
Frank Stajano · Stig F. Mjølsnes
Graeme Jenkinson · Per Thorsheim (Eds.)

 123

LN
CS

 9
55

1

9th International Conference, PASSWORDS 2015
Cambridge, UK, December 7–9, 2015
Proceedings

Technology and Practice
of Passwords

Lecture Notes in Computer Science 9551

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Frank Stajano • Stig F. Mjølsnes
Graeme Jenkinson • Per Thorsheim (Eds.)

Technology and Practice
of Passwords
9th International Conference, PASSWORDS 2015
Cambridge, UK, December 7–9, 2015
Proceedings

123

Editors
Frank Stajano
University of Cambridge
Cambridge
UK

Stig F. Mjølsnes
Norwegian University of Science
and Technology

Trondheim
Norway

Graeme Jenkinson
University of Cambridge
Cambridge
UK

Per Thorsheim
God Praksis AS
Fyllingsdalen
Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-29937-2 ISBN 978-3-319-29938-9 (eBook)
DOI 10.1007/978-3-319-29938-9

Library of Congress Control Number: 2015948775

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume collects the proceedings of Passwords 2015, the ninth event in the
PasswordsCon1 series, held at the University of Cambridge Computer Laboratory
during December 7–9, 2015.

This series of workshops was originally branded as “a hacker conference that’s all
about passwords, PIN codes, and digital authentication.” It was started in 2010 by
independent password expert Per Thorsheim and, from 2011 through 2014, received
backing and sponsorship from Norwegian research network FRISC (Forum for
Research and Innovation in Security and Communications) led by Stig Frode Mjølsnes
of NTNU (Norwegian University of Science and Technology, Trondheim). For the first
few years, all talks were selected by invitation of the organizers and there were no
written proceedings. In 2014 we started accepting refereed papers and we have since
been publishing the proceedings in Springer’s LNCS series.

We promote the interplay between the hacker community and the academic pass-
word research community, convinced as we are that the two camps have much to learn
from each other. To strengthen the links we invited two distinguished keynotes, one
from each camp: Chris Wysopal, one of the members of hacker think tank L0pht, spoke
on “The History of L0phtCrack,” while Angela Sasse, Professor of Human-Centred
Security at UCL, spoke on “Users Hate Passwords—So Are They on Their Way Out?”
The rest of the presentations, following the same strategy, intermixed refereed papers
and non-refereed invited talks, sometimes also indicated as “hacker tutorials.” All
presentations2 were recorded and the videos are available online on YouTube3.

The event was hosted by Frank Stajano and Graeme Jenkinson at the Computer
Laboratory of the University of Cambridge, home of the Pico project, which offered
sponsorship in kind. Graeme Jenkinson was the local arrangements chair and also
ended up making everything else happen. The formal dinner was hosted at Trinity
College, Cambridge, where Frank Stajano is a fellow. Financial sponsorship was
gratefully received from Entrust Datacard, Elcomsoft, and Sagitta.

The main body of these printed proceedings contains the refereed papers, while the
section “Non-refereed Presentations” included in the frontmatter lists the titles and,
where available, abstracts of the non-refereed presentations, including the keynote
talks, the hacker tutorials and the 5-minute impromptu “lightning talks” that were given
during the rump session on the first evening.

Hacker tutorials were selected and invited by Per Thorsheim, the general chair.
Concerning the refereed papers, we received 32 submissions of which nine passed peer
review (28 % acceptance rate), six as full papers and three as short papers. Each paper,
full or short, received at least three reviews. The paper by Elizabeth Stobert and Robert

1 https://passwordscon.org/
2 http://www.cl.cam.ac.uk/events/passwords2015/programme.html
3 https://www.youtube.com/user/thorsheim/ videos

https://passwordscon.org/
http://www.cl.cam.ac.uk/events/passwords2015/programme.html
https://www.youtube.com/user/thorsheim/videos

Biddle, “Expert Password Management,” won the Best Paper Award and was the only
one to be unanimously indicated as “best of my batch” by all of its reviewers.

With over 100 participants, Passwords 2015 at Cambridge has been the most suc-
cessful event in the series to date. This was also the first year in which the event became
financially self-sustaining. We hope that future editions will improve on these records
and that the synergy between hackers and academics will continue to bring fruitful and
unexpected results.

December 2015 Frank Stajano
Stig F. Mjølsnes

Graeme Jenkinson
Per Thorsheim

VI Preface

Organization

Steering Committee

Per Thorsheim God Praksis AS, Norway
Stig F. Mjølsnes Norwegian University of Science and Technology,

Norway
Frank Stajano University of Cambridge, UK

Organizers

General Chair

Per Thorsheim God Praksis AS, Norway

Program Co-chair and Host

Frank Stajano University of Cambridge, UK

Program Co-chair

Stig F. Mjølsnes Norwegian University of Science and Technology,
Norway

Local Arrangements Chair

Graeme Jenkinson University of Cambridge, UK

Program Committee

Jean-Philippe Aumasson Kudelski Security, Switzerland
Lujo Bauer Carnegie Mellon University, USA
Jeremiah Blocki Microsoft Research, USA
Joseph Bonneau Stanford University and EFF, USA
Lorrie Faith Cranor Carnegie Mellon University, USA
Markus Dürmuth Ruhr University Bochum, Germany
Serge Egelman ICSI and University of California at Berkeley, USA
Feng Hao Newcastle University, UK
Tor Helleseth University of Bergen, Norway
Cormac Herley Microsoft Research, USA
Markus Jakobsson Qualcomm, USA
Graeme Jenkinson University of Cambridge, UK

Stefan Lucks Bauhaus University Weimar, Germany
Paul van Oorschot Carleton University, Canada
Jeunese Payne University of Cambridge, UK
Sören Preibusch Google, USA
Angela Sasse University College London, UK

Sponsors

Entrust Datacard
Elcomsoft
Sagitta
The Pico project, University of Cambridge (sponsorship in kind)

VIII Organization

Non-refereed Presentations

All presentations (including those of the refereed papers) were video recorded and are
available on youtube at https://www.youtube.com/user/thorsheim/videos unless pre-
senters asked otherwise.

A Keynote Talks

These presentations opened the first and second day respectively and were given one
hour each.

Chris Wysopal
“The Story of L0phtCrack, from 1997 to 2015”
(no abstract supplied)

M. Angela Sasse
“Users hate passwords—so are they on the way out?”
(no abstract supplied)

B Tutorials

These presentations were interspersed with those of the refereed papers and, like the
papers, were given half an hour each.

Scott Helme
“HPKP, HSTS & CSP for securing your password”
A discussion of HTTP Public Key Pinning, HTTP Strict Transport Security and
Content Security Policy. These HTTP response headers allow hosts to better secure
browsing sessions by asserting control over browser functionality. You can force a
browser to always use HTTPS, mitigate XSS attacks, stop malicious content being
loaded into your pages by 3rd parties and stop users from suffering MiTM attacks with
rogue certificates, just to name a few benefits.

Frank Stajano
“PICO project update”
The pain of passwords? It’s not where you thought it was. The Pico project started
from the realization that passwords, as offered to users, are an impossible proposition:
“think of something you can’t remember, then don’t write it down”. Memory-based
solutions don’t scale. Biometrics, besides privacy and revocation issues, are unsuitable
for unsupervised authentication across the network. Pico promises “you shall not have
to remember secrets to authenticate” and aims to be at the same time more usable and
more secure than passwords. However, passwords “as they should be used” are so
painful that users naturally find their own coping strategies, from letting their browser
remember passwords in plaintext to picking easy passwords and recycling them across

https://www.youtube.com/user/thorsheim/videos

accounts. They may well be insecure as a result, but in many situations users “just give
up” on security and no longer feel the pain of passwords, and are generally not
interested in changing their ways. And it’s really hard to make any alternative much
easier than passwords “as people actually use them”, i.e. with little or no concern for
security. We argue that, while much of the academic research on passwords focuses on
web authentication, this is no longer an area where users feel enough pain to be
motivated to consider alternatives. We shall point out where we believe the pain of
passwords is instead, and where we’ll be concentrating our efforts.

Jeunese Payne
“Debunking Graphical Password Myths”
There have been numerous attempts to replace or re-design knowledge-based
authentication. Despite these endeavours, driven by known usability and security
weaknesses, traditional password-based systems have remained ubiquitous. Graphical
passwords have emerged and re-emerged in different forms as a proposed solution.
The broad argument is that such passwords should be easier to remember, easier to
use, and more secure. Psychological jargon is often used to justify these claims, but
what does the real psychology suggest?

Peder Sparell and Mikael Simovits
“Linguistic Cracking of Passphrases using Markov Chains”
In order to remember long passwords, it is not uncommon users are recommended to
create a sentence which then is assembled to form a long password, a passphrase.
However, theoretically a language is very limited and predictable, why a linguistically
correct passphrase according to Shannon’s definition of information theory should be
relatively easy to crack compared to brute-force. This work focuses on cracking
linguistically correct passphrases, partly to determine to what extent it is advisable to
base a password policy on such phrases for protection of data, and partly because
today, widely available effective methods to crack passwords based on phrases are
missing. Within this work, phrases were generated for further processing by available
cracking applications, and the language of the phrases were modeled using a Markov
process. In this process, phrases were built up by using the number of observed
instances of subsequent characters or words in a source text, known as n-grams, to
determine the possible/probable next character/word in the phrases. The work shows
that by creating models of language, linguistically correct passphrases can be broken
in a practical way compared to an exhaustive search. In the tests, passphrases
consisting of up to 20 characters were broken.

Jonathan Millican
“Facebook OpenPGP support”
What steps does it take to add OpenPGP email encryption to a major social network?
This talk explores the motivations of why this might be done, and some of the
surprisingly simple architectural details of how it was achieved for Facebook.

X Non-refereed Presentations

Elaine Wooton
“Passwords and the Cyber Caliphate”
(no abstract supplied)

Igor Semaev
“Experimental Study of DIGIPASS GO3 and the Security of Authentication”
Based on the analysis of 6-digit combinations(OTP) generated by DIGIPASS GO3 we
were able to reconstruct the synchronisation system of the token, the OTP generating
algorithm and the verification protocol in details essential for an attack. The OTPs are
more predictable than expected. A forgery attack is described. We argue the attack
success probability is 8−5. That is much higher than 10−6 which may be expected if all
the digits are independent and uniformly distributed. The implications for the security
of authentication are discussed and open questions are formulated.

Jeffrey Goldberg
“Rethinking factors, and (not) to store oracles”
Multi-factor Authentication is typically thought of in terms of “something you have”,
“something you know”, “something you are”. But those distinctions are only useful in
so far as they tell us what different kinds of threats the factors are or aren’t vulnerable
to. It is far more useful to think directly in terms of the threats that they do and don’t
defend against when considering what factors to introduce. For example different
factors might better be thought of in terms of “something that can be stolen”,
“something that can be guessed”, and “something that can be captured and
replayed”. At the same time, adding factors is a threat to data availability and can be
thought of in terms of “something that might be lost” and “something that might be
forgotten”. Whether to add factors and how it should be done should be thought of in
this light. In particular, we are exploring in a work in progress how user factors can be
added so that server stored data cannot be used for password cracking. We would like
to discuss some of our work in progress in this area both explaining our thoughts and
seeking insights from participants.

Maximillian Golla
“A Framework for Comparing Password Guessing Strategies”
Several password guessers have been proposed in recent years. Comparing the
reported performance numbers is difficult, as the experiments were performed on
different datasets, with miscellaneous pre-processing applied, with varying numbers of
guesses, and with different parameters. Re-running experiments under controlled
conditions thus is essential for a fair comparison. Furthermore, re-running the
experiments on newer password leaks not available earlier eliminates the risk of over-
training a guesser to the available datasets. In our first contribution, we developed a
framework to automate and facilitate the comparison of password guessers on a large
set of configurations. Central design criteria were ease-of-use, modularity, and easy
expandability. Similar software is available in other disciplines (such as fingerprint
matching and face recognition), and we believe the framework will help to drive and
facilitate the future development of password guessers. In our second contribution, we
used this framework to compare four well-known password guessers on a range of

Non-refereed Presentations XI

different password lists, resulting in a total of 148 experiments. We will make the
framework publicly available and provide regular updates for the password guesser
comparison online.

Michael Sprecher
“(H)Ashley Madison Curiosity of the loginkey”
(no abstract supplied)

Sebastien Raveau
“Beyond Words”
XKCD’s “correcthorsebatterystaple” suggestion is often dismissed on the basis that
trying word combinations is still too easy for computers, but are we sure that we have
all the words? What if the password was a concatenation of “9/11”, “767-223ER”,
“.40 S&W” and “John 3:16” ? At Passwords 2012 I presented the technical
challenges in creating a Wikipedia Wordlist and notably the unexpected amount of
junk; since 2009 I kept improving those algorithms, becoming happier and happier
with cleaner and cleaner output, but at Passwords 2014 I unfortunately had to cancel
my rump session when I discovered that the wordlist was actually cracking fewer and
fewer passwords. Taking a completely different approach I was able to crack
passwords like “Lupo 1.2 TDI 3L”, “Proverbs 14:12”, “Calvin & Hobbes” and
“bornontheforthofjuly” (sic) in the LinkedIn hashes for example. There are opposing
directions that I can take from here however so if the only true wisdom is knowing that
I know nothing, I would like to submit my ideas to the community and brainstorm the
future of the wordlist.

Alexandra Strigunkova
““To whom it’s not concern” (ethical problems of information leaks research)”
Any information posted on the Internet could fall into the hands of persons, for whom it
is not intended. And it’s not just about the password and login of users of various
systems, but also about highly delicate personal data. There are rules and regulations
in academic circles for handling information, especially containing personal data. But
among researchers in the field of information security not all follow such rules and
restrictions. Do not forget about the legal side of the issue, because the law of different
countries try to protect the privacy of citizens. The case of the Ashley Madison raises
the very question that I want to discuss: is it ethical to use the information obtained as
a result of leaks for research? Especially if it is information of a delicate nature. After
all, virtually every researcher is the person for whom this information is not intended.

Dimitri Fousekis
“Efficient Wordlists - Why you don’t need 25GB To Be a Pro”
A common question asked by many who wish to analyse, “crack” or recover
passwords is “what wordlist do I use?” Unfortunately there is much mis-information
out there, including for example, that people should be using 25GB or greater
Wordlists for the best effect. The result is that cracking passwords becomes a tedious,
long-time and relatively fruitless excersize. The goal of this talk is to practically show
how to go from “beginner” to “advanced” password cracking capabilities just by

XII Non-refereed Presentations

creating, managing and using efficient wordlists. It will also assist with the latest
information on non-English wordlists, UTF-character-based wordlists and more. The
Talk will cover the following topics. Efficient vs Inefficient Wordlists - Why less is more.
Where to start? Sourcing good Wordlists. Processing Wordlists - Boosting your
Cracking Efficiency. Tools to create, manage and process Wordlists (covers current,
and a custom tool by myself and others). Non-English Wordlists: Chinese, Arabic and
Greek. Re-use, Process, Re-use, Process, Repeat. A quick word about Brute-force vs
Wordlists. The talk will be 70 % technical and 30 % theoretical, showing real-world
statistics on what makes Wordlists crack faster and better, how they can be properly
targeted for your jobs and what mistakes you should avoid.

Per Thorsheim and Paul Moore
“Preventing Keystroke Dynamics Identification And Tracking: The Hard Way”
(no abstract supplied)

Elena Agostini and Massimo Bernaschi
“BitLocker Dictionary Attack using GPUs”
BitLocker is a full-disk encryption feature included in recent Windows versions. It is
designed to protect data by providing encryption for entire volumes, by using a number
of different authentication methods. In this paper we present a solution, named
BitCracker, to try the decryption, by means of a dictionary attack, of memory units
encrypted by BitLocker with a user supplied password. To that purpose, we resort to
GPU (Graphics Processing Units) that are, by now, widely used as general-purpose
coprocessors in high performance computing applications. BitLocker decryption
process requires the execution of a large number of SHA-256 hashes and also AES, so
we propose a very fast solution, highly tuned for Nvidia GPU, for both of them. To
evaluate BitCracker performance we made a comparison with oclHashcat and John
the Ripper password crackers.

C Lightning Talks

These presentations took place during a beer-and-pizza-fuelled rump session at the end
of the first day and were given five minutes each.

Jessy Irwin
“Speak security and enter”

Howard Yates
“Graphical passwords”

Markus Kuhn
“Linux OTPW user auth”

Geir Bækholt
“Auth in crypho”

Non-refereed Presentations XIII

Ross McKerchar
“Enterprise password management at Sophos”

Scott Helme
“Launching securityheaders.io”

Manuel Urueña
“Mobitoken and mini-PKI”

Jacob Heidelberg
“Partial and passwords”

Alex Hoffmann
“Do a little dance, make a master password”

Marcin Slowik
“Passwords and knowledge proofs”

Anton Dedov
“Knowledge base for auth researchers”

XIV Non-refereed Presentations

Contents

Human Factors

Expert Password Management . 3
Elizabeth Stobert and Robert Biddle

Assessing the User Experience of Password Reset Policies in a University . . . 21
Simon Parkin, Samy Driss, Kat Krol, and M. Angela Sasse

Analyzing 4 Million Real-World Personal Knowledge Questions
(Short Paper) . 39

Maximilian Golla and Markus Dürmuth

ITSME: Multi-modal and Unobtrusive Behavioural User Authentication
for Smartphones . 45

Attaullah Buriro, Bruno Crispo, Filippo Del Frari, Jeffrey Klardie,
and Konrad Wrona

Attacks

Verification Code Forwarding Attack (Short Paper) 65
Hossein Siadati, Toan Nguyen, and Nasir Memon

What Lies Beneath? Analyzing Automated SSH Bruteforce Attacks 72
AbdelRahman Abdou, David Barrera, and Paul C. van Oorschot

Cryptography

Catena Variants: Different Instantiations for an Extremely Flexible
Password-Hashing Framework . 95

Stefan Lucks and Jakob Wenzel

On Password-Authenticated Key Exchange Security Modeling 120
Jean Lancrenon

Strengthening Public Key Authentication Against Key Theft (Short Paper) . . . 144
Martin Kleppmann and Conrad Irwin

Author Index . 151

http://dx.doi.org/10.1007/978-3-319-29938-9_1
http://dx.doi.org/10.1007/978-3-319-29938-9_2
http://dx.doi.org/10.1007/978-3-319-29938-9_3
http://dx.doi.org/10.1007/978-3-319-29938-9_3
http://dx.doi.org/10.1007/978-3-319-29938-9_4
http://dx.doi.org/10.1007/978-3-319-29938-9_4
http://dx.doi.org/10.1007/978-3-319-29938-9_5
http://dx.doi.org/10.1007/978-3-319-29938-9_6
http://dx.doi.org/10.1007/978-3-319-29938-9_7
http://dx.doi.org/10.1007/978-3-319-29938-9_7
http://dx.doi.org/10.1007/978-3-319-29938-9_8
http://dx.doi.org/10.1007/978-3-319-29938-9_9

Human Factors

Expert Password Management

Elizabeth Stobert1(B) and Robert Biddle2

1 ETH Zürich, Zürich, Switzerland
elizabeth.stobert@inf.ethz.ch

2 Carleton University, Ottawa, Canada
robert.biddle@carleton.ca

Abstract. Experts are often asked for advice about password manage-
ment, but how do they manage their own passwords? We conducted
interviews with researchers and practitioners in computer security, ask-
ing them about their password management behaviour. We conducted
a thematic analysis of our data, and found that experts described a
dichotomy of behaviour where they employed more secure behaviour on
important accounts, but had similar practices to non-expert users on
remaining accounts. Experts’ greater situation awareness allowed them
to more easily make informed decisions about security, and expert prac-
tices can suggest ways for non-experts to better manage passwords.

1 Introduction

Security experts are often turned to for advice about password management, but
what do experts themselves do to manage their passwords? How are the practices
of those who are knowledgeable about computer security different from or similar
to those of non-experts?

Little work exists on the password habits of experts, who must be affected by
the same problems that affect all users: difficulties choosing random passwords,
difficulties remembering passwords, and multitudinous accounts. If remembering
large numbers of random passwords is difficult or near-impossible for non-expert
users, it should be similarly difficult for experts.

We conducted a series of interviews with researchers and practitioners in com-
puter security, asking them about their password management behaviour. We
found that these knowledgeable users described a dichotomy of behaviour where
they employed more secure behaviour on important accounts that they deemed
more worthy, but employed similar practices to non-expert users on their remain-
ing accounts. The goal of our interviews was to better understand the practices
of expert users, and to see how they address the demands of creating and man-
aging large numbers of passwords. Do experts rely on similar coping strategies
as non-experts? What kind of tools and techniques do they use? What differenti-
ates experts from non-experts? We hoped to find insight from the practices and
coping strategies of experts to help us form recommendations for non-experts.

In the following sections, we describe our study methodology and present our
results. Our interviews yielded a set of descriptive quantitative data as well as a
c© Springer International Publishing Switzerland 2016
F. Stajano et al. (Eds.): PASSWORDS 2015, LNCS 9551, pp. 3–20, 2016.
DOI: 10.1007/978-3-319-29938-9 1

4 E. Stobert and R. Biddle

richer qualitative data set. We first present an overview of our interview results,
before conducting a thematic analysis of experts’ descriptions of their password
management techniques. We identify four themes, and use these to better under-
stand the ways in which experts differ from non-experts, as well as to form rec-
ommendations for non-expert users. We also identify areas of difficulty: password
management problems that even expert knowledge cannot solve.

2 Background

Passwords pose a considerable usability challenge for end users, who are asked to
create secure, unique passwords for every account, remember each of those pass-
words for a long time, and remember which password goes with which account
for multiple accounts. These security requirements place demands beyond human
capability on users’ memory, time, and attention [15], and lead users to create pass-
words which are memorable, but easily guessed by attackers. This is known as the
password problem [31]: passwords that are easy to remember are also easy to guess.

The password problem has existed for most of the history of computing.
Morris and Thompson [22] describe the problem in a 1979 article about pass-
words in the UNIX operating system. However, with the introduction of personal
computing and the web, the problem has scaled enormously. Current research
continues to find users creating weak passwords [4], and instances of leaked
or stolen passwords leading to major losses are increasingly common [8]. The
password problem results from a mismatch between security expectations and
users’ abilities [31], and these disconnects can lead to the misuse or avoidance
of security mechanisms [1]. Users may avoid password expectations by writing
passwords down, or by reusing the same passwords across multiple accounts [27].

Conventional wisdom concludes that users are lazy and unwilling to com-
ply with security advice. Correspondingly, the conventional suggestion is that
users should be motivated to try harder to follow security advice, and be better
educated about the dangers of poor security practices. However, the quantity of
information that users are expected to remember is arguably impossible for users
to memorize [15]. Users often end up ignoring security advice, and Herley [19]
argues that these decisions are rational. Not only are password expectations
impossible for users to meet, but a cost-benefit analysis of following security
advice suggests that users should not even try [19].

2.1 Coping Strategies

Reusing Passwords. One technique for coping with the demands of multiple
passwords and accounts is to reuse passwords across multiple accounts. Reusing
passwords carries security risks because an attacker may be able to uncover a pass-
word for one website and then use that password to attack a user’s other accounts
(e.g., through the leak of a password database). In spite of these risks, almost
all studies of password use have uncovered password reuse [14,16,18,24,25,32].
Notoatmodjo [24] found that reuse increased with the number of users’ accounts,

Expert Password Management 5

and that most users cited increased memorability as the reason for reusing pass-
words. Reuse is a simple and intuitive coping technique that scales well to handling
password meters [9], and coping with password policies [25].

Empirically tracing the extent of password reuse can be difficult. Das et al. [7]
examined leaked datasets from 10 websites, and found that 43 % of all passwords
in their data set were reused across multiple accounts. They showed that knowl-
edge of password reuse (via cross-referenced usernames) can be leveraged for
more efficient password attacks.

Even when users do not completely reuse passwords, they often reuse pieces
of passwords, or make minor modifications when using a password on another
website. Most transformations take place at the beginning or end of a pass-
word, and the most common transformations are to add a number, symbol, or
capitalization to comply with a new password policy [7,30]. Users often retain
fragments of existing habits and passwords across the creation of new accounts
and changes in policy, leading to long-term reuse [28].

Writing Passwords Down. Another coping strategy that users adopt for
remembering passwords is to write passwords down. Writing passwords down
can allow users to select and remember more complex passwords, as well as a
higher number of passwords, but can have security risks if an attacker were to
discover the list of recorded passwords.

Many users write down some or all of their passwords. Zviran and Haga [32]
asked users about their password recording practices, and found that 35 % of
their participants wrote down their passwords, and the most common storage
locations for recorded passwords were wallets, notebooks, and calendars. No rela-
tionship was found between password characteristics (length, composition) and
likelihood of password recording, but participants were significantly more likely
to write down passwords that were difficult to remember, or used infrequently.
Grawemeyer and Johnson [17] found that writing passwords down was a coping
strategy used to complement password reuse. They found that users were almost
18 times more likely to record unique passwords than reused passwords.

An important issue for recorded passwords is how they are stored: if securely
stored, writing passwords down can be a perfectly acceptable technique for aiding
users with passwords. Shay et al. [25] asked users how they protected their
recorded passwords and found that about 30 % of people did not protect them
at all. Of the remaining 70 %, strategies were varied, but included hiding the list
of passwords, or storing it on another computer or device with a password.

2.2 Security Practices of Experts and Non-Experts

Quite a lot of work has focused explicitly on non-expert users. Wash [29] inves-
tigated non-experts’ mental models of security, and found that users have often
inaccurate folk models of viruses and hackers that affect how users perceive
and react to threats. Wash theorized that botnets behave in ways unanticipated
by users’ mental models, allowing botnets to propagate unnoticed. Stobert and

6 E. Stobert and R. Biddle

Biddle [27] interviewed non-expert users about how they create, keep track of,
and remember passwords. They found that users’ passwords move through a life
cycle where they are created, reused, and adapted into subsequent passwords.

Work comparing experts with non-experts has generally found that experts
focus on different parts of the problem than non-experts. Asgharpour, Liu and
Camp [3] had experts and non-experts participate in a card-sorting experiment
to elicit mental models of security. They found that expert users’ mental mod-
els of security differed from those of non-experts, and that a physical security
metaphor was likely to be useful for framing computer security messages. Kang
et al. [21] investigated users’ mental models of the internet and examined per-
ceptions of security and privacy online. They distinguished lay participants from
technical participants and found that technical participants actually took fewer
steps to protect themselves online. Their results showed that both lay and techni-
cal participants suffered from high levels of uncertainty around how information
is collected and shared online. Although technical participants had different con-
cerns than the lay participants, all were somewhat affected by not knowing how
to handle the problems.

Ion, Reeder, and Consolvo [20] examined the security practices of expert
users in a survey-based study. They examined exclusive practices of experts vs.
non-experts and found that experts were more likely than non-experts to install
system updates, use two-factor authentication, and use a password manager to
stay safe online. Experts were likely to mention “unique” passwords and the
use of password managers, while non-experts discussed “strong” passwords and
password change policies. Non-experts were also more likely to say that they
visited only known websites, changed passwords regularly, and used antivirus
programs to stay protected from security threats. Norman [23] reports anecdo-
tal evidence that experts reuse and record passwords to handle the difficulty
of remembering secure passwords. He reported that many security professionals
told him that they reused two passwords: a strong password and a weak pass-
word. For accounts with unusual password requirements, they reported writing
passwords down.

3 Study

To investigate how computer security experts manage their passwords, we con-
ducted a series of semi-structured interviews. We interviewed participants about
a variety of subjects relating to password management, including creating,
reusing, remembering, changing, and forgetting passwords. The interviews were
conducted by the researcher, who asked questions and recorded responses. The
interviews were also audio-recorded to facilitate further note-taking. We chose
our methodology so that participants could reflect on and discuss not only what
they do, but why they do it. We encouraged participants to elaborate on incom-
plete answers and to pursue alternative discussion paths that revealed the details
and complexity of their password management strategies. To allow comparison
with earlier research on coping strategies and the password life cycle, we used

Expert Password Management 7

the same interview script and elicitation techniques as in [27]. Participants were
not given the interview questions in advance.

The interview had two parts: a short self-administered demographics ques-
tionnaire, and the password interview. The study was approved by the ethics
committees at Carleton University and at ETH Zürich. We emphasized to partic-
ipants that they should not share their passwords with us, and that all interview
questions were optional. The interviews took approximately 30 min. Participants
were not paid, but were happy to participate because of their interest in the topic.

We interviewed 15 expert users, recruited from the community of industry
security practitioners and from among the information security research groups
at ETH Zürich. Reflecting the gender distribution of the security community, the
majority of our participants were male (13 participants). Participants ranged in
age from 24 to 35, with a median age of 29. All participants except two had
a graduate degree in computer security and all were employed as researchers,
graduate students, or practitioners in information security.

Our interviews resulted in two datasets: a quantitative dataset of participants’
specific responses to yes/no and quantitative questions, and a qualitative dataset
of participants’ explanations and detailed responses. During the interviews, we
took detailed notes about each participant’s responses. Later, we returned to the
audio recordings to add detail to the notes taken during the interviews and to
transcribe quotes. We summarize the results of our interviews in Sect. 4.

We conducted a thematic analysis of our qualitative data (Sect. 5), using
methodology described by Braun and Clarke [5]. We chose thematic analysis for
its flexibility and because it allowed us to explore the depth of our data and
better understand the commonalities of participants’ discussion and responses.
We familiarized ourselves with our data by listening to the audio-recordings while
reviewing and adding to the notes made during the interviews. We then began
the process of open coding, where we identified ideas present in the data and
assigned each idea a code. Next, we identified themes resulting from the coding
process. We copied our codes onto post-it notes, and manipulated them on a
whiteboard, where we could draw around them and use mind-map techniques to
identify and refine themes. Finally, we considered our themes in relation to each
other, and how they fit into the overall story of the data.

4 Results Overview

The expert participants in this study had a median of 64 accounts, and reported
using a median of ten accounts in an average week. They reported wide ranging
numbers of unique passwords, from 4 to 200, with a median of 58.

We were very clear that participants should not share their passwords with
us, and experts were understandably private about their exact password cre-
ation strategies. Several participants mentioned algorithmic password creation
strategies that integrated different pieces of information into passwords. All but
one of these participants mentioned using this technique alongside reused pass-
words, and the remaining participant relied exclusively on this kind of algorith-
mic scheme. This participant had an elaborate password-generation algorithm

8 E. Stobert and R. Biddle

that included a component related to the website, a random seed, and a personal
evaluation of the required security level of the website.

Although participants did not discuss the exact components of their pass-
words, most participants said that their passwords were rarely rejected for failing
to comply with password policies, indicating that these experts were including
special characters, digits, and capital letters in their passwords.

All the passwords have capital letters usually. . . it’s more sometimes they
say “okay, you have two strange characters”, like unsupported special
characters and you have to delete this, and it’s a bit annoying. – E08

Although password reuse is a technique often criticized by security experts,
the majority of our participants (12 out of 15) said that they reused pass-
words on at least some of their accounts. Of those participants who reported
reusing passwords, all said they reuse multiple passwords. The median number
of reused passwords was 3.5. Most participants described a careful strategy for
reuse. Participants often mentioned they did not reuse all of their passwords, but
that they had one or two passwords that they consistently reused for “throw-
away” accounts. Participants mentioned reusing specific passwords for specific
purposes, such as single-use websites, or seldom-visited websites.

[Do you reuse multiple passwords?] Yep. [How many?] Four. Four differ-
ent ones that have different behaviour in terms of complying to bullshit
regulations like numbers, or punctuation, or ... – E03

Conversely, participants also described restricting password reuse for accounts.

What I perceive as important, which is typically the four or five accounts
that I use on a very regular basis, I use unique passwords for all of them.
And I believe that these passwords are strong. But on the other hand, I
use a common password for ... a lot of services that badger you to create
an account at times. – E10

When discussing the kind of password that they reused, participants were
clear that they had “their” password, often naming it (e.g., “my bootstrap pass-
word” – E14). Multiple participants referenced having had their password since
they began using computers and one mentioned having had their password since
high school.

We asked participants about how they stored passwords, and most (12 out
of 15) reported storing their passwords in a computer program. Of these, six
participants reported using a dedicated password manager, and the rest reported
storing their passwords in a web browser. Nine participants told us that they
wrote their passwords down. Eight of these specified that writing their passwords
down was something they did rarely, and only when unavoidable (e.g., in the
case of an assigned password that they could not remember); the remaining
participant treated his list as a kind of password manager, but also said one of
the purposes of his list was to give to family members in case of emergency.

Expert Password Management 9

Several participants said that they relied on their password manager to gen-
erate passwords for accounts, but others said that they did not use this function-
ality (in spite of using a password manager to save passwords). Some participants
described only generating random passwords for certain accounts, and most often
said that they used this functionality for high-importance accounts.

Participants reported that they enter their passwords on a variety of device
types, including smartphones, tablets, laptops and desktops, but most said that
when creating passwords, they did not consider the entry device. Two partici-
pants mentioned shortening their passwords, or avoiding special characters when
they knew they would be entering the password on a smartphone. One partic-
ipant said that when using a regular keyboard, they tried to create their pass-
words so that all characters requiring the use of the “shift” key were next to
each other.

Slightly less than half of the participants (7 out of 15) reported that they
will enter their passwords on computers belonging to friends or family members,
but most qualified the statement by mentioning that they would only log into
certain accounts on other people’s computers. Those who said that they would
not enter their passwords on systems not managed by them said that this was a
deliberate and strict policy for them.

5 Thematic Analysis

We began our thematic analysis with the process of open coding. We traversed
the notes from our interviews, assigning codes to the data. To gain greater famil-
iarity with the data, we relistened to the audio recordings of the interviews and
took additional notes, which we then coded. We identified a total of 30 codes,
and a list of all the codes used is included in Table 1.

Following the process of open coding, we began the process of identifying
themes and relationships in the data. We identified four broad themes in our
data, each of which answers some aspect of our research question: how do experts
manage passwords?

5.1 Expert Awareness

During the interviews, it was clear that a key strategy for expert participants was
to have consistent and pre-planned strategies. Experts were able to speak knowl-
edgeably and fluently about their password management and security strategies.
They were familiar with what they do to address security and often anticipated
subsequent questions in the interview. While this familiarity is no doubt due to
the fact that these participants spend large amounts of their lives considering
security, it also seemed to highlight the a priori nature of the expert approach.
These participants referenced specific policies, and as in the following quote,
were emphatic about avoiding certain situations.

[Do you ever enter your passwords on computers that don’t belong to
you?] No. This is something I really try to avoid. – E08

10 E. Stobert and R. Biddle

Table 1. Complete list of all the open codes used in the analysis, organized by theme.

Code name Description

Expert Awareness

Consistency Showed evidence of consistent habits (between accounts, or

over time)

Algorithmic/deterministic Generates passwords according to deterministic strategy or

algorithm.

Exceptions to the rule Discussed situations where consistency is damaged because of

other factors.

Threat awareness Shows awareness of specific security risks

Family/friend trust Describes special trust for friends or family

Resets as coping strategy Uses the password reset mechanism instead of remembering

passwords

Combining Strategies

Variations on a theme Describes creating passwords that are slight variations on

each other.

Go-to password Describes a particular password that is often reused

Combination of strategies Describes combining strategies

Password manager as coping strategy Uses password manager to cope with some difficulty of

passwords

Writes as backup Writes passwords down as an insurance strategy (rather than

to use often)

Records on paper Writes passwords down on paper

Records electronically Writes passwords down in an electronic document (e.g.,

email, word document)

Personal Assessment of Risk

Personal categorization Organizes accounts by some “personal” strategy

Security categorization Organizes accounts by security

Service-based categorization Organizes accounts based on the website service

Financial categorization Organizes accounts based on money-based considerations

Frequency-based categorization Organizes accounts based on frequency of use (both frequent

or infrequent)

Hidden category Has accounts that belong to a category based on their

non-dominant categorization

Personal assessment of risk Indicated that their assessment of risk was specifically

applicable to themselves

Usability Problems

Usability problems Describes usability problems

Privacy Describes privacy concerns

Lack of control Describes situation where control is lost

Memory problems Describes problems remembering information

Password manager usability Describes usability problems with password managers

Username problems Describes problems with usernames

Limited online presence Describes minimizing their online presence to avoid coping

with security problems

Broad online presence Describes having many accounts

Change of behaviour Describes a situation where they changed their practices

Self-dictionary attack Guesses at own passwords

Expert Password Management 11

Experts were specific about how they create and adapt passwords, and when
asked the same question in different contexts, they often showed confusion about
why the question was being asked again. Our interview asked about password
creation when creating a new account vs. resetting a forgotten password, and at
the second question, many participants gave us answers such as:

[If you do have to reset a password because you don’t remember it, how
do you pick the new password?] Uh, I mean [it] is the same technique as
I used before. – E02

Experts also showed awareness of specific threats in the interviews. When we
asked about password changes, several experts referenced having changed their
passwords in response to Heartbleed, a security bug in the OpenSSL library that
necessitated widespread password changes [6].

Well, there’s, there’s been a couple of incidents like, uhh, my laptop got
stolen at one point, or... Or maybe you hear, like, a serious vulnerability
like Heartbleed, and that’s when you think that, that this might be a
time to change passwords.– E07

The experts in our study sometimes mentioned planning for failure. Many
participants reported using the password reset feature on a regular basis, and
participants often planned to rely on this mechanism rather than going to the
trouble of keeping track of an unusual password (e.g., one that deviated from
their predictable password algorithms.) In these situations, participants were
effectively planning on forgetting their password, relying on other existing mech-
anisms to save them. For accounts used infrequently, the trade-off of login time
against convenience appeared to be worthwhile.

Planning for security can be made difficult by the myriad other pressures
and unexpected situations that can arise, and experts did mention these situ-
ations that forced them to deviate from their preferred strategies. Among the
situations described in the interviews were the pressures of friends and family,
as well as unforeseen circumstances where information needed to be retrieved.
The social and contextual pressures that affect everyone also affect computer
security experts.

I can be as paranoid as I want, but you know, in the real world I have a
family and stuff, so sometimes you have to make compromises. – E15

5.2 Combining Strategies to Remember Passwords

Participants described a number of strategies for managing their passwords and
accounts, and unexpectedly, many participants described using more than one
technique, depending on the account.

Almost half of the participants said that they wrote some passwords down,
and all of these described it as a kind of backup strategy. One participant said
he wrote down passwords that were difficult or impossible to change. Another

12 E. Stobert and R. Biddle

said that when he was issued assigned passwords, he often kept the piece of
paper that came with the password (e.g., a letter with a PIN sent by the bank).
One participant said that he wrote down most of his passwords, but was explicit
about how his strategy was intended as a backup strategy for infrequently-used
accounts.

I just keep them written down just in case, and there are those more
throwaway accounts that I use once every ... a few times a year, but I
need then to check. – E04

Some participants described writing down other pieces of information as a
backup strategy. One participant who had an algorithmic password generation
strategy said that he sometimes wrote down the year that he had created the
password for a specific account. Together with his memorized algorithm, this
small piece of information was sufficient for him to regenerate the passwords.

Twelve participants described using some kind of password manager to save
passwords. Six participants told us they used dedicated password managers, and
eleven participants reported saving passwords in the web browser or in applica-
tions. Most participants mentioned using more than one tool, and even users of
dedicated password managers reported using them alongside the browser-based
managers.

Several participants described using a combination of strategies. In particu-
lar, multiple participants mentioned using password reuse in combination with
password managers. One participant said that he used a password manager to
randomly generate and remember passwords for important accounts, but that
he opted to reuse passwords instead of storing them in the password manager
for insignificant accounts.

I don’t store everything in a password manager. [Why not?] Because I, I
dunno, because that’s kind of incon. . . It’s just another layer of inconve-
nience to use a password manager, and I, for me personally, it’s not worth
the investment to store it there. And it also kind of clogs my database,
I guess, if I would store it in there, the password manager. – E01

In this quote, the participant describes the inconvenience of the password man-
ager. Although he uses the manager, he weighs the inconvenience of the password
manager against the significance of the account before deciding if he will use the
manager for that account. Another participant described the same technique,
but said that he made his decision on whether the website collected financial
information. Yet another participant described a kind of thresholding process
for determining which accounts got added to his password manager:

If [password resets] happens more often than, I don’t know, a bunch of
times, then I will just use 1Password to remember that password. – E09

Expert Password Management 13

5.3 A Personal Assessment of Risk

Experts often explicitly mentioned the personal assessment of risk that played a
role in their password management and creation strategies. One of the problems
of computer security is that it can be difficult to know how well an account
is protected, and to what level an account needs protection. Even with the
additional experience and knowledge that accompanies expertise, it is hard to
know exactly how specific decisions and choices will affect the protection of an
account. In the following quote, the participant corrects himself to clarify that
his classification of his two passwords as secure is based on his own judgment:

I have two passwords that are, um, that I consider to be more secure, and
that I use for only few things, but yeah, I consider more valuable. – E04

This idea of personal assessments of security came up repeatedly in the inter-
views, often in the discussion of a categorization strategy for accounts. Partici-
pants remarked on a number of categorization factors, including money/financial
information, service-based categorization, or simply “importance”.

The first ingredient is the security level of the service, that I personally
think it falls into this category. So for Amazon I would identify the
security level I think Amazon should have in my world and then this is
the first ingredient of the password. – E05

These strategies were often vaguely defined, and experts sometimes acknowl-
edged their own inconsistency.

I actually buy train tickets with this [password], but, yeah, I am contra-
dicting myself because buying a train ticket involves money but I don’t
really care! – E11

Experts were clear in the interviews that objective assessments of security
are difficult to make, and almost every description of a password management
strategy mentioned this in some way. Experts did not express hesitation or con-
cern about these decisions, but they were quick to clarify that many of their
security assessments were particular to them. Having the awareness and ability
to make these decisions quickly and relatively accurately is a hallmark of expert
password management.

5.4 Usability Problems

Even though passwords are presumably a subject of interest for people employed
as security experts, our participants still described difficulty and frustration with
password management. One participant described assigned random passwords as
“ridiculous string[s] of horror” (E03). Participants described a number of ways
in which they anticipated and experienced usability problems with passwords.
Several participants said that they did not expect to remember passwords that

14 E. Stobert and R. Biddle

were modified to comply with unusual password policies, and one participant
described problems remembering the usernames associated with passwords.

One participant gave a long description of usability problems resulting from
an unusual password policy and his reliance on the password reset mechanism.

If all of them reject the password policy, then I would take the simplest
one and do minimum compliance to make it fit their policy, and then
any time I ever want to use it again, I wouldn’t remember it, because of
this, and if they told me this was their policy I would remember but as
it is I wouldn’t have any clue and I would get angry and frustrated and
say “remind me my password” and they would send it to me and I’d be
like “oh right, I forgot about this silliness.” Or actually, no, what would
happen is they would say “ok, reset your password” and then I would
click the reset password and I would try to enter the simple password, it
would reject it and explain the policy, and then I would remember what
it was, the old one, but it was already too late because I had said reset
the password and need to enter a new one. Yeah.– E03

This quote describes not only anger and frustration, but the additional time and
effort that result from invisible password policies. In this description, the user
enters multiple known passwords, creates a new password, revisits the website,
logs into his email, clicks a reset link, and chooses another new password. This
is a lot of work to log into an account!

Only a few expert participants described changes of behaviour related to
security, but when they did, changes related to usability problems rather than
to security concerns. One participant said they started using a password man-
ager when they could not remember all of their passwords, but another partici-
pant said that they had stopped using a password manager because the built-in
browser password manager filled their needs.

[Do you use any kind of dedicated password manager?] Not at the
moment, no. [Have you in the past?] I have tried. [What didn’t work
out?] Ummm. I guess I would say that in the situation as now, my
browser remembers my passwords and that’s somehow sufficient for me.
My mobile remembers my passwords, so I, at the moment, I don’t really
feel the need for a separate password manager. – E07

A few participants described making efforts to minimize their online presence
to avoid dealing with security and passwords. One participant told us how he
avoided creating and managing passwords by relying on his spouse:

I try to shove off all my passwords to let [my partner] manage it. – E10

The usability problems of passwords also lead experts to make mistakes:
experts mentioned a number of practices with obvious security vulnerabilities.
Since experts are presumably aware of these weaknesses, it is telling that they
have chosen to trade off security for usability in certain situations. Two partici-
pants said that they sometimes created passwords using dictionary words from

Expert Password Management 15

their non-English mother tongue. Dictionary words in any language are easy for
an attacker to guess.

I sometimes do pick words from my native language because they almost
look like a garbled set of characters in English, and then it’s highly
unlikely that somebody gets it. – E10

Another insecure practice mentioned by experts was guessing at their pass-
words. If an attacker is collecting password entries, guessing multiple passwords
can quickly leak many passwords to an attacker. More than one participant ref-
erenced this technique, though most did clarify that they would only turn to it
for low-value accounts.

Since those belong mostly to throwaway accounts, I will just try another
variation or try another one of my standard set of passwords. – E01

6 Discussion

Experts make use of many of the same coping strategies that are well-
documented for non-experts. They reuse passwords, write passwords down, and
create new passwords by making slight variations of older passwords. How-
ever, they combine these possibly insecure strategies with more careful habits
for accounts where they are strongly concerned about security. One way they
accomplish this is by using a password manager to generate and store passwords
for high-value accounts, while reusing old passwords across other, lower-value,
accounts.

