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Preface

This book includes the extended versions of selected papers from VISIGRAPP 2015,
the International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications, which was held in Berlin, Germany, during March
11–14, 2015. The conference was organized by the Institute for Systems and Tech-
nologies of Information, Control and Communication (INSTICC), in cooperation with
ACM SIGGRAPH and technically co-sponsored by the IEEE Computer Society, IEEE
VGMT, and IEEE TCMC.

VISIGRAPP comprises three conferences, namely, the International Conference on
Computer Vision Theory and Applications (VISAPP), the International Conference on
Computer Graphics Theory and Applications (GRAPP), and the International Con-
ference on Information Visualization Theory and Applications (IVAPP).

VISIGRAPP received 529 paper submissions from more than 50 countries. After a
rigorous double-blind evaluation, only 18 % of the papers were accepted and published
as full papers. These numbers show that our conference is aiming for the highest
scientific standards, and that it can now be considered a well-established venue for
researchers in the broad fields of computer vision, image analysis, computer graphics,
and information visualization. From the set of full papers, 23 were selected for
inclusion into this book. The selection process was based on quantitative and quali-
tative evaluation results provided by the Program Committee reviewers as well as the
feedback on paper presentations provided by the session chairs during the conference.
After selection, the accepted papers were further revised and extended by the authors.
Our gratitude goes to all contributors and reviewers, without whom this book would
not have been possible. Apart from the full papers, 25 % of the papers were accepted
for short presentations and 26 % accepted for poster presentations. However, these
works were not considered for the present book selection process. We do not expect
that each reader is equally interested in all 23 of the selected VISIGRAPP papers.
However, the diversity of these papers makes it very likely that all readers can find
something of interest in this selection.

As VISAPP 2015 constitutes the largest part of VISIGRAPP with 345 submissions,
we decided to select and integrate 15 extended full papers aiming to cover different
aspects and areas related to computer vision, such as image formation and pre-pro-
cessing, image and video analysis and understanding, motion tracking, stereo vision, as
well as diverse computer vision applications and services. Here, we would like to
mention that when we selected the papers from VISAPP for this book, our intention
was to cover and highlight research from different areas and subareas related to
computer vision. These papers were mainly competing with other VISAPP papers
having similar content, and therefore, we want to explicitly acknowledge that other
high-quality papers accepted at the conference could have been integrated in this book
if we had more space.



Concerning GRAPP 2015, 93 papers were submitted, and we decided to include
four extended full papers in this book. We tried to cover the main areas of computer
graphics to make the content of the book similar to the research addressed at the
conference.

The four papers selected from 54 submissions to IVAPP 2015 are not only excellent
representatives of the field of visualization, but also form a quite balanced represen-
tation of the field itself. Above all, they are almost as diverse and exciting as the field of
visualization.

VISIGRAPP 2015 also included four invited keynote lectures, presented by inter-
nationally renowned researchers, whom we would like to thank for their contribution to
reinforcing the overall quality of the conference. They are in alphabetical order: Mauro
Barni (Università di Siena, Italy), Andrea Cavallaro (Queen Mary University of Lon-
don, UK), Gerik Scheuermann (Universität Leipzig, Germany), and Daniel Thalmann
(Nanyang Technological University, Singapore).

We wish to thank all those who supported VISIGRAPP and helped to organize the
conference. On behalf of the conference Organizing Committee, we would like to
especially thank the authors, whose work was the essential part of the conference and
contributed to a very successful event. We would also like to thank the members of the
Program Committee, whose expertise and diligence were instrumental in ensuring the
quality of the final contributions. We also wish to thank all the members of the
Organizing Committee, whose work and commitment was invaluable. Last but not
least, we would like to thank Springer for their collaboration and help in getting this
book to print.

March 2015 José Braz
Sebastiano Battiato

Francisco Imai
Julien Pettré
Paul Richard

Andreas Kerren
Lars Linsen
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Abstract. We present an Augmented Reality solution to allow users to
manipulate and inspect 3D virtual objects freely with their bare hands
on wearable devices. To this end, we use a head-mounted depth camera
to capture the RGB-D hand images from egocentric view, and propose
a unified framework to jointly recover the 6D palm pose and recognize
the hand gesture from the depth images. The random forest is utilized to
regress for the palm pose and classify the hand gesture simultaneously
via a spatial-voting framework. With a real-world annotated training
dataset, the proposed method shows to predict the palm pose and gesture
accurately. The output of the forest is used to render the 3D virtual
objects, which are overlaid onto the hand region in input RGB images
with camera calibration parameters to provide seamless virtual and real
scene synthesis.

1 Introduction

Augmented Reality (AR) is now widely used in wearable devices such as the
Microsoft HoloLens and the Google glasses, which keeps users aware of the real
world and provides additional information by synthesizing real visual cues with
virtual graphics. Since the traditional input tools like the mouse and keyboard
are cumbersome to carry and use with such devices, it would be more favorable if
users can use their bare hands to convey commands and inputs to hardware. For
instance, a user can move his hands and pose specific gestures for content selec-
tion like a traditional mouse [21], or can grasp and manipulate virtual objects
for immersive experiences [2].

There have been quite a few AR applications based on vision-based hand
tracking and gesture recognition. In [17] the Handvu AR system is proposed to
track 2D hand position and recognize key postures with a RGB camera, which
are used to interact with the virtual graphical elements, e.g., menu selection,
keyboard typing or 3D objects dragging. However, only 2D hand translation is
inadequate for fully 3D AR interaction. In [18] the Handy AR system is proposed
to track the 3D translation and rotation of the hand by detecting five fingertips
c© Springer International Publishing Switzerland 2016
J. Braz et al. (Eds.): VISIGRAPP 2015, CCIS 598, pp. 3–15, 2016.
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and registering them to a predefined template, which allows users to inspect the
3D virtual objects from different perspectives. The limitation is that the user
must keep a fixed hand posture and cannot fully rotate his hand due to occlusion
of the fingertips, which leaves a large range of blind angles for 3D inspection.
In [2] a head-mounted AR system is proposed, in which the 6D palm motion is
tracked with stereoscopic RGB inputs via 3D plane-fitting to the depth cue of the
extracted hand region. However, the method is still sensitive to hand posture
variations. In [3] the random forest is adopted to predict the normal vector
of palm from silhouette images, which is used to manipulate virtual objects.
Lacking 3D information, this method can only work in quite limited viewpoints.

Another related field is full degrees of freedom hand pose estimation. This
field has gained considerable progresses with the recent advent of low-cost depth
cameras [27,33]. However, there still lacks a unified framework for both hand
pose tracking and gesture recognition, especially in the AR scenarios. Besides,
despite the high flexibility of hand motion, people are usually comfortable with
only a set of natural hand postures for interaction [31]. This indicates that 6-
DOF palm motion, i.e. 3D translation and rotation, with a set of hand postures
are sufficient for a lot of applications, which also requires less computation cost
to predict.

In this chapter we aim to predict the 6-DOF palm pose and recognize hand
gesture simultaneously from egocentric depth images to assist interaction in AR
scenarios. Our AR system allows users to manipulate and inspect virtual objects
freely from different viewpoints with the recovered 6-DOF palm pose and make
color selection with the gesture. Particularly, to get realistic visual feedback,
we define a visibility term of the virtual objects based on hand rotation angles
to reflect hand-object occlusion, e.g. the object becomes more transparent when
getting occluded. Technically, the random forest [5] is adopted for both regression
of palm pose and classification of hand gestures jointly so that they can be
predicted together. Following the previous work on spatial-voting based pose
estimation and gesture recognition [15,33], the random forest is learned to map
the local features of spatially-distributed voting pixels to the probabilistic votes
for either the palm pose or the gesture class. During testing, the per-pixel votes
from the spatial-voting pixels are fused for pose and gesture prediction, which
proves quite robust against noisy inputs.

2 Literature Review

This section reviews the recent techniques in vision-based hand pose estimation
and hand gesture recognition. The generative model-fitting methods and dis-
criminative methods are two main categories of methods for vision-based hand
pose estimation. The model-fitting methods are built upon a deformable hand
model and seek for the optimal pose by iterative adjustment of pose parame-
ters of the model and compatibility check between model features and input
images. In [20] the feasible hand configuration space is discretized and indexed
with a KD-tree. The Nelder-Mead simplex algorithm is adopted to search for the
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hypothesized pose that best matches the input in terms of edge and silhouette
similarities. However, no quantitative results are reported. In [30] multiple hand
silhouettes are extracted from the images captured with several cameras around
the hand, where the background is set using blue boards for easy hand segmen-
tation. A voxel model is generated with the multi-view data and matched to a
3D hand model, and the optimal pose is sought to make the hand model surface
stay inside the voxels. In [9] the texture and shading of the skin are captured
from input images and synthesized in the hand model, and the illumination
sources are controlled in real scenario and simulated during hand modeling. A
variational formulation is proposed to estimate the full DOF hand pose. In this
way hand pose is recovered quite accurately since matching ambiguity is largely
reduced. However, this method is difficult to use in real HCI scenarios. In [22]
a Kinect depth camera is adopted to capture the hand image as it can better
handle the background clutter and pose ambiguity in monocular color image,
the particle swarm optimization algorithm is used to find the optimal pose that
best fits the image projection of a 3D hand model to the input depth image
and skin silhouette. With the point clouds generated by the depth camera, the
iterative closest points algorithm and its extensions to articulated objects are
also commonly used for hand pose estimation [23,26], which iteratively build
point-to-point correspondences between model and input point cloud and seek
for the skeleton transform to minimize the distance between the point pairs.

The discriminative methods infer the hand pose parameters by directly map-
ping of the image features to pre-indexed templates. Generally, they need to
build a large dataset to cover the possible hand postures, and each template
in the dataset contains certain features for matching and the associated pose
parameters. The dataset are usually indexed for fast search. During testing, the
input hand pose is recovered by looking for the templates that share the similar
features. In [29] the hand edge image is encoded into a score value vector by
matching to a pre-defined set of shape templates, and a multivariate relevance
vector machine uses it as the input to retrieve some pose hypotheses. The optimal
pose is obtained by a verification stage with the hand model projection. In [11]
an isometric self-organizing map is used to learn a nonlinear mapping between
image features and pose, which reduces the dataset redundancy by grouping tem-
plates with similar features and poses together. The hand edges are captured at
only depth discontinuities with a multi-flash camera and encoded into shape con-
text for matching. In [31] a two color camera system is presented to capture 6
DOF palm motion and simple gestures like pinching or pointing for both hands.
A pair of hand silhouettes are extracted and coded into binary strings for fast
query in the database to retrieve the hand pose. In [33], the random forest is
adopted to directly regress for the hand joint angles from depth images. With a
pre-trained forest, each pixel casts its votes for the joint positions individually,
and the votes from all the pixels are fused to a set of candidates. The optimal
one is determined by a verification stage with a hand model. A similar regression
forest base method is proposed in [28], with the new characteristic that transfer
learning is utilized to handle the discrepancy between synthesized and real-world
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data. In [16] the authors propose to utilize the regression forest to predict the
hand pose. To resolve the ambiguous predictions, their method first finds a set
of candidate locations for each joint through mode-seeking, and then applies the
bone length constraints to obtain the optimal combination of the different joint
locations via Dynamic Programming.

Both types of methods have their pros and cons. The model-fitting methods
are sensitive to initialization. The discriminative methods are fast and robust to
initialization, but require a large amount of training data and can only produce
discrete pose predictions. Therefore, they can be combined to supplement each
other so that their advantages can both be exploited. For instance, model-fitting
can serve as a verification stage after the discriminative pose retrieval stage
[29,33]. On the contrary, pose retrieval can also serve as an initialization stage for
model-based fitting. In [32] a human body pose tracking framework based on 3D
model fitting is proposed. While the input body size can vary a lot, the random
forest classifier provides rough body parsing for fitting the size of the 3D model to
the real inputs as well as for initialization and recovering from tracking failure.
Both methods can also be used for pose estimation independently and their
predictions are finally fused up to certain criteria. In [4] the geodesic extrema
are extracted from the depth images, which are used to retrieve the candidate
body pose by searching in the database of geodesic extrema templates. Another
candidate pose is obtained by fitting a mesh body model to the depth image,
and the final prediction is taken to fit to both estimations. In [24], in which the
protrusive fingertips are detected by morphological analysis in the depth image.
The partial hand pose is recovered from the possible incomplete 3D fingertip
positions and used for initialization for the subsequent model-fitting stage, which
can help to speed up convergence as well as to avoid local optima.

As hand gestures can be dynamic or static, vision-based gesture recogni-
tion also contains two sub-groups: dynamic gesture recognition and static ges-
ture recognition. Dynamic gesture recognition takes both the shapes and motion
information of the hands into account during recognition. The motion history
image [8] encodes the continuous actions into a single image template and has
been adopted to recognize the directional movement of the hand [13]. To better
model the dynamics of hand motion, the Hidden Markov Model (HMM) has also
been adopted [6], in which a separate HMM is trained for each dynamic gesture
respectively. During testing, the gesture is recognized so that the corresponding
HMM maximizes the posterior probability conditioned on the video inputs. Sta-
tic gesture recognition mainly focuses on analyzing the gestural information of
the hand shape extracted from the visual images. In [7] the Haar-like features
are combined with a cascaded classifier to recognize a set of static gestures. In
[10] the statistics of local orientation of each pixel in input images are analyzed
by constructing an orientation histogram, which is invariant to both transitions
and rotations. A nearest neighbor classifier is adopted to recognize the gestures
under various pose variations. In [25] the Kinect is used to get the depth con-
tour of the hand, and a Finger-EarthMover’s Distance is proposed to measure
the dissimilarity between hand shapes. The method is robust to background
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clutters and orientation and scale variations. In [34] a histogram of 3D facets is
proposed to encode the local 3D shape of the hand surface in the depth image.
This descriptor is aggregated via spatial-pooling and the support vector machine
is adopted for gesture classification based on the aggregated representation.

3 The Overall Framework

As discussed in Sect. 1, our goal is to recover both the 6D palm motion and
the gesture semantics from continuous depth image sequences to assist hand
manipulation in Augmented reality. Here the unconstrained 6D palm motion Φ
consists of the translation and rotation in 3D space, which are defined as the
Euler angles of pitch, yaw and roll rotations of the hand and the 3D position of
the palm center, i.e. Φ = (θ,v), where θ = (θx, θy, θz) is the global rotation, and
v = (xc, yc, zc) is the palm center position. For gesture recognition, each input
hand image is assumed to belong to a predefined alphabet l ∈ L. In our AR
system, different hand gestures are used for object color selection, and 6D palm
pose is used to change the position and viewpoint of the objects for inspection.
Let the image observation be I. Given the sequence of the input depth images,
our goal is to obtain the MAP estimation of both the palm pose Φ∗

t and the
gesture label l∗t at each time t conditioned on all the available frames I1:t. The
inference problem is formulated as:

Φ∗
t , l

∗
t = arg max

Φt,lt

P (Φt, lt|I1:t)

= arg max
Φt,lt

P (Φt|I1:t)P (lt|I1:t)

= arg max
Φt,lt

P (It|Φt)P (It|lt)P (Φt, lt|I1:t−1),

(1)

where we assume the conditional independence of the palm pose and hand ges-
ture on I1:t, and they can therefore be estimated separately. The random forest
[5] is adopted to predict Φ and l from single frames. Besides, as the hand gesture
only involves a small number of discrete values, we can have a close form solution
to predict l∗t according to formula (1). The optimal Bayesian estimation of l∗t is
obtained by:

l∗t = arg max
lt

P (lt|I1:t)

= arg max
lt

P (It|lt)P (lt|I1:t−1)

= arg max
lt

P (It|lt)
∑

lt−1∈L

P (lt|lt−1)P (lt−1|I1:t−1),

(2)

Note that the summation term in formula (2) can be easily calculated by
enumerating all the discrete possible gesture classes over lt−1 ∈ L. Also, very
fast switch between different hand gestures is rare in common HCI applications,
such as the manipulative tasks. Therefore, we assign relative big probabilities
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for transition between the same gestures. Besides, for any transitions between
lt �= lt−1 the probabilities are defined to take equal smaller values. We have:

P (lt|lt−1) =

⎧
⎨

⎩

β if lt = lt−1

1 − β

|L| − 1
otherwise,

(3)

where β < 1 is a constant, |L| is the size of the hand gesture alphabet. In practice
we find β = 0.5 works well enough for the manipulative tasks.

Similarly, the optimal Bayesian estimation of Φ∗
t with the observations I1:t

can be obtained by the following formula:

Φ∗
t = arg max

Φt

P (Φt|I1:t)

= arg max
Φt

P (It|Φt)P (Φt|I1:t−1)

= arg max
Φt

P (It|Φt)
∫

Φt−1

P (Φt|Φt−1)P (Φt−1|I1:t−1).

(4)

However, due to the ambiguous per-frame predictions, the pose likelihood func-
tion P (It|Φt) is generally non-Gaussian and forms multiple peaks. Therefore,
there is no close-form solution for the integral term. To this end, we adopt the
particle filter [14] to track the continuous palm motion to alleviate such ambi-
guity based on the single-frame likelihood P (I|Φ). The details are provided in
the following sections.

4 Random Forest Prediction

The random forest [5] is an ensemble of T random decision trees, each of which is
trained independently with a bootstrap training set. In our algorithm, it is used
to map local pixel features to pose and gesture votes during testing, which are
then used for final fusion via spatial-voting. The depth context descriptor [19]
is adopted as the local pixel feature, which is defined as the depth differences
between the current pixel and a set of context points. Figure 1 illustrates the
pipeline for palm pose and gesture prediction.

In the random forest, each intermediate node has two children nodes and
we store a single vote for palm pose and gesture at each leaf node. Let the
vote be (θ̄, Δ̄, H̄), where θ̄ is the prediction of the rotation angles, Δ̄ is the
3D offset between a pixel and the predicted palm center and H̄ is the gesture
class distribution. Given a query image I, a set of Ns voting pixels {pi} are first
uniformly sampled in the hand region and then cast their pose and gesture votes
independently. The pixel pi branches down each tree in the forest by checking the
feature value of its depth context until a leaf node is reached, and thus retrieves
in total T votes from the leaf nodes. Let the votes for palm pose and gesture of
pixel pi be {Φij ,Hij}T

j=1, in which Φij is converted from the retrieved relative
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Fig. 1. Palm pose and gesture prediction with the random forest via spatial-voting.

pose vote (θ̄ij , Δ̄ij) by setting vij = Δ̄ij + vi, where vi is the 3D position of pi,
and Hij is the retrieved probability histogram of the gesture label.

To obtain the final prediction, we need to aggregate the individual votes from
all the voting pixels. First we consider the gesture l. Following [15], we define
the gesture posterior P (l|I) to be the average of all the per-pixel gesture votes:

P (l|I) =
1

Ns × T

∑
i,j

Hij . (5)

Now we consider the palm pose Φ. Since it is unconstrained in 6D space, the
different dimensions of Φ are thus uncorrelated, i.e. P (Φ|I) =

∏
α∈Φ P (α|I),

where α ∈ Φ is one dimension of Φ. Similar to [33], we use the Parzen density
estimator to evaluate P (α|I):

P (α|I) =
∑

i
P (α|pi) =

∑
i,j

P (α|αij), (6)

where αij is one dimension of the pixel vote Φij . For the palm translation para-
meters α ∈ v we adopt the Gaussian kernel for P (α|αij) with an isotropic
variance δv in all three dimensions. For the palm rotation parameters α ∈ θ we
use a one-dimensional wrapped Gaussian kernel [12] to model P (α|αij) for these
rotation parameters within the range [0, 2π], which is basically infinite wrappings
of linear Gaussian within [0, 2π]. However, according to [12], the summation over
z ∈ [−2, 2] approximates the wrapped Gaussian distribution well enough. Thus
we have:

P (α|αij) =

⎧
⎪⎨

⎪⎩

N (α;αij , δ
2
v) α ∈ v

∑

−2≤z≤2

N (α − 2zπ;αij , δ
2
θ) α ∈ θ, (7)
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Based on the above derivation we see that P (α|I) is still sum of Gaussians
for both the translation and rotation parameters. Note that for single-frame
estimation we can assume uniform priors for Φt and lt. Therefore, the like-
lihood functions P (It|Φt) and P (It|lt) for palm pose and hand gesture sat-
isfy P (It|Φt) ∝ P (Φt|It) and P (It|lt) ∝ P (lt|It). We can combine these two
terms into Eqs. 2 and 4 to infer the gesture and palm pose in continuous image
sequences.

5 Random Forest Training

To train the random forest, we collect a real-world egocentric depth image
dataset with ground truth gestures, rotation angles and palm center positions.
The training pixels are sampled uniformly from each training image and associ-
ated with the depth context descriptor Dj , the ground truth palm rotation θj ,
the offset Δj between the 3D position of the pixel and the ground truth palm
center, and the gesture lj . Each tree of the forest is initialized with an empty
root node and built with a bootstrap subset of all the training pixels. Starting
from the root node, the training samples are split into two subsets recursively to
reduce the prediction errors at the child nodes. To this end, a set of candidate
split functions {ψ} are randomly generated as the proposals for node splitting
at the non-leaf nodes, which takes the form Db ≤ τ , where Db is a randomly
selected dimension of D and τ is a random threshold value to check whether
to branch to the left or right children. The optimal split function is selected to
maximize a gain measure G(ψ) based on either the palm pose or the gesture
distributions of the training samples reaching the node:

ψ∗ = arg max
ψ

G(ψ)

= arg max
ψ

⎛

⎝H(A) −
∑

s∈{l,r}

|As(ψ)|
|A| H(As(ψ))

⎞

⎠ ,
(8)

where A denotes the samples reaching the current node and Al and Ar are the
two subsets of A split by ψ. For gesture classification, H(A) is defined as the
entropy of gesture label distributions in A for node splitting:

H(A) = −
∑

l∈L
P (l|A) log P (l|A). (9)

For palm pose regression, the function H(A) is defined as the variance of
the palm pose among the samples in A to measure the pose uncertainty. As the
palm motion is unconstrained, the variance of A can be calculated via H(A) =
δ2Φ(A) = δ2Δ(A) + δ2θ(A), where δ2Δ is the variance of the 3D sample offsets and
δ2θ is the variance of the 3D rotation angles. Following the assumption that the
dimensions of Φ are uncorrelated, we have δ2θ =

∑
α∈{θx,θy,θz} δ2α. As the angle

follows circular distribution, δ2α is estimated by:

δ2α = 1 −
√[

1
|A|

∑
j∈A

cos αj

]2

+
[

1
|A|

∑
j∈A

sinαj

]2

, (10)
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At the non-leaf nodes we randomly pick up either the classification mode or
the regression mode for node splitting. The training samples are split into left
and right branches based on the optimal split function ψ∗. The samples reaching
each branch are then used to construct a new tree node by either continuing the
splitting procedure or ending up splitting to obtain a leaf node. This is done by
checking whether certain stopping criteria are met, e.g. the pose and gesture of
the samples are pure enough, or the maximum depth is reached. The gesture
class distribution H̄ stored at the leaf node can be obtained by counting the
number of samples belonging to each gesture l in the sample set A reaching it.
The pose votes is taken as the mean pose of A:

Δ̄ =
1

|A|
∑

j∈A

Δj

ᾱ = atan2

⎡

⎣ 1
|A|

∑

j∈A

sin αj ,
1

|A|
∑

j∈A

cos αj

⎤

⎦ .

(11)

6 Quantitative Evaluation

We collect a set of 7.2 K depth images with a SoftKinetic DS325 sensor, and
annotate each image with hand gesture, palm rotation and center position in
a semi-auto way. The gesture set consists of three basic templates, and the
fingers are also allowed to move in small ranges for each of them, as illustrated
at left of Fig. 2. The resolution of the depth images is 320 × 240. The forests
consist of three trees with maximum depth of 20. During testing, 1000 pixels
are uniformly sampled from the hand region for spatial voting. The program
is coded in C++/OpenCV, and tested on a PC with Intel i5 750 CPU and
4G RAM. The experiment is based on single-frame evaluation, with 80% of the
images for forest training and the rest 20% for testing. The error metric for palm
center prediction is defined as the Euclidean distance between the prediction and
the ground truth. For the palm rotation angles we follow the conventions [1] to
define the prediction error between prediction α̃ and ground truth α as their
absolute difference:

D(α̃, α) = |(α̃ − α) mod ± 180◦|. (12)

We compare two different modes for forest training, i.e. REG: the forest is
completely learned for pose regression; HYN: the forest is learned for both pose
regression and gesture classification. This is to verify whether simultaneous pose
and gesture prediction will degrade the palm pose prediction performance. The
results are presented in Fig. 3, which shows the percentage of predictions that
are within a threshold of either vT (cm) or θT (Degree) from the ground truth.
We can see the pose prediction performances of these two modes are indeed quite
close. The right of Fig. 2 shows the gesture recognition confusion matrix with
the HYN mode in terms of the absolute number of test images classified to each
gesture, and the average accuracy is 97.2%. The average time cost to process
one frame is less than 40 ms, which is sufficient for real-time interaction.
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Fig. 2. Left: hand gesture alphabet. The small images show hand viewpoint and shape
variations. Right: confusion matrix to recognize gesture 0, 1 and 2.
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Fig. 3. Palm pose prediction results in REG and HYN modes with respect to different
thresholds.

7 Augmented Reality System

With the trained random forest in Sect. 4, we build an AR system to allow users
to manipulate the virtual objects with their bare hands, so that the virtual
objects are visually put upon the palm for arbitrary poses in the RGB images
and the gestures are used to switch among different object colors. To this end, the
depth and color cameras of the SoftKinetic sensor are calibrated in advance to get
the 3D transformation matrix Mdc from the coordinate system centered at the
depth camera to that of the color camera. The random forest predicts the palm
pose Φ∗ and gesture l∗ from the depth images, and a Kalman filter is adopted
to smooth the pose prediction. Let the transformation matrix of Φ∗ be MΦ.
The position and orientation of the virtual object are transformed by MΦ ×Mdc

and projected onto the image plane with OpenGL, which is then overlaid on
the RGB image. Besides, we add a visibility term ζ ∈ [0, 1] to demonstrate the
occlusion between hand and virtual objects, which is defined as:

ζ =

{
1 |θy| ≤ 90◦

1 − |θy|/ 180◦ otherwise,
(13)
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Fig. 4. Virtual object inspection. In several frames the object gets fully transparent
due to occlusion.

where θy is rounded within [−π, π]. The visibility is implemented via controlling
the transparency effect in OpenGL with ζ. That is, the virtual object is fully
opaque when the palm is facing the camera, and becomes linearly transparent
with θy when it rotates backwards. Figure 4 illustrates several exemplar frames
of our video demonstration.

8 Conclusions

This chapter presents a unified framework to recover the 6-DOF palm motion
and recognize hand gestures in egocentric depth images with the random forest,
with an emphasis on its application in first-person viewpoint AR scenarios. The
method is tested on a real-world dataset containing large viewpoint variations
and different gestures and shows to produce accurate predictions. Based on the
output of the random forest and camera calibration parameters, the virtual
objects are rendered and overlaid onto the hand in the input RGB images, which
provides seamless virtual and real scene synthesis. Especially, we introduce a
visibility parameter based on hand rotation angles, so that the user can obtain
quite realistic object-hand occlusion feedback.
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31. Wang, R., Paris, S., Popović, J.: 6D hands: markerless hand-tracking for computer
aided design. In: The Annual ACM Symposium on User Interface Software and
Technology, pp. 549–558. ACM (2011)

32. Wei, X., Zhang, P., Chai, J.: Accurate realtime full-body motion capture using a
single depth camera. ACM Trans. Graph. 31(6), 188 (2012)

33. Xu, C., Cheng, L.: Efficient hand pose estimation from a single depth image. In:
IEEE International Conference on Computer Vision, pp. 3456–3462. IEEE (2013)

34. Zhang, C., Yang, X., Tian, Y.: Histogram of 3D facets: a characteristic descriptor
for hand gesture recognition. In: IEEE International Conference and Workshops
on Automatic Face and Gesture Recognition, pp. 1–8. IEEE (2013)



Computer Graphics Theory
and Applications



A Sketch-Based Interface for 2D Illustration
of Vascular Structures, Diseases, and Treatment

Options with Real-Time Blood Flow

Patrick Saalfeld1(B), Alexandra Baer1,
Uta Preim2, Bernhard Preim1, and Kai Lawonn1

1 Department of Simulation and Graphics, Otto-von-Guericke University,
Magdeburg, Germany

saalfeld@isg.cs.uni-magdeburg.de
2 Department of Diagnostic Radiology, Municipal Hospital Magdeburg,

Magdeburg, Germany

Abstract. We present a sketching interface, which enables physicians
to illustrate various vascular structures, diseases, and treatment options
with integrated blood flow. This sketch-based interface provides medical
doctors with an effective tool to illustrate different medical scenarios and
support patient education. This work integrates methods from sketch-
based interfaces and GPU-supported computational fluid dynamics. The
usability of the prototype was assessed qualitatively and quantitatively.
Additionally, we performed a structured interview with a physician to
evaluate the benefits with respect to patient education. The results of
the evaluation confirmed the usability of the prototype as well as the
usefulness to support physicians during the process of patient education.

Keywords: Sketch-based interface · Vascular diseases · Treatment
options · Patient education · Computational fluid dynamics

1 Introduction

The field of vascular diseases causes 31 % of deaths worldwide [1] and has a
big impact on economics (e 196 billion in Europe [2]). In treatment planning,
including aspects as prevention, diagnosis, and therapy, physicians discuss treat-
ment options not only with colleagues, but also with patients. In this process of
patient education, patients place great value on an understandable presentation
of their disease and therapy. Such an appropriate presentation results in various
positive aspects [3]:

– the time of treatment may be reduced,
– patients need less medication,
– they are more active in dealing with their diseases and act more responsible,

and
– they are more independent from their attending physician.
c© Springer International Publishing Switzerland 2016
J. Braz et al. (Eds.): VISIGRAPP 2015, CCIS 598, pp. 19–40, 2016.
DOI: 10.1007/978-3-319-29971-6 2
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As also stated by Keulers [3], 42 % of patients feel not adequately informed.
Therefore, a method that supports physicians to illustrate and discuss vascular
diseases is useful. Such a method are sketches [4,5]. We present a prototype
that allows the sketching of different vessel structures, vascular diseases, and
various treatment options. This work is an extension of our previous paper [6]
and inspired by the work of Zhu et al. [7] about sketching tubular shapes and
simulating liquids. Since Zhu et al.’s work refers to wider area of application
domains, it has limitations with respect to specifically sketching vascular diseases
and treatments. Furthermore, it is not designed for tablet devices, which could
be integrated well in the process of patient education. Therefore, we make the
following contributions:

– presentation of methods to sketch vessels, vascular diseases, and treatment
options,

– plausible integration of real-time blood flow in the sketched vessel structures,
– demonstrate the applicability for physicians with qualitative and quantitative

usability measures, and
– showing the usefulness of patient education with a structured interview.

2 Medical Background

This work focuses on the vascular diseases of arteries, i.e., vessels which trans-
porting blood from the heart to the peripheral capillary of the body. A common
reason of these diseases is arteriosclerosis, which leads to a hardening of vessels
by deposition of blood fat, thrombi and lime [8]. This deposition affects vessels
in two problematic ways:

1. A weakening of the vessel wall.
2. A narrowing of the vessel up to a complete occlusion.

The weakening can lead to a dilation of the vessel that may result in an aneurysm,
see Fig. 1(a). These are dangerous out of two reasons: first, they can rupture and
release blood into the space around the vessel. This is especially critical in the
brain, because patients with a ruptured cerebral aneurysm have a mortality rate
of 40–60 % [9,10]. Second, the blood can clot inside the aneurysm, which could
be carried away and block other arteries. The narrowed vessel, called a stenosis
(see Fig. 1(b)), can lead to an under supply of involved structures or also cause
a clot formation.

For the medical treatment of such vascular diseases, the physician can use
several methods. The choice of the treatment depends on parameters such as
anatomical access or size and shape of the pathology. In particular, this work
focuses on clipping as an example of an extravascular treatment method as
well as coiling and stenting as examples of intravascular methods. The clipping
procedure, e.g., for treating a cerebral aneurysm, starts with a craniotomy to
disclose the aneurysm. Afterwards, a titanium clip is placed across the aneurysm
neck to stop the blood from entering into the aneurysm [11]. Coiling is performed
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Aneurysm

(a)

Stenosis

(b)

Fig. 1. Illustrations of a saccular aneurysm (a), which is the most common type, and
a stenosis (b) caused by a narrowed vessel.

by entering an artery from the inside. The coil, a small titanium wire, is used to
fill the aneurysm and to induce a thrombus formation [12]. The stenting method
can be used to treat both, stenosis and aneurysms through an intravascular
approach. Similar to the coiling procedure, a catheter is moved to the affected
position from the inside. Afterwards, the stent is inflated with a balloon and
forces the vessel to expand. For treating aneurysms, stents can help to support
the involved vessel during, e.g., a coiling procedure.

Further descriptions of different forms of vascular diseases, their treat-
ments, and possibilities for visualization and exploration are mentioned by
Gasteiger [11]. A historical overview of different treatment options can be found
in the work of Wong et al. [13].

3 Related Work

This work involves three main topics: computational hemodynamics, flow visu-
alization, and Sketch-based Interfaces (SBIs), a form of user interface (UI) which
deals with sketching.

3.1 Computational Hemodynamics

To simulate the behavior of blood, it is necessary to imitate a non-Newtonian
fluid, i.e., a fluid with varying viscosity. Furthermore, in terms of fluid dynamics,
blood is compressible and inhomogeneous. Such a simulation is complicated and
expensive regarding calculation time [14]. Therefore, we consider blood as an
incompressible, homogeneous Newtonian fluid to achieve a real-time simulation.
Examples for methods to calculate non-Newtonian fluids can be found in [15,
16]. To describe the state of a fluid, there are two possibilities: the Lagrangian
(particle-based) and the Eulerian (grid-based) description. We use the Eulerian
description because the grid-based character is well suited to be calculated with
fragment shaders on the GPU. Examples for the Lagrangian description can
be found by Müller et al. [17] and Qin et al. [18]. Both deal with particle-
based simulation of blood flow in vessels to support surgeons in virtual surgery
scenarios.
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3.2 Flow Visualization

The simulated flow can be visualized in a variety of ways. Since we use the
Eulerian description, we illustrate parameters on each point of the discretized
grid. These flow visualizations can be divided in three categories: direct, sparse,
and dense visualizations [19,20]. The first two are relevant for our work since
they can illustrate flow in a simple and thus, comprehensible way. In direct flow
visualizations, glyphs such as arrows are used to indicate the flow direction on
each grid-point. Additional parameters, such as the strength of the flow, can be
visually encoded with the arrow length [21]. Since direct visualization enables
the user to get a fast overview of the flow, we use it in our work. Sparse flow
visualization techniques uses lines to illustrate the flow. The lines are obtained by
seeding and tracking particles in the flow. Here, a challenge is to find appropriate
seed positions for the particles [20]. We want to enable the physician to control
where the particles are seeded. This gives the possibility to show important
regions to the patient. Therefore, the seeding points can be placed interactively.

3.3 Sketch-Based Interfaces

The usefulness of SBIs to communicate ideas and concepts is described among
others by Jorge and Samavati [22]. They state that the communication of com-
plex issues is possible without the necessity to draw precisely and accurately.
However, this is a challenge regarding the automatic recognition of the sketch.
As a consequence, several works deal with the interpretation of sketches [22].
The foundations for this were laid by Ivan Sutherland [23] with the program
Sketchpad. SBIs can be seen as a part of post-WIMP (windows, icons, menus,
and pointers) UIs because the sketching is performed with direct input, e.g., a
pen or touch [24]. Therefore, the pointer component of the WIMP paradigm is
no longer necessary [25]. Xiaogang et al. [26] and Naya et al. [27] showed the
advantage of reality-based interfaces (such as SBIs) by comparing WIMP-based
interaction with reality-based interaction and presented two findings: first, the
users preferred the sketch-based approach and second, they were more efficient
with it. SBIs contain three processing steps: resampling of the input data, beau-
tification, and recognition. This paper deals only with the resampling of the
input data. Examples for the beautification step can be found, e.g., by Igarashi
et al. [28]. There, line segments were analyzed according to geometric constraints
such as perpendicularity and parallelism. After that, the program recommends
different options of how to interpret the lines. The user chooses an option by
clicking on it. The processing step recognition describes a procedure where the
sketch is compared with an internal representation of symbols. The similarity
is expressed with a parameter. If this parameter exceeds a value, the sketch is
interpreted as the compared symbol [22]. A simple way to integrate recognition
in an application is described with the 1¢Recognizer [29].

An important use case of SBIs is geometric modeling, i.e., the creation of
3D structures. An example of an SBI for modeling (SBIM) medical structures
is described by Pihuit et al. [5]. They describe methods to sketch and model
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branching vessels. To maintain the sketch-based look of 3D models, it is possible
to visualize them with non-photorealistic rendering. A comparison of different
line drawing in the medical domain can be found in the work of Lawonn et al. [30].
Contrary to SBIM, the following work addresses the creation of 2D vessels.

4 Methods

Our sketch-based interface consists of different concepts to create vessels with
interior blood flow based on intuitive sketch-based interaction. In the following,
we describe the methods and the implementation.

4.1 Blood Flow Simulation

We use the Eulerian grid-based method to describe the state of the fluid [14,
31,32]. For the fluid simulation itself, we use the Navier-Stokes equations for
incompressible and homogenous fluids, which are based on Newton’s second law
of fluid motion:

∂u

∂t
= −(u · ∇)u − 1

ρ
∇p + v∇2u + F, (1)

and
∇ · u = 0. (2)

Equation 1 (momentum equation) describes the behavior of the velocity vector
field u under influences such as advection, diffusion, pressure, and external forces,
which will be described in more detail in the following. Equation 2 (continuity
equation) ensures the incompressibility by defining u as a divergence-free vector
field.

To achieve a real-time fluid simulation, the grid size is an important factor.
While a small grid size accelerates the calculation time, details like whirls may
be lost. Another problem are obstacles. To faithfully simulate the behavior of
blood flow in the vicinity of obstacles, it is necessary to model the obstacles in
the simulation grid. This is achieved by marking grid cells as occupied. Thus, the
grid resolution also affects the possible level of detail of the obstacles. To allow
a high spatial resolution of grid cells, the simulation is performed on the GPU.
For the GPU-based calculation, we used the fragment shader similar to [31].

To solve the equations for the differential operators, the finite difference
method is used. Furthermore, Eq. 1 needs to be split up in single terms, which
are calculated separately.

An overview of the calculation steps is illustrated in Fig. 2. In the following,
we describe the mathematical terms and their effects in the fluid simulation.

The first term −(u ·∇)u describes the self-advection of the fluid, which is the
process of moving the velocity itself through the fluid. Here, the self-advection
is realized with semi-Lagrangian advection [32]. Mostly, fluid simulations use
the Runge-Kutta method [33] for the integration, which is less error-prone than
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Fig. 2. Pipeline for the fluid simulation including the influence to the underlying vector
field. Each step is realized with a separate fragment shader program. The steps provided
with self-referencing arrows show the steps which are calculated with an adjustable
amount of iterations. Here, a trade-off arises between accuracy (high amount of itera-
tions) and calculation time (low amount of iterations).

Fig. 3. Comparison of the Euler (a) and Runge-Kutta 4 (b) integration methods with
a step size of 0.3. Both methods are depicted with a modified arrow plot visualization
(top) and a scalar field visualization (bottom), which looks similar to a streakline
visualization through the continuous placement of ink during the simulation. Since the
differences between both methods are small, the faster Euler method is used.

the simpler and faster Euler method. Interestingly, as illustrated in Fig. 3, the
differences between both methods are small. This is due to the small step size
used in the application. Therefore, we used the Euler method to decrease the
calculation time.

The pressure, a force that gradually spreads from regions with high to regions
with low pressure, is described with the second term 1

ρ∇p. The factor ρ is a
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constant to describe the density. Furthermore, this term also ensures the incom-
pressibility of the velocity vector field, and thus, simultaneously ensures the
Eq. 2. To achieve this, the term is calculated at the end. For a description of
the derivation, see [14]. To calculate this term, it is necessary to solve a Poisson
equation. This is accomplished by the Jacobi approach because it can be mapped
directly to GPU facilities. For a discussion of different approaches, see [34].

The third term v∇2u expresses the physical process of diffusion, i.e., the
property of mixing materials without external forces. Here, v is a constant that
describes the viscosity. The calculation of the diffusion also requires the solution
of a Poisson equation. A disadvantage of diffusion is the resulting smoothing
effect on the applied vector field, which causes a loss of details. Therefore, the
choice whether diffusion is applied is left to the user.

The last term F describes external forces, which allows the user to influence
the simulation dynamically. Normally, such forces are steady, so the influence
of the force to the fluid is constant over time. This approach would not represent
the pulsating character caused by the contractions of the heart. This pulsation
can be imitated by applying a factor to the force, which changes over time.
Therefore, we approximate the function measured by an electrocardiogram with
the following formula:

f(x) = −3
4
e− 1

2 (− 1
2+x)2 + 1, 12e− x2

2 − 1
4
e− 1

2 (1+x)2 + 1. (3)

This equation was determined by combining three Gaussian functions with vary-
ing heights and widths. In Fig. 4, the difference between a constant and a pul-
sating force is illustrated.

Finally, boundary conditions are used to simulate the behavior of the fluid
at the vessel wall and the boundary of the sketching canvas. These conditions
are necessary for the velocity vector field and for the scalar field, describing the
pressure. For the velocity vector field, a Dirichlet boundary condition is used,

Fig. 4. In (a) a constant force is applied to the vector field. In (b) a heartbeat-like func-
tion is applied as a factor, which mimics a more realistic behavior. The corresponding
functions are plotted at the left bottom.
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which states that the velocity drops to zero at boundaries. For the scalar field,
a Neumann condition is used, which states that the derivatives at boundaries
are zero. To calculate the derivative, the normal of the boundary is necessary.
The normals of the top, right, bottom, and left image boundaries are defined
as (0, −1), (−1, 0), (0, 1), and (1, 0), respectively. For determining the normals
of arbitrary boundaries, we use the neighborhood of the obstacle. That means
that for each grid cell, which is marked as an obstacle, eight neighbor cells are
analyzed. Depending on the state of these neighbors (marked as obstacle or no
obstacle) the normal is approximated to one of eight possible directions. This
approach is described in more detail by Wu et al. [35].

4.2 Blood Flow Visualization

To illustrate the unsteady vector field that represents the blood flow, we imple-
mented two visualization concepts: (1) a direct and (2) a sparse flow visualiza-
tion, see Fig. 3. The direct visualization is a modified line plot on which fans
are drawn on an adjustable grid. Fans are used because they facilitate a fast
realization of the flow direction for the user.

Especially for patients, a scientific visualization method for vector fields may
be inappropriate. Thus, an additional method is used. It aims to be easily under-
standable to visualize the behavior of blood in areas such as aneurysms and
stenoses in a descriptive way. The used scalar field visualization is inspired by
the idea to place colored ink in the vector field (also known as dye injection).
By diffusion and advection, this ink is transported through the vector field. The
amount of ink is color-coded with a black-to-hue scale with different colors. This
allows using multiple colors, e.g., to show how blood mixes in an aneurysm before
and after a treatment, see Fig. 5.

The colors are taken from the CIELAB color space, which allows choosing
colors that are roughly perceptually linearized regarding hue and brightness. To
determine perceptually strongly different colors, the approach of Glaßer et al. [36]
is used. If the ink is placed continuously over time, the visualization technique is
similar to streaklines. In contrast to streaklines, the placed ink is not connected,
but if the amount of placed ink is high enough, there is the impression of con-
nectivity. A difficult task involved in sparse visualization techniques, namely to
identify suitable seed point positions, is left to the user. This allows the physician
to emphasize specific areas, which supports the patient’s understanding.

4.3 Sketching

The obtained data from the input device inherits noise, which is caused by
the conversion from the analog to a digital signal (quantization) as well as the
imprecise input from the user. Especially the quantization, also depending on
the sampling rate, reduces input information during fast input movements
from the user. To remove the resulting noise and obtain equidistant input infor-
mation, the received data of the input device is resampled and smoothed. These
steps are commonly applied after the user finishes drawing, which causes abrupt
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Illustration of blood flow before and after a stenting treatment. First, the physi-
cian sketches a vessel with an aneurysm (a). Afterwards, he manipulates and visualizes
the underlying fluid simulation to illustrate the blood flow (b-c). The consequences
resulting from the stent treatment (d-e) are illustrated with another color (f).

changes in the sketch. To avoid these sudden changes, we use on-the-fly methods
that are applied during sketching. This presents challenges regarding real-time
capability. Ideally, the user did not even realize these steps. First, the resam-
pling should reduce the obtained sample points. To achieve this, we use a simple
strategy: we ignore all points that are too close to the last accepted point. We
use the Euclidean distance to measure the distance of two points, see Fig. 6(a).

A disadvantage of this approach is that it leads to line smoothing and thus,
complicates the sketching of zigzag lines. This can be neglected, because vessels,
vascular diseases, stents, and coils usually do not have these shapes. To smooth
the accepted sample points, a local Gaussian filter is used [37]. More precisely,
the 1-neighborhood of the accepted points is used to adjust the points with a

Fig. 6. (a) The new point p2 has exceeded a specific distance to p1 and thus, is sampled.
The points o1 - o3 are too close and thereby omitted. (b) shows the smoothing approach.
When p2 is sampled, the pre-last point p1 is translated. By transforming the pre-last
point, a shrinking of the line is prevented.
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Gaussian smoothing. The filter is only applied to the pre-last point, which was
accepted to prevent the line segments from shrinking, see Fig. 6(b).

5 Application

The application should be as flexible as possible regarding the used direct input
device. More precisely, it should be possible to control the application with touch
and pen-based input. This implies the following limitations:

– Special functions from pen-based input devices like pressure sensitivity or
additional buttons are not supported.

– Multitouch input is not supported.

Through these limitations, the used concept is theoretically usable for a
mouse with a left button only. Furthermore, the application is designed
according to major usability criteria, such as suitability for the task or
self-descriptiveness. The evaluation of the application revealed possibili-
ties for improvements, which were partially implemented. Improvements
based on the quantitative part, the qualitative part, or the interview, are
marked and discussed, respectively. The application can be downloaded under
www.isg.cs.uni-magdeburg.de/˜patrick/application/SketchingVessels.zip.

5.1 Sketch Vessels and Vascular Diseases

Mainly, drawing a vessel requires two lines representing the border of the vessel.
Drawing each line separately would lead to strong variations in the resulting
vessel structures. Therefore, we use a create tool that creates both lines simul-
taneously by using the sketched path as the center line and drawing the vessel
wall around it. The general advantage of this process is that uniform vessels can
be drawn easier and faster. We fix the width of the vessel to simplify the appli-
cation. In contrast to Zhu et al. [7], where it is possible to draw vessels under
and over already existing ones through a 2,5D sketching canvas, this work limits
the sketching area to a 2D canvas. This decision is motivated by the observation
of what could happen if the user sketches over an already created vessel. Besides
the possibility to draw the vessel over or under the existing ones, it is possible
to merge the new vessel with the old ones. This offers the possibility to create
more complex structures like branching vessels and aneurysms easily without
changing the drawing mode. The merge behavior is illustrated in Fig. 7 and is
realized with an already implemented polyline-based functionality in the used
framework.

Additionally to the possibility to draw aneurysms, the application offers a
possibility to draw stenoses. A cut tool is used to allow the user to create irregular
non-symmetrical stenoses in a consistent sketch-based way. To prevent problems
during cutting, e.g., ambiguity described by Heckel et al. [38], the user sees his
sketched contour, which is used for the cutting process. Additionally, the start

http://www.isg.cs.uni-magdeburg.de/~patrick/application/SketchingVessels.zip
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Fig. 7. The merging behavior can be used to draw a vessel containing an aneurysm by
simply sketching on top of the previous drawing.

Fig. 8. The cut tool is used to remove structures from the already sketched vessel to
create a stenosis.

and end point of the sketched contour are connected, and thus, span a cutting
area. This area is subtracted from the existing vessels (see Fig. 8).

This tool does not only allow the creation of stenoses: in combination with
the create tool, the user has a generic sketching tool, which allows the creation
of any 2D structure under the usage of only two different modes. To support
the medical expert during the sketching process, it is possible to load images in
the background. The physician can use this function to load a slice of patient-
specific MRI or CT data which contains, e.g., the vessel structures of the patient.
In addition, frequently used vessel structures such as the Circle of Willis, can be
loaded (see Fig. 9).

During the evaluation, some participants suggested a possibility to load vessel
structures. This could help because it allows the physician to not only load stan-
dardized structures, but also patient-specific data. The functionality is imple-
mented by loading a monochrome black-and-white image. Every black pixel is
interpreted as a vessel and every white pixel as free space, where blood is able
to flow. However, this approach has a disadvantage. It is only possible to show
blood flow in the loaded vessel structure, but not to use the other tools, e.g.,
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Fig. 9. A background image of the Circle of Willis is loaded to support the sketching
process.

cutting or treating the vessel. This disadvantage can be avoided by implement-
ing an object-based save and load mechanism instead of an image-based, which
could be added in the future.

5.2 Manipulate and Visualize Blood Flow

The flow can be manipulated with a force term, which is represented with a
2D vector field (recall Sect. 4.1). To allow the user to influence this field in a
flexible and easy way, a direction tool is provided, which is also implemented in
a sketch-based way. After the direction tool is selected, the user can sketch lines
that are represented by arrows pointing along the draw direction. This arrow
represents the influenced force on the vector field.

To transfer the sketched arrow to the vector field, it would be obvious to
manipulate only the vectors directly under the sketched arrow. This behavior
is not desirable, because it only allows to manipulate the flow in small areas.
Instead, the force is applied in a region around the sketched arrow. The size of
this region is adjustable and is initially set to the width of a vessel. To achieve
a natural effect, the force is slightly decreased at the border of the region by
applying a Gaussian smoothing, resulting in a strong force at the center and a
weak force at the border.

To visualize the flow, the user can use a dye tool to place ink (blood) in the
fluid region. A circle of ink is placed by just tipping on the canvas or drawing
over an area. The ink is interpreted as a source of infinite amount of ink, which
is added in every render frame. The width of the ink area is adjustable, but set
to the vessel width to allow the user to fill a vessel with ink in a fast way. To
allow the physician to show the mixing behavior of fluid in an easy way, a new
color is selected (recall Sect. 4.2) after each usage of the dye tool.

5.3 Treating Options

To show the patient how to treat aneurysms and stenoses, we implemented the
following treatment methods:
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– coiling,
– clipping, and
– stenting.

Initially, we implemented the coiling tool such that the user should fill out the
aneurysm. This coil was illustrated with a line, which occurred during the draw-
ing process. Our user study revealed that generating the coil with this approach
is not applicable, since it takes too much effort and is too time-consuming. There-
fore, we implemented another approach to improve the coil placement. First, an
area is sketched, e.g., on the vessel wall of an aneurysm. After the user raises the
pen, every sample point analyzes its neighborhood within a specific adjustable
distance. This is performed by sending eight rays in a circular manner, starting
at every sample point. Significantly less rays would result in an inaccurate vessel
wall detection and more rays would not improve the result. We test every ray for
a possible intersection with the vessel wall. If more than one ray collides with the
wall, the ray with the shortest distance is chosen. After that, the corresponding
sample point is placed on the intersection point of the ray. If no collision occurs,
the point keeps the current position. The underlying grid cells are than treated
as obstacles and thus, the blood flow changes dynamically corresponding to the
drawn coil. Figure 10 illustrates this algorithm.

The clipping method was inspired by the line drawing method used in Sketch-
pad [23]. The point where the user starts drawing represents the first point of the
clip. As long as the user draws with the pen, the current pen position represents
the end point of the clip. These two points are connected with a dashed line to

(a) (b) (c)

(d) (e) (f)

Fig. 10. (a) - (f) shows the algorithm to calculate the coil area. In (a) the user sketches
imprecise over the vessel wall of the aneurysm. (b) shows the captured sample points
as well as the rays, which are sent in a circular manner from each sample point. In
(c) all rays that collide with the vessel wall are highlighted, from which those with the
shortest distance are chosen (d). The sample points are moved to the intersection point
or remain on their position if no intersection occurred (e). The adjusted sample points
build the new area for the coil, which lies precisely on the vessel wall.
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give the user a preview of the clipping result. After the user finishes drawing and
raises the pen, the clip is placed and the blood flow simulation is affected by it.

The stent placement algorithm is inspired by the real treatment. Here, a bal-
loon catheter is inflated to dilate the stent in the vessel. We use this inflating
process for providing a stent placement algorithm. The user draws a line in the
center of the vessel with the stenting tool, which represents the position of the
balloon catheter. After the user finishes the sketching process, the application
calculates the dilation of the stent. The stent should be dilated in the relevant
vessel, but not enter the aneurysm. Since structures are not differentiated seman-
tically (i.e., in vessels and aneurysms), the described behavior must be achieved
in a different way. To accomplish this, the surrounding region of the sketched
stent is analyzed. The algorithm is described in detail in Fig. 11. This method is
more robust according to various input lines. The best results regarding visual
aspects are achieved by drawing a line, which is as close as possible to the center
of the vessel. Inaccurate lines may lead to an entering of the stent inside the
aneurysm. A disadvantage of the described method is that it depends on four
control points obtained through the start and the end point. If not all control
points could be determined, e.g., if the vessel is too wide, not all normals are
calculated and so the stent will not be placed. Similar to the coiling and clipping
method, the grid cells under the stent are marked as occupied and thus, influence
the fluid simulation.

(a) (b) (c)

(d) (e) (f)

Fig. 11. (a) - (f) illustrate the algorithm to calculate the stent dilation. The user input
is illustrated as a sketched line in (a). After the user finishes the stent, the normals of
the start and end point are determined (b). The normals have the length of the vessel
width. All four normals are tested if they intersect the vessel wall. If not, the stent is
discarded. Otherwise, the distance l is determined, which is the longest length of the
normal start point to its intersection point. Now, for every point of the sketched line, the
normals with length l are determined (c). These normals are tested for intersections
with the vessel wall. If they intersect, they are shortened to the intersection point,
otherwise they keep the length l (d). The achieved end points of the normals are
connected (e) and form the border of the stent, which is illustrated in (f).
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5.4 Edit, Delete, and Copy Objects

The possibility to edit and delete objects such as stents and coils, is an important
aspect regarding the controllability of the application. This is confirmed by the
evaluation (see Sect. 6.1) in which the participants stated that a functionality to
delete or edit objects would be useful. To realize this, it is necessary to implement
a method to select already created objects. Since a requirement of the application
is to control it with a pen without any further buttons, a suitable method is
necessary. Besides the use of gestures or a double tap of the pen, the implemented
approach is to press and hold the pen on the relevant object. Afterwards, the
corresponding object is deleted. The possibility to edit objects, which is currently
not implemented, can be realized with the same approach.

To provide the physician with an easy and fast possibility to illustrate more
treatment options on the same vessel structures, a copy tool is added to the
application. It allows to select an area, copy its content and paste it at another
place. With this possibility, the patient can see different behaviors of the blood-
flow, depending on the treatment option. This can help to understand why a
specific treatment is chosen or why another is not possible.
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Fig. 12. Screenshot of the prototype. Buttons (1-2) are used to create and edit vessels,
(3-4) are used to manipulate and visualize blood flow, (5-7) are used to sketch treatment
options, (8) is used to select the copy tool, (9a-9b) are used to load a background image
to assist the sketching or to load vessel structures out of a monochrome image and (10)
is used to reset the whole canvas. The buttons on the right side (11-17) are used to
influence the fluid simulation in different ways, e.g., to enable diffusion, change the
viscosity, or show the arrow plot visualization.
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5.5 User Interface

The structure of the user interface results from two considerations:

– The grid used for the fluid simulation is quadratic and
– a direct input device is used.

The first consideration implies that the canvas, in which the user sketches, is
also quadratic. Due to the horizontal format of current displays this means that
there is potential free space on the sides of the canvas. This space is used for
the menus. In detail, the space is divided in a left and a right region and used
for a semantic differentiation of the functionality. On the left side, menus and
buttons are placed, which are used to create and manipulate vessels, to sketch
treatment options, and to visualize and control blood flow. On the right side,
there are menus to control simulation parameters such as the number of itera-
tions for solving or to activate the diffusion process. The second consideration
(using a direct input device) leads to the following requirements with respect to
interaction. To achieve an easy interaction, all buttons have a bigger size and
there are no sub-menus. Furthermore, classical WIMP input elements like spin
boxes were omitted since exact inputs would be hard to enter with a pen or
touch. In Fig. 12, a screenshot of the user interface is shown.

6 Evaluation

The evaluation is divided into two parts: in the first part, we used qualitative
and quantitative methods for assessing the usability of the prototype. In the
second part, we interviewed a physician to compare the procedure of typical
patient education (with hand-drawn sketches) with the prototype and investigate
advantages and disadvantages.

6.1 Usability

The qualitative part of the study was performed with the think aloud proto-
col, where the participants comment their activities while solving a problem.
This is helpful to obtain insights into the misunderstandings of the partici-
pants as well as to understand how the participants predict the behavior of
the prototype. The quantitative part of the evaluation was conducted with a
questionnaire. The questions are modeled after the questionnaire for ergonomic
principles from ISO 9241-110 (suitability for learning, suitability for the task,
self-descriptiveness, conformity with user expectations, controllability, and error
tolerance) [39]. The single questions were categorized in the different principles
and rated with a 7-point Likert scale.

The evaluation started with a short introduction of the prototype on a
SMARTBoard, a 70′′ screen which allows pen interaction. All features were
demonstrated and we asked to think-aloud and noted the spoken comments of
the participants. Initially, the participants were asked to perform several tasks
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that were handed out in written form. For example, they should draw a vessel
with a trifurcation. Then, they should use the cut tool to change the vessel to a
bifurcation. Furthermore, they were asked to draw an aneurysm and treat it with
the clipping, coiling, and stenting tool. Finally, they should create and visualize
the blood flow in a specific direction. Afterwards, the participants were asked to
fill out the questionnaire.

The evaluation was conducted with 14 researchers with medical visualization
knowledge. We had three female and eleven male participants, aged from 25 to 44
with an average of 31 years. The participants are experienced computer users with
an experience of 20 years on average (minimum: 14, maximum: 30). Ten partici-
pants were experienced with pen interaction. It took about 15 to 20 min to fill out
the questionnaire. The statements of the participants are denoted with [P#].

Think-Aloud Method. Mostly, the participants were satisfied with the proto-
type, e.g., one stated that “it is possible to create vessels and aneurysms accord-
ing to my own ideas” [P13]. Regarding the different tools, the majority of the
participants had no problems using them. For example, it was stated that the
cut tool “is more precise than conventional eraser tools” [P6]. Unfortunately,
the cut tool leads to misunderstandings during the first use. This was caused by
different expectations of its functionality, e.g., some participants thought that it
can be used as a conventional eraser. After some practice, the functionality was
understood and all participants rated this tool as positive. Another example of
a positively rated tool is the stenting tool. Especially the automatic expanding
behavior was noted as useful. Some participants highlight the alignment of the
tools, as it supports the typical workflow (generate vessel, treatment, and visu-
alize blood flow). In general, they stated that this prototype allows a fast and
easy generation of vessels with simulated blood flow.

Questionnaire. The results of the questionnaire were determined by calculating
the average of every answer. For this, we assigned the symbols of the 7-Point
Likert scale (− − − to + + +) to the values from −3 to 3. Figure 13 depicts the
average for every category. The category error tolerance has the lowest rates.
Here, the users were asked if the effort to correct an inadvertently drawn error
is significantly high. Mostly, the participants stated that it should be possible
to delete drawn objects and the effort is high to manually correct them by
redrawing. Thus, we added the possibility to delete drawn objects like stents and
coils individually, see Sect. 5.4. However, with an average of 1.68, this category
was rated well. In summary, the ratings of all categories were positive and the
participants were satisfied with the functional range. For refinement, we used the
results of the evaluation and improved the prototype according to the suggestions
of the participants.

6.2 Structured Interview

We performed a structured interview of about 20 min with a physician, which
has 12 years of experience in the field of vascular diseases and patient education.



36 P. Saalfeld et al.

Fig. 13. The average results of the questionnaire for each category of the usability
principles is shown.

The audio of the interview was recorded and analyzed after the interview. First,
we asked the physician to explain typical patient education with an example and
outline the typical education procedure. During typical patient education, the
patient receives textual and image-based templates with respect to his disease.
Additionally, the physician explains the intervention verbally and supports this
with hand-drawn sketches (see Fig. 14). These can help to illustrate specific
medical cases and answer individual questions from the patient. The description
of the physician revealed the following disadvantages of the hand-drawn sketches:

– To correct errors, the physician draws over the existing sketch, which results
in a cluttered image.

– The blood flow and the implications of a treatment are usually not drawn,
because it is hard to illustrate these and could lead to a confusing image.

– The physician only uses one color to draw all structures, which makes it
difficult to distinguish between different elements such as vessels and a clip.

– Some patients have problems to understand the sketch, because they find it
difficult to imagine diseases and treatment options.

Aneurysm Coil

Stent

Vessel

(a) (b)

Fig. 14. On the left side is the hand sketch of a physician with additional labels. On
the right side are the same structures made with the application, which the physician
assessed clearer and more understandable.
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After that, we explained the prototype and asked to perform the patient educa-
tion again using our application. Thereby, we let the physician compare his hand-
drawn images with sketches from the prototype which showed the following:

– By using different colors, symmetrical, consistent, and uniform structures
(e.g., for the vessels or stents), the result is more clear, descriptive and plastic
than the hand sketching, and thereby, the perception is supported.

– Due to the illustration of blood flow, the vessel structures, the effects of differ-
ent intervention methods and possible complications are more understandable
and imaginable.

Furthermore, the physician stated additional advantages of the prototype, e.g.,
due to the clearer resulting images, other persons, who were not involved in the
sketching process, are able to understand the sketch. This is difficult with hand
sketches, because of their cluttering nature. The physician rated the tool as easy
to learn and use, which matches the results of our usability evaluation.

7 Conclusions and Future Work

This work provides methods to sketch vessels, vascular diseases, and treatment
options. It is possible to interactively create and manipulate blood flow, which
adapts in real-time depending on the sketch.

The usability of the prototype was assessed with qualitative and quantita-
tive methods. The positive feedback of the evaluation indicates that the pro-
posed concept and prototype are suitable for sketching vascular structures and
treatment options. The structured interview with the physician revealed further
benefits compared to hand-drawn sketches and confirmed the idea to improve
patient education and intelligibility by integrating animated blood flow.

A limitation of this work is the representation of the vessels and blood flow
in 2D. The representation of vessels and fluids in 3D is a challenge with respect
to visualization and interpretation [40]. However, advantages of the 2D represen-
tation are its easier intelligibility and lower computational effort, which allows
the calculation of a more detailed fluid simulation in real-time.

An improvement of our system would be to automatically differentiate the
sketched vascular structures semantically, i.e., distinguish between healthy ves-
sels, stenoses, and aneurysms. With this differentiation, placing a stent in nar-
rowed vessels could be implemented more easily. The sketched stent could
inflate a stenosis only, without affecting the surrounding, healthy vessels. By
distinguishing between vessels and aneuryms, an entering of the stent into the
aneurysm could be prevented as well. Beneath this, we want to investigate how
the described concept and prototype can be used for collaboration between physi-
cians. This collaboration can happen at different places where each medical doc-
tor interacts with an instance of the application. The different instances could
be connected and mirror the input from one place to another. Additionally, the
communication could be supported with voice chat and webcams. Another way
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of collaboration is possible with only one application, where several physicians
are sketching at the same time in front of a big screen and discuss a medical case.

Further analysis could investigate the possibility to realize the described con-
cept in 3D. This leads to challenges and questions regarding a real-time 3D fluid
simulation and visualization as well as creating the vessels. For 3D interaction,
there are input and output devices which are more suited than pen or touch
interaction. By lifting the application in the third dimension, the behavior of
blood in vessels could be simulated more accurately, and thus, make the appli-
cation more relevant for scenarios like operation planning and training.
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Abstract. We present a novel generic method for the fast and accurate
computation of geometric descriptors. While most existing approaches
perform the computations directly on the geometric representation of the
model, our method operates in parametric space, decoupling the compu-
tational complexity from the underlying mesh geometry. In contrast to
other parametric space approaches, our method is not restricted to spe-
cific descriptors or parameterisations of the surface. By using the para-
metric space representation of the mesh geometry, we can trivially exploit
massive parallel GPU architectures and achieve interactive computation
times, while maintaining high accuracy. This renders the method suitable
for computations involving large areas of support and animated shapes.

Keywords: Geometric descriptors · Parametric space · Mesh geome-
try · GPU acceleration

1 Introduction

The computation of geometric descriptors, like curvature, is central in a wide
range of applications, including object retrieval, registration, texture synthesis,
stylized rendering and many more. The computation of these fundamental met-
rics is usually performed by algorithms that operate directly on discrete polygo-
nal representations of the continuous surface. In the case of static meshes, these
geometric descriptors can be computed once without worrying about the perfor-
mance. In contrast, in the case of moderately dense meshes with large areas of
support and especially in the case of animated or dynamic meshes, performance
becomes critical and this computation process becomes a challenging task.

In this work we focus on the general class of metrics with finite local support,
whose computation depends on the local neighbourhood of an arbitrary point p
on the object’s surface. Robustness in the presence of noise is achieved by per-
forming computations at multiple scales [30]. The computation of these types of
descriptors often relies on data structures that encode the adjacency information
and allow efficient discovery of the neighbouring points on the surface. This is espe-
cially true for algorithms that operate on meshes. The computational complexity
of such object-space approaches is directly proportional to the geometric density
and quadratic with respect to the extent (i.e. radius) of the local area of support.
c© Springer International Publishing Switzerland 2016
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(a)
(b) (c)

(d) (e)

Fig. 1. (a) “Lucy” model (200 K) colourized with mean curvature, computed in 49 ms,
(b) geometry (position) buffer (normalized for visualization), (c) surface normal buffer,
(d) polygon chart identifiers (colourized for clarity) along with the adjacent chart iden-
tifiers on border pixels, (e) mean curvature in parametric space (colourized for visual-
ization).

Object Space (Radius 3%)

Low-Resolution Mesh

Ours (Radius 3%)

High-Resolution Mesh Low-Resolution Mesh High-Resolution Mesh

(a) (b) (c) (d)

Fig. 2. (a) Using an object-space approach on a sub-sampled surface (low-resolution
mesh) with a relative small support radius (3 % of the object’s diagonal), results in
inaccuracies. (b) The same computations applied on the densely sampled surface (high-
resolution mesh). (c) Using our parametric-space approach on the low-mesh we obtain
accurate results without any extra effort, due to the linear interpolated samples of the
surface. (d) Results of our approach used on the high-resolution mesh.

Despite the fact that computing the metric for independent surface points is an
inherently parallel task, the use of complex data structures for storing the adja-
cency information, prevents a trivial and efficient mapping of these computations
to massively parallel stream processors, like commodity GPUs, at arbitrary scales.
For these reasons, real-time computation is often limited to meshes with relatively
low geometric complexity and 1-ring vertex neighbourhoods [6].



GPU Accelerated Computation of Geometric Descriptors 43

In order to alleviate these limitations, we shift all computations from object-
space to parametric space, by transferring all the geometric data of the object to
a two-dimensional layout, along with extra adjacency information that allows us
to reconstruct the object-space local neighbourhood of a given point on the fly.

While this choice is similar to Geometry Images [7], we do not restrict our
method by requiring a specific parameterisation of the surface, but rather develop
a scheme that handles any underlying parameterisation, including multi-chart
layouts. The benefits of parametric-space computations are twofold: First, sam-
pling the geometry at arbitrarily large areas of support is much more efficient
in parametric space, since the samples can be directly indexed in contrast to a
geometry-based estimation, where the traversal of a surface patch is performed
via the connectivity information of the vertices. Second, the parametric space
computations are directly mapped to the GPU/many-core computing paradigm
in a very efficient manner, rendering the approach suitable for real time calcu-
lations over deformable or animated objects. Another gain that stems from the
utilization of GPUs, is that we have access to linear interpolated data between
all the sample points of the surface with minimal impact on the performance,
as linear interpolation is natively supported by the hardware. This is very use-
ful, especially in cases of sub-sampled surfaces, where object-space methods give
inaccurate results for small support radius (see Fig. 2).

2 Related Work

Most of the existing methods in the bibliography concentrate on the computation
of a specific geometric descriptor, and do not try to generalize their framework.
For our overview, we do not focus on the specific descriptors used in the existing
works, but rather focus and classify methods, based on how they sample the
geometric information of the object. Existing methods can be classified to those
that sample the geometry in object-space, in screen space, from a volumetric
representation and those that operate in parametric space. In the remainder of
this section we will review the main representatives for each category.

Object-space methods operate directly on the discrete mesh representations
of a surface. [18,29] generalize the differential-geometry-based definition of cur-
vatures to discrete meshes but their computations are limited to 1-ring neigh-
bourhoods, which renders them sensitive to noise. Similarly [23] estimate the
curvature over meshes using essentially a 2-ring neighbourhood. For efficient
arbitrary neighbourhoods, object-space methods require a data structure that
encodes the adjacency information between the triangles of the mesh, such as
the half-edge [2] or a kd-tree data structure. However, as discussed in the intro-
duction, a mapping of this data structure to the GPU is neither trivial nor
optimal. Most of the existing methods belong to this category and thus operate
on the CPU. GPU-based methods, have been proposed for the computation of
specific descriptors, like curvature [6], but these methods do not generalize to
the sampling of arbitrary neighbourhoods.
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Screen space methods sample the geometric information of a mesh from a 2D
pixel buffer, where each pixel encodes the projected surface position of the mesh
from a specific point of view. In this form of representation, adjacency informa-
tion is implied by the pixel grid, and therefore sampling is trivial and can be
efficiently mapped to GPUs. This efficiency in sampling is also the main moti-
vation behind our method. The main disadvantage of screen-space methods is
that computations are limited to the surface points visible from a particular view,
resulting in inaccuracies near occluded points and at the screen-space silhouettes
of the object. Such screen-space methods have been proposed for curvature esti-
mation in real-time stylized rendering [13,17]. Our method retains most of the
sampling efficiency of the screen-space methods, but avoids the view-dependence
of the results by moving all the computation to the parametric space.

Volumetric data and algorithms can be also employed for the computation of
descriptors. In this case, the input mesh is initially converted to a volumetric
representation, such as a level set, and geometric descriptors are computed by
sampling this representation, instead of the original mesh. Finally, the results
of these calculations can be mapped back to the original mesh. The advantage
of this approach is that the computational complexity does not depend on the
underlying geometry but rather on the new volumetric representation, where
sampling a local neighbourhood around a surface point is often more efficient
than sampling the same neighbourhood on the original geometry. Features, like
curvature, can be quickly approximated using the gradient field of the object,
as described in the OpenVDB [19] or by using convolutions, which can be accel-
erated using FFT as shown in [22]. The disadvantage of this approach is that
an efficient voxelisation method is required, additional memory is consumed for
the storage of the volumetric format and most importantly, the computations
are based on a volumetric discretisation, which is a more rough representation of
the original surface than the triangular mesh. Furthermore, certain descriptors
when computed on volumetric data, are incompatible with the results of the
respective surface-based measurements, especially for non-manifold surfaces.

Finally, parametric space methods have also been proposed. Methods
of this category rely on a the unwrapping of the model’s surface on a 2D
plane. Using this representation, computational complexity is decoupled from
the underlying geometry and additionally, several image analysis techniques can
be applied intuitively to 3D data. To our knowledge, so far there has been no
practical and generic approach that would allow both geometric and image space
descriptors to be computed efficiently, as existing methods focus on applying
image space techniques only. [20] propose a method for corner and edge detec-
tion that requires a user-driven single chart parameterisation. Furthermore, to
handle points lying near the perimeter of charts, the authors construct com-
plementary parameterisations, for which boundary regions are then mapped to
internal chart locations. [10] describe another method that locates extrema using
a scale space representation. This approach method relies on a specialised con-
formal mapping and expects pre-computed per-vertex values of mean-curvature
and geodesic distance. In contrast, our method does not rely on a specific para-
meterisation approach, nor does it require any pre-computed descriptors.
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3 Methodology

Our method operates on fully parameterised geometry but does not rely on a
specific method for this task. Initially, we perform a pre-processing step in order
to locate the surface edges of the polygonal representation, which are mapped
to discontinuous regions in parametric space. This is usually part of the model
loading process. In real-time, we create the parametric-space representation of
the geometry, augmented by the adjacency information and perform the compu-
tation of discrete locations in parametric space, i.e. on a texture buffer. During
this step, we utilize the information stored in our geometry and adjacency buffers
in order to index arbitrary surface samples in the neighbourhood of a point p,
regardless of its parametric mapping. The measured metrics can be then queried
per vertex, using standard texture look-up operations, or used directly in image
space, e.g. to extract salient features and local image-space descriptors. In the
rest of this section we each one of the above steps in detail.

3.1 Surface Parameterisation

Surface parameterisation as explained in [5], can be viewed as a one-to-one
mapping from a suitable domain to a surface. The parameter domain is also
a surface and thus the procedure maps one surface onto another. Our method
expects fully parameterised geometry in a normalized 2D domain. This proce-
dure is also known as (bijective) uv-mapping and the resulting surface patches
are referred to as charts or uv-islands (see Figs. 1(d), and 3). The area of surface
parameterisation has been extensively researched in the past years, [5,26] and
the minimization of stretch distortion has been the goal of several works, such
as that of [25,31,32]. Therefore, we do not address this part in our work, but
rather rely on existing methods and solutions.

3.2 Pre-processing Operations

The estimation of a local descriptor, requires the calculation of an operator
F (p, S(p)) at a point p, given a neighbourhood x ∈ S(p), where x satisfies a set
of criteria, such as a maximum Euclidean or geodesic distance from p. Finally
another option, is to use the n-ring adjacency of x to p (max. n vertex graph
distance), but due to the imposed limitation of uniform triangulation of the
surface, this is often impractical. These relations in geometric space are easily
represented using data structures with topology. For a review of the existing
geometric data representations, see the work of [4].

On the other hand, when operating in 2D parametric space, the connectivity
information is implied by the adjacency of neighboring pixels. However, this
is not true on the borders of charts, where adjacent geometry is mapped to
discontinuous locations in parametric space (see example in Fig. 4). In this case,
additional information should be stored at the border pixels to keep track of the
hops to geometrically-adjacent pixels in different charts.



46 A. Andreadis et al.

In order to appropriately annotate the chart pixels, mesh vertices located at
the borders of charts must be first identified and the link to the geometrically
adjacent vertices on different charts has to be stored on the affected vertices.
Details regarding the information stored can be found in Sect. 3.3. The com-
plexity of this step is equivalent to the pre-processing stage of all object-space
approaches for the adjacency information generation (e.g. half-edge data struc-
ture) and even for large meshes, it only takes a few seconds to complete. This
stage needs to be performed only once, as the adjacency information for topo-
logically unchanging geometry can be stored in the 3D model file itself.

Fig. 3. The “bunny” model with two parameterisations, resulting in different set of
charts.

3.3 Data Buffer Generation

The computation of geometric descriptors requires a set of attributes per sam-
pled surface location, such as the coordinates of p in the object’s local space and
the respective normal vector n. These data must be transferred to the parametric
space and stored in appropriate buffers, i.e. a set of textures that correspond to
the normalized parametric space of the unwrapped geometry. The buffers also
store the identifier of the polygon chart that p belongs to. The object-space
position of surface points is stored in a geometry buffer P (u, v), the normal
vectors are placed in a normal buffer N(u, v), whereas the chart identifiers are
registered in an ID channel in the geometry buffer (ID(u, v)). Another set of tex-
tures, comprising the adjacency buffer, equal in size to the geometry buffer, store
the identifier of the adjacent chart, the local metric distortion of the parame-
terisation (see below) and the corresponding (u, v) coordinates on the adjacent
chart. An example of the data channels for the position, normal and current and
adjacent chart identifiers is shown in Fig. 1.

The buffer generation process is performed in two steps. First, the geometric
information is efficiently generated in the GPU by rasterising the object triangles
using orthographic projection, where the normalized texture coordinates (u, v, 1)
are used as the vertex coordinates of the mesh. The chart ID is passed as a vertex
attribute and copied for all points inside the triangles of a chart. Similarly to [24]
we also rasterise each chart’s boundary edges in order to avoid the generation of
disconnected regions.

In the second step, we compute the local metric distortion factors that will
be used for the anisotropic adjustment of scale and sampling direction in various
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Fig. 4. Indexing a sample inside the neighbourhood of a point. Sample t does not lie
inside the chart of s. Locate the boundary point b, read adjacency buffers and relocate
sample to adjacent chart.

calculations. In order to do so we use the Jacobian JP = (Pu, Pv), where Pu

and Pv the partial derivatives of the surface. The left-singular vectors of JP are
used in order to get the θe angular distortion of the anisotropic ellipse while the
singular values of JP σu, σv are the stretch factors in the u and v direction. Due
to the fact that the singular value decomposition is a tedious task, we use the
equivalent eigen decomposition of the 2× 2 first fundamental form matrix:

JT
P JP =

[
E F
F G

]
, (1)

where E = (∂P (u, v)/∂u)2, G = (∂P (u, v)/∂v)2 and
F = (∂P (u, v)/∂u) · (∂P (u, v)/∂v).

For more information see [9].
Additionally, in this second pass we also store the rest of the adjacency data.

These attributes are calculated when setting up the triangle connectivity and
are simply copies to the adjacency buffers for the chart border pixels. While
for static objects the buffer generation step could be performed only once, we
focus on a method suitable for deformable/animated objects, and treat it as a
per-frame event. Therefore, the reported timings in the remaining text include
the data buffer generation overhead.

3.4 Sampling a Point’s Neighbourhood

In order to be able to perform the calculation of a feature F (p, S(p)) in para-
metric space, we need to establish a procedure for drawing individual samples
from the neighbourhood S(p) of p. Our approach estimates F (p, S(p)) in image
space and therefore, for every pixel (i, j) with a corresponding parameter pair
s = (u, v), p(u, v) is first retrieved from the geometry buffer: p = P (u, v). Then,
assuming a maximum radius of support rmax for the local feature estimator in
object-space units, a sample t = (u′, v′) is generated in a region A(s) in para-
metric space so that x = P (t) satisfies the neighbourhood criterion. A(s) is cal-
culated as an ellipse of radii (1/σu(s), 1/σv(s)) · rmax in the parametric domain
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s, p(u,v)
t1

t1′

t2

t2′

t2′′

Fig. 5. More examples of indexing samples. t1 returns to the same chart after a jump.
t2 parametric location is located using two jumps. In the right part, chart adjacencies
are colored across the borders.

(upper distance bound) rotated by θe, in order to account for local angular dis-
tortion and scale, and x is acquired with rejection sampling according to the
selected neighbourhood criterion (Fig. 4). The exact pattern or random distrib-
ution with which the samples are generated is specific to the feature estimator
and the generic sampling approach presented here is agnostic to it. Also, since we
perform a random sampling of the neighbourhood of s, no assumption is made
about the chart’s convexity.

Since the ellipse A(s) may extend beyond the boundary of the chart contain-
ing p (Fig. 4), a more elaborate mechanism is required to handle the samples
that fall outside the chart. These samples obviously contribute to the result and
should not be discarded. Identifying whether the sample x at t lands on the
same chart as p is trivially resolved by checking their respective chart identifiers
ID(u, v) and ID(u′, v′).

In the case where t lands outside the chart of p, we utilize the parametric
adjacency data stored in our buffers to find its true location. Initially, we march
along the direction

−→
st in pixel-sized increments to locate the first pixel with the

chart ID as p (boundary point b). The adjacency buffer for a border pixel b of
a chart contains the ID of the adjacent chart and the parametric location b′ of
the corresponding point on it. For samples across seams of the same chart, the
ID of the adjacent buffer is identical to that of p, but the parametric location b′

points safely to the corresponding location on the same chart (see Fig. 5-t1). The
adjacency buffer contains also the relative chart edge rotation θ(b → b′) between
b and b′. Finally, a non-uniform scale factor s(b → b′) can be calculated,
corresponding to the relative scale of the two charts in parametric space at their
border locations b and b′ (this scale factor may vary across a chart):

s(b → b′) =
(

σu(b′)
σu(b)

,
σv(b′)
σv(b)

)
. (2)

Therefore, we can adjust the location of t according to the following parametric
space transformation to obtain the relocated sampling position t′ on the adjacent
chart:

t′ = b′ + Rθ(b→b′)Ss(b→b′)(t − b), (3)
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where Rθ(b→b′) is the rotation matrix of angle θ(b → b′) and Ss(b→b′) is
the non-uniform scale matrix of factor s(b → b′). In case t′ lands outside the
expected chart, the same search is performed similarly in the

−→
sb′ direction (see

Fig. 5-t2). The sample relocation procedure is shown in Fig. 4. Note that the
full non-rigid transformation of t corresponds to the adaptation of the initial
sampling ellipse to the new charts. Therefore, if no severe stretching is present,
S(p) is properly covered.

A useful side-effect of the parametric-space computation is that feature esti-
mation can take into account displacement and normal mapping. In the special
case of displacement mapping, our method could be easily adopted in order to
handle the changes in the geometry that could break the neighbourhood esti-
mation heuristic. Points lying within the initial Euclidean neighbourhood that
stretch out of it due to the displacement are automatically handled by measur-
ing the Euclidean distance from p. The problem arises when point with initial
location outside the Euclidean neighbourhood of p fall within rmax after dis-
placement. By scaling σu and σv with the maximum expected displacement
distortion, which is usually a user defined parameter, the method successfully
handles these points as well.

Finally, we need to clarify that if our method focused only on single chart
parameterisations such as Geometry images [7] we could avoid highly irregular
transitions and in this way reduce the complexity of our operations. On the other
hand, multi-chart parameterisations offer an added flexibility that can be used
to reduce distortion, particularly for shapes with long extremities, high genus,
or disconnected components [24] (see Fig. 13).

4 Estimating Integral Geometric Descriptors

Central to many geometric descriptor computations is the estimation of surface
and volume integrals in the neighbourhood of p. Integral invariant features for
instance, are often used in the formulation of local descriptors [11], or provide the
means to estimate differential invariants such as the mean curvature H (see [3,
15]). Another typical example of an integral operator in S(p)) is the estimation of
Gaussian curvature K, which can be efficiently computed via the local geodesic
area at p.

We estimate integrals in a neighbourhood S(p)) using Monte Carlo integra-
tion in parametric space and in Sect. 5 we use this approach to compute a variety
of integral and differential features interactively for arbitrary feature scales.

4.1 Monte Carlo Integration

In parametric space, the generated data buffers hold not only the vertex informa-
tion but also all internal polygon samples, generated by the GPU through linear
interpolation during rasterisation. An approach that would use all the per-pixel
information inside S(p) would be unnecessarily exhaustive and computation-
ally expensive. Utilizing Monte Carlo integration with a uniform distribution in
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Fig. 6. Monte Carlo Sampling in current and adjacent charts described in Sect. 4.1.

the parametric domain, any integral I(p) of a function g(p) over S(p) can be
approximated by:

〈I〉(p) =
A′(s)

N

N∑

i=1

g(P (ti)), (4)

where A′(s) is the portion of the elliptical sampling area A(s) centered at parame-
ter pair s corresponding to the central point p = P (s) after rejection sampling
with the criterion of neighbourhood S(p) (e.g. Euclidean distance of P (t) to
p) and N is the number of valid samples. While performing a similar sampling
on the geometry itself would require area-weighted probabilities, the parametric-
space values can be sampled uniformly, assuming of course a low-distortion para-
meterisation.

Random samples are generated uniformly using a stratification scheme. Uni-
form samples in the cells of a planar grid are transformed to disk samples using
the concentric mapping of [27]. The disk samples are anisotropically scaled along
the u and v axes to form the elliptical region A(s), according to the distortion
factors discussed in Sect. 3.3. The same samples are used at each pixel, randomly
rotating them to avoid statistical noise.

The elliptical region A(s) is an approximation that favors fast computations.
A more refined but rather more computationally expensive approach would be
to pre-compute the maximal distortion for discretised polar coordinates at each
pixel and subsequently anisotropically scale each random sample according to
the closest distortion term from its conversion to polar coordinates. Nevertheless,
as demonstrated in the experiments, the elliptical approximation proved to be
both robust and efficient, even for large neighbourhoods.

Given a point p and its location in parametric space s, initially we perform
computations only for the samples that lie on the same chart as p (Fig. 6 - right).
At the same time, for all parametric-space samples that fall outside the chart,
we mark the ID of the chart they land on. Subsequently, we compute for each
marked chart the transformed parametric position s′ of the central parametric
pair s and repeat the sampling procedure on the new location, using the entire
sampling pattern (Fig. 6 - left). Only samples falling within the new chart are
accounted for and contribute to the final integral. The marking of charts and
the central point transformation is done according to the procedure described in
Sect. 3.4.
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The sampling scheme described above is generic and can be implemented for
an arbitrary number of jumps, excluding each time the already visited charts. In
our experiments we noticed that, no more than one jump per sample point was
typically required, even for large-scale local feature neighbourhoods. Of course,
this also depends on the size of the charts produced by the parameterisation. For
example, in Fig. 13, where the bunny model is shown in two different parame-
terisations, for the left one we reported the first missing sample using a support
area of 10 % the object’s diagonal. Conversely, for the one on the right we did
not report any missing samples even for neighbourhoods larger than 16 % the
object’s diagonal.

(r)
(a) (b) (c)

(f)(e)(d)

Fig. 7. Comparison of mean curvature for Full and Adaptive Sampling. (r) Reference
(a), (b), (c) Full Sampling using 64, 100 and 256 samples in respect. (d), (e), (f)
Adaptive Sampling using 32/64, 64/128 and 128/256 samples.

4.2 Adaptive Sampling

Since g(x) is a function of the surface geometry, smooth areas of the objects,
i.e. areas with smaller variance of the evaluated function g(x), give satisfactory
results even when lowering the sampling rate significantly. Given the fact that
in our approach the computation time is proportional to the total number of
samples drawn, we speed-up our method by exploiting adaptive sampling.

Typically, adaptive sampling methods continue to draw random samples,
until the variance of the computed quantity falls below a certain threshold. In our
method however, we perform a simplified, two-step adaptive sampling, instead of
waiting for the variance to converge: Initially, we compute the integral with N/2
samples and measure the variance. For points p with variance of g(x) greater
than a predetermined threshold, we use an additional set of N/2 random samples.
Using a fixed, two-stage adaptive sampling creates exactly two different GPU
execution loads, generally coherent across the output buffer, thus maximizing
shader core utilization and performance.

Our experiments show that as the number of samples increases, the difference
of % Absolute Error (% AE) between the full and adaptive sampling declines,
while at the same time the performance savings increase (see Table 1 and Fig. 7).
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5 Performance and Quality Evaluation

In this section we present a number of local geometric descriptor operators using
our method and provide a qualitative comparison against respective reference
object-space CPU algorithms that operate directly on the polygonal geometry
using the Halfedge data-structure (HE) [2]. Furthermore, we showcase the use
of our method in order to exploit 2D image-space interest point detectors over
3D geometry without the need for a specific data structure or implementation.
Initially, we briefly present each of the local descriptors used and subsequently
evaluate the results against various factors.

5.1 Local Descriptors

Local Bending Energy (LBE). [11] in order to classify a surface as fractured
or intact in their fragment reassembly framework define the LBE term ek(p)
for the k nearest vertices to a surface location p. Similarly, given an Euclidean
neighbourhood qi ∈ S(p, r) : ‖qi − p‖ ≤ r with corresponding normal vectors
ni, LBE er(p) can be defined as:

er(p) =
1
N

N∑

i=1

‖n − ni‖2
‖p − qi‖2 , (5)

where n is the normal at the central point p and N is the number o samples
taken in the S(p, r) neighbourhood.

Table 1. Computation Time and % Absolute Error for Full and Adaptive Sampling
over the same metric. Error in comparison to reference object-space implementation.

Samples Full Adaptive

Time % AE Time % AE

64 17.57 ms 1.172 15.94 ms 1.331

100 22.17 ms 1.035 19.54 ms 1.110

256 50.54 ms 1.005 41.44 ms 1.007

400 74.21 ms 0.789 61.75 ms 0.824

Sphere Volume. [16] presented a stochastic solid angle computation for the
approximation ambient occlusion in the hemisphere above a point p. Inspired
by this idea, we extend it to a full sphere and compute a fast approximation of the
unoccupied volume of a sphere of radius r centered at p. Assuming a smoothly
varying tangential elevation around p, the vector qi − p from the central point
to any sample qi within the Euclidean neighbourhood S(p, r) approximates the
horizon in this direction with respect to the normal vector n at p at a distance
scale equal to ‖qi − p‖. Taking a uniform rotational and radial distribution of
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113ms 21ms

%AE: 0.31

Embrasure
200K Triangles

340x334x330mm
3mm Radius

Lucy
200K Triangles

345x134x400mm
6mm Radius

360ms 57ms

%AE: 1.08

9410ms 47ms

%AE: 0.81

Arc
900K Triangles

250x170x136mm
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XYZ RGB Dragon
200K Triangles
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Fig. 8. Comparative visualization, timings and % Absolute Error for the implemented
geometric features (Sect. 5.1).

samples (direction and scale) qi in S(p, r), we can approximate the open volume
Vo(p) above p by:

Vo(p) =
4πr3

3N

N∑

i=1

(qi − p)n
‖qi − p‖ . (6)

The sphere volume integral invariant, i.e. the part of the sphere volume of radius
r “inside” the surface at p [21] is the complement of the above integral quantity.

Vr(p) =
4πr3

3
− Vo(p). (7)

Mean Curvature (MC). [12] derive the relation of MC to the sphere volume
integral invariant as:

Vr(p) =
2π

3
r3 − πH

4
r4 + O(r5), (8)

from which we can directly compute MC H at p for a given radius r.
Shape Index (SI). Introduced by [14], SI is a local descriptor that combines
the principal curvatures (PC) in order to classify the locale shape of the surface.
SI is a normalized descriptor and for a given surface point p is defined as:

S(p) =
2
π

arctan
K2(p) + K1(p)
K2(p) − K1(p)

, (9)

where K1(p), K2(p) are the principal curvatures at p.
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(c)(b)(a)

Fig. 9. Genus 20 Rim model. (a) Parametric space charts. (b) Mean Curvature colour-
ized (generated in 58 ms). (c) Zoom to detail.

In order to calculate the K1 and K2, we rely on their relation to mean
curvature H and Gaussian curvature (GC) K:

K1,2 = H ±
√

H2 − K. (10)

The computation of H was discussed earlier. For the GC we rely on the work
of [1] that relates K with the perimeter and surface area of a geodesic disk on a
surface. In particular, we utilize the formula that uses the geodesic area GA of
distance r:

K = 12
πr2 − GAr

πr4
. (11)

The only unknown parameter now is the geodesic area GAr at a given distance
r. In the case of the geometric evaluation, we sum the Voronoi area of each
vertex within a neighbourhood of geodesic distance r. For the parametric-space
computation of GAr, we first draw a number of samples Ntot in the Euclidean
neighbourhood of p (see Sect. 4.1). Then, for each sample qi at parametric loca-
tion ti, the geodesic distance to p is approximated by a sum of chords at P (sj),
i.e. at the intermediate parametric space coordinates sj = ti + j(s − ti)/Nsteps,
where s are the uv coordinates of p and Nsteps is the number of chords. Depend-
ing on the local distortion of the parameterisation, P (sj) may not reside exactly
on the same plane. According to the computed geodesic distance between qi and
p, a final set of Ng samples is retained, Ng ≤ Ntot, and GAr is estimated by:

GAr =
Ng

Ntot
EAr, (12)

where EAr is the Euclidean area.
Euclidean area can be approximated in the following way. Let Ptot be the

total number of pixels in the elliptical region. Given the ratio of the samples
that satisfy the Euclidean criterion to the total samples NA(s)/Ntot, and Aqm

the mean area represented by each sample in A(s), we approximate EAr as:

EAr = Ptot

NA(s)

Ntot
Aqm

, (13)
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Fig. 10. Harris corner points computed over the Normalized Sphere Volume descriptor
and painted (red) on the mesh vertices (Color figure online).

Aqm
is given by the formula:

Aqm
=

1
NA(s)

NA(s)∑

i=1

Aqi
, (14)

where Aqi
is the product of the distortion factors lu(u, v), lv(u, v).

5.2 Image Descriptors

Harris Corner Detection. Harris and Stephens [8] describe a mathematical
operator for the computation of corner points of interest (features) on images,
based on the change of intensity. These feature-points are invariant under rota-
tional and intensity changes and can be used for matching. The same computa-
tion has been used on 3D meshes to generate feature points for object registration
and retrieval [28]. The mathematical formulation of Harris corner response is:

R = det (M) − k · trace (M)2, (15)

where k is constant (k ∈ [0.04, 0.06]) and M is given by:

M =
∑

x,y

w(x, y)
[

I2x IxIy

IxIy I2y

]
. (16)

Ix, Iy are the image derivatives, and w(x, y) a Gaussian window function. Using
the parametric-space indexing scheme (see Sect. 3.4) we compute the image-space
derivatives and the Gaussian window function. Of course, using our indexing
scheme, any other image space descriptor can also be applied over the 3D data.

5.3 Results and Discussion

We have tested our method using a large variety of objects, ranging from simple
geometric shapes to complex and detailed 3D scanned models. Indicative results
can be seen in Figs. 8 and 9, where we report an average of 49× acceleration and
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1.245% Absolute Error (AE) relative to the reference CPU object-space method
described below. Please note that in such comparisons, reporting maximum error
is not indicative of the method’s performance, since a slight mismatch in the rep-
resentation at a single point due to parameterisation can cause an isolated but
inconsequential measurement difference. Timings of our method do not include
the parameterisation and the charts boundary edge detection. Similarly, tim-
ings of the reference method do not include the Half-Edge (HE) data structure
generation. It is important to mention here that while geometric algorithms for
computing features operate on discretised values at a vertex or triangle level,
the parametric space calculations can exploit interpolated values at arbitrary
surface locations. Therefore, the measurement deviations that are reported here
as errors, mostly stem from the different approximation and sampling of the
underlying surface (see Fig. 2). Finally in Fig. 10 we show Harris corner points
detection over 3D data. Timings for the GPU parametric implementation are
shown for an NVIDIA GTX 670 GPU. We use 1024 × 1024 floating point tex-
ture buffers, while metrics are computed over a 512 × 512 buffer with 256 samples
per pixel unless stated otherwise. The reference geometric algorithm results are
shown for a Corei7-3820 system (4 cores @ 3.60 GHz, 8 threads). Our imple-
mentation uses the OpenMP API and takes advantage of the current generation
multi-core CPU’s.
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Fig. 11. (Left Graph) Computations using the same metric and neighbourhood size
(Left axis). (Right Graph) Computations using the same metric and geometric com-
plexity (Left axis). Green line shows the % AE of the parametric method (Right axis)
(Color figure online).

The efficiency of our method is attributed to the shift of the computa-
tions from a topology-detail-dependent representation to two dimensions with
application-controlled (sampling) quality settings, which enables very good scal-
ing for multi-core and many-core architectures. The proposed implementation is
tailored for (but not limited to) commodity GPUs.

Geometric Detail. In Fig. 11(Left) we present comparative results computed
over a fixed neighbourhood size (4% of object’s diagonal) for a single model
(Embrasure) decimated at different geometric detail levels. For small resolutions
(25 K, 50 K triangles) we observe similar computation times between geometric
and parametric space approaches, while the % AE is high in comparison to
higher detail versions of the mesh. This is expected as the parametric method
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uses the position samples as interpolated by the GPU resulting in smoother and
therefore slightly different results than the CPU method (see Fig. 2). For larger
resolutions, we report an acceleration of 3× for the 100 K model to 137× for
the 1000 K model, with a steady AE. Finally, for the original scanned object
resolution of 1200 K, we report a 181× faster computation with a slight increase
in the % AE. This is also expected and attributed to the relative small buffer
size for the dense geometric detail. However, this can be trivially addressed by
increasing the geometry buffer resolution.

Neighborhood Size. In the measurements of Fig. 11(Right) we shift the focus
from the geometric detail to neighbourhood size. Results are for the same model
(Embrasure) and metric (mean curvature) at 600 K resolution. We notice that
for small neighbourhoods the % AE is higher. This deviation between the para-
metric and geometric domain results are due to the inadequate discrete represen-
tation of the area of support in the geometric solution. While in the parametric
domain due to the interpolation of values we mentioned earlier, an increasing
neighbourhood size is directly reflected in a wider selection of samples, the geo-
metric neighbourhood expands in discrete steps, which is actually a deficiency
(see Fig. 2). For very large neighbourhoods we notice also an increase to the
% AE, this time, due to the one jump per sample approach of our implementa-
tion (see end of Sect. 4.1), which starts missing samples. Performance-wise, the
parametric space method scales very well and is not significantly affected by the
8× growth of neighbourhood size. More specifically, the computation time for
the parametric domain feature estimator grows by 2.25 times in contrast to the
26.45× factor reported by the geometric approach.
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samples, buffers size and size of texture over which computations are performed. (Right)
Average quality over several models using different number of samples, buffers size
and size of texture over which computations are performed. Legends show Buffers
Texture/Computations Texture Size in square format.

Performance and Quality Control. The number of samples per pixel, buffer
size and size of the texture over which computations are performed, are para-
meters that control the quality/performance of our method. As we can see in
Fig. 12(Left), increasing the number of samples reduces the % AE and has linear
impact on the computation time, regardless of the buffer resolution. The same
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Table 2. Average Computation time and % Absolute Error over a set of models for
the same metric over different resolutions and buffer precision. Error in comparison to
the reference CPU implementation.

Buffer size

512x512 1024x1024

Precision Time % AE Time % AE

Full-Float 26.5 ms 1.662 74.9 ms 1.307

Half-Float 24.4 ms 1.725 66.8 ms 1.384

47ms
0.95 %AE

36ms
1.08 %AE

42ms
1.10 %AE

30ms
1.30 %AE

Fig. 13. Mean Curvature (colourized) computed using different parameterisations.
Multiple charts result in increased computation times, but smaller error, due to the
smaller distortion of the generated charts.

effect have the buffer size and the size of the texture over which computations
are performed (Fig. 12(Right)). Using these parameters, performance and quality
can be controlled depending on the application requirements.

