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Preface

Welcome to the proceedings of the second edition of the International Workshop on
Computer-Assisted and Robotic Endoscopy (CARE) that was held in conjunction with
MICCAI on October 5, 2015, in Munich, Germany.

CARE aims at bringing together researchers, clinicians, and medical companies to
advance the scientific research in the field of computer-assisted and robotic endoscopy
and thereby improve current endoscopic medical interventions. The next generation of
CARE systems promises to integrate multimodal information relative to patient anat-
omy, the control status of medical endoscopes and surgical tools, and the actions of
surgical staffs to guide endoscopic interventions. To this end, technical advances
should be introduced in many areas, such as computer vision, graphics, robotics,
medical imaging, external tracking systems, medical device controls systems, infor-
mation processing techniques, as well as endoscopy planning and simulation.

The technical program of this workshop comprised original and high-quality papers
that, together with this year’s keynote speakers, explored the most recent scientific,
technological, and translational advancements and challenges in the next generation of
CARE systems. We selected 15 high-quality papers from 12 countries this year. All the
selected papers were revised and resubmitted by the authors in accordance with the
reviewers’ comments and the volume editors’ suggestions.

It was also our great honor and pleasure to welcome the keynote speakers, Prof.
Guang-Zhong Yang (Imperial College London, UK), Prof. Emanuele Trucco
(University of Dundee, UK), Prof. Robert J. Webster III (Vanderbilt University, USA),
and Dr. Mahdi Azizian (Intuitive Surgical Inc., USA), who gave fantastic talks on
recent advances on robotic endoscopic interventions representing both the academic
and industrial fields.

The CARE 2015 Organizing Committee would like to sincerely thank the Advisory
Committee members for their suggestions and assistance in selecting the best paper and
all the Program Committee members for their great efforts in reviewing all the sub-
missions. We also extend our thanks and appreciation to KUKA Robotics, Germany,
for sponsoring the best paper award and Springer for accepting to publish the CARE
proceedings in the Lecture Notes in Computer Science series. We warmly thank all the
authors, researchers, and attendees at CARE 2015 for their scientific contribution,
enthusiasm, and support. We look forward to all the continuing support and partici-
pation in our next CARE event that will be held in conjunction with MICCAI 2016 in
Istanbul, Turkey.

January 2016 Xiongbiao Luo
Tobias Reichl
Reiter Austin

Gian-Luca Mariottini
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Impact of Lossy Image Compression on CAD
Support Systems for Colonoscopy

Peter Elmer1, Michael Häfner2, Toru Tamaki3, Shinji Tanaka4, Rene Thaler1,
Andreas Uhl1(B), and Shigeto Yoshida5

1 Department of Computer Sciences, University of Salzburg, Salzburg, Austria
uhl@cosy.sbg.ac.at

2 St. Elisabeth Hospital, Vienna, Austria
3 Department of Information Engineering, Hiroshima University,

Higashihiroshima, Japan
4 Hiroshima University Hospital, Hiroshima, Japan

5 Hiroshima General Hospital of West Japan Railway Company, Hiroshima, Japan

Abstract. In a large experimental study, the impact of lossy image
compression standards on CAD support systems based on texure clas-
sification is assessed using colonoscopic imagery as an example. Results
clearly indicate that (1) it is important to compress both training and
evaluation data involved in the classification process, (2) there is a big
difference if initial data is precompressed or uncompressed, and (3) in the
latter case significant improvements in terms of classification accuracy
may be achieved, even and especially in case of high compression ratios.
Moreover it is found that compression efficiency in terms of image qual-
ity metrics and/or human perception is not correlated with the impact
compression has on texture classification accuracy.

1 Introduction

The amount of medical image data produced on a daily basis is tremendous and
the necessity to store (or transfer) these data in a compact manner is obvious.
However, medical image compression is constrained by the fact that most radiol-
ogists are not willing to base a diagnosis on an image that has been compressed
in a lossy way. This is partially due to legal reasons (depending on the corre-
sponding country’s laws) and partially due to the fear of misdiagnosis because of
lost data in the compression procedure [19]. Therefore, in many scenarios, only
lossless techniques are accepted, which limits the amount of compression to a fac-
tor of about 3 (in contrast to factors of 100 or more achievable in lossy schemes).
On the other hand, many medical professionals are convinced that the future of
health care will be shaped by technologies such as telemedicine (see [14] for a
discussion of compression in tele-endoscopy). Applications of this type demand
lower data rates as are achievable with lossless schemes [3]. This immideately
shows the need for efficient and widely accepted techniques for medical image
compression. At present state, JPEG2000 is included in the DICOM standard,
thus, represents the most accepted solution in this area.
c© Springer International Publishing Switzerland 2016
X. Luo et al. (Eds.): CARE 2015, LNCS 9515, pp. 1–11, 2016.
DOI: 10.1007/978-3-319-29965-5 1



2 P. Elmer et al.

Image compression algorithms are classically either assessed with respect to
human perception (using mean option score - MOS - or similar) or with respect to
rate-distortion criteria (e.g. employing distortion measures like PSNR or SSIM).
For medical image data, this strategy has been followed as well: E.g., [1,13]
compare different compression schemes for MRI based on image quality measures
while [17] determine perceptual quality of laprascopic video after compression
based on medical experts scores. However, an assessment w.r.t. the impact on
the actual diagnostic aim of the acquired imagery is more beneficial and usually
drastically increases acceptance of such techniques among medical personnel
[3]. For example, [11] investigates the effect of image compression and scaling
on automated scoring of immunohistochemical stainings and segmentation of
tumor epithelium, while [16] studies effects of MR image compression in tissue
classification quality.

In this paper, we study the effect of lossy image compression techniques on
texture classification schemes as used in CAD support systems. In particular, as
an example, we focus on computer assisted tumor staging in colonoscopy. The
impact of compression on image classification has been well studied in areas like
remote sensing [5,12,20] or face recognition [4]. Medical imagery and especially
endoscopic data is widely inexplored in this context. We aim to close this gap
with the present paper.

For some applications in pattern recognition, it has been found that optimi-
sation of image compression with respect to either human perception or rate-
distortion criteria is not necessarily the optimal solution. For example, in [2]
the JPEG Q-table is tuned for application in the pattern recognition context
by emphasising middle and high frequencies and discarding low frequencies (the
standard JPEG Q-table is rotated by 180◦) leading to better results as the
classical, perceptually optimised Q-table. Also, JPEG Q-table optimisation has
been considered in biometrics, e.g. in face recognition [8] and iris recognition [10]
(both approaches led to improved recognition results as compared to the orig-
inal Q-table). A further example is optimisation of JPEG 2000 Part 2 wavelet
packet decomposition structures with respect to optimising iris recognition accu-
racy which provides better results compared to rate-distortion optimised wavelet
packet structures [7].

These observations raise the general question if compression algorithms
exhibiting better rate-distortion performance are also better in a recognition
or general pattern recognition context. The answer is “no” obviously, at least
for specific applications as already seen before – as another example, it has been
found recently that although significantly inferior as compared to more recent
standards in terms of image quality measures, JPEG turns out to support iris
segmentation much better compared to its more recent competitors JPEG 2000
and JPEG XR [15].

In Sect. 2, we briefly review the most important lossy still image compression
schemes as standardised by ISO. Section 3 presents a large scale experimental
study on compressing imagery of two different colonoscopic databases and the
impact when using these data in automated mucosa texture classification aiming
towards tumor staging. Conclusions are drawn in Sect. 4.
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2 Lossy Image Compression Standards

We consider three different lossy image compression algorithms for increasing
compression rates up to 100 using the respective default configurations unless
stated otherwise:
JPEG (JPG): The well-known (ISO/IEC IS 10918-1) DCT-based image com-
pression method. By adjusting the divisors in the quantization phase, different
compression ratios can be achieved. We adjust the quality parameter iteratively
to achieve a file size closest to the desired compression rate.
JPEG 2000 (J2K): The wavelet-based image compression standard (ISO/IEC
IS 15444-1) can operate at higher compression ratios. J2K is also a part of the
DICOM standard where it replaced lossless JPEG compression. Results typically
do not generate block-based artefacts as the original DCT-based JPG standard.
J2K facilitates explicit rate control, i.e. target bitrates are met with high accuracy.
JPEG-XR (JXR): This compression standard based on Microsoft’s HD Photo
is known to produce higher quality than JPEG, but provides faster conver-
sion than JPEG 2000. In the default configuration the Photo Overlay/Overlap
Transformation is only applied to high pass coefficients prior to the Photo Core
Transformation (ISO/IEC IS 29199-2). We adjust quantization levels iteratively
to achieve a target bitrate closest to the desired one.

In terms of image quality measures and human perception, it is commonly
agreed that JPG is clearly the weakest algorithm, especially for high compression
ratios, while J2K and JXR perform quite close on many datasets with slight but
consistent advantages for J2K.

3 Experiments

3.1 Experimental Settings

In colonic tumor staging we often distinguish between a 2-classes case and a 3-
classes case. In the former we simply distinguish between normal mucosa (non-
neoplastic) and mucosal changes which need a medical intervention (neoplastic).
A more fine-grained classification was proposed in [9]. In this classification scheme
the images are divided into three classes: normal lesions, non-invasive lesions,
and invasive lesions. This classification scheme is of particular clinical impor-
tance since normal mucosa needs not to be removed, non-invasive lesions must be
removed endoscopically, and invasive lesions must not be removed endoscopically.

The High-magnification Colonic Polyp Database (HM-DB) [6] is based on 327
endoscopic color images and is provided by the Department of Gastroenterology
and Hepatology (Medical University of Vienna) using a zoom-colonoscope (Olym-
pus Evis Exera CF-Q160ZI/L) with a magnification factor of 150. In order to
acquire the images, 40 patients underwent colonoscopy. To obtain a larger set of
images, subimages (regions of interest) have been extracted manually from the
original images by a medical expert with a size of 256 × 256 pixels. This resulted
in an extended image set containing 716 images in total.
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Lesions found during colonoscopy have been examined after application of
dye-spraying with indigocarmine, as routinely performed in colonoscopy. Biopsies
or mucosal resection have been performed in order to get a histopathological
diagnosis which serves as a ground truth in our experiments.

The NBI database (NBI-DB) is an endoscopic image database consisting of
908 patches extracted from frames of zoom- endoscopic (CF-H260AZ/I, Olympus
Optical Co) videos using the NBI technology and is provided by the Hiroshima
University and the Hiroshima University Hospital [18]. The image patches are
rectangular and have varying sizes – for providing comparable experimental data,
256 × 256 pixels squares have been extracted from the center of the original
images. The database consists of 359 images of type A, 462 images of type B
and 87 images of type C3, all taken from different patients. From this dataset,
due to size restrictions, only a certain share of images allows the extraction of
appropriately sized patches from the center – for the others (about 40 %), we
mirror the data across the images’ edges to get comparable results to the HM-
DB. Image labels were provided by at least two medical doctors and endoscopists
who are experienced in colorectal cancer diagnosis and familiar with pit pattern
analysis and NBI classifications (the two class case corresponds to distinguishing
type A from types B and C3).

Fig. 1. Zoom into example images of HM-DB and NBI-DB, respectively.

There is one important difference between the two datasets. As can be seen
from Fig. 1, HM-DB original images exhibit blocking artifacts from prior DCT-
based compression, while NBI-DB images come without any visible degradations
from prior compression. As we shall see, this makes a big difference.

Band-pass type Fourier descriptors have been used successfully in classifica-
tion of the HM-DB imagery [6]. As we are not interested in maximising classi-
fication rates, we do not perform fusion of several different band-pass descrip-
tors across frequency bands but look into the discriminative power of individual
frequency bands with small frequency support. In particular, we consider 128
concentric rings in Fourier space with increasing the frequency by 1 in each step
following the main coordinate axes – for each ring, values in the power spectrum
closest to the ring under consideration are used to compute mean and variance
for each ring. These two features, computed for each of the three RGB colour
bands, comprise the final feature vector used in a k-nn classification employing
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Euclidian distance, where 1 ≤ k ≤ 19. While classically magnitude is considered
only [6], here we also use phase information in the same manner and we also fuse
magnitude and phase information after feature value normalisation (leading to a
twelve-component feature vector). Please note that using these feature vectors,
we gain insight of the sensitivity of the information contained in different fre-
quency bands w.r.t. compression, thus we are able to derive statements about
the compression sensitivity of other features as well (as long as these features
can be localised in frequency space in a sensible way).

For determining the overall classification rate (which is finally considered to
rate the impact of compression for each frequency band), a leave-one-patient-
out (LOPO) cross validation protocol is used (identical to leave-one-out cross
validation (LOOCV) for NBI-DB due to the structure of this dataset). When
conducting classification on compressed data, either both images compared can
be compressed (scenario CC) or only one of the two images involved (scenario
UC). The one-image compressed case corresponds to either having the image
to be classified in compressed form (e.g. due to a prior transmission in a tele-
endoscopic set-up) or to having the training data in compressed form (e.g. due
to excessive storage requirements).

3.2 Experimental Results

In the following figures, the x-axis represents the 128 distinct frequency bands
considered, while the y-axis shows the achieved overall classification accuracy for
each of the 128 bands individually. We do not further report on other settings
for k as k = 19 in the classifier, since the overall trend is that the best results
are obtained for this configuration.

Results obtained from the HM-DB in the 3 classes case somehow correspond
to the expectations. Figure 2 displays the results for the CC scenario for using
magnitude features. We see that overall, magnitude features deliver consistently
better results with the uncrompressed data (denoted as “png” in the plots) as
data compressed with compression ratio 100. Phase features exhibit virtually
identical behaviour.
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Fig. 2. HM-DB, magnitude, 3classes, compression ratio 100, scenario CC



6 P. Elmer et al.

However, the ranking of the compression algorithms is surprising: JPG,
clearly inferior in terms of image quality measures especially for high compres-
sion ratios according to common knowledge, is competitive to J2K, while JXR
is clearly superior to both other standards, for low and medium frequencies even
comparable to the uncompressed case.

Figures 3 and 4 compare the results for the UC scenario. We immediately
notice a significant difference to the CC scenario. While for the magnitude fea-
tures (Fig. 3) JXR and JPG behave similarly to the CC scenario, J2K compres-
sion results are significantly detoriated. For the phase features (Fig. 4) only JXR
can compete with the uncompressed case for very low frequencies, in all other
cases a significant decrease of classification accuracy is observed.
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Fig. 3. HM-DB, magnitude, 3classes, compression ratio 100, scenario UC

The results for the 3 classes case as discussed so far are similar down to a
compression ratio of 10, however, the differences among the compression schemes
tend to get smaller for lower compression ratios and JXR takes the lead. For the 2
classes case we do not show graphical results here. Besides delivering higher clas-
sification accuracy overall of course (up to 75 %), the impact of compression is not
very high for both scenarios (CC and UC) and leads even to slightly better classi-
fication rates as compared to uncompressed data, in most cases for JPG and JXR.
This is a surprising effect which leads us to the results for the second dataset.

In the following, results corresponding to the NBI-DB are discussed. Figures 5
and 6 compare the CC and UC scenarios for compression ratio 100 in the 2
classes case (magnitude feature), respectively. Interestingly we notice for CC,
while J2K is comparable to the uncompressed case, JXR as well as JPG improve
classification accuracy, the latter significantly so (top accuracy is improved by
more than 10 % !).

This surprising effect cannot be observed for the UC scenario, where overall,
the uncompressed case is top performing, closely followed by JXR, J2K, and JPG
delivers the worst accuracy (contrasting to the CC scenario this corresponds to
the image quality measure results). Please note that for JPG compression, the
difference in terms of classification accuracy between the CC and UC scenarios
can be up to 30 % depending on the frequency band considered.
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Fig. 4. HM-DB, phase, 3classes, compression ratio 100, scenario UC
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Fig. 5. NBI-DB, magnitude, 2classes, compression ratio 100, scenario CC
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Fig. 6. NBI-DB, magnitude, 2classes, compression ratio 100, scenario UC
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Fig. 7. NBI-DB, magnitude, 3classes, compression ratio 100, scenario CC
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Figure 7 confirms the same behaviour for the 3 classes case and the magnitude
feature. For the UC scenario, we observe the same behaviour as for the two class
case (not shown), except that all three compression schemes deliver almost the
same results (inferior to the uncompressed case). It should be noted that we
observe exactly the same phenomenon for the phase feature and the magnitude-
phase feature fusion (not shown as well).

Figures 8 and 9 investigate the observed results in more details for the most
significant case of JPG compression (using fused magnitude and phase features),
considering compression ratios of 1 (only file conversion), 10, 33, 50, and 100.
Figure 8 shows the result for the CC scenario, where we see that classification
accurracy consistently increases for increasing compression ratio, which is a very
surprising result.
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For the UC scenario (see Fig. 9) we observe the expected behaviour with
decreasing classification results for increasing compression ratio, seen almost
across the entire range of considered frequency bands.
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4 Discussion and Conclusion

From the results obtained it is quite obvious that no matter which dataset is
being considered, it is better to have all involved data being compressed (scenario
CC). However, apart from that, we observe quite different results for the two
datasets, and it is plausible that the precompression of HM-DB is the reason for
this difference.

For the HM-DB, the major difference is seen between the 2 classes and 3
classes setting, but not between the CC and UC senarios. The reason is that
we have compression artifacts already present in this dataset (see Fig. 1, corre-
sponding to DCT-block structures). Recompressing these data generates double
compression effects which propagate into the features vectors, thus we have JPG
artifacts present in both images involved in compression, no matter if we operate
in the CC or UC scenario. While for the 2 classes case the discriminative power
of the features is sufficient also under compression to even slightly improve the
uncompressed case, this is not true for the 3 classes case where the difference
of the image features needs to be exploited more thoroughly, thus we see result
degradation under compression.

For the NBI-DB, the situation is fairly different. Image data is virtually
uncompressed, thus applying compression introduces artifacts, which of course
contribute to the features extracted. Thus, in the UC scenario, we compare
feature vectors computed from undistorted data to features vectors containing
compression artifacts. Obviously, having artifacts in both images involved is the
better solution.

The remaining question is why JPG delivers the best results in the CC sce-
nario for the NBI-DB and why results do get better for increasing compression
ratio. It is clear that JPG introduces the most significant artifacts (especially at
high compression ratios), both in terms of visual quality and in terms of image
quality measures. However, based on the results observed, it is likely that these
strong artifacts are specific to the image class and this difference can be expoited
in feature extraction and subsequent classification (i.e. JPG compression acts as a
specific type of additional pre-feature extraction). The stronger those artifacts are,
the better the classifier is able to exploit them, which explains the improving clas-
sification for increasing compression ratio. Please note that recently, a somewhat
related result has been demonstrated in iris biometrics: JPG turns out to support
iris segmentation much better compared to its more recent competitors J2K and
JXR [15]. The explanation given relates to the stronger artifacts as produced by
JPG along iris boundaries, which actually aid in the segmentation process.

Although experiments are being restricted to colonoscopic imagery, there is
strong evidence that the results do carry over to any texture-based CAD support
system based on classification. Future work will consider the actual impact on
state-of-the-art feature descriptors, while the present study is restricted to the
general discriminative power of frequency-band based descriptors.
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10. Konrad, M., Stögner, H., Uhl, A.: Custom design of JPEG quantisation tables for
compressing iris polar images to improve recognition accuracy. In: Tistarelli, M.,
Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 1091–1101. Springer, Heidelberg
(2009)

11. Konsti, J., et al.: Effect of image compression and scaling on automated scoring
of immunohistochemical stainings and segmentation of tumor epithelium. Diagn.
Pathol. 7(29) (2012). doi:10.1186/1746-1596-7-29

12. Lau, W.L., Li, Z.L., Lam, W.K.: Effects of JPEG compression on image classifica-
tion. Int. J. Remote Sens. 24(7), 1535–1544 (2003)

13. Panych, L.: Theoretical comparison of Fourier and wavelet encoding in magnetic
resonance imaging. IEEE Trans. Med. imaging 15(2), 141–153 (1997)

14. Rabenstein, T., et al.: Tele-endoscopy: influence of data compression, bandwidth
and simulated impairments on the usability of real-time digital video endoscopy
transmissions for medical diagnoses. Endoscopy 34(9), 703–710 (2002)

15. Rathgeb, C., et al.: Effects of severe image compression on iris segmentation per-
formance. In: Proceedings of the IAPR/IEEE International Joint Conference on
Biometrics (IJCB 2014) (2014)

16. Santalla, H., et al.: Effects on MR images compression in tissue classification qual-
ity. J. Phys. Conf. Ser. 90(1) (2007)

17. Schoeffmann, K., et al.: Investigation of the impact of compression on the percep-
tional quality of laparoscopic videos. In: Proceedings of the 27th International Sym-
posium on Computer-Based Medical Systems (CBMS 2014), pp. 153–158 (2014)

http://dx.doi.org/10.1109/LGRS.2010.2062484
http://dx.doi.org/10.1186/1746-1596-7-29


Impact of Lossy Image Compression on CAD Support Systems 11

18. Tamaki, T., et al.: Computer-aided colorectal tumor classification in nbi endoscopy
using local features. Med. Image Anal. 17(1), 78–100 (2013)

19. Wong, S., et al.: Radiologic image compression - a review. Proc. IEEE 83(2), 194–
219 (1995)

20. Zabala, A., Pons, X.: Effects of lossy compression on remote sensing image classi-
fication of forest areas. Int. J. Appl. Earth Obs. Geoinf. 13(1), 43–51 (2011)



Pointing with a One-Eyed Cursor for Supervised
Training in Minimally Invasive Robotic Surgery

Martin Kibsgaard1 and Martin Kraus1(B)

Department of AD:MT, Aalborg University,
Rendsburggade 14, 9000 Aalborg, Denmark

{kibsgaard,martin}@create.aau.dk
http://www.create.aau.dk/graphics/

Abstract. Pointing in the endoscopic view of a surgical robot is a nat-
ural and efficient way for instructors to communicate with trainees in
robot-assisted minimally invasive surgery. However, pointing in a stereo-
endoscopic view can be limited by problems such as video delay, double
vision, arm fatigue, and reachability of the pointer controls. We address
these problems by hardware-based overlaying the stereo-endoscopic view
with a one-eyed cursor, which can be comfortably controlled by a wire-
less, gyroscopic air mouse. The proposed system was positively evaluated
by five experienced instructors in four full-day training units in robot-
assisted minimally invasive surgery on anaesthetised pigs.

Keywords: Minimally invasive surgery · Robot-assisted surgery · Tele-
operation · Telesurgery · Telementoring · Training · Robotic endoscopy ·
Stereoscopic endoscopy · Mixed reality · Augmented reality · Head-up
display · One-eyed cursor · Telestration

1 Introduction

Training in robot-assisted minimally invasive surgery is costly [3] but also impor-
tant in order to achieve the best possible outcomes [5]. In the training on actual
robots, pointing and line drawing (so-called “telestration”) in the endoscopic
view is often useful to support referential verbal communication by instructors
(e.g., “look at this,” “cut here,” etc.) [8]. However, many surgical robots are oper-
ated using an immersive interface that blocks the visual communication between
instructor and trainee (see Fig. 1). In these cases, one common approach is to
overlay the endoscopic video image with the video image of a pointer and/or a
line drawing and present the resulting video image to the trainee, who operates
the robot, as well as the instructor, who controls the pointer [8]. One advan-
tage of this solution is that the instructor or expert advisor (in general called
“mentor”) does not have to be physically present but can be located at a large
distance (so-called “telementoring”) [8,11].

In this work, however, we only consider the case of supervised training where
the instructor is in the same room as the trainee who operates a da Vinci S
c© Springer International Publishing Switzerland 2016
X. Luo et al. (Eds.): CARE 2015, LNCS 9515, pp. 12–21, 2016.
DOI: 10.1007/978-3-319-29965-5 2
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Fig. 1. Setup of a da Vinci S HD Surgical System. Left: surgeon (in our case the trainee)
operating the console. Center: patient cart and assistant (in our case the instructor)
using the telestration feature of a touch screen. Right: vision cart. Copyright 2015
Intuitive Surgical, Inc.

HD Surgical System since this is the situation in the training courses at Aalborg
University Hospital that are offered by our collaboration partner MIUC (Minimal
Invasive Udviklings Center). The instructors are experienced surgeons and an
experienced surgical assistant, who is often performing additional tasks (e.g.,
operating a suction device) while instructing the trainees.

The da Vinci S HD Surgical System offers the possibility to draw lines on a
monoscopic touch screen and to overlay the stereo-endoscopic video image with
a stereoscopic version of the line drawing [8]. This stereoscopic image includes
an automatically added stereoscopic effect such that the drawing appears — to
the trainee operating the robot — on a plane in front of the operating field.
While this telestration feature works without affecting the resolution, frame rate
or delay of the stereo-endoscopic image, the exact position of the drawn lines
can appear ambiguous since they do not appear at the same depth as the tissue
that the instructor points at. Specifically, the overlaid line drawing appears at
different positions in the left and right image of the stereoscopic image and, in
general, both positions are different from the position that the instructor touched
on the monoscopic screen.

As reported by our collaborators and well-known in the literature [10,12,14],
this ambiguity can make exact pointing very difficult. Furthermore, it is difficult
for the surgical assistant to reach the touch screen while operating, for example,
a suction device in the current setup of the training room. For these reasons, our
collaborators usually do not use the telestration feature of the da Vinci S HD
Surgical System in their courses. Another potential problem with a touch screen
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at eye’s height is arm fatigue [6]; however, this issue has not been mentioned by
our collaborators.

In order to support exact pointing, we implemented a one-eyed cursor [14],
which is controlled by a wireless gyroscopic air mouse, which can be held at a
comfortable height to avoid arm fatigue [6]. One-eyed line drawings are supported
by pressing a button of this air mouse. To overlay the stereo-endoscopic image
with the image of the pointer and/or line drawing at the original resolution and
frame rate without noticeable delay, we employ a recently proposed framework
for hardware-based overlaying [7].

We are still adjusting details of the system based on the observed usage
and feedback by instructors and trainees. So far, slightly different prototypes of
our system were used and positively evaluated by five experienced instructors
(including one experienced surgical assistant) in a total of four full-day training
units in robot-assisted minimally invasive surgery on anaesthetised pigs.

The first main contribution of our work is to present the design and imple-
mentation of a one-eyed cursor for the da Vinci S HD Surgical System, which is
comfortably controlled by a wireless, gyroscopic air mouse and does not affect the
resolution, frame rate or latency of the stereo-endoscopic view; see Sect. 3. The
second main contribution is the successful evaluation of a developing prototype of
the proposed system in an operational environment, i.e., in actual training courses
in robot-assisted minimally invasive surgery at Aalborg University Hospital; see
Sect. 4. Before discussing these contributions, Sect. 2 reviews previous work.

2 Previous Work

Pointing at objects in stereoscopic images is basically a two-dimensional task, but
it is usually considered a special case of pointing in three dimensions [10,12,14].
There appears to be a wide consensus that displaying a stereoscopic cursor at a
different depth than the depth of the object that the cursor is pointing at should
be avoided in order to avoid cursor diplopia (double vision). Instead, the cursor
either should be displayed at the same stereo depth as the object or the cursor
should only be displayed to one eye as first suggested by Ware and Lowther [14].
Schemali and Eisemann [10] observed better user performance with the first option
and attributed this to the discomfort that a one-eyed cursor can cause (due to
binocular rivalry). On the other hand, Teather and Stuerzlinger [12] observed —
for certain pointing techniques — better user performance with a one-eyed cur-
sor; in particular for objects far away from the screen depth. They attributed this
to the problems of diplopia and accommodation-vergence conflicts, which do not
occur with a one-eyed cursor.

In the case of stereo-telestration for robotic surgery, Hasser et al. [4] proposed
to mark positions at the same depth as objects in the stereo-endoscopic image
by computing a disparity map of the stereo-image. (See also Lamprecht et al. [8]
and Zhao et al. [15].) Ali et al. [1] reported results of a user study with a proto-
type of such a system using a da Vinci surgical robot where three participants
(“trainees”) had to identify pins that another participant (the “mentor”) pointed
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at. In comparison to 2D telestration, the trainees required significantly more time
and committed non-significantly more errors with the three-dimensional marks.
Similarly to the study reported by Teather and Stuerzlinger [12], these results
might have been caused by diplopia and/or accommodation-vergence conflicts.

These works show that stereo-telestration at object depth for robotic surgery
requires considerably more hardware and more complex software while impairing
user performance — even if the software worked perfectly. Therefore, a one-eyed
cursor appears to be an interesting and viable option to avoid the problems
of stereo-telestration and at the same time retain the advantages of a stereo-
endoscopic view.

Overlaying a stereo-endoscopic image with a computer-generated image usu-
ally results in a noticeable delay of more than 100 ms (e.g., [13]). Azuma et al.
[2] state that delays as small as 10 ms can lead to a significantly worse user per-
formance for certain tasks. This is consistent with results for low-latency direct
touch which showed “noticeable improvement continued well below 10 ms” [9].
We assume that any noticeable delay (or reduction in frame rate) would reduce
the user acceptance of our system.

An alternative to delaying the stereo-endoscopic image is to show it without
delay side-by-side with a delayed image that is overlaid with another image.
This approach is supported by the “TilePro” feature of da Vinci S HD Surgical
Systems but it reduces the size and resolution of both, the original image and
the delayed image with the overlay. Therefore, at least some surgeons appear to
turn off this feature whenever possible [13]. Thus, we assume that any noticeable
reduction in size or resolution of the stereo-endoscopic image would reduce the
user acceptance of our system.

In order to overlay the stereo-endoscopic view with the image of a pointer
without noticeable delay nor reduction of frame rate, size, or resolution, we
employ a framework that we have recently presented [7]. Our specific usage of
this framework is described in Sect. 3.

Hincapié-Ramos et al. [6] proposed a series of guidelines for the design of
fatigue-efficient mid-air interfaces. In particular, they concluded that mid-air
gestures at the height of the shoulder joint are more tiring than gestures between
the height of the shoulder and the waist. Furthermore, they found that a clicking
device for selection minimizes fatigue. Therefore, we assume that an air mouse
that can be held at any height is more fatigue-efficient than a touch screen at
eye’s height.

3 Proposed One-Eyed Cursor for Stereo-Endoscopy

To overlay the stereo-endoscopic video image of the da Vinci system with the
computer-generated image of a pointer, we have employed our recently proposed
system [7]. The core of the system is a desktop computer with two PCIe video
cards (Blackmagic Design’s DeckLink HD Extreme 2), which is capable of over-
laying the two channels of the stereo video image with any computer-generated
imagery at full resolution and frame rate with less than 1 ms delay. We have
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also included a fail-safe system and a 3D TV and used a wireless, gyroscopic air
mouse for user input to avoid arm fatigue [6] and to allow instructors to control
our system from most positions in the training room.

To render the one-eyed cursor, the image of a pointer is only displayed to
one eye by overlaying only one channel of the stereo video image. By default,
the cursor is shown to the right eye, as this is the channel that the monoscopic
displays of the da Vinci system default to. In some cases it is useful for the
instructor to switch which eye the one-eyed cursor is displayed to, e.g., if the
trainee is unable to perceive stereoscopic images or if the trainee is uncomfortable
with a one-eyed cursor that is displayed to his or her non-dominant eye [14]. With
our system, instructors can switch from one eye to the other by clicking the scroll-
button of the air mouse. The console and the 3D TV that we introduced in the
setup will then show the cursor to the other eye. In order for the cursor to show
up also on the monoscopic displays of the da Vinci system, the instructor (or an
assistant) has to change the channel shown on those displays by using the touch
screen controls of the da Vinci system.

As described in Sect. 1, the telestration feature of the da Vinci system allows
instructors to draw lines that are directly visible in the console. Due to the
ambiguous position of the drawings, this feature has been rarely used in the
training at Aalborg University Hospital in the past; however, our collaborating
instructors are familiar with it and expected our solution to provide the same
functionality. In our implementation (see Fig. 2), a green line is drawn from the
tip of the pointer when the instructor presses and holds the left mouse button
of the air mouse. We chose to use the color green based on observations and
feedback from our collaborators, who stated that green is the least frequent
color when operating on pigs and humans.

Fig. 2. The cursor and a line drawing overlaid on one of the video channels of the da
Vinci S HD system. Note that a monoscopic image cannot convey the appearance of a
one-eyed cursor.
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The telestration feature of the da Vinci system removes any line drawings
when the endoscopic camera is moved. Alternatively, they can be removed by
pushing a button on the touch screen. Initially, it was a user requirement that our
system behaves similarly to the da Vinci telestrator, i.e., line drawings should
stay on the screen until removed. However, when evaluating and regularly using
the prototype, it proved more useful to have the drawings automatically disap-
pear a few seconds after the instructor stops drawing. In this way, the instruc-
tors can keep the drawings on the screen as long as desired by holding down the
drawing button, and there is no need for an additional button to remove the
drawings.