The segmentation of strategies and clear division between important and
unimportant accounts is what distinguishes expert behaviour from non-expert
behaviour. Experts carefully plan to treat certain accounts more carefully than
others. However, other studies [20,27] have shown that non-experts try to use
similar strategies. What allows experts to be more successful than non-experts?

Defining expertise is problematic, but it is usually agreed that an expert is
someone with high knowledge in a certain domain and who is successful in that
domain [12]. For example, an expert in chess is someone who is deeply familiar
with the rules and strategy of the game, and is able to use this knowledge win
many of their games. However the notion of success is less clear in personal
practice with passwords. How exactly can it be shown that someone is more
successful at managing their passwords than another person? How can we know
that a lack of security breaches is due to good management and not due to luck?

In “ill-structured problems” [26] such as computer security, Endsley [11]
argues that expertise comes from skilled decision making, which is enabled by
situation awareness. Situation awareness is “the perception of the elements in
the environment within a volume of time and space, the comprehension of their
meaning and the projection of their status in the near future.”– [10, p. 97].
Along with specialized skills and high knowledge in a domain, strong situation
awareness contributes to expertise.

16 E. Stobert and R. Biddle

Experts with high situation awareness have learned knowledge and skills,
schemas for prototypical situations, mental models of the domain, and automatic
processes in the domain [11]. In our interviews, experts demonstrated all of these
characteristics. They had high knowledge of the security domain and awareness
of specific threats. They recognized the kind of password-related scenarios they
had encountered in the past, and remembered their behaviour in those situations.
They had mental models of threats and defences for those threats, as well as for
which accounts were susceptible to which threats. Finally, the experts in our
study had clear and automatic processes for how to create, remember, and reuse
passwords in prototypical situations.

Although someone may have good situation awareness and expertise in one
area of their domain, they may not maintain that awareness and expertise when
handling novel situations [11]. Most of the password management scenarios dis-
cussed in our interviews were fairly routine, but participants repeatedly men-
tioned the frustration of situations where (for example) an unusual password
policy forced them to change their password creation algorithm. In these situa-
tions, experts are no longer experts because they have lost some of their situation
awareness.

6.1 What Do Experts Do Right?

The purpose of the expert interviews was to better understand how experts are
managing passwords, but also to see what can be learned from the practices of
experts and adapted to help non-expert users manage their passwords.

Together with other studies [20,27], our interviews suggest that both experts
and non-experts treat accounts with different requirements differently, but that
the experts’ consistency gives them an advantage in managing passwords. The
experts in our study used password managers in combination with password
reuse and other less secure coping strategies. They acknowledged the additional
effort of using a password manager, but had selected the accounts where this
effort was worthwhile. By using the password manager only on those accounts,
they were effectively budgeting their time and effort to protect their most valu-
able accounts. Experts’ additional situation awareness of security allowed them
to make effective decisions about where to place their time and energy, and how
to prioritize good security practices for important accounts.

Many of the habits and behaviours described by experts are accessible to
anyone. Experts mostly mentioned using existing tools (open source and com-
mercially available password managers) that are easily available online. We can-
not expect that every user will be able to create a robust password generation
algorithm, but many of the expert behaviours were similar to the practices of
non-experts, and the additional software they used was available to anyone. But
how we can help non-experts develop situation awareness to help them make
informed decisions about security?

One way in which we can increase situation awareness for end users is to make
security policies as transparent as possible. The potential presence of an attacker
complicates this, but often-seen strategies such as obscuring the password policy

Expert Password Management 17

do little to discourage attackers, while complicating the situation for end users.
Presenting information such as password rules and policies at password creation,
and making log information about the time and location of logins available to
users could potentially help them better manage their accounts.

Helping users develop schemas and good mental models for security is more
difficult. Security is a secondary task and users are typically uninterested in the
topic. Security and password management tasks are also distributed across many
websites and accounts, with no central place through which to monitor them.
Password managers create a central place through which passwords are created,
saved, and monitored, and this could potentially help end users’ situation aware-
ness of their own passwords. Password managers provide users with a list of all
their passwords, so users can see where they are reusing passwords, and in the
case of a known vulnerability, make it easier for users to change affected pass-
words. Password managers could also help users by bringing vulnerabilities and
compromises to users’ attention. Some commercial password managers already
do this: 1Password provides a service called Watchtower that allows users to iden-
tify services that are vulnerable to Heartbleed [2], and LastPass has a “Security
Audit” feature that identifies passwords that occur in leaked datasets [13].

We suggest that end users should be able to develop consistent strategies to
strongly protect the accounts they care about most, while not wasting effort on
other accounts. The process of setting up a password manager can be daunt-
ing, but by selecting a small set of accounts for initial setup, the task is made
significantly smaller. For example, users could select three important accounts,
install a password manager, and add those accounts to the manager. Instead of
attempting to solve their whole password problem, users should focus on the
accounts that matter most to them. This incremental approach is scaleable, and
it is possible that once the password manager is set up and in use, the user may
want to use it for other accounts.

6.2 What Do Experts Do Wrong?

Though the habits and knowledge of experts can help address some of the issues
with passwords, other problems still remain. Here, we highlight a few issues that
were identified as problems during the interviews.

Password changes were a source of tension for most users. Experts were more
likely to say that they changed their passwords than non-experts [27], but most
experts said they changed their passwords only rarely and commented on the
difficulty of the process. Participants commented on how the password change
process can look different for every website, and finding the correct page and
going through the password change process can be time-consuming. Password
changes also affect the usability of password managers. To take advantage of the
random password generation functions in most managers, passwords for exist-
ing accounts must be changed. This process can discourage all kinds of users
from adopting password managers. Making password changes simpler could both
encourage the adoption of password managers and improve security for users
who want to change their passwords. A lurking theme in our interviews was

18 E. Stobert and R. Biddle

the usability of password managers. Although none of the experts in our study
complained about the usability of their password managers, their unwillingness
to make them their default password management strategy seems to point to
some kind of issue with their usability or usefulness. Since their usefulness is evi-
dent, the issue is likely usability. Since there were no specific complaints about
particular managers, the issue might simply be that password managers require
an additional effort and a few extra clicks when logging into websites. Another
possible issue here might be trust. A few participants did mention trust, and
those that did had a personal rationale for why they did or did not choose to
trust password managers. Interestingly, these personal rationales were not par-
ticularly similar to each other, and experts clearly put value on different parts
of the security ecosystem.

7 Conclusion

Password management can be a struggle for everyone, even experts in computer
security. Our interviews with experts about their password management habits
showed that they use a combination of password management strategies to care-
fully allot appropriate security to individual accounts. Several experts relied on
password reuse and other less secure coping strategies for lower-value accounts,
but used a password manager to generate and remember random passwords for
high-security accounts. Experts’ increased situation awareness allowed them to
more easily make informed decisions about their password management tasks.

The expert approach suggests that all users could improve their password
management strategies by increasing their situation awareness of security. One
way to do this might be to use a password manager for their most valued
accounts. Explicitly identifying a small number of high-priority accounts is a
natural extension of end users’ existing strategies, and the comparatively small
effort to better protect those accounts could significantly improve users’ secu-
rity. Additionally, this incremental approach could scale to protect more than
just the most valuable accounts and could foster better password habits for all
accounts.

Of course, expert knowledge does not solve all usability issues with passwords.
Problem areas for password management include the usability of password man-
agers and the ease of password changes. Although the expert approach cannot
remedy all password management problems, it can suggest practical advice and
strategies to help end users manage passwords in their daily life.

Motivations are complex, and it is difficult to know how individual biases and
perspectives may affect our results. A limitation of interview studies is that we
do not examine users’ actual behaviour in the real world, and it can be difficult
to know how factors such as reputation affect participants’ responses. However,
by probing responses and encouraging participants to thoughtfully examine and
explain their comments, we hope that we have provided an initial perspective
on the area, and that these results can be used to help inform security solutions
for both end users and experts.

Expert Password Management 19

Acknowledgements. We would especially like to thank all of the computer security
experts who lent their time, experience, and insight to our interviews. We also acknowl-
edge support from the Natural Sciences and Engineering Research Council of Canada:
Discovery Grant RGPIN 311982-2010.

References

1. Adams, A., Sasse, M.A.: Users are not the enemy. Commun. ACM 42(12), 40–46
(1999)

2. AgileBits. 1Password Watchtower (2015). https://watchtower.agilebits.com
3. Asgharpour, F., Liu, D., Camp, L.J.: Mental models of security risks. In: Dietrich,

S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS, vol. 4886, pp. 367–377.
Springer, Heidelberg (2007)

4. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: Proceedings of the 33rd IEEE Symposium on Security and Privacy,
pp. 538–552. IEEE (2012)

5. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.
3(2), 77–101 (2006)

6. Codenomicon. The Heartbleed Bug, April 2014. http://heartbleed.com
7. Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The tangled web of

password reuse. In: Network and Distributed System Security Symposium (NDSS).
Internet Society, February 2014

8. eBay. eBay Inc., To Ask eBay Users To Change Passwords, May 2014. http://
www.ebayinc.com/in the news/story/ebay-inc-ask-ebay-users-change-passwords

9. Egelman, S., Sotirakopoulos, A., Muslukhov, I., Beznosov, K., Herley, C.: Does my
password go up to eleven?: the impact of password meters on password selection. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI), pp. 2379–2388. ACM (2013)

10. Endsley, M.R.: Design and evaluation for situation awareness enhancement. In:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp.
97–101 (1988)

11. Endsley, M.R.: Expertise and situational awareness. In: Ericsson, K.A., Charness,
N., Feltovich, P.J., Hoffman, R.R. (eds.) The Cambridge Handbook of Expertise
and Expert Performance. Cambridge University Press, Cambridge (2006)

12. Ericsson, K.A.: An introduction to the cambridge handbook of expertise and expert
performance. In: The Cambridge Handbook of Expertise and Expert Performance,
pp. 3–20. Cambridge University Press, Cambridge (2006)

13. Fitzpatrick, J.: How to Run a Last Pass Security Audit (and Why It Can’t Wait).
http://www.howtogeek.com/176038/how-to-run-a-last-pass-security-audit-and-
why-it-cant-wait/

14. Florencio, D., Herley, C.: A Large-scale study of web password habits. In: Interna-
tional World Wide Web Conference (WWW). ACM, May 2007

15. Florencio, D., Herley, C., van Oorschot, P.C.: Password portfolios and the finite-
effort user: sustainably managing large numbers of accounts. In: Proceedings of
the 23rd USENIX Security Symposium. USENIX, August 2014

16. Gaw, S., Felten, E.W.: Password management strategies for online accounts. In:
Proceedings of the 2nd Symposium on Usable Privacy and Security (SOUPS).
ACM, July 2006

17. Grawemeyer, B., Johnson, H.: Using and managing multiple passwords: a week to
a view. Interact. Comput. 23(3), 256–267 (2011)

https://watchtower.agilebits.com
http://heartbleed.com
http://www.ebayinc.com/in_the_news/story/ebay-inc-ask-ebay-users-change-passwords
http://www.ebayinc.com/in_the_news/story/ebay-inc-ask-ebay-users-change-passwords
http://www.howtogeek.com/176038/how-to-run-a-last-pass-security-audit-and-why-it-cant-wait/
http://www.howtogeek.com/176038/how-to-run-a-last-pass-security-audit-and-why-it-cant-wait/

20 E. Stobert and R. Biddle

18. Hayashi, E., Hong, J.: A diary study of password usage in daily life. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI). ACM,
May 2011

19. Herley, C.: So long, and no thanks for the externalities: the rational rejection
of security advice by users. In: Proceedings of the Workshop on New Security
Paradigms (NSPW). ACM, September 2009

20. Ion, I., Reeder, R.W., Consolvo, S.: “..No one can hack my mind”: comparing
expert and non-expert security practices. In: Proceedings of the 11th Symposium
on Usable Privacy and Security (SOUPS). USENIX, July 2015

21. Kang, R., Dabbish, L., Fruchter, N., Kiesler, S.: “My data just goes everywhere:”
user mental models of the internet and implications for privacy and security. In:
Proceedings of the 11th Symposium on Usable Privacy and Security (SOUPS).
USENIX, July 2015

22. Morris, R., Thompson, K.: Password security: a case history. Commun. ACM
22(11), 594–597 (1979)

23. Norman, D.A.: When security gets in the way. ACM SIGCSE Bull. 16(6), 60 (2009)
24. Notoatmodjo, G.: Exploring the ‘Weakest Link’: A Study of Personal Password

Security. Master’s thesis, The University of Auckland, New Zealand, November
2007

25. Shay, R., Komanduri, S., Kelley, P.G., Leon, P.G., Mazurek, M.M., Bauer, L.,
Christin, N., Cranor, L.F.: Encountering stronger password requirements: user atti-
tudes and behaviors. In: Proceedings of the 6th Symposium on Usable Privacy and
Security. ACM, June 2010

26. Simon, H.A.: The structure of Ill-structured problems. In: Models of Discovery, pp.
304–325. D. Reidel Publishing, Dordrecht (1977)

27. Stobert, E., Biddle, R.: The password life cycle: user behaviour in managing pass-
words. In: Proceedings of the 10th Symposium on Usable Privacy and Security
(SOUPS). USENIX, July 2014

28. von Zezschwitz, E., De Luca, A., Hussmann, H.: Survival of the shortest: a ret-
rospective analysis of influencing factors on password composition. In: Kotzé, P.,
Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013,
Part III. LNCS, vol. 8119, pp. 460–467. Springer, Heidelberg (2013)

29. Wash, R.: Folk models of home computer security. In: Proceedings of the 6th
Symposium on Usable Privacy and Security (SOUPS). ACM, July 2010

30. Weir, M., Aggarwal, S., Collins, M., Stern, H.: Testing metrics for password cre-
ation policies by attacking large sets of revealed passwords. In: Proceedings of the
17th ACM Conference on Computer and Communications Security (CCS). ACM,
October 2010

31. Wiedenbeck, S., Waters, J., Birget, J.-C., Brodskiy, A., Memon, N.: PassPoints:
design and longitudinal evaluation of a graphical password system. Int. J. Hum.-
Comput. Stud. 63(1–2), 102–127 (2005)

32. Zviran, M., Haga, W.J.: Password security: an empirical study. J. Manage. Inf.
Syst. 15(4), 161–185 (1999)

Assessing the User Experience of Password
Reset Policies in a University

Simon Parkin(B), Samy Driss, Kat Krol, and M. Angela Sasse

Department of Computer Science, University College London, London, UK
{s.parkin,samy.driss.14,kat.krol.10,a.sasse}@ucl.ac.uk

Abstract. Organisations often provide helpdesk services to users, to
resolve any problems that they may have in managing passwords for their
provisioned accounts. Helpdesk logs record password change events and
support requests, but overlook the impact of compliance upon end-user
productivity. System managers are not incentivised to investigate these
impacts, so productivity costs remain with the end-user. We investigate
how helpdesk log data can be analysed and augmented to expose the
user’s personal costs. Here we describe exploratory analysis of a univer-
sity’s helpdesk log data, spanning 30 months and 500,000 system events
for approximately 10,000 staff and 20,000-plus students. The scale of
end-user costs was identified in log data, where follow-on exploratory
interviews and NASA-RTLX assessments with 20 students exposed issues
which log data did not adequately represent. The majority of users reset
passwords before expiration. Log analysis indicated that the online self-
service system was vastly preferred to the helpdesk, but that there was
a 4:1 ratio of failed to successful attempts to recover account access. Log
data did not capture the effort in managing passwords, where interviews
exposed points of frustration. Participants saw the need for security but
voiced a lack of understanding of the numerous restrictions on passwords.
Frustrations led to adoption of diverse coping strategies, for example
deliberately waiting to reset a password after reaching the post-expiry
grace period. We propose ways to improve support, including real-time
communication of reasons for failed password creation attempts, and
measurement of timing for both successful and failed login attempts.

1 Introduction

An organisation may have a password policy, which dictates rules about the char-
acter composition of passwords for provisioned accounts and how these passwords
should be managed (e.g., how often they should be changed). Password policies
in organisations can be unusable – and consequently insecure – if the end-user
experience is not considered [9]. Policies may dictate that users regularly change
their passwords, complicating attempts to remember a password. It is already
common to forget passwords [32], especially when managing many at once [5].

To reduce the impact of forgetting passwords, password recovery mecha-
nisms are often provided. These typically take two forms [20]: (1) self-service,

c© Springer International Publishing Switzerland 2016
F. Stajano et al. (Eds.): PASSWORDS 2015, LNCS 9551, pp. 21–38, 2016.
DOI: 10.1007/978-3-319-29938-9 2

22 S. Parkin et al.

authenticating through an alternate factor such as security questions, and/or;
(2) helpdesk, where a representative will reset a password on behalf of a user.

IT security policies must accommodate regulatory and economic considera-
tions [15]. Policy decisions are typically based on intuition and security expertise,
and consider business impact ahead of any effects upon end-users [18]. This does
not necessarily lead to poor choices, but is subjective and enacted without evi-
dence of productivity impacts for end-users who have jobs to do.

For the individual, a password reset can appear to lack a personal benefit
for the amount of effort required [19]. This can encourage negative attitudes
towards computer security, leading users to subvert security mechanisms [4].
Assertions about the effectiveness of password reset policies are then weakened
if end-users feel pressured to respond to the burden in unanticipated ways. It
may not be possible for those responsible for maintaining security to observe
these unanticipated responses (or otherwise seem obvious for them to monitor
behaviours if they have no evidence that policy is not being enacted) [2].

Here we explore what the data collected for typical password support mech-
anisms can and cannot indicate about the end-user experience, and where they
may be augmented to improve both usability and security. A university provided
access to helpdesk log data for password reset activity, spanning 30 months, for all
users of an authentication system for email and other centrally-managed IT ser-
vices. This data was analysed using Exploratory Data Analysis (EDA) techniques
to find out what it shows of the end-user experience for (un)successful reset or
recovery of passwords over time. Where analysis did – or did not – describe user
experiences, this informed questions posed during exploratory interviews with 20
students, structured to explore attitudes towards specific aspects of password pol-
icy (such as responding to password expiry notifications and adhering to password
composition rules). Interview analysis relates the end-user experience to numbers
in the helpdesk logs, with an aim to identify candidate extensions to both the log-
ging process and the password support mechanism itself. A contribution of this
paper is the application of holistic thinking to the way security infrastructure sup-
ports and monitors users and their security behaviours.

The remainder of the paper is organised as follows: In Sect. 2, we give an
overview of related research on password policies in organisations and end-
user behaviours around authentication. Section 3 summarises the methodolog-
ical approaches in our research. Section 4 presents our findings from the analysis
of helpdesk log data while Sect. 5 focuses on the qualitative results from user
interviews. We discuss our findings in Sect. 6 and build on them to provide rec-
ommendations for practitioners. Finally, Sect. 7 summarises our findings and
outlines avenues for future research.

2 Related Work

A number of works have analysed organisation log data and engaged with sys-
tem users to develop understanding of behaviours around password policies and
related authentication mechanisms. Adams and Sasse [4] stress that IT security

Assessing the User Experience of Password Reset Policies 23

managers must consider that (i) users can decide whether to comply with secu-
rity policy, and (ii) the decision to comply is shaped by goals, perspectives and
attitudes, and the norms that govern behaviours. Security is not at the forefront
of users’ minds [31], and should not be a barrier to a user’s primary task or it will
create frustration and promote negative attitudes towards security [9]. Tighten-
ing security can not only render systems less accessible and make users less
productive – it might also undermine security as users will employ workarounds
to carry out their tasks [23]. The same can be said of demands that occur repeat-
edly or in sum over time [9].

The usability and productivity impacts of security mechanisms are rarely con-
sidered when devising policies [9]. The user burden of security can be measured
as the impacts they experience, for instance delays to task completion, restric-
tions to their ability to complete their work, and in the case of passwords the
memorability of new information becomes critical [7]. A user may begrudgingly
commit effort to compliance with security, if only to avoid being held accountable
for a security compromise [9]. Shay et al. [3] look specifically at user behaviours
and attitudes towards passwords and password change at a university, provid-
ing recommendations for how to manage user responses to policy expectations.
Strategies for managing passwords were also identified, where a number of sur-
vey respondents remarked that they wrote down their passwords, or otherwise
shared them with others or followed a repeatable set of rules for creating a new
password such as reusing their previous password or a password from another
account. Here we consider the impacts upon users which may be hidden from
the view of system managers, even where user behaviour as observed in system
logs appears to be compliant with the password policy.

It has been suggested that the design of security systems be based on task
and work-flow analysis [25], and that security restrictions be routinely tested
with various users to minimise interference and enhance (rather than hinder)
productivity [23]. Elsewhere productivity impacts for groups of users have been
considered alongside business support costs and recognised efforts to reduce secu-
rity breaches, in a decision-support paradigm [8] and complementary proposal
for tool support [22], with a focus on password policies. The paradigm was well-
received by security managers, especially where it was able to relate to decisions
and data that managers were familiar with.

Organisations may employ a helpdesk team to help users who need to
replace forgotten passwords. Alternatively, users may manage passwords per-
sonally through self-service portals, or by using a registered contact point (e.g.,
having information sent to a registered email account) [24]. The number and com-
plexity of password policies plays a role in increasing the frequency of helpdesk
visits for password resets [4], where it is estimated that roughly 30 % of help
requests relate to password resets [29], the majority as a result of passwords
being forgotten. Password reset requests are most common after holidays or
after long periods of inactivity [12]. Additionally, helpdesk calls may result from
users being locked out, as it is common for organisations to lock user accounts
after three failed login attempts (where increasing this limit can reduce the

24 S. Parkin et al.

number of reset requests [12]). In some organisations, the cost of maintaining
helpdesks leads security staff to consider the writing down of passwords as a
minor infraction [27]. Many organisations then seek to reduce the number of calls
to the helpdesk [13]. Self-service solutions however require investment and sup-
port to be appropriately integrated into designated systems [28]. When selecting
or changing a password, users should be provided with instructions for construct-
ing and memorising strong passwords [26]. Without such information, users make
up their own rules to devise more memorable passwords [4]. Training users to
create secure and memorable passwords has been identified as a more plausible
solution to easing the burden on the helpdesk [16]. Here we also consider where
communication of policy can be improved without necessarily changing the rules
of the password policy itself.

3 Methodology

A mixed methods approach combined both quantitative and qualitative data.
Exploratory Data Analysis (EDA) [30] was performed on the anonymised
helpdesk log data. Second, semi-structured interviews were conducted to under-
stand end-user perceptions of system use and related policies. Interviewees
completed NASA-RTLX workload assessments [17] for regular tasks, thereby
quantifying perceived workload. Interviews and workload responses were then
analysed relative to the findings of the log analysis. The study received ethics
approval from the Research Ethics Committee at UCL. All quantitative data
was anonymised. Participants in interviews were assigned participants numbers
and no personally-identifying information was stored during data collection.

3.1 Systems Under Analysis

Analysis was carried out with a university support team’s password reset log
data. The data comprises monthly reports of the frequency distribution for
various password reset activities (e.g., resetting an expired password) from
September 2012 to April 2015, for approximately 10,000 staff and 20,000-plus
students. The data contains logs from two systems: Personal Password Manage-
ment and Personal Password Recovery, where each system has both an online
and in-person helpdesk channel. The main dataset consisted of monthly aggre-
gations, to both manage the scale of the data and to preserve anonymity.

The Personal Password Management (PPM) is a web-application allow-
ing users at the university to change their account passwords. Here a password
change is the act of replacing an existing known password with a new one.
Reminder emails are sent to system users in advance of a password being set to
expire – a user will receive a series of timed emails at set intervals until they reset
their password. There is a grace period of several days after expiry when a user can
still reset their password. New passwords must conform to set rules, which define
character composition and prohibit similarity to previous passwords. A password
change may take time to propagate across all university IT systems.

Assessing the User Experience of Password Reset Policies 25

The Personal Password Recovery (PPR) system allows users to register
memorable phrases and associated hints so that they can authenticate themselves
to the system if they have forgotten their password or it has expired – a user
can then enact a password reset, to replace their password. The process can
be enacted online personally, or via the helpdesk in-person or over the phone.
Users must also provide a limited number of personal details. When answering
memorable questions, users are prompted to only enter selected characters from
their memorable answers. A password reset is not the same as password recovery,
where a user may indicate on a webpage that they have forgotten their password
and follow a direct link (or indirect link, perhaps via email) to a webpage to
change their password – such a feature was not part of the system under analysis.

3.2 Helpdesk Log Analysis

Exploratory Data Analysis (EDA) can identify patterns within a dataset to visu-
ally summarise its primary characteristics [30]. The inherent advantages of EDA
include that it allows researchers to uncover patterns and structures within the
data that are not readily discerned. EDA is applied to the password helpdesk data
to carry out (i) datamunging, (ii) examine key variables and relationships thatmay
exist between them, (iii) visually describe the data and, (iv) determine temporal
patterns and trends that may be of interest to IT security managers. In this study,
EDA findings also informed the design of a subsequent user interview exercise.

3.3 User Interviews

Semi-structured interviews were conducted, to facilitate probing of responses
where they related to unanticipated factors or issues identified from log analy-
sis. Thematic analysis was used here to identify coding themes and sub-themes
based on topics emerging from the interviews. The analysis followed the six phases
identified in [11]: familiarisation with data, generating initial codes, searching for
themes, reviewing themes, defining and naming themes and producing the report.
The objective of the analysis was to document and reason about the end-user expe-
rience with password resets, helping to explain findings in the log data.

The student population of the university was the focus of the interviews – staff
at the university had a wider range of password management options available to
them, but all users shared access to the same core set of functions considered in
this paper. Also, staff may have had clerical, support, academic, or research roles,
which would influence the systems they regularly accessed (where students had
access to provisioned systems such as timetabling and teaching resources).

A pilot study was conducted to assess the interview questions. The final set
of questions consisted of 9 open-ended questions, related directly to metrics in
the helpdesk log data. A pre-screen survey determined eligibility for the study
proper – the pre-screen determined that all participants were students at the
subject university, and also recorded whether the participant had ever forgot-
ten their password and “lost access to [their university account] for any amount
of time as a result”. An information sheet was provided at the start of each

26 S. Parkin et al.

interview, alongside a consent form to be signed. Each interview lasted approx-
imately 20 min and was audio-recorded. Each participant received £5 for their
participation.

3.4 NASA Raw Task Load Index (NASA-RTLX)

Interviews were complemented with a NASA-RTLX (Raw Task Load Index)
workload measurement [14] for password use, where participants assess a task
by providing ratings for perceived workload [17]. The scheme employs six sub-
scales to assess user workload, on a scale of 0 to 100 for each subscale: mental,
physical and temporal demands as well as performance, effort and frustration.
Users assign a score for each individual factor (with all but performance being
measured with a high score equating to a negative impact upon the respondent).

Workload measurements rely on users’ recollection of completing a task [6].
Here NASA-RTLX served to promote discussion, and was used to explore poten-
tial metrics for user perception of password use. Three RTLX forms were pre-
pared for each interview, assessing workload for password reset, PPR registration
and PPR authentication. If an interviewee had not registered/authenticated to
the PPR system, related RTLX forms were not included. RTLX responses were
reviewed during the interview, as cues for discussion.

4 Results: Helpdesk Log Analysis

In this section we discuss the results of the log analysis and user interviews,
relating interviews to log analysis to expose links between user experiences the
log data. Specifics of the subject university’s password policy are not discussed,
so as not to identify the institution.

4.1 Results

Figure 1 shows time-plots of monthly summary data. There are noticeable peaks
in resets around September, October and January of each year. These months
follow longer periods of inactivity (when students and staff return from sum-
mer/winter holidays and begin study). Frequencies increase gradually over the
timespan of the data, reflecting an increase in users. It is important to under-
stand how support mechanisms are utilised, to manage the impact of increased
activity. The month of September 2013 does not align with the same period in
other years – where numerous systems interact in complex ways, mapping the
relationships between data fields could help to rationalise such one-off events.

Figure 2 shows the different ways in which staff and students have reset their
passwords. With a mean of 74.4 % the most-used approach to resetting passwords
is via the PPM system, signifying that the majority of users follow the channel
preferred for limiting helpdesk costs. However, there are a consistent minority of
users resetting their passwords within the expiry “grace period”, implying either
that reminder emails are not completely effective, or that there is always a small

Assessing the User Experience of Password Reset Policies 27

Fig. 1. Time plot for password related fields.

proportion of users who are unable or do not want to reset their passwords before
expiry. Reasons for using the PPR and how users perceive it is also important for
the interviews, as up to a fifth of resets are enacted through recovery mechanisms.

From Fig. 2, the provisioned recovery channels (i.e., PPR and helpdesk) are –
as intended – not used by the majority of registered users. As illustrated in Fig. 2,
password changes via the helpdesk are the least common method of choice for
users, with an average of 3.6 %.

Fig. 2. Stacked bar plot for percentage of password change events.

The system that produced the data logs does not record any data to indi-
cate the experience of users as they are resetting their passwords. This then
becomes another area of focus for subsequent interviews. It is also unclear from
the summary log data how individuals reset passwords in response to reminder
emails, especially whether reminders are knowingly ignored (a general behav-
iour noted elsewhere [18]). How end-users react to notification emails is another
subject to explore in interviews. Without recording for example the duration
of password reset or recovery events (online or in-person, for comparison), it is
unclear whether the helpdesk is little-used because of a comparative convenience
in using the PPM system, or because of a lack of awareness about its existence.
This is an important point to clarify if system managers ever intend to retire or

28 S. Parkin et al.

reduce helpdesk support (for instance to manage costs, a concern touched upon
in Sect. 2).

12
-S

ep

12
-O

ct

12
-N

ov

12
-D

ec

13
-J

an

13
-F

eb

13
-M

ar

13
-A

pr

13
-M

ay

13
-J

un

13
-J

ul

13
-A

ug

13
-S

ep

13
-O

ct

13
-N

ov

13
-D

ec

14
-J

an

14
-F

eb

14
-M

ar

14
-A

pr

14
-M

ay

14
-J

un

14
-J

ul

14
-A

ug

14
-S

ep

14
-O

ct

14
-N

ov

14
-D

ec

15
-J

an

15
-F

eb

15
-M

ar

15
-A

pr

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

0

20

40

60

80

100

33 29 22 22 25 27 29 28 27 23 22 29 30 30 24 23 23 26 26 21 23 20 18 25 22 22 23 25 25 24 25 23

67 71 78 78 75 73 71 72 73 77 78 71 70 70 76 77 77 74 74 79 77 80 82 75 78 78 77 75 75 76 75 77

Date

PPR Success (User) PPR Failure (User)

Fig. 3. Percentage of attempts that are failures/successes.

The relative proportions, expressed as percentages, between PPR failure and
PPR success show that on average 75.2 % of attempts to authenticate to the PPR
fail. Likewise, the mean success rate stands at 16 %. Figure 3 shows a time plot
illustrating the relative percentages between PPR failure (user) and PPR success
(user). If all such events were attributable to legitimate users the figures could be
distressing, considering that based on the data available the lowest failure rate
(September 2012) is 66.7 % and the highest 82.5 % (July 2014). The high failure
rates may be due to the demands of the recovery process, or may reflect success in
managing automated attempts to access the system – other work has for instance
highlighted that it can be difficult to distinguish brute-force attacks from other
attempts to access user accounts [1]. The PPR failure and success rates also raise
the question of how many PPM password reset attempts fail (something which is
not recorded in the dataset) – user interviews examine the personal impact and
perception of failure to create a new, policy-compliant password.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 24 26 28 41 69

Number of Failures

N
um

be
r

of
 U

se
rs

0
10

00
20

00
30

00
40

00 3916

2267

2815

363 261 345
62 58 88 13 9 33 5 2 5 1 4 1 1 3 2 1 1 2 1

Fig. 4. Number of users failing PPR authentication x times within a 24 h period of
using the system.

Assessing the User Experience of Password Reset Policies 29

Going beyond the aggregated data, an event-by-event dataset was examined
to explore PPR failure rates. This dataset associated anonymised user iden-
tifiers with specific PPR/PPM/helpdesk events, enabling further exploration
of the PPR failure counts. Figure 4 shows a bar plot of the number of PPR
failures for a user within a 24 h period (representing a unique session of interac-
tion with the PPR). From Fig. 4, there are many users who are failing 1-2 times
each time they use the system. However, the number of users who are failing 3
times also represents the second highest figure in the chart – this is important
as after 3 successive failures access to the PPR is locked for a time. At this
point a user may decide to go to the helpdesk or wait before trying to use the
PPR again (where the latter may explain the lower occurrences of higher failure
rates beyond 3 attempts). Given the number of users at the subject institution
this may constitute a large drain on working time for both users and helpdesk
staff. The effectiveness of interactions with the PPR system was then discussed
in interviews. Understanding responses to failure would also rationalise the dis-
tinction between the “noise” of unusable security and genuine attempts to access
the system without first-hand knowledge of the associated credentials. There is
a long-tail distribution to the tallies of failed PPR use. It becomes unclear as
tallies increase whether this represents determined users or automated authen-
tication attempts, where the distinction (and perhaps then the response) is not
clear. The high PPR failure rates were then of further interest in subsequent
interviews.

5 Results: User Interviews and NASA-RTLX

The goal of the interviews was to explore the perceived impacts that the password
reset policy is having on its users, in this study specifically students. Equally the
study aimed to determine how user feedback could be used to explain findings
identified in the EDA process, with interview questions targeted to explore spe-
cific outcomes from the log data analyses.

Interviews were transcribed, and transcripts re-read many times to become
familiar with the data, and a priori notes and patterns were recorded to develop
codes. An initial list of codes was generated by one of the authors following
data reduction (e.g., subtracting and merging codes) and complication (e.g.,
adding and splitting codes). An inductive thematic analysis approach derived
concepts and perspectives from the interview data. A code book was maintained
throughout. This codebook was reviewed at regular intervals by three of the
authors.

From the pre-screen responses, 20 participants were selected to be inter-
viewed, all students at the university. 16 were female and 4 male, mean age was
25. Furthermore, 9 participants reported being registered on the PPR system
whilst 11 stated they were unaware of it.

30 S. Parkin et al.

5.1 Results

Our analysis identified four overarching themes (with a total of 10 sub-themes)
which we described in the following sections.

Impact of Stringent Policy. Many interviewees felt that the password reset
policy was restrictive, with many using words “annoying” (10 interviewees) and
“inconvenient” (8) to describe changing their password. Interviewees identified
themselves as security-conscious and understanding of the need for secure behav-
iour, but nonetheless the majority felt burdened by the process.

(A) Difficulty Meeting Criteria. For the majority of interviewees (17), creating
a new password that met the necessary criteria required multiple attempts, and
was a process of trial and error. Some (8) felt that the password criteria were
too strict, with the perception that no words or names could be used. For some
(6), there was an expectation of having problems with every password change.
Two interviewees implied that their initial experience informed their impression
of how the process would be in future, P8 explained: “. . . so like when I [went
to] reset it, like my first password. It was a pain because I had to [try] like 10,
15 times in a row and then I went: “Ah okay, this is gonna be fun if I have to
do it again.”” Several respondents (9) expressed frustration at having produced
passwords, which they felt met the criteria, but which were then rejected by
the system. The difficulties of failed or protracted attempts to change passwords
were not represented directly in the helpdesk logs.

(B) Overwhelming Frequency of Password Change. More than half of partici-
pants (13) felt that password reset requests were too frequent with 6 considering
the frequency was more of a problem than meeting the creation criteria. P8
pointed out that passwords are subject to such strict requirements that they
should be kept for longer: “. . . the password, like the requirements are so strict
so I don’t see the point of changing it like 2 or 3 times a year.”

When contrasting the policy with other accounts they had used, a number
of participants (7) indicated that the university’s policy required the most fre-
quent changes; they were puzzled as to why the frequency was so high, “[At] my
previous university where I was for 4 years, I didn’t have to reset my password
at all, during the 4 years!” (P13).

Effectiveness of Support

(A) Lack of Information. Some (6) participants saw “no rational explanation”
for the policy, querying why it was so stringent. P15 explained: “I mean if there
are any pertinent security reasons for having to change it so often, I think you
better explain why for non-technical users. Um, cause it’s like. . . I’m just feel-
ing angry that I have to change so often if I haven’t understood why.”. Several
interviewees (7) felt that insufficient feedback during a password reset made it a

Assessing the User Experience of Password Reset Policies 31

“guessing game” to satisfy the various rules, as P17 told us: “It just tells me that
it’s just too similar or it has to have this and it. . . I think it tells you one thing
at once. [. . .] Instead of explaining everything in one go. . .What a good password
should look like, I have to [use trial] and error every time.” This implies that
unique attempts to create a password may take a long time or that there may be
many failed attempts in quick succession before a successful password change.

(B) Efficacy of Email Reminders. 8 participants knowingly ignored reminder
emails as they were either not near a computer to carry out the reset (a phone
screen was regarded as inconvenient to type on), or did not feel a sense of urgency
to do so (6); “I read [the reminder email] and. . . I figured I could do that at some
point in time and I didn’t really see the urgency and then I got a second reminder
and then I thought: “Okay, now I have to do it.”” (P17).

Nearly all interviewees (18) reset their passwords before the deadline, which
aligns with the log data analysis (see Fig. 2), and implying that the reminder
emails were having an effect. For some (5), this was because the email reminder
prompted a fear of the unknown as to the consequences of missing the dead-
line. However, three participants did perceive reminders as an effective tool that
helped to avoid expired passwords. This highlights that “successful” users of the
system may or may not at the same time experience stress in complying with
expectations.

(C) Recovering Forgotten Passwords Is Not a Problem. Some (5) participants
had at one time employed the PPR service to reset their forgotten password
which all described as “straightforward” (what may be regarded as comparable
to the log data in Fig. 2). Though no experiences were reported of being locked
out of an account, 3 had experienced difficulties in recalling memorable answers
before successfully authenticating. PPR registration was encouraged when join-
ing the university, where memorable answers may be required some time after
registration, challenging the capacity to correctly recall configured answers (or
in the case of the study participants, recall whether they had registered for the
system at all). Similarly, in a study on user-chosen challenge questions, Just and
Aspinall [21] found that 18 % of their participants were unable to provide at
least one of their answers correctly after 23 days from creation and this despite,
as the authors emphasised, the participants being young and potentially having
excellent memory.

Of the 20 participants, 9 had registered for the PPR service whilst 3 had
heard of it but not registered and the remainder were not aware of its existence.
Those who had visited the helpdesk for queries – a minority, as reflected in
the log data represented in Fig. 2 – described it as a “clear cut” and “quick”
procedure. These accounts raise the question of how well the support systems
are publicised.

32 S. Parkin et al.

Development of Coping Strategies

(A) Coping with Frequency of Reset. Participants were divided between resetting
upon receipt of the initial email (10) and relative to the expiry date of the
password (10). This division is not reflected in the metrics of the helpdesk logs,
where a reset anywhere between the initial email and the expiry date is logged
as a “Password Change” either way (as in Fig. 2).

Two participants deliberately delayed resetting until the last few days pre-
ceding the expiry date, to put off the next time that they would have to complete
the process. Four participants also felt that delaying the reset allowed them to
plan ahead. It is possible that similar strategies can explain password resets dur-
ing the expiry grace period (as seen in the log data, Fig. 2), in that for some users
there may be a deliberate effort to delay interactions with the system as long as
possible (and not just for instance representing users who experience difficulties
in changing a password in time).

(B) Coping with Password Creation. More than half of the interviewees (12)
developed a strategy for creating passwords that were both acceptable and mem-
orable. Most common was a scheme of sequential changes, taking words from a
category of items (e.g., colours, city names), and modifying them to meet the
policy requirements. A new item was then derived from the category with each
change. Such strategies are examined elsewhere [3], where the genuine change in
composition (and guessability) across old and new passwords is put into question.

(C) Coping with Recalling Passwords. The most evident strategy for recalling
passwords was for users (6) to write their passwords down [4] which either took
the form of physical paper (4) or an electronic document (2). Most of these indi-
viduals (4) acknowledged the security risk in doing so yet felt compelled to do
so given the complex criteria. With paper-based recall aids, some interviewees
(3) admitted to having lost it. These “offline” recall aids would require a fur-
ther investment of resources for security managers to monitor. Five participants
stated that they only work from their personal computers, and hence reduce the
burden of remembering by caching passwords in their browser (a behaviour that
is not unique and has been noted elsewhere [10]).

Shaping Perceptions Towards Security

(A) Accepting of Security, But. . . Many (10) acknowledged the need for security
despite feeling that it was a pain. P7 explained: “Oh yeah, I understand it should
be done like that. . .Because you know it can be something quite personal, with
my degree and stuff. But um. . . It just gets annoying, it’s like both sides anyways.
I find it annoying but I understand it has to be done.”. A number of users (7) also
felt a sense of immunity to security breaches and as such did not comprehend
the level of security being mandated by the policy. P5 told us: “I only have
my emails which are literally just: “Come to the seminar, it’s next week.” and
I have no sensitive information in my email. [. . .] I think my personal email
might. . . require more of these mandatory password changes”.

Assessing the User Experience of Password Reset Policies 33

(B) the Definition of Security. 9 participants had the impression that the uni-
versity takes security “very seriously”, acting as a model of what constitutes
“security”. P3 explained: “I think [it’s] definitely one of the most secure from
that point of view, I’ve never had to change my password so often.”. For some,
this influenced their decisions in managing passwords. 4 participants admitted
setting other account passwords to mirror their university password, in part
because the university rules seemed to be the most “secure”.

5.2 RTLX Data Analysis

All participants completed the RTLX ratings for the password reset task. RTLX
for PPR registration and authentication applied to 9 and 5 of the participants
respectively.

Figure 5 shows box plots of the subscales for each task (with the scale of
Performance inverted so that higher values equating to better perceived task
performance). With mental demand, the password reset task was comparatively
more challenging than the PPR-related tasks, with a mean of 58 (on a scale of
0 to 100) for the password reset task whilst for PPR registration and authenti-
cation, these values were at 31.6 and 43 respectively. The distributions for the
PPR-related tasks suggest that some users of the system would have difficulty
creating/remembering memorable answers. Temporal demand was higher and
more widely-distributed for the password reset task than for PPR tasks (which
again would not have been reflected in the log data).

For password changes/resets the performance varied, further highlighting
that participants found it difficult to generate a valid password. With PPR-
related tasks, perceived performance was high, with users feeling that they suc-
cessfully managed these tasks – this is in contrast to the EDA findings that apply
to the larger base of users.

Frustration levels were the highest measure for password reset tasks, with
a mean of 61.8. Frustration was also notable for PPR authentication, perhaps
owing to recalling memorable answers – this and the related mental demand
may help to explain some of the high PPR failure rate described in the log data

Fig. 5. Box plot of average RTLX subscale results for password reset (20 responses)
and PPR registration (9 responses) and PPR authentication (5 responses) tasks.

34 S. Parkin et al.

analysis results. The low frustration for the PPR registration process comple-
ments the perception of the task being “straightforward”. Regarding the frustra-
tion scale for the password reset task, dialogue with interviewees implied that
reminder emails and the actual task of creating a new password were all part of
an interlinked process – this may create some uncertainty as to what it was that
participants assigned scores to, but reinforces that the perceptions of reminder
emails and resetting passwords can impact (and potentially reinforce) each other.

The mental demand of PPR authentication was more varied (exhibited a
wider span of responses on the TLX subscale) compared to password reset and
PPR registration. This could be attributed to needing to recall “memorable”
answers which were set potentially months (if not years) beforehand, where
some participants used what they regarded as knowingly obvious “memorable
answers” and others had difficulty in recalling their answers later on when they
needed them.

6 Discussion

Interviewees devised coping strategies to both produce passwords that the system
would not deem similar to previous ones, and avoid the effort of resetting (e.g.,
postpone the next reset for as long as possible). The latter may contribute to –
and be masked by – the peaks in resets seen in log data (Sect. 4.1), warranting
further investigation. Coping strategies have been noted during other studies
with university participants [3] (especially modification of a previous password),
suggesting that this is far from being an isolated case.

Interviewees regarded the stringent policy as the “most secure” they had
seen, thereby confounding number of rules with security. Participants felt that
replicating their university password across their other accounts was appropriate
to protect their (personal) data. It may be that students especially may take
these habits and understanding with them after their time at university and
into workplace environments.

The combination of log analysis and user interviews indicated that the Per-
sonal Password Recovery (PPR) facility may have usability issues, as a great
proportion of attempts to authenticate to the system resulted in failures (where
the significance of authentication failures of genuine users within the data war-
rants further analysis, as hinted in Fig. 4). Use of the PPR system is then counter
to the expectation that self-service mechanisms minimise helpdesk calls [13],
although the log data did show that visits to the helpdesk were minimal (as in
Fig. 2). To the contrary, interviewees who had used the PPR expressed a general
consensus that it was “straightforward” to use, with relatively low TLX values
for both registration and authentication tasks. These results raise the possibility
that there is a subset of users, under-represented in our interviewee cohort, who
consistently have difficulties authenticating to the system. Consideration should
be given to how to engage with these “forgotten users”.

