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This book is dedicated to the next
generation of scientists who will push
the expanding horizon of nonlinear
dynamics to worlds unknown.



Foreword

Zeitgeist is an evocative German word which can be translated as “Spirit of the
Age” or “Spirit of the Time.” The basic idea is that, besides the obvious differences
discriminating various fields of inquiry (science, art, religion, politics, social
organization, etc.), there are some shared and recognizable invariant “structures”
shaping the way of thinking for every age (historical epoch). Until the eighteenth
century the privileged zeitgeist of that time resided within the figurative arts. For an
example, one needs only to recall the rationalist anthropocentrism of the
Renaissance marked by the development of perspective laws in painting. Then one
can also consider the shift from realism to include human emotions, personal drama
and introspection as emoted by the Italian painter Caravaggio at the dawn of
seventeenth century. Many shifts later, however, the modern zeitgeist is to be found
in the natural sciences.

Besides some early visionary ideas from thinkers like Weaver [1], the turning
point toward the contemporary zeitgeist occurred within the last two decades of the
previous century. One of the most clear and synthetic papers overtly initiating the
new era was the work of Laughlin et al. [2] who spoke of “The Middle Way.”
These authors stated that the “really interesting things” are no longer located at the
very bottom of the scale (sub-atomic particles, genes, molecules, neurons, etc.), but
on the mesoscale. It is within this “middle way” space where the highest number of
correlations between different organization layers can be found. This
meso-perspective allows the organization of the studied system to be understood in
terms of how its various parts are interconnected. This “Third Way” is proving to be
much more fruitful than merely acquiring more intricate details at the deepest level
(bottom-up strategies) or accumulating mere description of general laws governing
the studied phenomena with no utility (top-down strategies).

Laughlin at al. [2] sketched some “mesoscopic principles” that were mostly
dependent on the organization of the system, but largely independent of the material
instantiation of the system itself. This critical idea was corroborated and expanded
upon by others like Mikulecky [3] and Giuliani et al. [4]. Giuliani et al. [4] even
called this new perspective the “Middle-Out” strategy in which the emphasis is
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shifted away from individual parts or system components to the relationships within
and between systems. In this paradigm-shift “relation” is the new operative starting
point from where investigators can try to understand the world. The World Wide
Web is one material counterpart of this operative because it uniquely focuses on the
networked relations among multiplicative fields of knowledge. In other words, the
WWW embodies the present zeitgeist which reaches beyond the realm of science
with its long “sticky” fingers!

With this new emphasis on relations over components, the “perfect science icon”
is no longer an equation-based (think of Einstein’s famous equation: e = mc2), but a
graphically centered. Case in point, the recurrence plot [5] is actually an adjacency
matrix having as rows and columns the elements of the system (nodes) and at the
intersection a label indicating the presence (or absence) of a direct relations (edges)
between the corresponding elements. It does not matter what the elements of the
system are exactly, but merely their relationships. It is for this very reason that
recurrence plots are so ubiquitous across different fields of inquiry. Recurrence
quantifications help evolve general portraits of the system in different states by
means of deriving descriptors from the Recurrence Plot. Indeed, the Recurrence
Plot graphs the “wiring architecture” of the system whose nodes are different (short)
epochs and whose edges correspond to the identity (approximated by a very high
similarity) between them. These descriptors are completely superimposable to
graph invariants and allow one to go from the time-series realm to other systems
from any field as long as it can be segmented into constituent parts.

This present book is continuing testimony as to just how far recurrence strategies
have developed and matured since they were originally introduced as Recurrence
Plots in 1987 by Eckmann et al. [6] and as Recurrence Quantification Analysis in
1992 and 1994 by Zbilut and Webber [7, 8]. These early investigators had no idea
of how far and wide-reaching such simple and fundamental rules of dynamical
systems would spread and invade ever-new fields of science (and non-science).
Indeed, the recurrence horizon is ever-expanding and one wonders what the next
decades will bring? One thing is for sure, recurrence analyses have the unparalleled
power of integrating systems and dissuading any disruptive fragmentation of dis-
covery between fields that is a serious menace to the furtherance of true knowledge
and deep understanding.

Alessandro Giuliani
Istituto Superiore di Sanità

Rome, Italy
e-mail: alessandro.giuliani@iss.it
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Preface

The title of this book—“Recurrence Plots and Their Quantifications: Expanding
Horizons”—suggests humble beginnings, leaps in understanding, and continued
spreading of recurrence ideas into multiple fields of inquiry. The world and its
uncountable dynamical systems seen to function on fundamental principles of
recurrence in linear and as well as nonlinear domains, operating on different tem-
poral and spatial scales and over various dimensions. When one thinks about it, the
sun recurs every day, but at slightly different positions along the horizon. The
beating wings of birds and insects recur, producing up and down motions for
propulsion. Movements in humans recur, from the scratching of an itch, to the many
gaits of locomotion and stages of sleep/wake patterns. Words in a book recur,
making possible the writing very long texts larger than the vocabulary size selected.
And DNA codes recur, giving instructions for the production of specific proteins
that make life itself possible. Indeed, life itself recurs through reproduction!

Yes, we live in a recurrent world, nay universe, which explains why symposia
after recurrence symposia, new and useful research applications keep popping up
for recurrence plots (RPs) and recurrence quantifications (RQs) in virgin systems as
it were. There is literally no end in sight as the collection of papers herein bears
witness. Specifically, this present volume represents 19 selected papers presented,
discussed, and debated over at the Sixth International Recurrence Plots Symposium
held in Grenoble France (June 17–19, 2015). More than 50 participants from
around the world interacted. Some scientists were new to the meeting, but others
“recurred” having attended one or more of the five previous symposia (Potsdam
2005, Siena 2007, Montreal 2009, Hong Kong 2011, Chicago 2013).

The structure of this book is divided into two parts: methodological and prac-
tical. Part one addresses theoretical topics with examples such as recurrences in
large data sets, transient and non-stationary signals, complexity testing, approxi-
mate recurrences and the new splayed recurrence analysis (Chaps. 1–7). Part two
focuses on specific dynamical systems that employ recurrence strategies and are
grouped into four categories consisting of three chapters each. The first group
readdresses now familiar recurrent systems in human physiology including heart
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and brain rhythms (Chaps. 8–10). Second coordinated systems are studied
including those related to human interpersonal behaviors, social-motor coordina-
tion, and even monetary systems which are heavily influence by human activity
(Chaps. 11–13). Papers in the third group of center on hydraulics and hydrology
including the complex dynamics of underwater acoustics, water temperature fluc-
tuations, and eddy current fluxes (Chaps. 14–16). Finally, group four introduces
uses of recurrence analyses in combustion dynamics and flashbacks, turbulence in
plasmas, and ultrasonic testing in polymers (Chaps. 17–19). Indeed, creative
recurrence ideas as strategies are expanding the horizon into numerous scientific
disciplines. That is precisely why “Expanding Horizons” was chosen as part of this
book’s title.

The editors and authors welcome you to the fascinating, even beautiful world of
recurrences. By reading this book may you become excited about how recurrence
analysis might be useful to your own field of study no matter what interests you
scientifically. The invitation is extended to all to feel free to contact any of the
authors regarding their contributions.

Chicago Charles L. Webber, Jr.
Grenoble Cornel Ioana
Potsdam Norbert Marwan
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Chapter 1
Torwards Visual Analytics
for the Exploration of Large Sets
of Time Series

Mike Sips, Carl Witt, Tobias Rawald and Norbert Marwan

Abstract In this chapter, we discuss the scientific question whether the clustering

of time series based on RQA measures leads to an interpretable clustering structure

when analyzed by human experts. We are not aware of studies answering this scien-

tific question. Answering it is the crucial first step in the development of a Visual
Analytics approach that support users to explore large sets of time series.

1.1 Introduction

The advancement of recent technology allows scientists to measure different vari-

ables of environmental systems at many positions; e.g., the National Oceanic and

Atmospheric Administration (NOAA) [1] measures the surface temperature around

the globe. The resulting time series encompass a sequence of data points over long

time periods at high sampling rates. To study the temporal behavior of an environ-

mental system, scientists need to detect positions with similar temporal dynamics in

large sets of time series.

The number and duration of recurrent states in a system is an important aspect of

its temporal behavior. A well-established approach to quantify the number and dura-

tion of recurrent states is Recurrence Quantification Analysis (RQA) [2]. RQA
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calculates quantitative measures that enable scientists to understand the temporal

behavior of systems.

In this chapter, we address the scientific question of whether the clustering of

time series based on their RQA measures produces a clustering structure that is

interpretable by human experts. To study whether the grouping of time series based

on their RQA measures into clusters produces an interpretable clustering structure,

we conduct two independent experiments: one experiment with synthetic signals

and one experiment with real-world signals. We utilize the iVAT method to ana-

lyze the clustering structure in these two experiments. We are not aware of similar

experiments. Therefore, a positive answer to this question is a critical first step in the

development of a Visual Analytics approach to support the exploration of large sets

of time series. The main contributions of this chapter follow.

∙ We present an experiment that demonstrate how the clustering of synthetic time

series based on their RQA results leads to an interpretable clustering structure

(Sect. 1.3).

∙ We show that the clustering structure of the synthetic time series is robust against

noise (Sect. 1.3).

∙ We compute the clustering structure of nine real-world time series and show that

the resulting clustering structure is interpretable by human experts (Sect. 1.4).

1.2 Methodology

In this section, we briefly discuss important methods utilized in our study and define

important terms of this chapter.

1.2.1 Recurrence Quantification Analysis

Recurrence plots (RPs) and recurrence quantification analysis (RQA) are powerful

methods for analyzing recurrences in measured time series [2]. Their application in

many fields have proven their potential for various kinds of analyses [3]. A recurrence

plot is a two-dimensional representation of a time series when am-dimensional phase

space trajectory recurs to former (or later) states. Recurrence of a state at time i at a

different time j is captured within a squared matrix 𝐫 [2]:

ri,j = 𝛩

(
𝜀 − ‖‖‖𝐱i − 𝐱j

‖‖‖
)
, 𝐱i ∈ ℝm

, i, j = 1…N. (1.1)

Both of its axes represent the time steps. N is the number of considered states xi
(length of phase space trajectory). 𝜀 is a threshold distance, ‖ ⋅ ‖ a norm, and 𝛩(⋅) the

Heaviside function. A pair of states that fulfills the threshold condition is assigned

with the value 1 (recurrence point), whereas a pair that is considered to be dissimilar
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is assigned with the value 0. Further details about the reconstruction of phase space

vectors from a scalar time series, the recurrence parameters, as well as the typical

visual characteristics of RPs can be found in [2].

