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Abstract. This paper describes a simple and robust algorithm which
permits to track surgical instruments without artificial markers in endo-
scopic images. Based on image processing, this algorithm can estimate
the 2D/3D pose of all the instruments visible in the image, in real-time
(30 Hz). The originality of the approach is based on the use of a Frangi
filter for detecting edges and the tip of instruments. The accuracy of the
instruments’ location in the image is evaluated using an extensive dataset
(1500 images, 3 laparoscopic surgeries). Pose estimation of instruments
in space is quantitatively evaluated on a test bench through comparison
with the ground truth positioning provided by a calibrated robotic instru-
ment holder. This method opens perspectives in the real-time control of
surgical robots and the intra-operative recognition of surgical gestures.
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1 Introduction

Laparoscopic surgery is a minimally invasive procedure. This technique repro-
duces the principles of conventional surgery with minimal physical trauma. Com-
pared to open surgery, this approach is more beneficial to the patient but sig-
nificantly increases the complexity of the surgical gestures. The constraints for
surgeons are mostly ergonomic with the manipulation of surgical instruments
(reduction of instrument mobility due to fixed insertion points on the abdomi-
nal cavity, loss of tactile sense) and the visualization of the surgical scene (lim-
ited field of view, indirect view of the surgical scene, endoscope manipulation).
The realization of a laparoscopy requires a large adaptability from surgeons and
requires a long learning curve.
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Automatic localization of instruments can be helpful to respond to several
limitations of laparoscopy and to assist surgeons during an intervention. For
instance, [1] propose to localize instruments in space in a surgical trainer, based
on a projective model and gradient image processing. In [2], a similar approach
is proposed (also in a surgical trainer), with the addition of an extended Kalman
filter to extract the edges of instruments.

In [3], the authors use the instrument insertion point as a constraint and a
probabilistic algorithm to find instruments with the aim of controlling a robotic
endoscope holder to assist surgeons during surgery.

All these methods use a gradient approach to extract instrument edges in
the image. However, such approaches are sensitive to noise, illumination and
shadows that can lead to insufficient segmentation for robust localization of
instruments in the image [4]. To overcome this problem, we propose to use a 2D
Frangi filter [5] to obtain a robust instruments edge detection. We present an
algorithm to localize and track surgical instruments in endoscopic images in real-
time. Our algorithm also permits to estimate the 3D position and orientation of
the instruments using 2D information in the images, knowing the camera and
instrument models.

2 Instrument Localization and Tracking Framework

The principle of our instrument detection algorithm consists in:

– roughly identifying all regions corresponding to the location of an instrument
in each laparoscopic image Sect. 2.1,

– refining the instruments detection within the identified regions Sect. 2.2,
– estimating the 3D pose of the instrument Sect. 2.3.

After an initial detection, the segmentation is constrained by the localization in
the previous images to track the instrument.

2.1 Rough Extraction of Instruments Regions

First, the laparoscopic color image (Fig. 2a) is converted from the RGB color
space to the CIELab color space. The L channel, corresponding to the luminance
is removed to free ourselves from variations of light inherent to laparoscopic
surgery. We thus obtain a grayscale image composed of the a and b channels
(Fig. 2b) corresponding to the chromaticity Cab =

√
a2 + b2. Using this color

space is more robust for challenging images than color spaces commonly used
such as HSV [7] or RGB, see Fig. 1. We then binarize this grayscale image using
an automatic Otsu thresholding approach [8]. Since the laparoscopic instruments
have a color very distinct from the background (laparoscopic tools are usually
black, metallic, or blue/green), instrument pixels will appear as white pixels
whereas background pixels will appear as black (Fig. 2c). Of course, this pre-
processing step is noisy, with background pixels appearing as white and tool
pixels appearing as black (Fig. 2c). We disconnect the regions by skeletonizing
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Fig. 1. Typical images obtained by color to grayscale conversion. (a) Original image
(b) Saturation modified channels in HSV space [7] (c) Chromaticity Cab of CIELab
space (Color figure online)

