of large
values leads to chaotic mutation similar as using (11), while usage of smaller values
of h leads to inclusion of less scattered locations. An experimental investigation on
different values of h has been made and its results will be discussed hereinafter.

Improvement by Local Search

In this section we will describe a strategy to apply a local search in solving discrete
multi-objective optimization problems using the NSGA-II algorithm. Although the
strategy could be applied to solve various discrete multi-objective optimization
problems, in this paper we will focus on the previously described BCFLP.

Local search is based on selection of a neighbor solution and is aimed at
improving the Pareto front obtained by the NSGA-II algorithm which was described
in section “Non-dominated Sorting Genetic Algorithm”. A single iteration of the
local search algorithm consists of randomly choosing a single solution x from an
approximation of the Pareto set P̃ found so far, and generating a neighbor solution
x′ using (12). Each variable of the solution is changed with a predefined probability
equal to 1/r. In the case of no change the generation procedure is repeated again till
at least one variable is mutated. The subset L(h)(x) is constructed in the same way as
for mutation in NSGA-II algorithm—indices of h locations from L which are nearest
to the location we want to change. After a neighbor solution x′ is generated and the
values of objectives are evaluated, the dominance relation against other members of
P̃ is evaluated. If x′ is not dominated by any other member of the approximation
of the Pareto set, it is added to P̃ and all solutions which are dominated by x′ are
removed from P̃:

P̃← (P̃∪{x′})\{x ∈ P̃ : x′ % x}. (13)

Depending on the number of function evaluations we want to devote for the local
search, the number of local search iterations must be defined in advance. Results of
experimental studies in choosing an appropriate values of the parameter h and the
number of local search iterations will be presented and discussed hereinafter.
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Numerical Experiments

Description

The performance of the algorithm has been experimentally investigated by solving
the BCFLP formulated in section “The Location Problem”. Real geographical and
population data of 6961 municipalities in Spain has been used (see Fig. 1).

It was supposed that each of two firms has three preexisting facilities located in
the most populated demand points. In such a case there are C3

6 = 20 possibilities
to locate the preexisting facilities each of which has been investigated. A set of
candidate demand points L consists of required number of the remaining largest
demand points including those in which facility of the firm B is already located.

Four different configurations of parameters of the problem have been investigated
(see Table 1) which vary on the number of facilities expected to locate (the number
of variables, r) and the number of candidate locations (size of the search space, k).

The value of attraction that the i-th demand point feels to the j-th facility has been
calculated by

aij =
qj

1+dij
, (14)

 36

 38

 40

 42

 44

-10 -8 -6 -4 -2  0  2  4

L
on

gt
itu

de

Latitude

Fig. 1 Illustration of experimental data: 6961 municipalities in Spain
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Table 1 Four configurations of
the parameters of the BCFLP

I II III IV

r 3 3 5 10

k 100 500 100 500

where dij is a distance between the i-th demand point and the j-th facility, and qj is a
predefined value of quality of j-th facility. Since we want the impact of quality would
be competitive with the impact of the distance, and assume that the customers go up
to 100 km to purchase a service, the quality values of all preexisting facilities should
be chosen from the interval [30,70]. The values equal to (57,60,59,45,56,36)
have been randomly chosen for our experimental investigation. All new facilities
have been assumed to be of the same quality qn, but different values have been
investigated: 35,45,55, and 65. In particular case, if the quality values of all facilities
(new and preexisting) are equal, the patronizing behavior becomes distance-based,
which means that all customers from a particular demand point are served by their
closest facility. This variant of the model has been included in the experimental
investigation as well.

Metrics of Performance

Performance of the algorithms has been evaluated by two performance metrics:
Hyper-Volume and Inverted Generational Distance (IGD).

The hyper-volume [38] metric measures the volume of a region made by
the members of the obtained approximation of the Pareto front (in space of
objectives) and the given reference point. The larger HV value means the better
quality of the approximation of the Pareto front. The difference between the HV
of the optimization problems containing different Pareto fronts we use Inverted
Normalized Hyper-Volume (INHV) metric, which is described as

INHV =
HVT−HVO

HVT
, (15)

where HVT denotes the HV of the true Pareto front, and HVO—of the obtained
approximation—both are normalized so that the true Pareto front would fit to a
square [0,1]2. All points which, after the normalization, belong to the approxima-
tion, but do not fit in the rectangle [0,1]2, are considered to be out of range and
are not included when evaluating the INHV. The reference point r = (−0.1,1.1) is
used for the evaluation of HVT and HVO. In contrast with the regular HV, smaller
values of INHV means better precision of approximation P̃, and INHV = 0 means
that P̃ = P. The difference between the HV of the normalized true Pareto and the
normalized its approximation is illustrated in Fig. 2.
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Fig. 2 Illustration of the concept of the INHV

IGD measures the average distance from the element of the true Pareto front P to
the nearest element of the approximated Pareto front P̃ [37]:

IGD(P̃,P) =
1
|P| ∑

x′∈P

min
x∈P̃
‖ F(x′)−F(x) ‖, (16)

where F(·) denotes a vector of the values of the objective functions. Since it
is expected to find decision vectors which would be as close as possible to the
members of the Pareto-optimal front, lower IGD value implies better quality of the
approximation.

