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Preface

The present volume contains the proceedings of the Second International Workshop on
Graphical Models for Security (GraMSec 2015). The workshop was held in Verona,
Italy, on July 13, 2015, in conjunction with the 28th IEEE Computer Security Foun-
dations Symposium (CSF 2015).

Graphical security models provide an intuitive but systematic methodology to
analyze security weaknesses of systems and to evaluate potential protection measures.
Formal methods and computer security researchers, as well as security professionals
from industry and government, have proposed various graphical security modeling
schemes. Such models are used to capture different security facets (digital, physical,
and social) and address a range of challenges including security assessment, risk
analysis, automated defensing, secure services composition, policy validation, and
verification.

The objective of the International Workshop on Graphical Models for Security is to
contribute to the development of well-founded graphical security models, efficient
algorithms for their analysis, as well as methodologies for their practical usage. The
workshop brings together academic researchers and industry practitioners designing
and employing visual models for security in order to provide a platform for discussion,
knowledge exchange, and collaborations.

The second edition of the GraMSec workshop received 13 submissions and each
of them was reviewed by at least four reviewers. Based on their quality and contri-
bution to the field, six papers, among which one short tool paper, were accepted for
presentation at the workshop and inclusion in the final proceedings of GraMSec 2015.
In addition to the accepted papers, we invited Christian Probst, Jan Willemson, and
Wolter Pieters from the TREsPASS consortium to describe the Attack Navigator, a
graphical approach to security risk assessment inspired by navigation systems. The
workshop’s program was complemented by an invited lecture by Marc Bouissou on
“Dynamic Graphical Models for Security and Safety Joint Modeling.”

We would like to thank all the people who volunteered their time and energy to
make this year’s workshop happen. In particular, we thank the authors for submitting
their manuscripts to the workshop and all the attendees for contributing to the work-
shop discussions. We are also grateful to the members of the Program Committee and
the external reviewers for their work in reviewing and discussing the submissions, and
their commitment to meeting the strict deadlines. Further, we would like to thank Ravi
Jhawar (publicity chair), Piotr Kordy (web chair), and Luca Viganò (General Chair of
CSF 2015) for their support in organizing our workshop.

Finally, our thanks go to the European Commission’s Seventh Framework Pro-
gramme for their partial sponsorship of the workshop (EU FP7 grant no.
318003 TREsPASS) and to the University of Luxembourg, the Fonds National de la
Recherche Luxembourg (FNR-CORE grant ADT2P), the Institut National des Sciences



Appliquées (INSA Rennes), and the Institut de Recherche en Informatique et Systèmes
Aléatoires (IRISA) for their in kind contribution to GraMSec 2015.

July 2015 Sjouke Mauw
Barbara Kordy
Sushil Jajodia
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The Attack Navigator

Christian W. Probst1(B), Jan Willemson2, and Wolter Pieters3

1 Technical University of Denmark, Kongens Lyngby, Denmark
cwpr@dtu.dk

2 Cybernetica, Tallinn, Estonia
janwil@cyber.ee

3 Delft University of Technology, Delft, The Netherlands
w.pieters@tudelft.nl

Abstract. The need to assess security and take protection decisions is
at least as old as our civilisation. However, the complexity and develop-
ment speed of our interconnected technical systems have surpassed our
capacity to imagine and evaluate risk scenarios. This holds in particular
for risks that are caused by the strategic behaviour of adversaries. There-
fore, technology-supported methods are needed to help us identify and
manage these risks. In this paper, we describe the attack navigator: a
graph-based approach to security risk assessment inspired by navigation
systems. Based on maps of a socio-technical system, the attack navigator
identifies routes to an attacker goal. Specific attacker properties such as
skill or resources can be included through attacker profiles. This enables
defenders to explore attack scenarios and the effectiveness of defense
alternatives under different threat conditions.

1 Introduction

The need to assess security and take protection decisions is as old as our civil-
isation, and maybe even older. Looking around in nature, we see that animals
try to build their lairs in safe places and that some plants grow prickles. These
kinds of decisions are not taken in a conscious way, but are rather a result of a
long evolutionary trial and error process.

What differentiates humans from other species is the highly complex techni-
cal environment we operate in. The speed of development of this environment
exceeds the capabilities of natural evolution by several orders of magnitude,
which means we cannot rely on evolution to develop safeguards. Instead, we
need security assessment methods to identify potential threats, and to allow us
to cope with the highly sophisticated attacks being enabled by our environment.

On the other hand, our perception of surroundings is still very much limited
by what evolution has provided for us. Humans are averagely good at perceiving
visual images, sounds, and smells, but not so much at grasping all the small
details and implications of large infrastructures. Yet, in order to utilize such
infrastructures efficiently, we need such abilities in one way or another.

c© Springer International Publishing Switzerland 2016
S. Mauw et al. (Eds.): GraMSec 2015, LNCS 9390, pp. 1–17, 2016.
DOI: 10.1007/978-3-319-29968-6 1



2 C.W. Probst et al.

Even if humans manage to collect adequate environmental data, their risk
comprehension may be severely biased due to educational, cultural, psycholog-
ical, political, and other reasons [1–3]. Hence, there is a clear need for tools
that provide a visual, easy to comprehend overview of the environment, but at
the same time being rational and unambiguous. The target of the TRESPASS
project [4] is to achieve exactly that – assist humans in taking security decisions
about large, complex infrastructures in a way that is easy to perceive given our
limited capabilities.

In security risks, we deal with strategic attackers who plan their actions.
This means that we must be able to “think thief”, and predict possible attack
scenarios by imagining attacker behaviour. The central innovation to achieve
this goal is the introduction of the notion of attack navigator map. It can be
seen as an effort to bridge the gap between complexity of real systems and limits
of human perception by utilising a concept familiar to all of us, namely spatial
navigation. This approach gives us several benefits:

– Moving towards an attacker’s goal corresponds intuitively well to navigating
through complex terrain, together with the need to take decisions, achieve
subgoals, etc.

– Navigation optimisation is rather well studied and understood, as opposed to
complex system security.

– Navigation can be handled on different levels of abstraction. There can be a
bird-eye version for executive-level, grass-root version for technical level, and
an arbitrary number of intermediate levels as needed.

All these aspects make navigation a good metaphor for studying security assess-
ment of complex infrastructures and for communicating assessment results.

The remainder of this paper is organised as follows. In Sect. 2 we outline the
main steps of the TRESPASS process that provides analysts with the toolset and
methodology forming the basis of the attack navigator, which then is described
in Sect. 3. Sections 4 and 5 explain how to move from a high-level abstract view
of the environment (the satellite view) to a fine-grained system model (the map)
and how to find routes (the attacks). Finally, Sect. 6 discusses how to select coun-
termeasures based on TRESPASS analysis, and Sect. 7 draws some conclusions.

2 The TRESPASS Process

Of course it takes more than just a good metaphor to build a usable risk assess-
ment system. In practice, the analyst needs a working toolset and methodol-
ogy that would be able to support the navigation approach on various levels
of abstraction. The main result of the TRESPASS project are the toolset and
methodology that together support the TRESPASS process, which we describe
in this section.

In order to achieve the navigation effect, one needs an analogue of a map to
navigate on. In the real world, maps represent cities and streets, and to a certain
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extent artefacts such as points of interest. These maps are produced by geogra-
phers based on satellite images and inspection of the terrain under consideration.
In the TRESPASS approach, the role of a map is played by the system model, a
formal representation of the socio-technical environment to be analysed. System
models contain a number of components from such environments:

– Actors represent human players or processes involved in the system;
– Assets can be either items or data;
– Locations represent where actors or items may be situated either physically

or digitally;
– Edges describe possible relocation paths between locations;
– Policies describe access control and specify allowed actions, e.g., get some

data item from a location or move between locations; and
– Processes formalize certain state transition mechanisms, e.g., computer pro-

grams or virtual machines.

Unlike in the real world, there is no satellite to provide pictures of the envi-
ronment. The model creation is instead the result of a collection of processes that
resemble the combination of satellite and geographer. Before the actual model
creation can start, information about the system needs to be gathered. This
happens in several parallel processes, both via a specially crafted user interface
and automated data acquisition, e.g., in case of large IT infrastructures.

When using a real map for navigation, the goal is to reach a certain location
under certain constraints, e.g., as fast as possible, as economical as possible, or
without using freeways. Once a system model is built, the attack navigator needs
an attacker goal to explore the ways to achieve this goal by moving through the
model. The goal itself is stated as a policy violation, e.g., illegitimate access to
a data asset, and as such can serve as a trigger for an automated navigation
procedure.

At this point, navigation through a system model and orienteering across a
terrain start to differ. As mentioned above, finding one’s way in nature or urban
environment usually has a well-set optimisation goal, typically path length or
time that it would take to follow this path.

Navigation through a system model is relatively less understood and the
methods of along-the-path optimisation are much less mature than shortest path
algorithms on terrain graphs. Hence, the output of an attack navigator, in terms
of possible attack scenarios, has to contain more information and optimisation
itself has to happen at a later stage.

In case of the current toolset implementation of TRESPASS, this output
contains formal attack vector descriptions in the form of attack trees [5]. This
is not the only possible option, but attack trees were chosen since they are
rather well established and accepted in the risk assessment community [6]. Also,
computational methods have been developed for various optimisation targets
that can be stated for attack trees [7–10].

After the analysis of the attack trees has been finished, the results are dis-
played to the end user on a visual front-end. The user can then take decisions
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concerning overall security level, required additional controls and possible model
updates. After the model has been updated, the analysis can be run again to
study the effects of the changes on the security level.

3 The Attack Navigator

We will now look closer at the attack navigator itself. Car navigation systems
are independent of the car they are used in, i.e., properties of the car are often
ignored since they typically are the same for each car. The navigator may have
options to avoid, for example, unpaved roads in non-4WD cars but these options
are not explicitly linked to types of cars.

In the attack navigator, the important properties that influence the possible
attacks are properties of the attacker. Just as in car navigation systems, in many
current models of security risk, these attacker properties are implicit. The risks
and identified attacks by such methods are annotated with probability, time,
and cost values, which are based on assumptions on the attacker that tries to
perform the attack.

Threat agent modelling [11–13] aims at specifying explicit threat agents as
a basis for security risk assessment, with properties such as skill, resources, and
objectives. This may lead to profiles such as activists, terrorists, or spies all with
specific properties.

The TRESPASS attack navigator concept takes an important step beyond
current models of security risk by leveraging threat agents as attacker profiles.
The attack navigator analysis uses a combination of a navigator map and an
attacker profile to derive

– suitable goals for the attacker based on attacker motivation, and
– feasible routes to that goal and properties of these routes based on skill and

resources from the attacker profile.

The attacker profiles also imply a link between attack navigators and security
economics [14]. Both attackers and defenders have costs for their actions, and
utility functions associated with the possible outcomes, but only a limited bud-
get. The utility of attackers may be different based on their motivation, and this
can be used in the analysis of attack trees [15]. The attack navigator aims at
optimising defender investments, assuming that

– attackers optimise their investments as well,
– the defender moves before the attacker, and
– the attacker knows what the defender has done.

This amounts to a simple two-step game with minimax optimisation [16]. One
can also consider attacker behaviour over time in order to get frequency metrics
for risk analysis [17].

The similarity with economic models also means that there is quite a bit
of uncertainty in the results of computations. The assumptions made may not
always hold, and the available data is fragile. The claim of attack navigators is
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therefore not a precise prediction of what will happen, but rather a prediction
of what is possible or likely, and to what extent countermeasures improve the
situation. Even if results are not the exact numbers we would like to have, they
can be useful for comparing options, or even as thinking tools for imagining
possible attacks.

4 From Satellite View to Maps

An essential component of a navigator is the underlying map, on which routes are
computed. As such they also form an important component of the attack navi-
gator. Maps of the real world are created based on satellite images and the work
by geographers. This approach is only partly feasible for creating maps of organ-
isations: while the overall building structure can be assessed from the outside,
elements such as access control policies or network and social structures can-
not. These elements, however, form an essential part of attack navigator maps,
since they can be enabling factors of attacks, i.e., routes through the navigator
map. Satellites are not the right tool for another reason: the organisations under
scrutiny are typically rather small and consequently also only cover a limited
area. If the attack navigator map covers a bigger area, this part of reality can
usually be represented by parts of a real map.

4.1 Models of Reality

When creating maps as models of reality, one needs to abstract the real world by
a concept that is suited for automated detection of routes. For real navigation
systems, maps are stored as graphs with nodes connected by edges; both nodes
and edges can have properties, e.g., size of a city, size of a street, or whether it
is open for traffic or not.

Models for attack navigators follow the same approach: organisations are
abstracted to graphs, nodes in the graph represent locations in the organisation,

Table 1. An overview of components in the attack navigator map and the tools and
processes to identify them.

Real world Model component Tool

Relevant area Locations and edges Maps

Computer
networks

Assets and edges Network exploration tools such as nmap

to explore network infrastructure.

Human actors Actors Demographic surveys, personnel profiles

Physical access
control

Policies and processes Documents and interviews

Computer access
control

Policies and processes Documents, extraction tools, interviews

Software processes Processes Documents, extraction tools, interviews
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and edges between nodes represent connectivity between these locations. The
construction of attack navigator maps follows a different approach than for real
maps, though. As mentioned above, satellites are not really applicable. They
can, however, serve as a metaphor. Where satellite pictures give a view of the
real world that needs to be interpreted to create a map, tools can be used to
obtain a similar view of organisations.

For creating attack navigator maps, a collection of tools or processes are
required to collect information about the different parts of an organisation and
its surroundings as necessary for the map. Table 1 shows components of attack
navigator maps and tools and processes to collect them. In general, whenever
adding a new category to be represented in attack navigator maps, one will also
need to add a new tool or process to collect the necessary information.

As shown in Table 1, quite a number of components are obtained through
interviews or by running tools. This is where the modeller, the attack navigator
map’s equivalent of the geographer, becomes important. Like the geographer is
in charge of assembling the map, and interpreting parts of the satellite image,
the modeller is in charge of integrating the bits and pieces of infrastructure and
data. Especially the interview parts require special attention, since extracting
and interpreting the information obtained through interviews is difficult.

In the TRESPASS project, a set of tools for physical modelling have been
developed [18] to structure the interview process; physical modelling enables
employees to contribute to the map creation as domain experts with inside knowl-
edge of their organisation and its policies, assets and values. Physical modelling
provides a way to engage employees into the map creation, and to give them a
creative process to provide input.

The attack navigator map is constructed around the mapping of locations
together. The locations in the different infrastructures establish the connection
points between the different layers of the organisation. Access control policies are
associatedwith locations in thebuilding layer andassets in thenetwork layer. Loca-
tions in the network layer can coincide with locations in the building layer. Assets
are located at other assets or at locations of the network or building layer. Attack
navigator maps are structured using these co-locations.

Figure 1 shows a small example for a navigator map with different locations,
actors, and assets. In the office there is a safe with a secret in it, and Bob has
a key to open the safe. There is another key on the shelf in the reception. Alice
wants to obtain the secret from the safe, but the safe has a policy that requires
actors to have the matching key in order to open the safe and access its content.
Accessing content is represented as input in system models.

4.2 Policies

Policies play an important role in attack navigator maps, since they describe
how access to certain nodes is restricted, and what an actor in the model needs
to fullfil to access the annotated location or asset. Examples include key cards
or keys that are required to access a door. Besides these local policies, there also
exist system-wide or global policies [19]. Global policies identify the assets of
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Reception

Shelf

Bob

key

Alice

Charlie

key

Outside Office

Safe

Secret

key : in

Fig. 1. Example for a small system model with several actors, locations, and assets.

an organisation that should be protected against attackers. For example, they
might specify that a certain file type is not allowed to leave the organisation,
or that a certain location may only be entered at certain times or with a set of
credentials. Section 5 discusses how these global policies guide the computation
of attacker routes.

4.3 Model Patterns

Like real maps, attack navigator maps tend to contain components that are
similar to each other; they share the same structure, but might be different with
respect to some properties. For creating maps, there exist standards of such
patterns used by map editors.

For attack navigator maps, patterns are equally important since many ele-
ments occur repeatedly. To ease the modeller’s task, model patterns are provided
in a library. Model patterns are sub-graphs that can be put into the attack nav-
igator map. When such a pattern is put into the map, it is instantiated and can
be configured to match the element of the real world it represents.

Model patterns also include policies and processes, which represent access
control restrictions and functionality at nodes in the model. For access control
or for modelling, e.g., network infrastructure, policies and processes can be com-
bined to model quite complex scenarios. For example, role-based access control
can be modelled by allowing different roles to output different messages to a
location, where each message triggers a process that implements the assigned
functionality.

5 From Maps to Routes

Once an organisation has been represented using a graphical model, the attack
navigator can identify possible routes on the map for the attacker to reach a
goal [20,21]. In this section we discuss the different steps in doing so. After intro-
ducing the representation of attacker routes in the next part, we discuss the actual
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attack navigation and attack patterns, which can be used to extend identified
attack in a similar way as the model patterns discussed in the previous section.

Like real navigation, attack navigation is white-box testing of a map.
We assume that the attacker has perfect knowledge of the organisation and
knows, e.g., where assets are located, what the layout of the organisation is, or
how employees can be social engineered. Scenarios with incomplete knowledge
can be considered as well, i.e., an attacker who needs to explore the organisation,
but then the impact of attacks can be expected to be lower than for an attacker
with perfect knowledge.

5.1 Attacker Routes

Before presenting the actual routing mechanism on attack navigator maps, we
briefly discuss the representation of routes. In a navigation system, routes are
series of coordinates, often with information about potential congestion on that
part of the route. A navigation system assumes that its user is rational and will
follow the suggested route. Only once deviations from that route are observed,
it will start to recalculate a new route from the position where the user is at this
point.

Attacker routes are computed slightly differently, and consequently need
another representation. For attacker routes, we are interested in all possible
attacks. As described above, the result of the attack navigator is the set of all
attacks that are possible in the model, quantified by some property, and ranked
accordingly. This is similar to the regular navigator: for navigation, only the
shortest, fastest, or most economic route is displayed. Due the complexity of
attacks, this selection is far from easy for the attack navigator; the result is
therefore presented to a human defender who will dismiss impossible or negligi-
ble attacks.

To enable this selection process, attack trees [5,6] are the ideal representation,
since they combine different possible attacks that lead to the same goal. The root
of an attack tree represents this goal, and the subtrees represent sub-attacks that
either need all to be fulfilled, or where one is sufficient to reach the goal. For
representing attacker routes, the former would represent that several steps need
to be taken, and the latter would represent different possible routes. We present
examples for attack trees in Fig. 5.

5.2 Attack Identification

Attack identification is the actual navigation on the attack navigator map. Like
real navigation, it takes an attacker location and identifies a possible route from
this location to the desired goal.

For the attack navigator map shown in Fig. 1, the goal is clear: Alice wants
to obtain the secret from the safe. Once the goal is identified, the paths to the
goal (only one in the example) and the missing assets are identified. Alice lacks
the key, which is available from Bob or from the Shelf. The upper part of Fig. 5
shows part of the attack tree generated for this scenario.
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Goal Identification: As discussed above, the goal in attack navigator maps is
identified based on global policies of the modelled organisation. These policies
represent a goal of the organisation that should not be violated. Examples include
that employees should not send secret files by email, that in general secret files
should not leave the organisation, or that the password file on a computer may
not be read. In the attacker route, this goal would be the root node, and its
children would represent different attacks that enable an attacker to reach this
goal.

The result of the goal identification is an action, which the attacker tries to
perform, or an asset, which the attacker tries to possess. An important observa-
tion is that the latter is a variant of the former; to possess an asset, the attacker
needs to perform an action to obtain it. In the attack navigator, this is repre-
sented as inputting the asset.

Attack Paths: For each of the identified attacker goals, there may exist numer-
ous paths to reach the goal location, where the goal action can be performed, or
where the goal asset can be obtained. The attack navigation considers all these
paths, since they may result in different impact or may otherwise have different
properties that the defender deems important.

This property is essentially different from standard navigation, where it is
a safe assumption that one can ignore routes that are too slow compared to
the optimal routes at any given point during routing. Attacker routes are only
evaluated in the next step and a defender might use different criteria for eval-
uating trees; as a result, there is no decision basis for ignoring attack routes or
for evaluating them on the fly. One important evaluation criteria is an attack
route’s impact, which does not increase continuously, but may have discontinu-
ous changes based, e.g., on the assets obtained.

Every step in an attack path consists of a step in the model, be it moving
from one location to another, or be it obtaining some asset—either the final one,
or one that is needed to perform some other action. For example, if the attacker
goal is to read the password file on a central server, then the root password of
that machine is an asset that needs to be obtained.

Required Resources: These required resources are acquired on the fly. When-
ever the attacker encounters an action in an attack path that requires an asset
such as the password for the server machine, a new attack is spawned, at the end
of which the attacker has obtained that asset. It is important to note that the
routes always assume success, even though an attack might be prohibited. From
the attacker’s viewpoint the asset has been obtained, and the original attack
can continue as planned. This should also be the defender’s point of view—the
interesting case is not a defeated attack, but a successful one.

Moving Assets: Finally, attacker routes can differ significantly from normal
routes through the fact that the goal asset in attacker models can move or be
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moved, resulting in novel attacks. In a regular navigation system this would
mean that the goal could be moved, resulting in a shorter, faster, or longer trip.

While this is not possible for real goals, it is a common attack strategy in
attacker maps: The attack consists in making the asset move, and then finding
attacks to all those locations that the asset can reach. The means of making an
asset move differ depending on the kind of asset. Data usually moves through
processes, which are triggered by the attacker; assets usually move with actors,
which an attacker must social engineer.

An example for an attack that made the data move is a cloud service admin-
istrator who attached a network sniffer to the local network in the server room,
and then made a virtual machine migrate from one server to another; as a result,
the administrator had a copy of the network traffic that he could playback to
obtain a copy of the virtual machine.