To control the cursor, we have tested several wireless, gyroscopic air mice
and found two candidates for the scenario at Aalborg University Hospital. We
considered ease of use, precision, price, number of buttons, and ability to clutch,
which is similar to lifting up a regular mouse to reposition it without moving
the mouse cursor. The Gyration Air Mouse Elite was the most precise of the
tested air mice, but it is also the most expensive one and still introduces some
interaction problems (see Sect. 4). It has a “reverse clutch,” i.e., the user needs
to hold a button on the bottom of the mouse to move the cursor. This turned
out to be an intuitive clutching mechanism and also avoids unintended cursor
movements, which would be distracting to the trainees.

The Measy RC9 Air Smart Mouse is a little less precise and offers a “toggle
clutch,” i.e., the user has to press the same button to activate and to deactivate
the control over the cursor. This turned out to be a less intuitive clutching mech-
anism and requires users to remember to toggle the clutch to avoid unintended
cursor movements. The Measy RC9 Air Smart Mouse is significantly cheaper
(less than one third of the price of the Gyration Air Mouse Elite), which might
be important since the environment in which the air mice are used can be rough
on electronic devices as fluids (blood, water, etc.) often get on the instructors’
hands when they are assisting. Waterproofing the air mouse by putting it into a
plastic bag could protect it, but this would make it more difficult to use.

We have also investigated several other input methods, but based on initial
testing they have proved either impractical in our setting (Kinect, LEAP motion)
or simply too imprecise (Wii Remote).

4 Evaluation of Prototype in Operational Environment

Before evaluating a prototype of our system in training courses at Aalborg Uni-
versity Hospital, we observed several eight-hours training sessions without our
system in order to assess the communication problems between instructors and
trainees. The main conclusion from these observations was that the instructors
did not use the telestration feature of the da Vinci system. Instead, they usu-
ally tried to rely on verbal communication and tended to take over the console
of the robot when verbal communication alone proved to be insufficient. This
approach was inefficient as considerable time was spent on unsuccessful ver-
bal communication and taking over the console resulted in interruptions of the
trainees’ operation of the robot and reduced their training time on the robot.
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Since our collaborators were not actively using the telestration feature of the
da Vinci system in their training courses, we decided against comparing it with
our system in these courses since we are trying to interfere as little as possible
with the courses. Furthermore, a comparative study between a one-eyed cursor
and a stereo cursor at a different depth than the object that it is pointing at is
very likely to confirm the previously published result that a one-eyed cursor is
preferable in this comparison [12].

Therefore, we chose to evaluate a developing prototype of our system by
installing it in the training room at Aalborg University Hospital and observing
its impact on the training and the communication during the training. Moreover,
we also observed and got feedback on the interaction with the air mouse and the
perception of the one-eyed cursor and line drawings.

Our system has been in continuous use during the four most recent full-
day training sessions at Aalborg University Hospital. Some of the interaction
problems that were revealed in these sessions were fixed between sessions. For
example, the instructors sometimes left the cursor in the middle of the screen
without using it to point. To solve this problem, we hide the pointer when it
has been in the same position for more than two seconds, as was also suggested
by the instructors. Another improvement was to decrease the time before line
drawings are removed from five seconds to two seconds after the instructors
release the drawing button.

Of the two air mice that the instructors evaluated in the training courses,
the Gyration air mouse was the preferred one due to its clutching mechanism,
which appears to be the single most significant aspect of the usability of the air
mice. As mentioned earlier, the reverse clutch helps to avoid unintended cursor
movements and the instructors were able to use it immediately — presumably
because it is similar to the clutching mechanism of the robot. The toggle clutch
of the Measy air mouse proved to be unintuitive and was quickly abandoned by
the instructors.

Our system clearly improved the visual communication from instructors
to trainees, and with it, the communication overall. This was apparent by
much more interactive communication between the instructors and trainees. The
instructors used the cursor and line drawings to guide anatomical explorations
by the trainees and to give task instructions, e.g., by pointing with the cursor
and saying “cut here,” or drawing along a nerve and saying “the nerve is run-
ning here,” “grab here,” etc. — activities that previously often resulted in the
instructors taking over control of the console.

We neither directly nor indirectly observed any need for switching the cursor
to the other eye. None of the trainees reported any issues with perceiving the
cursor and we did not observe any apparent miscommunication in relation to
pointing. However, the way we implemented the switch caused some confusion
as the instructors accidentally switched the channel in which the cursor was
shown, causing them to lose sight of the cursor on the monoscopic displays. To
avoid this, the instructors suggested that we make it more difficult to accidentally
switch (e.g., by requiring to hold the button down for five seconds) and to add
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a message after the switch that tells them when the monoscopic displays are
showing the channel without the cursor.

Generally, our system was evaluated positively by instructors and trainees.
The trainees only had two complaints. First, the white part of the pointer was
too bright which caused a slight flickering on the displays of the console. We
have consequently changed the color to a bright gray. Second, the cursor was
sometimes not hidden when it was left in the middle of the screen. This problem
occurred because the Gyration air mouse can also be used as a regular mouse,
which caused the mouse to unintentionally move when its proximity sensor was
triggered such that our system assumed that the mouse was still in use for
pointing. To solve this problem, we have blocked the infrared light that the
mouse uses to measure distance.

In summary, the instructors found the prototype of our system very useful.
In particular, they found it better and more precise than the telestration feature
of the da Vinci S HD Surgical System. While the trainees never experienced the
telestration feature of the da Vinci system, they benefitted from the improved
visual communication with the instructors as compared to the training without
any telestration system.

5 Discussion

The feedback that we received and the observed impact of the prototype of our
system on the training in robot-assisted surgery at Aalborg University Hospital
is very encouraging as it suggests that a one-eyed cursor that is controlled by a
wireless air mouse can in fact improve the communication between instructors
and trainees. However, we are fully aware that we are biased observers of our
own system and that some of the instructors are similarly biased since they
contributed to the development of the system. As most of the trainees have
no prior experience with the da Vinci robot, their feedback cannot be used to
compare our system with the telestration feature of the da Vinci system. Thus,
further user studies are necessary to establish the benefits of our system once its
development is completed.

6 Conclusion and Future Work

Based on the concept of a one-eyed cursor, we have developed a new telestration
system for pointing and drawing in stereo-endoscopic views of the da Vinci S
HD Surgical System. A prototype of the system has been integrated in train-
ing courses on robot-assisted minimally invasive surgery at Aalborg University
Hospital and was positively evaluated by five experienced instructors.

Future work includes further observations and improvements of the system
in regular use. This also includes improvements of the way the system is used
by the instructors. For example, we assume that it would be beneficial to some
trainees if instructors showed them the one-eyed cursor for each eye such that
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each trainee can choose the more comfortable alternative. Once the system and
its usage are finalized, formal user studies are necessary to prove its benefits.

Furthermore, it would be very interesting to determine the level of discomfort
that a one-eyed cursor can cause, the effect of eye dominance on this discomfort,
and the percentage of affected users.

Our observations of the training with the proposed system showed that
instructors still take over the robot in some situations, e.g., to demonstrate skills
such as knot tying. Some instructors also ask trainees to look up from the robot,
e.g., in order to communicate the best orientation of a needle with hand ges-
tures. These situations could be addressed by overlaying the stereo-endoscopic
view with a simulation of virtual robotic instruments that are controlled by
instructors and displayed to trainees while they operate the console. Whether
there is any advantage in displaying these virtual instruments to one eye only,
is another open question.

Acknowledgments. The authors would like to thank the participating instructors
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chief surgeon Johan Poulsen and registered nurse first assistant in robotic surgery Jane
Petersson.

References

1. Ali, M.R., Loggins, J.P., Fuller, W.D., Miller, B.E., Hasser, C.J., Yellowlees, P.,
Vidovszky, T.J., Rasmussen, J.J., Pierce, J.: 3-D telestration: a teaching tool for
robotic surgery. J. Laparoendosc. Adv. Surg. Tech. 18(1), 107–112 (2008)

2. Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B.: Recent
advances in augmented reality. IEEE Comput. Graph. Appl. 21(6), 34–47 (2001).
http://dx.org/10.1109/38.963459

3. Buchs, N., Pugin, F., Volont, F., Morel, P.: Learning tools andsimulation in
robotic surgery: state of the art. World J. Surg. 37(12), 2812–2819 (2013).
http://dx.org/10.1007/s00268-013-2065-y

4. Hasser, C.J., Larkin, D.Q., Miller, B., Zhang, G.G., Nowlin, W.C.: Medical robotic
system providing three-dimensional telestration. US Patent 2007/0167702 A1
(2007)

5. Ontario, H.Q., Secretariat, M.A.: Robotic-assisted minimally invasive surgery for
gynecologic and urologic oncology: an evidence-based analysis. Ont. Health Tech-
nol. Assess. Ser. 2010 10, 1–118 (2010). Health Quality Ontario
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Abstract. Tracking instruments in video-assisted minimally invasive
surgeries is an attractive and open computer vision problem. A tracker
successfully locating instruments would immediately find applications in
manual and robotic interventions in the operating theater. We describe a
tracking method that uses a rigidly structured model of instrument parts.
The rigidly composed parts encode diverse, pose-specific appearance mix-
tures of the tool. This rigid part mixtures model then jointly explains the
evolving structure of the tool parts by switching between mixture com-
ponents during tracking. We evaluate our approach on publicly available
datasets of in-vivo sequences and demonstrate state-of-the-art results.

Keywords: Instrument tracking · Video-assisted minimally invasive
surgery · Part-based models

1 Introduction

Locating instruments in videos for augmented assistance [1] during minimally
invasive surgeries (MIS) has recently received much attention. Minimally invasive
surgeries offer a number of advantages over open surgeries. Less postoperative
pain, reduced blood loss, minor scarring, and shorter recovery time and hospi-
talization are attractive factors for inpatients and clinicians. Carrying out such
a surgery, though, is a challenging task. The surgeons first make keyhole inci-
sions in the body to insert elongated surgical instruments. Confronted with lost
vision and hampered dexterity, the surgeons require additional sensing devices to
monitor the instruments maneuvering within the body. While robotic manipula-
tors can control the instruments with high flexibility and stability, their encoders
accumulate errors in forward kinematics and lead to inaccurate estimations of the
absolute instrument location [11]. On the other hand, specialized hardware sen-
sors and encoders require extensive hardware integration and suffer from lower
accuracy [2] thereby cumbersomely integrating to multiple operating rooms.
Arguably, widespread color cameras in MIS offer a natural, visual feedback to
surgeons. Other imaging modalities such as depth-only sensing devices would be
c© Springer International Publishing Switzerland 2016
X. Luo et al. (Eds.): CARE 2015, LNCS 9515, pp. 22–34, 2016.
DOI: 10.1007/978-3-319-29965-5 3
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hardly interpretable. Amenable to easy transfer between operating rooms and
motivated by steady progress of computer vision, vision-based instrument track-
ing thus constitutes an encouraging approach to improving the guidance and
navigation of manual and robotic surgeries.

Description of image features plays a significant role in MIS tool tracking
setting. Registered videos may suffer from degraded quality, e.g., due to motion
blur. Moreover, adverse lighting conditions in the form of globally varying illu-
mination of the scene, specular reflections on the tool and tissue regions, as
well as shadows left by the tool are factors that make tool detection a challeng-
ing task in practice. Past work has explored color and gradient features [2,11]
to discern greyish tool foreground from reddish and whitish tissue background,
markers [13], and used elaborate classification schemes during detection [4,5].
Bootstrapping object appearance from initial frame, that reported remarkable
results in the general object tracking setting [16], has recently also been applied
to tracking MIS instruments [10] with state-of-the-art performance.

We describe a rigid part mixtures model of a surgical instrument and a
detection procedure for tracking its 2D pose (i.e., center and orientation) in MIS
videos. As the 3D pose can be recovered from stereo-cameras [1], here we focus
on the problem of 2D pose estimation in a single image. While motion models
can be used for filtering of, e.g., instrument location and size [9], we achieve
good tracks by detecting the instrument pose in each frame independently from
neighbor frames. Our model is a spatial assembly of instrument parts that encode
mixtures of dedicated pose appearances. By capturing such appearances of an
object part at various poses, our approach relates to poselets [15] that reason
about fragmented object pose from rigid parts. It differs from poselets by jointly
modeling the compositions of small and large part mixtures that can explain full
pose of the instrument. Consequently, our approach leverages successful flexible
part mixtures model [6] that can be trained with datasets of modest size [17].
Structured part-based models use deformation constraints that act like springs
to flex the model to regions with putative objects. Arranged under a tree-graph,
they can efficiently explain previously unseen configurations of the flexible object
structure but, at the same time, such models can overlap two tip parts on one tip
of the tool. In the spirit of poselets, we avoid double-counting image evidence [18]
by rigidly modeling end-effector articulations with larger, rigid parts. Hence, our
approach differs from past work by enforcing strictly rigid, global compositions
of part mixtures and by consistently capturing variable instrument structure.

Our contribution is two-fold. Firstly, we develop a springs-free, structured
part-based model of an instrument. It imposes a rigid structure on spatially
distributed local features to discard putative tool regions, e.g. in tool neighbor-
hood, that might prompt models with springs to incorrect or flexed structure
detections. Secondly, we demonstrate that a structured part-based model can
be successfully applied to instrument tracking in MIS. Estimating instrument
pose is typically approached in a disjoint manner by first detecting individual
parts and then fusing detections with, e.g., a Kalman filter [1] or RANSAC sam-
pling [5]. By exploiting rigidly structured relations between instrument parts,
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our tracker detects the end-effector and shaft parts jointly thereby recovering
the instrument pose. Applying a structured model, though, is challenging as
this requires frequent updates of its underlying structure. Object appearance
can vary significantly between frames, especially due to frequent truncations.
Specifically, the rigid, straightly elongated shaft has often been used as a dis-
criminative visual cue in detecting the tool and in estimating its 3D pose [3,14].
However, observing that surgeons often prefer to work in close proximity to tis-
sue, [12] ignore the shaft and focus on tracking the articulating end-effector with
thousands of efficiently matched templates.

This leads to a dilemma. On the one hand, one would like to take advantage
of the shaft part when it is visible. On the other hand, one has to take into
consideration the varying, truncated tool structure. Our model-based tracker
exploits the rigid shaft while adapting to its changing length. We then discrim-
inatively train dedicated models on a series of training images for each video
sequence and show that our method is on par with or exceeds state-of-the-art
results in instrument tracking on publicly available datasets.

2 Method

The structure of MIS instruments, e.g. for laparoscopy, retinal microsurgery, in
image I can operationally be represented as a pair composition of two parts: (i)
a rigid, straight, elongated shaft S and (ii) a rigid or an articulated end-effector
E , as depicted in Fig. 1. Let GI denote a two-dimensional regular tessellation
of the pixel grid of image I, L ⊂ N

1×2 a discrete set of locations on the whole
grid GI , and Lb ⊂ L a discrete set of locations on an arbitrarily shaped (e.g.,
rectangular, circular) one-dimensional border stripe of this grid.

The E-part is enclosed in a single window in the grid with the center location
lE ∈ L \ Lb. An S-part is a collection of Ne subparts that are outlined by
adjacent windows. We restrict possible locations of these windows lS(k) ∈ L,
where 1 � k � Ne, to an oriented raster line segment1 that anchors at lE and
ranges from the border stripe lS(1) ∈ Lb to the end of the shaft lS(Ne) ∈ L. Then,
let l = (lE , lS(1))1×4 denote the line segment. As the shaft is often truncated and
partially occluded, we represent the S-part as a subcollection of N � Ne subparts
for each new image frame I. As a result, in our model the location of the S-part
lS(l) =

(
lS(k1)(l), . . . , lS(kN )(l)

)
1×2N

determines some ordering of these subparts
on the line segment l of the instrument.

In practice, both parts slightly rotate during a surgery while instrument pose
admits non-circumvolving motion. In general, though, the shaft is oriented at an
arbitrary angle as the locations of body incisions vary between surgical scenarios.
Moreover, the grippers of the end-effector articulate and take various forms, i.e.
the length and shape of the grippers varies. In view of this, we approach the
1 The location of each subpart is lS(k) = lS(1)+

[
sk
(
lE − lS(1)

)]
, where [·] is the nearest

integer function, sk is a scaling factor 0 � sk � sNe < 1, and sNe ensures that the
location lS(Ne) of the window of the last subpart of the S-part does not overlap with
the window of the E-part.



Instrument Tracking with Rigid Part Mixtures Model 25

Fig. 1. Our rigid part mixtures model (left) and its instantiation on the grid GI (right).
The model uses (i) a set of appearance templates (i.e., part mixture) that represent a
single subpart of the shaft at multiple orientations, (ii) a set of appearance templates
that represent various articulations of the end-effector part (e.g., rotated, open or
closed gripper), and (iii) a set of biases that promote or discourage rigid appearance
compositions of mixture components of the shaft and end-effector parts.

problem of tracking 2D instrument pose by capturing the appearance variation
of the tool with a structured model of rigid mixtures of parts that jointly encodes
pose-dependent tool appearance.

Model. We represent the appearance and structure of the instruments under
graph M = {V,E}. The appearance mixtures of the end-effector part are chained
with the appearance mixtures of the shaft parts. The nodes V = {wi

E , lE}nE
i=1 ∪

{wj
S , lS}nS

j=1 denote particular appearances of the nE end-effector and nS shaft
mixtures, respectively. The i-th component of the appearance mixture of the
end-effector part at location lE is specified by template wi

E that rigidly encodes
specific articulation of this part, as encountered in poselets-based approaches
to object recognition [15] and in MIS tool tracking scenarios [12]. The j-th
component of the appearance mixture of the shaft part at location lS is specified
by template wj

S that can capture specific perspective and orientation of the
part, e.g. an outwards slanted shaft. The edges E = {bij

ES}nE×nS
ij=1 model rigid

compositions of the end-effector mixture with the shaft mixture. Specifically,
the scalar-valued co-occurrences bij

ES bias configurations of mixtures such that
certain, rigidly encoded articulations wi

E may form more consistent compositions
with certain orientations wj

S . In effect, our model admits a strictly rigid structure.
We define the mixture of the shaft part as orientation templates. On the

other hand, the S-part lies on the oriented line segment l. Hence, the mapping
j : l1×4 → N

1 of a given instance of this oriented line uniquely determines the j-th
mixture component of the shaft. Then, instantiating a composition of particular
mixture components of the ES-parts in image I at location l = (lE , lS(1)) is
scored with our model as:
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S(I, l, i) = wi
Eφi

E(I, lE) +
N∑

p=1

w
j(l)
S φ

j(l)
S (I, lS(kp)(l)) + b

ij(l)
ES (1)

where φi
E(I, lE) and φ

j(l)
S (I, lS(kp)) are image descriptors (e.g., a HOG [8], a color

histogram) in the window of the i-th mixture component of the E-part at lE and
in the window of the subpart of the j-th mixture component of the S-part at
lS(kp), respectively.

The varying length of the shaft notwithstanding, our model allows for taking
advantage of the discriminative evidence for this part in each image during track-
ing. We achieve this with N subparts of the shaft that are anchored at lS . As
the elongated shaft roughly admits consistent appearance along the image plane,
we deem all subparts of its j-th mixture component to be alike and dedicate a
single, canonical template w

j(l)
S for representing their appearance. In effect, the

subparts, which share the single template, render our model less complex in
learning from and matching to images.

Detection. We cast the problem of instrument tracking within the tracking-
by-detection framework. We infer the rigid composition of mixture components
of the ES-parts at location l that best explains current video frame I by solving
the inference problem argmaxl,i S(I, l, i), as depicted in Fig. 2.

Matching the appearance templates {wi
E}nE

i=1 and {wj
S}nS

j=1 to corresponding
image descriptors at each location in L amounts to the convolution in the feature
space2 that yields tables of appearance scores for each mixture component. As
our graph M is a mixture of chains, in which E-part mixtures are parents and S-
part mixtures are children, we employ dynamic programming as an exhaustive
search algorithm over the state space (l, i) to combine the appearance scores
across plausible locations and mixture components.

To this end, the search procedure commences by partitioning the border
stripe Lb of the grid GI into nS disjoint segments Lb =

⊔nS
j=1 Lj

b(lE) at given lE .
All pairs (lE , lS(1) ∈ Lj

b(lE)) together determine a pencil of line segments. The
segments, in turn, indicate all possible orientations of the S-part at lE within
the angular range of the j-th mixture component. As the S-part is represented
by N subparts, the score of each hypothesized orientation of the shaft depends
on finding such a configuration lS(l) of image descriptors that best match to
the w

j(l)
S template. This results in selecting N -best scoring subparts of the shaft

within the given line segment.
The search proceeds by enumerating all possible compositions of mixture

components of the ES-parts. After aggregating the score b
ij(l)
ES of each composi-

tion with the N -best scores of the shaft part, the best location lS(1) of the shaft
is selected at given lE for each i-th mixture component of the end-effector. We
then retrieve the best i-th mixture component at lE .

2 Since the target object can change its scale during tracking, we search over the
feature pyramid of φ(I, ·) at run-time.
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After repeating this search procedure for each lE , we select lE with the best
aggregated score (1), then backtrack to the best i-th mixture component stored
at that location, and terminate at the best lS(1) pointed by this component.

Learning. We learn the parameters of our rigid part mixtures model in the super-
vised manner. Our instrument model uses a mixture of appearance templates per
part, where only a single template of this part is present in a given positive training
image. As we assume a given collection of positive training images contains only
keypoint annotations, we retrieve the missing ij-labels of mixture components for
each image based on these annotations, as shown in Fig. 3.

We automatically obtain a mixture label of the E part by first (i) binning
the manually labeled end-effector keypoints in a coarse grid (e.g., GI) and then
(ii) grouping the bins features into nE disjoint sets across all training images. We
discard sets with the number of features < K. In effect, a given unique spatial
arrangement of bins captures a particular articulation of the end-effector. The
labels for S-part mixture components are obtained by slicing the image plane
into nS angular intervals. We note when the end-effector part is rigid, we assign
the corresponding label of the S-part mixture component to the E-part.

Our rigid part mixtures model is inspired by the flexible part mixtures
model [6]. Hence, its array of model parameters is learned jointly and takes the
form: β =

[
b11ES , . . . , bij

ES , . . . , bnEnS
ES , w1

E , . . . , wi
E , . . . , wnE

E , w1
S , . . . , wj

S , . . . , wnS
S

]
.

Since β uses a canonical appearance template wj
S of a single subpart to general-

ize the appearance of all shaft subparts for j-th mixture component, the function
(1) scoring a training feature vector xn yields the following dot-product form:

S(In, l, i) = β (0 . . . 1 . . . 0 . . . φi
E(In, lE) . . . 0 . . . φ

j(l)
S (In, lS(k)(l)) . . . 0) = β xn

(2)
It induces a sparse structure on xn that depends on the pre-assignment of mix-
ture labels to respective parts in a given training image In.

We then learn the model parameters β with an objective function under
linear SVM regime:

ar gminβ,ξ

1
2
‖β‖2 + C+

m+
∑

n=1

ξn + C−
m−
∑

n=1

ξn

s.t. β x+
n ≥ 1 − ξn , ∀x+

n

β x−
n ≤ −1 + ξn , ∀x−

n

that can be optimized with, e.g., a dual coordinate-decent solver [6]. The above
formulation states that our model β should learn to assign scores higher than
1 to positive examples x+

n of rigid compositions of respective mixture compo-
nents and assign scores lower than −1 to negative examples x−

n . The objective
function penalizes violations of these constraints with slack variables ξn ≥ 0,
weighted by constants C+ and C−. The negative examples x−

n constitute incor-
rect detections of the instrument that are mined as hard-negatives on images
with masked instruments, as e.g. in [4]. We slightly rotate the positive training
images to augment the training set of positive examples.
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Fig. 2. Instrument detection by matching our model to an image (in feature space).
We visualize (best seen in color) two separate iterations. The iterations correspond to
two hypothesized locations lE of the E-part thereby leading to two different partitions
of Lb. In general, for each lE ∈ L \Lb, we instantiate lS(1) yielding all possible oriented
line segments that anchor the subparts of the shaft. Each table of appearance scores (in
gray) of the S-part (left column) corresponds to j-th mixture component and is selected
according to particular instantiation of the line segment. By recursively summing the
scores and storing the pointers to selected locations and mixture components, we select
(i) N -best scoring subparts of the shaft lS(l), followed by (ii) the best line segment
(lE , lS(1)) per i-th mixture component after adding respective biases, then (iii) best
scoring i-th mixture component after adding appearance scores of the E-part (right
column), and (iv) terminate by selecting the location lE with maximal overall score. As
an implementation detail, in the tables the score locations are shifted from the center
to upper left corner of every window (Color figure online).



Instrument Tracking with Rigid Part Mixtures Model 29

Fig. 3. Learning the mixture labels of the shaft and end-effector parts from image
examples determines the sparse structure of feature vectors xn for SVM classification.
The annotations of positive training examples indicate the keypoint locations of two
tool tips, tool center lE , and the end of the shaft. The number of mixture components
of both parts, nE and nS , is obtained automatically and depends on the resolution
of two respective coarse grids. We use a polar grid to retrieve an orientation type of
the shaft part. Then, we rigidly capture articulations of the end-effector part. We first
quantize the locations over a regular grid that result in binary occupancy features. We
then find their unique groups to retrieve the types of end-effector articulation. Finally,
compositions of ES mixtures serve to store the mixtures co-occurrence indicator and
feature descriptors at respective locations in the sparse feature vectors.

3 Results

In this section, we extensively evaluate our method on the task of in-vivo single
instrument tracking in (i) retinal microsurgery - RM (dataset with 3 sequences
[4]), and (ii) spine and pelvic surgery - SPS (dataset with 3 sequences [5]). Both
datasets are publicly available.

Fig. 4. Instrument pose detection during retinal microsurgery (best viewed in color).
Our model detects the tool center (red dot) and the orientation of the shaft (red
line). Here, we visualize the windows of end-effector mixture components which are
detected on the HOG grid (blue). In the spirit of poselets, the model can reason about
the articulation of the end-effectors (filled bins on the grid) (Color figure online).
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Table 1. Results of our method wrt [5] for estimating the tool center and tool orienta-
tion in sequences from RM and SPS datasets. We use the protocol of [5] and evaluate
the performance based on the angular mean (Ang. M.) and angular standard devia-
tion (Ang. St.D.) (left) and mean distance (M.) and standard deviation (St.D.) (right).
The ratios (train/test) indicate the number of images used for training and testing the
model, after the usage guidelines of the SPS dataset. Following the evaluation protocol
that omits false negatives and false positives when the tool is present and absent in test
images, respectively, we only evaluate the test images that contain the instrument. We
note, though, that our tracker could run for images without the tool as the detection
threshold is learned within SVM margins. Best results are indicated in bold.

Implementation Details. For all sequences, we equally configure our model
and use fixed parameter settings. To make the comparison fair, we follow [4,5]
and use the training set of each sequence, as specified in the datasets, to train
dedicated models of the instruments. We compute window sizes of the end-
effector and shaft parts from the keypoint annotations in the training images.

The appearance templates are defined in HOG feature space [7]. We set sbin=
8 for HOG cells, K = 10 for pruning groups of bins features when learning the
E mixtures, and N = 3 for the number of detected shaft subparts. To specify
the orientation labels for the S-part, we follow the HOG specification of 18 equal
orientation intervals over (−π,+π〉. The number of labels nS is then determined
based on the annotated instruments in the training set. We set C+ = 0.004 and
C− = 0.002 to account for m+ < m− imbalance in the training set.

Qualitative Evaluation. We qualitatively show that our model can detect
the 2D pose of the instrument (i.e., center location of the end-effector and ori-
entation of the shaft) as well as the articulation of the end-effector, as shown
in Fig. 4. In RM sequences, the tracker yields robust tracks despite illumina-
tion variations and disrupting tool-like shadows. In SPS sequences, the instru-
ments significantly change their scale, are partially occluded, and often heavily
truncated. Our method is able to successfully locate the end-effectors in these
sequences. It can adapt to the varying length of the shaft by searching for the
best-scoring subparts along the hypothesized, oriented shafts (Fig. 5).

Quantitative Evaluation. We report quantitative results in Table 1 as mean
distance precision and standard deviation from the ground truth (i) tool center
for SPS and (ii) tool orientation for RM. In addition, we report the percentage
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Fig. 5. Instrument pose detection (best viewed in color) in pelvic 1 (top row), pelvic
2 (middle), and spine (bottom) sequences. We show (i) the windows of 3 best shaft
subparts that are detected with a single, canonical template and (ii) the window and
its center of the end-effector part. We learn the appearance of the E-part based on
its window center as indicated by the SPS dataset annotations. The end-effector and
shaft mixture labels are equal as the E-part is considered rigid having no articulations
in the sequences. Note how mixture components of the shaft part switch to explain
the varying orientation of the instrument. Also, the colors red–orange–yellow of the
shaft subparts indicate the 1st, 2nd, and 3rd best detection, respectively. The tracker
detects the tool at multiple scales (top row). By selecting the best scoring subparts
along the shaft, the tracker takes advantage of the discriminative appearance of the
shaft (middle row) while at the same time it copes with heavy truncations (bottom
row) (Color figure online).

of accurate detections of the tool center within a given pixel range for RM in
Fig. 6. We demonstrate that the proposed rigid part mixtures model achieves
state-of-the-art results on both benchmarks.

In Table 1, we do well in terms of smaller mean distance precision measure.
Our high deviation error wrt [5] for SPS sequences comes from far but rare
misdetections of the tool center. In general, though, our method yields stable
tracks in the RM and SPS sequences.

In Fig. 6, we are on par with other trackers. We outperform other methods
in Ret. 1, but do worse in Ret. 2 wrt [10]. However, while [10] successfully tracks
the tool center, our tracker also outputs tool orientation (Figs. 4 and 5). Finally,
we examine the reliance of our detector on the length of the shaft. We show
that our model, augmented with more subparts of the shaft, better stabilizes
the detections thereby leading to improved performance (Fig. 6d).
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Fig. 6. The results for retina microsurgery dataset on the task of end-effector localiza-
tion. Our method performs best in Ret. 1 and is on par with [4,5] in Ret. 3. However,
we do worse in Ret. 2 and Ret. 3 wrt [10] but additionally output tool orientation. In
the last graph (d), we show that the performance of our method scales proportionally
with N -best subparts of the shaft. When our model uses 5 subparts, it effectively levels
up with [10].

4 Conclusions and Future Work

We proposed a rigid part mixtures model for structurally representing the
appearance of surgical instruments in MIS videos. The model robustly explains
the evolving object structure by switching between part mixture components
that rigidly encode pose-specific appearances of the tool. In effect, our versatile
approach to tracking 2D instrument pose reaches state-of-the-art results on two
public benchmarks and often improves the estimation of tool location and ori-
entation upon other trackers. We also showed that increasing visual shape cues
by a larger pool of shaft subparts leads to more stabilized tool tracking.

Tracking instruments in MIS scenarios is a challenging task. The shaft under-
goes frequent truncations, the end-effector can have many degrees of freedom in
articulation, such as the da Vinci instruments, and both parts can be occluded
when multiple tools are present. At the same time, a tool tracking algorithm
should run at frame rates ideally exceeding real-time to minimize the latency
of visual feedback and thereby to improve augmented assistance in MIS. Our
future work will concentrate on these challenges.
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Abstract. The removal of the prostate is a common treatment option
for localized prostate cancer. Robotic prostatectomy uses endoscopic
cameras to provide a stereoscopic view of the surgical scene to the sur-
geon. Often, this surgical scene is difficult to interpret because of variants
in anatomy and some critical structures such as the neurovascular bun-
dles alongside the prostate, are affected by variations in size and shape
of the prostate. The objective of this article is to develop a real-time
stereoscopic video processing framework to improve the perceptibly of
the surgical scene, using Eulerian Motion Magnification to exaggerate
the subtle pulsatile behavior of the neurovascular bundles. This frame-
work has been validated on both digital phantoms and retrospective
analysis of robotic prostatectomy video.