Results

A complete enumeration algorithm has been used to determine the true Pareto
fronts of the BCFLP with the first three configurations of the parameters. The
optimization problem seems to be quite simple when using the first configuration
of parameters (see Table 1)—it requires C3

100 function evaluations to perform
the complete enumeration. However it requires around 15 min using an Intel(R)
Core(TM) i5 CPU 760 @ 2.80 GHz hardware. Increasing the value of k to 500
(second configuration of the parameters), the number of function evaluations
increases to C5

500 and the complete enumeration lasts around 18 h. Increasing the
number of facilities expected to locate from 3 to 5 (third configuration of the
parameters), duration of computations increases to around 78 h.
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NSGA-II with population size of 100 individuals and pure random mutation has
been run for 250 generations to investigate the opportunities to approximate the
Pareto fronts. Due to stochastic nature of the genetic algorithm, each experiment
has been run for 100 times and average values of the performance metrics have
been evaluated.

Results of the investigation showed that the Pareto front of any of the first
three cases of the problem parameters can be quite precisely approximated by a
classical version of NSGA-II within 25,000 function evaluations: the maximum
values of INHV and IGD were less than 0.01 and 0.004, respectively. Comparison
of the true and obtained Pareto fronts is illustrated in Fig. 3, where circles indicate
points of the true Pareto front found by complete enumeration and crosses—their
approximations.

More complicated was the BCFLP with the last configuration of the
parameters—expecting to choose locations for 10 facilities from the set of 500
candidates. Since it was almost impossible to perform the complete enumeration
in reasonable time, an approximation of the true Pareto front has been constructed
from all approximations (around 1500) obtained by all experiments made during
the investigation. Depending on the parameters of behavior of customers, the
number of the Pareto-optimal solutions in the approximation varies from 703
(qn = 35) to 71,730 (qn = 65). When the behavior of customers is distance-based
the approximation consists of 937 Pareto-optimal solutions. The average values of
INHV and IGD were 0.056 and 0.0144, respectively.

In order to improve these values of performance metrics we proposed a local
mutation strategy (see (12)) with different values of the parameter h: 3, 5, 10, 20, and
30. The results of the investigation are presented in Fig. 4, where average values of
the INHV (uppermost) and the IGD (lowermost) with the confidence intervals with
confidence level 0.05 are presented; different columns represent different models of
the behavior of customers: distance-based and attractive-based with qn = 35, qn =
45, qn = 55, and qn = 65, respectively. One can see in the figure that change of the
value has significant impact on both metrics of performance, but it is worth to use
h = 10 as the usage of it gave the lowest values of INHV and IGD metrics for all
models of customers’ behavior investigated.

The same BCFLP has been solved by NSGA-II with the proposed local search
strategy as described in section “Improvement by Local Search”. The number
of function evaluations devoted for the local search is another parameter of the
algorithm. Different values of this parameter have been experimentally investigated:
1000, 5000, 10,000, and 15,000. In order to perform 25,000 function evaluations
in total, the local search has been performed after performance of 24,000, 20,000,
15,000, and 10,000 function evaluations by NSGA-II, respectively. The parameter
value h = 10 has been used as this choice gives the best results in previous
experiments. Results of the investigation presented in Fig. 5 show that devotion of
function evaluations to the local search can significantly improve the quality of the
final Pareto front approximation. From the results we can see that it is worth to
devote 5000–10,000 function evaluations.
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of customers’ behavior, and their approximations
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Fig. 4 Average values of INHV (uppermost) and IGD (lowermost) and their confidence intervals
with confidence level 0.05, obtained using different values of parameter h

The average duration of the heuristic algorithm is around 173 s using an Intel(R)
Core(TM) i5 CPU 760 @ 2.80 GHz hardware. The duration is independent on
whether the classical NSGA-II or one of its improved versions (with the local
mutation or with the local mutation and the local search) is used as the main
computational effort that is allocated for the evaluation of the objective functions’
values.

Conclusions

In this paper we have studied the location problem for an expanding firm with
the aim of market share maximization and cannibalization minimization where the
customers choose the most attractive facility to be served. A new tie breaking rule
based on the allocation of variable market share to the tied facilities, which depends
on the number of tied facilities, has been introduced.
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Fig. 5 Average values of INHV (uppermost) and IGD (lowermost) and their confidence intervals
with confidence level 0.05, obtained using NSGA-II with the local mutation and different number
of function evaluations devoted for the local search

In order to solve the resulting hard multi-objective optimization problem, Non-
dominated Sorting Genetic Algorithm (NSGA-II) has been applied by proposing
a new mutation strategy, specially adapted to solve facility location problems.
The special local search strategy has been also proposed and incorporated in NSGA-
II developing a hybrid global optimization algorithm for facility location problems.

Results of experimental investigation of the proposed algorithm showed that
usage of the proposed strategies for mutation and local search in NSGA-II can
improve the hyper-volume and IGD metrics from 10 to 50 % (depending on the
problem instance), comparing with the values of the performance metrics, obtained
by the classical version of NSGA-II.
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On Sampling Methods for Costly
Multi-Objective Black-Box Optimization

Ingrida Steponavičė, Mojdeh Shirazi-Manesh, Rob J. Hyndman,
Kate Smith-Miles, and Laura Villanova

Abstract We investigate the impact of different sampling techniques on the
performance of multi-objective optimization methods applied to costly black-box
optimization problems. Such problems are often solved using an algorithm in which
a surrogate model approximates the true objective function and provides predicted
objective values at a lower cost. As the surrogate model is based on evaluations of
a small number of points, the quality of the initial sample can have a great impact
on the overall effectiveness of the optimization. In this study, we demonstrate how
various sampling techniques affect the results of applying different optimization
algorithms to a set of benchmark problems. Additionally, some recommendations
on usage of sampling methods are provided.