5.3 Detailedness of Models

One general issue with maps and routes, both for real maps and attack navigator
maps, is the level of detail in the maps. In both cases, if the maps are too detailed,
it is very difficult to identify a close-to-optimal route; if the maps however are too
imprecise, the routes are not realistic either, and may lack important information
needed to follow the route.

In attack navigator maps, the level of detail relates to how detailed the iden-
tified attacks are. Coming back to the cloud administrator example, modelling
the bits and bytes of the virtual machine and the OSI network stack is likely too
much detail. On the other hand, in a system that models only the two servers
not including the network infrastructure, it will not be possible to identify the
attack at all.

The level of detail is therefore an important design criteria when designing
(attack navigator) maps. A good guiding principle is to include only those ele-
ments that are essential for the functionality of the overall system, but exclude
internal workings of the system. The modelling work in the TRESPASS project
has shown that it is better to exclude some details and to rely on attack patterns
to add possible attack steps to the generated attack route.

5.4 Attack Patterns

To deal with detailedness of models, and the resulting detailedness of attacks,
we introduce attack patterns, which are similar to the model patterns discussed
in the previous section. For too detailed models it is difficult to deal with the
resulting overly detailed attack trees. For models with too few details, this is
equally difficult. However, it is easier to add “standard” attack pattens to an
attack tree, than it is to remove superfluous nodes.

Attack patterns identify typical approaches to performing an attack. Since
they are used to extend the attacker routes or attack trees introduced earlier,
attack patterns are represented as subtrees as well.
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1 label match {

2 case IN attacker item container:

3 // get type attacker from attacker profile

4 // get type item from knowledge base

5 // get type container from knowledge base

6 // insert APL attacks that allow to extract item from container

7 case MAKE attacker actor action:

8 // get type attacker from attacker profile

9 // get type actor from attacker profile

10 // insert APL attacks based on types and action

11 //...

12 }

Fig. 2. Code for the expansion of general attack trees in a context-unaware fashion. The
expansion algorithm iterates over all leaf nodes and matches leaf node labels against
the known cases. If a leaf node label matches a pattern in the attack pattern library,
it is inserted into the general attack tree. Figure 5 illustrates this process.

Attack patterns are applied by inspecting the actions in an attack tree, and
by exploring whether a certain action realisations of this action are known. The
overall structure of this exploration is shown in Fig. 2: The expansion algorithm
iterates over all leaf nodes and matches the action at this leaf (represented as
leaf node labels) against the known cases. If a leaf node label matches a pattern
in the attack pattern library, it is inserted into the general attack tree.

This approach has a number of benefits beyond it contributing to clearing out
models and keeping them free of clutter. Attack pattern libraries can be shared
between organisations to disseminate findings about possible attacks. Once an
attack pattern is available in the attack navigator, whenever a matching action
working on matching types of assets or actors is found, the pattern will be
instantiated.

Two attack patterns are shown in Figs. 3 and 4. The pattern in Fig. 3 replaces
obtaining an item from an actor with either stealing the item or social engineering
the actor to give it to the attacker. The root of the pattern specifies the action
and the types of the arguments for the actor A obtaining an item I from an actor
C, represented as A inputing I from C:

IN A item : I actor : C

This information is crucial for applying the pattern, also because these arguments
A (attacker), I (item), and C (actor) occur again in the attack pattern, and must
be replaced with the matching values from the attack tree.

The pattern in Fig. 4 is a bit more complicated; it describes that A makes
B perform some action for him. As before, the root of the pattern is replaced
with nodes that represent different alternatives in the attack. It should be noted
that later phases may discard some of the generated attacks since they might be
infeasible.
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IN A item:I actor:C 

A steals I from C
A social 

engineers C to 
give I 

Fig. 3. An attack pattern that replaces the action of obtaining (inputting) an item
from an actor with two attacks, one stealing the item from the actor, and the other
one social engineering the actor to hand over the item.

MAKE A B IN B item:I actor:C

A threatens B to 
execute IN B I C

A blackmails B to 
execute IN B I C

A bribes B to execute 
IN B I C A social engineers B

A impersonates 
authority

A orders B to execute 
IN B I C

A blackmails B

A collects intel about B

Fig. 4. An attack pattern that replaces social engineering an actor A to obtain (input)
an item from another actor B. The alternatives inserted are threatening, blackmailing,
bribing, and social engineering actor A to perform the action.

Social Engineering: A typical example for attack steps that should be added
through attack patterns, not through adding more details to the model, is social
engineering. Social engineering is an important factor of attacking organisations
through exploiting the knowledge and the access rights of employees or insid-
ers [22–24]. Social engineering usually requires creating a pretext, which is part
of bringing the victim into a situation where it either is not aware of contributing
to an attack, or where it has sufficient reason to believe to do the right thing.

Due to its dependency on human behaviour, social engineering is difficult to
deal with in formal methods. Since the choice of pretext, for example applying
authority, depends heavily on the victim, this kind of attack is best dealt with
through attack patterns. The patterns shown in Figs. 3 and 4 introduce social
engineering nodes, where the attacker social engineers another actor to perform
an action.

5.5 Attacker and Actor Profiles

The success of both attackers and defenders depends on the type of actor and
the skills considered. In the attack navigator, different profiles are considered
based on threat agent modelling [11–13], which provides skills, resources, and
objectives of actors. The attack navigator analysis uses these profiles to identify
attacks and countermeasures on a system model, and to predict the likelihood
of success and impact of the attack.

Actor profiles separate the planning of a route from its assessment: routes in
the attack navigator are all possible attacks with respect to the model. Not all
of these attacks are feasible for all attackers, but they are still attacks. For car
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A
PL Leaf 

Expansion

get key

get key 
from Bob

get key 
from shelf

IN Alice key Bob SocENG Alice Charlie IN Charlie key Bob

get key

get key 
from Bob

get key 
from shelf

IN Alice key Bob

MAKE Alice Charlie IN Charlie key Bob
Alice steals key 

from Bob
Alice social 

engineers Bob 
to give her key 

Alice threatens Charlie 
to execute IN Charlie 

key Bob

Alice blackmails 
Charlie

Alice collects intel 
about Charlie

Alice blackmails 
Charlie to execute IN 

Charlie key Bob

Alice bribes Charlie to 
execute IN Charlie key 

Bob

Alice social engineers 
Charlie

Alice impersonates 
authority

Alice orders Bob to 
execute IN Charlie key 

Bob

Fig. 5. The expansion of a part of a general attack tree. The patterns (Figs. 3 and 4)
may have holes, which are filled with attributes from the leaf node that is expanded.
For conjunctive nodes, the outgoing edges are connected with an arc, indicating that
all child nodes are required to be executed to reach the goal.
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navigation this would mean to show all possible paths from the starting point to
the goal, but routes that require a 4WD car would not be feasible for all cars.

Real navigation cannot consider all routes, since it requires the driver to
decide, which of the many possible routes is the best with respect to an opti-
mization goal. For attack navigation it is the reverse: a single route or attack
out of many is not useful; considering all attacks enables the tools to identify
countermeasures that disable as many attacks as possible with a certain effort,
and it also enables analysis of which kind of attacker to watch out for.

6 Countermeasures

A risk assessment would be useless if it would not come with a way to incor-
porate countermeasure effect analysis. There are two major ways in which the
TRESPASS methodology supports this.

The first approach is generic and can in principle be applied to any risk
assessment framework. It uses the framework as a black box which takes some
inputs (in the case of TRESPASS, the system model) and gives some output (in
our case, prioritized attack vectors). Assuming the end user is able to change
the model and run the analysis again, we obtain a full operational loop with
human involvement, where the user is expected to interpret the analysis results
and actively participate in the model development.

Even though TRESPASS aims at automating the risk analysis process, we
do not think that full automation is possible or even needed. Again coming back
to the terrain navigation analogue – the human is not expected to follow GPS
blindly. In fact, several cases have been reported when people being overconfident
in the GPS reading have ended up in serious accidents [25,26]. And even if the
model, i.e., the map, used by the GPS device is correct, the user may still have
optimization preferences the device is unaware of.

In some sense, the situation is even better with the attack navigator. Here
the user has more options than just selecting between the routes offered by a
machine. The user can actually change the map by implementing additional
controls, increasing efficiency of the existing ones, etc. All these changes would
hopefully change the risk landscape, and running the analysis tool again on an
updated map is the prime way of verifying this.

As mentioned in Sect. 2, attack trees are not the only possible attack descrip-
tion language that can be used in TRESPASS. Attack-defence trees by Kordy
et al. [27] are an alternative approach to countermeasure selection. In princi-
ple, this formalism allows for integrating countermeasures into the risk assess-
ment process on a lower level than the generic model update approach described
above. It is possible already at the attack generation stage to also generate cer-
tain defence nodes into the tree or to obtain those from standard libraries. The
option of changing the model and running the analysis again of course remains, so
the attack-defence tree approach is potentially more flexible than the one based
on classical attack trees. However, since attack-defence trees are considerably
more recent and accordingly less studied, the current version of the TRESPASS
toolset (as of 2015) does not yet support this.
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7 Conclusions

The navigation metaphor is a new approach to security assessment of complex
systems that aims at being more accessible to a human end user than other
computer-assisted frameworks. However, no metaphor can make the inherent
challenges of risk assessment to go away, it can only try to present them on the
level where human decisions can be made more intuitively.

The TRESPASS project has been building a toolset supporting such a work-
flow. We have published key innovations in for example the attack navigation
metaphor [14], making attacker profiles explicit [28], attack generation [20,21],
quantitative analysis [29,30], and visualisation of maps and paths [31,32]. Our
practical and theoretical developments open up for many new and interesting
research questions in the area of attack navigation and graphical models for
security, for example:

– What is the correct abstraction level for a system models and maps that
would be humanly comprehensible and at the same time would allow formal
analysis?

– Are there additional opportunities for using the properties of attacker profiles
in security analysis? Can we use more advanced calculations or statistics?

– Are the current TRESPASS model components generalisable enough to per-
form realistic security assessments on a wide class of systems, or are extensions
needed for different types of systems?

– How can we share attack patterns and what are the requirements on the
pattern sharing authorisation infrastructure?
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Abstract. In computer networks many components produce valuable
information about themselves or other participants, especially security
analysis relevant information. Although such information is intrinsically
related as components are connected by a network, most of them still
operate independently and do not share data amongst each other. Fur-
thermore, the highly dynamic nature of a network hampers a profound
understanding of security relevant situations, such as attack scenarios.
Hence, a comprehensive view of the network including multiple informa-
tion sources as well as temporal network evolution would significantly
improve security analysis and evaluation capabilities. In this paper, we
introduce a comprehensive approach for an integrated visualization, cov-
ering all aspects from data acquisition in various sources up to visual
representation of the integrated information. We analyze the require-
ments on the basis of an exemplary scenario, propose solutions covering
these demands based on the IF-MAP protocol, and introduce our soft-
ware application VisITMeta as a prototypical implementation. We show
how the graph-based IF-MAP protocol provides a graphical model for
an integrated view of network security.

1 Introduction

In recent years several visualization approaches have been proposed for network
security components like Intrusion Detection System (IDS and flow controllers,
which monitor different aspects of network traffic or the behavior of systems and
users [11]. For a comprehensive view on the overall network state, however, an
integrated visualization of security information gathered from multiple separate
components is desirable. In contrast to existing dashboard user interfaces, which
visualize information from different sources in separate views on the same screen,
we aim at the visualization of homogenized data within a single representation to
emphasize their interrelations. In this way, the user can get a thorough under-
standing of well-defined aspects of the network by focusing on its immediate
surroundings, while still being able to gain a broad overview of the network by
including more generally related data, e.g. infrastructure information. An inte-
grated visualization thereby facilitates a detailed assessment of the security state
and the detection of potential security threats or attacks.
c© Springer International Publishing Switzerland 2016
S. Mauw et al. (Eds.): GraMSec 2015, LNCS 9390, pp. 18–34, 2016.
DOI: 10.1007/978-3-319-29968-6 2
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1.1 Exemplary Real World Scenario

The following scenario clarifies the necessity of those advanced monitoring and
visualization approaches and serves as a basis for the requirements we derive for
our approach. Given is a typical enterprise environment with several employees,
each with a personal computer or smartphone. They are part of a network,
which includes services, like mail and SSH servers, internal storage devices, and
databases. An IDS is used to detect unwanted behavior and firewalls regulate
the traffic and enforce the security policy.

One possible attack scenario is a user downloading an infected file (not recog-
nized by the IDS), which results in compromising his account and device. The
malware not only starts to spread across the internal network, but also tries
to compromise further accounts by conducting brute-force login attempts onto
available services within the network (this finally is detected by the IDS). Sub-
sequently systems successfully infected start doing the same.

The desired process for a network security administrator is to: (1) Quickly
detect not only single incidents, but recognize the combination of failed login
attempts on multiple services by the same users. (2) Find the sources of the
attacks and thereby the infected systems and users (they might use different login
information or spoofed addresses). (3) Discover the initial security breach by
identifying the initially infected component and determine the way the malware
entered the network. (4) React as fast as possible (e.g., shut down accounts or
lock out devices) to prevent further harm, like successful brute-force attempts.
(5) Return the network as well as its components and users towards a productive
state after the problem has been handled appropriately.

1.2 Requirements

A tool which helps the security administrator perform tasks as in Sect. 1.1 has
to fulfill three main requirements, each of which with suitable visual support.

(I) Real-time Monitoring. Due to the highly dynamic nature of networks, time
is a crucial factor when analyzing the network state. Fast reactions can pre-
vent other systems from getting corrupted or valuable information from
getting stolen. Furthermore, analysis results may only be accurate for a
certain time frame, and it is crucial to acquire knowledge before it is out-
dated.

(II) Data Integration. The different network components generally perform
their respective tasks without communicating with each other or sharing
their available information, most of them using proprietary data models.
To overcome these isolated views, an integration of the different parts of
information is fundamental. Nevertheless, the source of each datum should
still be retained, in order to correlate achieved knowledge on a semantically
higher level with the triggering low level events.

(III) Retrospective Analysis. In order to understand the current state of a net-
work it is necessary not only to perceive and detect current situations, but



20 V. Ahlers et al.

to retrace the events which have led to the current state. Hence, tracking
the changes within the network is unavoidable and certain access mecha-
nisms offer different advantages in the analysis. A playback of the events
between two states enables an easier understanding of the transition from
a desired towards an undesired state of a device or network, whereas repli-
cation of a single previous state can be used to review and restore an older
configuration.

1.3 Contribution and Outline

In this paper we show how the Interface for Metadata Access Points (IF-MAP),
a graph-based framework to manage metadata from multiple data sources in
an integrated fashion, can be used as a foundation to collect information from
different services, infrastructure components and endpoints for integrated visu-
alization. While graphs provide natural representations of network topologies,
IF-MAP also uses graphs to model relations between logical network compo-
nents, like device addresses or user identities, and accompanying metadata, like
capabilities, authentication information, or security-related events. Accordingly,
the visualization of MAP graphs described in this paper allows a deeper view
on the network state and enables correlation of security-relevant information on
different semantic levels.

The remainder of this paper is organized as follows. Section 2 provides an
overview of related work on the visualization of security information from mul-
tiple data sources. In Sects. 3 to 5 solution approaches for the requirements
stated above are developed. Section 6 introduces the VisITMeta application,
which implements the proposed solutions. Section 7 shows the benefits of the
proposed systems and the challenges that were recognized. Section 8 gives a con-
clusion and an overview of future work.

2 Related Work

OSSIM1 (Open Source Security Information Management, commercial version:
USM) is an open-source Security information and event management (SIEM)
system which integrates a collection of other well known open source security
systems (e.g., OSSEC, OpenVAS, Snort and Nagios) into one unified system.
OSSIM collects information from these systems in a central place for analysis
purposes. The analysis results and the raw data are available for oversight by
human security experts via a web interface. In addition OSSIM employs pattern
and anomaly detection techniques as well as a general model for event correla-
tion, which operates based on event streams or using heuristic algorithms [7].

VIAssist2 is a commercial visual analysis platform which collects network
flow and security data from different sources (e.g., Netflow, IDS) and uses a

1 http://www.alienvault.com/open-threat-exchange/projects.
2 http://securedecisions.com/products/viassist/.

http://www.alienvault.com/open-threat-exchange/projects
http://securedecisions.com/products/viassist/
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dashboard with various visualization options [6]. The approach of VIAssist is
to offer parallel views of the same or related data in order to facilitate threat
detection by visual correlation. In contrast to our approach, both OSSIM and
VIAssist use dashboards to visualize security information of different sources and
analysis results, but no integrated graphical model. We consider such a model
to be extremely important to gain deeper insight into more complex security
threats.

Prelude OSS3 (commercial version: Prelude Pro) is an open-source SIEM
system. Prelude collects security-related information from various sources like
network sensors, network infrastructure, service end-points and other security
systems. Prelude is able to read alarm information in different formats (e.g. flat
log files or syslog) and normalize this information to the Intrusion Detection
Message Exchange Format (IDMEF) [5]. This normalized information is then
stored in a central database and available for third-party software or via the
Prelude web interface called Prewikka. Prelude includes a rule-based correlation
engine called Prelude-Correlator which is able to detect security incidents and
raise new IDMEF alerts [14]. In contrast to our approach Prelude has a focus
on alert information, whereas we suggest to collect all relevant information,
which includes alarm information but extends the set of relevant information
to infrastructure data (e.g., location and configuration of devices) as well as
high-level information like user login patterns.

In [10] a graph-based visualization of data stored in a SIEM system is
described. While attack graphs are also used to visualize security incidents, the
prototype in the paper neither uses an extensible graph model such as IF-MAP
as foundation to store relevant data. Also, it does not provide the historical and
progression views of the metadata graph as our approach does.

In summary, the described systems use dashboard-style visualizations of secu-
rity data from different network components, while we propose an integrated,
graph-based visualization. Furthermore we focus on the visualization of network
history and temporal development, which none of these systems allows.

TVi [4] and ENAVis [8,9] are approaches to visualize network dynamics with
regard to network security. TVi displays time lines of entropies of certain net-
work features. ENAVis is a visual analytics tool that constructs different graphs
from network data (e.g., host-host, user-user, host-user, or user-application inter-
actions) and visualizes them using different layouts (force-directed, bipartite).
ENAVis allows to find clusters and study similarities between network states at
different times by means of visual analysis. While TVi visualizes the temporal
evolution of network statistics (entropies, histograms), ENAVis uses an approach
similar to ours by modeling different relations within a network as graphs (not
restricted to device connections or packet flow) and allowing to review network
changes by graph comparison. Our approach goes one step further by integrat-
ing different types of relations into a single graph, using metadata to differen-
tiate between relation types. For the visualization of network history we use a

3 https://www.prelude-ids.org/.

https://www.prelude-ids.org/
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different approach based on graph deltas, i.e., sets of newly created and deleted
nodes and edges within a selectable time interval.

In [1] we proposed a mechanism for the persistence of MAP data and the
computation of graph deltas. A brief overview is given in Sect. 4 below. In the
present paper we put this persistence mechanism in a wider context and focus on
the integration of multiple data sources as well as visualization of MAP graphs.

3 Integration of Data Sources

As explained in the introduction, only the integration of multiple information
sources—such as security-critical events, device configurations, and network
topology—can provide a comprehensive view of the overall network state. In
order to achieve a common knowledge base, a homogenization of these data
sources is required.

Obviously, physical and logical network topology are of great interest for
security analysis. Furthermore, configuration, state, and behavioral data of each
participant in the network are essential to make a statement about the role of
the devices and whether they behave in a desired manner. The collection of this
information is not necessarily limited to end-user devices, like desktop computers
or smartphones, but includes infrastructural components such as Network Access
Control (NAC) systems, switches, or routers. A major challenge is posed by the
heterogeneous and distributed nature of the data and its producers. Hence, it
is important to combine all data into a common representation by performing
homogenization as early as possible.

We suggest using IF-MAP as a protocol since it matches the given require-
ments for data integration (compare Sect. 1.2) by offering a standardized and
extensible data model and a centralized communication model, which conserves
the publisher of each information. By using a standardized data model, an
implicit homogenization of data is already given and the process of homoge-
nization is sourced out to a data-gathering client. Furthermore several of those
clients for data acquisition already exist. In the following, we will provide a basic
introduction to IF-MAP and describe its application in our architecture.

3.1 IF-MAP

IF-MAP is an open standard published as part of the Trusted Network Con-
nect (TNC) framework by the Trusted Computing Group (TCG). It defines an
XML-based client-server protocol for the exchange of metadata between many
Metadata Access Point (MAP) clients and a central MAP server. The main spec-
ification defines a core data model with basic operations MAP clients and MAP
servers have to support and their encapsulation within SOAP [12]. Metadata in
IF-MAP are defined in an extensible way, offering the possibility to use IF-MAP
for arbitrary domains. Additional specifications describe metadata for, e.g., the
domains of network security or security in industrial control systems.
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Fig. 1. Example MAP graph: ellipses represent identifiers, rectangles represent meta-
data, both of which are modeled as different types of nodes. Edges represent relations
between identifiers and metadata. In this representation, links are implicitly shown via
their attributed metadata connecting two identifier nodes, such as role.

IF-MAP Data Model. The data model of IF-MAP consists of an undirected
graph that allows cycles and loops. There are three basic data types in IF-MAP:
(1) Entities in the domain are described as identifiers represented by nodes in the
graph, (2) Relations between these entities are called links and are represented
by edges, (3) Any additional information for an entity or a relation is described as
metadata and can be attached to both identifiers or links. Identifiers and meta-
data have a type definition, such as identity or location. Furthermore they
potentially have different attributes like name or value. Metadata additionally
have a mandatory cardinality, which expresses whether one type of metadata can
be attached exactly once (singleValue) or multiple times (multiValue) to the
same identifier or link. Figure 1 depicts a simplified example graph using some
of the standard elements for network security [13]. Management information like
the cardinality, timestamp, or publisher-id are omitted for reasons of clarity.