Small scale structures in the RPs, like diagonal lines, are used to define measures

of complexity called Recurrence Quantification Analysis (RQA) [2, 4, 5]. As an

example, we present the RQA measure percent determinism (DET):

DET =
∑N

l=dmin
l H

D
(l)

∑N
i,j=1 ri,j

. (1.2)

It is the fraction of recurrence points that form diagonal lines; H
D
(l) is the number

of diagonal lines of exactly length l and dmin is a minimal length necessary to be a

diagonal line. This measure characterizes the deterministic nature of a dynamical

system from a heuristic point of view (further discussions can be found in [2, 6]).

Further measures quantify average line lengths or the complexity of the line length

frequency distributions H
D
(l) (diagonal lines) and H

V
(l) (vertical lines).

1.2.2 VAT and iVAT

Visual Assessment of Clustering Tendency [7] is a method to depict the cluster

tendency of a set of data objects. The input to the VAT method is usually the pair-

wise dissimilarity matrix of the data points. The basic idea of the VAT method is

to rearrange the rows and columns of the dissimilarity matrix in such a manner that

it depicts the clustering structure of the data objects. VAT visualizes the reordered

matrix as intensity image utilizing gray levels. Pure white depicts the largest dissim-

ilarity value and pure black depicts zero dissimilarity in the intensity image. Users

utilize the VAT method to determine whether clusters are present before applying

particular clustering algorithms to their data.

To reorder the rows and columns, VAT computes a permutation of the original

row and column indices of the dissimilarity matrix. The algorithm to compute this

permutation is similar to Prim’s algorithm [8]. The basic idea is to interpret the dis-

similarity matrix as a weighted graph of the input data points; i.e., the nodes of the

graph are the data points that are connected to each other. The dissimilarity value

denotes the distance between the nodes. VAT starts with the node v that has the

largest distance to another node. The row index of v is the first element of the per-

mutation. It then searches for the node w that has the smallest distance to v. The

column index of w is the second element of the permutation. Next, VAT searches for

the node x that has the smallest distance to either v or w. The column index of x is

the next element of the permutation. This algorithm terminates if all nodes has been

visited.
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This mechanism is responsible for the emergence of black blocks along the diago-

nal of the reordered matrix. Without this proper reordering of the rows and columns,

it is essentially impossible to assess the clustering tendency in the intensity image

(we refer to [7] for more detailed discussion).

Improved VAT (iVAT) [9, 10] method is an extension of the VAT algorithm,

and transforms the dissimilarity matrix using a graph theoretic measure. It utilizes

the VAT algorithm on the transformed matrix to improve the rearrangement of rows

and columns.

1.2.3 Definitions

The following definitions are valid throughout the chapter.

Clustering Structure Given a set of time series. A clustering structure is a set of

distinct groups where (a) each group consists of a subset of time series and (b)

each time series is assigned to exactly one group.

Interpretable Clustering Structure We call a clustering structure interpretable

by human experts if (a) an expert identifies a cluster as the time series or recur-

rence plots of a particular system, and (b) the expert considers the group members

as similar to each other.

1.3 Experiment with Synthetic Signals

To study whether the grouping of synthetic time series based on their RQA mea-

sures into clusters produces an interpretable clustering structure, we do not intro-

duce independent variables into the experimental setup. In the next step, we extend

the experiment by introducing one independent variable. This independent variable

is noise ratio. Note: the clustering structure is always the dependent variable in the

experiments.

1.3.1 Experimental Setup

The set of time series is finite and well-known. We utilize nine systems to generate

the set of time series and compute the data points for each time series according to

the equation and parameters listed in Table 1.2. To generate data points of time series

representing the periodic motion system, 𝜆 traverses the unit circle three times and

each circulation generates at least 16 data points. Figure 1.1 presents representative

RPs of the utilized systems.
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Fig. 1.1 Example RPs of the nine systems utilized in the experiments. a OSC. b R. c RF. d L. e
LO. f AR−. g AR+. h N. i NG. Table 1.1 resolves the abbreviations

We generate 100 time series for each system. Hence, the number of time series

we use in the experiment is 900. This set represents a broad range of well-known

temporal behavior. Each time series has 25,000 data points. To generate the time

series for the R, RF, L, LO, we generate 100 × 25,000 + 1000 data points. We discard

the first 1000 data points and group the remaining data points into 100 time series.

To compute time series for the other systems, we change the seed of the random

number generator for each time series.
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Table 1.1 Parameter assignments of the RQA method utilized in the experiments

RQA parameter Assignment

Embedding dimension 1

Time delay 0

Recurrence threshold 5% of the trajectory diameter

Minimal black diagonal and vertical line lengths 2

Minimal white diagonal and vertical line lengths 2

Theiler corrector 1

To minimize variations in the clustering structure introduced by theRQAmethod,

we keep allRQA parameters at predefined values. Table 1.1 summarizes the parame-

ter assignments of this experiment. An adaptive choice of the RQA parameters may

improve the clustering structure. To study the impact of certain RQA parameters

on the clustering structure, we extend this experiment in the next step and introduce

noise ratio as independent variable.

Note that our experiment contains the two noise systems white noise (N) and

gamma noise (NG). The reason for including these two noise systems is to see

whether the clustering structure also separates the noise systems in two distinct

clusters.

1.3.2 Experimental Procedure

First, we compute 16 RQA measures (see Table 1.3) for each time series, and store

these measures in a 16-dimensional vector. To minimize variations introduced by

the different dynamic ranges of the measures, we normalize each value of the 16-

dimensional vectors. Let {vi ∈ ℝ16 i = 1…900} be the set of all 16-dimensional

vectors. We decided to normalize the i-th value vi[i] with maxj=1…900{vj[i]} −
minj=1…900{vj[i]}.

We utilize the Euclidean distance to determine the dissimilarity between two vec-

tors. This means that small distances denote low dissimilarities between time series,

and large distances denote high dissimilarities between time series. Second, we com-

pute all pair-wise dissimilarity values between the RQA vectors and store these val-

ues in a 900 × 900 matrix. This matrix is the input to the iVAT method. The iVAT
method determines an ordering of the 900 time series that depicts the clustering

structure of the time series.

To see whether the clustering structure is in line with expert opinion, in addition

we conducted an experiment with two experts. In this experiment, the expert deter-

mines the dissimilarity between time series by comparing their RPs. To this end,

we present two RPs to the expert who determined the dissimilarity between them

at a scale between zero and 100; zero denotes a low dissimilarity and 100 denotes
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a high dissimilarity. The expert determined the pair-wise dissimilarity between 45

RPs. We randomly selected 36 pairs of RPs from different systems, and nine pairs

from the same system. These RPs were randomly selected from the set of 900 time

series described above. We decided to ask the expert to make 45 comparisons of RPs

because the attention of the human expert is the limiting factor in this experiment.

We stored these pair-wise dissimilarities in a 45 × 45 matrix. This matrix is the input

to the iVAT method.

Note: the pair-wise dissimilarity values are different in the experiments, and there-

fore, the arrangement of rows and columns may differ in the resulting intensity

images.

1.3.3 Discussion

Figure 1.2a shows the result of the iVAT method computed from RQA measures.

Dark gray colors denote high similarities between time series and light gray colors

denote low similarities between time series.

We see nine well-separated black blocks along the diagonal of the iVAT matrix

in Fig. 1.2a. Each black block contains 100 time series, and the black color indicates

that the members of each block are almost indiscernible based on their RQA mea-

sures. Furthermore, each block contains time series from the same system only. The

labels of the blocks are listed in Table 1.2. The cluster OSC that represents the time

series of periodic motion, for example, is composed of the 100 time series of periodic

motion only. We conclude from the nine well-separated black blocks in Fig. 1.2a that

RQA measures consider the time series of one system as similar to each other; each

Fig. 1.2 iVAT matrix depicting the clustering structure of the experiment. Each black block in this

matrix contains 100 time series of a particular system. Note the different orderings of the systems

along the y-axis are due to the iVAT method and cannot be changed to maintain the visual cluster

tendency. a RQA measures. b Expert opinion
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Table 1.2 The nine systems utilized in the experiments and their initial conditions

System Abbr. Equations Parameterization

Periodic motion OSC x(t) = cos(𝜆t),
y(t) = sin(𝜆t)

See text

Rössler system, standard

parameters

R Rössler equations a= 0.2, b= 0.2, c= 5.7,

𝛥t= 0.085

Rössler system, funnel

regime

RF Rössler equations a= 0.2925, b= 0.1,

c= 8.5, 𝛥t= 0.085

Lorenz system, standard

parameters

L Lorenz equations 𝜎 = 10, 𝛽 = 2.66, 𝜌= 28,

𝛥t= 0.025

Lorenz system, noisy

oscillation

LO Lorenz equations 𝜎 = 10, 𝛽 = 2.66, 𝜌= 198,

𝛥t= 0.025,

Autoregressive, negative

correlation

AR− x(t) =
𝜙x(t − 1) + (0, 0.1)

𝜙 = −0.95

Autoregressive, positive

correlation

AR+ x(t) =
𝜙x(t − 1) + (0, 0.1)

𝜙 = 0.95

Normal noise N x(t) ∼ N(𝜇, 𝜎2) 𝜇 = 0, 𝜎 = 1
Gamma noise NG x(t) ∼ 𝛤 (k, 𝜃) k = 0.5, 𝜃 = 1

block contains the 100 time series of one system only. Furthermore, RQA measures

consider time series from different systems as dissimilar to each other.

Figure 1.2b shows the result of the expert assessment. We present the result of one

expert here; the results among the two experts are similar to each other. Again, dark

gray colors denote high similarities between time series and light gray colors denote

low similarities between time series. Note, the dissimilarity values range from 0 to

100. We see seven well-separated black blocks along the diagonal of the iVATmatrix

in Fig. 1.2b. Furthermore, we observe similar properties of these seven clusters in

comparison to the nine clusters produced by RQA measures. We identify the seven

blocks OSC, R, RF, LO, AR+, N, and NG from Fig. 1.2a also in Fig. 1.2b. Each of

these blocks contain 100 time series of one system only.

The iVAT result suggests that time series of the L system are in the R block,

and members of the AR− system are in the AR+ cluster (see Fig. 1.2b). L and R

are chaotic systems, and thus, both belong to the same class of systems. AR+ and

AR− are correlated noise systems, and thus, both belong to the same class. We argue

that the mixing of L with R and AR+ and AR− does not constitute a problem. The

interesting point here is that the expert can clearly see the similarity between these

systems in the RPs but the quantitative properties of these examples are much more

different. This leads to distinct clusters for each of these systems. Nevertheless, there

is a high degree of consensus between the two clustering structures of Fig. 1.2a, b.

We conclude from the comparison of Fig. 1.2a, b that the clustering structure of time

series based on their RQA measures is interpretable.
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1.3.4 Potential of Clustering Algorithms

In this section, we discuss the clustering structure that is likely to be detected by

clustering algorithms. Figure 1.2a shows that clustering algorithms experience diffi-

culties to derive exactly the nine clusters as from our visual inspection of the iVAT
matrix. The reason for this are the light gray blocks around some of the black blocks.