The log data did not indicate the effectiveness of reminder emails; resets
after expiry were low, though non-negligible (Fig. 2). Some interviewees felt that

Assessing the User Experience of Password Reset Policies 35

reminder emails were too frequent and too early, where they ignored them or
developed a distracting sense of pressure to change their password. This con-
tributed to the wide-ranging responses for the RTLX “temporal demand” mea-
sure for password resets.

For interviewees who replicated their university password across other
accounts, the workload of resetting their university password would then be
compounded by the number of accounts they have in and outside the university.
Not having a coping strategy is also a drain on productivity, see P13: “And so
you spent time thinking of something, you put that in and then it [tells you it’s
not valid] and then you go: “Alright, I have to think of something else””. Logging
both the number of attempts to create a password and the amount of time to
devise a valid password could indicate the usability of the composition rules and
whether predefined coping strategies are being used.

Interviewees lacked comprehension as to why such stringent rules were neces-
sary, which contributed to perceived inconvenience. A perceived lack of reason-
ing for the password policy may also support the sense of immunity to threats
voiced by some participants. It is then important to relate policy to the context
in which an account is used, P10 stressed: “So I’m guessing it’s the same policy
for all. . . From undergrad to like PhD and bachelors and all. So I can see why
higher up the chain they probably [need that level of security] at a high level but
at undergrad it might not.”.

6.1 Recommendations for Practitioners

1. Provide users with real-time feedback during password creation, which may
reduce number of attempts, frustration levels, and time expended on creating
a new password.

2. Improve the communication and justification of password policies to users.
That is, explicitly relate potential/existing threats to what they do with their
accounts.

3. Do not assume that policies are highly usable even if there is evidence that a
majority do not require helpdesk support, as users may devise coping strate-
gies which although compliant with policy may be counter-productive to the
security of both the individual and the organisation.

7 Conclusions

Password support log data at a university was analysed. Taken by itself, analysis
suggested that most users comply with the university’s password policy with few
problems. However, there may be hidden costs not reflected in typical helpdesk
logs – many interviewees saw the policy as too stringent and frustrating, in
some cases developing (insecure) coping strategies, tailored specifically towards
complying with the policy. Several interviewees delayed password resets and the
effort they associated with the process. A number of interviewees interpreted the
strictness of the password policy to mean it was a secure policy.

36 S. Parkin et al.

Interviewees who had used the Personal Password Recovery (PPR) system
indicated through NASA-RTLX workload scores that it was a straightforward
process. Analysis of both aggregated data and event-by-event log data indicated
that most attempts to provide memorable answers for a specific account failed
1-2 times, and that a minority of users may be experiencing trouble using the
system (or otherwise that illegitimate attempts to access accounts are difficult
to distinguish from genuine attempts, exacerbating the matching of resources to
the support of users). The lack of feedback and justification of policy that users
saw when creating passwords contributed to frustration.

Future work will continue analysis of the event-by-event log data obtained
after initial analysis and reporting, and will engage with students and staff
equally. Initial focus will be on responses to reminder emails and individuals’
interactions with the PPR facility. It was noted that interviewees treat the entire
password reset process as a single task (from initial email reminder to devising
a new password), and so workload assessment techniques which acknowledge
secondary tasks (such as security) may be necessary.

Findings highlighted that the log data offered limited insight into the user
experience of password management, such as habits and points of frustration.
Measures of effort and consequences are then important to consider, as these
were shown to have potential hidden costs for security managers. NASA-RTLX
assessments that quantify perceived workload were a tentative first step. In a
similar vein, findings may inform repeatable surveys deployed on a larger scale
to reach both students and staff (particularly long-term users).

Acknowledgements. Simon Parkin and Angela Sasse’s research is funded in part by
EPSRC, grant number: EP/K006517/1 (“Productive Security”). The authors would
like to thank the participating university and especially their IT department for pro-
viding the data that informed this publication. The authors would like to thank Ingolf
Becker for his help with the editing of this paper.

References

1. Florêncio, D., Herley, C.: Where do security policies come from?. In: Symposium
on Usable Privacy and Security, p. 10. ACM (2010)

2. Kirlappos, I., Parkin, S., Sasse, M.A.: Learning from “Shadow Security”: Why
understanding non-compliance provides the basis for effective security. In: NDSS
Workshop on Usable Security (USEC) (2014)

3. Shay, R., Komanduri, S., Kelley, P.G., Leon, P.G., Mazurek, M.L., Bauer, L., Cra-
nor, L.F.: Encountering stronger password requirements: user attitudes and behav-
iors. In: Symposium on Usable Privacy and Security (SOUPS). ACM (2010)

4. Adams, A., Sasse, M.A.: Users are not the enemy. Commun. ACM 42(12), 40–46
(1999)

5. Adams, A., Sasse, M.A., Lunt, P.: Making passwords secure and usable. In: Thim-
bleby, H., O’Conaill, B., Thomas, P.J. (eds.) People and Computers XII, pp. 1–19.
Springer, London (1997)

6. Albers, M., Patton, J.T.: Measuring cognitive load to test the usability of web
sites. In: Annual Conference-Society for Technical Communication, vol. 53 (2006)

Assessing the User Experience of Password Reset Policies 37

7. Anderson, J.: Why we need a new definition of information security. Comput.
Secur. 22(4), 308–313 (2003)

8. Arnell, S., Beautement, A., Inglesant, P., Monahan, B., Pym, D., Sasse, M.A.: Sys-
tematic decision making in security management modelling password usage and
support. In: International Workshop on Quantitative Aspects in Security Assur-
ance, Pisa, Italy (2012)

9. Beautement, A., Sasse, M.A., Wonham, M.: The compliance budget: managing
security behaviour in organisations. In: Proceedings of the 2008 Workshop on New
Security Paradigms. ACM (2009)

10. Besnard, D., Arief, B.: Computer security impaired by legitimate users. Comput.
Secur. 23(3), 253–264 (2004)

11. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.
3, 77–101 (2006)

12. Brostoff, S., Sasse, M.A.: Ten strikes and you’re out: Increasing the number of login
attempts can improve password usability. In: Proceedings of CHI 2003 Workshop
on HCI and Security Systems (2003)

13. Broome, C., Streitwieser, J.: What is E-support. Service and Support Handbook.
Help Desk Institute, pp. 31–40 (2002)

14. Byers, J.C., Bittner, A.C., Hill, S.G.: Traditional and raw task load index (TLX)
correlations: are paired comparisons necessary. Adv. Ind. Ergon. Saf. I, 481–485
(1989)

15. Coles, R.: Keynote address. In: Eighth Workshop on the Economics of Information
Security (WEIS 2009), pp. 24–25. University College London, England (2009)

16. Charoen, D., Raman, M., Olfman, L.: Improving end user behaviour in password
utilization: An action research initiative. Syst. Pract. Action Res. 21(1), 55–72
(2008)

17. Hart, S., Staveland, L.: Development of NASA-TLX (Task Load Index): results of
empirical and theoretical research. Adv. Psychol. 52, 139–183 (1988)

18. Herley, C.: So long, and no thanks for the externalities: The rational rejection of
security advice by users. In: Proceedings of the 2009 Workshop on New Security
Paradigms Workshop. ACM (2009)

19. Inglesant, P., Sasse, M.A.: The true cost of unusable password policies: Password
use in the wild. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM (2010)

20. Jakobsson, M., Myers, S. (eds.): Phishing and Countermeasures: Understanding
the Increasing Problem of Electronic Identity Theft. Wiley, New Jersey (2006)

21. Just, M., Aspinall, D.: Personal choice, challenge questions: a security and usability
assessment. In: Symposium on Usable Privacy and Security (SOUPS). ACM (2009)

22. Parkin, S., Inglesant, P., Sasse, M.A., van Moorsel, A.: A stealth approach to usable
security: helping IT security managers to identify workable security solutions. In:
Proceedings of the 2010 Workshop on New Security Paradigms. ACM (2010)

23. Post, G., Kagan, A.: Evaluating information security tradeoffs: Restricting access
can interfere with user tasks. Comput. Secur. 26(3), 229–237 (2007)

24. Reeder, R., Schechter, S.: When the password doesn’t work: secondary authenti-
cation for websites. IEEE Secur. Priv. 9(2), 43–49 (2011)

25. Sasse, M.A.: Computer security: Anatomy of a usability disaster, and a plan for
recovery. In: Workshop on Human-Computer Interaction and Security Systems,
CHI (2003)

26. Sasse, M.A., Brostoff, S., Weirich, D.: Transforming the ‘weakest link’ a
human/computer interaction approach to usable and effective security. BT Tech-
nol. J. 19(3), 122–131 (2001)

38 S. Parkin et al.

27. Sasse, M.A., Fléchais, I.: Usable security: Why do we need it? How do we get it? In:
Cranor, L.F., Garfinkel, S. (eds.) Security and Usability: Designing Secure Systems
that People can use, pp. 13–30. O’Reilly (2005)

28. Skaff, G.: An alternative to passwords? Biometric Technol. Today 15(5), 10–11
(2007)

29. Tari, F., Ozok, A.A., Holden, S.: A comparison of perceived and real shoulder-
surfing risks between alphanumeric and graphical passwords. In: Symposium On
Usable Privacy and Security (SOUPS) (2006)

30. Tukey, J.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)
31. Whitten, A., Tygar, D.: Why Johnny can’t encrypt: a usability evaluation of PGP

5.0. In: Proceedings of the USENIX Security Symposium (1999)
32. Zviran, M., Haga, W.J.: A comparison of password techniques for multilevel

authentication mechanisms. Comput. J. 36(3), 227–237 (1993)

Analyzing 4 Million Real-World Personal
Knowledge Questions (Short Paper)

Maximilian Golla(B) and Markus Dürmuth

Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Bochum, Germany
{maximilian.golla,markus.duermuth}@rub.de

Abstract. Personal Knowledge Questions are widely used for fallback
authentication, i.e., recovering access to an account when the primary
authenticator is lost. It is well known that the answers only have
low-entropy and are sometimes derivable from public data sources, but
ease-of-use and supposedly good memorability seem to outweigh this
drawback for some applications.

Recently, a database dump of an online dating website was leaked,
including 3.9 million plain text answers to personal knowledge questions,
making it the largest publicly available list. We analyzed this list of
answers and were able to confirm previous findings that were obtained
on non-public lists (WWW 2015), in particular we found that some users
don’t answer truthfully, which may actually reduce the answer’s entropy.

Keywords: Fallback authentication · Personal knowledge question ·
Password recovery · Password reset · Challenge question

1 Introduction

Personal Knowledge Questions (PKQ) are commonly used for fallback authen-
tication, i.e., to recover access to an account when the primary authenticator
is lost. Common examples of personal knowledge questions ask for easy-to-
remember facts about a user’s life, such as the “mother’s maiden name” or
the “brand of the first car”. Previous studies indicated that these questions have
indeed better memorability [17], where likely explanations are that (i) no secret
needs to be remembered, and (ii) it bases on a cued-recall problem (where the
question asked constitutes the cue), in contrast to, e.g., traditional passwords
that base on a (pure) recall problem. However, a number of problems limit the
usefulness of PKQs: (i) In some instances, the answers to PKQs are available in
public databases [7,13], (ii) answers may be easily guessable by friends and rel-
atives [15], and (iii) the entropy of answers may be low, due to frequent answers
or small answer space [4,13,15]. In the past, the study of PKQs was hindered by
a lack of publicly available real-world data, the only exception being recent work
by Bonneau et al. [3], which studied personal knowledge questions at Google,
with the data not being publicly available.

c© Springer International Publishing Switzerland 2016
F. Stajano et al. (Eds.): PASSWORDS 2015, LNCS 9551, pp. 39–44, 2016.
DOI: 10.1007/978-3-319-29938-9 3

40 M. Golla and M. Dürmuth

In August 2015, a database dump of an online dating service called Ashley
Madison was leaked [11]. This data includes about 3.9 million answers to PKQs,
which makes it by far the largest set publicly available. The leak is widely consid-
ered authentic and contains answers to four different questions (Mother’s Maiden
Name, Name of High School, Name of Favorite Sports Team, Last 4 Digits of
SSN), with 300,000 to 1,500,000 answers per question. In this work, we provide a
first analysis of this data, where we focus on the guessability of the answers. We
use statistical entropy measures (partial guessing entropy [3]), which assumes
perfect knowledge of the distribution of answers, and thus provides an lower-
bound on the security offered. Our findings include:

(i) The security of knowledge questions is low compared to other knowledge-
based authentication methods.

(ii) The country of origin and the age of the user influences the strength of the
answer for some questions but not for others.

(iii) The question about the sports team is the least secure one.

1.1 Related Work

One of the earlier studies on the security of PKQs was conducted in 1993 [17],
which found good usability and security. However, by today’s standards, the
security of PKQs is rather low, as several studies have shown. Griffith et al.
showed [7] that the Mother’s Maiden Name, which is frequently used as a PKQ,
can often be derived from public databases, rendering them insecure. Rosen-
blum has shown that private information about persons can often be inferred
from social networking sites [14]. This information can be used to narrow down
potential answers for the security questions. Secrecy of those answers in the age
of Facebook was studied by Rabkin [13], whereas Bonneau et al. studied the
entropy of names [4]. Schechter et al. demonstrated [15] that for a number of
such questions the answers can often be guessed easily. A more general discus-
sion on designing security questions including usability, privacy, and security
is given by Just [9]. Alternative and a potentially better domain of security
questions, namely questions about personal preference similar to those used on
online dating sites, where studied by Jakobson et al. [8] and have found to pro-
vide better security than most other commonly used questions. In recent work,
Bonneau et al. [3] have evaluated real-world PKQs at Google and found that
some answers are quite predictable, in part because some users do not answer
truthfully, which indeed lowers the overall security. This work is the closest to
our work; the biggest difference being that our work is based on a public data
source and thus is reproducible.

Alternative forms of fallback authentication use a registered email address or
mobile phone of the user [6], where an access code is sent to the registered device
if the user lost the regular password and requested a password reset. Fallback
authentication by support teams is susceptible to social engineering attacks [12].
Social authentication, or vouching, was proposed by [5], a more recent design is
given by Schechter et al. [16]. Problems with social authentication were pointed
out in [10].

Analyzing 4 Million Personal Knowledge Questions (Short Paper) 41

2 Methodology

Attacker Model and Guessing Metrics: We consider an attacker guessing the
answer of PKQs without specific knowledge about the user. We consider an
idealized attacker that has exact knowledge about the distribution of answers
to the questions, modeled by statistical guessing metrics [2]. We are mostly
interested in online guessing attacks, where we assume that only a very limited
number of guesses can be made before the account is locked, or substantial delays
are applied to slow down guessing attempts. Resistance against online guessing
attacks can be measured by the fraction λβ of accounts that covers the β most
common answers, i.e., an attacker that can make β guesses before being locked
out can compromise roughly λβ of the accounts. For comparability, we follow
Bonneau et al. [3] and also list partial guessing entropy Gα, which measures the
resistance against offline guessing attacks.

Datasets: The dating website used four different security questions for password
recovery: What is Your Mother’s Maiden Name? (MMN), What is the Name of
Your High School? (High School), What is Your Favorite Sports Team? (Sport
Team), and What are the Last 4 Digits of Your SSN? (SSN). In total the dataset
contained approx. 32 million entries, where 3.9 million had a security answer set.

It has been noted earlier by Newitz [1] that the leaked dataset contained
entries from bots, which were used to chat with users that had few “real” con-
tacts. She found a set of criteria to approximately differentiate between datasets
that belong to humans and those that belong to bots. Those criteria concern
the used email addresses, indicators for the last contact by mail or chat, IP
addresses, as well as the existence of account deletion flags within the password
hash strings. After filtering for bots, there were 903,255 entries remaining for
MMN (out of 1,576,779 before filtering), 632,484 entries for High School (out
of 1,031,416), 650,680 entries for Sports Team (out of 1,011,383), and 186,134
entries for SSN (out of 309,827).

Ethical Considerations: The data analyzed in this paper was leaked to the public
before, so attackers already had independent access to the datasets. We took care
that the data was not distributed any further, and we only present aggregated
results in this work that will not leak information about any specific answer.

3 Strength Evaluation

Table 1 shows the full results for all subsets we consider. It lists both λβ as
well as guessing entropy values Gα, with the same parameters used by Bonneau
et al. [3] so that the results are comparable to their work.

Sample Size and Significance: To test for statistical significance of our results,
we use a slightly simplified re-sampling approach similar to Bonneau et al. [3].
For each set, we repeatedly sample a random subset of 10 % the original size,

42 M. Golla and M. Dürmuth

Table 1. Full listing of the results.

online guessing (success in %) offline guess. (bits)

size λ1 λ3 λ10 λ100 λ1000 G̃0.1 G̃0.25 G̃0.5

mother’s maiden name

all 903 255 3.21 5.12 8.18 22.41 48.10 7.34 8.93 10.94
country USA 612 890 3.15 5.31 8.89 24.41 51.74 7.07 8.64 10.42

Canada 125 101 - 4.09 6.91 21.64 48.49 7.68 9.03 10.86
UK 26 912 - - - - - 6.27 7.97 9.53

age <= 35 169 571 2.65 4.06 6.79 20.73 46.37 7.79 9.19 11.18
36 − 45 293 868 3.08 5.12 8.08 22.63 48.33 7.35 8.90 10.90
45 − 55 284 594 3.48 5.55 8.82 23.38 49.36 7.08 8.79 10.75
> 55 155 222 3.58 5.50 8.91 23.74 49.78 7.07 8.74 10.69

high school

all 632 484 2.63 5.60 7.86 16.91 37.88 7.78 10.04 11.93
country USA 461 582 2.68 6.03 8.55 18.25 42.61 7.36 9.67 11.39

Canada 86 465 - - 9.83 26.79 63.56 6.72 8.32 9.59
UK 8 740 - - - - - - - -

age <= 35 127 707 2.56 5.76 7.92 16.45 - 7.79 10.30 12.28
36 − 45 217 157 2.57 5.51 7.72 16.88 37.90 7.85 10.04 11.92
45 − 55 194 608 2.80 5.53 7.87 17.27 40.21 7.72 9.90 11.63
> 55 93 012 - 5.86 8.39 18.60 - 7.43 9.63 11.25

sports team

all 650 680 2.83 7.84 19.44 62.94 89.68 5.39 5.82 6.58
country USA 432 129 4.11 10.75 26.51 74.15 93.08 4.79 5.20 5.75

Canada 85 520 11.16 18.61 36.03 74.61 91.44 3.16 4.39 5.30
UK 12 011 - 23.23 41.93 73.49 - 3.50 3.87 4.86

age <= 35 128 520 - 6.03 16.38 58.78 86.98 5.75 6.16 6.90
36 − 45 250 901 2.73 7.69 19.73 63.39 89.91 5.43 5.77 6.53
45 − 55 199 321 3.07 8.67 21.94 65.83 91.40 5.15 5.60 6.35
> 55 71 938 - 9.48 23.49 66.95 91.73 5.05 5.48 6.25

SSN (4 digits)

all 186 134 - 5.32 7.07 - - 9.91 12.15 12.70
country USA 128 611 - 5.15 6.73 - - - 12.17 12.65

baseline

password (RockYou) [3] 0.9 1.4 2.1 4.6 11.3 12.8 15.9 19.8
4-digit PIN (iPhone) [3] 4.3 9.2 14.4 29.3 56.4 5.2 7.7 10.1
4-digit random PIN 0.01 0.03 0.1 1.0 10.0 13.29 13.29 13.29

and test if the resulting entropy values fall within a 5 % or a 10 % error band
with a confidence of at least p = 0.98. Values that are in the 5 % band are shown
in non-italic, those that fall in the 10 % band are shown in italic. All other values
are omitted from the table.

Differences in Questions: First, we compare the four different questions available.
We found that the results for λ1 are surprisingly consistent over all tested ques-
tions and subsets. However, higher values, e. g., λ10, show measurable differences.

Analyzing 4 Million Personal Knowledge Questions (Short Paper) 43

For example, we have λ10 = 19.44 for the sports team question, while the other
three questions all have a λ10 of around 8. This is also reflected in the guessing
entropy, with a G̃0.25 of 5.82 for sports team, and 12.15 for the SSN.

Differences in Nationality: When considering different nationalities, we observe
that mother’s maiden name and high school show surprisingly little variation.
For sports team, interestingly, knowing the nationality has substantial influence
on the guessability of the answer (we have λ1 of 2.83 if nationality is unknown,
and values between 04.11 and 11.16 once the nationality is known). In addition,
for Canada the sports teams are slightly easier to guess than for the US. The
SSN is substantially less secure when a person is from outside the US. This is
most likely explained by the fact that the SSN is specific to the US, and answers
from non-US citizens contain a substantial fraction of fake answers, a behavior
which was similarly observed in previous work [3]. For the complete set of the
SSN each answer should occur, assuming a uniform distribution, with probability
0.01%, but the most popular answer (1234) occurred with probability 2.23%.
Other frequent answers include 1111, 0000, and 6969.

Differences in Age: The data suggests that the age has little influence on the
guessability; for mother’s maiden name and SSN the differences are practi-
cally non-existent. For high school and sports team, however, we find that with
increasing age the answers are slightly easier to guess, which means that there
is less variability (e. g., for sports team we have λ10 = 16.38 for those under 35
and λ10 = 23.49 for those over 55).

Baseline: As baseline, we added entropy values for passwords (using the Rock-
You list), for real-world PINs, and for randomly chosen PINs; the entropy values
for the first and second one are taken from [3]. These provide an interesting
perspective: We see that all knowledge questions in the dataset are substantially
less secure than a randomly chosen 4-digit PIN, however, they are slightly more
secure than a real-world PIN chosen by a human.

4 Conclusion

We have analyzed the answers to personal knowledge questions given in the data
leaked from Ashley Madison in August 2015. We found that favorite sports teams
are particularly easy to guess, that the security depends to a certain extent on
the age and the origin of a user, and that in general they only offer a low level
of security.

44 M. Golla and M. Dürmuth

References

1. Newitz, A.: Ashley Madison code shows more women, and more bots, August
2015. http://www.wired.com/2015/08/happened-hackers-posted-stolen-ashley-
madison-data/. 6 January 2016

2. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: IEEE Symposium on Security and Privacy. IEEE (2012)

3. Bonneau, J., Bursztein, E., Caron, I., Jackson, R., Williamson, M.: Secrets, lies,
and account recovery: lessons from the use of personal knowledge questions at
Google. In: International World Wide Web Conference IW3C2 (2015)

4. Bonneau, J., Just, M., Matthews, G.: What’s in a name? Evaluating statistical
attacks on personal knowledge questions. In: Sion, R. (ed.) FC 2010. LNCS, vol.
6052, pp. 98–113. Springer, Heidelberg (2010)

5. Brainard, J., Juels, A., Rivest, R.L., Szydlo, M., Yung, M.: Fourth factor authen-
tication: somebody you know. In: ACM Conference on Computer and Communi-
cations Security, pp. 168–178. ACM Press (2006)

6. Garfinkel, S.L.: Email-based identification and authentication: an alternative to
PKI? IEEE Secur. Priv. 1(6), 20–26 (2003)

7. Griffith, V., Jakobsson, M.: Messin’ with Texas - Deriving mother’s maiden names
using public records. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS
2005. LNCS, vol. 3531, pp. 91–103. Springer, Heidelberg (2005)

8. Jakobsson, M., Stolterman, E., Wetzel, S., Yang, L.: Love and authentication. In:
SIGCHI Conference on Human Factors in Computing Systems, pp. 197–200. ACM
Press (2008)

9. Just, M.: Designing and evaluating challenge-question systems. IEEE Secur. Priv.
2(5), 32–39 (2004)

10. Kim, H., Tang, J., Anderson, R.: Social authentication: harder than it looks. In:
Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 1–15. Springer, Heidelberg
(2012)

11. Zetter, K.: Hackers finally post stolen Ashley Madison data, August 2015.
http://gizmodo.com/ashley-madison-code-shows-more-women-and-more-bots-
1727613924. 6 January 2016

12. Mitnick, K.D., Simon, W.L.: The art of deception: controlling the human element
of security. Wiley, New York (2002)

13. Rabkin, A.: Personal knowledge questions for fallback authentication: security
questions in the era of Facebook. In: USENIX Symposium on Usable Privacy and
Security, pp. 13–23. USENIX Association (2008)

14. Rosenblum, D.: What anyone can know: the privacy risks of social networking sites.
IEEE Secur. Priv. 5(3), 40–49 (2007)

15. Schechter, S., Brush, A.J.B., Egelman, S.: It’s no secret: measuring the security
and reliability of authentication via “Secret” questions. In: IEEE Symposium on
Security and Privacy, pp. 375–390. IEEE Computer Society (2009)

16. Schechter, S., Egelman, S., Reeder, R.W.: It’s not what you know, but who you
know: a social approach to last-resort authentication. In: SIGCHI Conference on
Human Factors in Computing Systems, pp. 1983–1992. ACM Press (2009)

17. Zviran, M., Haga, W.J.: A comparison of password techniques for multilevel
authentication mechanisms. Comput. J. 36(3), 227–237 (1993)

http://www.wired.com/2015/08/happened-hackers-posted-stolen-ashley-madison-data/
http://www.wired.com/2015/08/happened-hackers-posted-stolen-ashley-madison-data/
http://gizmodo.com/ashley-madison-code-shows-more-women-and-more-bots-1727613924
http://gizmodo.com/ashley-madison-code-shows-more-women-and-more-bots-1727613924

ITSME: Multi-modal and Unobtrusive
Behavioural User Authentication

for Smartphones

Attaullah Buriro1(B), Bruno Crispo1,2, Filippo Del Frari1, Jeffrey Klardie3,
and Konrad Wrona4

1 Department of Information Engineering and Computer Science,
University of Trento, Trento, Italy

{attaullah.buriro,bruno.crispo,filippo.delFrari}@unitn.it
2 DistrNet, KULeuven, Leuven, Belgium

bruno.crispo@cs.kuleuven.be
3 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

4 NATO Communications and Information Agency, The Hague, The Netherlands
konrad.wrona@ncia.nato.int

Abstract. In this paper, we propose a new multi-modal behavioural
biometric that uses features collected while the user slide-unlocks the
smartphone to answer a call. In particular, we use the slide swipe, the
arm movement in bringing the phone close to the ear and voice recogni-
tion to implement our behaviour biometric. We implemented the method
on a real phone and we present a controlled user study among 26 partic-
ipants in multiple scenario’s to evaluate our prototype. We show that for
each tested modality the Bayesian network classifier outperforms other
classifiers (Random Forest algorithm and Sequential Minimal Optimiza-
tion). The multimodal system using slide and pickup features improved
the unimodal result by a factor two, with a FAR of 11.01 % and a FRR
of 4.12 %. The final HTER was 7.57 %.

Keywords: Smartphone · Behavioral biometrics · Sensors ·
Transparent authentication

1 Introduction

The last decade mobile handheld devices have gone through a major evolu-
tion; smaller yet more powerful processors, better batteries and improved hard-
ware such as gps, wifi and connectivity chips are all developments that enabled
this progression. Most relevant examples are the Android platform launched by
Google in 2008 [1] and the iPhone smartphone by Apple in 2007 [2]. Since their
introduction these devices have overtaken most competitors and together cap-
tured a very dominant market share: in 2014 Android and iOS combined account
for 96.3 % of the smartphone operating system market [3].

c© Springer International Publishing Switzerland 2016
F. Stajano et al. (Eds.): PASSWORDS 2015, LNCS 9551, pp. 45–61, 2016.
DOI: 10.1007/978-3-319-29938-9 4

46 A. Buriro et al.

Continuing hardware improvements combined with extensive user research
have resulted in highly capable smartphones that provide users with rich com-
munication capabilities. While this improves users’ lives on one hand, it brings
very serious security and privacy threats to the user on the other. A typical
modern smartphone allows the user to do mobile banking, have full control over
her email, continuously keep track of her location and many ways to indulge
in social communications through popular apps such as Facebook, Whatsapp,
Instagram and Twitter.

All these apps store privacy sensitive data about the user, which often become
easily accessible once access to the phone is obtained. Unwanted access gained
after a phone is lost, or even temporal access when not paying attention for a
short period of time could have serious consequences.

Authentication techniques have traditionally been based on something a user
knows (password, PIN), something she owns (keys, badges) or a combination of
those two (ATM card + PIN). Certain properties make these insecure; passwords
and pins are easily forgotten, but also easily guessed [4]. Keys and badges can
be lost, or duplicated. Besides, requiring smartphone’s users to carry an extra
device for the sole purpose of authentication is not realistic. Recent updates
in both Android and iOS include such biometric authentication; face-unlock on
Android [5], and fingerprint unlock on iOS [6].

Biometric authentication is the process of verifying ones identity based on
biometric features. The study and development of biometric authentication solu-
tions have come a long way since it’s first mention by Bertillon in 1870s [25].
Most popular features are physiological and behavioural features. Physiological
characteristics are based on features of the body, e.g. fingerprints, hand geom-
etry, iris or retina scans. Behavioural characteristics are based on behaviour,
e.g. keystrokes, gait, signature placement and voice. Other biometrics use chem-
ical features (based on events that happen in a persons body, measured by e.g.
odour or temperature) and cognitive features (based on brain responses to spe-
cific stimuli, e.g. odour or sound).

Initial biometrics used information from a single source. These so-called uni-
modal systems had to deal with a range of problems like noisy data, spoof attacks
and unacceptable high error-rates. Some of these issues can be addressed by
combining multiple sources of information [7]. Due to the presence of multiple
(mostly) independent features, the performance is expected to increase [8].

Using biometrics authentication for smartphone users faces two important
challenges. First, users may use the phone in different situations and context (i.e.
while walking, sit on a chair, standing up, in the dark, etc.). Thus any realistic
solution should accomodate the possibility that data acquisition may fail or that
a particular feature might be temporarily unavailable. Second, the solution must
require as small effort as possible to users. Studies suggest that usability issues
are a major driver of users’ adoption decisions [9]. A recent study [31] reports
that 70 % users do not use any PIN/passwords to protect mobile phones because
these are more annoying to users compared to other telephony related problems
such as lack of coverage or low voice quality.

ITSME: Behavioural User Authentication for Smartphones 47

To partially address these challenges this paper presents a novel multimodal
biometric system for smartphone users authentication. The system uses slide-
unlock features, pickup movements and voice features while placing or answering
a call. Being multi-modal the solution aim at robustness, such that users can
still be authenticated even if some of the modalities fail.

To address the problem of usability, our authentication scheme requires zero
effort to users. To the best of our knowledge this is the first authentication
solution for smartphone that is completely unobtrusive. Users are not required
to perform any action for the sole purpose of authentication. In fact, entering
a password or PIN is more noticeable. Last but not least, our system can be
implemented on most of the smartphones available on the market today.

The rest of this paper is organized as follows: Sect. 2 discusses related work,
Sect. 3 describes the background knowledge. Section 4 presents the solution and
the validation methology. Section 5 describes how we configured parameters in
the models we used. Sects 6 and 7 present and discuss the results of our approach.
The paper is concluded in Sect. 8.

2 Related Work

This section reports related work that specifically take mobile devices into con-
sideration. A wider survey of biometric authentication in general can be found
in [10,11].

2.1 Unimodal Systems

In [12], Frank et al. consider touch operations for continuous authentication
where a single type of operations are used (strokes or slides). An Equal Error
Rate (EER) of 13 % has been reported for one single stroke, and 2 % to 3 % for
11 subsequent strokes. In [13], a user is authenticated not only on the password
pattern they input, but also the way they perform that input. A lab study and
a long-term study provide evidence that it is possible to distinguish users and to
improve the security of password patterns and even simple screen unlocks. The
accuracy rate of the simple unlock is 57 % at best (two-finger vertical unlock),
while the accuracy of the password patterns is around 77 %. In [14], Angulo et al.
explored the same approach for improving password-patterns with biometrics.
Using a Random Forest classifier an EER of approximately 10.4 % is achieved.
Sae-Bae et al. [15] present a multi-touch gesture-based authentication technique.
A classifier that uses pattern recognition techniques classifies movements char-
acteristics of the center of the palm and fingertips. An average EER of 10 % with
single gestures was achieved, with improvements up to 5 % EER when combining
multiple gestures in a sequence.

In [16] Derawi et al. authenticate users based on gait recognition using
accelerometers available in any modern mobile device. Using a low end phone
(the Google G1 phone containing the AK8976A embedded accelerometer sensor)
an EER of 20 % is reached.

48 A. Buriro et al.

Tao et al. [17] implement a fast face detection and registration method based
on a Viola-Jones detector [18]. A face-authentication method based on subspace
metrics is developed. Experiments using a standard mobile camera showed that
the method is effective with an EER of 1.2 %.

2.2 Multimodal Systems

In [19], Saevanee et al. used SMS texting activities and messages in a multimodal
authentication system. Keystroke dynamics and linguistic profiling was used to
discriminate users with error rates of 20 %, 20 % and 22 %, respectively. A fusion
of these three led to an overall EER of 8 %.

Buriro et al. [20] presented a sensor-enhanced touchstroke based smartphone
authentication. Their study makes use of two human behaviors, i.e., how a person
holds her phone and how she types her 4-digit free text PIN. Using Bayesian
classifier and Random Rorest classifier, they achieved 1 % EER.

Aronowitz et al. [21] introduced a new biometric modality called chirography
which is based on user’s writing on multi-touch screens using their fingers. By
fusing this with face and voice features, an EER of 0.1 % is reached in an office
environment, and 0.5 % in noisy environments.

In [22] Ferrer et al. introduced a multimodal biometric identification system
that is based on the combination of geometrical, palm and fingerprint features
of the users’ hand.

In [23] a multimodal authentication approach is presented by Kim et al.,
using teeth and voice data acquired using mobile devices. The individual match-
ing scores obtained from these biometric traits are combined using a weighted-
summation operation. An EER of 2.13 % was reported.

In [24], McCool et al. introduced a fully automatic bi-modal face and speaker
system. A Nokia N900 was used during tests and EER results of 13.3 % and
11.9 % for female and male trials respectively have been reported for the fused
score. This is a 25 % performance improvement for the female trials, and 35 %
improvement for male trials.

3 Background

In this section we explain the technology and building blocks we used to build
our solution.

3.1 Considered Sensors

We considered three built-in smartphone sensors, namely, accelerometer, orien-
tation and gyroscope. The way in which each of these sensors work is explained
below:

The acceleration (accn) is the acceleration applied to the device, including
the force of gravity, measured on three axis’ x, y and z. Android’s sensor API
uses a standard three-axis coordinate system. This system is defined relative to

ITSME: Behavioural User Authentication for Smartphones 49

the device’s screen when it is held upright as shown in Fig. 1 (a). The acceleration
that is applied to a device Ad is calculated using the forces (including gravity g)
that are applied to the sensor Fs itself using the following equation:

Ad = −g
∑ Fs

mass
(1)

The gyroscope (gyron) measures the rate of rotation in radians per second (rad/s)
around all axis’. The same coordinate system as described above is used.

The orientation (rotn) is the rotation around the x- (pitch), y- (roll) and
z-axis (azimuth) in radians (rad). Note that the orientation uses a different
coordinate system than the accelerometer and the gyroscope1

– X is defined as the vector product Y · Z (it’s tangential to the ground at the
device’s current location and roughly points West).

– Y is tangential to the ground at the device’s current location and points
towards the magnetic North Pole.

– Z points towards the center of the Earth and is perpendicular to the ground.

See Fig. 1 for a graphical representation.

(a) (b)

Fig. 1. (a) Coordinate system relative to the device. [Source: Android SensorEvent]
(b) Coordinate system used in Android’s orientation sensor. [Source: Android Sensor-
Manager]

3.2 Considered Classifiers

Classification is a way of comparing an unknown query input sample with the
stored templates. The Classifier/Matcher is the main component of any biometric
system. The goal of the classifiers is to classify a variable y = x0 called the
class variable, given a set of attribute variables x = {x1 . . . xn}. The classifier
c : x → y is a function that maps a data instance x to a class value of y. The
classifier itself it learned from a dataset D, consisting of samples over (x, y).

Relating this to our scenario, the attribute variables x are the features that
we extract from the touch events, motion sensors and microphone; they are the
1 http://developer.android.com/reference/android/hardware/SensorManager.html.

http://developer.android.com/reference/android/hardware/SensorManager.html

50 A. Buriro et al.

slide, pickup and voice samples. The class variable y is either target (meaning
the instance belongs to the class learned during training) or unknown (meaning
the instance does not appear to belong to the previously learned class).

We performed verification with three different classifiers, i.e., One-class
BayesNET (BN) classifier, One-class Random Forest (RF) and One-class Sequen-
tial Minimal Optimization (SMO)-a Weka version of support vector machine
(SVM). We chose these classifiers because they were shown to be very effecient
in previous behavioral-based work [20,26]

We imported Weka library in our project and implemented our prototypes
on smartphone.

During the training phase we only have training data available for a sin-
gle instance class; the genuine user (the target class). At prediction time new
instances with unknown class labels will have to be classified as either the tar-
get class or unknown. To handle this type of learning problem, typically called
one-class classification, we wrap each classifier in a one-class classifier2.

3.3 Performance Metric

Based on the binary outcome of this function (accept or reject), two types of
errors can occur; false rejections and false acceptances. A false rejection occurs
when a legitimate user is rejected access from the system and a false accept occurs
when a imposter is granted access to the system. The errors are measured in the
so-called False Rejection Rate (FRR) and False Acceptance Rate (FAR). These
rates are calculated as follows:

FAR(Δ) =
FA(Δ)

nI
(2)

FRR(Δ) =
FR(Δ)

nG
(3)

Given a specific threshold Δ, the FAR is defined as the number of false
acceptances (FA) divided by the number of imposters nI and the FRR is defined
as the number of false rejections (FR) divided by the number of genuine users nG.

To evaluate the interaction of these error rates the Weighted Error Rate
(WER) is used. The WER shows the combined error rate of both FAR and FRR
with a weight α assigned to each. If the false accepts are considered worse than
false rejects (focus on security), a weight > 0.5 should be used. If false rejects
are worse than false accepts (focus on usability), than a weight < 0.5 is more
appropriate. A special error rate is the EER where both errors have the same
weight (i.e. α = 0.5). The WER is defined [27] as follows:

WER(α,Δ) = αFAR(Δ) + (1 − α)FRR(Δ) (4)

2 http://weka.sourceforge.net/packageMetaData/oneClassClassifier/.

http://weka.sourceforge.net/packageMetaData/oneClassClassifier/

ITSME: Behavioural User Authentication for Smartphones 51

Given a specific weight α, the goal is to find the optimal threshold Δ∗
α for

which the WER is as low as possible. This function can be defined as:

Δ∗
α = argmin

Δ
|αFAR(Δ) + (1 − α)FRR(Δ)| (5)

In our opinion the usability of an authentication system is of paramount
importance for its adoptability. Therefore, in our system, we consider a false
reject worse than a false accept, and we’ll use α = 0.4 in our evaluations.

As proposed by Poh et al. in [27], the final evaluation looks at the performance
of the system after deciding on the weight α and the optimal threshold Δ∗

α. This
is measured by the so called Half Total Error Rate (HTER), which is calculated
as follows:

HTER(Δ∗
α) =

FAR(Δ∗
α) + FRR(Δ∗

α)
2

(6)

The lower the HTER, the better the system performs given the chosen
weight α.

4 Our Solution

In [28] Conti et al. introduce a new biometric measure to authenticate smart-
phone users; the movement a user performs when answering (or placing) a phone
call. Several experiments with a prototype in a controlled environment have
shown that the method is effective and that the performance is comparable to
that of other transparent authentication methods, like face or voice recognition.
These experiments also highlighted an issue with the data acquisition process,
due to the variability in determining the end of the arm movement. To address
this issue without compromising the unobtrusive nature of the initial idea we
extended the solution as follows.

When placing or answering a phone call, three common steps have to be
taken: (1) the user must unlock her phone, (2) bring it to her ear and (3) speak
into the microphone. Our multimodal authentication solution uses features from
all three steps to determine whether or not the current user is genuine, or if she
is an imposter.

The complete system consists of four parts: slide movement recognition,
pickup movement recognition, voice recognition and fusion. The data features
are described in this section, while the next section describes the actual classifi-
cation framework including fusion.

4.1 Setup

We conducted a controlled user study to test our mechanism in terms of per-
formance and robustness. We recruited 26 participants of which 16 were male,
and 3 operated their phone using their left hand. All of them were familiar with
the slide-to-unlock pattern. Ages of our volunteers were ranging from 14 to 55.
2 participants were 14–19, 12 were 20–29, 7 were 30–39, 1 was 40–49 and 4 were
50 or older.

52 A. Buriro et al.

We created an Android application that targets SDK version 4.4 (Kitkat)
and minimally requires version 4.0.3 (Ice Cream Sandwich). We implemented
both the training phase and the classification phase using Weka 3.7 on android
smartphone. The training module allows the user to anonymously record slide
movements, pickup movements and voice samples which are sent to a central
server. The classification module was implemented as a proof of concept and to
analyze the performance on mobile phones.

A central server running on the Amazon cloud platform collected the training
features in a database. A local running Java application (using Java 1.7) using
the same classification module as implemented in Android was then used to test
the robustness of the system. We used a Google Nexus 4 device by LG run-
ning Android 5.1 during the study. This device has a 4.7 in. screen, a Qualcomm
APQ8064 Snapdragon 1.5 GHz Quad-core processor, 2GB RAM, an accelerom-
eter, gyroscope and proximity meter.

In each session, we first explained the purpose of the study to the participant
and asked them if we could use their data anonymously, and noted their age
and gender. After that we moved to the actual trials. Each user was required
to collect at least 20 slide samples, 20 pickup samples and 10 voice samples.
Samples that where distorted in any way could be removed by the user.

For the slide and pickup movements we instructed the participant to first do
five movements while sitting or standing still and after that five while walking
around. Then the user was asked to open a news app and read the fifteenth
headline, which required the user to count while scrolling to the headlines. This
usually confused users, and many had to recount from the top because they tried
to wrap their head around the purpose of this task, and lost count. The goal
of this distraction task was to minimize the learning effect that can occur when
doing the same movement many times in quick succession. After the user read
the article, she was again requested to record five movements while sitting, and
five movements while walking.

4.2 Data Collection

We use the default Android slide lock as depicted in Fig. 2. The center knob can
be dragged towards any direction. When the user drags the knob and then release
it at least as far as the circular boundary (slightly visible in the right image in
Fig. 2), the phone will be unlocked. If the knob is released before reaching the
boundary, the phone stays locked.

During the training phase a pickup event starts when the user clicks the start
button, and ends automatically when the phone is at the user’s ear (detected by
the proximity detector). When used in combination with the other two modalities
(e.g. during authentication), the sample starts when the slide unlock ends, and
also finishes when the phone reaches the user’s ear.

The Android system continuously delivers SensorEvents 3 to an event listener.
As we use three sensor (accelerometer, gyroscope, orientation sensor), a delivered

3 http://developer.android.com/reference/android/hardware/SensorEvent.html.

http://developer.android.com/reference/android/hardware/SensorEvent.html

ITSME: Behavioural User Authentication for Smartphones 53

Fig. 2. Android slide lock. On the left the default state, on the right the state when a
user drags the knob towards the circular boundary.

event can be produced by one of the sensors. Every time we receive a new event
for any of the sensors, we extract the x, y and z values, and store them.

For the voice sample recording we requested the user to simply speak into
the microphone as if they were answering a phone call, but to make sure to
use a relatively lengthy sentence to fill the 2.5 s of recording. Most users used a
sentence similar to Hello, this is John Doe. Who am I speaking to?. An audio
sample is recorded for 2500 ms at a sample rate of 8 kHz using 16 bits per sample
with one channel. The resulting pulse-code modulation (PCM) data is stored in
a temporary WAV file on the device.

4.3 Feature Extraction

Slide. A slide sample starts when the user touches the knob for the first time,
and ends when the knob is released (e.g. the user stops the touch event). One
slide is a path encoded as a sequence of vectors (tn, xn, yn, pn, sn). Only complete
samples (samples that would unlock the phone in the original non-biometric
implementation) are considered, others are simply discarded.

During the slide event the features in Table 1 are recorded at a average sam-
pling rate of 150 Hz. From the given MotionEvent we extract multiple features.
The time offset (tn) indicates the offset since the start of the touch event in
milliseconds.

Table 1. Slide features

Feature Unit

Time offset ms

X-position px

Y-position px

Pressure Normalized value between 0 and 1

Size Normalized value between 0 and 1

54 A. Buriro et al.

The x- and y-position (xn, yn) are measured in pixels and indicate the exact
position of the knob (controlled by the users touch) on the screen. Over time
these coordinates create a path from the initial position of the knob towards the
boundary of the circle, indicating exactly how the user moved the knob.

The touch pressure (pn) of the touch event indicates the approximate pressure
applied to the surface of the screen. The value is normalized to a range from 0
(no pressure at all) to 1 (normal pressure), but values higher than 1 may be
generated depending on the calibration of the input device.

The size (sn) is a scaled value of the approximate size of the area of the
screen being touched. The actual value in pixels corresponding to the touch is
normalized with the device specific range of values and scaled to a value between
0 and 1.