Keywords Design of experiment • Space-filling • Low-discrepancy • Efficient
global optimization

Introduction

A plethora of practical engineering problems involve multiple conflicting objectives
which have to be optimized simultaneously. Solving such problems requires more
effort than single-objective optimization as they usually have many (possibly
infinite) optimal solutions; such solutions compose the so-called Pareto optimal set.

To add further to the challenge, for many real-world optimization problems there
is also an absence of algebraic objective or response function definitions. Examples
are crash tests, chemical reactions, many laboratory experiments, etc. Therefore
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an important challenge in optimization practice is how to solve an optimization
problem in the absence of an algebraic model of the system to be optimized. Such
optimization problems are called black-box as the available information is just
input–output data without prior knowledge of the characteristics or physics of the
relationships involved.

Due to the lack of an analytical description of the objective functions, deriva-
tives are unavailable and derivative-based optimization methods cannot be used.
Moreover, in many practical applications, the objective functions (or the associated
constraints) are very costly to evaluate and it is desirable to limit the number
of evaluations. Consequently, for costly black-box multi-objective optimization
problems, the main concern is to find the Pareto optimal set with as few function
evaluations as possible. Traditional derivative-free methods based on direct search
or gradient estimation via numerical differentiation are not usually viable as they
require many more function evaluations than can be comfortably afforded.

A popular and successful approach for derivative-free optimization of costly
black-box functions is to construct response surface models known as surrogate
models (or metamodels) that mimic the behavior of the real-word process as
closely as possible while being less resource-demanding to evaluate. Surrogate-
based optimization methods became popular a few decades ago even though they
were proposed much earlier [20]. Among the various potential surrogate models,
polynomial response surface models [3], kriging [36], and radial basis functions
(RBF) [6] are widely used in solving costly black-box optimization problems.

In recent years, much attention has been devoted to develop multi-objective
optimization methods (e.g., see [31, 41, 49]) to deal with real-world applications
characterized as costly multi-objective black-box optimization problems using sur-
rogate models to replace the unknown objective functions. However, little attention
has been focused so far on the impact of the initial sample on the performance
of the developed algorithms. Every black-box optimization algorithm starts the
optimization process with an initial sample, usually a very limited one in the case of
expensive function evaluations. The initial sample provides some knowledge for the
method to further investigate the decision space with the aim of finding the global
optimum. When the evaluation of objective functions is costly, these evaluated
points are usually fed to a surrogate model to predict the real response function
values of unevaluated points. An inexpensive surrogate model is constructed based
on an initial sample; the model is then used in a search for the next points to evaluate.
This approach decreases the number of resource-consuming function evaluations,
but suggests that the initial sample selected to build a surrogate model can strongly
impact the efficiency of optimization. This consideration motivates our analysis of
the sampling effect on the optimization search.

Sampling methods have been used for a wide range of purposes ranging from
censuses and surveys [1, 48] to numerical and computational studies [5, 9] to
experimental investigations in industry and science [11, 24, 29, 35]. In general,
sampling methods can be used in two main types of studies: observational and
experimental studies [4]. Observational studies aim to draw inferences about an
entire space from a sample [34], whereas experimental studies aim to identify the
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cause–effect relationship between input and output variables through controlled
experiments [40]. In the first case, sampling methods must provide a representative
sample of the entire space; in the second case, sampling methods must provide a
small informative sample selected from the set of feasible experiments (the decision
space). It is the latter experimental scenario that is relevant when using sampling
methods in an optimization context.

To our knowledge, there exist only a few studies investigating the impact of
sampling methods in the context of single-objective surrogate-based optimization
[26, 44] and multi-objective optimization [30]. With regard to the multi-objective
field, Poles et al. [30] focused on evolutionary optimization algorithms. Evolu-
tionary algorithms require thousands of function evaluations to achieve a good
approximation of the Pareto optimal set; therefore, they are not suitable for costly
optimization. Instead, we focus on methodologies that require hundreds of function
evaluations. Indeed, this study aims to investigate the effect and importance of
initial sampling techniques on methods suitable for costly multi-objective black-box
optimization.

The remainder of this chapter is as follows. In section “Problem Description”,
we recall the basic concepts related to black-box and multi-objective optimization.
Widely used sampling methods and the concepts behind them are outlined in sec-
tion “Sampling Methods”. In section “Experiments”, we present the experimental
setup used in the study and we illustrate the experimental results. Section “Conclu-
sions” summarizes the results obtained, provides insights and suggestions for future
research directions, and draws some final conclusions.

Problem Description

The multi-objective optimization problem comprises multiple objective functions
which are to be minimized simultaneously. It can be expressed in the following
form:

min f(x) =
(

f1(x), . . . , fm(x)
)T

subject to x ∈ S, (1)

where S ⊂ R
d is the feasible set and fi :→ R, i = 1, . . . ,m (m ≥ 2), are objective

functions to be minimized simultaneously. All objective functions are represented
by the vector-valued function f : S→ R

m. A vector x ∈ S is called a decision vector
and a vector z = f(x) ∈ R

m is called an objective vector.
We assume that at least one of the functions fi is “costly”; that is, its evaluation

requires a significant amount of resources and no analytic expression is available.
Therefore, problem (1) is called a costly multi-objective black-box optimization
problem.