The gray box around the R, L, and LO clusters indicate that some time series of the

R system are more similar to some time series of L and/or LO systems. This is a

reasonable result since these systems belong to the same class, the chaotic systems.

A similar observation holds for AR+, NG, and N systems. These systems belong to

the same class, the stochastic systems.

To estimate the clustering structure, we assume that clustering algorithms cannot

separate clusters in Fig. 1.2a that are close to each other. Hence, the time series of

these clusters will be merged into a bigger cluster; together with time series from

other systems. Based on this assumption, we conclude from Fig. 1.2a that clustering

algorithms are likely to derive the following clusters: c1= (R, L, LO), c2= (RF),

c3= (AR+, NG, N), c4= (OSC) and c5= (AR−).

To see whether this clustering structure is interpretable, we compare our esti-

mated clustering structure with the clustering structure based on expert opinion (see

Fig. 1.2b). We see that experts judge time series of the R, and L systems to be similar

to each other. We argue that the merging of these two systems into a common cluster

does not constitute a problem since this grouping is in line with expert opinion. The

LO system needs a careful discussion. Figure 1.2b shows that LO contains almost

100 time series of the LO system. The ordering along the diagonal of the matrix

suggest that the LO cluster is close to the R and L clusters. We conclude from this

observation that the cluster c1 is interpretable.

An interesting observation is that clustering algorithms are likely to experience

difficulties to separate noise systems N, NG and autoregressive systems (positively

correlated). According to expert opinion, the systems AR− and AR+ are similar to

each other. In contrast, the system AR+ shares some similarity to the systems NG and

N according to expert opinion. We argue that this does not constitute a problem since

cluster c3= (AR+, NG, N) is still in line with expert opinion. We conclude from

these observations that the clustering structure computed by clustering algorithms

are likely to be interpretable.

1.3.5 Effect of Noise

We extend the experiment to study the effect of noise on the clustering structure

of the nine systems. We utilize noise ratio as the independent variable because we

expect to see that time series represent certain noise signals. In this experiment, the

experimental setup is the same as in the experiment reported above:
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Fig. 1.3 iVAT matrix depicting the clustering structure of noise ratio 0.2 and 0.8. Each black block
in this matrix contains 100 time series of a particular system. Note the different orderings of the

systems along the y-axis are due to the iVAT method and cannot be changed to maintain the visual

cluster tendency. The NG label appears two times in the determined ordered sequence in (b). It is

difficult to see in the iVAT matrix that a few time series from the NG system are located between

AR+ and N. a 0.2. b 0.8

∙ RQA parameters at predefined values (see Table 1.1).

∙ each time series has 25,000 data points. In this experiment, we use the time series

of this experiment (see Table 1.2).

∙ 16 RQA measures from Table 1.3.

In contrast to our first experiment reported above, we add Gaussian white noise

to each of the 900 time series to generate different noise ratios (our noise model is

similar to [11]). We generate six sets of 900 time series representing noise ratios

of 0.2, 0.4, 0.6, 0.8, 0.9, 1.0. Hence, we generate 5400 time series. The experimen-

tal procedure for each set is the same as in the experiment reported above. Again,

the pair-wise dissimilarity values are different in our experiment, and therefore, the

arrangement of rows and columns may differ in the resulting intensity images.

Figure 1.3a shows the iVAT matrix for noise ratio 0.2. This matrix is similar to the

iVAT matrix in our initial study (see Fig. 1.2a). We observe similar results for noise

ratios 0.4 and 0.6., and we conclude from this result that the clustering structure is

robust against low noise ratios, i.e., 0.2, 0.4 and 0.6.

For high noise ratios, the situation becomes more complicated. Figure 1.3b shows

the iVAT result for noise ratio 0.8. We see a noticeable difference compared to the

result of the first experiment. Although we see the nine clusters along the diagonal,

the black blocks are not homogeneous as with the first experiment (we see tiny block

structures with each system). Furthermore, dark gray blocks capture some of the

black blocks. These dark gray blocks make it difficult to decide whether NG, N,

AR+, and AR− form distinct clusters. Figure 1.3b indicates that NG, N, AR+, and

AR− are likely to be members of the same cluster. This is a reasonable result since
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Table 1.3 RQA measures of the experiment

Description Formula Diagonal Vertical White

Filter ratio

∑N
l=lmin

lP(l)
∑N

l=1 lP(l)
DET LAM –

Average length

∑N
l=lmin

lP(l)
∑

l=lmin
NP(l)

L TT W
mean

Maximum length max({l ∣ P(l) > 0}) Lmax Vmax Wmax

1∕Maximum length See above DIV – W
div

Entropy −
∑N

l=lmin
p(l) ln p(l) L

entr
V

entr
W

entr

In addition to these measures, we also utilize the recurrence rate (RR) as well as the ratios DET∕RR
and LAM∕DET

these systems belong to the same class, the stochastic systems. We see a similar

result for L, LO, and R systems. However, these results are still in line with expert

judgment (see Fig. 1.2b). We conclude from these observations that the clustering

structure is interpretable for the noise ratio 0.8 (Fig. 1.3b).

1.4 Experiment with Real-World Signals

In this section, we study whether the clustering of real-world time series based on

their RQA measures produces an interpretable clustering structure, when compared

to standard climate classification. In this experiment, we utilize climate time series

(“Quality Controlled Local Climatological Data”) from the National Oceanic and

Atmospheric Administration (NOAA). NOAA provides a variety of time series for

stations across the United States.

We select nine stations from three different zones; three stations per zone (see

Table 1.4). According to the Köppen climate classification [12], the stations either

Table 1.4 Station names and their climate

Label Location of station Climate zone

1 McCarran International Airport, Nevada BWh

2 Tucson International Airport, Arizona BWh

3 Phoenix Sky Harbor International Airport, Arizona BWh

4 Dickinson Municipal Airport, North Dakota Dfb

5 Minot International Airport, North Dakota Dfb

6 Bismarck Municipal Airport, North Dakota Dfb

7 Winkler County Airport, Texas BSk

8 Lubbock International Airport, Texas BSk

9 Midland International Airport, Texas BSk

The corresponding time series are depicted in Fig. 1.4. BWh= hot desert climate, Dfb= humid

continental climate and BSk= semi-arid climate
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Fig. 1.4 Time series of the NOAA stations utilized in our experiment
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belong to the humid continental climate (Dfb), semi-arid climate (BSk) or the hot

desert climate (BWh). The aim of this experiment is to see whether the RQA mea-

sures will group stations belonging to the same climate into a common cluster.

In this experiment, we consider time series from January 2008 to December 2013

at an hourly resolution that capture the relative humidity measured at each station.

We exclude the annual and the daily humidity cycle from the time series. Figure 1.4

presents the time series utilized in this experiment. To compute the RQA measures,

we use the parameter assignments (see Table 1.1) and the same normalization pro-

cedure of the experiment with synthetic signals.

Figure 1.5 depicts the iVAT matrix for the nine stations from Table 1.4. We see

three clusters along the diagonal of the iVAT matrix (highlighted with red bounding

boxes). A close inspection of these clusters revealed that each cluster covers time

series from the same climate only. Hence, the clustering structure groups stations

belonging to the same climate into the same clusters.

Comparing the similarities of the stations belonging to the BWh climate, it

becomes apparent that the temporal dynamics of the time series captured at the

McCarran International Airport in Nevada are different to the remaining time series

from the same climate. A reason for this behavior may be the differences in geo-

graphic location. Generally being a dry area, the airport is located in the Mojave

desert. Nevertheless, its dynamics are more similar to the time series belonging the

BWh climate than to those belonging to different climate zone, as depicted in the

iVat.
Based on these findings, we conclude that the clustering structure of the nine

stations is interpretable.

Fig. 1.5 iVAT matrix for

the nine stations from

NOAA. The three red blocks
along the diagonal represent

distinct clusters of the

climate zones. Each red
block contains three time

series. Table 1.4 lists the

station names for each

diagonal item (labels are

identical). BWh= hot desert

climate, Dfb= humid

continental climate and

BSk= semi-arid climate

1 

2 

3 

4 

5 

6 

7 

8 

9 

BWh Dfb BSk



16 M. Sips et al.

1.5 Future Lines of Research

We report these experiments for two reasons. First, answering the scientific question

of this chapter is critical for our Visual Analytics approach. In close collaboration

with experts in the field, we develop a Visual Analytics approach that supports users

to explore large sets of a time series to identify regions with similar temporal dynam-

ics. Visual Analytics has the potential to extent the users toolbox, since users often

need to specify in advance what constitutes similar temporal dynamics when try-

ing to study large sets of time series. The positive answer to the scientific question

whether the clustering of time series based on their RQA measures facilitates the

further development of our Visual Analytics approach.

We also plan to extend our study to multi-scale algorithms. The basic idea is to

group the multi-scale components of time series into clusters of similar temporal

dynamics based on their RQA measures and to explore this clustering structure. We

argue that an exploration of this clustering structure supports users to gain a better

understanding of the complex temporal behavior of systems. This study is crucial

for the development of a Visual Analytics approach for Multi-Scale RQA.

1.6 Conclusion

The scientific question discussed in this chapter is whether the clustering of time

series based on their RQA measures leads to an interpretable clustering structure

when analyzed by human experts. To address this scientific question, we described

a first experiment in which we do not introduce independent variables. In this exper-

iment, we utilized nine well-known dynamic systems and 16 RQA measures. We

generated 100 time series for each of the nine systems, and each time series had

25,000 data points. The dependent variable was the clustering structure.

Furthermore, we calculated the Euclidean distance between the RQA vectors cre-

ated based on those time series and stored these pairwise distances in a matrix. We

then utilized the iVAT method to uncover the clustering structure. The iVAT matrix

in the first experiment shows nine distinct and well-separated clusters along the diag-

onal of the iVAT matrix. To see whether this clustering structure is interpretable, we

compare our estimated clustering structure with the clustering structure based on

expert opinion. We concluded from this comparison that RQA measures produce an

interpretable clustering structure for a synthetic data set. To estimate the result of

clustering algorithms, we assumed that close clusters are likely to be merged into a

common cluster. The estimated clusters are in line with expert opinion.

We extended the experiment, and introduced one independent variable. We uti-

lized noise ratio as independent variable. The experimental setup and procedure were

similar to the first experiment. The iVAT results show that the clustering structure

is robust against noise ratios up to 0.8. In addition, we conducted an experiment

with the embedding dimension as the independent variable. Again, the experimental
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setup and procedure were similar to the first experiment. Our result suggested that

the embedding dimension has only a minor effect on the clustering structure of the

synthetic time series.

In addition, we conducted an experiment with real signals. We select nine stations

from three different climate zones; according to the Köppen climate classification.

