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Abstract. Tracking instruments in video-assisted minimally invasive
surgeries is an attractive and open computer vision problem. A tracker
successfully locating instruments would immediately find applications in
manual and robotic interventions in the operating theater. We describe a
tracking method that uses a rigidly structured model of instrument parts.
The rigidly composed parts encode diverse, pose-specific appearance mix-
tures of the tool. This rigid part mixtures model then jointly explains the
evolving structure of the tool parts by switching between mixture com-
ponents during tracking. We evaluate our approach on publicly available
datasets of in-vivo sequences and demonstrate state-of-the-art results.
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1 Introduction

Locating instruments in videos for augmented assistance [1] during minimally
invasive surgeries (MIS) has recently received much attention. Minimally invasive
surgeries offer a number of advantages over open surgeries. Less postoperative
pain, reduced blood loss, minor scarring, and shorter recovery time and hospi-
talization are attractive factors for inpatients and clinicians. Carrying out such
a surgery, though, is a challenging task. The surgeons first make keyhole inci-
sions in the body to insert elongated surgical instruments. Confronted with lost
vision and hampered dexterity, the surgeons require additional sensing devices to
monitor the instruments maneuvering within the body. While robotic manipula-
tors can control the instruments with high flexibility and stability, their encoders
accumulate errors in forward kinematics and lead to inaccurate estimations of the
absolute instrument location [11]. On the other hand, specialized hardware sen-
sors and encoders require extensive hardware integration and suffer from lower
accuracy [2] thereby cumbersomely integrating to multiple operating rooms.
Arguably, widespread color cameras in MIS offer a natural, visual feedback to
surgeons. Other imaging modalities such as depth-only sensing devices would be
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hardly interpretable. Amenable to easy transfer between operating rooms and
motivated by steady progress of computer vision, vision-based instrument track-
ing thus constitutes an encouraging approach to improving the guidance and
navigation of manual and robotic surgeries.

Description of image features plays a significant role in MIS tool tracking
setting. Registered videos may suffer from degraded quality, e.g., due to motion
blur. Moreover, adverse lighting conditions in the form of globally varying illu-
mination of the scene, specular reflections on the tool and tissue regions, as
well as shadows left by the tool are factors that make tool detection a challeng-
ing task in practice. Past work has explored color and gradient features [2,11]
to discern greyish tool foreground from reddish and whitish tissue background,
markers [13], and used elaborate classification schemes during detection [4,5].
Bootstrapping object appearance from initial frame, that reported remarkable
results in the general object tracking setting [16], has recently also been applied
to tracking MIS instruments [10] with state-of-the-art performance.

We describe a rigid part mixtures model of a surgical instrument and a
detection procedure for tracking its 2D pose (i.e., center and orientation) in MIS
videos. As the 3D pose can be recovered from stereo-cameras [1], here we focus
on the problem of 2D pose estimation in a single image. While motion models
can be used for filtering of, e.g., instrument location and size [9], we achieve
good tracks by detecting the instrument pose in each frame independently from
neighbor frames. Our model is a spatial assembly of instrument parts that encode
mixtures of dedicated pose appearances. By capturing such appearances of an
object part at various poses, our approach relates to poselets [15] that reason
about fragmented object pose from rigid parts. It differs from poselets by jointly
modeling the compositions of small and large part mixtures that can explain full
pose of the instrument. Consequently, our approach leverages successful flexible
part mixtures model [6] that can be trained with datasets of modest size [17].
Structured part-based models use deformation constraints that act like springs
to flex the model to regions with putative objects. Arranged under a tree-graph,
they can efficiently explain previously unseen configurations of the flexible object
structure but, at the same time, such models can overlap two tip parts on one tip
of the tool. In the spirit of poselets, we avoid double-counting image evidence [18]
by rigidly modeling end-effector articulations with larger, rigid parts. Hence, our
approach differs from past work by enforcing strictly rigid, global compositions
of part mixtures and by consistently capturing variable instrument structure.

Our contribution is two-fold. Firstly, we develop a springs-free, structured
part-based model of an instrument. It imposes a rigid structure on spatially
distributed local features to discard putative tool regions, e.g. in tool neighbor-
hood, that might prompt models with springs to incorrect or flexed structure
detections. Secondly, we demonstrate that a structured part-based model can
be successfully applied to instrument tracking in MIS. Estimating instrument
pose is typically approached in a disjoint manner by first detecting individual
parts and then fusing detections with, e.g., a Kalman filter [1] or RANSAC sam-
pling [5]. By exploiting rigidly structured relations between instrument parts,
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our tracker detects the end-effector and shaft parts jointly thereby recovering
the instrument pose. Applying a structured model, though, is challenging as
this requires frequent updates of its underlying structure. Object appearance
can vary significantly between frames, especially due to frequent truncations.
Specifically, the rigid, straightly elongated shaft has often been used as a dis-
criminative visual cue in detecting the tool and in estimating its 3D pose [3,14].
However, observing that surgeons often prefer to work in close proximity to tis-
sue, [12] ignore the shaft and focus on tracking the articulating end-effector with
thousands of efficiently matched templates.