Keywords: Robotic prostatectomy · Motion magnification · Stereo-
scopic video processing

1 Introduction

Prostate cancer accounts for 27 % of all new male cancer diagnoses in the
United States in 2014 and almost 30,000 deaths [10]. Prosatectomy, in which
the prostate is surgically resected, is a common treatment for localized prostate
cancer. Although open surgery is possible, an increasing number of centers have
used a minimally invasive technique using laproscopic guidance. Robotic prosta-
tectomy, in which the intervention is performed with the aid of a series of robotic
arms, has become the dominant form of minimally invasive prostatectomy pro-
cedure owing to improved usability, faster recovery times, fewer complications,
and lower blood loss [2,4,5].

Critical structures to avoid during prostatectomy include the neurovascular
bundles, two sets of coupled arteries and nerves running along both sides of the
prostate, damage towhich can lead to complications in terms of urinary and erectile
function [12]. Movement towards nerve (and vessel)-sparing procedures has thus
been identified as crucial in improving patient quality-of-life post-surgically [9].
c© Springer International Publishing Switzerland 2016
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Fluorescence contrast agents such as those used with the daVinci FireFly
system have previously been used for real-time prostate lymphangiography to
enhance the visual salience of the neurovascular bundles [6]. However, such tech-
niques may be limited by the availability of fluorescence imaging equipment and
the additional instrumentation costs imposed on what is already considered an
expensive procedure [3].

The arterial pulsation of the neurovascular bundles provides a valuable cue
in their localization for vessel sparing procedures [12] but this pulsation is subtle
and difficult to detect. The goal of this article is to use recent advances in real-
time motion analysis and video processing to enhance the pulsation of sensitive
vasculature to make it more visible to the surgeon.

1.1 Related Work

Recently, motion analysis for the detection of vasculature in endoscopic video has
been investigated for a number of minimally-invasive procedures. We previously
proposed an intensity based monoscopic motion magnification pipeline for vessel-
sparing in endoscopic procedures, specifically endoscopic third ventriculostomy
and laproscopic prostatectomy. This pipeline made use of adaptive filtering to
track the heart-rate and proposed several methods for artifact reduction [8].

Amir-Khalili et al. [1] used a pipeline similar to phase-based motion magni-
fication to detect major arteries and veins during the Hilar dissections in partial
nephrectomy. Rather than enhance the pulsatile motion, their pipeline used the
filter response to segment the occluded vessels.

Another technique for motion based segmentation of pulsating structures was
developed to detect dural pulsation during ultrasound-guided epidural injections
and on relies extended Kalman filtering to fit a parametric model to pixel inten-
sities [7].

In this paper we apply motion magnification to stereoscopic video. Causal
and computationally efficient spatial-temporal filtering methods are developed
to handle the challenges presented by online processing of stereoscopic high def-
inition video. A digital phantom is developed for simulating pulsatile motion of
vessels with a known ground truth and both intensity and phase based pipelines
are evaluated on this phantom and restrospective human video.

2 Methods

Eulerian motion magnification as proposed by Wu et al. [15] and Wadhwa et al.
[13,14] takes advantage of small changes in the intensity or local image phase of a
video stream corresponding to the movement. Magnifying these changes directly
gives the perception of amplified motion without requiring the estimation of an
explicit motion field making magnification computationally efficient and suitable
for real-time applications. This framework relies on a two-stage process where
the video is first spatially filtered using either a Laplacian or a Riesz pyramid
then temporally filtered to extract coherent intensity changes.
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Although originally intended for monoscopic video analysis, Eulerian motion
magnification can also be used to exaggerate motion in stereoscopic videos with-
out inducing perceptual artifacts regarding depth cues. The primary concern of
this approach is the translation of three-dimensional motion to a two-dimensional
representation. To illustrate this, consider the Taylor series expansion of the
image intensity.

I(y(x + δx)) ≈ I(y(x)) + ∇IJyδx (1)

where I(y) is the intensity of the image at pixel index y, ∇I is the gradient of
the image intensity with respect to the pixel index, y(x) is the camera projection
of the 3D position x, and Jy is the Jacobian of said projection operator. For a
pin-hole camera model, this term is equal to:

Jy =

[
fx1
x3

, 0, −fx1
x2
3

0, fx2
x3

, −fx2
x2
3

]

(2)

where the coordinate origin is defined to be at the camera focus and the depth
direction, x3, perpendicular to the image plane. The pin-hole camera projection
is linear with respect to x1 and x2. If we were to magnify any motion in the 3D
co-ordinates, that is, magnify δx by α, this equation yields:

I(y(x + (1 + α)δx)) ≈ I(y(x)) + (1 + α)∇IJyδx

≈ I(y(x + δx)) + α (I(y(x + δx)) − I(y(x)))
(3)

So long as δx3 << x3 the linear approximation will be valid to the traditional
bounds proposed by Wu et al. [15].

The motion magnification pipelines examined follow along the lines of those
proposed by Wu et al. [15] and Wadhwa et al. [13,14] as shown in Fig. 1. This
linear approximation is applied to both cameras to synthesize stereoscopic video
with enhanced motion. One key consideration in this framework is the computa-
tional efficiency of the pipeline, as the intended use requires real-time processing
of two high-definition endoscopic video streams.

Fig. 1. Overview of a typical motion magnification pipeline

Rapid artifact reduction [8] can be performed after reconstruction which
ensures that intensity estimates are clamped within a reasonable range based on
the intensity distribution of the area in which motion is magnified.
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2.1 Spatial Filtering

A critical aspect of the original Eulerian motion magnification process is the
decomposition of the video into spatial frequency bands through a Laplacian
pyramid. This decomposition allows for the same pixel-wise temporal processing
to be performed over each spatial frequency band but with differing amplification
factors. The differentiation of amplification factors allows for the framework to be
adjusted according to the application in which it is used. Because of the linearity
of this pipeline each frequency band in the pyramid is the result of linear filtering
(aside from minor interpolation artifacts) and the subsequent temporal filtering
is also linear as is the weighted summation used for pyramid reconstruction. As a
result, the order of these operations can be swapped. The pipeline is equivalent
to performing the temporal filtering on a bandpassed image. If the first and
last levels of the pyramid are given a weight of zero as is traditionally done to
remove high frequency noise and changes in overall background (illumination),
and the remaining levels are fully amplified, this pyramid is equivalent to a
difference of Gaussian filter with standard deviations corresponding to the first
and last pyramid level. Further attenuation of the high frequency components
can be achieved by adjusting the difference of Gaussian filter. This modification
is highly attractive from a computational aspect as it reduces the amount of
spatial and temporal filtering required, especially if the Gaussian filtering is
approximated using a combination of IIR box-car filters.

2.2 Temporal Filtering

A key consideration for temporal filtering is the selection of the motion frequen-
cies to be amplified. To remove the signal from background motion and only
enhance pulsation, the filter must be selective to a relatively narrow bandwidth
around the heart-rate. For offline processing, this can be accomplished by taking
the Fourier transform of the entire video. However, for real-time applications
the temporal filtering must be causal, i.e. dependent only on previous frames,
and should be computationally efficient. In addition to their frequency domain
analysis, Wu et al. [15] constructed 2nd order IIR filters from the difference
of two lowpass filters. Here, we consider the general biquad filter with transfer
function:

H(z) = K
1 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(4)

When implemented in Direct Form II, [11] this filter requires only two delay reg-
isters, four additions and five multiplications per pixel. The gain can be factored
out as shown here and combined with the magnification factor to reduce addi-
tional computations. To design the filter we would like the following properties:
complete DC rejection, relatively narrow bandwidth about the target frequency,
and a unit gain with zero phase shift at the target frequency. The biquad filter
has two complex poles, the radius of which control the bandwidth of the filter.
One of the zeros is fixed at 1+ 0i to remove DC. The natural frequency of the
poles and the location of the remaining zero can then be chosen to achieve a
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peak gain at the target frequency with zero phase shift. Values for these last two
parameters can be found to satisfy the target frequency and zero phase shift con-
straints through numerical optimization methods, such as the downhill simplex
algorithm. The coefficients corresponding to a heart rate of 90 bpm sampled at
30 fps with a pole radius of 0.95 are shown in Table 1. This filter was used for all
experiments presented in this paper. In practice, the filter coefficients could be
updated based on the heart-rate obtained through an ECG or pulse-oximeter,
or be updated adaptively using a least mean squares algorithm as presented in
our previous work [8].

Table 1. Filter coefficients for heart-rate of 90 bpm sampled at 30 fps

b1 b2 a1 a2 K

−0.0336 −0.966 −1.809 0.9025 0.050

2.3 Phase-Based Filtering

One issue with a purely intensity-based formulation of Eulerian motion magni-
fication is the presence of artifacts at high spatial frequencies. These artifacts
are especially noticeable around high contrast edges and textured objects. To
address this, Wadhwa et al. [13,14] developed a phase-based approach which
used Riesz pyramids to extract local amplitude and phase information. Using
this information, the magnified motion can be added as a phase shift in each
sub-band. This pipeline cannot be collapsed, as obtaining the local phase is
non-linear and only valid over a narrow frequency range.

3 Digital Phantom Experiment

To initially validate the motion processing pipeline and to guide later design
decisions, a digital phantom with an a priori known motion profile was gen-
erated. This phantom consisted of a flat plane with a protruding half cylinder
representing the artery. A 512×320 patch showing a small artery was taken from
an HD endoscopic image inside the abdominal cavity during a radical prostate-
ctomy procedure. This image was mapped to the phantom to provide realistic
texture. A 3D deformation field can then be applied to the artery to simulate
a wide range of motions such as translations in lateral and depth directions,
expansion of the artery or more complex motion patterns (Fig. 2).

Two virtual cameras are placed 6 cm from the target with a camera separation
of 8 mm and the stereoscope video was simulated through surface ray-casting. For
the phantom experiment we simulated two motion paterns, 0.025 mm translation
in the lateral direction and a 0.025 mm expansion/contraction in diameter. These
motion patterns corresponded to 2D displacements of approximately half a pixel
in the simulated video and were subtle enough to be difficult for a human to
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Fig. 2. Implementation of translation and expansion/contraction in the digital phan-
tom.

Fig. 3. First frame with yellow line indicating location of subsequent time profile visu-
alization

observe. Using the same model we also simulated videos with 2, 4, 6, 8, and 10
times the original motion to serve as gold standards. Both the intensity-based
and phase-based motion magnification pipelines were applied to the original
profiles in the digital phantom. The resulting motion amplified videos were then
compared against the gold standard videos in terms of root mean square error
(RMSE) on the video intensities.
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3.1 Results

Both intensity and phase pipelines produced visually convincing results. The
pulsation, barely visible in the original videos, was greatly enhanced and very
prominent in the processed videos. Visual results for a translation and expan-
sion/contraction are given in Figs. 4 and 5 respectively. The time-profile for the
gold standard and processed videos clearly show translational motion of the
artery in the first case and expansion and contraction of the artery in the second.
Qualitatively, it appears that both the magnification pipelines slightly underesti-
mate the amount to which the motion should be magnified to achieve the ground
truth videos. This is likely due to some of the intensity and phase changes caused
by the motion falling outside the pass-band of the spatial-temporal filtering and
becoming attenuated. The RMSE results for the amplified video intensity are
shown in Fig. 6a and b for translational motion and Fig. 6c and d for expan-
sion/contraction. The RMSE minima for the intensity-based pipeline correspond
closely to the correct magnification factor. In all cases, the artifact reduction
technique based on min/max filtering reduced the RMSE but this improvement
was most prominent with the intensity-based pipeline. The minima of the RMSE
curves for the intensity-based pipeline correspond to the correct magnification
factor, however this property was not observed in the phase-based pipeline or
after artifact reduction. This may be due to the increased processing required
for these methods. The Riesz pyramid also results in some reconstruction error.
While this error slightly increases the RMSE metric for phase-based pipelines,
especially at low magnification factors where the RMSE from other sources is
quite low, they were not visually perceptible and have minimal impact on the
quality of the final video.

Fig. 4. Time profile visualization for translation motion pattern at 10x magnification.
The yellow line in Fig. 3 indicates the location where the time profile is taken. The
pixel intensities along the vertical direction correspond to pixel intensities along the
yellow line in the video. The horizontal direction corresponds to time with the left side
of the profile being the beginning of the video.
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Fig. 5. Time profile visualization for expansion/contraction motion pattern at 10x
magnification. The yellow line in Fig. 3 indicates the location where the time profile is
taken.

4 Retrospective Video Analysis

The intensity and phase-based motion magnification pipelines were applied ret-
rospectively to human video from a robotic radical prostatectomy using the
daVinci surgical robot. Time profiles of the results are shown in Fig. 7. A magni-
fication factor of α = 5 was chosen based on the small magnitude of the motion
being sought out, the pulsation of the neurovascular bundles, and the desired
perceptibility of the motion in the amplified video. The challenge posed by these
videos was to selectively magnify arterial pulsation in the presence of background
motion and endoscopic lighting conditions.

4.1 Results

As shown in the time profiles, both intensity-based and phase-based pipelines
were able to selectively magnify motion at the heart-rate while being impervious
to gross, non-periodic shifts in the scene as shown approximately 40 % of the way
through the time profiles. Thus, both pipelines were readily able to increase the
perceptibly of small arteries without excessive perceptual interference from gross
prostate shift and the motion of the surgical tools.

Qualitatively, the phase-based pipeline produced slightly higher quality
amplified videos than the intensity-based pipeline, even considering artifact cor-
rection, however; the saliency of the arterial pulsation is excellent in both. The
advantage of the intensity based pipeline is the reduced computational cost,
especially when using only a bandpass spatial filter.

5 Discussion and Future Work

Stereoscopic motion magnification using both the intensity-based and phase-
based Eulerian motion magnification pipeline has been shown to work for the
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Fig. 6. RMSE error between each motion magnification pipeline and the digital phan-
tom gold standard for magnification values varying from 1 to 10. The solid line shows
the original pipeline while the dashed line shows the same results after artifact reduc-
tion through min/max filtering.

amplification of small motions relative to the depth of the moving object. This
framework may be useful in laproscopic interventions in which a stereoscopic
video source is available, such as in robot-assisted prostatectomy. Both pipelines
have been characterized on a digital phantom with realistic motion and tex-
ture properties mimicking those seen in human prostatectomy videos. Eulerian
motion magnification was then performed retrospectively on the stereoscopic
human video showing a distinct increase in the perceptibly of vasculature exhibit-
ing subtle pulsation.

Future work for this project includes the integration of this framework into
the daVinci robotic prostatectomy system with associated software modifica-
tions to ensure real-time performance. This will include work in accelerating the
algorithm using general purpose graphics card programming, taking advantage
of the inherently parallelization capabilities of the framework.
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Fig. 7. Time profile visualization of intensity-based and phase-based motion magnifi-
cation pipelines at α = 5 magnification. The yellow line in Fig. 7a indicates the location
from which the time profile is taken.

6 Conclusion

This article presents an Eulerian motion magnification framework tailored for use
in robot-assisted prostatectomy for vessel sparing. This framework is computa-
tionally efficient, using only causal filtering, and is designed to operate real-time
on streaming stereoscopic high-definition video.
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Abstract. In situ 3D reconstruction from endoscopic images is impor-
tant to determine the correct course of action for, e.g., treatment of
abnormal growths. Currently, the endoscopist has to rely solely on visual
cues in order to infer the growth’s shape and size and determine an appro-
priate treatment. However, tissue uniformity and scale ambiguity from
traditional monocular endoscopes make this visual assessment prone to
errors and time consuming. We propose a practical system to densely
reconstruct both shape and size of tissues with minimal modifications to
a standard endoscope. We present a custom single-fiber structured light
probe projecting a wave pattern on the tissue surface that allows semi-
dense reconstruction with few ambiguities. Based on the coarse recon-
struction, we retrieve the surface reflectance parameters according to a
hybrid diffuse/specular model which are used to initialise a close-range
Photometric Stereo reconstruction. By taking into account the tissue
characteristics and the light fall-off, our Photometric Stereo formulation
provides dense metric 3D shape information without the need for sur-
face normal integration. A preliminary study was carried out both on
phantoms and ex vivo samples of human tissue.

1 Introduction

In recent development of endoscopy technology, diagnosis and treatment using
endoscopes on digestive tracts have been widely performed [1]. As for the treat-
ment of early stage gastric cancers, treatment methods differ depending on the
size of the tumours. For this reason, accurate measurement of the size of neo-
plasias is important. Currently, forceps and 2D visual cues are used by the endo-
scopist to assess the size of polyps, but this is error-prone and time consuming.
Therefore, techniques for objective measurements are desirable.

Intraoperative 3D reconstruction from endoscopic images has been the focus
of extensive research in recent years, and a comprehensive review of the state-of-
the-art can be found in [2,3]. However, as many of the systems mentioned in the
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review article such as stereo or Structure-from-Motion require either costly stereo
cameras or multiple images, solution to the one-shot reconstruction problem
remains elusive. Indeed, in the recent evaluation of one-shot 3D reconstruction
technique [3], 6 out of 8 methods require a stereo camera, whereas the remain-
ing two are Structured Light and Time-of-Flight systems. Structured light (SL)
is one of the systems that can solve the one-shot reconstruction problem that
has seen recent applications in endoscopy: in [4], a micro pattern projector was
mounted outside the endoscope for 3D reconstruction, in [5] a SL device for tubu-
lar structures was proposed, while sparse reconstruction with spectral encoding
was studied in [6]. However, generally a sparse reconstruction of a limited area
can be obtained, and noise as well as tissue texture can prevent large areas from
being reconstructed and obtain reliable size information.

Earlier works in depth cue fusion [7] suggested combining sparse, reli-
able feature-based methods such as structured light with dense photometric-
based techniques that can be initialised with sparse information. Photometric-
based techniques such as Shape-from-Shading have been applied to endoscopy
[8–10], but they require either pre-operative data for registration, prior calibra-
tion procedures, or intra-operative calibration to resolve the scaling ambiguity
and recover absolute depth. Photometric Stereo (PS) is a technique that has
been applied to endoscopy [11] on Lambertian surfaces, but required external
markers for initialisation of the illumination response matrix. Recent develop-
ments in PS [12] allow direct computation of the depth without integration of
the normal field after sparse depth initialisation.

In this work, we contribute by proposing a SL endoscope with an integrated
projector in its instrument channel. We improve the PS formulation for endo-
scopes by using the sparse reconstruction to initialise a PS technique that is
independent of the surface albedo and explicitly takes into account light intensity
distribution and position, while being robust to non-Lambertian areas. Impor-
tantly, our system does not require significant alterations to standard equipment.
To the best of our knowledge, this is the first work combining structured light and
photometric stereo applied to endoscopy. Preliminary results on phantoms and
ex vivo human tissue samples show interesting possibilities for further research.

2 Method

Our proposed system consists of two main modules: first, we miniaturised a laser
pattern projector consisting of a single optical fiber that can be fed through the
instrument channel of the endoscope for SL projection. Second, the PS module
consists of three externally mounted LEDs. While our prototype does not satisfy
the endoscope size requirements due to the external mount, in the final product
stage it will be possible to include three internal LEDs, or to apply colour filters
to the on-board lighting as done in [11]. The overall system with the projected
lights and patterns is shown in Fig. 1a and b. Reconstruction with the SL module
is discussed in Sect. 2.2, while the final PS-based reconstruction is presented
in Sect. 2.3. Prior to the reconstruction, however, together with the standard
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(a) (b)

Fig. 1. (a) Close-up of the prototype. The structured light projector protrudes from
the tool channel, while the three red, green and blue LEDs are mounted around the
scope. (b) Projected patterns from LEDs and structured light. (Color figure online)

(a) (b) (c)

Fig. 2. (a) Calibration sphere with projected SL pattern. (b) Design of the wave
pattern. (c) Projected SL pattern.

camera and photometric calibration, it is necessary to calibrate the SL and LED
setup. This is discussed in the next section.

2.1 LED and Structured Light Calibration

Following camera and photometric calibration, calibration of extrinsic matrix
relating the SL projector with the endoscope camera is performed following the
steps outlined in [4]: images of a spherical object with known dimensions are
taken while projecting the SL pattern as shown in Fig. 2a. A known pixel is
used for initial matching between the projected and visualised patterns, while
the distinctive crossing points of the wave pattern allow to find unique matches
for calibration refinement. The wave pattern used is adapted from [13] and is
shown in Fig. 2b. The wave lines are sinusoidal patterns, with equal wavelengths
between vertical and horizontal lines. However, since the vertical spacing is not
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(a)
(b) (c)

Fig. 3. (a) RID calibration for red LED. (b) Estimated position and orientation of
LEDs. (c) Estimated RID. (Color figure online)

equal to an integer multiple of the horizontal wavelength, the intersection points
(or grid points) appear at the different phases on the wave patterns (Fig. 2c). This
implies that the local pattern around an intersection point has a local uniqueness,
which can be used as a helpful discriminative feature both during calibration as
well as reconstruction. While our current prototype assumes the SL projector to
be fixed relative to the camera, this is seldom the case during endoscopy since
the tool channel might be needed for other purposes. We therefore proposed a
system for auto-update of the calibration parameters, to appear in [14].

One of the crucial stage is accurate calibration of the LED setup. While this
traditionally only involves positional calibration of the LEDs, which is achieved
usually through triangulation of specular highlights, it is also necessary to esti-
mate the Radiance Intensity Distribution (RID) of the light sources. The RID
is a function g(φ) describing the power emitted by a light source according to
the angle φ from its main axis. This is important since virtually all models
used in SFS and PS assume an ‘omnilight’ model where the light emits radiance
isotropically in all directions, and the incident light energy on the surface is
only attenuated by the light fall-off inversely proportional to the square of the
distance. However, as verified also in [11], this model is inadequate to the illumi-
nation types found on scopes, where the highly focused light is normally emitted
up to 15◦−30◦ from the main direction. To this end, we have recently proposed
a system (to appear in [15]) for joint practical calibration of light position and
RID. The technique leverages the fact that the projection of a light beam on a
Lambertian plane will be symmetrical about an axis related to its position and
orientation. Also, we prove that the point of maximum intensity lies on said axis,
hence it is possible to recover the light position and orientation just by looking
at its points of local maxima. In Fig. 3a, we show a frame from the red LED
calibration, done with a matte calibration plane with AR markers for positional
information around a blank space for RID calibration. The estimated position of
the LEDs is shown in Fig. 3b, reflecting the triangle formation around the cen-
tral camera (black point), while the fitted RID to the information is shown in
Fig. 3c. While the absolute amplitude of the RID is only of relative importance
since it depends on the material reflectance, the important aspect to calibrate is
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the RID fall-off, estimated in our experiment to get to 10 % of its amplitude at
approximately 25◦. This corresponds to an analytical expression for the RID of
g(φ) = cos(φ)15.58, which will be used in our PS reconstruction.

2.2 Structured Light Shape Acquisition

Our structured light system configuration is shown in Fig. 4(a). This consists of
a FujiFilm VP-4450HD system coupled with a EG-590WR scope. The pattern
projector is inserted through the instrument channel of the scope, with the pro-
jector lens slightly protruding from the head. The light source of the projector
is a green laser module with a wavelength of 532 nm. The laser light is trans-
mitted through a plastic optical fiber with a diameter of 1.8 mm to the tip of
the projector. A micro pattern chip with the printed pattern is set at the tip of
the fiber. The transmitted light passes through the micro pattern chip and then
through the aspherical lens, with a field of view of 30◦.

For the structured light shape acquisition, our method is based on template
matching using grid-point features in [16]. In this system, given a wave inter-
section template dictionary, matches are searched along epipolar lines. Since the
matching process can be affected by the pattern distortion as it is projected
on the surface, this distortion is represented as an affine transformation with
two DOFs. Finally, the overall template matching cost is estimated using the
optimal surface normal directions given the affine transformation matrix. The

Fig. 4. (a) Proposed structured light endoscopic setup
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patch-based template matching cost is then regularized by Belief Propagation
according to the cost function:

E(T ) =
∑

p∈V

D(p, tp) +
∑

(p,q)∈U

W (tp, tq), (1)

where T = {tp|p ∈ V } is a set of correspondences with tp, tq being the corre-
sponding grid point of pattern points p and q respectively, V is the set of the
grid points, D is the correlation cost between the grid points of the image and
the pattern, and W is a distance cost which is 0 if p and q are neighbouring grid
points and positive otherwise. This cost function is small if p and tp have small
matching cost D, and the connections between the grid points are coherent for
the image and the pattern.

2.3 Photometric Stereo Reconstruction

Multispectral Photometric Stereo (MPS) [17] traditionally aims to recover sur-
face normals from a single image of a Lambertian surface simultaneously illumi-
nated by a red, blue and green light. In this way, the intensity recorded by each
colour channel roughly corresponds to the reflected light from one of the light
sources. More formally:

I = ρ(P · L)n, (2)

where ρ is the monochromatic albedo, P is the matrix representing the spec-
tral crosstalk between CCD sensors, L the concatenated light directions and n
the target surface normals. Traditionally, methods involve a sparse reconstruc-
tion using Structure-from-Motion to estimate P , after which the normals can be
found from a simple matrix inversion given the known light positions [17]. While
PS in the general Computer Vision community can benefit from a number of sim-
plifying assumptions such as a larger number of inputs and directional lighting,
in MIS the problem is highly challenging. Only recently Collins and Bartoli [11]
adapted the MPS problem to close-range lighting, recovering depth through a
2-stage local/global approach. However, they maintain the assumptions of uni-
form albedo, Lambertian reflectance through the use of polarising filters, and
assume the presence of external tools/markers to estimate the unknown matrix
P . More recently, in [12] a Fast Marching (FM) based procedure was proposed
for close-range PS, which starting from a single known point, or ‘seed’, prop-
agates the information while explicitly taking into account the light RID and
distance attenuation.

We build on these past improvements by proposing a novel technique that
considers a more realistic reflectance model with specularities. Moreover, we
adapt the propagation method in [12], for explicit depth reconstruction inde-
pendent of the albedo and integrated with our structured light initialisa-
tion. First, similarly to [17] with Structure-from-Motion and PS, we use our
SL reconstruction to estimate the matrix P and calculate Ĩ = P−1I, the
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crosstalk-compensated image. Then, we consider the Blinn-Phong model for dif-
fuse/specular reflection:

Ĩ =
g (v · a)

‖l‖2
(

ρ1
l · n

‖l‖‖n‖ + ρ2

(
(l + v) · n
‖l + v‖‖n‖

)α)
, (3)

where g() is the light RID estimated through calibration [15], l the light vector
at a point, v the view vector, (ρ1, ρ2) the diffuse and specular albedos and α the
exponent determining the sharpness of specularities. One of the nice character-
istics of the Blinn-Phong model, apart from approximating well surfaces with
specularities, is the additive relationship between diffuse and specular compo-
nents, which we exploit in our method.

We notice that in Minimally Invasive Surgery (MIS) specularities are very
sharp due to tissue characteristics and focused lighting. This implies a very
high α, which in turn implies that the specular term will be essentially zero for
(l+v)·n

‖l+v‖‖n‖ < 0.95, meaning that most of the image will be essentially Lambertian
apart from specularities that can be identified through intensity/saturation
thresholding.

We therefore proceed first to reconstruct the diffuse portion of the surface.
In [12] it is shown that the PS problem involving light sources with RIDs of the
form g(φ) = cos(φ)β amounts to solving the PDE:

{
bij(x, y, z) · ∇z(u, v) = sij(x, y, z), (u, v) ∈ Ωp

z(u, v) = p(u, v), (u, v) ∈ ∂Ωp

, (4)

where (x, y, z) are the 3D coordinates, (u, v) the pixel coordinates, z(u, v) the
function that maps a pixel value with its depth, p(u, v) are Dirichlet boundary
conditions and:

bij =

(
Ĩi(u, v)qβ+3

i (x, y, z)Lx
i − Ĩj(u, v)qβ+3

j (x, y, z)Lx
j

Ĩi(u, v)qβ+3
i (x, y, z)Ly

i − Ĩj(u, v)qβ+3
j (x, y, z)Ly

j

)

. (5)

The vector b can be calculated from any pair of image channels (i, j) from the
image intensity, the corresponding light source position (Lx, Ly), the distance q
from the light source to a pixel and the RID parameter β. The scalar function
s(x, y, z) is:

sij(x, y, z) =
(
Ĩi(u, v)qβ+3

i (x, y, z) − Ĩj(u, v)qβ+3
j (x, y, z)

) z(u, v)2

f
, (6)

where f is the focal length. The solution to Eq. (4) can be found through the
Fast Marching algorithm with the following forward upwind scheme, for the kth

iteration:

zk+1 =
‖b1ij(z

k)‖zk
u−sgn(b1i,j(z

k)),v
+ ‖b2ij(z

k)‖zk
u,v−sgn(b2i,j(z

k)) + sij(zk)

‖b1ij(zk)‖ + ‖b2ij(zk)‖ . (7)

Finally, starting from our SL seeds, we can outline the Fast Marching algorithm:
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1. Initialise SL seed values and add all the points’ neighbours to a list of points
to be visited. Initialise all other points to the depth of their nearest seed.

2. Traverse the list of points to be visited and calculate b and s for each point.
Update the value of z according to a standard forward upwind scheme.

3. Add the point’s neighbours to the list of points to visit and repeat until
convergence.

The algorithm above allows us to reconstruct Lambertian areas. However,
it is adversely affected by specularities. In [12], the authors are able to ‘steer’
the propagation direction to propagate around cast shadows and avoid their
interference in the propagation process. We propose the same strategy around
specular highlights detected via standard intensity thresholding, so that the
Lambertian portion of the image can be reconstructed error-free. Details on
steering the Fast Marching propagation are in [12].

3 Results

We tested the performance of our proposed method on simulated data, phan-
tom models and ex vivo human tissue samples. We first tested the PS and SL
modules individually on simulations and phantom models respectively, while the
full system was deployed for the ex vivo tissue samples. All C++ code has been
executed on a standard consumer grade laptop and is available on the author’s
site. In terms of computational complexity, a single iteration of the serial, unop-
timised code for our algorithm was found to execute in 280 ms for a 400 × 400
image on the CPU, with 3–4 iterations usually required until convergence. Given
these timings, real-time operation is deemed to be feasible upon parallelisation
of the fast marching algorithm.

3.1 Photometric Stereo Evaluation

For our simulations, we used the AbsPeaks and Sphere datasets. The models were
virtually placed at around 20 mm and 60 mm respectively, and were chosen to
evaluate the performance of the algorithm on both smooth and irregular surfaces
with discontinuities. The rendering was done by placing a virtual camera at the
origin and three light sources with similar intrinsic characteristics as those founds
on the endoscope used for our experiments. For each dataset, an artificial albedo
with normalised values ranging from 0.6 to 1 was generated with a Perlin noise
process in order to show the algorithm’s independence to the object texture.
This can be seen in the sample renderings in Fig. 5. The Blinn-Phong exponent
for specularities was set to 100. To further evaluate the performance of our
algorithm in noisy environments, we performed two tests: first, the input images
were injected with i.i.d. noise drawn from a uniform distribution with ranges
[0, 0.05Imax] and [0, 0.1Imax] respectively, where Imax is the maximum intensity
of the image, corresponding to 5% and 10% noise respecitively. These results are
shown in Table 1(a). Finally, we tested the sensitivity of the algorithm to errors



54 M. Visentini-Scarzanella et al.

Table 1. Reconstruction accuracy with absolute and relative errors for synthetic
datasets against (a) image noise and (b) seed noise.

in the initial seeds, by adding 5% and 10% noise to the initial seed values.
Whenever a single input seed was used, this was placed in the middle of the
image, and exactly 5% and 10% was added to its value. Whenever multiple
seeds were used, the noise was drawn from a zero-mean uniform distribution
and the seeds randomly placed across the dataset. These results are shown in
Table 1(b). All results show a good performance of the algorithm under both
noiseless and noisy conditions.

(a) (b) (c) (d)

Fig. 5. Reconstruction results for the Sphere (first row) and Peaks (second row)
datasets. Columns (a–d) show an example rendered image from the dataset, the ground
truth depth, and reconstruction results with no noise and 10 % noise added respectively.

3.2 Structured Light Evaluation

To evaluate the performance of our SL system, we test it first on an anatomical
stomach model (Kyoto Kagaku) and then on a custom tumour phantom created
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to reproduce the reflectance characteristics of live tissue (Wetlab). The mod-
els were placed at approximately 7 cm from the scope, reconstructed and their
depth value at the point perpendicular to the scope compared with our manual
measurements. Phantoms and renderings of their reconstructions are shown in
Fig. 6. The SL reconstruction is able to successfully reconstruct the general trend
of the surfaces, like the convexity of the phantom stomach in models (a) and (b),
and the distance was measured to be within 5 mm of its actual value. However,
due to the lack of subpixel accuracy and the discreteness of disparity values, the
reconstructions lack detail and exhibit some staircasing. In the tumour phan-
tom for example, while there is a rise in the reconstructed volume corresponding
to the lump, we are unable to clearly capture its boundaries. This aspect will
be investigated as part of our future work, since a good initial reconstruction
is crucial for correctly estimating the reflectance parameters needed by the PS
module.