In multi-objective optimization, the objective functions f1, . . . , fm in (1) are
typically conflicting. In that case, there does not exist a decision vector x̄ ∈ S such
that x̄ minimizes fi in S for all i= 1, . . . ,m, but there exist a number (possibly infinite)
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of Pareto optimal solutions. In mathematical terms, a decision vector x̄ ∈ S and its
image z̄ = f(x̄) are said to be Pareto optimal or nondominated if there does not exist
a decision vector x ∈ S such that fi(x) ≤ fi(x̄) for all i = 1, . . . ,m and fj(x) < fj(x̄)
for some j = 1, . . . ,m. If such a decision x ∈ S does exist, x̄ and z̄ are said to be
dominated by x and its image z = f(x), respectively. The Pareto optimal set in the
objective space is also called the Pareto optimal front.

Sampling Methods

Sampling methods for experimental studies have been attracting a great deal of
attention since the 1800s and have resulted in a dedicated field of research known as
Design of Experiments. Their importance directly relates to the efficient collection
of informative data, allowing for the quick delivery of robust results. This translates
into considerable savings that minimize costs and time related to both physical (real-
world) and computer-based experimentation.

Many sampling methods assume that the unknown objective function can be
approximated by a simple model (e.g., linear or quadratic) and recommend samples
located on the boundary of the design space. This assumption can be safely made
if some knowledge exists of the objective function or if the approximation occurs
locally (i.e., in a relatively small sub-area of the decision space) [17]. In black-box
optimization, no knowledge exists regarding the objective function and the entire
decision space is typically searched. Therefore, sampling methods are required to
provide samples that are spread out across the entire decision space. Two such
classes of methods are space-filling methods and low-discrepancy sequences. Space-
filling methods aim to generate widespread samples using a range of different
criteria including equally spaced intervals and distance measures. On the other
hand, low-discrepancy sequences use a measure of uniformity (discrepancy) that
minimizes the difference between the percentage of points falling in a particular
region on a unit cube and the percentage of volume occupied by this region. The
main space-filling designs and low-discrepancy sequences are reviewed below and
investigated in our computational study.

Simple Random Sampling

In simple random sampling (SRS), N decision vectors are randomly sampled from
the decision space [39]. Decision vectors have the same probability of being chosen;
the constant chance of selection extends to pairs, triplets, and so on (e.g., any given
pair of decision vectors has the same chance of selection as any other pair).

SRS is among the most popular sampling methodologies thanks to its simplicity
and low computational demand. One drawback of SRS relates to its vulnerability
to sampling error; indeed, the randomness of its selection process may result in
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a sample that is not evenly spread throughout the entire decision space. This is
particularly true for small samples in high-dimensional regions that often exhibit
apparent clustering and poorly covered regions [37]. Systematic and stratified
sampling techniques have been developed to overcome this issue and choose a
“more representative” sample.

Latin Hypercube Sampling

Latin hypercube sampling (LHS) is a stratified sampling technique. LHS controls
how random samples are generated from a given probability distribution (usually
uniform). To generate a sample of N decision vectors, the domain of each decision
variable is divided into N equally spaced and non-overlapping intervals; then,
one value is selected at random from each such interval. Random permutation of
the resulting values for all decision variables results in a random Latin hypercube
sample.

LHS originated in 1979 for computer-based experiments in order to address the
need for a better and more efficient coverage of the decision space [22]. The authors
showed that LHS reduces the variance in their chosen application of Monte Carlo
integration.

The main advantage of LHS over SRS derives from its one-dimensional projec-
tion property: a Latin hypercube sample projected into one dimension results in a set
of evenly distributed points in all dimensions separately. Due to this property, LHS is
the most commonly used stratified sampling technique in many areas of computer-
based experiments. Despite this, different studies show that it is not always the best
choice [43, 44]. Indeed, LHS does not guarantee a uniform coverage (i.e., a good
spread) of the decision space as (sometimes large) areas of the decision space might
remain unexplored. Two such examples are reported in Fig. 1 showing an LHS in
two dimensions with six intervals per decision variable. In both cases, there is a
large area of the decision space that is not explored; therefore, if we use such a
sample to develop a prediction model, then the prediction will be poor in those
unexplored areas. In the worst case scenario (b), LHS can generate a sample with
two perfectly correlated decision variables; such a sample causes the effects of the
two variables to be completely confounded. To overcome these limitations, LHS
methods have been improved through the adoption of an additional criterion; such
improvements resulted in maximin distance and minimum correlation LHS (C-LHS)
methods described later on.

Maximin Sampling

Maximin sampling belongs to the class of distance-based sampling methods.
Distance-based sampling methods make use of the Euclidean distance to prevent
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Fig. 1 Two LHS configurations with two variables in six intervals (a) a non space-filling LHS (b)
a worst case LHS

sampled points from clustering too close together so that they over-represent some
regions of the design space.

The aim of maximin sampling is to scatter points in the decision space
such that the minimal pairwise distance between points is maximized. Let
xj = (xj1,xj2, . . . ,xjd) and xk = (xk1,xk2, . . . ,xkd) be two different decision vectors in
a sample D(N,S), where N is the sample size and S is the d-dimensional feasible
set. The following mathematical problem must be solved:

max min s2(xj,xk) (2)

where

s2(xj,xk) =
d

∑
i=1

(
xji− xki

Ui−Li

)2

and xj,xk ∈ D(N,S), j,k = 1,2, . . . ,N (j �= k), Ui and Li are the upper and lower
limits of the ith variable. Therefore, a maximin sample of size N contains minimum
pairwise distances that are maximum compared to any other N-sized sample.