This leads to a dilemma. On the one hand, one would like to take advantage
of the shaft part when it is visible. On the other hand, one has to take into
consideration the varying, truncated tool structure. Our model-based tracker
exploits the rigid shaft while adapting to its changing length. We then discrim-
inatively train dedicated models on a series of training images for each video
sequence and show that our method is on par with or exceeds state-of-the-art
results in instrument tracking on publicly available datasets.

2 Method

The structure of MIS instruments, e.g. for laparoscopy, retinal microsurgery, in
image I can operationally be represented as a pair composition of two parts: (i)
a rigid, straight, elongated shaft S and (ii) a rigid or an articulated end-effector
E , as depicted in Fig. 1. Let GI denote a two-dimensional regular tessellation
of the pixel grid of image I, L ⊂ N

1×2 a discrete set of locations on the whole
grid GI , and Lb ⊂ L a discrete set of locations on an arbitrarily shaped (e.g.,
rectangular, circular) one-dimensional border stripe of this grid.

The E-part is enclosed in a single window in the grid with the center location
lE ∈ L \ Lb. An S-part is a collection of Ne subparts that are outlined by
adjacent windows. We restrict possible locations of these windows lS(k) ∈ L,
where 1 � k � Ne, to an oriented raster line segment1 that anchors at lE and
ranges from the border stripe lS(1) ∈ Lb to the end of the shaft lS(Ne) ∈ L. Then,
let l = (lE , lS(1))1×4 denote the line segment. As the shaft is often truncated and
partially occluded, we represent the S-part as a subcollection of N � Ne subparts
for each new image frame I. As a result, in our model the location of the S-part
lS(l) =

(
lS(k1)(l), . . . , lS(kN )(l)

)
1×2N

determines some ordering of these subparts
on the line segment l of the instrument.

In practice, both parts slightly rotate during a surgery while instrument pose
admits non-circumvolving motion. In general, though, the shaft is oriented at an
arbitrary angle as the locations of body incisions vary between surgical scenarios.
Moreover, the grippers of the end-effector articulate and take various forms, i.e.
the length and shape of the grippers varies. In view of this, we approach the
1 The location of each subpart is lS(k) = lS(1)+

[
sk
(
lE − lS(1)

)]
, where [·] is the nearest

integer function, sk is a scaling factor 0 � sk � sNe < 1, and sNe ensures that the
location lS(Ne) of the window of the last subpart of the S-part does not overlap with
the window of the E-part.
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Fig. 1. Our rigid part mixtures model (left) and its instantiation on the grid GI (right).
The model uses (i) a set of appearance templates (i.e., part mixture) that represent a
single subpart of the shaft at multiple orientations, (ii) a set of appearance templates
that represent various articulations of the end-effector part (e.g., rotated, open or
closed gripper), and (iii) a set of biases that promote or discourage rigid appearance
compositions of mixture components of the shaft and end-effector parts.

problem of tracking 2D instrument pose by capturing the appearance variation
of the tool with a structured model of rigid mixtures of parts that jointly encodes
pose-dependent tool appearance.

Model. We represent the appearance and structure of the instruments under
graph M = {V,E}. The appearance mixtures of the end-effector part are chained
with the appearance mixtures of the shaft parts. The nodes V = {wi

E , lE}nE
i=1 ∪

{wj
S , lS}nS

j=1 denote particular appearances of the nE end-effector and nS shaft
mixtures, respectively. The i-th component of the appearance mixture of the
end-effector part at location lE is specified by template wi

E that rigidly encodes
specific articulation of this part, as encountered in poselets-based approaches
to object recognition [15] and in MIS tool tracking scenarios [12]. The j-th
component of the appearance mixture of the shaft part at location lS is specified
by template wj

S that can capture specific perspective and orientation of the
part, e.g. an outwards slanted shaft. The edges E = {bij

ES}nE×nS
ij=1 model rigid

compositions of the end-effector mixture with the shaft mixture. Specifically,
the scalar-valued co-occurrences bij

ES bias configurations of mixtures such that
certain, rigidly encoded articulations wi