3.3 Ex vivo samples

In our experiments, ex vivo human tissue samples were collected and scanned
at Hiroshima Hospital for qualitative validation. Three samples in total were
collected during endoscopic resections of esophageal, gastric and colonic tumours.
The samples were then fixed on a rigid support and scanned with our system.
The input images to the system under multispectral and structured lighting

(a) (b) (c)

Fig. 6. SL evaluation. Top: images of (a), (b) anatomical stomach model and (c)
tumour phantom. Bottom: their corresponding reconstruction renderings
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(a) (b) (c)

Fig. 7. Ex vivo samples. Top: SL and PS images of the collected samples. Bottom:
reconstruction renderings with the real tissue texture. Inset, from the camera perspec-
tive, red points are the SL initialisation, the blue surface shows the final PS recon-
struction. (Color figure online)

are shown in Fig. 7(top). The reconstruction renderings (bottom) are shown
both with their true texture, while the inset images shown from the camera
perspective are colour-coded to denote the reconstruction source: the red points
represent the initial structured light reconstruction, and the blue surface the
final recovered shape.

In the first sample (Fig. 7(a)) the structured light pattern was clearly visible
and a large central portion of the sample was reconstructed with structured
light. The final propagated surface as seen from the camera perspective exhibits
a largely flat trend, with a gentle downward slope towards the upper right,
which is confirmed by visual assessment of the camera images. The oscillations
on the side of the surface are due to the fact that in our current formulation
each point exclusively considers information propagated along the shortest path,
which means that it is affected by three seed points at most. Hence, any noise
in neighbouring initial seeds will give rise to slight ripples in the surface. With
our approach, it was possible to obtain the metric size of the complete sample
rather than the smaller area that could be reconstructed with structured light.

In the second sample, the darker images only allowed to reconstruct a small
portion of the surface. While the final propagated surface is piecewise flat, it
clearly exhibits a protruding tip in correspondence of the white mass in the center
of the sample. This was confirmed by additional images of the same sample,
where while the high frequency details were lost, the overall trend of a flat surface
with a central mass was successfully recovered. The flatness of the reconstruction
is due mostly to the lack of subpixel accuracy in our SL initialisation, leading to a
staircasing effect. We expect that for applications such as endoscopic navigation,



Tissue Shape Acquisition with Structured Light and Photometric Stereo 57

with larger areas imaged, the method can benefit from a clearer contribution
from the light fall-off and RID terms.

Finally, we show our third sample as a failure case, with the sample standing
vertically on its base. The angle caused a noisy estimate of the seeds, leaving
only a generic surface trend pointing towards the camera. Future work will aim
to filter out noisy seeds from the process. While imaging conditions as of now
do not allow the recovery of smaller details, but can still be used for to assess
the extent of the area.

4 Conclusions

We propose a hybrid Structured Light/Multispectral Photometric Stereo system
for tissue size and shape acquisition in endoscopy. Our SL probe is small enough
to fit through a standard instrument port, and the wave pattern employed allows
reconstruction of a sharp monochromatic laser pattern with few ambiguities. We
have adapted a state-of-the-art Fast Marching PS technique to the challenging
MIS environment and showed its performance under noisy and textured environ-
ments with specularities. Promising preliminary results have been shown on sim-
ulated data and ex vivo human tissue samples showing a good ability to recover
the overall size and general surface trend even in challenging conditions. Future
work will focus on detailed reconstruction and integrating the LEDs inside the
scope head in order to allow in vivo operation.

Acknowledgments. This work was supported by The Japanese Foundation for the
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Abstract. In abdominal surgery, augmented reality has been attempted
by registering preoperative 3D data onto the intraoperative laparoscopic
view. The registration may be aided by an interventional 3D imaging sys-
tem such as a rotational C-arm. It has been shown that one can determine
the transformation between an intraoperative 3D volume and the laparo-
scopic view by letting the laparoscope tip enter the C-arm acquisition
field. However, the transformation estimation was up to a 1D rotation
and a 2D translation. We propose to complete this registration by using
local shading constraints with a piecewise constant albedo hypothesis on
the surface of the surgical scene. Thus, the registration becomes fully
automatic with no extra apparatus required. Results from experiments
on in vivo data show a millimetric registration accuracy.

Keywords: Registration · Abdominal imaging · Minimally invasive
procedure · Intraoperative imaging · Endoscopic imaging

1 Introduction

With the advent of minimally invasive surgery and digital endoscopic cameras
over the past few decades, intraoperative augmented reality has fostered much
research in computer vision [1]. The general goal is to improve the surgeon’s
perceptions by augmenting the video feedback with a high definition 3D model
provided by a preoperative CT or MRI [2–4]. Applications include revealing
hidden vessels or tumors. Accurately performing this augmentation remains a
challenge as the patient’s anatomy may significantly change between the preop-
erative scanning and the intervention. Notably, in abdominal surgery, the cavity
is insufflated with gas which applies pressure on the organs, thus hindering an
accurate registration [5]. To compensate for this deformation, a solution may be
to introduce a 3D rotational C-arm as an intermediary step in the augmentation
process, as this type of apparatus is becoming increasingly popular. Given the
non-rigid transformation of the organs of interest between the preoperative and
intraoperative 3D scans ([6,7]), all that is left is to determine the relationship
between the intraoperative volume and the laparoscopic camera.
c© Springer International Publishing Switzerland 2016
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Fig. 1. Context of our method. As shown on the left, the laparoscope purposefully
enters the acquisition field of the 3D rotational C-arm. Thus, as depicted on the right,
our method allows us to extract the laparoscope from the resulting intraoperative
volume, place a virtual camera accordingly and generate a virtual view of the organ
of interest (usually with volume rendering) possibly including preoperative data. The
laparoscopic image can then be augmented by superimposition with the virtual view.

In [8], we presented a method to tackle this problem without external track-
ing. First, after a classic camera calibration using a checkerboard, the laparo-
scope is blocked so that it sees the organ of interest and also enters the acquisition
field of the 3D rotational C-arm (Fig. 1). As shown in [8], the metallic presence of
the laparoscope does not produce artifacts affecting the region of interest. Then,
an intraoperative 3D scan is performed and the laparoscope’s body is extracted
from the intraoperative volume. This allows us to estimate directly the rigid
registration between the laparoscopic camera and the intraoperative 3D imag-
ing system (Artis Zeego, Siemens). This relationship is valid only as long as the
camera remains static, which already routinely occurs at several stages of an
intervention like a liver segmentectomy.

The method [8] is very appealing but suffers from two main drawbacks. First,
due to the tubular shape of the laparoscope, its roll angle cannot be determined
from the intraoperative volume. This degree of freedom is estimated thanks to
an accelerometer included in the camera, but this is not featured in most laparo-
scopes. Second, [8] assumes that the optical axis coincides with the revolution
axis of the laparoscope, which may be violated depending on the model used,
as illustrated in Fig. 2(a). This difference results in a 2D shift ε in the image
plane. Though small at the scale of the device, it can yet result in up to sev-
eral tens of pixels of registration error in the augmentation. Other parameters
such as the zoom and focus also influence the position of the optical axis and
thereby ε. A calibration dedicated to estimate ε is possible, but not relevant
before the intervention. Indeed, many endoscopes are separable from the camera
(Fig. 2(b)) and the surgeon may make it spin during the intervention to place the
light cable upon desire (Fig. 2(c)), which changes ε. Likewise, the zoom and focus
of the endoscopic camera may also be changed intraoperatively and invalidate
the preoperative estimation of ε. While performing a supplementary calibration
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Fig. 2. Anatomy of a laparoscope. (a) A simplified illustration of the structure of a
laparoscope presents an exaggerated misalignment ε between the optical axis and the
axis of revolution. (b) Changing the zoom and focus influence ε. Also, the camera and
the endoscope are separable. (c) As a result, both can rotate around each other once
attached and ε varies.

intraoperatively might be feasible, the sake of preserving the workflow compels
for a method purely based on image processing.

In this paper, we present a novel method to complete [8]. It solves the previ-
ously mentioned registration issues using only information from the intraopera-
tive volume and the laparoscopic image. As discussed, three degrees of freedom
are to determine – the roll angle and the translation ε along the image axes.
We propose to obtain these by optimizing a dissimilarity metric between the
laparoscopic image and the view from the virtual camera upon the content of
the intraoperative volume (Fig. 1). Given the relatively poor contrast between
the different organs in an intraoperative CT image, the surface of the abdominal
cavity is one of the most relevant information we could extract from the volume
for the virtual camera. Since the cavity is insufflated with carbon dioxide, it
presents a good contrast with the surrounding tissues and therefore extracting
its surface is trivial, using for instance marching cubes.

Related Work. There are three main ways to register an intraoperative surface
to the laparoscopic image. One way is to use Shape-from-Shading (SfS), which
reconstructs a surface from a single image based on the pixels’ intensity and the
reflectance function [9,10]. The reconstructed surface can then be registered to
the surface extracted from the intraoperative volume using a method such as
Iterative Closest Point (ICP). However, it has been established that SfS should
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not be used on its own in laparoscopic surface reconstruction [11], notably due
to the falseness of the hypothesis of constant albedo throughout the scene. In
our case, SfS would be overachieving since we do not need to reconstruct the
surface from the laparoscopic image, but rather to design a dissimilarity met-
ric between the intraoperative volume and the image. This enables us to use
a local approach to shading and thus to alleviate the hypothesis of constant
albedo (Sect. 2.2). Another means to relate a surface with its image is simply
to perform a correlation between their luminance using Mutual Information or
an equivalent. However, the surface extracted from the intraoperative volume is
textureless. There is thus no color information and approaches based purely on
luminance are likely to fail (see Sect. 3 for experimental results supporting this
assertion). We also cannot consider methods based on photo-consistency [12,13]
which has been successfully applied to endoscopic scenes [14], as two or more
images are required.

Our proposed method to complete the registration uses a local formulation
of the shading constraints. In the next section, we present the shading model
and the formulation of the dissimilarity metric between the two inputs.

2 Methodology

This section describes the shading model used to determine the received light
intensity. This model is simple because it is applied locally on the surface and
uses piecewise constant albedo and piecewise constant light intensity hypotheses.

2.1 Shading Model

As illustrated by Fig. 3, the only light source inside the abdominal cavity is the
one from the laparoscope, modeled as a point light source of position S ∈ IR3 and
intensity l ∈ IR supposed constant locally. We consider Σ the surface extracted
from the intraoperative volume and ϕ ∈ C2(IR2, IR3) the embedding of Σ which
provides the surface point for each pixel q ∈ IR2 in the laparoscopic image I. ϕ is
known up to the sought pose of the virtual camera. The normal to Σ at ϕ is given
by N ∈ C2(IR2, IR3). In a typical laparoscopic image, there are often specularities
and poorly lit areas. If we discard those (see Sect. 2.2), it is reasonable to assume
that the camera response is linear and therefore a quantity of light k is converted
by the sensor into a pixel intensity given by τ(k) = ak, a > 0. The albedo
ζ ∈ C0(IR2, IR), or surface reflection coefficient, is supposed constant on the
surface locally for a same tissue and therefore ζ(q) = b, b > 0. This is the classic
limiting hypothesis in SfS, which we relax in Sect. 2.2.

In a laparoscopic setting, the effect of illumination fall-off may be strong. We
model this by dividing the amount of received light by the squared surface-to-
light source distance. Assuming S and the origin O coincide, the illumination
vector L ∈ C(IR2, IR3) at ϕ is thus given by:

L = l

−→
ϕS

‖−→
ϕS‖2

= l
S − ϕ

‖S − ϕ‖2 = −l
ϕ

‖ϕ‖2 (1)
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Fig. 3. Shading model. The point light source S emits a ray −L that hits the surface
at ϕ. Assuming a Lambertian surface, the light is reflected with respect to the normal
N and the illumination vector L. This reflection is projected onto the image plane I
at q with O being the optical center and the origin of the world space.

Assuming that the surface is Lambertian, the reflectance R ∈ C2(IR2, IR) is
given by R = L ·N . Finally, using the camera response function τ , the intensity
I of a pixel q is predicted by:

I = τ ◦ (ζR) = ab(L · N ) = −c
ϕ�N
‖ϕ‖2 with c = abl (2)

Thus, based on reasonable assumptions about shading in the abdominal cavity,
Eq. (2) is a simple solution to relating the surface to the luminance in the laparo-
scopic image. The coefficient c would ideally be a function of space as both albedo
and light intensity vary in the scene. Therefore, we assume c to be constant only
locally. The next section explains how this piecewise relationship between the
surface and the laparoscopic image can be used in order to determine the three
unknown registration degrees of freedom.

2.2 Shading-Based Surface-Image Dissimilarity

Equation (2) is valid for areas in the scene that are not extremely lit (specu-
larities), unlit and for which the albedo is approximately constant. Therefore,
we first apply a simple large median filter (23 × 23) on the 1080p laparoscopic
image in order to robustly remove high frequencies (texture and specularities)
while preserving the edges. Dark areas are discarded with a simple threshold on
luminance. Satisfying the locally constant c requirement is equivalent to locally
enforcing constancy for both albedo and intensity.

Therefore, we divide the image into a set P of homogeneous patches using
the watershed algorithm (Fig. 4). The distance between the watershed seeds
is related to the size of the image and the kind of its content. In a typical
laparoscopic scene filmed at 1080p, the size of the different organs is commonly
above 100 pixels, due to the close-up view. Setting the seeds too coarsely would
result in missing small structures, while patches not large enough would not
contain enough shading information and thus would fail at constraining the
dissimilarity measurement. From our experience, a distance between the seeds
of 150–200 pixels is ideal for 1080p laparoscopic images.
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Fig. 4. Image processing and clusterization. The input laparoscopic image is undis-
torted (left), applied a median filter (middle) and divided into homogeneous patches
by watershed (right). Dark areas are discarded (middle right in image).

For each patch p ∈ P, we use Eq. (2) at each pixel q ∈ p to estimate c by
linear regression. The resulting residuals constitute a least-squares cost function
fp that measures how well the laparoscopic image and the virtual view of the
cavity surface concur for a patch p. The variable is the camera pose ω, which
affects both ϕ and N through the location of the coinciding points O and S.

fp(ω) = arg min
c∈IR

∑

q∈p

∥
∥
∥
∥I(q) + c

ϕω(q)�Nω(q)
‖ϕω(q)‖2

∥
∥
∥
∥

2

(3)

Finally, we obtain the transformation ω̂ composed of the three sought degrees
of freedom by minimizing the residuals for each patch p ∈ P in the global cost
function F :

F (ω) =
∑

p∈P
fp(ω) =

∑

p∈P

(

arg min
c∈IR

∑

q∈p

∥
∥
∥
∥I(q) + c

ϕω(q)�Nω(q)
‖ϕω(q)‖2

∥
∥
∥
∥

2
)

(4)

We solve arg minω∈IR3 F (ω) by using a continuous numerical optimization algo-
rithm (Powell’s conjugate direction search in our case). The registration between
the laparoscopic image and its virtual equivalent can thus be completed in rota-
tion and translation, allowing an accurate augmentation of the surgical scene.

3 Experiments and Results

In the previous section, we proposed to minimize the cost function (4) in order
to accurately register the laparoscopic image and the intraoperative volume.
Therefore, the success of our method also depends on the difficulty that opti-
mization algorithms may have to find the global minimum in the search space.
A couple of considerations ensure that an initialization at (0,0,0) is close to the
global optimum. First, the surgeon is very unlikely to rotate the laparoscope so
much that the scene would be upside down. Second, the sensor cannot diverge
too much from the laparoscope axis without hindering the completeness of the
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Fig. 5. Example of search space typically ranging ±30◦ and (±150)2 pixels. The cost
issued by F (ω) is here normalized and colored from blue (high) to red (low). Sections
are displayed along each of the three dimensions and passing by the global optimum
(white dot) (Color figure online).

image captured out of the optics. An example of a clear global optimum in such
a 3-dimensional search space around the initialization is illustrated by Fig. 5.
These data originate from an in vivo acquisition of a pig’s liver, for which we
applied our method. A total of three different acquisitions on three different
pigs were performed. Each time, the intraoperative images were taken during
breathhold. Results are displayed in Fig. 6.

For these experiments, one can notice the very good accuracy in registration
achieved by our method. Over the three data sets, we performed manual mea-
surements of the Target Visualization Error (TVE) by pointing 15 visual cues
such as edges or corners in both images (Table 1). Our method proved to be
more than twice as accurate than [8], with an average TVE of 11.3 ± 4.7 pixels
in the image. This corresponds to less than a millimeter in the scene at nomi-
nal distance (around 70 mm). Thus, the remaining three degrees of freedom are
accurately determined and so is the complete relationship between the laparo-
scopic image and the intraoperative 3D data, without additional apparatus or
calibration. Typical optimization computation times range from 15 to 30 s on
a standard PC. Added to the initialization, the complete augmentation process
takes between 25 to 55 s.

Table 1. TVE (in pixels) manually measured across the three datasets at initialization
at (0,0,0), after performing [8] and after the proposed method.

Initialization Method from [8] Proposed method

Case 1 123 13 6

Case 2 59 21 13

Case 3 >300 44 15

Average >161 ± 124 26 ± 16.1 11.3 ± 4.7
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Fig. 6. The laparoscopic image (top) is registered with the view from the virtual camera
upon the surface extracted from the intraoperative 3D data and rendered in VTK
(middle top). A mosaic of the two shows the alignment before the proposed optimization
(middle bottom) and after (bottom).

Finally, in the introduction we asserted that classic 2D image-to-image regis-
tration methods such as Mutual Information would fail with such data. For the
sake of verification, we calculated for each case the Normalized Mutual Informa-
tion (NMI) between the endoscopic image and the surface view, while setting
the translation to its correct value and varying only the angle. Similarly, to
demonstrate the importance of a piecewise approach to shading, we calculated
the proposed cost function F (ω) with globally constant c and piecewise constant
c. These three cost functions are compared against each other in Fig. 7. One can
notice that NMI does not show a global optimum for any of the three in vivo
data sets. Moreover, our method with a globally constant c performs well only
in Case 3, for which most of the laparoscopic image displays mostly only one
organ and thus a same albedo.
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Fig. 7. Display of the normalized cost function in rotation only for NMI (blue), F (ω)
with globally constant c (pink) and F (ω) with piecewise constant c (green). The graphs
show that only our piecewise approach clearly displays a global optimum at the correct
angle value (red) in all three cases (Color figure online).

4 Conclusion and Discussion

We have presented a novel method to complete a partial registration between a
laparoscopic image and a surface extracted from intraoperative 3D data. When
combined with [8], we can provide a millimetric registration between the laparo-
scopic view and the intraoperative referential frame, using only standard hybrid
operating room equipment and requiring no extra calibration process. This facil-
itates a fast and reliable augmentation of the scene with relevant information
coming either from the intraoperative or the preoperative acquisitions.

So, while most shading methods aim at recovering the structure of the scene,
we seek the camera pose. Thus, we do Pose-From-Shading rather than Shape-
From-Shading. The concept of using shading to estimate the camera pose with
respect to a known model is new. Moreover, most existing work on shading
assumes a constant albedo over the whole image. It is obviously wrong in a
typical intra-abdominal scene where different organs and tissues have different
albedo and reflectance. This is why we propose this novel piecewise approach to
shading, making it compatible with such scenes.

However, there is still room for improvement. First, the piecewise approach
of our method makes it highly parallelizable and a GPU implementation would
allow it to reach a shorter processing time. This would make our application
more suitable for clinical applications, but also could compensate for breath-
ing if real-time processing is achieved. Second, our approach obviously requires
that the laparoscope tip has to show in the intraoperative scan. Although var-
ious experiments with surgeons have proved that doing so is not problematic
for them, we plan to investigate the possibility of extrapolating our work and
determining all the six registration degrees of freedom only from the shading
constraints. If not feasible in real time, and for the sake of providing a dynamic
augmented reality solution in the hybrid operating rooms, we could also look
into updating the augmentation with laparoscope tracking techniques such as
SLAM or a robotic arm.
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Abstract. Haptic feedback brings a surgical simulator closer to real
surgery. However, friction in surgical simulator’s hardware affects its
performance significantly. We introduce a surgical simulation robot with
roller mechanism for laparoscopic surgical simulation. Roller mechanism
is implemented in a constrained space to reduce the friction. Motion
based friction cancellation method is also applied to further mitigate the
friction effects. Comparing with the same surgical simulation robot with-
out roller mechanism, the one with roller mechanism reduces friction by
32.86 % and 38.87 % on two motion directions, and the motion based
friction cancellation method can mitigate the friction effect by 49.46 %
and 62.08 % on the two motion directions.

Keywords: Laparoscopic surigcal simulator · Haptics · Friction com-
pensation

1 Introduction

In a laparoscopic surgery, the surgeon has limited access, i.e. visual and haptic
only, to the pathological site. The tactile feeling provides the information not
only on anatomy, but also on the pathology and the insertion depth of the
MIS (Minimally Invasive Surgery) instruments. The tactile information conveys
the tool-tissue interaction status to the surgeon through the sense of touch.
It always plays an important role in decision making during the surgery [1].
The training instructor also teaches the medical residents to perceive the tactile
information during training. Nowadays, as the advent of computer, robotics and
virtual reality technologies, various types of simulators and robot assisted devices
have been developed for the purpose of laparoscopic surgical training. Most of
the surgical simulators or robot assisted surgery tools [2–5] are designed with
haptic output capability that enables the system to give the user tactile feelings.

The haptic function built in the surgical simulator or robot is a force output
function of the system that simulates the tool-tissue interaction, although there is
c© Springer International Publishing Switzerland 2016
X. Luo et al. (Eds.): CARE 2015, LNCS 9515, pp. 69–80, 2016.
DOI: 10.1007/978-3-319-29965-5 7
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no real tool-tissue interaction under the handheld devices. In our previous work [6],
a laparoscopic surgical simulation robot was studied. We applied a semi-spherical
mechanism to execute trajectory and haptics for a virtual laparoscopic surgery.
There are lots of moving parts contacting with each other in the robot. Hence, fric-
tion is inevitable in such systems, which affects the performance of the robot in
moving, positioning and torque delivery etc. It needs to be taken care of when con-
sidering a stable haptic output, especially for high haptic output at low velocity.
Two basic methodologies are commonly applied to deal with friction, i.e. minimize
the friction by design and mitigate the friction by compensation. Unfortunately,
friction forces are highly non-linear. It is difficult to compensate. Therefore, it is
important to reduce the friction forces by designing the system mechanism and
apply appropriate compensation technology to mitigate the effect of remaining
friction. Friction compensation methods have been studied thoroughly in the past
decades [7,8], such as fixed friction compensation, model-based compensation, and
neural fuzzy techniques. Neural network method is one of the good methods for
friction compensation in practical engineering, as the neural network is capable to
handle highly non-linear scenarioes [9]. However, neural network solution is not a
physical based method where the parameters do not relate to the physical phenom-
ena directly. Various friction models have been proposed and tested to understand
and compensate the frictional force. Most friction models could not match with the
real friction scenarios well after a long service period due to wear and tear.

In this paper, a new robot design for laparoscopic surgical simulation is pre-
sented. We apply both design and compensation techniques to reduce friction
and mitigate its effects respectively. Friction forces in between the moving parts
are reduced by introducing teh roller mechanisms. A motion based friction can-
cellation method with friction model is applied to mitigate the friction effect
for stable haptic output. The paper is organized as follow: Sect. 2 describes the
low friction design, finite element analysis and system modelling of the semi-
spherical mechanism for the surgical simulation robot. Section 3 describes the
motion based friction compensation method and its application on the robot.
The work is concluded in Sect. 4.

2 Surgical Simulation Robot

2.1 Friction in Haptics

A surgical simulation robot, as shown in Fig. 1 was designed for image guided
robot assisted surgical training in our previous work [6]. The replicated surgical
tools are driven by the robot to allow the user to operate on virtual patient
with haptic feedback, and provide haptic guidance for surgical training purpose
as well. Each of the replicated laparoscopic surgical tools has five Degree-of-
Freedom (DOF), namely pitch, yaw, translation, roll and handle grasping. It
mimics the DOF of surgical tools in real laparoscopic surgery. A semi-spherical
mechanism is the major component to achieve the DOFs mentioned above [6].
Friction in the semi-spherical mechanism affects the performances of haptics,
especially the friction on pitch and yaw axes.
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Fig. 1. Overview of the surgical training system: (a) robotic surgical trainer and (b)
virtual surgical simulation platform.

As experienced in our robot, friction is inevitable, and it is highly non-linear
and difficult to model. It can be categorized as two basic categories, the rolling
friction and the sliding friction. The rolling friction is expressed as

Fr = CrrFN , (1)

and the sliding friction is expressed as

Fs = μFN , (2)

where Crr is the rolling resistance coefficient which depends on material elas-
ticity, μ is the sliding friction coefficient which depends on material pair and
surface condition. μ is usually much larger than Crr, FN is the normal force act-
ing on the contact surface. In a haptic device, it can be expressed as a function
of haptic output.

2.2 Design Considerations

We introduce a bearing-like mechanism to create rolling motion on the semi-
spherical mechanism to reduce friction and enhance the haptic performance.
Figure 2(a) shows the overall design of a semi-spherical mechanism with rollers
that reduces the frictional force. The semi-spherical mechanism can be divided
into four parts as shown in Fig. 2(b). Part I and Part II contain guiding blocks
where the rollers are hosted. Part III includes two arches clamped in between
of Part I and Part II. Part IV applies and maintains appropriate pressure in
between of Parts I and III, Parts II and III. Hence, the mechanical gap between
the rollers and Part III, and the motion precision of Part I could be controlled.

Rollers were placed at all possible places, as shown in Fig. 2(a) where relative
motion exists. Due to space constraint, the rollers were supported by bushings
instead of ball bearings. The relative motion between the roller and its host-
ing bush still introduces sliding friction. Polytetrafluoroethylene (PTFE) was
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Fig. 2. (a) Overall view of semi-spherical mechanism that provides lower friction for
haptic output. (b) Four major components. I: upper guiding block with rollers, II: lower
guiding block with rollers. III: two arches which work as haptic input/output interface
for pitch and yaw axes. IV: locking nuts for adjusting proper pressure between part I,
II and III.

selected to work as bushing for its low friction coefficient and high wear resis-
tance. Although PTFE has very good wearing resistance, it would still be worn
off and the size of the hole will be changed where the roller is hosted. However,
the contacting profile between the roller and the bushing would not be altered
significantly, and hence the friction profile. With this design, wear and tear on the
rollers and their contacting surfaces are minimized. The contact profile between
the roller and the contact surface could be maintained consistent even after a
long service period.

2.3 FE Analysis

The finite element analysis by Abaqus/Explicit 6.13 was adopted to investigate
the stress distribution of the semi-spherical mechanism design under loading
along pitch and yaw axes (x and y directions in Cartesian coordinate, as shown
in Fig. 3). Fifty Newton was applied at a reference point (RP) which is on the
trocar’s longitudinal axis and 300 mm (equivalent to 15 Nm) above rotational
origin of the axis. The translational DOFs of each node on the trocar were cou-
pled with those of the RP to simulate a surgical tool passing through the trocar.
Quasi-static loading procedure was applied in the analysis. The two arches were
modeled as rigid body and were fully fixed at their reference points as shown in
Fig. 3.

The material properties of the components in the mechanism are listed in
Table 1. The friction coefficient was 0.16 between steels and 0.05 between steel
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Fig. 3. FE modelling of the semi-spherical mechanism.

Table 1. Material properties used in FE model

Density(kg/m3) Young’s modulus(GPa) Poisson’s ratio

Stainless steel 7850 200 0.3

PTFE 2600 0.55 0.46

and PTFE. The trocar was meshed with shell element S4R and the rest compo-
nents were meshed with solid element C3D4.

Under loading along yaw axis, the maximum Von Mises stress is around 15
MPa at the roller, as shown in Fig. 4. When loading along pitch axis, the rollers
also have similar stress distribution with a maximum stress around 12 MPa.
Under loading along pitch axis, the maximum Von Mises stress, around 70 MPa,
occurs at two side rollers. Under both pitch and yaw loadings, the two guiding
blocks of the rollers have small stress level. Figure 5 shows the stress distribution
of the guiding block under loading along yaw axis, the Von Mises stress is around
1–2 MPa for the shaft of the side rollers.

The simulation results show that the maximum stress is far below the yield
stress of the stainless steel when it is loaded at 15 Nm torque. It suggests that
the strength of the semi-spherical mechanism is sufficient for haptic output. The
semi-spherical mechanism was fabricated as shown in Fig. 6.

2.4 System Modelling

The semi-spherical mechanism was installed in an existing robot control sys-
tem [6] to connect with actuators and inserted with a replicated laparoscopic
surgical tool. A frequency response experiment was conducted to measure the
system response. We assume that the data acquisition speed of a force sensor
in the haptic feedback loop is infinitely high, hence the haptic output force is
proportional to the acceleration of the surgical tool by F = ma , where m is a
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Fig. 4. Locations of maximum Von Mises stresses when the mechanism is under loading
along yaw axis.

Fig. 5. Stress distribution of the guiding block under loading along yaw axis.

Fig. 6. Fabricated semi-spherical mechanism with rollers, and relative velocity at the
contacting area of each axis.
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mass constant. Therefore we can use the transfer function of system accelera-
tion to represent the transfer function in haptic force. The transfer function for
the robot can be obtained by dividing the measured acceleration αmwith the
commanded acceleration αc,

G =
αm

αc
. (3)

Sinusoid signal with frequency up to 20 Hz was input to the robot. Figure 7
shows the bode plot obtained from the experiment data.

Fig. 7. Open loop bode plot of the semi-spherical mechanism with a replicated surgical
tool.

The robot system was taken as second order system. Matlab system identi-
fication toolbox was applied to model the system based on the open loop bode
plot shown in Fig. 7. The system transfer function G(s) is estimated as

G(s) =
0.03s + 0.06

s2 + 0.18s + 0.0064
. (4)

3 Friction Control Model for Haptics

Despite of the design considerations for friction reduction, friction compensation
is still required as high haptic output will lead to high frictional force between
the moving parts. The resultant frictional force in the design is a combination
of sliding friction from the bushings and rolling friction from the rollers. Hence,
stribeck phenomena would affect the performance of haptic output, especially
when the haptic output force is large and moving velocity is low.

Experiments were conducted to measure the frictional force with respect to
the velocity and haptic output. The robot was set to output a series of haptic
force exerting on a user. The haptic output was set from 1 N to 7 N with 1 N
increment for each experiment. The user pushed the robotic handle (as shown in
Fig. 1) to move against the direction of haptic output. The guiding block with
rollers moved from one end of the arch to the other end as shown in Fig. 6. The
force applied to execute the motion was measured while the robotic handle was
moving. Frictional force was obtained by subtracting the desired haptic output
from the measurement. This procedure was repeated 50 times at each haptic
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Fig. 8. Mean frictional force from current design with haptic output from 1 N to 7N.
The frictional force is larger when the components are just to move, and it is reduced
significantly and tends to stabilize when the components moving at higher velocity.
The frictional forces are generally higher when the robot outputs a higher haptic force.
Vertical bars are the standard deviations at the specific velocity and haptic output. (a)
Frictional force for pitch axis. (b) Frictional force for yaw axis.

Fig. 9. Mean frictional force measured from the design in [6]. Vertical bars are the
standard deviations at the specific velocity and haptic output. (a) Frictional force for
pitch axis. (b) Frictional force for yaw axis.

level. The velocity span covered from 0 to 0.125 m/s. The maximum velocity in
the experiment was relatively low. Therefore, viscous friction was not taken into
consideration during modelling.

Figure 8 shows the measured frictional force on both moving axis. The overall
haptic output is smooth, and the maximum friction forces are 2.79 N and 2.98 N
for pitch and yaw axes respectively. These measurements will be used in fitting
with friction model for compensation. The same experiment was conducted on
our previous design in [6] to measure the frictional force. The design has similar
overall structure, but no roller mechanism. All moving components create sliding
friction. The measured friction forces are shown in Fig. 9. The maximally friction
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Fig. 10. Control diagram for friction compensation and haptic output. Fd is the haptic
output reference force or the desired haptic output, Fo is the haptic output force, Fu

is the user’s interaction force.

forces are 3.96 N and 4.13 N for the pitch and yaw axes respectively. Comparing
Figs. 8 and 9, we notice that the overall friction forces with the design are reduced
by 32.86 % and 38.87 % on pitch and yaw axes respectively when comparing with
the mechanism without rollers in the same velocity and haptic output span.