Pickup. During the pickup event the features in Table 2 are extracted at a
average sampling rate of 190 Hz. The time offset (tn) indicates the offset since
the start of the pickup event in milliseconds. One pickup movement is encoded as
a sequence of vectors (accx

n, accy
n, accz

n, gyrox
n, gyroy

n, gyroz
n, rotxn, rotyn, rotzn, tn).

Table 2. Pickup features

Features Units

1–3 X-acceleration Y-acceleration Z-acceleration m/s2

4–6 X-gyroscope Y-gyroscope Z-gyroscope rad/s

7–9 X-orientation Y-Orientation Z-Orientation rad

10 Time offset ms

Voice. Using the recorded voice sample, we calculate the Mel-frequency cepstral
coefficients (MFCCs) [29] and store them in a feature vector. MFCCs have been
very popular in the realm of speech recognition due to its ability to represent the
speech amplitude spectrum in a compact form [30]. Creating MFCCs is done by
(1) converting the waveform to frames, (2) take the discrete Fourier transform,
(3) take the Log of the amplitude spectrum, (4) Mel-scaling and smoothing and
(5) applying discrete cosine transform. The MFCC features are then used as
data instances that we use to create models for our classifiers

4.4 Data Fusion

In our multimodal mechanism we use multiple biometric traits (slide movement,
pickup movement and voice) which need to be fused to output one single deci-
sion: accept or reject. We fused these modalities at match-score level. However,
because each modality performed differently, we give each modality a weight,
based on it’s unimodal performance.

ITSME: Behavioural User Authentication for Smartphones 55

Consider three modalities x, y and z, having an error rate (er) of 0.1, 0.2
and 0.3 respectively. Obviously, modality x is much better than y and z, and
should therefore have a higher weight. For each classifier c we can calculate a
success index. The success index indicates how much the classifier contributes
to the sum 1 − er(c) for each classifier c.

index(c) = 1 − er(c)
n∑

i=1

er(i)
(7)

The eventual weight can then be calculated using:

weight(c) =
index(c)

n∑
i=1

index(i)
(8)

Filling in the values for three modalities x, y and z, they would get weights
of 0.42, 0.33 and 0.25 respectively. Better modalities get get higher weights.

4.5 Decision Making

To measure the performance of the classifiers we use the cross-validation method.
The dataset is randomized and then split into k folds of equal size. In each
iteration, one fold is used for testing, and the other k − 1 folds are used for
training the classifier. We use k = n, meaning we apply leave-one-out cross-
validation. The test results are averaged over all folds, which give the cross-
validation estimate of the accuracy. This method is useful because we are dealing
with small datasets and the idea is to test each sample. Using cross-validation
we utilize the greatest amount of training data from the dataset.

When evaluating the performance of a biometric system, multiple crite-
ria should be considered [27]. Biometric authentication systems make decisions
based on the following decision function:

f(x) =

{
accept, if c(I,x) ≥ Δ

reject, otherwise
(9)

where c(I, f) is the output of the underlying classifier c that indicates how certain
it is that the claimed identity I is correct based on the given dataset (features)
x. The threshold Δ defines when an identity claim is accepted or rejected. Access
to the system is accepted if the score is greater than or equal to the threshold,
and rejected otherwise.

5 Parameters

Before we can show any results, we first need to identify the exact data and
models under test. During the research we did many extensive tests to find

56 A. Buriro et al.

the optimal setup. These tests led us to the best performing combination of
parameters. The actual performance of the best classifier will be discussed and
evaluated in the next section.

The tests have been carried out on a random subset (length: 10) of the
participants in the user test. For each configuration considered we calculated
the equal error rate (EER) based on all samples of the genuine user, and 10
random samples per other (non-genuine) user.

5.1 Parameters

For each modality we use all attributes, and do a grid search to find the best
performing set of parameters. We also record the average model generation time
so we can filter out configurations that would take too long on mobile phones.

Table 3. Best classifier per modality.

Slide Pickup Voice

Classifier Comp. Time EER Comp. Time EER Comp. Time EER

BayesNET 64 0.1242 762 0.2045 205 0.2681

Random Forest 4453 0.1434 13988 0.2083 4402 0.2452

SMO 8433 0.1864 ∼144000 - 548 0.2709

Table 3 gives for each modality an overview of the best performing classifiers.
The parameter tests show that the Bayesian network classifiers yield the best
results overall. Only with the voice modality the Random Forest classifier yields
slightly better results. However, the Bayesian network is much faster.

From this point on when talking about the classifier, we mean the Bayesian
classifier, with its parameters configured as shown in Table 4.

Table 4. Parameter configuration per modality

Modality Naive Bayes Markov blanket Max parents Score type Alpha

Slide T T 5 Entropy 0.25

Pickup T F 3 Bayes 0

Voice F F 5 Entropy 0

6 Results

The results we present here are based on the user data we collected during the
controlled users tests, fed into the classifiers with their parameters configured as
described in Sect. 5. For each user this gives us a certainty number (higher means
more similar to the reference model) for both genuine and impostor samples.

ITSME: Behavioural User Authentication for Smartphones 57

It is important to note that when testing a classifier for user u, we use all
samples from all other users to do our impostor tests. By doing so, we have
much more impostor samples than genuine samples, leaving the FRR much more
sensitive to deviations than the FAR.

Given the data from the user we can find the optimal threshold Δ∗
α. The

optimal threshold is the threshold for which the Weighted Error Rate (WER) is
at its minimum (see Eq. 5).

6.1 Unimodal Systems

Slide. Given α = 0.4, we found that the optimal threshold Δ∗
α = 49. Re-running

the tests with this threshold gives us a FAR of 22.28 % and a FRR of 4.84 %.
The HTER (defined in Eq. 6) can now easily be computed:

HTER(49) =
22.28% + 4.84%

2
= 13.56% (10)

Pickup. The optimal threshold Δ∗
α = 42. Running the tests with this threshold

gives us a FAR of 26.69 % and a FRR of 6.19 %.

HTER(42) =
26.69% + 6.19%

2
= 16.44% (11)

Voice. The optimal threshold Δ∗
α = 85. Running the tests with this threshold

gives us a FAR of 63.92 % and a FRR of 12.69 %.

HTER(85) =
63.92% + 12.69%

2
= 38.30% (12)

It is evident that slide and pickup modalities are better than voice modal-
ity. Still, we are using it here to show how the use of multimodal biometric
authentication can improve a unimodal authentication system.

6.2 Multimodal Systems

Slide+Pickup Modalities. As described in Sect. 4.4 we use a match-score
level fusion method, using weights for each classifier output. We calculate the
weight using Eq. 8. In the previous subsection we have seen that the slide and
pickup classifiers have a HTER of 13.56 % and 16.44 % respectively. Filling in
the equation this gives us a weight of 0.55 for slide and 0.45 for pickup.

The optimal threshold Δ∗
α = 55. Re-running the tests with this threshold

gives us a FAR of 11.01 % and a FRR of 4.12 %. Calculating the HTER gives us:

HTER(55) =
11.01% + 4.12%

2
= 7.57% (13)

Comparing the slide and pickup modalities individually with this multimodal
system, we can see that the latter performs almost twice as good.

58 A. Buriro et al.

Slide+Pickup+Voice Modalities. We have seen that the slide, pickup and
voice classifiers have HTERs of 13.56 %, 16.44 % and 38.30 % respectively. Using
Eq. 8 this results in weights 0.40 (slide), 0.38 (pickup) and 0.22 (voice).

The optimal threshold Δ∗
α = 62. Running the tests with this threshold gives

us a FAR of 10.72 % and a FRR of 3.93 %. Calculating the HTER gives us:

HTER(62) =
10.28% + 3.93%

2
= 7.33 % (14)

A quick comparison shows that adding voice modality to the multimodal
system using slide and pickup features does not improve the results significantly
but still better (HTER 7.33 % vs HTER 7.57 %).

7 Discussion

The results show that the slide modality is better than the pickup modality.
The main cause for this observation is that the pickup classifier is much more
sensitive to the kind of activity the user performs while unlocking her phone.
Because the rotation, gyroscope and acceleration of the device are the main
features of the modality, the user’s activity while unlocking has major influence
on the classifier outcome: walking, running, standing in a crowded bus; they all
have different impact on the motion sensors of the device.

The slide modality on the other hand does not use motion sensors but rather
uses touchscreen. Touchscreen determines finger position, pressure and size on a
screen which are much less influenced by external factors, making the modality
more robust in a range of different scenario’s.

When combining the slide and pickup modalities, we can see that the FAR
improves significantly.

The voice modality is obviously not good enough (based on our experiments)
and may not be deployed in real world because of higher error rates - FAR of
63.92 % and FRR of 12.69 %. The reason(s) for worst voice results may be due to
the low quality of the open source library and by the fact we applied only basic
clustering mechanisms. Still, the fusion of all three modalities yielded better
results.

System like ours are suitable for risk-based authentication scenarios (e.g.
mobile banking applications), where security may need to be traded for avail-
ability dynamically and adaptivelly.

8 Conclusion and Future Work

In this paper we proposed a new multimodal biometric system for smartphone
user authentication that focusses on usability. The system uses features collected
during a slide-unlock movement on a smartphone. We use finger position, pres-
sure, size and time offset to generate a model and classify future slide movements.
We shown how fusion of unimodal systems to multimodal ones using slide, pickup
and voice modalities can significantly improve performance.

ITSME: Behavioural User Authentication for Smartphones 59

We have applied three different classifiers, i.e., BN, RF and SVM. BN classifier
outperformed the other classifiers in terms of error rates and computation time.

From the three unimodal traits we tested (slide, pickup and voice); the slide
modality performed best with a FAR of 22.28 % and a FRR of 4.84 %, resulting
in a HTER of 13.56 %. The pickup modality performed slightly worse, with an
FAR and FRR of 26.69 % and 6.19 % respectively, and an HTER of 16.44 %.
However, with their fusion, we were able to achieve much improved performance
(by a factor of two). A FAR of 11.01 % and a FRR of 4.12 % were reached,
resulting in a HTER of 7.57 %.

The voice based model performed much worse as the open source library
we used was simply not good enough. However, we have shown the potential
improvement of a multimodal system using slide, pickup and voice modalities.

This research can be extended in multiple directions. To validate the results
presented here a larger user study should be conducted. The impact situations,
context and environment may have on this type of biometrics need to be inves-
tigated further.

Acknowledgement. Authors would like to thank all the volunteers, who participated
in this experiment for their valuable feedback and comments.

This work has been partially supported by the TENACE PRIN Project
(n. 20103P34XC) funded by the Italian MIUR and EIT Digital MobileShield project.

References

1. Morrill, D.: Announcing the Android 1.0 SDK, release 1, Google (2008). http://an
droid-developers.blogspot.in/2008/09/announcing-android-10-sdk-release-1.html.
Accessed 20 April 2015

2. Cohen, P.: Macworld Expo Keynote Live Update, PCWorld (2007). http://www.
macworld.com/article/1054764/liveupdate.html. Accessed 20 April 2015

3. IDC: Android and iOS Squeeze the Competition, Swelling to 96.3 % of the Smart-
phone Operating System Market for Both 4Q14 and CY14, According to IDC, IDC
(2015). http://www.idc.com/getdoc.jsp?containerId=prUS25450615. Accessed 20
April 2015

4. Wood, H.M.: The use of passwords for controlled access to computer resources, US
Department of Commerce, National Bureau of Standards, vol. 500(9) (1977)

5. Google: Ice Cream Sandwich (2011). http://developer.android.com/about/
versions/android-4.0-highlights.html. Accessed 20 April 2015

6. Velazco, C.: Apples Touch ID Is A 500ppi Fingerprint Sensor Built Into The
iPhone 5S Home Button, TechCrunch (2013). http://techcrunch.com/2013/09/10/
apples-touch-id-a-500ppi-fingerprint-sensor. Accessed 20 April 2015

7. Ross, A., Jain, A.: Information fusion in biometrics. Pattern Recogn. Lett. 24(13),
2115–2125 (2003)

8. Kuncheva, L.I., Whitaker, C.J., Shipp, C.A., Duin, R.P.W.: Is independence good
for combining classifiers?. In: Proceedings of 15th International Conference on Pat-
tern Recognition. IEEE, vol. 2, pp. 168–171 (2000)

9. Bhagavatula, C., Ur, B., Iacovino, K., Mon, K.S., Cranor, L.F., Savvides, M.: Bio-
metric Authentication on iPhone and Android: Usability, Perceptions, and Influ-
ences on Adoption (2015)

http://android-developers.blogspot.in/2008/09/announcing-android-10-sdk-release-1.html
http://android-developers.blogspot.in/2008/09/announcing-android-10-sdk-release-1.html
http://www.macworld.com/article/1054764/liveupdate.html
http://www.macworld.com/article/1054764/liveupdate.html
http://www.idc.com/getdoc.jsp?containerId=prUS25450615
http://developer.android.com/about/versions/android-4.0-highlights.html
http://developer.android.com/about/versions/android-4.0-highlights.html
http://techcrunch.com/2013/09/10/apples-touch-id-a-500ppi-fingerprint-sensor
http://techcrunch.com/2013/09/10/apples-touch-id-a-500ppi-fingerprint-sensor

60 A. Buriro et al.

10. Jain, A., Flynn, P., Ross, A.A.: Handbook of Biometrics. Springer, New York
(2007)

11. Yampolskiy, R.V., Govindaraju, V.: Behavioural biometrics: a survey and classifi-
cation. Int. J. Biometrics 1(1), 81–113 (2008)

12. Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D.: Touchalytics: on the
applicability of touchscreen input as a behavioral biometric for continuous authen-
tication. IEEE Trans. Inf. Forensics Secur. 8(1), 136–148 (2013)

13. De Luca, A., Hang, A., Brudy, F., Lindner, C., Hussman, H.: Touch me once
and i know it’s you!: implicit authentication based on touch screen patterns. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, vol. 8(1), pp. 987–996 (2012)

14. Angulo, J., Wästlund, E.: Exploring touch-screen biometrics for user identification
on smart phones. In: Camenisch, J., Crispo, B., Fischer-Hübner, S., Leenes, R.,
Russello, G. (eds.) Privacy and Identity Management for Life. IFIP AICT, vol.
375, pp. 130–143. Springer, Heidelberg (2012)

15. Sae-Bae, N., Ahmed, K., Isbister, K., Memon, N.: Biometric-rich gestures: a novel
approach to authentication on multi-touch devices. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 977–986 (2012)

16. Derawi, M.O., Nickel, C., Bours, P., Busch, C.: Unobtrusive user-authentication on
mobile phones using biometric gait recognition. In: Sixth International Conference
on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP).
IEEE, pp. 306–311 (2010)

17. Tao, Q., Veldhuis, R.: Biometric authentication for a mobile personal device. In: 3rd
Annual International Conference on Mobile and Ubiquitous Systems-Workshops.
IEEE, pp. 1–3 (2006)

18. Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vis. 4,
34–47 (2001)

19. Baek, C., Thirunavukkarasu, S., Underwood, B.S., Guddati, M.N., Kim, Y.R.:
Top-down cracking prediction tool for hot mix asphalt pavements. In: Scarpas,
A., Kringos, N., Al-Qadi, I., Loizos, A. (eds.) 7th RILEM International Confer-
ence on Cracking in Pavements. RILEM Bookseries, vol. 4, pp. 465–474. Springer,
Heidelberg (2012)

20. Buriro, A., Crispo, B., Del Frari, F., Wrona, K.: Touchstroke: smartphone user
authentication based on touch-typing biometrics. In: Murino, V., Puppo, E., Sona,
D., Cristani, M., Sansone, C. (eds.) ICIAP 2015 Workshops. LNCS, vol. 9281, pp.
27–34. Springer, Heidelberg (2015)

21. Aronowitz, H., Li, M., Toledo-Ronen, O., Harary, S., Geva, A., Ben-David, S.,
Rendel, A., Hoory, R., Ratha, N., Pankanti, S.: Multi-modal biometrics for mobile
authentication. IEEE International Joint Conference on Biometrics (IJCB). IEEE,
pp. 1–8 (2014)

22. Ferrer, M.A., Morales, A., Travieso, C.M., Alonso, J.B.: Low cost multimodal bio-
metric identification system based on hand geometry, palm and finger print texture.
In: 41st Annual IEEE International Carnahan Conference on Security Technology.
IEEE, pp. 52–58 (2007)

23. Kim, D.-J., Hong, K.-S.: Multimodal biometric authentication using teeth image
and voice in mobile environment. IEEE Trans. Consum. Electr. 54(4), 1790–1797
(2008)

24. McCool, C., Marcel, S., Hadid, A., Pietikainen, M., Matejka, P., Cernocky, J.,
Poh, N., Kittler, J., Larcher, A., Levy, C.: Bi-modal person recognition on a mobile
phone: using mobile phone data. In: IEEE International Conference on Multimedia
and Expo Workshops (ICMEW). IEEE, pp. 635–640 (2012)

ITSME: Behavioural User Authentication for Smartphones 61

25. Bertillon, A.: Signaletic Instructions Including the Theory and Practice of Anthro-
pometrical Identification. Werner Company, Chicago (2008)

26. Sitova, Z., Sedenka, J., Yang, Q., Peng, G., Zhou, G., Gasti, P., Balagani, K.:
HMOG: a new biometric modality for continuous authentication of smartphone
users, arXiv preprint (2015). arxiv:1501.01199

27. Poh, N., Bengio, S.: Database, protocols and tools for evaluating score-level fusion
algorithms in biometric authentication, a review. Pattern Recogn. 39(2), 223–233
(2006)

28. Conti, M., Zachia-Zlatea, I., Crispo, B.: Mind how you answer me!: transparently
authenticating the user of a smartphone when answering or placing a call. In:
Proceedings of the 6th ACM Symposium on Information, Computer and Commu-
nications Security, Science and Technology. ACM, pp. 249–259 (2011)

29. Davis, S., Mermelstein, P.: Comparison of parametric representations for mono-
syllabic word recognition in continuously spoken sentences. IEEE Trans. Acoust.
Speech Signal Process. 28(4), 357–366 (1980)

30. Logan, B.: Mel frequency cepstral coefficients for music modeling. In: ISMIR (2000)
31. Survey says 70 % password dont protect mobiles: download free Mobile Toolkit

(2014). http://nakedsecurity.sophos.com/2011/08/09/free-sophos-mobilesecurity-
toolkit

http://arxiv.org/abs/1501.01199
http://nakedsecurity.sophos.com/2011/08/09/free-sophos-mobilesecurity-toolkit
http://nakedsecurity.sophos.com/2011/08/09/free-sophos-mobilesecurity-toolkit

Attacks

Verification Code Forwarding Attack
(Short Paper)

Hossein Siadati, Toan Nguyen(B), and Nasir Memon

New York University School of Engineering, New York, USA
{hossein,toan.v.nguyen,memon}@nyu.edu

Abstract. Major Internet service providers deploy SMS-based verifica-
tion mechanisms to fortify the security of users’ accounts for critical
actions such as password reset and logging in from a new computer. In
this paper, we describe a new type of phishing attack where an attacker
triggers the delivery of a verification code from a service provider to
a user and lures the user to forward the code to him so that he can
bypass the SMS verification process. We call this a Verification Code
Forwarding Attack (VCFA). The attacker can use VCFA to reset a pass-
word of a user’s account or to get access to a 2-factor enabled account
which he already knows its password (e.g., through leaked databases).
We attribute the success of this attack to the lack of an effective and
usable means for users to verify the service provider, the lack of context
for the message sent, and an assumption about users’ understanding of
the authentication process. To show the susceptibility of the users to such
an attack, we conducted an experiment with 20 mobile phone users and
found that more than 25 % of users were vulnerable against this type of
attack. A semi-structured interview with the subjects of the experiment
and a survey of 100 subjects on Amazon Mechanical Turk were done to
explore possible causes for the success of this type of attack. We also
discuss possible remediation.

1 Introduction

Guessable passwords [3], reusing passwords for different accounts [5,8], breaches
of password databases [2,12], an abundance of malware and the ease of which
the devices get infected by trojans and key-loggers easily give attackers access to
passwords. As a result, for critical actions such as password recovery and high
risk authentication (e.g., log in from a new device) an auxiliary factor is needed
to make the system more secure. One prevalent approach adopted by service
providers leverages a resource assumed to be in control of the user, such as a
phone number or an email address. In one such example of the scheme, advertised
as a 2-step or 2-factor verification, the service provider sends a nonce in the form
of a verification code to the user. The user presents this verification code back
to the service provider via a channel requested by the service provider. Since
the user who is being authenticated is assumed to be in control of this resource,
the address of the resource is likely to be unknown to an attacker, and the
c© Springer International Publishing Switzerland 2016
F. Stajano et al. (Eds.): PASSWORDS 2015, LNCS 9551, pp. 65–71, 2016.
DOI: 10.1007/978-3-319-29938-9 5

66 H. Siadati et al.

nonce is random, the requested authentication is then completed. The rationale
is that to circumvent such a mechanism, an attacker has to be in control of this
auxiliary channel or resource. In this work, we show that authentication schemes
that utilize such an auxiliary resource can be potentially circumvented without
gaining control of the channel but by other means such as social engineering.
For example, we show that a commonly used authentication scheme where a
verification code is sent to the user’s mobile phone by an SMS message can
potentially be compromised by luring the user to send the code to the attacker.
We call this a Verification Code Forwarding Attack (VCFA).

In a VCFA attack, the attacker triggers the delivery of a verification code to
a victim and shortly after that, the attacker sends a direct SMS to the victim
and phishes him or her to forward the code. If the victim forwards the code,
the attacker can successfully bypass the SMS verification and get access to the
victim’s account.

Attackers can use VCFA in three attack scenarios. The first scenario is pass-
word reset. In this attack, the attacker initiates a password recovery request on
a service provider website by entering victim’s username or email address and
chooses to receive a verification code via SMS message. Shortly after the ver-
ification code is sent to the victim, the attacker will phish the victim to steal
the verification code and complete the password reset. The attacker needs to
know the phone number of the victim in order to phish him or her. For this, the
attacker can easily search the public records, social networking websites, data
from leaked databases of information or employ social engineering techniques.
In a second scenario, the attacker knows the username and password of a victim
(perhaps through leaked databases or other hacking techniques), logs into the
victim’s account from a new machine and then lures the victim to forward the
verification code. The access to the victim’s account as a result of this attack is
at least for one session, but also can be permanent depending on the victim’s
account settings. The last scenario belongs to spam account creation where a
fraudster or spammer creates a verified account without giving out any trace-
able information. In this attack, the spammer enters a random phone number
as his verification number at the time of account creation. Then he follows the
described steps to phish the verification code.

In this paper, we study this new type of phishing attack and the root causes
of why it is successful. In particular, these are our contributions in this research:

– Using a small scale experiment on 20 subjects, we show that more than 25 %
of users are susceptible to VCFA.

– By conducting a semi-structured interview, we systematically study the rea-
sons why people fall or do not fall for this attack.

– Using a survey on about 100 Amazon Mechanical Turk workers that have
enabled SMS-based verification for their Gmail accounts, we validate our find-
ings on a larger and more diverse pool of subjects.

Paper Organization: After briefly introducing background in Sect. 2, we detail
our study procedures and findings in Sect. 3. We discuss the root causes of the
problem and possible remediations in Sect. 4.

Verification Code Forwarding Attack (Short Paper) 67

2 SMS-Based Verification and Its Security

SMS-based verification is a subset of two-factor authentication (2FA) mecha-
nisms where a one-time password is used as a second factor for authentica-
tion. SMS-based verification is not able to provide security against a phishing
attack [14]. The argument is that in a successful phishing attack, the attacker will
lure a victim to enter the one-time password as well. This attack is deployed by
attackers in the wild [4]. SMS-based verification also does not provide protection
against the existence of malware on mobile devices or workstations [7,14] because
by using the malware, the attacker can capture the one-time passwords as well as
hijacking a session after the authentication process is done. The malware attack
on SMS-based verification has been in use by attackers [1,13]. The SMS-based
verification, however, provides protection against known-password-attack when
the user-chose password is known by the attacker, for example based on a leaked
database of passwords. For an account protected by SMS-based verification, an
attacker who knows the password still can not log in to the account because
he does not have access to the verification code. However, such an attacker can
launch a VCFA attack to get the user to forward the verification codes, as dis-
cussed in this paper.

Several research work have previously studied social engineering techniques
and phishing attacks [9–11,15]. Dhamija et al. [6] have studied the reasons why
phishing is successful. Major reasons are visual techniques that the attackers use
to deceive users into believing that the URL and the webpage are authentic.

Although there are similarities between the known email-based phishing
attacks, Smishing (SMS-based phishing where a phishing link is sent via SMS),
and VCFA, there are several differences concerning the reasons for their success
and needed countermeasures against them. Firstly, in a VCFA attack, no URL
is included in the phishing messages and victims do not need to visit a phishing
website. Secondly, a successful VCFA attack needs a victim to forward only a
verification code, mostly, a random sequence of digits. In comparison, a victim
of traditional phishing attack has to enter widely known sensitive credentials
such as password, credit card numbers, or SSN numbers into a website. Thirdly,
there are a few indicators such as the sender’s email address or the URL of the
phishing website that can be used to verify the authenticity of a phishing mes-
sage and website. In a VCFA attack, however, the victim only has the phone
number of the sender and it is much harder to verify the sender of a message
based on that alone. These differentiating elements suggest the study of reasons
for success of VCFA attack and its remediation.

3 Study Procedures

We conducted this research in three phases. The first phase was a small scale
phishing experiment on 20 subjects. Next, we interviewed the subjects. Finally,
we extracted a handful of hypotheses from the interviews and evaluated them in
a larger scale by surveying 100 subjects on Amazon MTurk.

68 H. Siadati et al.

3.1 Experiment

For the sake of the experiment, we imitated a VCFA attack using messages
similar to Google’s messages. We bought two 10-digit U.S.A phone numbers, one
for imitating the role of a service provider (e.g., Google in our experiment) and
the other one for imitating the role of the attacker (e.g., sending phishing message
to subjects). The area code for the phone numbers were Mountain View, CA
(the area code for Google’s headquarters) to make the first message appear more
legitimate and the second one more deceptive. We randomly selected 20 subjects
from the contact list of the experimenters. The subjects included 10 males and
10 females, mostly aged between 25–35. 70 % of the subjects were students. We
were granted an IRB exemption from our institution for this research. We sent
two messages to each subject from two different numbers. The first message
was: “Your Google verification code is [6-digit code].” The style of the
message exactly followed the Google’s message for verification code. It did not
include username or any user identifying information. It also did not include
the reason why the user is receiving this message. 30 seconds later, we sent the
second message: “Please verify that your phone is still associated with
your Gmail account by replying to this message with the code we have
just sent to you.”

Experimental Results. 5 out of 20 subjects forwarded the verification codes.
This is translated to 25 % success for the VCFA attack.

3.2 Semi-structured Interview

We interviewed 10 out of 20 subjects of our experiments, 5 of those who fell for
phishing and 5 who did not.

Findings. After completing the interviews, we documented the responses and
analyzed them to find themes and significant experiences. Because of the space
constrains, we only report some of the findings and refer the readers to the long
version of this paper.

Subjects listed different reasons for enabling the SMS-based 2FA for their
Gmail accounts. The major reason was improving security of their accounts.
One subject mentioned that she has enabled the 2FA because of the need for
logging into her account from insecure machines at the university’s library and
laboratories. Since the verification codes are sent to her phone, she thought it
was safe to enter her password on potentially insecure computers.

70 % of subjects that we interviewed mentioned that they did not pay atten-
tion to the phone number that they received the Message I from. Indeed, they
believed that the message was sent by Google. Apart from two subjects who did
not fall for VCFA, other subjects did not notice that the phone number that
was used for Message II was different from the first phone number. Another
interesting finding was that the subjects have seen Google using different phone

Verification Code Forwarding Attack (Short Paper) 69

numbers with different lengths (i.e., short codes vs. 10-digit numbers) for send-
ing verification codes. They did not have a clear understanding of what a Google
phone number looks like. These observations explain the core problems of SMS-
based verification since SMS system does not provide any effective and usable
means for users to verify the sender of messages.

In general, users found the second message (message sent by the attacker)
convincing because Google’s message does not include any context or reason why
the user has received a verification code. Therefore, the second message can alter
users’ perception and convince them to forward the code. This lack of context is
another problem in design of the verification messages in most of the SMS-based
verification systems.

3.3 Survey

Following the interviews, we formed a survey in order to measure the extent and
prevalence of the insights we gained from the interviews. Our questionnaire was
composed of questions about demographics (i.e., age and gender), and users’
usage of SMS-based verification (i.e., frequency of usage of SMS-based verifi-
cation including “every log in”, “log in from a new computer”, and “password
recovery”). We also asked about the reasons for using SMS-based verification
(i.e., “log in from insecure computers” and “account being hacked before.”) We
asked if they check the phone number of the sender of a verification message. In
addition, we asked two different questions to discover the perceptions of users
about a VCFA attack in different stages of the attack. Firstly, we asked users if
they have ever received an unwanted verification code and what their perception
would be if they received one. Then, we asked them to consider a hypotheti-
cal scenario in which Google asks them to forward a verification code. Using
these questions, we measured the success rate of the VCFA attack on a larger
scale. We ran the survey on Amazon MTurk. We asked MTurkers to take survey
only if they have enabled SMS-based 2-step verification for their Gmail account.
A cleaning process to exclude the unqualified subjects resulted in 98 reliable
responses.

Results. 66 % of participants in our survey were male, and 90 % of participants
were between 18 and 35 years old. 8 % of participants use SMS-based verification
every time they log into Gmail. 66 % use it for logging in from a new computer,
and about 22 % for password reset. We asked users why they chose to use the
SMS-based verification. 62 % mentioned that they enabled it because they log in
from insecure computers, and 22 % have enabled it because their accounts have
been hacked before.

We asked the participants if they check sender’s phone number of verifica-
tion messages. 38 % of participants reported that they check the phone num-
ber to make sure it comes from Google. However, 30 % of participants did not
have any idea about the length of the phone number that Google uses to send
the verification codes (i.e., short code vs 10-digit number). 58 % of participants

70 H. Siadati et al.

believed that they received the verification code from the same number whereas
others thought Google uses different numbers to send verification codes. This
demonstrates that current settings for SMS-based verification does not offer any
effective and usable mechanism for users to verify the sender of the messages.

We asked participants how they would feel if they received an unwanted
verification code. 67 % of participants believed that it would mean that somebody
is hacking their account, 11 % believed this is the result of a flaw in the Google’s
system, 22 % of participants did not know why this may happen. We can see
that a considerable number of users are not aware of the possibility of a misuse
or an attack based on verification codes.

We asked participants what they would do if Google asks them to forward a
verification code via SMS. 20 % of participants answered that they would forward
the verification code, meaning that they would fall for this attack given the fact
that Google never asks users to do so. It is important to notice that we notified
the participants about the possibility of an attack by adding a choice to answers
as follows: “I think somebody is hacking me”. Therefore, the expected yield of
this attack might be more than 20 % in reality.

4 Conclusion

A noticeable number of the users are susceptible to VCFA attack. We attribute
the success of this attack to the lack of an effective and usable means for users to
verify the service provider and the lack of context for the message sent. Another
reason is the assumption about users’ understanding of how this authentica-
tion process works and their awareness of the possibility of a misuse based on
verification codes. A potential quick fix by service providers would be to use a
list of publicly announced phone numbers that users should expect to get their
messages from. Possible long-term remediation would be to augment a naming
system to SMS system so users can see the name of a service provider who
sends a message. Another simple fix is to add context to verification code mes-
sages indicating why the user received a verification code. Another fix includes
appending a warning text such as “DO NOT FORWARD THE VERIFICATION
CODE” to remind the importance of the code. The number of subjects in our
experiment and the process of recruiting the subjects in this experiment only
suit a pilot study. We are conducting a larger scale study to verify our results
and to measure the success of suggested list of potential remediation.

References

1. Bankinfosecurity. Malware bypasses 2-factor authentication. http://www.
bankinfosecurity.com/malware-bypasses-2-factor-authentication-a-7090/op-1.
Accessed 25 August 2015

2. Bonneau, J.: The gawker hack: how a million passwords were lost.
https://www.lightbluetouchpaper.org/2010/12/15/the-gawker-hack-how-a-million-
passwords-were-lost/. Accessed 25 August 2015

http://www.bankinfosecurity.com/malware-bypasses-2-factor-authentication-a-7090/op-1
http://www.bankinfosecurity.com/malware-bypasses-2-factor-authentication-a-7090/op-1
https://www.lightbluetouchpaper.org/2010/12/15/the-gawker-hack-how-a-million-passwords-were-lost/
https://www.lightbluetouchpaper.org/2010/12/15/the-gawker-hack-how-a-million-passwords-were-lost/

Verification Code Forwarding Attack (Short Paper) 71

3. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: SP, pp. 538–552. IEEE (2012)

4. Citizenlab: London calling: Two-factor authentication phishing from Iran. https://
citizenlab.org/2015/08/iran two factor phishing/. Accessed 25 August 2015

5. Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The tangled web of
password reuse. In: NDSS (2014)

6. Dhamija, R., Tygar, J.D., Hearst, M.: Why phishing works. In: CHI, pp. 581–590.
ACM (2006)

7. Dmitrienko, A., Liebchen, C., Rossow, C., Sadeghi, A.-R.: On the (In) security of
mobile two-factor authentication. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014.
LNCS, vol. 8437, pp. 365–383. Springer, Heidelberg (2014)

8. Ives, B., Walsh, K.R., Schneider, H.: The domino effect of password reuse. Com-
mun. ACM 47(4), 75–78 (2004)

9. Jagatic, T.N., Johnson, N.A., Jakobsson, M., Menczer, F.: Social phishing. Com-
mun. ACM 50(10), 94–100 (2007)

10. Jakobsson, M., Myers, S.: Phishing and Countermeasures: Understanding the
Increasing Problem of Electronic Identity Theft. Wiley, New York (2006)

11. Jakobsson, M., Tsow, A., Shah, A., Blevis, E., Lim, Y.: What instills trust? a
qualitative study of phishing. In: Dietrich, S., Dhamija, R. (eds.) FC 2007 and
USEC 2007. LNCS, vol. 4886, pp. 356–361. Springer, Heidelberg (2007)

12. Kirk, J.: Dating site eHarmony confirms password breach.
http://www.computerworld.com/article/2504089/security0/
dating-site-eharmony-confirms-password-breach.html. Accessed 25 August
2015

13. Perlroth, N.: Hackers find way to outwit tough security at banking sites.
http://bits.blogs.nytimes.com/2014/07/22/hackers-find-way-to-outwit-tough-sec
urity-at-banking-sites. Accessed 20 July 2015

14. Schneier, B.: Two-factor authentication: too little, too late. Commun. ACM 48(4),
136 (2005)

15. Wu, M., Miller, R.C., Garfinkel, S.L.: Do security toolbars actually prevent phish-
ing attacks? In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, pp. 601–610. ACM (2006)

https://citizenlab.org/2015/08/iran_two_factor_phishing/
https://citizenlab.org/2015/08/iran_two_factor_phishing/
http://www.computerworld.com/article/2504089/security0/dating-site-eharmony-confirms-password-breach.html
http://www.computerworld.com/article/2504089/security0/dating-site-eharmony-confirms-password-breach.html
http://bits.blogs.nytimes.com/2014/07/22/hackers-find-way-to-outwit-tough-security-at-banking-sites
http://bits.blogs.nytimes.com/2014/07/22/hackers-find-way-to-outwit-tough-security-at-banking-sites

What Lies Beneath? Analyzing Automated
SSH Bruteforce Attacks

AbdelRahman Abdou1(B), David Barrera2, and Paul C. van Oorschot1

1 Carleton University, Ottawa, Canada
abdou@scs.carleton.ca

2 ETH Zürich, Zürich, Switzerland

Abstract. We report on what we believe to be the largest dataset (to
date) of automated secure shell (SSH) bruteforce attacks. The dataset
includes plaintext password guesses in addition to timing, source, and
username details, which allows us to analyze attacker behaviour and
dynamics (e.g., coordinated attacks and password dictionary sharing).
Our methodology involves hosting six instrumented SSH servers in six
cities. Over the course of a year, we recorded a total of ∼17M login
attempts originating from 112 different countries and over 6 K distinct
source IP addresses. We shed light on attacker behaviour, and based on
our findings provide recommendations for SSH users and administrators.

1 Introduction

Internet accessible secure shell (SSH [18]) servers are consistently flooded
with credential guessing attempts originating from a wide range of globally-
distributed hosts. Every login attempt generates an entry in a log file which
conscientious system administrators painstakingly monitor. While some of these
guesses target specific systems and user accounts, most aim to identify weak
authentication configurations on the entire public IPv4 address space every
minute of every day. This status quo of seemingly endless login attempts has
led to a cottage industry of software tools, recommended service configuration,
and a folklore for throttling the frequency (and corresponding log entries) of
such attacks.

In principle, sensible configurations (e.g., rate-limiting login attempts, dis-
abling remote logins for privileged accounts) of remotely accessible services in
conjunction with strong password selection by users should suffice in limiting
the success of such attacks. However, the low cost of executing these attacks
from geographically-diverse datacenters or from compromised end user systems
(e.g., as part of a botnet) has apparently made these guessing attacks viable
for attackers. Administrators also appear hesitant to deploy restrictive network
access control (e.g., IP address range-blocking) configurations which may lead
to increased service desk call volume or poor user experience.

Well known software tools exist (many are free and open source) to monitor
and limit the number of login attempts that can be performed on a given server.

c© Springer International Publishing Switzerland 2016
F. Stajano et al. (Eds.): PASSWORDS 2015, LNCS 9551, pp. 72–91, 2016.
DOI: 10.1007/978-3-319-29938-9 6

What Lies Beneath? Analyzing Automated SSH Bruteforce Attacks 73

These tools usually maintain state measuring login attempts per source IP
address, or login attempts from any source within a defined period of time.
Once some pre-defined threshold is met, future login attempts are blocked or
throttled, either for a specified time period. Popular SSH server implementations
(e.g., OpenSSH and Dropbear) ship with default configurations that limit the
number of allowed authentication attempts per session (e.g., disconnecting the
remote system after three unsuccessful attempts) and disable remote logins for
privileged accounts. These settings can be easily configured by administrators.
Despite the widespread availability of tools and configurations, SSH bruteforce
login attacks are on the rise [1,4], supporting the theory that some of these login
attempts must be succeeding.

While academic work in the field has identified attacker use of common
usernames and passwords [14], and also focused on detection of highly dis-
tributed or stealthy attacks [13], to our knowledge, there is little academic
work in understanding the anatomy of run-of-the-mill automated SSH brute-
force attacks. Understanding these attacks can shed light on how attackers cre-
ate and use password dictionaries, guessing strategies, and adaptive techniques.
Insight on attacker behaviour can help design and improve defensive techniques,
and demonstrate the ineffectiveness of others. This paper makes the following
contributions:

• We describe a data collection methodology for SSH login attempts that
allowed us to record over 17 million guesses including over 1.4 million plain-
text passwords and nearly 28 thousand usernames. The vast majority of these
login attempts were performed by automated software tools.

• We perform an in-depth analysis of these login attempts by analyzing two
datasets; the first contains log entries collected on a single system over a one-
year period; the second includes logs from five servers over a 10-week period.
Among others, our analysis offers insights into guessing strategies, password
dictionaries used, and data sharing amongst attackers.

The sequel is organized as follows. Section 2 presents related work. Section 3
describes our data collection methodology and initial dataset observations. In
Sect. 4, we detail characteristics of attacking sources including network loca-
tion and number of attacker IPs per network block. Section 5 analyzes password
guesses, including composition, re-use, and password sharing among sources.
Section 6 covers distribution of usernames and password guesses per username.
Section 7 provides details on timing dynamics. We discuss recommendations for
users and administrators in Sect. 8, and conclude in Sect. 9.

2 Related Work

Host-Based Detection of Bruteforce Attacks. By default, SSH server soft-
ware generates log entries when authentication requests are received. An entry
includes timestamp, source IP address, source port, username, and the result of
the authentication request (e.g., success, incorrect password, invalid user, etc.).

74 A. Abdou et al.

These logs can be locally monitored by client software, such as Blockhosts (www.
aczoom.com/blockhosts), Fail2Ban (www.fail2ban.org), or DenyHosts (www.
denyhosts.sourceforge.net), to detect attacks by observing recent login attempts
and blocking sources that exceed a threshold of login attempts per time period.
Source blocking can be enforced at the network level (i.e., by adding network fire-
wall rules) or at the application level (e.g., by using tcpwrappers). Certain tools
allow submitting failed attempts to centralized services for aggregation and ana-
lytics [1,17].

Analysis of Passwords Used in SSH Attacks. Most closely related to our
work, Owens and Matthews [14] collected around 103,000 login attempts on
three honeypots over an 11 week period in 2007-2008. The authors report an
overwhelming majority of attempts targeting the root account, and nearly 49 %
of all attempted guesses had the username equal to the password. Compared
to the size of the dataset of Owens and Matthews, the one collected herein is
an order of magnitude larger. In addition, our attacker labelling methodology
is more comprehensive by considering usernames, passwords, and timing inde-
pendently, which allows us to identify dictionary re-use regardless of dictionary
sizes or the order of password guesses within.

Network-Based Detection of SSH Bruteforce Attacks. Javed et al. [13]
propose a methodology to detect distributed and potentially stealthy SSH guess-
ing activity. Hofstede et al. [11] propose a large-scale system to detect SSH
compromises (i.e., successful guessing attempts) using NetFlow data. Satoh
et al. [15] similarly use network flow data to identify the source’s authentication
type (interactive, key-based, etc.) in an effort to remove non-automated logins
from their set. We achieve the same server behaviour by configuring the server
to exclusively accept password authentication (see Sect. 3). Sperotto et al. [16]
built Hidden Markov Models from an SSH bruteforce attack recorded at their
university, and used this model to generate synthetic SSH network traces. The
authors found that the generated traces can be used to simulate a ground truth
for the evaluation of defense systems. We believe our dataset to be a ground
truth of SSH dictionary attacks due to its construction.

3 Data Collection Methodology

All logging was performed on Ubuntu 12.04 or 14.04 virtual machines (VM)
running on a popular cloud server platform, which assigned public and persistent
IPv4 addresses to each VM at creation. IPv6 connectivity was not enabled.
No publicly facing network services were enabled on the VMs other than two
SSH daemons (one for data collection and one for administration), and software
firewalls were configured to allow all inbound and outbound traffic.

The pre-installed SSH daemon served as the management interface for the
VMs. To prevent guessing attempts against this interface, we moved the daemon

www.aczoom.com/blockhosts
www.aczoom.com/blockhosts
www.fail2ban.org
www.denyhosts.sourceforge.net
www.denyhosts.sourceforge.net

What Lies Beneath? Analyzing Automated SSH Bruteforce Attacks 75

to a non-standard TCP port and we disabled password-based authentication
(requiring key-based logins). In Appendix A, we describe a small-scale experi-
ment to determine if attackers target SSH servers on non-standard ports.

We installed a second instance of the OpenSSH server (version 6.5p1) on
all VMs to log guessing attempts. To additionally record the password guesses,
we modified the OpenSSH server by inserting a log function in the password
authentication module (auth-passwd.c). This modified server was configured
to start at boot and listen for incoming authentication requests on the default
TCP port 22. The server configuration was also changed to allow up to 50 (from
the default 10) concurrent unauthenticated connections to the daemon. Only
password authentication was allowed on the modified daemon. All login attempts
were logged to the syslog logging facility.

Preventing Accidental Human Logins. Our paper focuses on the analy-
sis of automated login attempts. Thus, we wish to minimize the probability of
recording login information from non-automated sources. To prevent acciden-
tal non-automated logins (by either curious users or by accidentally typing the
wrong IP address or other misconfiguration), we displayed the following SSH
banner to all incoming authentication requests prior to password entry:

WARNING

This OpenSSH server has been modified to STORE USERNAMES AND PASSWORDS.

This server does not have any valid user accounts, so no attempted logins

will succeed. The sole purpose of this server is to collect (for research

purposes) login information used in automated SSH brute-force attacks. If

you are human, you should not attempt to log in~to this server.

Data Collection. We began collecting login attempts on a single VM running
in Ottawa (OTT), Canada on Mar 1, 2014. On Jan 4, 2015, we instrumented
and enabled five additional VMs, each in a separate geographical region: San
Francisco (SFO), New York (NY), London (LON), Amsterdam (AMS), and Sin-
gapore (SGP). These five VMs collected data for only 66 days, but broadened
our geographical scope allowing us to make location-specific observations. Since
these additional VMs were on distinct networks, they allowed us to detect sources
which target multiple destination IPs. All data collection was halted on Mar 8,
2015, giving a total of 373 days of aggregate data collection. Throughout the
paper, we report on the aggregate set of login attempts performed on all VMs,
clarifying VM-specific observations where necessary.

4 Characteristics of Attacking Systems

Table 1 summarizes the collected login attempts. Collectively, the VMs received
∼17M attempts from ∼6.2K IP addresses located in 112 countries.1 A total of
∼27K distinct usernames and ∼1.4M distinct password guesses were observed.
1 We used the http://ipinfo.io IP geolocation database [12] to obtain geographic loca-

tion and Autonomous System (AS) information of these IP addresses.

http://ipinfo.io

76 A. Abdou et al.

Table 1. A summary of the collected data.