Maximin sampling was first introduced by Johnson et al. [14]. It is among the
best methods to obtain an even coverage of the decision space. However, it tends
to prioritize decision vectors that are located near the boundary of the decision
space. Also, despite computational efficiency in low dimensions, the method is
very demanding in high dimensions. To overcome this issue, various approximate
maximin sampling methods have been developed. Approximate methods use con-
ventional nonlinear programming algorithms to reduce the computational cost of
the procedure at the expense of potentially providing solutions that are not globally
optimal, only locally optimal.

Here, we propose a simple approximation method we call “Nearly maximin”
consisting of the following steps:
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Step 1 Randomly generate a decision vector x1 from the decision space and
choose it as the first element of the sample;

Step 2 Randomly generate n decision vectors from the decision space and for
each vector, calculate the Euclidean distance to the closest element of the
existing sample; and

Step 3 Choose the one having the maximum distance out of the n decision vectors
as the next element of the sample;

Repeat Step 2 and Step 3 until the sample comprises N decision vectors.
In a preliminary study that will be published elsewhere, the Nearly maximin

method showed extremely promising results. It will be used in our computational
study to allow for the investigation of high-dimensional test problems.

Maximin LHS

Both LHS and maximin sampling produce samples with attractive properties.
LHS guarantees that the one-dimensional projection of the sample presents an
even spread in the variables’ domains; maximin guarantees that no two elements
(decision vectors) in the sample are close together. However, both methods suffer
from limitations. In particular, LHS might occasionally generate samples with
points that are close to each other as in the examples of Fig. 1, whereas maximin
tends to select samples that are located near the boundary of the decision space.

To overcome these limitations, Morris and Mitchel [25] suggested that LHS be
combined with the maximin criterion. The resulting method is known as Maximin
LHS (M-LHS). It consists of (a) generating the maximum number of possible LHS
samples, (b) measuring their maximin distances, and (c) selecting the most evenly
spread sample (optimal sample).

M-LHS preserves the one-dimensional projection property of LHS while ensur-
ing that no two points in the LHS design are very close to each other. Therefore, a
good spread of decision vectors is achieved not just in each single variable domain
but also in the entire decision space. Also, the decision vectors in the sample
are preferentially located in the interior of the decision space thus providing a
compromise between maximin property and good projective properties in each
dimension (as guaranteed by Latin hypercubes) [25]. Unfortunately, constructing
samples by M-LHS can be quite time consuming when the number of dimensions
and design points increase. Indeed, there exist (N!)d−1 LHS samples for N divisions
and d dimensions; for each such sample, the maximin distances need to be
calculated in order to identify the optimal one.
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Correlation LHS

To find optimal LHS Iman and Conover [12], Owen [28], and Tang [42] proposed
to use a criterion minimizing correlation between the factors. This is useful in
applications requiring a sample to be composed of decision vectors without (or with
small) correlation. Owen proposed to measure the goodness of LHS with respect to
a criterion of minimum pairwise correlations which is defined as follows:

ρ2 =
∑d

i=2 ∑i−1
j ρ2

ij

d(d−1)/2
, (3)

where ρij is the pairwise correlation between columns i and j of the design, and
ρij ∈ [0,1]. The smaller the ρ2 is, the weaker the pairwise correlation is.

In C-LHS method suggested by Owen [28], the sum of between-column squared
correlation is decreased by alternating forward and backward Gram–Schmidt
orthogonalization. In our computational study we used the Matlab implementation
of Owen’s method.

One might think that minimizing the correlation should spread out the points
and maximizing the distance between the points should reduce the correlation.
However in practice, there is no one-to-one relationship between the two, and
designs obtained by these two criteria can be quite different [15]. In other words,
C-LHS not necessarily provides a well spread sample.

Halton Sequence Sampling

The Halton sequence sampling method generates quasi-random numbers of high-
dimensionality with a high level of uniformity across the space. Halton sequence
is constructed according to a deterministic method that uses different prime bases
for different dimensions to create a d-dimensional low-discrepancy sequence [7, 19,
21]. The method is based on the fact that each non-negative integer can be expanded
using a prime base. Construction of Halton sequence in d-dimensional space is as
follows:

1. Choose d prime integers p1,p2, . . . ,pd (usually the first primes p1 = 2, p2 = 3, . . . ,
are selected).

2. To generate the i-th sample, consider the base p representation for i in which:

i = a0 +a1p+a2p2 +a3p3 + . . .

where each aj is an integer in [0,p−1].
3. The next point in [0,1] is achieved by reversing the order of the bits and moving

the decimal point:
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r(i,p) =
a0

p
+

a1

p2 +
a2

p3 +
a3

p4 + . . .

4. Starting from i = 0, the i-th sample in the Halton sequence is

(r(i,p1),r(i,p2), . . . ,r(i,pd)) (4)

Halton is an extension of the Van der Corput sequence, which was originally
introduced for one dimension and a base of 2. The Van der Corput sequence is
obtained by using p= 2. However, Halton sequences based on large primes (d > 10)
can be highly correlated, and their coverage can be worse than that of the pseudo-
random uniform sequences.

Hammersley Sequence Sampling

The Hammersley sequence [8, 21] belongs to the class of low-discrepancy
sequences, and is closely related to the Fibonacci series. The Hammersley sequence
is an adaptation of the Halton sequence (4) when the required sample size N is
known. In such a case, a better uniformly distributed sample can be obtained by
using only d− 1 distinct primes. In a Hammersley sequence with N elements and
starting from i = 0, the i-th d-dimensional vector will be

(
i
N
,r(i,p1),r(i,p2), . . . ,r(i,pd−1)

)

for i = 0,1,2, . . . ,N−1. (5)

Hammersley sequence sampling provides better uniformity properties over LHS
[23]; in particular, the chance of samples with clustered decision vectors is lower.
Also, compared to other conventional techniques, Hammersley sampling requires
far smaller samples to approximate the mean and variance of distributions based on
empirical studies [16].