The iVAT matrix shows a well-organized clustering structure for these real-world

time series. Time series from the same climate are grouped into a common cluster.

We concluded from this observation that the clustering structure of the nine stations

is interpretable.

Finally, our experiments to determine the similarity between RP’s with Hamming

distance and Spatiogram distance as alternative approaches to RQA vectors did not

yield better results.
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Chapter 2
Applications of Transient Signal Analysis
Using the Concept of Recurrence
Plot Analysis

Angela Digulescu, Irina Murgan, Cornel Ioana, Ion Candel
and Alexandru Serbanescu

Abstract Transient signals are universally characterized by a short duration and a
broad spectrum which are often present in various phenomena such as sudden
acoustic pressure changes, seismic waves, electrical discharges, etc. In order to
efficiently monitor the systems where they happen, it is very important that the
signals generated by transient phenomena be detected, located and characterized.
This significantly helps to better understand their effects in the given application
context. This chapter presents new tools derived from the concept of Recurrence
Plot Analysis (RPA) and applied on three real applications. Two of the applications
concern the detection, localization and characterization of the electrical partial
discharges (measured from photovoltaic panels and on electrical cables, respec-
tively). Another application refers to the quantification of the water hammer effect
using two acoustic sensors placed on a pipe line.

2.1 Introduction

Complex systems are often met in real life and they usually present highly nonlinear
(and sometimes linear) deterministic, stochastic and random characteristics [1].
These systems comprise different subparts which are strongly interconnected, hereby
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the interdependence of their characteristics is difficult to depict, and, therefore, the
system has to be characterized as a whole and not individually. This is the reason
why for most real applications, the measurements are very well suited to reveal the
resultant effect of the processes that describe a phenomenon under study [2].

Hereby, the choice of the RPA concept for the analysis of transient signals is
based on the fact that it is a data-driven method which does not require a priori
information about the system, knowing that such information is not always avail-
able [3].

Our applications under study concern the transient signals that appear in
hydraulic and power systems. The major issue is that these signals reflect a sudden
change of the dynamical system which can cause, in an unpredictable laps of time, a
breakdown of the system.

The recurrence information is very important, offering us new insights in the
analysis of transient signals which represent totally different states of the systems.
In our work, we are interested in the system’s state changes that are not determined
by random causes, but they are the results of a nonlinear input that causes them to
change their state suddenly, exposing the system to major collapse.

The first application relates to the electrical partial discharge (PD) detection and
characterization [4]. The PDs indicate that some changes have occurred in the
insulation due to chemical and/or mechanical transformations [5], which, in time,
can lead to the failure of the equipment. Hereby, the PD measurement is a routine
procedure for testing important components from the power system (high-voltage
cables, transformers, etc.).

The second application concerns the detection, localization and characterization
of electrical arcs generated in photovoltaic panels [6, 7]. The need of detection,
localization and characterization of the electrical arcs is a growing demand as these
systems continue to develop and the environmental conditions still unexpectedly
change.

Next, our application refers to the water hammer effect which appears in
pipelines when a valve is suddenly closed, so it forces the fluid to change its
direction or to stop its flow. This translates to a pipe pressure sudden
increase/decrease which causes from vibrations of the pipe to system collapse.
Thus, this phenomenon must be supervised and characterized in order to control its
damaging effects to the hydraulic system.

Through these specific applications, our chapter shows the interest of RPA
approaches for the analysis of the transient signals in various applications of
nowadays interest.

The chapter is organized as follows: the second section presents some relative
new signal analysis tools based on the RPA concept. Next, each section presents the
applications mentioned above and discusses on the subject. The last section illus-
trates the conclusions and perspectives of our work.
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2.2 Signal Analysis Tools Based on the RPA Concept

In this section, starting from the concept of recurrence plot analysis, two new
analysis tools derived from RPA concept are presented.

Firstly, there will be highlighted the measure used for the detection of a
transient signal, namely the time-distributed recurrence (TDR) measure. Then, the
multi-lag phase-space analysis will be introduced. This concept is very useful for
the characterization of transient signals.

2.2.1 The Time-Distributed Recurrence Measure

The basis of this measure starts from the idea that a sudden change in a time series
represents a new state of the dynamical system [3, 8–14], namely there is no
recurrence with the previous states. Therefore, when an appropriate distance is
used, the recurrence matrix presents a horizontal/vertical band with much fewer
recurrences. When the sum of the lines/columns of the recurrence matrix is com-
puted, we actually obtain the column average [3], which, in the case of transient
signals, significantly changes.

Considering a measured signal as the following time series [15–21]:

s½n�= fs½1�, s½2�, . . . , s½N�g ð2:1Þ

where N is the length of the signal, then the phase-space points of the system are
obtained from the available time series:

vi!= ∑
m

k=1
s½i+ ðk− 1Þd� ⋅ ek! ð2:2Þ

where m is the embedding dimension of the phase-space, d is the delay (lag) chosen
between the samples of the time series and ek! are the axis unit vectors corre-
sponding to each dimension of the phase-space.

Then, the distance/recurrence matrix is obtained:

Ri, j =Θ ε− vi!− vj!
�� ��� �

, i, j= f1, 2, . . . ,Mg ð2:3Þ

where ⋅k k is a certain chosen distance (Euclidean distance [8, 21], angular distance
[3, 8], L1 norm [22], etc.) and the Θð ⋅ Þ is the Heaviside step function. For our
applications, the threshold ε is considered constant and M =N − ðm− 1Þd.
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Hereby, the time-distributed recurrence (TDR) measure is defines as [3, 8]:

TDR½n�= 1
M

∑
M

i=1
Ri, n ð2:4Þ

This measure can be interpreted as the column average recurrence of a given
point i or the recurrence density heterogeneity in the point i. Hereby, a solitary
position of a phase space vector changes significantly its average recurrence and
can be highlighted through the use of the complementary version of the measure
from (2.4):

TDR*½n�=1−
TDR½n�

maxfTDR½n�g ð2:5Þ

Moreover, in order to detect only the transient signal from the analyzed obser-
vation, the signal-to-noise ratio (SNR) must be computed.

The SNR is computed as follows: the last part of the acquired signal (when no
phenomena is happening) is considered as noise, z½i�, (unwanted signal recording
environmental noise, cable noise, noise caused by imperfect connections, etc.),
whereas the part that has a different behavior is considered as the interest signal, s½i�.
Both parts of the signal, s½i� and z½i� have the same length, N. The SNR is computed
as:

SNR=10 log10

∑
N

i=1
ðs½i�Þ2

∑
N

i=1
ðz½i�Þ2

0
BBB@

1
CCCA ð2:6Þ

Accordingly, the threshold ε of the recurrence matrix is chosen so that it includes
the a percentage, α, of the maximum value of the equivalent noise which has the
same power as the interest signal:

ε= α ⋅max SNRsignal ⋅ noise
�� ��� � ð2:7Þ

where α is a constant that is chosen to nonlinearly filter the noise. In our appli-
cations, α varies from 0.4 to 0.95.

Considering the (2.7), the components of the noise (undesired parts of the signal)
are considered as recurrences, therefore the transient signal (useful part of the
signal) is highlighted by the proposed measure.

Figure 2.1 emphasizes the advantage brought by the TDR measure, namely that
the detection provided by the detection curve is more robust to noise the actual
recorded signal (electrical arc acquisition). In the examples above, the detection
curve exhibits a SNR improvement of 30 dB.
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The major advantage of this method, is that, in applications where the SNR level
of the acquired signal varies a lot, the TDR detection curve approach improves the
SNR level after filtering the acquired signal with the detection curve. Through this
approach, the signal’s power after filtering is significantly increased (in our appli-
cations, at least 10 dB), which is very helpful for the part of signal classification
(Sects. 2.3 and 2.4). Moreover, this provides the robustness to the TDOA (time
difference of arrival) estimation. This comes from the measure’s invariance to the
group velocity effect (thanks to the concept of recurrence), whereas the peak
detection or the correlation function is very sensitive to this effect (Sect. 2.5).

2.2.2 Multi-lag Phase-Space Analysis

The RPA method stands, as its name suggests it, on the concept of recurrences.
Still, for our applications, a step backward has been made and a closer attention is
given to the phase-space in order to achieve richer characterization of similar
signals coming from the same source and having the same propagation and
acquisition conditions.

(a) (b)

(c) (d)

Fig. 2.1 Transient signal detection using the TDR measure for a transition of only 11 samples
where m=3, d=2 and α=0.8. a Transient signal detection for signal with SNR = 20 dB.
b Transient signal detection for signal with SNR = 15 dB. c Transient signal detection for signal
with SNR = 9 dB. d Transient signal detection for signal with SNR = 5 dB
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The phase-space representation is very rich in information regarding the evolution
of a dynamical system [22, 23], therefore the analysis can be made in any dimension,
but our approach restrains, for the moment, to a bi-dimensional representation.

Therefore, considering the Cartesian coordinate system, the phase-space repre-
sentation is given by:

xn = s½n�
yn = s½n+ d�

�
ð2:8Þ

where n is the nth sample of the recorded time series. It goes that (2.2) can be

rewritten as: vn!= s½n� ⋅ i
!

+ s½n+ d� ⋅ j
!
.

Firstly, the main attributes of this representation are recalled. Considering three
signals s1, s2 and s3 defined as:

s1½n�= s½n+ δ�
s2½n�= s½αn�
s3½n�= β ⋅ s½n�

ð2:9Þ

where α, β and δ are constant which modify the signal s through translation in time,
scale and or amplitude, the phase-space points present the following attributes [20,
24, 25]:

v1 i½ ��!= v i+ δ½ ����!
v2 i½ ��!= v αi½ ��!
v3 i½ ��!= β ⋅ v i½ ��! ð2:10Þ

The phase-space trajectory is invariant to translation and it points out the scale
and amplitude change.

In order to introduce the concept of multi-lag phase-space analysis, three tran-
sient signals with similar characteristics are considered. These signals are given by
the generic signal:

sða, f , bÞ½n�= a ⋅ ðsin½2π ⋅ f ⋅ n�+ b½n�Þ, n= f1, 2, . . . ,Ng
a ⋅ b½n�, otherwise

�
ð2:11Þ

where N = fs
2f

h i
and fs =10MHz is the sampling frequency.

The considered signals s1ða1, f1, b1Þ, s2ða2, f2, b2Þ and s3ða3, f3, b3Þ have the following
relationships between their parameters: a1 ̸a2 = 1 ̸0.6 = 1.66, a1 ̸a3 = 1 ̸0.3= 3.33,
f1 ̸f2 = ð2× 105Þ ̸ð1.9 × 105Þ=1.05, f1 ̸f3 = ð2× 105Þ ̸ð1.6 × 105Þ=1.25, b1 = b2 = b3
and SNRi =20 dB, i= f1, 2, 3g.
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The chosen signals from Fig. 2.2 seem to be quite similar, but, at a closer look,
slight differences appear. Firstly, these signals are studied using the wavelet anal-
ysis [26–28].