VM Attempts AS IP addresses Regions Distinct

/8 /16 /24 /32 Country City Usernames Passwords

OTT 9,925,706 934 164 1,735 2,934 4,233 100 580 25,551 1,209,851

LON 2,609,164 357 125 573 826 1,134 66 197 2,742 618,869

NY 1,661,628 245 123 426 508 707 61 137 1,637 464,456

SFO 1,491,949 250 125 444 548 760 58 152 2,160 492,340

AMS 1,107,247 353 126 547 803 1,065 64 199 2,505 314,384

SGP 421,982 333 132 525 834 1,114 62 185 4,520 135,015

* 17,217,676 1,235 171 2,338 4,187 6,297 112 744 27,855 1,449,146

* = Combined statistics.

A single /24 subnet (103.41.124.0/24) based in Hong Kong (HK) was
observed guessing credentials aggressively on the OTT VM beginning Nov 15,
2014, and later on all five VMs of the short-term study within two days of the
VMs coming online (Jan 4, 2015). This subnet alone was responsible for 8,757,604
(or ∼51 %) of all recorded guessing attempts, from 65 observed host addresses.

Because the OTT VM collected attempts for the longest time period, it
received the largest number of login attempts. The corresponding source IP
addresses belong to 934 ASes and 100 countries.

For the short-term study, the five VMs experienced different login attempt
rates. The LON VM received the highest rate, logging ∼2.6M attempts in 10
weeks. The SGP VM received less than one-sixth of those attempts, albeit from
almost the same number of IP addresses (1,114 vs. 1,134). The reason for this
discrepancy is unclear; the aggressive HK subnet discovered both VMs on the
same day, Jan 5 (i.e., the day we started observing login attempts from that
subnet). Of the 65 host addresses belonging to the HK subnet, 64 made attempts
on the LON VM, and 62 similarly on SGP. The two hosts not showing interest
in the SGP VM were among the least aggressive in the subnet, responsible only
for 0.3 % and 0.9 % of attempts made by the entire subnet.

Attackers may seek to compromise systems in specific regions, and the dis-
crepancy between attacks seen on LON and SGP VMs suggests that attackers
may actually be distributing their resources unevenly, perhaps for higher benefits
(or smaller risk of being shut down).

4.1 Number of IPs per /24

Recall from Table 1 that we logged ∼4.2K distinct /24 subnets. About 84 %
(3,528) of those had only one host IP address recorded in our logs. On the other
hand, we observed 76 hosts in 116.10.191.0/24, making it the subnet with
the largest number of malicious2 hosts. This subnet was responsible for 7.5 %
(1,298,912) of all guessing attempts. We observed 626 subnets with between 3
and 10 malicious hosts, and 33 subnets with 11 or more malicious hosts.
2 Although a logged IP address may not necessarily belong to a user with deliberate

malicious intent (e.g., it could be remotely exploited by a malicious third party) we
refer to the IP as such for simplicity.

What Lies Beneath? Analyzing Automated SSH Bruteforce Attacks 77

4.2 Countries with the Most Aggressive Sources

Figure 1a shows the relationship between the number of IP addresses observed
per country, and the number of attempts thereof. As expected, the chart reveals
a positive correlation between these factors. Together, Hong Kong and China
(two right most points) constitute ∼90 % of all guessing attempts observed.

China also comes first in the list of countries by number of observed IP
address (highest point), followed by Bahrain despite the country’s relatively
small IP address allocation—∼450K IPs [3] (see Sect. 4.3 below). Additionally,
analyzing the collective number of attempts per /24 subnets, 7 of the 10 most
aggressive (by number of attempts) subnets are Chinese; the remaining three
are from Hong Kong, USA and France.

100 101 102 103 104 105 106 107

100

101

102

103
China

USA

S. Korea

India Brazil

HK
France

New Zealand
Belarus

Bahrain

attempts/country

#
IP

s/
c
o
u
n
tr
y

(a)

U
SA

B
ra
zi
l

R
us
si
a

C
hi
na

In
di
a

G
er
m
an
y
U
K

U
kr
ai
ne

Ja
pa

n

In
do

ne
si
a

100

101

102
ASes

(b)

Fig. 1. (a) The number of attempts, per country, with respect to IP addresses. For
example, the point (2552, 796) indicates that a country (which is Bahrain) originated
2,552 attempts from 796 IP addresses. (b) The number of ASes per top 10 countries.

The distribution in the number of ASes observed per country is shown in
Fig. 1b. UK, Ukraine, Japan and Indonesia show up in the top 10 countries with
highest number of ASes, while absent from the list of top 10 by number of IP
addresses. This suggests that malicious machines in those countries were more
scattered amongst varying ASes, rather than concentrated in a few. Countries in
which malicious hosts reside in a small number of ASes can more easily coordi-
nate patching efforts. For example, although Bahrain comes second in the list of
countries by number of IP addresses (796 addresses), all such addresses belonged
to three ASes (six /8 subnets). On the other hand, we saw 538 Brazilian addresses
belonging to 201 ASes, requiring involvement from more ISPs to fix.

4.3 IP Addresses as a Ratio of the Total Allocation per Country

We analyze each country’s proportion of malicious IP addresses relative to the
total addresses allocated to the country. For example, Panama is allocated a
total of 1,909,212 IP addresses [3] of which we observed only 6 in our logs, giving
a ratio of 0.31 address per 100,000.

78 A. Abdou et al.

Bahrain tops the list of countries with the largest proportion of malicious
addresses, at ∼177 IP per 100 K allocated. Figure 2 shows a geo-chart with the
number of IP addresses observed per 100 K allocated for each country. Note that
Bahrain is not represented in this chart, as it overshadows the rest of the data.
Additionally, we exclude from the chart data of 10 countries allocated less than
100 K addresses in total.

Fig. 2. Ratio of malicious addresses to 100 K allocated. Created using the Google Chart
libraries, according to terms described in the Creative Commons 3.0 License.

5 Password Analysis

Figure 3a shows the Cumulative Distribution Function (CDF) of all observed
password guesses, and the CDF of those not appearing in the RockYou (www.
rockyou.com) dataset. Both distributions are highly skewed. Under the hypothe-
sis that these distributions reflect previously successful SSH guesses, their skew-
ness suggests the potential existence of accounts with poorly- (or carelessly-)
chosen passwords. Passwords of such accounts would require less guess work [6]
to crack than those in the RockYou dataset—CDF also plotted in Fig. 3a.

5.1 Password Length

Figure 3b plots the distribution of password lengths next to the number of pass-
words seen for each lengths. The distributions resemble each other, with more
passwords of a given length being reflected as more login attempts for passwords
of that length. Passwords varied in length from 0 (no password received) to 270.
We observed several hosts in a single network attempting passwords that appear
to be Unix shadow file entries (118 characters long), indicating that attackers
may not always inspect the correctness of their dictionary entries.

www.rockyou.com
www.rockyou.com

What Lies Beneath? Analyzing Automated SSH Bruteforce Attacks 79

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Distinct passwords

C
D
F

SSH (logged herein)

SSH /∈ RockYou

RockYou

(a)

100
101
102
103
104
105
106
107

>100 0 10 20 30 40 50 60 70 80 90

Password Length (chars)

Number of passwords
Number of guesses

(b)

Fig. 3. (a) CDF of distinct password guesses; a point (x, y) means the proportion x of
distinct passwords accounted for the proportion y of all observed. (b) Password length
distribution. For each password length, the bar on the left shows the number of unique
passwords of that length in our set. The bar on the right shows the number of login
attempts seen with a password of that length.

5.2 Password Composition Compared to Known Dictionaries

In Table 2, we show the password composition of the 1.4M passwords in our
set. Over 22 % of password guesses observed were constructed as one or more
letters followed by one or more numbers (e.g., test123 or admin6). More than
half of all passwords contained only lowercase characters. With the exception
of only lowercase passwords,3 the password composition of passwords in our set
resembles that of the RockYou dataset, where the vast majority of passwords
include only alphanumeric characters (i.e., no special characters), and a large
set of passwords was composed by lowercase characters followed by numbers.

We noticed more than 3.2 K distinct passwords in the form of URLs (e.g.,
ending in .com, or .edu), which were collectively tried ∼140K times. The most
common of those ending in .com and .net respectively were 123.com (attempted
7,014 times) and nowtop.net (971 times).

Table 2. Password composition: observed per experiments herein versus RockYou.

Password Type SSH• RockYou dataset

Count % Count %

Only lowercase 771,101 53.2 3,783,103 26.4

Only uppercase 5,883 0.406 234,913 1.64

Only numbers 140,074 9.67 2,348,128 16.4

Letters then numbers 325,547 22.5 5,340,129 37.2

Have no special characters 1,372,858 94.7 13,395,174 93.4

Have special characters 76,288 5.26 949,217 6.62

Total 1,449,146 100 14,344,391 100
• per experiments herein

3 Attackers may guess only lowercase passwords more frequently in expectation that
system administrators pick these types of passwords more often.

80 A. Abdou et al.

Table 3. Examples of passwords observed in our experiments but not appearing in
common leaked dictionaries (see inline for details). The column to the right shows the
number of days the password appeared in our logs.

Password # of attempts
of sources

of days (months)
IPs ASes Countries

o12nu27 5,425 512 45 17 369 (12)
idcidc 5,272 533 27 11 368 (12)
rkqldk 4,457 381 9 5 349 (11.4)
\\001 3,837 26 3 1 341 (11.1)
zxm10 3,168 465 32 13 26 (0.85)

Many of the attempted passwords have not been seen in the commonly stud-
ied leaked dictionaries (e.g., RockYou and phpbb). For example, out of the
∼1.4M distinct passwords, 876,012 (60 %) passwords were not present in the
RockYou dataset. Those passwords were collectively attempted 7,136,356 times
out of the ∼17M total attempts (or ∼41 %). Examples of those passwords include
http://managers.at and CactiEZ. See Appendix B for more details on the top
ten passwords and their counts.

Note that the number of guesses of many passwords unique to our dataset
was relatively high. For example, the password idcidc (likely short for “I don’t
care”) was attempted 5,272 times (0.03 % of all ∼17M attempts) from 533 IP
addresses (of all 6,297) belonging to 27 ASes and 11 different countries. This
information increases the likelihood of those ∼5K attempts originating from dif-
ferent attackers using shared lists. Note also that those attempts were (almost)
evenly distributed over the course of 13 months. Table 3 shows five examples of
passwords that did not appear in any of the following leaks: RockYou, Gawker-
Passwords, myspace, phpbb, SonyPasswords, and YahooVoicePasswords.

5.3 Dictionary Sharing and Splitting Among Sources

Owens and Matthews identified password sharing among bruteforcers [14]. Their
work used a narrow definition of sharing that required distinct attackers to
attempt the same username-password pairs in the same order to qualify as shar-
ing. While we also observed same-order guesses as described by Owens and
Matthews, we also noticed random guessing from shared dictionaries (described
below).

One possible way to detect dictionary sharing is to identify overlap between
dictionaries. Figure 4 shows a heatmap of the percentage overlap between pairs
of dictionaries in our set. For this graph, dictionaries are built as the aggregate
set of distinct passwords used by any source within a particular /24 network.
We take the top 1000 largest (by password count) per-/24 dictionaries, and
sort them from largest to smallest on the x and y axes.4 For reference, the
4 In Fig. 8, we show a similar heatmap for overlap between the largest 1000 per-IP

dictionaries (i.e., passwords seen used by each IP).

http://managers.at

What Lies Beneath? Analyzing Automated SSH Bruteforce Attacks 81

10
3.4

1.1
24

22
2.1

86
.38

60
.17

3.1
4

91
.20

0.1
2

12
4.1

67
.23

1

21
1.1

10
.14

0

1.9
3.3

2

10
3.2

1.1
41

20
3.6

9.3
7

19
2.1

88
.51

17
8.6

2.2
52

37
.46

.19
7

11
2.7

8.3

58
.21

5.1
72

13
4.2

55
.23

1

21
0.1

4.1
57

20
2.1

17
.2

68
.19

5.1
97

81
.14

9.3
1

12
5.2

2.2

12
2.1

92
.35

103.41.124

222.186.38

60.173.14

91.200.12

124.167.231

211.110.140

1.93.32

103.21.141

203.69.37

192.188.51

178.62.252

37.46.197

112.78.3

58.215.172

134.255.231

210.14.157

202.117.2

68.195.197

81.149.31

125.22.2

122.192.35

Pe
rc

en
t o

ve
rl

ap
 b

et
w

ee
n

di
ct

io
na

ri
es

 (
0-

10
0)

100
101
102
103
104
105
106

 1
 10
 20
 30
 40
 50
 60
 70

N
um

. p
as

sw
or

ds

N
um

. I
Ps

IPs per subnet
Number of passwords

Fig. 4. Overlap between per-subnet dictionaries. See inline. Best viewed in colour.

largest subnet dictionary (i.e., passwords used by 103.41.124.0/24) contains
∼1.09M distinct passwords. The 1000th largest dictionary (seen used by sources
in the 122.192.35 subnet) contains 21 distinct passwords. As the colour gradient
shows, white indicates no overlap (i.e., no common entries) between a dictionary
on the x-axis and that on the y-axis, while purple indicates 100 % overlap.

Coordinated Dictionary Split. The horizontal and vertical white bands near
the 1.93.32 subnet indicate that passwords guessed were mostly unique com-
pared to all other passwords. Upon further investigation, we identified 13 sources
each guessing from a set of 500 lowercase alphabetical passwords. 11 of the
13 sources showed no overlap between their 500 passwords and other sets in
the group. This lack of overlap and equally sized dictionaries shows with high
probability that a single attacker split a large dictionary into smaller sets of 500
entries, distributing these small sets to bots under his control.

82 A. Abdou et al.

Dictionary Sharing. Purple squares near the x = y line highlight (possibly
non-contiguous) /24 subnets using the same set of passwords. We identified many
such instances, with the most notorious being the large purple region near the top
right of the heatmap. Here, we identified 404 distinct sources from 54 countries
all guessing from a dictionary of around 90 alphanumeric strings. These guesses
also came from a set of around 90 distinct username-password combinations,
indicating coordination among sources.

Another example is the largest purple region near the bottom left. Here
12 distinct networks were seen using the same dictionary of 10,546 passwords.
Sources in this set also each performed the same number of guesses overall
(10,852), and each guessed each password in their dictionary the same num-
ber of times (e.g., 123456 23 times, password 14 times, 123 11 times, etc.).
While this behaviour may hint at coordination or centralized control, it could
also reflect distinct attackers using software configured the same way (e.g., by
not modifying the default configuration or password list).

The predominant purple and orange shading suggests that dictionary sharing
or distribution takes place among attackers.5 Small sets of passwords, likely
bundled with bruteforcing tools or found online, are used by many attackers.
However, as we discuss in Sect. 5.2, the overlap of these passwords with common
web-based leaked dictionaries (e.g., RockYou) is not significant. One possible
explanation is that attackers may be running SSH servers on their botnets to
log guessing attempts made by other attackers. Such a strategy would allow
attackers to effortlessly and quickly expand their dictionaries.

5.4 Reattempting Username-Password Combination

Recall that none of our VMs had any valid accounts, so all login attempts failed
for all guesses. Despite this, we noticed that some username-password guesses
were made by the same source on the same destination VM more than once.
For example, the username nano and password bl3rand,. were tried four times
against the LON VM from a machine in Baotou, China between Jan and Feb
2015. About one-third of all source IP addresses (2,019 of 6,297) manifested that
behavior (77 addresses were particularly responsible for ∼50 % of all repeated
attempts). Those addresses belong to 1,189 of all 4,187 /24 IP addresses. In total,
such repeated attempts account for 25 % (or ∼4.3M of ∼17M) of all guessing
attempts, with time between pairs of repeated attempts ranging from less than
one second to ∼11 months. Attempts repeated more than twice also occurred,
as evidenced by an address that guessed username root and password \\001

1,220 times against the OTT VM in only 19 minutes.

5 We believe it is unlikely that all such highly overlapping dictionaries belong to a
single attacker since many of their bruteforcing behaviors were different, e.g., timing
dynamics, rate of attempts, etc. Even dictionary pairs with extreme overlap had
different guessing order.

What Lies Beneath? Analyzing Automated SSH Bruteforce Attacks 83

One possible explanation for repeating attempts is that a machine could
be controlled by multiple attackers simultaneously. This may happen when
attackers, upon compromising a new system, fail to patch the vulnerability they
exploited.6 Attackers may also be repeating attempts to account for password
aging policies [7], expecting previously-failed attempts to succeed due to a pass-
word change. Although both hypotheses above could explain attempts repeated
within months or weeks, they fail to explain repeated attempts within shorter
intervals (e.g., minutes or seconds). We found that the time between 59,514
(1.4 %) pairs of repeated attempts was one second or less, and between 251,305
(5.7 %) was one minute or less, hinting at attack software misconfiguration.

Another explanation is that attackers may not have enough resources to store
which username-password pairs were attempted on which SSH server. Thus, they
operate a herd of bots arbitrarily, where any bot guesses a combination (from the
same fixed list of candidate guesses) on any server. Machines showing extremely
large average time (i.e., multiple months) between repeated attempts could have
gone through three phases: compromised, patched, then re-compromised (either
by the same attacker, or another one with overlapping dictionary). The source
may also have completed a full cycle through a list of targets and passwords,
arriving at the starting point once again.

100

101

102

103

104

100 101 102 103 104 105 106 107

admin

test
roo
toot

oracle
nagios

debug

default
pi

N
um

be
r

of
 d

is
tin

ct
 p

as
sw

or
ds

 (
lo

g)

Number of login attempts (log)

(a)

0 0.2 0.4 0.6
0.4

0.6

0.8

1

Distinct usernames

C
D
F

Usernames

w/o root

w/o root and admin

(b)

Fig. 5. (a) Number of login attempts and distinct passwords per username (excluding
root). (b) A CDF of usernames; a point (x, y) means the proportion x of distinct
usernames accounted for the proportion y of all ∼17M observed.

6 Username Analysis

Root and Admin. The most commonly attempted usernames were root
(∼95 % of all attempts) and admin (∼3 %). Interestingly, only 63 % of source
IP addresses guessed passwords for root or admin, meaning that the remain-
ing 37 % specifically targeted non-administrative accounts, though at a much

6 Attackers may be unwilling to change the password or patch the vulnerability used
to compromise to avoid detection by the legitimate user of that system.

84 A. Abdou et al.

slower rate. Figure 5a plots the number of login attempts observed for a specific
username on the x-axis, and the number of distinct passwords for that user-
name on the y-axis. Based on this behaviour, defensive strategies that block the
IP addresses attempting root will fail to block a large portion of sources, but
will succeed in blocking the vast majority of attempts (until attack behaviour
changes).

Figure 5b shows a CDF of username distribution. We note that the skew in
the CDF even when excluding root and admin indicates that attackers target a
narrow set of usernames. We discuss the implications of this in Sect. 8.

Other Usernames. The remaining set of usernames were tried comparatively
fewer times with fewer distinct passwords. Out of 27,855 total usernames, 7,612
(27.33 %) saw only a single login attempt with a single password; 1,369 usernames
(4.91 %) saw 2 attempts with a single password; and 7,340 (26.35 %) usernames
recorded 2 attempts with 2 distinct passwords. This trend does not continue,
since only 119 usernames received 3 attempts with 3 distinct passwords.

In 2008, Owens and Matthews [14] reported that attackers frequently use the
username as the password (e.g., user david, password david) in SSH guessing
attacks. We recorded 50 % of non-root and non-admin guesses attempting user-
names as the password, confirming that attackers continue using this strategy.

7 Timing Analysis

Table 4 summarizes the rates of attempts received on each VM per day, and per
hour. The last row shows combined statistics—minimum of the six minimums,
median of medians, and maximum of maximums respectively.

On Jun 14, 2014, between 3pm and 4pm EST, the OTT VM received more
than 85 K attempts, averaging ∼24 per second. Collectively, those originated
from 55 IP addresses in 13 /24s; however, about half of these attempts originated

Table 4. Summary of the rate of attempts.

VM Rate of attempts

Per day Per hour

Min Median Max Min Median Max

OTT 349 17,805 273,120 0 754 85,770

LON 836 35,445 116,935 0 1,204 15,375

NY 354 15,036 192,351 0 53 69,770

SFO 180 15,993 119,981 0 47 60,026

AMS 281 9,655 91,901 0 101 7,742

SGP 516 3,755 38,290 0 55 10,451

* 180 15,515 273,120 0 55 85,770

What Lies Beneath? Analyzing Automated SSH Bruteforce Attacks 85

M
A
R
’1
4

A
P
R
’1
4

M
A
Y
’1
4

JU
N
’1
4

JU
L’
14

A
U
G
’1
4

SE
P
’1
4

O
C
T
’1
4

N
O
V
’1
4

D
E
C
’1
4

JA
N
’1
5

F
E
B
’1
5

M
A
R
’1
5

0

1

2

3
·105

Long-term study duration

A
tt
e
m
p
ts
/
d
a
y

OTT

(a)

12
:3
0

13
:3
0

14
:3
0

15
:3
0

16
:3
0

17
:3
0

18
:3
0

19
:3
0

20
:3
0

21
:3
0

22
:3
0

23
:3
0

0

500

1,000

1,500

2,000

First day (Jan 4, 2015)

A
tt
e
m
p
ts
/
m
in

NY LON SFO

SGP AMS

(b)

Fig. 6. (a) Daily attempts during the long-term study. (b) Attempts per minute during
the first day of making the SSH servers public; all five VMs were started at the same
time—the first point on the x-axis is 12:30pm UTC. Best viewed in colour.

from a single /16. For the short term study (the other 5 VMs), we noticed that the
two European-based VMs had relatively less skewed distribution of attempts over
time. This can be inferred from the Median Per Hour (relatively large medians)
and Max Per Hour columns (relatively small), suggesting the possible presence
of IDS-like systems in common backbone European networks that enforce some
form of rate-limiting.

At no single day did any of the six VMs receive zero attempts. The median
attempts per day varied from 3.7K (SGP) to 17.8K (OTT). Statistical confidence
from this data found a 90 % chance the median number of (unthrottled) login
attempts received per day by any SSH server is between 6.7 K and 24.3K. The
maximum number of attempts per day varied considerably across VMs. On Nov
16, 2014, the OTT VM experienced 273 K attempts—the largest rate per day of
all VMs. Similarly, the NY VM had the highest rate per day in the short term
study, scoring 192 K attempts on Jan 24, 2015.

Figure 6a shows the number of attempts received by the OTT VM in each
day of the long term study (373 days). The spikes on May 6 and Jun 14 (126,917
and 260,046 attempts, respectively) occurred when an attacker first discovers
the SSH server. A single source IP address was responsible for 94 % of attempts
on May 6, but that machine did not make further attempts on any VM after
May 6. Likewise, a single IP was responsible for 98 % of the attempts made on
Nov 16; and 62.210.128.0/18 was responsible for 79 % of those on Nov 25.

Figure 6b shows the number of attempts in the first 12 hours (beginning at
12:30pm UTC) after starting the SSH servers of the five short-term study VMs.
The NY VM was the first to receive guessing attempts only 51 minutes after it
was started, versus 4 hours and 33 minutes for the SGP VM which was the latest.
The number of sources attempting guesses on the first day varied as well, from

86 A. Abdou et al.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

A
ve

ra
ge

 a
tte

m
pt

 p
er

 d
ay

 (
lo

g)

Number of days

(a)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 a
tte

m
pt

 p
er

 d
ay

 (
lo

g)

Range of days

(b)

Fig. 7. A point (x, y) represents a machine (IP address) that made an average of y
attempts per day and appeared in our logs (a) for x possibly non-consecutive days (b)
for a range of x days, i.e., difference between the first and the last day.

4 (SFO) to 15 (LON). Only a single source (located in Ukraine) made guesses
on all five VMs on the first day within a two hour window (about four hours
after starting the SSH service). This machine seemed not aggressive, making
only one guess on each VM on that day. In fact, we found that this machine
guesses a username-password combination on the five VMs then proceeds to the
next combination; attempts on the VMs were in the same order (which is AMS,
LON, SFO, NY, SGP), and the time between VMs was constant (e.g., 7 minutes
between AMS and LON, 25 between LON and SFO, etc.). It is thus likely that
this machine performs reconnaissance concurrently to guessing passwords.

Next, we analyze the density of guessing attempts per source IP address
over time. Figure 7 shows scatter plots where each point represents a source IP
address. In Fig. 7a, the average number of attempts per day made by an IP
address is plotted against the number of days the address appeared in our logs.
Most IP addresses showed up for ten days or less. The highest point is a source
machine that made 119,267 guessing attempts within a two hour period. Similar
behaviour was noticed from five other hosts in the same /24, and there was a
high degree of overlap between password guesses.

The point (x, y) = (39, 2) is a source machine that collectively made 79
attempts in 39 non-consecutive days, averaging ∼2 attempts per day. All guesses
were attempted on the SFO VM. The concentration of points between 35 and
50 (circled in Fig. 7a) belonged to the aggressive HK subnet 103.41.124.0/24
(see Sect. 4), highlighting the persistence of this subnet.

Figure 7b similarly shows the average number of attempts but over a duration
of consecutive days, from the first to the last day an IP address has appeared in
the logs. The concentration of points is now closer to the bottom of the y-axis,
compared to the previous case, since the average is taken over a longer period of
time. Although the maximum number of (possibly non-consecutive) days an IP
address have appeared in the logs did not exceed 60 (i.e., from Fig. 7a), a range
of up to 350 days was noticed. This could be due to an attacker not fully utilizing

What Lies Beneath? Analyzing Automated SSH Bruteforce Attacks 87

its computing resources, or perhaps machines being fixed then re-exploited. In
conclusion, if IP-blacklisting was employed, system administrators should not
haste into whitelisting addresses shortly after guessing attempts discontinue,
since attacking machines may turn dormant for days before resuming activity.

8 Recommendations

Our data analysis allows us to propose concrete suggestions to administrators for
reducing the probability of successful guesses of SSH credentials. We note that
these recommendations do not preclude additional security mechanisms such as
IDS, public key authentication, etc.

Network Blocking. We observed that certain IP addresses, often working
closely with other IP addresses in the same network block can exhibit aggressive
behaviour when guessing credentials. Opportunistic detection and blocking of
these sources could reduce the number of guesses by a significant fraction. For
this purpose, tools such as DenyHosts and Fail2Ban (see Sect. 2), in addition
to rate-limiting login attempts can prevent login attempts from polluting the
system logs. We note, however, that any mechanism that blocks an IP address
should periodically (e.g., after three to six months) remove the block, as attack-
ing systems tend to persist their attack for short time periods.

Username Whitelisting/Blacklisting. The overwhelming majority of login
attempts target the root account. Thus, disabling remote logins for root could
be an effective method of preventing successful guesses. A more proactive app-
roach involves explicitly whitelisting usernames that are allowed to login via
SSH, thus reducing the attack surface. Moreover, from our dataset, blacklisting
the top 20 % of observed usernames could prevent 80 % of successful attacks,
which aligns with suggestions by Florencio et al. [9]. This strategy may impose
less cognitive load on the user (as compared to blacklisting passwords), since
usernames must not be secret.

Proactive Password Checks. Proactive password checking is believed to
improve the security of a system [5]. Florencio et al. further suggest that black-
lists of as many as 106 passwords seems to be an effective operating point to
prevent online guessing without causing substantial user inconvenience [10]. In
addition to identifying frequently targeted accounts and passwords, we suggest
proactive checking to disallow passwords equal to usernames.

9 Conclusion

We presented a methodology for collecting automated SSH login attempts, and
analyzed the largest set of attack logs to date. By analyzing plaintext password

88 A. Abdou et al.

guesses, we were able to identify broad dictionary sharing across all attackers,
and note that many of the passwords used during SSH bruteforce campaigns are
independent from those of common web-based password leaks. We also observed
highly coordinated and highly distributed guessing attacks both within single
subnets and distributed across multiple regions. Our analysis shows that attacks
target all publicly accessible systems, but some systems may be of more interest
to attackers due to their physical location or connectivity.

Acknowledgements. We thank Hala Assal, Elizabeth Stobert, Mohamed Aslan,
Raphael Reischuk, and the anonymous referees for insightful comments which have
improved this paper.

Appendix A SSH Servers on Non-standard Ports

A commonly suggested strategy to reduce the chances of guessing attacks suc-
ceeding is to change the default listening port (TCP 22) to a non-standard
port. Using a port other than the default requires client-side changes, so easy
to remember ports (such as 2222 or 2022) are sometimes suggested by adminis-
trators and users [14]. To investigate the validity of this suggestion, we created
a network daemon that accepts incoming connections on all TCP ports (except
port 22). When a new connection is received, the daemon looks for an initial
SSH handshake and immediately closes the connection. We recorded the source
IP, port number, and timestamp of all incoming SSH protocol connections. We
ran this daemon on a separate VM over a 12 day period, and recorded 30,169
incoming connections to 522 distinct ports, out of which 77 were SSH connection.
These incoming connections originated from 9 distinct source IP addresses. The
full list of ports which received SSH connections are listed in Table 5. Notice that
all incoming SSH connections have the digit 2 in the port number, many with
two or more occurrences. Also of interest is that none of the 9 sources was seen
making connections in the long-term or short-term study, hinting at the possi-
bility that attackers dedicate some bots to non-standard scans/attacks. Despite
the short duration of this study above (port numbers), the results show that
attackers do not simply ignore non-standard ports. With availability of modern
(and extremely fast) network scanning tools [8], attackers can quickly scan all
open ports on sets of systems typically identified by an IPv4 address. Thus, mov-
ing an SSH daemon to a port other than 22 may not provide a comprehensive
solution.

Appendix B Top Usernames and Passwords (Non-root)

Table 6 shows the top ten usernames and passwords, including the top ten pass-
words that did not appear in the RockYou dataset (RockYou’s top ten are also
included for reference). From the second column, we notice that the top ten pass-
words in our set are likely relevant to conventions among system administrators,

What Lies Beneath? Analyzing Automated SSH Bruteforce Attacks 89

Table 5. List of non-standard ports on which incoming SSH connections were received.

Port Count Port Count Port Count Port Count Port Count Port Count

2222 29 55022 3 22002 3 8822 1 2101 1 2233 1

1202 7 2312 3 21002 3 8022 1 2011 1 10022 1

2111 5 2266 3 7022 2 22203 1 2001 1

22088 4 221 3 22201 2 2212 1 122 1

Table 6. Top ten passwords

SSH• SSH• Not in RockYou RockYou

Password Count % Password Count % Password Count %

admin 20657 0.120 toor 7204 0.101 123456 290729 0.892

123456 17592 0.102 root@123 6771 0.095 12345 79076 0.243

password 14981 0.087 r00t 6593 0.092 123456789 76789 0.236

root 12122 0.070 data 6275 0.088 password 59462 0.182

1234 11515 0.067 root00 6269 0.088 iloveyou 49952 0.153

test 10091 0.059 p@ssw0rd1 5947 0.083 princess 33291 0.102

12345 9963 0.058 nagios 5908 0.083 1234567 21725 0.067

123 9371 0.054 admin@123 5806 0.081 rockyou 20901 0.064

abc123 9113 0.053 root123!@# 5581 0.078 12345678 20553 0.063

12345678 8747 0.051 shisp.com 5543 0.078 abc123 16648 0.051
• per experiments herein

Table 7. Top ten username-password combination, where the username is neither root
nor admin. The length of this set is 294,694, of which 69,110 are unique.

Username Password Count %

ubnt ubnt 2098 0.712

guest guest 1933 0.656

test test 1932 0.656

oracle oracle 1893 0.642

support support 1516 0.514

info info 1412 0.479

nagios nagios 1203 0.408

pi raspberry 1199 0.407

postgres postgres 1103 0.374

ftp ftp 1089 0.370

90 A. Abdou et al.

'heatmaptop1000-sorted-full.dat' matrix

1.
93

.0
.0

/1
8

60
.1

73
.0

.0
/1

6

61
.1

60
.0

.0
/1

6

61
.1

74
.5

1.
0/

24

62
.2

10
.0

.0
/1

6

10
3.

41
.1

24
.0

/2
4

11
1.

74
.2

38
.0

/2
3

11
5.

23
0.

0.
0/

12

11
6.

10
.1

91
.0

/2
4

11
7.

21
.0

.0
/1

6

12
2.

22
5.

0.
0/

16

14
4.

0.
0.

0/
24

18
3.

57
.5

7.
0/

24

19
2.

12
6.

12
0.

0/
24

20
2.

10
9.

14
3.

0/
24

21
8.

2.
0.

0/
24

22
0.

17
7.

19
8.

0/
24

22
1.

22
9.

16
0.

0/
16

22
2.

18
6.

0.
0/

16
1.93.0.0/18

60.173.0.0/16
61.160.0.0/16

61.174.51.0/24

62.210.0.0/16

103.41.124.0/24

111.74.238.0/23

115.230.0.0/12

116.10.191.0/24

117.21.0.0/16

122.225.0.0/16

144.0.0.0/24

183.57.57.0/24
192.126.120.0/24

202.109.143.0/24

218.2.0.0/24

220.177.198.0/24
221.229.160.0/16

222.186.0.0/16

P
er

ce
nt

 o
ve

rla
p

be
tw

ee
n

di
ct

io
na

rie
s

(0
-1

00
)

102

103

104

105

106

N
um

. p
as

sw
or

ds

Number of passwords

Fig. 8. Overlap between per-IP dictionaries. This figure plots overlap between the
1000 largest per-IP dictionaries. Dictionaries are sorted by IP address. The histogram
below the heatmap shows the number of passwords in the per-IP dictionary for the IP
immediately above.

due to the nature of SSH. The most common attempted password, toor, is the
mirror of root. Nagios [2] is an open-source monitoring software.

For reference, in Table 7 we list the most frequent username-password com-
binations in our set. Note that most of these combinations follow the “username
as password” strategy described in Sect. 6.

Appendix C Overlap of Per-IP Dictionaries

Figure 8 shows percentage overlap between per-IP dictionaries. For this graph,
the per-IP dictionary contains the set of all passwords tried by that IP address
during the full collection period. We sort the IP addresses numerically on the
x and y axes, which allows us to identify large contiguous IP space exhibiting

What Lies Beneath? Analyzing Automated SSH Bruteforce Attacks 91

similar behaviour. For example, the subnet 103.41.124.0/24 contains many hosts
with similarly sized dictionaries that have very little overlap (white vertical band-
ing) with other dictionaries in the set.

References

1. Internet Storm Center - SSH Scanning Activity. https://isc.sans.org/ssh.html, Sep-
tember 13 (2015)

2. Nagios. https://www.nagios.org, September 13 (2015)
3. Country IP Blocks - Allocation of IP addresses by Country. www.countryipblocks.

net/allocation-of-ip-addresses-by-country.php, September 13 2015
4. Alsaleh, M., Mannan, M., van Oorschot, P.C.: Revisiting defenses against large-

scale online password guessing attacks. IEEE Trans. Dependable, Secure Comput.
(TDSC) 9(1), 128–141 (2012)

5. Bergadano, F., Crispo, B., Ruffo, G.: High dictionary compression for proactive
password checking. ACM Trans. Inf. Syst. Secur. (TISSEC) 1(1), 3–25 (1998)

6. Bonneau, J., The science of guessing: Analyzing an anonymized corpus of 70 million
passwords. In: IEEE Symposium on Security and Privacy (2012)

7. Chiasson, S., van Oorschot, P.C.: Quantifying the security advantage of password.
Des. Codes Crypt. 77, 1–8 (2015)

8. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: Fast Internet-wide scanning
and its security applications. In: USENIX Security, August 2013

9. Florencio, D., Herley, C., Coskun, B.: Accomplish, do strong web passwords any-
thing? In: USENIX HotSec, pp. 10:1–10:6 (2007)

10. Florencio, D., Herley, C., van Oorschot, P.C.: An administrators guide to internet
password research. In: USENIX LISA (2014)

11. Hofstede, R., Hendriks, L., Sperotto, A., Pras, A.: SSH compromise detection using
NetFlow/IPFIX. ACM SIGCOMM CCR 44(5), 20–26 (2014)

12. IPinfo. IP Address Details - ipinfo.io. http://ipinfo.io, September 13 (2015)
13. Javed, M., Paxson, V.: Detecting stealthy, distributed SSH brute-forcing. In: ACM

CCS (2013)
14. Owens, J., Matthews, J.: A study of passwords and methods used in brute-force

SSH attacks. In: USENIX LEET (2008)
15. Satoh, A., Nakamura, Y., Ikenaga, T.: Identifying user authentication methods

on connections for SSH dictionary attack detection. In: IEEE Annual Computer
Software and Applications Conference Workshops (COMPSACW) (2013)

16. Sperotto, A., Sadre, R., de Boer, P.-T., Pras, A.: Hidden markov model modeling
of SSH brute-force attacks. In: Bartolini, C., Gaspary, L.P. (eds.) DSOM 2009.
LNCS, vol. 5841, pp. 164–176. Springer, Heidelberg (2009)

17. Thames, J.L., Abler, R., Keeling, D.: A distributed active response architecture
for preventing SSH dictionary attacks. In: IEEE Southeastcon, pp. 84–89 (2008)

18. Ylonen, T.: SSH - Secure login connections over the internet. In: USENIX Security
(1996)

https://isc.sans.org/ssh.html
https://www.nagios.org
www.countryipblocks.net/allocation-of-ip-addresses-by-country.php
www.countryipblocks.net/allocation-of-ip-addresses-by-country.php
http://ipinfo.io

Cryptography

Catena Variants

Different Instantiations for an Extremely Flexible
Password-Hashing Framework

Stefan Lucks and Jakob Wenzel(B)

Bauhaus-Universität Weimar, Weimar, Germany
{stefan.lucks,jakob.wenzel}@uni-weimar.de

Abstract. Catena is a password-scrambling framework characterized
by its high flexibility. The user (defender) can simply adapt the under-
lying (cryptographic) primitives, the underlying memory-hard function,
and the time (λ) and memory (garlic) parameters, to render it suitable
for a wide range of applications. This enables Catena to maximize the
defense against specific adversaries, their capabilities and goals, and to
cope with a high variation of hardware and constraints on the side of
the defender. Catena has obtained special recognition of the Password
Hashing Competition (PHC), alongside of the winner Argon2.

In addition to the default instantiations presented in the PHC sub-
mission, we want to use this document to introduce further variants of
Catena, or rather, further instantiations of the Catena framework. Our
instantiations use different hash functions, and we evaluate their influ-
ence on the computational time and the throughput. Next, we discuss
how instantiations of the memory-hard graph-based algorithm influence
the computational time and resistance against low-memory attacks. Fur-
thermore, we introduce possible extensions of Catena accommodating
strong resistance against GPU- and ASIC-based adversaries, e.g., by pro-
viding sequential memory-hardness due to a data-dependent indexing
function. At the end, we combine particular instantiations discussed so
far to construct full-fledged variants of Catena for certain goals. Hence,
this document can be seen as an additional guide to the PHC submission
of Catena when considering its usage under certain restrictions.

Keywords: Catena · Instantiations · Password hashing competition

1 Introduction

Today, it is common wisdom to store a one-way hash of a password instead of
the password itself. Nevertheless, due to the large number of leaked password
hashes [23] and the fact that the quality of passwords did not increase signif-
icantly over the last years [9], the evolution of password hashing had to bring
up a new class of algorithms which is able to thwart “modern” attack types,
i.e., cache-timing attacks [5,14], garbage-collector attacks [12], and low-memory
attacks [6,8]. Thus, in 2013, the Password Hashing Competition (PHC) [2]
c© Springer International Publishing Switzerland 2016
F. Stajano et al. (Eds.): PASSWORDS 2015, LNCS 9551, pp. 95–119, 2016.
DOI: 10.1007/978-3-319-29938-9 7

96 S. Lucks and J. Wenzel

was brought to life with the goal to find one or more suitable successors of
PBKDF2 [21], scrypt [25], and bcrypt [28].

During the progress of the PHC, there was a development in the properties
and security goals a password-hashing scheme should satisfy depending on its
operational environment. A comparison of the PHC submissions regarding to
their functional properties, security, and general properties can be found in [12].
More properties were considered in certain specification documents of the PHC
submissions. Examples are the resistance against ASICs [11], the delegation fea-
ture [27], and attacks on iterative compression functions [6].

In this work, we focus on the password-scrambling framework Catena [15]
which, alongside of Lyra2 [30], Makwa [27], yescrypt [26], and the winner
Argon2 [6], is one of the specially recognized entries of the PHC [3]. Catena
allows to simply replace the underlying (cryptographic) primitives, the graph-
based layer structure, the order of function calls in the core function, and adapt
its time- and memory-cost parameters. Further, based on the default instantia-
tions, it provides resistance against cache-timing and garbage-collector attacks.

Here, we want to go far beyond the default instantiations of Catena by
considering several configurations based on the choice of the underlying hash
functions, the graph-based layer structure, and extensions to provide certain
features/properties. We provide benchmarks of computational time and memory
usage for each configuration and discuss the security of different graph-based
algorithms in terms of low-memory attacks [8].

Since we want to guarantee a certain level of security for all instances pre-
sented here, we always instantiate the underlying hash function H with a cryp-
tographic hash function. Therefore, we fix H to BLAKE2b [4] and consider
different instantiations only for the possibly reduced hash function H ′. Obvi-
ously, a reduced hash function for H ′ can be deployed for performance reasons
making it possible to increase the memory usage. Nevertheless, we advice against
to use any variant of Catena for key derivation where H ′ is not a cryptographic
hash function, since then it may be impossible to ensure suitable random-oracle
security (which is a requirement for a key-derivation function (KDF)).

Outline. In Sect. 2, we present a slightly generalized variant of the Catena
password-hashing framework and introduce all necessary notions which are used
throughout this work. In Sect. 3, we consider different instantiations of the under-
lying hash function H ′. In Sec. 4, we show and discuss certain graph-based algo-
rithms. In Sect. 5, we introduce further extensions of the underlying structure
of Catena. In Sect. 6, we first discuss the goals which we want to achieve and
second, combine certain instantiations discussed in the former sections to build
variants of Catena fulfilling these goals. Section 7 concludes our work.

2 Preliminaries

For clarity and to ease the understanding of the paper, we borrow and extend
the notions from [15] (see Table 1). Note that for simplicity, we refer to n when

Catena Variants 97

talking in general about the output size of the underlying hash function and
to k for the output size of a particular instance of H ′. Further, we restate
the formal definition of the Catena framework which is used as a basis for
our discussed instantiations (see Algorithm 1). Additionally, the definitions of
(λ)-memory-hardness and (weak) garbage-collector attacks, as given in [15], can
be found in AppendixA.

2.1 Notational Conventions

Table 1. Notations used throughout this document.

Identifier Description

pwd password

s salt (public random value)

λ security parameter of F (depth)

t tweak

γ public input (e.g., salt)

μ secret input (password-dependent value)

glow, ghigh minimum garlic; current garlic with G = 2ghigh

H underlying cryptographic hash function

H ′ arbitrary hash function (e.g., reduced version of H)

m output length of Catena

n output length of H

k output length of H ′ (with k ≥ n)

F memory-hard function

Γ function depending on the public input γ

Φ function depending on the secret input μ

ρ indexing function used to determine a certain graph instance

BRGg
λ (g, λ)-Bit-Reversal Graph

SBRGg
λ Shifted (g, λ)-Bit-Reversal Graph

DBGg
λ (g, λ)-Double-Butterfly Graph

GR�g
λ (g, λ, �)-Gray-Reverse Graph

CTA resistance against cache-timing attacks

PCA resistance against precomputation attacks (tradeoff attacks)

KDF key-derivation function

98 S. Lucks and J. Wenzel

Algorithm 1. Catena

Require: pwd : password, t : tweak, s : salt, glow: min. garlic, ghigh: garlic, m : output
length, γ : public Input

Ensure: x : hash of the password
1: x ← H(t || pwd || s)
2: x ← flap(�glow/2�, x, γ)
3: for g = glow, . . . , ghigh do
4: x ← flap(g, x || 0∗, γ)
5: x ← H(g || x)
6: x ← truncate(x, m)
7: end for
8: return x

2.2 Catena

First, the tweak t1, the password pwd, and the salt s are processed by the underly-
ing hash function H. Then, to provide resistance against weak garbage-collector
attacks [12], the designers decided to apply a twofold strategy where (1) the pass-
word should be removed from memory after the first Step (Line 1 of Algorithm1)
and (2) the output of H is fed into a function called flap (with reduced memory
cost) to ensure that the value x (which is directly derived from pwd) is overwrit-
ten. The second step is useful in cases where a compiler ignores the deletion of a
direct derivative of the password due to optimization. A formal definition of the
function flap can be found in Algorithm2, which is a slightly adjusted variant of
its original version presented in [15]. The adjustment was required to allow state
words of arbitrary size, which will become useful if the underlying hash function
H ′ is instantiated with a function processing state words of k > n bit in size,
e.g., the compression function CF of Argon2 (see Sect. B.1 in AppendixB). The
function Hinit (see Algorithm 2 (right)) processes an input x of n bit size and
outputs two initial state words (v−2, v−1) of k bit each.