IF-MAP Communication Model. The communication model of IF-MAP is
a content-based publish-subscribe model. Both publishers and subscribers are
MAP clients that exchange information with a MAP server. To attach data to
the graph structure in the MAP server, clients use the publish update operation
providing either an identifier and the metadata that is to be attached to it
or two identifiers and the metadata to be attached to the link between them.
Clients can also delete data from the graph using the publish delete operation
and similar parameters. Additionally, metadata can be propagated using the
notify mechanism. Metadata propagated by this mechanism are not attached
permanently to the graph structure but only forwarded to the clients holding a
subscription that matches the identifier involved. Subscriptions themselves are
carried out in an asynchronous fashion using a poll and notification scheme.

3.2 System Architecture

Figure 2 depicts the system architecture of our proposal for an IF-MAP based
data integration and visualization. At the bottom, several examples for MAP
clients are given: The Interconnected-asset Ontology (IO) framework provides
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Fig. 2. System architecture overview - arrows depict the data flow

methods to extract the current state of an IT infrastructure [3]. A modified sys-
log server transforms syslog messages to corresponding IF-MAP metadata, e.g.,
failed login attempts at an SSH server. Network access mechanisms can publish
their knowledge about connecting users and accordingly assigned addresses and
accounts. An IDS monitors the network state and communicates incident report-
ing using IF-MAP. Finally, this information can be used by a flow controller or
the network access components to react on specific situations, for example by
shutting down a compromised user or device. After the first homogenization,
which is implicitly performed by the clients when generating IF-MAP data, the
information are gathered at the central MAP server. The MAP server only pre-
serves the current state of the network, while historical information or temporal
progress are not recorded. Therefore, a persistence component is needed to gain
insight in progression of network state. An analysis component like an anomaly
detection engine as in [2] can use the historical information to make policy-based
decisions if an network threatening event exists and can propagate this by pub-
lishing new metadata. A visualization component renders the IF-MAP graphs
to enable a better understanding of the network states.

3.3 Application Level Data Model

With the application of IF-MAP a first homogenization is implemented and
a first mutual data model is given. Nevertheless, requirement III in Sect. 1.2
shows that the progression of the graph over time has to be taken into account
for an appropriate data analysis. Since IF-MAP is designed to only cover the
current situation and no historical information, we utilize a slightly varying
application level data model to enable a persistent storage and restoration
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of past graphs’ states. A simplified Unified Modeling Language (UML) rep-
resentation of this data model is depicted in Fig. 3. The IF-MAP data types
(Link, Identifier, Metadata) are merely extended with a method yielding a
boolean value whether the datum is valid with regard to a particular timestamp
(isValidAt()). Another deviation from the IF-MAP model is the introduc-
tion of a dedicated data structure for the representation of a pair of identifiers
(IdentifierPair) for implementation reasons.

Fig. 3. Application level data model.

4 Persistence Layer Requirements

The requirements for a retrospective analysis also lead to certain consequences
for the persistence layer. For example, in order to support playback of events, the
persistence layer has to provide a query method which yields the graph history
step-by-step. In addition, a query mechanism which returns complete snapshots
of the graph at any given time is needed for the replication part.

In short, the following specific requirements for the graph persistence layer
can be directly derived from the need for different forms of retrospective analysis:

(1) Continuous Recording. All information related to changes in the graph must
be preserved. A snapshot approach which only saves the graph state at
constant points in time (and thus aggregates different changes) is not desired.

(2) State Queries. It must be possible to query snapshots of a graph at any given
time in the history of the graph. The result of such a query must contain
the complete graph at that time.

(3) Change Queries. It must be possible to query the differences of the graph
between two arbitrary points in the graph history.

(4) Scalability. Because of the high frequency of changes in a modern network it
is necessary that the persistence layer can handle massive amounts of read
and write operations. Therefore a solution which can be distributed over
multiple hosts and easily scales horizontally is desirable.
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To satisfy these demands, we implemented the data acquisition for the persis-
tence as a subscriber to the MAP server, which thereby gets updated on demand
and not in fixed intervals. Furthermore we developed algorithms to reconstruct
a graph at a given time and to calculate changes between graphs. We chose to
model the changes that the graph underwent as an explicit part of the query
result. This relieves clients from calculating the actual change between two graph
snapshots and directly supports the implementation of such features as “change
highlighting”. Moreover, this abstract interface can be used as a foundation for
the step-by-step query method and can also be used as a building block for other
kinds of change-related query or visualization features. For a detailed descrip-
tion of the construction of a graph valid at a given time and how we define and
calculate the changes between two points in time (graph deltas) see [1].

5 Visualization Concepts

This section introduces the concepts to visualize homogenized data from mul-
tiple sources, based on the model described in the previous sections and the
requirements stated in Sect. 1.2. Visualizing homogenized and historical infor-
mation gathered from different data sources allows users to gain insight into the
network state and the relationships of logical and physical components. Thus
some requirements on the visualization itself have to be fulfilled.

(1) Representing the Data Model. The data model as described in different
degrees of abstraction in the previous sections forms a graph model with
nodes, edges, and metadata attached to both nodes and edges. A visualiza-
tion of a concrete occurrence of such data must include the entities and their
relationships in a distinguishable manner, so that a user can easily separate
between them.

(2) Publisher Distinction. The possibility to trace the origin of the data is impor-
tant for the user. As the data itself is homogenized by transmitting it via
IF-MAP and arbitrary MAP clients can publish data of the same type, the
source of data can only be determined by using the information about the
original data source, i.e. the publisher-id of the corresponding MAP client.
This information can be used to alter the appearance of the visualized data.
It allows to focus on data from a single data source, or to inspect how data
from different sources creates a more detailed overview when combined in a
single graph, showing relationships that are invisible if the original data is
viewed independently.

(3) History Navigation. The architecture to persist the history of gathered data
and the possibility to retrieve the current state at a given timestamp as
well as querying graph deltas between two timestamps requires a proper
functionality to navigate in time and to select the mode of data retrieval.

(4) Clustering of Data. The integration of formerly independent data sources
most likely shows unknown dependencies and relationships between the data.
To emphasize them to the user, data should be grouped and arranged in a
way that utilizes the semantics of the data, e.g., subgraphs that represent
all information about one specific endpoint.
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5.1 Graph Visualization

By matching the data model itself general mechanisms to visualize graphs can be
used. Identifiers and metadata can be rendered as arbitrary shapes whereas the
relationships between identifiers can be rendered as straight lines or curves. The
layout of the overall graph and its subgraphs should allow an easy understanding
of connections and give a quick glance of the global network state.

5.2 Configurable Color Schemes

One possible way to distinguish data gathered by different data sources in the
visualization is to use the information about the publisher of the data itself. By
assigning a color value to each publisher—automatically or user defined—the
origin of data can be easily determined by the user. Figure 4 shows an MAP
graph with colorization according to the publisher ID of the metadata.

In some cases this will lead to equally colored clusters of data, represent-
ing data of a single data source that possibly describes a very specific type of
information about the network. The total number of different colors shows the
amount of data sources involved and therefore visualizes the significance of the
data base itself, where fewer data sources could mean a less reliable overview.

All possible IF-MAP identifiers exist at all times, but are seen as valid
only when metadata—published by a MAP client—are attached to them. Thus
for visualization purposes they can either be colored identically (to distinguish
them by color from metadata) or according to their types (e. g. ip-address, mac-
address).

5.3 History Navigation

To navigate data in time, the user can switch between three tabs within the
graphical user interface: the first one called live view always shows the current
state of the graph, as stored in the persistence layer. The second tab, history
view, allows the user to select one of all recorded timestamps including the
newest one. A third tab called delta view (as shown in Fig. 4) can be used to
display the differences in the graph data between two timestamps, as depicted
in Sect. 4. Here the user can select both the start and end timestamp for the
delta calculation. The graph delta for these two timestamps is retrieved and
visualized, with updates and deletes colored or highlighted differently.

Furthermore, the selected interval between start and end timestamp can be
moved forward and backward. This is especially useful when selecting a start
and end timestamp with an interval of exactly one timestamp, thus showing the
changes between two consecutive timestamps; when moving this interval, the
user can easily recognize the changes in the graph over time.

The mechanisms to select single timestamps can be implemented in various
ways. The simplest way can be a single set of buttons to move forward or back-
ward in time, jumping from one recorded timestamp to the next (or previous).
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A timeline with a movable knob can be used to let the user move quickly along
time and visualize the instant to which he navigates.

To enhance the selection, the user can be allowed to select a coarse time
interval by using input fields or drop-down lists, showing only timestamps at
which changes occurred within the persisted data, and then using the timeline
to navigate only in the timestamps of that chosen interval. This reduces the
amount of snap-in points on the timeline and therefore facilitates navigation.

5.4 Search Functionality and Filtering

To further reduce the amount of data and to only visualize the data relevant
to the user, a search functionality as well as filtering is needed. This allows the
user to pinpoint a single node, i.e. an identifier or a metadatum, or a selection
of nodes with similar features.

The results of the search can be shown by simply highlighting or coloring the
matching nodes in a different way than all non-matching nodes. When rendering
all non-matching nodes in a lucent way, the user can both easily detect the
matching nodes as well as retain the overall graph structure in view.

6 VisITMeta Application

This section introduces the open-source software application VisITMeta (Visu-
alizing the Security of Modern IT Environments Using Metadata),4 which is
developed within a research project of the same name with the aim of imple-
menting the concepts described in the previous sections.

6.1 Architecture

The software consists of two different applications. A component called dataser-
vice is working as a MAP client and is thus responsible for retrieving information
from the MAP server. The data is then persisted in a Neo4j database, using the
internal Neo4j data model adjusted to the requirements of storing historical
IF-MAP graph data. A REST-like web service interface allows to query the
dataservice application for the graph at different timestamps, including the cur-
rent state as well as a list of all timestamps that include changes (updates and
deletes), and for graph deltas between two timestamps. The dataservice appli-
cation resembles both the persistence and data processing components of the
architecture shown in Fig. 2. The second component called visualization uses
this interface to fetch graph data and visualizes it by employing the concepts of
Sect. 5. It features a graphical user interface that enables the user to navigate
through a MAP graph and its history.

4 https://github.com/trustathsh/visitmeta.

https://github.com/trustathsh/visitmeta
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6.2 Implemented Features

The VisITMeta application provides the following features to the user:

(1) General Visualization and Navigation. The graph layout is performed by the
JUNG2 library5, except for the bipartite layout. In Sect. 6.4 we show some
specifics of IF-MAP graph layouting as well as details about the bipartite
layout. The results are then rendered via Piccolo2D6.

(2) Color-coded Publisher Distinction. The user can select colors for the origi-
nating IF-MAP publishers, which are then used to colorize the shapes used
for rendering metadata nodes.

(3) History Navigation. Navigation in time is realized via multiple tabs as
described in Sect. 5.3; it supports a live view that resembles the current
state of the MAP server, as well as views on the history at a given time and
graph deltas between two timestamps.

(4) Highlighting Changes. When changes in the data occur, updates and deletes
are highlighted with colored halos to be recognizable by the user.

(5) Search Functionality and Filtering. Search functionality is given by using a
textfield and a simple search language, combined with the ability to render
non-matching elements in a lucent way.

(6) Detailed Node Information. The information of each identifier or metadata
node is shown in a separated view on the bottom of the main graph screen.
All attributes and elements of the XML data structure underneath each
node can be seen, and in case of so called extended identifier, a mechanism
of IF-MAP to define new identifier types, even the inner information can be
seen in a structured way.

(7) Motion Control. The visualization application supports external control
devices, e.g., the LeapMotion gesture controller.7

6.3 Example Illustration

Figure 4 shows the VisITMeta application providing a delta view of an excerpt
of the earlier introduced example scenario introduced in Sect. 1.1. In the selected
time interval, an external analysis component detected the (not shown) failed
login attempts and created an event metadatum indicating a brute force attack.
The PDP therefore enforces the disconnection of the aforementioned user, which
results in the enforcement-report metadatum.

The green and red halos mark nodes that have been created and deleted,
respectively, within the selected time interval, thus showing the creation of the
event and enforcement-report and deletion of the subgraph representing the
device information and user credentials of the now disconnected endpoint.

The user sees the information gathered by the three components (analysis
component, PDP and DHCP server) and how they are related to each other.

5 http://jung.sourceforge.net/.
6 https://code.google.com/p/piccolo2d/.
7 https://www.leapmotion.com/.

http://jung.sourceforge.net/
https://code.google.com/p/piccolo2d/
https://www.leapmotion.com/
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Fig. 4. VisITMeta application showing the example MAP graph with force-directed
layout, MAP server connection tree (left), delta navigation (center), and metadata
details (bottom). Identifier nodes are depicted by gray rounded rectangles, metadata
nodes by rectangles with color coding for publisher distinction (blue: DHCP, violet:
PDP, yellow: analysis component) (Color figure online).

Therefore—in this excerpt—the process of detecting malicious behaviour, react-
ing to it and the result of the reaction can be seen.

The other information are omitted for visibility reasons. VisITMeta could
further be used to navigate through the history and track down the user which
first started brute forcing (since multiple users might have been affected due to
the malware spreading).

The IF-MAP data has been created by the irondemo test suite.8

6.4 Specifics of IF-MAP Graph Layouting

A MAP graph in the representation of Fig. 1 consists of two different types of
nodes, i.e. nodes for identifiers and metadata. Furthermore, identifier nodes are
only connected to metadata nodes, and vice versa. This distinction between
graph nodes can be utilized when calculating layouts for the graphical represen-
tation of MAP graphs in such a way, that the layout can emphasize their different
meaning in a MAP graph. Common layout algorithms could be adjusted to cre-
ate good distributions of identifier nodes, while clearly positioning metadata
nodes belonging to an identifier node near it.

Bipartite Layout. The two distinct types of nodes for identifiers and metadata
can be considered as a bipartite graph. VisITMeta makes use of this property by
offering a structured—and potentially clearer—graph layout, hereafter named
bipartite layout. Regarding the specific nature of MAP graphs, i.e., having meta-
data nodes either connecting two identifier nodes via links or being attributed
to single identifier nodes, a variation of the classical two-column (or two-row)
layout for bipartite graphs is applied.
8 https://github.com/trustathsh/irondemo.

https://github.com/trustathsh/irondemo
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Fig. 5. Bipartite layout applied to the MAP graph of Fig. 4.

It consists of five columns, numbered 1 to 5 for the following explanation.
Columns 2 and 4 are designated for identifier nodes. Column 3 is designated for
metadata nodes attached to links, thus connecting two identifier nodes.
Columns 1 and 5 are designated for metadata nodes attached to single identifiers
that are drawn in column 2 and 4, respectively. Starting from the first identifier
node of the current MAP graph, the graph is traversed in depth-first order.
Identifier and metadata nodes are drawn from top to bottom in their respective
columns, switching from column 2 to 4 (and vice versa) with each metadata node
attached to a link (i.e., connecting two identifier nodes).

The example MAP graph from 6.3 with bipartite layout instead of a force-
directed layout is shown in Fig. 5. In this case the bipartite layout can be used
to recognize the update and delete operations more easily, as they only affect
metadata in IF-MAP and the bipartite layout shows them in distinct columns.

7 Discussion of Results

In this section we show some of the benefits our proposed concept of an integrated
visualization with a continuous recording might bring the user. We also present
some of the challenges we identified during implementing our concept or by
findings of using the prototype itself.

7.1 Benefits of an Integrated Visualization with Continuous
Recording

(1) Homogenization. The graph-based data model of IF-MAP and its acquisition
of data helps to homogenize the data of arbitrary and different network
components. The components must therefore only be extended to publish
their information to the central MAP server (MAPS).

(2) Data Context. Using IF-MAPs links to connect information like network
addresses, user credentials and services as well as (automatically) detected
high-level events provides a benefit to the user, as this information has not
to be connected manually from separate views in a graphical software or
even different analysis tools.
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(3) Interoperability. Another benefit by using IF-MAP as the underlying tech-
nique is the ability to use the proposed software tool VisITMeta in any
network that facilitates an IF-MAP environment.

(4) Continuous Recording and Retrospective Analysis. By collecting all informa-
tion and persisting them as they are processed by the MAPS, a retrospective
analysis can be done, where even the differences in the graph between two
given timestamps can be inspected. If something happened in the network,
the changes in the state of all involved components can be reconstructed step
by step in the same order as these changes were registered by the MAPS.

7.2 Identified Challenges

(1) Visual Scalability. Big graphs get cluttered really quick and loose the pos-
sible insight gain for the user. Techniques to reduce the size of the graph
data shown to the user at a time have to be added to the visualization.
Mechanisms like a level of detail approach, where parts of the graph were
collapsed into single abstract nodes when zooming out would help retain the
overall view on the graph.

(2) Visual Dynamics. Networks characterized by fast and frequent changes also
lead to many changes in the visualization. This makes it difficult for the user
to track single changes in a live view of the network. Besides from techniques
on the visualization side to reduce the visual changes, an approach to reduce
the incoming data could also be useful. By removing low-level data from the
graph and relying on high-level data of detection components that abstract
the low-level data could also lead to fewer but more meaningful changes in
the visualized data.

(3) Recording of All Data. The mechanism to fetch the data from the MAPS
has a basic shortcoming, as only connected graphs can be observed via the
subscribe operation. Multiple subscriptions for every disconnected graph
minimize the problem, but to get to know if there are (new) disconnected
graphs not observed by running subscriptions is not supported via standard
means by a MAPS.

8 Conclusion and Future Work

In this paper we have argued that an integrated and extensible monitoring sys-
tem that gathers information from various network components is required to
quickly and accurately detect and analyze security-related events. In the visual-
ization of such integrated data, historical analysis and a suitable representation
are needed to support a deeper understanding and invoke necessary measures.
Thus we derived different requirements for a data model, its persistence and
specifically its visualization. We presented IF-MAP as a suitable approach to
integrate data from different heterogeneous data sources and extended its data
model for the persistence of MAP graphs. Furthermore, we defined requirements
regarding the visualization of such integrated data. Based on these requirements
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we have presented concepts for an advanced visualization component based on
IF-MAP. Our prototypical implementation of these concepts, the software appli-
cation VisITMeta, targets the requirements on two different levels, operating as
a data repository and providing a useful visualization with the possibility for
further extensions.

Future work in terms of extending the VisITMeta software include the imple-
mentation of multi-layouts allowing different layouts for subgraphs—e.g., by
combining a force-directed algorithm for the overall layout with the bipartite lay-
out for subgraphs—as well as mechanisms within the GUI to filter and search the
displayed graphs with more options. Another field of work is to handle extremely
large graphs in their visualization by abstracting groups of graph elements into
single meta-nodes that can be expanded on demand by the user (generalization).

Beside the extension of VisITMeta as a tool itself, we are also looking towards
its integration into a bigger environment. Although VisITMeta already allows
for live and historical analysis of MAP data, it gets difficult to manually analyze
and track the network state. Especially in larger scenarios the full graph becomes
very complex and confusing. Time-critical decision making and the detection of
complex scenarios therefore require an automated analysis of the integrated data.
We pursue such an approach in another current research project9. Both aspects
of the VisiITMeta application are continued to be used: the data persistence
with its interface as input to a graph-pattern-based detection component as well
as the visualization as an integrated tool in a SIEM-like GUI. The VisITMeta
visualization can be utilized to take a detailed look at the graph state when
incidents in the network were monitored. This allows for a focused analysis to
gain a deeper understanding of smaller parts of the network (graph) and also
allow for a retrospective auditing.
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Abstract. We discuss in this paper the use of SysML-Sec attack graphs
as a graphical and semi-formal representation for complex attacks. We
illustrate this on a PC and mobile malware example. We furthermore pro-
vide examples of the expressivity of the operators used in such diagrams.
We finally formalize the attack traces described by these operators based
on timed automata.

1 Introduction

Modeling security threats in distributed systems, and even more so in embedded
system is a usual aspect of the work of security analysts. However, more than
often, the threat analysis simply relies on the knowledge of specific malware and
their variants, or on the exploitation of well-known vulnerabilities rather than
in finding new combinations of attacks.

Unfortunately, an increasing number of embedded systems have become com-
municating artifacts, feature new interactions with their immediate environment
or with backend systems, and are thus exposed to criminals. Many of these secu-
rity issues reflect either the exploitation of low-level vulnerabilities, which might
often be addressed with appropriate programming practices and specific compo-
nent tests, or design flaws due to an insufficient understanding of the mapping
of functional or security logical components to the hardware architecture.

We introduced in the SysML-Sec framework [2] a more systematic represen-
tation of attacks envisioned or known to be feasible on the system under design
and/or development. In the framework of the activities undertaken when follow-
ing a Model-Driven Engineering (MDE) approach, the attack modeling phase
is known as a very important driver for motivating the need for introducing
security countermeasures in a risk analysis, and also for selecting where those
security mechanisms better fit.

SysML-Sec extends SysML’s parametric diagram in order to depict attacks,
their composition, and to represent the assets target of these attacks in an attack
graph. We also discuss in this paper the use of attack graphs and their operators
and define their formal semantics based on timed automata (novel contribution).
We also introduce a more complete example of application of such an analysis
to model the Zeus/Zitmo mobile malware that were not published before.
c© Springer International Publishing Switzerland 2016
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2 Attack Modeling

Threats and Attacks. Threats and security vulnerabilities of the selected
assets should as much as possible describe the capabilities that an attacker
should meet or exceed and the origin of attacks (local, remote, through a specific
interface). The SysML-Sec environment supports the assessment of risks follow-
ing the approach described in more detail in the EVITA case study [8,13]. We
also implemented automated checks of the threat coverage by security objec-
tives. Based on the risk analysis, one should also identify and prioritize security
objectives that are mapped to a threat.