Memory Usage - Texture Size and Precision. Four RGBA textures are
used (see Sect. 3.3). All the presented results so far were performed using half-
float precision textures. In order to evaluate the performance/quality impact
of full-float-precision textures (FF), which double the memory requirements,
we performed experiments using both resolutions (Table 2). FF buffers present
an 8% and 11% performance degradation on 512× 512 and 1024× 1024 buffers
respectively, while the corresponding improvement in AE is 4% and 6%. We can
conclude that the minor quality improvement does not justify the performance
drop and the doubled memory requirements.

UV Parameterization. In order to evaluate how our method is affected by the
underlying parameterisation in terms of speed and quality, we performed sev-
eral tests. When operating on maps coming from global surface parameterisation
(single chart) techniques, we notice faster times, and increased error rates (see
Fig. 13) compared to multi-chart parameterisations opting for minimal stretch-
ing. Single charts, minimize branching operations but at the same time result in
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greater distortion and less uniform sampling leading thus in loss of representation
and measurement accuracy.

6 Limitations

Due to the fact that parameterisation of the objects surface is required, the
method is limited to mesh geometries and it cannot be directly applied on point-
clouds. Still, most of the local descriptors rely on the notion of a connected
neighbourhood. While simple distance queries (without connectivity) can be used
in the case of point-clouds, the resulting computations will have inaccuracies,
especially when using large areas of support.

7 Conclusion

We presented a novel generic parametric-space approach for the computation
of geometric descriptors in multiple scales, that can also be used to trivially
apply computer vision algorithms on 3D data. Our method, decouples the com-
putational complexity from the underlying geometry and by taking advantage of
modern multi-core architectures (GPUs), achieves real-time computations even
for large areas of support, rendering the method suitable for deformable and
animated objects. Finally, despite the focus of our method on efficiency, com-
putations are accurate and equivalent to those of the traditional object-space
approaches as shown by our experiments.
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Abstract. To visualize the interference effects of objects with multi-
layer film structures such as soap bubbles, optical lenses and Morpho
butterflies is challenging and valuable in the physics-based framework,
a novel multilayer film interference shader is constructed. The multi-
beam interference equation is applied to effectively simulate the multi-
ple reflection and transmission inside films, and calculate the composite
reflectance and transmittance to model the amplitude and phase varia-
tions related to interference. The absorption of photons due to the film
materials is accounted for by the Fresnel coefficients used for metal-
lic and dielectric films. In addition, the irregularity of multilayer film
microstructures is incorporated into the iridescent illumination model to
explain the isotropic and anisotropic optical properties. The new wave
bidirectional scattering distribution function is proposed and integrated
into the existing ray tracer in the form of the material plugin to further
enhance the photorealistically rendering capabilities. The experiments
show that our interference shader gives accurate results in both visual
and numerical quality.

Keywords: Interference effects · Interference shader · Multi-beam inter-
ference equation · Fresnel coefficients · Isotropic and anisotropic

1 Introduction

Photorealistic rendering is the main rendering technology of the existing mod-
eling softwares such as Maya, 3Dmax and Blender. Different from the non-
photorealistic rendering technology, it is involved in the physical simulation of
interaction between light and objects where the illumination information can be
accurately modeled. The ray tracing is generally used for modeling the prop-
agation process of light in space. Specially, it calculates the reflectivity and
transmissivity from surfaces by acquiring the material properties of objects, and
eventually obtains the radiant energy of each ray arriving at the imaging plane
after recursively tracing rays to generate the realistic images.

The thin film interference is an important part of photorealistically render-
ing. However, the existing graphical development platform or softwares lack
the ability of describing the phase of light. To construct precise interference
c© Springer International Publishing Switzerland 2016
J. Braz et al. (Eds.): VISIGRAPP 2015, CCIS 598, pp. 62–74, 2016.
DOI: 10.1007/978-3-319-29971-6 4
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model to model the interaction between light and multilayer film structures in
order to visualize iridescent colors of objects coated with multilayer films such
as soap bubble, beetles and butterflies is a significant but challenging research
task. In computer graphics, many wave models have been developed to ren-
der the wave phenomena generated by these multilayer film structures. Gondek
et al. [1], for example, used a wavelength-dependent bidirectional reflectance dis-
tribution function and a virtual goniospectrophotometer to analyze and generate
the reflection spectrum of thin films and pearl materials. Hirayama et al. [2,3]
constructed a series of multilayer dielectric and metallic film models to visualize
the richer interference effects through the iterative calculation of multi-beam
reflection and transmission. Sun [4] applied the analytical calculation and the
numerical simulation methods to implement an iridescent shading process to
render the biological iridescences. These method can approximately describe the
wave properties of films, but rarely consider the microstructure or material char-
acteristics of surfaces, which are not applicable for the accurate simulation of
the anisotropic iridescent colors.

For the sake of accurately rendering the optical phenomena of diverse film
materials, this paper constructs a general multilayer film interference shader in
the ray-based framework. It adopts the multi-beam interference equation and
Fresnel formulas to account for the multiple reflection, interference and absorp-
tion of light. Fresnel coefficients for dielectric and metallic films are introduced to
visualize interference due to the complex refractive indexes and photon absorp-
tion. In addition, the irregularity of multilayer film microstructures is incorpo-
rated into the iridescent illumination model to accurately describe the isotropic
and anisotropic optical properties. The new wave bidirectional scattering dis-
tribution function is proposed and integrated into the PBRT [5] in the form of
the material plugin, which has become a practical technology by applying the
existing modeling software to render complex interference optical effects.

2 Related Work

In computer graphics, to solve the problem of wave rendering in the physics-based
rendering framework, multiple classical technologies have been developed where
the wave bidirectional scattering distribution function is applied to simulate the
behavior of light on surfaces [1,6–8]. For instance, Moravec [9] used the wave the-
ory of light to solve the global illumination problem and applied wave model to
computer graphics based on the phase tracking technology. Kajiya [10] developed
a bidirectional reflectance distribution function to model the anisotropic spec-
tral reflectance by numerically calculating Kirchhoff integral. Later, Stam [11]
implemented a general diffraction shaders, followed by the works of Agu [12],
Sun [13] and Wu [14,15], to render iridescent colors from periodic structures
such as compact discs in a ray-based renderer. The solutions above, however,
are constructed to model diffraction effects that are a part of wave rendering,
not applicable for rendering film interference effects due to the lack of ability of
encapsulating phase variations into transmitted radiant energy.
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To construct the accurate interference model to model the interactive behav-
ior of light and surfaces in order to visualize the iridescent appearance of objects
coated with multilayer films such as soap bubble, beetles and butterflies has
attracted a lot of attentions. There exist many models used for rendering these
interference effects generated by multilayer films. Icart et al. [16], for exam-
ple, constructed a physics-based bidirectional reflectance model for multilayer
systems consisting of homogeneous and isotropic thin films with rough bound-
aries, which can account for interference, diffraction and polarization effects.
Hirayama et al. [2,3,17] constructed a comprehensive multilayer film interfer-
ence model to model scattering characteristics of rough multilayer surfaces.
Sun [4] implemented an iridescent shading process for rendering the biologi-
cal iridescences of butterflies and beetles due to multilayer interference based
on analytical calculation and numerical simulation. Few of the previous models,
however, takes into account specific geometrical properties of multilayer films
or other sub-wavelength microstructures. They also lack the ability of model-
ing the back-scattering and anisotropic properties for photorealistic renderings
of Morpho butterfly. Okada et al. [18] applied the nonstandard finite-difference
time-domain method to numerically solve Maxwell’s equations for brilliant iri-
descences. This approach can gain accurate results, but depends on a fine defined
numerical grid.

3 Iridescent Illumination Model

The key to rendering iridescent colors of multilayer films in the ray-based frame-
work is to account for the interaction between the films with the periodic struc-
ture and light with amplitude and phase. Therefore, this paper builds on the
multilayer film interference theory and incorporates the geometry of rough sur-
faces to construct an accurate film interference shader in order to model isotropic
and anisotropic iridescent effects, which is further integrated in Maya modeling
software to improve its practicality. The iridescent colors from objects coated
with similar multilayer films can be efficiently visualized where the refractive
indexes, thicknesses and amount of alternative arrangement of films and the
incident direction of light source play an important role.

3.1 Multi-beam Interference

When light interacts with multilayer films, it undergoes multiple reflection, trans-
mission and absorption inside films. It is desired to develop a more general
model that take complex interactions into consideration. In this work, we ana-
lytically compute multilayer film interference based on the recursive composition
method [2,4] to visualize optical properties of multilayer structures.

As an example, consider a pair of film and air layers as shown in Fig. 1.
Given a thickness H and a refractive index nj , j = 0, 1, 2. The r1, r2, t1 and t2
denote the reflection and transmission coefficients of light propagating from air
to film, and the r

′
1 and t

′
1 denote the reflection and transmission coefficients of



Interference Shader for Multilayer Films 65

Fig. 1. Interference modeling from a single layer film structure of ridge.

light propagating from film to air, which are derived using the Fresnel equations.
The refractive angle complies with Snell’s law. The indices of refraction of the
air and the film are denoted as n0 and n1 respectively where n0 = n2.

Hence the reflectivity of light from a pair of film and air layers corresponding
to Fig. 1 are formulated as

E
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1 = r1E
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0

E
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2 = t1r2t

′
1E
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0 eiδ
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1E
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0 ei3δ
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(1)

where δ = 4π
λ n1Hcosθ1 denotes the phase difference of two adjacent reflected or

transmitted light propagating through the film.
Referring to the interference theory of multilayer films [2,19–21], the com-

posite reflectivity r̄ and transmissivity t̄ of this single layer film can be further
formulated as

r̄ =
E

(r)
1 + E

(r)
2 + · · ·

E
(r)
0

≈ r1 + r2e
iδ

1 + r1r2eiδ
(2)
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Similarly, the transmitted coefficient is given by

t̄ ≈ t1 + t2
1 + r1r2eiδ

(3)

For two or more M-layer thin film system, we can iterative the calculation
of the reflection and transmission coefficients from the last layer adjacent to the
substrate to the first layer. For the Mth layer, for instance,

r̄M =
rM + rM+1e

iδM

1 + rMrM+1eiδM
(4)

t̄M =
tM tM+1

1 + rMrM+1eiδM
(5)

where δ is defined as
δM =

4π

λ
nMHM cos θM (6)

The calculation process is repeated until the first layer adjacent to air. Finally,
we can obtain the composite reflectivity and transmissivity coefficients of the
multilayer film system.

Taking the above single layer film for example and ignoring the polarization
of the light, we can get the reflectance distribution function of the film, namely,

Rfresnel =
r21 + r22 + 2r1r2cosδ

1 + r21r
2
2 + 2r1r2cosδ

(7)

The transmittance distribution derivation of the film is written as

Tfresnel =
n2cosθ1
n0cosθ0

t21t
2
2

1 + r21r
2
2 + 2r1r2cosδ

(8)

The thin film interference is one of most simple structural colors and widely
exists in nature. Its most remarkable characteristics is that the reflected wave
is selective. Namely, a specific wavelength plays a determinant role in a specific
direction. Based on the Eq. 7, the construction interference condition of reflected
wave is given by

2n1Hcosθ1 = mλ (9)

Referring to the above constructive equation, it is clear that the wavelength
leading to higher reflectivity changes to a shorter wavelength with the increase
of the incident angle. The result is that the color changes with viewing angle.
For example, the color of Morpho butterflies changes from blue to purple as the
viewing angle is increased that will be verified in the following experiment.

3.2 Fresnel Coefficient

According to the above section, the composite reflection and transmission coeffi-
cients on film surfaces play a key role in producing iridescent colors. They affect
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the spatial distribution of radiant energy by changing the amplitude and phase of
light, which are determined by Fresnel Eq. 10. In experiments, light is assumed to
be unpolarized and randomly oriented. Hence, the reflectance of multilayer film
structure is approximated as the average of squares of the parallel and perpendic-
ular polarization Fresnel terms.

r
||
j =

njcosθj−1 − nj−1cosθj

njcosθj−1 + nj−1cosθj

t
||
j =

2nj−1cosθj−1

nj−1cosθj + njcosθj−1

r⊥
j =

nj−1cosθj−1 − njcosθj

nj−1cosθj−1 + njcosθj

t⊥j =
2nj−1cosθj−1

njcosθj + nj−1cosθj−1

(10)

where r‖ and r⊥ denote the Fresnel coefficients for parallel polarized light, t‖

and r⊥ denote the coefficients for perpendicular polarized light, and nj−1 and nj

denote the refractive indexes of incident and transmitted medium respectively.
The transmitted angle complies with Snell’s law [2,5].

The applied Fresnel term, namely Eq. 10, depends on the assumption that the
potential polarization states of the light are not considered. This is an approx-
imation, as the reflected parallel term can lead to a phase shift, or, in the case
of total reflection, become purely imaginary, therefore leading again to a phase
delay. On the other hand, the perpendicular Fresnel term does not affect the
phase. These situations, which may be important for interference, are neglected
by averaging them.

3.3 Regularity and Irregularity of Structures

For the multilayer film structures with a certain amount of irregularity such as
Morpho butterflies, the occlusion, shadowing and interreflection of light among
ridges may lead to the uneven spatial distribution of energy as illustrated in
Fig. 2. For example, Kinoshita and Yoshioka [23,24] have demonstrated that the
behavior of light is the result of joint action of the regularity and irregularity of
multilayer film structures.

It is necessary to incorporate the irregularity of the film structure to model
the diffusive nature where isotropic Phong exponent [25] is commonly used [4].
However, some film structures often show backscattering and anisotropic spec-
tral characteristics. Many geometrical models have been developed [26,27]. They
work by statistically modeling the scattering of light, where the wave-like prop-
erties are ignored. As an extension, we incorporate the Ashikhmin microfacet
scattering shader [28], namely Eq. 11, into the wave BSDF illumination model
to describe the local anisotropic effects.

Dfacet =

√
(ex + 2)(ey + 2)

2π
(ωh · n)ex cos2 φ+ey sin2 φ (11)
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Fig. 2. The approximated geometry of ridge films where the film width b is set to
300 nm and the film separation d is set to 675 nm based on the measurements of
Platter [22].

where ωh denotes the half angle vector for incident direction ωi and outgoing
direction ωo, n denotes the surface normal, φ denotes the orientation angle, and
ex and ey denote the exponents of anisotropic distribution along the x and y
axes respectively.

This paper develops a new wave bidirectional scattering distribution function
that provides an efficient way in accurately rendering the interference appearance
of films with periodic structures, written as

BSDFλ = caIdiffuse + cb
DfacetFfresnelG(ωo, ωi)

4 cos θo cos θi
(12)

where G(ωo, ωi) denotes a geometric attenuation term [5,26], Idiffuse denotes
the diffuse effects due to the surface irregularities, Ffresnel is determined by
Eqs. 7 and 8, and ca and cb is the weighted coefficient.

3.4 Rendering Equation

In this work, we construct a multilayer film interference model to describe the
interaction between light and film structures, where the wave bidirectional scat-
tering distribution function is constructed to accurately model the amplitude
and phase information of light in the physics-based framework [5]. With the
wavelength λ, the wave rendering equation is defined as:
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Lo(p, ωo, λ) = Le(p, ωo, λ) +
∫

δ2
BSDFλ(p, ωi, ωo)Li(p, ωi, λ)| cos θ|dωi (13)

where Lo(p, ωo, λ) is the reflected radiance of wavelength λ in the direction ωo at
the point P , Le(p, ωo, λ) is the self-emitted irradiance, Li(p, ωi, λ) is the incident
irradiance with wavelength λ in the direction ωi at the point P , and θ is the
angle between the incident direction ωi on the sphere δ2 and the surface nor-
mal. BSDFλ(p, ωi, ωo) consisting of the reflectance BRDF and the transmittance
BTDF denotes the our proposed wave model that model the anisotropic optical
property of multilayer film structures.

4 Simulations

We implemented our wave model for rendering iridescent colors of objects coated
with multilayer thin films by creating a new material plugin for the PBRT sys-
tem [5]. All of the images in this work were produced using Maya software on a
Dell T7600 workstation with a 2.40 GHz Intel Xeon CPU E5-2609 and a NVIDIA
Quadro 6000. We focused on the visible spectrum (350∼750 nm) and showed
physics-based renderings as interference examples for the multilayer structures.

Figure 3 visualizes the optical phenomena of a single layer dielectric film
coating on a glass sphere due to the multi-beam interference where refractive
indices of the glass and dielectric materials are set to 1.5 and 2.0 respectively.
Note how refraction through the transmissive object distorts the scene behind
it and how the left mirror reflects the interference effect.

In Fig. 4, our model is further applied to render the iridescent patterns of
objects coated with a 450 nm dielectric film, whose interference effects clearly
appear on the near mirror surface. The indices of refraction of substrate and
dielectric are set to 1.5 and 2.0. Compared with Fig. 3, the color shows a shift
to red with the increase of the film thickness which is in agreement with the
experiments.

This paper also implements the film interference patterns of opaque objects
as illustrated in Fig. 5 where Blinn [27] isotropic exponent is used. The indices
of refraction of substrate and dielectric are also set to 1.5 and 2.0. In addition,
the approach proposed in this article is applicable for other cases of iridescence
rendering. For example, Figs. 6 and 7 are two examples of anisotropic renderings
of opaque objects based on the proposed approach in the physics-based PBRT [5],
where the parameters denoting the film thickness and the microfacet roughness
used for each object can be easily adjusted as needed. We addressed the effects
of the surface roughness and anisotropy on the visual optical appearance where
Ashikhmin [28] anisotropic functions is used as the basis.

The iridescent objects can be biological or nonbiological. With the help of
the optics and electric microscopes, researchers have extensively reported the
tree-like periodic structures of ridges on Morpho butterfly wings as shown in
Fig. 2 where ridges consist of alternate cuticle film and air. Our proposed model
can be used for generate iridescent colors of butterflies as illustrated in Fig. 8.
The four butterflies with different structural parameter values are rendered,
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Fig. 3. Renderings from a mirror sphere with perfect specular reflection (left) and a
glass sphere coated with the 420 nm dielectric film (right) (Colour figure online).

Fig. 4. Renderings from a mirror sphere coated with perfect specular reflection (left)
and a glass sphere with the 450 nm dielectric film (right) (Colour figure online).

where the thickness of film layer is set to 80 nm, 100 nm, 120 nm, and 135 nm
respectively. From left to right, the rendered colors of wings are approximate
violet, blue, yellow and red. Comparing these cases, a color shift from the violet
to the red happens. A detailed comparison with the work of Sun [4] is further
illustrated in Fig. 9. This renderings also agree with the observed iridescences and
experimental measurements of Morpho butterflies [29–31]. This experimental
measurements provide us with a basis to apply the multilayer interference model
to visualize the iridescent colors reflected by the biological structures.
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Fig. 5. Interference renderings of opaque objects coated with 400 nm and 600 nm dielec-
tric films respectively.

Fig. 6. Interference renderings of teapots with the different surface roughnesses and
thin film thicknesses.

Fig. 7. Interference renderings of kangaroos with the different surface roughnesses and
thin film thicknesses.
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Fig. 8. Rendered biological iridescences of Morpho butterflies consisting of tree-like
ridge structures with cuticle films of different thicknesses (left to right: 80 nm, 100 nm,
120 nm and 135 nm) (Colour figure online).

Fig. 9. Comparison of rendered biological iridescences of Morpho butterfly wings with
90 nm cuticle layer thickness using Sun butterfly shader [4] (left) and our proposed
multilayer interference model (right) respectively.

5 Conclusion and Future Work

In the photorealistic rendering field, a lot of attentions are paid to the wave
properties of multilayer film structures. This paper constructs an interference
illumination model to visualize the iridescent colors caused by the interaction of
light and layered structures where the indices of refraction, thicknesses and the
irregular geometry of films play an important role. In ray tracers, This model
creates a wavelength-dependent bidirectional scattering distribution function to
describe the spatial spectrum distribution of light. The multi-beam interfer-
ence equations have been introduced to represent the multiple reflection and
transmission inside films, whose values are applied to the weight-based Monte
Carlo sampling to realistically render local illumination. The Fresnel formulas
for dielectric and metallic films are also described which are applied to trace the
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amplitude and phase variations. In addition, the microfacet scattering coefficient
is incorporated to consider the optical characteristics from rough surfaces for the
sake of accurately exhibiting backscattering and anisotropic phenomena. Com-
pared with experimental measurements, we have shown that this model suffices
to describe the optical effects, and have facilitated its practical application in
Maya software.

However, there still exist many work for future. For example, how to handle
the polarized effects of light. Due to the complexity of film structures, it is
desirable to gain the measured appearance data to improve accuracy of wave
rendering. In addition, our proposed model can be applied to render other objects
exhibiting structural colors such as optical lenses, beetles and birds.
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Abstract. Direct object selection in an Augmented Reality environment that is
coded outside of human body frame of reference is deteriorated under short-term
altered gravity. As countermeasures we developed a gravity-adapted resizing
technique based on the Hooke’s law that resulted in two techniques of target and
interface deformation (compression, elongation). To prove the concept of this
resizing approach we initially conducted two experiments under simulated
hypergravity conditions. While during the first study hypergravity was induced
by a long-arm human centrifuge, in the second study hypergravity was simu-
lated by additional arm weightings that were balanced and attached to the
participants’ pointing arm. We investigated the difference of the task perfor-
mance with respect to the pointing frequency, response time, pointing speed and
accuracy, when participants performed a visuomotor task under the resizing
conditions compared to the unchanged condition. During the second study we
additionally evaluated the speed-accuracy tradeoff of the resizing techniques
according to Fitts’ law and the physiological workload by cardiac responses
analyzing the heart rate variability. Both experiments showed that the online
adaption of the present gravity load to targets’ size and distance influences the
performance of direct AR direct pointing. The results revealed that the pointing
performance benefits from elongation target deformation by increased target
sizes and distances, while pointing towards compressed targets mostly decreases
the physiological workload under increased gravity conditions.
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1 Introduction

The application of Augmented Reality [1] to intravehicular space operations could
support astronauts in their task performance at complex technical facilities aboard the
International Space Station [2, 3]. Beside of innovative technologies intended to make
Augmented Reality (AR) ready-to-use in smart technical environments, the human
performance decides finally on the usability. While AR as interface technology claims
being in the physical reality, resulted AR systems should be optimized for the envi-
ronmental conditions to which the AR interface will be applied [12]. Current research
on human factors of handling AR interfaces presumes the application under normo-
gravity (1 g) conditions on Earth. Changes in gravity otherwise, causes sensorimotor
disruptions in human motor coordination and eye movements that interfere with
astronauts’ work and thus can also deteriorate their task performance during space
operations.

In previous work [14, 15] we investigated the impact of altered gravity on direct
AR object selection for symbolic-input and control tasks. Therefore we performed two
experiments under parabolic flight conditions to find out which interface alignment is
the most efficient one and preserves human’s hand-eye coordination under altered
gravity. We compared three alignment conditions (see Fig. 1) of the virtual pointing
interface, whereby each condition had its own interrelation between the human body
frame of reference and the support of haptic cues. The results showed that aimed
pointing movements for direct AR selection under altered gravity benefits from targets
with haptic cues and targets that are coded inside the human body frame of reference
(e.g., attached to hand), while targets placed outside the body frame deteriorate the
pointing performance.

However, given that the future main application of an AR supported guidance
system, is predominantly coded outside of the user’s body frame, the maintenance of
user performance in object selection requires the introduction of appropriate counter-
measures. Supposing that an outside coded AR interface that the astronaut has to
operate in space, is affected in the same way as the astronaut by gravity changes, it is
conceivable that the hand-eye coordination will be improved. Whether detecting labels
and annotations by gaze control, or pointing movements during symbolic tasks, an
adequate transformation of the AR interface could overcome the human sensorimotoric
disruptions under gravity changes. As stated by Fitts’ Law, timing effects of the
selection performance can be affected by targets’ transformation in size and distance
[6]. Thereby a supportive approach could be the dynamical transformation of the AR
interface with respect to the active gravity. Before conducting expensive experiments
under simulated weightlessness conditions (e.g., parabolic flight), we initially per-
formed a proof-of-concept (POC) study under simulated hypergravity (+Gz) condi-
tions. Therefore we developed a gravity-adapted strategy for interface resizing that we
studied by AR selection using a direct touch interface under increased gravity condi-
tions. The resizing approach not only affects the size of a pointing target (or label), but
also affects the position, i.e. in cases of more than one target, also the distance between
them is affected. This paper extends our previous work [16].
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2 The Force-Based Resizing Approach

For improving the performance of aimed pointing movements towards virtual targets
under altered gravity conditions, we developed a force-based approach for dynamic
target transformation. Force-based approaches are typically used for automated posi-
tioning of labels and annotations, e.g. in 3D information visualization [8, 18].
Depending on the active gravity load we calculated a corresponding force affecting
target’s size and position. The approach for target resizing and positioning was derived
from the elastic behaviour of soft bodies, which are proportional deformed to the
applied gravity load Gsim, similar to Hooke’s law (Eq. 1). Therefore, we calculated the
axial (Eq. 2) and transversal (Eq. 3) strain of the target using empirical values for the
modulus of elasticity E and Poisson’s ratio v. Thereby, we distinguished between two
techniques of target sizing – sizing by compression (SC, Eq. 4) and sizing by elongation
(SE, Eq. 5). For evaluation purposes their output was compared with the unmodified
sizing technique (SU) as baseline condition that did not affect the targets. For initially
experimentation we limited the evaluated parameters by automated target resizing
without the transversal strain Dw, but applied the axial strain Dh proportionally to
target’s height and width. Figure 2 shows the resulted sizing techniques that we have
investigated. We also applied the gravity-based changes to the complete interface, i.e.
to targets’ position, that resulted in a larger target distance with the SE technique and in

Fig. 1. Placement conditions of Augmented Reality Interfaces for control and symbolic input
tasks previously studied under short-term hyper and microgravity during parabolic flights.

Fig. 2. Resulted resizing methods applied to the pointing targets and the overall interface.
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smaller distances with the compressed SC technique. While the SC sizing technique
provides smaller targets and benefits from smaller target distances, the SE technique
offers larger target size at larger distance.

r ¼ Ee with e ¼ Dh
h

and r ¼ F
A

ð1Þ

Dh ¼ F * h
A * E

with A ¼ h2 and F ¼ Gsim ð2Þ

Dw ¼ �w*v
Dh
h

ð3Þ

hSC ¼ h� Dh ; wSC ¼ w� Dw ð4Þ

hSE ¼ hþDh ; wSE ¼ wþDw ð5Þ

To our knowledge, gravity-adapted target sizing was not reported until now. For
designing the normal sized targets (SU) we followed the recommended ergonomic size
range for push buttons [5] and used a squared target of 15 mm width and height.

3 Research Objective

Focused on sensorimotor hand-eye coordination we investigated the effect of
gravity-adapted interface resizing on performance during an AR visuomotor task
presented by a head-mounted display under increased gravity conditions. In accordance
with the active gravity load, we expected that the variations of the pointing perfor-
mance (e.g., response time, speed, accuracy; etc.) are correlating with the resulted AR
interface that was affected by the resizing approach and led to the following question:
Does gravity-adapted target resizing affect the performance and workload of direct AR
pointing under altered hypergravity conditions? [Q1].

The resulted sizing conditions using the gravity-adapted sizing approach interrelate
to the characteristics of Fitts’ law that predicts longer movement times at greater
distances, as well as at smaller targets [6]. While the elongated method (SE) provides
greater targets at larger distances, the compressed method (SC) provides smaller targets
at shorter distances. Even though elongated sizing will cause the largest distance, we
expect that fast pointing movements under increased gravity conditions benefit from
greater targets. Therefore we hypothesized that elongated resizing (SE) mostly
decreases movement times under increased gravity load, because it provides greater
targets [H1]. With respect to the physiological workload, we expect an increase in
physical effort for increased target distances (SE). Therefore we hypothesized that
compressed resizing (SC) mostly decreases the workload under increased gravity load,
because it provides the shortest target distances [H2].

To answer this question and to test the hypotheses we conducted a POC study that
was divided into two experiments using different simulations of hypergravity. Firstly,
we performed a case study where +Gz load was induced by a long-arm human
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centrifuge (LAHC). Secondly, we conducted an experiment under normogravity and
simulated +Gz loads by additional arm weighting [7]. Using a visuomotor task, we
aimed to investigate the impact of increased gravity loads on size and distance of a
given target interface evaluated on direct object selection by the performance and
physiological workload. For evaluating the performance we used common measures,
such as the frequency of correct and incorrect pointing, the accuracy, the response time
and the pointing speed. Since the physiological factor is essential in sensorimotor
coordination, we recorded and evaluated the physiological strain by assessing the heart
rate variability (HRV) [17, 21]. This is an immanent expression of sympathetic and
parasympathetic influences of the function of the heart [20]. HRV recording has only
been applied during the Weight-Study. The studies did not only differ in the way of
hypergravity simulation and workload assessment, they were also distinct in their
experimental task. For the LAHC-Study we used the experiment task that has already
been used during the parabolic flight studies (pointing towards an AR soft keyboard).
Because we additionally evaluated the task performance related to Fitts’ law during the
Weight-Study, we considered the international standard for pointing devices [9] and
this time we chose to use the multi-directional tapping task [13], with eight targets
arranged in a ring. There have been only few studies applying Fitts’ law on evaluation
of AR interaction [19]), or on head-mounted Mixed Reality pointing [11].

4 First Experiment: Case Study by Long-Arm
Human Centrifuge

To proof the concept of the gravity-adapted approach initially, we were allowed to
perform a case study under +Gz load induced by a long-arm human centrifuge (LAHC,
see Fig. 3). Human centrifuges enable research in medicine and human physiology
during altered +Gz load and are also used to train pilots and astronauts. The case study
was performed with one participant. The male participant (51 years old, space engi-
neer) is very experienced under altered +Gz load (human centrifuge, parabolic flight)
and familiarized with the used AR pointing system and task.

Fig. 3. Used LAHC (5 m radius) with centrifugal acceleration an. The cabin is swinging out
during the rotation with resulted acceleration a in line with subject’s long body axis.
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4.1 Apparatus

We used a right-sided monocular optical see-through head mounted display (OST
HMD, Shimadzu dataGlass2/a), which has a semi-transparent LCD display with a
resolution of 800 × 600 pixels and a diagonal field of view (FOV) of 30 degrees (see
Fig. 4, left). The HMD was connected to the data processing unit (Lenovo ThinkPad
T420 s, 2.8 GHz CPU, NVIDIA Quadro NVS 4200 M), which was installed under the
participant’s seat in the centrifuge cabin. For optical inside-out marker tracking we
equipped the HMD with an optical sensor (Microsoft HD 5000 webcam with 66 degree
diagonal FOV). To compute the position of participant’s eye relative to the optical
sensor, the participant had to perform a self-calibration [10]. To realize pointing with
haptic feedback we used a panel that was installed in front of the participant and was
equipped with a multi-marker configuration. For the pointing purpose a single marker
was attached to the participant’s fingertip at the dominant hand. The pose data were
captured with a mean frame rate of 38.74 fps (SD = 10.05) by the optical sensor at
constant artificial light conditions.

4.2 Experiment Task

In response to visual stimuli the participant should point towards virtual targets under
altered +Gz loads while wearing an optical see-through head-mounted display (OST
HMD). Pointing in response to visual stimuli was done based on the visuomotor task
used for parabolic flight studies. By using a soft AR keyboard with squared keys of
15 mm width and height [5], the participant was requested to enter prescribed random
pseudo-letters on a virtual keyboard (see Fig. 4, right). Entering letters onto the key-
board was determined by collision tests of a virtual ray ranging from the origin of the
fingertip marker to the top of the index finger. The requested letter was signalled in
green, hitting a correct key was highlighted in red and then the next key was signalled.
Because the data processing unit was installed in the cabin of the centrifuge, the
participant needed to start the experiment with a virtual start button displayed above the
keyboard and hidden afterwards.

Fig. 4. Participant sitting in the LAHC cabin, wearing the OST-HMD and pointing toward the
panel (left). The soft-AR keyboard (right).
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4.3 Experiment Design and Procedure

We conducted the study in three experimental sessions, on three successive days. For
the visuomotor task performance we specified four target pools that were counterbal-
anced presented per sizing technique. we defined a target pool as a pre-randomized
series of keys. The completion time for pointing towards the keys of one target pool
was predefined by 25 s. Within one centrifugation the participant performed the task for
two sizing techniques that resulted in a total pointing time of 200 s per +Gz load. To
adjust the duration of a key pool and the Gz loads, we used the first day for pilot
testing. Because it was quite exhausting for the participant to perform arm movements
in series for 200 s, we decide to reduce the operation time of a target pool to 20 s (in
total 160 s per centrifugation). Pilot testing was done under 1.5 g and 2 g. For better
differentiation between the Gz loads we decided to perform the experiment under 1.5 g,
1.8 g and 2.3 g. To avoid transition effects between the target pools and the method
changes, we did not recorded the first and the last signaled key. For physiological
regeneration and to limit learning effects there was a 10 min break between the changes
of the +Gz loads. For the experiment sessions of the second day, within one cen-
trifugation the participant performed the task under one +Gz load using the unchanged
method (SU) and one of the methods with force-based target sizing (SC, SE). Thereby
the sizing technique was changed after one target pool. We performed the experiment
for SU and SC on the second day, and for SU and SE on the third day under 1.5 g,
1.8 g and 2.5 g. Thereby the sizing conditions and the Gz loads were systematically
counterbalanced.

4.4 Results

For comparison of the sizing conditions we analyzed the frequencies of correct and
false target hits, the percentage error rate, the response time and the pointing speed.
Thereby a false target hit constitutes that the participant has pointed toward a wrong
key. Because the number of resulted target hits was variable by a predefined com-
pletion time, we consider the percentage error rate calculated by dividing the total
number of triggered targets by the total number of false target hits. The response time
mirrors the time elapsed between the visual stimulus onset and motoric response onset,
while the speed was calculated by the response time and the Euclidean distance
between the centre of the last target and the centre of the present target. For statistical
analysis we compared the sizing methods across all Gz loads and on same stage of Gz
load. For comparing count data we assumed a Poisson distribution and applied a
general linear mixed model (SAS® 9.4 PROC GLIMMIX) with the logarithm as link
function. For repeated measures analysis we assume a normal distribution and used
PROC MIXED (SAS® 9.4) as linear mixed model with simulated adjustment to keep
the experiment-wise error rate α = 0.05. To compare the percentage error rate between
the sizing conditions we transformed the data values by the natural logarithm. Aware
that the experiment was conducted by only one participant, this case study should
prove whether the resizing approach generally effects the performance under altered
hypergravity conditions.
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The participant completed 46 target pools (with 20 s per pool) across all Gz loads
(1.5 g, 1.8 g and 2.5 g) and accomplished 566 correct target hits in total with a mean of
12.30 (SD = 1.39) per target pool with 42 false target hits with a mean of 0.91
(SD = 1.28) per target pool. For analyzing the time that the participant required to
respond to a visual stimulus we considered only data sets where the number of false
target hits was zero and the response time was less than 3000 ms. Therefore we
analyzed 460 valid trials for the response time and the resulted pointing speed. In
Table 1 we present measures of the central tendency and the variability of the
dependent variables for the studied sizing techniques per Gz load. As also shown in
Fig. 5 (left), pointing towards elongated targets (SE) resulted in average mostly correct
target hits under the gravity levels 1.5 g and 1.8 g, while the compressed sizing
technique (SC) led to the lowest number of correct target hits under all Gz loads. But

Table 1. Measures of frequency of correct target hits, percentage error rate, response time and
pointing speed.

Resizing Correct Hits [ms] Error [%] Response time [ms] Speed [mm/ms]
Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Gz = 1.5 g
SU 12.63 ± 1.77 06.44 ± 5.87 1367.25 ± 217.33 0.063 ± 0.013
SC 10.75 ± 0.96 13.14 ± 9.05 1483.18 ± 260.69 0.040 ± 0.008
SE 13.25 ± 0.96 00.00 ± 0.00 1341.46 ± 081.74 0.075 ± 0.005
Gz = 1.8 g
SU 13.13 ± 1.46 02.03 ± 03.79 1300.01 ± 166.84 0.064 ± 0.007
SC 11.50 ± 0.58 07.28 ± 10.11 1338.24 ± 181.74 0.044 ± 0.006
SE 13.25 ± 0.96 01.67 ± 03.33 1312.80 ± 133.50 0.077 ± 0.008
Gz = 2.5 g
SU 12.14 ± 1.07 04.49 ± 06.11 1322.43 ± 256.35 0.062 ± 0.007
SC 11.00 ± 0.00 19.41 ± 03.49 1239.52 ± 168.98 0.048 ± 0.007
SE 11.75 ± 0.96 14.02 ± 16.23 1389.13 ± 166.74 0.074 ± 0.012

Fig. 5. Mean frequency of correct target hits and pointing speed (with CI = 95 %) of the sizing
techniques grouped by the Gz loads.
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comparing the sizing conditions (see Table 2) only revealed significant differences
across all Gz loads, with a higher mean frequency of correct hits with SU (M = 12.65,
SD = 1.47) and with SE (M = 12.75, SD = 1.14) compared to SC (M = 11.09,
SD = 0.70). The same applied to the percentage error rate that revealed the lowest error
rate with SE under 1.5 g and 1.8 g and always the highest with SC, but did not show
significant differences.

Because the elongated method provides larger and the compressed method shorter
distances we expected longer response times with the elongated method (SE) and
shorter response times with the compressed method (SC). But the performance did not
show meaningful variations of the mean response times. Therefore it is more reason-
able to analyze the pointing speed, because the size and distance of the target varies
with the presented sizing method. The mean speed values (see Fig. 5, right) showed
most prominent variations for the elongated method (SE) with the highest speed and for
the compressed method (SC) with the lowest speed under all Gz loads. The comparison
of the pointing speed (see Table 2) resulted in significant differences between the sizing
methods on the same level of gravity load and between the sizing methods across all Gz
loads with significant highest speed under the SE conditions (M = 0.076 mm/ms,
SD = 0.008) followed by the SU condition (M = 0.063 mm/ms, SD = 0.010), and with
the slowest speed under the SC condition (M = 0.044 mm/ms, SD = 0.007).

Table 2. Significant differences of comparison of correct hits, response time and pointing speed
between the sizing techniques on the same level of Gz load using SAS® 9.4 PROC GLIMMIX
(dist = poisson; link = log) and PROC MIXED (adjust = simulate).

Dependent Variable +Gz Resizing Estimate Stderr DF Adj.
p-Val

Correct Target Hits – SU SC 1.5613 0.4555 43 0.0039
– SC SE −1.6591 0.5186 43 0.0075

Reponse Time [ms] 1.5 SU SC −123.58 39.8470 166 0.0058
1.5 SC SE 131.95 43.6318 166 0.0075
2.5 SU SC 119.92 40.1622 110 0.0093
2.5 SC SE −149.61 44.9627 110 0.0034

Pointing Speed [mm/ms] – SU SC 0.0194 0.0011 457 <.0001
– SU SE −0.0126 0.0009 457 <.0001
– SC SE −0.0320 0.0012 457 <.0001
1.5 SU SC 0.0223 0.0021 166 <.0001
1.5 SU SE −0.0125 0.0018 166 <.0001
1.5 SC SE −0.0348 0.0023 166 <.0001
1.8 SU SC 0.0205 0.0015 175 <.0001
1.8 SU SE −0.0129 0.0013 175 <.0001
1.8 SC SE −0.0334 0.0017 175 <.0001
2.5 SU SC 0.0138 0.0021 110 <.0001
2.5 SU SE −0.0123 0.0019 110 <.0001
2.5 SC SE −0.0261 0.0024 110 <.0001
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In conclusion, the case study showed that gravity-adapted target resizing and
positioning significantly impacts aimed pointing performance under increased Gz loads
and showed a tendency to improve the pointing performance using elongated targets
(SE), particularly taking into account the significant increase in the pointing speed.
That means, it seems that pointing under increased gravity benefits from greater targets
at larger distances. Because we could only test one participant on the long-arm cen-
trifuges, we looked for alternative approaches to simulate hypergravity.

5 Second Experiment: User Study by Arm Weightings

To verify the observed effect of the case study using the LAHC we performed a
subsequent experiment under normogravity condition. For simulation the +Gz loads we
used corresponding weightings [7] that were balanced attached to the participant’s
dominant forearm (see Fig. 6). The extended arm weights (see Table 3) were calculated
(Eq. 6) for each participant as follows:

madd ¼ Gsim � Gð Þ�mbody

100
�5:38% ð6Þ

with Gsim for the simulated gravity force, mbody for the body weight of the participant
and 5.38 % as averaged percentage arm weights introduced by Clauser et al. [4].

The LAHC-Study has shown that the performance under 2.5 g was strongly
influenced by physical demand. Therefore we decided to change the used Gz loads, so
that the user study by arm weightings was performed under 1.5 g, 2 g and 2.3 g. In this
study we additionally investigated the effect of gravity-adapted resizing on the phys-
iological workload that was assessed by cardiac responses using the heart rate vari-
ability (HRV).

Fig. 6. Participants wearing the arm weightings to simulate different hypergravity loads.
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5.1 Apparatus

We used the same HMD setup as for the LAHC-Study (see Sect. 4.1). All participants
also performed an eye-sensor calibration [10] immediately before the experiment. To
perform the task of pointing towards outside coded targets, the participant stood in
front of a wall with 50 cm distance. Depending on participant’s body height the
multi-pattern was individually aligned in the horizontal position, thus the target area
was at the participant’s eye level. The optical sensor captured the pose data with a mean
frame rate of 38.52 fps (SD = 12.54). For the assessment of the physiological workload
by the HRV, the participants were equipped with a wireless eMotion HRV sensor from
Mega Electronic.

5.2 Experiment Task

To evaluate the speed-accuracy tradeoff related to Fitts’ law we decided to use an
appropriate task and designed a multi-directional pointing task as proposed by the
ISO/DIS 9241-9 standard [9]. Therefore we used eight squared targets with a default
size of a ¼ 15:0mm (see Fig. 7). The targets were arranged in a circle with a default
diameter of d ¼ 82:5mm. Like the LAHC task, the participants should point towards
the targets in response to visual stimuli. For evaluation purposes by Fitts’ law we
defined “true” target connections of 0°, 45°, 90° that implied the same target distance
and involve horizontal and vertical arm movements. The remaining target connections
were used for pointing transition only.

5.3 Participants

Participants were 6 male and 2 female aged between 24 and 51 years (20–31 years: 4
participants, 40–51 years: 4 participants, M = 37.25, SD = 10.55). Seven participants
have had experiences with AR interfaces in terms of participation in previous studies,
while one participant was a novice. They came from backgrounds in biology, physi-
ology, aerospace and medicine. All participants had a right-dominant arm that was used
for the pointing task.

Table 3. Weights of body, arm and the resulted weights that was added to participants arm.

Participant mbody [kg] marm [kg] madd [kg]
1.5 g 2 g 2.3 g

S1 80.0 4.3 2.2 4.3 5.6
S2 78.0 4.2 2.1 4.2 5.5
S3 75.0 4.0 2.0 4.0 5.3
S4 80.0 4.3 2.2 4.3 5.6
S5 65.0 3.5 1.8 3.5 4.6
S6 69.0 3.7 1.9 3.7 4.8
S7 60.0 3.3 1.7 3.3 4.3
S8 78.0 4.2 2.1 4.2 5.5

Enhancement of Direct Augmented Reality Object Selection 85



5.4 Experiment Design and Procedure

The study followed a repeated measure design with two independent variables con-
taining three levels for gravity-based resizing (SU, SC, SE) and three levels for Gz load
(1.5 g, 2 g, 2.3 g). Thereby the SU level constituted the baseline condition. In a
within-subject design, each participant performed the test series for all resizing methods
under all gravity loads, resulting in a factorial design of 3 × 3. The repetition rate for
each method amounted to five target pools per Gz load. Thereby a target pool was
specified as a predefined series of randomized target connections for the
multi-directional pointing tasks. Pointing towards the targets of one target pool should
be completed by the participants in 25 s and constituted one test series. Overall each
participant performed 45 test series. Because we did not compare the gravity loads
neither on the same level of sizing methods, nor across the sizing methods, was the
multi-directional task performed in a fixed order of Gz loads (2.3 g, 1.5 g, 2 g). But we
used systematic variations of the presentation order of the sizing methods per Gz load.
To avoid transition effects between pool changes the first and the last signaled targets
performance were not recorded. Between changes of the Gz load and the sizing
techniques, the participant had a five minute break for physiological regeneration. To
be familiar with the pointing task and to check the integrity of the tracking operation,
the participants undertook a short training session before starting the first condition.
Before conducting the experiment sessions each participant performed the experiment
without added arm weightings under the SU condition as baseline for the workload
assessment by HRV. This condition we did not use for evaluating the performance.

5.5 Results

Table 4 shows the resulted target sizes a with its surrounding radius (Eq. 7) and targets’
distances d calculated by the force-based resizing approach using the active Gz load.
The distance reflects the pointing range between two “true” target connections. While
pointing towards normal sized targets (SU) always resulted in same target sizes and

Fig. 7. The multi-directional pointing task used during the Weight-Study.
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distances, the elongated sizing (SE) resulted in increased sizes and distances on
increased Gz loads and contrary for the compressed sizing (SC).

rs ¼ a
ffiffiffi
2

p

2
ð7Þ

As for the LAHC-Study the pointing performance was assessed by the frequency of
correct target hits, the percentage error rate, the response time and the pointing speed
depending on the resulted target distances. To compare the percentage error rate
between the sizing conditions we transformed the data values by the natural logarithm.
In addition we evaluated the Euclidean distance between the target’s center and the
final intersection point and the percentage accuracy depending on the resulted target
sizes. We compared the sizing conditions for each dependent variable on same level of
Gz load and across all Gz loads using SAS® 9.4 PROC MIXED with simulated
adjustment to keep the experiment-wise error rate α = 0.05. For comparing count data
we assumed a Poisson distribution and applied a general linear mixed model (SAS®
9.4 PROC GLIMMIX) with the logarithm as link function. Additionally we evaluated
the speed-accuracy tradeoff of the sizing methods according to Fitts’ law and present
the throughput (TP) and the resulted movement models predicting the movement times
of the studied sizing conditions. For workload assessment we evaluated the physio-
logical strain by the R-R distance that was obtained from the heart rate variability
(HRV). The R-R distance is the interval between two heartbeats in milliseconds.

Task Performance
Pointing Frequency. The data revealed that the participants pointed towards 6708
targets in total in a correct way with a mean frequency of correct target hits of 19.39
(SD = 3.37) per target pool and pointed towards 102 targets in a wrong way with a
mean frequency of false target hits of 0.27 (SD = 0.66) per target pool. Figure 8 shows
the mean frequency of correct target hits and the log transformed mean percentage error
rate of the sizing conditions across all Gz loads and per Gz load. With respect to the
frequency of correct target hits the comparison of the sizing conditions on same level of
Gz load revealed no significant differences, but comparing the sizing conditions over
all Gz loads showed the highest frequency of correct target hits for pointing towards
elongated targets SE (M = 20.00, SD = 2.53) that significantly differed (see Table 5)
from SU (M = 19.05, SD = 3.52) and SC (M = 18.82, SD = 4.09). With respect to the

Table 4. Resulted target size a, radius rs and distance d.

Resizing +Gz a [mm] rS [mm] d [mm]

SU – 15.00 10.61 082.50
SC 1.5 11.67 08.25 064.17

2.0 10.56 07.45 058.06
2.3 09.89 06.99 054.39

SE 1.5 18.33 12.96 100.83
2.0 19.44 13.75 106.94
2.3 20.11 14.22 110.61
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log transformed error rate the data only yielded significant differences (see Table 5)
under 1.5 g with a significant lower error rate with SU compared to SC, and with a
significant lower error rate under SE compared to SC.

Response Time and Pointing Speed. For analyzing time effects we only considered
target hits with “true” target connections resulting in the same pointing distance per Gz
load and sizing technique, as well as data sets where the number of false target hits was
zero and the response time was less than 3000 ms. This resulted in 2055 valid trials.
Overall the participants pointed with a mean response time of 1038.60 ms
(SD = 179.26). The mean response times of the sizing conditions across all Gz loads
and per Gz load are presented in Fig. 9 (left) and show that in principle the response
times increased as the gravity load increased. But the mean response times did not
show prominent variations between the sizing conditions across all Gz loads and per
Gz load. This is contrary to our expectation of significant slower response times at
larger target distances (SE) and significant faster response times at shorter distances
(SC). Because targets’ size and distance vary with the used sizing technique and the Gz
load, analyzing the pointing speed was more meaningful than the response time. The
pointing speed was calculated by the distance between the targets (see Table 4) divided
by the response time. Overall the participants pointed with a mean speed of
0.083 mm/ms (SD = 0.024). The mean pointing speed by the sizing techniques across
all gravity loads and per Gz load is presented in Fig. 9 (right).

Fig. 8. Mean frequency of correct target hits and log(error rate[%]) (with CI = 95 %) of the
sizing methods grouped by Gz load.

Table 5. Significant differences of comparison of frequency of correct target hits and percentage
error rate between the sizing techniques across all Gz loads and on same level of Gz load using
SAS® 9.4 PROC GLIMMIX (dist = poisson; link = log) and PROC MIXED (adjust = simulate).

Dependent Variable +Gz Resizing Estimate Stderr DF Adj. p-Val

Correct Target Hits – SU SE 1.0523 0.4262 338 0.0373
– SC SE −1.1584 0.4131 338 0.0141

log(Error Rate [%]) 1.5 SU SC 0.7974 0.1449 10 0.0005
1.5 SC SE 0.8524 0.1415 10 0.0003
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Prominent mean variations yielded from the elongated sizing technique (SE) with
highest speed under all Gz loads, while using compressed targets (SC) always revealed
lowest speeds. The comparison of the sizing technique (see Table 6) yielded significant
differences (p < .0001) between all conditions across all Gz loads and grouped per Gz
load. The result related to the pointing speed mean that hypothesis H1 can be accepted.

Pointing Accuracy. The pointing accuracy reflects the precision of target pointing and
was measured by the Euclidean distance dED and the surrounding radius rs of the
targets (see Table 4). For evaluating the pointing accuracy we initially analyzed the
Euclidean distance relative to the resulted target sizes using 6708 correct target hits.

Fig. 9. Mean response time and pointing speed (with CI = 95 %) of the sizing methods grouped
by Gz load.

Table 6. Significant differences of comparison of frequency of pointing speed between the
sizing techniques across all Gz loads and on same level of Gz load using SAS® 9.4
PROC MIXED (adjust = simulate).

Dependent Variable +Gz Resizing Estimate Stderr DF Adj.
p-Val

Pointing Speed [mm/ms] – SU SC −0.0242 0.00091 2046 <.0001
– SU SE 0.0209 0.00088 2046 <.0001
– SC SE −0.0451 0.00081 2046 <.0001
1.5 SU SC −0.0195 0.00131 2046 <.0001
1.5 SU SE 0.0161 0.00126 2046 <.0001
1.5 SC SE −0.0355 0.00128 2046 <.0001
2.0 SU SC −0.0269 0.00183 2046 <.0001
2.0 SU SE 0.0211 0.00175 2046 <.0001
2.0 SC SE −0.0480 0.00150 2046 <.0001
2.3 SU SC −0.0262 0.00155 2046 <.0001
2.3 SU SE 0.0256 0.00152 2046 <.0001
2.3 SC SE −0.0518 0.00143 2046 <.0001
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Thereby the Euclidean distance dED was the distance between the centre of the target
and the intersection point within the target. As presented in Fig. 10 (left), the variations
of the mean distances show a proportional ratio between the distance and target’s size,
i.e. the pointing distance was greater with the increment of target’s size and vice versa.
Statistical analyzing of the Euclidean distance confirmed this observation by significant
differences (p < .0001) between the sizing techniques across all Gz loads and per Gz
load (see Table 7). The test revealed that pointing towards SC targets resulted in the

Fig. 10. Mean Euclidean distance and percentage pointing accuracy (with CI = 95 %) of the
sizing methods grouped by Gz load.

Table 7. Significant differences of comparison of the Euclidean distance and log(accuracy)
between the sizing techniques across all Gz loads and on the same level of Gz load using SAS®
9.4 PROC MIXED (adjust = simulate).

Dependent Variable +Gz Resizing Estimate Stderr DF Adj.
p-Val

Euclidean Distance [mm] – SU SC 1.2840 0.07675 6705 <.0001
– SU SE −1.1159 0.07405 6705 <.0001
– SC SE −2.3999 0.07161 6705 <.0001
1.5 SU SC 1.0259 0.1162 2685 <.0001
1.5 SU SE −0.9865 0.1136 2685 <.0001
1.5 SC SE −2.0123 0.1128 2685 <.0001
2.0 SU SC 1.3637 0.1569 1862 <.0001
2.0 SU SE −1.1426 0.1469 1862 <.0001
2.0 SC SE −2.5063 0.1365 1862 <.0001
2.3 SU SC 1.5742 0.1335 2152 <.0001
2.3 SU SE −1.1634 0.1310 2152 <.0001
2.3 SC SE −2.7375 0.1258 2152 <.0001

log(Accuracy [%]) – SC SE 0.1095 0.02084 6705 <.0001
2.0 SC SE −0.2210 0.03607 1862 0.0178
2.3 SU SE −0.1522 0.03608 2152 0.0072
2.3 SC SE −0.3099 0.03462 2152 0.0436
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significantly shortest distances and towards SE targets in significant largest pointing
distances. Contrary to the Euclidean distance, the percentage accuracy (Eq. 8) mirrors
the percentage ratio of the distance dED to the target size expressed by the radius rs.

accuracy ¼ 100� dED
rs

� 100
� �

ð8Þ

The participants pointed with an overall mean percentage accuracy of 56.4 %. The
variations of the mean accuracy are presented in Fig. 10 (right). Per sizing technique
over all Gz loads data revealed that relative to target’s size, participants pointed most
precisely using the elongated method (SE) with 58.7 % accuracy (SU: 56.7 %, SC:
53.2 %). Statistical analyzing (see Table 7) revealed that pointing towards elongated
targets (SE) enabled a significant improvement over all Gz loads compared to pointing
towards compressed targets (SC). On the same Gz level, SE yielded significant
increased accuracy under 2 g than SE, and under 2.3 g than SC and SU.

Speed-Accuracy-Trade-off (Fitts’ Law). In designing Human-Computer-Interfaces
the assessment of ergonomics is mainly determined by Fitts’ model of movement time
(Eq. 7) [6] that a human needs to point at a target of a given size and distance. Fitts’ law
predicts longer movement times at larger distances, as well as at smaller targets. The
sizing approach interrelates these characteristics to each other, whereby the elongated
method (SE) provides larger targets at larger distances, while the compressed method
(SC) results in smaller targets at smaller distances. We used Fitts’ law to evaluate the
speed-accuracy trade-off of the studied sizing techniques related to direct pointing
affected by added arm weightings. The metric for comparing the performance is the
Throughput TP (Eq. 10), in bits per second (bps) calculated by the Index of Difficulty
ID and mean movement time MT (Eq. 9) as time to hit a target (in milliseconds) with
a for the intercept and b for the slope of measured mean response time by the target
width W. The ID measures the tasks difficulty in bits using target size and distance.
Because we used squared targets, we calculated the ID only by the targets’ width. For
computing the ID (Eq. 11) we used the Welford formulation [22]. To reflect the
observed pointing performance of the participants, we used the effective target width
We (Eq. 12) [13, 22] as the central 96 % of the spatial distribution with SDx as standard
deviation of the mean pointing accuracy. Table 8 shows the resulting Fitts’ parameter
for the three sizing methods per +Gz load. Because the target size and distance increase
with an increase in gravity, the SE method resulted in the most difficult targets with the
highest IDe under 2 g and 2.3 g, but also in the highest throughput (TP).

MT ¼ aþ bIDe ð9Þ

TP ¼ IDe

MT
ð10Þ

IDe ¼ log2
A
We

þ 0:5
� �

ð11Þ
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We ¼ 4:133 � SDx ð12Þ

The compressed sizing method (SC) yielded the highest index of difficulty under
1.5 g, while under 2 g and 2.3 g yielded most the simple targets, but with the lowest TP.
Pointing towards normal sized targets (SU) yielded an increased IDe, as well as a
growing throughput with the increment of gravity. The resulting Pearson’s correlation
coefficient r and the regression equations of Fitts’ movements’ model for the sizing
conditions are presented in Eqs. 13, 14 and 15. While the movement time and the index
of difficulty were very strongly positively correlated (r > 8.0) for the SU and SE
conditions, a moderate negative correlation was revealed by the SC condition. The
Fitts’ model of movement time of the SU (Eq. 13) and SE (Eq. 15) sizing conditions
provides good descriptions of the observed pointing behaviour and predicted an
increase in response time with an increased target difficulty with the fastest increase
under the SE condition. In contrast, the model of the compressed sizing technique SC
(Eq. 14) resulted in a model with the highest intercept and lowest negative slope, i.e.
that the Movement Time will slow decrease with an increase in the Index of Difficulty.

SU: r ¼ 0:856; MT ¼ 638þ 142IDe ð13Þ

SC: r ¼ �0:321; MT ¼ 1163� 43IDe ð14Þ

SE: r ¼ 0:842; MT ¼ 81þ 315IDe ð15Þ

Physiological Workload. Analyzing the R-R interval obtained by HRV shows the
impact to the cardiovascular system on a certain workload. Larger workload causes a
larger impact in the cardiovascular system and therefore causes a higher heart fre-
quency and subsequently a shorter R-R interval between the heartbeats. The cardio-
vascular parameters were assessed during all phases of the experiment. The 1 g SU
output was used as reference measurement and showed the lowest impact on the

Table 8. Fitts’ resulted parameters: targets’ distance (A), target width (W), effective target width
(We), mean measured movement time (MT), effective Index of Difficulty (IDe), and Throughput
(TP).

Resizing +Gz A [mm] W [mm] We [mm] MT [ms] IDe [bits] TP [bps]

SU 1.5 082.50 15.00 14.47 1010.61 2.63 2.61
2.0 082.50 15.00 11.04 1052.83 2.99 2.85
2.3 082.50 15.00 11.78 1071.96 2.91 2.71

SC 1.5 064.17 11.67 08.47 1021.53 3.02 2.96
2.0 058.06 10.56 11.12 1032.42 2.52 2.44
2.3 54.39 09.89 09.09 1085.23 2.69 2.49

SE 1.5 100.83 18.33 13.68 1029.36 2.98 2.89
2.0 106.94 19.44 13.39 1035.30 3.09 2.98
2.3 110.61 20.11 13.18 1089.69 3.15 2.89
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cardiovascular system. Since the physiological workload respectively grows with the
increment of gravity, the R-R distance decreased during the experiment under 2 g and
even more under 2.3 g (see Table 9). The data revealed the lowest R-R for all sizing
conditions under high Gz load since the weight attached to the participants’ arm
constituted the major part of the workload. While the SE conditions yielded the lowest
values for the R-R distances under all Gz loads, the SC condition always resulted in the
highest values for the R-R distance. This suggests that pointing towards elongated
targets (SE, largest target distances) mostly increased the workload, while pointing
towards compressed targets (SC, shortest target distances) decreased the workload the
most. Statistical analysis showed a significant main effect of the Gz loads on the R-R
distance (F2,4 = 27.69, p < .05), but did not show effects by applying the sizing
methods. This result indicates that hypothesis H2 can be conditionally accepted, i.e.
that compressed resizing (SC) mostly decreases the workload under increased gravity
load, although the difference to the other sizing conditions (SE, SU) was not statisti-
cally significant.

6 Discussion

The results of the LAHC-Study has already shown that pointing towards outside coded
targets during AR selection is affected by gravity-adapted resizing under increased Gz
loads and revealed an upcoming trend for the elongated sizing method (SE) by a
significant increase in the pointing speed. The Weight-Study confirmed the findings of
the LAHC-Study and also showed that the workload during direct AR selection
towards outside coded targets is influenced by gravity-adapted resizing with significant
differences between affected targets (SE, SC) and unaffected targets (SU). In this way
we can affirm that gravity-adapted target resizing affects the performance and workload
of direct AR pointing under altered hypergravity conditions (Q1). The results of the
Weight-Study also confirmed the observed trend of an improved performance of
pointing towards targets that are influenced by elongated resizing (SE) implicating
greater target sizes and larger distances between the targets. An elongated target
interface not only significantly increases the pointing frequency across all Gz loads, it
also shows a decreasing tendency in the error rate. In contrast to elongated targets, the
compressed sizing technique (SC) yields the small targets at short distances that always
caused significant closer hits to the targets’ centre. But relative to the target size,
pointing towards elongated targets (SE) significantly provided the most precise
pointing across all Gz loads than pointing towards compressed targets (SE), and even

Table 9. Assessed HRV parameter: R-R distance in [ms] median and SD across all participants.

Gz SU SC SE
Mean ± SD Mean ± SD Mean ± SD

1.0 723.86 ± 156.88 - –

1.5 674.24 ± 114.76 680.45 ± 120.29 665.09 ± 102.56
2.0 642.11 ± 119.43 649.57 ± 117.03 625.28 ± 088.07
2.3 641.97 ± 105.77 648.31 ± 119.25 645.24 ± 126.40
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under 2.3 g it revealed significant more accurate pointing than SE and the unchanged
baseline condition (SU). With respect to the response time we was astonished that the
resulted target distances did not affect the time that was needed to respond to visual
stimuli. We excepted the shortest times for pointing towards compressed targets with
shortest distances, and the longest times for pointing towards elongated targets with the
longest distances. But considering the distance covered yielded the significantly fastest
pointing speed by the longest distances using the elongated sizing method (SE). Also
the analysis of the speed-accuracy tradeoff related to Fitts’ law showed that pointing
towards elongated targets (SE) yielded in an increase in throughput with increased
gravity load. The HRV based workload assessment showed an effect caused by
changed gravity with attached arm weights and the alternation of the workload. The
mostly increased workload was caused by pointing towards elongated targets (SE) that
could be due to the distance that gets larger with the increase in gravity load. In
contrast, the mostly decreased workload was provided by pointing towards the com-
pressed targets with the shortest distances. In conclusion, pointing towards outside
coded target interfaces will benefit from elongated resizing that provides an increase in
pointing frequency, most accurate pointing and fastest pointing speed, but causes the
mostly increased physiological workload. Conversely, using compressed targets will
deteriorate the pointing performance, but provided an decrease in physiological
workload.

7 Summary

The performance of Augmented Reality direct object selection coded outside of the
human body frame of reference is impaired under short-term altered gravity. Therefore
we looked for adequate countermeasures and introduced a gravity-adapted resizing
approach that dynamically modify the size and position of the pointing targets related
to the active gravity load. Before conducting experimentations under microgravity
conditions, we started studying how gravity-adapted resizing affects visuomotor
coordination under altered hypergravity conditions. Applying the resizing approach can
affect the pointing interface in two different ways that either results in elongated targets
or in compressed targets. This means that with an increase in gravity elongated
interfaces will increase in targets’ size and distance, while compressed interfaces will
decrease in sizes and distances. We conducted a proof-of-concept study under simu-
lated hypergravity conditions to investigate the influence of gravity-adapted resizing on
the performance and workload of visuomotor coordination during AR selection
towards outside coded interfaces. The study was divided into two experiments, where
simulated hypergravity was induced, firstly by long-arm human centrifugation (LAHC)
and then by added arm weightings under normogravity. The workload was assessed by
cardiac response using the heart rate variability (HRV). Summarizing the results of
both studies showed that AR selection towards outside coded targets is effected by
gravity-adapted resizing and proofed evidence that pointing towards outside coded
target interfaces under increased gravity benefits from elongated resizing, while com-
pressed resizing deteriorates the pointing performance. But contrary, pointing towards
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elongated targets increases the physiological workload, while pointing towards com-
pressed targets provides a decrease in workload.

In future work we will investigate the effect of gravity-adapted resizing on per-
formance and workload under microgravity conditions. Therefore the resizing approach
needs to be correspondingly adjusted to the changed condition. Further research could
also investigate the effect of gravity-adapted resizing on the view management of an
AR supported assistant system for space operation. It is conceivable that analogous to
aimed pointing movements the gravity-adapted resizing approach affects the gaze
control during the detection of labels and annotations. Related to the workload
assessment by HRV, future work should consider the separation of physical and
cognitive workload. This can be done by additional evaluation of the muscular activity
measured by electromyogram (EMG). By doing so, it could even more precisely assess
the workload during pointing and targeting.
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Abstract. We introduce simple codes and fast visualization tools for
knotted structures in complicated molecules and brain networks. Knots,
links and more general knotted graphs are studied up to an ambient
isotopy in Euclidean 3-space. A knotted graph can be represented by a
plane diagram or a Gauss code. First we recognize in linear time if an
abstract Gauss code represents a graph embedded in 3-space. Second we
design a fast algorithm for drawing any knotted graph in the 3-page book,
which is a union of 3 half-planes along their common boundary. The
complexity of the algorithm is linear in the length of a Gauss code. Three-
page embeddings are encoded in such a way that the isotopy classification
for graphs in 3-space reduces to a word problem in finitely presented
semigroups.

1 Introduction: Motivation and Problems on Knotted
Structures

This is an extended version of the conference paper [13] with extra Appen-
dices B, C, D that describe key stages of the full algorithm for drawing 3-page
embeddings.

Knotted structures are common in nature. For example, microscopic lines in
liquid-crystals [18] or Reeb graphs of complex shapes [2] can be knotted. Figure 1
shows large brain neurons with many branching points. These structures are
usually huge and more complicated than simple closed curves studied in classical
knot theory.

Pictures of knots can be attractive for humans, but robots would prefer a
smaller form or codes representing the same knotted object. Such codes are
needed for automatic analysis, however a final output is also important to visu-
alise. We summarise our requirements for processing knotted structures in the
following 3 problems.

• Modeling: find a mathematical model for all possible knotted structures
in R

3.

c© Springer International Publishing Switzerland 2016
J. Braz et al. (Eds.): VISIGRAPP 2015, CCIS 598, pp. 99–122, 2016.
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Fig. 1. Neurons in the brain form a large knotted graph with many branching points
in 3-space.

Fig. 2. Plane diagrams (projections) of the trefoil, the Hopf link and a simple knotted
graph.

• Encoding: represent any knotted structure by a simple code in a computer
memory.

• Visualization: design a fast algorithm to visualize knotted structures given
by codes.

Our suggested model for knotted structures is a possibly disconnected graph
with branching vertices and multiple edges that might be knotted in 3-space, see
Definition 1. For instance, any knot in 3-space is a non-self-intersecting closed
curve or a loop.

Knots live in 3-space, but it is easier to draw their planar projections with
double crossings. Such plane diagrams are usually represented by Gauss codes
that specify the order of overcrossings and undercrossings along a knot. We will
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Fig. 3. Straighten a path α to build a 3-page embedding of a graph K5 ⊂ R
3 from its

diagram.

extend classical Gauss codes of knots and links to arbitrary knotted graphs in
Definition 4.

A random code (of a required form) may not represent a real knotted graph,
because a planar drawing may need extra crossings. We solve this planarity
problem for Gauss codes of knotted graphs in Theorem9. Our algorithm checks
if a Gauss code is realized by a graph in 3-space with a linear time complexity
in the length of the given code.

Starting from any realizable Gauss code, we draw a corresponding graph
in the 3-page book, see Theorem 12. This book consists of 3 half-planes attached
along their common boundary α called the spine. It is well-known that any graph
can be topologically embedded in the 3-page book [1, Theorem 5.4]. However, an
embedded graph may cross many times the spine of the book. It is only known
that O(|E| log |V |) spine crossings suffice for embedding a graph with |V | vertices
and |E| edges [6].

We largely strengthen the former result by designing a linear time algorithm
to continuously move any graph embedded in 3-space to a graph within 3 pages.
We review other related work throughout the paper. Figure 3 is a high-level illus-
tration of the fast algorithm for a 3-page embedding of the graph K5 ⊂ R

3.
AppendixA contains more details on the following advantages of 3-page embed-
dings over plane diagrams.

• Theorem 13 encodes 3-page embeddings of all knotted graphs in 3-space by
easy linear codes that form a finitely presented semigroup.

• Theorem 14 decomposes any topological equivalence between 3-page embed-
dings of knotted graphs into finitely many local relations between 3-page
codes.

2 Key Concepts on Knotted Graphs and Isotopy in
3-Space

A homeomorphism between spaces is a bijection that is continuous in both direc-
tions. An embedding of one space into another is a continuous function f : X → Y
that induces a homeomorphism between X and its image f(X) ⊂ Y .

We study embeddings of undirected finite graphs, possibly disconnected and
with loops or multiple edges. The concept of a knotted graph extends the classical
theory of knots to arbitrary graphs considered up to isotopy in 3-space R

3.
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Definition 1. A knotted graph G ⊂ R
3 is an embedding of a finite graph G.

An ambient isotopy between knotted graphs G,H ⊂ R
3 is a continuous family of

homeomorphisms ft : R3 → R
3, t ∈ [0, 1] such that f0 = id is the identity map

on R
3 and f1(G) = H.

An isotopy between directed graphs is similarly defined and should respect
directions of edges. If the underlying graph G is a circle S1, then a knotted
graph is a knot. If G is a disjoint union of several circles, G ⊂ R

3 is a link. A link
isotopic to a union of disjoint circles in R

2 is trivial. The simplest non-trivial
knot is the trefoil in the 1st picture of Fig. 2. The simplest non-trivial link is the
Hopf link in the middle of Fig. 2.

If an ambient isotopy keeps a small neighborhood of each vertex of a knotted
graph in one moving plane, the graph is called rigid. Rigid knotted graphs with
vertices of only degree 4 are sometimes called singular knots, because they consist
of one or several circles intersecting each other at singular points.

Definition 2. A plane diagram D of a knotted graph G ⊂ R
3 is the image of

G under a projection R
3 → R

2 from 3-space R
3 to a horizontal plane R

2. In
a general position we assume that all intersections of a plane diagram D are
double crossings so that the crossings and the projections of all vertices of G
are distinct. For each crossing of D, we specify one of two intersecting arcs that
crosses over another arc.

The key problem in knot theory is to efficiently classify knots and graphs
up to ambient isotopy. The first natural step is to reduce the dimension from 3
to 2. Any isotopy of knotted graphs can be realized by finitely many moves on
plane diagrams. The following result extends Reidemeister’s theorem from knots
to any knotted graphs.

Theorem 3. [8] Two plane diagrams represent isotopic knotted graphs in 3-
space R

3 if and only if the diagrams can be obtained from each other by an
isotopy in R

2 and finitely many Reidemeister moves in Fig. 4. (The move R5 is
only for rigid graphs, the move R5′ is only for non-rigid graphs.)

Fig. 4. These Reidemeister moves on diagrams generate any isotopy of graphs in R
3.
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The move R4 is shown in Fig. 4 only for a degree 4 vertex, moves for other
degrees are similar. The move R5 turns a small neighborhood of a vertex in the
plane upside down. So a cyclic order of edges at vertices is preserved in rigid
graphs. The move R5′ can arbitrarily reorder all edges at a vertex. Theorem 3
formally includes all symmetric images of moves in Fig. 4.

The Reidemeister moves or their analogs on Gauss codes are not local as
they involve distant parts of a graph or a Gauss code. This non-locality is a key
obstacle for simplifying codes of knots. That is why we later consider 3-page
embeddings that allow only finitely many local moves, see Theorems 12, 13, 14.

3 Gauss Codes of Knotted Graphs and Abstract Gauss
Codes

A standard way to encode a plane diagram of a knot is to write down labels of cross-
ings in a Gauss code. The Gauss code of a link has several words corresponding to
all connected components of the link. We extend this classical concept to any knot-
ted graphs G ⊂ R

3. If a component of a knotted graph G ⊂ R
3 is a circle without

vertices, we add a base point (a degree 2 vertex) to this circle.

Definition 4. Let D ⊂ R
2 be a plane diagram of a knotted graph G with vertices

A,B,C, . . . We fix directions of all edges of G and arbitrarily label all crossings
of D by 1, 2, . . . , n. Then each crossing of D has the sign locally defined in Fig. 5.

The Gauss code W of the diagram D consists of all words WAB, where each
word WAB is associated to a directed edge from a vertex A to a vertex B as
follows:

• WAB starts with A, finishes with B and has the labels of all crossings in AB;
• if AB goes under another edge at a crossing i with a sign ε ∈ {±} as in Fig. 5,
we add the superscript ε to i and get the symbol iε with the sign ε in WAB.

In the plane diagram the edges at each vertex A of the graph G are clockwisely
ordered in R

2, so the Gauss code also specifies a cyclic order of all edges at the
vertex A.

If G is a knot, Definition 4 requires at least one degree 2 vertex (a base point)
on the circle G. Then we may ignore degree 2 vertices and consider W as a cyclic
word.

Fig. 5. Local rules for assigning signs of crossings in plane diagrams of knotted graphs.
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In Fig. 5 the diagram of the blue trefoil has the cyclic Gauss code
12+31+23+. The diagram of the red knotted graph has the Gauss code W =
{AB; A1−2A; B12−B} with the cyclic orders of edges at vertices (AB, 2A,A1−)
and (AB,B1, 2−B). In this example each edge is denoted by the pair of its end-
points. In general, if there are multiple edges with the same endpoints, we use
distinct labels for all different edges.

A Gauss code of any undirected graph depends on a choice of extra degree 2
vertices, directions of edges, an order of crossings. If a plane diagram of a knotted
graph corresponds to a Gauss code, then this diagram is unique up to isotopy
in the plane. We explicitly construct a plane diagram from a Gauss code in the
proof of Theorem 9.

Here is a naive approach to drawing a plane diagram represented by a Gauss-
like code W . We can plot vertices A,B,C, . . . and crossings 1, 2, . . . , n anywhere
in R

2. Since W specifies the cyclic order of edges at each vertex A in Definition 4,
we may draw short arcs around A in a correct cyclic order. Now we should
connect all vertices and crossings that have adjacent positions in the code W by
continuous non-intersecting arcs in the plane.

The last step fails for the word 12+1+2 that does not encode any plane
diagram. Indeed, if we try to draw a closed curve with 2 self-intersections as
required by 12+1+2, we have to add a 3rd intersection (a virtual crossing) to
make the curve closed. This obstacle can be resolved if we draw a diagram on
a torus as in Fig. 7, because we can hide a virtual crossing by adding a handle.
Another approach is to embrace virtual crossings, which has led to virtual knots.

If we study properly embedded graphs, we need to recognize planarity of
Gauss codes, namely we will determine if a Gauss code W represents the plane
diagram of some knotted graph G ⊂ R

3. So we first introduce abstract Gauss
codes in Definition 5 and then recognize their planarity in the general case of
knotted graphs in Theorem9.

Definition 5. Let the alphabet consist of m letters A,B,C, . . . and 3n symbols
i, i+, i− for i = 1, . . . , n. An abstract Gauss code W is a set of words such that

• the first and last symbols of each word in the code W are letters (of vertices),
• the set of symbols in all words (apart from the initial and final letters) contains,
for each i = 1, . . . , n, the symbol i and exactly one symbol from the pair i+, i−.

Each of the m letters defines a cyclic order of all symbols adjacent to this letter.
The length |W | is the total length of all words minus the number of words.

The Gauss code of any plane diagram of a knotted graph G from Definition 4
satisfies the conditions above. Indeed, the letters A,B,C, . . . denote (projections
of) vertices of G. Then every edge contains crossings labeled by i, i+ or i− for
i = 1, . . . , n.

The clockwise order of edges around any vertex A in the plane diagram of
G in R

2 defines the cyclic order of vertices and crossings adjacent to A. If a
component of G is a circle, we may remove its vertices of degree 2 and write the
remaining symbols as in the cyclic code 12+31+23+ of the trefoil in Fig. 5. The
total number of these symbols equals the double number of crossings.
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4 Planarity Criterion for Gauss Codes of Knotted Graphs

The planarity problem is to determine whether it is possible to draw a plane
diagram represented by an abstract Gauss code W . To avoid potential self-
intersections, we shall draw a diagram not in the plane, but in the Gauss surface
S(W ) defined below.

First we introduce the abstract graph G(W ) describing the adjacency rela-
tions between symbols in a Gauss code W . Then we attach disks to G(W ) to get
the surface S(W ) containing a required diagram without self-intersections. The
criterion of planarity will check if the surface S(W ) is a topological sphere S2.

Definition 6. Any abstract Gauss code W with m letters A,B, . . . and 2n sym-
bols from {i, i+, i− | i = 1, . . . , n} gives rise to the Gauss graph G(W ) with m+n
vertices labeled by A,B, . . . and 1, 2, . . . , n.

We connect vertices p, q by a single edge in G(W ) if p, q (possibly with signs)
are adjacent symbols in W . Below when we travel along an edge from p to q,
we record our path by (p, q)+ if q follows p in the code W (in the cyclic order),
otherwise by (p, q)−.

We define unoriented cycles in the graph G(W ) by going along edges and
turning at vertices according to the following rules illustrated in Fig. 6:

• if we came to one of the vertices A,B,C, . . . from its neighbor, then we turn
to the next neighbor in the clockwise order specified in the Gauss code W ;

• at each vertex labeled by i ∈ {1, . . . , n} we turn to the next edge by one of the
rules below for a unique possible choice of δ ∈ {+,−} and both ε ∈ {+,−}

(p, i)+ → (iδ, q)δ, (p, i)− → (iδ, q)−δ, (p, i+)ε → (i, q)−ε, (p, i−)ε → (i, q)ε.

We stop traversing cycles when every edge was passed once in each direction.
The Gauss surface S(W ) is obtained from G(W ) by gluing a disk to each cycle.

The number of edges in the graph G(W ) equals the length |W | of the code W .
The rules for traversing cycles in Definition 6 geometrically mean that at each
vertex or crossing we turn left to a unique edge and can pass every edge exactly
once in each direction. Hence the Gauss surface of any abstract Gauss code is a
compact orientable surface without boundary. From now on we assume that all
diagrams, Gauss graphs and surfaces are connected. Otherwise each connected
component is considered separately.

Lemma 7. For the Gauss code W of any connected plane diagram of a knot-
ted graph G ⊂ R

3, the Gauss surface S(W ) is homeomorphic to a topological
sphere S2.

Proof. We assume that the given diagram D is contained in a sphere S2 instead
of a plane R

2. Then the Gauss graph G(W ) can be identified with the diagram
D, though G(W ) was introduced as an abstract graph not embedded into any
space. When we traverse the cycles in D = G(W ) from Definition 6, we pass
over the boundaries of all connected components of S2 − D. Indeed, each time
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Fig. 6. Interpretation of the ‘turning-left’ rules for traversing cycles in the Gauss
graph G(W ).

we turn left in the diagram D ⊂ S2 according to the geometric rules in Fig. 6.
Hence the Gauss surface S(W ) can be identified with the sphere S2 containing
the diagram D = G(W ). ��
Example 8. We construct the Gauss surface of the abstract Gauss code W =
12+1+2, whose diagram with one virtual crossing is in Fig. 7. For simplicity, we
removed the degree 2 vertex from the circle and consider the word 12+1+2 in the
cyclic order.

Then 4 pairs 12+, 2+1+, 1+2, 21 of adjacent symbols in the code W lead
to the Gauss graph G(W ) whose 2 vertices with labels 1, 2 are connected by 4
edges with labels (1, 2+), (2+, 1+), (1+, 2), (2, 1), see Fig. 7. Recall that the edges
labeled by (2, 1) and (2+, 1+) meet at a non-avoidable virtual crossing in the
plane, but the abstract Gauss graph G(W ) has only 2 vertices.

If we start traveling from the edge (1, 2+)+ in the same direction as in W , the
next edge should be (2, 1+)− by the rule (p, i+)ε → (i, q)−ε, where p = 1, i = 2,
ε = + uniquely determine the next symbol q = 1+ from the code W (going from
2 in the opposite direction). After passing the second edge (2, 1+)−, we return
to the first edge (1, 2+)+ by the same rule (p, i+)ε → (i, q)−ε for p = 2, i = 1,
ε = −, q = 2+.

So the 1st cycle consists of 2 edges (12+)+ and (2, 1+)−. The 2nd cycle
consists of 6 edges (1+, 2)+ → (2+, 1+)+ → (1, 2)− → (2+, 1)− → (1+, 2+)− →
(2, 1)+. Both cycles of G(W ) are shown by red dashed closed curves in Fig. 7.
The resulting Gauss surface S(W ) with 2 vertices, 4 edges, 2 faces has the Euler
characteristic χ = 2 − 4 + 2 = 0 and should be a torus as expected from the 2nd
picture in Fig. 7.

The Euler characteristic of a surface subdivided by a graph with |V | vertices
and |E| edges into |F | faces (topological disks) is defined as χ = |V |−|E|+|F | and
is invariant up to a homeomorphism (a bijection continuous in both directions).
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Fig. 7. The code W = 12+1+2 is realizable on a torus, G(W ) has two red dashed cycles
(Color figure online).

Any orientable connected compact surface of a genus g (the number of han-
dles) and b boundary components (circles) has χ = 2 − 2g − b ≤ 2. Hence a
sphere S2 with χ = 2 is detectable by the Euler characteristic among connected
compact surfaces.

Theorem 9 extends [12, Algorithm 1.4] from links to arbitrary knotted graphs.

Theorem 9. Given an abstract Gauss code W of a length |W |, an algorithm of
time complexity O(|W |) can determine if the given Gauss code W represents a
plane diagram of a knotted graph G ⊂ R

3.

Proof. The Gauss surface S(W ) of any abstract Gauss code W contains the
diagram D encoded by W due to the geometric interpretation of the rules in
Fig. 6. We assume that S(W ) is connected, otherwise we separately consider each
connected component below. This surface has the maximum Euler characteristic
χ among all orientable connected compact surfaces S that contain the diagram
D and have no boundary.

Indeed, after cutting the underlying graph of the diagram D ⊂ S, the surface
S splits into several components. The Euler characteristic of S is maximal when
all these components are disks as in the Gauss surface. The disk has χ = 1,
which is maximal among all compact surfaces whose boundary is a circle.

To decide the planarity of the Gauss code W , it remains to determine if the
Gauss surface S(W ) is a sphere S2, which is detectable by the Euler characteristic
χ = 2 in the class of all orientable connected compact surfaces S without bound-
ary. For computing the Euler characteristic χ, we use the Gauss graph G(W ),
which splits the Gauss surface S(W ) into topological disks by Definition 6.

Namely, the surface S(W ) has m + n vertices, |W | edges and the number of
faces equal to the number of cycles. We count all cycles in the graph G(W ) in
time O(|W |) by a double traversal of W according to the rules in Fig. 6. Hence
in time O(|W |) we compute χ = m + n − |W | + #(cycles) and determine if the
Gauss surface S(W ) is homeomorphic to a topological sphere S2. ��

5 Embedding Any Knotted Graph into a 3-Page Book

Our algorithm will draw a 3-page embedding of a knotted graph G, which is
usually represented by a plane diagram or by a Gauss code. Even for knots,
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Fig. 8. A path α through all vertices of any planar graph meets every edge at most
once.

an abstract Gauss code may not represent a closed curve in 3-space. That is
why we first solve the planarity problem for Gauss codes of knotted graphs in
Theorem 9.

If we know that a given Gauss code represents a plane diagram D of a knotted
graph G, the next step in Theorem 11 is to draw the diagram D in a 2-page book
as defined below. After that we upgrade this topological 2-page embedding of D
to a 3-page embedding of G in linear time, see Theorem 12.

Definition 10. The k-page book consists of k half-planes with a common
boundary line α called the spine of the book. An embedding of an undirected
graph G into the k-page book is topological if the intersection of G with the
spine α is finite and includes all vertices of G. A spine point of the embedded
graph G is any non-vertex point in the spine α. If G has no spine points, so
every edge of G is contained in a single page, then the k-page book embedding of
G is called combinatorial.

A graph D is planar if D can be embedded in R
2. Any undirected pla-

nar graph has a combinatorial 4-page embedding [20]. Figure 8 shows a non-
hamiltonian maximal planar graph that can not be combinatorially embedded
into 2 pages [1, Sect. 5]. Any topological 2-page embedding of this graph will
have spine points. The linear time algorithm below guarantees at most two spine
points per edge.

Theorem 11. [5, Theorem 1] Given a planar undirected graph D ⊂ R
2 with |V |

vertices, an algorithm of linear time complexity O(|V |) can draw a topological
embedding of the graph D in the 2-page book with at most two spine points per
edge.

Two more pictures in Fig. 8 illustrate the key idea how we can construct a
non-self-intersecting path α that passes through each vertex once and intersects
each edge at most once. By an isotopic deformation of R2, the path α can be
converted into a straight spine, which splits the plane into 2 pages. Since all
vertices and crossings of D are in the spine α, we get a required topological
2-page embedding of D.

We are not going to minimize the number of bends of edges in a 2-page
embedding of a plane diagram D, because we shall construct 3-page embeddings
of original knotted graphs with a linear number O(|W |) of total bends in the
length of a Gauss code W .
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Table 1. Necessary local upgrades of crossings from 2 to 3 pages, see Lemma 20 in
Appendix D.

Crossing Upgraded Crossing Crossing Upgraded Crossing
(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Theorem 12. Given an abstract Gauss code W , an algorithm of time com-
plexity O(|W |) determines if W represents a plane diagram of a knotted graph
G ⊂ R

3 and then draws a topological 3-page embedding of a graph H isotopic
to G. Moreover, the graph H has at most 12|W | intersections with the spine of
the book.

Proof. We first apply the linear time algorithm from Theorem 9 to determine if
the code W represents a plane diagram D of a knotted graph G. If yes, we draw
a 2-page embedding of the diagram D ⊂ R

2 in linear time using the algorithm
of Theorem 11.

At every crossing in the diagram D, we mark a short red arc that crosses
over another arc in D. The centers of all these marked arcs are all crossings of D,
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which are already in the straight spine α of the 2-page book. We may slightly
deform the embedding of D by pushing the marked red arcs into the spine α.
The full list of local upgrades of crossings has only 10 types in Table 1 justified
by Lemma 20 in AppendixD.

Now we push all marked red arcs into the extra 3rd page attached along α
above the diagram D. So we have upgraded the 2-page embedding of D to a
3-page embedding of a knotted graph H isotopic to the original graph G, see
Figs. 9 and 10.

We need a constant time per crossing, so O(|W |) in total, for a 3-page embed-
ding of H. Since the diagram D has |W | edges, the 2-page embedding of D with
at most 2 spine points per edge has at most 3|W | points in the spine α. Each
crossing of D is replaced by at most 4 intersections with the spine α in a 3-page
embedding of H. The total number of points in the intersection of H and the
spine α is at most 12|W |. ��

The codes of 3-page embeddings in Fig. 9 and 10 are explained in AppendixA.

6 Discussion and 10 Open Problems on Knotted Graphs

We now discuss our results in the light of a huge gap between real-life experi-
ments and pure mathematics. Experimental data are usually given in the form of
unstructured and noisy clouds of points. If we have only 2D images as in Fig. 1,
then we also need to extract a knotted structure in a suitable form.

Pure mathematicians have developed deep theories how to classify compli-
cated geometric objects including knots. However, all mathematical algorithms
start from ideal models, say a closed curve given by continuous functions or a
polygonal curve given by a sequence of points connected by straight edges.

Fig. 9. Hopf link and Hopf graph with Gauss codes and 3-page embeddings

The key challenge is to convert any unstructured experimental data into an
ideal theoretical model that can be rigorously analyzed by existing mathematical
methods. The first advance in this direction is computing the fundamental group
of a knot complement from a point cloud in [4]. We state open problems relating
practice and theory for knotted graphs. We are open to collaboration on these
and any related projects.

1. State and prove a criterion of planarity of Gauss codes of knotted graphs using
combinatorial invariants like sums of signs similarly to [12, Theorem 3.6].
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Fig. 10. Left-handed and right-handed trefoils with Gauss codes and 3-page
embeddings.

2. Let a link of n components be given as an unordered union of m ≥ 2n
open arcs (or sequences of points). How can we ‘correctly’ join corresponding
endpoints of the arcs to form n closed curves in R

3?
3. When drawing pictures on a tablet, a few intersecting curves can be repre-

sented by several sequences of 2D points sampled along the curves. Under
what conditions on the curves and sample, can we quickly reconstruct the
curves using only the sample?

4. Design a fast algorithm to convert an unstructured 3D point cloud sampled
around an unknown knotted structure into a Gauss code W of a knotted
graph.

5. Design an algorithm to convert a 2D image of a knotted graph into a Gauss
code W .

Our current work on visualizing Gauss codes is an important step in the
hard problems above. First, we may try to recognize small patches of vertices
and crossings in a 2D image of a knotted graph, but after that we should combine
them in a Gauss code whose planarity can be quickly checked by Theorem 9.

Second, if we need to visualize any noisy cloud sampled from an unknown
knot K ⊂ R

3, we may draw a knot isotopic to K using its Gauss code and
Theorem 12. Even more importantly we often wish to get a simplified (minimal)
version of a knot.

The state-of-the-art simplification algorithm for recognizing trivial knots
available at http://www.javaview.de/services/knots is based on 3-page embed-
dings. We remind how to extend this approach to graphs in AppendixA and
state more problems below.

6. Design an algorithm to untangle diagrams of graphs isotopic to planar
graphs.

7. Extend the algorithm for drawing knotted graphs in 3 pages to drawing 2-
dimensional surfaces in a universal 3-dimensional polyhedron (the hexabasic
book) from [9].

8. Decide if the problem to find a 3-page embedding of a knotted graph G ⊂ R
3

having the minimum number of intersections with the spine α is NP-hard.
9. Use the computed invariants to build a database of isotopy classes of knotted

graphs similarly to the Knot Atlas at http://katlas.math.toronto.edu.
10. Define a kernel [16] on point clouds representing knotted graphs so that

one can use tools of machine learning for automatic recognition of real-life
knotted structures.

http://www.javaview.de/services/knots
http://katlas.math.toronto.edu
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The earlier version [13] of this paper had other Problems 1 and 8 about
knotted graphs G ⊂ R

3 given as sequences of points, say positions of atoms in
a protein backbone. These problems were solved in [14] and replaced above by
harder questions.
Algorithms from Theorems 9, 11 and 12 are described in Appendices B, C, D,
respectively. A C++ code will be on the webpage http://kurlin.org of the first
author, who thanks EPSRC for funding his secondment at Microsoft Research
Cambridge. More examples are included in the forthcoming MSc thesis [17] of
the second author.

A Semigroups for Classifying Graphs up to Isotopy

We remind how to encode 3-page embeddings of all knotted graphs by words in a
simple alphabet. Since edges with vertices of degree 1 can be easily unknotted by
isotopy in 3-space, for simplicity we consider below only graphs without degree 1
vertices.

Fig. 11. Local 3-page embeddings for the generators of the semigroups from
Theorem 14.

To explain the 3-page encoding of knotted graphs, let us deform any 3-page
embedding so that all arcs are monotonically projected to the spine α. Then
the 3-page embedding can be uniquely reconstructed from its thin neighborhood
around α.

Namely, if we know only directions of arcs going from all spine intersections,
we can uniquely join these arcs in each of 3 pages. Hence we can encode any
3-page embedding by the ordered list of local embeddings at all intersections in
the spine α.

Theorem 13 [11, Theorem 1.6a]. Any 3-page embedding of a knotted graph G
with vertices up to degree n can be encoded by a word in the alphabet consisting

http://kurlin.org
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of the letters ai, bi, ci, di and xk,i for each degree k = 3, . . . , n, where i = 0, 1, 2,
see Fig. 11.

Figure 11 shows 12 local embeddings ai, bi, ci, di, i ∈ Z3 = {0, 1, 2}, which
are sufficient for encoding 3-page embeddings of knots and links. The notation
ai emphasizes that all ai can be obtained from each other by a rotation around
the spine α.

For encoding graphs in Theorem 13, we can make sure that at each vertex
the spine separates one or two arcs from others.Then only 3 local embeddings
are enough for each degree, see 3 neighborhoods x3,0, x3,1, x3,2 of a degree 3
vertex in Fig. 11.

The 3-page embedding K5 ⊂ R
3 in Fig. 3 can be represented by the 3-page

code w = a1d1 (a1b1x4,1)2(a1d1x4,1)d1(x4,1d1c1)(x4,1b1c1)d2c1c2.
The following result completely reduces the topological classification of knot-

ted graphs up to isotopy in R
3 to a word problem in finitely presented semi-

groups. The cases of 3-regular graphs and 4-regular graphs (singular knots)
appeared in [10,15].

Theorem 14 [11, Theorems 1.6 and 1.7]. There is a finitely presented semi-
group whose all central elements are in a 1-1 correspondence with all isotopy
classes of knotted graphs with vertices of degree up to n. An algorithm of a lin-
ear complexity O(|w|) decides if an element w of the semigroup is central, i.e.
commutes with all other elements.

So two knotted graphs G,H ⊂ R
3 are isotopic in 3-space if and only if their

corresponding central elements wG, wH are equal in the semigroup. A stronger
result in [9] says that all isotopies between 3-page embeddings of arbitrary knot-
ted graphs are realizable in the hexabasic book U × [0, 1], where U is the union
of the 3-page book P0 ∪P1 ∪P2 (with the common boundary line α) and a plane
P3 orthogonal to α. Theorem 14 has been extended to the isotopy classification
of surfaces in R

4 [9].
There are two semigroups: RSGn for rigid knotted graphs with vertices up to

degree n and NSGn for non-rigid graphs. Both semigroups have 12 generators
ai, bi, ci, di, i ∈ {0, 1, 2}, and 3(n − 2) generators for vertices up to degree n,
so 3 generators for each degree from 3 to n, see Fig. 11. The operation in the
semigroups is the concatenation of words. The unit is the empty word ∅. The
generators ai, ci, xk,i are not invertible, while bi, di are inverses of each other. In
the case of links for n = 2, the semigroup has 48 relations (1)–(4), where the
index i ∈ Z3 = {0, 1, 2} is considered modulo 3.

(1) d0d1d2 = 1 and bidi = 1 = dibi;
(2) ai = ai+1di−1, bi = ai−1ci+1, ci = bi−1ci+1, di = ai+1ci−1;
(3) w(dici) = (dici)w for w ∈ { ci+1, bidi+1di };
(4) uv = vu, where u ∈ { aibi, bi−1didi−1bi }, v ∈ { ai+1, bi+1, ci+1, bi

di+1di }.

One of the 7 relations in (1) is superfluous as it follows from the remaining 6.
The generators ai, bi, ci, d2 can be expressed only in terms of d0, d1, but the
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resulting relations between d0, d1 will be longer. All defining relations of the
semigroups represent elementary isotopies between 3-page embeddings, see [13,
Appendix].

For knotted graphs with vertices of only degree 3, any non-rigid isotopy can
be made rigid, because we can keep 3 short arcs at any vertex in a moving plane.
Hence both semigroups for rigid and non-rigid isotopies from Theorem14 are the
same for n = 3. In this case the extra relations in addition to (1)–(4) are (5)–(9),
see [10,11]:

(5) x3,i−1 = di−1x3,idi+1;
(6) x3,ibi(d2i d

2
i+1d

2
i−1) = (didi+1di−1)x3,ibi;

(7) x3,idi = ai(x3,idi)ci, bix3,ibi = ai(bix3,ibi)ci;
(8) ux3,i+1 = x3,i+1u for any word u from { aibi, dici, x3,ibi, bi−1didi−1bi };
(9) (x3,ibi)v = v(x3,ibi)v for any word v from { ai+1, bi+1, ci+1, bidi+1di }.

Knotted graphs that have only vertices of degree 4 and are considered up to
rigid isotopy are often called singular knots. Each singular point remains a
transversal intersection of two arcs during a rigid isotopy, so the cyclic order
of all arcs at any degree 4 vertex is invariant. The semigroup of Theorem 14
for singular knots has 15 generators ai, bi, ci, di, x4,i, relations (1)–(4) above and
relations (10)–(14) below, see [11,15]:

(10) x4,i−1 = bi+1x4,idi+1;
(11) (dix4,ibi)(d2i d

2
i+1d

2
i−1) = (d2i d

2
i+1d

2
i−1)(dix4,ibi);

(12) dix4,idi = ai(dix4,idi)ci, bix4,ibi = ai(bix4,ibi)ci;
(13) wx4,i+1 = x4,i+1w for any word w from { aibi, dici, dix4,ibi, bi−1di

di−1bi };
(14) (dix4,ibi)v = v(dix4,ibi)v for any word v from { ai+1, bi+1, ci+1, bidi+1di }.

The hard part of Theorem14 says that any isotopy between graphs decom-
poses into finitely many elementary isotopies involving a small part of a 3-page
code. This is the main advantage of the 3-page encoding over plane diagrams
and Gauss codes. Indeed, Reidemeister moves in Fig. 4 and their analogues on
Gauss codes are not local.

The linear time algorithm for detecting a central element w checks if the
arcs corresponding to all letters of w properly meet each other in every page to
form an embedding of a graph without hanging edges. For example, the letter
a2 doesn’t encode any knotted graph, but a2c2 does, because the arcs of a2, c2
meet and form a closed curve.

The 3-page code of a knotted graph commutes with any other element w in
the semigroups from Theorem 14. For instance, a trivial knot has the code a2c2
and can be isotopically moved in R

3 to another side of the 3-page embedding
represented by w.

B Algorithm 1 for Checking Planarity of any Gauss Code

The input is an abstract Gauss code W from Definition 5. The output is a plane
diagram (if it exists) having the same Gauss code W . The plane diagram will be
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obtained as the Gauss graph G(W ) with topological disks attached to certain
cycles of G(W ).

Stage 1.1: Simplifying a Gauss code W by Reidemeister moves I, see Fig. 4.
We go along a Gauss code W and check all pairs of two successive symbols.

If the pair is one of (k, k+), (k, k−), (k+, k), (k−, k) corresponding to the same
k-th crossing, we remove this pair from W and continue from the symbol before
the removed pair. If W is cyclic (for a circle), at the end we compare the 1st and
last symbols of W .