Algorithm 2. Adjusted Function flap of Catena (left), Hinit (right)
Require: g: garlic, x : value to hash,

γ : public input
Ensure: x : intermediate hash value
1: (v−2, v−1) ← Hinit(x)
2: for i = 0, . . . , 2g − 1 do
3: vi ← H ′(vi−1 || vi−2)
4: end for
5: v ← Γ (g, v, γ)
6: x ← F (v)
7: return x

Require: x : n-bit value to hash
Ensure: v−2, v−1 : two k-bit outputs
1: � = 2 · k/n
2: for i = 0, . . . , � − 1 do
3: wi ← H(i || x)
4: end for
5: v−2 ← (w0, . . . , w�/2−1)
6: v−1 ← (w�/2, . . . , w�−1)
7: return (v−2, v−1)

1 Note that the tweak is given as the hash value of an instantiation-specific identifier,
a mode, λ, the output size and the size of the salt in bit, and the associated data.
Thus, the tweak is unique for each system and each user within a system.

Catena Variants 99

The rest of flap remains unchanged, i.e., it consists of a mandatory initialization
layer which sequentially fills the whole state in memory for the first time. Then,
it calls the (optional) function Γ and the (mandatory) function F , where Γ is
called the random layer and F is a memory-hard function (usually based on an
underlying graph structure). The memory-accesses employed within Γ depend
on the public input γ, where γ can be freely chosen; also γ = s is possible. In
Sect. 5, we provide an extension of Catena given by a call to an additional
function Φ following F to provide sequential memory-hardness. An instantiation
of Catena is characterized by the following user-chosen parameters:

(Cryptographic) Hash Function H. Can also be non-cryptographic with the
cost of reducing security, i.e., non-cryptographic hash functions may not support
preimage or collision resistance or pseudorandomness.

Memory-Hard Function F . Usually a graph-based structure. Depending
on its choice, an instance of Catena provides memory-hardness, λ-memory-
hardness, or sequential memory-hardness.

Time-and Memory-Cost Parameter. The values glow (min. garlic), ghigh
(garlic), and λ (depth) influence the required memory and computational time.
For simplicity, and as in all default instantiations of Catena, we set glow = ghigh.
The parameter λ denotes the depth of the underlying graph-based algorithm
denoted by F , e.g., the number of stacks of a bit-reversal graph (BRGg

λ).

Extension to the Function flap. Since Catena is designed to be a frame-
work, it is possible to plug-in arbitrary functions to the core flap. For example,
and as already shown in the specification paper of Catena, one could add a
layer/function Γ which uses randomly distributed memory accesses depending
on a public input, to update the internal state.

Depending on the instance of the underlying (cryptographic) primitive and
the graph-based structure, as well as on possible extensions of the core, an
instance of Catena provides a certain level of security. All considered secu-
rity properties and how they are achieved are briefly discussed below, where P
denotes a password-hashing scheme.

Preimage Resistance. Given a value h = P (pwd), it is infeasible to find pwd .
Let m denote the entropy of the password source. Then, an adversary can always
guess a (weak) password by trying out about 2m password candidates, leading
to a success probability of q/2m for q queries. Otherwise, following from Algo-
rithm1, an adversary has to find a preimage for H in Line 5, i.e., for a value
x ← H(g || x). If H is a cryptographic hash function and the output of H is
chosen large enough, e.g., 256 bit, this becomes infeasible.

Resistance Against Garbage-Collector (GC) Attacks. Knowledge about
the internal state lying in memory after the invocation of P should not signif-
icantly reduce the runtime of testing a password candidate. This can be guar-
anteed if the depth (λ) of the underlying graph-based structure is at least 2 or
the extension Φ is used – implying that the internal state is overwritten at least
twice.

100 S. Lucks and J. Wenzel

Resistance Against Weak Garbage-Collector (WGC) Attacks. A value
directly derived from the password (or the password itself) must not lie in mem-
ory during a significant time of the invocation of P . To provide security against
WGC attacks, the password should be removed from memory at an early stage
of P and no value directly (efficiently) derived from it should be used in a late
stage of P . Each instance of Catena provides the latter by Line 2 of Algorithm1,
whereas the former has to be guaranteed by the particular implementation.

Memory-Hardness. At least a quadratic time-memory tradeoff (standard
memory-hardness) is guaranteed by all considered graph-based instantiations.
In Sects. 4 and 5 we also discuss variants of Catena which provide stronger
forms, i.e., λ-memory-hardness and sequential memory-hardness.

Resistance Against Cache-Timing Attacks (CTA). All memory accesses
conducted during the invocation of P must not be data-dependent. Since we
consider instantiations of Catena using the extension Φ (conducting a data-
dependent indexing function), we cannot guarantee this feature in general.

Random-Oracle Security. The outputs of P must be indistinguishable from
random values of the same size. This feature is required for the usage of Catena
as a key-derivation function and highly depends on the instantiation of the under-
lying hash functions H and H ′. More detailed, the specification of Catena only
provides a decent security analysis when H = H ′, where H is a cryptographic
hash function. Thus, we cannot guarantee random-oracle security if H �= H ′.

3 Hash-Function Instantiations

Note that depending on the choice of H and H ′, an algorithm might be vulner-
able to the iterative compression function based attacks introduced by Khovra-
tovich et al. in [6]. In addition to the instantiations of H ′, we also discuss the
function G of BlaMka (GB) (presented in [30]) as a possible variant of the under-
lying permutation of such an instantiation. For simplicity, we denote by GO, GL,
and GB the G function as used in original BLAKE2b and in Lyra2 [30], respec-
tively, whereas GB is a variant of GL extended by 32-bit multiplications. Due
to space issues, we moved the explanation of the discussed instantiations to
Appendix B.

Comparison. We provide performance values based on the instantiation of the
underlying hash function H ′. All measurements shown in Table 2 are done using
the tool Catena-Variants written by Schmidt [16] and its extended version
by Schilling [20]. Due to the fact that the compression function of Argon2 (CF)
supports state words of k ≫ n bit, we fix the memory usage to 128 MB and let
the garlic g to be a variable. Moreover, we fixed λ = 2 (as recommended by the
designers of Catena), we set the random layer (Γ) to the identity, and do not
use any extensions. All measurements were done using an Intel(R) Core(TM)
i7-3930K CPU @ 3.20 GHz. For SHA-512, we used the implementation from the
OpenSSL version 1.0.2d (9th July 2015).

Catena Variants 101

Table 2. Measurements of Catena-BRG (Catena-Dragonfly) compared with dif-
ferent hash functions H ′, where we fix the memory usage to 128MB, λ = 2, Γ to the
identity, and no extensions are used.

Fast HF (H ′) Garlic (g) Time (s) Throughput (GB/s)

BLAKE2b 21 1.55 0.08

BLAKE2b-1 (GO) 21 0.37 0.34

CF (GB) 17 0.25 0.50

CF (GL) 17 0.18 0.69

GF 21 0.64 0.19

MultHash 21 0.30 0.42

Pcompress (GB) 21 0.42 0.29

Pcompress (GL) 21 0.32 0.39

SHA-512 21 4.04 0.03

4 Using Different Graphs

In this section, we describe different instantiations of the underlying graph-based
structure denoted by F in Algorithm 2. The proposed default instantiations of
Catena already include two graph-based algorithms called (g, λ)-Bit-Reversal
Graph and (g, λ)-Double-Butterfly Graph, where g denotes the logarithm of
the memory required per level, and λ the number of levels, i.e., the depth.
By elaborating the first generic time-memory tradeoff (TMTO) attack on pass-
word scramblers [7,8], Khovratovich et al. have shown that a (g, λ)-Bit-Reversal
Graph provides only memory-hardness, whereas it was shown in [22] and restated
in [15] that an algorithm based on a (g, λ)-Double-Butterfly Graph provides λ-
memory-hardness (see [15] for a definition of λ-memory-hardness). Note that
for a (g, 1)-Bit-Reversal Graph, there exists a tradeoff analysis in the parallel
setting exploiting the fact that the maximum required memory is not occupied
during the whole computation time. Thus, multiple computations of a (g, 1)-Bit-
Reversal Graph in parallel can share some of the memory, leading to a reduced
time-memory tradeoff of O(G2/3) instead of O(G2) [1]. Nevertheless, this analy-
sis only holds if λ = 1 and neither the random layer Γ nor the extension Φ is
used.

For each instantiation of F , we require a password-independent memory-
access pattern, i.e., the resistance against cache-timing attacks of an instance
of Catena must not depend on the instantiation of F . In Sect. 5, we introduce
an extension of Catena that provides a password-dependent memory-access
pattern for the sake of sequential memory-hardness (see [25] for a definition).

For now, we disregard the property of sequential memory-hardness for all
variants discussed below and focus on the precomputation attack method of
Khovratovich et al. shown in [7,8]. Thus, we first provide a description of all
four instantiations of F and at the end of the section, we discuss their impact
on the precomputation attack by presenting penalties regarding to the number

102 S. Lucks and J. Wenzel

of recomputations which have to be done if less than 2g · n memory is available.
In our analysis, we exclude the (g, λ)-Double-Butterfly Graph since it is proven
to be λ-memory-hard and thus, the precomputation method is not applicable.
Since all considered instantiations base on the same generic structure, we can
provide a generic graph-based hashing scheme where the difference between the
four variants is given by an individual indexing function ρ(i) (see Algorithm 3
(left)). Moreover, to allow state words of arbitrary size, we also include a similar
adjustment as shown for the function flap in Algorithm 2. Therefore, the first
state value v0 (denoted by r0 in Line 2) is now computed using the function Hfirst

as defined in Algorithm 3 (right). It takes two inputs of k-bit size and outputs
an updated state value r0 of k bit.

Algorithm 3. Generic (g, λ)-Graph-Based Hashing Scheme (left), Hfirst (right)
Require: g: garlic, v : state array,

λ : depth
Ensure: x : output hash
1: for j = 1, . . . , λ do
2: r0 ← Hfirst(v2g−1 || v0)
3: for i = 1, . . . , 2g − 1 do
4: ri ← H ′(ri−1 || vρ(i))
5: end for
6: v ← r
7: end for
8: return r2g−1

Require: v2g−1, v0 : two k-bit state words
Ensure: r0 : k-bit state word
1: w0 ← H(v2g−1 || v0)
2: � = k/n
3: for i = 1, . . . , � − 1 do
4: wi ← H(i || z)
5: end for
6: r0 ← (w0, . . . , w�−1)
7: return r0

The input to such an instance is given by the garlic g determining the memory
required to be able to compute the fastest algorithm for a graph, a state array
v consisting of the current state (of size 2g · n bit) of the password-hashing
scheme, and a value λ determining the depth of the graph structure, i.e., the
number of invocations of the underlying graph-based hashing operation. The
update process of a word vi of the internal state always depends on its immediate
predecessor vi−1 (see Line 4 of Algorithm 3 (left) or Line 2 if it is the left-most
word of the state). Thus, all graphs follow a sequential nature, thwarting parallel
computation of the whole graph.

4.1 (g, λ)-Bit-Reversal Graph

This graph is used in the default instantiation Catena-Dragonfly (see Defi-
nition 5.1 of [15]), where ρBRGg

λ
(i) with i = i0, i1, . . . , iq−1 and ij ∈ {0, 1}, 0 ≤

j ≤ q − 1, is defined by

ρBRGg
λ
(i) = (iq−1, . . . , i1, i0).

Thus, the function ρBRGg
λ
(i) returns the bit reverse of an input i. A property of

any BRGg
λ that was supposed to be exploited in the TMTO attack in [7,8] is

its period of 2, i.e., the permutation has a self-inverting structure leading to the
same order of elements if applied twice:

Catena Variants 103

(0, 1, 2, 3)
BRG2

1−→ (0, 2, 1, 3)
BRG2

1−→ (0, 1, 2, 3).

An intuitive countermeasure was to search for variants of BRGg
λ with an

increased period, which we discuss in the next three parts of this section.

4.2 Shifted (g, λ)-Bit-Reversal Graph

An SBRGg
λ can be adjusted by a constant c determining the period of the under-

lying permutation. Thus, after 2g−c invocations of an SBRGg
λ using the indexing

function ρSBRGg
λ
(i) which is defined by

ρSBRGg
λ
(i) =

(
ρBRGg

λ
(i) + c

)
mod 2g,

the original permutation is reached again. See an example with c = 1 for an
SBRG2

1:

(0, 1, 2, 3)
SBRG2

1−→ (1, 3, 2, 0)
SBRG2

1−→ (3, 0, 2, 1).
SBRG2

1−→ (0, 1, 2, 3).

Unfortunately, the SBRGg
λ does not protect well against the considered tradeoff

attack. For example, we have shown for g = 12, that even if we consider all
possible shift constants c, the penalties do not exceed that of the (g, λ, �)-Gray-
Reverse Graph presented in the next section (see Table 3). Based on the structure
of an SBRG12

λ , the penalties follow a cyclic property, i.e., it holds that pc =
for 0 ≤ c < 212, where pc denotes the penalty for the shift constant

c. Thus, Table 3 shows all possible penalties which exist for an SBRG12
λ with

λ ∈ {2, 3}.
It follows that the instantiation of F with an SBRGg

λ does not significantly
increase the resistance of Catena against the attacks presented by Khovra-
tovich et al. Following from this, we took another approach into consideration
(see Sect. 4.3).

4.3 (g, λ, �)-Gray-Reverse Graph

The indexing function discussed here bases on the combination of ρBRGg
λ

and
the Gray Code [17]. It was initially suggested by Harris on the PHC mailing
list [19] to increase the period of the underlying graph-based structure using the
following indexing function:

ρGR�g
λ
(i) = ρBRGg

λ
(i) ⊕

(
ρBRGg

λ
(̄i) � 	g/�

)
,

where � ∈ {2, 3} and ī denotes the bitwise inversion of i. Thus, in comparison
to a BRGg

λ, the period depends on the number of words of the internal state
(see Table 4). The values of g in Table 4 are chosen to ease comparison, whereas
g ∈ {18, 21} are also used in the default instantiations of Catena.

104 S. Lucks and J. Wenzel

Table 3. Relative costs (penalty) of computing an SBRG12
2 (left) and an SBRG12

3

(right) depending on the shift constant c, where c = 0 corresponds to a BRG12
2 and

BRG12
3 , respectively. The penalties where computed for the case when an adversary

has λ · 2g−α · n memory available (with α = g/3). For comparison, we added the
recomputation costs for a GR212

2 and a GR312
2 .

c Penalty c Penalty

0 22.00 8 28.31
1 25.03 9 28.78
2 25.50 10 29.25
3 25.96 11 29.71
4 26.43 12 30.18
5 26.90 13 30.65
6 27.37 14 31.12
7 27.84 15 31.59

GR212
2 54.56 GR312

2 72.25

c Penalty c Penalty

0 47.00 8 66.95
1 48.41 9 70.04
2 50.76 10 73.22
3 53.23 11 76.52
4 55.80 12 79.80
5 58.47 13 83.30
6 61.26 14 86.88
7 63.97 15 65.87

GR212
2 254.93 GR312

2 223.52

Table 4. Period of a GR2g
λ and a GR3g

λ depending on the number of internal state
words (2g).

Garlic (g) 3 4 5 8 12 13 14 15 16 18 21

GR2g
λ 3 6 6 6 6 6 6 6 6 6 6

GR3g
λ 7 6 21 42 14 42 42 14 42 14 14

In Sect. 4.4 we will see that even the 6-cyclic property of a GR2g
λ is strong

in terms of significantly increasing the penalty of an adversary when consider-
ing the precomputation attack mentioned before. Moreover, the increased period
of a GR3g

λ does not have a significant influence on the penalty in comparison
of a GR2g

λ. Thus, it is an intuitive assumption to say that the increased resis-
tance against the tradeoff attacks of Khovratovich stems more from the general
asymmetric structure of a (g, λ, �)-Gray-Reverse Graph than from the increased
period. This also explains the weak resistance of an SBRGg

λ against the tradeoff
attacks which were initially designed for a BRGg

λ.

4.4 Tradeoff Resistance

In this section, we analyze the resistance of the presented graph instantiations
against the precomputation method of Khovratovich et al. Therefore, we set
the available memory which can be provided by an adversary to λ · 2g−α · n
(note that n is replaced by k if k > n), which delivers an optimal tradeoff for
a BRGg

λ when α = g/3 (we also assume α = g/3 for all penalty computations

Catena Variants 105

independently from the instantiation of F). Based on the available memory, we
compute the relative cost (penalty) an adversary would suffer in comparison
to the case when it has 2g · n memory available (which would be the case for
a defender using Catena). First, we will consider graphs with a depth of 2
or 3, i.e., λ ∈ {2, 3}. Then, we add the optional random layer Γ (see Line 5 of
Algorithm 2) and recompute the penalties to determine the impact of the random
layer on the precomputation method. Note that we do not consider the SBRGg

λ

in this analysis due to its weak resistance against those attacks. Nevertheless,
we add the BRGg

λ for the sake of comparison to the original attacks.

Shifting Sampling Points. The precomputation method of Khovratovich et
al. with an optimal tradeoff considers 2g−α, α = g/3, sampling points stored in
each level of the underlying graph-based structure. Thus, an adversary is allowed
to store 22g/3 memory units per level, where one memory unit is given by one
word of internal state v. The sampling points are placed on the internal state so
that it consists of 22g/3 segments of 2g/3 state words each (beginning with placing
the first sampling point on the first state value v0). First, we were interested
in the fact whether shifting the sampling points by a constant amount (which
could differ for each layer) would strengthen the resistance of an instance of F

against the precomputation attack method. Thus, for all possible (2α)λ = 2α·λ

shift configurations of the sampling points (where the sampling points were still
ordered with a distance of 2g/3 state words), we recomputed the penalty an
adversary would have. The results can be seen in Table 10 in AppendixD, where
we only considered the minimum and maximum values for the penalty. The
values behind the penalties (in brackets) denote the shift constants which are
applied to the particular layers, e.g., 67.61 (4, 7) denotes that all sampling points
in the first layer are shifted by four positions to the right, whereas the sampling
points in the second layer are shifted by seven positions to the right.

From Table 10, we conclude that shifting the sampling points on the internal
state does not significantly favours an adversary in terms of a precomputation
attack. Therefore, all following results are based on the same configuration of
sampling points as used in the original attack [7,8]. Nevertheless, we leave the
question open if an adversary could obtain a significant lower penalty when
considering an optimal distribution of all λ ·22g/3 sampling points over the whole
graph.

Naive Recomputation vs. Precomputation Method. First, we briefly
discuss the difference between the naive recomputation approach and the pre-
computation method, where the former serves as a base for the latter. The con-
figuration of the sampling points is the same for both attack methods, i.e., an
adversary stores λ · 2g−α sampling points over the whole graph with a constant
distance of 2α state words between each other. For the naive approach, the sam-
pling points already determine the required memory for an adversary, whereas
the precomputation method allows to use additional memory in each layer to
speed-up the recomputation. In Table 5, we show the memory requirement for
both attacks depending on the garlic g and depth λ. Note that the values shown
for the precomputation method are given by the maximum additional memory

106 S. Lucks and J. Wenzel

Table 5. Memory requirement depending on the garlic g, the attack method, and the
particular graph instance, where the values are given for λ = 2 (left) and λ = 3 (right).
All values refer to the maximum memory required within one layer.

Attack Garlic(g)
18 21

Precomp.
BRGg

2 211.98 213.98

GR2g
2 214.95 216.98

GR3g
2 217.95 220.98

Naive all 212 214

Attack Garlic(g)
18 21

Precomp.
BRGg

3 211.98 211.98

GR2g
3 217.95 219.98

GR3g
3 217.95 220.98

Naive all 212 214

Graph Graph

Table 6. Penalties depending on the garlic g, the attack method, and the particular
graph instance, where the values are given for λ = 2 (left) and λ = 3 (right).

Attack Graph Garlic(g)
18 21

Precomp.
BRGg

2 32.33 64.33
GR2g

2 150.11 334.08
GR3g

2 352.75 1387.33

Naive all 352.75 1387.41

Attack Garlic(g)
18 21

Precomp.
BRGg

2 47.81 95.87
GR2g

2 1051.77 2344.44
GR3g

2 912.11 3666.58

Naive all 5895.25 45411.00

Graph

which is required within one layer. For comparison, we also include the memory
requirement for one layer when conducting the naive recomputation approach
which solely consists of the sampling points. For simplicity, we set H = H ′ so
that all state words are of n bit in size. Therefore, the values for the precompu-
tation method given in Table 5 denote the number of state words which have to
be stored (excluding the fixed sampling points).

From Table 5, we can deduce that the precomputation method is highly opti-
mized for the application to a BRGg

λ. We observed that for λ ∈ {2, 3}, the
instance given by a GR3g

λ massively thwarts an adversary since its memory sav-
ings are negligible. For example, for g = 18 and λ = 2, it would have to store 212

state words for the fixed sampling points plus 217.95 additional state words, lead-
ing to a total amount of about 217.97 state words. The same holds for a GR2g

3,
whereas at least some memory is saved when λ = 2. For the sake of complete-
ness, the relative costs (penalties) of a naive recomputation and a precomputa-
tion attack on the instances given above are shown in Table 6. Considering the
naive approach, the penalties do not differ between the graph instances since the
underlying structure is given by a permutation, i.e., all values from the previous
layer are used to compute the current layer.

Even with the enourmous extra costs in terms of memory, the application of
the precomputation method to a GR�g

λ leads to a significantly higher penalty
in comparison to the same attack on a BRGg

λ. Thus, we can conclude that the

Catena Variants 107

instances of F given by a GR�g
λ provide a strong resistance against the TMTO

attacks introduced by Khovratovich et al. Nevertheless, there might exist attacks
which are specificially focused on such instances, hence, reducing the penalty of
an adversary. At the moment, we are not aware of such attacks and leave it as
an open research question.

5 Extensions

This section discusses two extensions to the generic core of Catena: (1) a
password-independent random layer Γ increasing the resistance of an instance
of Catena against ASIC-based adversaries and (2) a password-dependent ran-
dom layer Φ adding sequential memory-hardness to an instance of Catena.
Each extension works independently from the instantiations of the underlying
hash functions H and H ′. Due to space issues, we discuss both extensions in
AppendixC.

6 Discussion and Recommendations

All variants presented and recommended in this section provide preimage resis-
tance as well as resistance against WGC attacks. Resistance against GC attacks
is only considered for variants of Catena which are used for password hash-
ing since an adversary launching a GC attack on an instance of Catena must
already have access to the RAM used by this particular instance. Thus, reading
the internal state of an instance of Catena (required for launching a GC attack)
is as easy as obtaining the key generated by this instance. Nevertheless, if a vari-
ant makes use of the extension Φ, it directly derives GC resistance since the
internal state is at least overwritten twice: at least once during the call to F and
one time during the call to Φ. Furthermore, we only consider instantiations of
F which conduct a password-independent memory-access pattern. If one would
like to use a variant of Catena providing sequential memory-hardness, we refer
to the extension Φ (see Sect. 5). Be aware that, for the variants presented here,
the indexing function R used within Φ simply returns the g least significant bit
of its input. In Table 7, we list and compare all variants of Catena which we
recommend for usage in real-world applications. We always assume glow = ghigh
and recommend variants of Catena based on the four goals discussed below,
where the -Full versions imply that H = H ′ = BLAKE2b. For each goal, we
provide an instance for password hashing and one for key-derivation, whereby
we set the maximal runtime to about 0.5 s for the former and about 5 s for the
latter.

Note that all four variants discussed below satisfy common security goals for
password hashing and key derivation (the -FULL versions), i.e., preimage secu-
rity, random-oracle security, resistance against (weak) garbage-collector attacks
(except Catena-Horsefly-Full), and at least memory-hardness. Thus, a vari-
ant of Catena should be deployed depending on the most probably occurring
type of adversary.

108 S. Lucks and J. Wenzel

ASIC Resistant (Catena-Stonefly/Catena-Stonefly-Full). For the appli-
cation of password hashing, providing strong resistance against ASIC-based
adversaries can be achieved (among other things) by a password-dependent
memory-access pattern (providing sequential memory-hardness), a public-input-
dependent memory-access pattern, and multiplication-hardening. The idea of
the password-dependent memory-access pattern can be realized by the exten-
sion Φ introduced in Sect. 5. We highly recommend to place the function Φ at
the end of flap, since then the advantage of an adversary launching a cache-
timing attack (as described for scrypt in [13]) against Catena is negligible.
We further recommend to use a function conducting a public-input-dependent
memory-access at the start of flap. Then, an ASIC-based adversary would have
to copy the whole state to and from an ASIC if it aims to compute the under-
lying memory-hard function F on an ASIC (which would be intuitive since it
follows a password-independent memory-access pattern and thus, can be com-
puted efficiently on an ASIC). Such a function is given by Γ , which was already
introduced in the default instantiation of Catena, where the public input is
given by the salt. The goal of multiplication-hardening can achieved by using
the function GB (see Algorithm 5 (right) in Appendix B.2) as the underlying
permutation of H ′. For performance reasons, we instantiate F with a BRG18

2

since we do not aim to provide full resistance against tradeoff attacks for this
instance. Catena-Stonefly and Catena-Stonefly-Full can be seen as the
Catena complements to the data-dependent variant of the PHC winner Argon2,
i.e., Argon2d [6].

High Throughput (Catena-Horsefly/Catena-Horsefly-Full). Even if we
aim for maximal performance and memory usage, each instance of Catena
should still provide a certain level of security. Therefore, we decided against
instantiating H ′ in our recommended variants with MultHash (untrusted, inse-
cure) or the Galois-Field Multiplication (allows tradeoff attacks with signifi-
cantly reduced memory). Thus, for H ′, we opted for the compression function
CF of Argon2 using GL. The underlying graph-based structure F is set to a
BRG18

1 which provides, in comparison to a GR3g
λ and a DBGg

λ, the fastest graph-
traversing operation. Be aware that λ = 1 provides high performance but on the
other hand allows for GC attacks. Therefore, we refer to λ = 2 if GC attacks
are likely to happen. The instance presented here would be also suitable for the
application in a proof-of-space scenario based on a challenge-response protocol.

Tradeoff Resistance(Catena-Mydasfly/Catena-Mydasfly-Full). For a
tradeoff-resistant instance of Catena we decided to use a DBG14

2 as instan-
tiation of F . This decision is based on the fact that we want to provide strong
resistance against tradeoff attacks without enabling an adversary to launch a
cache-timing attack on the “first part” of flap. To further increase the resistance
against tradeoff attacks, we make use of the extension Φ, providing sequential
memory-hardness. Since the focus of this instance does not lie in ASIC resis-
tance, we favour CF with GL over GB as the underlying hash function H ′.
Catena-Mydasfly and Catena-Mydasfly-Full can be seen as the Catena
complements to the data-independent variant of the PHC winner Argon2, i.e.,
Argon2i [6].

Catena Variants 109

Hybrid (Catena-Lanternfly/Catena-Lanternfly-Full). Here we wanted to
aim for the best performance while remaining suitable security against ASIC-
based adversaries, tradeoff attacks, as well as cache-timing resistance. Therefore,
in comparison to Catena-Stonefly, we disregard the extension Φ but keep
the invocation of Γ to provide sufficient resistance against ASICs. We instan-
tiate F by a GR3172 which maintains reasonable resistance against precompu-
tation attacks while still providing acceptable performance (in comparison to a
DBGg

λ). The hash function H ′ is instantiated with CF of Argon2 using GB , which
leads to a good throughput in terms of memory while providing multiplication-
hardening. Catena-Lanternfly and Catena-Lanternfly-Full can be seen
as the Catena complements to the hybrid variant of the PHC winner Argon2,
i.e., Argon2id [6].

7 Conclusion

The inspiration for this work bases on the high flexibility of the password-hashing
framework Catena. We have shown and discussed several instantiations of the
underlying hash function H ′ as well as of the graph-based structure F . Further-
more, we considered possible extensions of Catena, called Γ and Φ, whereby
the function Φ was introduced in this work. Based on the presented instan-
tiations, we extended the Catena portfolio by new essential variants called
Catena-Stonefly, Catena-Horsefly, Catena-Mydasfly, and Catena-
Lanternfly, which provide resistance against ASICs, high performance/mem-
ory, tradeoff resistance, and resistance against a hybrid approach, respectively.
For each of these four variants, we further provide a version suitable for key
derivation.

Acknowledgement. We would like to thank S. Schmidt and H. Schilling for their
work on the reference implementation of Catena as well as on the tool Catena-
Variants, E. List for his helpful comments and fruitful discussions, and H. Schilling
for his analysis of the underlying graph-based structures. Furthermore, we would like
to thank the reviewers of the Passwords 2015 for their helpful comments.

A Memory-Hardness and Garbage-Collector Attacks

A.1 Memory-Hardness

In this part of the paper we show the definition of memory-hardness as it was
described in [15]. The intuition is that for any parallelized attack (using b cores)
the required memory is decreased by a factor of 1/b per core, and vice versa.

110 S. Lucks and J. Wenzel

T
a
b
le

7
.
C

o
m

p
a
ri

so
n

o
f
va

ri
a
n
ts

o
f
C
a
t
e
n
a
.
C

T
A

–
R

es
is

ta
n
ce

a
g
a
in

st
ca

ch
e-

ti
m

in
g

a
tt

a
ck

s,
P

C
A

–
R

es
is

ta
n
ce

a
g
a
in

st
p
re

co
m

p
u
ta

ti
o
n

a
tt

a
ck

s
(t

ra
d
eo

ff
a
tt

a
ck

s)
,

G
C

A
–

R
es

is
ta

n
ce

a
g
a
in

st
G

C
a
tt

a
ck

s,
K

D
F

–
K

ey
-d

er
iv

a
ti
o
n

fu
n
ct

io
n
.

A
ll

va
ri

a
n
ts

m
en

ti
o
n
ed

h
er

e
a
ls

o
p
ro

v
id

e
p
re

im
a
g
e

re
si

st
a
n
ce

a
n
d

W
G

C
A

re
si

st
a
n
ce

a
n
d

u
se

B
L
A

K
E

2
b

a
s

th
e

u
n
d
er

ly
in

g
cr

y
p
to

g
ra

p
h
ic

h
a
sh

fu
n
ct

io
n

H
.
T

h
e

fu
n
ct

io
n

Γ
fo

r
th

e
h
er

e
m

en
ti
o
n
ed

in
st

a
n
ce

s
is

a
lw

ay
s

ca
ll
ed

ri
g
h
t

b
ef

o
re

F
d
u
e

to
th

e
g
iv

en
la

y
er

st
ru

ct
u
re

.
A

ll
m

ea
su

re
m

en
ts

w
h
er

e
d
o
n
e

u
si

n
g

a
n

In
te

l(
R

)
C

o
re

(T
M

)
i7

-3
9
3
0
K

C
P

U
@

3
.2

0
G

H
z.

N
a
m

e
F

H
′

M
e
m

o
ry

T
im

e
(s

)
M

e
m

o
ry

-H
a
rd

n
e
ss

Γ
Φ

C
T
A

P
C

A
G

C
A

K
D

F

D
e
fa

u
lt

In
st

a
n
ti

a
ti

o
n
s

C
a
t
e
n
a
-D

r
a
g
o
n
f
ly

B
R

G
2
1

2
B

L
A

K
E

2
b
-1

1
2
8
M

B
0
.3

6
�

�
-

�
-

�
-

C
a
t
e
n
a
-D

r
a
g
o
n
f
ly

-F
u
l
l

B
R

G
1
8

2
B

L
A

K
E

2
b

1
6
M

B
0
.1

9
�

�
-

�
-

�
-

C
a
t
e
n
a
-B

u
t
t
e
r
f
ly

D
B

G
1
6

4
B

L
A

K
E

2
b
-1

4
M

B
0
.2

8
λ

�
-

�
�

�
-

C
a
t
e
n
a
-B

u
t
t
e
r
f
ly

-F
u
l
l

D
B

G
1
4

4
B

L
A

K
E

2
b

1
M

B
0
.3

8
λ

�
-

�
�

�
-

C
a
t
e
n
a
-D

r
a
g
o
n
f
ly

-F
u
l
l

B
R

G
2
2

2
B

L
A

K
E

2
b

2
5
6
M

B
3
.1

5
�

�
-

�
-

�
�

C
a
t
e
n
a
-B

u
t
t
e
r
f
ly

-F
u
l
l

D
B

G
1
7

4
B

L
A

K
E

2
b

8
M

B
3
.7

6
λ

�
-

�
�

�
�

A
S
IC

R
e
si

st
a
n
t

C
a
t
e
n
a
-S
t
o
n
e
f
ly

B
R

G
1
8

1
C

F
(G

B
)

2
5
6
M

B
0
.5

1
se

q
u
en

ti
a
l

�
�

-
-

�
-

C
a
t
e
n
a
-S
t
o
n
e
f
ly

-F
u
l
l

B
R

G
2
2

1
B

L
A

K
E

2
b

2
5
6
M

B
3
.1

2
se

q
u
en

ti
a
l

�
�

-
-

�
�

H
ig

h
T

h
ro

u
g
h
p
u
t

C
a
t
e
n
a
-H

o
r
se

f
ly

B
R

G
1
9

1
C

F
(G

L
)

5
1
2
M

B
0
.4

5
�

-
-

�
-

�
-

C
a
t
e
n
a
-H

o
r
se

f
ly

-F
u
l
l

B
R

G
2
3

1
B

L
A

K
E

2
b

5
1
2
M

B
3
.6

6
�

-
-

�
-

-
�

T
ra

d
e
o
ff

R
e
si

st
a
n
t

C
a
t
e
n
a
-M

y
d
a
sf
ly

D
B

G
1
4

2
C

F
(G

L
)

1
2
8
M

B
0
.4

0
se

q
u
en

ti
a
l

-
�

-
�

�
-

C
a
t
e
n
a
-M

y
d
a
sf
ly

-F
u
l
l

D
B

G
1
8

2
B

L
A

K
E

2
b

2
5
6
M

B
4
.3

3
se

q
u
en

ti
a
l

-
�

-
�

�
�

H
y
b
ri

d

C
a
t
e
n
a
-L

a
n
t
e
r
n
f
ly

G
R

3
1
7

2
C

F
(G

B
)

1
2
8
M

B
0
.3

5
�

�
-

�
�

�
-

C
a
t
e
n
a
-L

a
n
t
e
r
n
f
ly

-F
u
l
l

G
R

3
2
2

2
B

L
A

K
E

2
b

2
5
6
M

B
3
.6

5
�

�
-

�
�

�
�

Catena Variants 111

Definition 1 (Memory-Hard Function). Let g denote the memory cost fac-
tor. For all α > 0, a memory-hard function f can be computed on a Ran-
dom Access Machine using S(g) space and T (g) operations, where S(g) ∈
Ω(T (g)1−α).

Thus, for S · T = G2 with G = 2g, using b cores, we have
(

1
b

· S

)
· (b · T) = G2.

A formal generalization of this notion is given in the following definition.

Definition 2 (λ−Memory-Hard Function). Let g denote the memory cost
factor. For a λ−memory-hard function f , which is computed on a Random
Access Machine using S(g) space and T (g) operations with G = 2g, it holds
that

T (g) = Ω

(
Gλ+1

S(g)λ

)
.

Thus, we have (
1
b

· Sλ

)
· (b · T) = Gλ+1.

Since we also consider instantiations of Catena which fulfill the definition of
sequential memory-hardness (see [25]), we highly recommend the reader to have
a look at the discussion λ-Memory-Hard vs. Sequential Memory-Hard given in
Sect. 2.2 of [15].

A.2 (Weak) Garbage-Collector Attacks

The motivation behind these attacks is to exploit the fact that a password scram-
bler may leave its password-dependent internal state in memory for a long time
(during its invocation). An adversary then gains benefits if either the memory
access to the internal state depends on the password (Garbage-Collector Attack)
or if a value directly derived from the password (e.g., using a fast hash function)
remains in memory (Weak Garbage-Collector Attack). Based on such attacks, an
adversary is able to filter password candidates using significant less time/memory
in comparison to the original algorithm.

Definition 3 (Garbage-Collector Attack). Let PG(·) be a memory-consum-
ing password scrambler that depends on a memory-cost parameter G and let Q
be a positive constant. Furthermore, let v denote the internal state of PG(·) after
its termination. Let A be a computationally unbounded but always-halting adver-
sary conducting a garbage-collector attack. We say that A is successful if some
knowledge about v reduces the runtime of A for testing a password candidate x
from O(PG(x)) to O(f(x)) with O(f(x)) ≪ O(PG(x))/Q,∀x ∈ {0, 1}∗.

In the following we define the Weak Garbage-Collector (WGC) Attack.

112 S. Lucks and J. Wenzel

Definition 4 (Weak Garbage-Collector Attack). Let PG(·) be a password
scrambler that depends on a memory-cost parameter G, and let R(·) be an under-
lying function of PG(·) that can be computed efficiently. We say that an adversary
A is successful in terms of a weak garbage-collector attack if a value y = R(pwd)
remains in memory during (almost) the entire runtime of PG(pwd), where pwd
denotes the secret input.

An adversary that is capable of reading the internal memory of a password
scrambler during its invocation gains knowledge about y. Thus, it can reduce
the effort for filtering invalid password candidates by just computing y′ = R(x)
and checking whether y = y′, where x denotes the current password candidate.
Note that the function R can also be the identity function. Then, the plain
password remains in memory, rendering WGC attacks trivial.

B Hash-Function Instantiations

B.1 Compression Function of Argon2

Here we consider the underlying compression function of the PHC winner
Argon2 [6]. The function CF (within the specification of Argon2, this function
is called G, but since we use G already for the variants of the round function
of BLAKE2b, we rename it here to CF) is built upon a permutation P using
the BLAKE2b round function GL as defined in Lyra2 and is formally defined
in Algorithm 4. Note that the function GL, in comparison to the original one of
BLAKE2b (GO), does neither consider the message schedule nor handling of the
message input. The input state words are directly written to the internal state
(a, b, c, d) and then processed as shown in Algorithm 5 (left).

The function CF, using GL, takes two 8192-bit values X,Y as input and
outputs a 8192-bit value Z. The value R = X ⊕ Y (Line 1) is represented as an
8×8 matrix consisting of 64 128-bit values R0, . . . , R63 ordered from top to down
and left to right. First, all rows are updated using the permutation P generating
an intermediate matrix Q (Lines 2–4). Then, all columns of Q are updated using
P (Lines 5–7). The output of CF is then given by the XOR operation of the input
matrix R and the intermediate matrix Q. Based on the large state of CF, it is
possible to fill memory quite fast, e.g., about 1 GB memory is filled in less than
1 s [6]. For a formal definition of P we refer to the specification of Argon2 [6].

Even if the function CF requires two calls to the underlying round function
of BLAKE2b to process 1024 bit, it has a significant speed-up in comparison to
the way BLAKE2b-1 is used within Catena (see Table 2). The speed-up comes
from the fact that CF processes 16384 bit per invocation whereas BLAKE2b-1
processes only 1024 bit. Thus, Catena requires significant more loading opera-
tions in comparison to Argon2 when processing inputs of equal size.

Note that we provide another instantiation of H ′ in Sect. 3 called P .
This is a modification of the permutation P , where we split the output of
P into two 512-bit halves and combine them using the XOR operation. This
is a simple way to build a compression function out of the permutation P .

Catena Variants 113

Algorithm 4. Compression Function CF of Argon2 [6]
Require: X, Y : two 8192-bit values fetched from memory
Ensure: Z : intermediate hash (8192 bit)
1: R ← X ⊕ Y
2: for i = 0, . . . , 7 do
3: (Qi, . . . , Qi+7) ← P (Ri, . . . , Ri+7) 	 updating the rows
4: end for
5: for i = 0, . . . , 7 do
6: (Qi, Qi+8, . . . , Qi+56) ← P (Ri, Ri+8 . . . , Ri+56) 	 updating the columns
7: end for
8: Z ← R ⊕ Q
9: return Z

We introduce P for comparison with BLAKE2b-1, which includes the
regular message schedule, the initialization, and finalization of the round func-
tion of BLAKE2b (as shown in Algorithm6), whereas P does not. Nev-
ertheless, we do not consider it as a recommended instantiation of H ′ since, due
to the smaller size of the state words, it will never achieve the same throughput
as the function CF.

B.2 BlaMka

The function GB was introduced by the authors of Lyra2 [30]. It described
a slightly adjusted variant of GL (see Algorithm 5 for a comparison) and is
there used as the underlying permutation of a sponge-based structure. Due to
the missing cryptanalysis of BlaMka, the authors do not recommend its usage.
Nevertheless, since it consists of a neat combination of ARX (Addition, Rotation,
XOR) and integer multiplication, we also consider it as an alternative to GL.

The only difference between the functions GL (see Algorithm 5 (left)) and
GB (see Algorithm 5 (right)) is that each addition a + b is replaced by a vari-
ant of the latin-square operation, namely a + b + 2 · lsw(a) · lsw(b), where
lsw(x) denotes the least significant 32-bit word of x. The idea behind the so
called multiplication.-hardening is to provide a similar runtime for hardware-
and software-based adversaries [29,31].

Note that for comparison, we restate BLAKE2b-1 as used in the default
instantiations of Catena (see Algorithm 6). It conducts GO ensuring that 12
invocations of BLAKE2b-1 are quite similar to one invocation of full BLAKE2b.

B.3 Galois-Field Multiplication

We took the Galois-Field multiplication into account since it allows to be used
as a really fast compression function, especially when considering binary Galois
Fields with an order that is a power of 2, since its coefficients can be repre-
sented by bits and addition/subtraction is equivalent to the XOR operation. We
decided to conduct the multiplication in GF (2128) using the reduction polynom

114 S. Lucks and J. Wenzel

Algorithm 5. Functions GL (left) and GB (right)
Require: a, b, c, d : 256-bit input state
Ensure: a, b, c, d : 256-bit output state
1: a ← a + b
2: d ← (d ⊕ a) ≫ 32
3: c ← c + d
4: b ← (b ⊕ c) ≫ 24
5: a ← a + b
6: d ← (d ⊕ a) ≫ 16
7: c ← c + d
8: b ← (b ⊕ c) ≫ 63

Require: a, b, c, d : 256-bit input state
Ensure: a, b, c, d : 256-bit output state
1: a ← a + b + 2 · lsw(a) · lsw(b)
2: d ← (d ⊕ a) ≫ 32
3: c ← c + d + 2 · lsw(c) · lsw(d)
4: b ← (b ⊕ c) ≫ 24
5: a ← a + b + 2 · lsw(a) · lsw(b)
6: d ← (d ⊕ a) ≫ 16
7: c ← c + d + 2 · lsw(c) · lsw(d)
8: b ← (b ⊕ c) ≫ 63

Algorithm 6. BLAKE2b-1 (left) and its Function compress (right).

Require: I1, I2 : two 512-bit input words,
v : Vertex index, S : global BLAKE2b
state

Ensure: x : intermediate hash
1: S.buf ← I1 || I2
2: S.buflen ← 128
3: increment counter(S, S.buflen)
4: set last block(S)

5: r ← v mod 12
6: compress(S, r)

7: return S.h

Require: S : Blake2b state, r : Round
index, IV : global initialization vector,
σ : Message Schedule

1: v[0 . . . 7] ← S.h
2: v[8 . . . 15] ← IV
3: v[12, 13] ← v[12, 13] ⊕ S.t
4: v[14, 15] ← v[14, 15] ⊕ S.f

5: s[0 . . . 15] := σ[r mod 10][0 . . . 15]
6: v ← GO(v, 0, 4, 8, 12, S.buf [s[0]], S.buf [s[1]])
7: v ← GO(v, 1, 5, 9, 13, S.buf [s[2]], S.buf [s[3]])
8: v ← GO(v, 2, 6, 10, 14, S.buf [s[4]], S.buf [s[5]])
9: v ← GO(v, 3, 7, 11, 15, S.buf [s[6]], S.buf [s[7]])

10: v ← GO(v, 0, 5, 10, 15, S.buf [s[8]], S.buf [s[9]])
11: v ← GO(v, 1, 6, 11, 12, S.buf [s[10]], S.buf [s[11]])
12: v ← GO(v, 2, 7, 8, 13, S.buf [s[12]], S.buf [s[13]])
13: v ← GO(v, 3, 4, 9, 14, S.buf [s[14]], S.buf [s[15]])

14: S.h ← S.h ⊕ v[0 . . . 7] ⊕ v[8 . . . 15]

f(x) = x128 + x7 + x2 + x + 1 from the well-analyzed and widely used Galois/-
Counter Mode (GCM) [24]. We provide the optimized version of the right-to-
left multiplication as suggested in [10] or, if available, a version that uses the
pclmulqdq instruction described in [18]. Note that in contrast to the multiplica-
tion used within GCM, we do not use bit reflection.

B.4 MultHash

The function MultHash is an experimental hash-function design by Cox [32]
with the goal to max out the memory bandwidth. It processes two �-bit inputs
A and B by splitting them into �/32-bit chunks and then conducts �/32 32-bit
multiplications of the form Ci = (Ci−1 · (A | 3) ·B)mod 232, where Ci−1 denotes
the former computed chaining value. Note that, especially in comparison to the
Galois-Field multiplication presented before, the MultHash operation should be
considered insecure. Nevertheless, due to its neat property of filling the internal

Catena Variants 115

state significantly fast, we include it in the comparison of possible instantiations
of H ′ even if it will not be part of our recommended variants of Catena.