From Fig. 2.3, it can be observed that the slight differences between the signals
cannot be highlighted by the wavelet transform: their presence is detected, by their
shape does not present any discriminating element.

In order to distinguish between these transient signals, the multi-lag phase space
analysis is considered. The study of the representation of the trajectory for multiple
lags is done by two approaches: the elliptic modeling of the trajectory for the area
estimation in the phase-space, respectively, the polar coordinate representation.

The elliptic modeling supposes to determine the ellipse that circumscribes the
phase-space trajectory and, therefore, to estimate the area of the trajectory through
the ellipse’s area computation. The area of the modeling ellipse is a new descriptor
of the transient signal.

The trajectory is modeled by considering the solution that minimizes the fol-
lowing system [29]:

(a) (b)

Fig. 2.2 Transient signals considered for the multi-lag phase-space analysis

Fig. 2.3 The continuous wavelet transform (with the Mexican Hat mother-function) applied on
the three transient signals
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S= ∑
M

i=1
Fðxi, yiÞ½ �2 ð2:12Þ

where Fðx, yÞ=Γx2 +Λy2 + 1. The least mean square estimation of (2.12) gives the
couple Γ, Λð Þ. It goes that the major semi axes a=1 ̸Γ and the minor semi axes
b=1 ̸Λ.

The next step after the elliptic modeling is the area estimation and the estimation
of the optimal delay. The delay is considered to be optimal for the value that
provides an average value of the area and provides an adequate representation of the
trajectory. This average value area assures a suitable phase-space representation
where the trajectory does not evolve too close to the main diagonal (case of
redundancy) or its evolution is too complicated (case of irrelevance) [30].

From Fig. 2.4, it can be noticed that the area of the signals has a similar trend
with some differences for the normalized signals. Hereby, considering the average
value of the area, A=3, the optimal delay for s1 is τ1 = 5, for s2, τ2 = 5 and for s3,
τ3 = 6.

With the chosen lags, the next step is to plot the phase-space trajectory into polar
coordinates:

φ½n�=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n + y2n

q
θ½n�= arctan

yn
xn

ð2:13Þ

This representation is very useful for signals with different amplitudes, because it
shows the evolution of the position vector regardless of its length.

Figure 2.5 shows the evolution of the transient signals on the phase diagram. It
can be observed that the noise is concentrated in a small region of the phase space
which is translated in a small points conglomeration around the peak corresponding
to the angle − 3π 4̸.

Fig. 2.4 The evolution of the area according to the lag (delay) for the signals presented in Fig. 2.2
(left figure) and for the normalized signals (right figure)
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In this way, through the isolation of this region, the noise can be eliminated in
the process of signal characterization. Moreover, the evolution of the trajectories is
different for the peaks corresponding to the angle π 4̸. Measuring the values of the
maximum length of the vector corresponding to the π 4̸ angle, it goes: ρ1 ρ̸2 = 1.67
and ρ1 ρ̸3 = 3.43. So, the ratio of the amplitude of the transient signals is then
conserved in the phase diagram.

Furthermore, the number of points between the two angles − 3π 4̸ and π 4̸ (after
excluding the points corresponding to the noise) is directly related to the funda-
mental frequency of the signal. Let n0 be this number of points from the phase
diagram. The fundamental period of the signal, T0 is:

T0 =
2n0
fs

ð2:14Þ

From (2.14), it goes that: f1 ̸f2 = 1.04 and f1 ̸f3 = 1.24.
This results allow us to discriminate between the proposed signals although their

characteristics are very close.

2.3 Characterization of Partial Discharges in High
Voltage Cables

In high voltage systems the presence of partial discharges (PD) are an indication of
insulation weakness which, in time, may lead to total damage of the equipments [5].
Therefore, is it absolutely necessary to monitor such systems (power cables, trans-
formers, etc.) in order to detect and localize the PD source, namely the position of the

Fig. 2.5 The polar
coordinates representation for
the transient signals
s1: τ1 = 5, s2: τ2 = 5 and
s3: τ3 = 6
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insulation troubles. Moreover, the characterization of these signals provides extra
information regarding the long terms effects that they have upon the system [5].

The experiment was made on the grounding connection of the cable in order to
record signals of 20ms using high current inductive sensors and high speed data
acquisition. It goes that each recorded signal has 2 million samples and a prelim-
inary detection of the potential harmful zones is achieved using the spectrogram
(Fig. 2.6).

Then, the TDR measure is applied on partial discharges that have different SNRs.
The PDs presented in Fig. 2.7 are detected with the TDR measure so that the

noise has no impact upon the detection curve. Hereby, after the filtering of these
signals, the filtered PDs have a SNR improved with at least 20 dB.

Next, these PDs are characterized using the multi-lag phase-space analysis.
Firstly, the signals were normalized in order to eliminate the drawbacks that the
different PDs amplitudes would involve. Then, on these signals, the area estimation
is performed after the elliptic modeling. Figure 2.8 presents the obtained results.

It can be observed that, even if the signals are normalized, their area evolution is
different. The choice of the lag is done so that the area of the trajectory on the phase
space has the same average value (A=1.5): dPD1 = 3, dPD2 = 4 and dPD3 = 6.

Using these lags, in Fig. 2.9 the phase diagram representation is presented.
The evolution of the trajectory is better pointed out in the π 4̸ angle region than

in the − 3π 4̸ angle region. Moreover, the noise in distributed all along the peak
corresponding to the − 3π 4̸ angle depending on the SNR.

Recalling the fact that the amplitude ratio is conserved in the ratio between the
lengths of the vectors corresponding to the π 4̸ angle, means that: aPD1 ̸aPD2 = 1.53
and aPD1 ̸aPD3 = 2.87. Moreover, according to (2.14), the frequency ratio are
fPD1 ̸fPD2 = 1.15 and fPD1 ̸fPD3 = 1.37.

Hereby, the results show that the signals PD2 and PD3 suffer not only an
attenuation, but also a frequency shift with respect to PD1 which helps to establish
their source characteristics.

Fig. 2.6 The experimental
configuration for the PD
measurements
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(a) (b)

(c)

Fig. 2.7 Recorded partial discharges with different SNRs and ratios α for ε (2.7)
a SNR=19.7 dB, m=3, d=3, α=0.4; b SNR=14 dB, m=3, d=4, α=0.7; c SNR=8dB,
m=3, d=6, α=0.95

Fig. 2.8 The area estimation
after the elliptic modeling in
multi-lag representation
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2.4 Electrical Arcs in Photovoltaic Panels

Photovoltaic panels are very important in the landscape of renewal energy sources
of strategic interest, for both ecological reasons and the worldwide growing energy
demand. The electrical arcs (EA) that appear in these systems can be a major
problem, so it is necessary to supervise such phenomena in the system in order to
keep it safe [7].

The experiment was performed with an electrical arc locator system composed
of three acoustical microphones place in a 3D configuration and an wide band
antenna placed in the center of the system (Fig. 2.10).

The detection and estimation of times of arrival of the transient signals generated
by electrical arc at each sensor has been done using the TDR measure, the spec-
trogram and the wavelet transform. Figure 2.11 presents the recorded signals and
their detection curves obtained with the TDR measure.

The recording is done at a sampling frequency of fs =5MHz for a period of
10ms (50000 samples). In terms of location accuracy, the TDR measure is com-
pared with the classical time-scale approaches. The spatial localization is achieved
by solving the geometrical system (2.15) based on the time-of-arrival (TOA) of the
electrical arc at each microphone. The TOA is obtained by imposing the same
threshold (0.5) at the normalized detection curves based on each method.

dPS2 − dPS1 = v ⋅ t21
dPS3 − dPS1 = v ⋅ t31
dPS4 − dPS1 = v ⋅ t41

8<
: ð2:15Þ

Fig. 2.9 The phase space
representation in polar
coordinates for PD1: dPD1 = 3,
PD2: dPD2 = 4 and
PD3: dPD3 = 6
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Photovoltaic panel

Wide band antenna

Fig. 2.10 The experimental configuration of the EA locator system

Fig. 2.11 The electrical arc locator system, the recorded AEs and the detection curve obtained
with the TDR measure m=3; d=8; α=0.7
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where dPSi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxsi − xPÞ2 + ðysi − yPÞ2 + ðzsi − zPÞ2

q
, i=1, 4, each position of the

acoustic microphone and antenna (S1) is known SiðxSi , ySi , zSiÞ, tði+1Þi is the time of
arrival of the electrical arc at each microphone triggered by the S1 wide band
antenna.

The precision accuracy using each method is presented in Table 2.1.
In this application, the signal is propagated on multiple paths, because the

experiment is performed in a closed facility: a 75m2 laboratory sustained by 6
columns and equipped with test tables, desktops and test boards.

Although, the classical techniques detect and localize the electrical arc source in
an effective manner, when it comes to multi-path signal discrimination, these
methods are limited.

But, the multi-lag phase space analysis provides better results. Using one of the
signals arrived at S2 microphone, the reflections s2, s3 of the electrical arc are
compared with the direct path signal s1.

Therefore, for the signals highlighted in Fig. 2.12, the elliptic modeling is
applied and the area of the estimated ellipse is determined. Previously, the signals
are normalized in order to bring the signals at the same amplitude level (Fig. 2.13).

The estimated ellipses evolve in a different manner, but they have the same
trend. After an average value of the area is chosen, A=1, an optimal lag is
determined: d1 = 11, d2 = 12 and d3 = 8. The results of the phase diagram repre-
sentation are shown in Fig. 2.14.

In terms of attenuation, the phase diagram points out the same information as the
time evolution of the signals. Moreover, the reflections present fewer curves that
the direct path signal. This means that the reflections contain fewer oscillations than
the direct signal, hereby, the reflections are dispersed.

Table 2.1 The spatial
localization accuracy for the
electrical arcs

Method Relative error (%)

TDR measure 6.2
Wavelet 11.2
Spectrogram 9.4

Fig. 2.12 The electrical arc
recording s1 and its reflections
s2, s3
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Using (2.14), it goes that: fs1 ̸fs2 = 0.94 and fs1 ̸fs3 = 0.92, meaning that the
reflections suffer a time dilatation. Because the frequency ratios are close to 1, it
leads to the idea that the signals have the same source, but on their propagation
path, the reflections are affected by multiple phenomena: diffusion, dispersion,
attenuation, etc.

Concluding this part, the RPA approach provides a better localization accuracy
than the time-scale methods and with the use of multi-lag phase-space analysis, it
highlights new information regarding the characterization of transient signals and
the changes that they suffer.