Attack Graphs. Instead of using the traditional attack tree approach [14], we
suggest that threats can be better modeled with a more relational approach,
using slightly customized SysML Parametric Diagrams. Threats are modeled as
values embedded into blocks representing the target of the attacks, thus achiev-
ing a representation that visually emphasizes the assets. Attacks (<< attack >>
stereotype) can be linked together with a few primitive operators. Those opera-
tors are either logical operators like AND, OR, and XOR, or temporal causality
operators like SEQUENCE, BEFORE, or AFTER. We consider the latter
constructs as especially helpful to describe the attacker’s operational point of
view in embedded systems, like for instance situations in which there is a maxi-
mum duration between two causally related attacks. For example, when attack-
ing a system with time-limited authentication tokens, the token must be first
retrieved, and then the use of this token must occur before its expiration.

Attack instances in different parametric diagrams can be linked together in
order to assess the impact of a specific vulnerability and the need to address
it at the risk assessment phase. An attack can also be tagged as a root attack,
meaning that this attack is at the top of a tree of attacks. In other words, such an
attack is not used to built up more complex attacks. Last but not least, attacks
can be linked to requirements, thus allowing an automated check of the coverage
of attacks by verifying whether each attack is linked to at least one security
requirement.

The attacks in multiple diagrams finally result in a directed graph whose
vertices can be either individual attacks (or leaf attacks), intermediate attacks
(resulting from the composition of multiple other attacks), or operators that
combine other attacks. We currently only consider acyclic graphs, but we are
currently considering an extension to cyclic graphs in order to model resource
usage (see the discussion in Sect. 6). Last but not least, we do not claim that these
operators are always well adapted for modeling attack graphs, but at least, attack
graphs offers a richer semantics than the one of attack trees, thus leading to more
compact representations (in other words: less operators must be used). Also,
attacks graphs demonstrated their ability to model complex attack scenarios,
e.g. Zeus/Zitmo.
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3 Example: Modeling Zeus/Zitmo

The Mobile component of the ZeuS crimeware kit (also known as or Trojan-
Spy.*.Zitmo) was released in 2010 in order to intercept mobile Transaction
Authentication Numbers (mTAN codes) from mobile phones.

The PC/Windows component, Zeus, modifies the browser of Microsoft Win-
dows computers with a malicious plugin, so that any attempt to access an online
bank website redirects the request to a fake bank site provided by the attacker.
Additionaly, a keylogger spies username/password pairs to make it possible for
the attacker to log undetected into the real banking system of the user. Zitmo
also maliciously suggests the user to install a fake mobile bank application on
his/her mobile phone. Once done, the fake application spies received SMS mes-
sages so as to silently steal mTANs.

The SysML-Sec attack graph of this trojan is given in Fig. 1. It has been made
with TTool [1]. The system attacker is modeled with two main sub-blocks: the
attacker PC that is used to gather information on users credentials (username,

Fig. 1. Zeus/Zitmo attack graph (model made with TTool)
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password, mTAN) and to perform illegal transactions using those credentials,
and a webserver used to host fake bank websites. The attacked system consists
in both the Windows PC of the targeted person, and his/her Android mobile
phone. The first exploit is performed on the Windows PC, either using a Win32
exploit, or a browser exploit, or using other exploits in applications: the attack
graph model thus contains three sub-blocks in the “UserPC” block. The XOR
operator expresses that as soon as one exploit was performed on the targeted PC,
the trojan can be installed and no further exploit linked to the XOR is useful.
The trojan intercepts the username and password of the user, and sends them
back to the attacker system. In parallel, several attacks are necessary in order to
intercept requests to the bank system: the attacker must settle a fake bank server.
The attacker must also control the http request to the bank system. He/She also
has to install a malicious plugin in the browser of the attacked PC. Once all
this has been done (AND operator), the browser can ask the user to install a
fake Android application on his/her mobile phone (SEQUENCE operator in the
bottom right part of the model). Once installed, the fake application can silently
monitor SMS (SEQUENCE operator in the “UserMobilePhone Android” block),
and thus retrieve mTANs. When an mTAN has been obtained, the attacker has
120 seconds to use it (BEFORE operator).

4 Semantics of Attack Graph Constructs

The semantics of the attack traces are captured by a timed automaton which is
the result of the parallel and synchronized composition of the automata express-
ing the potential occurrences and re-occurrences of individual attacks together
with automata expressing the behavior of the operators that describe how these
attacks are composed. Without any loss of generality, we depict in the follow-
ing the automata generated by a binary combination of two attacks (but they
support more than two attacks).

Individual attacks, which would be the leaves of an attack tree, can be mod-
eled as depicted for attack1 in Fig. 2. An attack can:

– Succeed (a1!). In that case, it can be performed again afterwards.
– Be stopped (stop a1?). An attack is stopped when the system does not allow

the activation of such an attack after all related automata of the attack graph
are synchronized, e.g., an XOR operator forbids the execution of that attack.

4.1 Intermediate Attacks

Intermediate attack nodes in the graph play an important role in the compo-
sition of attacks, and as such, interconnecting operators. Such a node corre-
sponds to the success of one or more attacks that precedes it in the directed
attack graph according to the semantics of the preceding operator. The seman-
tics of those nodes must more specifically support the backward propagation
of stop events within the graph. Thus, an intermediate attack (see Fig. 3) first
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Fig. 2. Semantics of an individual attack

Fig. 3. Semantics of an intermediate attack node

waits for its activation operator (attack OPERATOR), then, it can be exe-
cuted several times (attack inter), or be stopped (stop inter). Also, before its
activation operator is complete, it can be stopped ((stop inter from the initial
state): in that latter case, only the completion of its operator can be performed
(attack OPERATOR).

Finally, we assume that an oriented connection between attacks attack1 to
attack2 is a shortcut for attack1 to an OR node, and then from the OR node to
attack2.

4.2 And Operator

The AND operator models the expectation that multiple attacks are required to
be executed in conjunction (possibly in a parallel fashion). Failing to achieve any
of the elementary attacks results in the overall failure of subsequent dependent
attacks. For instance, many malware rely on checks to make sure they are not
running in a virtualized honeypot: all those checks should succeed and thus can
be modelled as attacks under an AND.

The timed automaton formalizing the behavior of the operator is depicted in
Fig. 4. It performs the synchronization of the automata of the underlying attacks.
The handling of an additional attack would result in an additional transition at
the second state of this timed automaton.
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Fig. 4. AND operator

4.3 Or Operator

The OR operator models a situation in which multiple attacks can be executed
to enable other composite attacks. The first successful attack will enable the
execution of new composite attacks farther in the attack graph. Also not all
attacks under the OR operator need to be performed before a composite attack
using the OR proceeds or even succeeds (see Fig. 5).

Fig. 5. OR operator
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<<attack>>
RestartMaliciousApplication

<<attack>>
MonitorMaliciousPackageIsRunning

<<OR>>

<<attack>>
MonitorDeviceWakeUp

<<attack>>
MonitorBatteryLevel

<<attack>>
MonitorTimeChange

<<attack>>
MonitorWallPaperChange

<<attack>>
MonitorApplicationInstallation

<<attack>>
MonitorScreenOn

<<attack>>
MonitorNetworkConnectionChange <<attack>>

MonitorFailureInDataConnection

Fig. 6. OR operator - Excerpt of the attack graph of Chuli

This operator can for instance model redundant operations that an attacker
or a malware may perform for instance to extract some information.

Let’s take the example of an OR operator taken from the model of the Chuli
Android mobile malware [7]. Basically, Chuli infects mobile phones through spam
emails, and then sends to the remote attacker’s server private information con-
tained on the mobile phone. One interesting feature of this malware is its ability
to monitor whether it is running or not using callback services triggered by
external events, e.g., ScreenOn and BatteryLevel events. As soon as one of this
event occurs in the system, Chuli can restart its main application, if necessary.
Thus, all those trigger events can be monitored in parallel. Said differently, one
among all events is enough for Chuli to perform the check. Also, once one event
has been used by Chuli, Chuli continues other events. All this corresponds to an
OR operator, see Fig. 6.

4.4 XOR Operator

The XOR operator models alternative and exclusive independent attacks. Thus,
the behavior of interest expressed by this operator is the success of a single
attack. Said differently, any first successful attack among those referenced by the
operator is the one that will appear in the trace of the attack at the exclusion
of all others.

The semantics with OR is different because an XOR forbids the execution
of other attacks, apart form the first successful one. On the contrary, OR does
not impose any constraint on other attacks. For example, in a situation in which
attacks are tested in parallel - for example, a monitor waiting for several callbacks
informing about a success -, then the OR operator shall be used. In a situation
where only one of the attack is tested, one after the other, without imposing the
order of testing, then, the XOR operator shall be used.
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More formally (see Fig. 7), once one attacks has been successfully performed
(a1? or a2?), the attack that was not performed is deactivated (stop a1! or
stop a2!), and then the intermediate attack is executed (attack XOR).

Fig. 7. XOR operator

4.5 SEQUENCE Operator

The SEQUENCE operator models attacks which must be performed in a strict
order a1, a2, ...; an (see Fig. 8). Failing to achieve one attack ai makes it impos-
sible to subsequently execute attacks aj with j > i.

Fig. 8. Sequence operator

4.6 BEFORE Operator

The BEFORE operators is based on a sequence of attacks with a maxi-
mum duration between two consecutive attacks (see Fig. 9). Just like for the
SEQUENCE, failing to achieve one attacks makes it impossible to achieve sub-
sequent attacks. Moreover, failing to achieve one attack within its given allowed
period of execution also makes it impossible to execute subsequent attacks.

This operator is particularly suited to model life-time limited tokens.
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Fig. 9. Before operator

4.7 AFTER Operator

The AFTER operators is based on a sequence of attacks with a minimum dura-
tion between two consecutive attacks (see Fig. 10). Just like for the SEQUENCE,
failing to achieve one attacks makes it impossible to achieve subsequent attacks.
Moreover, if an attack is available for execution before the minimum duration,
the system will force it to execute only after the minimum duration.

The AFTER operator is particularly interesting to model situations in which
an attack is useless before waiting for an access to be available, e.g., when brute-
forcing a password system with a minimum delay between two attempts.

Fig. 10. After operator

5 System Validation

From a formal verification perspective, attack graphs can be formally analyzed
directly from TTool, in terms of reachability, liveness and “leads to” properties
on attacks.

– Reachability of an attack a. Means that there exists at least one possible series
of attacks a1, a2, ..., an, a (i.e., trace of attacks) that leads to a.

– Liveness of an attack a. Means that whatever the possible traces of attacks in
the system a1, a2, ...; an, ∃i/ai = a.

– Liveness of an attack b after another attack a was performed. Means that
whenever a trace of attacks contains a = ai : a1, a2, ...; an, ∃j > i/aj = b.
This property is commonly named “leads to” (this is the case in TTool) or
also “response”.

From SysML-Sec models edited in TTool, a user can either simulate the
model, or perform formal proofs with UPPAAL [3]. The simulation engine inte-
grated in TTool allows usual commands (step-by-step execution, reaching next
breakpoint, etc.), and animates the attack graph while it is simulated. A sequence
diagram representing the trace of performed attacks is displayed as well. Formal
proofs can also be performed with a press-button approach directly from TTool
(but UPPAAL needs to be installed): indeed, TTool automatically transforms
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Fig. 11. Reachability and liveness of the main attack (TTool dialog window)

Fig. 12. “Leads to” property proved from TTool

the attack graphs into a UPPAAL specification, feeds it into UPPAAL, gets
the results, and presents them in a friendly way. This model transformation is
instantaneous from a user’s perspective in all case studies we’ve made (linear
algorithm). The formal proof complexity obviously depends on the model con-
currency, e.g., the use of OR operators increases the concurrency, whereas the
use of SEQUENCE constraints traces.

Figure 11 displays the reachability and liveness dialog window of TTool
for the “root attack” (“IllegalBankAccountTransactionBasedOnToken”) of the
Zitmo model (Fig. 1). Both the reachability and liveness are satisfied.

A “leads to” property can be evaluated if two attacks have been selected. For
instance, in the Zitmo model (Fig. 1), we can select the two attacks a1 = “Redi-
rectHttpRequestFromBankToFakeBank” and a2 = “IllegalBankAccountransac-
tionBasedOnToken” (see Fig. 12): The “leads to” property holds for a1 � a2
but not for a2 � a1.

TTool also allows to enable/disable attacks of attacks trees, so as to under-
stand what is the importance/impact of an attack on the system. For example,
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Fig. 13. An attack has been disabled in the Zitmo attack graph (Diagram on the left).
Because of the disabled attack, the root attack cannot be performed anymore (right
part of the figure).

if we disable the attack “SilentlyInterceptSMS” (left part of Fig. 13), then, the
root attack is not reachable anymore (right part of Fig. 13).

6 Combining Operators and Attacks

This section discusses ways to handle complex attack relations relying on the
relations between attacks described in Sect. 4.

6.1 Prioritizing Attacks Under a XOR

The XOR operator imposes no priority on the execution of the possible attacks.
However, such an order may be achieved by combining an XOR with all the
acceptable orderings of individual attacks, as can be described using the SEQ
operator. Such a composite operator can be implemented based on the operators
described above but requires generating all possible interleavings. To simplify the
specification, we suggest the definition of a macro operator, SXOR. Such a macro
operator could be integrated in the TTool environment. In the longer term, if
such operators would prove useful, they may be standardized as a library shared
by all SysML-Sec designers.

6.2 Compatibility Between Temporal Constraints

The joint use of AFTER and BEFORE can lead to situations where attacks
are not reachable, because of the timing values of these operators. For example,
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Fig. 14. The “final” attack cannot be performed because the two temporal constraints
are not compatible

in Fig. 14, the root attack is not reachable because an attack is required to
be performed before 10 units of time. But the AFTER operator forbids that
situation. Modifying the temporal value in AFTER and BEFORE can make the
root attack reachable, for example, by using the same temporal value. TTool
can already analyze such situations, i.e., it can identify non reachable attacks
because of non compatible timing constraints.

6.3 Cycles and Reachability

Cycles can be obtained in attack graphs by linking an attack generated from
an operator to operators that were already handled previously in the trace of
attacks.

For example, if we consider Fig. 15, rootattack2 is reachable because the cycle
occurs on a OR operator. If the same cycle is performed on the AND operator,
then, the latter can never be executed, and so, rootattack1 is not reachable.

Currently, such a situation is not supported by TTool, and by our seman-
tics. A finer control over the use of cycles in general will require defining how
many executions of the same operator can be allowed, for instance by adding

Fig. 15. Cycles. rootattack2 is reachable, but not rootattack1
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an execution counter on each operator. Similarly, as long as they have not been
explicitly stopped, attacks can be performed an infinite number of times: coun-
ters should also be added to these constructs. This work should be especially
useful in the face of the modeling of denial of service attacks, which require not
only a qualitative, but a quantitative assessment of the attacker’s capabilities.
We plan to develop these techniques as part of our future work.

7 Related Work and Perspectives

The formalism of attack trees brought to light by [14] has long been used to
describe threats to applications and systems, and attacks to implement those
threats. In that respect, attack trees are closely related to fault trees in depend-
able computing. Attack trees follow a goal-oriented approach that matches the
objectives of an attacker and roughly describes an attack trace. However they
capture a unique trace, and make it hard capturing complex attack scenarios
built upon sub-attacks. They also fail at capturing the architectural components
involved in a given attack with regards to the assets under attack, even though
this often constitutes an important information for the trustfulness one can put
into a component. In our case, location of attacks are given by their mapping
onto architectural components.

Multiple variants of attack trees have been developed: they introduced opera-
tors with increasingly advanced semantics, e.g., [10], yet that have not addressed
the above-mentioned issues. Our work tries to address these concerns based on
the structure of our attack graphs rather than based only on the operators them-
selves. Among other benefits, this structure simplifies the reuse of sub-attacks
without any duplication.

Attack graphs have been proposed and formalized even before attack trees
received a widespread audience, like for instance privilege graphs [5], and more
recently in order to automatically generate them from other formalisms [15].
[5] particular emphasized the quantitative aspect of the security assessment of
threats. A Markovian model was used to determine the privileged edges in an
attack graph. Our work also aims to introduce quantitative assessments while
still retaining the hierarchical modeling that made the success of attack trees, and
which is also connected with the system architecture in SysML-Sec in contrast
with the “maze” graph described by the authors of [5].

Extensions were suggested to complement the static attack tree represen-
tations with more dynamic models. For instance, Petri net based approaches
[6,12] were proposed in order to describe the triggering of different phases of an
attack within an attack tree. [11] also suggested the use of Markovian processes
(BDMP) to describe relationships between different attacks organized in a tree-
like fashion but whose triggering could be independent from that structure.
More recently, [16] relies on attack trees to complement the static analysis and
dynamic analysis of Android malware: Nodes are enriched with e.g., permis-
sions and capabilities (“P”: Possible to realize; “I”: impossible to realize). Other
formalisms than attack trees have been introduced in order to capture attacks,
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but they are generally targeting security mechanisms first. We can mention mod-
eling environments such as UMLSec [9], and tools for the proof of security prop-
erties in security protocols [4].

In a way, all these models also describe attack graphs with edges corre-
sponding to different relationships. However, the approach described in this
paper mostly focuses on expressing multiple attack traces. It aims at under-
standing whether a system is vulnerable and thus help deciding which security
counter-measures might be most important through attack reachability and live-
ness analyses. Indeed, TTool facilitates the activation/deactivation of attacks in
the graph, thus allowing to analyze the reachability and liveness of attacks in
different situations. Combined with the location of attacks, this helps determin-
ing which and where attacks should be addressed first. We also believe that the
modeling of our phases is more straightforward than the approaches we just out-
lined, because it is more rich w.r.t. attack trees, and more prone to the modular
expression of threats due to the asset-centric distribution of attacks.

8 Conclusion and Future Work

From our experience, partitioning is a very important element when modeling
attacks in order to understand both the assets at risk, their potential vulner-
abilities, as well as the capabilities of the attacker. Thus, SysML-Sec proposes
to use iterations between security requirements, attack graphs and partitioning
models. Attack graphs adopt a block-centric perspective with reuse in mind. We
especially think that this will allow for the composition of the threat modeling
performed by security analysts about components over-the-shelf (COTS) with
system specific analyses.

A few extensions of our work have already been discussed in Sect. 6. We plan
to further extend SysML-Sec expressivity as follows: our declarative approach
should be especially useful in order to incorporate knowledge from other threat
modeling approaches. In that respect, our proposal explicitly maps attacks to the
architecture, and makes it possible to introduce an abstract model of the attacker
within the SysML parametric diagram for threat modeling. We essentially plan
to extend our approach towards more quantitative assessments of threats, and
also to integrate together attack graphs and risk assessment, e.g., using risk
values on edges between attacks and operators.
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J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002)

10. Khand, P.: System level security modeling using attack trees. In: 2nd International
Conference on Computer, Control and Communication, 2009. IC4 2009, pp. 1–6,
February 2009
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Abstract. Recently security researchers have started to look into auto-
mated generation of attack trees from socio-technical system models. The
obvious next step in this trend of automated risk analysis is automating
the selection of security controls to treat the detected threats. However,
the existing socio-technical models are too abstract to represent all secu-
rity controls recommended by practitioners and standards. In this paper
we propose an attack-defence model, consisting of a set of attack-defence
bundles, to be generated and maintained with the socio-technical model.
The attack-defence bundles can be used to synthesise attack-defence trees
directly from the model to offer basic attack-defence analysis, but also
they can be used to select and maintain the security controls that cannot
be handled by the model itself.

Keywords: Attack-defence trees · Socio-technical models · Generation
of attack models · Generation of defences

1 Introduction

Models are used in all stages of the security process: from security require-
ments elicitation and organisational risk assessment to run-time verification and
business process compliance audit. Often these models are inter-connected. For
example, if a security requirements model for a software system was elicited,
on the later stage it may be re-used to design the security testing process for
this system. At the same time, as manual production of security models is very
tedious and error-prone, many researchers and practitioners look into automat-
ing the model creation and transformation processes.

Recently security researchers have looked at systematic design [15] and auto-
mated generation of attack models [7,8,14,22], such as attack graphs and attack
trees, from system models. This model transformation allows to switch the view
from the system description perspective to a compact representation of possi-
ble attacker actions. At the same time, given the generated attack model, the
system defender is interested to find the weakest links: the spots in the model
where additional security controls can be introduced to improve protection and
eliminate potential attacks. Therefore, automated generation of defences is an
obvious next step in the process.
c© Springer International Publishing Switzerland 2016
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In this paper we look at socio-technical models as succinct abstractions of
large organisations. Such models capture simultaneously locations, actors and
objects in the system. They often take into account both physical and digital
domains and offer to a human analyst the means to represent “the world as it
is”. That means that the designer of socio-technical systems does not need to
be a security or risk analysis expert. She only needs to know the intricacies of
her own company (department) to be able to model it. With the system model
at hand, at the next step the attack generation tools aim at automatic creation
of attack scenarios that can be further discussed by security professionals. The
overall idea of this process is to automate threat scenarios identification (an
important aspect of risk analysis) as much as possible.

In this paper we would like to push the envelope even further. Our main ques-
tion is: given a socio-technical system model, how to find and capture, possibly
automatically, the security controls that will counteract the discovered threats?
Indeed, the main goal of risk analysis is to improve the existing system by intro-
ducing new security controls, so that the most dangerous or easily executed
attacks are thwarted. Therefore, automated creation of attack scenarios only is
not yet a full solution.

We want to look at perspectives and limitations of automated defence gener-
ation from socio-technical models. It seems that the main obstacle to rich defen-
sive strategies generation directly from the model is the fact that socio-technical
models do not capture many security controls.

To find an answer to the main question, we start from investigating the
security controls (defences) already present in an advanced socio-technical model
and propose a scheme to extract these controls, together with the attack steps, in
the compact format of attack-defence bundles. We then evaluate the limitations
of the extracted defences inherent from the socio-technical model and discuss
how to overcome these limitations. We argue that an attack-defence model needs
to be maintained (in parallel with the socio-technical model) that can capture
not only the attacker’s view but also the defender’s view of the system. In this
paper we have chosen attack-defence trees [11] as the basis for the attack-defence
model. As an alternative to this model, one can choose, for example, attack-
countermeasure trees [20].