C Extensions of Catena

C.1 Password-Independent Random Layer

This part of the section is devoted to the function Γ , which reflects a graph-based
structure generated by a password-independent indexing function R as shown
in Algorithm 7 (left). As defined in the specification of Catena, it overwrites
2�3g/4� randomly chosen state words. In respect of the memory requirement
in Table 5, it is intuitive to say that the penalty for a GR�g

λ will not increase
significantly since almost the whole state is already stored. On the other hand,
when considering a BRGg

λ, one would expect an increased penalty.

Algorithm 7. The functions Γ (g, v, γ) (left) and Φ(g, v, μ) (right).
Require: g : garlic, v : state,

γ : public input
Ensure: v : updated state
1: r ← H(γ) || H(H(γ))
2: p ← 0
3: for i ← 0, . . . , 2�3g/4� − 1 do
4: (j1, r, p) ← R(r, p)
5: (j2, r, p) ← R(r, p)
6: vj1 ← H ′(vj1 || vj2)
7: end for
8: return v

Require: g : garlic, v : state,
μ : secret input

Ensure: z : output of flap
1: j ← R(μ)
2: v0 ← H ′(v2g−1 || vj)
3: for i ← 1, . . . , 2g − 1 do
4: j ← R(vi−1)
5: vi ← H ′(vi−1 || vj)
6: end for
7: return v

Algorithm 8. Function flap of Catena with Extension Φ

Require: c : garlic, x : value to hash, γ : public input
Ensure: x : intermediate hash value
1: (v−2, v−1) ← Hinit(x)
2: for i = 0, . . . , 2g − 1 do
3: vi ← H ′(vi−1 || vi−2)
4: end for
5: v ← Γ (g, v, γ) 	 layer with γ-based indexing function
6: v ← F (v) 	 memory-hard function
7: x ← Φ(g, v, μ) 	 layer with μ-based indexing function
8: return x

First, we wanted to know if the currently designated position of Γ (invoked
before F , see Algorithm 2) does provide the best possible resistance (in comparison
to other chosen positions) against the precomputation method discussed in the
former section. Therefore, we integrated the function (layer) Γ into F , fixed g = 12

116 S. Lucks and J. Wenzel

Table 8. Penalties depending on the position of Γ within F and the particular graph
instance, where Fi denotes the i-th layer of F and g = 12. The values are given for
λ = 2 (left) and λ = 3 (right).

Graph Layer Structure Graph Layer Structure
ΓF0F1 F0ΓF1

BRG12
2 33.34 31.84

GR212
2 62.02 61.39

GR312
2 79.68 81.06

ΓF0F1F2 F0ΓF1F2 F0F1ΓF2

BRGg
2 62.44 103.81 81.27

GR2g
2 270.68 306.48 288.73

GR3g
2 248.48 264.10 257.30

(for time reasons), and recomputed the penalties for different positions of Γ within
F , different values of λ, and the graph instantiations presented in Sect. 4. Further,
we set the public input γ to the salt and fixed it to a constant value (γ = 0).
We see this as a valid approach since if R is instantiated with a reasonable strong
pseudorandom number generator, all indices computed during the invocation of
Γ are randomly distributed values. The penalties depending on the positions of Γ
are shown in Table 8, where it is easy to see that placing the random layer Γ at the
third-last position leads, in general, to the highest penalty.

Thus, we assumed this configuration when computing the impact of the ran-
dom layer for the recommended values of the garlic, i.e., g ∈ {18, 21}. Our first
intuition was confirmed by the results shown in Table 9. Note that due to time
issues, the values for the precomputation method with λ = 3 and g = 21 are a
rough estimation based on the values for λ = 3 in Table 6.

By comparing the values presented in Tables 6 and 9, we observed that the
penalties only clearly increase for a BRGg

λ. Thus, we can conclude that the addi-
tional invocation of Γ does help substantially against TMTO attacks based on
the precomputation method, since the penalties given for a BRGg

λ are still much
smaller than that of a GR�g

λ. Nevertheless, the main aspect of including Γ in
our core function flap was the increased resistance against ASIC-based adver-
saries, and not to thwart TMTO attacks. Furthermore, the penalties presented
in Table 9 only hold if an adversary does not have the additional 23g/4 · n bit of
memory available.

Table 9. Penalties depending on the garlic g, the attack method, and the particular
graph instance extended by a random layer Γ , where the values are given for λ = 2
(left) and λ = 3 (right).

Attack Garlic (g)
18 21

Precomp.
BRGg

2 54.11 107.36
GR2g

2 169.18 374.66
GR3g

2 365.40 1411.90

Naive all 376.59 1432.87

Garlic (g)
18 21

Precomp.
BRGg

2 417.03 836.24
GR2g

2 1386.31 3090.14
GR3g

2 1163.19 4675.89

Naive all 6456.97 47581.00

Graph Attack Graph

Catena Variants 117

C.2 Password-Dependent Random Layer

This extension is described by introducing a further graph-based layer below the
call to F (see Algorithm 8, Line 7). In general, the function Φ is used to update
the internal state v of size 2g · n bit by sequentially updating each state word.
An update of a state word vi depends on two inputs (see Algorithm7 (right)):
First, the immediate predecessor vi−1 (or v2g−1 if i = 0) and second, a value
chosen uniformly at random from the state, where the index is determined by
the indexing function R.

More detailed, the first update depends on the secret value μ, which we set
per default to the value v2g−1 of the output state of F . All subsequent updates
dependent on the previous computed state value vi−1 (see Line 4 of Algorithm 7
(right)). Thus, we basically follow a slightly more generic approach in compar-
ison to the ROMix function used within scrypt [25]. The function R can, for
example, be given by xorshift1024star as used in the default instantiations
of Catena [15], or a similar function to the one proposed by the designers of
Argon2 [6], which uses the g least significant bits of the previous computed value
to determine the new index.

It is easy to see that Φ conducts sequential writes, whereas Γ conducts writes
to randomly determined words of the state. Thus, by calling Φ, Catena provides
sequential memory-hardness as defined in [25]. Note that if the extension Φ
is added to flap, the function F must return the full state v (see Line 6 of
Algorithm 8) instead of a single value.

D Penalties Caused by Shifting Sampling Points

Table 10. Relative costs (penalty) depending on the shift of the sampling points and
the depth λ.

Graph No shift Min Max

λ = 2

BRG12
2 25.03 25.00 (0,7) 31.59 (1,0)

GR212
2 54.56 54.35 (14,12) 67.61 (4,7)

GR312
2 74.25 72.88 (5,8) 74.25 (0,0)

λ = 3

BRG12
3 47.59 46.70 (0,0,15) 90.13 (1,1,14)

GR212
3 254.93 246.72 (12,13,4) 296.54 (6,4,11)

GR312
3 223.52 217.64 (8,6,15) 262.36 (11,4,10)

118 S. Lucks and J. Wenzel

References

1. Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-hard func-
tions. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, STOC 2015, Portland, OR, USA, June 14–17, 2015, pp. 595–603
(2015)

2. Aumasson, J.-P.: Password Hashing Competition (2015). https://
password-hashing.net/call.html. Accessed 3 September 2015

3. Aumasson, J.-P.: Password Hashing Competition - Candidates. https://
password-hashing.net/candidates.html

4. Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: Sim-
pler, Smaller, Fast as MD5. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-
Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 119–135. Springer, Heidelberg
(2013)

5. Bernstein, D.J.: Cache-timing attacks on AES (2005)
6. Biryukov, A., Dinu, D., Khovratovich, D.: Argon2. Password Hashing Competition,

Winner (2015). https://www.cryptolux.org/index.php/Argon2
7. Biryukov, A., Khovratovich, D.: Tradeoff cryptanalysis of Catena. PHC mailing

list: discussions@password-hashing.net
8. Biryukov, A., Khovratovich, D.: Tradeoff cryptanalysis of memory-hard functions.

IACR Cryptol. ePrint Arch. 2015, 227 (2015)
9. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million

passwords. In: 2012 IEEE Symposium on Security and Privacy, May 2012
10. Brent, R.P., Gaudry, P., Thomé, E., Zimmermann, P.: Faster Multiplication in

GF(2) [x]. In: ANTS, pp. 153–166 (2008)
11. Cox, B.: TwoCats (and SkinnyCat): A Compute Time and Sequential Mem-

ory Hard Password Hashing Scheme (2014). https://password-hashing.net/
submissions/specs/TwoCats-v0.pdf

12. Forler, C., List, E., Lucks, S., Wenzel, J.: Overview of the candidates for the pass-
word hashing competition - and their resistance against garbage-collector attacks.
IACR Cryptol. ePrint Arch. 2014, 881 (2014)

13. Forler, C., Lucks, S., Wenzel, J.: Catena: A Memory-Consuming Password Scram-
bler. Cryptology ePrint Archive, Report 2013/525 (2013). http://eprint.iacr.org/

14. Forler, Christian, Lucks, Stefan, Wenzel, Jakob: Memory-demanding password
scrambling. In: Sarkar, Palash, Iwata, Tetsu (eds.) ASIACRYPT 2014, Part II.
LNCS, vol. 8874, pp. 289–305. Springer, Heidelberg (2014)

15. Forler, C., Lucks, S., Wenzel, J.: The Catena Password-Scrambling Frame-
work. Password Hashing Competition, 2nd round submission (2015). https://
password-hashing.net/submissions/specs/Catena-v3.pdf

16. funkysash. catena-variants (2015). https://github.com/medsec/catena-variants
17. Gray, F.: Pulse Code Communication. Bell Telephone Labor Inc., New York (1953).

US Patent 2,632,058,
18. Gueron, S., Kounavis, M.E.: Intel carry-less multiplication instruction and its usage

for computing the GCM Mode - Rev 2.01. Intel White Paper. Technical report,
Intel corporation, September 2012

19. Harris, B.: Replacement index function for data-independent schemes (Catena)
(2015). http://article.gmane.org/gmane.comp.security.phc/2457/match=grey

20. HPSchilling. catena-variants (2015). https://github.com/HPSchilling/
catena-variants

https://password-hashing.net/call.html
https://password-hashing.net/call.html
https://password-hashing.net/candidates.html
https://password-hashing.net/candidates.html
https://www.cryptolux.org/index.php/Argon2
https://password-hashing.net/submissions/specs/TwoCats-v0.pdf
https://password-hashing.net/submissions/specs/TwoCats-v0.pdf
http://eprint.iacr.org/
https://password-hashing.net/submissions/specs/Catena-v3.pdf
https://password-hashing.net/submissions/specs/Catena-v3.pdf
https://github.com/medsec/catena-variants
http://article.gmane.org/gmane.comp.security.phc/2457/match=grey
https://github.com/HPSchilling/catena-variants
https://github.com/HPSchilling/catena-variants

Catena Variants 119

21. Kaliski, B.: RFC 2898 - PKCS #5: Password-Based cryptography specification
Version 2.0. Technical report, IETF (2000)

22. Lengauer, T., Tarjan, R.E.: Asymptotically tight bounds on time-space trade-offs
in a pebble game. J. ACM 29(4), 1087–1130 (1982)

23. Lystad, T.A.: Leaked password lists and dictionaries - The Password Project.
http://thepasswordproject.com/leaked password lists and dictionaries. Accessed
16 May 2013

24. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

25. Percival, C.: Stronger Key Derivation via Sequential Memory-Hard Functions. pre-
sented at BSDCan 2009, May 2009

26. Peslyak, A.: yescrypt - a Password Hashing Competition submission (2015).
https://password-hashing.net/submissions/specs/yescrypt-v1.pdf

27. Pornin, T.: The MAKWA Password Hashing Function (2015). https://
password-hashing.net/submissions/specs/Makwa-v1.pdf

28. Provos, N., Mazières, D.: A future-adaptable password scheme. In: USENIX
Annual Technical Conference, FREENIX Track, pp. 81–91. USENIX (1999)

29. Shand, M., Bertin, P., Vuillemin, J.: Hardware speedups in long integer multipli-
cation. In: SPAA, pp. 138–145 (1990)

30. Simplicio, M., Almeida, L., dos Santos, P., Barreto, P.: The Lyra2 reference
guide. Password Hashing Competition, 2nd round submission (2015). https://
password-hashing.net/submissions/specs/Lyra2-v2.pdf

31. Soderquist, P., Leeser, M.: An area/performance comparison of subtractive and
multiplicative divide/square root implementations. In: 12th Symposium on Com-
puter Arithmetic ARITH-12 1995, July 19–21, 1995, Bath, England, UK, pp. 132–
139 (1995)

32. Cox, B.: MultHash - A simple multiplication speed limited hash func-
tion (2014). https://github.com/medsec/catena/blob/3a3ce823d4c54f2da33757bf
8f6389488c31bd93/src/catena-multhash.c. (waywardgeek)

http://thepasswordproject.com/leaked_password_lists_and_dictionaries
https://password-hashing.net/submissions/specs/yescrypt-v1.pdf
https://password-hashing.net/submissions/specs/Makwa-v1.pdf
https://password-hashing.net/submissions/specs/Makwa-v1.pdf
https://password-hashing.net/submissions/specs/Lyra2-v2.pdf
https://password-hashing.net/submissions/specs/Lyra2-v2.pdf
https://github.com/medsec/catena/blob/3a3ce823d4c54f2da33757bf8f6389488c31bd93/src/catena-multhash.c
https://github.com/medsec/catena/blob/3a3ce823d4c54f2da33757bf8f6389488c31bd93/src/catena-multhash.c

On Password-Authenticated Key Exchange
Security Modeling

Jean Lancrenon(B)

Interdisciplinary Centre for Security, Reliability and Trust,
Université du Luxembourg, 6 Rue Richard Coudenhove-Kalergi,

1359 Luxembourg City, Luxembourg
jean.lancrenon@uni.lu

Abstract. Deciding which security model is the right one for Authen-
ticated Key Exchange (AKE) is well-known to be a difficult problem. In
this paper, we examine definitions of security for Password-AKE (PAKE)
in the style proposed by Bellare et al. [5] at Eurocrypt 2000. Indeed, there
does not seem to be any consensus, even when narrowing the study down
to this particular authentication method and model style, on how to
precisely define fundamental notions such as accepting, terminating, and
partnering. The aim of this paper is to begin addressing this problem. We
first show how definitions vary from paper to paper. We then propose and
thoroughly motivate a definition of our own, and use the opportunity to
correct a minor flaw in a more recent and more PAKE-appropriate model
proposed by Abdalla et al. [3] at Public Key Cryptography 2005. Finally,
we argue that the uniqueness of partners holding with overwhelming
probability ought to be an explicitly required and proven property for
AKE in general, but even more so in the password case, where the opti-
mal security bound one aims to achieve is no longer a negligible value.
To drive this last point, we exhibit a protocol that is provably secure fol-
lowing the Abdalla et al. definition, and at the same time fails to satisfy
this property.

1 Introduction

Password-Authenticated Key Exchange. Key Exchange (KE) is preoccu-
pied with establishing a secure ephemeral session key between two remote parties
over an insecure network. The well-known Diffie-Hellman protocol [16] solves this
problem over communication lines that are perhaps eavesdropped on, but remain
otherwise undisturbed. Authenticated KE (AKE) aims to realize KE in such a
way that the communicating parties gain some guarantee that they have estab-
lished a key with the right partner even in the face of malicious - i.e. more than
just eavesdropping - attackers. This is only possible if all honest parties in play
have some sort of trusted setup in place prior to the exchange, taking the form
e.g. of a Public Key Infrastructure (PKI) correctly managing everybody’s public
keying information, or pairwise-shared long-term symmetric keys, etc. Password
AKE (PAKE) is AKE in which the long-term keys are simple passwords.

c© Springer International Publishing Switzerland 2016
F. Stajano et al. (Eds.): PASSWORDS 2015, LNCS 9551, pp. 120–143, 2016.
DOI: 10.1007/978-3-319-29938-9 8

On PAKE Security Modeling 121

Using ordinary passwords - by which we mean low-entropy, human-memorable
pieces of data - as long-term authentication material cannot simply be securely
viewed as a particular case of the shared-symmetric-key scenario. Indeed, the low
entropy of passwords makes them vulnerable to dictionary attacks, both off-line
and on-line. Hence, special care must be taken in designing a PAKE protocol. Note
that it is always trivially possible to simply run the protocol with an honest par-
ticipant using a guessed password as input, and observing whether the exchange
fails or succeeds. Such an on-line attack is inherent to the service, and cannot be
avoided. Intuitively, we would like to limit a network adversary’s effective attacks
to this trivial strategy. This implies namely that untampered protocol network
traffic must protect, at least computationally, every single bit of information on
the underlying passwords. In a nutshell, on-line attacks are limited to successive
login attempts, and off-line attacks are completely prohibited.

Security Models. Complexity theoretic PAKE security models capturing these
requirements made their first appearance at Eurocrypt 2000, in the form of the
Bellare et al. [5] and Boyko et al. [9] models. This paper is concerned with
proofs of security using the former, which we shall call BPR-style proofs. We also
consider proofs using Abdalla et al.’s [3] model, which is a slight modification of
the [5] model. BPR-style proofs are by far the most common in the literature,
but unfortunately they are not very easy to understand. One reason for this
is that often, small technicalities vary in the models’ definitions from paper to
paper, and it is not always clear why. This is especially the case when trying
to define when it is that two parties have had a correct protocol conversation, a
notion known as partnering.

Our aim is to draw attention to this issue, in order to at least start clarify-
ing it. This is important to be able to more accurately interpret security claims
in papers.

Our Contributions. In Sect. 2, we focus on the current state of BPR-style
modeling in the literature. We first show how definitions vary from paper to
paper in terms of instances accepting, terminating, and partnering, citing precise
examples. We then show how the subsequent security model of Abdalla et al. [3]
is slightly bugged. These considerations lead into Sect. 3, in which we redefine
the model(s) to fit all usual protocol scenarios and also fix the bug in [3]. The
change has to do with the uniqueness requirement of the partner in the definition.
As a follow-up, we examine this uniqueness property in detail in Sect. 4. We
namely present evidence that it ought to be an explicitly stated and proven
property of any AKE protocol, and even more so in the PAKE case, where the
optimal security bounds are no longer negligible values (in order to account for
the adversary’s natural ability to simply guess a password and try it out). To this
end, we exhibit a PAKE which is provably secure according to the Abdalla et
al. definition, but fails to satisfy that partners be unique with overwhelming
probability.

Related Work. PAKE was first considered by Bellovin and Merritt [7] and
Jablon [21], with informal security arguments. Lucks [30] and Halevi et al. [20]

122 J. Lancrenon

were the first to produce formal models involving passwords. They were followed
by Bellare et al. [5] and Boyko et al. [9], building on the AKE models intro-
duced in [6] and [34], respectively. Since, many protocols have been proposed
and studied: Katz et al. [23] showed that PAKE can be practically realized
without random oracles but with a Common Reference String (CRS), Goldreich
et al. [18] showed that PAKE can be realized solely under general complexity
assumptions, and Canetti et al. [13] introduced universally composable (see [12])
PAKE, to name a few. A more complete bibliography on PAKE can be found
in [33].

Some research on comparing AKE security models in general has been con-
ducted. Notably, Choo et al. [14] and Cremers [15] examine how differing def-
initions affect security in indistinguishability-based models, but none of these
works focus on password protocols. To our knowledge, nothing of the sort for
PAKE has been considered yet.

Organization of the Paper. The rest of the paper is structured as follows.
Section 2 overviews existing PAKE model definitions, and points to some dif-
ferences and inconsistencies. Next, Sect. 3 revisits all of these definitions, trying
to place them under one roof, and introduces the matter of partner uniqueness.
Then, Sect. 4 shows why making uniqueness of partners a property is important,
especially in the context of PAKEs. Finally, Sect. 5 concludes the paper.

2 Different BPR-style Models

In what follows, we denote ⊥ the special error symbol and ε the empty string.
We use U to designate both the entity U , and the bitstring identifying U .

2.1 The Models’ Main Foundations

Here we describe the main aspects commonly shared by all BPR-style models.
Some of the notions are at first left intentionally vague. We first detail the parties
in play, then we list the adversary’s abilities. The security definitions capturing
confidentiality of SKs and authentication come at the end.

Principals and Instances. An interactive game, indexed by the security para-
meter λ ∈ N, is played between a challenger CH and an adversary A. All of the
algorithms considered are Probabilistic, Polynomial-Time (PPT) in λ.

At the beginning of the game, there is a fixed set of principals (or users),
which is partitioned into non-empty sets of clients C and servers S. Each client
C is assigned a password pwC drawn uniformly at random from some finite -
possibly small - set PW of bitstrings. Each server S holds the full set of all
clients’ passwords {pwC}C .

The adversary A has oracle access - via the queries described below - to any
number of instances U i (i ∈ N) of any principal U . Intuitively, an instance of U i

represents an attempt U makes at running the AKE protocol over the network,
which is fully controlled by A. An instance’s objective is to compute a Session

On PAKE Security Modeling 123

Key (or SK) it believes it shares with an instance Vj of some other principal V.
This should happen only if U i thinks it has “had a correct exchange with” Vj .

At any point in time, an instance U i may declare itself “ready to use a SK”.
By this time, the instance should have computed (1) a Partner Identity (or
PID) pidi

U , a (2) Session Identity (SID) sidi
U , and of course (3) the SK ski

U
itself. The PID is a bitstring indicating the identity of the instance with which
U i believes it has communicated with. The SID is a bitstring serving as an
identifier for both the key exchange run that just occurred, and the session in
which the computed SK will subsequently serve. Often in practice the SID is set
to being the ordered concatenation of all exchanged protocol messages, except
possibly the last message. At any point in time an instance may also “refuse to
participate any longer in the protocol”, and halt altogether. This can happen if a
message e.g. has an incorrect format, or if authentication fails. Once an instance
has finished - either declaring it has a SK, or having just stopped - it can no
longer be reused.

We purposefully did not make the notions of “having a correct exchange with
an instance”, “declaring oneself ready to use a SK”, and “refusing to participate
any longer in the protocol” precise, because these are where consensus does not
seem to hold. They will be made more precise (1) in the different examples we
give further below and (2) when we give and motivate our own definition in
Sect. 3. These notions are also correlated to when and how the PID, SID, and
SK are computed.

We now describe the oracle queries the adversary has access to. These change
according to whether we are in the Find-then-Guess (or FtG) model [5] or the
Real-or-Random (or RoR) model [3]1. The security definitions themselves will
come after.

Find-then-Guess. This is the original model introduced in [5]. It can be viewed
as a “password spin-off” of the classic Bellare/Rogaway model [6] for AKE
security.

– send(U , i,m): A has message m delivered to U i. U i processes the message
according to protocol specification. To instruct an instance U to send the first
protocol message to entity V, A makes the query with m = V. This query
is used to model arbitrary message delivery to an instance. In particular, it
serves to count impersonation attacks.

– execute(U ,V, i, j): The protocol is executed faithfully and completely between
U i and Vj and the resulting transcript is given to A. A thus gets to see as
many honest protocol runs as it wishes.

– reveal(U , i): If U i is not ready to use a SK, the query returns ⊥. Otherwise,
it returns ski

U to A. This models leakage of session key information through
use in the ensuing session (the quality of the algorithms of which we know
nothing about).

1 To simplify our exposition, in this preliminary study we make no attempt at dealing
with the corruption query - used to model the important property of forward secrecy -
in this paper.

124 J. Lancrenon

– test(U , i): If U i is not ready to use a SK, this returns ⊥. Otherwise, CH flips
a coin b outside of A’s view. If b = 0, a random string R is drawn from the
session key space and tki

U ← R. Otherwise, tki
U ← ski

U . The test key (or TK)
tki

U is returned to A. The test query may only be used once in the game.
Its purpose is to measure the adversary’s advantage in breaking session key
security.

Eventually, A halts the overall game, at which point it outputs a bit b′. If the
game was halted without A making any test query, then CH privately flips a
coin b.

Freshness: To get a meaningful definition of SK security (see below), a restric-
tion must be put in place on the test query. Namely, A cannot be considered
victorious if it already trivially knows the SK that it tested. Therefore, the notion
of freshness must be introduced: An instance U i is fresh if neither it, nor any
instance with which it has had a correct exchange, has been the subject of a
reveal query. Thus, we must slightly modify the test and reveal queries presented
above: we add that test returns ⊥ if U i is not fresh and that reveal returns ⊥ if
U i, or an instance with which it has had a correct exchange, has been tested.

Real-or-Random. This is the model introduced in [3]. In a nutshell, it differs
from FtG in that it makes all of the keys revealed to the adversary either the
truly computed keys or completely random strings. In [3] it is proven that for
PAKEs, this makes a real security difference. Thus, it is recommended to use
RoR rather than FtG when employing BPR-style models. (See [3] for details.)

The send and execute queries are identical to those in the FtG model. How-
ever, the reveal query is no longer available. Instead, it is replaced by as many
test queries as A wants. How they are answered depends on the value of a bit b
flipped by CH outside of A’s view at the beginning of the game.

– test(U , i): If U i is not ready to use a session key, ⊥ is returned. Otherwise,
suppose first that b = 0. If U i has not had a correct exchange with any
instance, or no instance that it has had a correct exchange with was subjected
to a test query, CH selects a random R from the session key space and sets
tki

U ← R. If U i has had a correct exchange with an instance Vj that has been
tested, CH sets tki

U ← tkj
V . Suppose now that b = 1. In this case, CH sets

tki
U ← ski

U . Then, A receives tki
U .

The slight complication arising in case b = 0 is that even if the SKs assigned are
random, they must at least remain consistent across instances that should hold
the same keys. As in FtG, at any point in time A may halt the game and output
a bit b′.

Technically Defining Security. In both FtG and RoR, one usually considers
three security properties: SK security, Client-to-Server (C2S) authentication, and
Server-to-Client (S2C) authentication.

SK security: Let S be the event that “b′ = b at the end of the game”. Event
S measures the semantic security of the SK, i.e. the adversary’s ability to tell

On PAKE Security Modeling 125

this key apart from a random string. Since A can simply flip a coin to get
the answer right with probability 1/2, A’s natural advantage is defined to be
Advs(A) := 2Pr[S]−1. A PAKE protocol is said to have semantically secure SKs
if there exists a non-zero constant C ∈ N such that for any PPT A, there exists a
negligible (in λ) function negl with the property that Advs(A) ≤ Cnse

|PW| + negl(λ)
where nse is an upper bound on the number of send queries the adversary makes.

Authentication: Let C2S be the event that “there exists some server instance
Sj that is ready to use a SK, but has not had a correct exchange with a client
instance”. This event measures the adversary’s ability to cause client-to-server
authentication to fail, i.e. a server thinks it is talking to a correct client when
it is not. Here we simply set Advc2s(A) := Pr[C2S], and we say that a PAKE
achieves client-to-server authentication if there exists a non-zero C such that
for any PPT A, there exists a negligible function negl with the property that
Advc2s(A) ≤ Cnse

|PW| + negl(λ). Server-to-client authentication is defined similarly.
Intuitively, the constant C represents the number of passwords that can be

ruled out per login attempt. Obviously, C = 1 is the optimal bound.
We will return to these definitions with precise terminology in Sect. 3.

2.2 Differences in Accepting, Terminating, and Partnering

In this section, we illustrate how the notions of “having had a correct exchange”,
“declaring oneself ready to use a SK”, and “refusing to further participate in
the protocol”, among other things, are formalized in various examples of the
literature. These formalizations often vary from paper to paper, usually without
much justification.

We begin with some technical terminology which is mostly common to all
papers, but the interpretation and use of which are what always seem to vary:

– Two instances which “have had a correct exchange” are said to be partnered ;
– An instance that is “ready to use a session key” is said to have accepted or

terminated ;
– The “refusal to further participate in the protocol”, oddly, does not seem to

have a technical term commonly attached to it.

In the examples that follow, we recapitulate precisely how the afore-mentioned
points are dealt with and interpreted. We picked these three examples as they can
be considered “landmark” papers: The first [5] introduced BPR-style reasoning
to PAKE analysis, the second [3] brought in the RoR model, and the (conference
version [23]) of the third [24] showed that PAKE is realizable without random
oracles2. After each example, we also compile a list of additional papers that
emulate (or claim to emulate) the example in question. Recall that ε designates
the empty string.

2 Of course, these are not the only beacons in the field; they are just the most relevant
to our work.

126 J. Lancrenon

In the Original Model from [5]. This model - the first of its kind - is FtG.
Accepting: At any point in time, an instance U i may accept. This means that it
holds a non-ε SK and has computed a non-ε PID and non-ε SID. Terminating:
At any point in time after having accepted, an instance may terminate. This
means that it will no longer send, nor expect to receive, any more messages.
Partnering: Two instances U i and Vj are partnered if (1) one is a client and
one is a server, (2) both instances have accepted, (3) pidi

U = V and pidj
V = U ,

(4) sid := sidi
U = sidj

V , (5) ski
U = skj

V , and (6) no other instance accepts with
a SID sid.

Apparent Intended Interpretation: Accepting in this model appears to mean
being ready to use the session key, since it is under the condition of having
accepted that reveal and test queries can be made. However, accepting is different
from terminating in that an instance may wish to accept at one point in time,
and yet terminate later. This is to model key confirmation: an instance accepts
first - it believes it holds a good session key - but waits for its purported partner
to send it a confirmation code to terminate.

Some Observations: That the session key can be used before a confirmation
code is received is puzzling to us. We believe it may be more logical to have the
SK be formally accepted as such at termination time, using this terminology.

There does not appear to be any special term for when an instance refuses
to continue in the protocol.

Also, notice that formally, for an instance to be partnered, its partner must
be unique. More on this uniqueness is in Paragraph 2.3 and Sect. 4.

No notion of protocol correctness is defined.
Papers following this approach include [8,10,11,29,31,32].

The RoR Model Paper [3]. This paper’s primary topic of investigation is
PAKE in the three-party setting3 (or 3-PAKE, as opposed to the two-party set-
ting, or 2-PAKE), but it contains contributions (namely, the RoR method) rel-
evant to both 3-PAKE and 2-PAKE. (In this paper, we consider only 2-PAKE,
which we shall also continue calling just “PAKE”.) We focus on the 2-PAKE
definitions, referring to the 3-PAKE ones when appropriate. Accepting: For 2-
PAKE, accepting is not formally defined, so it is unclear whether a session key
exists at this point or not. For 3-PAKE, accepting only happens “after receiving
the last expected protocol message”, so this actually corresponds more to ter-
mination in [5]. It is unclear whether the 2-PAKE definition is assumed to be
the same. Terminating: This is not formally defined. However, it is stated that
“in practice, the SID can be taken to be the partial transcript of the conver-
sation between the client and the server instances before the acceptance”. This
implies that accepting comes earlier than something else, possibly termination.
Partnering: For 2-PAKE, two instances U i and Vj are partnered if (1) both
instances have accepted, (2) sid := sidi

U = sidj
V , (3) “the partner identifier for

U i is Vj and vice-versa”, and (4) “no instance other than U i and Vj accepts
with a partner identifier equal to U i or Vj”.
3 A server aids two clients that wish to exchange a key between themselves; each client

shares a private password with the server.

On PAKE Security Modeling 127

Observations: Accepting and terminating are unclear. Accepting here may be
the same as terminating in [5].

Nothing is in place to indicate if an instance refuses to continue in the
protocol.

In terms of partnering, for 2-PAKE there is no need for one instance to be a
client and the other a server, unlike in [5]. Points (3) and (4) are unclear, because
the PID of an instance is never defined anywhere. However, these points should
be probably be understood respectively as “pidi

U = V and pidj
V = U” and “no

other instance accepts with a SID sid”, as in [5]. Also, in contrast to [5], there
is no condition on the SK anymore.

The uniqueness condition is still required to formally satisfy partnering.
There is no mention of correctness.
Papers following this approach include [1,2,27].

The Journal Version [24] of [23]. Paper [23] presented the first practical
PAKE secure under standard assumptions (but with a CRS). We discuss the
journal version [24] here, which is FtG. Accepting: For a given instance U i,
once U i accepts, sidi

U , pidi
U , and ski

U are no longer ε. Also, acceptance implies
termination. Terminating: Terminating means the instance will no longer send
nor receive messages. Partnering: Two instances U i and Vj are partnered if
(1) one is a client and the other a server, (2) sidi

U = sidj
V �= ε, and (3) pidi

U = V
and pidj

V = U .

Observations: Accepting and terminating are distinct, but unlike in [5], accept-
ing implies termination. This suggests that termination without acceptance is
used, in this paper, to designate when an instance refuses to continue.

Partnering differs here from [5] in that acceptance is no longer required, there
is no condition on the SK, and there is no requirement of partner uniqueness.

There is a correctness notion: If U i and Vj are partnered, then they must
have both accepted and have equal session keys.

The authors state that their definition only covers implicitly authenticated
protocols, and that partnering would have to be redefined in order to account
for explicit authentication.

Papers following this approach include [17,19,22,25,26]4.
Having such a variety of definitions to pin down formally fundamental notions

is problematic. First, while we have not attempted to show so in this work, it is
more than likely that protocols deemed secure according to one definition become
trivially insecure according to another definition. Situations like these have been
documented in the past in non-password-based cases, see [14,15]. Secondly, it is
confusing for anybody trying to decide whether a protocol’s formal security can
be trusted or not.

In what follows, we focus on the “uniqueness of partners” aspect in these
definitions. We begin by taking another look at the RoR model as defined in [3].

4 [19] contains a notion of semi-partnering in order to have a definition for instances
that have had a correct exchange even if the last message has not been delivered.
We adopt this further in this work.

128 J. Lancrenon

2.3 A Bug in the RoR Model

In [3], it seems the RoR definition is slightly ill-defined.
Consider the following scenario in the RoR security game. Suppose that the

bit flipped at the beginning of the game ends up being 0, making CH output
all-random keys. Suppose also that at some point in time, the adversary A gets a
pair of instances U i and Vj to accept and be partners according to the definition
in Sect. 2.2. In particular, at this point in the game, U i and Vj are the only
instances to have accepted with a SID equal to sid := sidi

U . Next, A performs a
test query on each instance. The result is that A receives the same random string
R from both instances. Now, suppose that somehow A gets a third instance Vk

with pidk
V = U to accept with SID equal to sid. This removes the uniqueness

part of the partnering definition, thus U i and Vj are not partnered anymore.
Hence, the result of the test query is formally inconsistent with the definition,
because U i and Vj should have independent random keys, now that they are not
partnered. As for Vk, it is unclear really which key should be assigned in the
event a test occurs. Should it be random in order to remain consistent with the
definition, or should it be set to R in order to be consistent with A’s view?

This definitional problem can be solved by changing the requirements of part-
nering with respect to uniqueness. Note however that ultimately, it is reasonable
to expect that double partnering should occur with negligible probability only
anyway. However, we cannot make any security statements to enforce this at this
point in the model. It must be a proven property, so should not be integrated
into the definition.

3 A Well-Motivated Definition

In this section, we build on - and complete - all of the definitions above by
supplying a model of our own. We then show how it could fit several protocol
formats, covering all typical scenarios of implicit and explicit, unilateral and
mutual authentication.

In order to obtain a full description of the formal model, one could simply
replace the phrases “ready to use a session key”, “refuses to pursue the protocol”,
and “has had a correct exchange with U i” with “has accepted”, “has aborted”,
“is partnered to U i” respectively.

In order to stay with the habits of the literature, we continue to use the ran-
dom variables for SID, PID, and SK, and the terms “accepting”, “terminating”,
and “partnering”. We add explicit terms to indicate when and instance simply
stops, and when it refuses to continue mid-protocol.

The notions are compatible with both the FtG and RoR methodologies.
A full recap of the model we propose (taking into account our discussion on

uniqueness of partners in Sect. 4) can be found in Appendix A.

On PAKE Security Modeling 129

3.1 The Definition Itself

Status of Instances and Partnering
Halting. An instance halts if it stops sending and receiving messages, and ceases
to compute anything.

Halting can either be “good” (i.e. with a SK) or “bad” (i.e. without a SK).

Accepting. An instance U i accepts if and only if sidi
U is set to a non-ε value.

Accepting means that U i believes it is holding enough information to compute
a SK. The instance has not necessarily halted.

This formally includes the possibility that it may have actually computed
the SK value, but is not yet willing to use it.

Terminating. An instance U i terminates if and only if ski
U is set to a non-ε

value. If an instance terminates, it halts. Terminating means U believes it holds
a good SK, and is now willing to use it in higher-level applications. U i will
no longer send nor receive PAKE protocol messages.

If an instance terminates, it accepts, or has previously accepted. In both
cases, sidi

U is set to a non-ε value and remains so. If an instance accepts, it has
not necessarily terminated.5

Aborting. An instance U i aborts if it halts without having terminated.
In other words, it has stopped participating in the protocol exchange, and is

unwilling to assign a value to ski
U . Aborting can very well happen after accepting:

Just imagine an instance holding a SK, but waiting for the last confirmation
message to finally start using this SK.

Semi-partnering. U i and Vj are semi-partnered if (1) one is a client and one is
a server, (2) pidi

U = V and pidj
V = U , (3) sidi

U �= ε, sidj
V �= ε, and sidi

U = sidj
V .

Partnering. U i and Vj are partnered if (1) they are semi-partnered and (2)
ski

U �= ε, skj
V �= ε, and ski

U = skj
V .

By definition, if an instance is semi-partnered to another, it has accepted,
and holds a SID. If it is partnered to another, it has terminated and holds a SK.

Explicitly defining semi-partnering and partnering in this way seems to be
the only way to have a unique formal treatment of security regardless of whether
instances accept and terminate at the same time. In case an instance terminates
after accepting, we still want to be able to express at acceptance time that it may
have another unique instance to which it is bound, hence the semi-partnering.

To properly define security in the RoR model, and in particular to eliminate
the bug identified in Sect. 2.3, it will be convenient to have the following notion:

Partnering Graph. A partnering graph is a graph with instances for nodes.
Two nodes have an edge if and only if the corresponding instances are partners.

5 We stuck to the idea in [5] that accepting may happen before terminating, even
though the term “accepting” seems better suited to designate “successful termina-
tion”. We did this because the original BPR model is still the most used, so it is
probable that this is how the terminology is commonly understood.

130 J. Lancrenon

Correctness. Let U be a client and V be a server. If U i with pidi
U = V and Vj

with pidj
V = U run the protocol fully and correctly, U i and Vj are partnered.

Remark: Correctness can be formulated formally using matching conversa-
tions [6]. Note that correctness says that matching conversations lead to part-
nering. However, just because two instances are partnered does not mean that
they have had a matching conversation. Intuitively, the protocol should provide
a session key that is secure for use once the instances are partnered.

Queries in the FtG and RoR Models. The list of queries in Sect. 2.1 remains
exactly the same. We only re-write the test and reveal queries with the technical
terms.

We begin by revisiting freshness for the FtG model: an instance U i is said
to be fresh if it is in a partnering graph in which no instance has been the target
of a reveal query.

– (FtG) test(U , i): If U i has not terminated or is not fresh, this returns ⊥.
Otherwise, CH flips a coin b outside of A’s view. If b = 0, a random string
R is drawn from the session key space and tki

U ← R. Otherwise, tki
U ← ski

U .
tki

U is then returned to A. The test query may only be used once in the game.
– (FtG) reveal(U , i): If U i has not terminated or if it is part of a partnering

graph in which an instance has been tested, the query returns ⊥. Otherwise,
it returns ski

U to A.
– (RoR) test(U , i): If U i has not terminated, ⊥ is returned. Otherwise, suppose

first that b = 0. If U i is not partnered to any instance, or no instance in
the partnering graph it is a part of was subjected to a test query, CH selects
a random R from the session key space and sets tki

U ← R. If U i is within
a partnering graph where some instance Vj that has been tested, CH sets
tki

U ← tkj
V . Suppose now that b = 1. In this case, CH sets tki

U ← ski
U . Then,

A receives tki
U .

It should be clear that the introduction of the partnering graph eliminates
the bug in the RoR model. Of course, it is merely a tool to keep the definitions
consistent; as we have pointed out before, one would want at most one partner
to exist. The problem of partner uniqueness is studied in Sect. 4.

3.2 Examples of How It Functions

We give here a few examples of protocol structures that fit our definition in
various ways. In what follows, m and μ basically represent the main protocol
flows, i.e. the messages that a shared secret is usually computed with. The sym-
bols sid and sk designate the SID and SK. The k and κ values are confirmation
codes; their role is to prove to the other party that the same shared secret was
computed at both ends of the protocol run. As such, they must be computed
from, or at the same time as, the shared secret.

On PAKE Security Modeling 131

We look at two-pass, three-pass, and four-pass protocols, but one can easily
construct similar examples with protocols having more messages.

In practice, the SID is usually taken to be the concatenation of C, S, m, and
μ. This makes the randomness of both parties an input to SID. We shall return
to this point later.

Acceptance and Termination Occur in One Step for both the Client
and the Server. Examples of protocols like this are OMDHKE in [11] and EKE2
in [5]. The former achieves explicit authentication of the server to the client, as
in Fig. 1 and the latter achieves implicit authentication. (Take Fig. 1 and remove
all mention of κ and k.) Obviously, in two-pass protocols the parties involved
have no other choice but to accept and terminate at the same time. Also, it is
clear that the receiver of the first protocol message cannot be assured that it is
talking to a live instance.

Client C Server S
compute m

C, m

compute μ, κ, sid, sk

accept and terminate

set sidS ← sid
set skS ← sk

S, μ, κ

compute k, sid, sk

abort if κ �= k

accept and terminate

set sidC ← sid
set skC ← sk

Fig. 1. A two-pass protocol

One Party Accepts and Terminates in One Step, the Other Accepts
First and Terminates Later. In this class of protocols, we find e.g. the pro-
tocol of Groce and Katz [19], the OEKE protocol from [10], and the F + PaKE
protocol from [17]. The Groce-Katz protocol achieves mutual authentication, as
in Fig. 2. OEKE and F + PaKE only achieve explicit authentication of the client to
the server. (Remove all mention of κ1 and k1 in Fig. 2.) In both cases, acceptance
by the server occurs right before sending the second message, and termination
occurs at the very end.

After C sends the last message, but before this message is received by S, C
and S are semi-partnered.

In this class of protocols, the code κ2 and SK sk need not be computed by
the server once it receives the first message (as shown in Fig. 2); this can be
postponed to the end.6

6 This may even be desirable for efficiency reasons.

132 J. Lancrenon

Both Parties Accept and Terminate in Two Steps. This happens for
instance in the AMP protocol from [28], see Fig. 3. Both client and server
accept at different stages. Note that sometimes protocols of this form can
regroup certain messages in order to yield n-pass rather than (n + 1)-pass pro-
tocols. (However, four-pass protocols have some advantages over three-pass ones

Client C Server S
compute m

C, m

compute μ, κ1, κ2, sid, sk
accept

set sidS ← sid
S, μ, κ1

compute k1, k2, sid, sk

abort if κ1 �= k1

accept and terminate

set sidC ← sid
set skC ← sk

S, k2

abort if k2 �= κ2

terminate
set skS ← sk

Fig. 2. A three-pass protocol

Client C Server S
compute m

C, m

compute μ, κ1, κ2, sid, sk
accept

set sidS ← sid
S, μ

compute k1, k2, sid, sk
accept

set sidC ← sid
C, k1

abort if k1 �= κ1

terminate
set skS ← sk

S, κ2

abort if κ2 �= k2

terminate
set skC ← sk

Fig. 3. A four-pass protocol

On PAKE Security Modeling 133

too, e.g. in [29] Kwon reports on a practical multiple-password online guess-
ing attack against three-pass protocols, that four-pass protocols do not suffer
from. This attack depends on the server’s actual response time in processing
an authentication request, so falls out of the scope of currently used security
models.)

As in the previous case, the actual computation of the SK (which is different
from it being formally accepted as usable) can be moved around somewhat, this
time both at the server and client end.

4 The Quality of Partner Uniqueness

In this section, we examine just exactly “how unique” partners can be in AKEs,
with a special treatment of PAKEs, assuming we stick to the definitions of
partnering and testing that do not take into account our modifications,
in particular with no notion of partnering graph. We also assume
a partnering definition that does not mention uniqueness, e.g. that
of [17,19,22,25,26]. This serves as further evidence that partnering and partner
uniqueness must be carefully treated, and probably separately.

In general, we note that it seems uniqueness of partners has completely dis-
appeared from AKE requirements in a very large proportion of AKE research
papers. Also, when uniqueness is mentioned, it is not even clear how probable
this uniqueness should be (e.g. [3,5,26]). This is odd, since partner uniqueness
was actually considered in perhaps the very first AKE modeling paper [6]. Of
course, it is quite natural to expect that for all AKEs, if an instance runs the
protocol it should have at most one partner with overwhelming probability, but
this is rarely explicitly mentioned. One reason for this may be that usually an
attempt is made at funneling all of the desirable security properties into the
definition of session key security, but there are two problems with this, which
we show below.

First, even in the general case not all security properties can be treated
through this mechanism, and it so happens that uniqueness of partners is one
of them. Secondly, in the PAKE case - where the optimal bound for semantic
security is not even a negligible value - the property may formally fail altogether.