Fig. 2.13 The areas of the
estimated ellipses that
circumscribe the phase-space
trajectory

Fig. 2.14 The polar coordinates representation for the multi-path acoustic signals s1: d1 = 11,
s2: d2 = 12 and s3: d3 = 8
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2.5 Water Hammer Effect Quantification

The water hammer is a phenomenon that take place in a closed pipeline when a
vane is suddenly closed while the water is flowing. The effect is that the liquid is
forced to change its direction or to stop its motion. The risks of this operation vary
from pipeline vibration to pipe collapse.

Usually, in industrial applications, this phenomenon is quantified using either
intrusive pressure sensors, either a hydraulic formula (2.16) with the condition that
the characteristics of the system are well known [31–33].

c=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ 1
εw + D

e ⋅E

	 
r ð2:16Þ

where c is the pressure wave speed, εw is the bulk modulus of the fluid, D is the pipe
diameter, e is the pipe wall thickness and E is the Young modulus of the pipe.

The direct relation between the speed of the pressure wave and the pressure
variation Δp is given by Joukovski’s equation [31]:

Δp= ρ ⋅ c ⋅ v0 ð2:17Þ

where ρ is the fluid density and v0 is the steady flow velocity.
Our approach consists in placing a pair of ultrasonic sensors on the pipe and to

record the acoustical effect of the water hammer in order to compute the pressure
wave speed. This approach has the advantage to supervise the system as it is and
not to require any additional intrusive changes to the system as inserting a pressure
sensor inside the pipe (2.17) or determining the exact characteristics of the
hydraulic system (2.16).

The experiment is done on a horizontal pipe supplied by a tank (ST) of 200 l
volume. The pipe has a length of L=10.11m, it is made from Plexiglas with an
exterior section of 50 × 50mm2 and a circular interior section of D=39mm. The
water evacuation diaphragm has a diameter of d=20mm.

Our ultrasonic transducers are placed on the pipe at a distance of 8 cm (S2),
respectively 16 cm (S1) from the closing vane (CV). Next to them, the pressure
sensor P is already installed in the pipe (Fig. 2.15).

The acquired signals, by both ultrasonic and pressure sensors are presented in
Fig. 2.16. The highlighted areas emphasize that the acoustical effect happens
simultaneously with the pressure variations.

The acoustic signal arrived at sensor S2 is more clearer than the one arrived at S1,
because the first one is closer than the second from the CV. This happens because
the wave starts to diffuse. The results obtained with the TDR measure are shown in
Fig. 2.17.

Although, the effect of the mechanical vibrations of the pipe are also recorded by
the sensors (especially sensor S1), the transient detection is successfully obtained.

34 A. Digulescu et al.



Fig. 2.15 The experimental configuration

Fig. 2.16 The acoustic and pressure signals at sensor S2 (left figure), respectively at sensor S1
(right figure)

Fig. 2.17 The water hammer effect detection on the signals recorded by the two sensors
m=3, d=10, ε=70
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After imposing a threshold for the TDR measure of 80% from its maximum value,
two times of arrival are determined. Hereby, the time difference of arrival obtained
is TDOA=82 μs. Therefore, the estimated wave speed is cTDR =975m s̸.

Computing only the TDOA=99 μs for the maxima of the recorded signals, the
estimated wave speed is cpk =805m s̸. The difference between these approaches is
explained by the diffusion.

With the use of (2.16) and considering ρ=1000 kg m̸3, εw =2.1GPa, e=10mm
and E=5.66GPa, the theoretical value of the wave speed is cth =926m s̸.

Still, the pressure variation recorded by the pressure sensor P is Δp=15.9 bar.
Knowing that the flow rate of the water inside the pipe before the closure is
Q=1.98 l s̸, it goes that the speed of the water in steady state is v0 = 1.66m s̸.
Making use of (2.17), the experimental pressure wave speed is ce =959m s̸.

Relating the pressure wave speed the pressure variation using (2.17), the relative
error for the estimation of the pressure variation is performed, namely the water
hammer effect is quantified.

The results from Table 2.2 state that the TDR measure based on the RPA concept
is very efficient in the water hammer effect quantification with an error below 2%.

2.6 Conclusions

The concepts of RPA and phase space bring new insights which together with
classical signal processing methods can help the analysis the transient signals.

The choice of the RPA concept has the advantage to be a data-driven method,
therefore, it is an alternative to the classical transient signal processing techniques
based on projection of analyzed signals on a given dictionary. Three applicative
contexts have been addressed in our work.

The first one is the electrical partial discharge analysis. The detection method is
based on the RPA method parameters using the TDR measure. Furthermore, the
signals are characterized and discriminated using the concept of multi-lag phase
space analysis. In addition, for the electrical arcs the detection and characterization
is similarly obtained. The localization precision accuracy outperforms the classical
non-stationary signals processing methods.

The third application, related to the water hammer phenomenon analysis, is
pointed out through our ultrasonic non-intrusive approach that proves to be the
closest to the reference method. The effect of the phenomenon is quantified using

Table 2.2 The relative error
using different approaches

Method Relative error

Experimental (ce) –

TDR measure (cTDR) 1.69 %
Maximum peak (cpk) 16.02 %

Theoretical (cth) 3.43 %

36 A. Digulescu et al.



the TDR measure which is more robust to the effect of pressure wave diffusion that
takes place inside the pipe during the experiment.

Our future work foresees to correlate the information given by this new approach
with the physical parameters of the system. For this purpose, our main research
efforts will concentrate to the development of new descriptors of transients signals,
derived from multi-lag phase diagram analysis. The characteristics of such
descriptors that we look for are both the parsimony and the robustness to disturbing
factors.

In parallel, new applications domains will be addressed aiming to provide new
practically-oriented approaches for transient phenomena.
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Chapter 3
Multi-lag Phase Diagram Analysis
for Transient Signal Characterization

Cindy Bernard, Angela Digulescu, Alexandre Girard
and Cornel Ioana

Abstract Phase diagram analysis is a potential technique that can offer interesting

information regarding the signal shapes and eventually transient signal characteriza-

tion. Indeed by choosing wisely the lag in phase diagram representations, it is possi-

ble to highlight mathematical properties such as time-shift and time-scale operators,

as well as amplitude modifications. Therefore, this chapter develops the concept of

multi-lag phase diagram analysis (MLPDA), as well as different methods aimed to

extract parsimonious parameters from signal’s phase diagrams calculated for differ-

ent values of lags. By combining all of them, we are then able to explore new ways

of transient signal characterization.

3.1 Introduction

In this chapter, we only consider transient signals that are characterized by sudden

amplitude changes. They usually traduce mechanical, electrical, or electromagnetic

phenomena that are very important to monitor. Such signal can be given by:

s(t) = A(t), t ∈
[
t0, t0 + D

]
(3.1)
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where the duration D is assumed much shorter than the signal observation time, and

t0 the starting time of the signal. The amplitude function A(t) of the signal is assumed

to have high order derivatives.

We particularly focus on the case of transients observed at a given distance from

the source and that consists of not only the transient at the origin (as it is gener-

ated by the phenomenon) but also of the propagation and the receiver processing

effects. Thus, the deformations introduced by the propagation are of great interest to

characterize the environment.

The methods proposed in our work will contribute to offer a potential interest-

ing solution, attempting to provide a general analysis framework of such signals. To

do so, we propose to investigate the signals similarities and dissimilarities through

recurrence plot (RP) which has been introduced by Eckmann et al. [1] in 1987 in

order to visualize recurrences of higher-dimensional phase space trajectories in non-

linear data time series. By recurrence, we refer to the return of a state of a system to a

previously visited point. Recurrence Plot Analysis (RPA) has then been derived from

RP and is based on three major steps: time-delay embedding (1980–1981) [2, 3],

recurrence plots (1987) and recurrence quantification analysis (RQA) (1992–2002)

[4, 5]. More details about the history of RPA can be found in [6] and an international

website gathers all the advances and communications of the community [7].

Therefore, the main idea of this chapter is to investigate the different signals’s

properties in their phase diagrams in order to explore the similarities and dissim-

ilarities between them. To do so, Sect. 3.2 first provides different mathematical

properties such as time-scale transformations and amplitude modifications between

transients that can be highlighted by the lag diversity in phase diagrams. Then

Sect. 3.3 proposes five new descriptors for transient characterization that enables

to extract the previously cited transformations. An application example is then pre-

sented in Sect. 3.4. Finally, Sect. 3.5 provides some conclusions and perspectives of

work.

3.2 Mathematical Properties of Lag Diversity
in Phase Diagram

In order to illustrate the concept of multi-lag PDA, a transient is modeled as a mod-

ulated cosine s(n) defined for n ∈ {1,… ,N} such as:

s(n) =
{

cos
(
2𝜋f0n

)
w(n) if n ∈

[
n0, n0 + 𝛥

]
0 otherwise

(3.2)

withw(n) a modulating window (such as a Hanning window), f0 the central frequency

of the modulation (we consider f0 = 3 in our examples), n0 the beginning of the

transient and 𝛥 the transient duration.

Phase space diagram analysis of signal s(n), using the embedding dimension m
and lag 𝜏, corresponds to a representation T that is defined as follows:
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T ∶ ℝNxℕxℕ ⟶ MN−(m−1)𝜏,m (ℝ)
(s, 𝜏,m) ⟼ Tm,𝜏(s)

(3.3)

where:

Tm,𝜏(s) =

⎛
⎜⎜⎜⎜⎜⎜⎝

s(1) … s (1 + (j − 1) 𝜏) … s (1 + (m − 1) 𝜏)
s(2) … s (2 + (j − 1) 𝜏) … s (2 + (m − 1) 𝜏)
⋮
s(i) … s (i + (j − 1) 𝜏) … s (i + (m − 1) 𝜏)
⋮

s (N − (m − 1) 𝜏) … s (N − (m − 1) 𝜏 + (j − 1) 𝜏) … s (N)

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.4)

which can be summarized by:

Tm,𝜏 (s) =
{
ti,j
}
i={1,2…,N−(m−1)𝜏},j={1,2,…,m} (3.5)

with:

ti,j = s (i + (j − 1) 𝜏) (3.6)

Each row of the T matrix corresponds to a phase space vector. Each column cor-

responds to the coordinates of one axis of the phase space.

Let us now investigate the properties of this representation to the time-shift oper-

ator, the scale operator and amplitudes changes. We define three signals s1(n), s2(n)
and s3(n) such as:

s1(n) = s(n + 𝛿) (3.7)

s2(n) = s(𝛼n) (3.8)

s3(n) = 𝛽s(n) (3.9)

with 𝛿 the time-shift delay, 𝛼 ∈ ℝ+
the dilation coefficient and 𝛽 an amplitude mod-

ification coefficient. We propose to illustrate the different properties with equations

and numerical examples that are shown in Fig. 3.1. The numerical examples are com-

puted with the following parameters: 𝛿 = 55, 𝛼 = 2 and 𝛽 = 1.5.