The goal of this paper is to propose an attack-defence view for socio-technical
models that can capture simultaneously attacker’s options and available/pro-
posed countermeasures in the system. The main idea is that given that view it
can be easily synchronised with the model (but it contains richer defence infor-
mation than the model), and it can be used to synthesise attack-defence trees
and evaluate different interesting attributes.

2 Socio-Technical Models Versus Attack-Defence Models

As socio-technical models are abstractions, they do not capture all defensive
mechanisms that can be available in an organisation, but only a subset of them.
Indeed, it is impossible to model all security-relevant devices, protocols and
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behaviours in a single model. Typically, socio-technical models look at capturing
organisational infrastructure (e.g., [10,12,16,18]), but sometimes they can focus
only on some aspects of human-computer interactions (e.g., [6,19]).

Since all security aspects cannot be captured by a socio-technical model
without overcomplicating it, we argue that there is a need to maintain a separate
view of attack and defence capabilities of the system together with the socio-
technical model. Preferably, we should be able to trace the objects in the socio-
technical model into the attack-defence model and back.

Requirements for the Attack-Defence Model. The first requirement for
the chosen attack-defence model is that the defences that are already captured by
the model need to be represented explicitly in the attack-defence model. Indeed,
we would like to faithfully represent the system security state. So, if some secu-
rity control is captured by the system model, it should be translated into the
generated attack-defence model.

Secondly, we want to propose a way to update the generated defender’s view
(the security controls obtained directly from the system model) with more secu-
rity controls and countermeasures of the organisation. This update needs to be
consistent : once a security control is captured in the attack-defence model, it
should be traced to an object in the system model. For example, if our approach
identifies that a security camera is to be placed in a certain location in the sys-
tem, all attack scenarios that involve that location should be updated to take
the camera into account. In this way later on one can investigate automated
defence generation process that will maintain consistency of the socio-technical
system.

Background. In this paper we use the TREsPASS socio-technical model [10]
that is graph-based. We can briefly summarise this model as follows. Locations in
the system represent physical and network locations; actors model humans and
processes; and items can be physical or digital objects. Edges among locations
represent connectedness (e.g., adjacent rooms), and all actors and items are
located somewhere in the system. Actors can possess items, and items can be
embedded into other items. Some locations have access control policies attached
to them. These policies specify a set of credentials (items in the system) an actor
needs to possess to enter the location or access the object. These policies can
also be formalized by more complex predicates capturing, e.g., role-based access
control or trust relationships among actors.

As the starting point for the attack-defence model, we consider the process of
attack trees generation by policy invalidation that relies on structural informa-
tion about the system [7–9]. This process was initially designed for the TREs-
PASS socio-technical model [10], but it can be applied to other socio-technical
models capturing systems as graphs, e.g., [5,12,16,18], because it is reachability-
based.

In short, this process is started by choosing an asset among the entities in
the system. The attacker is also selected among actors in the system (the main
goal of the attacker is to invalidate the security policy, e.g., confidentiality or
integrity policy, associated with this asset). Then, based on the reachability
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reasoning, the process systematically searches for the ways for the attacker to
access the asset. For example, consider the asset to be a sensitive document
located in a locker in the manager’s office, and the attacker to be an insider (an
employee) working on the same floor. To access the document, the attacker can
try to access the locker and open it (an AND-decomposition [11]). This might
require possession of the key to the locker that needs to be obtained elsewhere in
the system. Alternatively (an OR-decomposition with the previous attack), also
the manager has access to the locker and the document. Thus, the attacker can
get access the document by influencing the manager. This can be implemented
through, e.g., social engineering (for instance, befriending the manager, or hiring
an external actor to pretend to be a higher executive who needs the document),
bribing, or coercing the manager.

In this small motivating example we see that two general attack strategies
come into play: the attacker can actively pursue moving across the system and
collecting items that will open him the way to the desired asset, or the attacker
can attempt to orchestrate actions of other actors in the model so that they
will do the necessary actions for him. Irrespectively of the chosen strategy, the
process of attack trees generation by policy invalidation will systematically iden-
tify available (reachable) steps, add them to the tree, and refine those steps fur-
ther, producing a complete attack tree in the end [8]. Notice, that this summary
is a simplification of the overall process, and we encourage the reader to refer to
the original articles about the approach for more details [7–9].

3 Attack-Defence Model

Extraction of Defences from the Model. The only security controls the
TREsPASS socio-technical model captures are access control policies that
restrict access to certain locations. These policies can correspond to physi-
cal (locks) or digital (password check) means (policy enforcement mechanisms)
implemented in the system to restrict access to assets. Therefore, we propose to
make explicit in the attack generation process the fact that the attacker needs
to overcome the restrictions imposed by security policies. To achieve that we
will use attack-defence bundles that are based on the attack-defence tree for-
malism [11].

Intuitively, the attacker can chose from two approaches to deal with secu-
rity policies in the system. He can attempt to satisfy the access control policy
(for example, by collecting the necessary credentials or coercing someone with
the right credentials) or he can try to circumvent the policy (e.g., by forcing the
lock). The first approach is in line with the attack tree generation by policy inval-
idation process, because it can be automatically designed based on reachability.
If we want to refine the second approach, we need to understand how exactly
different policies (more precisely – enforcement mechanisms for these policies)
can be circumvented. There is a need to represent the human expert knowledge
in circumventing different security mechanism in such a way that it is useful for
automated generation process. To achieve that, one can use, for example, the
hierarchical approach to attack representation suggested in [17].
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Indeed, the enforcement mechanisms for access control policies defined in
the socio-technical model can be automatically introduced into attack-defence
trees. If the knowledge about breaking certain kinds of enforcement mechanisms
is available in a suitable format (e.g., the hierarchical representation), then the
attack-defence trees can be further refined based on that information. Further
analysis based on the attack-defence trees produced at this stage (e.g., compu-
tation of the most probable or the most cheap attack for the attacker [4]) can
identify the missing enforcement mechanisms. For example, if in the sensitive
document scenario the attacker can directly access the document because the
locker does not require any key (no access control is enforced for the document),
it might be the first recommendation for improving security of the organisation:
to introduce some appropriate access control mechanism (e.g., an actual lock
with the key) to protect access to the document.

3.1 Simplified Socio-Technical Model

We introduce a simplified TREsPASS socio-technical model to exemplify the
attack-defence model creation. The simplified model allows to reason only about
potential reachability. However, this is already very useful for risk analysis, as
quantitative evaluation of the possibility that an attacker accesses some system
elements can simplify risk analysis for human analysts [13].

The simplified model captures simultaneously organisation’s infrastructure
topology for both physical and digital locations, as well as actors moving around
this infrastructure (these can be persons or processes). In the model these entities
are represented as a set of model elements N that is a union of a set of infrastruc-
ture locations Ni, actors Na, and objects No. We consider two domains: Ph is the
physical space (model elements in this domain are physical entities, including,
e.g. rooms, persons, and items), while Dg is the digital space (network locations
and processes are in this domain), such that N = Ph ∪ Dg, and Ph ∩ Dg = ∅.

Some model elements are connected. We denote as E ⊆ N × N the set of
directed connections. All edges e in E are of the following types:

– e ∈ Eii ⊆ Ni × Ni: connections between infrastructure locations (rooms,
corridors, etc.). These connections are assumed bi-directional. More precisely,
if (i1, i2) ∈ Eii then (i2, i1) ∈ Eii.

– e ∈ Eai ⊆ Na × Ni: placement of actors in the infrastructure;
– e ∈ Eoi ⊆ No × Ni: placement of objects in the infrastructure;
– e ∈ Eoa ⊆ No × Na: placement of objects that are carried around by actors;
– e ∈ Eoo ⊆ No × No: placement of objects that are inside other objects; here

e = (o1, o2) denotes an object o1 located within an object o2.

Mutual intersections of Eii, Eai, Eoi, Eoa, Eoo are empty sets. Elements of the
same domain can be connected liberally. However, some self-evident restric-
tions apply when connections between elements of the physical and digital
domains are considered. For example, a data file cannot be located in an office
or inside a cupboard. We allow multiple locations for the same actor and object.
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This corresponds to the possibility of actors to move in the model, and represents
that some items can appear in several locations.

We define a location function loc(): N × N as follows: ∀n ∈ N loc(n): =
{l ∈ N |(n, l) ∈ E}.

Notice that for infrastructure locations or actors the function loc() returns
infrastructure locations where these model items are accessible from. However,
as objects can be accessible from actors or other objects, loc() may return any
type of items in the model.

Policies. Let P be a set of policies defined in the model. We consider access
control policies represented as tuples restricting access to element n. The local
policy δn is a set of individual access control configurations. Each access control
configuration p ∈ δn is a tuple 〈Cred, atLocation,EM〉, where Cred ⊆ No is a
set of credentials required to get access, atLocation ∈ N s.t. (n, atLocation) ∈ E
is a model element from which access to n is granted (e.g. access from the office
to the locker is granted with the key in the example in Sect. 2), and EM ∈ N
is a reference to the mechanism enabled in the model to enforce the policy. EM
can be the same as atLocation, meaning that the enforcement mechanism is
implemented right at the spot (e.g., a lock), it can be an actor (e.g., a security
guard checking identity documents or a process implementing access control), or
an object. Notice that we assume that c ∈ Cred ⊆ No is an asset present in the
model, which can be either an item or data.

In theory, different access control configurations of the same local policy δn

can be enforced by different enforcement mechanisms. For example, to access a
building employees might use a badge applying it to an RFID-reader, or they
might show their IDs to a security guard.

3.2 AD-Bundles Generation

We will now show how to generate attack-defence bundles (AD-bundles) that
can be used to capture the attack-defence state of the system. AD-bundles are
generated for individual assets. They consist of attack nodes that correspond to
gaining access to items in the model and attacking these items, and defence nodes
that represent protections offered by the local policies in place. Notice that the
bundles are attacker-agnostic, and they refer only to the system configuration
regarding some particular item. Our notation abuses the standard notation for
attack-defence trees, as we use AD-terms to represent both the tree structure
and to refer to concrete attacker goals. We also define different types of AD-
terms. This is syntactic sugar to ease the type representation, as types are used
to put bundles together and synthesise AD-trees.

Attack node types. We consider attack nodes can be of the following types.

– accessn is an attack node that represents that the attacker gains access to
item n.
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– access fromn,l represents the goal of the attacker to access item n from spe-
cific model element l. This node type explicitly states the way n is accessed in
the model, thus allowing us to understand immediately what access control
policy is applicable (by looking at the atLocation attribute).

– breakn represents the goal of the attacker to somehow disable an access control
mechanism implemented in n (this enforcement mechanism can protect assets
not located in n).

– attack polp represents the goal of the attacker to overcome protection of an
individual access control configuration p.

– sat polp represents attacker’s goal to satisfy access control configuration p (by
collecting all necessary credentials).

Defence node types. The defence nodes can be of the following types:

– EMn,l represents the defence of enforcement mechanisms enforcing policies at
l to control access to n (notice that the enforcement mechanism itself can be
located elsewhere).

– pol configp represents protection offered by an individual access control con-
figuration for some p ∈ δn.

Notice that term types attack pol and pol config are required to satisfy the
requirement of AD trees for the unique child of the opposite type [11].

Bundle construction. Let n ∈ N be an item in the model. An AD-bundle Bn

that characterises accessing n is constructed as follows.
We start by setting the root of the bundle to accessn, as this is the desired

attacker’s goal.
Next, accessn is refined:

accessn := ∨p
(
access fromn,l|l ∈ loc(n)

)
// n can be accessed only from an

adjacent element in the model. Any of these elements is suitable for the attacker

If �p = 〈Cred, l, EM〉 ∈ δn then
access fromn,l := accessl // access to n from l can be implemented by simply
accessing l. No access control policy is set up to guard this connection.

If ∃p = 〈Cred, l, EM〉 ∈ δn then
access fromn,l := cp

(
accessl, EMn,l

)
// access to n from l can be imple-

mented by accessing l. However, as there is an enforcement mechanism that
controls access, the defence node is also added.

EMn,l := ∧o
(
pol configp|∀p ∈ δn s.t. p = 〈Cred, l, s〉

)
// Protection of

access from l to n is implemented via individual policy configurations.
pol configp := cp

(
attack polp

)
// syntactic sugar to switch back to

attacker’s view
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attack polp := ∨p
(
sat polp, breaks

)
, where p = 〈Cred, l, s〉 // Attacker can

either satisfy the individual policy configuration p, or he can break the enforce-
ment mechanism s that enforces this configuration p.

sat polp := ∧p
(
accesscred|∀cred ∈ Cred

)
, where p = 〈Cred, l, s〉 // To

satisfy the configuration the attacker needs to access all credentials in the set
Cred identified in this configuration.

We provide an example of an AD bundle in Fig. 1. By construction, for each
bundle Bn its leaf nodes are either terms of the same type (accessl for some
l), or terms breaks. We do not refine terms of the type breaks because the
model itself lacks the knowledge how enforcement mechanisms can be broken. If
an additional knowledge on breaking enforcement mechanisms will be available
(e.g., as a hierarchy of attacks [17]), this term can further expanded.

access_n

access_from_nl

access_l EM_nl

pol_config_p1

attack_pol_p1

sat_pol_p1

access_cred1 access_cred2 access_cred3

break_em1

pol_config_p2

attack_pol_p2

sat_pol_p2

access_cred4

break_em2

access_from_nk

access_k

Fig. 1. An AD bundle.

3.3 Approach to Synthesise AD-Trees

AD-bundles represent attacks on individual assets in the model. They can be
“glued” together to form AD-trees, in the spirit of attack generation by policy
invalidation. In this subsection we outline an approach to synthesis of attack-
defence trees.

The main requirement for AD-trees synthesis is that it should terminate.
Indeed, it is easy to see that any simple loop in the infrastructure will cre-
ate infinite trees if bundles are composed naively. Moreover, some bundles may
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appear more than once in the generated tree, creating duplicate subtrees. To
avoid this, we introduce a system state that will keep track of already achieved
progress and will allow to terminate the synthesis process when the attacker has
achieved the goal.

State. We define now two functions that identify the state of the system. These
functions will be updated as the attack tree is generated in order to keep track
with the attack development.

Definition 1 (Reachable(,)). Let M = (N,E) be a model. We define a boolean
function Reachable(,) ⊆ Na × N :

– If (a, n) ∈ E, Reachable(a,n) := True.
– If for some l ∈ Ni (a, l) ∈ Eai and (o, l) ∈ Eoi, then Reachable(a,o) := True.
– If for some l ∈ Ni (a, l) ∈ Eai and (a1, l) ∈ Eai, then Reachable(a, a1) :=

True and Reachable(a1, a) := True.
– Else Reachable(a, n) := False

This function initially captures for a given actor all items immediately reach-
able in the model. These items can be objects or actors located in the same
location as the actor. Let Reach(a) := {∀n ∈ N s.t. Reachable(a,n) = True}.

Definition 2 (Granted(,)). We define a boolean function Granted(,) ⊆ Na×N :

– If for an item n δn = ∅ then Granted(a,n) := True.
– If for an item n there is a tuple p = 〈Cred, atLocation〉 ∈ δn = s.t. Cred ⊆

Reach(a) ∩ No then Granted(a,n) := True.
– Else Granted(a,n) := False.

Intuitively, this function refers to some policy configuration that grants access
to n. If Granted(a,n) = True, then there is a way for this actor to satisfy the
access control policy for n (possibly under condition that he arrives at the right
location).

Let us define a model state.

Definition 3 (State). A generated state for a model M is a tuple
〈Reachable(, ), Granted(, )〉.
Definition 4 (Accessible(,)). We define a boolean function Accessible(,) ⊆
Na × N :

– Accessible(a,n) := Reachable(a,n) ∧ Granted(a,n)

Bootstrapping. Given a model M= 〈N,E〉 produced by a modeller, the functions
Reachable(,), Granted(,) and Accessible(,) are initially computed from M.
First we compute a transitive closure of reachable locations:

– Reachable(a,n) := Reachable(a,n) ∨ (∃l ∈ N : Accessible(a,l) ∧ ((l, n) ∈ E
∨(n, l) ∈ E))
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Notice that here we do not re-compute the function Granted(,), and thus, even-
tually, the reachable objects set for each actor will increase only with locations
that are not guarded by access control policy. Once Reachable(,) is recomputed,
it can be used to quickly evaluate whether an actor can reach certain locations
in the original model (where may he end up).

Synthesis of AD-trees from Bundles. We now discuss composition of gen-
erated attack-defence trees. An attack-defence tree ADT(η, α) is synthesised for a
chosen attacker η ∈ Na and a target asset α ∈ No. The root node is the bundle
accessα. For each leaf node of the type accessb we can compute its value by
referring to the corresponding AD bundle Bb.

Bundle Value. In the simplest case we use propositional semantics for evaluating
AD-bundles and, eventually, AD-trees [11]. For leaf nodes of the type accessn,
accessn ≡ Accessible(η, n). For leaf nodes of the type breaks, breaks ≡ False
in the current synthesis approach. Thus, given a bundle for asset n, we can
evaluate its value based on the values of the leaf nodes available. By updating the
model state as attack progresses (more items become reachable to the attacker)
we can eventually evaluate the target bundle, once all its descendants become
evaluated. As state changes monotonically, the process will eventually terminate.

4 Introducing New Defences

The enforcement mechanisms for access control policies are not the only type of
security controls that organisations use. Moreover, access control is not the only
remedy that can be advised to improve security. Indeed, the existing risk analy-
sis standards and security catalogues that guide practitioners in risk analysis
identify many types of security controls and countermeasures. Many of those
(for example, security cameras) cannot be captured by socio-technical mod-
els directly, because it will introduce unnecessary complications to the model.
Some countermeasures can be introduced as properties of system elements (e.g.,
after a security training the employees might become less susceptible to social-
engineering), but not as independent elements of the system.

We want to be able to update the attack-defence model of our system, cap-
tured by the suite of attack-defence bundles, after the first stage of automated
generation. At this second stage we would like to obtain more complete attack-
defence bundles with new defence nodes added that can capture additional
security countermeasures (either existing in the model already or newly pro-
posed once). We have two main questions associated with the newly introduced
defences: how to generate/propose new defences and where to place them in the
attack-defence model to keep the consistency across many attack scenarios and
system updates. We start by addressing the second question first.

Where to Put New Countermeasures. Given an AD bundle representing
the goal of an attacker to access asset n, two types of attack nodes are the candi-
dates to be protected from by some countermeasures: the root node accessn and



60 O. Gadyatskaya

its children access fromn,l. Indeed, for the connectors to other bundles (the leaf
nodes accessb) it will make sense to introduce defences at the corresponding bun-
dle to ensure the consistency requirement. For the nodes sat polp, the attacker’s
goal is to satisfy the policy by finding the right credentials. It is not obvious
what can be done as a protective measure besides protecting the credentials
themselves. As for the nodes representing circumventing the enforcement mech-
anism, breaks, we do not have enough details for the moment how the attacker is
going to break it. If this node is to be refined using some attack pattern library,
it is better to create a separate AD bundle for treating the scenarios and assign
defences there.

Now we have candidate attack nodes to be assigned countermeasures. To
select the countermeasures that could be assigned, we first review existing types
of security controls. It is well-established in the security industry to classify
controls as preventive, detective and corrective [1]:

– Preventive controls focus on preventing security incidents from occurring.
– Detective controls focus on detecting occurrences of security incidents.
– Corrective controls focus on aiding the organisation to recover from a security

incident.

From the implementation perspective, it is traditional to divide controls into
the following categories [1]:

– Technical controls that are implemented typically as software controls.
– Management, or administrative, controls that are implemented as procedures

and guidelines.
– Operational controls that focus on ensuring security and dependability of

operations. These controls include physical security controls (physical access
control, fire and water damage protection, etc.) and some controls that are
difficult to classify as fully technical or physical (e.g., protection of personal
computers).

access_n

access_from_nl

access_l D_preventive

EM_nl Other preventive

access_from_nk

access_k

D_detective/corrective

Fig. 2. An updated AD bundle with defence nodes in the designated positions (children
of EM(n,l) not shown).
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From this classification, we propose a way to update AD bundles with secu-
rity controls in a consistent manner. The preventive controls can be added as
children to the attack nodes access fromn,l, because they correspond to preven-
tive measures for certain directed actions of the attacker. Access control policies
present in the model are already embedded in the bundles at this position. To
satisfy the attack-defence trees requirement of only one child of the opposite
type, we will modify the bundle as in Fig. 2 (now the node Dprev

n,l is a parent of
the node EMn,l).

The detective and corrective measures can be added as children to the root
node accessn (see Fig. 2). In this position the defence nodes are directly linked
to the system object in question, be it a location, a person, or an object. The
semantics of the controls placed in this position are clear: assuming the attacker
has already gained access to his target, is this detectable or what can be the
remedy for this? Notice that some controls in practice can be both detective
and preventive (e.g., security guards). In this case, it is safe to classify them as
preventive controls.

What Defences to Choose. The choice of security controls is a tough question
in practice. Not only it requires the human analyst to know possible attacks and
countermeasures, but also the analyst needs to solve a complex multi-parameter
optimisation problem. Indeed, the controls addressing the same threat can have
different cost, efficiency and effectiveness. They can be more or less compliant
with the industry standards and best practices. They can be more or less easy
to implement and easy to verify. Finally, they can be more or less desired by the
organisation because of personal views of the top-management. Thus, if we just
consider the baseline controls listed by NIST Special Publication 800-53 [2], and
try to evaluate all the above-mentioned parameters in order to fully automate
the defence selection (now that we know where to place them), we already will
face a very complex problem. Moreover, a single mistake in evaluation of some
of the values will likely make the full analysis invalid. Therefore, it is likely that
human-assisted control selection cannot be fully replaced by automated defence
generation, at least for some time.

Yet, we can try to facilitate the defence selection problem by further cate-
gorising the security controls based on applicability to the scenarios in question
and usefulness in attribute-based computations.