Sobol Sequence Sampling

Sobol sequence sampling is an improved version of the Halton and Hammersley
methods. Indeed, despite the Halton and Hammersley methods being relatively
simple and efficient, they suffer from a common pitfall—the performance of
these two sampling methods degrades substantially in higher dimensions. Sobol
sequences have been proposed to approximate the integral over the d-dimensional
unit cube:
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lim
n→∞

1
n

n−1

∑
i=0

f (xi) =
∫

[0,1]d
f (x)dx

where f is a real integrable function over a d-dimensional unit hypercube and
x0, . . . ,xn−1 are n points in [0,1]d comprising a “Sobol sequence.” The Sobol
sequence, as originally defined by Sobol [38], is generated from a set of special
binary vectors of length w bits, vj

i, i = 1,2, . . . ,w, j = 1,2, . . . ,d. These numbers, vj
i,

are called direction numbers. To generate them for dimension j, one should begin
with a primitive polynomial over the finite field F2 with elements {0,1}. Let us
assume that the primitive polynomial is

pj(x) = xq +a1xq−1 + · · ·+aq−1x+1.

Then we use its coefficients to define a recurrence relation for calculating vj
i,

the direction number in dimension j. It is generated using the following q-term
recurrence relation:

vj
i(x) = a1vj

i−1⊕a2vj
i−2⊕·· ·⊕aq−1vj

i−q+1⊕ vj
i−q⊕ (vj

i−q/2q),

where i > q, ⊕ denotes the bitwise XOR operation, and the last term is vi−q

shifted right q places. The initial numbers vj
1 ·2w,vj

2 ·2w, . . . ,vj
q ·2w can be arbitrary

odd integers smaller than 2,22, . . . ,2q, respectively. The Sobol sequence xj
n (n =

∑w
i=0 bi2i, bi ∈ {0,1}) in dimension j is generated by

xj
n = b1vj

1⊕b2vj
2⊕·· ·⊕bwvj

w.

Different primitive polynomials should be used to generate Sobol sequence in each
dimension. Currently there are more efficient ways of generating Sobol sequences
proposed in the literature (see, e.g., [27]).

Summary of Sampling Methods

This section outlines the main characteristics of sampling methods discussed above.
Table 1 summarizes the sampling methods in terms of their main features. Samples
consisting of 32 points in two-dimensional space, and generated by different
sampling methods, are presented in Fig. 2 for a visual comparison.

An important consideration relates to the methods’ computational cost in the con-
text of costly optimization. For those methods that demand moderate to intensive
computational efforts, it is important to investigate the compromise between (a) the
time required to generate the sample and (b) the sample quality. The sample quality
is its ability to decrease the number of further function evaluations without affecting
the results of the optimization procedure. Obviously, if function evaluations are
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Fig. 2 Initial sample in 2D, number of points = 32

highly costly and involve resources other than time, even a small decrease in the
number of function evaluations justifies the higher computational time required to
generate the optimal sample.

Experiments

The impact of sampling method on multi-objective optimization algorithm effi-
ciency is evaluated by means of a comprehensive benchmark problem set. The
design of the experimental study is described in section “Experimental Setup”.
Section “Test Problems” gives an overview of the benchmark problems. The
major part of this section is devoted to discussion of the obtained results and the
appropriate observations. This is covered in section “Results”.

Optimization Algorithms Considered

In our study, we considered three algorithms designed for costly multi-objective
optimization problems, namely ParEGO, SMS-EGO, and ε-EGO. These algorithms
were selected due to their available implementation in the R package mlrMBO [2].

ParEGO is a state-of-art algorithm developed by Knowles [18]. It uses the
augmented Tchebycheff norm to convert a multi-objective problem into a scalarized



On Sampling Methods for Costly Multi-Objective Black-Box Optimization 285

one:

fλ (x) = max
j=1,...,m

(

λjfj(x)
)

±ρ
m

∑
j=1

λjfj(x), (6)

where ρ > 0 is a small positive number and λ is a weight vector. ParEGO randomly
selects w from a uniformly distributed set in each iteration. Then a surrogate model
is fitted to the respective scalarized problem. At each iteration of the algorithm,
a different weight vector is drawn uniformly at random from the set of evenly
distributed vectors allowing the model to gradually build up an approximation to
the true Pareto set. Before scalarization, the objective functions are normalized with
respect to the known (or estimated) limits of the objective space to the range [0,1].
At each iteration, the method uses a genetic algorithm to search for the solutions
that maximize an infill criterion, called expected improvement, with respect to a
surrogate model. Only the best solution is evaluated on the actual problem. After
evaluation of the selected solution on the real expensive function, ParEGO updates
the GP surrogate model of the landscape and repeats the same steps.

The other two algorithms do not convert a multi-objective optimization problem
to a single optimization problem but use a multi-objective optimization of infill
criteria on each objective in order to obtain a candidate set for evaluation. SMSEGO
[31] optimizes the hypervolume and ε-EGO [45] looks at search solutions with
respect to the additive ε-indicator which has been introduced by Zitzler et al. [51].
An additive ε-indicator of approximation set A gives the minimum value ε by
which each point in the real front R can be added such that resulting transformed
approximation is dominated by A.