Fig. 2. Segmentation of a surgical instrument in 2D images. (a) Original image (b)
Chromaticity Cab of CIELab space (c) Segmentation using Otsu’s thresholding (d) Con-
version of the binary image using the distance transform (e) Disconnection of regions
in the binary image using distance transform (f) Binarization of the distance transform
image (Color figure online)

the image using a simple distance transform [9] and refine the separation by per-
forming a simple erosion step on a cross-shaped kernel (Fig. 2d). Finally, we use
a contour detection algorithm [10] to extract the extreme outer contour of each
region as an oriented bounding box (see Fig. 3b). Based on the observation that
laparoscopic instruments have a long and thin cylindrical shape, we eliminate
bounding boxes with a width/length ratio inferior to 2 (red boxes in Fig. 3c).
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Fig. 3. Edge detection of a surgical instrument in 2D images. (a) Original image (b)
Edge detection (c) Potential instrument bounding boxes obtained from image b (green)
and incompatible bounding boxes (red) (Color figure online)

2.2 Fine Extraction of Instrument Edges

Now that we have potential bounding boxes for the instruments, we search for
instrument edges within each bounding box. To do so, we use a Frangi filter [5],
which is the major contribution of this paper. We compared the Frangi filter to
the classical Canny filter [6] to search instrument edges (see Fig. 4). The Canny
filter is the most classical gradient approach based on the Sobel filter. This filter
uses a hysteresis thresholding that requires to find two optimal thresholds for
accurate extraction of the edges of an instrument. However, as shown in Fig. 4,
the conditions of the surgical scene evolves during an intervention, thresholds
initially determined may no longer be optimal and cause of false detections.
The advantage of the approach based on the Frangi filter is that it can be
applied to different surgery conditions without adjusting the filter parameters.
This filter is classically used in vessel detection in medical images. It is based
on the computation of the eigenvalues of the image’s Hessian matrix λ1, λ2 such
that |λ1| � |λ2|. The Hessian matrix is obtained by convolving the image with
derivatives of a Gaussian kernel with standard deviation σ.

The Frangi filter function can be defined as:{
0 if λ2 > 0,

V0 = exp(− R2
B

2β2 )(1 − exp(− s2

2c2 ))
(1)

where, RB = λ1
λ2

is the blobness measure, s =
√

λ2
1 + λ2

2 is the structureness
measure and c, β are parameters to adjust the filter sensitivity. After applying
the Frangi filter, each pixel value V0 of the image indicates the pixel’s proba-
bility of belonging to a tubular structure. Here, we do not use the Frangi filter
to extract the whole cylindrical shape of the instrument. Indeed, the instru-
ment’s diameter in the image varies depending on its relative orientation with
respect to the endoscope (i.e. we cannot fix the standard deviation σ). Instead,
we apply the filter with a very low σ, in order to highlight the instrument edges
(Fig. 5b). Finally, we identify the two borders of an instrument: the bounding
box is extended and separated into two areas to search the top and bottom bor-
ders of the instrument separately using Hough transform [11] with a very low
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Fig. 4. Extraction of instrument edges. (a) and (b) Two images extracted from the
same surgery at different time intervals (c) Image extracted from another surgery (d),
(e) and (f) Edge detection in the images (a), (b) and (c) by the Canny filter with the
thresholds TL = 30 and TH = 90 (h), (i) and (j) Edge detection by the Frangi filter in
the images (a), (b) and (c) with the parameters σ = 2, β = 0.5 and c = 0.5max(S)

threshold, as illustrated in Fig. 5b. At this step, we can eliminate lines that are
incompatible with a surgical instrument based on the relative orientation and
position of the detected lines (as illustrated by Fig. 5c).