E may form more consistent compositions
with certain orientations wj

S . In effect, our model admits a strictly rigid structure.
We define the mixture of the shaft part as orientation templates. On the

other hand, the S-part lies on the oriented line segment l. Hence, the mapping
j : l1×4 → N

1 of a given instance of this oriented line uniquely determines the j-th
mixture component of the shaft. Then, instantiating a composition of particular
mixture components of the ES-parts in image I at location l = (lE , lS(1)) is
scored with our model as:
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S(I, l, i) = wi
Eφi

E(I, lE) +
N∑

p=1

w
j(l)
S φ

j(l)
S (I, lS(kp)(l)) + b

ij(l)
ES (1)

where φi
E(I, lE) and φ

j(l)
S (I, lS(kp)) are image descriptors (e.g., a HOG [8], a color

histogram) in the window of the i-th mixture component of the E-part at lE and
in the window of the subpart of the j-th mixture component of the S-part at
lS(kp), respectively.

The varying length of the shaft notwithstanding, our model allows for taking
advantage of the discriminative evidence for this part in each image during track-
ing. We achieve this with N subparts of the shaft that are anchored at lS . As
the elongated shaft roughly admits consistent appearance along the image plane,
we deem all subparts of its j-th mixture component to be alike and dedicate a
single, canonical template w

j(l)
S for representing their appearance. In effect, the

subparts, which share the single template, render our model less complex in
learning from and matching to images.

Detection. We cast the problem of instrument tracking within the tracking-
by-detection framework. We infer the rigid composition of mixture components
of the ES-parts at location l that best explains current video frame I by solving
the inference problem argmaxl,i S(I, l, i), as depicted in Fig. 2.

Matching the appearance templates {wi
E}nE

i=1 and {wj
S}nS

j=1 to corresponding
image descriptors at each location in L amounts to the convolution in the feature
space2 that yields tables of appearance scores for each mixture component. As
our graph M is a mixture of chains, in which E-part mixtures are parents and S-
part mixtures are children, we employ dynamic programming as an exhaustive
search algorithm over the state space (l, i) to combine the appearance scores
across plausible locations and mixture components.

To this end, the search procedure commences by partitioning the border
stripe Lb of the grid GI into nS disjoint segments Lb =

⊔nS
j=1 Lj

b(lE) at given lE .
All pairs (lE , lS(1) ∈ Lj

b(lE)) together determine a pencil of line segments. The
segments, in turn, indicate all possible orientations of the S-part at lE within
the angular range of the j-th mixture component. As the S-part is represented
by N subparts, the score of each hypothesized orientation of the shaft depends
on finding such a configuration lS(l) of image descriptors that best match to
the w

j(l)
S template. This results in selecting N -best scoring subparts of the shaft

within the given line segment.
The search proceeds by enumerating all possible compositions of mixture

components of the ES-parts. After aggregating the score b
ij(l)
ES of each composi-

tion with the N -best scores of the shaft part, the best location lS(1) of the shaft
is selected at given lE for each i-th mixture component of the end-effector. We
then retrieve the best i-th mixture component at lE .

2 Since the target object can change its scale during tracking, we search over the
feature pyramid of φ(I, ·) at run-time.
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After repeating this search procedure for each lE , we select lE with the best
aggregated score (1), then backtrack to the best i-th mixture component stored
at that location, and terminate at the best lS(1) pointed by this component.

Learning. We learn the parameters of our rigid part mixtures model in the super-
vised manner. Our instrument model uses a mixture of appearance templates per
part, where only a single template of this part is present in a given positive training
image. As we assume a given collection of positive training images contains only
keypoint annotations, we retrieve the missing ij-labels of mixture components for
each image based on these annotations, as shown in Fig. 3.

We automatically obtain a mixture label of the E part by first (i) binning
the manually labeled end-effector keypoints in a coarse grid (e.g., GI) and then
(ii) grouping the bins features into nE disjoint sets across all training images. We
discard sets with the number of features < K. In effect, a given unique spatial
arrangement of bins captures a particular articulation of the end-effector. The
labels for S-part mixture components are obtained by slicing the image plane
into nS angular intervals. We note when the end-effector part is rigid, we assign
the corresponding label of the S-part mixture component to the E-part.

Our rigid part mixtures model is inspired by the flexible part mixtures
model [6]. Hence, its array of model parameters is learned jointly and takes the
form: β =

[
b11ES , . . . , bij

ES , . . . , bnEnS
ES , w1

E , . . . , wi
E , . . . , wnE

E , w1
S , . . . , wj

S , . . . , wnS
S

]
.