Test Problems

The test set consists of different benchmark problems with a variety of character-
istics in both the decision and objective spaces. The objectives of test problems
can be either unimodal (U) or multimodal (M). Multimodal problems are more
difficult than unimodal problems, and more representative of real-world problems.
The Pareto optimal front can be convex, linear, concave, disconnected, or some
combination of the former. It is well known that the type of Pareto front can directly
affect the performance of the optimization algorithms. For example, disconnected
Pareto fronts can increase the likelihood that an algorithm will fail to find all regions
of the Pareto optimal front. The fitness landscape may be one-to-one or many-to-one
and the latter property impacts some algorithms’ ability to find multiple, otherwise
equivalent optima. For a more detailed discussion on test problems properties
we refer readers to [10].

Our test set includes the following benchmark problems:
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• OKA2 m= 2, d = 3. The true Pareto optimal set for this problem is a spiral shaped
curve in the decision space, and the density of the Pareto optimal solutions in the
objective space is low.

• Kursawe This problem has a scalable number of decision variables. In our
experiment we used d = 3, m = 2. Its Pareto optimal set is disconnected and
symmetric in the decision space, and disconnected and concave in the objective
space.

• Viennet m= 3, d = 2. The true Pareto optimal set is convex in the objective space.
• ZDT family: ZDT problems share such characteristics as multimodality, discon-

tinuity, and possession of multiple Pareto fronts; for all problems, m = 2 and d is
scalable, however we used d values suggested by the authors.

– ZDT1: d = 30; Pareto optimal set in the objective space is convex.
– ZDT2: d = 30; Pareto optimal set in the objective space is nonconvex.
– ZDT3: d = 30; Pareto optimal set is disconnected in both objective and

decision spaces. Pareto optimal set consists of one mixed convex/concave
component and several convex components in the objective space.

– ZDT4: d = 10; first objective function is unimodal, while the second objective
function has multiple local optima and therefore is highly multimodal. Its
Pareto optimal set in the objective space is convex [10].

– ZDT6: d = 10; it has a nonuniform search space, i.e., the Pareto optimal
solutions in the decision space are non-uniformly distributed along the global
Pareto set, and also the density of the solutions is lowest near the Pareto
optimal set and highest away from it. Pareto optimal set in the objective space
is concave.

• DTLZ1: It is a scalable problem in both objective and decision space and has
multiple global optima. Thus, the only difficulty provided by this problem is
convergence to the Pareto optimal hyperplane. We solved three sizes of this
problem: (1) m = 4 and d = 13; (2) m = 6 and d = 15; and (3) m = 8 and d = 17.

The major characteristics of the selected benchmark problems are summarized
in Table 2.

Performance Assessment

In multi-objective optimization, the definition of solution quality is substantially
more complex than for single-objective problems as the optimization goal itself
consists of several objectives such as convergence to the true Pareto frontier, uniform
distribution of obtained nondominated solutions, and maximum extent of obtained
nondominated set with respect to each objective. Therefore, a number of quality
metrics usually taking into account one solution quality characteristic have been
proposed (see, e.g., [13, 47]). The most widely used performance metric is a
hypervolume (HV) indicator (also known as an S-metric) [50] which defines the
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size of the region dominated by the relevant Pareto set approximation. As such it
provides information about closeness and diversity at the same time. In addition, it
possesses a desirable property: whenever one approximation completely dominates
another approximation, the HV of the former will be greater than the HV of the
latter [52]. The HV metric corresponds to the size of the region of the objective
space bounded by a reference point. In our study, we calculated the HV metric using
normalized values of the objective functions.

Experimental Setup

In this study we control: (a) the size of the initial sample, (b) the optimization
budget, (c) the dimension of decision space, and (d) the dimension of objective
space.

The initial design size was set to ninit = 11d− 1 based on the recommendations
in [18]. An example of the initial samples generated by different sampling methods
for two decision variables is given in Fig. 2. The number of optimization iterations
was restricted to 200 resulting in a total budget of ntotal = 200+11d−1. Taking into
account the different number of dimensions, the algorithms were evaluated on the
11 test problems discussed in section “Test Problems”.

The Pareto front approximations of the algorithms were compared not only at
the last iteration (n = 200) but as well at intermediate iterations (n = 50, 100, and
150) with respect to the HV metric. For each test function the reference point was
estimated based on the nondominated set of initial samples.

With regard to the sampling methods, it is important to point out the following
aspects. It can be computationally very expensive to achieve optimal maximin
and low C-LHS samples; therefore, we have chosen the best sample out of
1000 randomly generated LHS samples with regard to the corresponding criterion
(maximin or minimum correlation). The low-discrepancy sampling methods (i.e.,
Hammersley, Halton, and Sobol sequences) are deterministic (rather than stochastic)
as there is no run-to-run difference between generated samples; therefore, we
have used the “random-start sequence” trick [46]. By defining random starts
for generation of these samples, the sequences differ in each run resulting in
stochasticity of the samples.

Results

This section elaborates on a detailed analysis of the results from the experiments
performed. In each numerical experiment an initial sample was generated by one
sampling method running it 100 times. Then an optimization search was performed
by each algorithm over these runs. Their performance has been estimated with
respect to the HV metric.
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Fig. 3 ParEGO performance on OKA2 problem

Corresponding results of each sampling method were compared to those of the
other seven methods, to determine if its results had a statistically significant advan-
tage. Comparisons were performed using the unpaired t-test [32] and differences
were deemed statistically significant at the 0.01 significance level. The significance
was tested multiple times, i.e., after 50, 100, 1500, and 200 function evaluations.