Stage 1.2: Building the abstract Gauss graph G(W ) of a Gauss code W .
The Gauss graph G(W ) was introduced in Definition 6. The nodes of G(W )

are all different vertices and crossings extracted from the Gauss code W after
forgetting all signs. We store the graph G(W ) in memory by using three arrays
NodeTypes, EdgeList, WedgeList. NodeTypes[r] is 0 if r is a vertex, 1 if r is a
positive crossing, −1 if r is a negative crossing. The EdgeList consists of ordered
pairs (i, j), where i, j are indices of nodes in NodeTypes. The WedgeList for
each node n contains indices of edges attached to n and ordered according to
the cyclic order from W (starting from any edge).

Stage 1.3: Subdividing the Gauss graph G(W ) to remove multiple edges.
It will be convenient to avoid multiple edges of G(W ) for Algorithm 2 building

a 2-page embedding. For each node n, we check all attached edges. If we find two
edges with the same endpoint k �= n, we add a midpoint to one of these edges.

Stage 1.4: Splitting the Gauss graph into different connected components.
We split the subdivided Gauss graph into connected components by using the

Boost algorithm [3] based on a Breadth First Search. From now on we assume
that G(W ) is a connected graph without loops and double edges.

Stage 1.5: Finding cycles in the Gauss graph G(W ) and checking planarity.
We initialise the boolean PassList whose 2 halves can be viewed as two

(forward and backward) lists indexed by edges of G(W ). Every bit in each of the
halves indicates whether we have passed the corresponding edge in the forward
or backward direction whilst building cycles. Each entry in PassList is initially
false. We shall keep track of the index least in this list so that all edges with
indices less than least are passed.

Step 1. Starting at the index least, check each entry of the edge list until a false
entry is found. If we reach the end of the list, we have found all cycles.

Step 2. Change least to the found index i of the next edge that wasn’t passed
yet. Set PassList[i] = true and start a new cycle from this i-th oriented edge e.
Repeat the following substeps until the next passed edge is once again e.
2a. For each edge, use EdgeList, WedgeList to find the node being moved
towards.
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2b. To make the “left-turn” for traversing a cycle from Definition 6 and Fig. 6,
we take the next edge from the list of cyclically ordered edges at the node from
the substep 2a.
2c. Change the boolean entry in PassList for the new passed edge to true.

Step 3. Store the cyclic order of the edges in the found cycle, and move back to
Step 1.

Step 4. Compute the Euler characteristic of the Gauss surface S(W ) by the
formula χ = V − E + F . Here V,E are the numbers of nodes and edges, respec-
tively, in G(W ). The number of cycles (or disks attached to the graph) is denoted
by F .

Step 5. If χ �= 2, the given Gauss code W doesn’t correspond to any knotted
graph as shown in the proof of Theorem9. Otherwise, we output an embedding
G(W ) ⊂ S2 as the graph G(W ) with its NodeTypes, EdgeList, PassList and
all found cycles.

Fig. 12. Left: Trefoil with signs of crossings and a base point p for WTref =
12+31+23+. Middle: subdivided Gauss graph without double edges from Stage 1.3
of Algorithm 1. Right: 5 cycles found in the subdivided graph at Stage 1.5 of Algo-
rithm 1, so χ = 6 − 9 + 5 = 2.

C Algorithm 2 for Drawing a 2-page Embedding

The input is an embedding G ⊂ S2 of an abstract graph G with the boundary
cycles of all faces (connected components of S2−G). The output is a topological
2-page embedding G ⊂ P0 ∪P1 (of a graph isotopic to the given one in S2). Here
the half-planes P0 and P1 have the common boundary (spine) α containing all
nodes of G.

Stage 2.1: Extending a given graph G to a maximal planar graph Ḡ.
We triangulate each face whose boundary has more than 3 nodes as follows.

Step 1. Pick a node v and use WedgeList, EdgeList to find its neighbors u,w.

Step 2. If u,w are connected by an edge (outside the current face), v cannot be
connected to any other node x �= u, v, w of the face, so we add all such edges
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(v, x). Otherwise, we add the edge (u,w) cutting the triangle (u, v, w) from the
current face.

Step 3. Start again with a new face if it still has more than 3 nodes.

For the embedded Gauss graph of the trefoil code WTref , the only non-
triangular face in Fig. 12 is {5, 1, 4, 2, 6, 3}. To triangulate this face, we begin
with node 1, and check if its neighbors in the face are adjacent in the graph.
Node 1 has neighbors 4 and 5 in the face, which a quick check revels is not
an edge in our list and so we add edge (4,5), and create new cycles {5, 1, 4}
and {4, 2, 6, 3, 5}. Similarly edges (4,6) and (6,5) are added, in order to get a
triangulation from the graph Ḡ(WTref ).

Stage 2.2: Building a canonical ordering on the nodes of the maximal planar
graph Ḡ.

A graph G is k-connected if G has at least k + 1 nodes and the removal of
any k−1 or fewer nodes with all their incident edges keeps the graph connected.

Definition 15. Given a maximal planar graph G ∈ R
2 on n ≥ 3 nodes, an

ordering of the nodes v1, v2, . . . , vn of G is called canonical if for each 3 ≤ k < n
the subgraph Gk induced by the nodes v1, . . . , vk has the following properties
(Fig. 13).

(a) The subgraph Gk is 2-connected and its external face Fk has the edge v1v2.
(b) The neighbors of vk+1 in Gk form a path on the boundary of the face Fk.

A canonical ordering exists by [7, Proposition 3] and is implemented in [3].

Fig. 13. Left: illustration of Definition 15. Right: drawing Ḡ(WTref ) using a canonical
ordering.

Stage 2.3: Drawing a 2-page Embedding of the Maximal Planar Graph Ḡ.
We implemented the algorithm from [5] drawing a topological 2-page embed-

ding G ⊂ P0∪P1 of any maximal planar graph whose nodes v1, . . . , vn are added
to the spine according to their canonical ordering. We put the edge between the
first 2 nodes v1, v2 into the lower page P1. For each next node vk, we follow the
steps below.
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Step 1. Find the embedded neighbors w1, . . . , wl of vk, where w1 is the leftmost
in α.

Step 2. Embed vk into α just to the right of w1, and embed the edge (vk, w1)
in P1.

Step 3. We connect vk with its neighbor w2 according to the substeps below.
3a. If vk and w2 are consecutive in the spine, we embed the edge (vk, w2) in P1.
3b. If vk, w2 are not consecutive, we embed (vk, w2) with 2 extra spine inter-
sections p, q, namely (vk, w2) splits into 3 subedges (vk, p) ⊂ P1, (p, q) ⊂ P0,
(q, w2) ⊂ P1.

Step 4. For each neighbor wi, 3 ≤ i ≤ l, we embed the edge (vk, wi) as in
substep 3b.

Step 5. Update EdgeList when we subdivide an edge into 3 subedges in Steps
3b, 4.

We explain the steps above by drawing the trefoil graph Ḡ(WTref ) from
the last picture in Fig. 14. This graph has a canonical ordering of nodes
{1, 3, 4, 2, 5, 6}. We embed the node v3 = 4 between the first 2 nodes v1 = 1
and v2 = 3 by Steps 2 and 3a in the 2nd picture of Fig. 14. We embed the node
v4 = 2 with 3 already embedded neighbors 1, 4, 3 by Steps 2, 3, 4 above in the
3rd picture of Fig. 14.

Fig. 14. A maximal planar graph Ḡ(WTref ) and drawing its 2-page embedding in
Stage 2.3.

We introduce the dual graph below in order to show in Proposition 19 that
the above algorithm produces an embedding isotopic to an original maximal
planar graph.
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Definition 16. Given a planar graph G ⊂ R
2, the dual graph G∗ ⊂ R

2 has a
node for each face of G and a continuous arc connecting nodes from any adjacent
faces of G.

Theorem 17 (Whitney [19, Theorem 11]). A 3-connected planar graph G with
a fixed external face has a unique dual graph G∗ ⊂ R

2 up to isotopy in the plane.

Corollary 18. Any 3-connected planar graph without loops andmultiple edges has
a unique planar embedding (up to isotopy) with a choice of external face of G.

Proof. Let G1, G2 ⊂ R
2 be planar embeddings of the same abstract graph with

the same external face. By Theorem 17, the duals G1
∗ and G2

∗ are isotopic.
By Definition 16 the double dual G1

∗∗ is isotopic to G1 and G2
∗∗ is isotopic

to G2. Since G1
∗ ∼ G2

∗, we conclude that G1
∗∗ ∼ G2

∗∗, hence G1 ∼ G1
∗∗ ∼

G2
∗∗ ∼ G2.

Proposition 19. For any maximal planar graph Ḡ ⊂ R
2 with a fixed external

face, Stage 2.3 outputs a 2-page embedding isotopic to the original embedding
Ḡ ⊂ R

2.

Proof. We may assume that a given maximal planar graph G has at least 4
nodes, then G is 3-connected. Since G has a fixed external face, no loops or
double edges, G has a unique planar embedding by Corollary 18. Since the
2-page embedding from Stage 2.3 has the same face, the output is isotopic to
the original embedding of G. ��
Stage 2.4: Restricting a 2-page embedding of a maximal planar graph Ḡ to G.

At Stage 2.1 we extended a planar graph G to a maximal planar graph Ḡ
in order to use a canonical ordering for drawing a 2-page embedding. Erase the
edges added at Stage 2.1 to get a 2-page embedding of G, see the 1st picture in
Fig. 15.

D Algorithm 3 for Drawing a 3-page Embedding

Algorithm 1 in AppendixB starts from a Gauss code W and outputs an embed-
ded (possibly, subdivided) Gauss graph G(W ) ⊂ S2 (if it exists). Then we fix
an external face to get an embedding G(W ) ⊂ R

2. Algorithm 2 in AppendixC
outputs an isotopic 2-page embedding G(W ) ⊂ P0∪P1. In Algorithm 3 the input
is the 2-page embedding with signs of crossings coming from the Gauss code W .
The output will be a 3-page embedding K(W ) ⊂ P0 ∪P1 ∪P2 of a knotted graph
isotopic to a graph given by W .

Stage 3.1:Upgrading crossings in a 2-page embedding to get a 3-page embedding.

Lemma 20. There are exactly 10 types of crossings in P0 ∪ P1 obtained by
Algorithm 2.
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Proof. According to the steps of Stage 2.3, all 4 (sub)edges incident to each
crossing are in the lower page P1. Each of these 4 edges goes either to the left
or to the right of the crossing. There are 5 ways to split 4 edges into 2 groups
of left and right edges. For each of 5 ways, there are 2 types of crossings, see all
10 types of in Table 1. ��

We upgrade each crossing in a 2-page embedding G(W ) ⊂ P0 ∪ P1 to a local
3-page embedding according to Table 1. The resulting global embedding defines
a knotted graph K(W ) ⊂ P0 ∪ P1 ∪ P2, because in every page all arcs join each
other.

Fig. 15. Left: 2-page embedding of the Gauss graph G(WTref ) from Stage 2.4 with
resolved crossings for Stage 3.1. Right: 3-page embedding of the trefoil G(WTref )
obtained at Stage 3.1.

Stage 3.2: Computing the element of a knotted graph K(W ) in a 3-page semi-
group.

The 3-page embedding obtained at Stage 3.1 may contain spine intersections
with both arcs in the same page see how to normalize such spine intersections
in Fig. 16. All the letters from the 3-page alphabet in Fig. 11 have only local
embeddings where arcs around every point in the spine occupy exactly 2 pages.
Examples in Fig. 16 show how to get a 3-page embedding encoded by an element
in a semigroup from AppendixA. After these upgrades the trefoil K(WTref ) from
Fig. 15 has the 3-page code a0a1d0b1a1b1d1d1d1b1b1d1b0c1d0d1d1b1b1b1b0d1c0c1.

Fig. 16. Normalizations of 3-page embeddings around points with arcs in the same
page.

Stage 3.3: Local simplifications for shortening elements in a 3-page semigroup.
Relations (1)–(2) in the semigroups from AppendixA are illustrated in Fig. 17

and allow us to locally simplify the element obtained at Stage 3.2. The trefoil
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Fig. 17. A geometric interpretations of relations (1) and (2) in the semigroups from
Appendix A.

from Fig. 15 will have the shorter code a0a1d0b1a1d1b0c1d0d2d1c0c1 in the 1st
picture of Fig. 18. The 2nd picture shows a minimal 3-page embedding with
a shortest code a2a1d0d2d1d0d2c1c0 by using more relations in the semigroups
from Appendix A.

Stage 3.4: Computing 3D coordinates for a straight-line 3-page embedding of
K(W ).

The spine α is identified with the x-axis. The upper page P0 is in the (x, z)-
plane. The pages P1,P2 are obtained from P0 by the rotations through the
angles ±2π

3 . If a 3-page code of a knotted graph K(W ) ⊂ P0 ∪ P1 ∪ P2 has
n letters, we embed corresponding points in the spine at (j, 0, 0), 1 ≤ j ≤ n.
After finding which points are connected in each page Pi, we embed all edges as
broken lines with 2 straight segments.

Fig. 18. Left: The 3-page embedding of a trefoil after local simplifications at Stage
3.3. Right: The minimal 3-page embedding of a trefoil after global simplifications by
relations from Appendix A.

The MSc thesis [17] explains in more details why all stages in Appendices B,
C, D require a linear time and memory in the length of a Gauss code.
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Abstract. In exploratory data analysis, important analysis tasks
include the assessment of similarity of data points, labeling of outliers,
identifying and relating groups in data, and more generally, the detection
of patterns. Specifically, for large data sets, such tasks may be effec-
tively addressed by glyph-based visualizations. Appropriately defined
glyph designs and layouts may represent collections of data to address
these aforementioned tasks. Important problems in glyph visualization
include the design of compact glyph representations, and a similarity-
or structure-preserving 2D layout. Projection-based techniques are com-
monly used to generate layouts, but often suffer from over-plotting in 2D
display space, which may hinder comparing and relating tasks.

Inspired by contour and venation shapes of natural leafs, and their
aggregation by stems, we introduce a novel glyph design for visualizing
multi-dimensional data. Motivated by the human ability to visually dis-
criminate natural shapes like trees in a forest, single flowers in a flower-
bed, or leaves at shrubs, we design a flexible leaf-shaped data glyph,
where data controls main leaf properties including leaf morphology, leaf
venation, and leaf boundary shape. Our basic leaf glyph can map to more
than a dozen of numeric and categorical variables. We also define custom
visual aggregation schemes to scale the glyph for large numbers of data
records, including prototype-based, set-based, and hierarchic aggrega-
tion. We show by example that our design is effectively interpretable
to solve multivariate data analysis tasks, and provides effective data
mapping. The design provides an aesthetically pleasing appearance, and
lends itself easily to storytelling in environmental data analysis problems,
among others. The glyph and its aggregation schemes are proposed as a
scalable multivariate data visualization design, with applications in data
visualization for mass media and data journalism, among others.

Keywords: Glyph visualization and layout · Nature-inspired visualiza-
tion · Leaf shape · Multi-dimensional data analysis · Data aggregation

1 Introduction

Glyph-based data visualization has a long tradition in Information Visualization
research and application. The basic idea in glyph visualization is to map data
c© Springer International Publishing Switzerland 2016
J. Braz et al. (Eds.): VISIGRAPP 2015, CCIS 598, pp. 123–143, 2016.
DOI: 10.1007/978-3-319-29971-6 7
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properties to visual properties of some appropriately designed visual structure.
By the interplay of the different visual properties, each glyph then represents a
data record. Many data records can be compared by appropriately laid out glyph
displays. Glyph visualization, like other areas in Information Visualization, can
be considered both a science and an art. Specifically, the design of glyphs may
be inspired intuitively by common, well-known shapes or icons. For example,
Chernoff faces were inspired by face properties, and sticky figures by abstraction
of human body shapes.

A subset of the designs studied in Information Visualization to date has
been inspired by nature. For example, tree structures have inspired hierarchical
node-link diagrams. As another example, the notion of information landscapes or
terrains is also borrowed from nature. There is reason to believe that the human
visual sense, due to long evolutionary processes, is highly trained in recognizing,
distinguishing and comparing natural forms. These visual recognition processes
typically work well even in low illumination conditions, or in presence of partial
occlusion of natural objects. By background knowledge and experience, humans
are able to efficiently recognize natural shapes, also often in cases where only
parts of the shape or their boundary are visible.

Based on this motivation, we investigate the design space for leaf shapes as
natural metaphors for data glyphs. From observing leaves in nature, it is clear
that there is a large variability in the different types and forms of leaves that
exist. Overall leaf shape, shape boundary, and shape interior all comprise several
visual parameters that can in principle, be used to map data to generate glyphs.
To the best of our knowledge, this is the first work to systematically study the
design space of leaf-based glyph visualization, and identify an encompassing set
of leaf variables to map data to. In conjunction with appropriate glyph lay-
outs (based e.g., on projection), and visual aggregation techniques, effective and
intuitive data displays can be realized. Our rationale for using leaf-based data
visualization is two-fold. First, the design space is large, giving ample opportu-
nities for the visualization expert to map data variables to visual variables. As
will be discussed, our variable space amounts to more than 20 different visual
variables that can be controlled. While we have not formally evaluated the effec-
tiveness of these variables or their combinations, we presume this is a large design
space from which appropriate effective selections can be found. Second, we pro-
pose that nature-inspired designs, by their potential aesthetic appearances and
familiarity, can be suited to spark interest in visual data analysis for wider audi-
ences, e.g., for use in mass media. Also, it resonates well with visualization of
environmental data, as has been previously demonstrated, e.g., by a respective
infographic used by OECD (see Sect. 2.2).

The remainder of this paper is structured as follows. In Sect. 2, we discuss
glyph-based and nature-inspired data visualization approaches. Section 3 defines
the design space for leaf glyphs, based on identification of main visual leaf prop-
erties which are candidates for data mapping. Then, in Sect. 4, we define several
visual aggregation schemes to scale 2D glyph layouts for large numbers of data
points. Section 5 then applies our design to several data sets. By exemplary
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data analysis cases, we demonstrate the principal applicability of our approach.
Finally, Sect. 6 summarizes our work and outlines future research in the area.

2 Related Work

Our work extends the design space of two existing branches of research by intro-
ducing a compact data representation making use of environmental cues. The
related work is, therefore, split into two parts. The first part covers the area of
space efficient visualization techniques, namely, data glyphs. The second part
addresses research using environmental cues to convey data. We do not address
research in the area of computer graphics, since this work mainly focuses on
photo-realistic representation of the environment. We refer the interested reader
to a summary work about this topic by Deussen and Lintermann [1].

2.1 Glyphs

In the literature, there exists a large variety of glyph designs. Elaborate sum-
maries can be found in [2,3]. To come up with a comprehensive categorization
we make use of Ward’s classification of data glyphs [3]. In his research he dis-
tinguishes between three different ways a data point can be mapped to a glyph
representation.

First, Many-to-One Mapping: All data dimensions and their respective
value are mapped to a common visual variable. Therefore, these designs can
be systematically created by choosing the most effective visual variable for a
certain task. Additional guidance is given by Cleveland et al. with a ranking
of visual variables [4]. Well-known examples making use of a position/length
encoding are star glyphs [5], whisker and fan plots [6,7], or profile glyphs [8].
The designs just differ in their layout of the dimensions (i.e., circular or linear)
and some minor variations like the presence or absence of a surrounding con-
tour line. Other glyph designs make use of color encodings to represent the data
value. Clock glyphs [9] map the dimensions in a radial fashion, whereas pixel-
based glyph designs [10] layout the dimensions linearly. Of course, color cannot
convey the data as accurate as a position/length encoding [11], however, for cer-
tain tasks like spotting outliers the color encoding is a reasonable choice. There
is even a design mapping the data values to the angle of its rays. Sticky figures
[6] use the visual variable orientation, which is not so accurate in communicating
exact data values. However, when used as an overview visualization the designs
convey individual shapes, which are perceived as a whole nicely approximating
the underlying data point.

Second, One-to-One Mapping: Each dimension is mapped to a different
visual variable. Probably, the most well-known representations here are Chernoff
faces [12]. The single data values are mapped to face characteristics, like the
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size of the nose or the angle of the eyebrows. Other more exotic designs are
bugs [13] (changing the shape, length or color of wings, tails and spikes), or
hedgehogs [14] (manipulating the spikes by changing the orientation, thickness
and taper). The major drawback of these kinds of glyph representations is that
they are often sensitive to the order by which the data dimensions are mapped
to visual variables. Variation of the order could significantly change the final
glyph representation and its visual perception by users. Additionally, measuring
differences between single dimension values within a data point is typically a
difficult task, as the analyst has to compare different kinds of visual variables
with each other (e.g., compare length with saturation or angle, etc.).

Third, One-to-Many Mapping: The dimensions are represented by two or
more visual variables. This redundant mapping can be useful to strengthen the
perception of individual dimensions. For example, in star or profile glyphs the
dimensions can be additionally encoded by coloring the single data rays. Clock
glyphs can make use of an additional length encoding for the single colored slices
to encode the underlying data values more accurately.

Metaphoric Glyph Designs: Another category of glyph representations are
metaphors for communicating domain specific data. A well-known example are
Chernoff faces [12], which were already introduced in the one-to-one mapping
category. In two quantitative experiments conducted by Jacob and Flury et al.
these faces were compared against other visual representations like polygons or
simple digits. In both evaluations data from human beings like anthropometric
variables [15] or medical patient information [16] had to be encoded. The results
indicate that metaphors outperform the more abstract designs. In addition, also
other metaphoric glyph designs like clock glyphs [11] or car glyphs [17] have been
subject to quantitative experiments yielding similar results.

As can be seen from these experiments metaphoric designs seem to be supe-
rior for specific domains compared to more abstract representations. This insight
is an interesting starting point to think about designs for visualizing environ-
mental data.

2.2 Environmental Cues

Visualizations making use of environmental cues need not necessarily be glyph
representations. Stefaner uses an abstract tree layout to show the editing history
of Wikipedia entries represented as single branches [18]. The branches grow to
the right whenever people decided to delete an article or to the left in the other
case. The resulting tree nicely summarizes 100 articles with the longest discussion
whether to keep them or not. Another tree-based approach in combination with
leaves visualizes poems in a more artistic way [19]. The branches of the tree are
invisible just dealing as an anchor point to arrange the glyphs. Each word in
the poem is represented with a leaf glyph and attached along the tree structure.
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The work is not eligible of representing the text data accurately but tries to
illustrate a creative unique picture or fingerprint of the underlying poem.

A more data-driven glyph design is the botanical tree [20], which again uses
a 3D tree layout to represent hierarchical information. The single nodes are rep-
resented as fruits. The authors argue that people can more easily identify single
nodes in this visualization compared to a more abstract representation because
they are used to detect fruits or leaves on shrubs or trees. A 2D visualization
using a botanical tree metaphor are so-called ContactTrees [21] which show rela-
tionships in data, e.g., contacts between persons. The branches consist of single
lines representing an attribute in the data, e.g., a longer line refers to an older
tie between people. Finally, fruits or leaves are added to the tree according to
some data property, e.g., the kind of relation between people (friends, co-workers
etc.). However, the fruits and leaves are highly abstract representations (mainly
colored dots) and their shape does not change according to some data character-
istics. The OECD’s Better Life Index visualization [22], on the other hand, sys-
tematically changes the appearance of the single flower glyphs used to represent
data. Stefaner uses such environmental cues to visualize multi-dimensional data
about country characteristics. Each country is represented by one flower. The
petals encode the different economic branches with varying sizes and lengths for
the corresponding values. The flowers are arranged according to their weighted
rank across all dimensions. People can change the layout by changing the weights
of the dimensions or simply focusing on just one dimension.

We contribute to this body of existing work with the definition of a highly
detailed leaf glyph, which closely follows the main morphological and functional
variations among leaves. It is able to effectively map data variables. We also
provide a custom aggregation scheme to scale leaf layouts for large number of
records.

3 Environmental Glyph

According to Biological literature, leaves may be categorized by their function
or usage in the environment [23]. For our purposes, we divide leaves according
to their shape (or morphology). The overall appearance of a leaf consists of the
combination of (1) the overall shape type, (2) the boundary details, and (3)
the leaf venation. We consider these three aspects as the main dimensions for
controlling the leaf glyph by mapping data. As a result we come up with a design
space structured along the overall leaf shape, which we discuss next.

3.1 Leaf Shape Design Space

Following Palmer who pointed out: “Shape allows a perceiver to predict more
facts about an object than any other property” [24], this visual variable should be
used for the most important data dimension. In the environment, there exists a
nearly endless amount of different leaf shapes since each leaf is unique. However,
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it is possible to distinguish leaves according to their overall shape [1]. A first
categorization can be done between conifer and deciduous leaves.

Conifer leaves can be found for example at fir or pine trees and have a thin
long needle-like shape. Therefore, they do not offer much space for a venation
pattern, which we want to use later for mapping additional attributes (e.g.,
Acicular leaves). Since the differences in shape are quite small for the different
kinds of this group and the provided area is limited due to the distorted aspect
ratio, we do not consider them in our design space.

Deciduous leaves cover a large group of different shapes and can again be
further divided into four sub-categories [1].

Pinnate and palmate compound leaves are shapes, which consist of several
smaller leaflets attached to a shared branch (e.g., Alternate, or Odd and Even
Pinnate leaves etc.). In order to avoid any misinterpretation between single
leaflets at a branch and individual leaves, we discard this group from our final
design space. However, these kinds of leaves seem an appropriate representation
to visually summarize multiple data points where one leaflet corresponds to a
single leaf.

Lance-like leaves have a parallel venation and are thin and long, similar to
conifer leaves. Therefore, it is difficult to distinguish different kinds of these
leaves since the differences in the overall shape are limited. Like the conifer
leaves, we do not keep them in our design space because of the limited area to
map a venation pattern, and because of possible confusion of different lance-like
shapes.

Leaves with net veins or reticulate venation patterns encompass the largest
group of deciduous leaves with a big diversity in shape. We restrict ourselves
to the most common leaf shapes for this category to avoid misinterpretation of
intermediate structures, which could not clearly be distinguished. Additionally,
we focus on leaves with a big surface to show venation patterns and small stems
to save space. Leaves similar to Flabellate, Unifoliate, etc. will, therefore, not be
considered.

The most important requirement for shapes in visualizations is that they
should be easily distinguishable. Therefore, our final design space covers elliptic
(e.g., Ovate, Obtuse, Obcurdate etc.), circular (e.g., Orbicular), triangular (e.g.,
Deltoid), arrow-like (e.g., Hastate, Spear-shaped etc.), heart-like (e.g., Cordate,
Deltoid etc.), two variations of tear-drop like (e.g., Acuminate, Cuneate etc.),
wave-like (e.g., Pinnatisect), and star-like (e.g., Palmate, Pedate, etc.) shapes.
Figure 1 illustrates the nine different leaf shape categories covered by our design
space. In Sect. 5 we will introduce a heuristic to map data points to leaf shapes,
based on the idea of representing outlying points by the more jagged leaf shapes;
conversely, non-outlying points will be represented by the more regular or smooth
leaf shapes.

We take these categories as a starting point and further extend them by map-
ping additional attribute dimensions to the width and the height of the glyph,
scaling the overall shape. Therefore, similar shapes according to a certain data
characteristic can look different because of the varying aspect ratio. However,
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Fig. 1. Leaf shapes: Selected from our overall design space, these are the shapes used
in our final glyph design. From left to right: Wave-like, circular, triangular, heart-like,
arrow-like, tear drop up, tear drop down, elliptic, and star-like shapes.

Fig. 2. Leaf scaling: The Lobate leaf shape is scaled using either the width (middle),
or the height (right) of the glyph. Even after scaling, the glyph can still be recognized
as a wave-like leaf, although the precise environmental reference to the Lobate leaf is
reduced.

the individual shape categories can still be distinguished (Fig. 2). Because of
this decision, we will deviate from the precise environmental reference, where
leaves typically show a homogeneous aspect ratio. However, we thereby are able
to encode additional data dimensions. Note that we do not want to represent
leaves as accurate as possible (or even photo realistic), but use their expressive-
ness to visualize data.

3.2 Leaf Boundary Design Space

Basically, the boundary (or margin) of a leaf can be described as either ser-
rated or unserrated. Unserrated boundaries have a smooth contour adapting
to the overall leaf shape. Serrated boundaries are toothed with slight varia-
tions depending on the size of teeth, their arrangement along the boundary, and
their frequency. Of course, there are more detailed differences and variations
in nature. However, especially in overview visualizations (the major domain of
data glyphs), distinguishing between small variations of the contour line of a
leaf shape is nearly impossible. We therefore focus on just the two main bound-
ary categories of teethed or smooth (serrated or unserrated). For mapping data
values to the leaf boundary, we distinguish between a smooth and a toothed
contour line and vary the width, height, and frequency of the teeth according to
the underlying data value (Fig. 3).
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Fig. 3. Leaf boundary: Modifying the boundary in our design is realized by changing
the frequency, the height, or the width of the boundary serration (teeths). Combinations
of these three variables are possible and increase the expressiveness of the glyph. The
figure illustrates all possible combinations for low, middle, and high data values for an
elliptically shaped leaf glyph.

3.3 Leaf Venation Design Space

We also control the leaf venation pattern as to map additional data variables to
the glyph. Several main leaf venation patterns exist, which differ in their overall
structure within the leaf. A rough distinction can be made between single, not
intersecting (e.g., Parallel), paired (e.g., Pinnate), or net-like (e.g., Reticulate)
veins. The venation is perceived as an additional texture for the glyph and
further increases the glyph expressiveness. Since it is hard to find a natural
order within this texture, we propose to use the venation type for visualizing
qualitative (or categorical) data, similar than the overal leaf shapes discussed
in Sect. 3.1. Within a given venation type, we may also encode numeric data.
This works as follows. Generally, the leaf is split in the middle by a main vein,
with small veins growing from there in a given direction (angle). For mapping
numerical data, we may either control this angle of the veins branching out from
the main vein. An alternative is to control the number of veins shown on the
surface Fig. 4. As a result, we come up with a venation texture able of encoding
categorical and numerical data.

3.4 Summary

Besides modifying the leaf shape given by morphology, boundary and venation,
further dimensions can be assigned to the color hue or saturation of the glyph.
Of course, the designer has to pay attention to the contrast between the venation
texture and the background color. Additionally, orientation of the glyph in the
display can be used to encode further numeric information. We draw a short
stem to each leaf shape, showing its orientation. Finally, it is also possible to
modify the stem’s width or height as well.
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Fig. 4. Leaf venation: The texture for the venation system can either be created by
mapping data values to the angle or frequency of the veins separately, or by combining
the two. The figure illustrates all possible combinations for low, middle, and high data
values for a wave-like leaf shape.

This represents a comprehensive design space for mapping data to leaf glyphs,
controlled by 12 categorical and 14 numeric parameters, summing up to 26 vari-
ables altogether (see Table 1 for an overview of all variables.) We propose this
design space as a toolbox from which the designer may select visual variables as
appropriate. The number of 26 parameters is considered more a theoretical upper
limit of data variables that we can show. We expect not all visual parameters in
this design space to be of the same expressiveness; but some variables may be
more effective than others, and may not all be orthogonal to each other. Careful
choice should be done in selected and prioritizing the variables. An option is of
course always, to redundantly code data variables to different glyph variables, to
emphasize perception of important data variables. In Sect. 5, we will illustrate by
practical examples, how glyph variables can be combined to form data displays.

4 Leaf Glyph Aggregation

When visualizing large data sets, leaf glyphs, like many other glyphs, are prone
to overlap in the display, reducing the effectiveness of perceiving data from
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Table 1. Summary of the parameters of our glyph design. It comprises 14 numeric and
12 categorical variables, which form the theoretic upper limit for the expressiveness of
our glyph. Note that in practice, these variables are expected to not all be orthogonal,
and comprise different perceptional performance, depending also on the data.

Leaf Design Numeric Variables Categorical Variables

Shape 2 (x/y scale) 9 (selected morphologies)

Boundary 3 (frequency, width, height of teeth) –

Venation 2 (number, angle of child veins) 3 (parallel, paired, net)

Other 7 (hue, saturation, orientation, x/y
position, stem width/height)

–

Sum 14 12

individual glyphs. Generally, an increasing amount of multivariate points in a
visualization produces significant clutter resulting in perceptional problems – the
user is not able to distinguish between data points properly anymore. This is
mainly due to our design intention to use larger shapes for adding e. g., venation
patterns. Next, we discuss three different aggregation techniques, to help cope
with large numbers of data points in our glyph display: Alpha Compositing,
Prototype Generation, and Abstraction.

First, we apply transparency in Fig. 5 to provide a visually pleasing repre-
sentation that also reveals differences between data points. In some cases, the
application of transparency is not enough. For example, if multiple data points
share the same position, the opacity might sum up until no difference is perceiv-
able. Therefore, we propose two different aggregation techniques that build on
top of transparency and the application of a grid-based aggregation. Specifically,
we place a user-defined grid on top of the visualization. All data points sharing
the same cell are aggregated (see Fig. 6).

These effects can at the same time be perceived in nature: leaves can overlap
or coincide with others. We adapt the proposed aggregation techniques and
extend them in order to find a representative aggregate glyph which summarizes
multiple leaf glyphs.

In Figs. 5 and 6 we point out the application of the aggregation techniques –
Alpha Compositing, Prototype Generation, and Abstraction – with respect to
nature. We next explain them in terms of their counterpart in nature, and apply
them to our visualization of leaf glyphs.

4.1 Alpha Compositing

We use Alpha Compositing [25] to reveal details on overlapping glyphs by apply-
ing transparency. This technique describes the process of combining multiple,
separately rendered images in order to provide a transparent appearance. The
result of the application of transparency to the glyphs is shown in Fig. 5.

As mentioned in Sect. 3, different leaf shapes and characteristics need to be
taken into account. In nature, leaves own the characteristic that even when
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Fig. 5. Aggregation by Alpha Compositing. When multiple leaves overlap or
coincide, we are not able to distinguish properly between their shapes and related
characteristics. To overcome this issue, we propose to apply alpha compositing. It
reveals details by applying transparency to the leaves.

multiple leaves overlap, we perceive differences due to their diverse shape and
color. To support this, we apply transparency to the leaves. Figure 5 presents
the first results. The application of transparency works well, in our experience,
for a limited amount of leaf glyphs. When too many leaves overlap, perceptional
problems can arise: Since the transparency also aggregates, from a certain extent
on, the glyphs can become occluded and not be distinguishable anymore. For
this reason, we propose two additional aggregation techniques we observed in
nature: Prototype Generation and Abstraction.

4.2 Prototype Generation

As mentioned above, transparency may not be enough when aggregating mul-
tiple glyphs. Therefore, we propose to additionally generate a prototype glyph
that aggregates the characteristics of all considered glyphs. We apply a grid and
aggregate all leaves the calculated center point of which fall into the same grid
cell; the cell dimensions are user defined. The glyph representing each cell can
be given either by (1) a single glyph, determined by statistical aggregates of the
member element dimensions, e.g., the mean or median values, or (2) a visual
aggregate combining small multiples of the member elements, by a connecting
structure (so-called bouquet glyph, inspired by combinations of different flower
types). Figure 6 shows the result of both techniques, visualization of the median
as well as the visualization in form of a bouquet. For both techniques, the trans-
parency is preserved to be able to distinguish between different attribute values
that determine the shape of a leaf glyph.

Our first proposed prototype is the representation of the median. We there-
fore create a new leaf glyph that has a simple appearance by means of its shape.
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Fig. 6. Grid-based aggregation. We apply a grid to the visualization and calculate
the center point of each leaf glyph, and aggregate all glyphs whose center points coincide
within the same cell. Two different aggregations can be used: Prototype Generation and
Abstraction. The first determines a representative glyph for the corresponding cell in
the form of a median glyph or a bouquet glyph. The second creates (similar to what
we observe in nature), a branch with multiple leaves based on the attributes of the
considered leaves.

We use the median venation, margin, and shape in order to describe a set of
leaves that coincide in one cell.

Similar to a bouquet, we derive our second proposed prototype by combining
and aligning all contained leaf glyphs. First, all leaf glyphs sharing the same
shape are stacked using transparency as described in Sect. 4.1. Second, stacked
leaf glyphs are aligned in a radial manner according to their shape. This means,
while in the first step glyphs are stacked according to their shape, in the second
step they are radially moved and aligned according to the shape classes as pointed
out in Sect. 3. As a result, we get a representation similar to a bouquet.
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4.3 Abstraction by Visual Aggregation

Based on the grid aggregation, we need to address issues that emerge when too
many glyphs fall into one cell. Prototype generation may fail, if too many glyphs
along too many different shapes are aggregated, and the visualized prototype
may then suffer from clutter. Therefore, we propose abstraction by visual aggre-
gation. We describe the new visual representation for an aggregated set of glyphs.
Similar to growth characteristics of leaves we observe in nature, this aggregation
technique represents an aggregated set of leaf glyphs as a new branch with multi-
ple leaves on it. All leaf glyphs are aligned side-by-side along a branch according
to Fig. 6.

4.4 Hierarchical Aggregation

The previously introduced aggregation techniques are not only suitable to visual-
ize dense areas in 2D projections. Another design alternative is to use hierarchical
arrangements, which can convey aggregate information and therefore, help with
scalability. The relevant concept is that of a dendrogram (see Fig. 7). Each parent
node in a dendrogram may be represented by an aggregate prototype showing
properties of the represented data partitions. Basic hierarchical visualizations
can, therefore, be enriched with additional information like the composition of
data points for individual clusters.

In Fig. 7 we clustered the Iris dataset from the UCI Machine learning reposi-
tory and represented the hierarchical structure in a radial dendrogram. The class
attribute is used to assign different leaf shapes to the data. Other visual features
like color, venation, and margin represent different attribute dimensions of the
dataset. In each level, the nodes have been replaced with aggregated leaf glyphs
using alpha composition together with a position bundling. The leaf glyph posi-
tioned in the middle of the visualization (#1 ) aggregates the dimension values
of all nodes in the diagram. It, therefore, contains many different sub-clusters
as can be seen in Fig. 7. When traversing the single branches to the lower levels
(from inside out) the prototype representations of lower aggregate levels are get-
ting more homogeneous. For example, after the first hierarchical split two main
clusters are separated (a and b). The node labeled with b shows only green
ovate leaves thus representing a homogeneous group of data points. The other
aggregated prototype labeled with a seems to be more heterogeneous showing
two different kinds of leaf shapes (hastate leaves and maple leaves). However,
after descending to the next hierarchy level these two sub-clusters are separated.
The inner node labeled with #2 represents only maple leaves, whereas the other
node labeled with #3 contains hastate leaves. By traversing along the different
branches the inner node is getting more and more homogeneous (e.g., similar
colored leaves). Step by step different sub-clusters are divided till the lowest
level of the hierarchy is reached.
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Fig. 7. Enhanced dendrogram: A selection of data points from the iris dataset have
been hierarchically clustered and their structure represented in a radial dendrogram.
Leaf glyphs are used to visualize the groups and individual data points along the
hierarchy. As can be seen, the visual structure of the leaf glyph is getting more and
more precise when approaching the leaf nodes illustrating the homogeneity of the lower
levels in the dendrogram (Color figure online).

5 Story Telling and Data Analysis

We defined an encompassing scheme to generate leaf glyph-based data visu-
alizations for large data sets. We implemented the above described designs in
an interactive system. We here exemplify results we obtained for analyzing the
forest fire data set, showcasing the applicability of our approach. Note that a for-
mal comparison against alternative glyph designs and user testing remain future
work.
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To facilitate memorizing the visual mappings we explain our design choices
step by step (see Figs. 9, 10, 11, and 12). Such a story telling approach guides
the audience through a use case scenario, which analyzes complex data struc-
tures combining multi-dimensional characteristics with time-series data. When-
ever possible metaphoric features are used to represent data dimensions. As
studies suggest such an approach will help to better understand the underlying
data.

Fig. 8. Shape categories: Based on the results of the clustering we assign different
leaf shape templates according to the data characteristics.

Forest Fire: The forest fire data set is available in the UCI machine learning
repository [26]. It contains data about burned areas of forests in Portugal on a
daily basis for one year.

Additionally, weather information is included, e.g., temperature, humidity,
rain and wind conditions at respective points in time. This data set does not
contain any categorical data which could be directly mapped to the leaf shape.
Therefore, we initially clustered the data points with the DBSCAN algorithm
[27] and assign local or global outliers to different glyph shapes (Fig. 8). Our
idea is to map outliers to the more jagged leaf shapes, while non-outlier points
get mapped to more regular or smooth shapes, thereby providing a first visual
assessment of the degree of outlyingness for the data. Our analysis task is to
find similarities between burned areas to be able to predict fires due to certain
weather conditions.

First, we wanted to get an idea about the data distribution. We used one
data glyph for each data point and positioned the leaf glyphs in a common
scatterplot layout. The x-axis is reflecting the temperature and the y-axis the
humidity. By intention, we swapped the y-axis showing low data values at the top
and high data values at the bottom. This reflects our background knowledge that
possible indicators for forest fires are a high temperature and a low humidity.
Potentially vulnerable areas are, therefore, positioned at the top right corner of
the scatterplot. Figure 9 allows a first view of the data. There seems to be a
positive correlation between temperature and humidity. However, because of the
high number of data points, substantial information is lost due to overplotting.
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Fig. 9. Scatterplot layout: Leaf glyphs are positioned in a scatterplot according to
their temperature and humidity. Since no aggregation technique is applied on the data
a lot of overplotting occurs.

As a next step, we applied transparency to the data points and also use color
to show temporal information and orientation to encode the wind speed. The
alpha composition technique helps to detect some more leaf shapes, however,
especially in the dense area on the diagonal still a lot of overplotting exists. For
the color encoding, we decided to use a metaphoric approach to help understand
the encoding without a color legend. We try to associate the seasons (i.e., winter,
spring, summer, autumn) with the leaves. During winter and autumn, the leaves
in nature have a brownish or reddish color, whereas the color hue changes during
spring and summer getting more green. Therefore, we colored our leaf glyphs
accordingly. As can be seen in Fig. 10 the data points are divided into 2 main
clusters. Brown and red leaf glyphs are located above the diagonal and the
more greener leaves are positioned on the diagonal. It seems as if humidity and
temperature are both lower during autumn and winter times compared to spring
or summer.

Another metaphoric approach was used to represent the magnitude of wind.
The orientation of the leaf glyphs is changing according to the wind speed.
Data points with low speed are oriented to the left. With an increasing wind
speed the angle changes pointing right. The idea was to simulate a blast blowing
from left to right catching all leaves and changing their direction accordingly.
However, no additional visual pattern can be perceived. The leaf glyphs are
pointing in various directions showing no correlation between wind magnitude
and temperature, humidity, or time.

To find similarities between burned forest areas, we map the size of the
burned regions to the size of the glyphs. While this encoding is not strictly a
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Fig. 10. Alpha Composition: Transparency is used to better perceive the data in
cluttered areas. Since too many data points are located in the dense regions this aggre-
gation technique does not provide the best view on the data (Color figure online).

metaphoric representation, it does help to associate the information with the
respective visual dimension. When inspecting Fig. 11, it appears all leaf glyphs
are reduced in size, and differences according to size cannot be perceived. This is
surprising, since we would expect the size of burned forest areas to be different.
One possible explanation is that some data points with different size are located
in the cluttered area on the diagonal.

To get a different perspective on the data, and to further reduce overplot-
ting, we switch to an alternative aggregation technique to better understand
the highly cluttered area (Fig. 12). Due to the design of the bouquet prototype
generation, the visual attribute of orientation is lost, and therefore, we cannot
map the wind magnitude to this variable anymore. In the highly cluttered area
in the middle of the plot, several different maple leaf shapes become apparent.
These refer to outliers detected by our previous clustering algorithm. However,
more interesting are the two big maple leaf shapes located at the top right cor-
ner. They represent huge areas of burned forests during the summer time with
high temperature and low humidity. When switching to Fig. 11, and keeping
in mind the concrete location of these data points, we can further extract the
wind magnitude, which seems to be medium. With this understanding of the
data, it is plausible why the burned forest areas are large. High temperature,
medium winds, and low humidity all support the spread of forest fires. However,
since there are more smaller data points with similar data characteristics, these
features are not necessarily an indication for large forest fires. Perhaps other
factors, e.g., the area or the coverage of fire stations, which are not covered in
the data visualization discussed, may constitute additional factors.
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Fig. 11. Forest fire data set: We applied alpha compositing as an aggregation tech-
nique to get a first overview of the data set. We used the following mapping to represent
the multi-dimensional data: Shape =̂ local/global outlier, x-position =̂ temperature,
and y-position =̂ humidity, color hue/saturation =̂ time (i.e., month), size =̂ area of
burned forests, orientation =̂ magnitude of wind.

Fig. 12. Forest fire data set: We applied a prototype aggregation technique to reveal
insights to the highly cluttered areas in the plot. Interesting to note are the relatively
big outlier leaf shapes, which were not visible beforehand.
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Of course, these findings would need to be substantiated by additional data
considerations. Further information, e.g., the amount of firemen fighting the
fire, the exact kind and amount of trees, or the time until the fire was recognized
are important side factors not covered within the used data. However, with our
new glyph approach, we were able to easily identify timely patterns, outliers, and
similar behavior of data points. Other glyph designs (i.e., star glyphs etc.) might
also be suitable to represent the data, however, our leaf glyph technique helps to
easily associate the appearance of the data point with its attribute dimensions.

6 Conclusion and Future Work

We introduced Leaf Glyph, a novel glyph design inspired by an environmental
metaphor. Due to its natural and familiar appearance, we expect users are likely
to be able to discriminate data by its visual properties. The glyph is based on
a naturally prominent shape, which should connect well to human perception,
supposedly also under conditions of partial overlap. We systematically struc-
tured the leaf glyph design space. Specifically, we mapped data to the main
properties of the leaf glyph: Leaf morphology, leaf venation, and leaf boundary.
Furthermore, we defined visual aggregations including set-oriented and hierar-
chical aggregation, to scale the glyph display for large numbers of data records,
based on inspirations from nature. Finally, we exemplified the applicability and
effectiveness of our approach in a multivariate data analysis task, showing its
strengths in illustrative storytelling using a consistent metaphor.

This work is a first step in studying the effectiveness of nature-oriented data
visualization. While we believe leaf glyphs can form intuitive and effective data
glyphs, more thorough evaluation is needed. Specifically, we want to compare
the leaf glyph against alternative glyphs from the literature, such as Chernoff
faces, and pixel-oriented glyphs. This should also include user-studying of effec-
tiveness and efficiency of the technique. We also believe our approach is aesthet-
ically pleasing and may spark interest by a wider audience, for use, e.g., in mass
media communication. The leaf glyph by design may fit well e.g., to visualiza-
tion of environment survey data. Also, this should be evaluated by qualitative
consideration.

As a next step, we will combine our multi-dimensional leaf glyph represen-
tation with related botanical tree metaphors to extend the design space with a
hierarchical layout. A natural combination would be to pair it with the botanical
tree layouts proposed in [20]. We assume the combination of the two will sup-
port people with no computer science background more easily in understanding
complex data structures due to the environmental reference. We further want to
test this in a controlled environment against more abstract hierarchical repre-
sentations such as TreeMaps.
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Abstract. Particle tracing in fully resolved turbulent vector fields is
challenging due to their extreme resolution. Since particles can move
along arbitrary paths through large parts of the domain, particle inte-
gration requires access to the entire field in an unpredictable order. Thus,
techniques for particle tracing in such fields require a careful design to
reduce performance constraints caused by memory and communication
bandwidth. One possibility to achieve this is data compression, but so
far it has been considered rather hesitantly due to supposed accuracy
issues. We shed light on the use of data compression for turbulent vec-
tor fields, motivated by the observation that particle traces are always
afflicted with inaccuracy. We quantitatively analyze the additional inac-
curacies caused by lossy compression. We propose an adaptive data com-
pression scheme using the discrete wavelet transform and integrate it
into a block-based particle tracing approach. Furthermore, we present
a priority-based GPU caching scheme to reduce memory access opera-
tions. In some experiments we confirm that the compression has only
minor impact on the accuracy of the trajectories, and that on a desktop
system our technique can achieve comparable performance to previous
approaches on supercomputers.

Keywords: Vector fields · Turbulence · Particle tracing · Data com-
pression · Data streaming

1 Introduction

One of the most intriguing and yet to be fully understood aspects in turbulence
research is the statistics of Lagrangian fluid particles transported by a fully
developed turbulent flow. Here, a fluid particle is considered a point moving
with the local velocity of the fluid continuum. The analysis of Lagrangian statis-
tics is usually performed numerically by following the time trajectories of fluid
particles in numerically simulated turbulent fields. Let x(y, t) and u(y, t) denote
the position and velocity at time t of a fluid particle originating at position y at
time t = 0. The equation of motion of the particle is

∂x(y, t)
∂t

= u(y, t),
c© Springer International Publishing Switzerland 2016
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subject to the initial condition

x(y, 0) = y.

The Lagrangian velocity u(y, t) is related to the Eulerian velocity u+(y, t) via
u(y, t) = u+(x(y, t), t). By using a numerical integration scheme, the trajectory
of a particle released into the flow can now be approximated.

Particle tracing in discrete velocity fields of a sufficient spatial and temporal
resolution to resolve the higher wavenumber components in turbulent flows is
nonetheless difficult. For reasonably-sized particle ensembles the performance
is strongly limited by the available memory bandwidth capacities due to the
massive amount of data to be accessed during particle tracing. Consequently,
an effective performance improvement can be expected from data compression
schemes which can read and decompress the data at significantly higher speed
than reading the uncompressed data. We make use of a brick-based compression
layer fulfilling this requirement [1].

Since in particle tracing the interpolation errors accumulate and are trans-
mitted to the calculated trajectories, we analyze—compared to the established
interpolation scheme on the uncompressed data—the inaccuracies in the com-
puted trajectories which are caused by lossy compression.

Intuitively one might argue that lossy compression should not be considered,
because it introduces an additional, non-acceptable error into particle tracing.
On the other hand, in our application study the vector fields were simulated using
a spectral method, meaning that the data values are a discrete sampling of a
band-limited smooth function. Therefore, a ground truth interpolation exists—
namely trigonometric interpolation—yet it is never used due to its high numerical
complexity. Nevertheless it is clear that the established interpolation scheme
already introduces an error, even though this error is generally accepted. As
our major contribution we show that the additional inaccuracies caused by lossy
data compression are in the same regions of variation in which the trajectories
in the uncompressed field differ from the assumed ground truth trajectories. For
the particular application this means that the trajectories extracted from the
compressed data are as reliable as the trajectories usually used for analyzing the
turbulence fields.

We focus on the analysis of the (spatial) interpolation error, because it is well
known that interpolation is the major source of errors in numerical particle trac-
ing in fully resolved turbulent flow fields. This is due to the fact that turbulent
velocity fields are highly nonlinear. Since the time-step in turbulence simulations
is commonly restricted to small values to enforce the Courant number stability
condition, the time-stepping error in numerical integration is generally much less
significant.

We use two vector-valued data sets describing turbulent flow fields to verify
our approach. These data sets are the result of terascale turbulence simulations
and originate from the JHU turbulence database cluster, which is publicly acces-
sible at http://turbulence.pha.jhu.edu. Each is comprised of one thousand time
steps of size 10243, making every time step as large as 12 GB (3 floating-point

http://turbulence.pha.jhu.edu
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values per velocity sample). The data sets contain direct numerical simulations of
magneto-hydrodynamic (MHD) turbulence and forced isotropic turbulence, and
are called “MHD” and “Iso” in the following. For a description of the simulation
methods used to compute these data sets let us refer to [2].

2 Related Work

We do not attempt here to survey the vast body of literature related to flow
visualization approaches based on stream and path line integration because they
are standard in flow visualization. For a thorough overview, however, let us refer
to the reports by [3–5].

Teitzel, et al. [6] put special emphasis on the investigation of the numeri-
cal integration error and the error introduced by interpolation. They conclude
that an RK3(2) integration scheme provides sufficient accuracy compared to lin-
ear interpolation, but they do not consider higher-order interpolation methods.
There is also a number of works dealing especially with accuracy issues of parti-
cle tracing in turbulence fields [7–9]. One of the conclusions was that Lagrange
interpolation of order 4 to 6 provides sufficient accuracy, and it is therefore the
established scheme in practice (cf. [2]).

The use of graphics hardware is popular for interactive particle tracing
approaches [10–14]. The fundamental problem in GPU-based approaches is the
limited memory available on such architectures, allowing only data sets of rather
moderate size to be handled efficiently. To the best of our knowledge, no previous
approach has addressed the problem of GPU particle tracing when even a single
time step does not fit into GPU memory.

An important topic related to our method is data compression using trans-
form coding. For a general overview of data compression techniques we refer to
the book by [15]. The recent survey by [16] provides a more focused treatment
of techniques used in the context of volume visualization. Our GPU compres-
sion scheme builds upon previous work for performing Huffman and run-length
decoding entirely on the GPU [1,17].

Precomputed Particle Traces: In a number of approaches it has been pro-
posed to precompute and store particle trajectories for a number of prescribed
seed points, and to restrict the visualization to subsets of these trajectories [18–
20]. In this way, all computation is shifted to the preprocessing stage, and storage
as well as bandwidth limitations at runtime can be overcome.

Conceptually, the approach to restrict the flow field analysis to a set of pre-
computed trajectories can be seen as a kind of lossy data compression, where
the seeding positions are quantized rather than the flow data itself. However,
since even very small perturbations of the seeding positions can lead to vastly
different trajectories, the resulting visualizations might not contain all relevant
structures that are present in the data.

Parallelization on Compute Clusters: Another possibility to address scala-
bility issues in particle tracing is to employ parallel computing architectures such
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as tightly coupled CPU clusters or supercomputers. The larger memory capaci-
ties and I/O bandwidth on such systems make them attractive for handling large
data sets. However, the highly data-dependent nature of particle tracing makes
it difficult to effectively parallelize particle tracing on large distributed memory
architectures.

The two basic parallelization strategies are parallelize-over-seeds (PoS) and
parallelize-over-blocks (PoB) (cf. [21]). In both strategies, the data set is parti-
tioned into blocks. In PoS, the seeding positions are distributed over the proces-
sors, and each processor dynamically loads those blocks required by its parti-
cles. This usually leads to fairly even load-balancing of computations, but it also
results in the duplication of blocks in memory and increased I/O load since a
block might be accessed by many processors. In PoB, the blocks are distributed
across the processors, and each only handles particles within its assigned blocks.
This avoids the duplication of blocks in memory, but causes severe load imbalance
when many particles fall into the same processor’s blocks while other proces-
sors remain idle. It also requires communication of particle positions between
processors whenever a particle enters another processor’s domain. A number
of approaches have been presented to mitigate the drawbacks of PoS or PoB
[21–25].

As reported e.g. in [22], particle tracing on compute clusters typically spends
only a small fraction of the total time on the computation of particle traces. In
many approaches, most of the time is spent on either node-to-node communica-
tion, I/O, or waiting due to load imbalances. It can be concluded that despite
its embarrassingly parallel nature, particle tracing is not very well suited for
computation on distributed memory clusters. The main benefit of such systems
appears to be the large amount of aggregated memory, which can often prevent
expensive trips to external memory such as hard disks.

3 Out-of-Core Particle Tracing

Our proposed system for out-of-core particle tracing takes as input a sequence
of 3D velocity fields, each field representing the state of a flow field at a different
time step. We assume that the values in each field are given on a Cartesian
grid. In a preprocess, each grid is partitioned into a set of equally-sized bricks.
A halo region is added around each brick to allow proper interpolation at brick
boundaries. The bricks are compressed before being stored sequentially on disk.
An index structure is stored along with the brick data to enable fast access
to individual bricks at runtime. For one time step consisting of 10243 velocity
values, this process takes about 5 min.

At runtime, the computation of particle trajectories is performed on the
GPU. For that, bricks which are required to perform the numerical integration
are requested from the CPU. The CPU decides based on a particular strategy
(see Sect. 3.3) which bricks to upload to the GPU from main memory or disk.
Compressed brick data is cached in CPU memory. The compression reduces
disk bandwidth requirements and allows us to cache a large number of bricks.
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For use on the GPU, the compressed brick data is uploaded into GPU memory
and immediately decompressed. The decompressed brick is stored in a large
3D texture map, the so-called brick atlas. In this way, all GPU memory (apart
from a small temporary buffer for the upload of compressed data) stores ready-
to-use flow data. In the current implementation we use bricks of size 1283 each
(including a halo region of size 4). We have found that this size provides the best
trade-off between locality of access and storage overhead for the halo voxels. The
size of the brick atlas is chosen based on the amount of available GPU memory.

3.1 Particle Tracing in Rounds

Fluid particles are advected in parallel on the GPU to exploit memory bandwidth
and computational capacities. We use the CUDA programming API and issue
one thread per particle, grouped into thread blocks of size 128. Each thread
advects the position of its particle while the required flow data is available in the
brick atlas. Since the set of bricks which are required to perform the computation
of all trajectories does not fit into GPU memory in general, only a subset can be
made available at a time. An index buffer stores the mapping from spatial brick
index to position in the brick atlas. It is indexed by the 3D brick index b, which
can be computed from a particle’s position p and the brick size s as b = �p/s�.
If a brick is not currently available in the brick atlas, the corresponding index
entry contains the value −1. Figure 1 illustrates the employed data structures
and CPU-GPU interaction using a 2D example.

Fig. 1. Out-of-core particle tracing (2D example): (1) Particle positions are uploaded
to the GPU where trajectories are computed in parallel. Requests of required bricks
are issued (corresponding entries in the requests buffer are incremented). (2) The CPU
downloads the requests buffer, uploads some requested bricks into the GPU brick atlas,
and clears the requests buffer. The index buffer stores the index into the atlas of
each uploaded brick and is also uploaded to the GPU. (3) The GPU advects each
particle until it requires a brick not yet resident in GPU memory. The requests buffer
is incremented again based on the new particle positions, and the process continues at
step (2).

To start the computation, the user specifies the number of fluid particles to
trace and the seed region in which they are spawned. Random positions inside
the seed region are stored in the particle buffer on the GPU (not shown in
the figure). Particle tracing then proceeds in a ping-pong fashion between the
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GPU and the CPU: The GPU advances all particles in parallel. Whenever a
particle enters a brick which is not stored in the brick atlas (indicated by a −1
entry in the index ), the GPU requests this brick for the next round of tracing.
This is realized by atomically incrementing the corresponding entry in a requests
buffer. The particle’s last position and any additional information (such as the
current step size for adaptive integrators) are stored in the particle buffer. The
GPU stops when all particles (a) must stop because they are waiting for a
brick to be uploaded to the GPU, (b) have reached their maximum age, or (c)
have been advanced by a fixed maximum number of steps (64 in the current
implementation). The CPU then downloads the requests buffer and determines
the bricks to be uploaded next into the atlas. With these bricks being available on
the GPU, particle tracing is restarted. The process is finished once all particles
have either reached their maximum age or left the domain.
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Fig. 2. Velocity sampling near a brick boundary: Texel boundaries are shown in gray;
grid points and cell boundaries in black. A halo region is stored to allow sampling of
velocity values in a small region outside of the brick. The size of the required halo
region depends on the interpolation scheme.

3.2 Tracing Across Brick Boundaries

Special care has to be taken whenever a particle moves close to a brick bound-
ary. In this case it has to be ensured that all velocity values required in the
integration step are available in the current brick. The number of required val-
ues depends on the support of the interpolation kernel. Figure 2 depicts the
admissible locations for velocity interpolation near a brick boundary for several
interpolation schemes. For a multi-stage integration method, not only the ini-
tial particle location but also all intermediate stages of the integrator must lie
within the admissible area. This can be guaranteed by limiting the maximum
integration step size Δt appropriately: When the distance of the particle to the
boundary of the admissible region in dimension i is bi, then Δt must be lim-
ited to mini(bi/vi,max), where vi,max is the maximum absolute value of the i’th
velocity component in the region. This value is computed in the preprocess and
stored along with the brick data.
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3.3 Heuristic Brick Selection and Paging

Since the full set of bricks required to trace a given set of particles cannot be
stored in GPU memory, subsets of these bricks have to be paged in and out, and
processed sequentially in a number of rounds. However, it can always happen
that a brick which has been paged out is later visited by some particle and has
to be paged in again. Thus, an appropriate paging strategy is required to reduce
the number of bricks which are uploaded multiple times.

Besides multiple uploads of the same brick, the paging strategy also has
to take into account the number of particles which can be advected using the
currently available bricks. The massively parallel nature of GPUs can only be
exploited to its full potential when many particles can be processed in parallel.

These two requirements, however, contradict each other: According to the
first requirement, a brick should be kept in GPU memory as long as possible to
avoid multiple uploads. Conversely, the second requirement demands that a brick
through which few or no particles are moving should be paged out immediately,
so that bricks required by a large number of particles can be paged in.

Since it is not known in advance which bricks are to be visited at which times,
it is not possible to devise an optimal paging strategy. Instead, we have devised
a simple yet very effective heuristic paging strategy which attempts to balance
the two goals. It is based on the following observations:

– Paging out a brick which is currently required by some particles will always
result in a repeated upload of this brick later on.

– A brick which is not required by any particle might be visited again later on,
so it might still be beneficial to keep it on the GPU. However, since keeping
such bricks at least currently wastes GPU memory, a balance must be found
between minimizing premature swap-outs and maximizing GPU occupancy.

– Processing spatially close bricks at the same time tends to improve brick re-
use and thus helps to avoid repeated uploads. It also increases the chances of
particles moving between available bricks within one round, which increases
the average number of active particles at any time and thus improves GPU
utilization.

Based on these observations, our paging strategy operates as follows. Note that
paging out a brick does not entail any data transfer, but simply means clearing
the corresponding entry in the index buffer.

– We only ever page out bricks which are not required by any particle.
– A brick which is not required by any particle is kept on the GPU for a fixed

number of rounds, r, before it is paged out. We have found that paging out
such bricks after r = 4 rounds works well, with each round limited to a
maximum of 64 integration steps per particle. Increasing the value of r could
only reduce the number of brick uploads by up to 10 %, while increasing the
particle advection time by an order of magnitude due to the less efficient GPU
usage. Smaller values, on the other hand, significantly increased the number
of brick uploads.
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Whenever a slot in the brick atlas is available, the next brick to upload is selected
according to the following priorities:

– Only bricks required by at least one particle are considered in order to avoid
spurious uploads.

– Bricks which are required by a large number of particles are preferred.
– Bricks are favored or disfavored based on the availability of their neighbors

in GPU memory, as well as the numbers of particles they contain. Particles
expected to travel between the brick under consideration and an available
neighbor result in a priority bonus in order to enhance locality and data re-
use. Particles traveling in from an unavailable neighbor result in a penalty—in
this case, it would be better to process the neighbor first, so these particles
can coalesce with those in the current brick. Finally, particles traveling out
into an unavailable neighbor carry neither bonus nor penalty.

Taking these rules into account, a heuristic load parameter, l, is computed for
each brick b as follows:

l =
√

cb + h ·
∑

n∈N(b)

{√
cb · pb,n + √

cn · pn,b , n on GPU
−√

cn · pn,b, else

This parameter is then used to assign priorities to the requested bricks. Here, cb
is the number of particles in brick b, and N(b) is the set of neighbors of b. pa,b
is the probability of a particle from brick a traveling into brick b (note that in
general pa,b �= pb,a). These probabilities can be precomputed by tracing a number
of particles within each brick and storing in which direction they leave the brick,
i.e. a flow graph (cf. [23]). Computing such a flow graph for a 10243 flow field
takes around 1 min in our system (excluding disk I/O). However, we have found
that when a flow graph is not available, simply substituting a constant value for
the probabilities works surprisingly well, increasing the total computation time
by less than 10 % is most cases.

The user-defined parameter h ≥ 0 is used to weight the neighborhood-based
bonus and penalty terms. Larger values correspond to a larger preference for
locality. Figure 3 shows the time required to trace 4096 stream lines in two data
sets for different values of h. Choosing an appropriate value for h reduces the total
tracing time by about 30–40 % in both data sets. In the following experiments,
we always use a value of h = 10.

Bricks are loaded from disk into CPU memory using the same priorities.
However, bricks which currently do not contain any active particles are also
pre-fetched into the cache if the disk would otherwise be idle.

3.4 Unsteady Flow

So far, we have addressed only the case of steady flow, i.e. stream line computa-
tion. Path lines are computed in much the same way, with some straightforward
extensions to account for the time-dependent nature of the flow. Each slot in
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Fig. 3. Relative times for tracing 4096 stream lines in two data sets (including CPU-
GPU data transfer and GPU advection), depending on the heuristic parameter h. The
absolute times at s = 0 are 27.2 and 23.3 s for Iso and MHD, respectively.

the brick atlas now contains multiple time steps of the same spatial brick; the
number of slots is reduced accordingly. The index records which time steps are
currently available. Similarly, the requests buffer holds not only the number of
requests to a spatial brick, but also the earliest time step that was requested.
The CPU also tracks the earliest time step which was requested globally and
pages out all brick time steps older than that, since they will not be visited
again by the current particles. Finally, during the selection of bricks to upload,
priority is given to older time steps, so that all path lines advance at roughly
the same speed, and multiple uploads of the same data are avoided.

3.5 Interpolation Schemes

Our system supports a number of different interpolation schemes which are used
in numerical particle integration. The simplest one is linear interpolation, which
comes “for free” on the GPU. Lagrange interpolation of order n fits a polyno-
mial of degree n−1 through the n grid points centered around the interpolation
point. Second-order Lagrange interpolation is thus equivalent to linear interpo-
lation. We have implemented 4th, 6th, and 8th order Lagrange interpolation
(called Lagrange4/6/8), corresponding to cubic, quintic, and septic polynomi-
als, respectively. It is worth noting here that Lagrange6 can be considered one
of the standard methods in turbulence research. The application of higher-order
schemes can hardly be found in the literature. Additionally, we have imple-
mented an interpolation scheme based on Catmull-Rom splines. This approach
fits a cubic polynomial to the values and first derivatives, estimated via central
differences, at two grid points. Compared to 4th order Lagrange interpolation,
this has the advantage of creating a globally C1-continuous interpolant, while
Lagrange4 is only C0. All described interpolation schemes are extended to mul-
tiple dimensions by a tensor product approach.

The minimum size required by the halo around each brick depends on the size
of the chosen interpolation kernel, e.g. 2 voxels for Lagrange4 and 4 voxels for
Lagrange8 (cf. Fig. 2). Thus, a selected halo size of 4 in our approach allows for
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any interpolation scheme with a support of up to 83 voxels. If only lower-order
interpolation is required, a smaller halo size can be used which slightly reduces
memory and bandwidth requirements.

4 Turbulent Vector Field Compression

In the absence of data compression, the performance of the proposed system
for particle tracing in large turbulence fields is vastly restricted by bandwidth
limitations when reading the data from disk. For instance, the computation of
stream lines as shown in Fig. 4 in one single uncompressed time step involves a
working set of almost 5 GB. The visualization takes roughly 45 s on our target
architecture, of which over 98% are spent waiting for data from disk. Thus,
there is a dire need for compression in order to reduce the amount of data to be
streamed.

Fig. 4. Stream lines in (uncompressed) MHD (10243).

When using data compression, the introduced compression error has to be
carefully examined. Since no error is introduced by lossless compression schemes,
they might be an attractive choice in particle tracing applications. However,
for floating-point data the achieved compression rate is usually quite modest.
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For instance, the lossless schemes proposed in [26,27] can only compress the tur-
bulence data to roughly 2

3 of its original size. They achieve a decoding throughput
of about 10 million floating point values per second, corresponding to over 600 ms
for the decompression of a single 1283 grid of 3D velocities. More sophisticated
prediction schemes can slightly improve the compression rate [28], but they come
at the expense of lower throughput.

In comparison, the lossy GPU compression scheme proposed in [17] provides
high compression rate and decompression throughput. Even for vector data it
was demonstrated that the throughput of a GPU decoder is significantly above
disk speed [1]. The scheme is based on the discrete wavelet transform, followed
by a quantization of wavelet coefficients and a final entropy coding of quan-
tized coefficients. The process achieves a decoding throughput of over 650 million
floating-point values per second, at 3 bits per velocity vector and a signal to noise
ratio above 45 dB.

4.1 Interpolation Error Estimate

When a lossy scheme for vector field compression is used, it is clear that the
reconstructed field is afflicted with some error compared to the initial field.
At first, this seems to preclude lossy compression schemes in particle tracing,
because the local reconstruction errors accumulate along the particle trajectories.
On the other hand, this error has to be seen in relation to the error that is
inherent to particle trajectories even when computed in the original data.

Even without compression the reconstructed samples are not exact in general,
due to the interpolation which is used to reconstruct the data values from the
initially given discrete set of samples. This interpolation makes assumptions on
the continuous field which, in general, do not hold. As a consequence, it has to
be accepted that the trajectories we compute numerically using interpolation
diverge from those we would see in reality, even without compression.

It therefore makes sense to choose a compression quality so that the addi-
tional error introduced by the compression scheme is in the order of the error
introduced by interpolation. It is worth noting, however, that without addi-
tional information about a data set it is impossible to accurately compute or
even estimate the interpolation error. In some cases, theoretical error bounds
depending on higher-order derivatives of the continuous function can be given;
see, for instance, [29] for such a bound when linear interpolation is used. On the
other hand, the derivatives of the continuous function are typically not known
exactly. In that case, such bounds themselves come with some uncertainty. In
addition, even with exact knowledge of the derivatives, they often overestimate
the actual error significantly [30].

Therefore, we have adopted a different approach to estimate the interpolation
error: We take the difference between interpolation results from a reference high-
order interpolator and a lower-order interpolator as an estimate for the error in
the low-order interpolator. For the two discrete turbulence data sets we analyze
in this work (Iso and MHD), an exact interpolator is known. Due to the pseudo-
spectral method that was used to simulate the turbulent motion [2], the velocity
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Fig. 5. Path lines in the Iso and stream lines in the MHD data sets. Left: Particle
trajectories using (ground truth) trigonometric (blue) and (established) Lagrange6
(red) interpolation in the original data for velocity sampling. Right: Particle trajectories
using trigonometric interpolation (blue) and Lagrange6 interpolation (yellow) in the
compressed data. The yellow traces appear to be of similar accuracy as the red lines
(Color figure online).

field is guaranteed to be band-limited in the Fourier sense. As a consequence,
Fourier or trigonometric interpolation using trigonometric polynomials of infinite
support gives exact velocity values between grid points [9]. Due to efficiency
reasons, however, what is used in practice for particle tracing is an interpolation
scheme of “sufficiently high order” which resembles Fourier interpolation, e.g.
Lagrange6. For instance, in Fig. 5 (left) the trajectories using trigonometric and
Lagrange6 interpolation are compared. It is worth noting that even though in
the turbulence community it is usually agreed that Lagrange6 is of sufficient
accuracy for particle tracing, significant deviations from the ground truth can
be observed.

The interpolation error over the whole volume for a given interpolator can
now be computed: We upsample the volume to four times the original resolu-
tion using the interpolator under consideration as well as the reference inter-
polator. The RMS of the difference between the upsampled volumes then is a
good approximation of the average error introduced by the interpolation. Since
trigonometric interpolation has to be evaluated globally, to generate the inter-
polant in a computationally efficient way, we have adopted the following app-
roach: First, we perform a fast Fourier transform (FFT) on the flow field using
the FFTW library [31]. In the frequency domain, we then quadruple the data
resolution in each dimension by zero padding. Finally, an inverse FFT is per-
formed to generate a flow field of four times the original resolution. This field
agrees with the original field at every fourth vertex, and the other vertices lie
on the trigonometric interpolant between the original data samples. Figure 6
illustrates FFT-based upsampling in 1D, but only doubling the data resolution.
Generating the 40963 trigonometric interpolant from a 10243 velocity field in
this way takes about 1.5 h including disk I/O. Given the 40963 trigonometric
interpolant, evaluating the interpolation errors in a 10243 velocity field for the
listed interpolation schemes takes another 2 h including disk I/O.
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Fig. 6. FFT-based upsampling process. Left: A periodic band-limited function with a
period of 4, and its discrete approximation sampled at a frequency of 1. Middle: FFT
coefficients of the function in magenta and cyan. Because the input function was real,
the coefficients have a Hermitian symmetry. The coefficients are padded with zeros
to the left and right, corresponding to higher frequencies with an amplitude of zero.
Right: The inverse FFT of the padded coefficients results in a higher-resolution approx-
imation to the continuous function. Note that the even grid points of the upsampled
approximation agree with the original grid points.

4.2 Error-Guided Data Compression

Equipped with the average interpolation error for a chosen interpolation scheme,
we can choose a quantization step in the data compression scheme so that the
compression error is equal to or falls below the interpolation error. In the wavelet-
based compression scheme we use, the average error is roughly equal in magni-
tude to the quantization step and, thus, the acceptable error is a reasonable
choice for the quantization step. Table 1 lists the RMS interpolation errors in
both data sets for a number of different interpolation schemes. To verify that
the lossy compression does not unduly affect the interpolant, we have com-
puted the interpolation errors a second time after compression, comparing the
reconstructed volumes to the original reference solution. It can be seen that by
setting the quantization step equal to the RMS interpolation error, the error is
increased by less than 50 % in all cases. It is worth mentioning that performing
the same test with an upsampling factor of only 2 instead of 4 yields almost iden-
tical results (within 5 % of the listed numbers). This indicates that the discrete
computation approximates the actual interpolation error very closely. This is
expected, as the reference interpolant is by definition band-limited with respect
to the original resolution, so no high-frequency deflections can occur between
the original grid points.

It remains to show that the accumulation of the additional quantization errors
does not introduce significantly larger regions of variation in the trajectories. A
first experiment can be seen in Fig. 5 (right), where the trajectories computed on
the compressed field using Lagrange6 interpolation are compared to the ground
truth trajectories. Compared to Fig. 5 (left), the deviations seem to be in the
same order of variation. A detailed quantitative accuracy analysis is given in the
following section.
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5 Evaluation

To evaluate the performance of our system as well as the accuracy of the resulting
trajectories, we have conducted a number of experiments. In the first set of
experiments we analyze the accuracy of trajectories when the proposed lossy
compression scheme is used. In the scope of a second set of experiments we
evaluate the performance of our system. In the following, we first introduce the
error metrics we use to analyze the accuracy of the computed trajectories.

5.1 Error Metrics

Due to errors induced by the employed interpolation scheme and by lossy com-
pression, a trajectory may gradually diverge from the ground truth over time.
To evaluate the accuracy of computed trajectories, an error metric is required
to quantitatively measure the difference between two trajectories starting at the
same seed point.

One obvious metric is the maximum or average distance between trajecto-
ries s0(u), s1(u) along their parameter u. In addition, several metrics exist which
measure some kind of distance between two curves, such as the (discrete) Fréchet
distance [32] and the distance under dynamic time warping (DTW). While the
Fréchet distance corresponds to a type of maximum distance, the DTW dis-
tance is akin to an average distance. Both disregard the u parametrization and
instead are concerned only with the shape of the curves. All these metrics mea-
sure the distance along the complete trajectories. However, once two particles
have diverged by some critical distance, their further behavior depends only on
the characteristics of the flow field: They might diverge further or even converge
again, but this provides no insight into the accuracy of the trajectory compu-
tation. Therefore, we introduce a new metric taking this into account, which
we call the (clamped) divergence rate. Instead of measuring a distance between
trajectories, it computes the rate at which they diverge. Given two trajecto-
ries s0(u), s1(u) over a parameter interval [u0, umax], we define their divergence
rate as

Table 1. Root-mean-square interpolation errors for different interpolation schemes in
two turbulent flow fields before (orig) and after compression (comp), compared to the
reference trigonometric interpolant. The interpolation error has been evaluated in a
grid of four times the original resolution.

Iso (range: 6.67) MHD (range: 2.77)

Interpolation orig comp orig comp

Lagrange8 0.86E-3 1.26E-3 3.48E-4 4.97E-4

Lagrange6 1.10E-3 1.60E-3 4.52E-4 6.32E-4

Lagrange4 1.71E-3 2.41E-3 7.20E-4 9.63E-4

Linear 5.15E-3 6.65E-3 2.29E-3 2.81E-3
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ds0,s1 :=
dist(udiv)
udiv − u0

, where

dist(u) := ‖s0(u) − s1(u)‖ and

udiv := max
{
u ∈ [u0, umax]

∣∣ ∀ũ ∈ [u0, u] : dist(ũ) ≤ Δs
}

.

udiv is the last point along the trajectories at which they have not yet diverged
by more than Δs. In the following experiments, we have set the critical distance
Δs equal to the grid spacing.

Our definition of the trajectory divergence rate is similar in spirit to the idea
of the finite-size Lyapunov exponent (FSLE) [33]. The FSLE measures the time it
takes for two particles, initially separated only by an infinitesimal ε, to diverge
by some given distance, usually specified as a multiple of ε. A fundamental
difference is that in our case both trajectories start at exactly the same position,
and we measure their divergence as an absolute distance rather than relative to
their initial separation.

5.2 Accuracy Analysis

To compare the accuracy of particle trajectories computed in the original and
compressed data sets, and via different interpolation schemes, a reference solu-
tion is required to which the trajectories can be compared. For the used turbu-
lence data sets, trigonometric interpolation is known to be exact. Since evalu-
ating the trigonometric interpolant during particle tracing is impracticable, we
have upsampled the data sets to four times the original resolution (see Sect. 4.1)
as the ground truth. Particle trajectories traced in the upsampled versions using
16th order Lagrange interpolation then act as the reference solution. While this
is not equivalent to true trigonometric interpolation in the original data, the
remaining error is expected to be negligible since the difference between the two
times and four times upsampled versions is already very small (cf. Sect. 4.1).

For the accuracy analysis of computed trajectories, we have generated a
set of 4096 seed points in each data set, randomly distributed over the entire

Table 2. File sizes and compression factors. For Very Low, Low, Medium, and High,
the quantization step was chosen equal to the error in linear and Lagrange4/6/8 inter-
polation, resp. (cf. Table 1); for Very High, to half the error in Lagrange8.

Iso MHD

Quality size factor size factor

Uncompressed 14.7 GB – 14.7 GB –

Very High 1.79 GB 8.21 1.55 GB 9.48

High 1.25 GB 11.8 1.06 GB 13.9

Medium 1.08 GB 13.6 942 MB 16.0

Low 843 MB 17.9 712 MB 21.1

Very Low 387 MB 38.9 331 MB 45.5
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domain. Particles were traced from the seed points through different versions
of the data sets: The upsampled reference version, the original uncompressed
data, and compressed versions at different compression rates. The quantization
steps for the compressed versions were chosen equal to the errors in linear and
Lagrange4/6/8 interpolation as listed in Table 1. In addition, we generated one
high-quality compressed version of each data set, where the quantization step
was set to half the Lagrange8 interpolation error. The compressed file sizes and
compression rates (as the ratio of original size to compressed size) are listed in
Table 2.

To minimize the impact of inaccuracies due to numerical integration errors,
in all of our experiments we used the Runge-Kutta method by [34]. The method
provides a 5th order solution and a 4th order error estimate, which is used for
adaptive step size control. The error tolerance for step size control was reduced
until the accuracy of the results did not improve any further.

Fig. 7. Accuracy of stream lines vs. compression quality using different interpolation
schemes. Accuracy is reported as the root mean square (RMS) of the individual trajec-
tory distances (see Sect. 5.1), computed against trajectories traced using the (approxi-
mate) trigonometric reference interpolation.

Figure 7 provides the main results of our accuracy analysis. The graphs show
the root mean square (RMS) of the average, maximum, Fréchet, and DTW dis-
tance, as well as the divergence rate, over all trajectories for different compression
rates and interpolation schemes. For reference, the grid spacing is approximately
0.00614 in both data sets. The most prominent finding is that linear interpola-
tion performs very poorly and eclipses the errors introduced at even the high-
est compression rates. The differences between the other interpolation schemes
are comparatively small; as expected, with some advantage of the higher-order
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schemes. All distance metrics give qualitatively similar results. However, all met-
rics except for our novel divergence rate display a significant amount of noise in
the results. This is caused by a few individual trajectories with a very large dis-
tance to their reference. These trajectories have a very large impact on the RMS
distance, but actually carry little information on the accuracy of the results,
as explained in Sect. 5.1. The divergence rate, on the other hand, handles such
trajectories well.

The most important observation with regard to the lossy compression is that
when the quantization step is chosen smaller than the interpolation error (e.g.
Lagrange4 interpolation and a compression quality of “Medium” or higher), the
additional error introduced by the compression is extremely small. For example,
switching from Lagrange6 to Lagrange4 interpolation has a larger impact on the
accuracy than switching from uncompressed data to the “High” compression
quality in both data sets.

5.3 Performance Analysis

The performance of any particle tracing system depends on a multitude of fac-
tors, such as the characteristics of the data set, the number and placement of
seeding locations, and the total integration time. This makes an exhaustive per-
formance evaluation and comparison to other approaches fairly difficult. Instead,
we have tried to capture the typical performance characteristics of our system.
For both data sets, we investigated the following two scenarios:

1. Sparse: This is the same scenario that was used for pursuing the accuracy
analysis. 4096 seeding locations are distributed uniformly in the domain, and
particles are traced for 2.5 and 5 time units in Iso and MHD, respectively.

2. Dense: This scenario models an interactive exploration. 1024 seed points are
placed within a small box with an edge length of 10 % of the domain size. The
particles are traced over 5 and 10 time units in Iso and MHD, respectively.

All timings were measured on a PC with an Intel Core i5-3570 CPU (quad-
core, 3.4 GHz) with 8 GB of DDR3-1600 RAM, equipped with an NVIDIA
GeForce GTX 680 GPU with 4 GB of video memory. The size of the brick atlas
was set to 64 bricks of size 1283 each, corresponding to 2 GB of video memory
(because CUDA does not support 3-channel textures, each velocity value had to
be padded by an additional “w” component).

We have traced particles starting from the selected seed points in both the
uncompressed and the compressed data sets to demonstrate the performance
gains that can be achieved via compression. In all experiments, Lagrange6 inter-
polation was performed; the particle integration times are about 3× higher with
Lagrange8, and about 4× lower with Lagrange4 or Catmull-Rom interpolation.
When particle tracing was performed on the compressed data, the timings refer
to the “High” compression quality. The decompression times for other compres-
sion rates differ only very slightly. To measure the impact of disk I/O, we have
run every benchmark a second time, so that all required data was already cached
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in CPU memory. With uncompressed data, however, this was only possible for
the dense scenario; in case of sparse particle seeding, the size of the working
set exceeded the available CPU memory (even for stream lines extracted from a
single time step). Table 3 lists the time required for running each scenario, and
Table 4 lists the sizes of the corresponding working sets.

It can be seen that the use of compression allows us to trace thousands of
characteristic lines within seconds in the dense seeding scenario. In the sparse
seeding case, the required time is around an order of magnitude higher. The
reason becomes clear when looking at the size of the working sets, which are
larger by roughly the same factor in those cases.

Table 3. Times in seconds for computing stream lines, both for the cached case (C )
and the un-cached case including disk access times (U ). Individual times for uploading
the data to the GPU (Upl, including decompression), particle integration (Int), and
disk I/O (IO, overlapping Upl and Int) are listed separately.

Scenario Quality U C Upl Int IO

Iso dense High 2.3 1.4 0.8 0.6 1.9

Uncomp 18.6 1.3 0.7 0.6 17.8

Iso sparse High 21.6 16.4 12.4 3.8 14.9

Uncomp 156.9 n/a 10.7 3.8 156.4

MHD dense High 3.4 2.3 1.4 0.8 2.8

Uncomp 26.3 2.3 1.4 0.8 25.6

MHD sparse High 19.9 16.2 11.8 4.2 13.6

Uncomp 139.7 n/a 10.4 4.2 138.8

Table 4. Working set sizes in both compressed (High) and uncompressed (Uncomp)
form. Also shown is the number of bricks in the working set (#B) as well as the number
of brick uploads during particle integration (#U ).

Scenario High Uncomp #B #U

Iso dense 165.9 MB 2155.5 MB 92 92

Iso sparse 1280.6 MB 15058.9 MB 728 1341

MHD dense 243.8 MB 3231.0 MB 138 155

MHD sparse 1095.5 MB 15066.5 MB 729 1298

Without compression, the overall system performance is clearly limited by
disk bandwidth. In particular, in the sparse scenario, the working set was so
much larger than main memory (cf. Table 4) that some bricks had to be loaded
from disk multiple times. Even when all required data is already cached in CPU
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memory (which was only possible in the dense scenario), the performance of
the compressed and uncompressed cases is very similar—the runtime overhead
caused by the additional decompression step is very minor.

It is clear that when tracing path lines, the working sets are much larger
because often many different time steps of the same spatial brick are required.
In particular, the temporal distance between successive time steps is extremely
small in both data sets (0.002 time units for Iso, 0.0025 for MHD). Because
of this, the time required for path line computation is spent almost exclusively
on disk-to-CPU data transfer and GPU decompression, and only a negligible
amount of time is spent on the actual particle integration (less than 1 % in our
tests). For example, tracing a set of path lines with the dense seeding configu-
ration through Iso takes about 6 min, with a working set size of over 25 GB of
compressed data. In the uncompressed setting, the working set comprises over
300 GB. Correspondingly, tracing these path lines in the uncompressed data set
takes almost an hour, and most of that time is spent on disk I/O. In MHD,
the time required for path line tracing is similar; in all cases, the time scales
proportionally to the working set size.

5.4 Comparison to Previous Work

To the best of our knowledge, all previous techniques for particle tracing in
very large flow fields have employed large compute clusters. Pugmire et al. [21]
have used 512 CPUs to trace 10 K stream lines in two steady flow fields com-
prising 512 million grid cells each. They report wall times of 10 to 100 s. [22]
later improved those timings to a few seconds for tracing thousands of stream
lines on 128 cores. Nouanesengsy et al. [23] achieve timings between 10 and 100 s
using 4096 cores for the computation of 256 K stream lines in regular grids of
up to 1.67 billion grid points, but at the cost of an expensive preprocess. Peterka
et al. [24] report computation times of about 20 s using 8192 cores for 128 K
stream lines in a 10243 steady flow, and several minutes for 32 K lines in a
2304 × 4096 × 4096 steady flow. In contrast to all other mentioned approaches,
they have also addressed large unsteady flow fields. In a 1408× 1080× 1100× 32
unsteady flow, the processing time is several minutes for 16 K path lines on
4096 cores.

While an exact performance comparison to our technique is not possible due
to the different data sets and interpolation/integration schemes used, an order-
of-magnitude comparison reveals that our method achieves competitive timings
to the previous approaches in many cases, particularly in dense seeding scenarios,
while making use of only a single desktop PC.

All in all it can be said that due to the use of an effective compression
scheme, the performance of particle tracing in extremely large flow fields can be
improved significantly. It is clear that due to the immense working set that is
required when computing path lines, fully interactive rates cannot be achieved
in this case. However, a simple preview mode which shows the already-computed
parts of the current trajectories enables the interactive exploration of very large



Compression and Heuristic Caching for GPU Particle Tracing 163

flow fields. For example, the preview allows the user to quickly discard trajec-
tories originating from “uninteresting” seed points, instead guiding the process
interactively towards more interesting regions.

6 Conclusion

In this paper we have presented an out-of-core system for particle tracing in
very large and time-dependent flow fields. It does not require a high-performance
computing architecture, but runs entirely on a desktop PC. Thus, the system can
be used on demand by a turbulence researcher to explore data sets and validate
hypotheses. We have employed lossy data compression to overcome bandwidth
limitations due to the extreme data volumes that have to be processed.

In a number of experiments we have demonstrated that compared to interpo-
lation errors in the reconstruction of the velocity field, the compression errors do
not significantly affect the accuracy of the computed trajectories. In the statis-
tical sense, the quality of the computed trajectories remains in the same order.
A performance analysis indicates that such a system achieves a throughput that
is comparable to that of previous systems running on high-performance archi-
tectures.

The most challenging future avenue of research will be the investigation of
the effect of lossy data compression in scenarios other than turbulence research.
The question will be whether lossy data compression can also be applied to other
flow fields without unduly affecting the accuracy of the resulting trajectories. The
main difficulty is that for most flow fields a “correct” interpolation scheme is not
available, so the interpolation error can not be estimated accurately. However,
different criteria might be found to steer the compression quality, e.g. given
confidence intervals for the velocity values.
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TR 94/64, Technische Universität Wien (1994)

33. Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., Vulpiani, A.: Predictability in
the large: an extension of the concept of Lyapunov exponent. J. Phys. A: Math.
Gen. 30, 1–26 (1997)

34. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J.
Comput. Appl. Math. 6, 19–26 (1980)



Choosing Visualization Techniques
for Multidimensional Data Projection Tasks:

A Guideline with Examples

Ronak Etemadpour1(B), Lars Linsen2, Jose Gustavo Paiva3,
Christopher Crick1, and Angus Graeme Forbes4

1 Oklahoma State University, Stillwater, OK, USA
etemadp@okstate.edu

2 Jacobs University, Bremen, Germany
3 Federal University of Uberlandia, Uberlandia, MG, Brazil

4 University of Illinois at Chicago, Chicago, IL, USA

Abstract. This paper presents a guideline for visualization designers
who want to choose appropriate techniques for enhancing tasks involving
multidimensional projection. Specifically, we adopt a user-centric app-
roach in which we take user perception into consideration. Here, we focus
on projection techniques that output 2D or 3D scatterplots that can then
be used for a range of common data analysis tasks, which we categorize as
pattern identification tasks, relation-seeking tasks, membership disam-
biguation tasks, or behavior comparison tasks. Our user-centric task
categorization can be used to effectively guide the organization of
multidimensional data projection layouts. Moreover, we present real-
world examples that demonstrate effective choices made by visualiza-
tion designers faced with complex datasets requiring dimensionality
reduction.

Keywords: Multidimensional data analysis · Task taxonomy · Multi-
dimensional data projection · User-centric evaluation

1 Introduction

Visualization is a crucial step in the process of data analysis. Often, when ana-
lyzing multidimensional data, dimensionality reduction (DR) techniques are dis-
played in form of 2D or 3D scatterplots that project the multidimensional points
onto a lower-dimensional visual space. Methods using different algorithms to gen-
erate scatterplots with particular point placements are the most common visual
encoding (VE) techniques for the resulting lower-dimensional data. DR tech-
niques, coupled with appropriate VEs, enable an understanding of the relations
that exist within the higher-dimensional data by displaying them in such a way
that makes it easier for users to discover meaningful patterns [36].

Data analysis tasks are primarily concerned with the detection of structures
such as patterns, groups, and outliers. Within a multidimensional data set, data
c© Springer International Publishing Switzerland 2016
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points can be grouped manually into classes or automatically into clusters. For
example, classes may be defined through manually labeling a collection of doc-
uments so that each document belongs to one topic within a set of topics, or by
splitting an image collection into ten classes by assigning each image a particular
theme from a set of ten themes. Clusters, on the other hand, are generated auto-
matically using a clustering algorithm that may, for instance, identify groupings
of similar points, or partition the data into dissimilar groups where each cluster
contains similar items [25]. However, it may be difficult to see these clusters or
classes when projected onto a lower-dimensional space. To make sense of this
multidimensional data, it can be useful to know how the clusters or classes are
defined and structured in the original multidimensional attribute space. How-
ever, multidimensional projection mappings are especially prone to distortion
because projection methods may not necessarily preserve the spatial relations
of the data. Thus, it is important to know how effective the scatterplots are at
preserving segregation of the data [42]. Several studies evaluate the quality of
projections with respect to preserving certain properties, thus guiding a user to
select the most appropriate projection method for their task. Various numerical
and visual methods have been introduced to quantify the accuracy of projection
methods with respect to such properties [42,46]. Recent studies [41] have shown
that the quality of cluster separation by these measures was highly discrepant
with user assessment of the cluster separation within the same data sets. Lewis
et al. [24] believe that accurate evaluation of clustering quality is essential for
data analysts, and they showed that such clustering evaluation skills are present
in the general population. On the other hand, other studies have attempted to
find a perception-based quality measure for scatterplots. They either evaluated
users’ performance on layouts generated by different projection techniques [14]
and used eye-tracking while users are asked to perform typical analysis tasks for
projected multidimensional data or allowed users to assess a series of scatter-
plots [2]. Other studies have investigated the perception of correlation in scat-
terplots from a psychological perspective; however these studies did not consider
real-world data sets [34].

Because of the absence of a standard approach for evaluating multidimen-
sional data projection, the results of these studies, and others like them, are
difficult to compare. We present a taxonomy of visual analysis tasks for multi-
dimensional data projection that we believe could be a useful means for eval-
uation. The idea of creating a task taxonomy has been recently explored by
Brehmer and Munzner [7]. They contribute a multi-level typology of visualiza-
tion tasks that augments existing taxonomies by filling a gap between low-level
and high-level tasks. Specifically, they distinguish what the task inputs and out-
puts are, as well as why and how a visualization task is performed. In doing
so, they more thoroughly organize the motivations for and methods of specific
tasks for particular data analysis situations. Their task taxonomy is more gen-
eral, and does not address multidimensional data projection in any detail. In this
paper, we provide a taxonomy of visual analysis tasks related to multidimensional
data projection. Our task taxonomy enables evaluation designers to investigate
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visualization performance effectively on both synthetic and real-world data sets.
The main contributions of the paper are:

– We provide a systematic user-centric taxonomy of visual tasks related to pro-
jected multidimensional data.

– We divide the projection-related tasks into different categories based on their
impact on the analysis of multidimensional data. The categories we identify
are relation-seeking, behavior comparison, membership disambiguation, and
pattern identification tasks.

– We enable, via our task taxonomy, visualization designers to improve visual-
ization tasks related to the analysis of multidimensional data.

– We present our taxonomy as a guideline for researchers in choosing visualiza-
tion techniques for these tasks, and provide explicit examples.

– We adapt multilevel typology of abstract visualizations to multidimensional
data projection tasks [7].

In the next section, we provide a brief review of existing task taxonomies for
DR and VE techniques. In Sect. 3, we introduce our task taxonomy for multi-
dimensional data projection by describing new sets of tasks related to typical
analysis tasks, including pattern identification, such as detecting clusters, behav-
ior comparison, such as comparing characteristics of subsets, membership dis-
ambiguation, such as counting the number of objects in a cluster, and relation
seeking, such as correlating subsets to each other. We discuss the effects of our
proposed tasks on the evaluation of scatterplots by providing some examples
of how different tasks support decision making respective to human perception
over multidimensional data projections. We also characterize our proposed tasks
using the multi-level typology of abstract visualization tasks [7]. We applied
Brehmer and Munzner’s multi-level topology concept for describing two tasks
as guidelines, while the three questions (WHY, WHAT, HOW) can be used to
structure the description of all tasks.

2 Related Work

Many projection methods exist to generate 2D similarity-based layouts from
a higher-dimensional space. The design goals include maintaining pairwise dis-
tances between points [6] as implemented in multidimensional scaling (MDS),
maintaining distances within a cluster, or maintaining distances between clus-
ters [47]. Principal component analysis (PCA) generates similarity layouts by
reducing data to lower dimensional visual spaces [22]. Some projection meth-
ods, such as isometric feature mapping (Isomap), favor maintaining distances
between clusters instead. Isomap is an MDS approach that has been introduced
as an alternative to classical scaling capable of handling non-linear data sets.
It replaces the original distances by geodesic distances computed on a graph
to obtain a globally optimal solution to the distance preservation problem [47].
Least-Square Projection (LSP) computes an approximation of the coordinates
of a set of projected points based on the coordinates of some samples as control
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points. This subset of points is representative of the data distribution in the input
space. LSP projects them to the target space with a precise MDS force-placement
technique. It then builds a linear system from information given by the projected
points and their neighborhoods [31]. The correlations of data points or clusters
are not always known after they have been mapped from a higher-dimensional
data space to 2D or 3D display space. Thus, several approaches evaluate the best
views of multidimensional data sets. Sips et al. [42] provide measures for ranking
scatterplots with classified and unclassified data. They propose two additional
quantitative measures on class consistency: one based on the distance to the
cluster centroids, and another based on the entropies of the spatial distribu-
tions of classes. They propose class consistency as a measure for choosing good
views of a class structure in high-dimensional space. Tan et al. [44], Paulovich
et al. [31], and Geng et al. [18] also evaluate the quality of layouts numerically. By
ranking the perceptual complexity of the scatterplots, other studies investigate
user perception by conducting user studies on scatterplots, finding that certain
arrangements were more pleasing to most users [45]. However, these operational
measures were not necessarily equivalent to the measures of user preference based
on their qualitative perceptions. Sedlmair et al. [40] have discussed the influence
of factors such as scale, point distance, shape, and position within and between
clusters in qualitative evaluation of DR techniques. They examined over 800
plots in order to create a detailed taxonomy of factors to guide the design and
the evaluation of cluster separation measures. They focused only on using scat-
terplot visualizations for cluster finding and verification. DimStiller [20] is a
system to provide global guidance for navigating a data-table space through the
process of choosing DR and VE techniques. This analysis tool captures useful
analysis patterns for analysts who must deal with messy data sets. Rensink and
Baldridge [34] explore the use of simple properties such as brightness to generate
a set of scatterplots in order to test whether observers could discriminate pairs
using these properties. They found that perception of correlations in a scatter-
plot is rapid, and that in order to limit visual attention to specific information
it is more effective to group features together. Etemadpour et al. [17] postulate
that cluster properties such as density, shape, orientation, and size influence
perception when interpreting distances in scatterplots, and specifically, observe
that the density of clusters is more influential than their size.

In general, little attention has been paid to providing details about low-level
tasks that guide users to choose DR and VE techniques. However, both high-level
goals and much more specific low-level tasks are important aspects of analytic
activities. Amar et al. [3] presented a set of ten low-level analysis tasks that they
found to be representative of questions that are needed to effectively facilitate
analytic activity. Andrienko and Andrienko distinguish elementary tasks that
address specific elements of a set and synoptic tasks that address entire sets or
subsets, according to the level of analysis [4].