Here, we applied a motion based friction cancellation method to compensate
the effect of friction and the stribeck phenomena for stable haptic output. The
control diagram of such haptic output system is shown in Fig. 10.

Various friction models have been proposed by researchers [10]. A basic fric-
tion model was employed in this study. The friction model is written as

Fss = (Fc + (Fs − Fc)e−(v/vs)
2
)sgn(v), (5)

Fig. 11. Surface fitting result with Eq. 5. Experimental results shown in Fig. 8 were
fitted with Eq. 5 using Matlab curve fitting toolbox. Black dots are the down sampled
experimental measurements. (a) Frictional force fitting for pitch axis with µe = 0.08,
a2 = −0.032, a1 = 0.403, a0 = 1.476. (b) Frictional force fitting for yaw axis with
µe = 0.086, a2 = −0.019, a1 = 0.351, a0 = 1.82.
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where Fss is the steady state friction, Fc is the Coulomb frictional force, Fs is the
stribeck force, vs is the relative velocity at stribeck, v and is the relative velocity
of two moving components. Fc and Fs are dependent on the magnitude of haptic
output. They can be written as a function of the desired haptic output Fd, i.e.
Fc = fc(Fd), Fs = fs(Fd). The functions need to be determined experimentally
as different system configuration results in different friction profile. For the semi-
spherical mechanism with rollers presented in this paper, the Coulomb frictional
force was taken as

Fc = μeFd, (6)

where μeis an equivalent friction coefficient for the system. A second order poly-
nomial function is taken to represent the stribeck force as

Fs = a2F
2
d + a1Fd + a0 (7)

Curve fitting was applied on the experiment data (shown in Fig. 8) to identify
the parameters in Eqs. (5), (6) and (7). Figure 11 and Table 2 show the surface
fitting results and the estimated parameters.

The motion based cancellation method was tested by the same experiment
method described in the beginning of Sect. 3. Figure 12 shows the mean frictional
force measured from pitch and yaw axes. Comparing with frictional force shown
in Fig. 8 in which has no compensation, the frictional force and the stribeck

Table 2. Frictional force fitting results with Eq. (5).

R2 Adjusted R2 RMSE

Pitch 96.75 % 96.65 % 0.14

Yaw 93.92 % 93.72 % 0.24

Fig. 12. Mean frictional force measured with friction compensation. Vertical bars are
the standard deviations at the specific velocity and haptic output. (a) Frictional force
for pitch axis. (b) Frictional force for yaw axis.
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phenomena have been mitigated significantly. The total volume covered under
the surface (Fig. 12) were reduced by 49.46 % and 62.08 % for pitch and yaw axes
respectively. The max measured friction is about 1 N whereas it could reach to
2.5 N when there is no compensation. Figure 12 suggests that the motion based
cancellation method is able to work well with a wide range of velocity on our
designed mechanism, from 0.02 m/s to 0.12 m/s. It is noticed that the standard
derivations increase slightly when the velocity is higher. Comprehensive system
model and friction model are required to further improve the performance of
this motion based cancellation method.

4 Discussion and Conclusion

A design for laparoscopic surgical simulation robot was presented in this work.
Design consideration, FEM verification, system modelling, friction identifica-
tion and compensation were studied. The semi-spherical mechanism with rollers
reduces frictional force significantly comparing to the mechanism without rollers.
The motion based cancellation method is capable to mitigate the effect of friction
well. Although the frictional force has been mitigated significantly, some residual
friction forces are still not removed. It is due to the limitation of motion based
cancellation method, which needs a velocity input before the friction model can
estimate the frictional force for compensation, but the frictional force is already
there before velocity is detected. The compensation is therefore always delayed.
Advanced friction compensation methods thus need to be explored to further
improve the performance.
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Abstract. Complex endoscopic interventions require a new generation
of devices and instruments. A robotic platform for flexible endoscopy
through telemanipulation was developed to meet this demand. The
concept of telemanipulation allows the development of software for
computer-aided surgery. Intelligent navigation such as automated tar-
get centralization could assist the endoscopist during procedures.

A real-time algorithm was designed for tracking a target region that
is of specific interest for the surgeon. Therefore, the physician needs to
indicate the region to be tracked, which then will be centralized (locked).
The goal of this research is to investigate the robustness and accuracy
of the tracking algorithm during endoscopic interventions. The region of
interest can be a polyp for polypectomy, Vater’s ampulla for Endoscopic
Retrograde CholangioPancreatography (ERCP), Barrett’s epithelia for
gastroscopic biopsy or any area in more complex procedures. The algo-
rithm was tested in vitro on image sequences obtained during real endo-
scopic interventions.

The indicated area of interest could be tracked in all image sequences,
with an accuracy of 91.6 % (Q1–Q3 77.7 %–99.0 %, intraclass correlation).
The algorithm was robust against instruments or smoke in the field of
view. Tracking was less robust against very large camera movements.

The developed target lock worked robustly, in real-time and was found
to be accurate. Improvements include improving the robustness of the
algorithm against motion blur and drift.

1 Introduction

A trend towards minimizing the invasiveness of surgical procedures exists.
Instead of open surgery, endoscopic or keyhole surgery is more often performed.
Endoscopic surgery, where rigid cameras or endoscopes are used, decreases the
amount of scarring and blood loss in the patient, leading to less pain and faster
c© Springer International Publishing Switzerland 2016
X. Luo et al. (Eds.): CARE 2015, LNCS 9515, pp. 81–89, 2016.
DOI: 10.1007/978-3-319-29965-5 8
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recovery times. With the transition from open to endoscopic surgery, flexible
endoscopes are looked at for more complex procedures as well. Originally, only
diagnostics and small therapeutic interventions (the removal of polyps in the
colon for example) were performed with flexible endoscopes. Nowadays, increas-
ingly large tumors are being removed, with the aim to spare the patient from a
more invasive surgical procedure.

However, flexible endoscopes have vital drawbacks that make them difficult
to handle, especially during complex procedures [1]. Endoscope handling is not
intuitive and far from ergonomic. The instruments that can be inserted through
the working channel of the endoscope are not capable of triangulation. Mostly,
only one instrument channel is present, causing many instrument changes and a
significant loss of dexterity.

Robotization is thought to improve the handling properties and dexterity of
flexible endoscopes. Additionally, navigation can be automated (e.g. [2–4]). Our
research is specifically aimed at automating endoscope navigation and fixation
during interventions. Ultimate aim is to use image-based control to correct the
endoscope tip once the endoscope is at the intervention site. The endoscopist
can indicate a focus area manually, and the system described here will track this
area continuously in the image. The tracked area will be kept in the center of
the screen as much as possible, resulting in a so-called ‘target lock’. The target
should be centralized despite movement of the endoscope or the environment.

Others have investigated re-targeting of endoscopes. A useful application is
for instance the optical biopsy, a visualization of cellular structures using optical
instruments in the working channel of an endoscope. SLAM (Simultaneous Local-
ization and Mapping) techniques combined with probe tracking, video manifolds
for the patient-specific clustering of images and epipolar geometry recovery are
examples of solutions for the retargeting problem in this application [5–8]. Chu
et al. describe a flexible tip for a rigid endoscope and target tracking, but it is
unclear which tracking approach they use [9].

We are interested in developing a clinically successful target locking system
for robotized flexible endoscopy. This leads to the following requirements:

1. Real clinical added value: the procedure of interest should not be hindered or
take longer due to the automation.

2. Robust to low texture frames, large movements, varying illumination condi-
tions, instrument interference and occlusions (fluids, tissue deformation).

3. Accurate enough to enable small tip corrections in the order of a few millime-
ters.

4. Real-time functionality, such that the endoscopist can direct all his/her atten-
tion towards the surgical target instead of controlling the camera.

5. Easy correction functionality: if the target changes, for instance if tissue is
taken from it, it should be easy to re-localize the target region.

Feedback for the control will be obtained from the images by visual motion
tracking and correcting for this. Motion tracking has been employed in flexible
endoscopy [2]. A key issue is robustness and accuracy of tracking, implying an
accurate outlier detection mechanism. Visual motion tracking is challenging due
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to the nature of the images (often low in texture and suffering from the artifacts
named above in 2.). There is a trade-off between accuracy and computational
effort with feature tracking algorithms. For our application, the algorithm must
run fast enough to accurately correct the tip before the endoscopic image has
changed too much.

The contribution of this paper lies in the real-time, accurate, feature-based
target tracking aimed at optimal system performance with real clinical value.
Therefore, real clinical data is used for evaluation. The described application is
developed for the robotized flexible endoscopy system Teleflex [10], but minor
changes can make it suitable for other robotized endoscopes.

2 Materials and Methods

System requirements were established in close collaboration with several expert
endoscopists. A thorough clinical evaluation among the endoscopists led to the
conclusion that routine colonoscopies, ERCPs and EMRs (Endoscopic Mucosal
Resections) were the interventions most likely to benefit from a target lock.
These procedures are known for their clinical complexity with respect to specific
sub-interventions. The most difficult part during an ERCP is the insertion of
a probe in Vater’s papilla. Once the papilla is in the proper position in the
view, the endoscope should remain fixed so that the probe can be manipulated
properly. Similar situations were indicated for colonoscopies and EMRs. Twelve
image sequences were selected and contained the various sub-interventions of
interest for the target lock (Table 1). A sub-intervention was estimated to last
for 4 s on average; this is therefore the length of the sequences. An exception
forms the papilla insertion during an ERCP. Therefore, the length of sequence
3 was doubled.

To use images as control feedback, the bandwidth of the motion should be an
order of magnitude less than the sample frequency. The Nyquist frequency for
25 fps is 12.5 Hz. For control purposes, the rule of thumb is to have a 5–10 times
higher sample frequency than the motion bandwidth. In this case, most motions
have a frequency of 0–5 Hz. With an effective frame rate (sample frequency) of
24–25 fps this requirement was met in our system.

Real-time optimization can be done by cropping or down-scaling of the
images, frame-skipping, code- and platform-optimizations or heterogeneous com-
puting. The latter will result in the most significant improvement without data
loss. To enable heterogeneous computing, the feature tracking algorithms were
implemented using OpenCV with OpenCL.

Image sequences had a resolution of 768 × 576 and a frame rate of 25 frames
per second (fps). All results were generated using a HP Elitebook 8570 w mobile
workstation running on a 64 bit operating system (Windows 8.1) with an Intel
Core i7-3630QM processor, 8 GB DDR3 RAM and an AMD FirePro M4000
graphics card. Programming was done using Microsoft Visual Studio Express
2013, with libraries from OpenCV 2.4.9 and OpenCL 1.1. A colonoscope, an
ERCP-scope and a pediatric colonoscope (for EMR) were used to record the
procedures. The properties of each of them are listed in Table 2.
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Table 1. Image sequence properties. APC: Argon Plasma Coagulation. Note: in all
sequences, instruments are present in the field of view (FOV).

Number Procedure Intervention Target Disturbing factor

1 Colonoscopy Polypectomy Polyp Coarse movements

2 Colonoscopy Polypectomy Polyp Poor illumination;
Occlusions

3 ERCP Cannulation Vater’s papilla Target near edge of the
FOV; Occlusions

4 ERCP Sphincterotomy Vater’s papilla Target near edge of
FOV; Smoke;
Occlusions

5 EMR Injection Primary tumor Large target; Color
change due to dye
injection

6 EMR APC Residual lesion Large area of removed
mucosa; Small
target; Sparks

7 Colonoscopy Injection Polyp Color change due to
dye

8 Colonoscopy Polypectomy Polyp Large polyp; Dirt on
lens

9 ERCP Cannulation Vaters ampulla Endoscope motion

10 ERCP Stent removal Vaters ampulla Multiple instruments in
view

11 EMR Partial resection Primary tumour Large target; Coarse
movements; Dye
injection

12 Colonoscopy APC Polyp Sparks; Bubbles; Small
target

Table 2. Properties of each endoscope used to record the image sequences. FOV: Field
of View. DoF: Depth of Field. DoV: Direction of View.

Procedure Endoscope Properties

Colonoscopy Olympus CF-H180AL FOV: 170◦; DoF: 2–100 mm; Length: 1680 mm

ERCP Olympus TJF-160VR FOV: 100◦; DoF: 5–60 mm; Length: 1240 mm

EMR Olympus PCF-PH190L FOV: 140◦; DoF: 2–100 mm; Length: 1680 mm

2.1 Algorithm

For accurate and robust feature tracking, SIFT (Scale Invariant Feature Trans-
form [11]) will be suitable, because blob-like features are abundantly present in
the image sequences that were used (Fig. 1). However, detecting and matching
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these features takes considerable computational effort. For our real-time appli-
cation, we therefore chose to use SURF features (Speeded-Up Robust Features
[12]). These are nearly as accurate as SIFT features, but decrease computational
effort considerably [13].

Fig. 1. Example image of polypectomy with polyp and instrument present. Left: scene
with ROI indication. Middle: SURF features withing ROI (indicated as white circles).
Right: final motion vectors (indicated as arrows).

As stated in the Introduction, an accurate outlier detection mechanism is
key to robust system performance. In the original SURF algorithm brute force
matching was selected for accuracy reasons. In an attempt to reduce compu-
tational time and improve reliability of the matches, we added the second-
to-nearest-neighbor (SNN) distance ratio check, as proposed by Lowe [11].
To increase the number of features, even in low-textured areas, preprocessing
(grayscale conversion and histogram equalization) was applied on the images.
Outlier removal based on vector magnitude was added to the algorithm to
improve robustness. The complete algorithm works as follows:

1. Initialization:
(a) Acquire and visualize the first image, reference image Iref .
(b) Select the target ROI in Iref : a circle with position xref and radius R.
(c) Set xtarget = xref .
(d) {yref (n), fref (n)} = get surf features(Iref ,xref ).

2. Acquire current image Icur.
3. {ycur(m), fcur(m)} = get surf features(Icur,xtarget).
4. Match {fref (n)} to {fcur(m)} with SNN distance ratio check, yielding

matched indices {n(k),m(k)}, with k = 1, ...,K.
5. Get displacement vectors {d(k) = ycur(m(k)) − yref (n(k))}
6. Remove outliers. Condition: ‖d(k)‖ > 2 ∗ median({‖d(k)‖}).
7. xtarget = xref + mean({d(k)}).
8. Repeat till end from 2.

Procedure {y(n), f(n)} = get surf features(I,x)

1. Convert image I from RGB to grayscale.
2. Apply histogram equalization to I to increase feature number.
3. Detect SURF key point positions {y(n)} and key point descriptors {f(n)}.
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2.2 Analysis

Targets to be tracked (Table 1) were manually annotated throughout the image
sequences by an expert interventional endoscopist (>2000 endoscopies). The
automatically found location was compared for accuracy to the manual results
using intra-class correlation analysis (ICC, [14]). Tracking error was given by
the Root Mean Square Error (RMSE) of the distance in pixels between the two
targets. Computational times were recorded to measure real-time performance
of the system. Robustness was measured by counting the number of feature
matches and inlying matches per frame.

3 Results

In all sequences, the manually indicated target could be tracked with an high
accuracy of 91.6 % (Q1–Q3 77.7 %–99.0 %, see Table 3). Sequence 7 had the best
tracking results with a correlation of 99.9 % and a RMSE of 9.4 pixels. Median
tracking error was 38.9 pixels (Q1–Q3: 28.7–76.3, see Table 3). The algorithm
proves robust against smoke, fluid and instrument interference, color changes,
occlusions and poor illumination. Sequences that suffered from these artifacts
nonetheless led to the best results (Fig. 2). The text boxes and show that large
motions and motion blur are the cause for the biggest tracking errors.

Table 3. Results per image sequence.

Sequence ICC (%) Median matches Median inliers RMSE (pixels)

1 81.9 77 34 149.1

2 89.4 165 56 32.4

3 99.7 154 67 25.5

4 98.8 123 32 34.2

5 96.6 201 73 27.4

6 93.8 239 73 28.0

7 99.9 184 62 9.4

8 73.6 205 61 116.0

9 99.8 88 32 16.6

10 75.7 236 38 43.7

11 78.4 131 24 123.0

12 63.5 223 58 57.1

The median number of matches and inliers per frame was at most 239 and
73, respectively (Table 3). Note that the lowest number of matches and inliers
correspond to the lowest ICC. Our matching approach was more accurate and
slightly faster than the original brute force matching, with an average of 43.79
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Bubbles & smoke , no effect (seq. 4) 

Motion and deformation (seq. 4) Motion blur (seq. 1) 

Large zooming (seq. 6) 
Target deforms (seq. 2) 

Distances, good Distances, poor 

Large zooming (seq. 12) 

Motion blur (seq. 11) 

Camera rotates (seq. 8) 

Fig. 2. Left: sequences with best ICC and smallest RMSE. Graphs show distance in
pixels between the center of the two (automatic and annotated) targets. Note the text
boxes that explain the larger shifts. Right: sequences with the poorest outcome. All
tracking errors are caused by large motions.

(±4.37) ms against 48.55 (±4.33) ms per frame. We have uploaded the image
sequences in the additional conference materials to illustrate the disturbing fac-
tors more clearly.

4 Discussion

In this study, the accuracy and robustness of a real-time tracking algorithm for
automated target centralization in a robotized flexible endoscopy system was
evaluated. This algorithm can be used for a variety of interventions. Here, we
evaluated the algorithm using six image sequences of three different interven-
tions. The achieved median accuracy was 91.6 %, which is an excellent result.

Robustness of the algorithm was shown by the continuous ability to track
the target throughout the sequences, independent from procedure or tissue type,
although several disturbing factors were present (Table 1). Inlying vectors mostly
remained present and tracking was kept accurate, even with occlusions, color
and illumination changes, surgical instruments, smoke and fluids present. Large
and fast movements still form a problem; this caused most errors. If such an
error occurred, the tracking was disturbed. For longer tracking periods of the
same region this means re-initialization of the algorithm in its current form is
sometimes necessary. However, we expect robustness to be improved with system
implementation (see below).

Computations took a mean total time of 43.79 ms per frame. The algorithm
could theoretically track the target every 1sec

25frames = 40 ms. However, when
using a newer computer with a better CPU (Intel Core i5-3570K) and a better
GPU (AMD Sapphire Tri-X R9 290), computational time was below 40 ms and
real-time system performance was ensured.
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A limitation of this research is that zooming motion is assumed to be absent,
although small zooming motions were present in the used sequences. Therefore,
our current focus is on the implementation of the algorithm in the robotic system,
complete with zooming functionality.

Current research further includes optimizing the robotic control based on the
feedback that is generated from this algorithm. When combining the algorithm
with the robotic control, large tracking errors (such as these over 100 pixels) will
be diminished by the integral action that is present in the robotic controller. This
action effectively smoothes the feedback signal because of the limited displace-
ment possibility of the motors within a certain time frame. If this smoothing
will not be enough to obtain the desired robustness, smart filtering with which
previous information (key frames) is employed will be added to the system.

Finally, we will focus on establishing clinical relevance and patient safety.
The algorithms are integrated in the Teleflex system, which is currently being
evaluated in a phase II clinical trial, and we expect good results from this eval-
uation.

5 Conclusion

A target lock was designed for complex flexible endoscopic interventions. The
algorithm performed accurately, robustly and worked in real-time. Intelligent
navigation in robotized systems could assist the endoscopist during complex
and time-consuming procedures. Clinical added value for the patient still needs
to be objectively evaluated, but preliminary evaluation results seem promising.
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Abstract. This paper describes a simple and robust algorithm which
permits to track surgical instruments without artificial markers in endo-
scopic images. Based on image processing, this algorithm can estimate
the 2D/3D pose of all the instruments visible in the image, in real-time
(30 Hz). The originality of the approach is based on the use of a Frangi
filter for detecting edges and the tip of instruments. The accuracy of the
instruments’ location in the image is evaluated using an extensive dataset
(1500 images, 3 laparoscopic surgeries). Pose estimation of instruments
in space is quantitatively evaluated on a test bench through comparison
with the ground truth positioning provided by a calibrated robotic instru-
ment holder. This method opens perspectives in the real-time control of
surgical robots and the intra-operative recognition of surgical gestures.

Keywords: Laparoscopy · Image processing · Surgical instruments ·
Real-time tracking

1 Introduction

Laparoscopic surgery is a minimally invasive procedure. This technique repro-
duces the principles of conventional surgery with minimal physical trauma. Com-
pared to open surgery, this approach is more beneficial to the patient but sig-
nificantly increases the complexity of the surgical gestures. The constraints for
surgeons are mostly ergonomic with the manipulation of surgical instruments
(reduction of instrument mobility due to fixed insertion points on the abdomi-
nal cavity, loss of tactile sense) and the visualization of the surgical scene (lim-
ited field of view, indirect view of the surgical scene, endoscope manipulation).
The realization of a laparoscopy requires a large adaptability from surgeons and
requires a long learning curve.
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Automatic localization of instruments can be helpful to respond to several
limitations of laparoscopy and to assist surgeons during an intervention. For
instance, [1] propose to localize instruments in space in a surgical trainer, based
on a projective model and gradient image processing. In [2], a similar approach
is proposed (also in a surgical trainer), with the addition of an extended Kalman
filter to extract the edges of instruments.

In [3], the authors use the instrument insertion point as a constraint and a
probabilistic algorithm to find instruments with the aim of controlling a robotic
endoscope holder to assist surgeons during surgery.

All these methods use a gradient approach to extract instrument edges in
the image. However, such approaches are sensitive to noise, illumination and
shadows that can lead to insufficient segmentation for robust localization of
instruments in the image [4]. To overcome this problem, we propose to use a 2D
Frangi filter [5] to obtain a robust instruments edge detection. We present an
algorithm to localize and track surgical instruments in endoscopic images in real-
time. Our algorithm also permits to estimate the 3D position and orientation of
the instruments using 2D information in the images, knowing the camera and
instrument models.

2 Instrument Localization and Tracking Framework

The principle of our instrument detection algorithm consists in:

– roughly identifying all regions corresponding to the location of an instrument
in each laparoscopic image Sect. 2.1,

– refining the instruments detection within the identified regions Sect. 2.2,
– estimating the 3D pose of the instrument Sect. 2.3.

After an initial detection, the segmentation is constrained by the localization in
the previous images to track the instrument.

2.1 Rough Extraction of Instruments Regions

First, the laparoscopic color image (Fig. 2a) is converted from the RGB color
space to the CIELab color space. The L channel, corresponding to the luminance
is removed to free ourselves from variations of light inherent to laparoscopic
surgery. We thus obtain a grayscale image composed of the a and b channels
(Fig. 2b) corresponding to the chromaticity Cab =

√
a2 + b2. Using this color

space is more robust for challenging images than color spaces commonly used
such as HSV [7] or RGB, see Fig. 1. We then binarize this grayscale image using
an automatic Otsu thresholding approach [8]. Since the laparoscopic instruments
have a color very distinct from the background (laparoscopic tools are usually
black, metallic, or blue/green), instrument pixels will appear as white pixels
whereas background pixels will appear as black (Fig. 2c). Of course, this pre-
processing step is noisy, with background pixels appearing as white and tool
pixels appearing as black (Fig. 2c). We disconnect the regions by skeletonizing
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Fig. 1. Typical images obtained by color to grayscale conversion. (a) Original image
(b) Saturation modified channels in HSV space [7] (c) Chromaticity Cab of CIELab
space (Color figure online)

Fig. 2. Segmentation of a surgical instrument in 2D images. (a) Original image (b)
Chromaticity Cab of CIELab space (c) Segmentation using Otsu’s thresholding (d) Con-
version of the binary image using the distance transform (e) Disconnection of regions
in the binary image using distance transform (f) Binarization of the distance transform
image (Color figure online)

the image using a simple distance transform [9] and refine the separation by per-
forming a simple erosion step on a cross-shaped kernel (Fig. 2d). Finally, we use
a contour detection algorithm [10] to extract the extreme outer contour of each
region as an oriented bounding box (see Fig. 3b). Based on the observation that
laparoscopic instruments have a long and thin cylindrical shape, we eliminate
bounding boxes with a width/length ratio inferior to 2 (red boxes in Fig. 3c).
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Fig. 3. Edge detection of a surgical instrument in 2D images. (a) Original image (b)
Edge detection (c) Potential instrument bounding boxes obtained from image b (green)
and incompatible bounding boxes (red) (Color figure online)

2.2 Fine Extraction of Instrument Edges

Now that we have potential bounding boxes for the instruments, we search for
instrument edges within each bounding box. To do so, we use a Frangi filter [5],
which is the major contribution of this paper. We compared the Frangi filter to
the classical Canny filter [6] to search instrument edges (see Fig. 4). The Canny
filter is the most classical gradient approach based on the Sobel filter. This filter
uses a hysteresis thresholding that requires to find two optimal thresholds for
accurate extraction of the edges of an instrument. However, as shown in Fig. 4,
the conditions of the surgical scene evolves during an intervention, thresholds
initially determined may no longer be optimal and cause of false detections.
The advantage of the approach based on the Frangi filter is that it can be
applied to different surgery conditions without adjusting the filter parameters.
This filter is classically used in vessel detection in medical images. It is based
on the computation of the eigenvalues of the image’s Hessian matrix λ1, λ2 such
that |λ1| � |λ2|. The Hessian matrix is obtained by convolving the image with
derivatives of a Gaussian kernel with standard deviation σ.

The Frangi filter function can be defined as:
{

0 if λ2 > 0,

V0 = exp(− R2
B

2β2 )(1 − exp(− s2

2c2 ))
(1)

where, RB = λ1
λ2

is the blobness measure, s =
√

λ2
1 + λ2

2 is the structureness
measure and c, β are parameters to adjust the filter sensitivity. After applying
the Frangi filter, each pixel value V0 of the image indicates the pixel’s proba-
bility of belonging to a tubular structure. Here, we do not use the Frangi filter
to extract the whole cylindrical shape of the instrument. Indeed, the instru-
ment’s diameter in the image varies depending on its relative orientation with
respect to the endoscope (i.e. we cannot fix the standard deviation σ). Instead,
we apply the filter with a very low σ, in order to highlight the instrument edges
(Fig. 5b). Finally, we identify the two borders of an instrument: the bounding
box is extended and separated into two areas to search the top and bottom bor-
ders of the instrument separately using Hough transform [11] with a very low
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Fig. 4. Extraction of instrument edges. (a) and (b) Two images extracted from the
same surgery at different time intervals (c) Image extracted from another surgery (d),
(e) and (f) Edge detection in the images (a), (b) and (c) by the Canny filter with the
thresholds TL = 30 and TH = 90 (h), (i) and (j) Edge detection by the Frangi filter in
the images (a), (b) and (c) with the parameters σ = 2, β = 0.5 and c = 0.5max(S)

threshold, as illustrated in Fig. 5b. At this step, we can eliminate lines that are
incompatible with a surgical instrument based on the relative orientation and
position of the detected lines (as illustrated by Fig. 5c).

2.3 Estimation of 3D Pose of the Instruments

The two borders of an instrument define two tangent planes
∑

i of normal ni

passing through the optical center of the camera C in space (see Fig. 5g). The
camera calibration can be obtained with a classical chessboard calibration proce-
dure such as [12]. The intersection of these two planes is a line D : (C, e1) parallel
to the central axis of the instrument passing through the optical center of the
camera with a direction vector e1. This line defines the instrument’s central axis
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Fig. 5. Estimation of instruments poses in the image and in space. (a) Orignal image (b)
Expansion and separation of a compatible bounding box in image filtered by the Frangi
filter (c) Instruments’ borders refinement process (d) Detection of the instruments
borders (e) Instruments tips detection in the Frangi image (f) Instruments’ pose in the
image (g) Geometric representation of an instrument in space (h) Illustration of the
compute instrument’s position in space

direction in space. In order to fully describe the tool’s orientation in space, we
need to find a point P on the instrument’s axis. To do so, we follow the approach
proposed in [3]: the instrument is modeled as a finite cylinder of radius ρ (see
Fig. 5g). Such a point P can be easily computed on the plane perpendicular to
the instrument’s axis (Fig. 5h). Indeed, P must respect the condition:

λm1 − ρn1 = λm2 + ρn2 (2)
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where mi = e1 ⊗ ni, λ is the distance from the optical center to tangent points
Si and ni the normal to the plane i. Using Eq. 2, we can compute λ and obtain:

−−→
CP = λm1 − ρn1 = ρ

‖n1 + n2‖2
(m1 − m2).(n1 + n2)

m1 − ρn1 (3)

Then, we search the position of the instrument’s tip tim, in the Frangi image
along the projection of the instrument’s axis (P, e1) in the image (see Fig. 5e).
The pixel along the line with maximum grey level in the Frangi image is consid-
ered as the tip. Finally, we find the 3D position of the instrument’s tip T as the
intersection of (P, e1) and the projection line of the tool’s tip (C, tim).

2.4 Tracking of Surgical Instruments

For our instrument tracking algorithm, we assume that between two succes-
sive images, an instrument does not undergo large displacements. In the initial
step (first image), we find the instrument as described in Sects. 2.1 and 2.2. In
the following images, we find the candidate bounding boxes, but we refine the
instrument search only inside the bounding box best compatible with the posi-
tion/orientation of the instrument in the previous image. If the instrument is
not found in several images, we re-initialize the algorithm. In the case of several
instruments, it is possible to track all the visible instruments or a particular one.
Since only one instrument can be inserted at once through an insertion point
I on the abdominal wall, we can identify an instrument thanks to its insertion
point, which can be easily computed using a pivot algorithm on (P, e1).

3 Experiments and Results

Our algorithm is implemented in C++ using OpenCV and OpenMP libraries. For
the computations, we used an Intel Xeon PC 2.67 GHz, 3.48 GB RAM. The 2D
evaluation was performed on real laparoscopic images (720× 556). The 3D eval-
uation was performed on a laparoscopy test bench using an OLYMPUS OTV600
CCD and an IC Imaging Source grabber (720 × 480, 25 fps). To achieve a fast
processing time the image resolution is divided by 2 for the region extraction and
by 4 for the Frangi filter. We evaluated 2D tracking of our algorithm on three in-
vivo video sequences of laparoscopic rectopexies obtained through the Digestive
Departement of Grenoble Hospital with challenging situations (see Fig. 6).

In these images, the tip position and orientation of the instrument were
compared to manual annotation. The results obtained for each sequence are
presented in Table 1 with a mean error of 16.10 pixels (std. dev. of 28.98) for the
tip position, a mean error of 0.90◦ (std. dev. 0.88◦) for the 2D orientation and
a frequency of 30 Hz. Videos of this evaluation are included in supplementary
material.

To evaluate the accuracy of the 3D pose estimation, we performed experi-
ments on a testbench (see Fig. 7) consisting of a surgery trainer box on which a
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Fig. 6. Results of the tracking on the laparoscopic image sequences. (a) Sequence 1:
Monopolar hook instrument (b) Sequence 2: Monopolar hook instrument (c) Sequence 3:
Needle holder instrument (d) Example of a bad tip detection

Table 1. Laparoscopic images statistics

Fig. 7. Experimental test bench to evaluate the 3D pose estimation accuracy with a
printout of a surgical scene as background.

Fig. 8. Estimation of the instrument’s pose in space. (a) Calibration step to find the
rigid transformation T (b) Evaluation of the 3D pose estimation accuracy with in
black, the reference pose obtained with the robot, in green, the pose computed with
our method (Color figure online)
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Fig. 9. Robot trajectory (red) and our tracking method trajectory (green) for 380
instrument positions. (a) 3D trajectories (b), (c) and (d) X, Y, Z trajectories with
respect to the camera frame (of normal Z) (Color figure online).

commercial robotic instrument holder is directly positioned, and a printout of a
surgical scene as background. We compared the 3D tip position of the instrument
found by our algorithm to the 3D tip position given by the robot expressed in the
camera referential. This required calibrating the system to find the rigid trans-
formation T between the robot and camera frame such that: pfrangi

cam = Tprobot
cam .