Since β uses a canonical appearance template wj
S of a single subpart to general-

ize the appearance of all shaft subparts for j-th mixture component, the function
(1) scoring a training feature vector xn yields the following dot-product form:

S(In, l, i) = β (0 . . . 1 . . . 0 . . . φi
E(In, lE) . . . 0 . . . φ

j(l)
S (In, lS(k)(l)) . . . 0) = β xn

(2)
It induces a sparse structure on xn that depends on the pre-assignment of mix-
ture labels to respective parts in a given training image In.

We then learn the model parameters β with an objective function under
linear SVM regime:

ar gminβ,ξ

1
2
‖β‖2 + C+

m+
∑

n=1

ξn + C−
m−
∑

n=1

ξn

s.t. β x+
n ≥ 1 − ξn , ∀x+

n

β x−
n ≤ −1 + ξn , ∀x−

n

that can be optimized with, e.g., a dual coordinate-decent solver [6]. The above
formulation states that our model β should learn to assign scores higher than
1 to positive examples x+

n of rigid compositions of respective mixture compo-
nents and assign scores lower than −1 to negative examples x−

n . The objective
function penalizes violations of these constraints with slack variables ξn ≥ 0,
weighted by constants C+ and C−. The negative examples x−

n constitute incor-
rect detections of the instrument that are mined as hard-negatives on images
with masked instruments, as e.g. in [4]. We slightly rotate the positive training
images to augment the training set of positive examples.
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Fig. 2. Instrument detection by matching our model to an image (in feature space).
We visualize (best seen in color) two separate iterations. The iterations correspond to
two hypothesized locations lE of the E-part thereby leading to two different partitions
of Lb. In general, for each lE ∈ L \Lb, we instantiate lS(1) yielding all possible oriented
line segments that anchor the subparts of the shaft. Each table of appearance scores (in
gray) of the S-part (left column) corresponds to j-th mixture component and is selected
according to particular instantiation of the line segment. By recursively summing the
scores and storing the pointers to selected locations and mixture components, we select
(i) N -best scoring subparts of the shaft lS(l), followed by (ii) the best line segment
(lE , lS(1)) per i-th mixture component after adding respective biases, then (iii) best
scoring i-th mixture component after adding appearance scores of the E-part (right
column), and (iv) terminate by selecting the location lE with maximal overall score. As
an implementation detail, in the tables the score locations are shifted from the center
to upper left corner of every window (Color figure online).
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Fig. 3. Learning the mixture labels of the shaft and end-effector parts from image
examples determines the sparse structure of feature vectors xn for SVM classification.
The annotations of positive training examples indicate the keypoint locations of two
tool tips, tool center lE , and the end of the shaft. The number of mixture components
of both parts, nE and nS , is obtained automatically and depends on the resolution
of two respective coarse grids. We use a polar grid to retrieve an orientation type of
the shaft part. Then, we rigidly capture articulations of the end-effector part. We first
quantize the locations over a regular grid that result in binary occupancy features. We
then find their unique groups to retrieve the types of end-effector articulation. Finally,
compositions of ES mixtures serve to store the mixtures co-occurrence indicator and
feature descriptors at respective locations in the sparse feature vectors.

3 Results

In this section, we extensively evaluate our method on the task of in-vivo single
instrument tracking in (i) retinal microsurgery - RM (dataset with 3 sequences
[4]), and (ii) spine and pelvic surgery - SPS (dataset with 3 sequences [5]). Both
datasets are publicly available.

Fig. 4. Instrument pose detection during retinal microsurgery (best viewed in color).
Our model detects the tool center (red dot) and the orientation of the shaft (red
line). Here, we visualize the windows of end-effector mixture components which are
detected on the HOG grid (blue). In the spirit of poselets, the model can reason about
the articulation of the end-effectors (filled bins on the grid) (Color figure online).
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Table 1. Results of our method wrt [5] for estimating the tool center and tool orienta-
tion in sequences from RM and SPS datasets. We use the protocol of [5] and evaluate
the performance based on the angular mean (Ang. M.) and angular standard devia-
tion (Ang. St.D.) (left) and mean distance (M.) and standard deviation (St.D.) (right).
The ratios (train/test) indicate the number of images used for training and testing the
model, after the usage guidelines of the SPS dataset. Following the evaluation protocol
that omits false negatives and false positives when the tool is present and absent in test
images, respectively, we only evaluate the test images that contain the instrument. We
note, though, that our tracker could run for images without the tool as the detection
threshold is learned within SVM margins. Best results are indicated in bold.