2.3 Estimation of 3D Pose of the Instruments

The two borders of an instrument define two tangent planes
∑

i of normal ni

passing through the optical center of the camera C in space (see Fig. 5g). The
camera calibration can be obtained with a classical chessboard calibration proce-
dure such as [12]. The intersection of these two planes is a line D : (C, e1) parallel
to the central axis of the instrument passing through the optical center of the
camera with a direction vector e1. This line defines the instrument’s central axis
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Fig. 5. Estimation of instruments poses in the image and in space. (a) Orignal image (b)
Expansion and separation of a compatible bounding box in image filtered by the Frangi
filter (c) Instruments’ borders refinement process (d) Detection of the instruments
borders (e) Instruments tips detection in the Frangi image (f) Instruments’ pose in the
image (g) Geometric representation of an instrument in space (h) Illustration of the
compute instrument’s position in space

direction in space. In order to fully describe the tool’s orientation in space, we
need to find a point P on the instrument’s axis. To do so, we follow the approach
proposed in [3]: the instrument is modeled as a finite cylinder of radius ρ (see
Fig. 5g). Such a point P can be easily computed on the plane perpendicular to
the instrument’s axis (Fig. 5h). Indeed, P must respect the condition:

λm1 − ρn1 = λm2 + ρn2 (2)
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where mi = e1 ⊗ ni, λ is the distance from the optical center to tangent points
Si and ni the normal to the plane i. Using Eq. 2, we can compute λ and obtain:

−−→
CP = λm1 − ρn1 = ρ

‖n1 + n2‖2
(m1 − m2).(n1 + n2)

m1 − ρn1 (3)

Then, we search the position of the instrument’s tip tim, in the Frangi image
along the projection of the instrument’s axis (P, e1) in the image (see Fig. 5e).
The pixel along the line with maximum grey level in the Frangi image is consid-
ered as the tip. Finally, we find the 3D position of the instrument’s tip T as the
intersection of (P, e1) and the projection line of the tool’s tip (C, tim).

2.4 Tracking of Surgical Instruments

For our instrument tracking algorithm, we assume that between two succes-
sive images, an instrument does not undergo large displacements. In the initial
step (first image), we find the instrument as described in Sects. 2.1 and 2.2. In
the following images, we find the candidate bounding boxes, but we refine the
instrument search only inside the bounding box best compatible with the posi-
tion/orientation of the instrument in the previous image. If the instrument is
not found in several images, we re-initialize the algorithm. In the case of several
instruments, it is possible to track all the visible instruments or a particular one.
Since only one instrument can be inserted at once through an insertion point
I on the abdominal wall, we can identify an instrument thanks to its insertion
point, which can be easily computed using a pivot algorithm on (P, e1).

3 Experiments and Results

Our algorithm is implemented in C++ using OpenCV and OpenMP libraries. For
the computations, we used an Intel Xeon PC 2.67 GHz, 3.48 GB RAM. The 2D
evaluation was performed on real laparoscopic images (720× 556). The 3D eval-
uation was performed on a laparoscopy test bench using an OLYMPUS OTV600
CCD and an IC Imaging Source grabber (720 × 480, 25 fps). To achieve a fast
processing time the image resolution is divided by 2 for the region extraction and
by 4 for the Frangi filter. We evaluated 2D tracking of our algorithm on three in-
vivo video sequences of laparoscopic rectopexies obtained through the Digestive
Departement of Grenoble Hospital with challenging situations (see Fig. 6).

In these images, the tip position and orientation of the instrument were
compared to manual annotation. The results obtained for each sequence are
presented in Table 1 with a mean error of 16.10 pixels (std. dev. of 28.98) for the
tip position, a mean error of 0.90◦ (std. dev. 0.88◦) for the 2D orientation and
a frequency of 30 Hz. Videos of this evaluation are included in supplementary
material.