The average performance of optimization algorithms against sampling methods
on different test problems is represented in Figures 3, 4, 5, 6, and 7. However,
in real-world applications, to know the average performance is not enough and
usually the worst case scenarios are taken into account as well. The worst case
scenario provides some additional information but sometimes it is considered as
too conservative. Instead of the worst case scenario, we may want to know the
mean of the realizations above a specified quantile; i.e., the conditional value-at-risk
(CVaR) introduced in [33]. We calculated CVaR with a selected confidence level of
0.05, giving the average value over a distribution tail consisting of the 5 % worst
realizations. Due to space limitations, we could not provide the graphs of all the
optimization algorithms and test problems considered. Therefore, we have selected
the ones providing most of the information and supporting the main observations.

We have noticed that the largest variability over 100 runs is produced by
Hammersley, Sobol, and Halton sequences which by nature are deterministic
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Fig. 4 SMS-EGO performance on Kursawe problem

methods as sequences are finite. However, in order to generate 100 runs we used
Matlab functions with various leap and skip parameters values which produce
different subsets of these sets, sometimes not fully covering the whole decision
space. To our knowledge, there is no recommendation on how to select these
parameters. Therefore, the average performance of the deterministic sampling
methods is influenced by some initial samples not spread throughout the entire
space.

According to the obtained results regarding the average performance of the
optimization algorithms based on a normalized HV metric, we can observe some
trends. Generally, it can be noticed that sampling methods do not affect optimization
algorithm performance significantly (the difference of HV metric values over 100
runs is not statistically significant at the 1 % level) on the problems with objective
and decision space dimensions both lower or equal to three. Also, we discovered that
algorithm performance is very similar when using samples generated by stochastic
sampling methods (namely, SRS, LHS, M-LHS, and C-LHS) on the bi-objective
problems with high-dimensional decision space, and there is no statistically signif-
icantly difference among them as illustrated in Figs. 5 and 6. The ParEGO method
with initial samples generated by LHS has not demonstrated the best performance
on any single problem, while its improved versions (i.e., M-LHS and C-LHS) have
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Fig. 5 ε-EGO performance on ZDT1 problem

shown very good performance on bi-objective problems with a larger number of
decision variables. Hammersley sequence sampling and ParEGO showed the best
performance or close to it on unimodal bi-objective problems of low-dimensionality
with continuous Pareto front. Halton sequence sampling in conjunction with any
of the considered optimization algorithms in most of the cases performed poorly,
especially with a larger number of decision variables, except for low-dimensional
problems with a convex Pareto front. Also, it has been outperformed by the other
two deterministic techniques quite a number of times. M-LHS sampling technique
paired with SMS-EGO proved to behave well on the problems with a larger amount
of decision variables and is outperformed by other sampling techniques on smaller
problems. All optimization algorithms demonstrated better average performance on
problems with more than three objectives when using maximin for initial sampling
(see, e.g., Fig. 7). SRS method can be considered an appropriate choice because the
performance of selected optimization algorithms in most cases was not significantly
worse than other stochastic sampling methods. Although, there is one exception
for Kursawe problem optimized with SMS-EGO algorithm (see Fig. 4), where its
initial samples lead to the statistically significant worst performance with respect to
Hammersley and Halton sequences as well as maximin sampling method.
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Fig. 6 SMS-EGO performance on ZDT2 problem

Conclusions

This section draws some conclusions and provides some recommendations based
on the experiments performed and the results obtained. In addition, we shed some
light on the impact of the selected sampling techniques on costly black-box multi-
objective optimization, and discuss some future research questions which we leave
for further investigation.

To summarize, sampling methods have no statistically significant impact (with a
significance level 0.01) on the algorithm performance measured by the HV metric
for low-dimensional problems, i.e., m,d ≤ 3. Therefore, SRS can be considered as
an appropriate choice for low-dimensional problems.

Also, when using deterministic sampling methods, one has to check that
the initial sample is a good representative sample in the sense of covering the entire
decision space. Otherwise a “bad” initial sample can cause the optimization outcome
to deteriorate significantly; i.e., the variance of the deterministic methods is larger
than the stochastic sampling methods. Although, LHS is often used as a default
sampling method in multi-objective optimization, the obtained results did not
confirm it to outperform other sampling methods; one could use M-LHS or C-LHS
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Fig. 7 ParEGO performance on DTLZ1 problem with 8 objectives and 17 decision variables

instead as these sampling methods obtain better results in many cases. For high-
dimensional problems, in both objective and decision spaces, deterministic methods
led to large variability which resulted in significantly lower average algorithm
performance compared to stochastic sampling methods. In particular, the maximin
sampling method outperformed other stochastic methods though this advantage was
not statistically significant.

We plan to continue research on a larger set of test problems with a larger number
of both objective and decision variables possessing a variety of properties. Hope-
fully, this will provide greater insights and enable us to determine more concrete
recommendations. Our conclusion for now is that choice of initial sample matters
in higher dimensions. In this work, we have studied the algorithm performance with
respect to the most widely used performance metric HV. It would be interesting to
investigate the impact of sampling methods with respect to other metrics. Moreover,
the question of what initial sample size one should use and how it affects the
optimization results is also open. Clearly, there is a trade-off involved between the
size of an initial sample and the number of evaluations used to run an optimization
algorithm when dealing with costly real-world optimization problems. Thus, this
research direction will be considered in the future as well.
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