Brehmer and Munzer [7] emphasize three main questions, why the tasks are
performed, how they are performed, and what are their inputs and outputs.
These questions encompass their concept of multi-level typology. They believe
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that “low-level characterization does not describe the user’s context or motiva-
tion; nor does it take into account prior experience and background knowledge.”
Their typology relies on a more abstract categorization based on concepts, rather
than a taxonomy of pre-existing objects or tasks. In contrast, we attempt to
specify tasks at the lowest level that can provide details about multidimensional
data projection. However, the general approach of Brehmer and Munzner can
be easily adopted as a tool to put these low-level tasks in context, facilitat-
ing the evaluation of user experiences by evaluation designers. This approach
provides essential information, such as motivation and user expertise, for field
studies that examine visualization usage. Therefore, we show how our defined
tasks can be described according to a typology of abstract tasks relating intents
and techniques (how) to modes of goals and tasks (why).

We (1) categorize possible tasks performed when analyzing a specific multidi-
mensional data visualization, and (2) formulate guidelines for analysts to assist
in selecting appropriate projection techniques for performing specific visualiza-
tion tasks on data sets.

3 Task Taxonomy for Multidimensional Data Projection

We define a list of tasks from studies of different projection techniques and
their 2D layouts such as PCA [22], Isomap [47], LSP [31], Glimmer [21], and
NJ tree [29], as well as the applications behind the data (e.g. document and
image data). We explain some of these tasks in detail and provide examples of
effective data representations for relevant visual analysis tasks. As explained in
Sect. 2, how well groups of points can be distinguished by users in scatterplots
defines visual class separability. Our cluster-level tasks also focus on how easily
a grouping of related points in multidimensional space (e.g., clusters) can be
detected by users when projected into lower-dimensional space. However, rather
than only looking at visual class separability, we consider how effective users are
performing meaningful tasks related to the perceived clusters.

Although other researchers have explored some of these tasks, we systemat-
ically list the full range of analytic tasks for multidimensional projection tech-
niques appropriate for large data sets. Additionally, our organization of these
tasks takes into consideration user perception. We divided the tasks into four
categories according to the typical visualizations required to support them:

Pattern Identification Tasks: We examine trends, which are more obvious
for lower-dimensional data than for projected higher-dimensional ones. Relevant
issues include cluster/class preservation and separation.

Relation-seeking Tasks: Relationships and similarities between different ref-
erence sets are considered.

Behavior Comparison Tasks: To compare characteristics of subsets (or clus-
ters), we consider capturing different data behaviors (like asking the subjects
to compare the point densities within clusters, where density is defined as the
number of points per area).
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Membership Disambiguation Tasks: Positional and distributional relation-
ships within classes/clusters are particularly considered where objects occlude
each other. Clutter and noise obscure the structure present in the data and make
it hard for users to find patterns and relationships. Peng et al. [32] state that
clutter reduction is a visualization-dependent task. Therefore, the DR and VE
need to minimize the amount of confusing clutter. We believe that clutter can
be measured by users using a wide variety of visualization techniques.

We now clarify these taxonomic categories by looking at common tasks found
in the literature.

3.1 Pattern Identification Tasks

Multidimensional data sets may include hundreds or thousands of objects
described by dozens or hundreds of attributes. Data characteristics regarding
the distribution within multidimensional feature spaces vary for different appli-
cation domains. For example, consider document data versus image data: text
usually produces sparse spaces while imagery produces dense spaces. As Song
et al. [43] state, traditional document representation like bag-of-words leads to
sparse feature spaces with high dimensionality. This makes it difficult to achieve
high classification accuracies. Figure 1 shows histograms of the distribution of the
pairwise distances between four data objects after normalization to the interval
[0,1]. The document data sets are referred to as CBR and KDViz1. The image
data sets are referred to as Corel2 and Medical3. The revealed histograms illus-
trate different characteristics for document data sets and image data sets. Both
image data sets exhibit lower mean distance values and much wider variance
(representative of a denser feature space) than the document data sets.

Identifying patterns in high-dimensional spaces and representing them using
dimensionality reduction techniques, in order to reveal trends, is a challenge in
many scientific and commercial applications. To identify outliers, trends and
interesting patterns in data, one of the many objectives of data exploration
is to find correlations in the data, thus uncovering hidden relationships in the
data distribution and providing additional insights about the high-dimensional
data [53]. Therefore, a list of questions are suggested that can reveal user’s
perspective about local and global correlations with respect to features – for

1 CBR comprises 680 documents, which include title, authors, abstract, and references
from scientific papers in the four different subjects, leading to a data set with 680
objects and 1,423 dimensions. KDViz data has been generated from an Internet
repository on the topics bibliographic coupling, co-citation analysis, milgrams, and
information visualization, leading to 1,624 objects, 520 dimensions, and four highly
unbalanced labels (http://vicg.icmc.usp.br/infovis2/DataSets).

2 1,000 photographs on ten different themes. Each image is represented by a 150-
dimensional vector of SIFT descriptors (3UCI KDD Archive, http://kdd.ics.uci.edu).

3 Each image is represented by 28 features, including Fourier descriptors and energies
derived from histograms, as well as mean intensity and standard deviation com-
puted from the images themselves. Hence, the data set contains 540 objects and 28
dimensions.

http://vicg.icmc.usp.br/infovis2/DataSets
http://kdd.ics.uci.edu
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(a) (b)

(c) (d)

Fig. 1. Histograms of document data (top) and image data (bottom) exhibit charac-
teristic distance distributions: (a) CBR. (b) KDViz. (c) Corel. (d) Medical.

instance, those subsets of data which form relevant patterns (e.g. subsets of
data within dense feature groups): (1) Estimate the number of outliers in the
given layout; (2) Estimate the number of observed clusters; (3) Find the number
of clusters in a selected region; (4) Find the number of subclusters in a given
cluster; (5) Find a cluster with a specific characteristic (e.g., longish); (6) Find
the specific characteristics (e.g., sparsity) of a cluster; (7) Determine the number
of outliers in a given cluster.

If researchers aim to find the user’s performance on class segregation, it
is important to draw the user’s attention to global project views. Thus, we
suggest asking Estimate the number of clusters in the given layout to identify
the informative aspects of the data.

Pattern identification tasks often favor clear segregation by class, which
means that techniques which incorporate cluster enclosing surfaces can be help-
ful. In some situations, the labeled classes in each data set can be considered as
ground truth. For such cases, Poco et al. [33] developed a 3D projection method
by generalizing the LSP technique from a 2D to a 3D scheme. A non-convex
hull (of each cluster) that is computed from a 3D Voronoi diagram of the clus-
ter points is illustrated in Fig. 4(a). This representation, when it is possible to
construct, is both accurate and satisfying to users, compared to other techniques.

For situations in which a small set of representative instances from each class
is available, or can be manually labeled from a large data set, Paiva et al. [30]
proposed a semi-supervised dimensionality reduction approach that employs the
Partial Least Squares (PLS) [52] technique, producing reduced spaces that favors
class segregation. PLS models relations between sets of variables by estimating a
low dimensional latent space, that maximizes the separation between instances
with different characteristics, resulting in a low dimensional latent space in which
instances from the same class are clustered. The proposed methodology employs
visualization techniques to show the similarity structure of the collection, in order
to guide the user in selecting representative instances to train the PLS model,
that can then be applied to a much larger data set very effectively. Figure 2
shows the LSP projection of Corel data set, with the original dimensionality
(a) and after a PLS reduction to 10 dimensions (b). One can notice that the
groups are more dense on the reduced space, highlighting the class separability.
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(a) (b)

Fig. 2. Layouts for Corel data set obtained using LSP projection, using all 150 original
attributes and using PLS reduced 10 attributes.

The methodology can also be used for situations in which the instances labels
are not available. In this case, a clustering procedure is performed, and the
cluster labels are then used to produce a PLS model. For data sets whose cluster
structure reflects the class distribution, this methodology will create a reduced
space that will favor class segregation.

Also for situations in which a labeled instances set is available, Paiva et al. [28]
proposed a visual classification methodology (VCM) that integrates point-based
visualization techniques and automatic classification procedures to support con-
trol over the whole classification process by users. It yields visual support to
classify evolving data sets by allowing user interference, via similarity based
visualizations, during supervised classification in an integrated form, promoting
users control over model building, application, evaluation and evolution. User
insertion is made by the selection of instances to create a classification model,
and this selection is performed using the layout, whose structure and point orga-
nization is able to guide the user towards a relevant selection. The created classi-
fication model can then be employed in the classification of any collection bearing
the same feature space. Similarity layouts may represent, in these scenarios, a
potential tool to explore the structure and relationship among instances and
thus identify the representative ones of each class. That can be achieved, e.g.,
by analyzing class segregation or by determining outliers that could distort the
classifier behavior. Additionally, the methodology allows, in situations in which
a ground truth exists, a visual inspection of the classification results using the
same visual strategy, in a tool named Class Matching, which provides an under-
standing of the classifiers behavior, and how the data set structure influence
this behavior. Finally, model updates can be performed by selecting additional
instances from a visualization layout, that offers the possibility of several model
updating strategies. Figure 3 shows three layouts, using a NJ tree, of a subset
of the ETHZ4 data set, containing 1,739 instances, with (a) representing the

4 ETHZ represents a subset of the ETHZ dataset [13,38], with 2019 photographs of
different people captured in uncontrolled conditions. It is divided into 28 unbalanced
groups, and each image is represented by a vector of 3963 descriptors, combining
Gabor filters, Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP)
and mean intensity.
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ground truth, (b) the result of a SVM classification on this data set, and (c) the
corresponding class matching tree, exhibiting in red the misclassified instances.
The training set used to build the SVM model contains 280 equally distributed
instances. The layout provides several clues about the structure of this collection,
as well as about the classifier behavior. Looking at (a), one can notice that the
branches are usually homogeneous in terms of classes, as indicated by the circles
colors. However, in (b) it is possible to see some heterogeneous branches, which
coincide with most of the misclassified instances, indicating that the classifier
is confuse about these instances. Moreover, it is possible to notice that class 6
instances are spread in four branches, which may indicate that this class is highly
heterogeneous. The data set is originally unbalanced, and class 6 contains the
highest number of instances, which may also cause instances from other classes
to be classified as 6. By analyzing the confusion matrix, it is possible to notice
that several instances from class 26 were classified as class 21 or 6. The layout
shows that instances of these classes are positioned on the same branch, and it
is possible that they share common attribute values, with similar content. The
layout instances positions, allied with an adequate color coding, may facilitate
the comprehension of the reasons by which the classifier took these decisions,
as well as to indicate for which classes the classifier is deficient. Thus, users are
capable to perform effective updates to refine the classification results.

(a) (b) (c)

Fig. 3. NJ trees for ETHZ data set, showing (a) the ground truth, (b) the results of a
SVM classification, and (c) the corresponding class matching layout.

While this projection works well when the data’s pre-assigned class struc-
ture accurately models the data’s inherent organization, this is often not feasi-
ble. In many situations, analysts want to leverage human perception to identify
“visual groupings” of points, and in this case a point cloud representation pro-
duces favorable results. For example, when grouping information is not avail-
able, a point-based visualization as shown in Fig. 4(b) is still applicable. Also,
Glimmer [21], as a technique representative of force-directed placement MDS,
does not favor class segregation when employed on the KDViz data set. Thus,
color coding to separate nodes of different classes can be useful as shown in
Fig. 4(c). Therefore, if we have accurate class labels and good class separation,
we suggest enclosing surfaces like nonconvex hulls. According to the eye-tracking
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study on Glimmer projection, the visual attention pattern is scattered and it is
hard to identify any meaningful area of interest (AOIs) for Glimmer [17]. Hence,
it is useful to differentiate classes when the projection doesn’t reflect the class
distribution at all.

(a) (b) (c)

Fig. 4. Estimate the number of observed clusters: (a) Non-convex hulls computed from
enclosing surfaces isodistant to cluster using LSP projection; (b) Point-based visual-
ization using PCA projection taken from [37]; (c) The layout obtained with Glimmer
projection on the KDViz data set. Circle color indicates instance class label (Color
figure online).

3.2 Relation-Seeking Tasks

Relation-seeking tasks investigate the similarities and differences between sub-
groups which represent clusters or individual objects. Similarity layouts employ
projection techniques to reducing data to lower-dimensional visual spaces, but
in a different manner from that used in pattern identification. In this applica-
tion, an analyst is interested in investigating whether a point (or object) is more
similar to one cluster or to another, or whether a whole cluster is more similar to
a second cluster or a third. We believe that relationship-seeking is a search task,
Andrienko’s visual task taxonomy model notwithstanding (in which search tasks
are limited to lookup and comparison) [5]. In contrast, Zhang et al. [54] consider
comparison and relationship-seeking to be compound tasks, containing at least
two relationships, one being the data function and the other being relationships
between values (or value sets) of a variable. Under this definition, we believe
that finding similarities in projected high-dimensional data can be considered as
a relation-seeking tasks. Users perform comparison tasks with respect to a given
reference set, which can be a cluster or an individual object, and can undertake a
similarity search by identifying a given cluster’s neighbors. In such a search, the
specified relationship is defined by a distance search within a high-dimensional
data projection.

A list of potential tasks within the relation-seeking task category can be
considered for multidimensional data visualization: (1) Identify the closest clus-
ter to a given cluster; (2) Identify the most similar cluster to a given cluster;
(3) Identify the closest cluster to a reference point; (4) Identify the most similar
cluster to a given object; (5) Find k closest (most similar) objects to the given
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cluster; (6) Find k closest (most similar) objects to the reference object; (7) Find
the closest (most similar) cluster to a cluster with a specific characteristic (e.g.,
Find the closest cluster to the longish cluster); (8) Identify the cluster to which
the reference set/sets belong; (9) Find the closest (most similar) cluster to the
set of points with specific characteristics (e.g., points that have identical move-
ment); (10) Find k closest (most similar) points to the set of points with specific
characteristics; (11) Find the clusters that have hierarchical relations; (12) Find
k similar objects within a cluster; (13) Find a cluster that is the parent of two
reference sets.

Etemadpour et al. [15] investigated how domain-specific issues affect the out-
come of the projection techniques. They used a number of similarity interpreta-
tion tasks to assess the layouts generated by projection techniques as perceived
by their users. To show that projection performance is task-dependent, they
generated layouts of high-dimensional data with five techniques representative
of different projection approaches. To find a perception-based quality measure,
they asked individuals to identify the closest cluster to a given cluster and object.
Users also ranked the k nearest objects to a given object. As shown in Fig. 5, the
target cluster/object was shown in one color (red) and two other clusters in other
colors (green and blue), from which the one closer to the target cluster/object
should be identified.

Fig. 5. Task: determine whether green or blue cluster is closer to red object in order
to investigate PCA projection performance (Color figure online).

Node-link diagrams have been studied in detail in many graph drawing topics
or graph visualization approaches, where a node is representing an entity that
is connected to other nodes through lines (i.e., links). Although the node-link
diagram is an intuitive way to visually represent relationships between entities
for relatively small data sets [19], there may be too many lines crossing with
each other that obscure relationships among entities when dealing with larger
data sets. In order to represent spatial distance visually in cases like these, a
technique like the Force-Directed Placement approach [12] can be used to reveal
connections and similarity magnitude between entities. This technique relies on
iterative algorithms that model the data points as a system of particles attached
to each other by springs. The length of the spring connecting two particles is
given by the distance between their corresponding data points as shown in Fig. 6.
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Fig. 6. The spring embedder model [11].

A spatial embedding is obtained with an iterative simulation of the spring forces
acting on this hypothetical physical system, until it reaches an equilibrium state.

To Find k closest objects to the reference object, if the performance of a pro-
jection in terms of maintaining distances within a cluster is under investigation
and the cluster structure is known, a combination of hull-based and point-based
visualizations can be used. Schreck et al. [37] implemented an interactive system
that combined these two visual presentations letting users choose the best visual
representation of the projected data. They believed that such combined repre-
sentations introduce visual redundancy; however, it can improve user’s percep-
tion of the projection precision information depending on the application. Poco
et al. [33] improved the performance of their 3D point representation when they
combined standard point clouds with this user-guided process. Figure 7 demon-
strates finding 3 closest objects to the red object within a cluster when the
convex hull of the points is used.

Brehmer and Munzner’s typology is intended to facilitate understanding of
users’ individual analytical strategies. We employ their multi-level code, used to
label user behaviour, to enhance the evaluation of high-dimensional data projec-
tion. By utilizing the Brehmer and Munzner multi-level typology, we provide a
systematic way of justifying the choice of a particular task through asking three
main questions: Why, What and How. This multi-level typology of abstract
visualization tasks fills the gap between low-level and high-level classification
to describe user tasks in a useful way. This approach to analyzing visualization
usage supports making precise comparisons of tasks between different visualiza-
tion tools and across application domains [7]. For an effective design and evalu-
ation of multidimensional data visualization tools, one should consider why and
how our defined tasks should be conducted, and what are their potential inputs
and outputs. Meanwhile, sequences of tasks can be linked, so that the output
of one task may serve as input to a subsequent task. We focused on Find k
closest clusters to the given cluster in the relation-seeking category. We did not
consider any specific projection technique because it can be changed based on
the evaluator’s motivation.

Find k closest cluster to the given cluster : WHY: The goal is to Discover
k groups that are closest to a given cluster. A known target (given cluster) and
the whole projection visualization are provided. If the location of a given cluster
was known (or given by the examiner), then participants perform a Lookup.
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If the characteristic of the given cluster was given, the user can Locate the given
cluster with specific characteristics (e.g., searching for a given cluster in which
the elements are colored red). Then individuals search for k clusters that are in
the neighborhood of the given cluster and list these groups. WHAT: The input
for this task is a given cluster; this can be shown by the examiner or can be
indicated by a particular characteristic like the color red. All other clusters in
the entire visualization are also visible to the participants. The output is a list of
k groups that are closest to the given cluster. HOW: Participants identify the
k closest clusters to the given cluster. For example, they determine whether the
green or blue cluster is closer to the red cluster. They provide a list of clusters
that follow an ascending order, so that the distance of the first cluster in this
list to the given cluster is shortest compared to the other clusters. Select refers
to differentiating selected elements from the unselected remainder.

Fig. 7. Find 3 closest objects to the red object: Convex-hull of the point clusters (Color
figure online).

Trees are a natural form for depicting hierarchical relations and can be used
to Find the clusters that have hierarchical relations. A distinct category of 2D
mapping employs tree layouts to convey similarity levels contained in a distance
matrix. The algorithms to generate similarity layouts [9] are inspired by the
well-known Neighbor-Joining (NJ) heuristic originally proposed to reconstruct
phylogenetic trees. Similar points among members of the same subsets are placed
at the ends of branches. The points nearer the root of the tree are less similar
when compared with the points at the ends of branches. Similarity trees generate
a hierarchy, creating a tree structure where interpretation is subject to organi-
zation of the branches; for example, mapping data setswith the NJ and LSP
projections are compared in Fig. 8. In this example, the INFOVIS04 data set is
composed of documents published in a conference on information visualization,
and its content is homogeneous. Using NJ, documents with a high degree of
similarity are placed along the same branch. The branches circled in the figure
are examples of long branches without too many ramifications, and probably
represent specific sub-topics inside the collection. LSP, on the other hand, has a
tendency to create clusters in round clumps. This representation performs well
for certain tasks, but is less useful for finding the closest clusters to selected
objects [15].

Authors in [8] introduced BubbleSets as a visualization technique for data
that makes explicit use of grouping and clustering information. Members of the
same set are in continuous and concave isocontour, while a primary semantic
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Fig. 8. Comparison of INFOVIS04 document data set map using Neighbor Joining
and LSP projections: Four different topics of information visualization are identified
by coloring points. Figure is taken from [9] (Color figure online).

data relation is maintained with spatial organization. These delineated contours
do not disrupt the primary layout, so they avoid layout adjustment techniques.
This visualization technique is designed in order to facilitate depicting more than
one data relationship in data sets that contain multiple relationships. Using this
concept, we suggest contours around nodes belonging to the same set to Find
k similar objects within a cluster in a projection technique. Figure 9 shows an
example that uses the BubbleSets concept for an NJ heuristic projection. The
points that are sharing the same contour are members of the same set. These
boundaries are used to indicate the grouping clearly.

Fig. 9. NJ projection: geometric relationships, hierarchy and cluster perimeter are all
clearly defined using BubbleSets concept.

3.3 Behavior Comparison Tasks

A third way in which high-dimensional data projections can display data items in
lower-dimensional subspaces can provide insight into important data dimensions
and details. Our taxonomy distinguishes the subsets of tasks used for behavior
comparison: (1) Find the cluster with the largest (smallest) occupied visual area;
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Fig. 10. Task: Compare the density of the longish cluster versus the roundish cluster.
Scatter plots were generated with varying shapes, while holding density and size con-
stant, in order to investigate the effect of cluster shape (in projected space) on a user’s
inferences and perceptions of the data.

(2) Find the cluster with the most (least) number of points or size; (3) Find
densest (sparsest) cluster; (4) Given specific number of clusters (e.g. 5 clusters is
given); (5) Rank the clusters by density; (6) Rank the clusters by their occupied
visual area; (7) Rank the clusters by their size; (8) Compare density of two given
clusters with different or similar characteristics (e.g., density of a longish cluster
vs. a roundish cluster); (9) Compare the size of two given clusters with different
or similar characteristics; (10) Compare the visual area of two given clusters
with different or similar characteristics.

Density is an important metric because it indicates stronger relationships
between points within a cluster. Moreover, many studies [1,39,49] have indicated
that representations of density can play an important role in visualization. Fur-
ther, studies in psychophysics have shown that visual search can be affected by
the variance in the number of objects within groups [10,35,48]. Authors in [41]
named density as one of the Within-Cluster factors, namely, the ratio between
count and size. This can range from sparse, with few data points and a large
spread, to dense, with many points and a small spread. If the task is to Compare
density of two given clusters with different or similar characteristics(i.e. different
shapes), we suggest a point-based visualization. This allows users to easily see
the point distribution within a cluster and the occupied visual space. Moreover,
as investigated in [17], according to the Gestalt principle [23], the shape and
orientation of a cluster should also influence decisions during visual analysis.
For example, when two stretched clusters are aligned, they may be perceived
as a continuation of one cluster or in other words, characteristics of the clus-
ters influence the visual analysis from a perceptual view. Following these ideas,
continuity and closure create the perception of a whole cluster. Figure 10 illus-
trates the density of a longish cluster versus a cluster that looks more roundish.
In this example, cluster shape (e.g., whether a cluster appears to be round or
elongated) has been examined, while density and size of the clusters were the
same. In addition, 2D scatter plots are manually generated using synthetic clus-
ters [17]. Cluster shape (in projected space) influences users’ performance on
various inference tasks.

Again by utilizing the Brehmer and Munzner multi-level typology, we provide
an example that shows how our defined tasks can be fitted to this multi-level
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typology of abstract visualization tasks, in order to concisely describe our pre-
defined tasks. Find the Cluster with the Highest Number of Sub-clusters in the
behavior comparison category has been considered. Additionally, we did not
consider any specific projection technique because it can be changed based on
the evaluator’s motivation.

Find the Cluster with the Highest Number of Sub-clusters: WHY: The pur-
pose is to Discover a cluster with the highest number of sub-clusters. The clus-
ter characteristic is not provided; therefore, the search target is unknown and
Explore entails searching for the cluster with the highest number of sub groups.
Once the search process is done, Identify returns the desired reference. WHAT:
The input for this task is the entire visualization, including all clusters and their
sub-groups. The output is the identity of a cluster with the largest number of
sub-clusters. HOW: Individuals need to estimate the number of sub-clusters of
each cluster. This involves counting sub-groups within successive clusters until
the largest number is found. Therefore, they must Derive new data elements,
then Select the desired cluster.

3.4 Membership Disambiguation

It is desirable for the visual representation to avoid clutter, resolve ambiguity and
handle noise. At times, “identifying overlaps” may indicate that the classes are
not clearly separable, which suggests that the overriding task is one of pattern
identification. However, too much data on too small an area of the display, such
as a dense region of entangled clusters, diminishes the potential usefulness of
the projections even if the projection consists of some clearly separated clusters.
This is especially true when the user is exploring the data to: (1) Estimate the
number of objects in a selection; (2) Find an object with specific characteristic
(e.g. labeled point) within a cluster; (3) Count the number of objects in a given
cluster; (4) Identify the objects that overlap in a selected area.

When Finding an Object with a Specific Characteristic within a Cluster, a
visualization can favor good performance in preserving distances and relation-
ships, but only at the expense of producing visual clutter. As an example, the
PCA scatterplot of KDViz is too cluttered and distinguishing a specific object
within a cluster is not an easy task (Fig. 11).

To Estimate the number of objects in a selection, a target cluster/selection
can be highlighted with a different color as shown in Fig. 12.

A recent study [16] showed that a density-based motion can enhance pattern
detection and cluster ranking tasks for multidimensional data projections and
also uncover hidden relationships in scatterplots.

3.5 Meta-Projection

The tasks that are explained above can be used as given, or can be combined
into multi-step macrotasks. We note that the tasks that we have provided may
not cover all possible tasks of a given type, but they can be used as exemplars
when defining new tasks. Sub-clusters of a given cluster or group of points can
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Fig. 11. Find a purple object within the green cluster. Using a PCA projection
employed on the KDViz data set, it is hard to distinguish the purple point (Color
figure online).

Fig. 12. Estimate the number of objects in a selection in LSP projection.

(a) (b)

Fig. 13. A meta-projection: (a) sub-clusters; (b) clusters (meta-objects).

be considered as a meta-object. Meta-objects can create a meta-projection, and
new tasks can be executed on this projection based on this process. In Fig. 13(a),
the task is: “Find the closest cluster to the given cluster”. For instance, as appar-
ent “Linear Square” is the closest sub-cluster to the “Information Visualization”
sub-cluster and “Tree” is the closest sub-cluster to “Graph Drawing”. There-
fore, as shown in Fig. 13(b) we can analyze the meta-projection to see that
“Time Varying Filtering” is the closest cluster to the “Visualization” cluster
and similarly “Visualization” is the closest cluster to “Data Mining”. Using this
meta-projection, we can get more insight into our data.
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Thus, in Sect. 3, we saw examples of how appropriate visualization methods
could be determined for specific tasks.

4 Conclusion

Our user-centric guideline supports precise comparisons across different multi-
dimensional data projection techniques. However, it could be further extended
by considering a wider range of application domains that could introduce new
visualization scenarios, such as volumetric data sets with continuous scatter-
plots. The tasks we have defined are specific neither to a particular projection
algorithm nor dataset. Although we delineate a number of example tasks within
each of our taxonomic task classifications, they are not intended to be exhaustive.
We believe that our guideline could easily incorporate additional tasks; in future
work we plan to extend it with further user-centric tasks. We argue that pro-
jection methods are distinct in their characteristics in terms of both sparseness
and distance distribution, and that the nature of the task (in taxonomic terms)
should guide the visualization design. Our taxonomy can be used for examining
projection layouts and scatterplots in order to analyze how users perceive mul-
tidimensional data in a variety of situations. We also incorporate recent findings
about perception rules and cognitive processes as a valuable source of informa-
tion for such analyses; our guideline can help in categorizing possible tasks when
analyzing multidimensional data visualizations. These user-centric tasks could
be used as a guideline for assessing when other scatterplot visualization tech-
niques are appropriate, such as Star Coordinates [50], StretchPlots [26,27], or
even animations based on point cloud datasets [51]; future work will explore the
application of our guideline to a wider range of existing techniques.
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Abstract. This paper presents an efficient hybrid (top-down and
bottom-up) framework for activity recognition based on analyzing group
context in crowded scenes. The approach presented starts by discovering
interacting groups of people using a graph based clustering algorithm.
Given the interacting groups, a novel group context activity descrip-
tor is computed that captures not only the focal person’s activity but
also the behaviors of neighbors in the group. Finally, for a high-level
of understanding of human activities, we propose a bottom-up approach
using a random field model to encode activity relationships between peo-
ple in the scene. We evaluate our approach on two public benchmark
datasets and compare the utility of our proposed descriptor with other
descriptors using the same baseline recognition framework. The results
of both the steps show that our approach with the proposed descrip-
tor achieves recognition rates comparable to state-of-the-art methods for
activity recognition in crowded scenes.

1 Introduction

The goal of human activity recognition is to automatically recognize ongoing
activities from an unknown video (i.e. a sequence of image frames). Recent
approaches have demonstrated great success in recognizing action performed
by one individual. However, a vast number of activities involve multiple people
and their interactions. This poses a rather challenging problem in activity recog-
nition due to variations in the number of people involved, and more specifically
the different human actions and social interactions exhibited within people and
groups [1–4].

Understanding groups and their activities is not limited to only analyzing
movements of individuals in group. The environment in which these groups exist
provide important contextual information that can be invaluable in recognizing
activities in crowded scenes. Perspectives from sociology, psychology, and com-
puter vision suggest that human activities can be understood by investigating
a subject in the context of social signaling constraints [5–8]. Exploring the spa-
tial and directional relationships between people can facilitate the detection of
social interactions in a group. Thus, activity analysis in crowded scenes can
c© Springer International Publishing Switzerland 2016
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often be considered a multi-step process, one that involves individual person
activity, individuals forming meaningful groups, interaction between individuals
and interactions between groups. In general, the approaches to group activity
analysis can be classified into two categories: bottom-up and top-down. The
bottom-up approaches rely on recognizing activity of each individual in a group.
Vice versa, top-down approaches model the entire group as a whole rather than
each individual separately.

By looking at group of people in a scene, top-down approaches quickly give
an answer of question: ‘what are people doing in a particular group?’ rather than
first answer to more detail questions:‘what is each individual doing?’ and then
quickly find out the number of people groups and the dominant activity of people
in each group. In other words, top-down approaches roughly recognize activity
of people in a particular group at a glance. However, there are limitation in using
this approach. First, it is lack of understanding individual activity in a group.
Second, from previous top-down approaches, there are limited number of group
activity classes which can be recognized.

Bottom-up approaches show the understanding of activities at the individ-
ual level. By looking at each person in group context, bottom-up approaches
will answer questions: ‘what is each individual doing?’ in with or without con-
sideration of group context. This type of approaches not only summarize the
dominant activities in a group but also give detail understanding of each indi-
vidual’s activity. However, this is an exhausted approach for analyzing a large
number of people in a crowded scene where we only want to roughly estimate
the dominant activities of people.

There are advantages and limitations of using top-down and bottom-up
approaches in analyzing people activities in a crowded scene as illustrated in
Fig. 1. With different approaches for analyzing activity in a crowded scenes,
there are different methodologies of designing activity descriptors for achieving
better recognition. Intuitively, the bottom-up approach relying on recognizing
at individual level will need more granularity descriptor on each subject than
top-down approach which need more concentrate on interactions of people in a
group. An ideal robust activity descriptor should encode most of the descriptive
and discriminative information of individual level while being sufficient rich at
capturing group interaction level in a crowded scene.

In this paper, we present a social context framework for recognizing human
activities in crowded scenes by taking advantage of both top-down and bottom-
up approaches. Our hybrid framework localizes groups through social interac-
tion analysis using a top-down approach and analyzes individual activity based
on social context within the group using a bottom-up mechanism. We propose
a novel group context activity descriptor capturing characteristics of individ-
ual activity with respect to the behavior of its neighbors along with an effi-
cient conditional random field model to learn and classify human activities in
crowded scenes.

The main contributions of our work are:

1. A group context activity descriptor. We use a top-down approach to dynami-
cally localize interacting groups capturing behaviors of individuals. We form
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a group context activity descriptor that is a combination of individual activ-
ity and its neighbor’s behavior, represented using the Bag-of-Words (BoW)
representation.

2. An efficient conditional random field framework to learn and classify human
activities in context. We present a recognition framework that jointly cap-
tures the individual activity and its activity relationships with its neighbors.

This paper is an extension of our work in [9] and the extensions are: (1) intro-
ducing more comprehensive analysis perspectives (top-down and bottom-up) of
individual and group activities in a crowded scene. (2) presenting an baseline
model to evaluate the performance of using our group context activity descriptor
in comparison of using other well-known contextual activity descriptors. The rest
of the paper is organized as follows. We review related work on activity analysis
in crowded scenes in Sect. 2. Section 3 describes the human activity descriptor
in group context along with the conditional random field model used to address
the activity recognition task. Experimental results and evaluations are presented
in Sect. 4. Finally, Sect. 5 concludes the paper.

Fig. 1. By using top-down approach, we can quickly summary that there are only two
main activities ‘Running’ and ‘Talking’ in video. However, two ‘unknown’ activities
are not recognized. By using bottom-up approach, we slowly scan through each person
in the scene and recognize what is each person doing? However, we might end up with
assigning wrong ‘Talking’ action for person number 8 who is mingling with 6 and 7.
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2 Related Work

In this section, we review related work on human activity analysis in crowded
scenes that use a top-down or bottom-up approach. In bottom-up approaches,
group context is used to differentiate ambiguous activities e.g. ‘Standing’ and
‘Talking’, which are normally represented by the same local descriptors. Most
approaches integrate contextual information by proposing a new feature descrip-
tor extracted from an individual and its surrounding area. Lan et al. [10] propose
an Action Context (AC) descriptor capturing the activity of the focal person and
the behavior of other people nearby. AC descriptor is computed by concatenat-
ing the focal person’s action probability vector (computed using Bag-of-Words
approach with SVM classifier), and the context action probability vectors cap-
turing the activities of other neighborhood people. However, this AC descriptor
only can capture spatial proximity information by using ‘near by’ context. Con-
sidering a more sophisticated contextual descriptor, Choi et al. [11] propose
Spatio-Temporal Volume (STV) descriptor, which captures spatial distribution
of pose and motion of individuals in a scene to analyze group activity. STV
descriptor centered on a person of interest or an anchor is used for classification
of the group activity. The descriptor is a histogram of people and their poses in
different spatial bins around the anchor. These histograms are concatenated over
the video to capture the temporal nature of the activities. SVM using pyramid
kernels is used for classification. The similar descriptor named as Randomized
Spatio-Temporal Volume (RSTV) is leveraged in [12] but Random Forest classi-
fication is used for group activity analysis. In addition, random forest structure
is used to randomly sample the spatio-temporal regions to pick most discrimi-
native features. Recently, Amer et al. [13] introduced Bags-of-Right-Detections
(BORD) seeking to remove noisy people detection in groups. BORD is a his-
togram of human poses detected in a spatio-temporal neighborhood centered at
a point in the video volume. The BORD is not computed from all neighborhood
people, but only from those detections that are considered to take part in the
target activity. A two-tier MAP inference algorithm is proposed for the final
recognition step.

In contrast to bottom-up approaches, top-down methods model the entire
group as a whole rather than each individual separately. Khan and Shah [14] use
rigidity formulation to represent parade activities. They modeled group shape as
a 3D polygon with each corner representing a participating person. The tracks
from person in group are treated as tracks of feature points in a 3D polygon.
Using rank of track matrix, activities are classified as parade or just random
crowds. Vaswani et al. [15] model an activity using a polygon and its deformation
over time. Each person in the group is treated as a point on the polygon. The
model is applied to abnormality detection in a crowded scene. Multi-camera
multi-target tracks are used to generate dissimilarity measure between people,
which in turn are used to cluster them into groups in [16]. Group activities
are recognized by treating the group as an entity and analyzing the behavior
of the group over time. Mehran et al. [17] built a ‘Bag-of-Forces’ model of the
movements of people using social force model in a video frame to detect abnormal
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Fig. 2. Illustration of group discovery. Human interactions in a group is represented as
an undirected edge-weighted graph. Dominant set based clustering algorithm is used to
localize interacting groups. There are four discovered groups from the scene: {5,6,7,8},
{1,2}, {3} and {4}.

crowd behavior. Close to top-down approach, Ryoo et al. [1] present an approach
that splits group activity into sub-events like person activity and person to
person interactions. Each portion is represented using context free grammar
and the probability of their occurrence given a group activity or time periods. A
hierarchical recognition algorithm based on Markov Chain Monte Carlo density
sampling technique is developed. The technique identifies the groups and group
activity simultaneously.

Recently, several approaches that leverage social signaling cues for analyz-
ing crowded scenes have been proposed. Group activities can be better inferred
from valuable social interactions cues between people present in the scene. Sev-
eral approaches are proposed to identify meaningful group from the videos using
spatial and orientational arrangement of people in the scene as a cue based on
social signaling principles [5,18,19]. Lan et al. [20] present a bottom-up approach
integrating social role analysis to understand activities in crowd scene. Different
from above approaches, our approach takes advantage of both bottom-up and
top-down mechanisms by designing a group context activity descriptor capturing
individual activity and behavior of its neighbors within its groups. Once mean-
ingful groups are identified from the videos by using top-down approach, group
context activity descriptor is built for each individual in discovered group. Using
this descriptor a random field model is built to recognize individual activities
using a bottom-up approach.

3 Approach

In this paper, we mainly focus on recognizing human activities in crowded scenes.
Thus, we assume that people in a crowded scene have been detected and the
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trajectories of people in 3D space and the head poses are available or methods
such as [11,21] can be used to obtain the same.

3.1 Group Discovery in Crowded Scene

In general, the analysis of complex activity in crowded scene is a challenging
task, due to noisy observations and unobserved communication between people.
In order to understand which people in the scene form meaningful groups, we
employ a top-down approach proposed in [5] to discover socially interacting
groups in the scene. This top-down approach basically represents all detected
people as a graph where each vertex represents one person and weighted edges
describe the social interaction between any two people in a group. The dominant
set based clustering algorithm is used to discover the interacting groups [22].
Figure 2 depicts the overview of group discovery in the crowded scene.

3.2 Model Formulation

Given a set N = {1, ..., n} of all the people detected in the scene, let x =
{x1, x2, ..., xn} be the set of people activity descriptors; a = {a1, a2, ..., an} be
the set of individual activity labels, where xi is feature vector and ai ∈ A is
activity label associated with person i ∈ N (A is set of all possible activity
labels). As a result of clustering people in the scene to different interacting
groups, let us define G = {G1,G2, ...,Gm} as the set of discovered groups
where Gc is set of people clustered in group c and ∪m

c=1Gc = N. We introduce a
standard conditional random field model to learn the strength of the interactions
between activities in discovered groups. The activity interaction is conditioned
on image evidence, so that the model not only takes into account which activity
each person is engaged in, but also higher-order dependencies between activities.
Our model is represented as:

Ψ(a,x) =
∑

i∈N

φ(ai, xi) +
m∑

c=1

∑

(i,j)∈Gc

φ(ai, aj) (1)

where φ(ai, xi) is a singleton factor that models the probability of person i’s
activity label ai ∈ A given its feature vector xi. φ(ai, aj) is the pairwise fac-
tor that models the probability between pair of individual activities ai and aj ,
where (i,j) belong to the same group Gc discovered by using top-down app-
roach described in Sect. 3.1. A graphical illustration of our model discovering
meaningful groups and formulation of conditional random field model is shown
in Fig. 3.

The model described in Eq. 1 only captures high-level activity-to-activity
relationships of people in discovered groups. This limit us from analyzing the
low-level interaction detail between pair of individuals and the effect caused by
their neighbors’ behavior. Thus we introduce a low-level group context activity
descriptor that encodes detailed individual activity interactions within a group to
overcome the limitation.
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Fig. 3. Illustration of our conditional random field model for each discovered interacting
group. The activity-to-activity relationships in each group are represented by dashed
lines.

3.3 Group Context Activity Descriptor

An ideal context activity descriptor can efficiently incorporate the focal person’s
activity in spatio-temporal relationship with activities in its spatial proximity.
Lan et al. [10] propose an Action Context (AC) descriptor capturing the activity
of the focal person and the behavior of other people nearby. AC descriptor uses
spatial proximity as an indicator of context. They do not consider whether the
people near-by are engaged in meaningful interactions or not, effectively leading
to a semantically noisy descriptor. This limitation is clearly showed in Fig. 4
where person 1 is not involving in ‘Talking’ with other people {2, 3, 4}. However,
spatial proximity as indicator of context will consider him as a part of ‘Talking’
group. This leads to a misunderstanding of his activity as well as other people
activities. Moreover, we argue that AC is represented by concatenating a set of
probability vectors computed using Bag-of-Words approach with SVM classifier
that adds to ambiguity already existent in the representation (BoW) for each
person. Choi et al. [11,12] employs well-known shape context idea [23] to propose
Spatio-Temporal Volume (STV) and its enhanced version Randomized Spatio-
Temporal Volume (RSTV) descriptors, which capture spatial distribution of pose
and motion of individuals in a scene. The descriptor centered on a person of
interest or an anchor is represented as histograms of people and their poses
in different spatial bins around the anchor. Both STV and RSTV descriptors
can effectively capture higher-level spatial relationship of individual interactions.
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Nonetheless, because of only capturing spatial distribution of pose and positions
of people so they are too coarse to capture finer semantically driven contextual
relationship of individual activities in detail.

We develop a novel group context activity (GCA) descriptor that exploits
strategies from above approaches. Our descriptor is centered on a person (the
focal person), and describes the behaviors of focal person and its semantic neigh-
bors represented by arranging individual activity descriptors in polar view. Let
f = {f1, f2, ..., fn} be the set of local activity descriptors formed using Bag-
of-Words representation for all people in the scene, where fi is K-dimensional
vector representing person i’s activity (K is number of visual codewords). Dense
trajectory based descriptors have shown to be efficient for representing actions
in video, thus we employ approach proposed in [24] to extract motion bound-
ary histogram (MBH) as local activity descriptors. Given the i-th person in
discovered group Gc as the focal person, we divide its context region into P sub-
polar context regions characterized by number of orientation bins and radial
bins [23,25]. Using spatial relationship between people in discovered group Gc,
we extract descriptors in each sub-polar context region around the focal person.
As a result, the group context activity descriptor xi for person i is represented
as a (P +1)×K dimensional vector including focal activity descriptor computed
as follows:

xi = [fi,
∑

j∈S1(i)

fj ,
∑

j∈S2(i)

fj , ...,
∑

j∈SP (i)

fj ] (2)

where Sp(i) is set of people in the p-th sub-polar context region of person i.
Figure 4 shows the extraction of group context activity descriptor for a selected
person in a discovered group.

Fig. 4. Depiction of Group Context Activity (GCA) descriptor extraction. From left
to right, people are localized in different groups using a top-down approach from [5];
local descriptors are extracted from dense trajectories [24]; local BoW is computed for
each person’s activity; GCA descriptor is extracted for a selected person in a discovered
group by computing descriptor for each sub-polar context bin.
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3.4 Inference and Learning

Our model is a standard Conditional Random Field (CRF) with no hidden vari-
ables. We train a multi-class SVM classifier based on GCA descriptors and their
associated labels to learn and compute singleton factor φ(ai, xi). Given an obser-
vation xi, we use SVM parameters to compute probabilities for all possible activ-
ity labels. From training data, we use top-down approach to discover interacting
groups in the scene. All pairs of activity labels in discovered groups are counted
to compute pairwise factor φ(ai, aj).

Given a new testing scene, our inference task is to find best activity label
assignments for all people detected in the scene. The prediction assignment a∗

is computed by running MAP inference on the network as:

a∗ = arg max
a

Ψ(a,x) (3)

where Ψ(a,x) is specified in Eq. 1.

4 Experiment and Results

In this section, we describe the experiments designed to evaluate the performance
of the proposed group context activity (GCA) descriptor and framework for
human activity recognition in crowded scenes.

4.1 Datasets

In this work, we choose to use two challenging benchmark datasets to evalute
our proposed approach in recognizing human activities in a crowded scene. The
first benchmark dataset is Collective Activity dataset [11]. The old version of
dataset contains 5 activities in group (Crossing, Waiting, Queuing, Walking and
Talking) and recently, the authors presented a new version of dataset including
two additional activities (Dancing and Jogging). HOG based human detection
and head pose estimation along with a probabilistic model is used to estimate
camera parameters [11]. Extended Kalman filtering is employed to extract 3D
trajectories of people in the scene. These automatically extracted 3D trajectories
and head pose estimates are provided as a part of the dataset. Thus, the dataset
represents real world, noisy observations with occlusions and automatic person
detection and trajectory generation.

The second benchmark dataset is UCLA Courtyard dataset recently intro-
duced by Amer et. al [26]. This dataset contains 106 min of high resolution videos
at 30 fps from a bird-eye view of a courtyard at the UCLA campus. The annota-
tions in term of bounding boxes, poses, and activity labels are provided for each
frames in video. The dataset contains 10 primitive human activities which are
Riding Skateboard, Riding Bike, Riding Scooter, Driving Car, Walking, Talking,
Waiting, Reading, Eating, and Sitting.
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4.2 Model Parameters

In using the group discovery algorithm [5], we set parameters that maintain
the ratio proposed in [27] and the social distance function is modeled as the
power function Fs(r) = (1 − r)n, n > 1. We define 56 activity labels (8 head
poses × 7 activity labels) for new version of Collective Activity dataset and 40
activity labels (8 head poses × 5 activity labels) for UCLA Courtyard dataset
by combining the head poses and activity labels. We train a multi-class SVM
classifier which is used to compute singleton factors by utilizing the libSVM
library [28] with linear kernel on GCA descriptor. Using discovered groups from
top-down approach, respectively, matrices of size 56 × 56 and 40 × 40 are used
to learn and look up pairwise factors for Collective Activity and UCLA Court-
yard datasets. For recognition, we use libDAI [29] to perform inference in our
conditional random field model. To compute the MBH descriptors, we set the
neighborhood size N = 32 pixels, the spatial cell nσ = 2, the temporal cells
nτ = 3, trajectory length L = 10, and dense sampling step size W = 5 for dense
tracking. This setting claims to empirically give good results for a wide range of
datasets (see [24] for parameter details). In designing GCA descriptor, we select
codebook size of K = 200 by clustering a subset of 100, 000 randomly selected
training features using k-means. In addition, we evaluate our proposed model in
different settings of P , which is number of sub-polar context regions around a
focal person. Basically P = R × O where R is number of radial bins and O is
number of orientation bins. However, given a focal person within his discovered
group, context activity descriptor differs from others by discriminating in orien-
tation distribution rather than radial distribution. Thus in our case, R is set to
1 and our GCA descriptor is controlled by P = O number of orientation bins.
For the special case when P = 0, GCA descriptor amounts to the focal person
local activity descriptor without using context (xi = fi). This is the same for a
non-group person in the scene who does not belong to any discovered groups.
Experiments show that P = 4 and P = 16 achieves the best performances in
Collective Activity and UCLA Courtyard datasets, respectively.

Table 1. Recognition rates of various proposed methods on Collective Activity
dataset [11].

Accuracy (%)

Approach Year Walk Cross Queue Wait Talk Jog Dance Avg.

Choi [11] 2009 57.9 55.4 63.3 64.6 83.6 N/A N/A 65.9

Choi [12] 2011 N/A 76.5 78.5 78.5 84.1 94.1 80.5 82.0

Amer [13] 2011 72.2 69.9 96.8 74.1 99.8 87.6 70.2 81.5

Amer [26] 2012 74.7 77.2 95.4 78.3 98.4 89.4 72.3 83.6

Lan [10] 2012 68.0 65.0 96.0 68.0 99.0 N/A N/A 79.1

Our Method 60.4 60.6 89.1 80.9 93.1 93.4 95.4 82.9
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Table 2. The recognition rates of using the baseline recognition method with different
context activity descriptors.

Accuracy (%)

Approach 5 Activities 6 Activities

AC [10] 70.9 N/A

STV [11] 64.3 N/A

RSTV [12] 67.2 71.7

GCA 72.6 74.2

Fig. 5. Confusion matrices for Collective Activity dataset (Top) and UCLA Courtyard
dataset (Bottom).
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4.3 Human Activity Recognition Evaluation

We summarize the recognition results obtained using our method and other
approaches in Table 1 for Collective Activity dataset using standard 4-folds cross-
validation scheme. As we can see, our proposed approach achieves recognition
rates comparable to state-of-the-art methods in the new version of Collective
Activity dataset. Figure 5(Top) shows the confusion matrices obtained on Col-
lective Activity dataset. It lists the recognition accuracy for each activity indi-
vidually. The low values of the non-diagonal elements imply that the descriptor
is highly discriminative with very low decision ambiguity between different activ-
ities. The confusion matrix also shows the most confusion between Walking and
Crossing activities, which can be explained because both are essentially Walking
activity but with different scene semantic. Overall, the confusion matrix shows
very high accuracy rates in recognizing Queue, Talk, Dance and Jog activities.
This can be explained because our group context activity descriptor efficiently
encodes activities in different contexts.

To evaluate our proposed group context activity descriptor we report the per-
formance using the same baseline multi-class SVM classification algorithm with
different activity descriptors. Table 2 shows that using our descriptor we achieve
a significant improvement over using other descriptors [10–12] with the same a
baseline recognition algorithm. This indicates that our descriptor took advan-
tages of exploiting strategies from designing AC, STV and RSTV descriptor to
provide sufficient rich information in both individual and group levels.

Table 3. Recognition rates of various proposed methods on UCLA Courtyard
dataset [26].

Accuracy (%)

Approach Walk Wait Talk D-Car R-S-board R-Scooter R-Bike Read Eat Sit Avg.

Amer [26] 69.1 67.7 69.6 70.2 71.3 68.4 61.4 67.3 71.3 64.2 68.1

Our Method 74.3 69.9 70.0 N/A N/A N/A N/A 72.8 N/A 70.8 71.4

For UCLA Courtyard dataset, Table 3 shows our recognition rate in com-
parison with other proposed methods, and Fig. 5 shows the recognition confu-
sion matrices. As we can see, our proposed approach achieves recognition rates
that outperform the state-of-the-art methods in recognizing selected activities in
UCLA Courtyard dataset. However, there is a limitation in using our framework
to UCLA Courtyard dataset. The dense track algorithm proposed in [24] does
not perform well across all observations in the UCLA Courtyard videos. There
are very small number of dense trajectories extracted from people in shadow
regions in comparison to other regions (see Fig. 6). Thus, there are not enough
extracted descriptors to build GCA descriptor for those people in shadow regions.
Using alternate feature detectors could alleviate this problem and hence the
limitation towards computing the local activity descriptor for UCLA Courtyard
videos. Due to this limitation, not all activities are included in our evaluation.
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Fig. 6. Depiction of computed dense tracks in UCLA Courtyard dataset. Due to low
resolution, there are few tracked trajectories extracted for people in shadow regions.
Thus, there are very few local activity descriptors extracted for people in those regions.
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Some activities such as Riding Skateboard, Riding Bike, Riding Scooter, Driving
Car, and Eating are limited and hence do not provide sufficient exemplars for
learning.

5 Conclusion

In this paper, we have proposed an efficient hybrid (top-down and bottom-up)
framework for activity recognition based on analyzing group context in crowded
scenes. A novel group context activity descriptor is introduced that is designed
to capture the focal person’s activity along with the behavior of the neighbors.
We have also proposed a high-level recognition framework that jointly utilizes
the individual person’s activity and the relationships with the activity of the
neighbors. The experimental results show that a baseline recognition using our
proposed descriptor achieved a significant improvement over using other descrip-
tors. We have also evaluated our hybrid framework on two public benchmark
datasets and the results demonstrate that our approach obtains results compa-
rable to state-of-the-art approaches in recognizing human activities in crowded
scenes.
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Abstract. In this paper we show that combining knowledge of the ori-
entation of a camera with visual information can be used to improve
the performance of semantic image segmentation. This is based on the
assumption that the direction in which a camera is facing acts as a prior
on the content of the images it creates. We gathered egocentric video
with a camera attached to a head-mounted display, and recorded its ori-
entation using an inertial sensor. By combining orientation information
with typical image descriptors, we show that segmentation of individual
images improves in accuracy compared with vision alone, from 61 % to
71 % over six classes. We also show that this method can be applied to
both point and line based features from the image, and that these can
be combined together for further benefits. Our resulting system would
have applications in autonomous robot locomotion and guiding visually
impaired humans.

Keywords: Vision guided locomotion · Segmentation · Image interpre-
tation · Scene understanding · Inertial sensors · Oculus Rift · Mobile
robotics

1 Introduction

The ability to safely traverse rough terrain is crucial to the survival of almost
all land animals, and is a crucial requirement in order to hunt prey, forage for
food, escape predators, find mates, migrate, and so on. Vision is a very impor-
tant sense for this, and can provide a rich depiction of the surrounding world;
but vision is rarely used in isolation, and sound, scent and touch all provide
important information too. Another very important source of information is the
vestibular system, allowing accelerations and absolute orientations to be per-
ceived independently of visual or other cues [1], and is crucial for balance and
normal locomotion [29]. Vestibular information becomes even more important
when vision is impaired [7], and its absence can lead to problems in interpreting
visual information [30]. There is also some evidence that the central nervous sys-
tem dynamically controls the relative importance of visual and vestibular signals
[7], and that reciprocal inhibition of visual and vestibular signals allows percep-
tion of self-motion in situations with conflicting stimuli [4], showing that there
is significant and important interaction between the two senses.
c© Springer International Publishing Switzerland 2016
J. Braz et al. (Eds.): VISIGRAPP 2015, CCIS 598, pp. 205–226, 2016.
DOI: 10.1007/978-3-319-29971-6 11
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There are a large number of applications in computer vision and robot-
ics where visual information is used to guide wheeled or legged vehicles over
unknown terrain (see for example [8,20]). However, the use of orientation infor-
mation alongside visual information has been less well studied, despite the appar-
ent biological motivation for doing so. Fusing information from these sensing
modalities offers great potential for assisting in tasks relevant to locomotion, for
example the structural interpretation of image content which we consider in this
work. This is based on the observation that the content of an image typically
changes in relation to its real-world orientation – for example a downward point-
ing camera tends to be looking at the ground, while a sideways facing camera can
expect to see a combination of walkable terrain and obstacles. This information
alone is not sufficient for predicting image content of course, since it disregards
any specific information about the current scenario; but it can serve as a useful
prior for the kinds of structures to be expected, when used in combination with
visual information.

(a) (b)

Fig. 1. Typical results of our algorithm, showing how segmentation results using only
vision (left) can be improved by taking into account the camera orientation (right). In
both examples knowledge of the camera orientation avoids misclassifying vertical walls
as ground (yellow). See Fig. 7 for full color legend. All images are best viewed in color
(Color figure online).

Our work develops these ideas and presents the first method, to our knowl-
edge, for combining visual and vestibular information for semantic image seg-
mentation. Using this we show that by combining camera orientation, measured
with an inertial sensor, with visual features extracted from images from the cam-
era, we can achieve improved performance in an image segmentation task. The
ultimate aim of this work is to build a system enabling autonomous locomotion
by legged robots. In order to work towards this goal we focus on developing a
method for guiding humans through urban landscapes. Not only is this a conve-
nient test-bed for evaluating vision guidance algorithms without the constraints
of robot locomotor capability, but it also demonstrates a potential application
in guiding visually impaired humans, where knowledge of the scene structure is
of great importance [28]. With this in mind we developed an algorithm which
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segments images into relevant structural regions, such as the walkable ground
region, impassable obstacles and intermediate surfaces such as stairs, and dis-
plays the result through a head-mounted display unit. Examples outputs of the
algorithm are shown in Fig. 1.

The next section discusses related work in the field. A brief overview of our
method is given in Sect. 3, followed by Sect. 4 which describes the data acquisition
process. Section 5 gives full details of how our algorithm works. We then present
extensive results and examples in Sect. 6, before concluding in Sect. 7. Please note
that this paper is an extended version of our earlier work [13], incorporating new
results and examples.

2 Related Work

Using inertial sensors has been known to improve performance in a variety of
computer vision tasks. One of these is visual simultaneous localisation and map-
ping, in which the pose of a camera with respect to a map, and the unknown
map itself, must be recovered. The pose estimate given by an inertial sensor can
be fused with that derived from vision to improve robustness [22] and help to
mitigate scale drift [24]. A rather different example from [15] uses inertial infor-
mation for blur reduction, by using estimates of the camera’s motion derived
from an inertial sensor during an exposure to guide deconvolution.

The work of Hoiem at el. [14] is more closely related to ours, in that images are
segmented into geometrically consistent regions. As well as visual features, this
uses the position of a segment within the image as a feature during classification,
to learn that sky occurs toward the top of the image, for example – although in
this work the camera is assumed to be in an upright position with no roll. Visual
segmentation can be enhanced using other 3D information – for example using
features extracted from a point cloud to help classify objects in road scenes [26];
or by jointly segmenting individual video frames and labelling structures in a
3D reconstruction from those frames [18]. While the orientation of the camera
may be implicitly included in these methods via the 3D map, this is not directly
investigated, and furthermore is estimated from the image stream itself.

The use of inertial data for terrain classification was investigated by [25],
where the inertial data themselves are used as features to encode the vehicle
vibration and accelerations for different terrains, in order to predict the terrain
type over which the vehicle traverses. This bears some similarity to our approach,
in that inertial data is being used for classification, but it does not attempt to
make use of the relationship between class and pose.

While these show interesting uses of information not directly present in the
image to aid labelling, they are not making use of the information potentially
provided by the camera orientation itself. Similarly, while some of the above
mentioned works use inertial data to aid vision tasks, this is generally in a
purely geometric sense, and they have not exploited the relevance to semantic
attributes in the image. We investigate ways to do this in the following sections.
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3 Overview

In this paper we present an algorithm which takes as input a single image and its
associated 3D orientation, measured with an inertial measurement unit (IMU),
and produces a segmentation of the image into distinct regions, correspond-
ing to classes relevant to the task of locomotion. The classes used are: ground
(walkable), plane (non-walkable, usually vertical), obstacle (non-walkable and
not planar), stairs (walkable with caution), foliage (possibly traversable, maybe
with a different gait), and sky (neither traversable nor obstacular). These are
colored yellow, red, magenta, cyan, green and blue respectively in all examples.
This particular choice of classes is somewhat arbitrary – and our algorithm is
not specific to this choice of course – but we believe this represents a reason-
ably minimal set of necessary classes to facilitate locomotion through different
environments.

To demonstrate the use of orientation in enhancing segmentation, we devel-
oped a relatively simple means of classifying and segmenting images. We seg-
ment an image by describing a grid of points with a collection of feature vectors,
consisting of visual and pose information. These are used to predict the most
likely class for each point with a pre-trained classifier. Since each point is clas-
sified independently, this initial segmentation exhibits much noise. To mitigate
this, we experiment with a Markov random field (MRF) algorithm to enforce a
smoothness constraint across the grid of points; or alternatively a conditional
random field (CRF) to create more detailed segmentations. Using any of these
approaches we show that fusing visual and orientation information can substan-
tially improve segmentation accuracy over using either alone; and crucially, that
orientation information enhances performance beyond using position within the
image as a feature.

We also show that classification of lines detected in the image can be
enhanced by adding location and orientation features, as well as features encod-
ing properties of the lines themselves (non-visual features are collectively referred
to as pose features). Finally, we show that combining the results from point and
line classification can improve performance over either in isolation.

The result of our method is a segmentation of the image, comprised of sets
of contiguous points with the same classification which, as Fig. 1 shows, divides
the image into regions appropriate for a navigation task (here showing MRF
segmentation). The basic algorithm does not produce a per-pixel segmentation,
due to the resolution of the grid we use, but every pixel in the image is covered,
and every pixel is used for the description; the CRF segmentation goes beyond
this by giving an individual label to each pixel (see Fig. 12).

4 Data Acquisition

To develop and evaluate the algorithms in this paper, we gathered long video
sequences (totalling around 90 min of footage) using an IDS uEye USB 2.0
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camera1 fitted with a wide-angle lens (approximately 80◦ field of view). This
provides images at a resolution of 640 × 480, at a rate of 30 Hz.

Our aim is to use this method to guide humans through outdoor environ-
ments. Therefore, all our data were gathered from a camera mounted on the front
of a virtual reality headset, worn by a person traversing various urban environ-
ments. While walking, the subject saw only the view through the camera. This
was done to make the data as close as possible to what would be encountered in
a real application, both in terms of the camera being mounted in the same way,
and the movements of the head being typical of a human with limited visibility.

The hardware we used for this was the Oculus Rift2 (Dev. Kit 1), which has
a large field of view and sufficiently high framerate (up to 60 Hz). The camera
was mounted sideways, so that the images have a portrait orientation – this is
because the view for each eye is higher than it is wide. We correct for barrel
distortion introduced by the lens to produce an image approximating a pinhole
camera, using camera parameters obtained with the OpenCV calibration tool.3

To gather orientation information we used the inertial sensor built into the
Oculus Rift. This comprises a three-axis accelerometer, gyroscope and magne-
tometer, which are combined with a sensor fusion algorithm to give estimates of
orientation in a world coordinate frame at 1000 Hz. We retrieve the orientation
as three Euler angles, and discard the yaw angle (rotation about the vertical
axis), since in general this will not have any relationship to semantic aspects of
the world. Conversely, pitch and roll are important since they encode the camera
pose with respect to the horizon line, and thus whether the camera is looking
up/down or is tilted. This has an influence on the likelihood of different classes
being observed.

From these videos, a subset of frames are hand picked for labelling, for train-
ing or testing. They are manually segmented into disjoint regions, built from
straight-line segments. Each region is assigned a ground truth label from our

Fig. 2. Example ground truth – the manual labelling of regions (left) and ground truth
segmentation (right).

1 en.ids-imaging.com.
2 www.oculus.com.
3 www.docs.opencv.org.

http://en.ids-imaging.com
www.oculus.com
www.docs.opencv.org
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set of classes. This is by nature a subjective task, since image content is often
ambiguous, but the labelling is as consistent as possible. Some truly ambiguous
regions are not labelled, which are omitted from all training and testing.

Examples of ground truth data can be seen in Fig. 2. The labelling is indepen-
dent of the points and lines which are later created in the image. We also show
ground truth segmentations derived from these, in which a grid of points has
been assigned labels according to the underlying ground truth (where the block-
iness due to the grid is clearly visible). This is the best possible segmentation,
against which we evaluate our algorithms in Sect. 6.

5 Classification and Segmentation

In this section we describe the process by which an image is segmented, according
to either the visual features, pose features, or combinations thereof; and how
these features are created in regions surrounding grid points, detected lines, or
both. An overview of the whole system is presented in Fig. 3.

Fig. 3. This block diagram showing how the system as a whole works. The dotted lines
show what happens when points or lines are used alone; if both are used, their outputs
are concatenated and passed to the meta-classifier.

5.1 Structures

While applying classification at the level of individual pixels is a valid option, this
would be very computationally expensive, and the information at one pixel (e.g.
its color and location) is unlikely to be sufficiently discriminative. Instead, we use
a combination of point and line structures. The points, organized in a grid, are
described by features created from their surrounding pixels. Using a regular grid
of points also makes segmentation with graphical models more straightforward
than using only salient points for example [12]. Lines are detected in the image
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use the LSD line segment detector4 [31] (we discard lines under 6 pixels long
and 3 pixels wide (LSD gives a width value for each line) since these are likely
to be noise). These are used in order to represent high-frequency image content,
and distinctive appearance changes over discontinuities, which would be missed
by the smaller and more localized point features. Feature vectors for lines are
created from surrounding pixels, extending along their length and covering a
region of fixed width on either side.

In order to combine lines with the point-based segmentation, we assign points
to lines if they lie within the region enclosed by the line feature (a point may
be assigned to multiple lines). It is this assignment of points to lines which later
allows line classifications to be transferred to points for segmentation; similarly,
the ground truth label of a line is obtained via the points, whose label in turn
comes from the marked ground truth regions (thus a line’s label vector is the
mean label vector of all points inside the area used to describe it).

5.2 Features

The features with which we classify structures in the image are divided into two
broad categories: visual features and pose features. The former uses information
derived from the image pixels to describe local regions of the image; the latter
comprise other information not directly present in the image, but pertaining to
properties of image structures or the image as a whole.

Visual Features. The visual features we use to describe points are histograms
encoding the distribution of gradients and colors in a surrounding square patch.
Histograms of gradients describe the local texture, and are built by first con-
volving the image with gradient filters in the x and y directions, to obtain at
each pixel gradient responses gx and gy. For each pixel we calculate the gradient

angle θ = tan−1 gy
gx

and gradient magnitude m =
√

g2x + g2y. These are used to
build the gradient histogram for a patch by quantising the angles into bins, and
weighting the contribution to each bin by their magnitudes. To encode richer
structure information we create a separate histogram for each quadrant of the
patch and concatenate them together, in the manner of [12].

In addition, color descriptors are created for these patches. These are his-
tograms built in HSV space, which combine a histogram of quantized hue values,
weighted by the saturation (since the saturation represents the degree to which
the hue is relevant), and an intensity histogram. These are included alongside
texture information since color is beneficial when classifying and segmenting
images [14,17].

As mentioned above, we also perform classification on lines detected in the
image. In order to create a description better suited to lines, for both gradient
and color we create pairs of histograms from the pixels in rectangular regions
either side of the line, and concatenate them. Thus, the gradient descriptor has

4 Code available at www.ipol.im/pub/art/2012/gjmr-lsd.

www.ipol.im/pub/art/2012/gjmr-lsd
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half the dimensionality compared to the point case (which had four quadrants),
while the color descriptor is twice as long.

Pose Features. The most basic of our pose features is simply the position (of
the point, or the line’s midpoint) in the image, where we use the x and y coor-
dinates (normalized by image size) directly. This is to represent any dependence
on image location which may be exhibited by different classes. Note that the
use of location without orientation was not investigated in the original version
of this work [13].

The main contribution of this paper is the use of the orientation of the camera
as a feature. To obtain this, we use the pitch and roll values from the Oculus
Rift IMU, each normalized to the range [0, 1]. The orientation features are always
combined with image location, since otherwise the orientation feature would be
the same for all points in the image: it is the interaction between image position
and camera orientation which gives rise to cues of different types of structure at
different locations in space.

For the line regions only, we also use a shape descriptor, which comprises sim-
ply a line’s length, width, and orientation in the image, each appropriately nor-
malized. This is to add extra information – usually at a larger scale – about the
scene structure which may be ignored by both the visual and location/orientation
features.

5.3 Classification

After extracting features for all points and lines in our training set, each being
paired with a ground truth label, we train a set of classifiers. The classifier we
use for this work is multivariate Bayesian linear regression [3], chosen because
it is both fast to train, and very fast to evaluate for a new input. It is similar
to standard regularized linear regression, except that the optimal value for the
regularisation parameter can be chosen directly, under the assumption that the
data have a Gaussian distribution.

To use it, each class label is represented as a 1-of-K vector (for the K = 6
classes), where dimension k is 1 for class k, and zero otherwise. The classifier
outputs a K-dimensional vector, which after normalization to sum to 1, is treated
as the estimated probability for each class. Prediction is simply a matter of
multiplying the feature vector by the M × K weight matrix (for features of
dimensionality M). Rather than the raw feature vector – which would allow for
learning only linear combinations of the inputs – we use fourth order polynomial
basis functions.

5.4 Combining Information

Different combinations of structures and features lead to different versions of our
algorithm. The most basic is using points only (P) with visual features (V), an
algorithm which we will denote P-V. Similarly, we can experiment using only
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location information (which we denote with an ‘X’), orientation information
(O), and combinations thereof. For algorithms using line structures (L), we can
also add the shape feature, denoted by ‘S’.

In order to combine different features together, we simply concatenate them
to create one long feature (an alternative method was not found to improve
accuracy, c.f. [13]). These combinations will be expressed as P-VX for example
(points with visual and location features concatenated).

This concatenation is also done for line regions’ features (e.g. L-XOS, which
combines location, orientation and shape features). However, we cannot combine
points with lines by simply concatenating their features, because their features
are created over different image regions. Instead, we retain separate classifiers for
both structures, and combine their outputs by a process known as ‘meta-learning’
(or sometimes ‘stacked generalisation’) [2]. The K-dimensional predicted label
vectors from the two classifiers are concatenated, and treated as a new feature
vector. This is input to a second round of classification, the output of which
is another K-d label vector, representing the final probability estimate for each
class, thus combining information from the points and lines. We run the classifiers
whose outputs we wish to combine (e.g. P-V and L-V) on the training data to
gather example outputs. These predicted label vectors are concatenated and
paired with the known ground truth label for each point, so that the meta-
classifier can be trained (e.g. resulting in PL-VO). Note that this concatenation
is done at the points, where the points receive labels from the lines in which they
lie. Points not within any line regions simply keep their own predicted label.

5.5 Segmentation

The result of any of the above algorithms is a set of points in the image, each
having a predicted label vector, from which we choose the most likely class
assignment as the dimension with the highest value. Since each point is classified
individually, there is no guarantee that neighbouring points will have similar
labels, even if they belong to perceptually similar regions of the image; this is
especially true when using line regions, as adjacent points may be assigned to
different lines.

Markov Random Field. To address this we formulate the problem as a
Markov random field (MRF). This allows us to choose the best label for each
point according to its observation (i.e. classification result), while also incorpo-
rating a smoothness constraint imposed by its neighbours.

We create a grid graph to represent all the points in the image, by connecting
each point to its 4-neighbours. The aim when optimising a MRF is to maximize
the probability of the configuration of the field (i.e. an assignment of labels to
points); this is equivalent to minimising an energy function over all cliques in
the graph [19] (we use up to second-order cliques, i.e. unary and pairwise terms).
A configuration of the MRF is represented as p = (p1...pN ), where pi ∈ L is the
class assigned to point i of N and L is the set of possible labels. The goal is to
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find the optimal configuration p∗, such that p∗ = argminpE(p), where E(p) is
the posterior energy of the MRF. We define this as:

E(p) = α

N∑

i=1

ψd(pi) +
N∑

i=1

∑

j∈Ni

ψs(pi, pj) (1)

where the first term sums over all points in the graph, and the second sums over
all neighbours Ni for each point i. α is a weight parameter, balancing the effects
of the data and the smoothness terms. The unary and pairwise potentials are:

ψd(pi) = ‖pi − ci‖
ψs(pi, pj) = VijT (pi �= pj)

(2)

pi denotes the label pi represented as a 1-of-K vector, and ci is the K-d
output of the classifier (thus taking into account the predicted probability for
all the classes). T (.) is an indicator function, returning 1 iff its argument is true,
and Vij is a pairwise interaction term, controlling the degree to which label dis-
similarity is penalized at sites i and j. This is set to Vij = β − min(β, |mi − mj |),
where mi is the median intensity over the patch at point i. This penalizes dif-
ferences in label more strongly between points with similar appearance, in order
to adapt the segmentation to the underlying image contours. We set the para-
meters to α = 60 and β = 90 empirically based on observations on the training
set (note the pixel intensities are in the range [0, 255]). We optimize the MRF
using graph cuts with alpha-expansion5 [6]. After optimising the MRF we per-
form connected-component analysis to recover the segments. Examples of results
before and after MRF segmentation can be seen in Fig. 12.

Conditional Random Field. We also describe an alternative way to segment
the image, using a conditional random field (CRF). CRFs have an advantage over
MRFs in that they model the conditional distribution of the labels with respect
to the features, rather than the full joint distribution. This means an accurate
conditional model can have a much simpler structure than a fully generative joint
model [27]. Recent advances allow for extremely efficient CRF optimisation, so
much so that it is now possible to use a fully-connected graph, as opposed to
the grid-structured graph described above, connecting every pixel to every other
pixel. To do this we use the algorithm of Krähenbühl and and Koltun6 [17]. For
the unary potential at pixel i and label k we use:

Uik =
{−ln(p+

ki) if point i has a label
−ln( 1

K ) otherwise (3)

where x+ is the value of x if it is greater than zero (zero otherwise), and pik

is the kth element of the K-d probability vector predicted at point i. Since

5 Using the ‘gco-v3.0’ code at vision.csd.uwo.ca/code.
6 Using code available at www.philkr.net/home/densecrf.

http://vision.csd.uwo.ca/code
www.philkr.net/home/densecrf
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the CRF is defined over every pixel, most nodes will not have an initial label.
The inference algorithm is otherwise used unchanged, except we doubled the
standard deviation of the color-independent term, as we found this to improve
performance.

6 Results

To evaluate our algorithms, we gathered two datasets as described in Sect. 4.
All data were obtained from the same camera, having a (rotated) resolution of
480 × 640, and were corrected for barrel distortion due to a wide-angle lens.

The first dataset was designated the training set, and contained 178 manually
labelled images. This set was used for cross-validation experiments, to demon-
strate the claims made above. The second set of 156 images was the test set,
which came from different video sequences recorded in physically distinct loca-
tions to the training set. This was done to verify that the algorithms generalize
beyond the training set, and to show example images (all examples in the paper
come from this set). All our labelled data are available online.7

Our algorithm has a large number of parameters which will effect its oper-
ation. The most important ones are described here, with typical values given.
The grid density (distance between points) was set to a value of 15 pixels (mak-
ing a grid of approximately 30 × 40 points), to give a compromise between an
overly coarse representation/segmentation, and the quadratic increase in com-
putational time for denser grids. The patches around every pixel, from which
visual features are built, were squares of side 20 pixels. The width of line regions
was set to 30. The basic gradient histogram was 12-d, making the concatenated
quadrant feature on points 48-d; and color histograms had 20 dimensions each
for the hue and intensity parts. As described earlier, location and orientation
features had two dimensions each, while line shape features have three.

These parameters were set to values which appear sensible or are supported
by related literature. However, we make no claim that these were the optimal
parameters, and much further tuning could be done, although the best settings
would depend on the dataset used. We emphasize that this does not alter the
central claims of this work, i.e. that making use of orientation information, using
either points or lines, can improve segmentation. All parameters were kept con-
stant across evaluations, so all results are relative.

6.1 Cross-Validation

We begin with results obtained through cross-validation on our training set. This
was done by running five independent runs of five-fold cross-validation on the
data (to mitigate artefacts due to particular choices of training/test splits). For
comparison we use classification accuracy, i.e. the average number of times a
point was assigned the correct class. Segmentation was evaluated point-wise,

7 Our dataset can be found at www.osianh.com/inertial.

www.osianh.com/inertial
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i.e. looking at every point individually, since for the time being we are not
concerned with the issue of true segments being wrongly split or merged. We first
analyse the performance of the algorithms without the benefits of segmentation:
the MRF and CRF are not used here, and we directly used the labels assigned
to points by the classifiers.

Fig. 4. Adding orientation features to vision features for points. All error bars show a
95 % confidence interval.

First, we ran an experiment to evaluate classification using only points, with
various combinations of vision and pose features. The results are shown in Fig. 4.
The bars indicate the average accuracy over all the runs of cross-validation, and
the error bars are drawn to show a 95 % confidence interval, based on the average
standard error over all runs of cross-validation.

Using vision features alone (P-V) provides a reasonable baseline perfor-
mance. We ran experiments using only the location feature (P-X) or location
plus orientation (P-XO) – as one might expect, these perform much worse than
using only vision, since no image information is actually used. Nevertheless, it is
encouraging to see that adding orientation already improves the accuracy, and
it can be surprising what orientation alone can tell us about what an image is
expected to contain, as we will show in the next section.

One of the key results of this paper is that combining vision with orientation
information (P-VXO) is significantly better than using vision alone. Crucially,
we also show that while adding image position as a feature (P-VX) does give
some improvement (as per [14]), it is the combination of inertial information
with image location which gives the largest increase. This was not shown in the
original paper [13], but is important in demonstrating that the prior introduced
by where the camera is pointing is relevant to classification.
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Fig. 5. Using orientation with vision features for lines.

The next experiment was the same as the above, but for line regions instead.
Note that these evaluations were done using the points which were assigned
labels from classified lines, not on the lines themselves (points not in lines were
excluded from the evaluation). As shown in Fig. 5, we tested the use of line
location (L-X) and shape on their own (L-S), in combination (L-SX), and
combined with orientation (L-SXO), again showing the increased performance
when using orientation. When combining with visual information (L-VSXO),
we show that this is superior to using visual information alone, or even visual
information with shape and location (L-VSX), once again demonstrating that
the addition of orientation information is of primary importance, and is what
allows us to obtain significantly better classification rates.

Finally, we investigated the effect of combining point and line features.
Figure 6 first shows both point and lines separately, using only vision features
(the same results from the two previous graphs), then the result obtained when
combining both point and line classification (PL-V). It can be seen that this
improves performance compared to using either structure in isolation. We then
see the same trend when adding location, orientation and shape information: the
graph shows the results of points and lines individually with the full set of fea-
tures (once again the same as the previous graphs), and finally the result using
both structures and all features (PL-VSXO). This results in an improved accu-
racy, suggesting that combining information from multiple types of patch/region
is indeed beneficial, albeit by a smaller margin than the above experiments.

In Fig. 7 we show a confusion matrix, obtained as the mean confusion matrix
over all runs of cross-validation, using the full algorithm PL-VSXO. The diag-
onal is pleasingly prominent, though there is significant confusion between stairs
and ground (when the true class is stairs), which is somewhat unfortunate from a
safety point of view. Vertical surfaces also tend to be confused with other obsta-
cles and foliage, which is less of a concern. For our task, ground identification is
perhaps the most important criterion, which appears to be the strongest result.
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Fig. 6. Combining predictions from both points and lines.

Sky

Foliage

Obstacle

Plane

Ground

Stairs

Sky
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Obstacle

Plane

Ground

Stairs

Fig. 7. Confusion matrix over all runs of cross-validation, for complete PL-VSXO
algorithm. Rows correspond to the true classes, while columns represent the predicted
classes. Colors correspond to those used through all segmentation examples.

6.2 Independent Data and Examples

After the cross-validation experiments, we trained sets of classifiers correspond-
ing to different variants of the algorithm, using the training set above (plus copies
obtained by reflecting across the vertical image axis). We used these to evaluate
performance on the independent test set. Results are shown in Table 1. This con-
firms the important result of the paper: that combining orientation information
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Table 1. Comparison of the different algorithms on independent test data. Using a
MRF to smooth away spurious local detections increases accuracy slightly in all cases;
a fully connected CRF does not give better performance than the MRF as measured
here, but gives more detailed segmentation.

Algorithm Accuracy MRF CRF

P-V 61.0 % 64.7 % 63.1 %

P-VXO 71.1 % 73.8 % 72.2 %

PL-VSXO 71.5 % 74.6 % 72.5 %

is beneficial, exhibiting around 10 % increase in overall accuracy. Adding line
information did confer a further improvement, although this was only slight. We
also show results after applying MRF and CRF segmentation, both of which
increased accuracy by a few percent.

We now show example results taken from the test set, showcasing the dif-
ferences between the algorithms presented above and demonstrating what they
are capable of. In all example images in the paper (except Fig. 12), the MRF
segmentation has been run, to remove noise and give a tidier segmentation.

(a) (b)

Fig. 8. Example results, showing segmentation using only vision features (left) and
combined with orientation features (right). See color legend in Fig. 7.

First, Fig. 8 shows side by side examples of the basic vision version (P-V),
and the effect of adding pose information (P-VXO). In (a), the building façade
is partly mistaken for the ground by the visual features, whereas knowing the
camera is pointing upwards corrects this. In (b) the miss-classification of the
road as stairs is also corrected.

In the next example (Fig. 9) we show the effect of adding line classifications
to the points-only segmentation, in both cases using all visual and pose features
(P-VXO, PL-VSXO, respectively). These examples show how the information
gleaned from the lines can aid segmentation, for example by disambiguating
stairs and planes, or finding non-planar objects. However, as our results below
will show, lines can sometimes be detrimental.
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Fig. 9. Examples showing how adding line classifications (centre) in conjunction with
point features (P-VXO, left) can help improve segmentation (PL-VSXO, right).

It is interesting to see what effect the orientation features have, independently
of the vision features, so in Fig. 10 we show results generated using P-XO and
PL-XOS, i.e. there are no visual features at all being used in these segmentations
(image information is being used only for line detection). Figure 10(a) appears
to be correctly segmented, but only because this is a common and rather empty
configuration of ground and walls; whereas the cars in (b) are obviously ignored.
(c) is interesting since it shows that with the camera looking down at a certain
angle, stairs are predicted – in this case correctly. This raises the interesting
issue that stairs are predicted here not just because they are likely to be below
the viewer, but because the viewer is likely to look downward when walking up
stairs. In Fig. 10(d) and (e) the use of lines has altered the segmentation, to give
the impression it is seeing the bollards and the sky (the points assume there
is sky above, but lines even at such a height are rarely labelled as sky in the
training set). In (f) the lines themselves are shown, and it can be seen how their
orientation in the image has an effect, since the bollards and paving stones are
classified differently, despite being at around the same image height.

More examples are shown in Fig. 11. Here, we show the input image for clarity,
plus the ground truth segmentation. The contributions from vision (P-V), orien-
tation (P-VXO), and lines (L-VSXO) to the final segmentation (PL-VSXO)
are shown. Figure 11(a) and (b) again show orientation information being used
to improve classifications, the latter being an interesting example where adding
lines improves segmentation even in the presence of motion blur. Note that the
different orientations of the camera, such as in (c) and (d), illustrates why using
only position in the image as a prior is inferior.



Fusing Intertial Data with Vision for Enhanced Image Understanding 221

(a) (b) (c) (d) (e) (f)

Fig. 10. Example segmentations using only orientation information features – points
only (a–c) and points with lines (d–f). (f) shows the lines themselves, showing the effect
of the lines’ orientations within the image, aiding detection of vertical posts.

The segmentation in Fig. 11(e) also benefits from classification of lines along
the steps. Similarly in Fig. 11(c) lines help to correctly identify the step-edges,
but the step faces are classified as ground. In a way this is correct, since stairs are
made up of periodic walkable regions, but this result would be marked mostly
incorrect compared to our ground truth, which is labelled at a coarser resolution.
This echoes our comment in Sect. 4 about the world being ambiguous; but also
that some regions may belong to multiple classes simultaneously at different
scales.

The example in Fig. 11(g) also shows orientation information being used to
correctly identify the non-ground surface; however, the addition of lines in this
case degrades the result. The final two rows show examples where our augmented
algorithms fail to provide any benefit. In Fig. 11(h), the initial P-V segmentation
is correct, and is unchanged by the addition of orientation or lines (of course,
if we could achieve perfect segmentation, no amount of prior knowledge would
help). On the other hand, this illustrates why it is so important that orientation
does not impose a hard constraint on surface identity: even when orientation
features are added, the grass (foliage class) remains. In Fig. 11(i), none of the
versions of the algorithm are able to detect either the ground plane or the foliage,
perhaps due to the lower level of illumination.

Our implementation, consisting of single-threaded C++ code running on a
desktop PC (Intel i5, 2.40 GHz), processes one image in around 0.3 seconds on
average (including MRF optimisation). This is below the camera rate, but fast
enough for real-time use when run in a separate thread; further improvements
could be made by parallelising the code or using a GPU. Videos of our code
running can be seen on our website.8

6.3 Detailed Segmentation

Finally, we show results of the algorithm when segmenting using the CRF (see
Sect. 5.5). This is much slower than the MRF (taking over 1 s per image), but
since it uses a fully-connected graph of every pixel in the image it results in

8 Videos available at www.osianh.com/inertial.

www.osianh.com/inertial
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Input Ground Truth P-V P-VO L-VSXO PL-VSXO

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 11. Example results of the various algorithms. After the input and ground truth,
we show the baseline result, of points with only vision features (P-V), followed by
adding orientation information (P-VXO). Detected and vision-classified lines are
shown, before the final result, combining everything (PL-VSXO).
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Input Pointwise MRF CRF

(a)

(b)

(c)

(d)

(e)

Fig. 12. This shows the result of the pointwise classification before any segmentation
or smoothing (second column). The MRF reduces noise by imposing a smoothness
constraint, and groups together points with the same class (third column). We also
show results using a dense fully-connected CRF (fourth column), which assigns a label
to every pixel using the pointwise result as input.
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much more detailed segmentations. The fully-connected nature of the graph
means that relationships between distant regions of the image can be taken into
account, which can help improve the robustness of the segmentation; however,
this also means that classifications in one region can be influenced by those
in another, so that a region’s label may change as different parts of the scene
come into view. As Table 1 shows, the CRF gives some improvement on the
raw output, but does not (in its current configuration) out-perform the MRF
(note that we are only evaluating using the points, as before, so the evaluation
cannot benefit from the improved resolution). Nevertheless, as the examples in
Fig. 12 show, the dense CRF can give a significantly more precise and detailed
segmentation of the image. It helps to more clearly delineate small objects such
as bollards (Fig. 12(a)) and complex boundaries like trees (c,d), although it can
also introduce some misclassifications (e). Videos of this being run in a threaded
real-time system are also available on our website.

7 Conclusion

We have presented a way of combining information about the real-world orienta-
tion of a camera, obtained through inertial measurements, with more traditional
vision features, for an image segmentation algorithm. This focused on our exam-
ple application of scene segmentation for locomotion in outdoor environments,
but we would expect the results to be applicable to other types of classification,
segmentation, scene understanding and image parsing tasks where the orienta-
tion of the camera is likely to effect the image content. We have also shown that
adding orientation information is beneficial for line regions; and that combining
points and lines in a similar manner can lead to some further improvement.

Our experiments used a comparatively basic design of segmentation algo-
rithm to highlight the effect of using extra prior information. While we have
also experimented with using more advanced segmentation techniques, the CRF
segmentation took as input our classified image. An interesting avenue of fur-
ther research would be to combine the orientation prior with the visual features
within the graphical model framework [27], to make use of the graph structure
at the classification stage too.

Other future work will look at ways of using this method with other sources
of information, for example making use of temporal information to enforce con-
sistency across frames, or to combine with depth and 3D data.
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Abstract. Nowadays Rolling shutter CMOS cameras are embedded on
a lot of devices. This type of cameras does not have its retina exposed
simultaneously but line by line. The resulting distortions affect structure
from motion methods developed for global shutter, like CCD cameras.
The bundle adjustment method presented in this paper deals with rolling
shutter cameras. We use a projection model which considers pose and
velocity and needs 6 more parameters for one view in comparison to
the global shutter model. We propose a simplified model which only
considers distortions due to rotational speed. We compare it to the global
shutter model and the full rolling shutter one. The model does not need
any condition on the inter-frame motion so it can be applied to fully
independent views, even with global shutter images equivalent to a null
velocity. We also propose a way to handle epipolar geometry for rolling
shutter. It is shown that constraint using essential matrix becomes non
linear, and we show how to use it to recover poses and speeds from
matched points. Results with both synthetic and real images shows that
the simplified model can be considered as a good compromise between a
correct geometrical modelling of rolling shutter effects and the reduction
of the number of extra parameters.

1 Introduction

Origin. The rolling shutter is a way to acquire an image which is a consequence
of the electronic of the retina. In argentic photography, the chemical sensor used
to record the image has a sensibility to light. According to some condition like
ambient lightning, it needs a precise duration of exposition to achieve a correct
exposition, and this time is managed by a mechanical obturator which block the
light. With a numerical sensor, there is no need of physical shutter, the electronic
can command the start and the stop of the light capture.

A numerical sensor is an array of photo-sensible cells (pixels) which will
individually catch rays of light and convert it in a digital signal. First, the cells
unload their electrical charges, the reset, then begin the exposition where the
capted photons are converted to electric charges. At the end of the exposition,
the charge is proportional to the quantity of light got. Then the charges are
measured and so is obtained the image.

As the number of pixels is high, the electronic system in charge of the collect
of the charges has to sequence the transfer to the system to form the image.
c© Springer International Publishing Switzerland 2016
J. Braz et al. (Eds.): VISIGRAPP 2015, CCIS 598, pp. 227–239, 2016.
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The two main technologies of digital camera sensor are Charge Coupled Device
(CCD) and Complementary Metal Oxyde Semiconductor (CMOS). The main
difference between these two technologies is the sequencing of charge transfer.

CCD cameras have been mainly used for years, the charges can be stored
in its cells so in general there is only one circuit to convert them. The acquisi-
tion is done for the whole image and treatment time is quite long. The CMOS
technology is more recent in image sensing, nowadays it is quasi omnipresent
in embedded devices such as phones, notepads and even in cameras. It allows
lighter electronic systems making cameras cheaper and less power-hungry. Basic
CMOS can’t store its charges, so there is an amplifier for each cell, the read out
is done sequentially line by line and so is the acquisition. This introduce a delay
between each line and acquiring a dynamic scene will produce some distortion
in the image.

Overview. There are different way to correct distortion introduced by the rolling
shutter or to take advantage from them in the literature. One way is to undistort
the entire image [1–3]. This kind of methods gives correct visual results but is
not satisfying because it does not deal with 3D structure of the scene. [4] and
[5] solved the PNP problem of a moving object of known geometry by taking
advantage of image distortion to get the speed of the target simultaneously with
the pose. [6] gives a method to get a temporal calibration of the rolling shutter,
and a correct model for small rotational speed and fronto-parallel motion. [7]
propose a polynomial projection model and a constrained global optimization
technique in order to solve the minimal PNP problem without any initial guess
of the solution making the method more suitable for automatic 3D-2D matching
in a RANSAC framework. [8] proposes a unifying model for both motion blur
and rolling shutter distortion for dense registration.

Recently, few works adressed the problem of structure from motion using
rolling shutter image sequences. [9] studied 3D reconstruction and egomotion
recovering using a calibrated stereo rig. [10] presents a bundle adjustment
method which computes structure and motion from a rolling shutter video
exploiting the continuity of the motion across a video sequence. [11] consider the
stereo in the case of a fast moving vehicle where rotational speed is neglected
and where Rolling Shutter effects are supposed to be affected principally by the
depth of the scene. A recent way to handle reconstruction is not to consider dis-
crete poses of a camera along a trajectory, but a continuous time motion in space
as do [12] non sequential captor and [13] for cameras including rolling shutter
ones. Finally, [14,15] proposes an approach to correct the reconstruction based
on Kalman filter using inertial sensors which are more and more embedded on
devices like smartphones or notepads.

2 Formalism

We consider 3D object expressed as a set of point Q, a camera has a pose defined
by an orientation and a position [R T]. The amount of rotation completed by
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the camera under a rotational motion during a scan time from the origin of time
of an image to some line is δR. For a translational motion it is δT. For a global
shutter camera, the equation of projection is

m̃ = K[RT − RTT]Q̃ (1)

where K is the matrix the instrinsic parameters of the camera, m = [u,v ]T

the perspective projection of Q noting m̃, Q̃ the homogeneous coordinates of
m,Q .

The projection equation of this point considering a uniform motion during
the time of one image scanning with a rolling shutter camera is:

m̃i = K[δRiRT − δRiRT(T + δTi)]Q̃i (2)

where τ is the delay from a line to the next one, δRi is the amount of rotation
due to rotational velocity at the time corresponding to the line τ · vi, and δTi

the amount of translation due to translational velocity at this time. The index i
is for the ith 3D point, vi its corresponding line on the sensor and ti = τ · vi the
delay in acquisition from the first line to the line of the current 3D point i.

3 Related Work

Bundle Adjustment. The closest work to ours, is the one presented in [10,16].
Rolling shutter bundle adjustment is achieved by exploiting the continuity of
the motion across a video sequence. A key rotation and translation is associated
to the first row of each frame as in classical bundle adjustment. In addition,
the poses attached to the rest of image rows are interpolated from each pair of
successive key pose parameters. The basic idea is to assume that the trajectory
and pose variation between frames are smooth.

m̃i = K
[
Rj,j+1(v)T −Rj,j+1(v)TTj,j+1(v)

]
Qi (3)

where Rj,j+1(v) corresponds to the interpolated rotation between the jth

and the jth +1 image at the line v, The interpolation method used by authors is
SLERP [17]. And Tj,j+1(v) a linear interpolation of the positions between the
jth and jth + 1.

The advantage of this approach is that only six extra parameters are used for
the entire sequence in comparison to classical bundle adjustment. Nevertheless,
it seems evident that the inter-frame motion should be very small to ensure
that interpolated rotations and translation fit the actual values. As result, the
approach requires a high frame rate as in the experiments presented in the
paper. This increases the risk of data bottleneck and/or limits the dynamic
performances in real time applications such as SLAM with mobile robots. in
addition, the quality of motion estimation and triangulation is always better
when the inter-frame motion is significant. Therefore, it seems to us that a
method which estimates independent cameras without any assumption about
motion parameters during inter-frame intervals is more pertinent.
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Stereo Rig. A triangulation method for a stereo rig which at least one rolling
shutter camera is presented in [9]. Considering the first camera as reference
frame, the projection equation for each are

mi = K
[
δRi δTi

]
Qi (4)

m′
i = K′ [RδR′

i T + δT′
i

]
Qi (5)

Here rotational speed is presented as an instantaneous axis of rotation a and
an angular speed ω and et a vector V pour la translation. Matrix are obtained
thanks to Rodrigues formula

δRi = aaT (1 − cos (tiω)) + I cos (tiω) + â sin (tiω) (6)
δTi = tiωV (7)

δR′
i = bbT (1 − cos (t′iω)) + I cos (t′iω) + b̂ sin (t′iω) (8)

δT′
i = t′iωV

′ (9)

Parameters of speed in the second camera b and V’ are obtained from those
of the first one a and V by application of the kinematic twist transformation.

[
V′

b

]
=

[
R [T]×R
03 R

] [
V
aω

]
(10)

It is shown some ambiguities appear for a motion following the epipolar line.

Multi-view Stereo. In the work presented in [11] the authors presented a dense
multi-view stereo algorithms that solve for time of exposure and depth, even
in the presence of lens distortion. The camera is supposed to be embedded on
vehicle and rotations are neglected so that Rolling Shutter effects are supposed
to be affected principally by the depth of the scene. The projection equation
becomes linear.

m̃i = K
[
I −(T + δTi)

]
Qi (11)

Unfortunately, as it stated in [8,18], in practice the lateral rotational move-
ments are the most significant image deformation components.

4 Impact of Speeds on Optical Flow and Distortion

The third model tested here is made with the assumption that the rolling shutter
effect due to translation is negligible compared to the one due to rotation. The
effect induced by a linear motion parallel to the retina is slightly the same as
a rotational motion of the camera according to an axe perpendicular to the
linear displacement. In the case of a frontal motion (camera placed at the front
or the rear of a vehicle), no rotational motion can have the same effect and the
model with only rotational speed cannot compensate, but in this case the optical
flow consecutive to the linear motion is reduced. Figure 1 shows the optical flow
induced by the motion of the camera. Translations have a very lower effect and
become quickly indistinguishable with depth of the view.
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Fig. 1. Simulated image of an object and the optical flow inherent to the camera
motions, green: translation (10 m/s), red: rotation (2 rad/s), blue: both (a), optical
flow expressed in pixels according to depth of the scene for each type of motion (Color
figure online).

5 Epipolar Geometry with Rolling Shutter

Let’s consider the fundamental matrix:

F ∼ K−T
2 EK−1

1 (12)

and the projection equation of a point in an image:

m̃ ∼ K
[
RT

i −RT
i Ti

]
Qi (13)

The epipolar constraint led us to get

0 = m̃2K−TT×RK−1m̃1 (14)

with
R = RT

i1Ri2 (15)
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T = RT
i1(Ti2 − Ti1) (16)

for
Ri1 =

[
R1δRi1

]
,Ri2 =

[
R2δRi2

]
(17)

and
Ti1 =

[
T1 + δTi1

]
,Ti2 =

[
T2 + δTi2

]
(18)

The essential matrix is different for each point due to the scan-line time
different for each one. It is possible to recover the parameters of pose and speed
by minimizing an epipolar error

ε(R1,R2,T1,T2,W1,W2,V1,V2) = m̃2Fm̃1 (19)

where R,T stand for camera pose and W,V for camera speeds (rotational and
translational). For k 3D points detected in n views, we obtain k(n− 1) residuals
to minimize.

6 Bundle Adjustment for Rolling Shutter

This leads us to minimize the following cost function with respect to pose
(Rj ,Tj ), rotational speed (Wj ) and translational speed (V j ) parameters of
jth view:

ε(R,T,W,V,Q) =
k∑

j=1

l∑

i=1

[mij − pij]2 (20)

pij being the detected points in jth image and mij , the projection in jth

image of the 3D point Qi associated to pi .

7 Results

7.1 Synthetic Data Experiment

To test the reconstruction, a first stage was to use synthetic data. An object was
created as a 3D point cloud. Cameras with their own speed and pose were placed
around watching towards it. there is no correlation between the orientation of
the speed and the displacement between each view. Each image of the scene is
considered as totally independent. Images were obtained by application of the
rolling shutter projection equation. Resolution of the problem was then done for
each model, global shutter, rolling shutter and simplified rolling shutter. The
virtual object was included in a cube of 35 m edge placed at 60 m to 70 m from
the cameras.
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Table 1. List of parameters used for the simulation.

Views 3d pts Angular speed Linear speed Noise

Min 2 100 0 0 0

Max 12 500 1.5 20 1

Step 2 200 0.25 5 0.1

Steps 6 3 7 5 11

Bundle Adjustment. Speeds. Simulated cameras resolution was 1600 per
1200 pixels, the focal was 6.5 mm, τ was set to 25 μs. Cameras speed magni-
tude was in range [0, 20]m/s and [0, 1.5]rad/s for linear and angular speed.
Those parameters were chosen to keep the object in the vision field and the
speeds according to the ones available for a pedestrian or the autonomous vehi-
cle VIPA (http://www.ligier.fr/ligier-vipa). A noise on measures was applied
in range [0, 1] pixel, the number of 3D points in range [100, 500]points and the
number of views in range [2, 12]images. All of those parameters are shown in
the Table 1. For each set, 100 simulation were done and solved with each model.
The number of simulations is 2673000.
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Fig. 2. Errors of position according to speeds, Errors of reconstruction according to
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Fig. 3. Errors of position and reconstruction according to noise, Errors of position
according to noise.

Noise. In this section we study robustness of the model to noise. We added a
random geometric noise following a uniform distribution from 0 to 1 pixel every
0.1 pixel. Each measure is a mean of 100 simulations following the same scheme
as previously for a speed corresponding to [10m/s, 2 rad/s]. As one can see on
Fig. 3, the addition of degrees of freedom to the system makes it less robust to
noise. It needs more views of the scene and more 3D points to get the system con-
strained enough and the reconstruction robust to a high noise level when using
the complete rolling shutter model. The simplified rolling shutter model is more
robust. Figure 3 shows the precision of reconstruction according to the number
of cameras for a speed and noise corresponding to [10m/s, 2 rad/s, 0.5 pixel] and
600 3D points, and the precision of reconstruction according to the number of
3D points for a speed and noise corresponding to [10 m/s, 2 rad/s, 0.5 pixel] and
4 views.

Epipolar Constraint. Speeds. The same approach was used to test motion
reconstruction with epipolar constraint.

This constraint seems to be less sensitive to rolling shutter effects with exacts
data, but it is when there is noise cf Fig. 4.
Noise. The addition of noise, even a small one has a big impact on the global
convergence for global shutter and full rolling shutter methods. As we can see
on Fig. 5.
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Table 2. Results of the reconstruction.