Investigation of the Time-Shift Invariance Property
We can start by considering the phase space vector of s1(n) at instant n and the

relation given by (3.7). We have:

[
s1 (n) , s1 (n + 𝜏) ,… , s1 (n + (m − 1) 𝜏)

]
= [s (n + 𝛿) , s (n + 𝛿 + 𝜏) ,… , s (n + 𝛿 + (m − 1) 𝜏)]
=

[
s
(
n0
)
s
(
n0 + 𝜏

)
,… , s

(
n0 + (m − 1) 𝜏

)]
(3.10)

This result states that even if two identical signals are time-shifted, their phase
space diagrams are invariant. Mathematically speaking, it means that the rows of

Tm,𝜏(s1) are the same as Tm,𝜏 (s)’s but they suffered the circular permutation and are
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Fig. 3.1 Temporal data of: a s(n), b s1(n), c s2(n) and d s3(n)
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Fig. 3.2 a T2,4(s) and b T2,4(s1) phase space diagrams. The trajectories are the same despite the

time-shift

shifted compared to Tm,𝜏(s). This property is illustrated by Fig. 3.2 where we can see

that for m = 2 and 𝜏 = 8 the phase space diagrams of the two signals are exactly the

same despite the time-shift between the signals.

Investigation of the Time-Scaling Property
We now consider s1(n)’s phase space vector at instant n and the relation given by

(3.8). We have:

[
s2(n), s2 (n + 𝜏) ,… , s2 (n + (m − 1) 𝜏)

]
=

[
s
(
𝛼n + n0

)
,… , s

(
𝛼 (n + (m − 1) 𝜏) + n0

)]

=
[
s
(
n1
)
, s
(
n1 + 𝛼𝜏

)
,… , s

(
n1 + (m − 1) 𝛼𝜏

)]

=
[
s
(
n1
)
, s
(
n1 + 𝜏0

)
,… , s

(
n1 + (m − 1) 𝜏0

)]

(3.11)
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Fig. 3.3 Phase space diagrams of s(n) and s2(n) for m = 2 and different sets of lags: a [4, 4] and b
[4, 8]. The dilation connection between the two signals can be enlightened by using the appropriate

set of lags

Fig. 3.4 T2,4(s3) and T2,4(s)
phase space diagrams. They

are related by a

shape-invariant scale

transformation

−1 −0.5 0 0.5 1 1.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x(n)

x(
n+

τ)

T
2,4

(s)

T
2,4

(s
3
)

This result states that for a givenm there existsmany sets of lags [𝜏, 𝛼𝜏] that enable
an invariance of phase space diagrams. It means that it is possible to identify two

signals that are related by a dilation. Figure 3.3 presents the phase space diagrams

of s(n) and s2(n) for two differents sets of lags: [4, 4] and [4, 8]. For the first set, the

two diagrams do not overlap, whereas the second set enables a perfect superposition

of the two diagrams.

Investigation of the Amplitude Coefficient Modification

Finally, we consider s3(n)’s phase space vector at instant n and the relation given by

(3.9). We have:
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[
s3 (n) , s3 (n + 𝜏) ,… , s3 (n + (m − 1) 𝜏)

]
= [𝛽s (n) , 𝛽s (n + 𝜏) ,… , 𝛽s (n + (m − 1) 𝜏)]
= 𝛽 [s (n) , s (n + 𝜏) ,… , s (n + (m − 1) 𝜏)]

(3.12)

which can be summarized by:

Tm,𝜏(s3) = 𝛽Tm,𝜏 (s) (3.13)

This result shows that the amplitude change is equivalent, in the phase space
diagram representation, with a shape-invariant scale transformation. This is

illustrated by Fig. 3.4.

3.3 Multi-lag Phase Diagram Analysis

The previous section has shown that phase diagram representations can potentially

be invariant to the main transforms of signals such as: time-shift, time-scale changes,

amplitude modification, etc. The key point of the multi-lag based representation is

that the invariance can be controlled by the lag choice, which makes possible a better

exploration of the analyzed signals.

In this section, we propose different descriptors to extract parsimonious parame-

ters from each diagram acquired for a given lag. The evolution of these descriptors

with respect to the lags is then explored conducting to new representation tools for

transients.

In this Chapter, we restrained ourselves to m = 2 in order to visualize the results

but the work can be extended to higher embedding dimension. We also note y (n) for

x (n + 𝜏) in order to simplify the notations.

3.3.1 Ellipse Modeling

Generally, signals can have various trajectories with different shapes, but in this

subsection, we propose a general model for approximation of trajectories based
on ellipse shape (Fig. 3.5). This choice is quite natural since the ellipse model is

specific to harmonic signals. Therefore, the model is simple and enables to extract

three parameters per phase space diagrams:

∙ the polar angle 𝜽 of the ellipse assuming that 𝜽 is the angle between the first axis

and the major semi-axis

∙ the major semi-axis a
∙ the minor semi-axis b

We assume the center of the ellipse being the center of phase space diagrams as

transients can be considered as zero-mean signals.
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Fig. 3.5 Ellipse modeling:

major and minor axis are

determined by an SVD on

phase space diagram, and a

least square fitting method is

used to calculate a and b

O
x (n)

y (n) = x (n + τ)

a

b

θ

The first step consists in performing a singular value decomposition (SVD) of the

phase space diagram to calculate its eigenvectors. Those are of great interest as they

define a new basis that reflects the distribution of the data and also correspond to

the major and minor axis of the ellipse model. Then, a least squares fitting method

is performed to determine the ellipse that satisfies the following equation in the new

basis defined by the eigenvectors:

Ax2 + By2 = 1 (3.14)

where the semi-major and semi-minor axis are given by:

{
a = 1∕

√
A

b = 1∕
√
B

(3.15)

At this point of the study, each diagram is modeled by an ellipse with these three

parameters [a, b,𝜽]. The evolution of 𝜽 enables to estimate an apparent periodicity

of the transient, while the evolution of a and b enables to know how the data is dis-

tributed in the phase space. If they are scattered over a large area, it means that the

lag used to construct the representation is not representative of the transient con-

struction. On the other hand, if they are rather confined into a smaller area, it means

that the lag is representative and is well adapted to the study of this transient.

In order to illustrate the method, let consider three signals s1(n), s2(n) and s3(n)
that are modulated cosines. s1(n) and s2(n) are related by a time-scale transformation

while s3(n) is the result of a 10-th low-pass FIR digital filtering applied on s1(n) with

the normalized cutoff frequency of 0.1. Temporal signals are shown in Fig. 3.6. At
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Fig. 3.6 Temporal signals studied in this section and its wavelet transforms using the Daubechies

mother wavelet

Fig. 3.7 Evolution of 𝜽

with respect to 𝜏 for the three

studied signals
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first look, it is quite difficult to tell appart s1(n) from s3(n) and a time-scale analysis

would not do better as their frequency contents are really close (Fig. 3.6).

For the three signals and 𝜏 ∈ {1,… , 30}, we model each phase diagram by an

ellipse and record the variation of a, b and 𝜽 with respect to the lags. As we can see

in Figs. 3.7 and 3.8, the 3 parameters present an apparent periodicity that are related

to the apparent periodicities of the signals. We call apparent periodicity the number
of samples between two successive zero-crossing. As an example, the number of lags

between two successive maxima of 𝜽 is equal to 13 for s1(n), 23 for s2(n) and 12 for
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phase space diagram and its associated ellipse modeling. b T2,6
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phase

space diagram and its associated ellipse modeling

s3(n), while the apparent periodicity is of 12.5 samples for s1(n), 22.25 for s2(n) and

11.75 for s3(n) which is coherent with the previous values.

The periodicity of a and b corresponds to the half period of the signals (Fig. 3.8).

Their maximal values correspond to phase diagrams that can be modeled by cir-

cles (same value for both parameters), meaning that the phase diagrams are more

scattered in the phase space. This can be seen in Fig. 3.9 where we plotted s1(n)’s
phase diagrams for m = 2 and 𝜏 = {3, 6}. For 𝜏 = 3 that enables to obtain a maximal

value for b, the phase diagram can be modeled by a circle and is well distributed in

the space, while for 𝜏 = 6, the phase diagram is concentrated into a smaller area.

We have seen that with the ellipse modeling it was possible to summarize each

representation by only three parameters and estimate the apparent frequency of a

transient. We can also explore the distribution of the diagram in the phase space

which is of great interest as it enables to highlight the lags that provide a great con-

centration of the data or on the contrary a dispersal.
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Fig. 3.10 Phase diagram’s

trend is modeled by a third

degree polynomial
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3.3.2 Trend Modeling

In the previous subsection, we have seen that phase diagrams were more or less

concentrated around a line that tends to rotate around the origin of the phase space

(due to the zero-mean of the modeled signals). This is why, we want to model this

line as a third degree polynomial (Fig. 3.10) in order to quantify the rotation and the

natural trend of the diagram [8]. The model is defined as follows:

y = âx3 + ̂bx2 + ĉx + ̂d (3.16)

To do so, we consider the diagram as a scatterplot and perform a least square fitting

estimation by minimizing the following sum:

Argmin
â,̂b,̂c,̂d

N∑
i=1

(
s (i + 𝜏) −

(
âs3 (i) + ̂bs2 (i) + ĉs (i) + ̂d

))
(3.17)

where s (i) corresponds to the analyzed signal for i ∈ {1,… ,N}; N being the number

of samples.

Therefore, for each representation, phase diagrams are summarized by four para-

meters

{
â
𝜏

,
̂b
𝜏

, ĉ
𝜏

,
̂d
𝜏

}
that vary with respect to 𝜏. As studied signals can always

be considered as zeros mean, we can remove from consideration ̂d: this parame-

ter will always be equal to zero. Thus, three parameters remain: â, ̂b and ĉ. They

enable to discriminate transients by looking at their evolutions with respect to 𝜏 and

they also permit to highlight similitudes by looking at one parameter with respect to

another. This last representation allows to get rid of the evolution of 𝜏 and investigate

if whether or not the diagrams have similar trends for different lags: this can reflect

a time-scaling operation.



3 Multi-lag Phase Diagram Analysis for Transient Signal Characterization 49

5 10 15 20 25 30

−0.5

0

0.5

τ

a

s
1
(n)

s
2
(n)

s
3
(n)

5 10 15 20 25 30

−1

−0.5

0

0.5

1

τ

c

s
1
(n)

s
2
(n)

s
3
(n)

5 10 15 20 25 30
−5

0

5

10
x 10

−4

τ

d

s
1
(n)

s
2
(n)

s
3
(n)

5 10 15 20 25 30

−0.1

−0.05

0

0.05

τ

b

s
1
(n)

s
2
(n)

s
3
(n)

(a) (b)

(c) (d)

Fig. 3.11 Evolution of a â, b ̂b, c ĉ and d ̂d with respect to 𝜏

To illustrate the concept of trend modeling, we consider the three signals that were

introduced in the previous subsection. For all of them and 𝜏 = {1,… , 30}, we model

each phase diagram’s trend by a third degree polynomial and record the variations of

the four parameters with respect to the lag. As we can see in Fig. 3.11, it is quite easy

to discriminate between s1(n) and s3(n) by looking at the evolution of the parameters

of interest. The apparent periodicity of the parameters corresponds to the apparent

periodicity of the signals. As an example, the number of lags between two successive

maxima of ĉ is equal to 12 for s1(n), 22 for s2(n) and 11 for s3(n), while the apparent

periodicity is of 12.5 samples for s1(n), 22.25 for s2(n) and 11.75 for s3(n) which is

coherent with the theoretical values. We can also notice that the evolution of ̂d’s is

very small (below 0.0001), as well as for the evolution of parameter ̂b. This is why

we remove this last parameter from consideration as well.