In the socio-technical model we have clear categories of objects: locations,
actors and items that can belong to either physical or digital space. Thus controls
can be chosen based already on simple considerations such as “access to digital
objects by processes can be protected by using technical preventive controls”, or
“access of humans to humans can be protected by administrative and physical
preventive controls”. Table 1 summarises these choices of controls. In this table,
it is expected that respective controls will be introduced in the dedicated AD
bundles (following the template in Fig. 2).

Furthermore, following the investigation of attribute decoration on attack-
defence trees by Bagnato et al. [4], we can look at what controls contribute
to computations of certain attributes. For instance, if the analyst is interested
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Table 1. Controls selection based on system elements.

Entity Physical space Digital space

Preventive

Location Physical access control Technical access control, firewall

Actor Physical access control,
Security trainings, Email
filter

Technical access control and
authentication

Object Physical access control Technical access control

Detective

Location Security cameras, visitor logs System logs, IDS

Actor

Object

Corrective

Location Insurance, liability limitation,
business continuity plan

Insurance, liability limitation,
secure state restoring
mechanisms, business
continuity plan

Actor

Object

in the probability of an attack to succeed, the minimal cost of attack for an
attacker, or time of executing an attack, then (under the assumption that detec-
tion cannot stop the attack) she would like to look at her preventive measures. If
she is interested in the impact the attack has on her organisation (how business
continuity is affected after the attack was executed), she would like to consider
the preventive and corrective controls, especially the latter ones, because these
ensure business continuity. Thus, if she is interested only in some attributes, the
computation on AD bundles does not need to take into account all controls at
once. Table 2 summarises the control types that are the most relevant for some
selected attributes.

Table 2. Relevant controls for example attributes

Attribute Preventive Detective Corrective

Risk of detection �
Cost of attack (for attacker) �
Probability of attack success �
Time of attack �
Impact of attack � � �
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Notice that the controls added at this stage will probably not follow the AD
bundle notation, but will be expressed in the natural language (e.g., security
training or ID check). This is understandable, because, as we have mentioned,
models are not rich enough by nature. Yet, this is acceptable for the format,
because the attack-defence model does not need to be fully formal. On the con-
trary, it is used to assist the human analyst to create and maintain the attack-
defence view on the system. The only requirement that we have for it is the
consistency, which is ensured by adding each control only to the bundle rep-
resenting the attack-defence view of a particular (unique) entity in the model.
Some controls can require a notion of perimeter to be defined in the model, so
that they can be uniquely assigned to the bundle corresponding to the perimeter,
and not to each entity belonging to that perimeter. This is easily implementable
in any socio-technical model.

5 Related Work

The question of attack trees generation from system models has been tackled in
[8]. Similarly, [14,22] worked on generating attack models from a system model.
While we follow the same approach for attacker’s view, our main focus is on
keeping both attacker’s and defender’s views consistent with the main socio-
technical model.

Attack-countermeasure trees (ACTs) is an alternative model to attack-
defence trees in keeping both views simultaneously [20]. In [21] the authors have
investigated optimal countermeasure selection for ACTs when a set of possible
countermeasures to be implemented is already predefined. It will be interesting to
investigate ACTs suitability for the attack-defence model, because they support
explicit detection and mitigation countermeasure nodes (but not corrective).

In [12] the authors work on directly applying model checking to a socio-
technical model in order to evaluate some reachability-based security properties.

Ferreira et al. [6] have discussed defences suggestion in the context of the
socio-technical model STEAL. They propose to apply defences at the technical
and social levels of the system, what is in line with our proposal for applying
security control categories in selecting defences.

6 Conclusion and the Next Steps

In this work we have approached the question of creating and maintaining the
security controls representation in parallel to the socio-technical model. Our
solution creates a set of attack-defence bundles (small attack-defence trees) that
can be maintained with a socio-technical model as its separate view. The bundles
are generated from the model in the beginning, but afterwards they are enriched
consistently alongside the new security controls identified by a human analyst.
We have also discussed how new controls can be selected based on the model
entities and the attributes of interest to the analyst. This work attempts to bridge
the gap between the approach of automated attack generation from system model
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and the manual security control selection in the traditional risk analysis. The
next step is to look into the compositional attack-defence tree synthesis for
more complex attribute domains. After that, it will be possible to investigate
optimal countermeasure selection, based, e.g., on the approaches suggested in
[3,21]. Another further research direction is practical validation of the proposed
approach on realistic case studies and evaluation of its usefulness and scalability.
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1 Department of Informatics, University of Fribourg, Fribourg, Switzerland
2 Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland

marc.pouly@hslu.ch
3 Department of Computer Science, Institute of Information Security,
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Abstract. We apply a graphical model to develop a digital loyalty pro-
gram protocol specifically tailored to small shops with no professional
or third-party-provided infrastructure. The graphical model allows us to
capture assumptions on the environment the protocol is running in, such
as capabilities of agents, available channels and their security properties.
Moreover, the model serves as a manual tool to quickly rule out inse-
cure protocol designs and to focus on improving promising designs. We
illustrate this by a step-wise improvement of a crude but commercially
used protocol to finally derive a light-weight and scalable security pro-
tocol with proved security properties and many appealing features for
practical use.

1 Introduction

Paper-based ink stamp cards are a convenient and inexpensive way for small
shops to improve customer loyalty. Other than an ink stamp and printed cards,
no further materials nor infrastructure are required. And unlike common cus-
tomer loyalty programs of large enterprises [9], such cards guarantee customer
privacy. The typical example for the application of paper-based loyalty cards is
the independent coffee shop around the corner that offers a free drink for every
10 stamps collected. Customers using these cards cannot be tracked and profiled,
and they can easily transfer their cards to someone else.

A common problem for loyalty points hunters is the number of stamp cards
that accumulate over time. With mobile devices being widely available, the
straightforward idea is to implement the functionality of paper-based loyalty
cards as a mobile app. With special focus on small shops, such a system must
first and foremost be light-weight. The cost of an electronic loyalty points solu-
tion should not be orders of magnitude larger than the paper-based system. This
precludes solutions that are based on third-party-provided infrastructure or pro-
fessional check-out systems known from large retailers. A likely solution scenario
is that a vendor provides loyalty points with QR codes that are scanned by the
customers’ mobile devices.

c© Springer International Publishing Switzerland 2016
S. Mauw et al. (Eds.): GraMSec 2015, LNCS 9390, pp. 66–81, 2016.
DOI: 10.1007/978-3-319-29968-6 5
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In this paper, we consider the problem of designing a secure loyalty points
protocol along the restrictions sketched above. This problem serves as a case
study for the applicability of communication topologies, a graphical approach to
modeling security assumptions, to guide the design of secure protocols.

The protocols we design are simple and the steps we have taken seem self-
evident in retrospect. On the one hand, the imposed infrastructural constraints
naturally enforce simplicity, on the other hand, this makes loyalty points proto-
cols a perfect case study for a detailed walk-through with our design method-
ology. In this spirit, we encourage the reader to pause the reading of the paper
at the end of Sect. 2.1 and to design a secure loyalty points protocol satisfying
the requirements stated in that section. The reader can then analyze his or her
protocol with the same methods that we apply to our first protocol in Sect. 3.

We have formally verified two of the protocols we design in this paper and we
give a brief account of the results in Sect. 4. To complete our story, we discuss
implementation aspects of a practical loyalty card system in Sect. 5. We discuss
related work in Sect. 6 and conclude in Sect. 7.

2 Preliminaries

We briefly state the security requirements that an electronic loyalty points pro-
tocol should satisfy. Then we introduce the communication topology, a model
on which our methodology for secure protocol design is based. The definitions
given in this section are purposefully informal.

2.1 Security Requirements

A classical loyalty points system consists of a vendor that issues loyalty points
to a customer commensurate with the customer’s purchase. In the point-per-
product-purchased loyalty card system frequently used by coffee shops the vendor
issues a loyalty point by stamping a mark on a paper card for every coffee
purchased. One mark is equivalent to one loyalty point, and the customer may
redeem a certain number of loyalty points for a free coffee.

In the electronic loyalty points system we replace the stamp by the shop’s
computer or mobile device, to which we will refer as server, and the paper
card by the customer’s mobile device. The loyalty points are digital information.
Thus, the electronic system consists of four agents: The customer, the vendor,
the mobile device of the customer, and the shop’s server.

An electronic loyalty points system should ideally satisfy all the security
requirements that a paper-based system satisfies, among which we consider the
following as important:

Unforgeability of points: Every loyalty point accepted by the vendor has been
issued by the vendor.

No double-spending of points: A loyalty point that was previously redeemed
will not be accepted by the vendor.
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Customer anonymity: The vendor cannot link points issued to or redeemed
by a customer to the customer’s identity.

Customer privacy: The vendor cannot link a returning customer’s transaction
to the customer’s previous transactions.

Theft protection of points: Points issued to an agent can be redeemed by
this agent.

Non-repudiation by vendor: The vendor cannot repudiate the validity of an
unredeemed loyalty point issued to a customer.

A paper-based loyalty points system satisfies the unforgeability, no double-
spending and non-repudiation requirements, but it typically does not satisfy the
theft-protection requirement, since a loyalty card can be stolen. Sometimes, when
plain ink stamps from a retailer are being used, unforgeability of points requires
the vendor to additionally sign each point manually. Customer anonymity is
also guaranteed, unless the vendor knows the customer personally, but customer
privacy may only hold to a certain degree. If the vendor provides each loyalty
card with additional information, some limited profiling becomes possible. The
vendor may for example use a date stamp in order to profile coffee consumption
of anonymous individuals and must additionally provide each loyalty card with
a unique serial number, if the information from different loyalty cards is to be
linked to the same anonymous individual.

As with paper-based loyalty points systems, it can be argued that an elec-
tronic system may not satisfy the theft-protection requirement if the customer’s
mobile device is stolen. However, in the following we assume that the agent
receiving loyalty points is the mobile device. In other words, we are not pro-
tecting against theft of the mobile device, but against the case where points
issued to a customer’s mobile device cannot be redeemed by that device. We
note that there are two ways in which the theft-protection requirement could
fail: (1) Points issued to a mobile device are redeemed by an attacker’s device
and (2) points issued to a mobile device are corrupted or lost and thus not
redeemable by the device. We therefore refine theft-protection into two classical
security requirements: a confidentiality requirement to prevent scenario (1) and
authenticity of loyalty points issued by the vendor to prevent scenario (2). A
term x (e.g., a loyalty point or cryptographic key) is said to be confidential (or
secret), if the attacker does not know it. A term x received in a communication
apparently from Y is said to be authentic, if Y indeed sent x. We will focus on
these two requirements in the remainder of the paper. These requirements are
formalized in our models of two loyalty points protocols discussed in Sect. 4.

2.2 Communication Topologies

A communication topology is a graph-theoretic model of communication protocol
assumptions [3]. It contains assumptions on role capabilities, initial knowledge
of roles, channel availability, and security assumptions on channels. A communi-
cation topology thus represents a set of protocols: All protocols that satisfy the
stated assumptions. Given a communication topology τ , we may ask whether
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any of the protocols that satisfy the assumptions of τ also satisfy a given secu-
rity requirement, e.g., one or more of the requirements stated in the preceding
section.

Formally, a communication topology is an edge- and vertex-labeled directed
graph (V,E, η, μ), where V is a set of role names, E ⊆ V × V and η and μ
are functions assigning labels to vertices and edges respectively. For A,B ∈ V ,
an edge (A,B) ∈ E denotes the availability of a communication channel from
the agent executing role A to the agent executing role B. We call a sequence
of vertices [v1, . . . , vk+1] with v1, . . . , vk+1 ∈ V such that (vi, vi+1) ∈ E for
1 ≤ i ≤ k a path from v1 to vk+1.

The vertex labeling function η assigns capability, knowledge, and trust
assumptions to role names, i.e., to the vertices in the graph. The edge label-
ing function μ assigns security assumptions to communication channels. The
communication channels defined in [3] are denoted by ◦−→◦, •−→◦, ◦−→•, •−→• and
represent, respectively, the insecure, authentic, confidential, and secure commu-
nication channel. An insecure channel is defined as a channel that the attacker
can eavesdrop on, modify messages transmitted on it, and inject arbitrary mes-
sages into it. An authentic channel prevents modification of messages. More
precisely, it guarantees to the recipient of a message that the message was pre-
viously sent by the sender. The attacker can still eavesdrop on an authentic
channel. The confidential channel prevents the attacker from eavesdropping on
messages, but allows the attacker to inject his own messages. The secure channel
is defined to be an authentic and confidential channel. That is, the attacker can
neither eavesdrop on nor modify messages.

Figure 1 shows the communication topology that we refer to as the coffee
shop topology and work with in the remainder of this paper. It contains four
nodes: the customer C, the vendor V , the customer’s mobile device D, and the
vendor’s server S. All four nodes are assumed to be honest and initially share no
private information. Customer and vendor are human roles, which is indicated by
a dashed circle. Their capabilities are restricted in that they cannot perform any

D S

C V

◦−→◦

•−→◦

•−→◦

•−→•

◦−→◦

•−→◦

•−→◦

•−→•

C Customer
D Customer’s Mobile Device
V Vendor
S Vendor’s Server

◦−→◦ Insecure Channel
•−→◦ Authentic Channel
•−→• Secure Channel

Fig. 1. The coffee shop topology.
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computations beyond concatenating and splitting messages. The mobile device
and server have no such restrictions, as indicated by a solid circle.

The channel assumptions in the coffee shop topology are as follows. The
communication channels between customer C and vendor V are authentic. This
is justified by the fact that the customer and vendor are physically facing each
other and thus able to attribute messages that they hear or paper notes that
they receive to the correct source, e.g., the person in front of them. The channel
from the mobile device D to the customer is assumed to be authentic, based on
the assumption that the customer recognizes his own device. We assume that
the channel from the customer to the device is insecure, because the customer
might not be using an authentication mechanism on his device and might not
always keep the device in his own possession. The channel from the device to
the shop’s server S is insecure, since any device could be messaging the server
or eavesdrop on a communication. In particular, we assume that the server does
not share any longterm secret keys with the device D, as this might clash with
the privacy requirement. The channel from server to mobile device is assumed
to be authentic, since the server’s public key can be authentically distributed in
the shop. It could be posted as a QR code on a wall that is only accessible by the
vendor. However, if the reader is concerned about an unnoticeable replacement
of the QR code by an attacker, we can always instruct the shop assistant to
carry a shirt with an imprinted QR code. Finally, the communication channels
between the server and the vendor are assumed to be secure, since this can be
physically ensured.

Communication topologies can be given a semantics [3] that is aligned with
the semantics of the Tamarin prover tool [13]. We have used the Tamarin prover
tool to verify two of our protocols as discussed in Sect. 4.

3 Designing a Simple Loyalty Card Protocol

We start with a naive protocol and improve it in two steps with the help of the
coffee shop topology into a protocol that satisfies the security requirements stated
in Sect. 2.1. As we aim to design a scalable loyalty card system, see Sect. 5, we
subsequently focus on the more comprehensive point-per-euro-spent system that
incorporates the lighter variant of a point-per-product-purchased system from our
coffee shop example, and which can also be used for retailers with a wider variety
of goods.

3.1 First Protocol

Consider a first electronic loyalty card protocol to issue loyalty points to a cus-
tomer, shown in Fig. 2. The protocol runs as follows. The customer pays the
vendor a certain amount of money for a purchase. The vendor then enters the
amount of money paid into the server S. The server returns a number of points
that depends on the amount of money paid to the vendor (or the number of
products sold). The separator / in message 3 of the protocol indicates that the
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LP-1 1. C → V : money
LP-1 2. V → S : money
LP-1 3. S → V : points(money) / QRcode
LP-1 4. V → C : QRcode
LP-1 5. C → D : QRcode / points(money)

Fig. 2. Protocol LP-1: A first protocol for issuing loyalty points

server sends a message that encodes points(money), but that the vendor (due
to his computational restriction) is unable to parse this message and verify its
correctness. To the vendor, it is simply a QR code. The vendor gives the QR
code to the customer. The customer then uses his mobile device to scan the
code. The device can parse the scanned code and extract the number of points
obtained.

By the assumptions in our coffee shop topology, the channel from the vendor
to the customer is authentic, but not confidential and the channel from the
customer to his mobile device is an insecure channel. It follows that there are
two opportunities for an attacker to observe the QR code: When the customer
receives it and when it is scanned by the device. This is a problem if the QR
code must be kept secret. For instance, if the information represented by the QR
code is sufficient to redeem the encoded loyalty point then the protocol LP-1 has
no theft protection.

Remark. We have observed an even simpler system in use in Switzerland: One
loyalty point is awarded by the vendor per product sold and the same QR code is
used for every transaction. The QR code is printed on a piece of cardboard that
the vendor shows to the customer. The mobile device’s app essentially counts
the number of times it has scanned the QR code. This system offers theft pro-
tection to everyone: Since all loyalty points are represented by the same digital
information and are redeemable, nobody’s points can be stolen. However, the
system does not satisfy the double-spending requirement. Instead of scanning
the QR code with the system’s official mobile app, an attacker can take a pho-
tograph and redeem the same point over and over again. Due to the absence of
a secure protocol, these merchants try to counteract such attacks with various
infrastructural and legal measures.

Returning to protocol LP-1, our goal is to ensure the secrecy of the QR code in
order to satisfy the theft protection requirement. We have two options to protect
the secrecy of the QR code. The first option is to strengthen the assumptions
made in the coffee shop topology. We must assume that (1) the channel from
the vendor to the customer is a secure channel and (2) that the channel from
the customer to his mobile device is confidential. The justification for (1) could
be that the QR code is given to the customer in a concealed manner, e.g., on
the counter-facing side of a paper. This assumption is not uncommon: Phone
credit top-ups are in some countries sold as paper-printed codes. However, we
have yet to see a vendor that takes precautionary steps to keep the printed code
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concealed. The justification for (2) is that the customer always scans the QR code
in a private environment. We believe, however, that this is too inconvenient to
be carried out in practice. The second and preferred option is to improve the
protocol.

3.2 Second Protocol

The QR code of protocol LP-1 does not have to be secret if it is an encryption
of the loyalty points or if the loyalty points that it encodes satisfy the theft-
protection requirement by another mechanism. In both cases, the server must
know information related to C or D to protect the loyalty points. We must
therefore solve the following problem: How to send information authentically (or
even securely) from D to S?

It is not possible to send information authentically (and hence neither
securely) from D to S in the coffee shop topology using only the two edges
(D,S) and (S,D) that directly connect D and S: The edge (D,S) is labeled as
insecure and (S,D) as authentic, but in the wrong direction. This impossibility
can be proved formally [3, Lemma 2].

It is, however, possible to send information authentically (but not confiden-
tially) along the path [D,C, V, S], because all edges along this path are labeled as
authentic or secure and C and V are honest. We thus have an authentic channel
from D to S along this path and an authentic channel from S to D by the edge
(S,D).

LP-2 1. C → D : GetPoints
LP-2 2. D → C : PointsCode
LP-2 3. C → V : money,PointsCode
LP-2 4. V → S : money,PointsCode
LP-2 5. S → V : {points(money)}PointsCode / QRcode
LP-2 6. V → C : QRcode
LP-2 7. C → D : QRcode / {points(money)}PointsCode

Fig. 3. Protocol LP-2: Improved protocol for issuing loyalty points

We can therefore improve upon our first protocol as follows. The mobile
device creates a points code (an ephemeral public key) that is sent authentically
to the server. The server uses this code to encrypt the loyalty points. The protocol
is shown in Fig. 3. We denote the encryption of a message m with the public key
k by {m}k. However, in spite of the encryption, the protocol does not protect
against theft. We see this problem in the coffee shop topology: The channel from
the customer to the device is insecure. An attacker can therefore replace the
message from customer to device by a different message, e.g., by a redeemed
loyalty point encrypted (by the attacker) under the device’s points code. We
must, however, admit that this scenario stretches the limits of our imagination.
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We thus have again two options: Change the channel assumption or improve the
protocol. We again choose the latter.

3.3 The Third Protocol: A Simple Loyalty Card Protocol

Protocol LP-2 fails to satisfy a security property because the path [S, V,C,D]
does not provide an authentic channel from S to D. (This is because the final
edge of the path (C,D) is insecure.) There is still, however, the direct authentic
channel from S to D and the protocol can be easily modified to take advantage
of this channel, as shown in Fig. 4.

SLP 1. C → D : GetPoints
SLP 2. D → C : PointsCode
SLP 3. C → V : money,PointsCode
SLP 4. V → S : money,PointsCode
SLP 5. S → D : {points(money)}PointsCode

Fig. 4. Protocol SLP: Further improved protocol for issuing loyalty points

We have found a protocol that may plausibly satisfy the theft protection
requirement. Furthermore, if the function that generates points based on the
amount of the purchase is chosen appropriately, the protocol can satisfy the
unforgeability requirement and, if the server keeps track of all points that were
generated, the double-spending requirement can be satisfied. However, the pri-
vacy and non-repudiation requirements are not satisfied. For non-repudiation the
vendor must commit to their validity by signing them for instance. In protocol
SLP, no signatures are specified.

Message 5 in protocol SLP is assumed to be sent over an authentic channel
from S to D. The security assumption on this channel is different from the other
channel assumptions in that we have based it on a cryptographic assumption:
“The channel is assumed to be authentic, because the server’s public key can
be authentically distributed in the shop.” That is, to realize the authenticity
property of this channel, the server must digitally sign message 5 and the device
must verify the signature with the (authentic) public key that it has received. The
signature on message 5 can be used towards the non-repudiation requirement.
We note that in such a case a customer would have to rely on the legal system
recognizing digital signatures as a non-repudiation mechanism. A likely pre-
condition for this is that the public key is certified for such a use and the customer
would need to verify the certificate. We consider this issue to be outside of
the scope of the protocol specification and accept a server’s signature that is
verifiable with the authentically distributed public key to be a sufficient non-
repudiation token.