T is obtained by pointing 12 points of a chessboard, for 6 chessboard positions,
with the instrument carried by the robot (see Fig. 8). These 12 points can be
expressed in the camera frame thanks to a standard extrinsic camera calibration
procedure [12] and are also measured in the robot frame. We resolve a classical
least squares system to find the rigid transformation between the two sets of 3D
points coupled with a RANSAC to eliminate outliers. We obtain a camera cali-
bration Root Mean Square (RMS) error of 0.25 pixels and T with a RMS error
of 1.2 mm. Figure 9 shows an example of the robot trajectory and of our tracking
method for a series of instrument movements. The results for 380 measurements
are presented in Table 2. In all results presented, we fixed the Frangi filter para-
meters as σ = 2, β = 0.5 and c = 0.5max(s), according to recommandations
from the literature.
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Table 2. Error of the 3D pose estimation with our method compared to the position
obtained with a robotic instrument holder

Axis Mean 3D position error (mm) Std. Dev. (mm)

x 1.79 1.45

y 2.42 1.60

z 7.24 3.51

4 Conclusion

We presented a surgical instrument tracking algorithm based on image processing.
It permits to estimate the 2D/3D instruments pose in real-time without artificial
fiducials. An extensive 2D evaluation on real surgical videos shows that our 2D
pose estimation is accurate and robust on wide range of realistic cases. In difficult
situations as a suture gesture, we can lose accuracy in the instrument’s tip position
but the orientation is still correct. A machine learning approach as [13], applied
in the neighbourhood of our estimated tip position could increase the accuracy of
the tip detection. Our approach for 3D pose estimation was validated on a test-
bench using a printout of a surgery background. Although this might lack realism
we estimated that the robustness of the proposed method on realistic images was
already shown extensively on the 2D case. This 3D evaluation provides us with
the precision range we can expect when the 2D detection works well. The great-
est errors are found in the depth estimation along the z axis. This error could be
reduced by using a stereoscopic endoscope.

Our 2D localization approach is robust and accurate enough to control a
robotic endoscope holder. Even if the Frangi filter might not be the most obvi-
ous approach for edge detection, we showed that it works better than classical
approaches. Other more sophisticated edge detection approaches could easily be
compared on our image database. The 3D pose estimation could be useful for
surgical gesture recognition or for co-manipulation, if we are able to increase the
depth precision. Another application could be the online calibration of no rigidly-
linked robotic endoscope and instrument holders, which could lead to less bulky
surgical systems. Our next step will be to evaluate the 3D pose estimation more
extensively in conditions closer to the clinical reality (cadaver experiments).
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Abstract. This paper reports a detailed evaluation results of a
colonoscope tracking method. A colonoscope tracking method utilizing
electromagnetic sensors and a CT volume has been proposed. Tracking
accuracy of this method was evaluated by using a colon phantom. In
the previously proposed paper, tracking errors were measured only at
six points on the colon phantom for the accuracy evaluation. The point
number is not enough to evaluate relationships between the tracking
errors and positions in the colon. In this paper, we evaluated the colono-
scope tracking method based on more detailed measurement results of
the tracking errors. We measured tracking errors at 52 points on the
colon phantom and visualized magnitudes of the tracking errors. From
our experiments, tracking errors in the ascending and descending colons
were enough small to perform colonoscope navigations. However, track-
ing errors in the transverse and descending colons were large due to colon
deformations.

Keywords: Colon · Colonoscope tracking · CT image · Evaluation

1 Introduction

Colonoscopy is conventionally performed as a colon diagnosis or inspection
method. However, colonoscopy may cause discomfort for patients while diag-
nosis. Also, colonoscopy has a risk of complication including perforations of the

c© Springer International Publishing Switzerland 2016
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colon. Success of colon diagnosis under a colonoscope is heavily depends on
physician’s skill.

CT colonography (CTC) is a colon diagnosis method that reduces discomfort
and a risk of complication on patients. Diagnosis is performed by using CT
images of a patient in CTC. Some computer aided diagnosis (CAD) systems for
CTC are commercially available. These systems commonly display 2D or 3D or
unfolded views of the colon for observation. Physicians diagnose the colon to
find polyps or cancers.

Polyps or cancers of the early stages found by CTC CAD systems can be
removed in colonoscopic polypectomy. Colonoscopic polypectomy is a surgery to
remove polyps or cancers. In colonoscopic examinations including colonoscopic
polypectomy, a physician controls a colonoscope based on his/her experience.
Experienced physicians remove polyps or cancers minimizing patient discom-
fort. However, colonoscopic examinations performed by inexperienced physicians
may painful for patients. Utilization of a navigation system for colonoscope is
one solution for such problem. Colonoscope navigation systems indicate posi-
tions of the colonoscope tip and targets such as polyp positions while perform-
ing colonoscopic examinations. Colonoscope navigation systems can be used to
reduce overlooking of polyps and to assist inexperienced physicians. Conven-
tionally, information obtained from CT volumes of patients is utilized only for
the diagnosis stage including diagnosis using CTC CAD systems. Information
obtained from CT volumes contains the polyp positions and the colon shapes.
Such information is useful for the treatment stage including colonoscopic exam-
inations. The colon shapes obtained from CT volumes can be used as maps of
the colon in colonoscope navigation systems. Also, the polyp positions can be
used as target point in navigations. A colonoscope will be navigated to polyp
positions while performing colonoscope examinations by utilizing information
obtained from CT volumes of patients.

To achieve colonoscope navigation systems, tracking method for colonoscope
is required. Tracking methods of endoscopes including colonoscope have been
proposed by many research groups, which estimate an endoscope tip position in
the organs. For bronchoscope tracking, image-based [1–4] and sensor-based [5,6]
tracking methods were reported. Colonoscope tracking is difficult compared to the
tracking for other hollow organs because the colon greatly deforms during an inser-
tion of the colonoscope. Liu et al. [7] tried to estimate colonoscope tip movements
from the optical flow of colonoscope videos. This method can track a colonoscope
tip without using additional equipments for the tracking. However, tracking using
colonoscope videos is easily fails when unclear video frames appear. Unclear video
frames frequently appear in colonoscope video because fluid, feces, and bubbles
exist in the colon. The colonoscope tip touches the wall of the colon many times
while colonoscope examinations. It causes black video frames that make interrup-
tions of tracking. A colonoscope shape tracking system, the Olympus ScopeGuide
(UPD-3), is commercially available. The system detects colonoscope shape in the
colon using electromagnetic (EM) position sensors. Clinical reports about utiliza-
tion of the system in colonoscopy have been reported [8]. The system just displays
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the shape of the colonoscope without combining CT volumes or CTC information.
Oda et al. [9,10] and Kondo et al. [11] proposed colonoscope tracking method using
EM position sensors with combination of CT volumes. They attach EM sensors
to colonoscope to obtain the colonoscope shape. They obtain the colon shape of a
patient from a CT volume. Correspondences between the colonoscope and colon
shapes by applying two steps correspondence finding processes. Based on the cor-
respondences, they find a point in the CT volume which corresponds to the colono-
scope tip position. These methods can track the colonoscope tip position even if
the viewing fields of the colonoscope are not clear. In their tracking error evalua-
tions, they measured tracking errors only at six points in a colon phantom. Behav-
iors of the colon deformation are differ according to position. Therefore, tracking
errors should evaluated at many positions in the colon.

In this paper, we perform detailed evaluations of the tracking errors of the
colonoscope tracking method using EM sensors [11]. We measured tracking errors
at 52 points in a colon phantom by using the tracking method. Based on the
measurement results, we discuss relationships between the colon deformations
and the tracking errors.

In the Sect. 2, we briefly introduce the colonoscope tracking method proposed
in the reference [11]. Experimental results including tracking error measurement
results are shown in the Sect. 3. Discussion about the experimental results are
described in the Sect. 4.

2 Method

2.1 Colon Centerline and Colonoscope Line Generation

A colon centerline is obtained from a CT volume. We use a region growing
method to extract a colon region from the CT volume. A thinning and a line
smoothing processes are applied to generate a colon centerline.

A colonoscope line that represents the colonoscope shape is obtained by using
EM position sensors. We insert an Aurora 5/6 DOF Shape Tool Type 1 (NDI) to
the colonoscope working channel. The shape tool gives positions and directions of
the colonoscope at seven points. The colonoscope line is calculated by applying
the Hermite spline interpolation to positions and directions measured by the
shape tool.

2.2 Coordinate System Registration

We generate a modified colon centerline that simulates the shape of the colon
while an insertion of the colonoscope. This process is required because the colon
largely deformed while colonoscope insertions. To generate the modified colon
centerline, we detect sections on the colon centerline that corresponds the trans-
verse and sigmoid colons. The transverse and sigmoid colon sections on the colon
centerline are replaced with straight line sections. The transverse and sigmoid
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colon sections are identified based on the positions and the shape of the colon
centerline.

We register the CT and sensor coordinate systems by using the ICP
algorithm [12]. The ICP algorithm finds a rigid transformation matrix that min-
imizes the Euclidean distance between the modified colon centerline and colono-
scope line. The colonoscope line is transformed to the CT coordinate system by
using the rigid transformation matrix.

2.3 Colonoscope Tip Position Finding

We find correspondences between each point on the colon centerline and colono-
scope line. This process consists of two steps including a landmark-based coarse
correspondence finding and a length-based fine correspondence finding. The
landmark-based coarse correspondence finding process finds corresponding point
pairs on the colon centerline and colonoscope line at five anatomical landmarks.
The five anatomical landmarks are detected based on their positions and the
shape of the colon. After performing the coarse correspondence finding, the
length-based fine correspondence finding is applied. The length-based fine corre-
spondence finding process finds corresponding point pairs on the colon centerline
and colonoscope line at all points on them. This process finds correspondences
by using lengths along the lines. Finally, a point on the colon centerline that
corresponds to the tip of the colonoscope line is defined as the colonoscope tip
position in the CT coordinate system.

3 Experiments

The proposed method was evaluated in experiments using a colon phantom.
A colon phantom (KOKEN colonoscopy training model type I-B) (Fig. 1(a)) and
its CT volume are utilized in our experiments. We used a colonoscope (Olympus
CF-Q260AI). An Aurora 5/6 DOF Shape Tool Type 1 (NDI) is inserted to the
working channel of the colonoscope. The Aurora 5/6 DOF Shape Tool Type 1
has seven EM sensors.

In colonoscopic examinations, physicians observe the colon by using a colono-
scope while pulling back the colonoscope after insertion up to the cecum. To
simulate this situation, we inserted the colonoscope up to the cecum of the
colon phantom before performing the colonoscope tracking. After the insertion,
we started the colonoscope tracking and measured tracking errors while pulling
back the colonoscope. Definition of the tracking error is described below.

We evaluated the performance of the proposed method by using a tracking
error. We defined evaluation points (EPs) on the surface of the colon phantom.
Points on the colon phantom surface which have characteristic shapes (such as
parts of the haustral folds or taeniae coli) were selected as EPs. The EPs are
visually identifiable from both of the colon phantom and its CT volume. Positions
of the EPs and indices of them are shown in the Fig. 1(b). The position of each
EP was projected to the closest point on the colon centerline. The tracking error
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Fig. 1. (a) Colon phantom. (b) Positions of EPs placed on the surface of the colon
phantom. Purple points are EPs and numbers are indices of EPs. Black line is colon
centerline.

is the length along the colon centerline between an estimated position of the
colonoscope tip (estimated by the colonoscope tracking method) and a position
of a projected EP when the real colonoscope tip comes to the closest position to
the marker.

In the reference [11], tracking errors were measured at six EPs. We performed
a detailed evaluation of the colonoscope tracking method by using 52 EPs. We
measured tracking errors of colonoscope insertions in three trials. Figure 2 shows
the average tracking errors at each EPs. The segments of the colon (ascending,
transverse, descending, and sigmoid colons) are also shown in this figure. Mea-
surements were failed at the EPs of indices from 46 to 50 because we could not
find these EPs due to large deformations of the colon phantom while pulling the
colonoscope. We showed the average tracking errors by using colors on the colon
phantom as Fig. 3. In this figure, blue and red colors indicate small and large
average tracking errors. Small tracking errors were obtained in the ascending
and descending colons. Large tracking errors were obtained in the transverse
and sigmoid colons.

4 Discussion

From the experimental results, relations between regions in the colon and track-
ing errors were clearly shown. We measured tracking errors at 52 EPs. The
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Fig. 2. Average tracking errors at EPs from three trials. Areas correspond to the
ascending, transverse, descending, and sigmoid colons are indicated by yellow and blue
colors. Average tracking errors of EPs having indices from 46 to 50 are not shown here
because measurements were failed (Color figure online).

number of EPs was significantly larger than the reference [11]. Our result is
useful to investigate causes of the tracking errors.

The tracking errors were quite small in the ascending and descending colons.
Most of the tracking errors in the regions were smaller than 40 mm. Tracking
errors in the regions were enough small to perform colonoscope navigations. A
physician who specializes in gastroenterology said that tracking errors smaller
than 50 mm are acceptable for navigations of the colonoscope tip to polyps. If a
polyp comes to a position near the colonoscope tip (about 50 mm or closer), it
is observable from the colonoscope camera. The tracking method is applicable
for colon navigations to find polyps in the ascending and descending colons. The
tracking errors were small in the ascending and descending colons because these
regions not deform largely. The ascending and descending colons are fixed to the
other tissues. It makes small tracking errors in these regions.

Unlike the ascending and descending colons, the transverse and sigmoid
colons largely moves in the abdominal cavity. The transverse and sigmoid colons
largely deform during colonoscope insertions. The shapes of the transverse and
sigmoid colons during the colonoscope insertions are nearly straight. It caused
the large tracking errors in the transverse and sigmoid colons. Estimation method
of colon deformations during colonoscope insertions is required to reduce track-
ing errors.
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Tracking error:
High (124.7 mm)

Low (1.2 mm)

Fig. 3. Average tracking errors at EPs indicated by colors on the colon phantom. Blue
and red colors indicate small and large average tracking errors. White color means
measurement was failed at the region due to deformations of the colon phantom while
pulling the colonoscope. This image is rendered from a CT volume of the colon phantom
(Color figure online).

5 Conclusions

This paper reported a detailed evaluation results of the tracking errors of the
colonoscope tracking method. The colonoscope tracking method estimates the
colonoscope tip position in the colon by using EM sensors and a CT volume. We
measured average tracking errors at 52 points in a colon phantom by using the
tracking method. Three trials of measurements were performed. The average
tracking errors in the ascending and descending colons were enough small to
perform colonoscope navigations. However, the average tracking errors in the
transverse and sigmoid colons were large due to deformations of the colon.
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Abstract. Image guidance and the visualization of sub surface struc-
tures during laparoscopic procedures have the potential to change the
current capabilities of surgery. Increased target localization accuracy
and the identification of critical structures can reduce resection mar-
gins, procedure time and tissue trauma while simplifying procedures and
enabling new functional capabilities. Image guidance requires the regis-
tration of 3D images to the laparoscopic video. Tissue deformation and
lack of cross modality landmarks make this challenging. Registration
can be performed by aligning the 3D image to a surface reconstructed
from stereo laparoscopic images. Current research is focused on creat-
ing more generic stereo reconstruction techniques and rigid registration
methods. This paper proposes a novel stereo reconstruction approach
which exploits prior knowledge of patient specific organ models and out-
lier robust non rigid registration. The approach is validated on phantom
data and the practical application of the reconstruction is demonstrated
on in vivo data.

1 Introduction

During procedures such as liver resection, the laparoscopic camera is used to
visualize the surfaces of organs. The target anatomy (e.g. a tumor) can be hid-
den below the surface of the organ making surgery challenging. Image guid-
ance, through the registration of 3D volumetric data (CT, MRI) and laparo-
scopic images, has the capability to display sub surface information directly
on the laparoscopic video feed. Registration is challenging due to the lack of
cross modality landmarks, the laparoscope’s small field of view and tissue defor-
mation caused by cardiac/respiratory motion, CO2 insufflation and tissue tool
interaction.

Registration can be performed manually [1], using robotic kinematics or with
a calibrated tracking system [2]. These approaches do not require naturally
occuring cross modality landmarks but do not account for tissue deformation.
Inaccuracies of several mm can be introduced due to tracking and calibration
error making their stand alone use for Image Guidance limited [2]. However,
such methods can be used to initialize image based registrations approaches.

c© Springer International Publishing Switzerland 2016
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110 M. Allan et al.

Image based surface registration approaches typically use two separate parts,
(1) generating a 3D surface from intra-operative imaging (laparoscope) and (2)
registering this surface to the 3D volumetric data. The intra-operative 3D sur-
face can be generated using specialized hardware [3,4] or monocular laparo-
scopes using rigid [2] or non rigid [5] structure from motion or using a stereo
laparoscope. The clinical use of stereo laparoscopes in steadily increasing due
to robotics and the recent release of several commercially available stereo sys-
tems. Early work on surgical stereo surface reconstruction [6] used winner-takes-
all matching approaches which can suffer from false matches. To reduce false
matches and exploit local information, anchor points and 2D constraints have
been introduced [7] that limit disparity estimates and propagate good matches.
Assumptions about the prior shape of the tissue surface have been introduced to
improve stereo reconstruction [8,9]; however, the stereo reconstruction cannot
always be modelled as a generic spline and these methods do not make use of
patient specific prior knowledge of the organ surface.

Registration of 3D images to intra-operative surface reconstructions has
focused on rigid Iterative Closest Point (ICP) based algorithms [1,3]. Prior
knowledge of sensor noise can be incorporated [3] to improve registration.
Recently, a method [10] has been proposed for deformable surfaces that finds
a sparse set of points which have close-to-rigid transformations. In [4] rigid reg-
istration is followed by a biologically plausible point to mesh minimization. This
minimizes deformation but has huge computational cost.

This paper proposes a method for registering 3D images and laparoscopic
video. Stereo reconstruction is proposed which exploits patient specific prior
knowledge of the organ’s surface. Combined rigid and non rigid registration
based on coherent point drift [11] is used for registering the 3D image to the
stereo reconstruction. Reconstruction is applied to in vivo data to demonstrate
its clinical application.

2 Method

The proposed method for registering 3D images to laparoscopic video is out-
lined in Fig. 1. A new surgical workflow is proposed where 3D images are cap-
tured using cone beam CT after the patient is insufflated. The cone beam CT
image is automatically segmented to extract an anatomical model. The stereo
laparoscope is initially aligned to the cone beam CT coordinate system manually
or using a calibrated tracking system. Stereo reconstruction is performed using
prior knowledge of the patient anatomy. The stereo reconstruction is non rigidly
registered to the 3D image to compensate for errors in the initial alignment and
tissue deformation.

2.1 3D Surface Reconstruction

The goal of any 3D reconstruction is to rebuild a surface in 3D space. By defining
this target surface as a mapping from pixels to depth values: (u, v) �→ p(u, v)



Non Rigid Registration of 3D Images to Laparoscopic Video 111

Fig. 1. Registration of 3D volumetric data to the laparoscopic video stream.

this problem can be posed within an energy minimization framework where the
reconstruction problem is reduced to finding the minimum of a functional of the
form

F =
∫ ∫ (

c(p(u, v), u, v) + κs

(
∂p(u, v)

du
,
∂p(u, v)

dv

))
dudv (1)

where first term c(p(u, v), u, v) defines a cost for assigning a particular depth
value p(u, v) to a coordinate (u, v), and the second term s(.) regularizes the
solution to obtain a smooth surface reconstruction by minimizing the derivative
of the depth function. κ is a weighting constant to affect the strength of the
smoothness regularization.

This functional can be minimized by constructing it as a labeling problem on
a Markov Random Field (MRF) for which graph-cut algorithms exist to find the
optimal labeling. A 3D graph is embedded in a volume of interest that contains
the target surface. Each voxel of space is represented as a vertex in the graph and
is connected to its six nearest-neighbor vertices. The unary costs c(p(u, v), u, v)
of Eq. 1 are assigned to each edge that links a vertex (x, y, z) to its neighbor
at (x, y, z + 1) and the pairwise costs s(.) link it to its neighbors (x + 1, y, z)
and (x, y + 1, z). More details regarding how to construct a graph where the
minimum cut represents the minimum of the functional in Eq. 1 can be found
in [12]. When the minimum cut is found, the target surface is defined along
the transition between the voxels which are cut from their neighbors in the z
direction.

The unary cost function c(.) is chosen to be the normalized-cross-correlation
(NCC) as [7] showed this gives good results in surgical surface reconstruction due
to its ability to handle intensity changes that may be observed between images.

A significant challenge in reconstructing a surface is to achieve a good reg-
ularization of the solution. By exploiting knowledge of the surface shape from
optically registered preoperative scans it is possible to bias the reconstruction
to better represent the observed object. This prior is incorporated by weighting
the unary matching cost between pixel patches with a modified robust Tukey
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influence function of the residual between the estimated depth p(u, v) of the
correspondence and prior depth d(u, v) of the registered 3D model:

w(x) =

{
λ + (1 − (1 − x2

σ2 )3)(1 − λ) if |x| ≤ σ

1 if |x| > σ
(2)

where x = p(u, v) − d(u, v) and the σ measure is obtained from an estimate
of the inaccuracy of the initial optical registration, λ is a constant which shifts
the values of the Tukey function to λ ≤ Tukey(x) ≤ 1, which was set at 0.3.
This prevents overfitting to the prior which occurs when the disparity estimate
exactly matches the prior depth estimate leading to a cost of zero for the node.
The usual regularization technique of minimizing the first derivatives on the
surface can still provide useful smoothness information.

As the most expensive step of the algorithm is building the graph, it is
possible to optimize the performance of the algorithm by first building a low
resolution version of the graph, reconstructing the surface and then refining
this estimate. To achieve this the images are downscaled to half size and a
low resolution voxel space is constructed. The surface is estimated and then a
refinement graph is build using the full resolution images. This graph defines
edge costs in the z direction to be the cost of shifting the disparity estimate by
up to N pixels in either direction, where N is the subwindow size used in the
NCC cost estimation. Here we define smoothness as before.

2.2 Registration of 3D Images to Laparoscopic Video

Registration of the 3D images to the stereo point cloud is performed using (1) A
manual or calibration based registration. This contains inaccuracies caused by
manual, calibration or tracking error (typically a rigid offset). (2) Rigid regis-
tration is used to compensate for errors in step one. (3) Non rigid registration is
performed to account for tissue deformations.

Rigid and non rigid registration is performed using the Coherent Point Drift
(CPD) [11] algorithm. The registration problem is posed as a probability den-
sity estimation problem where the reference point set is modeled as Gaussian
Mixture Model (GMM) centroids which are forced to transform coherently to
preserve topological structure. The registration parameters are optimized using
the Expectation-Maximization (EM) algorithm. X is registered to Y , where X
is the N × 3 matrix corresponding to the 3D surface reconstructed from stereo
images, as a realization of a GMM and Y is the M × 3 matrix corresponding to
the anatomical model extracted from the 3D volumetric image. The transforma-
tion T applied on Y is derived as T (Y,R, t) = Y R′ +1t′ in the rigid case (with R
a 3×3 rotation matrix and t a 3×1 translation vector), and as T (Y, v) = Y +v(Y )
in the deformable case (with v(Y ) corresponding to the displacement field).

The component density for the GMM p(x|m), which predicts the location
of a target point x given a source point index for source point ym is speci-
fied as an isotropic Gaussian with standard deviation σ, with the optimal σ.
When combined, a single outlier model point matching all outlier points in the
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target domain (with pre-specified outlier percentage w), this GMM negative log-
likelihood yields the cost function E(R, t, σ) in the rigid case. In the deformable
case, an additional regularization term inducing spatial motion coherence via
a regularization strength parameter λ and a regularization bandwidth parame-
ter β is included in the cost function E(v, σ). For rigid and non rigid, the EM
framework is used to solve for the unknown transformation parameters and σ,
collectively referred to by Θ.

The E step provides a surrogate objective function Q(Θ;Θold) lying above
E(Θ) and touching it at the previous estimate of the unknown parameters Θold.
It computes a probabilistic match matrix P (incorporated within Q(Θ;Θold))
between the model and target points:

pmn =
exp

(− 1
2σ2

old
||xn − T (ym, Θold)||2

)

w
1−w

M(2πσ2
old)

3/2

N +
∑M

m=1 exp
( − 1

2σ2
old

||xn − T (ym, Θold)||2
) (3)

In the M step of the algorithm, the surrogate Q(Θ;Θold) is minimized with
respect to. Θ using an analytical formula in the rigid case and by solving the
corresponding Euler-Lagrange equation in the deformable case, which in turn
leads to a linear system with the various terms rapidly computable using the
Fast Gauss transform.

3 Results

The proposed method is validated on a publicly available phantom dataset [7,13];
The silicon phantom is visually realistic and contains a mechanism for repeatable
deformation. The ground truth was obtained from 16 CT scans of the phantom
captured at various states of deformation. Two stereo video sequences of the
phantom are used in this study. The CT data is aligned to the stereo camera
via CT visible markers and provides disparity maps for stereo reconstruction
validation and depth maps for registration validation. In vivo experiments are
presented, however at the time of writing no 3D image data was available for
validation (Fig. 2).

Fig. 2. An image of the phantom with the associated ground truth. The disparity maps
have manually shifted histograms to improve visibility.
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The stereo reconstruction is quantitatively evaluated with respect to the
ground truth and compared to the state of the art [7]. An experiment was carried
out to test the robustness of the proposed approach with respect to error in the
prior derived from the 3D CT image. Offsets were applied to the prior to simulate
inaccuracies. The translations range from 0–3.5 mm in the X, Y and Z axis and
rotations around these axis from 0–18◦. The offsets were applied to both video
sequences creating a total of 32 datasets with known ground truth.

Quantitative reconstruction result are obtained using the RMS per pixel
disparity error and percentage of pixels with a disparity error greater than a
threshold of 5 pixels. The results from these experiments are shown in Table 1
and demonstrate that the reconstruction is improved through integration of prior
knowledge and additionally provides significant improvement over using only the
pre-aligned prior for reconstruction.

Table 1. The errors are shown using the proposed method, using the proposed method
without using the prior and using the disparity map provided by the misaligned prior.

RMS Error % Error

Whole Image - Proposed method 2.89 5.45

Whole Image - Proposed method (Without Prior) 4.28 7.89

Whole Image - Prior only 7.11 9.53

The method of [7] provides highly accurate estimates of the disparity an
enables us to benchmark our technique. It estimates disparity only over a subset
of the pixels, achieving comparable accuracy (RMS error 1.96, % Error 1.41) to
our own technique (RMS error 2.65, % Error 4.36) but does not provide complete
surface coverage (estimating 96 % of pixels compared to our estimates of 99.5 %).
To illustrate the stereo reconstruction accuracy Fig. 2 shows disparity maps of
the stereo reconstruction algorithms.

Fig. 3. Registration evaluation. Point to mesh error. (a) Before registration, (b) after
rigid and non rigid CPD registration, (c) laparoscopic image
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Table 2. Quantitative registration evaluation. Average point to mesh error in mm
(standard deviation).

Dataset ICP CPD rigid CPD non rigid

Rigid - Phantom Dataset 1 0.97 (0.88) 0.93 (0.93) 0.78 (0.98)

Rigid - Phantom Dataset 2 1.68 (1.61) 1.33 (1.48) 1.08 (1.50)

Non Rigid - Phantom Dataset 1 1.0 (0.74) 1.0 (0.8) 0.58 (0.72)

Non Rigid - Phantom Dataset 2 1.16 (1.0) 1.2 (1.2) 0.93 (1.24)

Fig. 4. An in-vivo reconstruction showing the original frames and the reconstructed
point cloud.

The registration of the stereo surface reconstruction to the 3D image data is
quantitatively evaluated on the phantom datasets. It was evaluated with respect
the ICP which has been commonly used in the literature. Two experiments were
carried out to evaluate the registration performance. Firstly, an experiment was
conducted to evaluate performance with respect to errors in the initial alignment
stage. Rigid offsets were applied to the 3D image using the same parameters
defined above. The 32 datasets were evaluated with respect to the laparoscopic
videos and results are provided in Table 2. The CPD non rigid results are initial-
ized from the CPD rigid registration. Non rigid CPD out performs ICP and rigid
CPD. This is increased performance is partly due to the non rigid registration
which deforms the surface coherently to compensate for noise in the 3D image
and the stereo reconstruction.

A second experiment was performed to evaluate the registration with
respect to deformation. The surface reconstructed from each image in the video
sequences was registered to 3D image corresponding to the first frame. This rep-
resents tissue deformation of up to 2 mm. Quantitatively evaluation is provided
in Table 2. As expected the non rigid CPD performed best with respect to defor-
mation. ICP and rigid CPD had similar performances. Figure 3 illustrates the
point to mesh registration error as a heat map before registration and after rigid
and non rigid CPD registration. It contains both rigid and non rigid transfor-
mations. Prior to registration the largest error occurs in the bottom right of the
image. This error is significantly reduced after registration.

Qualitative In-vivo results are provided (Fig. 4) in the form of stereo recon-
structions. These images demonstrate that the acquired surface visually corre-
sponds to the target anatomy.
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4 Conclusion

In this paper, a novel approach for registering 3D images to laparoscopic video
is presented. The system incorporates prior information of patient specific organ
surface into stereo reconstructions and uses robust non rigid registration to align
the 3D images to stereo surface reconstructions. Its robustness to rigid offsets
and non rigid tissue deformation is demonstrated on phantom data obtaining
point to mesh registration errors of less than 1 mm. Future work will focus on
the challenging issue of in vivo and clinical validation.
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Abstract. To segment the colon region is of much significance for colonic
polyp’s detection in Computed Tomographic Colonoscopy (CTC). However,
not only the low contrast between CT attenuation values of the colon wall and
the various surrounding tissues but also the pseudo enhancement effect by tag
materials limit many traditional algorithms to achieve this task. Though few
approaches suggested to depict colon walls by exploiting two steps: (1) find the
inner colon wall; and (2) apply geodesic active contour based level set to extract
outer boundary of colon wall, the failures happened when encounter the merging
around houstral folds or adhesions of two very adjacent outer walls. Motivated
by the observation that the interaction among ‘forces’ lead to a balance between
the objects who caused those ‘forces’, we proposed a dual LevelSets competi-
tion model to simulate the mutual interference relationships among those
compositions of the colon walls. Differ from the traditional LevelSet approach,
the dual LevelSets competition model has a comprehensive cost function which
take fully advantage of the essential characteristics of colon such as mixture,
weak boundaries, volumetric, and so on. Compared with two already proved to
be effective methods in literature: the graph cut and the geodesic active contour
method, the proposed method has a much better performance to segment both
the inner wall and the outer wall of colon. Both the comparison on if the method
works well on weak boundaries of colon but also if it is capable of distin-
guishing the sticking boundaries of two very close walls is given. 200 CTC
datasets are used to validate our proposed method. In conclusion, since the colon
consists of various tissues, and they depend on and interact with each other, we
could not consider the segmentation task in a static way, but a dynamic view
works well.
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1 Introduction

According to the recent statistics from American Cancer Society (ACS), colorectal
cancer ranks the third most common occurrence of both cancer deaths and new cancer
cases for both men and women in the United States. With the help of the computer
assisted detection (CADe) and the computer assisted diagnosis (CADx), the colorectal
cancer diagnosis process shall be facilitated. It is believed that to segment the whole
colon region out be of much significance both for the CADe and for the CADx, where
the segmented CT volume will help in determining potential polyps, muscular
hypertrophy and diverticulitis of the colon [2]. And the accuracy of the segmentation
also has effect on the sensitivity and specificity of the performance of CADe.

By measuring the segmented volume, not only the thickness but also the Shape
Index, which are thought as much useful indicators for abnormal information on colon
wall, can be highly reasonably calculated. As a kind of intuitive information display on
the colon wall, the thickness is recommended as an effective way to show the
abnormality based on the segmented volume.

However the thickness measurement depends on the segmentation result which we
need to confirm if it is capable of describing the colon region reasonably and accurately
to a full extent. In view of this, many researches bloomed in past decades [2, 3]. In
general, many researches take three steps to get the whole colon region: (1) electronic
colon cleansing (ECC) [4–6], which aims at removing the contrast agent; (2) deter-
mining the inner boundary of the colon region [7]; (3) separating the outer boundary
from the colon region [8]. Implicitly, the most previous researches regard the acquired
inner boundary and the outer boundary as the colon region without further distin-
guishing the voxels between them. Consequently, the merging phenomenon will
happen as shown in Fig. 1, and it tends to lead to the any inaccuracy for thickness
measure, thus the significance of the segmentation turns to less.

The reason why this disadvantage happened on the traditional approaches can be
attributed to the several existed challenges such as partial volume effect (PVE), low
contrast, pseudo enhancement (PE) and so on [9]. Though all these challenges as
shown in Fig. 2 have been thought over thoroughly before, the colon region has not
been satisfying segmented yet because the merging on colon region still left unsolved.