3dpts Observation rms

Global shutter 2537 10615 0.86

Rolling shutter 3273 13204 0.84

Rolling shutter simple 3446 13639 0.77

7.2 Real Data Experiment

To illustrate the relative robustness of the simplified rolling shutter model beside
the complete one, and the gain of precision from the global shutter one, it was
tested to reconstruct a 3D structure. The chosen structure is a corner to easily
visually check if any deformations occurs during the reconstruction. We can see
on Fig. 6 that the reconstruction presents no apparent distortions on the global
structure, this is more evident to see on the attached video. The camera used is
a webcam logitech C310, used with a resolution of 640 by 480 pixels and a focal
distance of 4 mm. The detector used is a Harris corner detector and the outlier
rejection is done using Least Square Median. Feature are matched from frame
to frame and images used for reconstruction are selected using Mouragnon’s
method [19].
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Fig. 5. Errors of orientation and position according to noise, and according to the
number of views.

Fig. 6. Motion and reconstruction of a trajectory, (top) some images used for the recon-
struction, (bottom) in blue the motion of the camera and in black the 3D reconstruction
from different point of view (Color figure online).

The final parameters of reconstruction with the number of inlier 3D points,
inlier observations, and final reprojection error RMS are shown in Table 2.

Another test was done with a gopro camera at the resolution of 1080 p and
60 fps. The camera was mount on a race bycicle whose structure is very rigid
and in spite of the speed of the shutter of the camera, the effect is sensible due
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to the roughness of the ground. It is hard to see because of the radial distortion
but it makes the reconstruction with the global shutter model fails. The result
is shown on Fig. 7.

Fig. 7. Motion and reconstruction of a trajectory, (a) some image of the scene, (b) in
blue the motion of the camera and in black the 3D reconstruction from different point
of view (Color figure online).

8 Discussion

In addition to the presentation of the simplified rolling shutter model, the results
in Figs. 2 and 4 show that the impact from linear speed on the quality of the
reconstruction is less than the one from the rotational speed in the same way
of the optical flow previously studied. As well the addition of variables to the
system makes it less constrained and so cause a decay in its robustness to noise.
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According to Figs. 3 and 5 the simplified rolling shutter model is more robust
than the complete one. In addition, it is faster to solve (less parameters to opti-
mise, less derivation a fortiori numerical ones, smaller jacobians). Less variables
reduces too the probability to have local minima.

A system which doesn’t need successive sequences of near images allow to
work with spatially and time spaced images (leading better triangulation due to
a more pronounced stereo), the inclusion of images taken out of the sequence
both rolling and global shutter. It results a lighter application with less processor
charge and less data transfer via the bus. Currently the methods in reconstruc-
tion are not in using all the images from the camera but selecting them, as seen
in [19]. The presented method is suitable in the actual state of art SLAM by its
spatially and temporally spaced acquisition robustness.

An embedded camera suffers the motion of its shelf. The global shutter cam-
eras are suitable to get its global motion whereas rolling shutter cameras are
sensitive to the micromotion due to the fast but non instantaneous acquisition
of one frame. Some methods tries to interpolate lines of the image between
frames, or following splines, this is suitable for electrical vehicles with a suspen-
sion system and fat tyres at low speed level on smooth roads. On rough ground,
for hand held cameras, or diesel engine, the vibration induced by the shelf are
fast and the use of splines for its modeling would be very expensive.

9 Conclusion

We presented a method to deal with rolling shutter distortion for SFM applica-
tions relevant in the current state of art. The method is accurate thanks to the
modelling of the motion; generic, it can deal with both rolling shutter and global
shutter images; robust thanks to the use of only very useful parameters; usable
with very low frame rate video. We think that this method can be very useful
in many applications in robotics, or in augmented reality applications with the
use of devices such as phones or notepads whose embedded cameras are rolling
shutter. We envisage to use the effect of rolling shutter on primitives to get a
priori on motion and robustify matching.
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Abstract. In this study, an efficient, robust algorithm for automatic
target detection and tracking is introduced. Procedure starts with a
detection phase. Proposed method uses two alternatives for the detection
phase, namely maximally stable extremal regions detector and Canny
edge detector. After detection, regions of interest are evaluated and elim-
inated according to their compactness and effective saliency. The detec-
tion process is repeated for a predetermined number of pyramid levels
where each level processes a downsampled version of input image to
achieve scale invariance. Then, temporal consistency for detections from
all scales is evaluated and target likelihood map is constructed using ker-
nel density estimation in order to merge all target hypotheses. Finally,
outstanding targets are selected from target likelihood map and tracking
is achieved by minimizing spatial distance between the selected targets
in consecutive frames.

Keywords: Real-time target detection · Multiple target tracking · Tem-
poral consistency · Data association · Target probability density estima-
tion · Adaptive target selection

1 Introduction

Multiple target detection and tracking plays an important role in many appli-
cations such as reconnaissance and surveillance where the main purpose is to
describe trajectories of the targets throughout the scenario. Many of recent
electro-optical systems have a requirement to achieve this task in a fully auto-
mated manner. Many multi-tracking algorithms have two fundamental stages;
the time independent automatic multi-target detection and association of the
detections in temporal space. In spite of many research [1–3] on the subject in
recent years, the problem remains to be challenging mainly due to unknown and
changing number of targets; noisy and missing observations; interaction of multi-
ple targets. As for real-time applications, all these challenges are to be addressed
in a time efficient way.
c© Springer International Publishing Switzerland 2016
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Fig. 1. General overview of the proposed solution.

The outstanding target detection concept can be interpreted differently
depending on the task in hand. As a starting point, interest point detection
techniques can be utilized to detect such objects on an image. Many versions of
interest point detection methodologies were carried out in the literature. Some
major examples are based on blob detection [4–6], corner detection [7,8] and edge
detection [9–11]. Defining the outstanding object using contrast information is
preferred in our application since we are interested in object as a whole, rather
than some parts only. This requirement can be handled by blob or edge detec-
tion methodologies. Predictably, usage of blob or edge detectors has advantages
and disadvantages compared to each other. Given the fact that the detection
phase is intended to be used to detect regions contrasting their vicinity, among
all blob detection techniques, maximally stable extremal regions(MSER) detec-
tion [6] can be considered as a good candidate for our purpose. On the other
hand, among edge detection methods, Canny edge detection reveals its superi-
ority due to its ability of generating closed contours by merging weak edges with
the strong edges around their vicinity. Moreover, both methods are appropriate
for real-time processing because of their low computational cost which is one of
the major goals.
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Fig. 2. Sample output of the proposed solution demonstrating successful tracking for
variable number of targets.

Determining the number of targets dynamically is another important aspect
of the detection phase as the selection of predetermined number of targets would
be problematic. In plain words, using static number of targets may compel an
algorithm to introduce insignificant targets to the track list if the number of
targets is smaller than the expected number. Similarly, in the scenes having
higher number of significant targets than the expected, some of them will be
discarded. To deal with unknown and varying number of targets and to develop
an unsupervised approach, the proposed method is designed to determine the
number of targets without any supervision.

One of the most important issues in multi-target tracking is temporal associ-
ation of detections. Despite the fact that there exist many detection methodolo-
gies, robustness cannot be guaranteed for different scenes. Consequently, missing
and noisy observations occur frequently and the outlier data are left to be tack-
led in the data association stage. In order to address this problem, Kalman
filtering [12] is often utilized. Despite the effective usage of this methodology in
many applications [13,14], it needs significant restrictions on the predetermined
motion model. The particle filters [15] provide relaxation on the constraints of
the Kalman filters by exploring multiple hypotheses. Yet, particle filters have a
high computational cost that may not be suitable for real-time processing. On
the other hand, there exist some other widely used techniques such as joint prob-
ability density association filters (JPDAF [16]) and multiple hypothesis tracking
(MHT [17]). JPDAF uses soft data assignment by considering the probability
of a measurement belonging to more than one track which results in a single
hypothesis summarizing all previous measurements. Although JPDAF is a use-
ful tool, it has some assumptions that may decrease its range of applications.
For example, JPDAF assumes that the number of targets is fixed. In other
words, JPDAF is not able to deal with targets entering/leaving the scene. In
MHT, this problem is suppressed by using integrated track initiation. Associ-
ation algorithm of MHT is a hypothesis based brute force implementation to
generate all possible hypotheses. For that reason, it requires high computational
cost. Furthermore, MHT necessitates a large memory space to be used since
hypotheses from previous frames have to be stored. Due to the disadvantages
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of mentioned techniques, we have used a different approach for data associa-
tion: The proposed method acquires measurements using a pyramid structure
and profits from motion heuristics together with a probability density estimation
methodology which is designed for merging measurements from different levels
of the observation pyramid. The density estimation method is based on Parzen
windowing [18], and benefits from a weighting scheme to eliminate noisy and
missing observations with low computational cost.

The rest of the paper is organized as follows: The proposed target detection
and tracking methods are described in Sect. 2. In Sect. 3, the experimental results
are presented. Finally, the study is concluded and the contributions of the paper
are reviewed in Sect. 4.

2 Proposed Method

The proposed multiple target detection and tracking method consists of four
fundamental stages. During the first stage, target hypotheses are produced for
different scales by taking distinctiveness and compactness assumptions of tar-
get model into consideration. In the second stage, in order not only to reject
outliers and but also to compensate missing detections, temporal consistency
of each target hypothesis is evaluated. In the third stage, a target likelihood
map representing the target existence likelihood at each pixel, is generated from
each scale of the observation pyramid by using consistent target hypotheses. In
the fourth and the last stage, outstanding (relevant) targets are chosen from the
likelihood map by using an adaptive thresholding algorithm. General overview of
the proposed methodology is depicted in Fig. 1. Also, sample results of the pro-
posed method demonstrating successful tracking for variable number of targets
are given in Fig. 2.

2.1 Target Hypotheses Generation

To achieve automatic target detection, each target candidate fulfilling some pre-
liminary requirements should be further analyzed to decide whether it is a rele-
vant target or not. The target candidates are referred as target hypotheses and
generated at each scale of the observation pyramid, where each level of the pyra-
mid structure processes a downsampled version of the original frame. Therefore,
for both hypothesis generation and selection, some assumptions are made to
describe the target model.

The first assumption is the distinctiveness assumption stating that target
candidates should be distinctive from their surroundings. Actually, this assump-
tion is made based on human visual attentional system in which robust saliency
detection mechanisms provide focus of attention to the salient regions pre-
attentively for further processing. Again similar to human visual system, the
distinctiveness is measured by the intensity difference. Most of the saliency
detection methods are founded on the same principle; however saliency detec-
tion in global scale (by considering the whole scene) would generally require high
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Fig. 3. Effect of filling on a target with layered contours.

processing time which may not be suitable for real-time applications. Consid-
ering the fact that the computational complexity is one of the key issues, we
propose two starting points for the target hypothesis generation in this paper:
Canny edge detection and maximally stable extremal regions(MSER) detection.

Canny edge detector is a useful tool for proposed method because of its suit-
able computational load for real-time applications and its capability of uniting
weak edges with other edges in their neighborhood. However, due to noise in the
scene, Canny edge detector may fail to generate closed contours. This problem
can be avoided by applying morphological closure on edge map. After the mor-
phological operation, the resulting edge map is then applied filling operation to
generate blobs. A useful outcome of the filling operation appears in the case of
targets with layered structure, as illustrated in Fig. 3 where the reflected day-
light generates a closed contour inside the object. In such a scenario, selection
of the outermost closed contour yields better localization.

Fig. 4. From left to right: Original image, Canny edge detection results, MSER detec-
tion results. Figure illustrates an important advantage of MSER detection over Canny
edge detection that is its ability to separate regions by their intensity difference.

Another alternative method of generating blobs is to use maximally stable
extremal regions(MSER) detection. Similar to the Canny edge detector, this
algorithm is also suitable to be used in a real-time system because of its low
computational demands. Moreover, using MSER detection has several advan-
tages compared to Canny edge detection. Firstly, given that MSER detection
returns regions on an image that are nearly uniform inside and are contrasting
their vicinity, this method tends to respond more likely to the human atten-
tional system than the Canny edge detector. More formally, MSER detection
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forms regions by not only considering distinctiveness, but also variance of inten-
sity values of the pixels that are located inside a blob candidate. This property
of MSER detection results in a better separation as demonstrated in Fig. 4. Sec-
ondly, MSER detection does not require any morphological operations which
reduces the computational cost.

Fig. 5. Flowchart for target hypotheses generation.

Despite the fact that both Canny edge detection and MSER detection meth-
ods are appropriate considering the requirements of the proposed algorithm,
performance of both detection methodologies rely greatly on the choice of para-
meters due to different contrast spans of scenes. Improperly adjusted parame-
ters may cause the algorithms not detecting any edges/regions especially in low
contrast scenes where outstanding edges/regions are present and perceptible by
human visual system. Conversely, in high contrast case, the detectors may return
false edges/regions. To overcome this problem, proposed method uses a dynamic
parameter selection scheme with a feedback loop (See Fig. 5) that uses the num-
ber of target hypotheses from the previous frame as input. The utilized feedback
loop changes the high threshold of the Canny edge detector or the threshold
step parameter of MSER detector by their corresponding predetermined factor
when the number of hypotheses from the previous frame is lesser/higher than
the desired number of target hypotheses. In addition, the proposed dynamic
parameter selection scheme also indirectly upper limits the number of generated
target hypotheses and thus the number of declared targets.

In spite of the fact that the detection process reveals regions contrasting
their surroundings, proposed detection methodologies do not provide a measure
of distinctiveness for the detected blobs. To evaluate the distinctiveness, we have
used a modified version of the metric referred as effective saliency proposed in
[19]. However, [20] stated that the proposed saliency calculation method [21] of
the metric has crucial drawbacks. For instance, [21] treats all image boundaries
as background. This assumption does not hold even when a small portion of the
salient object hits the boundary. To overcome this problem, we have used the
proposed effective saliency metric along with the saliency calculation method
of [20].

Since both of the detection methods reveal regions considering the pixel inten-
sity values only, outlier observations may be present in the detection results. To
avoid noisy observations, compactness of a region is also evaluated to eliminate
some of the detected blobs. The used compactness criterion for a detected blob
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Fig. 6. On left, original image. On right, blob mask of the original image with relevant
targets, inconsistent targets, blobs violating compactness, blobs violating distinctive-
ness marked with green, white, red and blue, respectively (Color figure online).

is defined as the scalar that is the proportion of area of a blob to the area
of its minimum sized bounding box. This metric introduces an assumption on
target shape: Blobs degraded from rectangular shape are eliminated as illus-
trated in Fig. 6. After the elimination process of detected blobs by compactness
and distinctiveness metrics, the remaining detected blobs are referred as target
hypotheses and are further processed to evaluate their temporal consistency.

2.2 Temporal Consistency Evaluation by Blob Matching

As discussed, Canny edge detector and MSER detector fulfill the requirements
of target hypothesis generation stage. However, both detection methods are vul-
nerable to noise. For example, Canny edge detection may fail to provide closed
contours, yielding missing observations in some frames or can produce artificial
closed contours due to noise. As for MSER detector, highly textured objects
in the scene may only partially be detected or may not be detected at all. To
avoid this problem, the temporal consistency of hypotheses should be evaluated
to compensate erroneous detections.

Generation of faulty observations is a common problem. The solutions for this
problem are based on probabilistic model on target behavior in some well-known
techniques [12,16]. However, for the scenes where the imaging device is moving
with a complex motion pattern, probabilistic motion modeling approach may
be over-constraining. Hence, in order to reject outliers and handle missing data,
proposed method specifies an observation point as a target hypothesis if and only
if the observation point preserves its presence for multiple frames. Therefore,
temporal consistency of a target is ensured. Proposed method achieves this by
using a scoring scheme in which higher score of a target hypothesis represents
higher reliability.

The proposed scoring scheme is applied at each frame and starts with associ-
ating newly generated and existing target hypotheses. At first, for each new tar-
get hypothesis, existing hypotheses are searched in a neighborhood to satisfy the
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Fig. 7. Proposed scoring scheme.

motion heuristic known as maximum velocity as described in [22]. Usage of such
a simple model is both less restricting and requires much less computational cost
compared to other motion models. Existence of a match is decided by minimizing
the norm of vectors that contain spatial distance and mean intensity difference
of a new hypothesis to all existing target hypotheses within the neighborhood.
If a match is found, the score of the matched existing target is increased. After
matching all new target hypotheses, the score of the remaining (unmatched)
existing target hypotheses are decreased. Then, unmatched new target hypothe-
ses are considered as possible new targets entering the scene and initial scores
are assigned according to their similarity to the target model description. After
adding new target hypotheses to the existing target list and adjusting their
scores, target hypotheses list is reconstructed by eliminating hypotheses that
have a score below the minimum score threshold. Hence, the missing observa-
tions for a target hypothesis would be tolerated for a limited number of frames.
In a similar fashion, the observations that are generated due to noise will also
be eliminated within a limited number of frames since they are not persistent.
The proposed scoring scheme is summarized in Fig. 7.
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2.3 Target Likelihood Map Generation

The false partitioning of a single object into multiple closed contours is an impor-
tant problem in Canny edge detection. This is due to a failure in detecting the
outermost contour of an object as a closed contour. Like Canny edge detec-
tor, MSER detector may yield more than one detection for a single object. This
problem would cause multiple target initialization for a single object and appears
more often for larger objects. To decrease the probability of false partitioning,
proposed method uses a multi-level pyramid structure and consequently requires
merging of information from different levels. Merging the data of different scales
can be considered as a probability density estimation problem whose solution
identifies the target likelihood map representing the existence probability of a
target at each pixel.

Estimation is supposed to be achieved based on a non-parametric approach
since no prior information exists about the target probability distribution. To
overcome this challenge, kernel density estimation (Parzen window method [18])
is employed in which normal distribution is selected as the kernel function. Nor-
mal distribution is chosen assuming that the effect of a target hypothesis on
neighboring pixels yields a normal distribution whose peak is placed on the
centroid of the target hypothesis. In this manner, the variance of the normal
distribution will determine the distance between the centroids of different target
hypotheses to be merged.

In order to generate the target likelihood map, different from classical Parzen
windowing, data is weighted with respect to its significance that is defined by two
scalars; temporal consistency and scale weights. Since the importance of a target
increases with its temporal consistency, consistency weight (wc) is obtained by

Fig. 8. From top to bottom and left to right: Target hypotheses at scale 1 (original
image), target hypotheses at scale 2 (2x downsampled), target hypotheses at scale
3(3x downsampled), original image, and generated target likelihood map. Masks for
each scale are resized for visualization.
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the score whose calculation is explained in Sect. 2.2. Thus, while decreasing the
effect of mis-detected hypotheses from one scale of the pyramid, the weights of
the corresponding target hypotheses are increased at the relevant scale yielding
better localization. The second scalar, scale weight (ws) is designed to select
the importance of different scales of the pyramid. Since the partitioning occurs
generally for the large objects; to compensate the erroneous data, detections
acquired from lower resolutions (downsampled by a higher factor) are weighted
proportional to the downsampling factor. The formal definition of the target
likelihood for each pixel (x, y) is given in Eq. 1,

P (x, y) =

∑
j∈H

wc · ws · exp
(
− (x−xj)

2+(y−yj)
2

2σ2

)

∑
∀pixels

∑
j∈H

wc · ws · exp
(
− (x−xj)

2+(y−yj)
2

2σ2

) , (1)

where (xj , yj) is the locations from the set of target hypotheses H. Target
likelihood map generation process is illustrated in Fig. 8.

2.4 Target Selection and Tracking

After acquiring target likelihood map, target selection problem becomes nothing
but a threshold selection problem that determines the lowest probability in the
target likelihood map that will be considered as a target. The simplest solution
to problem is to utilize a static threshold. Nevertheless, dynamic thresholding
is preferable because of the scoring scheme applied to the target hypotheses.
For this purpose, the dynamic thresholding methodology proposed in [23] is
followed to disclose distinctive intensity falls on a given image. Analyzing the
relationship between the local maxima of input image, the method computes
the threshold using weighted average of local maxima. Obviously, the crucial
part is to acquire the proper weights. For the calculation of weights, first, the
local maxima are detected. Then, they are sorted in descending order to form
a vector (LocalMaxsorted). As higher laplacian represents distinctive falls, the
weights are calculated by computing the normalized laplacian of this vector. This
approach fits well to our problem since distinctive falls indicate splits between
different target hypothesis groups having similar likelihood values; so it achieves
successful separation of distinctively more remarkable target hypotheses. The
formal definition of the weighting procedure is shown in Eqs. 2 and 3.

Thr = LocalMaxT
sorted.∇2

norm (LocalMaxsorted) , (2)

∇2
norm (f) =

∇2 (f) − min
(∇2 (f)

)
∑

i ∇2 (f)|i − min (∇2 (f))
. (3)

Following the process of choosing the relevant target hypotheses, the tracking
is simply accomplished by matching the relevant targets from successive frames
just by minimizing spatial distance.
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3 Experiments

The testing procedure for the proposed algorithm is designed to test both detec-
tion and tracking capabilities. For the detection phase, two metrics are used
to determine the performance of the proposed algorithm: False discovery rate
(Eq. 4) and true positive (Eq. 5) rate.

FDR =
FP

FP + TP
, (4)

TPR =
TP

TP + FN
. (5)

Besides detection, another important task that should be achieved is tracking
of the detected targets. Despite existence of multiple targets in each scenario of
the VIVID dataset [24], the ground truth is only provided for the primary target.
Due to lack of ground truth data for secondary targets, we followed the same
procedure used in [25]. Thus, the tracking performance of the proposed method
was evaluated by manually labeling the results as good tracking; tracking had
drifted off center, or lost. A track is described as good track when the track
center is within the object; labeled as drifted track when the track center is
located outside of the object boundary and a track stated to be lost whenever
track gate ceases its existence in the presence of the target. One exemplary
illustration is given in Fig. 9 for good and drifted tracks respectively.

Fig. 9. Examplary outputs showing the drifted track, on left, and successful track, on
right.

To evaluate the results, VIVID dataset is preferred since it is a widely-used,
public dataset that contains many challenges such as: Out of plane rotation, pose
variation, occlusion, low contrast, existence of similar targets in the vicinity
and defocusing. The experiments on VIVID dataset are conducted after the



Fully-Automatic Target Detection and Tracking 251

conversion of the dataset from three-band to single-band. Yet, note that, the
algorithm could also be modified to work using three-band images by changing
the detection phase only.

For each scenario, effective saliency and compactness thresholds were set to
0.7 and 0.45, respectively. The variance of the normal distribution that was used
to generate target likelihood maps was set to 0.15 and a three-level pyramid
structure was used: 1st level processing original image, 2nd level processing orig-
inal image downsampled by 2 and 3rd level by 3. Since optimum number of scales
depends on the span of expected target size, minimum number of scales should
manually be selected considering the application. Also, initial score, increase
score step, decrease score step, maximum euclidean distance for inter-frame tar-
get matching, saliency evaluation patch size parameters are selected as; 200, 20,
10, 21, 41, respectively. Canny edge detector’s low threshold and MSER detec-
tor’s maximum area variation parameter were chosen to be static: 0.1 and 10.
For the parts of the procedure that uses Canny edge detector, morphological
operation structuring element was selected to be circular with a diameter of 3
pixels.

Fig. 10. Sample result on VIVID dataset. Top row, columns 1–2: Scale changes. Top
row, columns 2–4: Defocusing. Bottom row, columns 1–2: Different motion patterns,
changing number of targets. Bottom row, columns 3–4: Occlusion

In Fig. 10, some of the important findings of the experimental results are
demonstrated. The first two images of the first row illustrates the success of the
algorithm against scale changes which is achieved with the usage of pyramid
structure. Remaining images of the first row demonstrates the behavior of the
proposed method in case of missing observations. In this scenario, the target
detection fails for a while due to defocusing of the camera. Despite the missing
observations, tracks are continued without breaking and the targets are again
well localized after refocusing of the camera. The importance of the selection of
a simple motion model (maximum velocity) is illustrated on the first two images
of the 2nd row. If a restrictive probabilistic motion model was used, some of
the targets having different turning angles would be lost. Moreover, these sub-
figures also visualize the success in handling varying number of targets. Finally,
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last two images of the second row visualizes the major weakness of the proposed
algorithm which is the incapability of occlusion handling resulting in track losses.

Table 1. Performance results of proposed method for detection and tracking on VIVID
dataset (in percentage %).

Method
Name of
Sequence

# of
Frames TPR FDR TQ

Edge Det. egTest01 1820 92.7 24.6 90.6
Edge Det. egTest02 1300 83.8 31.8 84.4
Edge Det. egTest03 2571 45.6 38.8 83.2
Edge Det. egTest04 1833 95.2 54.3 81.0
Subtotal 7524 75.7 37.9 84.6
Edge Det. + Saliency egTest01 1820 94.1 18.6 98.7
Edge Det. + Saliency egTest02 1300 77.2 20.8 99.4
Edge Det. + Saliency egTest03 2571 74.1 32.8 88.6
Edge Det. + Saliency egTest04 1833 83.2 34.4 81.5
Subtotal 7524 0.822 27.7 92.1
MSER Det. egTest01 1820 99.7 04.5 90.9
MSER Det. egTest02 1300 85.4 12.0 87.2
MSER Det. egTest03 2571 68.3 05.0 86.1
MSER Det. egTest04 1833 90.8 49.1 75.0
Subtotal 7524 84.3 16.8 84.7
MSER Det. + Saliency egTest01 1820 97.4 03.4 99.1
MSER Det. + Saliency egTest02 1300 88.4 12.6 96.2
MSER Det. + Saliency egTest03 2571 79.1 02.7 93.2
MSER Det. + Saliency egTest04 1833 93.6 41.8 92.3
Subtotal 7524 88.7 14.1 94.9
Grand Total 30096 82.7 24.1 89.1

The quantitative results of experimental procedure are summarized in
Table 1. In addition, sample qualitative results are demostrated in Fig. 11.
According to the results, algorithm with MSER detector gives better results as
implied by both higher true positive rate and lower false discovery rate. More-
over, increase in performance when using MSER detector for egTest03 sequence
implies that, MSER detector outperforms the Canny edge detector in low con-
trast scenes. Another interesting conclusion of the experimental results is the
increase in performance when saliency calculation is used. Since saliency cal-
culation is not only intended for elimination, but also target center correction,
track quality of the algorithm with saliency calculation is significantly higher for
both detection techniques. Likewise, true positive rate is increased when saliency
is used since shifting to target center using saliency map provides robustness to
the detection phase. In addition to the detection and tracking performance of
the proposed method, another important aspect is the computational load. The
proposed solution was tested using un-optimized C++ code running on a single
core of an Intel i5-3470 3.2GHz CPU. For the variant that uses MSER detection
and saliency calculation, the algorithm was able to run at a minimum frame rate
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(a) Frame No: 100

(b) Frame No: 200

(c) Frame No: 300

(d) Frame No: 400

Fig. 11. Sample results of the proposed method using three alternatives for the detec-
tion phase. Detection methods used from left to right: Edge Det. + Saliency, MSER
Det., MSER Det. + Saliency.

of 25.33 fps and an average rate of 26.9 fps for maximum 256 target hypotheses
at each scale of the pyramid. Note that, the frame-rate can further be improved
by using parallel processing or advanced optimization techniques.
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4 Conclusions

In this study, a method designed for multiple target detection and tracking in
real-time airborne imagery is introduced. Also, performance of the algorithm is
quantitatively evaluated, presented and compared for several underlying detec-
tion methodologies. Results imply that, even with a simple tracking approach,
it is possible to achieve a high true positive, low false discovery rate detection
and tracking system without any user assistance or training.

The proposed method provides several advantages that makes it a useful tool
for airborne reconnaissance and electro-optical surveillance systems. Firstly, low
computational cost and complexity of proposed method open up new possibilities
for airborne applications where real-time processing is preferred. Secondly, the
algorithm requires no user assistance or training which provides practicality.
Another advantage arises from the fact that proposed method yields invariance to
scale, number of targets, out of plane rotation and contrast span of the scene. On
the other hand, proposed algorithm has certain drawbacks. For instance, simple
tracking framework of the proposed method has no mechanism for occlusion
handling which decreases the performance.

As a future work, we plan to employ tracklet concept to increase the per-
formance of the proposed method on the scenes where frequent occlusions are
present. Also, we plan to work on three-band detection to extend the possible
areas of use for the algorithm.
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Abstract. This paper presents a novel Structure from Motion (SfM)
framework designed for central projection cameras. The goal is to support
future large scale multi-view 3D reconstruction algorithms. We believe
that these algorithms will be able to benefit from several different sources
of visual information. Accordingly, SfM approaches will need to han-
dle this variety of image sources, such as perspective, wide-angle and
spherical images. However, this issue has not yet been addressed. Cur-
rent state of the art techniques are not able to handle heterogeneous
images simultaneously. Therefore, we introduce SPHERA, a generalized
SfM framework designed for central projection cameras. By adopting
the unit sphere as underlying model it is possible to treat single effec-
tive viewpoint cameras in a unified way. We validate our framework on
synthetic and real datasets. Results show that SPHERA is a powerful
framework to support upcoming algorithms and applications on large
scale 3D reconstruction.

Keywords: Structure from Motion · Spherical images · Multi-view 3D
reconstruction · Large scale

1 Introduction

The popularity of full panoramic images has significantly increased during the
past few years. This is confirmed by the growing variety of spherical image acqui-
sition hardware and software packages available nowadays [1–5]. Mobile devices
such as smartphones and tablets feature easy-to-use Apps that allow the user
to capture panoramas within seconds. Additionally, panoramic images offer the
possibility to create immersive environments where the user experiences a first-
person view, such as Google Street View [6]. Immersive visualization systems find
appliance in a number of applications, e.g. documentation, education, preserva-
tion of cultural heritage, gaming, city planing, etc. Clearly, these applications can
further benefit from 3D information. This makes full spherical images specially
attractive for immersive visualization as well as 3D reconstruction.
c© Springer International Publishing Switzerland 2016
J. Braz et al. (Eds.): VISIGRAPP 2015, CCIS 598, pp. 256–273, 2016.
DOI: 10.1007/978-3-319-29971-6 14
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There are several ways to classify multi-view 3D reconstruction algorithms.
One of them concerns the distance between the images relative to the scene, the
so called baseline. Recent narrow baseline approaches are capable of simulta-
neously recovering camera poses and 3D geometry from a video sequence [7,8].
However, these approaches are normally restricted to indoor, office-like, envi-
ronments. Wide baseline techniques, on the other hand, are better suited for
large scale reconstruction, but assume camera poses have been previously deter-
mined [9,10]. In other words, they implicitly demand Structure from Motion
(SfM) to recover the camera poses before the 3D model can be computed.

To perform SfM, spherical images are more suitable than standard perspec-
tive images. Due to their wide field of view, scene features are observed in
more images, thus increasing the number of constraints on camera poses. Conse-
quently, methods have been derived to perform SfM on wide field of view cam-
eras. More specifically, [11–13] address SfM on omnidirectional images, while
[14–16] deal with full spherical images. Not surprisingly, perspective SfM has
been extensively studied e.g. by [17–23]. Although these approaches have shown
to work well for the specific image type they were designed for, up to the authors
knowledge they are unable to handle images of any other type.

Another relevant aspect of SfM algorithms is whether the camera poses are
estimated globaly or incrementaly. Usually, global methods split the camera
pose estimation into two parts. The first part aims at recovering the rotation
matrices of all cameras. The second part uses the global rotations obtained in
the first part to determine the translation of all cameras. The later may be
performed independently of the scene structure [20] or along with it [21]. The
main reason for this splitting is that the estimation of relative translations is
inaccurate in case of narrow baseline, whereas relative rotations can be precisely
recovered regardless of the baseline, provided enough point correspondences.
Global methods have the advantages of evenly distributing errors among all
cameras and being independent of an initial pair of cameras. They traditionally
solve a linear system of equations (which minimize an algebraic error), combined
or followed by bundle adjustment (BA) [24] to refine camera poses. However, if
a new camera is added afterwards, the entire pipeline has to be executed again.

Incremental methods are initialized by computing the poses of a selected
camera pair. Then, point correspondences are triangulated and the resulting 3D
points are used to select the next camera. Once the pose of the new camera is
determined, new 3D points are created and the procedure is repeated. In other
words, the poses of all cameras along with a sparse representation of the scene
structure are recovered by alternating between triangulation and resectioning.
An advantage of these methods is the possibility to obtain the optimal pose
every time a new camera is added. This happens because each pose is estimated
using BA which minimizes the reprojection error, carrying along a meaningful
geometric interpretation, instead of an algebraic error. Another advantage of
incremental methods is the ability to later include new cameras without neces-
sarily rerunning the entire pipeline. Incremental pipelines may suffer from drift
caused by accumulated errors. Consequently, loop closure may become an issue.
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Nevertheless, it has been shown in [22] that re-triangulation of existing point cor-
respondences is able to redistribute accumulated errors as well as deal with loop
closures. Moreover, one of the most successful SfM algorithms is Bundler [17],
which implements an incremental pipeline.

Given the current effort to reconstruct ever growing environments [10,25,26],
every source of visual information shall be taken into account, regardless of the
shape of image surface. This is an issue that has not yet been addressed. Apart
from performance and accuracy, another highly desirable feature of 3D recon-
struction algorithms is to update and improve the scene model whenever new
images are available. Here again, the ability to deal with different camera types
is essential. Therefore, we present SPHERA, a novel Structure from Motion
framework to bridge the gaps between current SfM methods for central projec-
tion cameras. We build on the model proposed in [27] and adopt the unit sphere
to represent images and to treat heterogeneous camera types in a unified way.
Our approach dynamically selects the best information available to recover cam-
era poses and scene structure, allowing new images to be integrated efficiently.
Experiments on synthetic and real image sequences validate our framework as a
valuable contribution to support large scale 3D reconstruction algorithms.

1.1 Related Work

The work presented in [11] uses epipolar geometry to compute scene structure
from an omnidirectional vision system mounted on a robot platform. However,
the camera pose problem is not addressed. In [12], Micusik and Pajdla focus
on omnidirectional images with a field of view larger than 180o and devise a
camera model specific for that type of image. Although scene structure can be
recovered, the technique is limited to the two-view geometry problem. Conse-
quently, the proposed camera model can hardly be used in a more generic SfM
approach. Bagnato et al. present in [13] a variational approach to achieve ego-
motion estimation and 3D reconstruction from omnidirectional image sequences.
Nonetheless, the environment must be densely sampled so that the relationship
between image derivatives and 3D motion parameters is still valid. Thus, this
approach can not be used in a more general, sparse SfM pipeline.

A method to recover camera poses from a set of spherical images on a sparsely
sampled environment is presented in [14]. However, SfM is performed based on
panoramic cubes computed for each spherical image. The camera poses are recov-
ered by casting the spherical problem back to the standard perspective problem.
In [16], spherical images are used to estimate the relative camera poses and to
build a map of the environment. To simplify the problem, Aly and Bouguet
assume planar motion, i.e. all camera frames must lie on the same plane. This
assumption strongly limits the applicability of the proposed technique. Our app-
roach is closely related to [15], as both exploit full spherical images to deliver a
sparse representation of the scene along with recovered camera poses. Neverthe-
less, the method presented by Pagani and Stricker was designed exclusively for
spherical cameras, whereas our framework naturally handles any kind of central
projection camera. Additionally, SPHERA allows to dynamically select a subset



A Generalized Structure from Motion Framework 259

of the cameras to optimize and speed up BA with little to no loss of accuracy,
as detailed in Sect. 3.

Not surprisingly, our pipeline has similarities with some SfM methods derived
exclusively for perspective images. For instance, Wu proposes an incremental
SfM where loop closure does not need to be explicitly detected [22]. His algo-
rithm tracks under-reconstructed camera pairs, i.e. pairs with low ratio between
their common 3D points and number of point correspondences. Then, based on
a geometric sequence, re-triangulation is performed for all under-reconstructed
camera pairs. Wu shows that this re-triangulation is able to reduce drift errors
without explicitly detecting loops even for long image sequences. Our framework
incorporates this idea. However, as we aim at high accuracy, re-triangulation is
performed during every step of BA, instead of following a predefined sequence.
Another incremental method has been proposed in [23]. The authors introduce
an algebraic cost function formulated on pairwise epipolar constraints as a more
efficient alternative to the traditional reprojection error. Their algorithm elimi-
nates structure from BA aiming at speeding up convergence. Nevertheless, their
final solution lacks the accuracy of geometric based cost functions. Therefore,
their pipeline requires two or three additional iterations of the classical BA
(which takes the structure back into account) at the end to improve precision.
As described in Sect. 3, we also consider only the camera parameters for BA
to reduce the dimension of the parameter search space. Contrary to [23], we
implicitly model scene structure through the re-triangulation mentioned above.
Moreover, instead of an algebraic error, SPHERA minimizes a reprojection error
defined directly on the surface of the unit sphere.

2 Background

2.1 Spherical Images

A spherical image is a 180o × 360o environment mapping that allows an entire
scene to be captured from a single point in space. Consequently, every visible
3D point PW given in world coordinate system can be mapped onto the image
surface. This is done by a two-step process. First, analogue to the perspective
case, PW is represented in the camera coordinate system as PC = RPW + t,
with R and t representing the camera rotation matrix and translation vector.
Second, and different from the perspective projection, PC is projected onto the
image surface by scaling its coordinates, as shown in Fig. 1-(a). Without loss of
generality, we assume a unit sphere. Thus, the scaling becomes a normalization
and p = PC/‖PC‖.

Spherical images are stored as a 2D pixel-map as depicted in Fig. 1-(b). This
map is obtained using a latitude-longitude transformation, with 0 ≤ φ ≤ π and
0 ≤ θ ≤ 2π.

2.2 Sphere as Unifying Model

Our approach is grounded on the seminal work developed in [27], where
the authors proposed a unifying model for the projective geometry of vision
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(a) (b)

Fig. 1. (a) Spherical coordinates and illustration of the spherical projection. (b) Pixel-
map of a spherical image.

systems having a single effective viewpoint. These vision systems are commonly
referred to as central projection cameras and include catadioptric sensors fea-
turing conic mirrors of different shapes, such as parabolic, hyperbolic or elliptic.
Geyer and Daniilidis showed that any central catadioptric projection is equiv-
alent to a two-step mapping via the sphere. It is well known from the pinhole
model that standard perspective imaging characterizes a single viewpoint sys-
tem. Nonetheless, perspective images are also central catadioptric systems with
a virtual planar mirror and are, therefore, covered by the aforementioned model.
In practice, that means it is possible to treat these central projection systems as
spherical cameras, provided the mapping from the original image surface to the
sphere is known. This mapping may be seen as a warping transformation from
the original image to the unit sphere. As an example, Fig. 2 shows the result of
warping a perspective image onto the sphere.

(a) (b)

Fig. 2. Example of (a) an original perspective image [28] and (b) its warped version.
The warped image appears mirrored due to the viewpoint (“outside” the unit sphere).

2.3 Spherical Camera Pose Estimation

Epipolar Geometry. The epipolar geometry for full spherical cameras has
already been presented in [29]. Thus, here we provide a short overview. Consider
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a pair of spherical cameras C0 and C1. Let R and t be the associated rotation
matrix and translation vector. A point p0 on the surface of C0, along with the
centers of the cameras, define a plane Π that may be expressed by its normal
vector nΠ = Rp0 × t = [t]× Rp0, where [t]× is the skew-symmetric matrix repre-
senting the cross-product. For any point p1 on C1 belonging to Π the condition
pT1 nΠ = 0 holds, which is equivalent to pT1 [t]× Rp0 = 0, where E = [t]× R is
the essential matrix [18]. The condition pT1 Ep0 = 0 is known as the epipolar
constraint and is the same result obtained in the perspective case. This shows
that the epipolar constraint is independent of the shape of the image surface
(Fig. 3).

nΠ

C0

p
0

,tR
1C

p
1

Π

Fig. 3. Epipolar geometry for two spherical images.

Pose Estimation. There are mainly two techniques for computing camera
poses. The first is useful for relative pairwise pose estimation, typically when only
2D image correspondences (2D-2D correspondences) are available. Without loss
of generality, one of the cameras is assumed as reference and R and t represent
the pose of the second camera. In this case, R and t may be determined with
e.g. the 5-point algorithm [30]. The second technique is normally used when
a number of 3D scene points and their respective projections onto an image
are known, i.e. a set of 2D-3D correspondences is available. This configures a
Perspective-n-point (PnP) problem, which can be solved with a minimum of 6
correspondences [31].

3 The Proposed Approach

Given a set of images of a scene, our goal is to accurately estimate the pose of
all cameras as well as to recover a sparse 3D point cloud of the underlying scene
representing its geometry. The set of central projection cameras is defined as

C =
{

Cj =
[
R̂j |t̂j

]
| R̂j ∈ SO (3) , t̂j ∈ R

3
}

, (1)

where j = 0, ..,M −1, M is the total number of cameras and R̂j and t̂j are the rota-
tion matrix and translation vector representing the estimated pose of camera Cj .
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Toaid the non-linear optimization,we adopt an axis-angle parameterization for the
rotation matrix and Cj is then parameterized by a vector ρj ∈ R

6. All together,
the cameras are parameterized by a vector ρ ∈ R

m, with m = 6M .
Likewise, we denote the set of sparse 3D points reconstructed along with the

camera poses as
P =

{
P̂i ∈ R

3
}

, (2)

where i = 0, .., N − 1, N is the number of points and P̂i holds the estimated
coordinates of a scene point Pi.

We then formulate the problem of recovering all camera poses along with a
sparse point representation of the scene as a non-linear optimization problem.
The parameter vector ρ is optimized in order to minimize

min
ρ

N−1∑

i=0

M−1∑

j=0

eij (ρ) , (3)

where eij (ρ) is a cost function for each point P̂i and camera Cj . The parameters
ρ+ that minimize Eq. 3 are the sought camera poses. Note that this optimization
depends exclusively on the camera parameters ρ. In a classical BA scenario,
for N 3D points and M cameras, a total of 3N + 6M parameters have to be
optimized. Different from the classical BA, we reduce the complexity of the
problem by dropping the structure and considering only the camera parameters.
This leads to an important advantage: the dimension of the parameter search
space is at most 6M , a significant reduction compared to 3N + 6M , what is
particularly convenient in case of large scale scenes. Nonetheless, structure is
jointly estimated. Inspired by [22], point correspondences are re-triangulated
at every step of our BA, updating the structure with the most recent camera
parameters and reducing drift due to accumulated errors.

3.1 Reprojection Error and Visibility Map Models

The cost function eij (ρ) in Eq. 3 represents the reprojection error of a point P̂i

on camera Cj and is defined as

eij (ρ) = cos−1 (pij p̂ij) , (4)

where pij p̂ij is the scalar product between the expected projection pij and the
measured projection p̂ij obtained with P̂i, R̂j and t̂j . The expected projection
pij is determined by the keypoint location corresponding to Pi. Note that as
−1 ≤ pij p̂ij ≤ 1, we have 0 ≤ eij (ρ) ≤ π and it is not necessary to take the
absolute value in Eq. 4. Furthermore, we do not use any approximation of the
reprojection error as in [15]. As we aim at high accuracy, the error defined in
Eq. 4 is the exact geodesic distance, i.e. the exact angular deviation, between pij
and p̂ij . Additionally, to each point Pi we associate a visibility map

Vi =
{
(Cj , pij) | Cj ∈ C, pij ∈ S2

}
, (5)

where S2 represents the unit sphere. We denote the pair (Cj , pij) as the obser-
vation of a scene point Pi on camera Cj .
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3.2 Sub-set Constraints

SPHERA implements an incremental pipeline, that is, starting from an initial
pair, cameras are sequentially added until all poses have been estimated. More
specifically, we draw from C an initial pair of cameras and once their poses are
determined they are used to initialize a set C

′
representing the current set of

calibrated cameras. Then, one by one, cameras are added to C
′

until |C′ | = |C|.
After adding a camera to C

′
, BA is performed to refine the poses of all calibrated

cameras. However, this is not always necessary. As calibration progresses, pre-
viously added cameras become more stable, i.e. their poses no longer change
significantly. After some time, refining their poses brings no improvement. This
is often true for large image datasets. The exceptions to this are loop closures
and later addition of new images to the dataset.

To address this issue, we introduce a sub-set C∗ ⊂ C
′
to hold the cameras for

which pose refinement is unnecessary. Cameras belonging to C∗ will be regarded
as fixed and their poses will not be updated during BA. A camera Cj ∈ C

′

is added to C∗ when the update on its pose is no longer significant. This is
achieved with the introduction of two measurements in the following way. After
BA, we measure the update on its rotation matrix δRj

and translation vector
δtj computed as

δRj
= ‖log

(
Rk−1

j

(
Rk

j

)T)
‖, (6)

δtj =
‖tkj − tk−1

j ‖
‖tk−1

j ‖ , (7)

where k stands for calibration step, i.e. it is incremented after each BA. The
right-hand side of Eq. 6 is a metric in SO (3) and can be efficiently computed
with quaternions [32]. Then, if δRj

< τr and δtj < τt, with τr � 0 and τt � 0,
Cj is added to C∗. Clearly, once Cj is added to C∗, δRj

= 0 and δtj = 0 in the
subsequent calibration steps. Therefore, to correctly handle loop closures and to
locally update camera poses whenever new images are included in the dataset,
a third measurement is required. This measurement allows to remove cameras
from C∗ so that they may be optimized once again. It is based on the visibility
of scene points and works as follows. Assume Cj ∈ C∗ and Cj observes Nj 3D
points. The visibility measurement δvj

of a camera Cj is then defined as

δvj
= ‖νk

j − νk−1
j ‖, with (8)

νj =
Nj−1∑

n=0

ηn, ηn =
{

1, if Vn increased
0, otherwise

. (9)

Note that δvj
is independent of the camera pose. Also, it does not measure how

many new 3D points Cj observes. Instead, it measures, among all 3D points
visible in Cj , how many had their visibility maps updated, i.e. are now visible
in at least one new camera. Then, if δvj

> τv, Cj is removed from C∗ and will be
taken into account in the next calibration step. In our implementation, we also
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use the visibility measurement along with the first two to decide whether a cam-
era should be added to C∗. Together, τr, τt and τv form the sub-set constraints.

Remark 1. The re-triangulation of point correspondences is beneficial as it
reduces drift due to accumulated errors. However, it increases the overall com-
putational cost. The sub-set constraints prevent the re-triangulation of points P̂i

that are seen exclusively by cameras in C∗, thus further improving performance.

3.3 Minimizing the Reprojection Error

As discussed above, recovering the camera poses and scene structure can be
achieved by solving a bundle adjustment problem [24]. SPHERA minimizes a
reprojection error formulated directly on the surface of the unit sphere (see
Eqs. 3 and 4). This is interpreted as finding the camera poses that maximize the
alignment between the rays defined by all predicted and measured projections.
This is true for any central projection camera.

After the introduction of the visibility map in Sect. 3.1, we may now rewrite
Eq. 3 in the form shown in Eq. 10. We adopted the framework available in [33]
as the core non-linear solver upon which SPHERA is built.

min
ρ

N−1∑

i=0

M−1∑

j=0

γijeij (ρ) , γij =
{

1, if Cj ∈ Vi

0, otherwise
(10)

In practice, we solve a modified version of Eq. 10, where only cameras Cj ∈
C

′ \ C∗ and the most reliable points are used. These points are defined as

P∗ =
{

P̂i ∈ P | eij (ρ) < τe, ∀ (Cj , pij) ∈ Vi

}
, (11)

where τe is a threshold imposed to all individual reprojection errors eij (ρ).

4 Evaluation

4.1 Preliminaries

Keypoints are detected and matched using the method proposed in [34], where
a multi-scale keypoint detector and matcher was developed for high resolution
spherical images. Nonetheless, it is worth mentioning that SPHERA is com-
pletely independent of how keypoints are detected, described and matched.
Consequently, any other keypoint detector and matcher may be adopted (see
Sect. 4.3).

We validate our framework using synthetic spherical as well as real perspec-
tive and spherical images. The resolution of all spherical images presented below
is 14142× 7071 (100 Mega-pixels). Experiments are divided into four categories:
The first category consists of a set of synthetic spherical cameras where the goal
is to validate our framework on spherical images using groundtruth. The second
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is composed exclusively of real perspective images. Here, the idea is to show that
our framework is suitable for standard SfM, i.e. it may be used even when no
spherical image is available. The third category consists of spherical images only,
where we compared SPHERA to the work presented in [15] in two different real
world scenarios. The fourth and last category is a hybrid dataset where real per-
spective and spherical images are used simultaneously. The aim is to demonstrate
SPHERA’s ability to improve scene geometry estimation whenever more images
are available, independent of their types1. Whenever available, groundtruth data
is used for evaluation. Otherwise, we rely on the global mean reprojection error
computed taking all images and all reconstructed points into account.

4.2 Synthetic Dataset

An artificial room with dimensions 6× 6× 3 m was created using [35] and 72
spherical images were rendered (see Fig. 4-(a)). The poses of these artificially
generated cameras were used as groundtruth. Additionally, the depth map shown
in Fig. 4-(b) was stored and serves to measure the accuracy of the recovered scene
geometry.

(a) (b)

Fig. 4. (a) Sample image of the synthetic dataset. (b) Groundtruth depth map used
to evaluate the accuracy of scene geometry estimation (contrast enhanced to improve
visualization).

After detecting and matching keypoints with Gava’s approach, camera poses
and scene structure were recovered with SPHERA. Residual errors were com-
puted in the following way. The position error is the Euclidean distance between
the groundtruth and estimated camera positions. To measure the orientation
error, we chose again the function presented in [32], which in this context may
be written as ‖log

(
RR̂T

)
‖, with R the desired rotation and R̂ the estimated

rotation matrix. For details we refer to [32]. The residual error of a reconstructed
point P̂i is computed as ‖P̂i − Pi‖, where the coordinates of Pi are obtained as

1 Assuming central projection cameras.
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Table 1. Errors in camera poses and sparse scene reconstruction for the synthetic
dataset. Mean and standard deviation are identified by μ and σ, respectively.

orient. error [degree] pos. error [mm] recon. error [mm]

μ 0.009 0.68 0.482

σ 0.03 2.8 0.9

follows. A virtual spherical camera is located at the origin of the global coor-
dinate system. The projection of P̂i onto this virtual camera delivers p

′
i. Then

Pi = Idm

(
p

′
i

)
p

′
i, where Idm

(
p

′
i

)
is the groundtruth depth retrieved from the

stored depth map.
We first ran our pipeline ignoring the sub-set constraints and with τe equiva-

lent to 5 pixels. Although τe is an angular deviation, for convenience we converted
and presented it in pixels. Table 1 presents the resulting errors in camera poses
and scene reconstruction.

Table 2. Average errors in camera poses and sparse scene reconstruction for the syn-
thetic dataset with sub-set constraints. The last line shows the running time relative
to the total time needed when no sub-set constraints are used.

τv [# points] 100 1000

τt [%] 1 5 1 5

orient. error [degree] 0.0091 0.0091 0.0094 0.0095

pos. error [mm] 0.76 0.78 0.76 0.79

recon. error [mm] 0.487 0.494 0.581 0.604

time [%] 49.7 48.2 15.4 14.9

Figure 5 shows the reconstructed point cloud, with approximately 156K
points. The rendered spheres and their corresponding coordinate frames reflect
the recovered camera poses. We adopted the Odysseus Studio [36] to visualize
and present our results.

A second experiment aimed at evaluating the impact of the sub-set con-
straints on camera pose estimation, the sparse reconstruction of the scene and
the overall performance gain. We ran our pipeline varying the sub-set con-
straints within the ranges τr = [0.25◦, 2◦] in steps of 0.25◦, τt = [0.01, 0.05]
and τv = [100, 1000]. We noticed that, for this experiment, varying τr had lit-
tle impact on the final results. Thus, Table 2 summarizes the average values.
Time values are relative to the total time required when no sub-set constraints
are used. The standard deviations for the rotation, position and reconstruction
errors were below 0.04◦, 3.25 mm and 1.2 mm, respectively. On the other hand,
the standard deviations for the performance gain were approximately 10% for
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Fig. 5. Reconstructed point cloud and recovered camera poses obtained with SPHERA.
Details on the floor and walls can be easily seen.

τv = 100 and 7% for τv = 1000. This is probably due to different gradient
descent paths chosen by the non-linear optimizer [33].

4.3 Perspective Datasets

To validate our approach on perspective images, we compared it to Bundler [17],
a popular software developed for SfM on standard perspective images. Bundler is
the camera calibration tool currently used in [10,26,37], and is publicly available.

The experiments presented in this section were carried out on the datasets
published in [28]. For each dataset, we ran Bundler on the original images and
SPHERA on the corresponding warped images as shown in Fig. 2. To ensure
a fair comparison, we ran our pipeline using the same keypoints detected by
Bundler [38] after warping their coordinates to the unit sphere. This elimi-
nates the influence of image feature location on the evaluation. Moreover, it
shows SPHERA’s independence of keypoint detectors as pointed out in Sect. 4.1.
Results on camera pose estimation are summarized in Fig. 6. Orientation errors
were obtained as in the previous section. Position errors, however, were com-
puted after preprocessing the estimated camera positions. To account for the
differences in scale, the baseline between the closest camera pair was normal-
ized and the remaining camera positions were scaled accordingly. After that, the
Euclidean distance was measured as in Sect. 4.2.

As can be seen, Bundler performs slightly better and the reason is as follows.
Bundler works exclusively on perspective images and optimizes the camera poses
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(a) (b)

Fig. 6. (a) Orientation error and (b) position error on perspective image datasets
obtained with Bundler and SPHERA. See text for details.

along with their individual intrinsic parameters such as focal length and lens dis-
tortion. In contrast, SPHERA has been designed to operate on any kind of central
projection camera, but the optimization of intrinsic parameters has not been inte-
grated yet. Therefore, for the experiments presented in this section, we used a con-
stant focal length in our pipeline and a variable focal length for Bundler. In fact,
the differences observed in Fig. 6 are proportional to the variance of the focal length
within each dataset, see Table 3. The exception is Herz-Jesu-P25, where Bundler
delivers smaller orientation error whereas SPHERA provides better camera posi-
tions.

Table 3. Variation of focal lengths estimated with Bundler. The second column shows
the standard deviation and the third column the difference between maximum and
minimum values. Note that, except for the Herz-Jesu-P25 dataset, the differences in
Fig. 6 are proportional to the variation of the focal length.

dataset σf [pixel] range [pixel]

fountain-P11 8.49 23.02

entry-P10 10.97 28.41

Herz-Jesu-P25 4.01 16.15

castle-P30 20.44 118.86

4.4 Spherical Datasets

In this section we compare SPHERA and the approach presented in [15]. We
ran both pipelines on two datasets. The first dataset consists of 9 spherical
images captured inside one of the Mogao Caves, in China. The second dataset
contains 35 spherical images taken at the Saint Martin Square in Kaiserslautern,
Germany, and represents outdoors, more challenging, environments. Due to the
lack of groundtruth data for these datasets, we based our evaluation on the
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global mean reprojection error. The assumption is that the correlation observed
in Sect. 4.2 can be used to infer the relative accuracy of the estimated scene
geometry.

As can be seen in Fig. 7, SPHERA improves the reprojection error on both
datasets, specially on the St. Martin Square. In the case of the Mogao Cave, due
to its simple geometry and rich texture (Fig. 8-(a)), only few points are discarded
based on Eq. 11, what explains the small difference in the reprojection error for
this dataset. The St. Martin Square dataset is more challenging (Fig. 8-(b)).
It contains many low textured regions, depth discontinuites, occlusions as well
as repetitive patterns. Therefore, several points are inconsistent and discarding
them from the camera pose estimation leads to the difference observed in Fig. 7.
These results suggest that SPHERA delivers more accurate scene structures.
Figure 8 displays the sparse point clouds yielded by our framework, where details
of the surroundings are accurately reconstructed.

Fig. 7. Global mean reprojection error on spherical image datasets obtained with [15]
and SPHERA. See text for details.

4.5 Hybrid Dataset

In this section we evaluate the SPHERA framework on a hybrid dataset com-
posed of perspective and spherical images. The idea is to show that our frame-
work naturally handles different central projection cameras simultaneously. This
dataset is composed of the same 35 spherical images used in the previous exper-
iment and additional 11 perspective images of resolution 3888 × 2592 pixels. As
shown in Fig. 9, the reprojection error obtained with spherical images (same as
previous experiment) is better than the error for perspective images.

The main reason spherical camera pose estimation is better than its perspec-
tive counterpart is due to their wide field of view. As can be seen in Fig. 10,
matches between spherical images cover the entire scene and thus impose more
constraints on cameras’ poses. As expected, the reprojection error decreases
when perspective and spherical images are used simultaneously.
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Fig. 8. First row: Sample images of the Mogao Cave and St. Martin Square datasets.
Second to fourth rows: reconstructed point clouds delivered by SPHERA, containing
approximately 106 K and 197K 3D points for the Mogao Cave and St. Martin Square,
respectively.
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Fig. 9. Global mean reprojection error for the hybrid St. Martin Square experiment.
Note how it decreases when perspective and spherical images are used together.

(a) (b)

Fig. 10. (a) Symmetric matches between a warped perspective image and a spherical
image. (b) Symmetric matches between two full spherical images.

5 Conclusions

This paper presents SPHERA, a novel unifying Structure from Motion frame-
work designed for central projection cameras. The goal is to cover the gaps
between pipelines developed for perspective, spherical and catadioptric images
and to support future large scale 3D reconstruction algorithms. Through exten-
sive quantitative evaluation on synthetic and real image sequences, we showed
that our approach delivers high quality camera pose as well as scene geometry
estimations when compared to state of the art approaches optimized for specific
camera types.

Future work aims at integrating the optimization of intrinsic parameters to
increase the accuracy of pose estimation of perspective cameras. Additionally,
we plan to validate our framework on larger, hybrid image datasets, supported
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by groundtruth data. Finally, SPHERA will be the underlying SfM mechanism
in our upcoming dense multi-view reconstruction approach.

Acknowledgments. The authors would like to thank Richard Schulz for the creation
of the synthetic dataset. This work was funded by the project DENSITY (01IW12001).
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Abstract. The modern emergence of automation in many industries
has given impetus to extensive research into mobile robotics. Novel per-
ception technologies now enable cars to drive autonomously, tractors to
till a field automatically and underwater robots to construct pipelines.
An essential requirement to facilitate both perception and autonomous
navigation is the analysis of the 3D environment using sensors like laser
scanners or stereo cameras. 3D sensors generate a very large number of
3D data points when sampling object shapes within an environment, but
crucially do not provide any intrinsic information about the environment
which the robots operate within.

This work focuses on the fundamental task of 3D shape reconstruc-
tion and modelling from 3D point clouds. The novelty lies in the rep-
resentation of surfaces by algebraic functions having limited support,
which enables the extraction of smooth consistent implicit shapes from
noisy samples with a heterogeneous density. The minimization of total
variation of second differential degree makes it possible to enforce planar
surfaces which often occur in man-made environments. Applying the new
technique means that less accurate, low-cost 3D sensors can be employed
without sacrificing the 3D shape reconstruction accuracy.

1 Introduction

The analysis and perception of environments from static or mobile 3D sensors
is widely envisioned as a major technological breakthrough and is expected to
herald a significant impact upon both society and the economy in the future.
As identified by the German Federal Ministry of Education and Research [25],
spatial perception plays a pivotal role in robotics, having an impact onmany vital
technologies in the fields of navigation, automotive, safety, security and human-
robot-interaction. The key task in spatial perception is the reconstruction of the
shape of the observed environment. Improvements in shape reconstruction have
direct impact on three fundamental research disciplines: self localization from
camera images [13], inspection in remote sensing [26] and object recognition [12].
c© Springer International Publishing Switzerland 2016
J. Braz et al. (Eds.): VISIGRAPP 2015, CCIS 598, pp. 274–294, 2016.
DOI: 10.1007/978-3-319-29971-6 15
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Applying 3D sensors in uncontrolled practical environments, however, leads to
strong noise and many data outliers. Homogeneous surface colours and dynamic
illumination conditions lead to outliers and reduce drastically the quality of
computed 3D samples. Figure 1 shows an example 3D point cloud obtained from
a stereo camera traversing a building. Many 3D points such as marked by 1©
suffer from strong noise. Occlusions or over-exposure frequently occur in realistic
scenes 2© and make automated shape reconstruction even more challenging.

Fig. 1. (a) Stereo System, (b) sample RGB and depth image, (c) acquired 3D point
cloud.

Dealing with noise and outliers inevitably involves applying statistical tech-
niques. In the last decade, so-called kernel-based methods have become well-
accepted in statistical processing. Successful techniques like deep learning or
support vector machines exploit kernel-based methods in the fields of machine
learning and robotics for interpolation and extrapolation [36]. Since shape interpo-
lation and extrapolation are required when dealing with error-prone 3D samples,
the application of kernel-based techniques for shape approximation is especially
relevant to this domain. The initial aim was the investigation and development of
a suitable kernel for geometrical shape modelling from noisy 3D samples.

Many indoor and urban outdoor environments can be represented by a small
set of planar shapes. This information can be exploited to help to achieve higher
approximation accuracy. Integrating piecewise smoothness into the approxima-
tion task has attracted a lot of interest in the image processing community.
Several research groups applied a regularization technique, also known as Total
Variation (TV) minimization, to penalize strong variations in the colour values
[21,34]. Bredies [9] extended the traditional TV approach to second derivatives of
the filtered image pixels. Figure 2 shows the comparison of Bredies’s TVL1 app-
roach with state-of-the-art statistical filtering techniques. The extension of the
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TV technique to 3D shapes is still a fertile area of research which is considered
as the second aim in this work.

Fig. 2. Comparison of total variation minimization with standard statistical techniques
for height maps filtering. Image courtesy: [9].

A further challenge in automated shape approximation is the processing of
large datasets. A realistic dataset usually contains several millions of 3D points.
However, kernel-based and total variation techniques suffer from high computa-
tional complexity prohibiting their application to datasets which contain more
than a few thousand points [5]. Methods that require a set of linear equations to
be solved incur O(N3) complexity. Even if such a method could feasibly process
N = 1, 000 points in 10 ms, it would still take 115 days to process 1, 000, 000
points. This major complexity issue motivated the third aim of this work which
is to develop efficient strategies for handling non-smooth (L1) total variation
regularization on large datasets.

The remainder of this paper is organized as follows: A short overview of 3D
shape reconstruction approaches is provided in Sect. 2, including issues such as
approximation quality and stability. Section 3 discusses the three main contri-
butions of this work: (i) application of smooth kernels for implicit 3D shape
modelling, (ii) integration of non-smooth TVL1 regularization for noise suppres-
sion, and (iii) efficient optimization reducing the computation complexity from
O(N3) to O(N). A critical quantitative analysis is presented in Sect. 4, and
concluding comments are provided in Sect. 5.

2 Literature Review

The problem of reconstructing a surface of an object from a set of scattered
3D points attracted a lot of attention [2,23,29]. This section will review exist-
ing techniques relating to the aims of this paper, namely: shape representation
using radial basis functions, statistical planarity-aware regularization model, and
efficient optimization.
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2.1 Shape Reconstruction

Two general shape representation approaches for 3D data currently exist: explicit
and implicit representations.

Explicit models are polygon meshes, non-uniform B-Splines (NURBS) or
Bezier curves [27]. Research in computer graphics leads to a large number of soft-
ware frameworks such as OpenGL [42] that enables the visualization of paramet-
ric polygon meshes with the help of parallel graphics hardware. For this reason
initial research on automated shape reconstruction from 3D scattered points
focused on the direct construction of triangle meshes, also known as Delaunay-
Triangulation. Methods such as α shapes [6,7,18] aim at creating a polygonal
mesh by connecting the input samples with triangle edges. This, however, leads
to inaccurate results when error-prone samples are provided. Another family of
parametric shapes are NURBS [32,33] and Bezier curves [1], which are com-
monly used in 3D modelling. These methods are able to create smooth surfaces
for non-uniform control point sets. In order to apply these methods to automated
shape reconstruction from scattered 3D points, the surface is defined as a graph
in the parameter space. This makes the problem non-polynomial (NP) hard so
its application to larger datasets is prohibited [44].

Implicit Models: Several state-of-the-art techniques represent a shape implic-
itly by an indicator function f(x) to indicate inside f(x) < 0 or outside f(x) > 0
of the object with x ∈ R

3 as the location in the 3D space. The surface of the
object is the set of all x where f gives zero. Figure 3 illustrates an implicit
shape where the dots indicate the samples on the surface (f(x) = 0) and the
point orientations the normal of the shape (∇f(xi) = ni). This representation
allows to extract smooth surfaces from irregularly sampled, noisy and incomplete
datasets [23].

Facing the noise sensibility issues of Delaunay-Triangulation techniques,
Alexa et al. proposed to apply moving least squares (MLS) for smoothing
(averaging) the point samples prior to reconstructing a mesh via a Delaunay-
Triangulation technique [2]. A simple implicit shape is for instance a plane
defined by its four parameters nT x + d = 0 with n ∈ R

3 as the plane
normal vector and d as offset to the origin along n. Defining a shape func-
tion as f(x) = b(x)T u with b(x) = (x1, x2, x3, 1) and u as the plane

Fig. 3. Smooth shape representation from scattered points and surface orientations
(arrows) via an implicit function f(x).
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coefficients u = (n1, n2, n3, d) allows to find u via a regression task [3]. Similarly,
Guennebaud extended the shape model to spheres and proposed the popular
Algebraic Point Set Surfaces (APSS) method [24]. Ohtake et al. and Oztireli
et al. addressed the over-smoothing issues by applying non-linear regression for
shape approximation [29,31]. The MLS techniques are well capable of filtering
datasets with moderate or small noise. However, it is still not feasible for realistic
datasets as introduced in Fig. 1.

Implicit Models with Basis Functions: Motivated by the drawbacks of MLS
approaches, Calakli and Taubin proposed applying a global optimization process
[11]. Acquired 3D samples are structured with an octree and the implicit values of
f(x) are distributed on the corners of the octree nodes (voxels). This approach
enables large holes to be closed and allows to handle sparse spatial samples
which lead to isolated fragments when MLS is applied. A similar approach is
proposed by Kazhdan and Hoppe, where the voxel corners are the B-Splines
control points [28]. Both approaches suffer from the fundamental drawback that
a priori information is required from an expert user to define the depth of the
octree structure, which makes using it in automated applications very difficult.

Another family of implicit surface reconstruction algorithms uses smooth
radial basis functions (RBF). The main difference between RBF-based approx-
imation and discrete octree models [11,28] is that RBFs are not necessarily
centred on the octree leaves but directly on the samples. This reduces the risk
of applying inappropriate discretization and to lose shape details [14,23].

Novel approaches [43] propose creating a dense grid of a user-specified reso-
lution and to use the L1 norm to penalize the changes between the implicit grid
corner values. Accurate results are achieved when a fine grid is applied, although
the approach does not consider the smoothness of the second derivative of the
shape leading to non-smooth reconstruction. Another drawback of the method
is that it is restricted to small and compact objects since the computation time
and memory consumption for the dense grid quickly become prohibitive.

Bredies et al. proposed to apply so-called generalized total variation min-
imization on depth images to penalize the variance in the second derivatives
leading to piecewise smooth shapes (Fig. 2). The accuracy of the method moti-
vates its extension to 3D shapes, which has not been reported in the literature.
Bredies et al. state that the stability of the approach heavily depends on the
smoothness of the data, which is feasible when smooth RBFs are applied [9].
Thus, when developing an RBF-based approximation model with a TV regular-
ization, the choice of an appropriate RBF type is crucial.

With a popular RBF example being Gaussian, which is of infinite differential
degree but tends to smooth out fine detail, Wahba studied the application of
Duchon’s Thin Plate Splines [16] that facilitate control of the smoothness degree
[39]. Due to their global definition domain, Thin Plate Splines do not result in
sparse systems and lead to complex computations. Even more adverse, a change
of a single RBF centre affects the complete shape model in the full approximation
domain, which is not the case for RBF using compact support such as Gaussians.
Later, Wendland proposed several RBF types with compact support of minimal
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smoothness degree [40]. Wendland’s RBFs also control the smoothness of the
approximated function and still lead to sparse and efficient linear regression
systems. Moreover, as presented in Sect. 3, the smaller the smoothness degree
the more stable is the regression process. The Thin Plate RBFs, however, have
been shown to achieve superior approximation quality in the presence of noise
[37]. Important aspects when selecting an appropriate RBF type are presented
in Sect. 3.1.

Table 1. Shape approximation comparison. Here + indicates that a method is mod-
erately successful in a particular aspect, and ++ indicates that a method is very suc-
cessful.

Method Missing data Noise Outliers Comput. speed Sharp edges

α shapes [18] ++ +

Adaptive α shapes [6] + ++ +

APSS [24] + + + +

SSD [11] ++ + + +

Poisson [28] ++ + + +

TVL1 depth fusion [9] ++ ++ ++ ++

2.2 Efficient L1 Optimization

Extending the shape approximation with a L1 penalty requires more advanced
techniques to solve the optimization task. This issue has been discussed for some
time in the statistics and numerical optimization community. However, efficient
techniques being capable of dealing with thousands or millions of data samples
are focussed in current research.

Tibshirani proposed the Least Absolute Shrinkage and Selection (Lasso) tech-
nique to minimize cost functions such as

‖ y − Kα ‖22 + ‖ α ‖1 (1)

with ‖ α ‖1=
∑N

j |αi| enabling its application on images with several hundreds
of thousands of entries in α [38]. This form is common for regression problems
where the signal y is approximated linearly by the model matrix K. The addi-
tional ‖ · ‖1 penalty term enforces only a small amount of non-zeros entries in α.
This behaviour is suitable for problems where the vector α is expected to have
many zero entries. A common application is for example signal approximation
by only a small set of frequencies represented by α.

When representing a shape with N RBFs

f(x) =
N∑

i

ϕ(x,xi)αi = kT α (2)
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with ki = ϕ(x,xi), its second derivatives are penalized by ‖ Dα ‖1 with
Dj,i = ∂2

xxϕ(xj ,xi). This way ‖ Dα ‖1 penalizes the amount of non-smooth
regions in the extracted model. However, since the entries in Dα are not sep-
arated as it is the case in (1), such problems are solved with more difficulty
and using the Lasso technique is not possible. Initially, interior active sets meth-
ods have been applied to solve the TVL1 objective [4]. Chen et al. additionally
demonstrated that the efficiency of primal-dual methods is of magnitudes higher
than that of the interior methods [15]. Also Goldstein et al. proposed a primal-
dual approach known as the Bregman Split [10] to separate the smooth data
term fd =‖ y − Kα ‖22 from the non-smooth regularization term fr =‖ Dα ‖1
and to optimize each of them independently [22]. Boyd et al. extended the Breg-
man Split approach by Dykstra’s alternating projections technique [17] and pro-
posed the Alternating Direction Method of Multipliers (ADMM) [8], which fur-
ther improves the convergence. Discussions related to applications of ADMM are
reported by Parikh and Boyd (2014).

The bottleneck of ADMM is the minimization of the smooth part fd =‖
y − Kα ‖22. Solving this for α with efficient Cholesky factorization suffers from
a complexity of O(N3). However, an iterative linear solver such as Jacobian
or Gauss-Seidel may reduce the complexity to O(N) as discussed by Saad or
Friedman et al. relating to L1 regularization [20,35]. Nevertheless, further inves-
tigations on the applicability of iterative linear solvers and ADMM on 3D shape
modelling do not exist.

2.3 Summary

The presented state of the art in robust shape approximation and optimization
methods covers several appropriate options for investigation. Table 1 shows the
seminal methods summarizing the benefits and drawbacks of each technique. The
TVL1 approach [9] delivers high quality with artefacts such as missing data,
noise, outliers, or sharp edges in the image domain. This technique, however,
suffers from high computational complexity and needs to be extended to 3D
shape approximation. Section 2.2 states that the ADMM technique is expected
to outperform the efficiency of existing TVL1 algorithms when extended with
an iterative solver.

The next section investigates the impact of different RBFs applied for sig-
nal and shape approximation from scattered 3D points before the new ADMM
technique for TVL1 optimization on large datasets is presented.

3 The Method

The first part of this section pursues the first research objective and discusses
the fundamentals of RBF-based approximation and compares different types
of RBFs with respect to quality and stability when least squares optimization
is performed. Section 3.2 applies the proposed RBFs and defines the convex
optimization task to perform shape reconstruction from scattered 3D samples
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augmented with a TV regularization term. The last part of this section presents
the developed optimization technique that allows to reduce the computational
complexity while still being able to solve TVL1 regularized approximation tasks.

3.1 Interpolation with Radial Basis Functions

When approximating any signal from a set of measurements, the general aim is
to determine a function f : Rd �→ R from a set of N sample values at xi ∈ R

d.
The core idea of RBF-based approximation is that the function f(x) may be
represented by a linear combination of M weighted functions such as

f(x) =
M∑

j

ϕ(x, xj)αj . (3)

Each of the basis functions ϕ(x, xj) is centered at each measurement xj , and
basically computes the similarity between x and xj ∈ R

d. One possible form
for ϕ is a Gaussian ϕ(x, xj) = e−‖x−xj‖/σ with σ influencing the width of the
support.

The underlying idea of RBF approximation is illustrated for a one-
dimensional signal in Fig. 4, where f is defined as a sum of all given Gaussians
with their weights αj respectively. Usually it is assumed that the widths σ of
the basis functions are known a priori so only the weighting factors αj are to be
found, leading to f(x).

Fig. 4. Illustrative example of smooth f(x) (red line) constructed by a weighted linear
combination of Gaussian radial basis functions ϕi (Color figure online).

The task is therefore to perform regression over N samples and to find M
weights via minimization of

min
α

N∑

i

(yi −
M∑

j

αjϕ(xi, xj))2,
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where yi is the i-th measured sample at position xi. This can also be rewritten
in matrix-vector form as:

min
α

‖ y − Kα ‖22 (4)

where K is often referred to as the design matrix or the kernel matrix with
Ki,j = ϕ(xi, xj). The solution is obtained via

α = A−1KT y (5)

with A = (KT K). This is the well known linear least squares regression. Note
that the function f(x) itself is not restricted to be linear.

In the last two decades several types of RBFs have been proposed for differ-
ent applications. For the application on shape approximation three RBF types
are investigated. (i) The Gaussian which is the state of the art, (ii) Thin-plate
splines [16] with global smooth properties and the (iii) compactly supported
RBFs (CSRBFS) [40] which enable sparse regression systems to be created
and to control the smoothness of the solution. Table 2 shows the three types
of the investigated RBFs with the corresponding explicit forms for data dimen-
sion d = 3. Note that the scaling of each RBF type is achieved by scaling the
argument

ϕs(r) = ϕ(
r

s
) with r =‖ xi − xj ‖2 . (6)

In order to make a systematic decision which RBF type is best suited for the
underlying application, the stability and the approximation quality is considered.
When solving for α in (5), the condition of K cond K = |λmax

λmin
| plays an important

role. λmin and λmax are the minimal and maximal eigenvalues of K respectively.
In practice, it is not feasible to evaluate the condition number on large systems
since the computation of the eigenvalues has a complexity of O(N3). Therefore, a
generalized approach to assess the stability a priori is proposed.

Considering the minimal distance between two samples as qx := 1
2 minj �=i

‖ xi − xj ‖2 and interpreting f(x) =
∑M

j ϕ(x)αj as a transfer function, it is
proposed to analyse the system behaviour in the frequency domain. The key to
this is the Fourier-Bessel transform of ϕ(r) [41]. Interpreting the frequency ω as

Table 2. Investigated radial basis functions for data dimension d = 3.

Type ϕ(r) Cont. m

Gaussian e−r2
C∞

CSRBF (1 − r)2+ C0

(1 − r)4+(4r + 1) C2

(1 − r)6+(35r2 + 18r + 1) C4

Thin-plate r2m−3 Cm
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the minimal distance qx between the approximated samples provides the best-
case stability of the regression model without having to perform experiments on
data. More practically, the boundaries for the lowest eigenvalue are discussed
and put in relation to the expected sample radius qx. This enables qualitative
assessment of a basis function without performing any numerical experiments.
Regarding the stability evaluation presented in Fig. 5a, the Thin-Plate RBF is
the only type, which remains stable for all qx. Depending on the smoothness,
CSRBF with C0 and C2 follow. The Gaussian RBF is the least stable basis
function with λmin slightly below zero.

)b)a

Fig. 5. (a) Lower bounds for λmin (higher is better), (b) lower bounds (lower is better)
for the approximation error of each RBF type.

Another important aspect when selecting an RBF type is the approximation
quality. Similarly to the case of stability assessment, numerical experiments often
only indicate the behaviour of the RBFs restricted to the given dataset. Thus,
it is proposed to appraise the theoretical error bounds in a similar way, as has
been shown with the generalized stability. The diagram in Fig. 5b presents the
best achievable error up to a positive scale factor for each RBF type given the
sampling density qx. It is clear that the higher the sampling density, the better
the approximation quality. Notably, the CSRBF-C2 achieves higher quality than
other compact RBFs with lower sampling density qx and is very similar (overlays)
with the global Thin-Plate RBF.

This evaluation indicates the superior performance of the Thin-Plate RBF,
though this is not applicable in most realistic applications because the sup-
port is not restricted to the neighbouring domain. Furthermore, the presented
evaluations claim that applying the compactly supported RBFs with C2 or
C0 achieves comparable properties. Table 3 shows the summarized investigation
results, where a higher number of plus signs reflect better performance. Accord-
ing to the evaluation it is clear that CSRBF is more stable and more accurate
than the Gaussian RBFs and provides comparable performance to the Thin-
Plate splines without requiring global support. These key observations imply
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that using CSRBF for 3D data approximation is an attractive option which will
now be examined in the next Section.

Table 3. Comparative overview of the RBF models.

Gaussian Thin plate CS-RBF

Stability + + + + + +

Approximation + + + + + + + +

Smoothness + + + + + + ++

Efficiency + + +

3.2 Shape Reconstruction from Scattered Points

The principal idea of shape modelling with RBF is to extract an implicit func-
tion which represents the shape by its zero value as introduced in Fig. 3. More
formally, an algebraic function f(x), f : R

3 �→ R needs to be constructed by
regression. Given a set of measured 3D points, the task is further to find a
function f(x) which returns zero on every i-th sample xi and interpolates well
between the samples. Since the zero level alone does not provide information
about the orientation of the surface, the surface normals ni at every sample
are used as constraints for the gradient ∇f(x) wrt. x. The task is now to find
f(xi) = 0 giving zero at every sample position and ∇f(xi) = ni. Integrating all
this information, a convex cost functional is defined.

min
α

N∑

i

‖ f(xi) ‖22 + ‖ ni − ∇f(xi) ‖22 (7)

To simplify the optimization problem the normalization term ‖ ∇f(xi) ‖2= 1 is
omitted. In order to obtain the gradient ∇f , only the gradient of ϕ needs to be
computed, which is precomputed analytically. Putting (7) into matrix notation
leads to the short form of the cost function

min
ααα

‖ Kααα ‖22 + ‖ n − K∇α ‖22 . (8)

The matrix K contains the values of the RBFs Kn,m = ϕ(xn,xm) ∈ R and
K∇n,m = ∇ϕ(xn,xm) ∈ R

3 represents the derivatives of ϕ wrt. xn. The matrices
are of sizes K ∈ R

N×M and K∇ ∈ R
3N×M . At this point it becomes clear

that radial basis functions with local support return for distant points xn,xm

zeros which leads to sparse matrices K and K∇ improving the storage and the
computation efficiency. Figure 6 shows example matrices K and K∇ when a
RBF with compact support is applied. Black dots illustrate the non-zero matrix
values. Since most of the entries in K and K∇ are zero they can be dismissed in
the computation process.
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Fig. 6. Example of sparse matrices K∇ and K for Eq. (10) when CSRBF is applied.

)c)b)a

Fig. 7. (a) Synthetic input points, (b) the cut plane visualizing f(x) as red (f < 0)
green (f > 0), (c) reconstructed shape from (a).

Figure 7 shows an example of applying CSRBF-C2 on a synthetic point set.
The red line in Fig. 7(a) indicates the cut-plane at which the Fig. 7(b) has been
rendered, while Fig. 7(c) shows the 3D shape reconstruction.

Next, it is proposed to extend the cost term with an additional total variation
regularization term enforcing piecewise smoothness. In computer vision it is
accepted practise [21] to measure the total variation by computing the Frobenius
norm of a Hessian matrix. In contrast, it is proposed to compute the second
derivatives with respect to the radius r of the RBF ϕ(r). Comparing the single
computation ∂2

rrϕ(r) to the evaluation of the 3 × 3 Hessian matrix with nine
elements, this reduces the computational cost by a factor of nine and is easier
to compute analytically. Similar to the case when computing the gradients of f ,
the second derivative is also a sum of derived RBFs

TV (x) =
M∑

m

∂2
rrϕ(r)αm (9)

with r =‖ xm − x ‖2.
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)b)a

Fig. 8. (a) The TV cost (red) overlaid with the unregularized shape obtained via LSQ.
(b) The reduced TV cost (less red colour) after performing regularized approximation
following (10).

Applying the TV regularization, the cost function becomes

min
α

‖ Kα ‖22 + ‖ n − K∇α ‖22 +λ ‖ Dα ‖1 (10)

with Dn,m = ∂2
rrϕ(xn,xm) and λ as the weighting of the regularization term.

The factors αm corresponding to the largest eigenvalue of D are attenuated the
most while weights lying in the kernel of D, are not affected at all. Figure 8 shows
an example when the input samples have been perturbed by noise (Fig. 9a) and
the shape is reconstructed via (a) simple least squares (LSQ) and (b) TV L1. In
both images the red colour corresponds to the TV cost intensity (9). Clearly,
when applying TV minimization the shape accuracy of the reconstruction is
improved and the red TV intensity is reduced significantly.

Increasing the normally distributed sample noise up to σ ≈ 30% of the
bounding box, the effect of the regularization is demonstrated in Fig. 9. While the
simple LSQ model does not achieve a smooth shape (Fig. 9b) the new regularized
approach in Fig. 9(c) shows considerable perceptual improvement in terms of the
quality of the shape reconstruction.

In the next section, the proposed numerical technique to efficiently solve the
TVL1 task is presented.

3.3 TVL1 Solver

To minimize the task (10) it is proposed to apply the Lagrangian approach from
the Alternating Direction Method of Multipliers (ADMM) [8]. Formally, (10) is
restated to

min
α,z

L(α, z) = f1(α) + f2(z) + bT (Dα − z) +
ρ

2
‖ Dα − z ‖22 (11)

where f1(α) is the data part from (10) depending on α, and f2(z) = λ ‖ z ‖1
is the non-smooth regularization part weighted by λ. The basic approach is to
minimize for α, then for z iteratively. The terms bT (Dα − z) and ‖ Dα − z ‖2
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)c)b)a

Fig. 9. (a) Noisy 3D samples of the step function. (b) Direct LSQ. (c) TV L1 regularized
approximation.

make sure that Dα is close to z after an iteration finishes reducing the duality
gap. This restriction is controlled by ρ which is usually a large scalar. The iter-
ative optimization process between α and z is summarized in Algorithm 1. The
minimization for z involves a sub gradient over ‖ · ‖1 and its solution is known
as the shrinkage operator [19] being applied on each element zi independently:

zi = shrink(a, b)
= a − b · sign(b − a)+

where a =
bi

ρ
+ (Dα)i, b =

λ

ρ

(12)

with (Dα)i as the i-th element of the vector Dα and sign(b−a)+ gives 1 if b > a
and zero otherwise.

Algorithm 1. ADMM for L1 approximation

1. Solve for α: (KT
∇K∇ + KT K + ρDT D)α = KT

∇n + DT (ρz− b).
2. Evaluate: zk+1

i = shrink( bi
ρ

+ (Dα)i, λ/ρ)

3. Evaluate: bk+1 := bk + (Dαk+1 − zk+1)ρ

While steps 2 and 3 are direct evaluations and can be performed in parallel
after Dαk+1 has been precomputed, step 1 incurs high computational complex-
ity. It is proposed to solve αk+1 via Gauss-Seidel iterations which are well known
from large scale linear system optimization [35]. However, the standard Gauss-
Seidel process suffers from difficult convergence conditions. Thus, successive over
relaxation (SOR) is applied with a weight factor ω. By applying SOR in step 1,
Algorithm 1 changes to

αk+1
i = αk

i + ω
yi − (KT

∇iK∇ + KT
i K + ρDT

i D)αk

KT
∇iK∇i + KT

i Ki + ρDT
i Di

(13)

with yi = KT
∇in+DT

i (zρ−b) and i-th columns of a matrix respectively. Consid-
ering that K∇, K and D are sparse when CSRBF is applied, the computation
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is reduced to Algorithm 2.

Algorithm 2. Matrix free TVL1

1. For each RBF centre αi compute:
(a) Find all neighbouring centres and all neighbouring samples located in the

support of αi.
(b) Compute the Eq. (13) using only the collected neighbours.
(c) Precompute Dα with the new αk+1

i .
2. Evaluate: zk+1

i = shrink( bi
ρ

+ (Dα)i, λ/ρ)

3. Evaluate: bk+1 := bk + (Dαk+1 − zk+1)ρ

The optimization is controlled by two important parameters: ω for the succes-
sive over relaxation and the RBF scaling s as introduced in Table 2 and (6).
Figure 10 shows the effect of these parameters on the approximation quality
and the achieved convergence rates. The experiments have been performed on
the synthetic dataset from Fig. 7. Figure 10a illustrates the approximation qual-
ity over the scaling s. The quality attains its optimum when s = 10 is reached.
This observation corresponds to the generalized investigations from Fig. 5, where
s = 10 is qx = 0.1. Furthermore, the empirical impact analysis of the over
relaxation parameter ω on the convergence concludes that ω ≤ 0.15 allows
to remove the instability issues for CSRBF-C2 and CSRBF-C4 when SOR is
applied. Note that when applying the Gaussian RBF, ω is required to be very
small (ω ≈ 1e − 3), leading to an impractically high number of iterations. This
fact is a consequence of the stability properties of the Gaussian investigated in
Sect. 3.1.

Fig. 10. (a) The impact of the scaling parameter s, (b) the over relaxation weighting
ω, (c) convergence behaviour for ω = 0.15 when CSRBF-C2 or CSRBF-C4 are applied.

The next section evaluates the proposed TVL1 shape approximation frame-
work with respect to existing methods by applying the algorithms on a large
dataset with an existing ground truth.
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Fig. 11. Evaluation results for the proposed TVL1 and the compared techniques. See
text for details (Color figure online).

4 Evaluation

This section evaluates the proposed shape reconstruction framework on different
datasets and compares it with two successful surface reconstruction techniques:
the Poisson approximation [28] and the Smooth-Signed-Distance (SSD) algo-
rithm [11]. The selected methods have been identified as successful techniques
for shape reconstruction under strong noise. Both use the implicit model to rep-
resent the shapes. However, in contrast to the presented work, the compared
methods structure the data via an octree of predefined depth and apply discrete
optimization via finite differences to extract the zero level of the surface.
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Fig. 12. Shape reconstruction from real time point clouds. See text for details.



TVL1 Planarity Regularization for 3D Shape Approximation 291

The presented analysis uses a 3D point cloud as input. A virtual camera flight
was simulated in order to generate error prone data with an established ground
truth. The simulation of the moving camera and noisy 3D measurements were
achieved by extending the CAD software Blender [30]. This enabled the control of
the noise level on the samples and an accurate model of the observed object. An
outdoor scene was selected since similar environments are used in many robotic
applications. Figure 11a shows the ground truth model used for the simulated
measurements in assessing the quality of reconstructed 3D shapes in Fig. 11g.
Figure 11b–e show the model coloured according to the local reconstruction error.
Red areas indicate larger errors. The facade consisted of large planar areas with
a number of sharp edges as identified in point 1©. The proposed TVL1 tech-
nique performs significantly better than the Poisson approach and similarly well
compared to SSD. During the simulation several areas 2© have been occluded
by the railing, thus have not been sampled. This increases the difficulty of the
reconstruction task. At these locations TVL1 interpolates a shape which is more
similar to the ground truth than other techniques. The area marked by 3© is the
balcony, where only a small part of the floor has been sampled. In such areas,
both TVL1 and SSD perform well, significantly outperforming the Poisson app-
roach. The diagram in Fig. 11f shows the cumulative error distribution of the
reconstructed shapes. It states for example, that only 77% of all samples have
a smaller error than 0.3m when Poisson is applied. The diagram is produced
by re-sampling the ground truth model and the approximated shapes with 5M
points and by measuring the distance between a reconstructed sample and its
nearest neighbour from the ground truth set. The point-to-point (ptp) error is
shown on the horizontal axis. The increased accuracy of TVL1 techniques can
also be observed in the coloured error models in Fig. 11b–e.

Another evaluation scenario has been considered where real point clouds from
a mobile stereo system have been processed to shapes. As previously illustrated
in Fig. 1, the small stereo system has been carried inside of a building at high
speed, computing the 3D point clouds in real time. This data has been processed
by the Poisson, SSD and TVL1-C2 techniques, and is shown in Fig. 12. Figure 12a
and below show larger overview, which has been selected because of the difficult
conditions. Floor reflections, occlusions and blending from ceiling illumination
lead to error prone data. Poisson and SSD are designed to reconstruct closed sur-
faces and thus generate wrong surfaces even in the open entries. TVL1 however,
extrapolates the measurements to some extent but does not close the entries
correctly indicating open and traversable space.

Figure 12b show a part from the DLR building. It can be observed, that
Poisson provides over-smoothed surfaces, SSD tends to interpolate noisy samples
and TVL1 manages smooth surface but also representing the edges between the
walls and the floor.

5 Conclusion

This paper has presented a new 3D shape modelling strategy for noisy error
prone 3D data samples. Modelling 3D shapes with radial basis functions has
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been proposed with the choice of the most appropriate RBF corroborated using
generalized stability and approximation quality assessments. The shape regres-
sion model has been extended by non-smooth L1 regularization assuming planar
areas to improve the accuracy of the reconstructed shape in indoor and urban
environments. Since the TVL1 optimization task is computationally expensive,
a low complexity optimization technique has been developed. The optimization
process exploits the Lagrangian form of the optimization task with an iterative
over relaxation technique. This enables realistic datasets containing several mil-
lion points to be effectively processed. Quantitative analysis confirms that the
proposed method achieves superior accuracy on the synthetic objects.

For future research, the presented solution will be adapted and extended to
recursive, real-time 3D mapping applications where environment measurements
are received as a data stream. The corresponding 3D shape approximation model
then will be able to recursively modify its shape as new measurements become
available.
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Abstract. Recognizing traffic signs is a crucial task in Advanced Driver
Assistant Systems. Current methods for solving this problem are mainly
divided into traditional classification approach based on hand-crafted
features such as HOG and end-to-end learning approaches based on
Convolutional Neural Networks (ConvNets). Despite a high accuracy
achieved by ConvNets, they suffer from high computational complex-
ity which restricts their application only on GPU enabled devices. In
contrast, traditional classification approaches can be executed on CPU
based devices in real-time. However, the main issue with traditional clas-
sification approaches is that hand-crafted features have a limited repre-
sentation power. For this reason, they are not able to discriminate a large
number of traffic signs. Consequently, they are less accurate than Con-
vNets. Regardless, both approaches do not scale well. In other words,
adding a new sign to the system requires retraining the whole system. In
addition, they are not able to deal with novel inputs such as the false-
positive results produced by the detection module. In other words, if
the input of these methods is a non-traffic sign image, they will clas-
sify it into one of the traffic sign classes. In this paper, we propose a
coarse-to-fine method using visual attributes that is easily scalable and,
importantly, it is able to detect the novel inputs and transfer its knowl-
edge to a newly observed sample. To correct the misclassified attributes,
we build a Bayesian network considering the dependency between the
attributes and find their most probable explanation using the observa-
tions. Experimental results on a benchmark dataset indicates that our
method is able to outperform the state-of-art methods and it also pos-
sesses three important properties of novelty detection, scalability and
providing semantic information.

Keywords: Traffic sign recognition · Visual attributes · Bayesian
network · Most probable explanation · Sparse coding

1 Introduction

Traffic sign detection and recognition is one of the major tasks in advanced driver
assistant systems and intelligent cars. A traffic sign detection and recognition
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system is composed of two modules namely detection and recognition. The input
of the detection module is the image of a scene and its output is the areas of the
image where they contain a traffic sign. Then, the recognition module analyses
these areas and recognizes the traffic sign.

One of the important characteristics of traffic signs is their design simplicity
which facilitates their detection and recognition for a human driver. First, they
have a simple geometric shape such as circle, triangle, polygon or rectangle.
Second, they are distinguishable from most of objects in the scene using their
color. To be more specific, traffic signs are usually composed of some basic colors
such as red, green, blue, black, white and yellow. Finally, the meaning of traffic
sign is acquired using the pictograph in the center. Even though the design is
clear and discriminative for a human, but there are challenging problems in
real world applications such as shadow, camera distance, weather condition,
perspective and age of the sign that need to be addressed in the traffic sign
detection and recognition systems.

Moreover, there are two difficulties that must be coped by the recognition mod-
ule in real-world applications. First, traffic sign recognition is a multi-category
classification problem that may have hundreds of classes. Second, assuming the
fact that it is probable to have some false-positive outputs from the detection
module, the recognition module must discard these false-positive inputs. In other
words, the recognition module must deal with the novel inputs that have not been
observed during the training stage.

To the best of our knowledge, most of works in the recognition module have
only focused on increasing the performance under more realistic conditions and
on a limited number of classes. Further, none of the methods in the literature
have been tried to recognize traffic signs in a coarse-to-fine fashion. Despite the
impressive results obtained by different groups in the German traffic sign bench-
mark competition [1], all of these methods suffer from some common problems.

First, none of the methods in the literature are able to deal with novel inputs.
For example, given the image of a non-traffic sign object (e.g. false-positive
results of the detection module), the state-of-art methods classify the novel input
into one of traffic sing classes. Second, they are not easily scalable. On the one
hand, adding a new class to the recognition module might require to re-train
the whole system. On the other hand, they use the conventional classification
method in which we consider that all classes are well separated in the same
feature space and, using this assumption, a single model is trained for whole
classes. While this assumption can be true for a few number of classes but if the
number of classes increases and we map all images onto the same feature space,
it is probable that there will be an overlap between classes. Third, they do not
take into account the visual attributes of traffic signs.

Attributes are high level concepts that provide useful information about the
objects. For example, if we observe that the input image “has a red margin” and
“is triangle” and its pictograph depicts an object that “is pointing to the left”,
the input image is high probable to be the “dangerous curve to the right” traffic
sign. In this case, we could recognize the traffic sign using three attributes. As the
second example, assume the attributes “has a red rim”, “is circle” and “contains
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a two-digit number” have been observed. These attributes reveal that the input
image indicates a “speed limit” traffic sign. Considering that there are at most
10 speed limit traffic signs, we only need to do a 10-class classification instead of
hundreds-class classification1 if we observe the mentioned attributes before the
final classification. In sum, we believe a successful traffic sign recognizer must
have the following characteristics: (1) The cost of adding a new class to the
model should be low (scalability). (2) Novel inputs must be rejected (novelty
detection) and (3) it should follow a coarse-to-fine classification approach.

In this paper, we propose a coarse-to-fine method for recognizing the large
number of traffic signs with ability to identify the novel inputs. In addition,
adding a new class to the system requires to update a few models instead of
the whole system. It should be noted that our goal is not to notably improve
the numerical results of the state-of-art methods since the current performance
is ∼ 99% but to propose a more scalable and applicable method with better
performance which is also able to detect the novel inputs and provide some high
level information about the any inputs.

To achieve this goal, we first perform a coarse classification on the input
image using semantic visual attributes and classify it into one of the abstract
traffic sign categories. An abstract category contains the traffic sign with similar
attributes. Then, a fine-grained classification is done on the signs of the detected
category. However, because the attributes of a sign are detected using a one-
versus-all classifier, it is possible that some attributes of the object are not
detected and some irrelevant attributes are detected for the same sign. To deal
with this problem, we take into account the correlation between the attributes as
well as the uncertainty in the observations and build a Bayesian network. Next,
we enter our observation to a Bayesian network and select the most probable
explanation of the attributes. Finally, the refined attributes are used to find
the category of the traffic sign or ascertain if it is a novel input.

Contribution: One of the important aspects of the proposed method is that
all signs in the same category share the same attributes. For example, all speed
limit traffic signs are triangle, have a red rim and contain a two-digit or three-
digit number. In our proposed method, the input image is in the category of the
speed limit traffic signs if it possesses all these three attributes. Otherwise, it
does not belong to this category. Using this property, we are able to identify the
novel inputs. More precisely, if the input image does not belong to any of the
abstract categories, it is classified as a novel input. Our second contribution is
proposing a scalable method. That said, the proposed framework can be effec-
tively extended to hundreds of classes. Our third contribution is dividing the
hundreds of classes into fewer categories and building separate fine-grained clas-
sifiers for every category. For instance, the category “speed limit” may contain
10 classes including 8 signs with different two-digit numbers and 2 signs with
different three-digit numbers. Clearly, there are subtle differences between these
signs. For example, the traffic sign “speed limit: 70 Km/h” is visually very sim-
ilar to the “speed limit: 20 Km/h” sign. As a result, the classification approach
1 We consider that there are at most 100 traffic signs to be recognized.
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must take into account the subtle differences rather than more abstract char-
acteristics. Another advantage of dividing the problem into smaller problems is
that in the case of adding a new sign to the model, we only need to find its
relevant category and update the classification model of this category. Last but
not the least, in the case that our system cannot find the category of the object
or it is not confident about the classification result, it provides more abstract
information which can be fused with the context and temporal information for
inference.

The rest of this paper is organized as follows: Sect. 2 reviews the state-of-art
methods for recognizing traffic signs as well as the methods for detecting the
visual attribute of objects. Then, the proposed method is described in Sect. 3
where we mention the feature extraction method and the Bayesian network
model. Next, we show the experimental results in Sect. 4 and finally, the paper
concludes in Sect. 5.

2 Related Work

Traffic sign recognition has been extensively studied and some impressive results
on uncontrolled environments have been reported. In general, the methods for
recognizing the traffic signs can be divided into three different categories namely
template matching, classification and deep networks.