Implementation Details. For all sequences, we equally configure our model
and use fixed parameter settings. To make the comparison fair, we follow [4,5]
and use the training set of each sequence, as specified in the datasets, to train
dedicated models of the instruments. We compute window sizes of the end-
effector and shaft parts from the keypoint annotations in the training images.

The appearance templates are defined in HOG feature space [7]. We set sbin=
8 for HOG cells, K = 10 for pruning groups of bins features when learning the
E mixtures, and N = 3 for the number of detected shaft subparts. To specify
the orientation labels for the S-part, we follow the HOG specification of 18 equal
orientation intervals over (−π,+π〉. The number of labels nS is then determined
based on the annotated instruments in the training set. We set C+ = 0.004 and
C− = 0.002 to account for m+ < m− imbalance in the training set.

Qualitative Evaluation. We qualitatively show that our model can detect
the 2D pose of the instrument (i.e., center location of the end-effector and ori-
entation of the shaft) as well as the articulation of the end-effector, as shown
in Fig. 4. In RM sequences, the tracker yields robust tracks despite illumina-
tion variations and disrupting tool-like shadows. In SPS sequences, the instru-
ments significantly change their scale, are partially occluded, and often heavily
truncated. Our method is able to successfully locate the end-effectors in these
sequences. It can adapt to the varying length of the shaft by searching for the
best-scoring subparts along the hypothesized, oriented shafts (Fig. 5).

Quantitative Evaluation. We report quantitative results in Table 1 as mean
distance precision and standard deviation from the ground truth (i) tool center
for SPS and (ii) tool orientation for RM. In addition, we report the percentage
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Fig. 5. Instrument pose detection (best viewed in color) in pelvic 1 (top row), pelvic
2 (middle), and spine (bottom) sequences. We show (i) the windows of 3 best shaft
subparts that are detected with a single, canonical template and (ii) the window and
its center of the end-effector part. We learn the appearance of the E-part based on
its window center as indicated by the SPS dataset annotations. The end-effector and
shaft mixture labels are equal as the E-part is considered rigid having no articulations
in the sequences. Note how mixture components of the shaft part switch to explain
the varying orientation of the instrument. Also, the colors red–orange–yellow of the
shaft subparts indicate the 1st, 2nd, and 3rd best detection, respectively. The tracker
detects the tool at multiple scales (top row). By selecting the best scoring subparts
along the shaft, the tracker takes advantage of the discriminative appearance of the
shaft (middle row) while at the same time it copes with heavy truncations (bottom
row) (Color figure online).

of accurate detections of the tool center within a given pixel range for RM in
Fig. 6. We demonstrate that the proposed rigid part mixtures model achieves
state-of-the-art results on both benchmarks.

In Table 1, we do well in terms of smaller mean distance precision measure.
Our high deviation error wrt [5] for SPS sequences comes from far but rare
misdetections of the tool center. In general, though, our method yields stable
tracks in the RM and SPS sequences.

In Fig. 6, we are on par with other trackers. We outperform other methods
in Ret. 1, but do worse in Ret. 2 wrt [10]. However, while [10] successfully tracks
the tool center, our tracker also outputs tool orientation (Figs. 4 and 5). Finally,
we examine the reliance of our detector on the length of the shaft. We show
that our model, augmented with more subparts of the shaft, better stabilizes
the detections thereby leading to improved performance (Fig. 6d).
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Fig. 6. The results for retina microsurgery dataset on the task of end-effector localiza-
tion. Our method performs best in Ret. 1 and is on par with [4,5] in Ret. 3. However,
we do worse in Ret. 2 and Ret. 3 wrt [10] but additionally output tool orientation. In
the last graph (d), we show that the performance of our method scales proportionally
with N -best subparts of the shaft. When our model uses 5 subparts, it effectively levels
up with [10].

4 Conclusions and Future Work

We proposed a rigid part mixtures model for structurally representing the
appearance of surgical instruments in MIS videos. The model robustly explains
the evolving object structure by switching between part mixture components
that rigidly encode pose-specific appearances of the tool. In effect, our versatile
approach to tracking 2D instrument pose reaches state-of-the-art results on two
public benchmarks and often improves the estimation of tool location and ori-
entation upon other trackers. We also showed that increasing visual shape cues
by a larger pool of shaft subparts leads to more stabilized tool tracking.

Tracking instruments in MIS scenarios is a challenging task. The shaft under-
goes frequent truncations, the end-effector can have many degrees of freedom in
articulation, such as the da Vinci instruments, and both parts can be occluded
when multiple tools are present. At the same time, a tool tracking algorithm
should run at frame rates ideally exceeding real-time to minimize the latency
of visual feedback and thereby to improve augmented assistance in MIS. Our
future work will concentrate on these challenges.
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