Those existing segmentation methods can be grouped into two categories:
exploiting static descriptors (SD) and using the dynamic descriptors (DD). SD methods

Fig. 1. An Illustration of merging result: the left is the raw slice, the middle is result given by
previous approaches, and the right is the expected result; the yellow and green circles indicate the
ROI (Color figure online).
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suggested to fully use static characteristics in CT image such as pixel value, infor-
mation contained in region [10, 11], gradient and so on. However, it has been proved
that to simply use the SD method not be applicable for solving challenges above. On
the contrary, DD approaches like LevelSet consider both the relationships among the
SDs and the evolution discipline in a spatial and temporal context, so the above
challenges were partially solved except the merging issue. In this paper, we will
propose a new dynamic method which will estimate the colon regions by a novel
competition model. Compared with the most popular methods such as GAC [12], and
GraphCut [13], the newly proposed method shows much better performance on dis-
tinguishing the merging filed. For clearly understanding, here we define the colon
region in the bending parts as BP, and the percentage for multiple tissue mixtures as
‘mixrate’.

2 Related Work

Since the SD methods alone are not very robust to segment the reasonable colon
region, here we will merely focus on those dynamic approaches. In literature, as one
kind of most important dynamic methods, the LevelSet method and their derivatives,
such as geodesic active contour (GAC) [3], DRLSE [14], decoupled active contour
(DAC) [15] and so on, are highly recommended. They can be further classified into
three main categories: the edge-based model [13], the region-based model [16] and the
hybrid model [17, 18]. The geodesic active contour (GAC) model [3] for colon inner
and outer boundaries as well as thickness measure (no thickness measure method was
described in [2]) was proposed as one of the typical edge based models. In spite of its
limited effect, the GAC model tends to enlarge the colon region thickness when near
air-fluid boundaries. Recently, for the computational efficiency, Mishra et al. [14]
proposed DAC for fast boundary detection, but as told by author that it won’t work
well on multiple tissues boundaries. It appears that the edge based methods put much
emphasis on building a much faster LevelSet along the given edges, and the curve
maybe cross the insufficient sharp boundaries [15]. While for the region based methods,
such as Chan and Vese [16] model, they suggested to use a penalty term by measuring
the distance between a piecewise constant approximation and the original image.
However, the region based ones cannot work well when meet inhomogeneous objects
due to ignoring the local features. As a complementary of respective strengths and
weaknesses from both the edge based and the region based methods, the hybrid

A: Raw slice                     B: PVE C: PE                  D: Low contrast

Fig. 2. The challenges on the colon region segmentation, red squares indicate the ROI (Color
figure online)
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models, such as Coupled Surfaces Propagation LevelSet [17] and couple LevelSet [18],
evolve two embedded surfaces simultaneously driven by the image-derived informa-
tion while maintaining the coupling. Though the previous hybrid method is capable of
getting a volumetric region from bladder or cortex, they also suggest adapting this idea
to new segmentation problem. Besides the LevelSet methods, the multiplicative
intrinsic component optimization (MICO) [19], and MAP-EM [1] perform well in the
task of segmentation of weak boundaries(with Low contrast, PVE and PE existed in
image), but they are not good at keeping the reasonable contours of the objects since
they tend to ignore the edge information.

Motivated by the hybrid method, we are trying to propose a competition LevelSet
model by fully considering both the local features and the regional statistics, which is
capable of describing the clear BP boundaries with help of a newly probability graph
constraint term.

3 Method

At the beginning of the colon region segmentation, MAP-EM model [1] is introduced
to complete the task of electronic colon cleansing (ECC). Since ECC has been dis-
cussed for years and tag material appears in CT image to vary from the background a
lot, the new proposed method will focus on the colon region segmentation model based
on the result outputted by MAP-EM ECC. As told above, our model is a combination
of dynamic evolution and various order features, hence, the feature descriptors in each
order we need to explain first.

3.1 Order Feature Descriptors in CT Image

According to the characteristics, such as pixel value (or voxel in 3D), gradient (first
order) and curvature (second order) and so on, are usually applied to the process of
segmentation. In terminology, I stands for raw data from CT image. An adequate
volume image is defined as,

f ðx; y; z; tÞ ¼ G � I ð1Þ

where ðx; y; zÞ is the Cartesian coordinates, and t is the scale and G is a Gaussian kernel;
The gradient is expressed by

rf ¼ ðfx; fy; fzÞT ð2Þ

rf represents the gradient.

gðIÞ ¼ 1

1þ jrf j2 ð3Þ

g means the edge indicator;
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k ¼ rð r/
jr/jÞ ð4Þ

where k defines curvature, and the surface tension is expressed as kdeð/Þ n!, where
deð/Þ is the Dirac function, n! is the normal vector and Ф is a LevelSet function;
wð/Þ ¼ Heð/Þ acts as a Heasvide function to judge difference between pixels by the
step function, and e is the step.

Though the high order features are believed to be capable of describing geometrical
information very well, it is believed that the statistical information held in raw image
should help us a lot in identifying the distinguishing details among the neighborhood
pixels. Thus, we define a zero order feature descriptor as bellow.

Since the colon region usually consists of various components, such as air, muscle,
bone, Mucosa and so on, we need to ‘know’ what kind of components the current pixel
probably belongs to. As shown in Fig. 3, the HU values appear to have overlaps among
the possible components. So the pixel property is not possible determined in a simple
threshold way. Enlightened by MAP-EM approach [1], a given pixel is regarded as a
mixture of above mentioned types, such as air, mucosa, muscle and bone or tag
material and so on. Hence we can simply evaluate the probability or the percentage of
the known types in a given pixel. Thus we define the tissuei as the probability of a
given pixel belongs to the i-th type, and the type labels we use for the colon region
segmentation task are enumerated as {Air, Mucosa, Bone or Tag, Muscle}. Therefore,
we have

P
i¼0

pðtissueiÞ ¼ 1, where p stands for the probability.

Let Ti be the predicted result of a given pixel (x,y,z), i.e., which indicates if the
pixel belongs to i-th tissue type. Then we have Ti to be defined as,

Tiðx,y,z,valÞ ¼
1; if tissueiequals to argmax

tissuei2H
pðvaljtissueiÞ

0; otherwise

8<
: ð5Þ

Where val is the HU value of the given pixel, H is the sample space for all the
available tissue types. According to the Bayesian formula, pðvaljtissueiÞ can be cal-
culated by,

pðvaljtissueiÞ ¼
RRR

X pðtissueijvalÞpðvalÞdX
pðtissueiÞ ð6Þ

Fig. 3. The HU value range on abdomen CT image
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Where Ω indicates the domain of the input raw data. The function p integrates all the
points in the region of the domain. Please note, pðvaljtissueiÞ is calculated based on the
intuitively manually drawing regions in advance.

As shown in Fig. 4, the drawing region will be calculated automatically and we use
the frequency percentage to express the pðtissueijvalÞ in line with the Large Number
Law. Then pðtissueiÞ will be decided by,

pðtissueiÞ ¼
RRR

X TiðIðx; y; zÞÞdXRRR
X TðIðx; y; zÞÞdX ð7Þ

Now, we can define the “mixrate” mentioned above of a given image I(x,y,z) as,

mixrateðIðx; y; zÞ; tÞ ¼ �
Xn
i¼1

pðtissueiÞ � logðpðtissueiÞÞ ð8Þ

where the negative sign stands for a bias to a homogeneous region, and mixrate (I(x,y,
z),t) stands for the mixrate mapping for I(x,y,z) when t-th iteration finished.

3.2 Dynamic Forces Terms and the Competition Model (CM)

All the above discussed static order features descriptors are very meaningful for con-
struct a dynamic model. For decades, LevelSet method is very popular to exploit an
implicit surface to help depicting the boundary of a given object in a dynamic way.
And it is usually expressed by an energy function with time as follows,

/0ðx; y; z; t ¼ 0Þ ¼ � i0 ; if ðx; y; zÞ 2 R0

i0 ; otherwise

(
ð9Þ

Fig. 4. The statistical HU value range of the given types

122 H. Wang et al.



Where Ф is a LevelSet function, i0 is a positive constant, R0 is the inner region of
/0, t is time(or evolution time step) and (x,y,z) is the Cartesian coordinates. Ф will
evolve to the boundary of the colon region constrained by a defined ‘force’: F,

@/
@t

¼ Fjr/j ð10Þ

Since the forces defined in those previous methods tend to fail BP boundaries. Hence, a
new force definition is necessary for achieving the expected result. Meantime, a cost
function Lðx; y; z; tÞ is also required to help those forces converge.

In view of the previous defined LevelSet is not able to evolve into a much concave
region by a single force, we need to consider more forces to work together. So we
define a kinetic term,

kineticgðIiÞ ¼
ZZ
X

gðIiÞdeð/Þjr/jds ð11Þ

where i is the index. And let forces from different regions to compete as,

e1 ¼ w1a1KineticgðI1Þ /1ð Þþw2a2KineticgðI2Þ /2ð Þ ð12Þ

where wi is the statistics weight coefficient of the term, ai is a positive constant, the
energy Kinenticgð/Þ computes the surface integral of the function g along the zero
LevelSet. After parameterizing the zero LevelSet of / as a surface, I1 is the input
region to identify the boundaries, I2 is a guide image. In practice, it is a convex box of
the object, and it has an opposite sign to I1. When LevelSet stops outside the sharp
corner and the concave hull, I2 will help let the LevelSet continue until it reach the real
interfaces because the double kinetic terms in the opposite sign will make the convex
contour evolve into a concave one. However, if the LevelSet is evolving toward to a
right and effective direction? Especially for the multiple regions, where the evolution
directions are neither single nor consistent, the situation is getting much more difficult.
Since energy functional is the integral of g on volume of X, a double anchors term e2 is
given as,

e2 ¼ w1b1AnchorgðI1Þ /1ð Þþw2b2AnchorgðI2Þ /2ð Þ ð13Þ

Where Anchor is calculated by
RR
X

gHeð�/Þds, b2 is a constant. Thus, the inte-

gration calculation among the neighbor regions is completed through changing the
coefficient’s sign of bi, which will control the direction of the evolution. As an indirect
effect, the changing of signs makes an increase or decrease on jr/j, then change the
direction of jr/j. Moreover, the forces from the two terms is shift when the distance
changes. When evolving close to the mixture boundaries, the second term takes a
leading role and suppresses the fusion of two regions. In a word, it can be used to
control the evolution of the step length and avoid excessive fusion.
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Because the general size of colon CT data is up to 512 * 512 * 700 after inter-
polation, the fixed step evolution is apt to cause the LevelSet evolution with a very low
efficiency. As told in [14], Potential energy will help speed up the evolution with an
accuracy edge. And the traditional P term is computed by

RR jj r/� 1jj2ds. So by the
iteration, we have,

@P
@t

¼ ½r2/� divð r/
jr/jÞ� ¼ divðð1� 1

jr/jÞr/Þ ð14Þ

By taking full advantage of the above terms, a cost function is defined as,

L ¼ W � lPotentialð/ÞþW � A � ½KineticgðI1Þð/Þ;KineticgðI2Þð/Þ�T þ
W � B � ½AnchorgðI1Þð/Þ;AnchorgðI2Þð/Þ�T

ð15Þ

WhereW represents ½w1;w2�, wi ¼ 1
1þmixrate, A stands for ½a1; a2�, and B means ½b1; b2�.

ai is a positive constant with ai 2 R. W represents the weight of the evolution step,
where higher is the mixrate, lower is the evolution speed. When reaching the maxi-
mum, it will stop. Thus, the gradient decent flow will be,

@/
@t

¼
X2
i¼1

wiaide /ið Þdiv gðIÞ r/i

r/ij j
� �

¼
X2
i¼1

wiaideðgjr/jkþrg � r/Þ ð16Þ

where k is the curvature and div is divergence operator. In conclusion, the above
proposed model adequately considers not only the forces’ direction but also their
mutual interactions with two LevelSets (Ф1, Ф2), so, we call it as a dual LevelSet
competition model.

4 Experiments

We selected a CTC database of 100 patients with 200 CT scans from both supine and
prone positions from the Wisconsin hospital. All the selected datasets are in the
DICOM formats, and the slice number ranged between 480 and 700.

4.1 Experiments for the Selection of the Parameters

Since the parameters are of much significance on the evaluation of the proposed
algorithm, we set the several tests on relationships and the parameters. At the begin-
ning, we select 5 datasets as the inputs, and apply a range of parameters to them. Then
the results were grouped according to the parameter’s value. As for the evaluation, 10
trained students are required to give each own scores on the results through a web
system we built in advance. Finally the scores are collected automatically and averaged
to show the performance based on each parameter. As shown in Fig. 5, most of the
parameters have their respective best performance except α2.
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According to the observation in the experiments, we also found that the higher the
mixrate is, jb2j is larger. And when the mixrate is higher, the implicit surface evolves at
low speed until a balance status achieved.

4.2 Comparison with the Other Methods

Based on the experimental results, we can intuitively compare the results given by CM
with others such as GAC, GACK [13], GraphCut [14], MICO [19] and so on. As
illustrated in Fig. 6, the proposed method CM shows much more gain than that of the
rest because the results produced by GAC or GACK couldn’t extend adequately into
the concave wall, meantime the edges are rough and not keeping shapeness as the colon
actually does.

Compared with GraphCut, the new approach performs better when dealing BPs on
the colon wall. As shown in Fig. 7, CM keeps BPs very well, while the GraphCut
misses some BPs’ shape detail.

Fig. 5. Performance on different parameters respectively (x axis is the actual selected parameter
value range and y axis is the normalized performance score)
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Fig. 6. The 3D rendering results for different methods.

Fig. 7. The comparison between GraphCut and CM: left is the raw slice, middle is the
corresponding segmented result given by GraphCut, right is produced by CM.

Fig. 8. The comparison between the statistics merging approach (SM) and CM: second row
indicates the zoomed details, middle is the result given by SM and its’ zoomed details, right is the
result given by CM and its’ zoomed details.
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When we dig the segmentation details, a very interesting conclusion is also drawn
by observation: the CM method is capable of both keeping shape of the colon wall and
keeping the shape smoothly. As shown in Fig. 8, the left is raw slice, and the middle is
the result given by statistics merging approach. Compared with the statistics merging
approach, CM can preserve much smoothness of the shape.

5 Conclusion and Discussion

In this paper, we presented a new level set model, which has an intrinsic capability of
segmenting the weak boundary and be able to depict BP regions. As shown in the
experimental results, the model is feasible for colon region segmentation and illustrated
a better performance than the previous methods. We regard our proposed model as a
dynamic one, which not only takes fully the information of image features into con-
sideration, but also combines the LevelSet method with the above mentioned
descriptors in a mathematic way. In practice, we also observed that the terms we
defined above are able to work properly as we expected. For example, double kinetic
terms will smooth the result in the uniform way, while for the Anchor terms, they
control segmented result in the opposite direction. With the energy function, the model
shows many merits solving the weak boundaries segmentation problem.
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Abstract. This paper proposes a novel hierarchical approach to improve
the accuracy of the classification of normal-vs-abnormal frames in
white-light colonoscopy videos. The existing approaches label each frame
independently, without considering the temporal consistency between
adjacent frames. Temporal consistency, however, can improve the clas-
sification accuracy in the presence of unclear/uncertain images. We
propose to leverage temporal consistency between adjacent frames for
colonoscopy video frame classification using a novel hierarchical classifier.
Comparative experiments with five challenging full colonoscopy videos
show that the proposed approach considerably improves the mean class
normal/abnormal classification accuracy compared to the approaches
where the frames are classified independently.

1 Introduction

Colorectal cancer is the second leading cause of cancer death in the world and
the third most common cancer in the UK [1]. Although colonoscopy remains
the gold standard for colorectal cancer screening, its miss rate for colorectal
cancer has been reported to be as high as 6 % [2], posing the risk of developing
colon cancer due to failure to detect treatable lesions in time. This motivates
research into automated, repeatable systems detecting abnormalities (including
polyps, cancer, ulcers, etc.) in colonoscopy videos, which could provide a second
quantitative opinion and ultimately contribute to reduce the miss rate.

In this paper, we concentrate on classifying white-light colonoscopy images
into 2 classes, normal and abnormal. Abnormal frames contain one or more
lesions (e.g., polyps, adenomas); normal frames contain none and show a healthy
colon wall. The majority of the work reported for colonoscopy image classification
focuses mainly on designing or identifying appropriate features and classifiers.

c© Springer International Publishing Switzerland 2016
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Fig. 1. Examples of three small video segments each contains 5 frames. The images
which are difficult to classify due to (1) the lesion is not visible properly, (2) poor
illumination, and (3) a very small lesion is highlighted in the 1st, 2nd and 3rd rows,
respectively. These images, however, could be correctly classified as abnormal if the
temporal information between adjacent frames were considered.

Texture, color, shape and their combinations, together with different classifiers,
such as SVM and neural nets, have been explored for lesion detection and/or
frame classification: texture features for normal/abnormal classification [3–5],
lesion detection [6–8]; color histograms and related statistics for bleeding detec-
tion [9,10]; and shape-based features, such as edge orientation histograms for
Crohn disease classification [11]. For a complete review of the aforementioned
methods, we direct the reader to [12].

Up to our knowledge, the state-of-the-art colonoscopy video frame classifica-
tion approaches assume frames independent of each other. In reality, if a lesion
appears in a particular frame, previous and successive frames are very likely to
include it, albeit from different viewpoints as the scope is moved. One expects,
therefore, that temporal consistency should improve the accuracy of colonoscopy
frame classification compared to single-frame schemes.

There are further reasons to expect that temporal consistency will improve
the classification. First, some frames are genuinely ambiguous, and a single view
will not be sufficient for reliable classification even for experts, whose decisions
are based on multiple observations generated by moving the scope. Second, the
colonic wall may not be clearly visible in specific frames due to poor illumination,
blur due to fast camera movements, and surgical smoke. Third, the appearance
of lesions (e.g., scale, orientation) varies in different frames. Fourth, frame-level
representations for classification are often obtained by aggregating the statis-
tics of the local features extracted from that frame (e.g. bag-of-visual-words).
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Such representations may not capture small lesions sufficiently well, vis-á-vis the
volume and appearance of background features (extracted from normal tissue).

Figure 1 shows three example video sequences, each containing a few frames
which are difficult to classify. A system trained on individual frames indepen-
dently is likely to classify these frames erroneously as normal. However, a classi-
fier using temporal consistency information would classify these frames correctly
as abnormal.

In this paper, we propose a three-level hierarchical classification approach
which makes use of the temporal-context information across adjacent frames to
classify any individual frame. In the first level, we assume the frames are inde-
pendent to each other, hence we learn a classifier based on individual frame-level
representations. The second level classifier is trained to leverage the temporal
consistency information using the weighted similarities between frames in a tem-
poral window and the classification outputs computed from the first level. We
propose a max-margin approach to learn these weights based on the given train-
ing set. The third level applies a temporal filtering which refines the output from
the second level by majority voting. We experimentally show that the proposed
hierarchical approach outperforms the single-level classifier approaches such as
SVM and random forests which were trained to classify frames independently.
Note that our technique could be used to assess proficiency of gastroenterologist
doctors either by analyzing colonoscopy videos both retrospectively or in real
time depending on the parameters of the sliding window.

In the following, we first we explain the proposed hierarchical classification
approach in detail, and then provide experimental evidence showing that the
proposed approach performs better than any single level classification approach.

2 Methodology

In this section, we present an algorithm to classify normal-abnormal frames in
colonoscopy videos. Our approach is based on a three-layer hierarchical classi-
fier that leverages the strengths of SVM, in terms of accuracy and robustness,
and the temporal consistency between adjacent frames based on a max-margin
formulation.

In our proposed approach, we make use of the similarities between adjacent
frames, in addition to the frame-level features. The similarities (e.g., number of
image correspondences) between adjacent frames play an important role in this
classification. Lets consider two consecutive frames Ii and Ij , if Ii has a high
similarity with Ij it is most probable that both Ii and Ij are belonging to the
same class.

Our approach is illustrated in Fig. 2. In the first level, frames are assumed to
be independent to each other, and a SVM is trained to classify frames indepen-
dently based on the frame-level features. In the second level, we make use of the
temporal-context information between adjacent frames; which are measured by
weighted similarity between a frame and its temporal neighbors, as well as the
outputs obtained by the first level classifier. We propose an approach to learn



132 G.A. Puerto-Souza et al.

Fig. 2. The proposed hierarchical classifier. The first level outputs the confidence values
based on classifying independent frames. The second level uses these confidence values
in addition to the similarities between adjacent frames. The final level applies a majority
voting on the second-level outputs to obtain the final labels of individual frames.

these weights by maximizing the margin between normal and abnormal classes.
Finally, the resulting classification is passed to a third level that refines further
the output from the second level by using a voting scheme over adjacent frames.

In the following, first we describe the first-level classifier and the Platt scaling
which is used to convert the outputs of the first-level classifier to probability val-
ues. Then, the max-margin formulation of the second-level classifier is explained
in detail. Lastly, the section concludes with the temporal filtering.

2.1 The First-Level Classifier

This classifier is trained on individual-frame representations to classify each test
frame independently, i.e. without considering its temporal context.

Since the number of abnormal and the normal frames are highly unbalanced,
we use a SVM with class balancing [13]. Learning the SVM weight vector w
and the bias (b) for the first-level classifier f(x) is achieved by the following
formulation,

arg min
w,b

⎧
⎨

⎩
‖w‖2 + λ

⎡

⎣C+
∑

i∈A

h(wTxi + b, yi) + C− ∑

j∈N

h(wTxj + b, yi)

⎤

⎦

⎫
⎬

⎭
(1)

where h is the hinge loss function h(z, y) = max(0; 1 − yz), with xi and
yi = {−1, 1} are the feature representation for Ii (the ith frame) and its
label, respectively. λ is a regularization parameter controlling the rate of miss-
classification, and C+ and C− are the class weighting parameters for the unbal-
anced abnormal (A) and the normal (N) classes, respectively. C+ and C− can
be selected by setting C+

C− = n+

n− [13], where n+ and n− are the total number of
positive (abnormal) and the negative (normal) images in the training set.
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Usually SVM outputs decision values represent how far the test feature is
from the learned hyper-plane, which is defined by (w, b). The Platt calibration
method [14] maps any SVM output f(xi) with the range [−∞,∞] to a posterior
probability P with the range [0, 1] by a sigmoid function, i.e.,

P (y = 1|f(xi)) =
1

1 + exp(Af(xi) + B)
(2)

where P (xi) represents the probability of the ith image being positive. A and B
are two parameters which has to be learned from the training set. As suggested
by Platt [14], we use a three-fold cross validation on the training set to learn
these parameters.

2.2 The Second-Level Classifier

This classifier aims to improve the classification accuracy of the first classifier by
leveraging temporal consistency. The inputs are the probabilities obtained by the
first-level classifier, as well as the similarities, in terms of image correspondences,
between a frame and its neighbors.

Similarity Between Frames: We defined the similarity Sij between two adja-
cent frames, Ii and Ij , as the number of image correspondences between them. In
particular, we extract and match SIFT features because of their stability, distinc-
tiveness, and repeatability, as well as their well known rotation and scale invari-
ance, and robustness to affine distortions, illumination changes, and noise [15].
SIFT detects a sparse set of interest points (keypoints), in the image, obtained as
the scale-space extrema of the difference of Gaussians operators. The extracted
keypoints are matched according to the nearest neighbor distance ratio of their
descriptors, discarding ambiguous matches with ratio greater than 0.8 [15].

The Temporal Classifier: The proposed temporal classifier assumes that the
label of a particular frame Ii not only depends on the classification results of
itself, but also on the weighted similarity between that frame and its neighbors
as well as on the confidence values of its neighbors. From here and the following
we will assume a centered sliding window since our approach targets for maximal
performance over retrospective videos. However, our approach can achieve real
time performance by using a queue-style sliding window.

Let Pi = P (yi = c) and Pj = P (yj = c) represents the probabilities obtained
by the first-level classifier for the frames Ii and Ij . We define the label of the
frame Ii based on the temporal classifier as follows,

di = viPi +
n∑

j=−n
j �=0

vjS
′
i,jPj

ȳi =

{
1 if di ≥ t

−1 otherwise

(3)
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where the set {vj}n
j=−n are the weights applied to the current frame (j = 0) and

its neighboring frames in the interval [−n, n]. Here t denotes the margin between
classes, the size of the considered temporal window is represented by 2n+1 (i.e.,
previous n and next n frames are considered around the frame Ii), and ȳi is the
predicted label for the frame Ii. S′

ij can be represented by

S′
i,j = 1 − exp−βSi,j (4)

where β is a decay parameter, empirically set to β = 5 in all the experiments
reported in Sect. 3.

Lets define the vectors v and u be

v =

⎛
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⎜
⎜
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⎜
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⎜
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⎜
⎝
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⎠

, u =
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⎟
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⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5)

The classifier defined in Eq. (3) can be represented based on vector represen-
tations as follows,

ȳi =

{
1 if vTu − t ≥ 0

−1 otherwise
(6)

where v and t define the temporal classifier, and can be easily learned in a similar
manner to the max-margin approach given by Eq. (1).

2.3 Temporal Filtering

This final level refines further the results of the second-level by enforcing, within
a sliding window, a temporal constraint based on the classes of the surrounding
frames. As a result, the video has smoother transitions between abnormal and
normal classes, i.e., the labels of video frames in segments containing lesions are
consistently “abnormal”, and do not contain noisy “normal” labels surviving the
previous classifiers.

We use the second classifier prediction ȳi to classify the frames, based on
a majority-vote scheme over a sliding window. In particular, for each frame Ii,
we gather the second-level classifier labels within a window with size 2m + 1,
centered on frame i. Each element within the window yields a vote for either
abnormal or normal according to their class ȳi. The frame Ii is classified as the
class with the larger number of votes. For example, the frame Ii is classified as
abnormal if CA

i,m > CN
i,m, where CA

i,m and CN
i,m denote the number of votes for

abnormal and normal classes within the window, respectively.
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3 Experiments

The aim of these experiments is to compare different classifiers, with and with-
out the hierarchical approach to incorporate temporal consistency, while keeping
all the other factors unchanged, e.g. features for computing the frame represen-
tations.

In the following dataset, experimental settings and evaluation criteria are
first explained. Then experimental validation and analysis of the results are
presented.

3.1 Experimental Setup

We define abnormal frames as those that contain various lesions including
polyps, cancer and bleeding. Our dataset consists of frames extracted from five
colonoscopy videos (1 normal and 4 abnormal) from Hospital Universitario del
Valle Evaristo Garcia ESE, Cali, Colombia. Each video has length of 8–15 min,
image resolution of 640 × 480 and was recorded at 10 fps, leading to a total
of 41518 extracted frames. For training and evaluation, the entire dataset was
annotated at frame-level by an expert colonoscopist. In our two-label scheme
and since lesion detection is the clinical target, large blurs and negligible frames
were labeled as normal. The number of frames from different classes are given
in Table 1; notice that the normal frames (N) constitute 77.5% of the dataset
while the 22.5% of the frames are labeled as abnormal (A). All these frames
were then rescaled by preserving their row to column aspect ratio to make their
maximum size (row or column) equal to 300 pixels.

Table 1. The number of frames
per video in each class (N-normal,
A-abnormal)

Video N A %A frames

1 5173 2944 36.3

2 3082 2555 45.3

3 8033 2056 20.4

4 5892 1823 23.6

5 9960 0 0

Total 32140 9378 22.6

Frame Representation: Each frame in
the dataset was represented based on the
Locality-constrained Linear Coding (LLC)
[16] together with max-pooling on two types
of local features: local color histograms and
multi-resolution local patterns [17]. These
features were extracted from patches of size
16 × 16 with an overlap of 12 pixels in the
horizontal and vertical directions. Since the
dimensionality of the local color histogram
features are high (equal to 3 colors × 256 bins), we applied PCA to reduce its
dimension to 400. Separate dictionaries of size 500 were learned for each feature
type using k-means on a randomly sampled 200, 000 features from the training
set. Finally each frame was represented as a feature vector of size 1000, which is
a concatenation of the frame representation obtained by each feature type.

Evaluation Criteria: The classification performance was evaluated based on
leave-one-video-out experiments. Due to the highly unbalanced nature of the
dataset, the average of the true positive rate (or sensitivity) and true negative
rate (or specificity), namely the mean class accuracy (MCA), was used to eval-
uate the classification performance.
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LibLinear [18] was used to train the SVM classifier. The regularization para-
meter of SVM is learned based on a three-fold cross validation applied on the
training set. The vlfeat library [19] was used to create the dictionary and to
extract the SIFT matches. The code from the authors of [16] was used for LLC.

3.2 Temporal Consistency for Classification

This section compares a single-layer SVM classifier, which is trained to classify
frames independently, with the proposed hierarchical classifier which incorpo-
rates the temporal consistency.

Let SVM-TC and SVM-TF represent the second and the third level classifiers
proposed in Sects. 2.2 and 2.3 respectively. Table 2 reports the MCA obtained
by the single level (first row) and the proposed hierarchical (second and third
rows) approaches for different videos.

Table 2. MCA per video with (2nd and 3rd rows) and without (1st row) the proposed
hierarchical approach. SVM was used as the first-level classifier. The fourth row con-
tains the percentage of improvement achieved by our approach (SVM-TF) with respect
to the single-layer SVM.

Method video 1 video 2 video 3 video 4 video 5

SVM 66.8 73.9 89.4 73.7 98.3

SVM-TC 73.2 84.7 90.5 74.6 99.1

SVM-TF 72.3 84.9 91.5 75.9 99.4

% improvement 6.4 11.0 2.1 2.1 1.1

As expected for all the videos adding temporal information considerably
improve the MCA. The third level classifier gives modest improvements over
the second level one, suggesting that the second level classifier already captures
the temporal consistency information.

Figure 3 illustrates a qualitative comparison between the first level SVM and
our approach. Note in Fig. 3(a–c) that the single-frame approach of SVM classi-
fies erroneously few ambiguous frames, instead our approach, correctly classifies
these frames by propagating the classification of SVM from more certain frames
towards ambiguous ones. The example in Fig. 3(d) shows a challenging case when
our approach obtains an incorrect classification, however this is mainly due to
the classification obtained by the first level SVM classifier, which in this example
is erroneous for the whole subsequence.

In this experiment the window sizes was empirically set to n = 10 for the
second layer classifier and m = 5 for the third layer classifier respectively.

3.3 Generalization to Other Classifiers

The goal of this section is to show the applicability of our approach with
respect to other first-level classifiers, i.e., by replacing the SVM classifier (used
in Sect. 3.2) with a Random Forest (RF) classifier.
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Fig. 3. Qualitative example of the performance of the first level SVM and our proposed
algorithm over four video subsequences (a–d) where our hierarchical classifier is able
to correct the misclassified frames by enforcing temporal constraints.
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Table 3 reports the MCA for RF with and without the temporal consistency.
Adding the temporal consistency to the RF considerably improves the MCA
for most of the videos. However, SVM without temporal information (Table 2)
obtains better or very competitive results than RF without temporal informa-
tion. When temporal consistency is added, SVM with temporal context performs
better than RF with temporal context.

The number of trees in the RF classifier was set to 200 since we observed that
increasing the number of trees leads to poor performance. This might happen
because RF require very large training sets to perform optimally.

Table 3. MCA per video with (2nd and 3rd rows) and without (1st row) the proposed
hierarchical approach. RF was used as the first-level classifier.

Method video 1 video 2 video 3 video 4 video 5

RF 58.6 62.2 90.3 63.9 100

RF-TC 59.6 68.0 91.6 67.2 100

Improvement 1.0 5.8 1.3 3.3 0

4 Conclusions

We presented here a novel three-layer classifier to detect normal-abnormal frames
in a colonoscopy video. Differently from other methods, our approach hierarchi-
cally combines the accuracy and robustness of SVM with the temporal consis-
tency of two temporal classifiers. Experimental evaluation over five challeng-
ing colonoscopic videos shown improved classification accuracy, with two cases
with significant improvements of 8.5% and 14.9%, when comparing against a
SVM approach without any temporal information. Future work will be directed
towards investigating other classification approaches as well as quantifying the
impact of uninformative frames in the classification process.
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Abstract. Computational intelligent systems could reduce polyp miss
rate in colonoscopy for colon cancer diagnosis and, thus, increase the effi-
ciency of the procedure. One of the main problems of existing polyp local-
ization methods is a lack of spatio-temporal stability in their response.
We propose to explore the response of a given polyp localization across
temporal windows in order to select those image regions presenting
the highest stable spatio-temporal response. Spatio-temporal stability
is achieved by extracting 3D watershed regions on the temporal window.
Stability in localization response is statistically determined by analy-
sis of the variance of the output of the localization method inside each
3D region. We have explored the benefits of considering spatio-temporal
stability in two different tasks: polyp localization and polyp detection.
Experimental results indicate an average improvement of 21.5 % in polyp
localization and 43.78 % in polyp detection.