Template Matching: In early works, a traffic sign was considered as a rigid
and well-defined object and their image were stored in the database. Then, the
new input image was compared with the all templates in the database to find
the best matching. The methods based on template matching usually differ in
terms of similarity measure or template selection. In general, these methods are
not stable and accurate in uncontrolled environments. For more detail the reader
can refer to [2,3].

Classification: Recently, classification approaches have achieved accurate
results on more realistic databases. These approaches consist of two major stages.
First, features of the image are extracted and, then, they are classified using
machine learning approaches. Stallkamp et al. [1] achieved 95% classification
accuracy on German traffic sign benchmark database [4] by extracting the HOG
features and classifying the images into 43 classes using the linear discriminant
analysis. Zaklouta and Stanciulescu [5,6] extracted the same HOG features on
the same database and classified them using the random forest model. They
could increase the performance up to 97.2%. Similarly, Sun et al. [7] utilized
extreme learning machine method for classification of the HOG features and
achieved 97.19% accuracy on the same database.

Maldonado et al. [8,9] recognized the traffic signs by recognizing the pic-
tographs using support vector machine. Most recently, Liu et al. [10] extracted
the SIFT features of the image after transforming it to the log-polar coordinate
system and found the visual words using k-means clustering. Then, the feature
vectors were obtained using a novel sparse coding method and, finally, the traffic
signs were recognized using support vector machines.
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Different from the previous approaches, Wang et al. [11] employed a two
step classification. In the first step, the input image is classified into 5 super-
classes using HOG features and support vector machine. In the second stage,
the final classification is done using HOG and support vector machine after
doing perspective adjustment on the image taking into account the information
from the super class. For more detailed information about classification based
methods the reader can refer to [12].

Deep Network: recently, CNN could beat the human performance by correctly
classifying more than 99% of the images on a practical dataset called German
Traffic Sign Benchmark [1]. To be more specific, the winner algorithm proposed
by Cireşan et al. [13] computes the average score of 25 CNNs with the same
architecture trained on 5 variations of the original dataset. In addition, the
second place was also awarded to another CNN proposed by Sermanet and Lecun
[14]. In contrast to the winner, the second algorithm uses only one CNN to
recognize the traffic signs. In fact, the data-augmentation procedure utilized by
both teams is almost identical and the only difference is the architecture of
the networks. Each CNN in the winner algorithm requires optimizing 1, 543, 443
parameters. However, the second algorithm trains a network with 1, 437, 791
parameters. Last not the least, the first algorithm uses hyperbolic tangent as
the activation function and the second algorithm utilizes the rectified sigmoid
activation function.

Discussion: Despite the impressive results achieved by both deep networks and
classification methods, but they are still far from the real applications. First, a
deep network is slow and it cannot currently be used in real-time applications.
Second, finding the optimal structure of the deep network is a time consuming
task which depends on the number of the classes. In the other words, if the
number of the classes changes, the whole network need to be trained again.
Third, neither deep network nor the above classification methods are not able
to deal with the novel inputs and they will classify every input image into one
of the traffic sign classes. To address all these problems, in this paper, we have
formulated the traffic sign recognition problem in terms of visual attributes and
fine-grained classification.

Visual attributes was first proposed by Ferrari and Zisserman [15] and, later,
it has been successfully used for defining the objects [16]. Cheng and Tan [17]
classified the flowers by learning attributes using sparse representation. Farhadi
et al. [18] described the objects using semantic and discriminative attributes.
Semantic attributes are more comprehensive and they are the ones that human
use to describe the objects. They can include shape, material and parts. In
contrast, discriminative attributes are the ones that does not have a specific
meaning for human but they are utilized for better separating the objects. One
important advantage of visual attributes is their ability to transfer the knowledge
to the newly observed classes of objects and learn them without examples. This
is called zero shot learning and it is illustrated in Fig. 1.

Here, 7 different attributes are learned and they can be identified in the input
images. As it is shown in this figure, by detecting the correct attributes of the
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Fig. 1. Zero-shot learning using a set of attributes.

input image we are able to recognize 11 signs without observing them during
the training phase. This is an important property which can help us to extend
our models with a few efforts through transferring the knowledge from observed
classes to the new classes [19,20].

3 Proposed Method

Traffic sign recognition is a multi-category classification problem with hundreds
of classes. Also, it is not trivial to collect a large number of real-world images of
every sign. Further, some signs are observed more frequently than other signs.
For example, it is more probable to see the “curve” signs instead of the “be
aware of snow” sign. For this reason, the collected database might be highly
unbalanced. Consequently, the trained model for the signs with fewer data can
be less accurate than the ones with more data. One feasible remedy to this
problem is to update the models through time. However, if we build a single
model for classification of all signs, it will be a time consuming task to re-train
this model. But, if we group the N traffic signs into M < N categories2, then,
we can train a different model for each category and in the case of adding a new
sign, we only need to find its relevant category and re-train the model of this
category.

From another perspective, temporal information plays an important role in
human inference system. For example, if we observe the “no passing” sign at
time t1 we expect to see the “end of no passing zone”, at time t2. Assume the
sign “end of no passing zone” is impaired because of its age and it is hard
to see its pictograph and the stripped crossing. In this case, if we follow the
classification approaches that we mentioned in the previous section, the “end
of no passing zone” sign can be incorrectly classified. However, if we provide
some more abstract information such as “the input image has a circular shape
and a black-white color,” the traffic sign recognition system can infer that the
image is related to the previously observed “no passing” sign. Hence, it probably
indicates the “end of no passing zone” traffic sign.
2 A category may contain more than one traffic sign.
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In this paper, we propose a coarse-to-fine classification approach using the
semantic attributes of the object. Figure 2 shows the overview of the pro-
posed algorithm. In the first stage, the image is divided into several regions
and each region is coded using a sparse coding method. Then, the feature vector
is obtained by concatenating the locally pooled coded vectors (Sect. 3.1). Next,
the feature vector is individually applied on the attribute classifiers and the
classification score of each attribute is computed (Sect. 3.2). Finally, the certain
state (i.e. absence or presence) of each attribute is estimated by plugging the
scores into a Bayesian network and calculating the most probable explanation of
the attributes (Sect. 3.3). In the next step, the category of the image is found
using the attribute configuration (Sect. 3.4). Having the sign category found,
the fine-grained classifier of this category is used to do the final classification
(Sect. 3.5).

Fig. 2. Overview of the proposed method (best viewed in color).

3.1 Feature Extraction

In order to train the attribute classifiers, we first need to extract the features
of the traffic sign. The extracted feature must be able to encode the color, the
shape and the content of the traffic sign in the same vector. One of the character-
istics of the traffic sign is that they are rigid and their geometrical features (e.g.
shape, size and orientation) as well as their appearance (e.g. color and content)
remain relatively unchanged. From this point of view, a simple template match-
ing approach can be useful for the recognition task. However, some important
issues such as motion blur, weather condition and occlusion cause the template
matching approach to fail.



302 H.H. Aghdam et al.

Fig. 3. Feature extraction scheme.

Nonetheless, it is possible to divide the image of the traffic signs into smaller
blocks and learn the most dominant exemplars of each block, independently.
Then, we can reconstruct the original block by linearly combining the exemplars.
This is the idea behind sparse coding approach [21]. More specifically, as it is
shown in Fig. 3, we divide the input image into 5 different regions and each
region is divided into a few smaller blocks. For example, the region indicated by
number 1 is divided into 3 blocks. Then, in order to learn the templates of the
region r, we first collect the images of the blocks of this region from all training
images and, then, learn the most dominant exemplars by solving the following
equation:

minimize Dr, αr
1
n

∑n
i=1

1
2‖xr

i − Drαr
i ‖22

subject to ‖αr
i ‖1 <= λ

(1)

In this equation, xr
i ∈ R

M is a M -dimensional vector representing the RGB
values of the blocks in region r, Dr is a R

M×K matrix storing the K dominant
templates of region r in the training images, αr

i ∈ R
K is a K-dimensional sparse

vector indicating the templates which have been selected to reconstruct the
block xr

i and λ is the value to control the sparsity. The value of λ is determined
empirically by the user.

After training the matrices Dr, we use them to extract the features of the
input images. To this end, we divide the input image into regions and blocks
in the same way that it is shown in Fig. 3. Then, we take the blocks of each
region r, separately, and minimize (1) assuming that the values of Dr are fixed
in order to compute the vector αr

i of each block. At this step, we have a few
K-dimensional vectors for each region. For example, we will obtain four vectors
from region 5. Then, the feature vector of region r is computed by pooling the
vectors in that region:

fr =
nr∑

i=1

αr
i (2)

In this equation, nr is the number of the blocks in region r. Finally, the feature
vector of the image is obtained by concatenating the vectors fr, r = 1 . . . 5 into
a single vector and normalizing it using L1 norm.

Computing the sparse vectors αr
i ∈ R

K is called inference and it is a compu-
tational task since it requires solving an optimization problem. To alleviate this
problem, we can train a non-linear regressor that maps the input xr

i to sparse
vector αr

i . Specifically, we can train the following non-linear regressor:
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H(xr
i ) = A × tanh (Wxr

i + B) (3)

where W ∈ R
K×M is a weight matrix, B ∈ R

K is a vector of biases, tanh(.) is
the hyperbolic tangent function and A ∈ R

K×K is a diagonal matrix for scaling
the result of tanh function. In order to train the above regressor, we only need
to compute the αr

i of each training sample and minimize the mean square error
function:

Er =
1
n

n∑

i=1

‖αr
i − H(xr

i )‖ (4)

By training the regressor H(xr
i ) we will be able to estimate the αr

i of the input
image patches using a few matrix operations instead of solving an optimization
problem.

Convolutional Neural Network. It is worth mentioning that our proposed
framework does not depend on the image representation method. In fact, the
feature extraction method mentioned in the previous section can be replaced
with any other methods such as HOG. However, it is shown that Convolutional
Neural Networks (CNNs) provide a richer representation on challenging datasets
such as CIFAR [22] and ImageNet [23–25] compared with conventional methods
such as HOG. As the result, it is possible to design a new CNN and train it on
the dataset of traffic sign images. Then, the trained CNN can be used to extract
feature vector of the input image.

3.2 Attribute Classifier

A traffic sign can be defined using three sets of visual attributes. These are
illustrated in Fig. 4. Dashed arrows show a soft dependency relation and we will
discuss about them in the next section. In fact, there is a causal relationship
between these attributes and the traffic signs. In other words, we can verify the
validity of this relationship using the concept of ancestral sampling. Given the
color, shape and content attributes, we can randomly generate new traffic signs
using the probability distribution function p(traffic sign|color, shape, content).
For instance, while p(traffic sign = curve left|color = red, shape =
circle, content = has number) might be close to zero but p(traffic sign =
speed limit 60|color = red, shape = circle, content = has number) is high.

Taking this causal relationship into account, we have defined three sets of
attributes including color (4 attributes), shape (3 attributes) and content (12
attributes). These attributes are listed in Table 1. Each traffic sign in our exper-
iments is described using these attributes. However, they can be easily extended
to more attributes without affecting the general model we have proposed in
this paper.

Detecting the attributes of the input image is done through the attribute
classifiers. For this reason, we need to train 19 binary classifiers as follows. For
each attribute, we select the images having that attribute as the positive samples
and the rest of the images as the negative samples. Then, we train a random
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Fig. 4. Causal relationship between the attributes and the traffic signs (color figure
online).

Table 1. Sets of attributes for describing the traffic signs.

Content

has human(a1) danger road(a2) pointing up(a3)

end of (a4) 2-digit number(a5) pointing right(a6)

has car(a7) 3-digit number(a8) pointing left(a9)

has truck(a10) irregular object(a11) is blank(a12)

Color

red(a13) blue(a14) yellow(a15)

black-white(a16)

Shape

circle(a17) triangle(a18) polygon(a19)

forest model on the collected data. At the end, we will have 19 random forest
models for finding the attributes of the input image.

3.3 Bayesian Network Model

Figure 5 shows the general model for the classification of the images using
attributes where x indicates the feature vector, ai, i = 1 . . . N is a binary value
indicating the presence or absence of the ith attribute and yk, k = 1 . . . K is the
class label.

Based on this model, it is easy to show that the classification will be done
by finding the maximum a posteriori of the class labels:

y∗ = arg max
k=1...K

∑

a=0,1

p(a|x)p(yk|a) (5)

where a = ai|i = 1 . . . N is a binary vector. There are two important issues with
this model. First, it does not take into account the causal relationship between
the attributes and it considers them completely independent. This means, using
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Fig. 5. General classification model using attributes.

this model, the attribute “danger in road” does not longer depend on the shape
attributes. But, all traffic signs indicating the danger will be only shown in the red
and triangle signs. Suppose that we observe the attributes “is blue”, “is triangle”
and “pointing left”. Obviously, there is no traffic sign with this configuration. How-
ever, if the shape had been detected as “is circle” or the color had been detected as
“is red”, the configuration was valid. But, with the model of Fig. 5 it is difficult to
find which attribute has been falsely classified. The reason is it does not take into
account the dependency between attributes and the uncertainty of the observa-
tions. The second issue is that using this model, detecting the novel inputs is not a
trivial task. In order to detect the novel inputs, we need to define a threshold which
can be compared with the maximum a posteriori value for this purpose. However,
determining the value of the threshold is an empirical task and it highly depends
on the conditional distribution model of each attribute. On the other hand, if one
of the models changes, we need to find the threshold value, again.

As we mentioned in Fig. 4, the image of the traffic sign can be described in
terms of color, shape and content (pictograph). However, there is also a soft
dependency between the content and other attributes (dashed lines). This is
because some attributes can happen regardless of the shape and color. For exam-
ple, the content attribute “is blank” can happen on every possible combination
of the color and the shape attributes. In other words, the attribute “is blank”
can be independent of the other attributes. In addition, there is also an intra-
dependency between the content attributes. For example, if we observe “has
truck” attribute, it is probable to observe “has car” attribute, as well (e.g. “no
passing” traffic sign). To find the dependencies between the all attributes in
Table 1, we calculated the co-occurrence matrix of the attributes. This is illus-
trated in Fig. 6.

The co-occurrence matrix is a 19× 19 matrix where the element (i, j) in this
matrix indicates the probability of observing ith and jth attributes at the same
time among the whole classes of traffic signs. Using the co-occurrence matrix, we
create our Bayesian network by discarding the relations where their probability
in the co-occurrence matrix is less than the threshold T . Figure 7 shows the
obtained Bayesian network. The nodes in this Bayesian network depicts the
state of an attribute. In other words, all of the nodes in this network are binary
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Fig. 6. Co-occurrence matrix of the attributes.

nodes and they represent the conditional probabilities of the child attributes
given their parents that are acquired using the training data. Our goal is to
find the optimal state of the attributes using the identified evidences from the
image. For this reason, we add another 19 observation nodes to the network.
This is illustrated in Fig. 8 where the solid gray circles are the hidden nodes and
the white circles are the evidence nodes. Our observations are the scores of the
attribute classifiers (random forests) that is a number between 0 and 100. Given
the evidence from the attribute classifiers, our goal is to maximize following
function:

a∗
1 . . . a∗

19 = arg max
a1...a19∈[0 1]19

p(a1 . . . a19, Oa1 . . . Oa19) (6)

where Oai
, i = 1 . . . 19 is the score of the ith attribute obtained from the ith ran-

dom forest model. According to the equation, we are looking for the state of the
hidden variables (actual state of the attributes) such that the joint probability
of the hidden variables and the observed attributes are maximum. This is called
most probable explanation problem.

3.4 Category Finding

Given the set of 19 attributes, we can cluster the traffic signs into smaller cat-
egories. To this end, we manually specify which attributes are active for each
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Fig. 7. Bayesian network without observation nodes.

Fig. 8. Bayesian network after adding observation nodes.

class of traffic signs. For example, only attributes red, circle, 2-digit number are
active on traffic sign “speed limit 60”. Then, we cluster the classes with exactly
the same active attributes into one category. We applied this procedure on the
German traffic sign database and reduced the number of classes from 43 classes
into 29 categories. Figure 9 shows the statistic of different categories as well as
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Fig. 9. Clustering the traffic signs using visual attributes (Color figure online).

Fig. 10. Parsing tree for finding the category of the image (Color figure online).

the traffic signs inside each category. As it is clear from the figure, there are 6
categories with more than one traffic sign and other categories contain only one
traffic sign. This means that 23 traffic signs can be recognized using their visual
attributes and they do not need a finer classification. In contrast, the traffic signs
inside the other 6 categories can be recognized by the fine classification models.
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Having the optimal state of the attributes estimated using (6), we can find
the category of the new image using the parsing tree illustrated in Fig. 10. In this
tree, orange nodes are the starting points and the white nodes are the leaf nodes.

Novelty Detection: One interesting property of the parsing tree in Fig. 10 is
that we can use it for finding the novel inputs. To achieve this, we start by the
comparing the optimal state of the attributes obtained from (6) with the starting
nodes. For example, assume the state of the attribute blue is active and state
of the other color attributes are inactive. According to the parsing tree, there is
only one outgoing path from the node blue that is the circle attribute. If it is
active, then we keep do parsing, otherwise the input is novel because the node
blue is not a leaf node and the parsing is not successful. In sum, an input image
is novel if there is no active path from the starting points to the leaf nodes.

3.5 Fine Classification

As it is shown in Fig. 10, there are a few categories containing more than one
traffic sign. If the input image belongs to one of these categories, then, the actual
class of the image is found using a fine classification model which is trained on
the images of the category. In other words, we create an individual model for
every object category with more than one class inside the category. We follow
the same method as in [5] for classifying the objects within the same category.
Moreover, using our method, we reduce the number of the classes from 43 to
6 in German traffic sign benchmark database which is about 7 times reduction
in the number of classes. Therefore, we only need to do a 6-class classification
instead of 43-class classification that can be more accurate and flexible.

4 Experiments

We have applied our proposed method on the German traffic sign benchmark
database [1]. This database consists of 43 classes. It also includes two different
sets for training and testing. We have resized the all images into 40 × 40 pixels
before applying any feature extraction method. We have two sets of feature
vectors. The first set which is obtained by sparse coding method mentioned in
this paper is for recognizing the attributes of the image and the second set is the
HOG features for fine-classification. For sparse coding approach we applied our
proposed method on both RGB and the distance transform of the edge image.
Then, we concatenated the pooled vectors to build the final feature vector. For
HOG features, we utilized the same configuration in [5]. Next, we trained two
sets of random forest model one for the attribute classification (19 classifiers)
and one for the fine classification of the categories with more than one traffic
sign (6 classifiers) using only the training set.

It is worth mentioning that the conditional probabilities of the hidden vari-
ables of the Bayesian network are modelled using the conditional probability
tables and the conditional probability of the observations are modelled using
Gaussian distribution of the attribute scores.
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Table 2. Precision, Recall and F1 measure of the attribute classifiers.

Attribute precision recall F1 measure

red 0.993 0.990 0.992

blue 0.988 0.992 0.990

yellow 0.971 0.948 0.959

black-white 1.0 0.992 0.996

triangle 0.985 0.995 0.990

circle 0.997 0.987 0.992

polygon 0.991 0.988 0.990

pointing left 0.967 0.947 0.975

pointing right 0.982 0.935 0.957

pointing up 0.994 0.954 0.973

end of 1.0 0.992 0.996

has car 0.993 0.983 0.988

has truck 1.0 0.977 0.988

2-digit number 0.983 0.973 0.978

3-digit number 0.959 0.965 0.962

has human 0.988 0.896 0.940

danger in road 0.932 0.960 0.946

irregular object 0.977 0.913 0.944

is blank 0.991 0.993 0.992

Table 2 shows the results of the attribute classification on the test dataset.
Apparently, the attribute classifiers have achieved high accuracy in detecting the
attributes of the input images. Next, we tried to find the category of the test
images using the attribute classification model depicted in Fig. 5 and our pro-
posed method. Tables 3 and 4 show the results of the category classification using
the proposed method and the general model, respectively. Clearly, our method
has outperformed the general attribute classification model. The reason is that,
using our method, we are able to model the uncertainties of the observations
and correct the mistakes. Consequently, the number of the samples that pass
the tests in the parsing tree increases.

In addition, Fig. 9 revealed that some categories contain only one class. How-
ever to compare our results with other methods, we also applied the fine clas-
sification model on the categories with more than one class inside. Then, to
be consistent with the state-of-art results, we computed the mean accuracy of
the classifications. Table 5 shows the results. As it is clear, there is a significant
improvement in recognition of de-restriction signs (you can refer to [1] for defini-
tions of different signs). This is because the shape of de-restrictions signs is very
similar to some of the signs in other classes. For example, “end of no-passing”
sign has a very similar edge features to the “no passing” signs. On the other
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hand, two other methods represented in this paper have utilized HOG features
for classification. Obviously, because of shape similarity of the other signs with
the de-restrictions signs, their feature vector will be similar, as well. For this
reason, there is an overlap between the feature vector of this signs with other
signs in the feature space which causes the misclassification.

However, because our method utilizes the attributes of the image, it is able
to model the color, shape and content of each sign explicitly. For this reason,
when an image from de-restrictions group is given to our method, it is able to
distinguish between them with other signs simply using the color attributes. As
the result, it is able to improve the accuracy of the classification.

Table 3. The result of category classification using the proposed method. The cate-
gories are indexed according to Fig. 9.

Category C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
precision 0.998 1.0 0.995 0.993 0.996 0.992 1.0 0.996 0.995 0.993 1.0 0.967 1.0 0.960
recall 0.995 1.0 0.987 1.0 0.996 0.992 1.0 0.998 1.0 1.0 0.980 0.991 0.936 0.941
accuracy 0.994 1.0 0.983 0.993 0.993 0.984 1.0 0.994 0.995 0.993 0.980 0.960 0.936 0.905

Category C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28
precision 1.0 0.976 0.985 1.0 0.988 0.961 1.0 0.998 0.992 0.991 0.965 0.965 0.961 1.0 1.0
recall 0.985 0.984 0.987 0.969 0.988 1.0 1.0 0.992 0.977 0.986 0.988 0.965 1.0 1.0 1.0
accuracys 0.985 0.960 0.973 0.969 0.977 0.961 1.0 0.990 0.970 0.978 0.955 0.933 0.961 1.0 1.0

Table 4. The result of category classification using the general model in Fig. 5. The
categories are indexed according to Fig. 9.

Category C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
precision 0.998 1.0 0.981 0.996 1.0 0.972 1.0 0.998 1.0 0.993 1.0 0.725 0.943 1.0
recall 0.958 0.895 0.896 0.972 0.946 0.925 0.899 0.966 0.979 0.979 0.981 0.952 0.688 0.365
accuracy 0.956 0.895 0.881 0.969 0.946 0.901 0.899 0.964 0.979 0.973 0.981 0.699 0.660 0.365

Category C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28
precision 1.0 1.0 0.991 1.0 0.929 0.814 1.0 0.996 0.962 0.996 0.977 1.0 0.886 1.0 1.0
recall 0.718 0.944 0.844 0.715 0.824 0.946 0.778 0.930 0.933 0.982 0.977 0.966 0.984 0.840 0.947
accuracy 0.718 0.944 0.838 0.715 0.775 0.778 0.778 0.927 0.899 0.978 0.955 0.966 0.873 0.840 0.947

Table 5. The result of category classification using the proposed method. The cate-
gories are indexed according to Fig. 9.

Speed
limits

Other pro-
hibitions

De-restriction Mandatory Danger Unique

Our method 97.01 99.25 100 97.09 96.31 98.76

Random forests 95.95 99.13 87.50 99.27 92.08 98.73

LDA 95.37 96.80 85.83 97.18 93.73 98.63
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4.1 Novelty Detection

Assume a traffic sign recognition system where the inputs are provided by
a traffic sign detection module. Clearly, training a traffic sign detector with
false-positive rate equal to zero is not trivial. Consequently, some false-positive
(i.e. non-traffic sign) images might be fetched into the recognition module by
the detection module. If the recognition model is not equipped with a novelty
detection module, it will classify the non-traffic sign image into one of traffic sign
classes. This might produce some fatal mistakes in the case of driver-less cars.
We showed in Fig. 10 that our attribute based method can be used to identify
the novel inputs.

To assess this property, we added some non-traffic sign images into the val-
idation set as the novel data. Then, we trained state-of-art novelty detectors
such as K-NN, K-means, Guassian Mixture Model, One-class SVM, Support
Vector Data Descriptor (SVDD) using PRTools3, data description toolbox4 and
LibSVM. Table 6 shows the results.

Table 6. Result novelty detection using the proposed method and state-or-art methods.

Dataset Our GMM K-means SVM SVDD KNN

GTSR AUC 0.68 0.502 0.49 0.55 0.58 0.51

TPR 0.96 0.64 0.22 0.32 0.90 0.37

FPR 0.61 0.63 0.24 0.21 0.73 0.35

We observe that our method has produced the best result compared with the
other methods applied on traffic sign recognition problem. The feature vectors
extracted from the GTSRB dataset are sparse vectors. Consequently, the mini-
mum enclosing ball found by SVM and SVDD methods will include a large area
of novel vectors. Therefore, the false-positive rate of these methods is high on
this dataset compared with their true-positive rate. Further, GMM method is
not able to model the distribution of the vectors accurately. This is due to the
fact that the number of data compared with the dimensions of feature vectors is
not enough to partition the dataset into many clusters and find their covariance
matrix. Hence, GMM partitions the dataset into very small number of groups
(3 clusters in this experiment). In addiction, because the vectors inside each
cluster are sparse, they cannot be modelled using a Gaussian density function
accurately. As the results, the overall accuracy of GMM drops. Similarly, KNN
and K-means methods suffer from the fact that the feature vectors are sparse
and they do not select a proper threshold values in their novelty score function.

5 Conclusion

In this paper, we proposed a probabilistic framework for recognizing traffic signs
using visual attributes and Bayesian networks. Specifically, we define each traffic
3 http://prtools.org/.
4 http://prlab.tudelft.nl/david-tax/dd tools.html.

http://prtools.org/
http://prlab.tudelft.nl/david-tax/dd_tools.html
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sign in terms of color, shape and pictograph attributes which are collectively
represented using 19 binary attributes. Thus, 19 random forests are trained in
order to recognize the attributes of each traffic sign. Taking into account the fact
that attribute classifiers are very likely to have some false-positive and false-
negative results, we design a Bayesian network including observed nodes and
hidden nodes to refine the observed attributes. To this, we enter the classification
score of the attribute classifiers to the Bayesian network and calculate the most
probable explanation of the hidden nodes. The hidden nodes are binary valued
nodes indicating presence and absence of each attribute. The most probable
explanation of these nodes illustrates the most probable attributes of the input
image. Finally, the refined attributes are used to classify the traffic signs. In this
paper, we used sparse coding approach for extracting features of the input image
and training the attribute classifiers. However, more richer representation can
be obtained using convolutional neural networks.

One of the important characteristics of our framework is its ability to iden-
tify novel inputs. Concretely, there might be some false-positive results from the
traffic sign detection stage which are fetched into the recognition module. If the
recognition module is not equipped with a novelty detection model, it will clas-
sify the non-traffic sign images into one of traffic sign classes. However, because
we represent each traffic sign using visual attributes, it is possible to identify
the novel input using their attribute pattern. In other words, visual attributes
pattern of a non-traffic sign image might be different from traffic signs. Con-
sequently, using our proposed parse tree we can determine if the input image
follows the visual attributes of the traffic signs in the dataset. If it does not
follow the learnt attributes, then, it is recognized as a novel input.

Last but not the least, our framework is more scalable and in some cases
it is possible to learn the new classes without any training samples (zero-shot
learning). Further, in the case that zero shot learning is not applicable, the
system only requires to update the models locally instead of the whole models.
In addition, this framework is easily expendable to hundreds of classes of traffic
signs since it breaks the hundred classes to the categories with much less traffic
signs which make them more tractable to classify without affecting the accuracy
of the system. Our experiments on the German traffic sign benchmark dataset
indicates that in addition to improving in the results compared with state-of-art
methods, our method is also able to identify novel inputs more accurately than
state-of-art novelty detection methods.
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Abstract. The aim of this paper is to describe different estimation tech-
niques in order to deal with point-wise surface normal estimation from
calibrated stereo configuration. We show here that the knowledge of the
affine transformation between two projections is sufficient for computing
the normal vector unequivocally. The formula which describes the rela-
tionship among the cameras, normal vectors and affine transformations
is general, since it works for every kind of cameras, not only for the pin-
hole one. However, as it is proved in this study, the normal estimation
can optimally be solved for the perspective camera. Other non-optimal
solutions are also proposed for the problem. The methods are tested
both on synthesized data and real-world images. The source codes of the
discussed algorithms are available on the web.

1 Introduction

Although computer vision has been an intensively researched area in computer
science from many decades, several unsolved problems exist in the field. This
paper proposes a novel optimal method for estimating the normal vector of
a planar surface patch if the affine transformation of the patch between two
calibrated (stereo) images is known.

The normal vector estimation problem itself can most accurately be solved
by photometric stereo (PS) that was introduced many decades ago [15]. The
main drawback of this method is that it can only be used in laboratories where
light conditions are totally controlled. PS usually assumes that the object to be
reconstructed is illuminated by directional light source(s) [15], but point-light
sources can also be applied [5].

The image-based normal vector estimation is usually carried out by decom-
posing the homography of corresponding image patches between stereo setup [3,
13]. Unfortunately, these methods ambiguous as it was shown in several studies
(e.g. in [12]). To the best of our knowledge, the problem of image-based normal
c© Springer International Publishing Switzerland 2016
J. Braz et al. (Eds.): VISIGRAPP 2015, CCIS 598, pp. 316–337, 2016.
DOI: 10.1007/978-3-319-29971-6 17
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vector estimation from affine transformation has not been solved yet. The first
similar work was published in two papers by Habbecke and Kobbelt in [7,8]. They
estimate the parameters of a flat patch based on photo-consistency. The plane
is parameterized in 3D by the implicit parameters of a general plane. (These are
three real values as the implicit parameters of a 3D plane are defined up to an
arbitrary scale.) A very similar approach was proposed by Furukawa &Ponce [6]
where the authors deal with the reconstruction of spatial patches. These patches
are represented by both their locations and normals.

Our method only concentrates on the estimation of the spatial normal vector
since the point of the plane can be estimated in 3D by triangulation if corre-
sponding projections on two patches are known [9,10].

The closest work to our study is that of Megyesi et al. [17]. They compute
a dense 3D reconstruction using normal vectors. The normal vectors themselves
are calculated from the affine parameters between a rectified stereo image pair.
For this reason, only two parameters of the affine transformation have to be
estimated. The drawback of this work is that the rectification itself cannot be
perfect due to noise and computational inaccuracy. Our method proposing here
is more general as it works on arbitrary stereo image pairs. The only restriction
is that the stereo images have to be taken by perspective cameras. (Or the non-
perspective distortion of the images has to be undistorted.)

To the best of our knowledge, this is the first study that deals with surface
normal computation from affine transformation using calibrated stereo images.
The main contribution of this paper is twofold: (i) We show here the general
relationship among surface normal vector, affine transformation and camera
parameters. The formulas proposing here is valid for every kind of cameras.
(ii) Different surface normal estimators are proposed here including an optimal
one that finds the optimal normal vector in the least squares sense if the affine
parameters are contaminated with noise.

The structure of the papers is as follows. The required geometric background
in order to understand the proposed method is overviewed in Sect. 2. Then the
novel methods are proposed in Sect. 3. The novel algorithms are tested both on
synthesized data and real images as it is discussed in Sect. 4. Finally, the research
is concluded in the final section. The appendix also contains very important
details that are required to implement the algorithms proposed here. However,
the Matlab/Octave implementations are also available at our webpage1.

2 Geometric Background

Two projections of a 3D surface are given in stereo images. If the neighboring pix-
els are selected around image locations, these pixels form the so-called patches.
The affine transformation between two corresponding patches are assumed to
be known. The goal of this study is to show how the surface normal n can be
estimated if the images are calibrated. The problem is visualized in Fig. 1.

1 http://web.eee.sztaki.hu/home4/node/53.

http://web.eee.sztaki.hu/home4/node/53
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Fig. 1. 3D patch perspectively projected to stereo images.

The projected coordinates x and y is determined by the projective functions
Πx and Πy as

x = Πx(X,Y,Z), y = Πy(X,Y,Z) ,

where the surface point [X,Y,Z]T is written in parametric form

X = X(u, v), Y = Y (u, v), Z = Z(u, v).

As it is well-known in differential geometry [11], the tangent vectors of the plane
are written by the partial derivatives of the spatial coordinates, while the surface
normal is given by the cross product of the tangent vectors: n = Su × Sv where

Su =
[

∂X(u,v)
∂u

∂Y (u,v)
∂u

∂Z(u,v)
∂u

]
,

Sv =
[

∂X(u,v)
∂v

∂Y (u,v)
∂v

∂Z(u,v)
∂v

]
.

It is known that the 3D point [X,Y,Z]T , and tangent vectors Su and Sv deter-
mine the tangent plane. Locally, the surface can be approximated by its tangent
plane. We assumed that we have images taken from the object. Now, a point of
the surface close to the given 3D location [X,Y,Z]T is approximated by the first
order Taylor-series:

[
x + Δx
y + Δy

]
≈

[
Πx(X,Y,Z)
Πy(X,Y,Z)

]
+

[
∂Πx(X,Y,Z)

∂u
∂Πx(X,Y,Z)

∂v
∂Πy(X,Y,Z)

∂u
∂Πy(X,Y,Z)

∂v

] [
Δu
Δv

]
.

Let us see that the partial derivatives of the projection functions give the
affine transformation between 3D and 2D surface patches:

[
Δx
Δy

]
≈ A

[
Δu
Δv

]
,
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where

A =

[
∂Πx(X,Y,Z)

∂u
∂Πx(X,Y,Z)

∂v
∂Πy(X,Y,Z)

∂u
∂Πy(X,Y,Z)

∂v

]
.

The partial derivatives can be reformulated using the chain rule. For instance,

∂Πx(X, Y, Z)

∂u
=

∂Πx(X, Y, Z)

∂X

X

∂u
+

∂Πx(X, Y, Z)

∂Y

Y

∂u
+

∂Πx(X, Y, Z)

∂Z

Z

∂u
= ∇ΠT

x Su,

where ∇Πx is the gradient vector of the projection function w.r.t. the spatial
coordinates X, Y , and Z of the surface patch. Similarly,

∂Πx

∂v = ∇ΠT
x Sv,

∂Πy

∂u = ∇ΠT
y Su,

∂Πy

∂v = ∇ΠT
y Sv.

Therefore, the affine matrix can be written as

A =
[∇ΠT

x

∇ΠT
y

] [
Su Sv

]
.

In stereo vision, two images are given. The affine transformation between the
image patches is obtained by concatenating the inverse of affine transformation
A1 (between the patches of image #1 and the spatial patch), and the affine
transformation A2 (between 3D patch and that in image #2). Formally, it can
be written as [

Δx2 Δy2
]T = A2A

−1
1

[
Δx1 Δy1

]T
.

A2A
−1
1 is the affine transformation between the images. The inverse of the

affine matrix A can be written as

A−1 =
1

det (A)

[
ΠT

x Su −ΠT
y Su

−ΠT
x Sv ΠT

y Sv

]
,

where det(A) = ΠT
x SuΠT

y Sv − ΠT
x SvΠ

T
y Su. If one makes elementary modifica-

tion utilizing the fact that SvS
T
u −SuST

v = [N ]×, then the affine transformation
A2A

−1
1 can be written as

A−1
1 A2 =

1

Π1
x

T [N ]× Π1
y

[
Π2

x
T [N ]× Π1

y Π1
x

T [N ]× Π2
x

Π2
y

T [N ]× Π1
y Π1

x
T [N ]× Π2

y

]
.

Note that the scale of the normal is arbitrary since both the determinant and
the matrix elements are multiplied with the scale of [N ]×.

The expression aT [N ]× b is also called the scalar triple product. Remark that
aT [n]× b equals to nT (b × a). Therefore, the final equation of the affine trans-
formation is written as

[
a1 a2

a3 a4

]
= A−1

1 A2 =
1

nT w5

[
nT w1 nT w2

nT w3 nT w4

]
, (1)
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where w1 = ∇Π1
y × ∇Π2

x, w2 = ∇Π2
x × ∇Π1

x, w3 = ∇Π1
y × ∇Π2

y , w4 = ∇Π2
y ×

∇Π1
x, and w5 = ∇Π1

y × ∇Π1
x. Equation 1 is a very important formula which

shows the relations of the surface normal and the projection of the surface to
the stereo image pair. A very important advantage of this formula is that it is
valid for every kind of camera since only the two projective equations must be
known. We show here that the above formula can be used to compute the surface
normal if the perspective parameters are calibrated.

2.1 Pin-hole Camera Model

When the standard perspective camera model is used, the projection is written as

[x, y, 1]T =
1
s
Ppersp[X,Y,Z, 1]T , (2)

where [x, y] are the projected coordinates in image space, s is the projective
depth, Ppersp is the so called projection matrix with size 3 × 4. Let us denote
the rows of the projective matrix by pT

1 , pT
2 , and pT

3 . The projection formulas
and their gradients can be written e.g. as

∂x

∂X
=

∂
pT
1 [X,Y,Z,1]T

pT
3 [X,Y,Z,1]T

∂X
=

P11s − P31

(
pT
1 [X,Y,Z, 1]T

)

s2
=

1
s

(P11 + xP31) .

where si = pT
3 [X,Y,Z, 1]T is the projective depth. Similarly,

∂x
∂Y = 1

s

(
P12 + xP 32

)
, ∂x

∂Z = 1
s (P13 + xP33) ,

∂y
∂X = 1

s

(
P11 + yP 31

)
, ∂y

∂Y = 1
s (P12 + yP32) ,

∂y
∂Z = 1

s (P13 + yP33) .

Therefore, it can be written that

∇Πx = 1
s

⎡

⎣
P11 + xP31

P12 + xP32

P13 + xP33

⎤

⎦ , ∇Πy = 1
s

⎡

⎣
P21 + yP31

P22 + yP32

P23 + yP33

⎤

⎦ ,

where Pij is the element in the ith row and jth column in projection matrix
Ppersp. The projective depth is obtained as s = pT

3 [X,Y,Z, 1]T . The affine trans-
formation becomes

[
a1 a2

a3 a4

]
=

1
αnT w5

[
nT w1 nT w2

nT w3 nT w4

]
, (3)

where α = s1/s2 is the ratio of the projective depths in the first and sec-
ond images, and w1 = s1s2

(∇Π1
y × ∇Π2

x

)
, w2 = s1s2

(∇Π2
x × ∇Π1

x

)
, w3 =

s1s2
(∇Π1

y × ∇Π2
y

)
, w4 = s1s2

(∇Π2
y × ∇Π1

x

)
, and w5 = s2s2

(∇Π1
x × ∇Π1

y

)
.

A very important remark is that if the projective depth si is unknown, but
the upper left 3×3 submatrices of the projection matrices P1 and P2 are known
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then the gradient vectors can be calculated up to an unknown scale. (This scale is
the multiplicative inverse of the projective depth si.) Also note that the vectors
w1 . . . w4 are scaled by s1s2 while w5 by s2s2.

Therefore, the normal vector is independent of the translation between the
two cameras since the last columns of the projection matrices are the product
of the camera intrinsic parameters and the translation. For this reason, the
following two cases must be distinguished:

1. Both projection matrixes P 1 and P 2 are known. (In other words, the cameras
are calibrated.)

2. Only the upper-left 3 × 3 submatrices of the projections are known. In this
case, the projective depth of the points is notknown. However, the gradients
can be computed up to a scale where this scale is the inverse of the projective
depth.

Also remark that the normal vector cannot be estimated if w5 = 0. This can
only be true if ∇Π1

x and ∇Π1
y are parallel which is not a realistic case as it is

only possible if the first and second rows of the 3 × 3 submatrix of projection
matrix Ppersp are parallel. If the camera calibration is valid it cannot be true. The
problem itself is numerically stable if the angles between the vectors w1 . . . w4

are relatively large. To our experiments, this is true for realistic reconstruction
problems.

3 Normal Vector Estimation

This section shows different normal vector estimators. The first one is very fast
and simple, later more sophisticated and accurate methods are introduced.

3.1 Fast Normal Estimation (FNE)

The base matrix equation (Eq. 3) consists of 4 elements. If two of those are
selected and they are divided by each other, then an equation is obtained. If the
same procedure is repeated for the rest of the matrix elements, then the second
equation can be similarly yielded. For instance, two elements of the first and
second rows give the equations

wT
1 n

wT
2 n

= a1
a2

,
wT

3 n

wT
4 n

= a3
a4

. (4)

These equations can trivially be modified as
(
a2w

T
1 − a1w

T
2

)
n = 0, (5)

(
a4w

T
3 − a3w

T
4

)
n = 0. (6)

The normal vector n is perpendicular to both a2w
T
1 − a1w

T
2 and a4w

T
3 − a3w

T
4 .

Therefore, the normal can be obtained as the cross product of these vectors:

n =
(
a2w

T
1 − a1w

T
2

) × (
a4w

T
3 − a3w

T
4

)
. (7)
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Of course, the obtained vector n should be normalized, its length must be 1. A
very nice property of this normal estimation is that it is independent of the scales
appearing in vectors w1 . . . w4. Therefore, the projective depths of the patch are
not required to estimate the normal, because they influence only the length of n.

Remark, that the equation pairs (Eq. 4) can be selected in other two ways.
In those cases, the normal vector is given by

n =
(
a3w

T
1 − a1w

T
3

) × (
a4w

T
2 − a2w

T
4

)
, (8)

or
n =

(
a4w

T
1 − a1w

T
4

) × (
a3w

T
2 − a2w

T
3

)
. (9)

The three variants of the fast estimator defined by Eqs. 7–9 can be unified
into one homogeneous linear system of equations Cn = 0 since the cross products
mean that the surface normal n has to be perpendicular to the vectors in the
products Matrix C is defined as

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2w
T
1 − a1w

T
2

a4w
T
3 − a3w

T
4

a3w
T
1 − a1w

T
3

a4w
T
2 − a2w

T
4

a4w
T
1 − a1w

T
4

a3w
T
2 − a2w

T
3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

The optimal solution of this problem is well-known: the optimal normal n is the
eigenvector of matrix CT C corresponding to the smallest eigenvalue.

3.2 Optimal Normal Estimation with Known Projective Depth
(OPT)

The aim of the optimal method is to minimize the error in the matrix base equa-
tion (Eq. 3). Formally, the estimation itself can be written as the minimization
of Frobenius norm of Eq. 3 with respect to normal n. This is equivalent to

arg min
n

4∑

k=1

(
nT wk

nT w5
− ak

)2

. (11)

It minimizes the normal vector in the least square sense assuming that the affine
parameters are contaminated with noise. (This assumption is valid since the
affine parameters are estimated as described later in Sect. 4.2 in short, and this
estimation cannot be perfect since the images themselves contain noise.) The
optimal solution is given in the Appendix with α = 1.
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3.3 Normal Estimation with Unknown Projective Depths Using
Alternation (ALT)

If the projective depth is unknown then the base optimization equation (Eq. 11)
cannot be applied since the parameter α = s1/s2 is not known. The cost function
defined in Eq. 11 has to be modified as

arg min
n

4∑

k=1

(
nT wk

αnT w5
− ak

)2

. (12)

Unfortunately, this problem cannot be optimally solved to the best of our knowl-
edge. We propose here an alternating-like approach which is overviewed in
Algorithm 1. The alternation has two steps:

1. EstimateAlpha: The cost function (Eq. 12) is a linear one with respect to

1/α since it can be written as A 1
α = b where A =

[
nT w1
nT w5

, . . . , nT w4
nT w5

]T

and

b = [a1, . . . , a4]T . The optimal solution of an overdetermined linear system
can be solved optimally. In this case, that is obtained as

1
α

=
nT w5∑

j(nT wj)2
∑

j

nT wjaj . (13)

2. EstimateNormal: The normal vector estimation is very similar to the optimal
method described above, the only difference is that parameter α appears in
the denominators. However, the method described in the Appendix can solve
the subproblem optimally.

The alternation requires initial values for the parameters n and α to be opti-
mized. We propose to use the linear methods described later in Sect. 3.4 in order
to compute the initial values. The alternation converges to the closest (local)
minimum since it optimizes a non-negative cost function and each step decreases
(or does not increase) the cost. Unfortunately, we could not prove theoretically
that the global optimum is reached in this way, however, to our practice, the
method usually improves the initial normal n.

Algorithm 1. Alternation for Normal Estimation (ALT).

n, α ← Parameter Initialization by LNE-UPD
repeat

α ← EstimateAlpha(n,w1, . . . , w5)
n ← EstimateNormal(α,w1, . . . , w5)

until convergence
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3.4 Linear Normal Estimation (LNE)

The base matrix equation (Eq. 3) is a nonlinear one. The elements can be lin-
earized if they are multiplied with their common denominator αwT

5 n. Then a
cost function can be formed for the elements as

arg min
n

4∑

k=1

(
nT wk − αaknT w5

)2
. (14)

This is a usual trick, and the solution will not be optimal if this modification is
carried out. However, the problem becomes linear, and it can be solved easily [2].

Linear Normal Estimation for Known Projective Depth (LNE-KPD).
If the projective depth is known, then α = 1 and the problem can be rewritten
as an overdetermined homogeneous linear equation system An = 0 subject to
nT n = 1, where

A =

⎡

⎢⎢⎣

w1 − a1w5

w2 − a2w5

w3 − a3w5

w4 − a4w5

⎤

⎥⎥⎦ . (15)

The optimal solution of this system is the eigenvector of matrix AT A corre-
sponding to the smallest eigenvalue [2].

Linear Normal Estimation for Unknown Projective Depth (LNE-
UPD). If the projective depth is unknown, then the function to be optimized
in Eq. 14 gives an overdetermined homogeneous linear system Bb = 0, similarly
to the previous case (Sect. 3.4), but the matrix of coefficients B and the vector
b differ as follows.

BT =

⎡

⎢⎢⎣

wT
1 , −a11

wT
2 , −a12

wT
3 , −a21

wT
4 , −a22

⎤

⎥⎥⎦ , b =
[

n
αwT

5 n

]
.

The solution is given from the eigenvector of matrix BT B corresponding to the
smallest eigenvalue [2]. If this vector is denoted by b̂, then the estimation for
the normal vector n is given by the first three coordinates of b̂, but this vector
should be normalized in order to fulfill the nT n = 1 constraint. The parameter
α = s1/s2 can also be computed if n is known from the fourth coordinate of b̂.

4 Experimental Results

The proposed normal vector estimators have been tested both on synthesized
data and real world images.
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4.1 Test on Synthesized Data

During synthesized tests, the main task was to generate different normal vectors
with corresponding affine parameters. For this reason, a stereo image pair was
first generated represented by their 3 × 4 projection matrices. Then a 3D object
(sphere or cube) was generated. The sphere sampled by spherical coordinates.
The normal vector of the locations on the sphere can easily be calculated as it is
the direction pointing from the sphere center to the current surface points. The
normal for the 3D cube was the perpendicular vector to the faces of the cube.
The synthetic sphere and cube with ground truth normals are visualized in the
images of Fig. 2. 72 and 150 different patches sampled for the synthetic sphere,
and cube, respectively.

The affine parameters between the stereo images were calculated as follows:
(i) The tangent plane of the sphere was determined first, (ii) then it was projected
to the stereo images. (iii) The projections of the plane determine two homogra-
phies with respect to the 3D tangent plane. (iv) The homography between the
two images were given by concatenating the two 3D→2D homographies. (v) The
affine transformation is the first order approximation of the 2D→2D homography
at the given locations.

The error values are defined as the average of the angular error between the
estimated and ground truth normal vectors. We have tested all the methods
described in this study. In the first test case, 72 patches of the sphere were
generated, and the tests were repeated 50 times. Thus, the average error values
come from 72 · 50 = 3600 run of the competitor methods. Two test cases were
simulated: zero-mean Gaussian noise was added to the (i) affine parameters and
(ii) to the elements of the projection matrices.

Fig. 2. Sphere and cube with normal vectors for synthesized test.

Then a synthetic cube was also generated as it is pictured in the right image
of Fig. 2. We generated the points and normals of the cube for every side of
the cube. Each side is uniformly sampled, 25 samples were generated per side.
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Therefore, the synthetic cube dataset consisted of 6 · 25 = 150 feature points.
Then the affine transformation calculated similarly to the spherical test sequence.

During the tests, we have compared the efficiency of the fast (FNE), linear
(LIN-UPD and LIN-KPD), alternation (ALT), and optimal (OPT) normal esti-
mators. The simplest (and more rapid) version of FNE is also compared, it is
denoted by FNE-SIMP. The difference between FNE and FNE-SIMP is that the
latter uses only the (minimally required) first two rows of matrix C defined in
Eq. 10.

Remark that all the synthesized tests have been implemented in Octave2.

Test with Contaminated Affine and Projective Parameters. In this
test case, we compared the proposed methods except the linear estimators LIN-
KPD and LIN-UPD. It is clear that the optimal estimator (OPT) outperforms
the others as it is visualized in the plots of Fig. 3 since it optimally estimates
the normal vector in the least square sense. It is also obvious that the fastest
method FNE-SIMP is the less accurate one as the other three methods (OPT,
ALT, and FNE) are significantly more sophisticated. However, it is interesting
that although FNE and ALT differ, they yield approximately the same results.
There are differences between their results, but they are very small.

In the first test case the affine parameters were contaminated by Gaussian
noise. This is visualized in the left plots of Fig. 3. Hence, when noise were added
to the elements of the projective matrices, the same conclusions can be drawn
as the characteristics of the charts in the right plots of Fig. 3 are very similar.

Fig. 3. Comparison of methods when affine (left) and projective (right) parameters
and contaminated. Test results generated using synthesized cube (top) and sphere
(bottom).

2 www.octave.org.

www.octave.org
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Fig. 4. Time demand of proposed methods when affine (left) and projective (right)
parameters and contaminated. Test results generated using synthesized cube.

The time demand of the algorithms were also compared. Figure 4 shows how
long the algorithms run. The fastest method is FNE-SIMP as it is expected. The
application of this estimator is suggested to use in time critical applications. The
slowest one is the alternating method (ALT) since it contains an iteration. It is
also obvious that the time demand of the algorithms do not depend on the
noise level. This statement is true both for contaminated affine and projective
parameters.

We compared the linear methods to the corresponding non-linear ones.
Namely, the linear method with unknown projective depth (LIN-UPD) algo-
rithm is compared to the alternation and linear with known projective depth
method (LIN-KPD) to the optimal one (Both charts are visualized in Fig. 5).
The differences are significant only if the optimal (OPT) method is used instead
of its linear version.

We also examined the expected values and the spreads of the five proposed
methods. The expected value for the length of the difference between the ground
truth and estimated vectors are close to zero as it is excepted. Therefore, the
estimators are consistent. Their spreads are listed in Table 1. It shows that the
optimal method has the lowest spread as it is expected, FNE is the highest
one. It is interesting that the linear method with known projective depths gives
significantly better result than the methods with unknown depths (LIN-UPD
and ALT),

Table 1. Spread of error vector lengths.

FNE LIN-UPD ALT LIN-KPD OPT

0.55 0.449 0.433 0.352 0.2919

To conclude the synthetic tests, it can be declared that the optimal method
is the best solution if the projective depth of the 3D point is known. If it is not,
the alternation method serves the most efficient method, but its advantage over
its linear version is very small. The alternation itself is an iterative algorithm,
sometimes it can be very slow. Therefore, we propose the LIN-UPD method for
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Fig. 5. Comparison of linear and corresponding nonlinear methods. Left: LIN-UPD vs.
ALT. Right: LIN-KPD vs. OPT. Top: accuracy. Bottom: time demand.

time-critical application, ALT is the best selection for offline algorithms when
the projective depths are unknown.

Normal Vector from Affine Parameters Versus Homography. The main-
stream solution for computing the normal vector from two patches is to estimate
the homography between the patches [13]. It has eight degrees of freedom, and it
can be decomposed into the pose (3 DoF), the location (3 DoF), and the normal
(2 DoF) of the plane.

We compare the accuracy of the homography-estimated normal vector with
our optimal (OPT) estimator. The synthesized data is given by sampling the
surface of a sphere similarly to the synthesized tests above. However, the homog-
raphy and the affine transformation are both estimated from projected points:
points are generated randomly on the 3D tangent plane (close to the location
on sphere surface), and these points are projected to the image pair. Then noise
is added to the projected coordinates in image space. The homography and
the affine transformation are estimated using the corresponding points in image
pairs. The estimation of the affine transformation is easier since it is trivial that
affine parameter estimation is a linear problem. We estimate the homography
via numerical optimization method, the initial parameters are computed by DLT
(Direct Linear Transformation) algorithm [10]. Note that at least 4 points are
required to estimate the homography, while 3 points are sufficient to compute
the affine transformation.

The results of the comparison is visualized in Fig. 6. The transformations are
estimated from the same point correspondences. The number of corresponding
points are 4, 6, and 8 as it is seen in Fig. 6. The methods are denoted by ‘HOM’
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Fig. 6. Comparison of normal vector estimators. HOM: normal from homography
decomposition AFF: normal from affine parameters by proposed OPT method. Top-
left: transformation estimated from 4 points, Top-right: 6 points, Bottom: 8 points.

(normals from estimated homography) and ‘AFF’ (normals from affine transfor-
mation). It is interesting that AFF serves better results when the noise is low.
It is true especially for the P = 4 case (left image in Fig. 6). It is because the
homography is determined exactly by the given 4 points, while the affine trans-
formation is overdetermined. When the number of points grows (center and right
plots on Fig. 6), the normal from homography estimation becomes better than
that from affine transformation since the projected coordinates are obtained via
perspective projection, and homography represents the correct transformation
between corresponding planes in image space.

4.2 Test on Real Image Pairs

Real Tests on Calibrated Images. The proposed optimal normal estimator
has been also tested on real data. In order to use them, the projection matrices
have to be known. We have downloaded building images and reconstruction data
with camera parameters from the web page of the Visual Geometry Group at
Oxford University3 and Strecha Dense MVS database4.

The Oxfordian data sets contain point correspondences, but we used ASIFT
method [16] for this purpose instead of using the original data. The affine trans-
formations for the pairs were computed as follows. (1) Two patches around the

3 http://www.robots.ox.ac.uk/∼vgg/data/.
4 http://cvlabwww.epfl.ch/data/multiview/denseMVS.html.

http://www.robots.ox.ac.uk/~vgg/data/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.html
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Fig. 7. Left, center: Stereo image pair with estimated normals (Library sequence).
Right: Reconstructed 3D model.

corresponding locations were cropped from the images. Their size were from
60×60 to 80×80 depending on test sequences. (2) Then the ASIFT method [16]
was applied again for the patch pair obtaining point correspondences between
patches. Estimating the affine transformation is an affine 2D registration prob-
lem based on point correspondences. It is easy to solve since the problem is linear
w.r.t. affine parameters, the parameters can be obtained optimally [2] even if the
problem is overdetermined. Remark that the affine estimator should be robust
since ASIFT can give false correspondences. We used a RANSAC [4]-like algo-
rithm to discard the outliers. We were able to reconstruct the 3D surface of
the estimated positions and corresponding normals using the Marching Cubes
(APSS) filter of MeshLab5. It is visualized in the right plot of Fig. 7.

The proposed optimal method was carried out on two images of the Fountain
sequence from the Strecha dataset. The affine transformation are computer by
our unpublished affine matcher algorithm considering the calibration data of the
sequence. The estimated normals are seen in Fig. 8, surface normals are visualized
by white rods.

Fig. 8. Estimated normals on sequence Fountain.

5 www.meshlab.org.

www.meshlab.org
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Fig. 9. Estimated normals on sequence Bear.

Fig. 10. Reconstructed 3D flat surfaces with estimated normals.

The proposed normal estimators are also tested on our own calibrated stereo
image pair. The estimated surface normals of the plastic bear is pictured in
Fig. 9.

Normal from Real Planar Surfaces. The proposed normal vector estimator
(OPT) was also examined on images of buildings as it is pictured in Fig. 11. These
objects mainly consist of planar walls and they can be matched by homography-
based pairing methods especially when the images are rectified [14]. Thought the
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Fig. 11. Estimated normals on planar surfaces.
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homography itself can be decomposed [3] if the cameras are calibrated, and then
the plane normal is obtained with the camera extrinsic parameters. However, the
decomposition has ambiguity as it is discussed in [12] and two realistic normal
vector can be achieved.

We reconstructed the plane normal via the affine transformation. The affine
parameters can easily be calculated from homography as it is shown in the
Appendix. The cameras were calibrated via point-based 3D reconstruction by
bundle adjustment [1]. Then the normals were computed by the proposed optimal
method. We tested the OPT algorithm on five different stereo pairs as it is
visualized in Fig. 11. They were short baseline stereo images. The yielded normal
vectors of the planes are drawn on the input images. The corresponding points
on the wall surfaces are denoted by small dots, the normals are drawn both inside
and outside the plane. The proposed method is robust enough, it computes very
accurately the surface normals.

Figure 10 shows that the buildings can be reconstructed in 3D. The 3D coor-
dinates of the plane corners were calculated by triangulation [9], the affine trans-
formations came from the homography, and the plane normals estimated (visu-
alized by small light-blue rods in the figure) using one of the proposed method.

It was found during the real tests that the proposed normal estimators can
compute accurately the surface normals. This statement is especially true for
the optimal (OPT) algorithm.

5 Conclusion and Future Work

In this paper, we discussed the geometric and algebraic issues of surface normal
estimation of rigid objects that are taken by a standard perspective camera
pair. Only the affine transformations between corresponding image patches are
required to reconstruct the surface normal. We proposed several algorithms, one
of those serves the optimal solutions in the least squares sense if the cameras
are fully calibrated. It was shown here that the knowledge of the last row of
perspective projection matrix is not necessary for the estimation. Moreover, we
also proposed two linearized estimator that are significantly faster than their
nonlinear version. The source codes of the proposed methods are available on
the web6. In the testing section, the noise sensitivity of the algorithms were
tested on synthesized data. We found the the optimal algorithm is suggested
to use if the full perspective transformation is given, and the time demand is
not crucial. The linearized versions can be used if fast algoritms are required.
Finally, we demonstrated that the algorithms can cope with real image pairs for
which the surface normals can efficiently be estimated.

In the future, the improvement of the affine transformation estimation is
planned in order to get more accurate input for surface normal estimation. Novel
reconstruction methods will also be developed using both point correspondences
and affine transformations in order to obtain richer 3D model of real-world 3D

6 http://web.eee.sztaki.hu/home4/node/53.

http://web.eee.sztaki.hu/home4/node/53
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objects. If both surface normals and the corresponding 3D point cloud are given,
more realistic 3D object reconstruction using continuous surface representation
becomes possible.

A Appendix

Algorithm for Optimal Normal Estimation. The task is to minimize the
cost function defined in Eq. 12 with respect to normal vector n. The scale of the
vector is arbitrary, only the direction of the normal is required. Such kind of
problems are typically solved using Lagrange-multipliers, however, it cannot be
applied here since the derivatives become very difficult. For this reason, we utilize
another constraint for the normal: let the sum of the coordinates be 1. Thus, n
is written as n = [nx, ny, 1 − nx − ny]T . Equation 12 can be reformulated as,

arg min
m

4∑

k=1

(
mT qk + wk,z

αmT q5 + αw5,z
− ak

)2

,

where m = [nx, ny], qi = [wi,x − wi,z, wi,y − wi,z]T . (Indices x, y, and z denote
the first, second, and third coordinates of vectors, respectively.)

The minima/maxima can be obtained by taking the derivative with respect
to vector m:

2
4∑

k=1

βkγk = 0,

where

βk =
(

mT qk + wk,z

αmT q5 + αw5,z
− ak

)
,

γk =
(

α
(mT q5 + w5,z)qk − (mT qk + wk,z)q5

(αmT q5 + αw5,z)2

)
.

After taking the lowest common multiple of the fractions, the left side should
be equal to zero as

∑4
k=1 δkκk = 0, where

δk =
(
mT qk + wk,z − akαmT q5 − akαw5,z

)
,

κk =
(
(mT q5 + w5,z)qk − (mT qk + wk,z)q5

)
.

It can be simplified as
∑4

k=1 e1ke2k = 0, where

e1k =
(
mT (qk − akαq5) + (wk,z − akαw5,z)

)
,

e2k =
(
(mT q5)qk − (mT qk)q5 + w5,zqk − wk,zq5

)
.

This is an equation with a 2D-vector:
4∑

k=1

r

(
mT (q5qk,x − qiq5,x) + w5,zqk,x − wk,zq5,x

mT (q5qk,y − qiq5,y) + w5,zqk,y − wk,zq5,y

)
= 0,

where r =
(
mT (qk − akαq5) + (wk,z − akαw5,z)

)
.
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By introducing the m = [x, y]T notation, the vector equation is modified as
follows

4∑

k=1

(Ωkx + Ψky + Γk)
(

Ω1
kx + Ψ1

ky + Γ 1
k

Ω2
kx + Ψ2

ky + Γ 2
k

)
= 0,

where
Ωk = qk,x − αq5,xak, Ψk = qk,y − αq5,yak,
Γk = wk,z − akαw5,z, Ω1

k = 0,
Ψ1

k = q5,yqk,x − qk,yq5,x, Γ 1
k = w5,zqk,x − wk,zq5,x,

Ω2
k = q5,xqk,y − qk,xq5,y, Ψ2

k = 0,
Γ 2

k = w5,zqi,y − wi,zq5,y.

The rows of the vector equation give two special quadratic curves. They are
written by their implicit equations as

∑4
k=1 Al

kx2 +
∑4

k=1 Bl
ky2 +

∑4
k=1 Cl

kxy +∑4
k=1 Dl

kx +
∑4

k=1 El
ky +

∑4
k=1 F l

k = 0, where Al
k = ΩkΩl

k, Bl
k = ΨkΨ l

k, Cl
k =

Ωl
kΨk + Ψ l

kΩk, Dl
k = Ωl

kΓk + Γ l
kΩk, El

k = Ψ l
kΓk + Γ l

kΨk and F l
k = ΓkΓ l

k, l ∈ 1, 2.
They are special because A1

k = 0 and B2
k = 0.

The solution of the optimal method described in the study (within appendix)
is given by the intersection of two quadratic equations.

B1y
2 + C1xy + D1x + E1y + F1 = 0,

A2x
2 + C2xy + D2x + E2y + F2 = 0.

Parameter y can be obtained from the latter equation as

y = −A2x
2 + D2x + F2

C2x + E2
.

Substituting y into the first equation the following expression is obtained

B1

(
A2x

2 + D2x + F2

C2x + E2

)2

− C1x
A2x

2 + D2x + F2

C2x + E2
+ D1x

−E1
A2x

2 + D2x + F2

C2x + E2
+ F1 = 0.

If both sides are multiplied with (C2x + E2)2, then the equation modifies as
follows

B1(A2x
2 + D2x + F2)

2 − C1x
(
A2x

2 + D2x + F2

)
(C2x + E2)

+ D1x (C2x + E2)
2 − E1

(
A2x

2 + D2x + F2

)
(C2x + E2) + F1 (C2x + E2)

2 = 0

This is a fourth-order polynomial where the coefficients are as follows

x4 : B1A
2
2 − C1A2C2

x3 : 2B1A2D2 − C1A2E2 − C1D2C2 + D1C
2
2 − E1A2C2

x2 : B1D
2
2 + 2B1A2F2 − C1D2E2 − C1F2C2 + 2D1C2E2

−E1A2E2 − E1D2C2 + F1C
2
2

x1 : 2B1D2F2 − C1F2E2 + D1E
2
2 − E1D2E2 − E1F2C2

+2F1C2E2

x0 : B1F
2
2 − E1F2E2 + F1E

2
2
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Remark that the equation C2x+E2 = 0 can also be considered. (In this case
the first equation is independent from y.)

Fig. 12. Quadratic curves.

An example for two quadratic curves with three real intersections is visualized
in Fig. 12. (The parameters of curves are B1 = −1.9055, C1 = 2.2632, D1 =
2.8577, E1 = −9.4392, F1 = 7.7081, and A2 = −2.2632, C2 = 1.9055, D2 =
−4.2074, E2 = 2.3903, F2 = −1.1190).

Affine Parameters from Homography. The affine parameters can be
obtained from the homography between the stereo image pairs. Let us assume
that the homography H is given. Then the correspondence between the coordi-
nates on the first (u and v) and second (u′ and v′) images is written as

u′ =
hT
1 [u, v, 1]T

hT
3 [u, v, 1]T

,

v′ =
hT
2 [u, v, 1]T

hT
3 [u, v, 1]T

,

where the 3 × 3 homography matrix H is written as

H =

⎡

⎣
hT
1

hT
2

hT
3

⎤

⎦ =

⎡

⎣
h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤

⎦ .

The affine parameters come from the partial derivatives of the perspective plane-
plane transformation. The top left element a11 of affine transformation matrix
is as follows

a11 =
∂u′

∂u
=

h11h
T
3 [u, v, 1]T − h31h

T
1 [u, v, 1]T

(
hT
3 [u, v, 1]T

)2 =
h11 − h31u

′

s
,
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where s = hT
3 [u, v, 1]T . The other components of affine matrix are obtained

similarly

a12 =
∂u′

∂v
=

h12 − h32u
′

s
,

a21 =
∂v′

∂u
=

h21 − h31v
′

s
,

a22 =
∂v′

∂v
=

h22 − h32v
′

s
.
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Abstract. We present a fast and accurate algorithm for the detection
of human hands in real-life 2D image sequences. We focus on a spe-
cific application of hand detection, viz. the annotation of egocentric
recordings. A well known type of egocentric camera is the mobile eye-
tracker, which is often used in research on human-human interaction.
Nowadays, this type of data is typically annotated manually for relevant
features (e.g. visual fixations of gestures), which is a time-consuming and
error-prone task. We present a semi-automatic approach for the detec-
tion of human hands in images. Such an approach reduces the amount
of manual analysis drastically while guaranteeing high accuracy. In our
algorithm we combine several well-known detection techniques together
with an advanced elimination scheme to reduce false detections. We vali-
date our approach using a challenging dataset containing over 4300 hand
instances. This validation allows us to explore the capabilities and bound-
aries of our approach.

Keywords: Eye-tracking · Ego-centric · Annotation · Hand detection ·
Human-human interaction · (Semi-)automatic analysis

1 Introduction

Our motivation for developing a highly accurate hand detector comes from the
wide applicability in a variety of disciplines including computer science, lin-
guistics, sociology and psychology. Practical applications for such a technique
include human-computer and human-robot interaction, gesture detection, auto-
matic sign language translation, active gaming, etc. Detection of human hands
in real-life images is an extremely challenging task due to their varying shape,
orientation and position. Recently, several highly accurate hand detection algo-
rithms were developed for 3D images [19]. Hand detection in 2D images, however,
is far from a trivial task due the lack of depth context. Several attempts were
made including skin-based detections [23], model-based detections [2,14,15] or
pose estimation techniques [24]. Unfortunately when applied to real-life images,
their performance drops significantly.

c© Springer International Publishing Switzerland 2016
J. Braz et al. (Eds.): VISIGRAPP 2015, CCIS 598, pp. 338–355, 2016.
DOI: 10.1007/978-3-319-29971-6 18
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On top of the challenging task we try to tackle, we aim to develop a generic
method to achieve a high detection rate. It is well known that fully automatic
approaches typically do not guarantee high accuracy in practical cases. However
many applications could benefit from such a generic approach, e.g. the removal of
privacy sensitive content such as faces in mobile mapping images, generation of
ground-truth data, cartography by using object detection in aerial images, etc.
To overcome this we expanded our framework with an intelligent mechanism
which automatically demands for manual input when the confidence of a detec-
tion is below a threshold value. Using such an approach increases the detection
rate significantly at the cost of a limited amount of manual interventions. For a
certain target accuracy, our system computes the minimum amount of manual
interactions.

In contrast to other techniques, we focus in this work on the detection of
hands in video material. Using sequences of images gives us the opportunity to
use the spatio-temporal relationship between consecutive frames to increase the
detection rate. We use a 3-stage framework to generate the best possible result.
First, we reduce the search space, using a human-torso detector. Second, we make
a hypothesis using a sliding window approach of a hand model combined with
a skin-based hand detection. Third, we use an advanced elimination approach
to remove false detections in combination with a tracker resulting in reliable
detections.

Fig. 1. Illustration of human-human interaction. Red dot is the position where the
wearer of the mobile eye-tracker is looking at (Color figure online).

To validate our framework, we present a (semi-)automatic analysis of mobile
eye-tracker data in the context of human-human interaction studies. The analysis
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of these data generally requires substantial manual annotation work [1,3,11,12].
The eye-tracking community would greatly benefit from the implementation of
techniques that reduce the manual annotation load, like e.g. the detection of ges-
ture strokes [11] and body language categorization [22]. The presented framework
aims to contribute to these developments and proposes a technique to (semi-)
automatically detect hands in video data recorded by a mobile eye-tracker. By
mapping eye gaze data on interlocutors’ body parts that are instrumental to
face-to-face communication (like hands and faces), a first step in the analytical
process is realized, as it allows for basic calculations of visual distribution. These
data can then serve as the basis for further analytical work (e.g. the analysis of
visual fixations on certain gesture types). An illustration of human-human inter-
action is given in Fig. 1, where an object is passed on. The red dot is the position
where the giver is looking at, namely, the hand of the receiver, wearing an ego-
centric camera. An important research question that can be answered with this
kind of experiments is if, when and how long persons look at their own hands
when receiving a given object.

Next to a fast and accurate hand detection framework, an important con-
tribution of this chapter is a generic (semi-)automatic detection approach. Fur-
thermore, during our study, we noticed that it is hard to find fully annotated
video material of human hands in real life recordings. Therefore we made our
annotated dataset of eye-tracker recordings publicly available as described in [7].
The original dataset contained 1000 frames. In this paper we extended the orig-
inal dataset with another challenging sequence of 1200 annotated frames. Thus
the total dataset contains three sequences in which approximately 2200 frames
were annotated1.

This chapter is organised as follows: In Sect. 2, we discuss related work on
hand detection. Section 3 clarifies our hand detection framework in detail. In
Sect. 4 we discuss our novel (semi-)automatic approach in which a minimal man-
ual intervention step enhances the detection rate. Finally in Sect. 5 we present
the results on a pre-existing dataset and on our publicly available eye-tracker
recordings that were performed to validate the approach.

2 Related Work

In recent years several attempts have been made to develop an accurate hand
detector for 2D images, mostly by decreasing the complexity of the problem.
Examples are the use of artificial markers e.g. coloured gloves [21] or using a
static camera enabling the use of background segmentation [17]. In this chapter
however, we focus on real-life applications where unmarked body parts need
to be detected automatically, and therefore we only review the most popular
methods that are applicable to natural settings.

A well known object detection technique is based on Haar-like features [20].
This technique combines a set of weak classifiers to build a final strong classifier
and uses a sliding window approach to search for specific patterns in the image.
1 http://www.eavise.be/insightout/Datasets/.

http://www.eavise.be/insightout/Datasets/
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Fig. 2. Illustration of the hand models. The left image is the HOG representation of
the hand model. The middle image illustrates the hand model, while the right image
is an illustration of the context model (hand and its surrounding region including the
background and wrist).

In [2] this technique is used as a basis for a hand detection algorithm, in com-
bination with a skin detector to eliminate non-hand detections. Unfortunately
the performance of this technique on unconstrained images is insufficient. Newer
detectors outperform greatly Haar-based techniques.

A second approach is based on the Deformable Parts Model [10], which is
an extension of Histograms of Oriented Gradients (HOG) [5]. This approach
allows for the definition of a model of an object which is invariant to various
postures or viewing angles. In [15] this technique is used to create two models of
a hand, both with and without its surrounding region, e.g. the wrist (see Fig. 2).
In addition, they use a skin detector based on the average skin colour of the face.
This skin detector is used to improve the detection rate by searching for arms in
the image. Finally a super-pixel based non-maxima suppression (NMS) is used
in which overlapping bounding boxes are suppressed. A drawback of this method
is the high computational cost: processing a frame of 360× 640 pixels takes up to
4 min, of which the greater part is spent on superpixel calculations. Another hand
detection approach was presented by [18]. In this chapter an invariant Hough
Forest detector was used, resulting in a robust detection of the hand locations.
Nevertheless, in our application the detection of the hand orientation is also of
great importance on top of the location itself. Therefore we can not use such a
basic approach.

In [9] the human pictorial structure is used. This approach searches for limbs
in a human torso using the spatial relation between them. This method performs
well on larger body parts (such as arms or heads), whereas smaller parts (e.g.
a hand) are much more challenging. There are two major drawbacks of this
method: (a) the requirement that all body parts are visible in the image and (b)
they have a limited set of body poses that are detectable.

A pose estimation algorithm is proposed by [24]. This method is highly accu-
rate since it has several parts for each limb and uses contextual co-occurrence
relations between them. This method is designed for static images and its accu-
racy decreases drastically when motion blur is present, caused by moving body
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parts. The authors also admit their model has difficulties with some body poses
(e.g. raised arms).

Based on a comparison of the previously described techniques, we opted for
the work of [15] as a starting point for our algorithm. This approach achieves
decent accuracy and its source code is publicly available so we can easily compare
our method against it. In the next section we discuss the modifications we made
in order to improve the detection results drastically, and how we extended to
video.

3 Hand Detection Framework

An overview of our hand detection algorithm is given in Fig. 3. The general idea
is that we first detect a human torso in the image, giving a robust reference
for the detection of smaller body parts. Next we detect the face resulting in an
indication of the hand sizes. After that, we detect hands using a model introduced
by [15] in combination with a skin-based detection. Then we apply an advanced
elimination scheme in order to remove false detections. Finally we use a Kalman
filter to track left and right hand using the spatial relationship of consecutive
frames.

Fig. 3. Graphical representation of the proposed hand detection framework. The three
stages: torso and face detection, hand detection and a combination of elimination and
tracking.

3.1 Torso Detection

The first stage in our approach is the detection of a human torso, for which we use
our own torso detector as we proposed in [6]. This torso detector is a part-based
model [10], trained using only the upper 60 % of the labeled bounding boxes of
human bodies of the standard PASCAL VOC dataset2. Using this model, rather
than the more widely used full person detector, has the advantage that we can
cope with images in which a person is not completely visible (from head to foot)
such as, for example, in most of the images captured by a mobile eye-tracker
(see Fig. 6) in a natural setting.
2 The PASCAL Visual Object Classes Challenge 2009 (VOC2009) Dataset http://

www.pascal-network.org/challenges/VOC/voc2009/workshop/index.html.

http://www.pascal-network.org/challenges/VOC/voc2009/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2009/workshop/index.html
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3.2 Face Detection

The next stage is a face detection step [20], which is used as a way to further
improve the accuracy of the hand detections. In the work of [15], the face detec-
tion is only used for skin segmentation. If a face is detected, they apply a skin
colour based proposal method to improve their detection results. In our approach
on the other hand, we also make use of the proportions of the face by rejecting
hand detections which have an abnormal size compared to the size of the face.
This is based on the general rule that a human face has, about the same size as
an outstretched human hand.

3.3 Hand Detection

When the torso and face location are known, we run our actual hand detection
algorithm. Instead of searching for hands in the entire image, we define a search
area by expanding the torso detection bounding box in both vertical and hori-
zontal orientation. As mentioned before, we started from the work of [15]. This
means we use the same part-based deformable model of a hand, as illustrated
in the left part of Fig. 2. In their approach, an additional context model is used.
However, the experiments we ran for this study showed that the addition of this
model introduces a significant amount of false detections, so that we opted not
to use it.

The hand model was developed to detect upstanding hands, but in real-life
recordings any hand-orientation is possible. Therefore we rotate the enlarged
region around the detected torso in steps of 10 degrees per rotation, as illustrated
in Fig. 4, yielding an accurate detection of hands in any orientation. Using a
larger step size decreases the computational cost, but also affects the accuracy
of the detector as shown in Table 1. This table shows the performance of the
hand model on a set of 100 annotated frames of 1280× 720 pixels. To further
decrease the computational cost related to this type of model evaluation, we
used the acceleration approach of [8].

The hand model performs well as long as a hand is clearly visible in the
image. However, when a hand is not visible or strongly deformed — for example
due to motion blur caused by fast movements of the arms — these models show
low detection rates. To overcome this problem, we developed an additional hand

Table 1. Accuracy of the hand model versus rotation angle of the images.

Step size Precision Recall Time/frame

10 deg. 79,20 % 78,86 % 42 s

20 deg. 75,78 % 75,47 % 21 s

30 deg. 71,24 % 71,13 % 14 s

45 deg. 62,82 % 62,55 % 9,3 s

90 deg. 48,72 % 48,50 % 5 s
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Fig. 4. Illustration of the rotation of our images in order to detect hands in any orien-
tation. Left: step size is 10◦ per rotation. Right: step size is 20◦ per rotation.

detection technique as shown in Fig. 5. This technique segments the image in
skin and no-skin based on three different colour spaces as introduced by [16]. In
this work, skin colour is defined in both Red Green Blue (RGB), Hue Satura-
tion Value (HSV) and Luma Chroma blue Chroma red (YCbCr) colour space
resulting in a robust detection mechanism for skin, even under different light-
ing conditions. Using this approach is an improvement compared to the work
of [15], because we no longer depend on the accuracy of the face detector for
skin segmentation. We apply this segmentation to the stretched torso detection
as shown in Fig. 5(b). Next, we skeletonize this result using a sequence of several
erosion and dilation steps in order to get an accurate estimation of the skeleton,
as illustrated in Fig. 5(c). In a following step, we apply the information obtained
from the face detector. We use the correlation between the human body parts
to classify the skeletonized image. If a skeletonized part has a length which is
similar to the height of the face, we classify it as a hand (as illustrated by the top
row in Fig. 5. Parts that are larger than a face are automatically treated as an
arm (as illustrated by the bottom row in Fig. 5). For each part that is classified
as an arm, we estimate a hand at both endpoints of the arm, as illustrated in
Fig. 5(d). Estimated detections at the wrong endpoints are rejected using the
elimination and tracking described in the next sections.

3.4 Elimination

After the above-mentioned steps, a large amount of hand detections is obtained,
as seen in Fig. 6(a). The task of this elimination stage is to reject non-hand
detections and to cluster overlapping detections. The output of this elimination
operation is a reduced number of hand candidates as shown in Fig. 6(b). In our
elimination process we apply the following steps:

– Remove hand detections which have an insufficient number of skin pixels,
using the same skin detection algorithm as described in the previous step.

– Remove hand detections which have a divergent size with respect to the size
of the face.
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Fig. 5. From left to right: original image(a); binary image based on skin segmenta-
tion(b); skeletonization(c); arm and hand estimation(d). Purple boxes illustrate the
hand classifications, blue boxes the arm detections and green boxes the estimated
hands at the endpoints of the arm (Color figure online).

– Cluster overlapping detections based on their overlap and distance between
their centers.

– Reduce the contribution of clusters that coincide with the face. We noticed
that a face is often detected by the hand model. Only eliminating these detec-
tions is not a viable option since persons can hold their hands in front of
the face. Therefore we reduce the score of those overlapping clusters by a
predefined factor to minimize the impact.

– Remove hand detections which are too far from the predicted location by the
Kalman trackers.

In the elimination step, we reduced the number of hand detections. Finally we
classify the remaining detections in a left and right detection using the Kalman
tracker information as explained in the next section.

3.5 Tracking

Our tracking stage is one of the most important contributions in order to improve
the detection results. This is realized by steering the detections based on previous
detections using a Kalman filter [13]. This mathematical filter is used to predict
the position of the hands, which is needed when a detection is missing due to
e.g. occlusions. A second advantage of using a Kalman filter is that the noise on
the measured position of the detections is filtered out, resulting in more stable
detections. For each torso detection we define two Kalman trackers: one for the
left hand and one for the right hand in order to track each hand individually.
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Fig. 6. Left: large amount of detections before elimination; Right: Final detections
after elimination step.

We use a Kalman filter with the following state vector and update matrix, assum-
ing a constant velocity motion model:

x =

⎡

⎢⎢⎣

x
y
vx
vy

⎤

⎥⎥⎦ A =

⎡

⎢⎢⎣

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ (1)

where x and y are the position of the hand and vx and vy are the velocity
of the hand. For each of the remaining clusters, as described in the previous
section, we calculate the cost, based on the distance, to assign them to one of
the Kalman trackers. By choosing the cluster with the lowest cost, we select the
best candidate for each tracker.

To summarize this section we give an overview of our contributions as com-
pared to the approach of [15]:

– Reduced computational footprint of our algorithm by avoiding both super-
pixel calculation and the validation of the context model without loss in accu-
racy.

– Reduced search space by using a human-torso detector and only searching
for hands in a region around the torso detection. This resulted in a reduced
computational time and it reduced the number of false detections.

– Skin based detection is performed even when no face is detected, resulting in
more detection candidates.

– Elimination of false-detections using the size of the face.
– Kalman tracker for both left and right hand that belongs to each torso detec-

tion.

4 Semi-automatic Analysis

As mentioned before, we aim to develop a framework that achieves a detection
rate up to 100 %. Obviously it is unfeasible to develop an algorithm that achieves
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perfect accuracy on each dataset. Therefore we expanded our hand detection
framework with a generic mechanism that allows for manual intervention result-
ing in a much higher accuracy. The key idea is that when the confidence drops
under a specific (user-defined) threshold, our algorithm requests manual input.
The user then has to manually annotate the missing detection. Relying only on
the detection score results in a too large amount of manual interventions. To
overcome this, we also take into account the distance between a detection and
the predicted position (coming from the Kalman trackers). The formula of the
confidence score is shown in Eq. 2:

M = αlog(Dmax − D) + βSi (2)

where:

D =

{
Dmax − 1, if d(Ci, Ci−1) ≥ Dmax

d(Ci, Ci−1), otherwise

Dmax stands for the maximum allowed distance between the current detection
and a detection in the previous frame, Ci and Ci−1 define respectively the cen-
ter of the current and the previous detection. α and β are used to change the
weight of the distance and detection score. In our experiments, we empirically
determined the optimal value of those parameters: α = 0.5 and β = 1.0.

The general concept of this approach is that a detection is likely to be valid if
either the distance to the predicted location (based on previous detections) is low
or if the detection score is high. If this value is below a user-defined threshold,
manual input is requested. Thus by varying this threshold we can change the
amount of manual interventions from zero (fully automatic detection) up to
the number necessary to achieve full accuracy ((semi-)automatic detection). As
illustrated in Fig. 7, the user is requested to manually annotate the missing
detections when confidence score M is below a certain threshold. After this
manual intervention the state vector of the corresponding kalman tracker is
reset, thus resulting in a stable reference point for further detections.

5 Experimental Results

As mentioned in the introduction, we validate our hand detection framework
using a data set of recordings. First we introduce our dataset, next we discuss
the accuracy of our framework compared to other techniques.

5.1 Datasets

During our research we noticed that it is very hard to find video material con-
taining hand annotations for each frame. In [15] a dataset of annotated movie
frames is presented. Unfortunately, the available frames are not consecutive,
which makes them unsuitable for our approach, designed for a sequence of frames.
We also examined some video recordings from the MPI archive3, but those were
3 http://corpus1.mpi.nl.

http://corpus1.mpi.nl
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Fig. 7. Interface for manual intervention in which one can manually annotate the
detection items.

annotated in terms of gestures (start and endpoint of the gesture) and contain
no additional information of hand locations.

To overcome the lack of fully annotated video material, we set up a series
of recordings. In each recording a mobile eye-tracker was used to capture the
field of view of the test person. This eye-tracker records images at a resolution
of 1280× 720 pixels. In the first recording two persons stood face-to-face at a
distance of 3 meters from each other. The person who wore the eye-tracker was
told to look attentively at the interlocutor while this person made movements
with his hands. The second recording was performed in a more natural setting. In
this experiment, a PowerPoint presentation was given with the spectator wearing
a mobile eye-tracker used as recording device. The third recording was conducted
in the same setting as the second one, but another spectator was involved. This
last sequence is a more challenging sequence since one of the hands are often
occluded by furniture on the table. An illustration of these recordings is given
in Fig. 8.

For each recording we manually annotated left and right hand in a sequence
of consecutive frames. The annotations of the first two sequences consist of a
bounding rectangle oriented with respect to the wrist. For practical reasons, the
annotations of the last sequence consist of a single point for each hand. For the
first sequence we chose a sequence in which a lot of arm- and hand movement
is present. In total we have annotated a sequence of 403 consecutive frames.
We chose a specific sequence of the second recording in which visual interaction
between spectator and presenter was present, resulting in 491 consecutive frames.
Finally, in the third sequence we annotated the first 1300 frames of the recording.
This third sequence is an extremely difficult set for hand-tracking since the hands
are often occluded by furniture. We specifically included this set since, due to its
challenging nature, it fully exploits our algorithm and reveals it shortcomings.
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Fig. 8. Illustration of all the datasets used in this chapter. First three images are frames
from our own recorded sequences, last image is a frame from the 5-Signers dataset.

This results in a reference dataset of 4388 annotated hand instances, which
can be used as reference dataset for benchmark tests. Since it is hard to find
publicly available hand-annotated video material, we made our dataset publicly
available4 for other researchers. We plan to further expand this dataset in the
future.

Next to our own datasets, we also found a small publicly available dataset,
viz. the ‘5-signers’ dataset [4]. This dataset contains time-series data of the hand
positions collected from 5 signers during performance of sign language. Each
of the signer sequences contains 39 frames resulting in 390 annotated hand-
instances. An illustration of this dataset is given in the right image of Fig. 8.

5.2 Results

To validate our framework, we have performed a series of experiments. First we
tested our hand detection algorithm without tracking of the hands nor man-
ual intervention. We did this experiment on the first two sequences of our own
dataset and the ‘5-signers’ dataset. Examples of the detections on those datasets
are shown in Figs. 9 and 10 respectively. The validation is done using the F-
measure:

F =
2TP

2TP + FP + FN
(3)

In each frame of our sequences one person and two hands are visible. Since
our framework was designed to detect two hands for each torso instance, the
number of false positives (FP) and false negatives (FN) are equal, hence the F-
measure is reduced to the precision. A hand detection is considered valid if it is
within half hand width from the ground-truth location of the hand. We compare
the results to the performance of two state of the art techniques. The publicly
available hand detection algorithm of [15] was used in which we use the two best
detection scores as candidates for left and right hand. We also compare to the
pose estimation proposal of [24] in which we classify the outermost bounding
boxes of the arms as hands.

4 http://www.eavise.be/insightout/Datasets/.

http://www.eavise.be/insightout/Datasets/
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Fig. 9. Examples of hand detections on our own recorded sequences. Top row are
images from our first sequence, bottom row are images from our second sequence.

Table 2. Accuracy of our hand detection algorithm compared to other techniques.
Sequence 1 & 2 contains 1000 annotated hand-instances each, the ‘5-Signer’ dataset
contains 390 hand-instances.

Mittal [15] Yang [24] Ours Ours incl. tracking

Sequence 1 85 % 24.2 % 83.4% 88.2%

Sequence 2 48.9 % 46.5 % 52.9% 65.3%

5-Signers [4] 77.6 % n.a. 81.1% n.a.

We compared our hand detection algorithm with tracking of the hands to
the other techniques. Ours performs better than the other techniques in terms
of accuracy. We outperfom the pose estimation technique, although a note on the
bad performace of the approach of [24] should be made. The detection code we
have used was developed to detect poses of persons from head to foot, whereas
in the images of sequence 1 the legs of the person are not completely visible as
shown in the first image of Fig. 8. The results of this comparison are shown in
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Fig. 10. Examples of hand detections on the 5-Signer dataset.

Table 3. Execution times per frame averaged over all frames.

Mittal [15] Yang [24] Ours

Avg time/frame 293.33 s 113 s 36.67 s

Table 2. We did those experiments on our own dataset, since we need sequences
of frames. It is clear that the accuracy increases significantly when the tracking
is applied, as shown in the right column of Table 2.

We also compared the execution speed of our algorithm, as shown in Table 3.
It is clear that the execution time of our algorithm is drastically lower compared
to the other techniques on the same hardware (Intel Xeon E5645). Our approach
is much faster compared to the work of [15] since amongst others we no longer
depend on the superpixel calculation. We also outperform the computational
cost of [24] by a factor of 3.

Furthermore we present the extensive results of our (semi-)automatic app-
roach on our own dataset as shown in Fig. 11. In this graph we plot the accuracy
in function of the number of manual interventions expressed in a percent of the
numbers of frames in the sequence. As mentioned before, by thresholding the
result of Eq. 2, we can change the amount of necessary manual interventions.
It is obvious that a higher amount of manual interventions results in a higher
accuracy. We should also note the improvement in accuracy between no man-
ual intervention and the lowest amount of manual interventions. For sequence
1, the accuracy increases from 90 % to 93 % at the cost of only 7 manual inter-
ventions, sequence 2 on the other hand has an accuracy improvement of 12 %
at the cost of only 14 manual interventions. The result on sequence 3 indicates
that a minimum amount of manual intervention is required in order to get a
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Fig. 11. Result of our (semi-)automatic approach in which accuracy is improved by
manual interventions.

decent accuracy. This is caused by the complex setting of the recording. When
we take a look at this sequence, we notice that the hands are often occluded
as can be seen in Fig. 12. Those occlusions introduce wrong detections of the
hand models. This is a perfect example in which we show the full potential of
our semi-automatic approach. Without manual intervention, the accuracy on
the third sequence is very bad, but when we introduce some manual interven-
tion the accuracy increases significantly. The manual annotation of only 7.7 %
of the frames results in an accuracy of 94.9 %. We observe that each manual

Fig. 12. Long standing occlusions in the third sequence resulting in a minimum amount
of manual interventions in order to get a decent accuracy.
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intervention restarts the tracker such that the hands in the following frames are
again detected automatically.

6 Conclusion and Future Work

In order to provide an alternative for the manual annotation of human hands
in videos, we present a semi-automatic approach. We build on the work of [15]
and improved the accuracy and even decreased the computational cost. These
improvements are realized by: (a) using a torso detector to reduce the search
area (b) make use of a face detector whose detection is used to reject false hand
detections (c) integration of an accurate skin-based hand and arm detection
mechanism which is especially used in images where motion blur occurs (d) an
advanced elimination scheme that is used to reject erroneous hand detections
combined with a smart tracking mechanism for both left and right hands. We
extended our approach with a generic mechanism that finds the optimal place to
ask for manual intervention resulting in a much higher accuracy with minimal
manual effort. This approach is based on a confidence score that is calculated
using the detection score and the distance to the predicted detections. By thresh-
olding this confidence score, we can change the amount of manual interventions.
For validation we use three own recorded sequences, which we made publicly
available, and one preexisting dataset. We report good accuracy and perfor-
mance on several image sets as compared to state-of-the-art techniques. The
third sequence is more complex than the others since hands are often occluded
by furniture. When we apply our algorithm to that particular sequence, we show
the full potential of our approach. The accuracy is very low without manual
intervention, but when we apply a limited amount of manual interventions, the
accuracy increases significantly.

Our future work concentrates on further reducing the computational cost of
the hand detection algorithm. However we have realized a significant improve-
ment in the processing time, our approach remains slow for practical use. We
will investigate possibilities to reduce the computational cost of the model based
detection. A first method is for example to apply a limited number of rotation
angles around the angle of the previous detection. Next we will implement the
possibility to indicate whether a hand is invisible (e.g. occluded by furniture).
Such an indication could prevent that our system keeps searching for hands while
no hands are visible. Furthermore we will work on the integration of the eye gaze
data. Using such an approach enables the (semi-)automatic analysis of mobile
eye-tracker data in terms of visual fixations on hands and reduce the manual
workload related to this type of analysis.

Acknowledgements. This work is partially funded by KU Leuven via the projects
Cametron and InSight Out. We also thank Raphael Den Dooven for his contributions.
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Abstract. In this chapter we propose a novel approach for real-time
robust pedestrian tracking in surveillance images. Typical surveillance
images are challenging to analyse since the overall image quality is low
(e.g. low resolution and high compression). Furthermore often birds-eye
viewpoint wide-angle lenses are used to achieve maximum coverage with
a minimal amount of cameras. These specific viewpoints make it unfeasi-
ble to directly apply existing pedestrian detection techniques. Moreover,
real-time processing speeds are required. To overcome these problems we
introduce a pedestrian detection and tracking framework which exploits
and integrates these scene constraints to achieve high accuracy results.
We performed extensive experiments on publically available challenging
real-life video sequences concerning both speed and accuracy. Our app-
roach achieves excellent accuracy results while still meeting the stringent
real-time demands needed for these surveillance applications, using only
a single-core CPU implementation.

Keywords: Pedestrian detection · Tracking · Surveillance · Computer
vision · Real-time

1 Introduction

Reliable pedestrian detection and tracking in surveillance images opens up a
wide variety of applications (e.g. abnormal behaviour detection, path prediction,
intruder detection, people safety on e.g. movable bridges and crowd counting).
In recent years, tremendous advances concerning pedestrian detection were pub-
lished. Current state-of-the-art detectors achieve excellent accuracy results on
publicly available datasets (see Sect. 2). Unfortunately, directly applying these
existing techniques on challenging surveillance images is not a trivial task. This is
due to the inherent nature of these surveillance applications; often a large number
of cameras are utilised since large areas need to be covered completely. Such sce-
narios impose severe constraints on the hardware: low-cost cameras are employed
with wide-angle lenses, mounted high in a partly down-looking birds-eye view.
Consequently image processing and analysis on these images is challenging.

Indeed, typical surveillance images are often captured at low-resolution and
use high compression. Classic background subtraction based object detection
c© Springer International Publishing Switzerland 2016
J. Braz et al. (Eds.): VISIGRAPP 2015, CCIS 598, pp. 356–373, 2016.
DOI: 10.1007/978-3-319-29971-6 19
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Fig. 1. Example frame of one of the sequences of the CAVIAR dataset [8].

methods yield very noisy results at these high compression ratios. Moreover,
these techniques do not differentiate between people and other objects. Due to
their specific viewpoint (and wide-angle lens) standard pedestrian detectors -
which are trained and evaluated on forward-looking images - are also unable to
give accurate detection results on these images. Additionally, due to perspective
effects some pedestrians to be detected appear very small in the image, which
remains one of the most challenging tasks for current pedestrian detectors [15].
Furthermore, real-time processing speeds are required.

In this chapter we propose a flexible and fast pedestrian detection and track-
ing framework specifically addressing these challenging surveillance images. See
Fig. 1 for a typical example frame of the publicly available surveillance dataset we
used [8]. Our approach achieves excellent accuracy results at real-time process-
ing speeds. We overcome the above mentioned challenges by the integration of
three modalities: foreground segmentation approaches, the exploitation of scene
constraints and an accurate pedestrian detector. This is done as follows. First,
candidate regions in the image are generated. Using a calibrated scene distor-
tion model, an early rejection of false patches is achieved. Next the candidate
regions are warped to a standard viewing angle and used as input for a state-
of-the-art pedestrian detector. As explained in Sect. 3 our approach allows for
the use of a highly accurate pedestrian detector which would otherwise be too
computationally intensive for real-time applications. Finally, the detections are
employed in a tracking-by-detection approach to further increase the accuracy.
Note that, using our approach the actual scene calibration is trivial and easily
performed. We demonstrate the effectiveness of our approach on challenging sur-
veillance video sequences, and present extensive accuracy and speed results. Our
approach is generalisable to other object classes. The remainder of this chapter
is structured as follows. In Sect. 2 we discuss related work on this topic, and dis-
tinguish our approach from existing work. Section 3 presents our framework in
detail. Next we propose experimental results on challenging sequences in Sect. 4.
Finally, in Sect. 5 we conclude our work and give final remarks on future work.
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2 Related Work

Pedestrian detection and tracking in general is a very active research topic. Dalal
and Triggs [10] initially proposed the use of Histograms of Oriented Gradients
(HOG) for pedestrian detection. Their insights paved the way for numerous
derived approaches; even today most state-of-the-art pedestrian detectors still
rely on HOG features albeit in a more subtle manner (e.g. in combination with
other features). A well-known example is the work of [17]. As opposed to the rigid
model introduced by Dalal and Triggs they propose the inclusion of parts (rep-
resenting e.g. the limbs or head of a pedestrian) to increase detection accuracy,
coined the Deformable Part Models (DPM). In later work the authors tackled
the inevitable increase in computational complexity by introducing a cascaded
approach in which a fast rejection of negative detection windows is possible [16].
An extension was proposed using grammar models to cope with partial occlu-
sion [19]. Girshick and Malik [21] published a new and fast training methodology
for DPM models. As opposed to enriching the model with parts, [13] intro-
duced the use of a rigid model with additional features, called Channel Features
(ChnFtrs).

All previously mentioned approaches employ a sliding window paradigm: to
cope with scale variations a scale-space feature pyramid is calculated and each
layer is evaluated at each location. To speedup detection [12] proposed an app-
roach which approximates features nearby to avoid a full feature pyramid calcu-
lation. Several other techniques have been proposed to speedup detection: using
model scaling in stead of image scaling, GPU implementations [2] and search
space minimisation techniques [1,9,27]. For several years, the DPM approaches
remained among the top performing methods [14,15]. However, the need of parts
for pedestrian detection remains unclear [4]. Indeed, recent work on optimised
rigid models - e.g. Roerei [3] and ACF [11] - in fact outperform the DPM
detectors.

In [18] the authors present the use of convolutional neural networks (R-CNN)
for object detection, achieving unprecedented state-of-the-art accuracy results.
This methodology existed for a long time, but its applicability to image classifi-
cation tasks was highlighted by the work of [23]. Interestingly, their method steps
away from the traditional sliding window approach, and utilises region proposals
as input for the deep learning classifiers. Although currently not real-time, their
framework is able to classify a large variety of classes simultaneously, making it
ideal for large image database retrieval applications such as ImageNetimage [30].
Recently [20] presented a hybrid approach combining DPMs with CNNs, called
DeepPyramid DPM.