4.1 An Obstacle Caused by the test query

We begin with some flawed reasoning that applies to all AKE settings, and con-
cerning the link between multiple partnering of instances and SK security. Again,
we stress that this is specific to a partnering definition without partnering
graphs, and without built-in uniqueness. Also, we use the RoR setting
as an example.

What We Cannot Do... Let AKE be an authenticated key exchange protocol.
In the game played in Sect. 2.1, we can always consider the event “there exist
distinct users U and V, and distinct instances U i, Vj , and Vk such that U i and Vj

134 J. Lancrenon

are partnered and U i and Vk are partnered”, which we denote MP (for Multiple
Partnering). For any adversary B, let Advmp(B) := Pr[MP]. Our objective is to
relate Advmp(B) to Advs(A) for a suitably constructed A. Ultimately, it would
be nice if the negligibility of the latter implied that of the former.

• Construction C: Fix some adversary B, and consider adversary A, trying to
break the semantic security of AKE, designed as follows. A runs exactly like B,
but examining whether or not B can cause MP to occur. Whenever an instance
terminates, A checks to see if MP has happened. If B halts and MP never hap-
pened, A flips a coin b′ and outputs b′. As soon as MP happens (if it does), A
stops B, and studies the involved instances. Let U i, Vj , and Vk be these instances.
A performs one test query on Vj and another on Vk, receiving tkj

V and tkk
V . If

tkj
V = tkk

V , A sets b′ ← 1, and otherwise b′ ← 0. A then outputs b′ and halts.
At this point, in the event that MP does indeed occur, it is tempting to

directly conclude that since the instances Vj and Vk are clearly not partners
(since their PIDs do not correspond) but do hold identical session keys (since
they are each partnered to U i), the test queries performed should give either
independent random keys if b = 0 or identical keys if b = 1. From this, one
immediately sees that if semantic security of the session key holds, then MP
may only occur with negligible probabilility as well. However, we cannot make
this assertion, because it may be that U i has also had a test query performed on
it. It the RoR model, this would make all keys identical no matter the value of b.7

Unfortunately, there does not seem to be any way around this obstruction. It
looks as though one would have to somehow need the probability that A makes
a test query on U i to be itself a negligible value, but this is not justifiable. Thus,
in order to prove anything in this way, one has to consider a more restricted
version of MP.

...What We Can Do... We consider event MP∗ defined as “there exist distinct
users U and V, and distinct instances U i, Vj , and Vk, such that (1) U i and Vj

are partnered, (2) U i and Vk are partnered, and (3) no test query was performed
on U i.”

We also consider construction C∗ which is basically identical to construction
C, except that A looks out for event MP∗ rather than MP. The next lemma
precisely relates Advmp∗

(B) to Advs(A).

Lemma 1. It holds that Advs(A) =
(
1 − 1

2�−1

)
Advmp∗

(B).

Proof: We have

Pr[S] = P[S|MP∗]Pr[MP∗] + P[S|¬MP∗]Pr[¬MP∗] (1)

Conditioned on MP∗ not having occurred, by definition of A we have
P[S|¬MP∗] = 1

2 . If MP∗ has occurred, all three instances should hold the same
7 Similar reasoning shows that the FtG model suffers from the phenomenon as well,

basically because if U i is tested, the freshness condition prohibits testing of the two
other instances. Thus, our observation is valid “beyond RoR”.

On PAKE Security Modeling 135

SK sk. However, since pidj
V = pidk

V = U , Vj and Vk are not partnered. Finally, no
test query was performed on U i. Therefore, if b = 0 the test(V, j) and test(V, k)
queries output tkj

V and tkk
V independently and randomly. Thus, A will output

the correct bit value unless these keys collide, which may happen with proba-
bility 1

2� . Plugging these values into Eq. 1 gives Pr[S] = 1
2

(
1 − 1

2�−1

)
Pr[MP] + 1

2 .
Taking the advantage function formulas finishes the proof. �
On one hand, this lemma shows that for AKE protocols for which Advs is
required to be negligible (such as PKI-AKEs, or SSK-AKEs), the probability
that MP∗ occurs is negligible as well. On the other hand, for PAKEs, this no
longer holds: All we can say is

Advmp∗
(B) ≤

(2�−1

2�−1 − 1

)Cnse

|PW| (2)

where C and nse are as in Paragraph 2.1.

...and What We Can Assert. Hence, we can basically gather the following
three points:

– (1) Advs’s negligibility does not immediately imply that event MP will occur
with negligible probability. Notably, this concerns the PKI and SSK cases.

– (2) Advs’s negligibility only implies that event MP∗will occur with negligible
probability. This is certainly a desirable guarantee, but remains weaker than
MP.

– (3) In the PAKE case, even the restricted event MP∗ has no immediate reason
to be negligible at all.

Point (3) is further illustrated in Paragraph 4.2 below, where we propose a
PAKE that is secure according the the model of Paragraph 2.1, but at the same
time can cause MP∗ to occur with a probability nearly optimally respecting the
bound in Eq. 2.

4.2 A “secure” PAKE Protocol Where Non-negligible
Multiple Partnering May Occur

We now describe our flawed protocol, dubbed P. It actually is not a “pure”
PAKE, since the client authenticates the server using a public key, while the
server authenticates the client using a password. We were unable to construct
a suitable example in the “pure” setting, but we believe our point is still valid.
(However, a “pure” example would be very interesting.)

Setup. From here on, (SKeyGen,Sig,Ver) is a strongly-EU-CMA-secure (see [4])8

signature scheme and (EKeyGen,Enc,Dec) is a CCA-2-secure public key encryp-
tion scheme. We assume that there can be many different client identities,
8 The fact that signatures are strongly secure is used to make the security proof sim-

pler, but is not strictly necessary.

136 J. Lancrenon

but only one server identity S. Thus, there are many clients, and many client
instances, but only one server, and many server instances. The KeyGen algo-
rithms are run once to obtain public key/secret key pairs (pkE , skE) and
(pkS , skS) for encryption and signing respectively. Each client C has its pass-
word pwC registered at server S, and has (pkE , pkS), say, hardcoded into its
software specification. Server S holds the full password file {pwC}C , as well as
(skE , skS).9

Running P. The protocol flows are shown in Fig. 4. First, the server S pings
the client C with a signed nonce. C then verifies the signature, accepts without
terminating, and returns an encryption of the nonce it just received, a fresh
nonce of its own, a session key it selects itself randomly, and its password. Upon
receiving this encryption, S decrypts and checks if the password matches C’s
identity and if it recognizes its own nonce. If so, it accepts and terminates,
validates the session key, and returns to C a new signature on both nonces.
Finally, if the signature verifies C terminates and validates the session key.

Upon acceptance, for our protocol the SID is set as being (M, C,S), where
M is C’s chosen nonce. As the reader may expect, the fact that the SID is a
function of only the client’s nonce is what causes trouble.

Client C Server S

N ← {0, 1}�

σ ← Sigsks
(N, C, S)

S, N, σ

Abort if VerpkS (N, C, S, σ) �= 1

M ← {0, 1}�

K ← {0, 1}�

c ← EncpkE (K, N, M, C, S, pwC)

sidC ← (M, C, S)

C, c

Abort if DecskE (c) �= (pwC , K, N,

M, C, S) for some K and M

in {0, 1}�

τ ← Sigsks
(N, M, C, S)

sidS ← (M, C, S)

skS ← K
S, M, τ

Abort if VerpkS (N, M, C, S, τ) �= 1

skC ← K

Fig. 4. The P protocol.

9 One may think of a setup of this sort as being implemented e.g. for a large group of
employees in a company.

On PAKE Security Modeling 137

Discussion. On one hand, P definitely looks like a bad protocol, given that it
is absolutely littered with red flags:

– (1) The SID depends only on the random bits of one of the two parties
involved;

– (2) The session key is completely determined by one of the two parties
involved;

– (3) The session key and identifier are completely decoupled.

These points certainly go against well-established design principles that PAKEs
commonly follow. As for item (4), it illustrates the need to study uniqueness of
partners as a security property in its own right in the PAKE case.

On the other hand, P actually satisfies an appropriately modified BPR-style
definition of security for PAKEs:

Theorem 1. Protocol P is a secure PAKE in that for any efficient adversary
A, when A plays the RoR game against challenger CH as described in Sect. 2.1,
we have Advs(A) ≤ nse

|PW| + negl(λ), where nse is an upper bound on the number
of send queries made by A.

Proof: The proof of this theorem (using the standard game-hopping technique)
will appear in the full version of the paper. �
Furthermore, P also suffers from point (4) below:

– (4) Event MP∗ may occur with non-negligible probability.

A demonstration of this is in the next paragraph.

Partnering a Client Instance to Two Server Instances. We construct a
specific attacker B in the security model described in Sect. 2.1. B is trying to
cause the event MP∗.

B first initializes a client instance C1 and server instance S1 with pid1C = S
and pid1S = C. Next, it performs an execute query on these instances. They now
share a SK sk and a SID (M, C,S). Then, it performs a test query on S1 to get
sk. Now, for j = 2, ... it repeats the following steps until some server instance
Sj accepts:

– (1) It initializes Sj with pidj
S = C, and instructs it to send the first protocol

message S, N j , σ;
– (2) It chooses pwj ← PW randomly and computes c ← EncpkE

(sk,N j ,M, C,
S, pwj);

– (3) It sends cj to Sj and observes whether Sj accepts or not.

When some Sj finally accepts, B has guessed the right password pwC , and the
instances C1 and Sj are partnered : sidj

S = sid1C = (M, C,S) and skj
S = sk1

C = sk.
In the above scenario, it should be clear that if t is the number of Sj instances

(for j ≥ 2) used in order to succeed, we have

Advmp∗
(B) = Pr[MP∗] =

t

|PW|

138 J. Lancrenon

which is certainly not negligible. Also, since we have t ≤ nse − 2, this is well in
accordance with Eq. 2 (taking C = 1, the best possible constant), and thus with
the required bound on semantic security.

4.3 Lessons Learned on Requirements

We should conclude that MP has to be considered as an event to render negligible
in its own right for both AKEs, where the semantic security of SK only provides
a safety net in that it renders a more restricted event negligible, and PAKEs,
where there is no safety net at all. Fortunately, most AKEs in the literature do
not have these problems because of the way partnering is instantiated by concrete
protocols. In particular, as previously stated most PAKEs build the SIDs from
concatenations of almost all messages, so all parties’ random values are involved,
and uniqueness of SIDs, and therefore of partners, is a trivially verified matter.
However, as we have shown, it can formally fail in “non-concatenation” cases,
and so it is better off being a stated and formally proven requirement, no matter
how trivial. Thus it seems worthwhile to add to the security model the property
that MP should be negligible all the time. In fact, using our language from Sect. 3,
multiple semi-partnering should be negligible all the time.

In the particular case where SIDs are used to establish partnering - this is
almost always the case in BPR-style models - The simplest way to do this would
be to prove that the event SID is negligible, where we define SID to be “there
exist more than two instances that share the same non−ε SID”. In other words,
we add the following point to our model:

Partner Uniqueness: Let SID be the event that “there exist more than two
instances that have the same non-ε SID”. Let Advsid(A) := Pr[SID]. We say
that PAKE achieves unique partnering if for any PPT A the function Advsid is
negligible. Note that the quality of the long-term keying material here no longer
should have an influence on the security bound we require.

For a complete model description, we refer to Appendix A.

5 Conclusion and Future Work

In this paper, we have shown that there are multiple BPR-style definitions of
security for PAKEs in the literature, and have attempted to unify them. In
the process, we found a way to solve a bug in the model of [3]. Finally, we
showed that uniqueness of partners is a property worth establishing explicitly,
similarly to explicit authentication and semantic security of the session key.
Specifically, it should hold with overwhelming probability even in the PAKE
case, where the other main security properties can only be ensured with non-
negligible probability.

As far as this study goes, it should be extended to include long-term key
corruptions. Also, it would be extremely interesting to find a counter-example
similar to protocol P in the “pure PAKE” setting. Finally, it may be worthwhile
to further refine BPR-style models by adding a specific variable to designate

On PAKE Security Modeling 139

the shared secret computed by protocol participants. It seems reasonable that
this variable would be non-ε when semi-partnering occurs.

Acknowledgments. We would like to thank the reviewers for their comments. The
author is supported by the Fonds National de la Recherche, Luxembourg, via the CORE
project AToMS and the INTER project SEQUOIA.

A BPR-style Models Revisited

This appendix is just a formal recap of our complete list of requirements.

Principals and Instances. An interactive game, indexed by the security para-
meter λ ∈ N, is played between a challenger CH and an adversary A. All of the
algorithms considered are Probabilistic, Polynomial-Time (PPT) in λ.

At the beginning of the game, there is a fixed set of principals (or users),
partitioned into non-empty sets of clients C and servers S. Each client C is
assigned a password pwC drawn uniformly at random from some finite set PW
of bitstrings. Each server S holds the full set of all clients’ passwords {pwC}C .

Adversary A has oracle access - via the queries described below - to any
number of instances U i (i ∈ N) of any principal U . An instance of U i represents
an attempt U makes at running the PAKE protocol over the network fully con-
trolled by A. An instance’s objective is to compute a Session Key (or SK) it
believes it shares with an instance Vj of some other principal V. This should
happen only if U i thinks it is partnered (see below) to Vj .

At any point in time, an instance U i may terminate (see below). By this time,
U i should have computed (1) a Partner Identity (or PID) pidi

U , a (2) Session
Identity (SID) sidi

U , and (3) a SK ski
U . The PID is a bitstring indicating the

identity of the instance with which U i believes it has communicated with. The
SID is a bitstring serving as an identifier for both the key exchange run that just
occurred, and the session in which the computed SK will subsequently serve.
Often the SID is always in practice set to being the ordered concatenation of all
exchanged protocol messages, except possibly the last message. At any point in
time an instance may also abort (see below), with no SK. Once an instance has
halted (see below) it can no longer be reused.

Status of Instances and Partnering.

Halting. An instance halts if it stops sending and receiving messages, and ceases
to compute anything. Halting can be “good” (i.e. with a SK) or “bad” (i.e.
without a SK).

Accepting. An instance U i accepts if and only if sidi
U is set to a non-ε value.

Accepting means that U i believes it is holding enough information to compute
a SK.

Terminating. An instance U i terminates if and only if ski
U is set to a non-ε

value. If an instance terminates, it halts. Terminating means U believes it holds
a good SK, and is now willing to use it in higher-level applications. U i will no

140 J. Lancrenon

longer send nor receive PAKE protocol messages. If an instance terminates, it
accepts, or has previously accepted. In both cases, sidi

U is set to a non-ε value
and remains so.

Aborting. An instance U i aborts if it halts without having terminated.

Semi-partnering. U i and Vj are semi-partnered if (1) one is a client and one is
a server, (2) pidi

U = V and pidj
V = U , (3) sidi

U �= ε, sidj
V �= ε, and sidi

U = sidj
V .

Partnering. U i and Vj are partnered if (1) they are semi-partnered and (2)
ski

U �= ε, skj
V �= ε, and ski

U = skj
V . So, if an instance is semi-partnered to another,

it has accepted, and holds a SID. If it is partnered to another, it has terminated
and holds a SK.

Partnering Graph. A partnering graph is a graph with instances for nodes.
Two nodes have an edge if and only if the corresponding instances are partners.

Correctness. If Ci with pidi
C = S and Sj with pidj

S = C run the protocol fully
and correctly, Ci and Sj are partnered.

Find-then-Guess.

– send(U , i,m): A has message m delivered to U i. U i processes the message
according to protocol specification. To instruct an instance U to send the first
protocol message to entity V, A makes the query with M = V. This query
is used to model arbitrary message delivery to an instance. In particular, it
serves to count impersonation attacks.

– execute(U ,V, i, j): The protocol is executed faithfully and completely between
U i and Vj and the resulting transcript is given to A. A thus gets to see as
many honest protocol runs as it wishes.

– reveal(U , i): If U i has not terminated or if it is part of a partnering graph in
which an instance has been tested, the query returns ⊥. Otherwise, it returns
ski

U to A.
– test(U , i): test(U , i): If U i has not terminated or is not fresh, this returns ⊥.

Otherwise, CH flips a coin b outside of A’s view. If b = 0, a random string
R is drawn from the session key space and tki

U ← R. Otherwise, tki
U ← ski

U .
tki

U is then returned to A. The test query may only be used once in the game.

Eventually, A halts the overall game, at which point it outputs a bit b′. If the
game was halted without A making any test query, then CH privately flips a
coin b.

Freshness: An instance U i is said to be fresh if it is in a partnering graph in
which no instance has been the target of a reveal query.

Real-or-Random. The send and execute queries are identical to those in the
FtG model. However, the reveal query is no longer available. Instead, it is
replaced by as many test queries as A wants. How they are answered depends
on the value of a bit b flipped by CH outside of A’s view at the beginning of the
game.

On PAKE Security Modeling 141

– test(U , i): If U i has not terminated, ⊥ is returned. Otherwise, suppose first
that b = 0. If U i is not partnered to any instance, or no instance in the
partnering graph it is a part of was subjected to a test query, CH selects
a random R from the session key space and sets tki

U ← R. If U i is within
a partnering graph where some instance Vj that has been tested, CH sets
tki

U ← tkj
V . Suppose now that b = 1. In this case, CH sets tki

U ← ski
U . Then,

A receives tki
U .

The slight complication arising in case b = 0 is that even if the SKs assigned are
random, they must at least remain consistent across instances that should hold
the same keys. As in FtG, at any point in time A may halt the game and output
a bit b′.

Technically Defining Security. In both FtG and RoR, one usually considers
three security properties: SK security, Client-to-Server (C2S) authentication, and
Server-to-Client (S2C) authentication. We explicitly add to this uniqueness of
partners by requiring that SIDs are shared by at most two instances (SID).

SK security: Let S be the event that “b′ = b at the end of the game”. A’s
natural advantage is defined to be Advs(A) := 2Pr[S] − 1. A PAKE protocol is
said to have semantically secure SKs if there exists a non-zero constant C ∈ N

such that for any PPT A, there exists a negligible (in λ) function negl with the
property that Advs(A) ≤ Cnse

|PW| + negl(λ) where nse is an upper bound on the
number of send queries the adversary makes.

Authentication: Let C2S be the event that “there exists some server instance
Sj that is ready to use a SK, but has not had a correct exchange with a client
instance”. Here we simply set Advc2s(A) := Pr[C2S], and we say that a PAKE
achieves client-to-server authentication if there exists a non-zero C such that
for any PPT A, there exists a negligible function negl with the property that
Advc2s(A) ≤ Cnse

|PW| + negl(λ). Server-to-client authentication is defined similarly.

Partner Uniqueness: Let SID be the event that “there exists more than two
instances that have the same non-ε SID”. Let Advsid(A) := Pr[SID]. We say
that PAKE achieves unique partnering if for any PPT A the function Advsid is
negligible.

References

1. Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE Password-
Authenticated Key Exchange Protocol. In: 2015 IEEE Symposium on Security and
Privacy (2015)

2. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption
indistinguishable under plaintext-checkable attacks. In: Katz, J. (ed.)
PKC 2015. LNCS, vol. 9020, pp. 332–352. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-662-46447-2 15

3. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenti-
cated key exchange in the three-party setting. In: Vaudenay, S. (ed.)
PKC 2005. LNCS, vol. 3386, pp. 65–84. Springer, Heidelberg (2005).
http://dx.doi.org/10.1007/978-3-540-30580-4 6

http://dx.doi.org/10.1007/978-3-662-46447-2_15
http://dx.doi.org/10.1007/978-3-540-30580-4_6

142 J. Lancrenon

4. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption.
In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, p. 83. Springer,
Heidelberg (2002). http://dl.acm.org/citation.cfm?id=647087.715701

5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, p. 139. Springer, Heidelberg (2000)

6. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

7. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Computer Society Symposium on
Research in Security and Privacy, May 4–6, pp. 72–84 (1992)

8. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 449–475. Springer,
Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-40041-4 25

9. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, p. 156. Springer, Heidelberg (2000)

10. Bresson, E., Chevassut, O., Pointcheval, D.: Security proofs for an efficient
password-based key exchange. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM
Conference on Computer and Communications Security, pp. 241–250. ACM (2003)

11. Bresson, E., Chevassut, O., Pointcheval, D.: New security results on encrypted key
exchange. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp.
145–158. Springer, Heidelberg (2004)

12. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of the 42Nd IEEE Symposium on Foundations of
Computer Science, FOCS 2001, p. 136 (2001). http://dl.acm.org/citation.cfm?
id=874063.875553

13. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

14. Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Examining indistinguishability-
based proof models for key establishment protocols. In: Roy, B. (ed.) ASI-
ACRYPT 2005. LNCS, vol. 3788, pp. 585–604. Springer, Heidelberg (2005).
http://dx.doi.org/10.1007/11593447 32

15. Cremers, C.: Examining indistinguishability-based security models for key
exchange protocols: The case of CK, CK-HMQV, and eCK. In: Proceedings of
the 6th ACM Symposium on Information, Computer and Communications Secu-
rity, ASIACCS 2011, NY, USA, pp. 80–91 (2011). http://doi.acm.org/10.1145/
1966913.1966925

16. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (2006). http://dx.doi.org/10.1109/TIT.1976.1055638

17. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003). http://dx.doi.org/10.1007/3-540-39200-9 33

18. Goldreich, O., Lindell, Y.: Session-key generation using human passwords only.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 408. Springer, Heidelberg
(2001). http://dx.doi.org/10.1007/3-540-44647-8 24

http://dl.acm.org/citation.cfm?id=647087.715701
http://dx.doi.org/10.1007/978-3-642-40041-4_25
http://dl.acm.org/citation.cfm?id=874063.875553
http://dl.acm.org/citation.cfm?id=874063.875553
http://dx.doi.org/10.1007/11593447_32
http://doi.acm.org/10.1145/1966913.1966925
http://doi.acm.org/10.1145/1966913.1966925
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1007/3-540-39200-9_33
http://dx.doi.org/10.1007/3-540-44647-8_24

On PAKE Security Modeling 143

19. Groce, A., Katz, J.: A new framework for efficient password-based authenticated
key exchange. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, NY, USA, pp. 516–525 (2010). http://doi.
acm.org/10.1145/1866307.1866365

20. Halevi, S., Krawczyk, H.: Public-key cryptography and password
protocols. ACM Trans. Inf. Syst. Secur. 2(3), 230–268 (1999).
http://doi.acm.org/10.1145/322510.322514

21. Jablon, D.P.: Strong password-only authenticated key exchange. ACM SIGCOMM
Comput. Commun. Rev. 26(5), 5–26 (1996)

22. Jiang, S., Gong, G.: Password based key exchange with mutual authentication.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 267–279.
Springer, Heidelberg (2004). http://dx.doi.org/10.1007/978-3-540-30564-4 19

23. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, p. 475. Springer, Heidelberg (2001)

24. Katz, J., Ostrovsky, R., Yung, M.: Efficient and secure authenticated key exchange
using weak passwords. J. ACM 57(1), 78–116 (2009)

25. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-
based authenticated key exchange from lattices. In: Matsui, M. (ed.) ASI-
ACRYPT 2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009).
http://dx.doi.org/10.1007/978-3-642-10366-7 37

26. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011). http://dx.doi.org/10.1007/ 978-3-642-19571-6 18

27. Kiefer, F., Manulis, M.: Oblivious PAKE: efficient handling of password trials.
Cryptology ePrint Archive, report 2013/127 (2013). http://eprint.iacr.org/

28. Kwon, T.: Authentication and key agreement via memorable password. In: ISOC
Network and Distributed System Security Symposium (2001)

29. Kwon, T.: Practical authenticated key agreement using passwords. In: Zhang, K.,
Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 1–12. Springer, Heidelberg (2004)

30. Lucks, S.: Open key exchange: how to defeat dictionary attacks without encrypting
public keys. In: Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Secu-
rity Protocols 1997. LNCS, vol. 1361, pp. 79–90. Springer, Heidelberg (1998).
http://dl.acm.org/citation.cfm?id=647215.720526

31. MacKenzie, P.: The PAK Suite: protocols for password-authenticated key
exchange. DIMACS Technical report 2002–46 , pp. 7 (2002)

32. MacKenzie, P., Patel, S., Swaminathan, R.: Password-authenticated
key exchange based on RSA. Int. J. Inf. Secur. 9(6), 387–410 (2010).
http://dx.doi.org/10.1007/s10207-010-0120-3

33. Pointcheval, D.: Password-based authenticated key exchange. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 390–397.
Springer, Heidelberg (2012)

34. Shoup, V.: On Formal Models for Secure Key Exchange. Cryptology ePrint
Archive, Report 1999/012 (1999). http://eprint.iacr.org/1999/012

http://doi.acm.org/10.1145/1866307.1866365
http://doi.acm.org/10.1145/1866307.1866365
http://doi.acm.org/10.1145/322510.322514
http://dx.doi.org/10.1007/978-3-540-30564-4_19
http://dx.doi.org/10.1007/978-3-642-10366-7_37
http://dx.doi.org/10.1007/ 978-3-642-19571-6_18
http://eprint.iacr.org/
http://dl.acm.org/citation.cfm?id=647215.720526
http://dx.doi.org/10.1007/s10207-010-0120-3
http://eprint.iacr.org/1999/012

Strengthening Public Key Authentication
Against Key Theft (Short Paper)

Martin Kleppmann1(B) and Conrad Irwin2

1 Computer Laboratory, University of Cambridge, Cambridge, UK
mk428@cl.cam.ac.uk

2 Superhuman Labs, San Francisco, USA
conrad.irwin@gmail.com

Abstract. Authentication protocols based on an asymmetric keypair
provide strong authentication as long as the private key remains secret,
but may fail catastrophically if the private key is lost or stolen. Even
when encrypted with a password, stolen key material is susceptible to
offline brute-force attacks. In this paper we demonstrate a method for
rate-limiting password guesses on stolen key material, without requiring
special hardware or changes to servers. By slowing down offline attacks
and enabling easy key revocation our algorithm reduces the risk of key
compromise, even if a low-entropy password is used.

1 Introduction

Although passwords are the prevalent authentication mechanism on the internet
today, there are some niches in which public key authentication systems have
been successfully adopted. For example, SSH public key authentication [11] is
widely used for remote login to servers, TLS client certificates [3] are used in
some countries for access to public services [8], and FIDO U2F [10] provides
2-factor authentication for web applications.

In these protocols, a user account is associated with a public key, and a
client authenticates itself to a server by computing a digital signature using the
corresponding private key. The private key is stored on the client device (perhaps
using a cryptographic hardware module), so the signature implements a machine-
to-machine authentication protocol (a “something you have” factor). Since the
device may be lost or stolen, an additional human-to-machine authentication
step is employed to prevent an attacker using the key: for example, a password
or biometric information can be used to unlock or decrypt the private key.

However, passwords and biometric identifiers are typically low in entropy,
making them susceptible to offline attacks if a device is stolen. Our contribution
in this paper is a scheme for storing an RSA private key in a way that makes
it harder for an attacker to make use of stolen key material. We build upon the
mRSA key-splitting scheme [2,6], which provides instantaneous key revocation,
and extend it with a novel protocol for rate-limiting password guesses, which
has the effect of slowing down offline attacks against stolen key material. In this
c© Springer International Publishing Switzerland 2016
F. Stajano et al. (Eds.): PASSWORDS 2015, LNCS 9551, pp. 144–150, 2016.
DOI: 10.1007/978-3-319-29938-9 9

Strengthening Public Key Authentication Against Key Theft (Short Paper) 145

work we limit our attention to RSA keys, but we hope to extend our approach
to support other public-key cryptosystems such as ECC in future.

1.1 Threat Model

In our scenario, a client stores an RSA private key encrypted with a password.
The client wishes to authenticate itself to a server as username r. We assume
the server already knows which RSA public key belongs to which username. We
require that all communication occurs over TLS, and that the client verifies the
identity of the server using its existing PKI certificate or a pinned public key.

Our adversary is an active network attacker, but we assume that our use of
TLS prevents the attacker from eavesdropping or tampering with messages. The
attacker can steal encrypted private key material from a client device (e.g. by
stealing the physical device or by compromising it remotely). We assume the
attacker can trick the user into accessing fake services, but cannot trick the user
into revealing the key encryption password to the attacker. We assume that the
user is aware when a device has been lost or compromised, and that they are
willing to take steps to revoke it.

In Sect. 2.2 we introduce a semi-trusted service called the mediator. We
assume that data stored at the mediator is not accessible to the adversary who
can steal private key material from clients. The mediator cannot authenticate
on the client’s behalf, and it need not be trusted as an authority.

2 Revocable Public Key Authentication

In this section we review an existing technique for instant revocation called
mediated RSA (mRSA) [2,6]. We demonstrate it by example, using a simplified
version of the FIDO protocols [10]. We build upon mRSA in Sect. 3 to explain
our algorithm for rate-limiting password guesses.

2.1 Basic RSA Authentication

A client has a username r and an RSA private key (n, d), where n is the modulus
and d the private exponent. The server knows the corresponding public key (n, e)
for r, where e is the public exponent. To authenticate, the client first requests a
fresh challenge c from the server. It then constructs an RSA signature s:

s = H(c ‖ cb ‖ u ‖ r)d mod n , (1)

where u is the URL of the server, and cb is the TLS channel binding [1] or
Origin-Bound Certificate [4] of the connection between server and client. The
channel binding prevents MITM and replay attacks. H is shorthand for the
EMSA-PSS-Encode operation (hashing and padding) defined in PKCS#1 [5].

The client then uses TLS to send the authentication request (s, c, u, r, n, e)
to the server at URL u, which verifies that s is a valid PKCS#1 signature of

146 M. Kleppmann and C. Irwin

c ‖ cb ‖ u ‖ r using the public key (n, e), that c and u are valid for this server,
that the channel binding matches, and that (n, e) is a public key for user r.

An adversary who steals the private exponent d can easily impersonate the
client. A common solution is to encrypt d with a key derived from a password
using a slow KDF such as scrypt [9]. However, password entropy is often low, so
this is not sufficient to stop an attacker with significant computing resources.

2.2 The Mediator Service

To prevent theft of the private exponent d, we split it into key fragments using
the mRSA method [2,6]. It is based on the identity:

s = md = mda+db = mdamdb mod n . (2)

The private exponent d is split into da, which is an integer drawn from the
uniform random distribution U(0, d), and db = d−da. Fragment da is encrypted
with the user’s password and stored on the client device a, while fragment db is
stored on a remote server called the mediator. If the same user has multiple client
devices, d can be split in a different way for each device, with the counterpart of
each device’s fragment stored on the mediator. It would be easy to split d into
three or more summands, but we focus on the two-fragment case.

After the key has been split, a client device must work together with the
mediator in order to construct a valid signature of the form in (1). When device
a wants to generate a signature, it sends a message m to the mediator:

m = H(c ‖ cb ‖ u ‖ r) . (3)

The request is sent over TLS and authenticated as described in Sect. 3.2. The
mediator uses its key fragment db to calculate a response:

resp = mdb = H(c ‖ cb ‖ u ‖ r)db mod n (4)

and returns resp to client device a. Now, a can calculate the RSA signature s:

s = H(c ‖ cb ‖ u ‖ r)da · resp = mdamdb = md mod n , (5)

and thus authenticate with the server at URL u.
If a device’s key fragment is stolen, it can instantly be revoked by deleting the

counterpart fragment from the mediator, rendering the stolen fragment useless.
This deletion request can be authenticated by another device owned by the same
user, as discussed in Sect. 3.2. This implies that a user must enrol at least two
physical devices with the mediator, so that the remaining device can revoke a
lost device. A paper print-out of the key can serve as last resort in case all devices
are lost or destroyed.

The mediator need only be partially trusted. It cannot authenticate as the
user without the cooperation of one of the user’s physical devices. The user only
needs to trust the mediator to be always online, to keep key fragments safe from

Strengthening Public Key Authentication Against Key Theft (Short Paper) 147

attackers who steal devices, and to correctly delete key fragments when the user
requires key revocation. The user’s privacy is protected by hashing the message
c ‖ cb ‖ u ‖ r before sending it to the mediator, so the mediator does not learn
which services the user is logging in to, or which usernames they are using.

From the point of view of a server that uses public key authentication, the
mediator does not even exist: a server simply verifies the RSA signature, and
does not care how that signature was constructed. This is in contrast to federated
login systems such as OpenID, where the relying party must trust the identity
provider.

3 Rate Limiting Password Guesses

In the original proposal of mRSA [2], requests to the mediator are not authenti-
cated. In this section we show that by adding authentication, we can strengthen
mRSA to prevent offline attacks against stolen private key material.

Consider an attacker who has stolen a client device on which key fragment
da is stored, encrypted with password pass. The attacker reads the encrypted
fragment E(da, pass) from the device, and mounts an offline attack by repeat-
edly trying a password guess pass ′ (based on a dictionary or brute force) and
computing D(E(da, pass), pass ′) until the correct da is found.

However, an offline attack on the password requires the attacker to be able to
determine whether a decryption attempt has indeed yielded the correct da. The
following protocol ensures that an attacker must make a request to the mediator
for every decryption attempt in order to determine whether it is correct. This
allows the mediator to limit the rate of decryption attempts, giving the user
more time to revoke the stolen device, even if the password is fairly weak.

3.1 Key Fragment Encryption

Let k be the RSA key length. A key fragment da can be encoded as a k-bit
string, using zero padding for the most significant bits, since da < d < n < 2k.
This k-bit string can then be encrypted into a k-bit ciphertext efrag , using a
stream cipher and a key derived from a password. For example, we can use the
scrypt KDF [9] and AES-128 in CTR mode [7] as stream cipher:

efrag = AESCTR(ctr , scrypt(pass)){0...k−1} ⊕ da , (6)

where ctr is a random nonce that is stored in plaintext and incremented by
AESCTR for each block of key stream. An attacker who has stolen efrag and
ctr may guess a password pass ′, and compute a guess d′

a of the key fragment:

d′
a = AESCTR(ctr , scrypt(pass ′)){0...k−1} ⊕ efrag . (7)

If the password guess pass ′ is incorrect, d′
a is a uniformly distributed pseudo-

random number between 0 and 2k. We deliberately choose not to use authenti-
cated encryption, because the MAC would tell the attacker whether the password
guess was correct, making an offline attack easy.

148 M. Kleppmann and C. Irwin

Note that da is drawn from a uniform distribution U(0, d), whereas d′
a is

drawn from U(0, 2k). Since d < 2k, the distributions are different, which leaks
some information: smaller values of d′

a are more likely to be correct than larger
ones. Apart from this bias, there are no particular features that distinguish the
correct da from a random bit string.

To quantify this assertion, we generated 50,000 RSA keys (k = 2048 bits)
using OpenSSL, and drew a uniformly distributed random da with 0 ≤ da < d
for each private exponent d. Table 1 shows the bias in the most significant bits
of da when encoded in k bits. The key fragments had an entropy of 2047.05 bits,
implying that 0.95 bits of information are leaked by the bias. This can be used
by an attacker to prioritize guesses that are more likely to be correct, but an
attacker cannot rule out password guesses from examining d′

a alone.

Table 1. Probability that bit i of da is 1, when encoded in k = 2048 bits

i 2047 2046 2045 2044 2043 2042 2041 2040 2039

Probability 0.070 0.240 0.340 0.406 0.446 0.469 0.482 0.493 0.499

3.2 Authenticating Requests to the Mediator

Furthermore, to prevent offline attacks on encrypted key fragments, requests to
the mediator must be authenticated. To see why this is the case, consider an
unauthenticated mediator that accepts any message m and returns mdb mod n
as in (4). An attacker could use this response to test whether a password guess
pass ′ is correct, by using (7) to compute d′

a and checking whether md′
amdb

mod n is a valid RSA signature.
To prevent this, a client must prove to the mediator that it knows the correct

password pass without revealing the password or the decrypted key fragment d′
a.

This is accomplished by the following protocol:

1. When the client requests the mediator to compute a partial signature on a
message m, it must also include a partial signature sm using d′

a:

m = H(c ‖ cb ‖ u ‖ r) (8)

sm = H(m ‖ cbm)d
′
a mod n (9)

where cbm is a channel binding [1] of the TLS connection between the client
and the mediator. Note that cb is between client and server, whereas cbm is
between client and mediator.

2. The mediator uses its own channel binding cb′
m of the connection from the

client to compute:

sm · H(m ‖ cb′
m)db = H(m ‖ cbm)d

′
a · H(m ‖ cb′

m)db mod n (10)

Strengthening Public Key Authentication Against Key Theft (Short Paper) 149

and checks whether the result is a valid signature of m ‖ cb′
m for the user’s

public key (n, e). This check succeeds if d′
a = da (i.e. the user’s password was

correct), and if cb′
m = cbm (preventing MITM and replay attacks).

3. If the signature is valid, the mediator computes

resp = mdb = H(c ‖ cb ‖ u ‖ r)db mod n (11)

as before, and returns it to the client. If the signature is not valid, the mediator
returns “bad signature”.

When a password-guessing attacker receives a “bad signature” response, it
learns that the password guess pass ′ was incorrect, but it does not gain any
additional information that would help it determine whether any other pass-
word guess pass ′′ is correct or not. Thus, the attacker must make a request to
the mediator for every guess. If the mediator receives too many requests for a
signature with a particular fragment within a short time, it returns an error.

The same mechanism can be used to authenticate key revocation: the medi-
ator only processes a revocation request for a device if it is authenticated by
another device of the same user. This avoids relying on a central authority.

4 Conclusion

The security of key-based authentication is only as good as the protection of
the private key material. In this paper we extend mRSA, an existing method for
revocation of private keys, by authenticating requests to the mediator.

Our algorithm ensures that an attacker who has stolen a password-encrypted
key, and wants to guess the password, must make a request to a mediator for
every attempt. This gives the mediator the opportunity to limit the rate at which
passwords can be tested, giving the user more time to revoke the lost device’s
key. No special hardware is required, and the server just performs standard RSA
signature verification, making our approach compatible with existing systems.

Acknowledgements. We thank Alastair R. Beresford and the reviewers for their
helpful feedback.

References

1. Altman, J., Williams, N., Zhu, L.: Channel bindings for TLS. IETF RFC 5929,
July 2010

2. Boneh, D., Ding, X., Tsudik, G., Wong, C.M.: A method for fast revocation of pub-
lic key certificates and security capabilities. In: Proceedings of the 10th USENIX
Security Symposium, pp. 297–308, August 2001

3. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) protocol version 1.2.
Network Working Group RFC 5246, August 2008

4. Dietz, M., Czeskis, A., Balfanz, D., Wallach, D.S.: Origin-bound certificates: a fresh
approach to strong client authentication for the web. In: 21st USENIX Security
Symposium, pp. 317–332, August 2012

150 M. Kleppmann and C. Irwin

5. Jonsson, J., Kaliski, B.: Public-key cryptography standards (PKCS) #1: RSA cryp-
tography specifications version 2.1. Network Working Group RFC 3447, February
2003

6. Kuty�lowski, M., Kubiak, P., Tabor, M., Wachnik, D.: Mediated RSA cryptography
specification for additive private key splitting (mRSAA). IETF Internet Draft,
November 2012

7. Lipmaa, H., Rogaway, P., Wagner, D.: Comments to NIST concerning AES modes
of operations: CTR-mode encryption, September 2000

8. Parsovs, A.: Practical issues with TLS client certificate authentication. In: Network
and Distributed System Security Symposium (NDSS), February 2014

9. Percival, C.: Stronger key derivation via sequential memory-hard functions. BSD-
Can 2009, May 2009

10. Srinivas, S., Balfanz, D., Tiffany, E., Czeskis, A.: Universal 2nd factor (U2F)
overview. FIDO Alliance Proposed Standard, May 2015

11. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) authentication protocol. Network
Working Group RFC 4252, January 2006

Author Index

Abdou, AbdelRahman 72

Barrera, David 72
Biddle, Robert 3
Buriro, Attaullah 45

Crispo, Bruno 45

Del Frari, Filippo 45
Driss, Samy 21
Dürmuth, Markus 39

Golla, Maximilian 39

Irwin, Conrad 144

Klardie, Jeffrey 45
Kleppmann, Martin 144
Krol, Kat 21

Lancrenon, Jean 120
Lucks, Stefan 95

Memon, Nasir 65

Nguyen, Toan 65

van Oorschot, Paul C. 72

Parkin, Simon 21

Sasse, M. Angela 21
Siadati, Hossein 65
Stobert, Elizabeth 3

Wenzel, Jakob 95
Wrona, Konrad 45

	Preface
	Organization
	Non-refereed Presentations
	Contents
	Human Factors
	Expert Password Management
	1 Introduction
	2 Background
	2.1 Coping Strategies
	2.2 Security Practices of Experts and Non-Experts

	3 Study
	4 Results Overview
	5 Thematic Analysis
	5.1 Expert Awareness
	5.2 Combining Strategies to Remember Passwords
	5.3 A Personal Assessment of Risk
	5.4 Usability Problems

	6 Discussion
	6.1 What Do Experts Do Right?
	6.2 What Do Experts Do Wrong?

	7 Conclusion
	References

	Assessing the User Experience of Password Reset Policies in a University
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Systems Under Analysis
	3.2 Helpdesk Log Analysis
	3.3 User Interviews
	3.4 NASA Raw Task Load Index (NASA-RTLX)

	4 Results: Helpdesk Log Analysis
	4.1 Results

	5 Results: User Interviews and NASA-RTLX
	5.1 Results
	5.2 RTLX Data Analysis

	6 Discussion
	6.1 Recommendations for Practitioners

	7 Conclusions
	References

	Analyzing 4 Million Real-World Personal Knowledge Questions (Short Paper)
	1 Introduction
	1.1 Related Work

	2 Methodology
	3 Strength Evaluation
	4 Conclusion
	References

	ITSME: Multi-modal and Unobtrusive Behavioural User Authentication for Smartphones
	1 Introduction
	2 Related Work
	2.1 Unimodal Systems
	2.2 Multimodal Systems

	3 Background
	3.1 Considered Sensors
	3.2 Considered Classifiers
	3.3 Performance Metric

	4 Our Solution
	4.1 Setup
	4.2 Data Collection
	4.3 Feature Extraction
	4.4 Data Fusion
	4.5 Decision Making

	5 Parameters
	5.1 Parameters

	6 Results
	6.1 Unimodal Systems
	6.2 Multimodal Systems

	7 Discussion
	8 Conclusion and Future Work
	References

	Attacks
	Verification Code Forwarding Attack (Short Paper)
	1 Introduction
	2 SMS-Based Verification and Its Security
	3 Study Procedures
	3.1 Experiment
	3.2 Semi-structured Interview
	3.3 Survey

	4 Conclusion
	References

	What Lies Beneath? Analyzing Automated SSH Bruteforce Attacks
	1 Introduction
	2 Related Work
	3 Data Collection Methodology
	4 Characteristics of Attacking Systems
	4.1 Number of IPs per /24
	4.2 Countries with the Most Aggressive Sources
	4.3 IP Addresses as a Ratio of the Total Allocation per Country

	5 Password Analysis
	5.1 Password Length
	5.2 Password Composition Compared to Known Dictionaries
	5.3 Dictionary Sharing and Splitting Among Sources
	5.4 Reattempting Username-Password Combination

	6 Username Analysis
	7 Timing Analysis
	8 Recommendations
	9 Conclusion
	References

	Cryptography
	Catena Variants
	1 Introduction
	2 Preliminaries
	2.1 Notational Conventions
	2.2 Catena

	3 Hash-Function Instantiations
	4 Using Different Graphs
	4.1 (g,)-Bit-Reversal Graph
	4.2 Shifted (g,)-Bit-Reversal Graph
	4.3 (g,,)-Gray-Reverse Graph
	4.4 Tradeoff Resistance

	5 Extensions
	6 Discussion and Recommendations
	7 Conclusion
	A Memory-Hardness and Garbage-Collector Attacks
	A.1 Memory-Hardness
	A.2 (Weak) Garbage-Collector Attacks

	B Hash-Function Instantiations
	B.1 Compression Function of Argon2
	B.2 BlaMka
	B.3 Galois-Field Multiplication
	B.4 MultHash

	C Extensions of Catena
	C.1 Password-Independent Random Layer
	C.2 Password-Dependent Random Layer

	D Penalties Caused by Shifting Sampling Points
	References

	On Password-Authenticated Key Exchange Security Modeling
	1 Introduction
	2 Different BPR-style Models
	2.1 The Models' Main Foundations
	2.2 Differences in Accepting, Terminating, and Partnering
	2.3 A Bug in the RoR Model

	3 A Well-Motivated Definition
	3.1 The Definition Itself
	3.2 Examples of How It Functions

	4 The Quality of Partner Uniqueness
	4.1 An Obstacle Caused by the test query
	4.2 A ``secure'' PAKE Protocol Where Non-negligible Multiple Partnering May Occur
	4.3 Lessons Learned on Requirements

	5 Conclusion and Future Work
	A BPR-style Models Revisited
	References

	Strengthening Public Key Authentication Against Key Theft (Short Paper)
	1 Introduction
	1.1 Threat Model

	2 Revocable Public Key Authentication
	2.1 Basic RSA Authentication
	2.2 The Mediator Service

	3 Rate Limiting Password Guesses
	3.1 Key Fragment Encryption
	3.2 Authenticating Requests to the Mediator

	4 Conclusion
	References

	Author Index