Keywords: Colonoscopy · Polyp detection · Polyp localization · Region
extraction · Watersheds

1 Introduction

1.1 Intelligent Systems for Colonoscopy

Colorectal cancer (CRC) is a serious health problem that affects the general pop-
ulation and is considered the fourth cause of cancer death worldwide with around
750.000 new cases diagnosed in 2012. Out of all found lesions, it is considered
that at least two thirds of CRC develop through adenoma-carcinoma pathway
[1]. Considering this, early screening with colonoscopy to search for CRC and its
precursor lesion has become a generalized practice [2] and it is shown as crucial
to patients’ survival. Although colonoscopy has become the gold standard for
colon screening, it still presents some drawbacks being polyp miss-rate-reported
to be as high as 22%- the most relevant affecting its effectiveness [3].
c© Springer International Publishing Switzerland 2016
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Several actions have been proposed to reduce polyp miss rate, such as optimal
patient preparation and novel methodologies to carry out a complete examina-
tion of the mucosa. However, sometimes these new methodologies have impact in
other quality metrics such as withdrawal time, as exposed in [4]. Regarding the
technology itself, during the last years most of the developments in endoscopy
have been focused on improving the quality of the images. This improvement in
image quality has attracted the interest of computer scientists and has resulted in
the creation of a new research field referred as intelligent systems for colonoscopy
[5]. Among the different applications a given intelligent system can have, the one
that has attracted higher research interest is the development of automatic polyp
characterization methods.

Existing computational methods can be divided into those devoted to obtain
an accurate localization of the polyp in the image -polyp localization- and those
focus on providing as output an indicator of the presence or absence of polyps in
the image -polyp detection-. The majority of these works rely on the extraction
of shape, texture and color features to characterize polyps. The former includes
methods which explore shape features of the different structures in the image
to search for cues that discriminate polyps from other elements in the scene.
Examples of methods belonging to this group can be found at [6–10]. Concern-
ing texture-based approaches, we can find in the literature works that explore
intensity patterns in the image to aid in polyp characterization, such as the works
of [9,11]. Other approaches involve the use of state-of-the-art feature extraction
methods such as local binary patterns [12] or MPEG-7 [13].

Although there is a great variety of methods, it is very difficult to com-
pare them as they are commonly tested in private databases, hindering their
actual performance in general cases of study that can appear in routinely pro-
cedures, therefore limiting their potential clinical deployment. In order to cope
with this, efforts have been made to create and publish annotated databases
of both still frames (CVC-ClinicDB database [7]) and videos (ASU-Mayo Clinic
database [14]). Moreover, in order to gather researchers on the field, two different
challenges on automatic polyp detection have been organized in 2015, at ISBI
conference and as part of MICCAI Endoscopic Vision Challenge.

1.2 Motivation and Objectives of Research

After an analysis of the results of the different available methods, we have come to
the conclusion that the majority of them present the following problem. Although
they are able to locate/detect accurately the polyp in some frames, when this
method is tested in a whole sequence performance scores decrease. We attribute
this decrease in the performance to the lack of spatio-temporal stability in the
response of the given methods, which can produce situations such as the one
shown in Fig. 1. We can observe in this figure how a given polyp localization
method (in this case, an implementation of Window-Median Depth of Valley
Accumulation (WM-DOVA energy maps [7]) can provide a good localization
output for isolated frames but, when analyzing its performance during a sequence
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Fig. 1. Example of lack of spatio-temporal stability in the response of state-of-the-art
polyp localization methods

of frames, we can observe how the polyp localization (in this case marked as a
blue square) is not stable even for the two last images where the movement
between them is small.

We propose in this paper a novel methodology to add spatial and temporal
coherence to the response of a given polyp localization method. The use of
temporal windows for increasing polyp detection capabilities has been explored
in other works such as [15], although in this case the authors propose the use of
Conditional Random Fields for adding spatio-temporal coherence to a texture-
based polyp detection method. As WM-DOVA maps are the only ones tested on a
public annotated frame-based database, we will take as base localization method
these maps for this preliminary study, although our methodology could be used
for any given energy-map based polyp localization method. Our methodology
explores the consistency of the response by considering the displacement of the
structures that appear in the image in a way such if a given polyp is localized in
a region of the area with a high response, it is expected that a similar response
will be given in a consecutive frame where the movement between frames is
minimal. Moreover, we assess the potential of a given localization method as a
polyp detection method by exploring if the response given by a polyp in a given
frame loses stability when the polyp disappears from the scene. We validate
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our methodology in terms of polyp localization, by comparing the performance
of state-of-the-art method with and without applying spatio-temporal stability
and, in terms of polyp detection, in a sequence with frames with presence and
absence of the polyp.

The structure of the paper is as follows: we present our methodology in
Sect. 2. Experimental results on both polyp localization and detection are dis-
cussed in Sect. 3 and we close this paper by exposing the main conclusions along
with guidelines for future work in Sect. 4.

2 Methodology

The basis of our methodology is to improve the response of a given localization
method in a given frame by incorporating information of neighboring frames in
a temporal window centered at the frame (Fig. 2). Our method assumes that
the response to the localization method keeps stable in such a window centered
in a frame containing a polyp, in contrast to responses due to other structures
(such as folds or specular highlights) which should be more spatially erratic.
It is true that lumen region can also be considered as an stable structure that
appears during consecutive frames and, in this case, we have used our method-
ology regarding non-informative region identification [16] to mitigate its impact
in our approach. In order to explore such spatio-temporal response stability, we
first need to obtain and track the different regions that appear in the given set
of frames for a later classification of the regions in terms of polyp presence by
performing a 3D statistical analysis of the output of the given localization meth-
ods for the extracted regions. By this, the output of the polyp localization in
a given frame will depend on the output of polyp localization in a window of
frames centered on it in a way such the output of a polyp localization method
in a region of the image will rely on statistics over the output of the localization
method for this specific region in a window of frames.

Before starting with the explanation of our 3D spatio-temporal stabilization
of the output of polyp localization method, we will make a brief review of the
localization method we will use as base, WM-DOVA energy maps.

Window Median Depth of Valley Accumulation (WM-DOVA) energy maps
are based on a model of appearance for polyps which characterize polyp bound-
aries in terms of valley information [7]. This model is designed to foster those
features characteristic of polyp boundaries (continuity, concavity, completeness
and robustness to noisy structures) and it is specially designed to favor polyps
from other structures on the image which also convey valley information such as
folds, blood vessels or image artifacts such as specular highlights. The method
is based on the accumulation on the output of a valley detector -in this case
completed with information from morphological gradient to achieve a sense of
the depth of the valleys- by using a ring of radial sectors. The final accumu-
lation value for each pixel is calculated from the contribution of the different
sectors centred on it but, in this case, the behaviour of a neighborhood of sec-
tors is observed before calculating sectors’ contribution to the final accumulation
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Fig. 2. Graphical scheme of the use of neighbor information to stabilize the output of
a polyp localization method

value. More details on WM-DOVA energy maps creation can be found at [7].
WM-DOVA maps are proven to perform well for a wide range of images, appear-
ing specially useful when having zenithal views of the polyps, regardless of their
morphology and size.

2.1 Spatio-Temporal Region Extraction Using Watersheds

The first stage in our processing scheme aims at extracting a set of connected
regions over a temporal window centered on each sequence frame. Each region
represents an element which presence is kept in some consecutive frames from
the temporal window. The question is to decide whether this element is a polyp
or not and in order to take this decision we propose to perform a statistical
study regarding characteristics of WM-DOVA maps during the temporal window
where it appears. Considering this, region extraction should not be performed in
a single-frame basis, but on a temporal window centered on the specific frame we
are working with. In order to achieve this, we will perform watersheds in 3D over
this window of greyscale images. In this context, the first two dimensions repre-
sent the image in 2D and the third dimension represents the time -understood
as the temporal sequence of frames-.

3D watersheds extend the calculation of 2D watersheds to 3D volumes or
sequences of frames and have already been applied in the context of medical
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image segmentation [17,18]. The basic idea of watersheds consists of considering
the given input image as a topographic surface. If we start to flood the regions
starting by the regional minimums we will get to a point in which the water from
one region invades a neighbor region. All the surface points at a given minimum
constitute the catchment basin associated with that minimum. Watersheds are
the zones which divide adjacent catchment basins. 3D extension aims to keep
those regions which can be identified within this window of frames. In our par-
ticular case, we apply 3D watershed throughout all the frames belonging to the
temporal window centered on the target frame. The methodology to calculate
3D watershed transformation for a given central frame fc is:

1. Definition of a temporal window w(fc) of size r centered on fc as w(fc) =
{fi|i ∈ [fc − r, fc + r]}.

2. Calculation of the morphological gradient MGi for each frame fi contained
in w(fc).

3. Calculation, for the central frame fc, of the set of markers Mkc as the local
minima of MGc.

4. Calculation of 3D watershed transform for all the frames in the temporal
window, using the set of MGi for the temporal window w(fc) as input image
and Mkc as markers .

Although we extend watershed calculation to the temporal window, the
puncitual calculation for a given frame uses only as markers the local minima
of the morphological gradient information calculated for the central frame. The
catchment basin associated with those minima is extended over neighbor frames,
following the movement of the image gradients. This behavior causes that each
region should only represent one same element of the scene for a series of frames,
which allows to perform a statistical study over the time. Unfortunately, this
behavior is not common in the analysis of colonoscopy images where watershed

Fig. 3. Graphical explanation of the use of 3D watershed to track a polyp region.
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fragments image elements in more than a region therefore reducing their statis-
tical representativeness. Moreover, in some residual cases, a given region may
cover more than one element of the scene.

For each frame, the output of this processing stage is a 3D representation of
the stable regions inside the frame temporal window. By doing this analysis, we
can easily observe which regions tend to be stable and which of them disappear,
either because they are merged in a larger region or, following our hypothesis, due
to the disappearance of the structure that originated them. Figure 3 illustrates
the output of the 3D watershed in the case of a stable region corresponding to
a polyp.

2.2 3D Region Statistical Analysis for Merging Polyp Region
Information

Watershed stable regions provide an over-segmentation of the image in small
regions that should be further selected and merged to provide a stable 3D local-
ization of the polyp region. Under the assumption that polyp appearance keeps
stable in temporal windows, those watershed regions inside a polyp should be
significantly larger in frame size and DOVA values than regions outside polyps.

Small temporal regions are removed by a threshold, NFr, on the number
of frames, Nfc , contained in the watershed segmentation. To account for sud-
den scope motions, this threshold should be kept low. Regions with significant
larger DOVA values are selected by an statistical analysis of the values obtained
inside each watershed region. In order to detect significant differences we use
Analysis of Variance (ANOVA) [19]. Given a grouping of a data set and a quan-
titative variable defined for each group, ANOVA is a statistical test that allows
to decide if there are significant differences among the group’s quantitative vari-
able average with a given confidence α. The variability analysis is defined as
soon as the ANOVA quantitative score and the different factors and methods
are determined. In order to applied for polyp region selection, ANOVA groups
and variable are defined as follows.

For each frame, fc, the ANOVA groups are given by watershed labels of
regions having more than NFr frames. For each such a region, the ANOVA
variable is given by the median of DOVA values computed for each frame in
the temporal window used to compute the 3D watershed. This gives a sampling
of size Nfc , being Nfc the number of frames of the watershed region. ANOVA
multicomparison is corrected using Tukey [20] to select those regions that have
a median DOVA significantly higher.

Finally, the ANOVA selected regions are merged according to spatial con-
nectivity to provide a single response per polyp.

3 Experimental Results

We validate our methodology by performing two separate experiments: the first
one aims at assessing the impact of spatio-temporal stabilization of the response
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of WM-DOVA maps in a sequence of frames, all of them containing a polyp.
The second experiment is focused on exploring the potential of this stabilization
method in polyp detection tasks when tested in a sequence with polyp and non-
polyp frames.

In these experiments, we will note by DOVA the polyp localization given
by WM-DOVA global maximum described in [7] and by DOVA3D, our spatio-
temporal DOVA response.

3.1 Polyp Localization Results

In order to explore the benefits of DOVA3D, we have selected five different
sequences with a polyp from those which compose CVC-ClinicDB [7]. We use
as ground truth those frames from the original sequences that were included
in the database. Our experiment consists of checking whether the performance
of the localization method for these frames changes if we add spatio-temporal
stabilization. To achieve this, we have been kindly granted with permission from
the authors in order to analyze all the frames from the full sequences.

We define the following metrics for this experiment:

– Detection Rate (DR) defined as the ratio between the number of polyps in the
sequence correctly located and the total number of polyps in the sequence:

DR =
#POk

#POk + #PNOk

where POk represents a polyp correctly located and, conversely, PNOk, a
polyp which was not located for a given image. In this case we label a polyp
as correctly located whenever a polyp region is defined over the ground truth
as an output of the statistical analysis.

– False Positive Rate (FPR) defined as the ratio between the total number of
regions without polyp content (NPR) and the total number of final regions
provided by our system, which also includes regions with polyp content, PR:

FPR =
#NPR

#PR + #NPR

We present DR and FPR results for both original WM-DOVA and spatio-
temporal stable WM-DOVA for each sequence in Table 1. As we can observe from
the Table, the spatio-temporal stabilization of WM-DOVA maps leads an general
improvement of both DR and FPR for all the sequences. It is important to
mention that there are some cases, such as sequence 4, where our methodology is
able to improve DR in around 65%, which indicates the potential of our approach
to recover some mislocalizations by means of spatio-temporal coherence. Another
important result is the reduction of FPR for all sequences. This is attributed to
the statistical selection of the final regions that discard non-polyp information.

The benefits of our spatio-temporal analysis are assessed using a one-tailed
t-test for paired data. For the DR score, we use a right-tailed test with
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null hypothesis to H0 : μ(DRDOVA3D − DRDOVA) < 0, so that rejecting
the test (pval < 0.05) shows that DOVA3D has a significant larger detec-
tion rate. For the FPR score, we use a right-tailed test with null hypoth-
esis to H0 : μ(FPRDOVA3D − FPRDOVA) > 0, so that rejecting the test
(pval < 0.05) shows that DOVA3D has a significant smaller false positive rate.
We have also computed confidence intervals, CI, for the difference in means,
μ(DRDOVA3D −DRDOVA), μ(FPRDOVA3D −FPRDOVA) to give the expected
difference range. On one hand, the p-value for the DR test is pval = 3.9593e−005,
which clearly rejects the null hypothesis and, in fact, CI = [11.3%, 32.0%], so
that differences in average DR are at least 11%. On the other hand, the p-value
for the FPR test is pval = 0.0052, which also rejects the null hypothesis and, in
this case, CI = [−23.9%,−3.3%], so that the reduction in average FPR is at
least 3%.

3.2 Polyp Detection Results

In order to illustrate the potential benefits of DOVA3D, we were provided by
the authors of [7] with an additional sequence from an actual colonoscopy explo-
ration. In this case we asked for a sequence in which the polyp is not present for
all the frames, showing special interest in having a sequence in which the polyp
is present, then it disappears for a set of frames and, finally, it appears again in
the scene. We created a ground truth for all the frames in the sequence, which
was validated by clinical personnel.

Regarding this second experiment, we propose to use FPR and a new metric,
Detection Score:

DS =
#DOk

#DOk + #DNOk

In this case we define a good detection DOk as the one whenever our method
provides with an actual polyp location in a frame with a polyp or does not
provide any kind of output for a frame without a polyp. Conversely, we define
a bad detection DNOk as our method providing a polyp location in a frame
without polyp or not providing a polyp location in a frame with polyp.

Table 1. Comparison of DR and FPR results between original WM-DOVA and spatio-
temporal stable WM-DOVA.

Original WM-DOVA Spatio-temporal Stable WM-DOVA

Sequence DR [%] FPR [%] DR [%] FPR [%]

1 84.62 15.38 91.67 23.08

2 81.82 18.18 90.91 15.91

3 50.00 50.00 66.67 53.19

4 14.89 72.73 80.49 58.05

5 84.00 16.00 76.19 10.29
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Fig. 4. Comparison of Detection Score between WM-DOVA maps (a) without and
(b) with spatio-temporal stabilization. Blue line in the plots represents the presence
(value 1) or absence or polyp in the image (value 0). Red line represents the performance
of the method: good localization (value 1) or erroneous localization (value 0).
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We present a graphical comparison of the performance of WM-DOVA maps
with and without spatio-temporal stabilization in Fig. 4. By observing the plots
for the two methods in the comparison, we can observe how spatio-temporal
stabilization helps to improve polyp localization results in those frames with a
polyp, as for the case of stable spatio-temporal WM-DOVA there is a general
coincidence between the output of the method and the ground truth in both
presence and absence of the polyp; this can be observed by having coincidence
of blue (ground truth) and red (output of the method) lines for the majority
of the frames. As can be seen, we can also observe how, in absence of a polyp
-frames 190 to 210-, our methodology is able to correct the erroneous localization
provided by WM-DOVA maps, which offer a candidate location for every frame
analyzed. Overall, DS score improves from 38.71% to a 82.58%, which shows
the potential of our approach to obtain good localization results using spatio-
temporal coherence of WM-DOVA maps. Aside, we can also observe how the
number of false alarms is also reduced, decreasing from 64.77% to 19.87%,
indicating the potential of our approach to reduce the impact of noisy structures
in overall localization results.

To close this section, we present a qualitative example of the benefits of
adding spatio-temporal stability to the output of WM-DOVA in Fig. 5. We can
observe that, for a same input image, original localization by means of global
maximum of WM-DOVA provided a mislocalization outside the polyp (marked
as a red square in the first image) whereas the stabilized response over a temporal
window centered in this particular frame allows us to correctly localize the polyp
(marked as a green square in the third image).

Fig. 5. Qualitative example of the benefits of adding spatio-temporal stabilization the
output of WM-DOVA maps over a temporal window: (first image) original image;
(second image) corresponding WM-DOVA map; (third image) original image; (fourth
image) stabilized WM-DOVA map over 3D watershed regions. Correct localizations are
marked as green squares over the original image, false positives as red squares.

4 Conclusions and Future Work

This paper addresses one of the main drawbacks of frame-based polyp localiza-
tion algorithms, which is related to the lack of spatio-temporal stability in their
output when applied to a sequence of frames. In order to cope with this we pro-
pose to incorporate information of a neighborhood of frames. Our methodology
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is based on the observation of the response of the output of the method over
a same region along a temporal window of frames. In order to extract stable
regions over time we propose the use of 3D watersheds and then, in order to
integrate the output of the localization method over time, we perform an statis-
tical analysis over the output of the method along all the frames in which the
region is present. Experimental results on polyp localization indicate the bene-
fits of adding spatio-temporal stability which is observed by both an increase in
Detection Rate (average improvement of 21.50%) and by a strong decrease in
the number of false alarms provided by the method (with an average decrease of
13.30% in FPR). Moreover, we have also studied the potential of our methodol-
ogy in polyp detection tasks: a preliminar study over a full annotated sequence
with frames with both presence and absence of polyp shows an improvement
over 43% regarding detection score metric.

These preliminary results shows the potential of our methodology but also
allows us to sketch future research lines. Although our methodology improves
the 3D performance of the localization method, it is clear that an estimation of
the movement between frames -using motion descriptors such as optical flow or
particle filtering- could also add value to the system as we could complement the
output of 3D watershed with this information in order to obtain a more accurate
tracking of the regions over the defined temporal window of frames. Additionally,
studies about setting the size of the temporal window should be undertaken,
which could include definition of automatic systems to assess when the temporal
window information should be restarted due to the apparition of a high number
of consecutive frames with low quality (blurring, fecal content). Regarding region
extraction, region merging strategies may be developed to reduce the number of
regions to be tracked, which could ease to reduce the computational cost of the
whole methodology, easing the statistical analysis. Finally, this preliminary study
should be extended over more sequences in order to account the performance of
the whole approach in a wide range of scenarios.
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Abstract. Colonoscopy is performed by using a long endoscope inserted in the
colon of patients to inspect the internal mucosa. During the intervention, clin-
icians observe the colon under bright light to diagnose pathology and guide
intervention. We are developing a computer aided system to facilitate navigation
and diagnosis. One essential step is to estimate the camera pose relative to the
colon from video frames. However, within every colonoscopy video is a large
number of frames that provide no structural information (e.g. blurry or out of
focus frames or those close to the colon wall). This hampers our camera pose
estimation algorithm. To distinguish uninformative frames from informative
ones, we investigated several features computed from each frame: corner and
edge features matched with the previous frame, the percentage of edge pixels,
and the mean and standard deviation of intensity in hue-saturation-value color
space. A Random Forest classifier was used for classification. The method was
validated on four colonoscopy videos that were manually classified. The
resulting classification had a sensitivity of 75 % and specificity of 97 % for
detecting uninformative frames. The proposed features not only compared
favorably to existing techniques for detecting uninformative frames, but they
also can be utilized for the camera navigation purpose.

Keywords: Optical colonoscopy � Uninformative frames � Colonoscopy
quality � Feature � Random Forest

1 Introduction

Colorectal cancer is the second leading cause of cancer related death after lung cancer
in Australia, however detection and removal of polyps in early stages can increase the
chance of survival by up to 90 % [1]. Optical colonoscopy is the gold standard in
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inspecting and removing polyps. Each year 500,000 colonoscopies are performed in
Australia [1]. One of the main issues for clinicians is to estimate the position of the
endoscope inside the colon, and software solutions to help with navigation would be
desirable [2–5]. As a whole, we aim to provide a technology to estimate camera pose
during colonoscopy. However, colonoscopy video streams contain many frames with
no or little clinical information such as the result of colon cleansing, a dirty lens, or
close inspection of colon wall. In Fig. 1 some examples of colonoscopy frames are
illustrated. We categorized colonoscopy frames as informative or uninformative. The
informative frames include clear shot of the lumen Fig. 1(a–b) or wall (Fig. 1(c–d)).
Uninformative frames are a result of blurriness (blurred), colon cleansing with water jet
(water), lens contact to the colon wall with a various illumination (indistinct) or
indistinct with big bubbles or a bubbles’ colony that reduce clinical information in a
frame (Fig. 1(e–h)). The uninformative frames decrease the quality of colon inspection
by clinicians and may hamper our camera motion estimation algorithm. Some studies
showed that uninformative frames can compromise up to 30–40 % of the entire video
stream [6, 7]. Therefore, it is important to detect uninformative frames and remove
them.

In recent years, several studies have reported automated identification of uninfor-
mative frames from endoscopy videos [6, 8, 9]. Oh et al. [6, 10] developed a method
which is based on analyzing the gray level co-occurrence matrix (GLCM) texture of the
discrete Fourier transform images and edge detection. Following that, Arnold et al. [8]
proposed a Bayesian classification method to analyze the norm of the detail coefficients
of wavelet decomposition to classify colonoscopy frames. They reported 92.3 %
accuracy only in detecting indistinct frames similar to Fig. 1(g). Color features have
also been used in Wireless Capsule Endoscopy (WCE) to identify useful frames prior to
diagnosis [9, 11].

Fig. 1. First row is an example of informative frames, lumen view (a and b), wall view (c–d),
and second row represent uninformative frames: blurred (e), water (f), indistinct (g), indistinct
with bubble (h).
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2 Method

The outline of the proposed method to classify colonoscopy frames is shown in Fig. 2.
In this study, we investigate several features and use a Random Forest (RF) [12]
classifier to detect uninformative frames. As the first step, all image frames were
converted to the Hue-Saturation-Value (HSV) color space and smoothed using a
Gaussian filter (By applying a Gaussian filter we aim at removing the noise, as well as
moving mildly blurred frames to the blurred category). Subsequently, three
shape-feature descriptors were investigated based on the following assumptions:
(i) Consecutive uninformative frames results in a lower number of features detected by
motion flow. For this, we computed the number of features detected by the Kanade
Lucas Tomasi (KLT) tracker [13]. (ii) Uninformative frames such as Fig. 1(f–h) appear
with a uniform color distribution. Therefore, to further emphasize on the color aspect,
HSV color space was considered for computing the mean and standard deviation
(STD) as features. (iii) Those uninformative frames which are blurred or mildly blurred
have fewer sharp edges than a typical good quality colonoscopy image; for this we
computed the percentage of edge pixels. The motivation of using these features is to
utilize features currently computed for camera motion estimation to classify colono-
scopy frames. This can also reduce the complexity of uninformative frame detection.

2.1 Dataset

The data used for preparing this study were collected from four colonoscopy videos of
different parts of the colon from different patients. Videos were captured by a 190HD
Olympus colonoscope, with 50 frame/sec with a frame size of 1856 × 1044 pixels.
A medical expert manually marked videos for uninformative frames. The details of our
experimental videos are shown in Table 1.

Fig. 2. The diagram of the proposed method for classification of colonoscopy frames.
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2.2 Feature Detection

Number-of-features Descriptor Computed by KLT from Saturation Channel. The
saturation color channel of HSV was used to extract and track features by the KLT
method. This channel was used because our camera estimation parameters empirically
obtained a better performance in feature detection. The KLT method detects corner like
features with high contrast by measuring the minimum eigenvalue of each 2 × 2
gradient matrix in a frame. The displacement of selected features between consecutive
frames was estimated by using an optimizer to minimize the difference between two
feature windows for the image intensity. To address the large displacements, a pyramid
based approach was used to track features.

Based on our assumption, frames with low numbers of features should have inadequate
information to be used for camera motion estimation, and should be classified as
uninformative frame. The number-of-features detected on a set of informative and
uninformative frames are shown in Fig. 3.

Table 1. Dataset used in our experiment to detect uninformative frames

Dataset Uninformative
frames

Informative
frames

Total
frames

Informative and
uninformative sequences

Patient 1 1205 1295 2500 2 × 30
Patient 2 112 1888 2000 2 × 14
Patient 3 201 1498 1699 2 × 11
Patient 4 702 2368 3070 2 × 40
Total 2220 7049 9269 190

Fig. 3. Number-of-feature detected by the Kanade Lucas Tomasi (KLT) for several informative
(1–2) and uninformative (3–6) frames using the Saturation color space.
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Color Features from H-, S- and V-channel. Colonoscopy images are commonly
presented in RGB color space. However, the HSV color space has shown a better
ability in dichotomizing chromaticity (hue and saturation) from luminance [11]. Frames
with no information such as the ones captured from a close inspection of the colon wall
(Fig. 1(g–h)) or during colon cleansing have distinct signal from informative frames.
Such distinction can be estimated by computing the STD and mean of the three HSV
channels. The STD of hue, saturation and value for a set of informative and uninfor-
mative frames are presented in Fig. 4.

Percentage-of-edge-pixel Feature Estimated from Value Channel. To detect
uninformative frames, we analyzed the percentage of the edge pixels as the number of
the edge pixels to all pixels in a frame. The edges were detected by using the Canny
edge detector [14] from the Value channel. The percentage of isolated pixels introduced
by Oh et al. [6] was also estimated for comparison.

Based on our experiments, frames with a higher percentage of edge pixels were
informative whereas uninformative frames (including blurred, mild blurred and
indistinct) had a lower percentage. Reflections can increase the number of edges,

Fig. 4. The STD of Hue (a), Saturation (b), and Value (b) for several informative (1–2) and
uninformative (3–6) frames.
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especially when there are bubbles or a water jet for cleaning the colon. The reflection
effect was removed by generating a mask using an automatic Otsu thresholding from a
frame in the Saturation channel. The percentage of edge pixels on a set of informative
and uninformative frames is shown in Fig. 5.

2.3 Random Forest Classification

To classify frames into informative and uninformative classes, a binary Random Forest
(RF) classifier [12] was used. On all available frames, feature metrics, including number
of motion features, mean and STD of each color channel, and percentage-of-edge-pixel
were calculated. In a colonoscopy video, consecutive frames may provide similar
information which reduces the efficiency of the RF classifier if selected together.
Therefore, prior to classification, all the informative and uninformative sequences were
divided into half. We used the first half for training and second half for testing. The
parameters used for RF training were: 100 trees, sample selection without replacement,
and a node size of maximum 2.

2.4 Experimental Evaluation

To evaluate the performance of the proposed detection technique, sensitivity, precision,
specificity and accuracy were considered. To compare the effectiveness of the proposed
feature descriptors with similar studies, the gray level co-occurrence matrix (GLCM)
and percentage-of-isolated-pixel (IPR) [6] were also included.

Fig. 5. Percentages-of-edge-pixel to all pixels for different types of colonoscopy frames (1and 2
represent informative and 3 to 6 represent uninformative frames) using the Value channel and
Canny edge detector.

158 M.A. Armin et al.



3 Results

Two representative examples of the KLT, edge and color features computed on
informative and uninformative frames are illustrated in Figs. 6 and 7. A high number of
motion vectors and edge pixels were identified for informative frames which demon-
strate the potentials of the proposed features.

The performance of the above mentioned features in detecting uninformative frames
using RF classifier is shown in Table 2. The collective performance of the proposed
features, with accuracy of 94 % and specificity of 97 %, compares favorably to
GLCM + IPR features, with accuracy of 92 % and specificity of 96 %.The calculation

Fig. 6. The proposed motion (a) and edge features (b) computed on a representative informative
frame along with the reflection mask (c) and three HSV channels (d–f). The mean (μ) and STD
(σ) features are also shown on each color space.

Fig. 7. The proposed motion (a) and edge features (b) computed on a representative
uninformative frame along with the reflection mask (c) and three HSV channels (d–f). The mean
(μ) and STD (σ) features are also shown on each color space.
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time on average for KLT features computation was 0.16 s/frame whereas 0.072 s/frame
was spent for GLCM feature calculation by using a standard PC, MATLAB, and
non-optimized scripts.

4 Discussion

This paper proposes a method based on the KLT motion, color and edge features for
detecting uninformative frames as the initial stage of our main pipeline for camera
motion estimation algorithm. The proposed features were evaluated using a binary
Random Forest classifier and obtained 86 % precision, 75 % sensitivity, 97 % speci-
ficity, and 94 % accuracy.

In the present work, the KLT motion features were proposed as a metric for
identifying uninformative frames. To increase the number of these features in each
frame, the HSV color space was found more suitable. More importantly, motion fea-
tures were already available for estimating camera motion in our algorithm which will
reduce the computational complexity. Besides, there are some frames, e.g. wall view,
with fewer textures compared to lumen which will result in less motion features. To
identify these frames, color information in HSV color space was calculated.

Adding more features such as GLCM, IPR or wavelet as used in literature might
improve our method in classifying more complicated colonoscopy frames. For
instance, these features might be useful when color features show a partial overlapping
between a subset of uninformative and informative frames. However, the aim of this
study was to investigate the feasibility of using KLT features which were concurrently
computed for camera pose estimation. Furthermore, this approach can be used in
endoscopy videos such as bronchoscopy and wireless capsule endoscopy to remove
uninformative frames during camera motion estimation.

The main limitation of the current study is the small dataset size, increasing the
number of frames might slightly change the reported performance. In future work, we
aim to validate our method on a bigger dataset acquired from different colonoscopes
with different field of view and resolution. A diverse colonoscopy video datasets from
different patients will allow us to validate the proposed features with other training

Table 2. The performance of different feature descriptors on identifying uninformative frames

Feature Classification results
Precision Sensitivity Specificity Accuracy

KLT 0.83 0.72 0.97 0.93
STD color 0.62 0.36 0.96 0.85
Mean color 0.76 0.55 0.96 0.90
Percentage of edge pixels 0.75 0.51 0.97 0.89
All proposed features 0.86 0.75 0.97 0.94
GLCM 0.76 0.64 0.96 0.91
IPR 0.49 0.32 0.90 0.75
GLCM + IPR 0.79 0.67 0.96 0.92

160 M.A. Armin et al.



approaches for RF classifier such as one-video-leave-out approach and clustering based
methods such as K-mean clustering. Furthermore, other feature descriptors such as
scale invariant feature transform (SIFT) or speeded up robust features (SURF) will be
investigated.

5 Conclusion

This study demonstrated that KLT motion, color and edge features can together provide
effective detection of uninformative colonoscopy frames. The proposed method can be
performed simultaneously with camera pose estimation. This would reduce the com-
putational burden and necessity to compute other complex features for uninformative
frame detection.
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