Several pedestrian tracking algorithms exist. Due to recent advances in
object detection techniques, tracking-by-detection has become increasingly pop-
ular. There, an object detector is combined with a reliable tracking algorithm
(e.g. particle filtering); see for example [7]. Concerning existing work on pedes-
trian tracking in surveillance images many either operate on standard viewpoint
and/or high-resolution images [6,31], or employ thermal cameras to facilitate
segmentation to reduce the search area [24].
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In previous work we presented a real-time pedestrian detection framework for
similar viewpoint images which are captured with a blind-spot camera mounted
on a real truck [32]. These images are - apart from the viewpoint - challenging
since the camera is moving. However, in this work we can fully exploit and
integrate foreground segmentation methods to increase both accuracy and speed.
Furthermore, we work with images captured from genuine surveillance cameras.
These images are of low-resolution, low-quality and, due to the use of wide-angle
lenses show large amounts of distortion and contain non-trivial viewpoints.

Existing work on the same dataset either employs clustering algorithms with
GPU optimisation [25], or focusses on motion analysis by matching trained sil-
houette models [28]. We differ significantly from these previous works: we devel-
oped an accurate tracking framework in which we can employ a highly accurate
pedestrian detector on these challenging images, and thus perform much better
than existing methods. We achieve real-time processing speeds on a single-core
CPU implementation. Our approach easily lends itself for multi-threaded imple-
mentation if higher computational speeds are needed.

3 Algorithm Overview

Running standard pedestrian detectors such as the Deformable Part Models on
surveillance images as shown in Fig. 1 is unfeasible. Current pedestrian detec-
tors are only trained on upright pedestrians at a fixed height. Scale invariance is
achieved using a scale-space pyramid. Thus in order to achieve decent detections
on these surveillance images the detectors ought to run on multiple rotations
and scales of the same surveillance image, using both dense rotation and scale
steps. Evaluating the total 4D rotation-scale search space in real-time evidently
is impossible. Nonetheless, the use of a pedestrian detector could significantly
increase the accuracy, as opposed to standard techniques which only rely on e.g.
background subtraction with blob analysis due to time constraints. Therefore,
to overcome these challenges we propose the integration of a foreground segmen-
tation approach with a scene model and a highly accurate pedestrian detector.
Our approach allows for the detection of pedestrians in challenging viewpoints
(e.g. rotated) under large lens distortion at low computational complexity, with
very high accuracy. To retrieve the scene model, a simple one-time calibration
procedure is performed, no explicit lens or camera calibration is needed. Our
algorithm briefly works as follows. As seen in Fig. 1, pedestrians appear rotated
and scaled based on their position in the image. We exploit this scene knowledge
throughout our detection and tracking pipeline. For each input image, after a pre-
liminary segmentation, we generate region proposals which potentially contain
pedestrians. The scene model is used to reduce the number of region proposals.
Next, based on the position in the image we warp each valid potential region
to an upright and fixed-height image patch. These patches are given as input
to a state-of-the-art pedestrian detector, which evaluates a pedestrian model
on a single scale only. This is the key advantage of our work: since only one
scale and position needs to be evaluated we can use a highly accurate pedes-
trian detector which would otherwise be too time-consuming. Furthermore this
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Fig. 2. Overview of our detection pipeline. After a first foreground segmentation step
we extract region proposals which potentially contain pedestrians. Each region is
warped to an upright fixed-height patch. Next, a highly accurate pedestrian detector
is evaluated at a single scale. Finally, the detections are retransformed and tracked.

approach allows for the detection of extremely small pedestrians, if the detec-
tion model is powerful enough. The detections are retransformed to the original
input image, and employed in a tracking-by-detection framework to associate
pedestrian tracks and handle missing detections. Since each region can be eval-
uated independently, a fast multi-threaded implementation of this approach is
trivial. Figure 2 shows an overview of our approach. In the next subsections we
describe further details of each step in our pipeline, and motivate important
design choices.

3.1 Foreground Segmentation

First we perform a foreground segmentation step to identify moving regions
in the static camera images. Several segmentation approaches are applicable
ranging from basic background subtraction methods to more advanced motion
estimation methods. Since we employ scene constraints further on to reduce
the number of region proposals, our approach allows for the use of a coarse
segmentation. For this step we thus prefer low computational complexity over
high accuracy, excluding time-consuming techniques (e.g. optical flow). Hence,
we rely on background estimation techniques, which generate a statistical model
of the scene. Several popular methods exist. Since a comprehensive comparison
of these techniques is out of the scope of this work, we refer to [5,26] for a
detailed overview. Concerning background subtraction, the main challenges in
typical surveillance images arise from changing lightning conditions and camera
shake. Based on these comparative works we opted for the method of [33], which
employs Gaussian Mixture Models (GMM). These methods haven proven to cope
well with (limited) background motion. Their proposed method is an extension of
the original GMM where the number of Gaussian components per pixel is auto-
matically selected. This effectively reduces memory requirements and increases
the computation speed, making it ideal for this application. A qualitative seg-
mentation output example is shown in the overview figure (Fig. 2).
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Fig. 3. A one-time calibration step is needed. The transformation parameters are
extracted from the annotations.

Fig. 4. Our region proposals pipeline. After foreground segmentation and noise removal
a first blob elimination is performed. Next we perform region growing using a distance
transform. Finally, we determine the optimal search points.

3.2 Modelling Scene Constraints

As previously mentioned, the pedestrians in the surveillance images appear
rotated and scaled. Since the position of the surveillance camera is fixed with
respect to the ground plane both parameters only depend on the position in
the image. If we know the rotation and average pedestrian height for each pixel
position x = [x, y] we can exploit this scene knowledge to achieve fast and accu-
rate pedestrian detection, similar to [32]. During the generation of the region
proposals this information can be used to reject regions which diverge too much
from the expected region properties, thus limiting the search regions. For each
valid proposed region, we use the transformation parameters to warp each patch
to an upright, fixed-scale image patch, allowing the use of an accurate pedestrian
detector whilst being real-time.

To retrieve these transformation parameters a one-time offline calibration
needs to be performed (see Fig. 3). However, the scene calibration as proposed
here is easy to perform and trivial. For this, we extracted the rotation and height
of each annotated pedestrian from the dataset, giving the scale and rotation for
that specific point. Next we interpolated the datapoints using a second order 2D
polynomial function fi(x) for both parameters:

fi(x) = p0 + p1x + p2y + p3x
2 + p4xy + p5y

2 (1)

Both fscale(x) and frotation(x) are used as Lookup functions (LUFs): at each
position in the image they define the expected region properties and transfor-
mation parameters.
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3.3 Generation of Region Proposals

In a next step we refine the segmentation and generate region proposals which
need to be warped and evaluated using our single-scale pedestrian detector. Since
we employ a pedestrian detector in the next stage to validate each region we are
allowed to propose more regions than needed, i.e. regions without pedestrians.
An accurate detector should indeed negatively classify such patches. However, it
is important to early reject false patches, since they lead to useless computations
and lower processing speeds. This stage thus tries to balance between optimal
accuracy and speed, generating an optimal amount of search locations. Figure 4
gives an overview of our region proposal calculation. Let us now discuss each
consecutive step in this pipeline.

First Elimination. As a preprocessing step, we first eliminate noise in the
segmentation which remained after the background subtraction step (due to e.g.
changing lightning conditions). This is simply done using morphological opening.
Next, we perform a connected component analysis (using 8-connectivity), and
test the local scene model for each blob. That is, we construct a bounding box of
the expected scale and rotation around the centroid of each blob. We reject two
types of regions: extremely small ones (25 pixels or less) due to the high SNR
there (drawn in magenta in the second step of Fig. 4), and those that diverge
from an area constraint (drawn in red). For this constraint, we require that the
area of the connected component should be larger than a minimal percentage of
the expected area (15%). This step eliminates most invalid regions.

Region Growing. In the case of insufficient contrast, the foreground segmenta-
tion performs suboptimal (i.e. tends to split a valid pedestrian in multiple blobs,
as seen for the largest pedestrian in Fig. 4). For each remaining valid region we
therefore perform region growing based on the Euclidean distance transform,
joining regions nearby. This has a second advantage: multiple pedestrians which
are nearby are joined into a single detection region, even if one of them was
removed after the first elimination. This is also illustrated in Fig. 4: after the
first elimination only one of both small pedestrians is maintained. However,
after region growing both are connected.

Defining Search Points. Finally, we define exact search locations where the
pedestrian detector will be applied. This is done as follows. Each remaining
region is again verified against the scene constraints since, due to the previous
step, these regions could have grown significantly. This is the case when multiple
(possibly previously invalid) regions are joined. Note that we do not reject regions
at this stage. We locally evaluate each region and use the expected height and
rotation to estimate the number of possible pedestrians. Based on the size of the
region we first evaluate if multiple search points are necessary for this region. If
so, we define a linear grid over the entire region of which the step size depends
on the ratio of the expected and actual region parameters, and eliminate grid
points which are located outside the segmented region.

The final region proposals are visualised as the green rectangles shown in
the rightmost image in Fig. 4. As seen, our regions accurately predict possible
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pedestrians in the image. This is the power of this approach: by combining
foreground segmentation and scene model constraints the search space for the
computationally expensive pedestrian detector can be enormously restricted.
Slight deviations from the exact pedestrian position are allowed since we employ
a sliding-window approach in the final warped patch.

3.4 Warping Patches

Our scene model has another advantage: for each image location we know how
a pedestrian is locally distorted. Each region proposal is warped to an upright
pedestrian at a fixed-scale. Using this approach we are able to accurately detect
even rotated and extremely small pedestrians, using a single-scale pedestrian
detector only. The region proposals I are warped such that Iwarp = TI where
transformation matrix T simply consists of a Euclidean transformation of which
the parameters are extracted from the LUFs:

T =

⎡

⎣
s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1

⎤

⎦ (2)

Note that the optimal scale to which the patches are warped highly depends
on which pedestrian detector is used. This is dicussed in the next section, where
we motivate the choice of pedestrian detector and determine the optimal scale.

3.5 Pedestrian Detector

The warped image patches are now classified by a pedestrian detector. In fact, the
method described in the previous sections is generic and can be combined with
each existing pedestrian detection algorithm. As discussed in Sect. 2, recent R-
CNN based detection methods currently achieve top accuracy results concerning

Fig. 5. Pedestrian model used in our implementation. (L) Root model. (M) Different
parts. (R) Deformation costs.
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Fig. 6. The accuracy versus the pedestrian height and detection threshold for the
single-scale cascaded DPM detector.

object detection in general. However, their performance is far from real-time,
and they are more suited for multi-class large database retrieval tasks. Rigid
pedestrian detectors (such as ChnFtrs) currently offer the best trade-off between
speed and accuracy when a full-scale space pyramid needs to be constructed.
However, since we need to evaluate a single scale only, no scale-space pyramid
needs to be constructed. Therefore we are able to use an accurate pedestrian
detector which would otherwise be too time-consuming, such as the Deformable
Part Models. Moreover, since a rigid model does not allow for any deformation,
using it in our single-scale approach is even unfeasible in a direct manner.

Since natural slight height variations exist between pedestrians (and due to
small calibration errors), the detection accuracy significantly drops when using
these models on a single-scale. Given this information, we opted to use the
cascaded DPM model [16]. When used out-of-the-box this detector works as
follows. First a scale-space pyramid is constructed in which for each layer HOG
features are calculated resulting in a feature pyramid. Next, this pyramid is
evaluated using a sliding window with the pedestrian model shown in Fig. 5.

A pedestrian is represented as a root model (left), several parts represent-
ing e.g. the limbs and head which are calculated at twice the resolution of the
root model (middle), and a deformation cost which penalises large deviations
from the expected part locations (right). The responses of both root filter and
part filters are summed to give a final detection score. We altered this detector
into a single-scale only implementation, and performed experiments to simulta-
neously determine the optimal scale factor to which the region proposals need
to be warped, and the optimal detection threshold. This is done as follows.
We extracted about 6000 annotated pedestrians from the CAVIAR dataset and
warped them to different scales (heights). Combined with 6000 negative patches
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Fig. 7. The optimal threshold slice displaying the accuracy versus the pedestrian
height.

we calculated the accuracy in function of the height and detection score thresh-
old. The results are shown in Fig. 6.

As can be seen, at low resolutions the accuracy drops significantly, since only
very limited spatial information is available. At high resolution similar behaviour
is seen, since the pedestrians mismatch the detection model. Concerning the
detection threshold, the detection accuracy is low at both high values (high false
negative rate) and low values (high false positive rate). Figure 7 displays the
optimal threshold slice extracted from Fig. 6. The accuracy is almost constant
between 130–170 pixels. However, at larger pedestrian heights the detection time
significantly increases. We therefore used 140 pixels as our optimal rescale height
to which the region proposals will be warped such that a one-scale pedestrian
model can be directly applied.

3.6 Tracking

The resulting detections are then retransformed to the input image coordinates.
Next a non-maxima suppression step is performed, in which overlapping detec-
tions are filtered; only the highest scoring detection is kept. To link detections
over multiple frames and to cope with occasional missing detections we inte-
grate our approach in a tracking-by-detection framework. For this we employ
the well-know Kalman filter [22]. For each new detection, a Kalman filter is
initialised. We employ a constant velocity motion model. The state vector xk

thus consists of the centre of mass of each detection, the velocity and the scale:
xk =

[
x y vx vy

]T . Our process matrix A thus equals:

A =

⎡

⎢⎢⎣

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ (3)
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Fig. 8. Qualitative tracking example on two of the evaluation sequences (top and bot-
tom row). See http://youtu.be/kWoKBPQoeQI for a video.

Table 1. Overview of the difference sequences of the CAVIAR dataset.

Scenario # frames Difficulty Comments

Walk 3045 easy Few people, low interaction

Browse 6654 medium People browse at e.g. reception desk

Leave bags 5839 medium Leaving objects behind

Rest 4220 medium Resting on floor and in chairs

Fight 2492 difficult People fighting. Difficult poses

Meet 4123 difficult Group meetings, multiple occlusions

Using this motion model we predict the position of the pedestrians in the next
frame. When a new frame is processed, we try to match each running tracker with
a new detection as follows. We construct a circular region - based on the scale
of that tracked detection - around the estimated new centroid. If the centroid
of a new detection is found within that region, the detection is associated with
this track, and the Kalman filter is updated. If multiple detections are found,
we take the closest one based on the Euclidean distance. If no detection can be
associated with a running track, we update the Kalman filter with its estimated
position. If this occurs for multiple frames in a row, the track is discarded.
For detections without an associated track, evidently a new Kalman filter is
instantiated. Furthermore the exact size of the bounding boxes are averaged
over multiple frames. See Fig. 8 for two qualitative tracking sequences of our
proposed algorithm.

4 Experiments and Results

We performed extensive experiments concerning both speed and accuracy on
the publicly available CAVIAR dataset [8]. This dataset was recorded at the
entrance lobby of the INRIA labs with a wide-angle camera lens. The images are
taken with a resolution of 384×288 at 25 frames per second, and are compressed
using MPEG2. See Fig. 1 for an example frame. The dataset is divided into six

http://youtu.be/kWoKBPQoeQI
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Fig. 9. The accuracy of our algorithm over the CAVIAR dataset. Solid lines indicate
the results without tracking, dotted lines include tracking. The accuracy results for
the six scenarios are divided over two graphs based on their difficulty for the sake of
clarity. The black curve (All sets) indicates the average accuracy over all six scenarios.

Fig. 10. Example of warped annotations. Low-resolution and high-compression arti-
facts are noticeable.

different scenarios: walk, browse, meet, leave bags, rest and fight. Each scenario
is again subdivided into multiple sequences, making a total of 28 sequences. We
used all sets for testing. Note that some sequences contain pedestrians which are
inherently undetectable with our proposed framework. For example, the fight
sequences include scenarios with people in specific fighting poses, and the rest
sequences contain scenarios where people fall on the floor or rest in e.g. chairs
thus violating our scene constraints. Table 1 gives a textual overview of each
scenario. For each scenario we give a difficulty measure, i.e. an indication of
the complexity of the sequences of each scenario. Easy scenarios are composed
of simple sequences with only few people and low interaction whereas difficult
scenarios contain many occlusions and challenging poses. In total, our evalua-
tion set consists of about 26400 frames, containing about 36200 annotations.
Our algorithm is implemented in Matlab, with time-consuming parts (e.g. the
detection and transformation) in C and OpenCV (using mexopencv as interface).
Our test hardware consists of an Intel Xeon E5 CPU which runs at 3.1 GHz. All
speed test are performed on a single CPU core. However, a multi-threaded CPU
implementation to further increase the processing speed is trivial.
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Fig. 12. An overview of the calculation time for each step in the algorithm versus the
number of region proposals.

4.1 Accuracy

Figure 9 displays the accuracy results of our algorithm, using precision-recall
curves. We give results for all scenarios mentioned above, ranging from easy
(e.g. walk - limited number of persons) through difficult (e.g. meet - multiple
persons with occlusions). For the sake of clarity we spread the accuracy results
of the six sequences over two separate plots, based on their difficult. The left
accuracy plot groups the easy and medium scenarios, the right plot gives the
accuracy results for the more difficult scenarios. We exclude small pedestrians
from the annotations (smaller than 20 pixels), and remove annotations in the top
left corner of the image (on the balcony) and the bottom left corner of the image
(people behind the covered reception desk). Furthermore we discard annotations
close to the image border, since the pedestrians are not completely visible there
(the annotation is strict and already starts when part of a pedestrian enters
the frame). The solid lines in Fig. 9 indicate the accuracy without tracking,
whereas the dotted lines show the accuracy with tracking. The black curves on



Pedestrian Detection and Tracking in Challenging Surveillance Videos 369

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy improvement

Recall

P
re

ci
si

on

Background subtraction
Region prop. + pedestrian det. (Ours)
Region prop. + pedestrian det. + tracking (Ours − final)

Fig. 13. The obtained accuracy improvement compared to a naive background sub-
traction approach.

both figures indicate the total average accuracy over the entire evaluation set
(all six scenarios). To indicate the difficulty, in Fig. 10 we display some extracted
annotations which are warped to an upright position.

As can be seen, these low-resolution output images contain severe compres-
sion artifacts. Even for humans they are sometimes difficult to recognize as a
pedestrian. However, we achieve excellent accuracy results given these strict
dataset annotations and challenging nature of these images. As observed, on
some difficult scenarios (e.g. Meet and Rest) a lower accuracy is obtained.

This is mainly due to two reasons: these sets contain many long-term occlu-
sions and poses which a standard pedestrian detector is unable to detect (e.g.
sitting in a chair, lying on the floor). Since our tracker handles missing detec-
tions, the accuracy significantly improves.

4.2 Speed

The exact calculation time depends on the number of region proposals per image.
Figure 11 therefore displays the speed of our algorithm (in frames per second),
versus the number of region proposals.

Evidently, the processing speed decreases when multiple region proposals
need to be evaluated. However, even at e.g. four region proposals we still achieve
17 fps. Over the entire evaluation set we achieve an average of 32 frames per
second, indicated with the dotted red line. Note that all experimental results are
performed on a single CPU core. In fact, each region proposal can be evaluated
independently, thus allowing for an easy multi-threaded implementation.

Figure 12 visualises the individual calculation times for each important step
in the entire algorithm pipeline, for a varying number of region proposals. As
visualised, generation of the region proposals takes about 15–20 ms. The warping
operation is very fast: on average 1 ms per region proposal is needed. Concerning
the pedestrian evaluation step, the average feature calculation time per region
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Fig. 14. Qualitative comparison between running a detector on all scales and rotations
(left) versus the output of our algorithm (right).

is about 3 ms whereas the model evaluation takes 4 ms. The time needed to
retransform the coordinates is negligible.

4.3 Comparative Evaluation

Figure 13 illustrates the accuracy improvement we achieved as compared to a
basic background subtraction technique, i.e. interpreting the foreground blobs
that are large enough as pedestrians. As seen, on these challenging images these
naive methods yield poor results. The inclusion of our scene model and the appli-
cation of a state-of-the-art pedestrian detector raises the accuracy enormously.

A quantitative comparison with other work using precision-recall curves on
this dataset is difficult, since to the best of our knowledge no such accuracy
results similar to our work exist. Existing work on these specific sequences of
the CAVIAR dataset often focusses on activity recognition (e.g. fight) and anom-
aly detection. However, [29] present accuracy experiments using tracking failure
measurements on 11 tracks of the CAVIAR dataset. For this, the authors con-
sider a track lost if the tracking failed for 20 frames or more. In their work
a multi-hypothesis tracking approach (particle filter) is used. They achieve a
tracking failure percentage of 33.64 % with N = 20 particles and 16.82 % when
N = 50. Using our approach we achieve a tracking failure of 9.1 % on the same
sequences relying only on a single hypothesis tracker (Kalman filter). As a final
qualitative analysis we compare our approach with a naive detection approach,
that is running the standard deformable part model detector on all scales and
all rotations.

For this, we need to upscale the image five times (the smallest pedestrian to
be detected is only 25 pixels high, and the height of the detection model equals
120 pixels), and use a rotation step size of 10 degrees. Using this approach, the
calculation time for a single frame increases to about 13 min. Figure 14 displays
the detections found using this naive approach (left), and the output of our
algorithm (right). As seen, the naive approach yields several false positives and
fails to detect all pedestrians. Our algorithm achieves excellent accuracy results
with minimal computational cost (89 ms for this frame).
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5 Conclusions and Future Work

We presented a fast and accurate pedestrian detection and tracking frame-
work targeting challenging surveillance videos. Our proposed algorithm inte-
grates foreground segmentation methods with scene constraints to generate
region proposals, which are then warped and evaluated by a single-scale pedes-
trian detector. Using this approach we can employ a highly accurate pedes-
trian detector for non-trivial camera-viewpoint images where existing pedestrian
detectors fail, while still achieving real-time performance. We performed exten-
sive evaluation experiments concerning both accuracy and speed on the publicly
available CAVIAR dataset. This dataset consists of typical low-resolution high-
compression surveillance images taken with a wide-angle lens from a challenging
viewpoint. We show that our approach achieves both excellent accuracy and
processing speeds using a single-core CPU implementation only. Furthermore,
our proposed method easily lends itself for a multi-threaded implementation.

To improve the detection accuracy on very difficult scenarios (e.g. long-term
occlusions, people in chairs or people lying on the floor) several further opti-
misations are possible. To cope with challenging poses an upperbody detector
or an evaluation at multiple rotations could be employed. For this, the rotation
should be included in the tracker. Additional features (e.g. color information)
could be used to enable person reidentification. Furthermore, the scene calibra-
tion currently is based on annotation data. In the future we plan to investigate
if an automated calibration method can be implemented (using e.g. an offline
exhaustive search over all scales and rotations).

Acknowledgements. The authors would like to acknowledge that the dataset used
here is from the EC Funded CAVIAR project/IST 2001 37540 [8].
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Abstract. In this paper, we propose various approximations aimed at
increasing the accuracy of the S1, C1 and S2 layers of the original Gray
HMAX model of the visual cortex. At layer S1, an image is convolved
with 64 separable gabor filters in the spatial domain after removing some
irrelevant information such as illumination and expression variations. At
layer C1, some of the minimum scales values are exploited in addition
to the maximum ones in order to increase the model’s accuracy. By
applying the embedding space in the additive domain, the advantage of
some of the minimum scales values is taken by embedding them into
their corresponding maximum ones based on a weight value between 0
and 1. At layer S2, we apply clustering, which is considered one the
most interesting research areas in the field of data mining, in order to
enhance the manner by which all the prototypes are selected during the
feature learning stage. This is achieved by using the Partitioning Around
Medoid (PAM) clustering algorithm. The impact of these approximations
in terms of accuracy and computational complexity was evaluated on
the Caltech101 dataset containing a total of 9,145 images split between
101 distinct object categories in addition to a background category, and
compared with the baseline performance using support vector machine
(SVM) and nearest neighbor (NN) classifiers. The results show that our
model provides significant improvement in accuracy at the S1 layer by
more than 10 % where the computational complexity is also reduced. The
accuracy is slightly increased for both approximations at the C1 and S2
layers.

Keywords: HMAX · Support vector machine · Nearest neighbor · Cal-
tech101

1 Introduction

The human visual system is quite powerful. It is perhaps not too surprising that
the human brain has achieved, through millions of years of evolution, a remark-
able ability to recognize and differentiate among very similar objects in a selec-
tive, robust and fast manner. Modern machines can perform many apparently
c© Springer International Publishing Switzerland 2016
J. Braz et al. (Eds.): VISIGRAPP 2015, CCIS 598, pp. 374–395, 2016.
DOI: 10.1007/978-3-319-29971-6 20



Algorithmic Optimizations in the HMAX Model Targeted 375

complex tasks much faster, more efficiently and more precisely than humans.
Some estimates indicate that the human visual system can discriminate at least
tens of thousands of different object recognition. Therefore, it would be relatively
easy to build a computer system that can be extremely selective by just mem-
orizing all the pixels in several training images. Modern computers are able to
translate the human ventral visual pathway (known as the “WHAT” stream) in
order to achieve, in a similar manner to the human brain, an impressive trade-off
between selectivity and invariance. Several scientists have attempted to model
and mimic the human vision system [1].

The Hierarchical Model And X (HMAX) is an important model for object
recognition in the visual cortex known for its high ability to achieve performance
levels close to the human object recognition capability [2]. HMAX divides the
human ventral stream into five layers: S1, C1, S2, C2 and View-TUned (VTU).

The first layer S1 of the HMAX model relies on the Gabor filter [3], which is
a linear filter used for edge detection. It differs from other filters by its capability
to highlight all the features that are oriented in the direction of the filtering. The
features are therefore extracted from the images by tuning the gabor filter to
several different scales and orientations using fine-to-coarse approach.

Several methods have been proposed in the literature in order to improve
the efficiency of the original HMAX model. An extension of the original HMAX
model has been proposed in [4], emphasizing the importance of shape selectivity
in area V4. A simpler radial basis function (RBF) model for object recognition
was proposed in [5] to maintain a good degree of translation and scale invari-
ance. The proposed model was considered better than the original HMAX for
translation and scale invariance by changing the point of attention and decreas-
ing the amount of visual information to be processed. In [6], they developed
a new set of receptive field shapes and parameters for cells in the S1 and C1
layers. The method serves to increase position invariance in contrast to scale
invariance, which is decreased. In [7], they proposed a general framework for
robust object recognition of complex visual scenes based on a quantitative the-
ory of the ventral pathway of visual cortex. A number of improvements to the
base model were proposed in [8] in order to increase the sparsity. The proposed
model has shown a remarkable improvement on classification performance and
the resulting model is found more economical in terms of computations. In [9],
they proposed several approximations at the four HMAX layers (S1, C1, S2 and
C2) in order to increase the efficiency of the model in terms of accuracy and com-
putational complexity. A semi-supervised learning algorithm for visual object
categorization was proposed in [10] by exploiting unlabelled data and employing
a hybrid generative-discriminative learning scheme. The method achieved good
performance in multi-class object discrimination tasks. In [11], they proposed a
scheme based on a kernel function for discriminative classification. The method
achieved improved accuracy and reduced computational complexity compared
to the baseline model.
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In this paper, the goal is to perform various optimizations at the S1, C1
and S2 layers of the original HMAX model. The results demonstrate that these
optimizations increase the accuracy of the HMAX model as well as reduce its
computational complexity at the S1 layer. The accuracy of the final model proves
the advantage of exploiting only the important features for recognition and gen-
erating the prototypes in a more efficient way.

The remainder of this paper is organized as follows. In Sect. 2, the visual
system of the human brain is briefly presented. In Sect. 3, a brief overview of the
original HMAX model is explained. The proposed approximations at S1, C1 and
S2 layers are presented in Sects. 4, 5 and 6, respectively. Experimental results are
shown in Sect. 7. Finally, Sect. 8 gives concluding remarks and some directions
for future work.

2 The Visual System of the Human Brain

The light enters our eye form the pupil to the retina through the Crystalline lens.
The iris is considered the colored part of the eye and it controls the amount of
light that enters our eye. The pupil is the central aperture of the iris and the
retina sends images to the brain through the optic nerve [18,19].

The retina contains five types of neurons: Photoreceptors (95 % Rods and 5 %
Cones), Horizontal neurons, Bipolar neurons, Amacrine neurons and Ganglion
neurons. There is amazing collaboration among all 5 neuron types. Of the exist-
ing 120 millions of photoreceptors in each eye, 95 % are Rods. In fact, the Rods
are located on the surface of the retina, only sensible to luminance, responsible
for vision at low light and active in scotopic vision. The Cones are only sensible
to chrominance, responsible for vision at normal light, active in photopic vision
and located in the fovea which constitutes 1 % of the retina’s surface. Interest-
ingly, both Rods and Cones are active in mesopic vision which is considered as
a combination between scotopic and photopic.

One of the most important problems in vision is that at low light, the pupil
increases in size, the light reflects into the retina’s surface where the Rods are
present. When suddenly a high level of light comes to the eye and before the
pupil decreases in size, it reflects directly into the Rods which are sensible to
luminance not to chrominance.

The ganglion cells are the most important to study. The ganglion of type
“P” are for Parvo (very small receptive field), the ganglion of type “M” are for
Magno (large receptive field) and the ganglion of type “K” are for Konio or conio
(also called non P-nonM). All ganglion cells’ types have receptive field described
as “Center ON-Peripheric OFF” or “Center OFF-Peripheric ON”.

The optic nerve contains the ganglion fiber optic. Both left and right optic
nerves of the left and right eyes, respectively, are crossed in a point called “Optic
chiasm” which transmits the information received from the retina to the Lateral
Geniculate Nucleus (LGN).
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Fig. 1. Connections between the eye and LGN.

The LGNs are located in the thalamus of the brain and they are responsible
for processing the information that arrives from the ganglion neurons. Each LGN
is formed by six distinct layers numbered 1 to 6. The layers 1-2 contain neurons
of type “M” and the layers 3-4-5-6 contain neurons of type “P”. There is LGN
in each hemisphere of the brain. The right LGN receives stimulus from the left
visual field and vice versa as shown in Fig. 1. Layers 1, 4, 6 of both right and left
LGNs receive axons from left part of the retina of each eye (nasal hemiretine)
while the layers 2, 3, 5 of both right and left LGNs receive axons from right part
of retina of each eye (temporal hemiretine).

The left and right primary visual cortex V1 receive information from the
left and right LGN, respectively. The primary visual cortex is the part of the
cerebral cortex responsible for processing visual information and it is located in
the occipital lobe of the brain. The primary visual cortex V1 is also known as
“Striate cortex” or “Broadman area 17 (BA17)”. It is located in and around the
calcarine fissure (or calcarine sulcus) in the occipital lobe of the brain. Impor-
tantly, it is divided into 6 distinct layers labeled 1 through 6. Layer 4, which
receives the most visual input from the LGN is further divided into 4 layers: 4A,
4B, 4Cα (receives most Magnocellular inputs from the LGN) and 4Cβ (receives
most Parvocellular inputs from the LGN). The V1 of each hemisphere trans-
mits information to two primary pathways: Dorsal Stream and Ventral Stream.
The object recognition in cortex is thought to be mediated by the ventral visual
pathway running from visual cortex V1, over extrastriate visual areas V2 and
V4 to Inferotemporal cortex IT. Based on physiological experiments in monkeys,
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IT has been postulated to play a central role in object recognition. IT in turn
is a major source of input to PFC, “the center of cognitive control” involved in
linking perception to memory.

For further details, see Chap. 7 from the book “Brains: How They Seem To
Work” [20].

3 HMAX Model with Feature Learning

HMAX [12] is a computational model that summarizes the organization of the
first few stages of object recognition in the WHAT pathway of the visual cortex,
which is located in the occipital lobe at the back of the human brain. It is
considered a primordial part of the cerebral cortex responsible for processing
visual information in the first 100–150 ms. Indeed, light enters our eye from the
central aperture, called “Pupil”, and then passes through the “Crystalline lens”
which is considered the biconvex transparent body situated behind the iris into
the eye and aiming to focus light on the retina that sends images to a specific
part of the brain (visual cortex) through the optic nerve. The retina contains
five different types of connected neurons: Photoreceptors (95 % rods and 5 %
cones), Horizontal, Bipolar, Amacrine and Ganglion through which the light
leaves the eye. The visual cortex, located in and around the calcarine sulcus,
refers to the striate cortex V1, anatomically equivalent to Brodmann area 17
(BA17), connected to several extrastriate visual cortical areas (V2, V4, V5,
etc.), anatomically equivalent to Brodmann area 18 and Brodmann area 19. The
right and left V1 receive information from the right and left Lateral Geniculate
Nucleus (LGN), respectively. The LGNs are located in the thalamus of the brain
and they receive information directly from the ganglion cells of the retina via
the optic nerve and optic chiasm.

3.1 Computational Complexity

The operations of the five layers of the HMAX model are briefly summarized.

S1 Layer: All the responses of the S1 units are summarized here by simply
performing 2-D convolution between 64 Gabor filters (16 scales in steps of two
pixels and 4 orientations) shown in Fig. 2 and the input images in the spatial
domain.

Firstly, each Gabor filter of a specific scale and orientation can be initialized as:

G(x, y) = exp−
(

u2+γ2v2

2σ2

)
× cos

(
2π

λ
u

)
, (1)

where:

u = x cos θ + y sin θ,

v = −x sin θ + y cos θ,

γ = 0.0036 × ρ2 + 0.35 × ρ + 0.18,

λ =
γ

0.8
.
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The parameter γ is the aspect ratio at a particular scale, θ is the orientation ∈
[0 ◦, 45 ◦, 90 ◦, 135 ◦], σ represents the effective width (= 0.3 in our case), λ is
the wavelength at a particular scale, and ρ represents the scale.

Secondly, all the S1 image responses are computed by applying a two dimen-
sional convolution between the initialized Gabor filters and the input images in
the spatial domain. The S1 image responses are so-called: the Gabor features.

In fact, all the filters are arranged in 8 bands. There are two filter scales with
four orientations at each band.

The S1 layer has a computational complexity of O(N2M2) where M × M is
the size of the filter and N × N is the size of the image.

C1 Layer: The C1 units are considered to have larger receptive field sizes and
a certain degree of position and scale invariance. For each band, each C1 unit
response (image response) is computed by taking the maximum pooling between
the gabor features of the two scales at the same orientation. The main role of
the maximum pooling function is to subsample the number of the S1 image
responses and increase tolerence to stimulus translation and scaling. Then, the
pooling over local neighborhood using a grid of size n × n is performed. From
band 1 to 8, the value of n starts from 8 to 22 in steps of two pixels, respec-
tively. Furthermore, a subsampling operation can also be performed by over-
lapping between the receptive fields of the C1 units by a certain amount Δs (=
4band1, 5band2, · · · , 11band8), given by the value of the parameter C1Overlap. The
value C1Overlap = 2 is mostly used, meaning that half the S1 units feeding into
a C1 unit were also used as input for the adjacent C1 unit in each direction.
Higher values of C1Overlap indicate a greater degree of overlap. This layer has
a computational complexity of O(N2M).

S2 Layer: The original version of HMAX was the standard model in which
the connectivity from C1 to S2 was considered hard-coded to generate several
combinations of C1 inputs. The model was not able to capture discriminating
features to distinguish facial images from natural images. To improve that, an
extended version was proposed [1], and is called HMAX with feature learning.
In this model, each S2 unit acts as a Radial Basis Function (RBF) unit, which
serves to compute a function of the distance between the input and each of the
stored prototypes learned during the feature learning stage. That is, for an image
patch X from the previous C1 layer at a particular scale, the S2 response (image
response) is given by:

S2out = exp(−β‖X−Pi‖2), (2)

where β represents the sharpness of the tuning, Pi is the ith prototype and ‖ · ‖
represents the Euclidean distance. This layer has a computational complexity of
O

(
PN2M2

)
, where P is the number of prototypes.

C2 Layer: It is considered the layer at which the final invariance stage is pro-
vided by taking the maximum response of the corresponding S2 units over all
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Fig. 2. 64 Gabor filters (16 scales in steps of two pixels [7 × 7 to 37 × 37] × 4
orientations [0 ◦, 45 ◦, 90 ◦, 135 ◦]).

scales and orientations. The C2 units provide input to the VTUs. This layer has
a computational complexity of O(N2MP ).

VTU Layer: At runtime, each image in the database is propagated through the
four layers described above. The C1 and C2 features are extracted and further
passed to a simple linear classifier. Typically, support vector machine (SVM)
and nearest neighbor (NN) classifiers are employed.

The learning stage: The learning process aims to randomly select P proto-
types used for the S2 units. They are selected from a random image at the C1
layer by extracting a patch of size 4 × 4, 8 × 8, 12 × 12, or 16 × 16 at random
scale and position (Bands 1 to 8). For an 8×8 patch size for example, it contains
8 × 8 × 8 = 512 C1 unit values instead of 64. This is expected since for each
position, there are units representing each of the four orientations [0 ◦, 45 ◦, 90 ◦,
135 ◦].

4 S1 Layer Approximations

At the S1 layer, several approximations are investigated in order to increase the
efficiency of the original HMAX model in terms of accuracy and computational
complexity. Each approximation has been evaluated independently using SVM
and NN classifiers.

4.1 Combined Image-Based HMAX Using 2-D Gabor Filters

In this approximation, all unimportant information such as illumination and
expression variations are eliminated from the image and hence its salient features
become richer [13]. To achieve this, four main steps are applied to the original
image A of size h × a:

Step 1 – Adaptive Histogram Equalization: In order to handle the large intensity
values to some extent, adaptive histogram equalization is applied to the original
image A:

Adapted Image = AdaptHistEq(A) (3)
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Fig. 3. (a) The original image and (b) Combined images using α = 0.25, 0.5, 0.75, 1
and 1.25, respectively. c is equal to 0.25 and 0.75 on the top and bottom, respectively.

Step 2 – SVD Decomposition: Singular value decomposition (SVD) is applied
to the image after equalization. The concept behind SVD is to break down the
image into the product of three different martices as:

SVD(Adapted Image) = L × D × RT (4)

where L is the orthogonal matrix of size h × h, RT is the transpose of an
orthogonal matrix R of size a × a and D is the diagonal matrix of size h × a.
This decomposition helps the computations to be more immune to numerical
errors, as well as to expose the substructure of the original image more clearly
and orders their elements from most amount of variation to the least.

Step 3 – Reconstruction Image: According to the values of L, D and R, the
reconstructed image is computed as follows:

Reconstructed Image = L ∗ Dα ∗ RT, (5)

where α is a magnification factor that varies between 1 and 2. The idea to have
the value of α vary between one and two in order to magnify the singular values
of D is to make them invariant to illumination changes. When α equals to 1,
the reconstructed image is equivalent to the equalized image. When α is chosen
between ]1 2], then the singular values greater than unity will be magnified. Thus,
the combination between the reconstructed image and the equalized image will
be a fruitful step to making the model more robust against illumination and
expression variations.

Interestingly, when the singular values are scaled in the exponent, a non-
linearity is introduced. Therefore for a specific database (Caltech101 for exam-
ple), scaling down the magnification factor α may be helpful.

Step 4 – Combined Image: The combined image is produced by simply combin-
ing the reconstructed image and the equalized image as shown in Fig. 3, using a
combination parameter c which varies between 0 and 1.

IComb =
Adapted Image + (c ∗ Reconstructed Image)

1 + c
(6)

By applying this approximation, the computations in this layer become faster as
shown in Fig. 6 since only the significant information are used for recognition. In
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addition, the approximation can significantly improve the model’s accuracy. It
can be explained by the fact that when the model uses a challenge database such
as Calech101 or Caltech256 in which there are a lot of unimportant information
such as illumination and expression variations, it will be interesting to exploit
only the most important features in the images in order to make the recognition
easier and more robust where the accuracy is increased by 10 % using SVM while
by more than 13 % when using NN classifier. There are no related works yet that
approximate the S1 layer.

4.2 Combined Image-Based HMAX Using Separable Gabor Filters

In this approximation, all the combined images of the previous approximation
are convolved with 64 Gabor filters in a separable manner (G(x, y) = f(x)g(y)),
instead of just performing the 2-D convolution. In this case, the Gabor features
are computed using two 1-D convolutions corresponding to convolution by f(x)
in the x-direction and g(y) in the y-direction. Based on the definition of separable
2-D filters, the Gabor filters are parallel to the image axes (θ = kπ/2). In order
to be applied to an image along diagonal directions, they have been extended to
further work with θ = kπ/4. The main issue of these techniques is that they will
not work with any other desired direction. To handle this problem, Eq. (1) can
be rewritten using the isotropic version (γ = 1, circular) in the complex domain
[9]. In this case, u2 + v2 = (x cos θ + y sin θ)2 + (−x sin θ + y cos θ)2 = x2 + y2.

G(x, y)=e− x2+y2

2σ2 ×cos
(

2π

λ
(x cos(θ)+y sin(θ)

)

= Re(f(x)g(y))

where

f(x) = e− x2

2σ2 × eix cos(θ),

g(y) = e− y2

2σ2 × eiy sin(θ).

Finally, the convolution using this approximation can therefore be
expressed as:

IComb ∗ G(x, y) = IComb(x, y) ∗ f(x) ∗ g(y) (7)

By exploiting the separability of Gabor filters and convolving them with the
original image, the computational complexity is reduced from O(N2M2) to
O(tN2M) where t = 8 due to complex valued arithmetic. But since in this
approximation, the separable Gabor filters are convolved with the combined
image IComb, the complexity is being more reduced since only the significant
information are used for recognition. The accuracy is not increased by more
than 10.5 % for SVM (between 10.4 % and 10.5 %) while is increased by more
than 14 % for the NN classifier.
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Fig. 4. Scheme example of the C1 approximation.

4.3 Combined Image-Based HMAX Using Haar Wavelet Transform

The foundation of the discrete wavelet transform (DWT) goes back to 1976
when Crochiere et al. for the first time introduced sub-band coding [15]. In
1983, Burt defined a technique very similar to sub-band coding and named it
pyramidal coding which is also known as multi resolution analysis [16]. Later
in 1989, Vetterli and Le Gall made some improvements to the sub-band coding
scheme and removed the existing redundancy in the pyramidal coding scheme
[17]. DWT definition is based on sub-band coding and multi-resolution analysis.

In this approach, we add one more step to the Subsect. 4.1 in order to have a
total of 5 steps. Hence, to handle efficiently the condition variations, the wavelet
transform DWT of LEVEL1 decomposition can be used to segment the image
into four sub-bands: Low frequency component (LL), and High frequency com-
ponents (LH, HL and HH). Thus, to help the recognition process to fully focus
on important features, the LL sub-band has been considered ineffective with
illumination changes and expression variations.

4.4 Baseline Model Using Haar Wavelet Transform

In this approach, we only added the Multi-resolution approach step to the base-
line model.

5 C1 Layer Approximations

Concerning the C1 layer, a pooling between the S1 responses over scales within
each band is performed by simply taking the maximum response between them.
By testing what can be the result of the minimum pooling that has not been
exploited at this layer, it was noticed that all the minimum scales values are
very close to their corresponding maximum ones. Some of them are equal, other-
wise the most of minimum scales values are not smaller more than 6 or 7 %. As
such, it will be important to further consider some of the minimum scales values
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when taking the maximum pooling. In other words, some of the minimum scales
values can be exploited in addition to the maximum ones in order to increase
the model’s accuracy. But the remaining question to be solved is “How to take
advantage of minimum and maximum scales values at the same time”. So that
under a specific conditions, some of the minimum scales values can be embedded
into their corresponding maximum ones. The easiest way to achieve that is to
apply the embedding in the additive domain. A general scheme of this approxi-
mation is shown in Fig. 4. In this figure, two S1 image responses I1 and I2 of the
same orientation at the first band (band1) are considered and which are belong
to the filter scale 7 and 9, respectively. The circles shown within the images
correspond to their pixels. In step 1, the maximum pooling (max function) is
performed between I1 and I2. The pixels of the resulting image correspond to
the maximum scales values (shown with blue circles). In step 2, the minimum
pooling (min function) is performed between I1 and I2. The pixels of the result-
ing image correspond to the minimum scales values (shown with violet circles)
that are then embedded into their corresponding maximum ones in the addi-
tive domain under specific conditions as shown in step 3. In other words, each
minimum scale value is added into the maximum one that has the same (x, y)
coordinates. w is the weight of the embedding.

Embedding in the Additive Domain: This kind of embedding is very
straightforward to implement since the minimum scales values (after applying
the minimum pooling over scales within each band) can be directly embedded
into their corresponding maximum values by simply using the addition operator.

Generally, the embedding process at a particular pixel coordinate (x, y) in
the additive domain can be expressed as:

IEmbed(x, y) = maxscale(x, y) + w ∗ minscale(x, y), (8)

where IEmbed(x, y) represents the final result after the embedding process,
maxscale is the maximum scale value, minscale is the minimum scale value, and
w ∈ [0, 1] represents the weight of the embedding.

Two different conditions are considered to embed the minimum scales values
into their corresponding maximum ones:

Condition 1: At each band, after computing the maximum pooling over scales
of the same orientation, the minimum pooling is also performed and then all the
minimum scales values are embedded into their corresponding maximum ones.
In this case, w is set to 1.

Condition 2: Each minimum scale value is embedded if and only if its corre-
sponding maximum value belongs to the interval [0 % 5 %[. The values within
the interval specifies how much a maximum scale value is greater than its corre-
sponding minimum one. In fact, the interval [0 % 5 %[ is divided into two groups:
[0 % 2 %[ and [2 % 5 %[, and two distinct sub-conditions are thus considered:
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– Sub-condition 1: The embedding is performed by setting w to 1 for [0 % 2 %[
and 0.5 for [2 % 5 %[.

– Sub-condition 2: The embedding is performed by setting w to 0.5 for [0 % 2 %[
and 0.1 for [2 % 5 %[.

The accuracy is not increased by more than 1 % in all conditions when SVM
is used, while the opposite for NN classifier. However, the computational com-
plexity at this layer is slightly increased due to the embedding process.

6 S2 Layer Approximations

At the S2 layer, the focus is to enhance the manner by which all the prototypes
are selected during the feature learning stage. In the original model, P proto-
types are randomly selected from the training images at the C1 layer. If more
than P prototypes are used, the model’s accuracy will increase at the expense
of additional computational complexity. That is why our motivation is to learn
the same number of prototypes P but in an efficient way in order to decrease
the model’s false classification rate while keeping the same computational com-
plexity.

In order to achieve this, clustering is exploited, which is considered one of
the most important research areas in the field of data mining. It aims to divide
the data into groups, (clusters) in such a way that data of the same group are
similar and those in other groups are dissimilar. Clustering is considered useful
to obtain interesting patterns and structures. That is why, one of the existing
clustering algorithms, more specifically the Partitioning Around Medoid (PAM)
clustering algorithm [14] has been exploited in this approximation to generate
the prototypes.

Furthermore, one of the important issues to consider, is the redundancy of
some prototypes especially those selected from the homogeneous areas of the
image (prototypes’ pixels are being equal to zero). That is why, our contribu-
tion also aims to generate a non-redundant P prototypes and force the model
not to generate any unimportant prototype. Accordingly, each of the selected
prototypes will be important and aims to increase the model’s accuracy.

PAM is characterized by its robustness to the presence of noise and outliers.
Its complexity is defined by O(i(b − q)2) where i is the number of iterations, q
is the number of clusters, and b represents the total number of objects in the
data set.

To generate 2000 prototypes in a more efficient way and use them in our
model instead of the traditional ones, the PAM algorithm is performed and it
consists of 6 different steps:

Step 1 –5 medoids of 4 × 4 pixels at four orientations of each training category
(total of 30 images) from the total 102 categories are randomly initialized.
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Step 2 –For each category, the Frobenius distance between each of the C1
response of each image with all the selected medoids is then computed in order
to associate each data image to the closest medoid.

Step 3 –For a random cluster, a non-medoid image patch is randomly selected
in order to be swaped with the original medoid of the cluser in which the non-
medoid is selected.

Step 4 –steps 2 and 3 are repeated until the total cost of swapping becomes
greater than zero. The total cost of swapping can be defined as follows:

Costswapping = Current Total Cost − Past Total Cost

Step 5 –All the previous steps are also performed for all the other remaining
three sizes of the medoids (8 × 8, 12 × 12 and 16 × 16) in order to have a total
of 20 medoids in each category.

Step 6 –Finally, a total of 2040 medoids are being selected to be used as pro-
totypes. 10 prototypes are dropped from each size in order to end up with only
2000 prototypes.

This algorithm is complex since there are six steps to perform in order to generate
the prototypes. But in fact, the run of the HMAX model relies on two parts. The
first part is responsible to generate and reserve all the necessary prototypes by
only running the first two layers S1 and C1. The second part consists of running
the whole model and use the prototypes that have been generated and reserved
for the S2 layer. Interestingly, the complexity of the model depends only on
the second part, which means that the large complexity of our algorithm does
not affect the computational complexity of the model, more precisely, of the S2
layer. That is why, the computational complexity at the S2 layer of our model
remains O

(
PN2M2

)
, where P is the number of prototypes. By applying this

approximation, the accuracy of the model incerases by 0.68 % approximately
using the SVM classifier.

7 Experimental Results

The proposed optimizations at the S1, C1 and S2 layers were implemented using
MATLAB in order to evaluate their accuracy and computational complexity
using experimental simulations. The S1, C1 and S2 approximations were evalu-
ated using the Caltech101 database, which contains a total of 9,145 images split
between 101 distinct object categories in addition to a background category. All
the results of our approximations were the average of 3 independent runs. For
each run, the following steps were performed:

1. A set of 30 images are randomly chosen from each category for training, while
all the remaining images are used for testing. All the images are normalized
to 140 pixels in height and the width is rescaled accordingly so that the image
aspect ratio is preserved.
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Table 1. Simulation results for SVM and NN on face category.

Positive training SVM NN

50 92.325 % 52.903 %

100 95.678 % 79.578 %

150 96.656 % 88.240 %

200 97.018 % 90.658 %

250 97.075 % 92.181 %

300 97.165 % 92.634 %

350 96.019 % 91.480 %

400 94.558 % 87.649 %
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Fig. 5. SVM and NN accuracies on face category.

2. C1 sub-sampling ranges do not overlap in scales.
3. The prototypes are learned at random scales and positions. They are

extracted from all the eight bands.
4. C2 vectors are built using the training set.
5. Training applied using both SVM and Nearest-Neighbor classifiers.
6. C2 vectors for the test set are built, and then the test images are classified.

7.1 Performance of SVM and NN

The performance of both SVM and NN are performed on the face category
extracted from the caltech101 database and which contains 435 face images.

The results show that the accuracy decreases when the number of training
becomes greater than 300. This is expected because the data becomes unbal-
anced.

The images were rescaled to 160 × 160 pixels, the C1 sub-sampling ranges
overlap in scale (C1Overlap = 2) and the prototypes are chosen only from Bands
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1 and 2. The classifiers were trained with n = 50, 100, 150, 200, 250, 300, 350 and
400 positive examples and 50 negative examples from the background class, while
they are tested with all the remaining positive examples and 50 examples from
the negative set as shown in Table 1 and Fig. 5. 1000 prototypes (250 patches)
× (4 sizes) are used in the S2 layer.

7.2 Evaluations at the S1 Layer - Part 1

At this layer, the computational complexity and correct classification rates (accu-
racies) for each of the proposed approximations (Approx) are compared to the
baseline model.

– Approx1: Combined Image-based HMAX using 2-D Gabor filters.
– Approx2: Combined Image-based HMAX using separable Gabor filters.

Interestingly, to avoid any confusion, the performances of the two approaches
“Combined Image Based HMAX using Haar Wavelet Transform” and “Baseline
model using Haar Wavelet Transform” are tested in an independent subsection
(see Subsect. 7.3).

In order to compute the speed of the approximations at this layer, the total
time complexity of the S1 layer is measured on a specific face image from the
face category. All the evaluations were done on a core i7 2.4 GHZ machine.
The simulations were repeated five times. Figure 6 illustrates an average of the
results. It shows that both Approx1 and Approx2 are faster than the baseline
(blue curve) for all the tested image sizes. It has been noticed that for an image of
size between 100 × 100 and 160× 160, Approx1 is always faster than Approx2.
For example, Approx1 is faster than Approx2 by 3.23 % for an image of size
100× 100.

For other image sizes greater than or equal to 160× 160, Approx2 always
shows lower timing than Approx1. For example, for an image of size 160× 160,
Approx1 is faster than the baseline by 2.95 % while by 3.42 % for Approx2.
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Fig. 6. Timing comparison (in sec).
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Table 2. Classification accuracies of Approx1 approximation.

Approx1 Classifier c = 0.25 c = 0.75

α = 0.25 SVM 34.36 % 33.59 %

NN 20.28 % 20.28

α = 0.5 SVM 45.20 % 45.16 %

NN 31.23 % 31.23

α = 0.75 SVM 49.02% 48.27 %

NN 35.01% 34.45 %

α = 1 SVM 47.74 % 47.74 %

NN 31.36 % 31.36 %

α = 1.25 SVM 39.35 % 40.74

NN 23.99 % 24.08 %
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Fig. 7. Approx1 accuracies under different values of α and c (Color figure online).

For an image of size 256 × 256, Approx1 is faster than the baseline by 6.29 %
while by 12.56 % for Approx2.

In order to assess the correct classification rates, both SVM and NN classifiers
were used. The average accuracies of Approx1 under different values of α and c
are shown in Table 2. From all the following experiments, 2000 prototypes (500
patches) × (4 sizes) are used and all the images were rescaled to 140 in height.
Recall that C1 sub-sampling ranges do not overlap in scales and the prototypes
are extracted from all the eight bands. The performance of the original model
reaches 39 % and 21.2 % when using 30 training examples per class averaged over
3 repetitions under SVM and NN, respectively. Table 2 proves our significant
contribution at the S1 layer especially for α = 0.75 and c = 0.25 where the
accuracy is increased by 10.02 % and 13.811 % using SVM and NN, respectively.
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Fig. 8. Timing comparison (in sec).

Figure 7 illustrates the results shown in Table 2. It shows 4 different curves.
The red and blue solid curves represent the accuracy values for c = 0.25 under
SVM and NN, respectively.

While the red and blue dashed curves are for c = 0.75 under SVM and NN,
respectively. Finally, the separability of Gabor filters is exploited and applied to
the combined image with α = 0.75 and c = 0.25. Approx2 shows an accuracy
equal to 49.471% and 35.372% for SVM and NN, respectively.

7.3 Evaluations at the S1 Layer - Part 2

In this subsection, we aim to test the performance of the two approaches “Com-
bined Image-Based HMAX using Haar Wavelet Transform” and “Baseline Model
using Haar Wavelet Transform” in terms of speed and correct classification rates.
To facilitate the notations, we name the first approach by “Approach1” while
the second by “Approach2”.

– Approach1: Combined Image-Based HMAX using Haar Wavelet Transform.
– Approach2: Baseline Model using Haar Wavelet Transform.

In order to compute the speed of the two approaches, we perform exactly
the same computations as we did in Fig. 6. In other words, we just added the
two approaches to Fig. 6 without any modification to the inputs of the model in
order to get Fig. 8 that contains a total of 5 curves.

The simulations were also repeated five times and Fig. 8 illustrates the aver-
age of the results. It shows that both Approach1 and Approach2 are significantly
faster than the baseline, Approx1 and Approx2 for all the tested images. From
Fig. 8, we also notice that Approach1 is always approximately faster than App-
roach2. For more details about the numerical results of Fig. 8, refer to Table 3.

By normalizing the images to 140 pixels in height where the width is rescaled
accordingly so that the image aspect ratio is preserved, some images become too
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Table 3. Timing comparison (in sec) for all the proposed approximations at the S1
layer versus the baseline model.

Size Baseline Approx1 Approx2 Approach1 Approach2

100 × 100 0.170 0.136 0.168 0.115 0.124

160 × 160 0.242 0.213 0.208 0.128 0.135

256 × 256 0.427 0.364 0.301 0.189 0.198

512 × 512 1.476 1.138 1.009 0.450 0.465

640 × 480 1.584 1.235 1.156 0.465 0.483

Fig. 9. Classification accuracies.

small after applying Level1 Haar wavelet decomposition. Hence, choosing the pro-
totypes from all bands becomes impossible. That is why, our contribution is to
rescale only in this part all the images to 160 × 160. As in Subsect. 7.2, the correct
classification rates are measured in the same way. The performance of the original
model reaches 51.1 % and 33.1 % when using 30 training examples per classaver-
aged over 3 repetitions under SVM and NN, respectively. Figure 9 (a) shows that
by using the SVM classifier, Approach1 is the best and that Approach2 is only
better than the baseline by 1.35 %. Approach2 is worse than (Approx1, Approx2
and Approach1) by (3.07 %, 3.49 % and 4.29 %), respectively.

Fig. 9(b) shows that by using the NN classifier instead of SVM, Approx2
becomes the best and Approach2 the worst. Approx2 reaches 42.24 % while App-
roach1 and Approach2 reach 38.89 % and 32.89 %, respectively.
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Fig. 10. Average accuracies of C1 approximations (Color figure online).

Table 4. Accuracy of S2 approximation.

Approximation SVM

Baseline 39 %

PAM 39.68 % (+0.68 %)

7.4 Evaluations at the C1 Layer

Figure 10 shows the average accuracies of the SVM (blue x points) and NN (red
x points) on several C1 optimization options (Opt). The accuracy of the model
is increased a little bit when three cases of the additive method are applied. For
example, using SVM, the accuracy is increased by 0.577 %, 0.607 %, 0.843 % on
Opt1, Opt2 and Opt3, respectively. On the other hand, the increase is 0.846 %,
1.88 %, 1.85 % using NN.

– Opt1: Embedding all pixels (α = 1).
– Opt2: [0%, 2%[, (α = 0.5); [2%, 5%[, (α = 0.1)
– Opt3: [0%, 2%[, (α = 1); [2%, 5%[, (α = 0.5)

7.5 Evaluations at the S2 Layer

Table 4 shows the average accuracy of the SVM classifier based on the S2 approx-
imation.
This approximation has a big advantage on the model since the selected proto-
types are non-redundant and generated in more intelligent way. Therefore, each
prototype serves to slightly increase the accuracy. The accuracy of the model is
increased approximately by 0.68 %.
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7.6 Combined Classification Accuracies

Figure 11 shows the average accuracies of SVM on the combination of the approx-
imations “Approx2” + “Opt3” + “PAM”. Our model shows an accuracy equal
to 51 % when using only 2000 prototypes while it shows 53.8 % when using higher
number of protoypes (4080) as used in [1,8,10,11].
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Fig. 11. The accuracies of the final models.

8 Discussion and Future Work

In this work, the complexity of all the five different layers of the original model
of object recognition in the visual cortex, HMAX, is presented. Different approx-
imations were added to the first three layers S1, C1 and S2.

The results have shown that removing all unimportant information such as
illumination, expression variations and occlusions, to be a fruitful approach to
improving performance. The idea behind separability of Gabor filters has been
also exploited in order to be applied on the combined images generated after
keeping only the important features for recognition. The change of the main
concept at the C1 layer is further applied by exploiting the advantage of some of
the minimum scales values and using them to be embedded into the extracted
maximum scales values. The accuracy was slightly increased when the embedding
process has been applied using the additive method. Our model serves also to
always use an intelligent version of selected prototypes at the S2 layer in order
to remove all the possibilities of having an unimportant prototype aiming to
decrease the model’s accuracy.

As for future enhancements, a natural extension would be to adapt our work
to the HMAX model in color mode. In addition, several new approximations will
be applied and tested on more challenging databases.
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Abstract. Biologically inspired computational models of visual process-
ing often utilize conventional frame-based cameras for data acquisition.
Instead, the Dynamic Vision Sensor (DVS) emulates the main processing
sequence of the mammalian retina and generates spike-trains to encode
temporal changes in the luminance distribution of a visual scene. Based
on such sparse input representation we propose neural mechanisms for
initial motion estimation and integration functionally related to the dor-
sal stream in the visual cortical hierarchy. We adapt the spatio-temporal
filtering scheme as originally suggested by Adelson and Bergen to make it
consistent with the input representation generated by the DVS. In order
to regulate the overall activation of single neurons against a pool of
neighboring cells, we incorporate a competitive stage that operates upon
the spatial as well as the feature domain. The impact of such normaliza-
tion stage is evaluated using information theoretic measures. Results of
optical flow estimation were analyzed using synthetic ground truth data.

Keywords: Event-based vision · Optic flow · Neuromorphic sensor ·
Neural model · Motion integration

1 Introduction

A frame-based imager transmits moving scenes into a series of consecutive frames.
These frames are constructed at a fixed time rate, which generates an enormous
amount of redundant information. In contrast, a Dynamic Vision Sensor (DVS)
(see [1,2]) reduces this redundancy using a new technology inspired by visual
systems. The functionality of this sensor is similar to the biological retina, where
a stream of spike events are generated as a polarity format ON (+1) or OFF
(−1) if a positive or negative luminance change is detected. Luminances that do
not change over time, on the other hand, do not produce any output, and as a
consequence, any such redundant information sampled by frame-based cameras
is reduced.

A DVS has high temporal resolution, where the events are generated asyn-
chronously and sent out almost instantaneously on the address bus. Thus, subtle
c© Springer International Publishing Switzerland 2016
J. Braz et al. (Eds.): VISIGRAPP 2015, CCIS 598, pp. 396–415, 2016.
DOI: 10.1007/978-3-319-29971-6 21
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and fast motions can be detected. In addition, a DVS has low latency and a large
dynamic range due to the pixels locally responding to relative changes in inten-
sity. A DVS’s ability to produce an event at 1 μs time precision and a latency
of 15 μs with bright illumination were illustrated in [3].

The new sensor technology has led to several recent applications in many
fields to exploit the advantages of DVSs compared with traditional frame-based
imagers, where several application-oriented studies have capitalized on those fea-
tures. Such works include [1,4], where Litzenberger and co-authors introduced
an algorithm that used the silicon retina imager to estimate vehicle speed based
on the slope of the events cloud. Delbruck and co-authors presented a hybrid
neuromorphic procedural system for object tracking via an event-driven clus-
ter tracker algorithm. The authors showed how a moving ball can be detected,
tracked and successfully blocked by a robot goalie despite a low contrast object
and complex background. The event-cluster algorithm was introduced by [5,6],
where a first study considered a real world application, namely vehicle tracking
for traffic monitoring in real time, and a second study addressed microrobotics
tracking.

In our previous work reported in [7], we have proposed a bio-inspired model
using the energy model of [8]. In this paper, we extend the previous work by
introducing a new set of temporal filters which are compatible with the vision
sensor functionality and accurately transcribed the biphasic temporal filters that
were suggested by Adelson-Bergen [8]. To achieve balanced activities of individ-
ual cells against the neighborhood activities, a normalization process is carried
out. Here, we investigate the impact of such normalization process to enhance
the initial responses of filtering stage. We tested our model using different kinds
of stimuli that were moved via translatory and rotatory motions. The results
highlight an accurate flow estimation compared with synthetic ground truth. In
order to show the robustness of our model, we examined the model by prob-
ing it with synthetically generated ground-truth stimuli and realistic complex
motions, e.g. biological motions and a bouncing ball, with satisfactory results.
The following sections details our methodology and results.

2 Previous Models

Motion estimation is an advanced topic in automated visual processing and has
been investigated widely using conventional cameras (see, e.g., [9–12]). Few stud-
ies have been published using the new vision sensor technology of an address-
event silicon retina. Benosman and co-authors [13] implemented the energy
minimization method introduced in [14] to calculate motion flow using an event-
based retina. Since the vision sensor generates a stream of events (ON or OFF)
and does not provide gray levels, the authors suggested using pixel activities by
integrating events within a short temporal window. Gradients were estimated
by comparing active pixels over one temporal window to calculate the spatial
gradient, and two temporal windows to calculate the temporal gradient. A least
squares error minimization technique was used to calculate the local optic flow
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based on such pixel neighborhoods. Benosman and co-authors showed beneficial
results, however, their method to approximate local gradients of the luminance
function from event-sequences has its limitations and in some cases leads to
inconclusive results (see [15]).

Recently [16] presented an algorithm for motion estimation where the authors
utilized spatiotemporal filters of the type suggested by findings of [17] to esti-
mate a local motion flow calculated for each event occurring in the scene. The
spatiotemporal filters were implemented over a spatial buffer of (11×11) which
stores the timestamp of the events. This method is characterized as a neuro-
science approach and showed adequate results. In [18], the authors systematically
investigated the implications of event based sensing in the visual flow estimation.
They discussed different principal approaches for motion estimation and showed
that gradient-based methods for local motion suffer from the sparse encoding
in address-event representations (AER). While approaches exploiting the local
plane-like structure of the event cloud are shown to be well suited.

The motion estimation using address event representation thus requires fur-
ther investigation and development. Our model differs from these methods in the
initial process of motion estimation. We propose neural mechanisms for motion
estimation which are inspired by the dorsal stream of the visual system and are
consistent with the vision sensor functionality. Here, we adapted the spatiotem-
poral filtering scheme as originally suggested by Adelson and Bergen [8] to be
consistent with the functionality of AER principles. In addition, we incorporate
normalization responses in the spatial domain as well as in feature domain to
regulate the overall activity of single neuron against the neighboring activations.

3 Methodology

3.1 Initial Input Representation from ON/OFF Events

High temporal resolution, low latency and large dynamic range visual sensing
are key features of the address-event-representation (AER) principle, where each
pixel of the vision sensor responds independently and almost instantaneously
translates local changes in the intensity (log I) into events (ON or OFF), see
Fig. 1. This principle is used in our study to profit from the advantage of the
event-based technology instead of using standard frame-based camera technol-
ogy. Since a single event in spatiotemporal domain yields an ambiguity for motion
estimation using spatiotemporal filtering, pixel activities, ON (+1) and OFF
(−1), are accumulated during a temporal window. The accumulated ON/OFF
events are denoted by

e(p, t) = eon(p, t) + eoff (p, t), (1)

where eon(p, t) and eoff (p, t) are ON and OFF events, respectively, which
occurred at position p = (x, y) and time t.
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Fig. 1. (a) DVS sensor. (b) Event stream which is represented as a sequence of events
e at a position p and time t. (c) Local changes in intensity (log I) excite (ON or
OFF) events. (d) eon and eoff identify the event activity (+1) ON and (−1) OFF,
respectively.

3.2 Detection of Motion Energy from Event Input

Motion estimation using spatiotemporal filters emulates motion detection process-
ing of the primary visual cortex [8], where the space-time filters are 3D and can
here be decomposed into separable products of two 2D spatial and two 1D tem-
poral kernels. The two spatial filters consist of different phases (even and odd)
while the temporal filters consist of two different temporal integration windows
(fast and slow). The spatial receptive fields (RFs) of odd and even filters can
be implemented using Gabor functions, which provide a close description of the
receptive fields in primary visual cortex area (V1) [19]. We thus used these func-
tions to build even and odd spatial filters as in Eqs. (2) and (3), respectively
namely

Feven(p, θk, fs) =
1

2πσ2
s

· exp(− x̆2 + y̆2

2σ2
s

) · cos(2πfsςp), (2)

Fodd(p, θk, fs) =
1

2πσ2
s

· exp(− x̆2 + y̆2

2σ2
s

) · sin(2πfsςp), (3)

where
(

x̌
y̌

)
=

(
cosθk −sinθk

sinθk cosθk

)
·
(

x
y

)
, θk is the spatial filter orientation with

N different orientations where k = {1, 2, 3...N}, σs is the standard deviation of

the spatial filters and fs represents the spatial frequency tuning, ς =
(

cosθk

−sinθk

)
,

the index p represents the spatial location p = (x, y).
In the model of [8] the authors suggested to utilize temporal gamma functions

of different duration in order to accomplish temporal smoothing and differenti-
ation, leading to a temporally biphasic response shape. In order to transcribe
this functionality to the AER output of the sensor, we make use of the following
approximation: The biphasic Adelson-Bergen temporal filters can be decomposed
into a convolution of numerical difference kernel (to approximate a first-order
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derivative operation) with a temporal smoothing filter. The event-based sensor
already operates by generating discrete events based on changes, i.e. temporal
derivatives, in the input signal. For that reason, we employ temporal smoothing
filters which are calculated from the integral of Adelson-Bergen temporal filters
(f(t) =

∫
(kt)2 · exp(−kt2) · [1/n! − (kt)2/(n + 2)!]) and convolve them with the

input stream of events to obtain scaled versions of temporally smoothed deriv-
atives of the input luminance function. To simplify the integral operation, we
suggest to reconstruct Adelson-Bergen gamma functions by combining two tem-
porally offset Gaussian functions. The slow and fast temporal filters are thus
given as

gslow,fast(t) = [Λ1(t) − Λ2(t)] /c, (4)

Λ1,2(t) = 1/(σ1,2

√
2π) · exp(−(t − μ1,2)2/(2σ2

1,2)) (5)

Λ1,2 represent Gaussian functions that are parametrized by the standard
deviations (σ1,2) and mean values (μ1,2), the symbol c denotes a scalar factor of
Gaussian combination to closely resemble the shape of the Adelson-Bergen tem-
poral filters. The results are scaled versions of temporally smoothed derivatives
of the input luminance function as suggested by [8]. We chose σ1 = 1, μ1 = 2.5,
σ2 = 2, μ2 = 7, c = 2.6 to generate the fast temporal filter and σ1 = 1.3, μ1 = 4,
σ2 = 2.3, μ2 = 9.2, c = 3.1 to generate the slow temporal filter, see Fig. 2.
Subsequently, the smoothing temporal filters are calculated by

T slow,fast(t) =
1∫ ∞

0
(H1 − H2)dt

· (H1 − H2)(t), (6)

H1 =
[
1
2
(1 + erf

(
(t − μ1)
σ1

√
2

)]
/c, (7)

H2 =
[
1
2
(1 + erf

(
(t − μ2)
σ2

√
2

)]
/c. (8)

The slow and fast temporal filters (T slow,fast(t)) are scaled to 1 to prevent
any biases in calculating responses.

Figure 3 (a) and (b) show the spatial and temporal filters, respectively. The
spatiotemporal separable responses are calculated according to the scheme pro-
posed in [8]. The products of two spatial and two temporal filters responses are
shown in the first row of Fig. 3 (c). These responses are combined in a linear
fashion to get the oriented selectivity as shown in the second row of Fig. 3 (c).
The oriented linear combinations are denoted by

F v1
a (p, θk, fs, t) = Feven(p, θk, fs) · Tslow(t) + Fodd(p, θk, fs) · Tfast(t), (9)

F v1
b (p, θk, fs, t) = Feven(p, θk, fs) · Tfast(t) − Fodd(p, θk, fs) · Tslow(t). (10)

The spatiotemporal response for a stream of events input e can be achieved
through nonlinear combinations of contrast invariant responses:

rv1
θ = [F v1

a ∗ e]2 + [F v1
b ∗ e]2, (11)
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where ∗ indicates convolution, θ indicates motion directions (left vs. right
relative to the orientation axis). The local spatial coordinate and feature selec-
tivities are omitted for better readability.
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Fig. 2. Fast and slow temporal filters. Dashed lines show Adelson-Bergen (A&B) fil-
ters and solid lines show the approximated shapes (Approx.) derived by two shifted
Gaussian envelopes as filters.
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Fig. 3. Spatiotemporal filter construction. (a) Spatial filters. (b) Temporal filters. (c)
The first row represents the products of two spatial and two temporal filters. The
second row represents the sum and difference of the spatio-temporal product filters.
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3.3 Response Normalization

The activity in neurons show significant nonlinearities depending on spatio-
temporal activity distribution in the space-feature domain surrounding a target
cell [20]. Such response nonlinearities have been demonstrated in the LGN, early
visual cortex (area V1), and beyond. In theoretical studies (e.g. [21]) it has been
proposed that such compression of stimulus responses can be achieved through
the normalization of the target cell response defined by the weighted integration
of activities in a neighborhood defined over the space-feature domain of a target
cell. In other words, the normalization operation utilizes contextual information
from a local neighborhood that is defined in space as well as feature domains
relevant for the current computation. Such a normalization can be generated at
the neuronal level by divisive, or shunting, inhibition (see [22–24]).

Given the activity of a neuron (defined by its membrane potential) the rate
of change can be characterized by the following rate equation [25]

τ
dv (t)

dt
= −A · v (t) + (B − C · v (t)) · netex − (D + E · v (t)) · netin, (12)

given A representing the passive leakage, B and D are parameters to denote the
saturation potentials (relative to C and E, respectively), and netex and netin
denote generic excitatory and inhibitory inputs to the target cell and impose
the conductances of the membrane potential. In order to achieve balanced cell
activations against the pool of neighboring cells, a normalization is calculated,
following [21,26]. We employ a spatial weighting function Λpool

σ which realizes
a distance-dependent weighting characteristics, e.g., Gaussian. The size of this
neighborhood function is larger than the receptive field, or kernel, size of the
cells under consideration. After normalization of activations, the responses are
guaranteed to be bounded within a local activity range. In addition, a spectral
whitening of the local response distribution occurs [27].

We realized a slightly simplified version of the scheme described in [21] and
solve the normalization interaction at equilibrium, namely evaluating the steady-
state response for dv(t)

dt = 0. Ever further, we set C = 1 and D = 0 in Eq. (12) to
define shunting inhibition, and B = E = 1 to scale the response levels accordingly.
As a consequence, we get the steady state response for Eq. (12) which reads

v∞ =
netex

A + netex + netin
. (13)

We normalize the model responses rv1 in the spatial domain using an inte-
gration field that weights the activities in the spatial neighborhood of the target.
We propose a spatial weight fall-off in accordance to a Gaussian weighting func-
tion. The motion selective responses are defined in direction space relative to
the local contrast orientation θ of the spatial filter kernels used. We take the
direction feature space into account as well by calculating the average activity
over all directions. In all, we can denote the overall pool activation by

rpool(p) =
1

2N

∑

θ

{
rv1
θ ∗ Λσ

}
p

, (14)
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with θ denoting motion direction, ′∗′ denotes the (spatial) convolution oper-
ator, p = (x, y) represents the spatial position of the cell, N is the number of
contrast filter orientations and Λ is the weighting function of the spatial pooling
operation. The latter is parametrized by the parameter σ to control the width
of the spatial extent. The resulting normalized response is finally calculated by

rv1nor
θ (p) =

rv1
θ (p)

A + rv1
θ (p) + rpool(p)

, (15)

A denotes the passive decay of the dynamic mechanism and prevents from zero
division in the steady-state.

4 Experimental Setup and Results

4.1 Ground Truth Data

To evaluate our method, a set of different stimuli with translatory and rotational
motions were recorded using the DVS128 sensor. The rotational and translatory
motions were generated using linear and rotational actuators, in which the linear
actuator’s speed is 20 cm/sec and the rotational actuator’s speed is 5.23 rad/sec.
The DVS sensor was mounted on a tripod and placed 23 cm away from the
stimulus.

Table 1. Parameters used in our model.

Definition variable value

Spatial filter frequency fs 0.25

Motion directions θ 0◦,45◦,90◦,135◦

Standard deviation of spatial filters σs 2 pixel

Number of motion directions N 4

Standard deviation of Gaussian function normalization σ 15 pixel

leakage activities A 0.01

The model parameters used for the illustrated results are shown in Table 1.
The estimated results of the optic flow were based on the summed responses
of r which generates a confidence for the motion direction (ue(p) ve(p))T =∑

θ r(p, θ, fs, t) · (cos θ − sin θ)T . Figures 4 and 5 present the translatory and
rotational motion results respectively, where the stimulus image, ON/OFF events
and ground truth are presented in the first row. The second row shows the
estimated flow and the direction selectivity which is depicted in polar plot. In
order to measure the accuracy of our approach, we calculated the angular error
Φ(p) = cos−1(Ve(p) ·Vg(p))/(|Ve(p)||Vg(p)|), where Ve(p)T = (ue(p), ve(p))
and Vg(p)T = (ug(p), vg(p)) represent the estimated and ground truth flow
vectors at position p = (x, y), respectively. The error values in the range of
[0◦, 180◦] are depicted as a histogram which is shown in the third column.
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Fig. 4. Processing results of translatory motion stimuli, straight-bar and star. The
first row of each stimulus contains the input image, the ON/OFF accumulated events
(3 msec.) and a sketch of the ground truth optical flow field. The second row shows
the estimated motion, the polar plot of the direction selectivity and the histogram of
the angular error between the estimated motion and their respective ground truth. In
the star stimulus, the smaller polar plot represents the direction selectivity at corner
and bar contours while the larger polar plot represents the direction selectivity of the
whole stimulus. The abscissa of the histogram represents the binning in the range of
the angular errors Φ that are combined into single bins [θ−7.5◦, θ+7.5◦). The ordinate
represents the number of pixels.

In case of translatory motion, we used two stimuli: a straight bar and a star
in which different directions were selected to move these stimuli. The straight
bar stimulus was moved to the left while the star was moved vertically up the
field of view. For the straight bar, the polar plot shows that the spatiotemporal
filters are selective to the right direction (0◦). According to the histogram, the
angular error between the estimated flow and the ground truth flow reveals that
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Fig. 5. Processing results of rotational motion stimuli, cross and half-circle. The first
row of each stimulus contains the input image, the ON/OFF accumulated events
(3 msec.) and the ground truth optical flow field. The second row represents the esti-
mated motion, the polar plot of the direction selectivity and the histogram of the
angular error between the estimated motion and their respective ground truth. The
abscissa of the histogram represents the binning in the range of the angular errors
Φ that are combined into single bins [θ − 7.5◦, θ + 7.5◦). The ordinate represents the
number of pixels.

motions were estimated with correct directions in which the error values are
accumulated within a small range of [0◦, 15◦). In the star stimulus, different
slanted bars are connected to form the star shape. Since each bar generates
motion components that suffer locally from the aperture problem the initial
estimation and subsequent integration impose a challenge. The smaller polar plot
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Fig. 6. Estimated motion of bouncing ball: The first row depicts the experimental
setup and samples of ball events. The second row shows the optic flow for the ball
path. (a) Motion estimation using temporal window of 20msec. (b) Motion estimation
using temporal window of 10 msec. (c) Motion estimation using temporal window of
3 msec. The second row shows the histograms of the estimated directions where the
abscissa represents the binning in the rang of the direction θ that are combined into
one bin [θ − 18◦, θ + 18◦), and the ordinate represents the number of the events.

shows the direction selectivity at a particular position (corner and bar contours)
while the larger polar plot shows the whole direction selectivity. Although an
ambiguous motion was estimated along bar contours, real motion was estimated
at the corner regions (aperture problem, see Sect. 5). The aperture problem can
be resolved via the feedback of larger integration receptive field MT cells (for
more details see [28]). The angular error histogram showed some spurious flow
in 45◦ due to the small slanted lines. Moreover, a smaller spurious flow occurred
Φ > 60◦ due to the low resolution of DVS (128×128) which gives rise to spatial
aliasing.

In the case of rotational motion, again two stimuli were used: cross and half-
circle. These stimuli were rotated clockwise. In the cross stimulus, the motion
estimation showed a flow pattern on the stimulus blades in which motion was esti-
mated with preferred direction of (0◦, 90◦, 180◦, 270◦). In the half-circle stimulus,
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the results showed a flow motion over the stimulus diagonal along the elongated
contrast edge contour. Here, the direction selectivity of the spatiotemporal filters
is tuned to 290◦ and 110◦. In both stimuli, the results revealed appropriate flow
estimation compared with the ground truth of the clockwise rotation in which
most of the angular error was sandwiched between 15◦ and 30◦.

4.2 Complex Realistic Movements

To demonstrate the usefulness of our model under realistic acquisition conditions,
we extended our evaluation to include bouncing ball and articulated biological
motions, Figs. 6 and 7. In the case of the bouncing ball, different projected veloc-
ities occur since the ball moves from a distant position towards the camera. This
leads to the additional challenge for our model to estimate the motion when dif-
ferent velocities occur. We tested the influence of the temporal window size of
events integration on the motion estimation. We used three different window sizes,
20 msec, 10 msec and 3 msec, in which the first accumulated temporal period is
equivalent to the typical sampling rate of a conventional frame-based imager.

Figure 6 shows that the motion estimation can be improved with decreasing
the temporal window size. This referred to the higher sampling rate interval
can capture small number of events and instantaneously transcribe their motion
in contrast to the larger interval window that integrates more events over time
space which leads to lose the intermediate motion details. In general, the result
of smaller number of events acquisition, Fig. 6 (c), shows a proper estimation of
flow direction comparing with other sampling cases.

Our model was tested using articulated movements in which real body
motions are represented. Figure 7 shows two actions (jumping-jack and two
hands waving) of an actor, where different movements and speeds were gen-
erated from body and limbs motions. The estimated motions for the two actions
have been determined using a sampling rate of 3msec in which flow motions were
obtained.

a b

Fig. 7. Estimated flow of articulated motion of an actor. (a) Jumping-jack. (b) Two
hands waving. The first column of each action represents original image input and the
integrated ON/OFF events. The second column of each action represent the estimated
motions.
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5 Aperture Problem

Neurons in the primary visual cortical area V1 that are selective to spatio-
temporal stimulus features have small RFs, or filter sizes. Consequently, they
can only detect local motion components that occur within their RFs. That
means that along elongated contrasts only ambiguous motion information can
be detected locally. It is the normal flow component that can be measured along
the local contrast gradient of the luminance function (aperture problem). In our
test scenarios this has been investigated with input shown in Fig. 4. The aperture
problem can be resolved either by utilizing local feature responses at corners,
line ends, or junctions that belong to a single surface to be tracked. Another
approach is to integrate several normal flow estimates at distant locations.

The integration strategy might be either based on vector integration (VA)
[29] or on the intersection-of-constraints (IOC) mechanism, as suggested by [30].
The latter approach can be demonstrated to calculate the exact movement of,
e.g., two overlapping gratings which move translatory behind a circular aperture
in distinct directions (plaid), see Fig. 8. If the two gratings have same contrast
and spatial frequency the plaid appears as a single pattern that moves in the
direction of the intersecting normal flow constraint lines defined by the compo-
nent gratings. This direction correspond to the feature motions generated by the
grating intersections.

Fig. 8. Aperture problem and the velocity-space diagram of the IOC. (a) Elongated
bar moves to the right direction, the circles represent the detector cells at the corner
and center of the bar. (b) Single grating and a large family of motions identified by
one constraint line (the dash line). (c) Plaid composes by two gratings and the IOC
prediction for the motion of the plaid.

The IOC method could be used here as well by utilizing a voting scheme that
is initialized by the normal flow components derived from the spatio-temporal
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filter responses as described above (in Sect. 3.2). Since the spatio-temporal
weights of the filters already take into account the uncertainty of the detec-
tion and estimation process the IOC approach could be formulated within the
Bayesian framework [31]. To implement this mechanism in our model, we could
combine the local estimated motions from spatio-temporal filters and the like-
lihoods for the corresponding constraint lines. The IOC solution would then
be the maximum likelihood response of the multiplied constraint component
likelihoods. The integration of normal flow motions in the IOC is valid under
the assumption that the contributions from component flows are generated by
translatory motions. For rotational flows of an extended object, such as the ones
shown in Fig. 5, the IOC (as well as the VA) does not yield the correct integrated
motion estimation (compare [32]). The high temporal of input events delivered
by the DVS sensor leads to motion components that can be considered as to
mainly represent motion components tangential to a rotational sweep. However,
since those local measures are noisy and need to be integrated over a tempo-
ral window, the rotational components become more prominent and gradually
deteriorate the IOC solution.

In order to account for integrating local motion responses of unknown com-
ponents and compositions, we further pursue a biologically inspired motion inte-
gration which is motivated by our own previous work reported in [26,28]. In this
framework we utilize model mechanisms of cortical area MT that integrate ini-
tial V1 cell responses. The RF of cells in MT are larger in their size by up to an
order of magnitude. In other words, such cells operate at a much larger spatial
context to properly integrate localized responses, similar to the VA method. As
a consequence, localized feature responses at line ends or corners lead to stronger
responses in the integration process. In our model, this has been accomplished
by weighting the responses of area V1 (Sect. 3.2) with larger RFs via area MT
(V1:MT 1:3). This integration process can be denoted by

rMT
θ,p = rv1nor

θ,p ∗ ΛσMT
, (16)

where ′∗′ defines the (spatial) convolution operator, θ denoting motion direc-
tion, p = (x, y) represents the spatial position of the cell. Λ is Gaussian weighting
function of the spatial pooling operation. The latter is parametrized by the para-
meter σMT to denote the width of the spatial extent. Figure 9 shows how the
aperture problem of star stimulus in Fig. 4 (star) is reduced after integrating the
localize estimation of the spatiotemporal filters. Here, the direction selectivity
in area MT, Fig. 9, is more tuned toward the correct direction (90◦) comparing
with Fig. 4 (star). According to the histograms, the error values of Fig. 9 are
accumulated at range of [0◦, 15◦) which refers that motion was estimated more
accurately than in Fig. 4 (star).

In order to investigate the impact of the normalization process (Sect.3.3) on
motion estimation and aperture problem, a slanted bar stimulus (45◦) was used
as shown in Fig. 10. Many studies (see e.g., [33,34]) showed that firing strength of
some visual cortex cells is decreased with increasing the length of the bar which is
centered on its RF. This property is called end-stopping. In [35], the effect of the
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Fig. 9. Motion integration of star stimulus. The localize responses of the spatiotem-
poral filters are integrated with larger RFs (V1:MT 1:3). The size of the MT cell is
depicted over the accumulated events. The direction selectivity is depicted via polar
plots in which the larger polar plot shows the direction selectivity of the whole responses
while the smaller polar plot shows the direction selectivity at corner and bar contours.
The histogram demonstrates the angular error between the estimated motion and the
ground truth of upward motion direction. The abscissa of the histogram represents
the binning in the range of the angular errors Φ which are combined into one bar
[θ − 7.5◦, θ + 7.5◦), and the ordinate represents the number of events.

end-stopping property was emulated using an interaction between a center unit
and six surround units and immediately after the filtering with the separated
spatial filters only. In our model, we simulate the property of the end-stopping by
a uniform surround integration that operates upon the weighted activities in the
spatial and feature domain (see Sect. 3.3). To reduce the responses along the bar
contour compared with the responses at the endpoints, we set the parameters
A and E of Eq. 12 to 1 and 10, respectively. In Fig. 10, the bar was moved in
a direction that differs from its normal flow as highlighted in the top-left of
the input stimulus. Here, the responses of the filtering stage (Sect. 3.2) before
and after the normalization process are shown in second row while the direction
selectivity is shown in the third row. The results reveal that the activities at the
endpoints of the bar are higher than the activities along the bar contour. As a
consequences, normalization process enhances the response selectivity in which
the direction selectivity is more tuned toward correct direction (180◦).

We used multi-information (MI) [36] to evaluate the influence of the nor-
malization stage to reduce the dependency of the motion selective cells. The
MI function can be defined as the Kullback-Leibler divergence (see [18,37,38])
between the joint distribution and the product of its marginals
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Fig. 10. Effect of normalization process on the motion estimation for slanted bar.
(a) The input image. (b) The integrated ON/OFF events. (c) The responses of the
filtering stage before normalization process. (d) The responses of the filtering stage
after normalization process. (e) Polar plot of the direction selectivity of the filtering
stage before normalization process. (f) Polar plot of the direction selectivity of the
filtering stage after normalization process. The dash line denotes the median of the
direction selectivity.

MI(I) = DKL

(
p(I)‖

∏

k

p(Ik)

)
=

∑

x1∈I1

∑

x2∈I2

...
∑

xd∈In

p(x1, x2, ..., xn)

· log
p(x1, x2, ..., xn)

p(x1)p(x2)...p(xn)
, (17)

where p(x1, x2, ..., xn) represents the joint distribution, p(xk), k = 1..n denotes
a marginal distribution, with n = 8 defining the movement directions. The results
show that MI(I) is reduced from MI(I) = 0.0509 before normalization to
MI(Inor) = 0.0112 after the normalization stage. This indicates that the normal-
ization process tends to reduce the dependency of the representation of the move-
ment estimates, although it does not completely decorrelate the motion estimates
(in the latter case the mutual information should reach MI(Inor) = 0). Further
investigations are necessary to indicate whether the reduction in MI(Inor) as
observed above is significant. Since we employ binary variables for the instances
of the random variables, the effects of threshold definition and the number of
discrete direction estimates need to be evaluated.
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6 Discussion

In this paper, we introduced a neural model for motion estimation using neuro-
morphic vision sensors. The neural model processing was inspired by the low-level
filtering at the initial stage of the visual system. We adopted the spatio-temporal
filtering model suggested in [8] and integrated new temporal filters to fit with
AER principles. In addition, a normalization mechanism over the space-feature
domain have been incorporated.

Many works have addressed motion estimation using the frame-based imager,
which can be characterized as computer vision approaches, [9,10,14] and bio-
inspired related models [8,39–41]. Recently, [13,16] carried out motion estima-
tion using retina sensors in which the first article adopted a computer vision
approach, while the second considered a bio-inspired model. Our approach con-
tributed to bio-inspired motion estimation using DVS sensors by suggesting tem-
poral filters consistent with polarity responses of the retina sensors. According to
[8], the temporal filters in bio-inspired models defined as a smoothing functions
with biphasic shape responses, in which temporal gamma functions of different
duration were used to achieved temporal smoothing and differentiation. These
functions can be approximately decomposed into a convolution of a numerical
difference kernel with a temporal smoothing filters. Since already the represen-
tation AER uses the first order temporal derivative, where the discrete events
generated based on the changes in the input. Thus, we suggest to employ tem-
poral smoothing filters and convolve them with the input stream of events to
obtain scaled versions of temporally smoothed derivatives of the input luminance
function.

In order to reduce the aperture problem, the local motion estimation of area
V1 is integrated in model area MT. The RFs of cells in area MT are larger in
their size by up to an order of magnitude. In other words, such cells operate at
a much larger spatial context to properly integrate localized responses, similar
to the VA method. As a consequence, localized feature responses at line ends or
corners lead to stronger responses in the integration process.

Our model was tested using different kinds of stimuli. In many cases, the
model shows accurate results for translatory motion estimation compared with
synthetic ground truth. The error value increased in rotational motion cases due
to the limited number of estimated directions compared with the ground truth.
This drawback could be overcome by increasing the estimated directions of our
model. The spatial low resolution of the DVS sensor has unfavorable impact on
several locations of the star image case due to the spatial aliasing problem which
leads to spurious estimations.

The size of the temporal sampling interval can affect the motion estima-
tion results in which smaller temporal window size gives better estimation.
This smaller window can capture more motion details since it accumulates the
occurred events immediately and transcribes their motions instantaneously. As
a consequence, the subtle information can be maintained.

Balancing the activations of the individual cells is achieved by the normal-
ization process. This process operates in the spatial and directional domain.
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Consequently, the overall cells activities are adjusted in a local region. The
impact of such normalization stage is evaluated using information theoretic mea-
sures. The results show that the normalization process can enhance the responses
of the endpoints of the bar that contains unambiguous motion. As a consequence,
the direction selectivity of the filtering stage is more tuned toward the real motion
direction.

Our model can be extended by considering feedback processing sweep from
higher area (MT) to lower area (V1). The feedback projection modulates the
initial responses of the lower areas and then uncertain flow estimation can be
enhanced and improved.

Acknowledgements. LIAK. has been supported by grants from the Ministry of
Higher Education and Scientific Research (MoHESR) Iraq and from the German Aca-
demic Exchange Service (DAAD). HN. acknowledges support from DFG in the Col-
laborative Research Center SFB/TR (A companion technology for cognitive technical
systems). The authors would like to thank M. Schels for his help in recording biological
motion.

References

1. Litzenberger, M., Belbachir, A.N., Donath, N., Gritsch, G., Garn, H., Kohn, B.,
Posch, C., Schraml, S.: Estimation of vehicle speed based on asynchronous data
from a silicon retina optical sensor. In: IEEE Intelligent Transportation Systems
Conference Toronto, Canada, pp. 17–20 (2006)

2. Liu, S., Delbruck, T.: Neuromorphic sensory systems. Neurobiology 20, 288–295
(2010)

3. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128 × 128 120 db 15 μs latency asyn-
chronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 43, 566–576
(2008)

4. Delbruck, T., Lichtsteiner, P.: Fast sensory motor control based on event-based
hybrid neuromorphic-procedural system. In: IEEE International Symposiom on
Circuit and System, pp. 845–848 (2007)

5. Litzenberger, M., Posch, C., Bauer, D., Belbachir, A.N., Schon, P., Kohn, B., Garn,
H.: Embedded vision system for real-time object tracking using an asynchronous
transient vision sensor. In: 12th - Signal Processing Education Workshop. IEEE
DSPW, pp. 173–178 (2006)

6. Ni, Z., Pacoret, C., Benosman, R., Ieng, S., Regnier, S.: Asynchronous event-based
high speed vision for microparticle tracking. J. Microsc. 43, 1365–2818 (2011)

7. Abdul-Kreem, L.I., Neumann, H.: Bio-inspired model for motion estimation using
address event representation. In: 10th International Conference on Computer
Vision Theory and Application, VISIGRAPP, Berlin, Germany, 11–14 March 2015

8. Adelson, E., Bergen, J.: Spatiotemporal energy models for the perception of
motion. J. Opt. Soc. Am. 2, 90–105 (1985)

9. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow esti-
mation based on a theory for warping. In: Pajdla, T., Matas, J.G. (eds.) ECCV
2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

10. Drulea, M., Nedevschi, S.: Motion estimation using the correlation transform. IEEE
Trans. Image Process. 22, 1057–7149 (2013)



414 L.I. Abdul-Kreem and H. Neumann

11. Fleet, D., Jepson, A.: Computation of component image velocity from local phase
information. Int. J. Comput. Vis. 5, 77–104 (1990)

12. Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)
13. Benosman, R., Leng, S., Clercq, C., Bartolozzi, C., Srinivasan, M.: Asynchronous

framless event-based opticlal flow. Neural Netw. 27, 32–37 (2012)
14. Lucas, B.D., Kanade, T.: An iterative image registration technique with and appli-

cation to stereo vision. In: Proceedings of Imaging Understanding Workshop, pp.
121–130 (1981)

15. Tschechne, S., Brosch, T., Sailer, R., Egloffstein, N., Abdul-Kreem, L.I., Neumann,
H.: On event-based motion detection and integration. In: Proceedings of 8th Inter-
national Conference on Bio-inspired Information and Communication Technolo-
gies, BICT, December 1–3, Boston, MA, USA. ACM digital library (2014)

16. Tschechne, S., Sailer, R., Neumann, H.: Bio-inspired optic flow from event-based
neuromorphic sensor input. In: El Gayar, N., Schwenker, F., Suen, C. (eds.)
ANNPR 2014. LNCS, vol. 8774, pp. 171–182. Springer, Heidelberg (2014)

17. De Valois, R., Cottarisb, N.P., Mahonb, L.E., Elfara, S.D., Wilsona, J.A.: Spa-
tial and temporal receptive fields of geniculate and cortical cells and directional
selectivity. Vis. Res. 40, 3685–3702 (2000)

18. Brosch, T., Tschechne, S., Neumann, H.: On event-based optical flow detection.
Front. Neurosci. 9, Article No. 137, 1–15 (2015)

19. Ringach, D.L.: Spatial structure and symmetry of simple-cell receptive fields in
macaque primary visual cortex. Neurophysiology 88, 455–463 (2002)

20. Carandini, M., Heeger, D.J.: Normalization as a canonical neural computation.
Nat. Rev. Neurosci. 13, 51–62 (2012)

21. Brosch, T., Neumann, H.: Computing with a canonical neural circuits model
with pool normalization and modulating feedback. Neural Comput. 26, 2735–2789
(2014)

22. Blomfield, S.: Arithmetical operations performed by nerve cells. Brain Res. 69,
115–124 (1974)

23. Dayan, P., Abbot, L.F.: Theoretical Neuroscience. MIT Press, Cambridge (2001)
24. Silver, R.A.: Neuronal arithmetic. Nat. Rev. Neurosci. 11, 474–489 (2010)
25. Grossberg, S.: Nonlinear neural networks: principles, mechanisms, and architec-

tures. Neural Netw. 1, 17–61 (1988)
26. Bouecke, J., Tlapale, E., Kornprobst, P., Neumann, H.: Neural mechanisms of

motion detection, integration, and segregation: from biology to artificial image
processing systems. EURASIP J. Adv. Signal Process. 2011, Article ID 781561,
22 (2010). doi:10.1155/2011/781561

27. Lyu, S., Simoncelli, E.P.: Nonlinear extraction of independent components of nat-
ural images using radial gaussianization. Neural Comput. 21, 1485–1519 (2009)

28. Bayerl, P., Neumann, H.: Disambiguating visual motion through contextual feed-
back modulation. Neural Comput. 16, 2041–2066 (2004)

29. Yo, C., Wilson, H.: Perceived direction of moving two-dimensional patterns
depends on duration, contrast and eccentricity. Vis. Res. 32, 135–147 (1992)

30. Adelson, E., Movshon, J.: Phenomenal coherence of moving visual pattern. Nature
300, 523–525 (1982)

31. Simoncelli, E.: Bayesian multiscale differential optical flow. In: Handbook of Com-
puter Vision and Applications, Chap. 14. Academic Press (1999)

32. Caplovitz, G., Hsieh, P., Tse, P.: Mechanisms underlying the perceived angular
velocity of a rigidly rotating object. Vis. Res. 46, 2877–2893 (2006)

33. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture in two
nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965)

http://dx.doi.org/10.1155/2011/781561


Estimating Visual Motion Using an Event-Based Artificial Retina 415

34. Pack, C.C., Livingstone, M.S., Duffy, K.R., Born, R.T.: End-stopping and the
aperture problem: two-dimensional motion signals in macaque v1. Neuron 39, 671–
680 (2003)

35. Tsui, J.M.G., Hunter, N., Born, R.T., Pack, C.C.: The role of v1 surround sup-
pression in mt motion integration. J. Neurophysiol. 24, 3123–3138 (2010)
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Abstract. Random forests are popular classifiers for computer vision
tasks such as image labeling or object detection. Learning random forests
on large datasets, however, is computationally demanding. Slow learn-
ing impedes model selection and scientific research on image features.
We present an open-source implementation that significantly accelerates
both random forest learning and prediction for image labeling of RGB-D
and RGB images on GPU when compared to an optimized multi-core
CPU implementation. We further use the fast training to conduct hyper-
parameter searches, which significantly improves on earlier results on the
NYU depth v2 dataset. Our flexible implementation allows to experiment
with novel features, such as height above ground, which further increases
classification accuracy. curfil prediction runs in real time at VGA res-
olution on a mobile GPU and has been used as data term in multiple
applications.