The protocol does not satisfy the privacy requirement, because the vendor
can link the issued points when they are collectively redeemed to the shopping
baskets and points in time that they were issued.
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3.4 An Ecash-Based Loyalty Card Protocol

We now present our final improvement on the series of protocols. To provide
customer privacy, we import a solution from the digital cash domain, which is
a protocol based on blind signatures. In the loyalty card version of the digital
cash protocol, the roles of the mint, bank, and merchant are combined in the
shop’s server. To keep the customer’s different transactions unlinkable, the device
chooses the serial numbers of coins and the server issues a blind signature on
it. To prevent cheating, the device and server need to run a cut-and-choose
protocol. Such protocols are standard (we discuss a specific example in Sect. 5)
and we can consider them a simple building block. What we therefore need
to ensure is that the server and device can establish a secure channel in the
coffee shop topology. The secure key establishment phase is shown in Fig. 5.
The protocol runs as follows. When the mobile device receives the GetPoints
instruction from the customer, it generates an ephemeral private key (eskD) and
displays the corresponding public key, pk(eskD), to the customer. The customer
pays the vendor and shows the mobile device’s display to the vendor. The vendor
inputs the transaction amount into the server and scans the code displayed on
the customer’s mobile device with the server. The server has thus received the
device’s public key. The server generates a session key SessKey, encrypts it with
the device’s public key, signs it with its own private key, and transmits the
message to the device. This transmission could be done via NFC, Bluetooth, or
WiFi. The server and device can now run any protocol over the secure channel
that they have just established. At the end of this protocol the device displays
to the customer the number of points received.

PP 1. C → D : GetPoints
PP 2. D → C : pk(eskD) / code
PP 3. C → V : money, code
PP 4. V → S : money, code / money, pk(eskD)
PP 5. S → D : sign({SessKey}pk(eskD), sk(S))

PP
.... D → S : . . .

PP
.... S → D : . . .

PP n. D → C : number of points received

Fig. 5. Protocol PP: key setup for PrivatePoints

4 Security Analysis

We have verified [17] authenticity and secrecy of the session key ‘SessKey’ of the
PP protocol with the Tamarin tool [13]. The verification considers an unbounded
number of sessions and assumes that there are compromised agents in the system.
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Since the session key is used to provide a secure channel between the server and
the device, the remaining security requirements for the PrivatePoints system
follow from the security properties of the ecash sub-protocol.

The protocol that was verified is given in Fig. 6, which makes explicit what
initial knowledge assumptions are made and which terms are assumed to be
randomly generated. The former is denoted by the “knows” keyword and the
latter by the “fresh” keyword in the figure.

C knows: D,V
D knows: C, S, pk(S)
V knows: S
S knows: V, sk(S)

PP 1. C → D : GetPoints
PP 2. D → C : fresh(eskD). pk(eskD) / code
PP 3. C → V : money, code
PP 4. V → S : money, code / money, pk(eskD)
PP 5. S → D : fresh(SessKey). sign({SessKey}pk(eskD), sk(S))

Fig. 6. Protocol PP: Specification for the SessionKey exchange for PrivatePoints

Note that the same analysis shows that our simple loyalty points protocol
SLP (Sect. 3.3) satisfies secrecy and authenticity of loyalty points. In SLP, the
randomly generated number is not used as a session key, but rather as an iden-
tifier for the issued loyalty points. The protocol to redeem points in the simple
loyalty points system is nearly identical to the protocol PP in Fig. 6. The main
difference is an additional sixth message in which the points to be redeemed are
communicated from the device to the server. Its specification is shown in Fig. 7.
For this protocol, we have verified [17] the secrecy and authenticity of the points
transmitted from the device to the server.

C knows: D,V
D knows: C, S, pk(S), points
V knows: S
S knows: V, sk(S), points

rSLP 1. C → D : SpendPoints
rSLP 2. D → C : fresh(eskD). pk(eskD) / code
rSLP 3. C → V : redeem, code
rSLP 4. V → S : redeem, code / redeem, pk(eskD)
rSLP 5. S → D : fresh(SessKey). sign({SessKey}pk(eskD), sk(S))
rSLP 6. D → S : {points}SessKey

Fig. 7. Protocol rSLP: Specification for redeeming loyalty points.
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5 Towards a Practical Loyalty Points System

Design and formal verification of a security protocol is one part of the story;
equally important, though, are aspects and protocol features that directly impact
implementation in a real-world setting. We therefore discuss our experience
in implementing a prototype of a loyalty points system that we call Private
Points [8].

5.1 Private Points

We first discuss briefly how a particular digital cash solution has been used to
issue and redeem points and afterwards report on implementation aspects.

Issuing Loyalty Points. The sub-protocol to issue loyalty points we have
chosen follows essentially the ecash protocol of Schoenmakers [19], with a few
simplifying changes.

1. The server communicates to the device how many points will be issued.
2. For every coin Ci to be generated by the server, the device generates a secret

serial number xi.
3. The serial numbers are hashed, blinded, and transmitted to be blindly signed

by the server.
4. The device verifies the signatures for all coins received.

Redeeming Loyalty Points. As the PrivatePoints system is limited to the
roles of customer, vendor, mobile device, and server, it is the server that needs
to play the role of the bank (see the original ecash protocol [19] for the role
specification). Most importantly, the server needs to check the validity of loyalty
points and prevent double spending, as well as guarantee non-repudiation to the
user as discussed above. The following is a high-level view of the protocol.

1. The customer selects a number of loyalty points to redeem for an item.
2. All the selected points Ci are transmitted by the mobile device to the server,

each with the hash of the secret serial number h(xi) in order for the server
to verify the loyalty point signature.

3. The server verifies the points received by checking the signature and verifying
that the points have not been previously spent.
Note that if the shop maliciously claimed that a valid coin has been spent
already, the user could ask for the coin number as proof of the claim. Since
the shop is only in possession of the hashed coin number at this point of the
payment process, it is unable to uphold the claim.

4. The server sends a signature to the device confirming that the received points
are valid for this transaction. This step is crucial for the non-repudiation
requirement.

5. The device verifies the server’s signature. If the signature is valid, the device
sends the secret serial numbers xi.

6. The server verifies that the serial numbers produce the previously received
hashes.
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5.2 Implementation

While a small coffee shop could perhaps afford to invest in a reasonably priced
loyalty points infrastructure, an ice cream vendor in a football stadium car-
rying an ice box definitely can not. Consequently, the only infrastructure we
can assume for customers and shops are plain mobile devices exchanging loyalty
points over a near-field communication link, for example. PrivatePoints has been
designed especially with this scenario in mind. The protocol does not require any
online registration prior to its first use as this would spoil the security measures
taken to ensure customer anonymity.

Moreover, PrivatePoints is efficient enough to be used in the train station’s
coffee shop during rush hour and allows for collecting multiple points in one go
in case people treat each other to coffee, or if the point-per-euro-spent system
is implemented. As a rule of thumb, our industry partners give a limit of 2 s
that can be invested on issuing loyalty points during the payment process. With
transmission and protocol overhead subtracted, cryptographic operations must
therefore not take more than 800 ms on off-the-shelf mobile phones. In case of
PrivatePoints, issuing digital loyalty points consists of hashing a serial num-
ber and providing and verifying a blinded signature. Our implementation on a
SAMSUNG GT-I9100 mobile phone with the Android operating system using
SHA-256 and RSA-2048 produces one coin every 40 ms on average, thus 20 coins
in 800 ms.

Finally, Loyalty card systems should not require an Internet connection. This
is because small shops may be located in places with poor Internet connectivity
or provide only a slow connection. During rush hour it is unacceptable to invest
several seconds per customer to set up Internet connection for the loyalty points
exchange. From a business point of view, this is probably the most important
feature of the PrivatePoints protocol which is not related to security.

6 Related Work

There are a variety of approaches to guided protocol design and we briefly high-
light a few of them. Abadi and Needham give principles for the design of secure
cryptographic protocols [1]. These principles are not intended to be sufficient
or necessary for secure protocols, but constitute prudent engineering practice
that prevents common confusions and mistakes. The AGVI toolkit [20] provides
automatic protocol generation and implementation tools. The designer inputs a
system specification and security requirements into the protocol generator that
produces candidate protocols. The candidate protocols are analyzed by a model
checker and verified protocols are translated to Java by a code generator. A
similar approach is taken in the GSD framework [15,16], where the protocol
designer inputs an abstract protocol specification and security requirements into
a tool that acts as an interface to different protocol verification tools. Sprenger
and Basin [22] propose a development method for security protocols based on
stepwise refinement. The designer starts with an abstract security goal and suc-
cessively refines the goal into a secure cryptographic protocol. Each refinement
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step is developed together with a correctness proof and thus the resulting pro-
tocol satisfies the specified security goal by construction.

In contrast to the above approaches, we explicitly consider human agents
in the communication protocol. We use the communication topologies model to
specify and graphically represent the given security assumptions in the system
and then use the graphical representation to guide the specification of a security
protocol.

Communication topologies have been introduced in the context of secure
human-server communication [3]. They were used to classify all four-node topolo-
gies that consist of a human, a device, a corrupted computing platform belong-
ing to the human, and a remote server. The classification distinguishes between
topologies that have secure communication protocols and those for which prov-
ably no such protocols exist. The communication topologies’ channel notation
◦−→◦, •−→◦, ◦−→•, •−→• was introduced by Maurer and Schmid [12] and used to define
transformation rules for secure channel establishment with cryptographic prim-
itives.

Ecash was invented and subsequently commercialized by David Chaum [6].
Since about the mid-1990’s, the topic of digital cash payment systems, their prop-
erties, and technical foundations is extensively covered in the literature, e.g.,
[2,14,18,19,21,23]. One might argue that loyalty points are merely a particular
type of non-universal, virtual currency. However, there is a fundamental difference
between loyalty systems and virtual currencies. A currency is issued by a bank or
mint that acts as a trusted third party in protocols between customers and vendors.
In case of a loyalty points system, bank and vendor conglomerate to a single party,
which breaks the trust relation between customer and bank. PrivatePoints is to a
great extent based on the ecash protocol of Schoenmakers [19] without using such
trust relations. In addition, a bank issuing a universal currency does not underly
the same infrastructural constraints as our coffee shop.

A recently proposed loyalty points protocol is given in [4]. It has a special
focus on customer privacy in that it allows customers to build and reveal their
own generalized profiles from their purchase history with the idea to award
more loyalty points for more precise customer profiles. Customers therefore con-
trol their own degree of privacy. This protocol requires bilinear pairing based
cryptography to implement its flexible customer privacy features, whereas Pri-
vatePoints offers only basic customer privacy protection in return for a greatly
reduced complexity of the system and cryptographic primitives used. In addition,
this protocol is aimed at larger online and offline shops with a global taxonomy
of products and makes explicit use of a certification agency.

Electronic customer loyalty systems are also related to coupon and voucher
systems. The coupon systems most relevant to our work are [5,7,10,11]; the
multi-coupon system described in [5] has the closest resemblance to the Private-
Points protocol. The major difference lies in the use of cryptographic tools in
that [5] uses proofs of knowledge, while PrivatePoints employs digital signature
and commitment schemes. Moreover, loyalty points systems have stronger imple-
mentation requirements than voucher systems, since issuing loyalty points is an
integral part of every transaction.
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7 Conclusion and Future Work

We have illustrated the use of communication topologies to guide the design of
security protocols. A communication topology is a graphical tool to represent
assumptions about the environment that a protocol runs in. This guided app-
roach to designing protocols does not guarantee secure protocols. For such guar-
antees, pen and paper proofs or automated verification tools are still required.
Nevertheless, our approach helps in reducing the search space and can be used
to sketch security protocol designs without the need for a deep understanding
of the intricate details of formal security specifications.

An ulterior motive for our work is the question how secure protocols could
be designed automatically. We envision the communication topologies to be one
of the inputs that a user can conveniently specify in a graphical environment.
The other input are the security requirements that are selected from a list. The
envisioned automatic tool’s first step is to find possible protocol flows in a similar
manner as we have found manually in Sect. 3. The second step is to refine the
protocol flows heuristically or interactively into protocol specifications that are
in turn analyzed with a theorem prover or model checking tool.

The security protocols exemplarily designed in this paper using communi-
cation topologies are digital analogues of a paper-based customer loyalty pro-
gram. They have been geared towards use in small shops with no professional or
third-party-provided infrastructure available. In fact, we showed that our Pri-
vatePoints protocol could even be used by an ice cream vendor in a football
stadium using his private mobile phone for issuing and redemption of loyalty
points. The implemented prototype protocol has been argued to offer the same
security features as its paper-based ancestor, namely unforgeability of points,
double-spending protection, theft protection of points, non-repudiation by the
vendor, customer anonymity and customer privacy. The protocol does not require
the customer’s mobile device to be connected to the Internet and it is scalable
enough to support point-per-product-purchased as well as point-per-euro-spent
loyalty programs.

Concerning future work, we will investigate to which extent such a simple and
light-weight loyalty point system can support collaborating shops and franchising
companies that expect loyalty points issued in one shop to be redeemable in
other shops. Especially in franchising companies, the individual shops may be
competitors, which puts the straightforward idea of key sharing between shops
into question.
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Abstract. Manually identifying possible attacks on an organisation is a
complex undertaking; many different factors must be considered, and the
resulting attack scenarios can be complex and hard to maintain as the
organisation changes. System models provide a systematic representation
of organisations that helps in structuring attack identification and can
integrate physical, virtual, and social components. These models form a
solid basis for guiding the manual identification of attack scenarios. Their
main benefit, however, is in the analytic generation of attacks. In this
work we present a systematic approach to transforming graphical system
models to graphical attack models in the form of attack trees. Based on
an asset in the model, our transformations result in an attack tree that
represents attacks by all possible actors in the model, after which the
actor in question has obtained the asset.

1 Introduction

Organisations face a constant stream of attacks on their IT-infrastructure. Many
of these attacks and the ways to prevent them are well understood. Traditional
and well-established risk assessment methods can often identify these poten-
tial threats, but due to a technical focus, these approaches often abstract away
the internal structure of an organisation and ignore human factors when mod-
elling and assessing attacks. However, an increasing number of attacks do involve
attack steps such as social engineering.

Attack trees [1,2] are a loosely defined, yet (or maybe therefore) widely
used approach for documenting possible attacks in risk assessment [3]; they can
describe attack goals and different ways of achieving these goals by means of
the individual steps in an attack. The goal of the defender is then to inhibit one
or more of the attack steps, thereby prohibiting the overall attack, or at least
making it more difficult or expensive. While attacks trees for purely technical
attacks may be constructed by automated means [4,5], for example by scan-
ning networks and identifying software versions, this is currently not possible for
c© Springer International Publishing Switzerland 2016
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attacks exploiting the human factors. Actually, only few, if any, approaches to
systematic risk assessment take such “human factor”-based attacks into consid-
eration. The goal of the TRESPASS project [6] is to close this gap by developing
models and analytic processes that support risk assessment in complex organ-
isations including human factors and physical infrastructure. The goal of this
support is to simplify the identification of possible attacks and to provide qual-
ified assessment and ranking of attacks based on the expected impact.

In this work we present the fundamental approach to systematically trans-
form graphical system models to graphical attack models in the form of attack
trees. Since the transformation considers all relevant system components, the
resulting attacks may include elements of human behaviour. These attacks can
then be used as input to a traditional risk assessment process and thereby extend
and support the brainstorming results. Our approach is applicable to a class of
recent system models such as ExASyM [7] and Portunes [8], which have been
used to model and analyse organisations for possible attacks [9]. These mod-
els contain both the physical infrastructure and information on actors, access
rights, and policies; consequently, analysis of such models can include, for exam-
ple, social engineering in the identified attacks.

The benefit of converting system models to attack models is a conceptually
new view on qualitative security properties. The system model represents spatial
connections on the different layers of an organisation, thus blurring potential
attacks exploiting items not connected in the model, or not connected in the
mental image of the modeller. Attack models represent connections between
elements and actions that can be exploited to perform an attack.

Our transformations are independent of the underlying model. While we
present them in the setting of the TRESPASS model, the general approach
can be applied to any graphical system model. The transformations described
in this work can be used as the core technique for policy invalidation [10,11],
where policies describe both access control to locations and data, as well as
system-wide policies such as admissible actions and actor behaviour. We have
implemented the transformations presented in this work in an attack tree gen-
erator for TRESPASS models. The example shown in Fig. 9 has been generated
with this tool.

The rest of this article is structured as follows. The next section gives an
overview of graphical models for systems and attacks, followed by a description
of the transformations for simple models in Sect. 3. These simple models do not
consider mobility of data or other actors than the attacker. Mobility of data
through processes is added in Sect. 4. Finally, Sect. 5 concludes the paper and
discusses future work.

2 Graphical System Models and Attack Models

We start by introducing the main concepts in the system model and the attack
models we consider. System models includes representations of both the physical
and the digital infrastructure of an organisation. This is similar to approaches
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such as ExASyM [7] and Portunes [8], which represent relevant elements as nodes
in a graph, that form the natural basis for the application of our techniques. How-
ever, for the current work, we do not require a particular kind of representation:
the only requirement is that the core concepts discussed later in this section can
be extracted from the underlying model. Similarly, attack models represent pos-
sible attacks on the modelled organisation. For the approach in this paper, we
essentially only require that attack goals can be divided into sub-goals that can
be combined either conjunctively (must all be completed) or disjunctively (only
one sub-goal need to be completed). This is very similar to attack trees [1,2],
and just as for these it would be interesting to allow more complex combinations
at a later point.

2.1 Graphical System Models

We consider nodes as the central element in our graphical model of an organi-
sation. We differentiate between nodes representing

– Locations in the organisation, for example, rooms, access control points,
network components, computers, etc. Nodes representing locations that are
physically or logically connected in the organisation, are linked by directed
edges in the graph.

– Actors in the modelled organisation.
– Processes modelling information sharing or policies.
– Items modelling tangible assets in the modelled organisation, for example,

access cards, harddrives, etc.

Additionally, nodes can store items and data; in contrast to items, that are rep-
resented by nodes, data is represented by an (abstract) name and includes, e.g.,
pins, passwords, and other intangible assets. All elements in the model provide
a unique identifier that can be used to refer to the element and to obtain, for
example, information on its concrete type, model, or other relevant properties.

A location in the modelled organisation may belong to several domains, e.g.,
it can be (physically) part of the building and also be present (virtually) on the
network. Nodes in the model can also belong to different domains, which limit
the operations that can be performed on a node and limiting where processes
can move; human actors, for example, are restricted to nodes in the physical
domain, and computer processes are restricted to nodes in the virtual domain.

Assets are used for modelling any kind of item or data that is relevant in the
modelled organisation. In addition, assets can be annotated with extra informa-
tion, e.g., a probability representing how likely it is to lose a particular piece
of data.

Nodes that represent processes or actors can move around in the model, i.e.,
be associated to changing locations; actors are allowed to store both items and
data, while processes can only store data. Assets stored at either of these nodes
move around with the node.
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To represent a wide variety of processes and the possible behaviour of actors,
we assume that a number of simple actions can be performed on a target, which
can be any location in the model, including physical locations or actors.

To constrain mobility of processes and actors, as well as to constrain actions,
we assume a policy mechanism in the model, consisting of

– Policies that regulate access to locations and assets. Policies consist of
required credentials and enabled actions, representing what an actor needs
to provide in order to enable the actions in a policy, and what actions are
enabled if an actor provides the required credentials, respectively.

– Credentials are data, items, or an identity that the actor or process per-
forming an action needs to have, or predicates.

Predicates as credentials express that the actor must possess a certain attribute.
In the example shown in Fig. 1, an actor must be trusted by Alice in order to
be allowed to move to the location Door. We also assume policies to support
variables to relate credentials to each other, or to restrict actions based on the
credentials provided. In the example shown in Fig. 1, the policy at the ATM
requires the actor to present a card with a pin X and the matching pin.

As stated above, both the ExASyM [7] and Portunes [8] modelling languages
fulfil the above requirements for using our approach, as does any Klaim-like
models [12] in general. While Klaim models process mobility by processes moving
from node to node, we request processes to reside in special nodes that move
around with the process. We choose this abstraction to make the modelling of
(movement of) actors and assets carried by actors more intuitive and natural;
mapping “standard” Klaim-like models to this abstraction is straightforward.
In Fig. 1, for example, the node representing the actor Alice has a pin code and
a card. The card in turn contains information about the owner and the pin code
for the card.

In the work described here, we only consider the pure transformation of
graphical system models to graphical attack models. An essential next step in
risk assessment is to valuate the risk and impact of an attack, for example, by
annotating the attack model with metrics and performing analyses on them [13].
This mapping can be achieved by associating the elements’ identifiers with rel-
evant metrics. These metrics can represent any quantitative knowledge about
components, for example, likelihood, time, price, impact, or probability distri-
butions. The latter could describe behaviour of actors or timing distributions.
For the transformation described in this article these metrics are irrelevant, but
they can be evaluated on the generated attack trees.

Containment. Items as described above are an important concept in our
abstract model, since they can represent containment. Containment represents
for example the fact that a workstation contains a harddrive that contains a
file. In the model underlying our transformations we would represent the work-
station as an item with a location; this location in turn would contain an item
representing the harddrive; this item’s location would contain data representing
the (intangible) file.
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We interpret containment as being transitive: if item a contains item b, and
item b contains the data d, then we say a contains d transitively, and b contains
d directly.

2.2 Graphical Attack Model

Attack trees [1,2] are widely used by various security analysis techniques; they
support an easily accessible tree-like structure that can be visualised and under-
stood by non-experts. At the same time, they can be subjected to formal analy-
sis and structured treatment due to their tree-structure. Even though standard
attack trees represent sub-goals that must be completed in a specific sequence,
they have a hierarchical structure: the root node represents the attacker’s goal,
which is further refined by defining sub-goals. As mentioned above, the sub-goals
can be represented as sub-trees in the overall attack tree, where sub-trees, i.e.,
sub-goals, are combined conjunctively or disjunctively.