To evaluate the accuracy of the 3D pose estimation, we performed experi-
ments on a testbench (see Fig. 7) consisting of a surgery trainer box on which a
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Fig. 6. Results of the tracking on the laparoscopic image sequences. (a) Sequence 1:
Monopolar hook instrument (b) Sequence 2: Monopolar hook instrument (c) Sequence 3:
Needle holder instrument (d) Example of a bad tip detection

Table 1. Laparoscopic images statistics

Fig. 7. Experimental test bench to evaluate the 3D pose estimation accuracy with a
printout of a surgical scene as background.

Fig. 8. Estimation of the instrument’s pose in space. (a) Calibration step to find the
rigid transformation T (b) Evaluation of the 3D pose estimation accuracy with in
black, the reference pose obtained with the robot, in green, the pose computed with
our method (Color figure online)
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Fig. 9. Robot trajectory (red) and our tracking method trajectory (green) for 380
instrument positions. (a) 3D trajectories (b), (c) and (d) X, Y, Z trajectories with
respect to the camera frame (of normal Z) (Color figure online).

commercial robotic instrument holder is directly positioned, and a printout of a
surgical scene as background. We compared the 3D tip position of the instrument
found by our algorithm to the 3D tip position given by the robot expressed in the
camera referential. This required calibrating the system to find the rigid trans-
formation T between the robot and camera frame such that: pfrangi

cam = Tprobot
cam .

T is obtained by pointing 12 points of a chessboard, for 6 chessboard positions,
with the instrument carried by the robot (see Fig. 8). These 12 points can be
expressed in the camera frame thanks to a standard extrinsic camera calibration
procedure [12] and are also measured in the robot frame. We resolve a classical
least squares system to find the rigid transformation between the two sets of 3D
points coupled with a RANSAC to eliminate outliers. We obtain a camera cali-
bration Root Mean Square (RMS) error of 0.25 pixels and T with a RMS error
of 1.2 mm. Figure 9 shows an example of the robot trajectory and of our tracking
method for a series of instrument movements. The results for 380 measurements
are presented in Table 2. In all results presented, we fixed the Frangi filter para-
meters as σ = 2, β = 0.5 and c = 0.5max(s), according to recommandations
from the literature.
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Table 2. Error of the 3D pose estimation with our method compared to the position
obtained with a robotic instrument holder

Axis Mean 3D position error (mm) Std. Dev. (mm)

x 1.79 1.45

y 2.42 1.60

z 7.24 3.51

4 Conclusion

We presented a surgical instrument tracking algorithm based on image processing.
It permits to estimate the 2D/3D instruments pose in real-time without artificial
fiducials. An extensive 2D evaluation on real surgical videos shows that our 2D
pose estimation is accurate and robust on wide range of realistic cases. In difficult
situations as a suture gesture, we can lose accuracy in the instrument’s tip position
but the orientation is still correct. A machine learning approach as [13], applied
in the neighbourhood of our estimated tip position could increase the accuracy of
the tip detection. Our approach for 3D pose estimation was validated on a test-
bench using a printout of a surgery background. Although this might lack realism
we estimated that the robustness of the proposed method on realistic images was
already shown extensively on the 2D case. This 3D evaluation provides us with
the precision range we can expect when the 2D detection works well. The great-
est errors are found in the depth estimation along the z axis. This error could be
reduced by using a stereoscopic endoscope.

Our 2D localization approach is robust and accurate enough to control a
robotic endoscope holder. Even if the Frangi filter might not be the most obvi-
ous approach for edge detection, we showed that it works better than classical
approaches. Other more sophisticated edge detection approaches could easily be
compared on our image database. The 3D pose estimation could be useful for
surgical gesture recognition or for co-manipulation, if we are able to increase the
depth precision. Another application could be the online calibration of no rigidly-
linked robotic endoscope and instrument holders, which could lead to less bulky
surgical systems. Our next step will be to evaluate the 3D pose estimation more
extensively in conditions closer to the clinical reality (cadaver experiments).
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