Keywords: Random forest · Computer vision · Image labeling · GPU ·
CUDA

1 Introduction

Random forests are ensemble classifiers that are popular in the computer vision
community. Random decision trees are used when the hypothesis space at every
node is huge, so that only a random subset can be explored during learning. This
restriction is countered by constructing an ensemble of independently learned
trees—the random forest.

Variants of random forests were used in computer vision to improve e.g.
object detection or image segmentation. One of the most prominent examples is
the work of Shotton et al. (2011), who use random forests in Microsoft’s Kinect
system for the estimation of human pose from single depth images. Here, we are
interested in the more general task of image labeling, i.e. determining a label for
every pixel in an rgb or rgb-d image (Fig. 1).

The real-time applications such as the ones presented by Lepetit et al. (2005)
and Shotton et al. (2011) require fast prediction in few milliseconds per image.

c© Springer International Publishing Switzerland 2016
J. Braz et al. (Eds.): VISIGRAPP 2015, CCIS 598, pp. 416–432, 2016.
DOI: 10.1007/978-3-319-29971-6 22
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Fig. 1. Overview of image labeling with random forests: Every pixel (rgb and depth)
is classified independently based on its context by the trees of a random forest. The
leaf distributions of the trees determine the predicted label (Color figure Online).

This is possible with parallel architectures such as gpus, since every pixel can be
processed independently. Random forest training for image labeling, however, is
not as regular—it is a time consuming process. To evaluate a randomly generated
feature candidate in a single node of a single tree, a potentially large number
of images must be accessed. With increasing depth, the number of pixels in an
image arriving in the current node can be very small. It is therefore essential for
the practitioner to optimize memory efficiency in various regimes, or to resort
to large clusters for the computation. Furthermore, changing the visual features
and other hyper-parameters requires a re-training of the random forest, which
is costly and impedes efficient scientific research.

This work describes the architecture of our open-source gpu implementation
of random forests for image labeling (curfil). curfil provides optimized cpu

and gpu implementations for the training and prediction of random forests. Our
library trains random forests up to 26 times faster on gpu than our optimized
multi-core cpu implementation. Prediction is possible in real-time speed on a
single mobile gpu.

In short, our contributions are as follows:

1. we describe how to efficiently implement random forests for image labeling
on gpu,

2. we describe a method which allows to train on horizontally flipped images at
significantly reduced cost,

3. we show that our gpu implementation is up to 26 times faster for training (up
to 48 times for prediction) than an optimized multi-core cpu implementation,

4. we show that simply by the now feasible optimization of hyper-parameters,
we can improve performance in two image labeling tasks, and
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5. we make our documented, unit-tested, and mit-licensed source code publicly
available1.

The remainder of this paper is organized as follows. After discussing related
work, we introduce random forests and our node tests in Sects. 3 and 4, respec-
tively. We describe our optimizations in Sect. 5. Section 6 analyzes speed and
accuracy attained with our implementation.

2 Related Work

Random forests were popularized in computer vision by Lepetit et al. (2005).
Their task was to classify patches at pre-selected keypoint locations, not—as in
this work—all pixels in an image. Random forests proved to be very efficient
predictors, while training efficiency was not discussed. Later work focused on
improving the technique and applying it to novel tasks.

Lepetit and Fua (2006) use random forests to classify keypoints for object
detection and pose estimation. They evaluate various node tests and show that
while training is increasingly costly, prediction can be very fast.

The first gpu implementation for our task was presented by Sharp (2008), who
implements random forest training and prediction for Microsoft’s Kinect system
that achieves a prediction speed-up of 100 and training speed-up factor of eight
on a gpu, compared to a cpu. This implementation is not publicly available and
uses direct3d which is only supported on the Microsoft Windows platform.

An important real-world application of image labeling with random forests
is presented by Shotton et al. (2011). Human pose estimation is formulated as a
problem of determining pixel labels corresponding to body parts. The authors
use a distributed cpu implementation to reduce the training time, which is
nevertheless one day for training three trees from one million synthetic images
on a 1,000 cpu core cluster. Their implementation is also not publicly available.

Several fast implementations for general-purpose random forests are avail-
able, notably in the scikit-learn machine learning library (Pedregosa et al., 2011)
for cpu and CudaTree (Liao et al., 2013) for gpu. General random forests can-
not make use of texture caches optimized for images though, i.e., they treat all
samples separately. gpu implementations of general-purpose random forests also
exist, but due to the irregular access patterns when compared to image labeling
problems, their solutions were found to be inferior to cpu (Slat and Lapajne,
2010) or focused on prediction (Van Essen et al., 2012).

The prediction speed and accuracy of random forests facilitates applications
interfacing computer vision with robotics, such as semantic prediction in com-
bination with self localization and mapping (Stückler et al., 2012) or 6D pose
estimation (Rodrigues et al., 2012) for bin picking.

curfil was successfully used by Stückler et al. (2013) to predict and accu-
mulate semantic classes of indoor sequences in real-time, and by Müller and
Behnke (2014) to significantly improve image labeling accuracy on a benchmark
dataset.
1 https://github.com/deeplearningais/curfil/.

https://github.com/deeplearningais/curfil/
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Since this library was developed, convolutional neural networks (cnn) have
been shown to outperform random forests in terms of accuracy. Similar to ran-
dom forests, cnn can also profit from height above ground and depth normal-
ization (Schulz et al., 2015), but even more from transfer learning (e.g. Eigen
and Fergus, 2014; Gupta et al., 2014) using the ImageNet dataset. The purpose
of curfil, however, is to provide a library for fast training and prediction. This
allows us to conduct hyper-parameter searches and to employ the trained model
on mobile gpus in realtime.

3 Random Forests

Random forests—also known as random decision trees or random deci-
sion forests—were independently introduced by Ho (1995) and Amit and
Geman (1997). Breiman (2001) coined the term “random forest”. Random deci-
sion forests are ensemble classifiers that consist of multiple decision trees—
simple, commonly used models in data mining and machine learning. A decision
tree consists of a hierarchy of questions that are used to map a multi-dimensional
input value to an output which can be either a real value (regression) or a class
label (classification). Our implementation focuses on classification but can be
extended to support regression.

To classify input x, we traverse each of the K decision trees Tk of the random
forest F , starting at the root node. Each inner node defines a test with a binary
outcome (i.e. true or false). We traverse to the left child if the test is positive
and continue with the right child otherwise. Classification is finished when a
leaf node lk(x) is reached, where either a single class label or a distribution
p (c | lk(x)) over class labels c ∈ C is stored.

The K decision trees in a random forest are trained independently. The class
distributions for the input x are collected from all leaves reached in the deci-
sion trees and combined to generate a single classification. Various combination
functions are possible. We implement majority voting and the average of all
probability distributions as defined by

p(c | F , x) =
1
K

K∑

k=1

p (c | lk (x)). (1)

A key difference between a decision tree and a random decision tree is the
training phase. The idea of random forests is to train multiple trees on different
random subsets of the dataset and random subsets of features. In contrast to
normal decision trees, random decision trees are not pruned after training, as
they are less likely to overfit (Breiman, 2001). Breiman’s random forests use cart
as tree growing algorithm and are restricted to binary trees for simplicity. The
best split criterion in a decision node is selected according to a score function
measuring the separation of training examples. curfil supports information
gain and normalized information gain (Wehenkel and Pavella, 1991) as score
functions.
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A special case of random forests are random ferns, which use the same feature
in all nodes of a hierarchy level. While our library also supports ferns, we do not
discuss them further in this paper, as they are neither faster to train nor did
they produce superior results.

4 Visual Features for Node Tests

Our selection of features was inspired by Lepetit et al. (2005)—the method
for visual object detection proposed by Viola and Jones (2001). We implement
two types of rgb-d image features as introduced by Stückler et al. (2012).
They resemble the features of Sharp (2008); Shotton et al. (2011)—but use
depth-normalization and region averages instead of single pixel values. Shotton
et al. (2011) avoid the use of region averages to keep computational complexity
low. For rgb-only datasets, we employ the same features but assume constant
depth. The features are visualized in Fig. 2.

For a given query pixel q, the image feature fθ is calculated as the difference
of the average value of the image channel φi in two rectangular regions R1, R2 in
the neighborhood of q. Size w i, hi and 2D offset oi of the regions are normalized
by the depth d(q):

fθ(q) :=
1

|R1(q)|
∑

p∈R1

φ1(p) − 1
|R2(q)|

∑

p∈R2

φ2(p)

Ri(q) :=
(
q +

oi

d(q)
,
wi

d(q)
,

hi

d(q)

)
. (2)

Fig. 2. Sample visual feature at three different query pixels. Feature response is cal-
culated from difference of average values in two offset regions. Relative offset locations
oi and region extents wi, hi are normalized with the depth d(q) at the query pixel q.
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curfil optionally fills in missing depth measurements. We use integral images to
efficiently compute region sums. The large space of eleven feature parameters—
region sizes, offsets, channels, and thresholds—requires to calculate feature
responses on-the-fly since pre-computing all possible values in advance is not
feasible.

5 CURFIL Software Package

curfil’s speed is the result of careful optimization of gpu memory throughput.
This is a non-linear process to find fast combinations of memory layouts, algo-
rithms and exploitable hardware capabilities. In the following, we describe the
most relevant aspects of our implementation.

User API. The curfil software package includes command line tools as well
as a library for random forest training and prediction. Inputs consist of images
for rgb, depth, and label information. Outputs are forests in json format for
training and label-images for prediction. Datasets with varying aspect ratios are
supported.

Our source code is organized such that it is easy to improve and change the
existing visual feature implementation. It is developed in a test-driven process.
Unit tests cover major parts of our implementation.

CPU Implementation. Our cpu implementation is based on a refactored, paral-
lelized and heavily optimized version of the Tuwo Computer Vision Library2 by

Algorithm 1. Training of random decision tree
Require: D training instances
Require: F number of feature candidates to generate
Require: P number of feature parameters
Require: T number of thresholds to generate
Require: stopping criterion (e.g. maximal depth)
1: D ← randomly sampled subset of D (D ⊂ D)
2: Nroot ← create root node
3: C ← {(Nroot, D)} � initialize candidate nodes
4: while C �= ∅ do
5: C′ ← ∅ � initialize new set of candidate nodes
6: for all (N, D) ∈ C do
7: (Dleft, Dright) ← EvalBestSplit(D)
8: if ¬STOP(N, Dleft) then
9: Nleft ← create left child for node N

10: C′ ← C′ ∪ {(Nleft, Dleft)}
11: if ¬STOP(N, Dright) then
12: Nright ← create right child for node N
13: C′ ← C′ ∪ {(Nright, Dright)}
14: C ← C′ � continue with new set of nodes

2 http://www.nowozin.net/sebastian/tuwo/.

http://www.nowozin.net/sebastian/tuwo/
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Fig. 3. (a) Two-dimensional grid layout of the feature response kernel for D samples
and F features. Each block contains n threads. The number of blocks in a row, X,
depends on the number of features. X = �F/n	. Feature responses for a given sample
are calculated by the threads in one block row. The arrow (red dashes) indicates the
scheduling order of blocks. (b) Thread block layout of the histogram aggregation kernel
for F features and T thresholds. One thread block per feature and per threshold. X
threads in block aggregate histogram counters for D samples in parallel. Every thread
iterates over at most �D/X	 samples (Color figure online).

Nowozin. Our optimizations make better use of cpu cache by looping over fea-
ture candidates and thresholds in the innermost loop, and by sorting the dataset
according to image ID before learning. Since feature candidate evaluations do
not depend on each other, we can parallelize over the training set and make use
of all cpu cores even when training only a single tree.

GPU Implementation. Evaluation of the optimized random forest training on
cpu (Algorithm 1) shows that the vast majority of time is spent in the evaluation
of the best split feature. This is to our benefit when accelerating random forest
training on gpu. We restrict the gpu implementation efforts to the relatively
short feature evaluation algorithm (Algorithm2) as a drop-in replacement and
leave the rest of the cpu computation unchanged. We use the cpu implemen-
tation as a reference for the gpu and ensure that results are the same in both
implementations.

Split evaluation can be divided into the following four phases that are exe-
cuted in sequential order:

1. random feature and threshold candidate generation,
2. feature response calculation,
3. histogram aggregation for all features and threshold candidates, and
4. impurity score (information gain) calculation.

Each phase depends on results of the previous phase. As a consequence, we
cannot execute two or more phases in parallel. The cpu can prepare data for the
launch of the next phase, though, while the gpu is busy executing the current
phase.



CURFIL: A GPU Library for Image Labeling with Random Forests 423

Algorithm 2. CPU-optimized feature evaluation
Require: D samples
Require: F ∈ RF×P random feature candidates
Require: T ∈ RF×T random threshold candidates
1: initialize histograms for every feature/threshold
2: for all d ∈ D do
3: for all f ∈ 1 . . . F do
4: calculate feature response
5: for all θ ∈ Tf do
6: update according histogram

7: calculate impurity scores for all histograms
8: return histogram with best score

Fig. 4. Reduction of histogram counters. Every thread sums to a dedicated left and
right counter (indicated by different colors) for each class (first row). Counters are
reduced in a subsequent phase. The last reduction step stores counters in shared mem-
ory, such that no bank conflicts occur when copying to global memory (Color figure
online).

5.1 GPU Kernels

Random Feature and Threshold Candidate Generation. A significant amount of
training time is used for generating random feature candidates. The total time
for feature generation increases per tree level since the number of nodes increases
as trees are grown.

The first step in the feature candidate generation is to randomly select feature
parameter values. These are stored in a F×11 matrix for F feature candidates
and eleven feature parameters of Eq. (2). The second step is the selection of one
or more thresholds for every feature candidate. Random threshold candidates
can either be obtained by randomly sampling from a distribution or by sampling
feature responses of training instances. We implement the latter approach, which
allows for greater flexibility if features or image channels are changed. For every
feature candidate generation, one thread on the gpu is used and all T thresholds
for a given feature are sampled by the same thread.
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In addition to sorting samples according to the image they belong to, feature
candidates are sorted by the feature type, channels used, and region offsets. Sort-
ing reduces branch divergence and improves spatial locality, thereby increasing
the cache hit rate.

Feature Response Calculation. The gpu implementation uses a similar optimiza-
tion technique to the one used on the cpu, where loops in the feature generation
step are rearranged in order to improve caching.

We used one thread to calculate the feature response for a given feature
and a given training sample. Figure 3(a) shows the thread block layout for the
feature response calculation. A row of blocks calculates all feature responses for
a given sample. A column of blocks calculates the feature responses for a given
feature over all samples. The dotted red arrow indicates the order of thread block
scheduling. The execution order of thread blocks is determined by calculating
the Block ID bid. In the two-dimensional case, it is defined as

bid = blockIdx.x + gridDim.x︸ ︷︷ ︸
blocks in row

·blockIdx.y︸ ︷︷ ︸
sample ID

. (3)

The number of features can exceed the maximum number of threads in a block;
therefore, the feature response calculation is split into several thread blocks. We
use the x coordinate in the grid for the feature block to ensure that all features
are evaluated before the gpu continues with the next sample. The y coordinate
in the grid assigns training samples to thread blocks. Threads reconstruct their
feature ID f using block size, thread and block ID by calculating

f = threadIdx.x + blockDim.x︸ ︷︷ ︸
threads in block row

· blockIdx.x︸ ︷︷ ︸
block index in grid row

. (4)

After sample data and feature parameters are loaded, the kernel calculates
a single feature response for a depth or color feature by querying four pixels in
an integral image and carrying out simple arithmetic operations to calculate the
two regions sums and their difference.

Histogram Aggregation. Feature responses are aggregated into class histograms.
Counters for histograms are maintained in a four-dimensional matrix of size
F×T×C×2 for F features, T thresholds, C classes, and the two left and right
children of a split.

To compute histograms, the iteration over features and thresholds is imple-
mented as thread blocks in a two-dimensional grid on gpu; one thread block per
feature and threshold. This is depicted in Fig. 3(b). Each thread block slices sam-
ples into partitions such that all threads in the block can aggregate histogram
counters in parallel.

Histogram counters for one feature and threshold are kept in the shared
memory, and every thread gets a distinct region in the memory. For X threads
and C classes, 2XC counters are allocated. An additional reduction phase is
then required to reduce the counters to a final sum matrix of size C×2 for every
feature and threshold.
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Figure 4 shows histogram aggregation and sum reduction. Every thread incre-
ments a dedicated counter for each class in the first phase. In the next phase,
we iterate over all C classes and reduce the counters of every thread in O(logX)
steps, where X is the number of threads in a block. In a single step, every thread
calculates the sum of two counters. The loop over all classes can be executed in
parallel by 2C threads that copy the left and right counters of C classes.

The binary reduction of counters (Fig. 4) has a constant runtime overhead
per class. The reduction of counters for classes without samples can be skipped,
as all counters are zero in this case.

Impurity Score Calculation. Computing impurity scores from the four-
dimensional counter matrix is the last of the four training phases that are
executed on gpu.

In the score kernel computation, 128 threads per block are used. A single
thread computes the score for a different pair of features and thresholds. It
loads 2C counters from the four-dimensional counter matrix in global mem-
ory, calculates the impurity score and writes back the resulting score to global
memory.

The calculated scores are stored in a T×F matrix for T thresholds and F
features. The matrix is then finally transferred from device to host memory
space.

Undefined Values. Image borders and missing depth values (e.g. due to material
properties or camera disparity) are represented as NaN, which automatically
propagates and causes comparisons to produce false. This is advantageous, since
no further checks are required and the random forest automatically learns to
deal with missing values.

5.2 Global Memory Limitations

Slicing of Samples. Training arbitrarily large datasets with many samples can
exceed the storage capacity of global memory. The feature response matrix of
size D×F scales linearly in the number of samples D and the number of feature
candidates F . We cannot keep the entire matrix in global memory if D or F is
too large. For example, training a dataset with 500 images, 2000 samples per
image, 2000 feature candidates and double precision feature responses (64 bit)
would require 500 · 2000 · 2000 · 64 bit ≈ 15 GB of global memory for the feature
response matrix in the root node split evaluation.

To overcome this limitation, we split samples into partitions, sequentially com-
pute feature responses, and aggregate histograms for every partition. The maxi-
mum possible partition size depends on the available global memory of the gpu.

Image Cache. Given a large dataset, we might not be able to keep all images in
the gpu global memory. We implement an image cache with a last recently used
(lru) strategy that keeps a fixed number of images in memory. Slicing samples
ensures that a partition does not require more images than can be fit into the
cache.
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Memory Pooling. To avoid frequent memory allocations, we reuse memory that is
already allocated but no longer in use. Due to the structure of random decision
trees, evaluation of the root node split criterion is guaranteed to require the
largest amount of memory, since child nodes always contain less or equal samples
than the root node. Therefore, all data structures have at most the size of the
structures used for calculating the root node split. With this knowledge, we are
able to train a tree with no memory reallocation.

5.3 Extensions

Hyper-Parameter Optimization. Cross-validating all the hyper-parameters is a
requirement for model comparison, and random forests have quite a few hyper-
parameters, such as stopping criteria for splitting, number of features and thresh-
olds generated, and the feature distribution parameters.

To facilitate model comparison, curfil includes support for cross-validation
and a client for an informed search of the best parameter setting using Hyperopt
(Bergstra et al., 2011). This allows to leverage the improved training speed to
run many experiments serially and in parallel.

Image Flipping. To avoid overfitting, the dataset can be augmented using trans-
formations of the training dataset. One possibility is to add horizontally flipped
images, since most tasks are invariant to this transformation. curfil supports
training horizontally flipped images with reduced overhead.

Table 1. Comparison of random forest training time on a quadcore cpu and two
non-mobile gpus. Random forest parameters were chosen for best accuracy.

NYU MSRC

Device time [min] speed-up [×] time [min] speed-up [×]

i7–4770K 369 1.0 93.2 1.0

Tesla K20c 55 6.7 5.1 18.4

GTX Titan 24 15.4 3.4 25.9

Table 2. Random forest prediction time in milliseconds, on rgb-D images at original
resolution, comparing speed on a recent quadcore cpu and various gpus. Random forest
parameters are chosen for best accuracy.

NYU msrc-21

Device time [min] speed-up [×] time [min] speed-up [×]

i7-440K 477 1 409 1

GTX 675M 28 17 37 11

Tesla K20c 14 34 10 41

GTX Titan 12 39 9 48
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Instead of augmenting the dataset with flipped images and doubling the
number of pixels used for training, we horizontally flip each of the two rectangular
regions used as features for a sampled pixel. This is equivalent to computing
the feature response of the same feature for the same pixel on an actual flipped
image. Histogram counters are then incremented following the binary test of both
feature responses. The implicit assumption here is that the samples generated
through flipping are independent.

The paired sample is propagated down a tree until the outcome of a node
binary test is different for the two feature responses, indicating that a sample
and its flipped counterpart should split into different directions. A copy of the
sample is then created and added to the samples list of the other node child.

This technique reduces training time since choosing independent samples
from actually flipped images requires loading more images in memory during the
best split evaluation step. Since our performance is largely bounded by mem-
ory throughput, dependent sampling allows for higher throughput at no cost in
accuracy.

6 Experimental Results

We evaluate our library on two common image labeling tasks, the nyu Depth v2
dataset and the msrc-21 dataset. We focus on the processing speed, but also
discuss the prediction accuracies attained. Note that the speed between datasets
is not comparable, since dataset sizes differ and the forest parameters were chosen
separately for best accuracy.

6.1 Datasets

The nyu Depth v2 dataset by Silberman et al. (2012) contains 1,449 densely
labeled pairs of aligned rgb-d images from 464 indoor scenes. We focus on the

Table 3. Segmentation accuracies on nyu Depth v2 dataset of our random forest
compared to state-of-the-art methods trained only on this dataset. We used the same
forest as in the training/prediction time comparisons of Tables 1 and 2.

Accuracy [%]

Method Pixel Class

Silberman et al. (2012) 59.6 58.6

Couprie et al. (2013) 63.5 64.5

Our random foresta 68.1 65.1

Our random foresta (with height, cf. Sect. 6.5) 69.6 66.5

Stückler et al. (2013)b 70.6 66.8

Hermans et al. (2014) 68.1 69.0

Müller and Behnke et al. (2014)b 72.3 71.9
asee main text for hyperparameters used.
bbased on our random forest prediction (without height).
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semantic classes ground, furniture, structure, and props defined by Silberman
et al. (2012).

To evaluate our performance without depth, we use the msrc-21 dataset3.
Here, we follow the literature in treating rarely occuring classes horse and moun-
tain as void and train/predict the remaining 21 classes on the standard split of
335 training and 256 test images.

6.2 Training and Prediction Time

Tables 1 and 2 show random forest training and prediction times, respectively,
on an Intel Core i7-4770K (3.9 GHz) quadcore cpu and various nvidia gpus.
Note that the cpu version is using all cores.

For the rgb-d dataset, training speed is improved from 369 min to 24 min,
which amounts to a speed-up factor of 15. Dense prediction improves by factor
of 39 from 477 ms to 12 ms.

Training on the rgb dataset is finished after 3.4 min on a gtx Titan, which
is 26 times faster than cpu (93 min). For prediction, we achieve a speed-up of
48 on the same device (9 ms vs. 409 ms).

Prediction is fast enough to run in real time even on a mobile gpu (gtx
675M, on a laptop computer fitted with a quadcore i7-3610QM cpu), with 28 ms
(rgb-d) and 37 ms (rgb).

Fig. 5. Image labeling examples on nyu Depth v2 dataset. Left to right: rgb image,
depth visualization, ground truth, random forest segmentation.

3 http://jamie.shotton.org/work/data.html.

http://jamie.shotton.org/work/data.html
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Fig. 6. Image labeling examples on the msrc-21 dataset. In groups of three: input
image, ground truth, random forest segmentation. Last row shows typical failure cases.

6.3 Classification Accuracy

Our implementation is fast enough to train hundreds of random decision trees
per day on a single gpu. This fast training enabled us to conduct an extensive
parameter search with five-fold cross-validation to optimize segmentation accu-
racy of a random forest trained on the nyu Depth v2 dataset (Silberman et al.,
2012). Table 3 shows that we outperform other state-of-the art methods sim-
ply by using a random forest with optimized parameters. The resulting model
and the fast curfil prediction were used in two publications which improved
the results further by 3D accumulation of predictions in real time (Stückler
et al., 2013) and superpixel crfs (Müller and Behnke, 2014). This shows that
efficient hyper-parameter search is crucial for model selection. Example segmen-
tations are displayed in Figs. 5 and 6.

Methods on the established rgb-only msrc-21 benchmark are so advanced
that their accuracy cannot simply be improved by a random forest with better
hyperparameters. Our pixel and class accuracies for msrc-21 are 59.2 % and
47.0 %, respectively. This is still higher than other published work using random
forests as the baseline method, such as 49.7 % and 34.5 % by Shotton et al. (2008).
However, as Shotton et al. (2008) and the above works show, random forest
predictions are fast and constitute a good initialization for other methods such
as conditional random fields.

6.4 Image Mirroring Training Speed and Accuracy

Finally, we trained the msrc-21 dataset by augmenting the dataset with hori-
zontally flipped images using the näıve approach and our proposed method. The
näıve approach doubles both the total number of samples and the number of
images, which quadruples the training time to 14.4 min. Accuracy increases to
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60.6 % and 48.6 % for pixel and class accuracy, respectively. With paired sam-
ples (introduced in Sect. 5.3), we reduce the runtime by a factor of two (to now
7.48 min) at no cost in accuracy (60.9 % and 49.0 %). The remaining difference in
speed is mainly explained by the increased number of samples, thus the training
on flipped images has very little overhead.

6.5 Incorporating Novel Features

With few changes in code, curfil allows to incorporate novel features. To
demonstrate this, we chose height above ground, which is an important cue for
indoor scene classification, and has been used in multiple other studies (Gupta
et al., 2014; Müller and Behnke, 2014; Schulz et al., 2015). On a robot with
known camera pose, height above ground can be inferred directly. To generate
this information for the nyu Depth v2 dataset—where camera poses are not
available—we proceed as suggested by Müller and Behnke (2014). We extract
normals in the depth images, find ten clusters in normal space with k-means
and determine the cluster that is most vertical. We then project all points to
this normal and subtract the height of the lowest point.

We add the height image as an additional depth channel. Instead of com-
puting region differences as in Eq. (2), we determine the average height above
ground in R1, such that

fheight,θ(q) :=
1

|R1(q)|
∑

p∈R1

φheight(p). (5)

Using the same hyperparameters as without height, the classification accuracy
improves significantly by 1.5 and 1.3 percentage points for class and pixel accu-
racy, respectively. Analysis of the learned forest shows that overall, height above
ground is used in roughly 12 % of the split nodes, followed by depth differences
(38 %) and color (50 %). These numbers reflect the statistics of the feature pro-
posal distribution.

6.6 Random Forest Parameters

The hyper-parameter configurations for which we report our timing and accuracy
results were found with global parameter search and cross-validation on the
training set. The cross-validation outcome varies between datasets.

For the nyu Depth v2 dataset, we used three trees with 4537 samples / image,
5729 feature candidates / node, 20 threshold candidates, a box radius of 111 px,
a region size of 3, tree depth 18 levels, and minimum samples in leaf nodes 204.

For msrc-21 we found 10 trees, 4527 samples / image, 500 feature candi-
dates / node, 20 threshold candidates, a box radius of 95 px, a region size of 12,
tree depth 25 levels, and minimum samples in leaf nodes 38 to yield best results.
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7 Conclusion

We provide an accelerated random forest implementation for image labeling
research and applications. Our implementation achieves dense pixel-wise classi-
fication of vga images in real-time on a gpu. Training is accelerated on gpu by
a factor of up to 26 compared to an optimized cpu version. The experimental
results show that our fast implementation enables effective parameter searches
that find solutions which outperform state-of-the art methods. curfil prepares
the ground for scientific progress with random forests, e.g. through research on
improved visual features.
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Abstract. The detection of foreground regions in video streams is an
essential part of many computer vision algorithms. Considerable con-
tributions were made to this field over the past years. However, vary-
ing illumination circumstances and changing camera viewpoints provide
major challenges for all available algorithms. In this paper, a robust
foreground background segmentation algorithm is proposed. Both Local
Ternary Pattern based edge descriptors and RGB color information are
used to classify individual pixels. Furthermore, camera viewpoints are
detected and compensated for. We will show that this algorithm is able
to handle challenging conditions and achieves state-of-the-art results on
the comprehensive ChangeDetection.NET 2014 dataset.

Keywords: Foreground background segmentation · Moving edges ·
Illumination invariance · Camera motion compensation

1 Introduction

The extraction of foreground regions is often the first step in video analysis. For
many applications, it is vital that only interesting parts are analysed further,
while the other (background) regions are ignored. Notable examples include the
tracking of moving objects for traffic or surveillance applications, or fine grained
motion analysis in sports or medical rehabilitation. Most often, as in the exam-
ples described above, the foreground regions are related to moving objects.

Foreground background segmentation algorithms first create a model of the
background appearance. Then, every new input frame is compared with this
model. Regions in the image that differ significantly from the background model,
are considered to be foreground. Individual algorithms distinguish themselves in
the way they represent the background appearance, and how the background
model is maintained.

Many foreground background segmentation algorithms can be considered as
variations on the classical Gaussian Mixture Model (GMM) [1]. It is assumed
that the frequency of a certain appearance level (intensity, RGB . . . ) occurring
c© Springer International Publishing Switzerland 2016
J. Braz et al. (Eds.): VISIGRAPP 2015, CCIS 598, pp. 433–454, 2016.
DOI: 10.1007/978-3-319-29971-6 23
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at a certain pixel can be modelled statistically as a mixture of Gaussian distri-
butions. Simple, static backgrounds can be modelled locally by a single narrow
Gaussian, while more complex (dynamic) backgrounds will result in multiple
and/or wider Gaussians. The more recent ViBe algorithm [2] and its successor
ViBe+ [3] are built on similar principles as the GMM, but store the distributions
as a collection of samples rather than by the model parameters. The authors of
[4] further elaborated on these methods, by adding a framework for automatic
local parameter tuning, which alters the detection and updating mechanisms
locally. The algorithm models the dynamic changes for each pixel and raises
both the detection threshold and the learning rate when necessary. This avoids
an important source of false positives, without sacrificing high detection rates in
static regions.

Pixel appearances can change drastically under changing lighting conditions
[5]. The previously described methods still handle light changes poorly. Some
methods adapt the background updating mechanism at runtime if a large illu-
mination change is detected [6]. Illumination invariant regional descriptors can
also provide a robust solution. In the method of Heikkilä and Pietikäinen [7],
Local Binary Patterns (LBPs) are used to construct histograms of regional pixel
variations. A more recent and high performing method, coined SuBSENSE [8]
further extends this by using the more advanced Local Binary Similarity Patterns
[9], additional color information, and a framework for automatic local parameter
tuning, based on [4].

Alternatively, in the method of [10], strong edges are used as features in
both a short and long term background model. Assuming a static camera view-
point, the location of these edges remains static under changing lighting condi-
tions. This makes edges based foreground masks more reliable in these situations.
However, since moving objects are generally contiguous, additional contour fill-
ing strategies are required. Foreground edges are prone to gaps, which classical
boundary filling techniques are unable to cope with. So, in previous work [11], we
developed an edge based segmentation framework, using Local Ternary Patterns
and successive robust interior classification.

Dynamic camera viewpoints pose another issue in foreground background
segmentation. Most foreground background segmentation models strictly build
a local model of the scene, which is no longer relevant once the viewpoint changes.
Methods that do not make a static camera assumption, prove to be more robust
in such situations. Sajid and Cheung [12] combine multiple local and global
change statistics. Each mechanism results in a separate foreground mask. The
final foreground mask is reached through majority voting between individual
masks. The global statistics are less prone to small viewpoint changes, which
generally results in more reliable foreground detection. However, once the camera
viewpoint strays to far from the original one, the observed scene is often totally
different and the global statistics also become irrelevant. For this reason, in [13]
we developed a detection mechanism based on optical flow that is able to handle
these more challenging situations.

Our previous work already showed state-of-the-art performance in these diffi-
cult conditions, but some issues still remained. If there are no lighting or camera
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Fig. 1. General overview of the components of our method. Solid lines represent images
being fed forward, dashed lines fed back or fed forward parameters. Note that our
algorithm consists of three large parts: camera motion compensation (red), an edge
based detection framework (green) and a color based one (blue) (Color figure online).

viewpoint changes, less advanced strategies could often yield better results. Most
notable, the lack of color information in our previous frameworks limited the per-
formance in some (easier) categories.

In this paper, we describe an extension to these previously proposed fore-
ground background segmentation algorithms, coined C-EFIC (Color and Edge
based Foreground background segmentation with Interior Classification). Since
the benefits of these methods were shown to be so significant, we extend them
with additional RGB color information to mitigate remaining limitations. We
will show that this is possible without sacrificing robustness in difficult illu-
mination conditions and for changing camera viewpoints. An overview of the
interactions between the principal parts of this method is shown in Fig. 1.

In Sect. 2, the edge based foreground detection mechanisms and successive
interior filling mechanism are explained in depth. Afterwards, in Sect. 3, we
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explain the color based detection framework and how it is combined with the edge
based mask to obtain reliable results. Then, Sect. 4 describes the advanced updat-
ing mechanisms and the camera motion compensation mechanism is explained in
Sect. 5. Finally, we will verify that the extended method still achieves the highest
F-measure of all submitted methods in 2 out of 11 categories (Pan-Tilt-Zoom
and Night Videos) of the comprehensive ChangeDetection.NET 2014 dataset
[14], whilst now also reaching near state-of-the-art performance in most other
categories.

2 Edge Based Foreground Detection and Interior
Classification

In [11], we presented a robust approach to edge based foreground detection.
In this section, we give an overview of its theoretical foundations and most
important characteristics.

2.1 Gradient Description

Local Ternary Patterns (LTPs) are classes of point descriptors which represent
the local intensity or color variations. Each pattern consists of a ternary string
[15]. Let us denote a gray scale image I. For each pixel z, a number of sur-
rounding pixels are selected, symmetrically from a circle around z. For each
selected surrounding pixel pi, the gray level difference ds with the center pixel z
is coded as

ds[z, i] =

⎧
⎪⎨

⎪⎩

1 if Is[z, i] − I[z] > T

−1 if Is[z, i] − I[z] < −T

0 otherwise
(1)

with T a fixed, typically low threshold (e.g. 3 with a total intensity range of 255)
and Is[z, i] the gray scale value of pi. ds[z, i] represents whether the selected
surrounding pixel pi has a significantly different intensity value from z. When
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Fig. 2. An example of a Local Ternary Pattern with 8 neighborhood points: (a) Inten-
sity levels in a certain image region, with circular neighborhood points denoted. (b)
Interpolated neighborhood intensity levels. (c) LTP representation (T = 3), with our
binary gradients representation superimposed.
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(a) (b)

Fig. 3. (a) Input image. (b) Gradient descriptors, where the colors represent the direc-
tion and more saturated means more likely. Note that all clear edges in the image are
represented by similarly strong gradient confidences (Color figure online).

ds[z, i] = 0, the thresholded difference is considered to be below noise level. An
example is given in Fig. 2.

It can be observed that every ds[z, i] can also be considered as binary evidence
for a gradient gb[z, i], either with unit or zero length, and with a direction either
from z towards pi, or from pi towards z (Fig. 2c). Formally,

gb[z, i] = ds[z, i]ei , (2)

where ei is the unit vector pointing from z towards pi.
If there is an edge located at the center pixel z, we expect the individual

binary gradients in the LTP descriptor to roughly point in the same direction
in that neighborhood. By summing over all gbs in the pattern, the gradient
evidence can be combined:

G[z] =
N−1∑

i=0

gb[z, i] . (3)

This vector’s direction can be regarded as the most likely gradient direction.
Its length is a measure for the confidence of the calculated gradient direction,
rather than its strength. A large vector means the binary evidence is supported
by that of the other surrounding pixels. Note that G[z] should thus be considered
a gradient descriptor as opposed to the original LTP texture descriptor [15].

Since edges in most real video images locally tend to continue in the same
direction (perpendicular to the gradient), we also apply an adaptive smoothing
strategy. The gradient vectors are filtered along both directions with rotated,
anisotropic 2D Gaussian kernels. The Gaussians have significantly different stan-
dard deviations along both dimensions, so smoothing is mainly performed along
the chosen orientation. The orientation of the kernels is adjusted locally, depend-
ing on the direction of G[z].

Our strategy of thresholding the individual intensity differences first and then
combining the evidence over a larger area, is what makes our descriptor robust
in different illumination conditions. In our approach, all significant intensity dif-
ferences in the descriptor are treated as being equally important. What matters



438 G. Allebosch et al.

is that the evidence is supported in the surrounding region. This stabilizes the
gradient confidence levels and also diminishes the possibility that isolated noisy
pixels sharply disturb the descriptor. A result of the gradient calculation and
successive smoothing step of our algorithm is shown in Fig. 3.

2.2 Foreground Edges

In this section, we discuss the construction of the temporal LTP gradient model.
Our model is based on the model used in the LBP based foreground detection
framework developed by Heikkilä and Pietikäinen [7]. In [11], we replaced the
fixed learning rate with an adaptive one, in order to handle more challenging
situations properly. This mechanism will be explained in Sect. 4.

At each pixel z, a fixed number M of the gradient vectors described in
Sect. 2.1 are stored. This results in a temporal gradient descriptor model denoted
Gj , with 1 ≤ j ≤ M . At every input frame (time t), the new gradient vector
G[z, t] is compared to each vector in the temporal model at that location and
the vector Gk[z, t] with the lowest L2-distance to the new vector is updated as
follows:

Gk[z, t] = α[z, t]G[z, t] + (1 − α[z, t])Gk[z, t − 1] (4)

with α[z, t] the learning rate, which satisfies 0 ≤ α[z, t] ≤ 1
M and will be

discussed in depth in Sect. 4.
Furthermore, for each vector Gj [z, t], a weight factor Wj [z, t] is kept, which

is a measure for the likelihood that the vector represents the background. Wj is
updated as follows:

Wj [z, t] =

{
α[z, t] + (1 − α[z, t])Wj [z, t − 1] if j = k

(1 − α[z, t])Wj [z, t − 1] otherwise
. (5)

Thus, Wk[z, t] is boosted, while the other weights are decreased. To find
the background, the temporal vectors are sorted according to their weights.
The most weighted vector always represents background. Consecutive vectors
are added to the background vector set, until their cumulative weight exceeds
a chosen threshold Tw. So, the background set BLTP [z, t] is always a subset
of {G1,G2 . . .GM} at z and t. The background in static regions will likely be
represented by a single vector, while the set will contain multiple vectors in more
dynamic environments. If the lowest L2-distance between the input vector and
the background set exceeds a threshold Te,LTP , this pixel is considered to be
foreground.

The remaining vectors can be considered ‘pre-background’. They are not used
in the detection step, but they can become part of the background set later on, if
their weights become higher. If the lowest squared difference with all vectors in
the temporal model exceeds Te,LTP , the temporal vector with the lowest weight
is replaced by the current vector G[z, t] and its weight is reset to α[z, t]. When
α[z, t] is high, new vectors can be quickly added to the background set in that
way.
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(a) (b)

Fig. 4. Examples of the path distance calculation from all 4 image corners to a chosen
pixel. Black solid lines represent strong edges, dotted lines the individual paths. In (a),
the path from 1 image corner is larger than the Manhattan distance. In (b), the paths
from 2 image corners are longer.

To conclude this section, we observe that the foreground gradients often
occupy more than 1 pixel. This is a direct consequence of the nature of the
Local Ternary Patterns, i.e. the local features aggregate information from a larger
region around the center pixel, and also non-minimal gradient levels might be
detected as foreground. So, we incorporated the thinning algorithm described in
[16] to raise the detection accuracy. The main benefit of this algorithm is that it
avoids the creation of gaps. Furthermore, to further eliminate the possibility of
(small) gaps occurring in the contours, morphological closing is executed with a
3 by 3 circular kernel.

2.3 Shortest Path Based Interior Filling

In the previous sections, we described our strategy to create a foreground image,
which only contains edges. Here, we describe how interior points can be added
to the silhouette.

To determine the entire foreground object, we must fill its contour, consisting
of foreground edge points. Topologically, a point can be classified as interior if it is
completely enclosed by contour points. If this would be the case for all foreground
objects, classical contour filling strategies (e.g. floodfill) would suffice. However,
if the foreground object passes in front of objects with similarly oriented edges,
gaps can still occur in the foreground edges.

In [11], we proposed a filling algorithm which for a single object produces a
silhouette S(P ) that satisfies

C(P ) ⊆ S(P ) ⊆ Ho(P ) ⊆ Hc(P ) , (6)

where the set C(P ) is obtained by filling the closed contours in the pixel set P
and leaving the other edges intact. Ho(P ) and Hc(P ) are the orthogonal hull
[17] and convex hull of P respectively.

This mechanism is based on the following idea: The probability of a point being
interior, is proportional to how difficult it is to reach that point from the outside,
where the strong gradient points act as obstacles. If an object’s foreground edges
consist of a closed contour, these edges block every possible path from the outside
to one of the interior points. If there is a single gap in the contour, it would be
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possible to reach the interior points, but a path to it would likely be longer than
in a scenario without edge pixels. An example is given in Fig. 4.

Now consider the foreground gradient image to be an originally fully 4-
connected input graph. Vertices coinciding with foreground pixels and their links
are removed. The shortest paths from the four image corners ci (1 ≤ i ≤ 4) to
each of the image pixels z is found by using Breadth First Search (BFS) in the
graph. The corresponding path length is denoted DP [z, i]. We define the excess
distance DE as the difference between the actual path length and the minimal
length. In particular, we have

DE [z, i] = DP [z, i] − DM [z, i] , (7)

where DM [z, i] is the Manhattan distance or L1-distance from ci to z, i.e. the
path length ignoring foreground edge pixels. If z cannot be reached, DE [z, i] is
set to ∞.

If the foreground object is orthogonally convex, it is possible to reach any
point on the outside of the contour from at least 3 image corners with minimal
distance if there is a free path along the image borders. However, this cannot be
guaranteed for the distance from the 4th corner. So, we exclude the corner cl
with the largest excess distance from further analysis in each pixel (Fig. 4) such
that Eq. 6 holds. The total excess distance DE,tot for a pixel z is defined as:

DE,tot[z] =
∑

i�=l

DE [z, i] . (8)

The interior pixels are now classified by imposing a threshold Td ≥ 0. The result-
ing binary, LTP edge based foreground image FLTP is constructed as follows:

FLTP [z] =

{
1 if DE,tot[z] > Td

0 otherwise
. (9)

If there is one moving object, and the filled silhouette is constructed as
described above, Eq. 6 is always satisfied. Higher thresholds remove more pixels
from the silhouette, but never more than contour filling and never less than the
orthogonal hull. If there are multiple objects moving in the scene, Eq. 6 is sat-
isfied for the individual objects as long as their rectangular bounding boxes do
not overlap.

Hence, our filling algorithm may fill in too many pixels when there are many
moving objects close to each other, or when the objects are not convex. One
way to avoid this problem is to classify the foreground edges into different
object classes, and to correct the silhouettes accordingly. Since this classifica-
tion requires reasoning at a much higher level, we will not solve the classification
problem, but instead combine filling with color based segmentation. This will be
discussed in the next section.

3 Combined Foreground Detection

In the previous sections, we described a framework for edge based foreground
detection. However, as already noted, even though the resulting foreground



C-EFIC: Color and Edge Based Foreground Background Segmentation 441

(a) (b)

(c) (d)

Fig. 5. Creation of the aggregated foreground mask (a) Input. (b) Edge based mask.
(c) Color based mask. (d) Bitwise AND of b and c. Note that the edge based mask
suffers from unnecessarily filled concavities, while the color bask mask has more issues
with shadows.

silhouettes satisfy Eq. 6, their shapes can still differ from the objects themselves.
Appearing concavities (e.g. pedestrians, space between the arms and torso) can
result in a large excess distance DE,tot (see Eq. 8). Intensity or color based algo-
rithms work in a totally different way, so they are less prone to these effects.
However, as discussed before, these features are highly unstable when the illumi-
nation changes. In order to generate the best possible silhouettes, our algorithm
combines both color features and the LTP features described above.

The R,G and B values of the input frames are fed into a similar temporal
model as described in Sect. 2.2. Instead of 2-dimensional gradient descriptors,
this model holds 3-dimensional color vectors. The same mechanisms as described
in Sect. 2.2 are used. Only the detection threshold, which is dynamic and denoted
Te,RGB , differs:

Te,RGB [z, t] = k0 + k1UL[z, t] (10)

where k0 and k1 are constants and UL[z, t] is the local unreliability rate, which
will be defined in Sect. 4. For now, we note that the local unreliability rate is
higher when the temporal model is unreliable, e.g. in dynamic regions. Since
dynamic regions are more likely to produce false positive foreground pixels, rais-
ing the detection threshold helps avoid this phenomenon. The resulting RGB
color based foreground mask is denoted FRGB .

The filled edged based mask and the color based mask will generally pro-
duce distinct errors, due to concavities and illumination changes respectively.
Concavities do not influence the color based mask, while changing illumination
and weak shadows leave the edge based mask untouched. So, a logical AND
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operation between the two masks will sharply reduce both unwanted effects.
Thus, the resulting foreground mask F is determined as

F [z] = FLTP [z]&FRGB [z]. (11)

An example of the mask aggregation is show in Fig. 5.
To conclude this section, we note that objects which are static when the

temporal model is being built, but later move to another location, can leave
behind a foreground blob (ghost) in the foreground image. So, the ghost removal
methodology described in [18] is added the framework. This algorithm compares
the location of the contours of foreground objects with the location of edges in
the input image. If the Chamfer distance between them exceeds a threshold, the
object is entirely removed from the foreground mask.

4 Temporal Model Maintenance

Having discussed the two kinds of features (LTP gradients and RGB colors) on
which the background modelling is based, we now turn to the adaptivity of the
model.

In the simplest scenarios, the background is entirely visible in the first frame,
and remains unchanged throughout the rest of the sequence. However, in many
realistic scenario’s, this assumption is invalid. So, the temporal model needs to
be maintained and updated over time. In C-EFIC, the maintenance mechanism
utilizes three kinds of learning: fixed, exponentially decreasing and related to the
background unreliability.

4.1 Fixed Learning Rate

In background regions, a constant amount of learning is necessary throughout the
sequence. This allows the temporal models to adapt to small gradual changes. So,
the learning rate is set ≥ αc, a very small constant. To avoid foreground objects
getting learned into the background, αc is not used in foreground regions.

4.2 Exponential Learning Rate

The learning rate must be higher in the beginning of the sequence. This ensures
that foreground objects present in the first few frames get replaced quickly by
background vectors in the model once they move. We impose that part of the
learning rate αe decreases exponentially over time:

αe[t] =
1
M

e−τt , (12)

where t is the number of frames since the background model was initialized and
τ is a user settable parameter, which determines the rate at which the function
decreases. The multiplication by 1

M avoids that the weights of the current model
drop too drastically as soon as all temporal vectors have been initialized.
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Fig. 6. UG as a function of the foreground (gradient) pixel percentage Rf for different
values of σ. The solid line represents the case where σ = 0, and behaves like a regular
(hard) threshold or step function.

4.3 Unreliability Learning Rate

If there are large or quickly occurring changes in the image, not due to foreground
objects, the temporal model becomes unreliable. We denote a background unre-
liability rate αu, which is increased in two different scenario’s:

1. The model should be corrected globally (e.g. a small camera displacement).
2. The model should be corrected locally (e.g. the wind deforming a tree).

The first scenario with global unreliability can be identified fairly easily. If
there is a large disagreement between the current frame and the model (i.e.
there are too many foreground pixels), the camera position has likely shifted or
a significant change has occurred in the background. The model should adapt to
these changes quickly. For this purpose, we impose a ‘global unreliability’ term
UG, that is sigmoid-shaped (Fig. 6):

UG[t] =
0.5
M

(
1 + erf

(
Rf [t] − μ

σ

))
(13)

with erf (x) =
2√
π

∫ x

0

e−y2
dy . (14)

erf is the error function, Rf [t] is the percentage of foreground pixels in frame
t and σ and μ are user settable parameters. It behaves like a soft threshold at
μ. σ determines how steep the function is. If σ = 0, UG behaves like a sharp
threshold, like in the method of Wang and Suter [19]. The minimum of UG[t] is
0 and the maximum is again 1

M . As will be shown in the results section, this
method works very well when the camera viewpoint constantly shifts around
the initial position (camera jitter). Unlike in [11,13], we only use the global
unreliability rate when camera jitter is detected. This avoids large foreground
objects to needlessly cause a large learning rate.

When the camera keeps moving away from that point (e.g. panning), the
connection to the original model is quickly lost, and quick updating only has
limited potential. In Sect. 5, a method to distinguish between panning and jitter
and to compensate for panning motions is presented.
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(a) (b)

Fig. 7. (a) Input frame with dynamic background below a busy street [14]. (b) Visual-
ization of UG for the entire image, lighter means more unreliable. Note that the region
corresponding to the water is correctly classified as more unreliable background, while
the busy street above has a much smaller unreliability term.

Local unreliability is less trivial to identify. Simply looking at the amount of
foreground pixels is not recommended, since dynamic background can be easily
confused with regions that simply contain a lot of foreground (e.g. a busy street).
However, experiments show that dynamic background regions will often produce
many isolated foreground pixels (Fig. 7). In our algorithm, this phenomenon is
exploited by building a local isolated pixel rate Ri over time:

Ri[z, t] = αi[t]Ri,curr[z, t] + (1 − αi[t])Ri[z, t − 1] , (15)
where αi[t] = Ci + (1 − Ci)Mαe[t] (16)

with Ci a small constant. Ri,curr[z, t] = 1 if z is the only foreground gradient
pixel in his 8-connected neighborhood, otherwise Ri,curr[z, t] = 0. Note that αi

is higher in the beginning of the sequence, since the accumulated evidence of
dynamic background gets more reliable over time. The ‘local unreliability’ UL

at z in frame t is now
UL[z, t] = Ri[z, t] ∗ KG , (17)

where KG is an isotropic Gaussian kernel, used to combine evidence of unrelia-
bility in the neighborhood of z.

The background unreliability rate αu[z, t] is now defined as the maximum of
the global and local unreliability:

αu[z, t] = max[UG[t], UL[z, t]] . (18)

The total learning rate α[z, t], taking into account all of the considerations
described above, is

α[z, t] =

{
min

[
1
M , αc + αe[t] + αu[z, t]

]
if F [z] = 0

min
[

1
M , αe[t] + αu[z, t]

]
otherwise.

(19)

5 Camera Motion Compensation

So far, we have addressed many issues in foreground background segmentation,
all related to the scene. However, as soon as the camera viewpoint changes, the
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appearance of all pixels might change, even though the background itself does
not. In this section we describe how camera motion can be detected and com-
pensated for, based on optical flow estimation through the framework originally
presented in [13]. We distinguish two scenarios: one where the camera is under-
going a fairly constant motion away from the original position (e.g. panning)
and one where the camera keeps moving around the same position (jitter). A
notable change w.r.t. the latter category was made to the previous algorithm.

5.1 Camera Motion Detection

Optical flow is an image feature which essentially represents the motion of
individual pixels between subsequent frames. By assuming a constant bright-
ness, optical flow calculation boils down to the estimation of the displacement
(Δx,Δy) of a pixel at z = (x, y) [20]. This vector can only be obtained by intro-
ducing additional constraints, which is where optical flow methods described in
literature differ from one another [21].

In most video sequences, the amount of pixels that represent dynamically
moving objects is relatively small compared to the static ones. However, if the
camera viewpoint changes, most pixels in the image will also appear to move.
So, camera motion can be detected by the occurrence of significant optical flow
vectors in the majority of the image.

As in [13], (dense) optical flow vectors are calculated by using the efficient
algorithm described in [22]. Let V[z] be the flow vector image at pixel z. Now,
we define the optical flow mask Ff as follows:

Ff [z] =

{
1 if ||V[z]|| > Tf

0 otherwise ,
(20)

where Tf is a typically low threshold (e.g. 1 pixel). So, Ff represents a significance
classification of all flow vectors. If the ratio of significant flow vectors is larger
than a second threshold Tn, camera motion is detected.

5.2 Distinction Between Panning/Tilting and Jitter

In order to compensate for camera motion, the effect of this motion should be
mitigated at every pixel location. To compare a new image with a background
model, the image should first be transformed such that coinciding pixels also
represent the same objects in the model. Since the distances to the objects in
the scene are not known a priori in most applications, the effects of potential
perspective changes on the image formation are difficult to model. Luckily, when
a scene’s relief is small, relative to the average distance from the objects to the
camera, the weak-perspective image formation model can be used to describe
the image formation [23]. As proven by [24], arbitrary projection transforma-
tion matrices can be written in the form of an affine matrix, assuming a weak-
perspective image formation model.
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The affine transformation between two images can be estimated by the Pyra-
midal implementation of the Lucas Kanade Feature Tracker [25]. The algorithm
first detects interest points and then calculates sparse optical flow vectors to
detect their individual motion. In the second phase of the algorithm, the robust
affine transformation matrix Mtf is selected through a RANSAC framework.
From this matrix, the expected flow Ve can now be directly determined. For a
certain pixel z = (x, y, 1)T in homogeneous coordinates:

Ve[z] = Mtfz . (21)

If the center pixel is also the origin of the camera’s coordinate system, the
expected flow at the center pixel Ve[0] can be represented by the third column of
Mtf , also known as a translation vector tr = (tr,x, tr,y). If the camera viewpoint
changes between successive frames, tr will be a nonzero vector whose orientation
(arctan tr,y

tr,x
) represents the direction of the camera shift. If this direction is more

or less constant for a longer period, the camera viewpoint obviously moves away
from its original position, and a panning (or tilting) camera motion can be
detected. Conversely, if the direction of tr changes a lot, it is more likely that
the camera is jittery, but not necessarily moving away from the original position.

In the proposed method, the distinction between panning and jittery camera’s
is derived from the reasoning above. Let us define two accumulators: accp for
panning and accj for jitter, both initialized to 0 in the beginning of the sequence.
Every time a camera viewpoint change is detected, the current direction of tr
is compared to the previous one. If the angles differ by more than 90, accj is
incremented. Otherwise, accp is incremented. The camera motion compensation
is then executed with regard to the highest corresponding accumulator value.

5.3 Jitter Compensation

If the camera viewpoint is shifting around the same position, it is likely that
it moves in a small region around it. Many of these viewpoints will be reached
multiple times over a relatively short time span. This means that a (multimodal)
background model can be learned from past observations.

In [13], we proposed a compensation framework based on affine transforma-
tion of the input image with regard to the temporal modal. When a correct
image transformation is found, this method proved to work very well. However,
experiments showed that such obtained transformation matrices are sometimes
erroneous, most notably caused by motion blur in the input frames. A faulty
image transformation results in comparison with the wrong background pixels.
To further increase the robustness of our method, we deviate from that approach.

Early in the sequence, the background model will not yet be fully adapted,
and will produce many false positive foreground pixels. However, as described
in Sect. 2.2, the global unreliability rate is designed to learn more rapidly as
the percentage of foreground pixels rises. So, if the camera reaches the same
position later again, the model will already be (partially) adjusted, so the false
detection rate will be much lower. Detecting jitter first and then selecting the
global unreliability rate later on has proven very beneficial (Sect. 6).



C-EFIC: Color and Edge Based Foreground Background Segmentation 447

(a) (b)

(c) (d)

Fig. 8. Creation of the foreground RGB image in a sequence with panning camera. (a)
Input image, (b) Short-term foreground mask, (c) compensated flow mask, (d) bitwise
AND of short-term RGB foreground mask and compensated flow mask. Similar results
are obtained for the foreground LTP image.

5.4 Panning Compensation

If a (slow) panning or tilting camera change is detected, the original background
image is no longer usable if the new camera viewpoint has deviated too far from
the original one. The benefits of the global unreliability rate are limited here.
By the time the camera returns to its original position, the background model
will already have been replaced by other, more recent observations.

However, if the camera motion is relatively slow, such that the spatial rela-
tion between successive frames can be established, it becomes possible to build
a (unimodal) short term LTP gradient and a RGB color background model,
denoted BLTP,s and BRGB,s respectively. A new frame is compared to this
model after using the affine transformation as discussed in the previous sec-
tions. Here, BLTP,s and BRGB,s are also transformed after every frame as long
as the panning motion continues. They are updated by using a large fixed learn-
ing rate αc,s in background regions. Regions where the background model is not
yet initialized, are copied directly from the LTP gradient and RGB color input
images.

Comparing the LTP features determined from the input with BLTP,s results
in the short term foreground mask FLTP,s:

FLTP,s[z, t] =

{
1 if ||G[z, t] − BLTP,s[z, t]|| > TLTP,s

0 otherwise ,
(22)
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where G[z] is the input LTP gradient vector at z an time t as defined in Sect. 2.1.
Similarly, for the color based mask:

FRGB,s[z, t] =

{
1 if ||IRGB [z, t] − BRGB,s[z, t]|| > TRGB,s

0 otherwise ,
(23)

where IRGB is the color input image.
The requirement of rapid model construction makes it more likely that parts

of the model are unreliable, but also difficult to detect local unreliability. So, the
flow vector image V is used as a secondary decision mechanism. The compen-
sated flow image Vc is now defined as follows:

Vc = V − Ve . (24)

Thus, the original flow vectors are compensated with regard to the expected
affine image transformation, resulting from the camera viewpoint change. It
is expected that for static objects, the corresponding compensated flow vectors
should be close to 0. However, if an object is moving in the scene, the optical flow
vectors will differ from the globally calculated transformation and will locally
coincide with nonzero compensated flow vectors. Thus, utilizing a final flow
compensation threshold Tf,c, the compensated foreground flow mask Ff,c is now
defined as

Ff,c[z, t] =

{
1 if ||Vc[z, t]|| > Tf,c

0 otherwise .
(25)

The resulting foreground RGB and LTP masks now consist of the pixelwise
bitwise AND operation between Ff,c and the respective short term foreground
masks. Figure 8 shows a visual example of foreground detection in a sequence
with a panning camera. Note that the contour filling step described in Sect. 2.3 is
still executed after the foreground edge detection step. Finally, once the panning
motion has stopped, the exponential learning rate (Sect. 4) is reset, such that
the temporal model is quickly rebuilt at the new position.

6 Results

We compared the proposed algorithm to other the state-of-the-art, through the
comprehensive ChangeDetection.NET 2014 dataset [14]. This dataset contains
a total of 53 videos, spread across 11 categories. For all videos, we submitted
our binary masks to the website, which automatically calculates a total of 7
different performance measures for each video and category, as well as the overall
performance. Note that the same parameter set has to be used for all videos in
the dataset, such that optimizing for one particular category is discouraged.

As a preprocessing step, all input images were smoothed with a 3 by 3
Gaussian kernel. Post processing was done with a 5 by 5 median filter on the
binary foreground images. The parameters were tuned manually, and their val-
ues can be found in Table 1. The proposed algorithm was developed using C++
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 9. Performance of our proposed method on a few hand picked frames from the
ChangeDetection.NET 2014 dataset [14]. (a) Baseline, (b) Bad Weather, (c) Camera
Jitter, (d) Dynamic background, (e) Intermittent Object Motion, (f) Low Framerate,
(g) Night Videos, (h) Pan-Tilt-Zoom, (i) Shadows, (j) Thermal, (k) Turbulence.

programming code and runs at 16fps for 320 by 240 pixel videos on a desktop
with an Intel R© Xeon R© E5 Quad Core processor.

Visible results for all categories are shown in Fig. 9. The calculated measures
are given in Table 2. Since the video sequences differ strongly between the cat-
egories (e.g. many or few foreground objects, overall degree of difficulty . . . ),
these measures show considerable variance. The F-measures for all categories
and overall are compared with those of other methods in Table 3. As explained
in [8], the F-measure can be regarded as the most unbiased performance measure,
so this will be the focus of our analysis.

Including our own previous work as a competitor [13], the newly proposed
method significantly achieves the highest F-measure of all methods in 2 of the
categories significantly: Night and Pan-Tilt-Zoom. The night video category
holds the most difficult illumination conditions, with generally low lighting, but
changing appearances caused by traffic lights, street illumination and head and
tail lights of cars. Given all robustness measures described above, it is not sur-
prising that the method performs so well.

The top performance in the Pan-Tilt-Zoom category can be attributed to the
robust camera motion compensation framework. It should be stated however that
the proposed method does not detect the camera zooming in one of the four
videos, and thus has limited performance in this sequence. Since the method
uses affine transformations to compensate for camera viewpoint changes, this
framework could also be used if zooming could be detected. In the Camera
Jitter sequences, the method is close to the best performing methods, thanks to
the global unreliability rate, which is now only triggered when necessary.
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Table 1. Fixed parameters used in the experiments.

Parameter Description Value

T LTP threshold 3 (intensity range: [0, 255])

Tw Sum of temporal model weights threshold 85 (% of total weight)

Te,LTP LTP foreground threshold 25 (% of max. vector length)

k0 RGB foreground threshold, 0th order coeff 4 (% of range for R, G and B)

k1 RGB foreground threshold, 1th order coeff 4

M # vectors in the temporal models 5 (per pixel)

αc Fixed learning rate 0.0002

τ Exponential learning rate 0.04

μ Global unreliability rate threshold 0.50

σ Global unreliability rate steepness 0.10

Ci Local unreliability rate constant factor 0.05

Td Filling threshold 3

Tf Optical flow threshold 1

Tn Flow mask threshold 70 (% of # pixels)

Tf , c Compensated flow threshold 2

Te,LTP,s Short term LTP foreground threshold 40 (% of max. vector length)

Te,RGB,s Short term RGB foreground threshold 8 (% of range for R, G and B)

αc, s Short term fixed learning rate 0.1

Table 2. Results on the ChangeDetection.NET 2014 dataset using all 7 measures [14].

Recall TNR FPR FNR PBC F-Measure Precision

Bad Weather (BW) 0.7352 0.9977 0.0023 0.2648 0.6600 0.7867 0.8719

Low Framerate (LF) 0.8077 0.9976 0.0024 0.1923 0.5532 0.6806 0.7135

Night Videos (NV) 0.7223 0.9866 0.0134 0.2777 2.5899 0.6677 0.6636

Pan-Tilt-Zoom (PTZ) 0.8686 0.8947 0.1053 0.1314 10.597 0.6207 0.6144

Turbulence (TB) 0.6494 0.9990 0.0010 0.3506 0.2542 0.6275 0.7047

Baseline (BL) 0.9455 0.9970 0.0030 0.0545 0.5201 0.9309 0.9170

Dynamic background (DB) 0.6556 0.9952 0.0048 0.3444 1.0825 0.5627 0.5674

Camera Jitter (CJ) 0.8458 0.9890 0.0110 0.1542 1.6653 0.8248 0.8157

Intermittent Object Motion (IOM) 0.8107 0.9172 0.0828 0.1893 8.4615 0.6229 0.5823

Shadow (SH) 0.9191 0.9920 0.0080 0.0809 1.1933 0.8778 0.8453

Thermal (TH) 0.8131 0.9943 0.0057 0.1869 1.3706 0.8349 0.8690

Overall (Over.) 0.7976 0.9782 0.0218 0.2024 2.6316 0.7307 0.7543

Furthermore, the method also shows near state-of-the-art performance for
Baseline, Low Framerate and Shadow and sequences. The Baseline sequences can
be considered to be the easiest ones, with near constant illumination and empty
frames in the beginning of the sequences. The Shadow sequences are comparable
to the Baseline ones, but the moving objects cause more pronounced shadows.
Our method is able to deal with weak shadows very well, since they do not
cause edges in the LTP image. Stronger shadows obviously pose a more difficult
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Table 3. Comparison of the F-Scores of all methods applied to the ChangeDetec-
tion.NET 2014 database per category and overall. The highest score is denoted in bold
faced numbers. References to the other methods can be found on the ChangeDetec-
tion.NET website [14].

Method BW LF NV PTZ TB BL DB CJ IOM SH TH Over

C-EFIC 78.67 68.06 66.77 62.07 62.75 93.09 56.27 82.48 62.29 87.78 83.49 73.07

EFIC [13] 77.86 66.32 65.48 58.42 67.13 91.72 57.79 71.25 57.53 82.02 83.88 70.88

IUTIS-3 80.32 73.27 49.48 39.21 78.57 95.46 89.60 81.39 71.36 85.85 82.10 75.43

SuBSENSE 86.19 64.45 55.99 34.76 77.92 95.03 81.77 81.52 65.69 89.86 81.71 74.08

MBS 79.80 63.50 51.58 55.20 58.58 92.87 79.15 83.67 75.68 79.68 81.94 72.88

FTSG 82.28 62.59 51.30 32.41 71.27 93.30 87.92 75.13 78.91 88.32 77.68 72.83

SaliencySubsense 85.93 65.15 53.48 33.99 75.12 94.83 81.57 80.71 60.12 89.94 68.57 71.76

MBS V0 77.30 62.79 51.58 51.18 56.98 92.87 79.04 83.67 70.92 77.84 81.15 71.39

Superpixel

Strengthen BG

Subtraction

85.80 69.10 53.84 33.37 71.39 94.10 83.91 80.04 54.00 89.58 69.06 71.29

M4CD Version 1.0 78.67 61.19 49.77 23.48 80.26 92.04 68.11 80.51 63.93 89.13 71.61 69.16

CwisarDH 68.37 64.06 37.35 32.18 72.27 91.45 82.74 78.86 57.53 85.81 78.66 68.12

Spectral-360 75.69 64.37 48.32 36.53 54.29 93.30 77.66 71.42 56.09 85.19 77.64 67.32

Bin Wang Apr 2014 76.73 46.89 38.02 13.48 75.45 88.13 84.36 71.07 72.11 81.28 75.97 65.77

AAPSA 77.42 49.42 41.61 33.02 46.43 91.83 67.06 72.07 50.98 79.53 70.30 61.79

IUTIS-2 74.01 60.34 51.54 21.98 71.45 79.13 57.41 71.65 48.36 86.21 53.06 60.26

SC SOBS 66.20 54.63 45.03 4.09 48.80 93.33 66.86 70.51 59.18 77.86 69.23 59.61

KNN 75.87 54.91 42.00 21.26 51.98 84.11 68.65 68.94 50.26 74.68 60.46 59.37

SOBS CF 63.70 51.48 44.82 21.26 47.02 92.99 65.19 71.50 58.10 77.21 71.40 58.83

CP3-online 74.85 47.42 39.19 26.60 37.43 88.56 61.11 52.07 61.77 70.37 79.17 58.05

IUTIS-1 67.05 56.94 47.70 4.53 58.29 92.98 41.89 59.97 50.73 84.94 71.74 57.89

RMoG 68.26 53.12 42.65 24.70 45.78 78.48 73.52 70.10 54.31 72.12 47.88 57.35

GMM - Stauffer and

Grimson

73.80 53.73 40.97 15.22 46.63 82.45 63.30 59.69 52.07 73.70 66.21 57.07

KDE - ElGammal 75.71 54.78 43.65 3.65 44.78 90.92 59.61 57.20 40.88 76.60 74.23 56.88

GraphCutDiff 87.87 51.27 46.88 37.23 51.43 71.47 53.91 54.89 40.19 72.28 57.86 56.84

GMM - Zivkovic 74.06 50.65 39.60 10.46 41.69 83.82 63.28 56.70 53.25 73.22 65.48 55.66

Euclidean dist. 67.01 50.15 38.59 3.95 41.35 87.20 50.81 48.74 48.92 67.86 63.13 51.61

Multiscale

Spatio-Temporal

BG

63.71 33.65 41.64 3.64 52.91 84.50 59.53 50.73 44.97 79.18 51.03 51.41

Mahalanobis dist 22.12 7.97 13.74 3.74 33.59 46.42 17.98 33.58 22.90 33.53 13.83 22.67

problem, which requires more advanced modelling of either the structure of the
scene or the colormetric nature of shadows in general. The good performance
in the Low Framerate category can be attributed to the intelligent updating
mechanism, which is not fooled by the rapidly changing foreground masks.

The proposed method comes a close second to only our previous work in the
Thermal category, mostly since the edge based approach is also able to han-
dle thermal reflections well. Since the videos in this category all consist of a
single channel, the additional color mask does not benefit the detection. The
F-measure is slightly less, since the same parameters have to be used every-
where, which are now optimized for the majority of the (mostly color) videos
in the dataset. The same reason for slight performance loss can be found in the
Turbulence category.
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A limitation of the edge based method shows up in the Dynamic Background
category. Here, the background set vectors are spread across the entire feature
space, which results in many false negatives in two sequences with boats on rivers.
An adjusted mask aggregation framework in dynamic regions could improve
these results.

Overall, our method ranks near the top of the classification, with the third
highest F-Measure of all methods. There is also an improvement of more than 2
% with regard to our previous work. This gain can be attributed to the additional
color mask and the improved handling of camera jitter. Also note that the top
ranking method (IUTIS-3 [26]) actually combines the top 3 performing methods
at its time of submission (SuBSENSE [8], FTSG [27] and CwisarDH [28]). So, by
utilizing a similar framework which incorporates our method, even better results
may be achieved.

7 Conclusion

In this paper, we presented a combined color and edge based foreground back-
ground estimation algorithm. Gradient orientations and confidence measures are
calculated by using Local Ternary Patterns. These gradients serve as input in
a background modelling framework, which can dynamically adjust the learning
rate. Then, interior points are added to the edge based foreground mask, based
on a Breadth First Search strategy. The combined foreground mask consists of
the bitwise AND operation between the edge based image and a color based
foreground image.

Furthermore, possible camera motion is detected and a distinction is made
between jitter and panning situations. Jitter is handled by the global unreliability
rate, while panning motions are compensated through an optical flow based
framework.

We have shown that our method performs especially well in the presence of
difficult lighting conditions, e.g. at night, and for panning camera’s compared to
state-of-the-art methods. Furthermore, the method also provides near state-of-
the- art performance for Baseline and Low Framerate sequences, Thermal videos,
Shadows and Camera Jitter, which results in an overall third highest F-measure
to date on the challenging ChangeDetection.NET 2014 dataset.

Acknowledgements. We would like to thank the creators of ChangeDetection.NET
and all those responsible for providing the means to evaluate our foreground back-
ground estimation algorithm on this very comprehensive dataset.
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Abstract. Nowadays, complex image processing algorithms are a neces-
sity to make UAVs more autonomous. Currently, the processing of images
of the on-board camera is often performed on a ground station, thus
severely limiting the operating range. On-board processing has numer-
ous advantages, however determining a good trade-off between speed,
power consumption and weight of a specific hardware platform for on-
board processing is hard. Many hardware platforms exist, and finding
the most suited one for a specific vision algorithm is difficult. We present
a framework that automatically determines the most-suited hardware
platform given an arbitrary complex vision algorithm. Our framework
estimates the speed, power consumption and flight time of this algorithm
for multiple hardware platforms on a specific UAV. We demonstrate this
methodology on two real-life cases and give an overview of the present top
performing CPU-based platforms for on-board UAV image processing.

Keywords: UAV · Vision · On-board · Real-time · Speed estimation ·
Power estimation · Flight time estimation

1 Introduction

Nowadays UAVs (Unmanned Aerial Vehicles) are used in a variety of tasks such
as surveillance, inspection, land surveying,. . . They are mostly manually con-
trolled remotely or follow a predefined flight path, while collecting interesting
images of the environment. These images are often analyzed offline since the
processing power of these UAVs is limited. Otherwise a wireless link is provided
to do the processing of the images on a ground station giving the instructions to
the UAV. To be more autonomous and operate more robustly, UAVs should be
equipped with processing power so that images can be processed on-board. This
will ensure that UAVs can analyze and react in real-time on the images and that
they can fly much further since a wireless link is not necessary. Recent advances
concerning embedded platforms show an ongoing increase in processing power at
reasonable power consumption and weight. Currently, it even becomes possible to
employ these complex hardware platforms under UAVs. However, since various
parameters need to be taken into account, finding an optimal hardware platform

c© Springer International Publishing Switzerland 2016
J. Braz et al. (Eds.): VISIGRAPP 2015, CCIS 598, pp. 455–472, 2016.
DOI: 10.1007/978-3-319-29971-6 24



456 D. Hulens et al.

for a specific algorithm is not trivial. Example applications that need on-board
complex image processing are e.g. visual SLAM for 3D sense and avoid, the
detection and tracking of people for surveillance purposes, navigating through
the corridor between trees in an orchard for counting fruit, the automation of
a film crew by UAVs, a vision-based navigation system to automatically clean
solar panels,. . . Determining the optimal trade-off between the processing capa-
bilities and the physical constraints is a daunting task because of their variety.
Therefore, in this paper we answer the question: Which hardware platform is best
suited to perform a particular image processing task on a UAV? A hardware plat-
form can be a simple embedded processor (e.g. a Raspberry PI) or even a small
computer like a laptop, depending on the processing power that is needed. Using
these under a UAV impose severe constraints on the hardware platforms: they
should be lightweight, small and have adequate processing power at low power
consumption to maintain long flight times. To determine the effective process-
ing speed of a particular algorithm on a specific hardware platform, one should
implement the algorithm on each specific platform. Acquiring a large variety of
test platforms to determine the most suitable one evidently is not time nor cost
efficient. Therefore, in this paper we present a framework that, given a specific
algorithm, estimates the processing speed, power consumption and flight time on
a large set of hardware platforms, without the need to acquire any of them. For
this we rely on two benchmark algorithms. This paper provides data for a num-
ber of hardware platforms only restricted in the fact that they are CPU-based.
However since our framework is generic, new platforms can easily be added to
the framework. An overview of the platforms that we have included can be found
in Table 1. The framework will be evaluated on two real cases. In the first case
we track a person with a UAV using a face detection algorithm [2]. For this,
we search for a hardware platform that can run the face detector at 4 fps while
minimizing the power consumption (e.g. maximum flight time). In our second
case the UAV should visually navigate through a fruit orchard corridor, running
a vantage point detection algorithm [1] on-board at 10 fps (Fig. 1).

Fig. 1. Parrot AR Drone (left) and XBird 250 (right) carrying an Odroid hardware
platform for real-time image processing.
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The main contributions of this paper are:

– State-of-the-art overview of the current best CPU-based processing platforms
for complex image processing on-board a UAV.

– Present experimental results of benchmark computer vision experiments on
each of these state-of-the-art platforms.

– We propose a generic model to estimate the processing speed, power consump-
tion and UAV flight time of any given image processing algorithm on a variety
of hardware platforms.

– Validation of the proposed generic model on two real cases (people detec-
tion/tracking and vision-based navigation).

This paper is structured as follows: in the next section we give an overview of the
related work on this topic. In Sect. 3 we briefly discuss the hardware platforms
that we used in the framework. In Sect. 4 we present our framework and in Sect. 5
we verify our framework with some experiments and show our results.

2 Related Work

Currently, UAVs are often used to capture images of the environment which are
then processed afterwards e.g. surveying [12]. For this the UAVs are controlled
manually or by means of GPS. However, our main focus is on autonomously
flying UAVs. To enable this, UAVs mainly rely on vision algorithms. Therefore,
algorithms like path planning and obstacle avoidance (e.g. object detection)
are used to steer the UAV to a certain position [7,13,14]. Due to their com-
putational complexity, on-board UAV processing is often practically unfeasible.
Therefore, in these approaches, a ground station (with desktop computer) is
used to process the images and steer the UAV. However this severely limits their
operating range. In cases where on-board processing currently is employed, only
light-weight algorithms are used. For example [10] use sky segmentation (color
segmentation), running on a Pentium III processor, to detect and avoid objects
in the sky. [8] use a marker detection system to follow a predefined path. [17] use
line detection, running on a Cortex-A9, for the inspection of pole-like structures.
[9] track an IR-LED-pattern mounted on a moving platform, using a ATmega
644P controller and [15] filters laser scanner data on an Atom-based processing
platform to estimate crop height. However, our real-life test case algorithms are
much more complex. To implement more complex algorithms on a UAV often
FPGAs or ASICs are used since they offer an optimal trade-off between weight,
power consumption and processing power. [11] designed an FPGA based path
planning algorithm, and [6] evaluate other hardware like ASICs as on-board
vision processing platform. However, translating e.g. OpenCV code (C, C++ or
python) to hardware (using e.g. VHDL) is a tedious and time consuming task.
[16] use a high-end processing platform for on-board path planning and obstacle
avoidance. This is possible since, in their case, power consumption or weight
is less relevant because they use an octacopter with a large carrying capacity.
Currently, work exists which achieves real-time performance of complex vision
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algorithms on UAV mounted embedded platforms [18–20]. However, their algo-
rithms are specifically adapted or designed to perform real-time performance on
a targeted hardware platform. We aim to develop a framework that performs the
opposite operation; i.e. given a specific algorithm we determine the most suited
hardware platform. To resolve all problems mentioned above, in this paper we
present a framework that automatically determines the most suitable hardware
platform given a user’s computer vision algorithm from state-of-the-art, afford-
able (from $30 to $800), embedded platforms. Our framework enables the use
of complex computer vision algorithms which run in real-time on-board of the
UAV, directly programmed in OpenCV.

3 State-of-the-Art Image Processing Platforms

Nowadays, a number of CPU-based processing platforms are available which are
lightweight and powerful and therefore suited for the task at hand. An overview
is given in Table 1. We will describe them briefly, in order of ascending process-
ing power (and thus increasing weight). A well-known lightweight processing
platform is the Raspberry PI. The PI is a small, low-cost 1 GHz ARM11 based
hardware platform developed for educational purposes. The main advantage of
this small platform is that it runs a linux-based distribution, which allows the
compilation and usage of well-known vision libraries e.g. OpenCV. Of course,
the processing speed is limited, but simple vision algorithms, like e.g. face detec-
tion based on skin color segmentation, run at real-time performance. The PI is
equipped with a Broadcom GPU which recently became open-source. A more
powerful alternative for the PI is the family of Odroid platforms. One of those
platforms is the U3 that is even smaller than the PI and has an ARM based
1.7 GHz Quad-Core Samsung processor that is also used in smartphones. Speed
tests on the U3 indicated that this platform is 20 times faster than the Rasp-
berry PI. The XU3 is another Odroid platform which has a Samsung Exynos5422
Cortex-A15 2.0 GHz quad core and a Cortex-A7 quad core processor making him
two times faster as the U3. The XU3 has a fan to cool the processor where the
U3 is passively cooled. Both the U3 and XU3 are equipped with an eMMC slot
which is a much faster alternative for the SD card. Another novel and promising
platform is the Jetson TK1 Development Kit with an on-board NVIDIA GPU
and a quad-core ARM15 CPU, making the platform especially useful for GPU
based vision algorithms. In this paper we only perform experiments on the CPU
but in future work the GPU will also be evaluated. The Jetson has several IO
ports making it easy to communicate with sensors or inertial measurement units
(IMUs), it even has a sata connection for a hard-drive. The CPU speed is com-
parable with the U3, but when GPU vision algorithms are used this platforms
really shines. A more powerful family of hardware platforms are the Mini-ITX
platforms. Mini-ITX platforms all have the same dimensions (17 × 17cm) but
can be equipped with different processors and IO. They are basically small com-
puters with the same IO as a normal desktop computer. The mini-ITX platforms
can be classified into two categories: the Atom platforms that can be compared
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Table 1. Overview hardware platforms that we have tested for our framework.

Name Processor Memory Weight Power Volume (cm3)

(gram) (Watt)

Desktop Intel I7-3770 20 GB 740 107 4500

Raspberry PI ARM1176JZF-S 512 MB 69 3,6 95

Odroid U3 Samsung Exynos 2 GB 52 6,7 79

Odroid XU3 Samsung Exynos 2 GB 70 11 131

Jetson Cortex A15 2 GB 185 12,5 573

mini-ITX atom Intel Atom D2500 8 GB 427 23,5 1270

mini-ITX I7 Intel I7-4770S 16 GB 684 68 1815

Nuc Intel I5-4250U 8 GB 550 20,1 661

Brix Intel I7-4500 8 GB 172 26 261

with netbooks and the I7-3000 platforms that can be compared with desktops.
The Atom Mini-ITX platform has a 1.86 GHz Fanless Dual Core processor like
in many netbooks computers. Its speed is comparable with the U3 and therefore
less interesting due to its larger size, power consumption and weight. Unlike the
previous, the Intel i7-3770 platform has a quad core processor and is much faster.
This platform is one of the fastest platforms we have tested in this paper. It is
five times faster than the XU3 and even faster than our reference system that
we used (normal desktop computer). Together with a power supply that can be
connected to a LiPo battery and a SSD hard drive, this platform can handle
complex image processing algorithms on-board a UAV. The disadvantage of this
platform is its power consumption and weight. The next family of platforms are
the Brix and Nuc barebone mini-computers. These computers are designed to
be mounted on the back of a monitor and have a size of 11 × 11cm. These
platforms consume less power than the Mini-ITX I7 platform but are twice as
slow, which is still very fast for such a small computer. The Brix has an Intel
I7-4500 quad-core processor and is comparable in speed with the Nuc that has
an Intel I5-4250U processor. When stripping down the casing of these two plat-
forms, the Brix only weighs 172 g (SSD included) compared to the Nuc that still
weigh 550 g, giving the Brix the most interesting specs to mount on a UAV for
complex image processing algorithms. Section 5.1 gives an overview of the tests
we have performed on these platforms.

4 Approach

The goal of our framework is to find the best hardware platform to run a user’s
new vision algorithm on a UAV. The main criterion we try to optimize is the
amount the processing platform reduces the UAV’s flight time. Indeed, both
because of the hardware platform’s own weight and of its electrical power con-
sumption it drains the battery during flight. The best platform is found when
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Fig. 2. Overview of our framework.

a vision algorithm can run on it at a certain required speed (in fps frames per
second), while it consumes as little as possible and the weight of the platform
is as low as possible in order to extend flight time. The required speed can be
much lower than the maximum speed that the algorithm can run on a certain
platform, e.g. a face detector that runs at 100 fps but only 20 fps is required
for a certain application. The power consumption reduces dramatically when
reducing the frame rate of the algorithm on the same platform.

We propose a generic calculation model that estimates the flight time reduc-
tion for an arbitrary vision algorithm on a specific embedded processing plat-
form. As seen in Fig. 2 this model consists of six blocks. In the first block the
user’s new algorithm and two benchmark algorithms are executed on a reference
system (e.g. the user’s desktop computer) and their frame rate is given to the
next block where the relative complexity of the new algorithm is estimated. With
this, for each hardware platform, its speed is estimated in the next block. Then
the power consumption of every platform, while running the new algorithm at
a certain required speed, is estimated. In the next block the power consumption
of the UAV carrying each hardware platform is calculated. Finally, in the last
block the flight-time of the UAV, carrying each hardware platform running the
new algorithm at a certain speed, is estimated. In the next subsections these
blocks are discussed in detail.



Choosing the Best Embedded Processing Platform 461

4.1 Complexity and Processing Speed Estimator

To estimate the speed of a new algorithm on every hardware platform we first
estimate the complexity of this algorithm. For the sake of simplicity, we assume a
linear relation between the processing speed and the complexity of the algorithm.
We will validate this linearity assumption in Sect. 5. The speed of the algorithm
(falg = 1

Talg
) on the reference system, e.g. the user’s desktop PC, is used as

measurement for the complexity (Calg). We empirically measure the relative
complexity of the new algorithm with respect to two reference (benchmark)
algorithms. The first benchmark algorithm is an easy algorithm that we let
correspond with 0% complexity (C1). For this algorithm we chose the OpenCV
implementation of a 3× 3 median filter on a color image of 640× 480 pixels. The
second algorithm is a more difficult algorithm that corresponds to a complexity
of 100% (C2), where OpenCV’s HOG person detector is applied to an image of
640× 426 pixels. Our Complexity estimator uses the execution time of these two
benchmark algorithms (T1 and T2) and the user’s new algorithm (Talg) running
on the reference system to calculate the complexity of the new algorithm (see
Fig. 3). The complexity is then calculated as:

Calg =
Talg − T1

T2 − T1
C2 + C1 (1)

We assume a linear relation between the computational complexity and the
speed of these vision algorithms because they all do mainly the same operations,
like applying filters on an image and extracting features. Vision algorithms are
always data intensive but most of the time not computationally intensive. Note
that code optimizations for specific architectures evidently affect the results.
Details like memory usage are not taken into account in this simple model,
because the memory on the advanced hardware platforms is easy expandable.
Moreover, in our model we only assume CPU-based processing platforms, no
other architectures such as GPU or FPGA for which a code translation step
would be necessary. In Sect. 5 the validity of this linear relation is verified.

Now that the complexity of the new algorithm (Calg) is known, the speed
of the algorithm can be estimated on every platform by following Fig. 3 in the
other direction, as demonstrated in Fig. 4 for two fictitious platforms. The simple
and difficult algorithm is run on every platform what results in a T1 and T2 for
each platform. Because Calg is known from the previous step, Talg can now be
calculated for each platform:

Talg =
Calg − C1

C2
(T2 − T1) + T1 (2)

At this point the speed (falg = 1
Talg

) of a new algorithm can be estimated
for each hardware platform, hence in the next step we can estimate the power
consumption of the new algorithm on each platform.
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Fig. 3. Linear complexity model. Complexity Calg (red) is estimated with T1, T2 and
Talg as input (green) (Color figure online).

Fig. 4. Calculating Talg (red) for each processing platform (blue and orange) with
known Calg, T1 and T2 (Color figure online).

4.2 Power Estimator

In UAV applications flight time is of utmost importance. Therefore our frame-
work estimates the power consumption of each hardware platform running the
new algorithm at the required speed. We performed experiments to determine
the relation between processing speed and power consumption, indicating that
a linear model is again a good approximation (see Sect. 5). When the maximum
speed of the algorithm is not required, the power consumption can be lower than
when the algorithm is running at full speed. By taking the required fps as an



Choosing the Best Embedded Processing Platform 463

input of the Power Estimation Block we can estimate the power consumption
more precisely for each platform.

To calculate the power consumption Palg of a certain algorithm, the power
consumption of each platform is measured when in idle state Pidle (doing noth-
ing) and when running all cores at full speed Pmax (algorithm running at full
speed). Together with the required speed (in frames per second) freq and the
maximum speed of the algorithm fmax the power consumption of the platform
can be linearly interpolated as follows:

Palg =
Pmax − Pidle

fmax
freq + Pidle (3)

In this step we also have to eliminate hardware platforms which do not reach
the required fps (when 1

Talg
< freq ). At this point the power consumption of

every remaining platform, running the user’s new algorithm at a certain speed,
is known. In the next step the power consumption of the UAV itself, carrying
the platform as payload, is calculated.

4.3 Motor Efficiency

In [4] a model has been developed that enables the user to estimate the power
consumption of a multicopter at hover. The performance estimates are based
on momentum disk theory and blade element theory of helicopters combined
with empirically determined correction factors for multicopters [3]. The model
requires the user to input several parameters such as weight, number of pro-
pellers nprops and propeller radius R. The model uses some empirical parame-
ters such as the Figure of Merit FM (basically the propeller efficiency), the
motor efficiency ηmotor (including the electronic speed controller efficiency) and
an installed-to-hover power ratio Pinstalled

Phover
of 2 (based on industry standards).

The empirical parameters were determined with actual tests on several motors
and propellers which are middle grade RC components. The user can (slightly)
change these as their multicopter might have higher or lower grade components.
We will use this model to estimate the power consumption of the UAV carrying
the hardware platform. During hover and slow forward flight it can be assumed
that thrust Thov(approximately) equals the total weight force Wtot in Newton
(Wtot = mtotg = (mUAV + mplatform)g) and the hover power per propeller can
be calculated through the disk loading DL, induced velocity vi and air density ρ:

DL =
Wtot

πR2nprops
(4)

Phovtheo
= Thovvihov

= Wtotvihov
= Wtot

√
DL

2ρ
(5)

Phovreal
=

Phovtheo

FMηmotor
(6)
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Calculating the power consumption of the multicopter based on hover conditions
is a rather safe method as during slow forward flight the required power actually
decreases by 10% and most multicopter operations take place in this regime [5].

Together with the hardware power consumption Palg, the total electrical
power consumption Ptot can be calculated as:

Ptot =
Wtot

√
DL
2ρ

FMηmotor
+ Palg (7)

At this stage the total power consumption of the UAV, carrying the hardware
platform that is running a certain algorithm, is known. In the next subsection
the flight time is estimated.

4.4 Flight Time Estimator

The flight time for every platform can be estimated since the power consumption
of every platform running an algorithm at a certain speed together with the
power consumption of the UAV itself carrying each of the platforms is known
now. These two values together with the capacity of the batteries are the inputs
of this block. Nowadays most UAVs are using lithium polymer batteries because
of their good capacity vs weight ratio. Nevertheless the capacity mentioned on
the batteries applies only as long as the remaining battery voltage is above a
certain value. Therefore most of the time 75% of the battery’s capacity is taken
as a more fair value to calculate the flight time. Flight time is subsequently
calculated as follows:

Tflight(h) =
0.75VbatCbat

Ptot
(8)

where Cbat is the capacity mentioned on the battery in Ah, Vbat is the voltage of
the battery and Ptot is the total power consumption of the UAV at hover (Eq. 7).

At this point the main question “Which hardware platform is best suited to
perform a particular image processing task on a UAV?” can be answered, which
we will demonstrate in the next section for our two example algorithms.

5 Experiments and Results

We performed extensive experiments to validate our framework using a wide
variety of platforms and multiple algorithms. In the first subsection we per-
formed multiple speed tests of two algorithms to compare the different hardware
platforms. In the next subsection we proof that the assumption of a linear com-
plexity and power model holds. Finally we present validation experiments on
two computer vision-based real-life cases: face detection and tracking on a UAV
for people following and visual navigation to find the corridor in an orchard for
fruit counting/inspection.
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5.1 Speed Tests of Two Algorithms on Each Hardware Platform

In our first test the processing speed of the OpenCV implementation of a HOG
person detector and a Viola and Jones face detector is measured on all platforms.
Thereby speed can be compared for every hardware platform. The result can
be seen in Fig. 5. In Fig. 6 we display the ratio of the measured speed of these
two algorithms and the power consumption of every platform while running the
two algorithms. Figure 7 displays the ratio of the speed and the volume of the
hardware platforms and in Fig. 8 the ratio of the processing speed and the weight
of the platforms is shown.

Fig. 5. Speed (logarithmic) of HOG person detector (blue) and Viola and Jones Face
detector (orange) for every platform (Color figure online).

As seen in Figs. 5, 6, 7, and 8, the Mini ITX Intel I7 platform is one of the
fastest but also very heavy. The Jetson and Atom platforms score below average
compared to the other platforms because the Jetson is a processing platform
designed for GPU implementations and the Atom is already an older generation
of CPUs. The Nuc and Brix have a similar speed and power consumption, but
the Brix is much lighter and smaller. The two Odroid platforms are similar in
power consumption, volume and weight but the XU3 is twice as fast as the U3
platform. Overall, the Brix scores best when all test are taken into account.

5.2 Validation of Models

In Sect. 4.1 we assumed a linear relation between the complexity of a vision algo-
rithm and the execution speed (the higher the execution time of the algorithm
the more complex it is). The linearity is validated by estimating the speed of our
two real-case-algorithms, on a desktop computer, for every platform and com-
paring it with the real speed of these algorithms on every platform. In Fig. 10
the percentage deviation between estimated fps and measured fps is given for the
two algorithms. As seen, the error is not greater than 10% which is indicating
that the assumption of a linear model for the estimation of the complexity can
be taken as valid.
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Fig. 6. Processing speed / power consumption ratio for every hardware platform.

Fig. 7. Processing speed / volume ratio for every hardware platform.

Fig. 8. Processing speed / gram ratio for every hardware platform.
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Fig. 9. Power consumption of each platform measured while increasing the speed (top:
in fps, bottom: in %) of the easy (Median filter) algorithm.

Fig. 10. Deviation between estimated fps and measured fps of our two real-case-
algorithms.
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As mentioned in Sect. 4.2 there is also a linear relation between the power
consumption and the processing speed of an algorithm running on a hardware
platform. To verify this statement the power consumption of each hardware
platform is measured while incrementally increasing the processing speed. As
seen in Fig. 9, the power consumption increases indeed practically linear with
the processing speed for each processing platform.

5.3 Framework Validation on Two Real Cases

For two application cases, we demonstrated the use of the proposed model to
find out which hardware platform is best suited for on-board computer vision
processing. For both cases a Parrot AR Drone and a XBird 250 is used. On the
Parrot the forward looking camera is used to capture images for our algorithms
and the XBIRD is equipped with a webcam to capture images.

In the first real case, the UAV should follow a single person. The detection
of the person is done by using the OpenCV implementation of Viola and Jones
face detector [2] as seen in Fig. 12. This algorithm should run at least at 4 fps.
In the second case the UAV should navigate through a fruit orchard as seen in
Fig. 13. Therefore an orchard-path-detection algorithm is used to find the middle
and the vanishing point of the corridor [1]. In this algorithm, filters are applied
on the image for preprocessing, followed by a Hough transform to find straight
lines (the corridor) and a Kalman filter to predict and track the middle and
vanishing point of the corridor. This algorithm should run at least at 10 fps to
fly smoothly through the orchard (Fig. 11).

Fig. 11. Left: AR Drone with forward looking camera. Right: XBird with webcam
attached on the frame.

We ran both algorithms on a normal desktop computer to know their speed
with which their complexity is estimated (Table 2). When their complexity is
known their speed on every hardware platform is estimated (Eq. 2), together with
their power consumption (Eq. 3) on every platform. At this stage some hardware
platforms are discarded because they do not reach the required speed. Thereafter,
the total power consumption of the UAV (AR Drone) carrying every hardware
platform, running the algorithm, is calculated (Eq. 7). Finally, flight time is esti-
mated with Eq. 8. Results can be seen in Tables 3 and 4. Table 4 indicates that the
power consumption of the algorithm can’t be ignored when using small UAVs.
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Fig. 12. The detection of the persons head is used to track the person with a UAV.

Fig. 13. The first three pictures are the preprocessing steps, in the third picture lines
are detected with Hough Transform and displayed on the fourth picture. The intersec-
tions of the red lines are the vanishing point (pink) of the corridor. The intersection of
the green cross is where the vanishing point should be to steer the drone through the
orchard (Color figure online).

Secondly, we verified the estimated flight time by attaching the proposed
hardware platform on both the AR Drone and XBird while running the spe-
cific algorithm. Flight time is measured while hovering, as seen in Table 5 the
deviation between estimated and measured data is very small (less than 7%)
indicating that our framework indeed finds the best hardware platform for a
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specific vision algorithm and estimates the speed and flight time very precisely.
Note that, when the UAV runs the orchard or face algorithm the flight time
reduces with 30.21 % and 39.58 % as compared to the flight time without payload.

Table 2. Algorithm complexity estimation results.

Algorithm Speed Complexity

(fps) (%)

Desktop Desktop

Benchmark 1 (median) 2040 0

Benchmark 2 (HOG) 9,91 100

Orchard 388 2,08

Face 22,44 43,9

Table 3. Results of our framework for the face detection and orchard algorithm. Plat-
forms in red are eliminated because they do not reach the required speed. The platform
in green is the best platform to run this algorithm on, on the specific UAV (AR Drone).

Algorithm Face Orchard

Platform
Est.
speed
(fps)

Est.
power

consump.
(Watt)

Est.
flight
time
(min)

Est.
speed
(fps)

Est.
power

consump.
(Watt)

Est.
flight
time
(min)

Desktop 22,44 388
Nuc 10,75 11,48 4,6 199 8,04 4,8
ITX i7 28,88 34,6 3,3 483,9 31,8 3,4
Brix 13,21 13,44 8,3 243,14 9,17 8,9
ITX atom 2,34 24,76 40,28 21,55 5
Jetson 1,98 9,25 16,52 5,71 9,3
RPI 0,16 10,39 1,86 4,61
XU3 5,06 7,39 11,6 19,5 6,44 11,9
U3 2,95 4,5 14,8 3,55 13,4

Algorithm Face Orchard

Platform
Est.
speed
(fps)

Est.
power

consump.
(Watt)

Est.
flight
time
(min)

Est.
speed
(fps)

Est.
power

consump.
(Watt)

Est.
flight
time
(min)

Desktop 22,44 388
Nuc 10,75 11,48 4,6 199 8,04 4,8
ITX i7 28,88 34,6 3,3 483,9 31,8 3,4
Brix 13,21 13,44 8,3 243,14 9,17 8,9
ITX atom 2,34 24,76 40,28 21,55 5
Jetson 1,98 9,25 16,52 5,71 9,3
RPI 0,16 10,39 1,86 4,61
XU3 5,06 7,39 11,6 19,5 6,44 11,9
U3 2,95 4,5 14,8 3,55 13,4

Table 4. Power consumption of each part of the system.

Face Orchard

Power consumption (Watt) (%) (Watt) (%)

Algorithm 7,39 17,2 3,55 9,6

Board weight 7 16,3 5 13,5

UAV weight 26 60,6 26 70

IMU 2,55 5,9 2,55 6,9



Choosing the Best Embedded Processing Platform 471

Table 5. Estimated and measured data.

Alg. Est. Measured Estimated Measured Estimated Measured

speed speed flight time flight time flight time flight time

AR Drone AR Drone XBird XBird

(fps) (fps) (min) (min) (min) (min)

Face 5,06 4,9 11,6 12,4 7,4 7,12

Orchard 14,8 14,97 13,4 12,7 8,1 7,54

6 Conclusion and Future Work

We developed a framework that finds the best hardware platform for a specific
vision processing algorithm that should run at a certain speed on-board a UAV.
Furthermore the speed of the algorithm running on each platform is estimated.
Thanks to this framework researchers can find a suitable hardware platform
without buying them all to test their algorithm on. A second novelty of our
framework is that flight time can be estimated for the user’s UAV, carrying the
proposed platform. We validated the framework with success on two real test
cases allowing us to find a suitable hardware platform for our application and to
estimate the flight time with our AR Drone and XBird carrying this platform.

Also, we made this model available via an online front end that other
researchers can use to find the best platform for their algorithm and even add
their own hardware to the framework and expand the database of hardware
platforms (www.eavise.be/VirtualCameraman.html). In the future we will keep
adding new state-of-the-art platforms and extend the framework with GPU plat-
forms.

Acknowledgements. This work is funded by KU Leuven via the CAMETRON
project.
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