We do not require any further properties for the target of our transformations.
In principle the transformation could embed additional information into the
attack tree; for example, we currently assume an implicit left to right order in
sub-goals of conjunctive nodes.

srotcakrowtensessecorp world

Pc

Bank

City

Door

trustedby(Alice): move
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Computer C
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34567
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cash,
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card[(pin,X)],(pin,X) : in

Pws
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Alice: out

harddrive
pwd, 
313

Fig. 1. Graphical representation of the example system. The white rectangles represent
locations or items, the gray rectangles represent processes and actors; actors contain
the items or data owned by the actor. The round nodes represent data. Solid lines
represent the physical connections between locations, and dotted lines represent the
present location of actors and processes. The dashed rectangles in the upper right part
of some nodes represent the policies assigned to these nodes.
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2.3 Running Example

The running example in this paper is based on a case study in the TRESPASS
project [6] based on an actor Alice, who receives some kind of service, e.g.,
care-taking, provided by an actor Charlie. Charlie’s employer has a company
policy that forbids him to accept money from Alice. Figure 1 shows a graphical
representation of the example scenario, consisting of Alice’s home, a bank with
an ATM, and a bank computer. Alice owns a card and a concomitant pin code
to obtain money from an ATM, and a password to initiate transfers from her
workstation via the bank computer. Some of the nodes are labelled with policies
in dashed boxes; for example the money at the ATM requires a card with a pin
code, as well as that very pin code in order to obtain money (modelled as input).

Figure 1 shows a graphical representation of the model of our running exam-
ple. The locations, represented by small rectangles, are connected through
directed edges. Actors are represented as rectangles with a location, e.g., Alice
is at home and Charlie is in the city. Both actor nodes and location nodes can
contain data and items represented as circles. In our example, Alice has a card
that contains a pin code and Alice also has (knows) the pin code for her card.
Actor nodes can also represent processes running on the corresponding locations.
The processes at the workstation and the bank computer represent the required
functionality for transferring money; they initiate transfers from Alice’s home
(PWS ), and check credentials for transfers (PC ).

3 Transforming Models Without Asset Mobility

The class of attacks we generate from graphical system models address attackers
trying to reach a certain location or to obtain an asset. We mainly deal with
confidentiality and integrity properties. We are currently working on extending
this class to include attacks that aim at, e.g., starting a process as part of
a distributed denial-of-service attack. We expect to be able to generate these
attacks with similar transformations. In this section we consider assets in the
modelled organisation to be immobile. This restriction, which will be lifted in
the next section, simplifies the first presentation of transformations.

Attack generation assumes an asset in the system, which an attacker should
not be able to obtain. For every possible actor in the system, the goal of the
transformation is then to generate an attack that results in the actor having
obtained this asset. The overall transformation is a generalised version of policy
invalidation [10,11]:

1. Starting from the goal asset and the attacking actor,
2. the transformation identifies all paths to the asset,
3. and for every path, identifies the credentials that the actor is lacking;
4. for each missing credential, a new transformation is started recursively;
5. after obtaining all necessary credentials, the actor can reach the location of

the goal asset, and perform an action to obtain it.
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l1

loc attacker

l

ln. . .
pass pn

goto l

goto l

pass p1

goto l1 goto l goto ln

. . .

Fig. 2. Transforming a location. Any credential ci that the attacker is lacking is
obtained before performing action a at the location loc.

In the following, we present for each of the model elements discussed in the
previous section, how they are transformed into an attack representation. For
each transformation we show the part of the system model that triggers the
translation as well as the generated part of the attack model. For the system
models we use the same graphical representation as shown in Sect. 2.3 and Fig. 1.
For attack models we use a special notation that represents parts of the attack
as circles, and invocations of the transformation as rectangles.

3.1 Locations

A location is transformed into a disjunction of all possible paths from the loca-
tions already reached by the attacker to the location in question. Whenever
traversing a path requires new credentials due to some policy, we recursively
invoke the attack transformation, which ensures that the attacker obtains the
necessary credentials to pass the path.

The transformation pattern is shown in Fig. 2. For every possible path we
first generate one step to the first node of the path, followed by a recursive
invocation of the transformation for going to the target location.

loc
{c1 … cn}: a

get credentials  
& perform a

get 
credentials  

perform a 
at loc

get c1 get cn
. . .

Fig. 3. Transforming a policy. If the attacker lacks any credential to perform action a
at the location loc, the transformation creates an attack that obtains that credential.
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3.2 Policies

If the transformation at any point needs to create an action that is prohibited by
a policy, for which the attacker does not have all credentials, a new transforma-
tion is started to obtain this credential, resulting in a new attack representation.
The transformation pattern is shown in Fig. 3.

As mentioned above, many system models support predicates as credentials,
for example, to express that the actor must possess a certain attribute. In the
example shown in Fig. 1, an actor must be trusted by Alice in order to be allowed
to move to the location Door. Often, such a predicate is not a credential that
can be obtained, as for trust. In this case, the transformation generates a social
engineering action to “obtain” the predicate in question.

The variables in policies can be factored out before performing this trans-
formation by identifying all sets of assets that fullfil a policy. For the example
shown in Fig. 1 and the location ATM, the possible sets of assets are the card
and the pin at Alice or at Charlie.

In the following we assume that the transformation generates all necessary
steps for obtaining assets before performing the transformations described. In
the resulting attack representation, the root node of the attack representation
for obtaining the necessary credentials will be to the left of the root node for
performing the following actions, expressing an ordering as described above.

3.3 Data

Data represents intangible assets, such as passwords or pins. For obtaining data,
a conjunction is generated where the first element is to reach the location of
the data (Fig. 4). Once the attacker has reached a location that contains the
goal data, an action in the attack representation will be generated (Fig. 5) that
depends on the kind of location that contains the data (Figs. 6, 7, 8):

– If the data is contained in a location, then a simple in action will be generated;
or

– If the data is contained at an actor, then a social engineering action will be
generated.

If the goal data is contained in an item i, the transformation generates the
conjunction of several actions:

– Obtain the item and then obtain the data from the item; or
– Obtain the data from the item directly.

The difference between the two options is that the first option represents the
case that the attacker obtains the containing item itself and then obtains the
data, while the second option represents the case that the attacker removes the
data or item in place.

For the example of the workstation mentioned before this would mean that
the attacker either steals the harddrive containing the file, or that he extracts
the file from the harddrive.
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l1 X ln X. . .

get X

get X at lnget X at l1
. . .

Fig. 4. Items and data may be available from different locations. For each of these
locations, the transformation generates a separate attack path to obtain the asset. The
transformation will generate attacks to obtain all necessary credentials, and then input
the asset.

loc X

{credentials}: a
get X at l

goto loc get credentials  
& input X at loc

Fig. 5. To obtain an asset from a location, the transformation generates the necessary
attack to go to the asset’s location, then obtains the credentials, and finally performs
the necessary in action.

3.4 Items

Items represent tangible assets, such as the aforementioned workstation, hard-
disk, or an access card. Just as for data, we generate a conjunction that first
contains a node that represents reaching the location of an item (Fig. 4). Once
the attacker has reached a location that contains the goal item, an action in
the attack representation will be generated (Fig. 5) that depends on the kind of
location that contains the item (Figs. 6, 7, 8):

– If the item is contained in a location, then a simple in action will be generated;
– If the item is contained at an actor, then a disjunction of a social engineering

action or an in action will be generated, where the latter represents an attempt
of stealing the item.

If the goal item is contained in another item, the transformation generates the
conjunction of several actions:

– Obtain the item and then obtain the goal item from the item; or
– Obtain the goal item from the item directly.

The difference between the two options in the generated disjunctions is that the
first option represents the case that the attacker obtains the containing item
itself, while the second option represents the case that the attacker removes the
data or item in place.

For the example of the workstation mentioned before this would mean that
the attacker either steals the workstation containing the harddrive, or that he
extracts the harddrive from the workstation.
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loc X

{credentials}: a

input X at loc

in X at loc

Fig. 6. To obtain an asset that is directly contained at a location, the transformation
simply generates an in action. Note that the necessary credentials have been obtained
before invoking this transformation.

loc
{credentials}: a

item X
input X at loc

in item at loc
get credentials  

& 
input X at item

input X at loc

get credentials  
&

input X at item

Fig. 7. To obtain an asset that is transitively contained at a location, the transfor-
mation first obtains the item containing the asset and then recursively invokes the
transformation.

actorX

input X 
at actor

in X at loc SE actor in X

Fig. 8. Obtaining an asset from an actor is almost the same as for locations; the only
difference is that assets can be obtained by social engineering. The transformation
generates a special social engineering action, which is not further defined. Refining this
action depends on the context of the action such as, e.g., the involved actors; this is
left to later phases that consume the generated attack.

3.5 Triggering the Transformation

In general the transformation will be triggered by a certain asset being off-
limit for an attacker. The transformation iterates over a specified set of actors
available in the system model, and generates for each of these actors all possible
attacks for how they can obtain the asset. The triggering transformation for an
asset X is get X . While transforming the system model into an attack model,
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get cash

get cash
at ATM

goto ATM
get card[(pin,X)], (pin,X)

& input cash at ATM

get Charlie’s credentials
and perform action

input cash
at ATM

in cash 
at ATM

get Alice’s credentials
and perform action

get 
credentials

get 
card

get 
pin

goto Home

goto Door &
get trust

SE Alice 
move Door

move Door

move Home

perform in
at Alice

in card
at Alice

SE Alice
in Card

goto Home

goto Door &
get trust

SE Alice 
move Door

move Door

move Home

perform in
at Alice

SE Alice
in Pin

get 
card

perform in
at Alice

in card
at Alice

SE Alice
in Card

in pin
at card

input cash
at ATM

in cash 
at ATM

Fig. 9. Result of transforming the example from Fig. 1 using cash as the goal asset and
Charlie as an attacker.
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the transformation keeps track of the attacker, the location reached, and the
assets obtained. The attacker may already possess assets before starting the
transformation; this is specified in the system model.

3.6 Transforming the Example

We will now sketch the transformation of the example system discussed
in Sect. 2.3 and shown in Fig. 1. We assume that the goal asset of the attacker
is cash, which is available from locations ATM A1 and Computer. We will only
described data mobility in the next section, so for now we concentrate on the
“physical” cash available at the ATM location.

As discussed above, the transformation considers all possible actors and starts
with the get cash action, which in turn will result in a get cash at ATM trans-
formation (Fig. 4). This results in a conjunction of going to the ATM, getting
the credentials, and inputting the asset at that location, since the goal asset is
directly contained in the ATM.

The credentials at the cash asset require a card with a matching pin. In the
example system, both Charlie and Alice own matching assets, so the transfor-
mation generates two possible attacks, one using Charlie’s card, another using
Alice’s card. Clearly, the first transformation result does not necessarily rep-
resent an attack; generating such unwanted artefacts can either prohibited by
restricting permissible actors in the policy,1 or it can be dealt with in later phases
that work on the generated attacks.

For the first possible attack, Charlie would use his own card and pin; this does
not require further credentials. For the second possible attack, Charlie needs to
obtain the pin and the card from Alice. Alice’s location is Home, and to pass
the path to this location, Charlie must fullfil the predicate trustedby(Alice). This
results in an action social engineer Alice move Door, which could in a later phase,
for example, be translated into a forceful entrance or pretending to be somebody
who Alice trusts or is likely to let in her home. Once the location Home has been
reached, Charlie has several options for obtaining the card and the pin:

– Social Engineer Alice to give him the card and the pin;
– Input card from Alice (stealing); and
– Input the pin from the card (skimming).

The generated attack takes account for all combinations hereof; some parts of
the tree can be pruned or simplified in a later phase similar to [4]. Once the card
and the pin have been obtained, Charlie moves to the location ATM and inputs
the asset cash.

The resulting attack model is shown in Fig. 9. Not surprisingly, the trans-
formation result contains identical sub-trees due to identical assets to obtain or
identical patterns being transformed. Similar to the actions for obtaining items,
these could be simplified by a followup pass.
1 In this case, the owner of the card would not be allowed to be the actor performing

the action.
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4 Adding Data Mobility

So far we have assumed assets to be at static locations. This assumption simplifies
both the transformations for attack generation and the structure of the generated
attacks; instead of having to consider all the locations that an asset can reach
by means of actors or processes, we only have to consider the locations where
data is available in the model. We now discuss how to loosen this restriction.

In Sects. 3.3 and 3.4 the transformations described assume that the data is
available from a number of locations in the model, either directly or transi-
tively. The main transformation starting the generation of sub-attacks is shown
in Fig. 4. When adding data mobility, we are interested in which other locations
the assets are able to reach, either by means of processes (for virtual assets) or
by means of actors (for real-world assets).

The transformation for data mobility works reverse to the transformations we
have presented in the previous section. Before being able to generate an attack,
we need to perform three steps:

1. Identify who is able to move the asset;
2. Identify how to trigger the movement; and
3. Identify which locations the asset can reach.

The result of these steps is an attack that triggers the movement, and a set of
locations that the asset can reach; these locations can then be used as input to
the transformation shown in Fig. 4.

The main task lies in identifying who can trigger the movement and how.
Beyond these steps, adding data mobility does not add to the transformation,
but to the complexity of the generated attack model.

5 Conclusion

In this article we have presented a systematic approach for transforming graphic
system models into graphical attack models. Graphical models in general have
the advantage of easing understanding by non-technical personelle. This is a
significant advantage especially when communicating the risk of attacks on an
organisation. While the techniques discussed in this work especially target IT
security attacks, the techniques are applicable to any kind of attacks and risks.
Especially the support for social engineering attacks, though only at a very
abstract level, enables handling of a wide class of attacks involving physical,
virtual, and social layers of organisations. As recent events have shown, this
class of attacks will become ever more important.

Our techniques help identifying and communicating attacks faced by organ-
isation by enhancing traditional risk assessment methods that often abstract
away the internal structure of an organisation and ignore human factors when
modelling and assessing attacks. The attacks we identify consider all relevant
system components, including elements of human behaviour, and can be used as
input to a traditional risk assessment process.
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Our approach is generally applicable to graphical system models and graph-
ical attack models; examples for instances of such models include system mod-
els, e.g., ExASyM [7] and Portunes [8], and attack models such as attack trees
and attack-defence trees [1,2].

As discussed in Sect. 3, we are currently working on extending the class of
generated attacks to include attacks that aim at, e.g., starting a process as
part of a distributed denial-of-service attack. Another extension of our approach
aims at considering the environment in which the system under attack is used.
This environment influences, e.g., the value of data or assets, either for the
organisation or the attacker. Finally, we are exploring the relation of our app-
roach to transformations of UMLsec models to sequence diagrams representing
attacks [14].
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Abstract. Attack trees are widely considered in the fields of security for
the analysis of risks (or threats) against electronics, computer control, or
physical systems. A major barrier is that attack trees can become largely
complex and thus hard to specify. This paper presents ATSyRA, a tooling
environment to automatically synthesize attack trees of a system under
study. ATSyRA provides advanced editors to specify high-level descrip-
tions of a system, high-level actions to structure the tree, and ways to
interactively refine the synthesis. We illustrate how users can specify a
military building, abstract and organize attacks, and eventually obtain
a readable attack tree.

1 Introduction

Attack trees [8] provide a systematic way of describing the vulnerability of a sys-
tem, taking various types of attacks into account. Strengths of attack trees rely
on two aspects: they combine an intuitive representation of possible attacks with
formal mathematical ways of analyzing them in a qualitative and quantitative
way [4,6]. Kordy et al. showed that attack trees have been extensively studied
by the scientific community and are widely considered within the industry [5].

Up to now, analysts and technicians usually construct attack trees manually,
based on their knowledge and experience. A large number of tools for editing and
analyzing attack trees exist (see, e.g., [3,4]). Unfortunately, the manual design of
attack trees is time-consuming and error-prone, especially if the size of the attack
tree becomes substantial. Moreover, a manual design is likely to be incomplete
and unsound w.r.t. the security issues of a system under consideration. Supported
by automation, practitioners can obtain large attack trees that are correct by
construction and in line with the properties of the system. Moreover the gener-
ation process can also be reiterated in case new kinds of attacks emerge or the
system evolves. As a consequence, automated generation of attack trees recently
attracts the attention of researchers and industry practitioners [2,9,11,12].

Specifically, our long-term objective is to develop a (semi-)automated process,
applicable to a large panel of risk analysis domains (physical security, commu-
nication security and dependability, business, management, engineering, etc.),
that will assist practitioners in fulfilling the security modeling task. This paper
c© Springer International Publishing Switzerland 2016
S. Mauw et al. (Eds.): GraMSec 2015, LNCS 9390, pp. 97–101, 2016.
DOI: 10.1007/978-3-319-29968-6 7
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presents ATSyRA1 a tool for synthesizing attack trees. ATSyRA is built upon the
mathematical foundations presented in [7]. Compared to [2,9,11,12], ATSyRA
aims to provide an interactive and user-guided synthesis; an integrated environ-
ment with domain-specific languages (DSLs) and advanced editors. We also aim
to augment the level of abstraction and consider as input high-level description
of a system for generating attack trees.

Remainder. Section 2 presents the underlying methodology. Section 3 illus-
trates the main features of ATSyRA. Section 4 identifies future work.

2 Towards Synthesis of Attack Trees

At the algorithmic level, we experienced that a naive fully automated generation
is likely to produce unexploitable trees (because they are flat), as also noticed
by [2]. Mauw and Oostdijk [6] and Kordy et al. [4] showed that numerous struc-
turally different attacks trees can capture the same information, out of which a
few are readable and meaningful for an expert. An original and crucial feature
of our methodology is the support of high-level actions (HLA) [7] to specify how
sequences of actions can be abstracted and structured – a high-level action can
be seen as a sub-goal of the attacker.

The typical workflow is depicted in Fig. 1: inputs, either given by the prac-
titioners or generated by the tool, are depicted in round-corner boxes (1)–(4),
and intermediate tools/transformations are depicted in rectangle boxes (a)–(b).
Dashed arrows suggest partial automation and an involvement of users to gen-
erate the results.

3 ATSyRa: Tooling the Approach

We implement an environment, called ATSyRA, for realizing the methodology
previously introduced. Our experience for assessing the physical security of mili-
tary buildings2 motivated its design. The tool assists practitioners in synthesizing
attack trees from the high-level description of the system. In our case, we develop
a domain-specific language (DSL) for expressing military buildings. Other DSLs
can be considered as well. ATSyRA3 is implemented on top of Eclipse and offers
to experts different facilities (DSLs’ services like editors and automated reason-
ing support). Box (0) in Fig. 1 is a screen-shot of the ATSyRA environment, with
windows ➀-➃, which we now detail.

➀ Experts define the system in a dedicated, textual or graphical language, called
a Building specification, which is composed of three main parts: the building
description, the attacker’s strength level, and her attack objective.
– The building description is entirely determined by a finite set of elements of

four types: zones (rooms, garden, etc.), accesses (doors, windows, etc.),
items (keys) and alarms. Each type of elements is equipped with an

1 For “Attack-Tree Sythesis for Risk Analysis”.
2 In the context of a collaboration between IRISA and Defense Ministry in France
(DGA).

3 http://tinyurl.com/ATSyRA.

http://tinyurl.com/ATSyRA
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attribute, called its defense level, which determines the minimum strength
attacker must possess in order to act on this very element.

– The attacker’s strength level is modelled by an integer value, that denotes
her knowledge and skills necessary to execute a given action on a given
element (such as opening a door, or using a key). This choice is by no
mean a definitive one, but it is acceptable for the first version of the tool.

– The attack objective consists of a final zone to reach, with some items col-
lected, and determines whether the scenario may be subject to detection
by alarms.

➁ Experts then run the generation of the set of attack scenarios. The under-
lying process is the compilation of the Building specification into an attack
graph. The transitions of this attack graph are labelled by (atomic) actions
inferred from the building’s elements description, and which are executable
by the attacker (according to her strength level). The compilation process is
highly compositional, allowing for the generation of a symbolic (hence very
succinct) attack graph. The target language is GAL (for “Guarded Action
Language”) [1], a simple yet expressive formalism to model concurrent sys-
tems which is supported by a very efficient decision diagram library for model-
checking [10]. ATSyRA notably exploits a tuned reachability analysis proce-
dure. The objective is to produce the sequences of atomic actions that yield
paths in the graph and that correspond to winning attack scenarios.

➂ Experts specify a set of high-level actions (HLAs) with a dedicated, textual
language. An HLA is described in terms of how it can be refined into less
abstract actions. The formalism is inspired from context-free grammars [7]:
HLAs are the non-terminal symbols of the grammar, atomic actions are ter-
minal symbols, and refinements are derivation rules.

➃ Experts eventually run the attack tree synthesis: this “final” step exploits
both HLAs specifications ➂ and generated attack scenarios ➁. It relies on
bottom-up syntactic analysis techniques for the context-free derivation rules
given by the HLAs and input words given by the attack scenarios. Then,
an algorithm (see details in [7]) merges the syntactic trees into the attack
tree, the nodes of which have type ranging over disjunction, conjunction and
sequential conjunction.

ATSyRA is developed using model-driven principles technologies (e.g., Xtext,
Sirius). We can deliver almost for free advanced editors, being textual or graph-
ical, with auto-completion, syntax highlighting, location of errors, etc. Experts
that specify military buildings or HLA thus benefit from advanced and dedicated
editing support. Another benefit is that our model-based tool is extensible. Other
inputs for the high-level description of a system can be seamlessly integrated and
come with advanced editors as well. For instance we are investigating the use of
system description languages (e.g., SySML) as part of ATSyRA.

4 Conclusion

We presented ATSyRA, an environment built on top of Eclipse, to support a
methodology for synthesizing attack trees. Starting from a military building,
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we illustrated how security experts can specify high-level actions and eventually
generate readable and well-structured attack trees.

As future work, we plan to consider other inputs – beyond military building
specification – in other fields (e.g., computer networks). As the synthesis process
is likely to be interactive and incremental, we plan to integrate as part of ATSyRA
some visualisations and suggestions that can help an expert. We hope ATSyRA
can be of interest for practitioners and researchers in charge of analyzing security
risks with attack trees.
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