Figure 3.12 presents the evolution of ĉ with respect to the evolution of â. This

representation is interesting as we get rid of the evolution of 𝜏. It enables to highlight

signals that would have the same phase diagram’s trends for different values of lags.
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Fig. 3.12 Evolution of ĉ with respect to â for the 3 studied signals



50 C. Bernard et al.

This is the case for s1(n) and s2(n) where the evolution of
[
â, ĉ

]
for both signals

overlap in the representation. This is coherent as the two signals are related by a

time-scale operator. As s1(n) and s3(n) are related by a low-pass filtering, we can

see that even if their representations are similar, they do not overlap. This shows the

complexity introduced by the filtering.

The modeling of phase diagrams’s trend by a third degree polynomial is of great

interest as it enables to detect if transients are related by a time-scale transformation.

However, at this point of the study, there is no method that tells us what couples of

lags we should use to highlight this transformation. This is why we moved toward a
matching phase diagram technique that is presented in the next subsection.

3.3.3 Extremum Points/Bounding Box

Generally, when we talk about SNR for transient analysis, we only consider signal

and noise over the duration of the transient. Thus, the SNR is defined as follows:

𝐒𝐍𝐑dB = 10 log10

∑
n s(n)∑
n b(n)

(3.18)

where s(n) corresponds to the noise-free transient and b(n) to the noise, defined for

n ∈ 𝛥 with 𝛥 being the time interval where is defined the transient of interest.

When it comes to noise in phase diagram, we can see in Fig. 3.13 that the external

contour remains more or less the same depending on the level of noise considered.

This is the reason why we focus on the bounding box of the trajectory that is delimited

by the maximal and minimal values of the studied signal.

We thus define 4 remarkables coordinates defined as follows and illustrated in

Fig. 3.14:

A ∶

{
∀n, x(n1) = max

n
(x (n))

y(n1)
(3.19)

B ∶

{
x(n2)
∀n, y(n2) = max

n
(y(n)) (3.20)

C ∶

{
∀n, x(n3) = min

n
(x (n))

y(n3)
(3.21)

D ∶

{
x(n4)
∀n, y(n4) = min

n
(y(n)) (3.22)
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Fig. 3.14 Bounding box
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values of transients
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In order to compare two transient signals analysis, we consider the signals’ phase

space diagrams for different values of lag
[
𝜏1,i, 𝜏2,i

]
i∈[1,…,𝜏max] and we look for their

extremum points
[
Ak,i,Bk,i,Ck,i,Dk,i

]
k=1,2. Then, we compute 4 matrices HA, HB, HC

and HD defined as follows:
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Fig. 3.15 Temporal data of

the studied signals
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HX =
{
hX,i,j

}
i,j∈[1,…,𝜏max] (3.23)

=
{
D

(
X1,i,X2,j

)}
(3.24)

whereD describes a given metric andX the extremum point taken into consideration.

Each matrix provides a “map” of the distances between the extremum points

of each phase space diagrams calculated for different values of lags. Therefore, it

enables to discover which couples of lags
[
𝜏1, 𝜏2

]
need to be used to provide a match

between two extremum points.

In order to illustrate this concept, let consider two transients related by a time-

scale transformation with the dilation coefficient 𝛼 = 3. Temporal data presented in

Fig. 3.15 shows that s2(n) (in red) is only dilated compared to s1(n) (in black) and

does not suffer amplitude changes. In this part, the purpose is to highlight the time-

scale relation between these signals.

We first calculate the 4 matrices described previously using the Euclidean norm

D2 defined as follows:

D2 (x) =
‖‖‖X1,i − X2,j

‖‖‖2 (3.25)

Those 4 matrices are displayed in Fig. 3.16 with the same colorbar. In this example,

we can see that the error is always really small for the extremum point B contrary

to the other points. Nevertheless, they all have in common a ‘line’ representing the

set of lags where the error is minimum. Those ‘lines’ are shown in Fig. 3.17 and

we can notice that they overlap. They describe the sets of lags
[
𝜏1, 𝜏2

]
to use that

would guaranty a match of the 4 extremum points for the two signals. Thus, we can

deduce a relationship between the sets of lags by performing a linear regression. We

obtain that:

𝜏2 = 3𝜏1 (3.26)

which is consistent with the dilation coefficient.
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To validate this result, we draw s1(n) and s2(n)’s phase space diagrams by using

the set of lags
[
𝜏1 = 3, 𝜏2 = 9

]
(Fig. 3.18). As a matter of fact both phase space dia-

grams overlap perfectly.

This technique allows to highlight time-scale transformations. However, even if

this technique enables to match extremum points having the same coordinates for

certain couples of lags, we need to keep in mind that trajectories can still be different
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Fig. 3.18 Phase space

diagrams of T2,3(s1) and

T2,9
(
s2
)

respectively in

black and red
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as the other coordinates are not considered. This is why it is interesting to monitor

the area covered by the trajectory in the phase space which is the subject of the next

subsection.

3.3.4 Area Calculation

Previous subsection has shown that it was possible to define four reference coordi-

nates for each phase space diagrams that allow to find matching correspondances,

however, it is not enough to guaranty the invariance. The next idea consists in cal-

culating the area of the diagram to quantify the surface. To do so, the diagram is

considered as a curve having at each instant n polar coordinates
[
𝜌
𝜏k
(n),𝜽

𝜏k
(n)

]
. We

then calculate the area A
[
s, 𝜏k

]
covered by the phase space diagram calculated for

𝜏 = 𝜏k:

A
[
s, 𝜏k

]
=
∫

𝜽
𝜏k (N)

𝜽
𝜏k (1)

𝜌

2
𝜏k
(n) |||d𝜽𝜏k

(n)||| (3.27)

We also define the matrix A
[
s1, s2

]
defined as follows that enables to calculate

the distance between two signals s1 and s2’s phase space diagram areas computed

for different sets of lags
[
𝜏1, 𝜏2

]
:

A
[
s1, s2

]
=
{
ai,j

}
i,j∈[1,…,𝜏max] (3.28)

=
{|||A

[
s1, 𝜏i

]
−A

[
s2, 𝜏j

]|||
}

(3.29)
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Fig. 3.19 Evolution of the

two signals area according to

the lag used to compute their

phase space trajectories
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It permits to find the sets of lags that offer similar areas for two phase space diagrams.

This analysis can be complementary to the bounding box method to highlight time-

scale transformation for instance.

In order to illustrate this concept, let consider the example presented previously

that only presents a time-scale transformation. We first compute the area for s1(n) and

s2(n) using 𝜏 = 1,… , 50. The evolution of the area according to the lag is displayed

for both signals in Fig. 3.19. As we can see, A
[
s1, 𝜏

]
presents a clear maxima for

𝜏 = 17, while A
[
s2, 𝜏

]
does not have one. A maxima notifies a change on phase

space diagrams that can as an example change its first eigenvector.

The computation of matrix A
[
s1, s2

]
provides the sets of lags that offer matching

areas. They are highlighted by a black dashed line in Fig. 3.20. For 𝜏1 = 1,… , 17,

we can see that this line is also a straight line that verifies the following equation:
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Fig. 3.21 Trajectory

expressed in polar coordinate

system. Each coordinates is

represented by a radius and a

polar angle

O
x (n)

y (n)

r (
n)

θ (n)

𝜏2 = 3𝜏1 (3.30)

This relationship confirms the dilation coefficient that has been used for the signals

simulation.

This method is really useful when coupled with the bounding box method. They

enables to highlight time-scale transformations between signals.

3.3.5 Polar Coordinates Analysis

We have shown in Sect. 3.2 that amplitude changes can be enlightened from phase

space diagrams. Indeed there exists a scale factor between two signals having an

amplitude relationship. To highlight it, phase diagrams are turned into polar coordi-

nates as shown in Fig. 3.21. The assessment is that for a given polar angle, radius are

directly connected by the amplitude coefficient.

Let consider s1(n) defined as in (3.2) and s2(n) defined as follows:

s2(n) =
1
𝛽

s1(𝛼n) (3.31)

with 𝛼 = 2 and 𝛽 = 1.4, as an example. That is, s2 is derived from s1 by a double

scale and amplitude modification.

Figures 3.15 and 3.22 present temporal data and phase diagrams obtained for

m = 2 and respectively 𝜏 = 8 and 𝜏 = 16. Using this set of parameters, we know that

the phase diagrams would be superposed if the signals’s amplitudes were identical.

However due to this difference they present a shape-invariant scale transformation.

We turn the cartesian coordinates into polar coordinates and draw the functions

𝜌(n) = f (𝜽(n)) for the two signals that are shown in Fig. 3.23. As we can see, both
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Fig. 3.22 Phase space

diagrams of T2,8(s1) and

T2,16(s2) respectively in black
and red
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curves are similar and it is easy to imagine a linear relationship between them. How-

ever, for a given polar angle, there is not always a correspondance between the two

curves (Fig. 3.24). This is the reason why we propose an algorithm to match corre-

sponding coordinates with respect to polar angles.

Algorithm description:

For each polar angle 𝜽1(n) of the first curve, the algorithm searches for the corre-

sponding polar angle on the second curve 𝜽2(n). A match is enlightened if the two

conditions are met:
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Fig. 3.24 Zoom in of

Fig. 3.23
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Fig. 3.25 a Pairs of

coordinates that have been

selected by the algorithm to

calculate the amplitude

modification known as
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{
𝜽2

(
n1
)
= argmin |||𝜽1

(
n0
)
− 𝜽2 (n)

|||
𝜽2

(
n1
)
< 𝜖

(3.32)

where n0 is the index of 𝜽1 (n) we are looking for, n1 is the corresponding index for

𝜽2 (n) and 𝜖 a threshold error that enables to discard certain associations that are not

consistent.

The algorithm selects M pairs of coordinates and calculates a ratio r(i) defined

for i ∈ {1,… ,M} such as:

r(i) =
𝜽1

(
n0i

)

𝜽2
(
n1i

) (3.33)
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Figure 3.25 presents the pairs of coordinates that have been selected by the algo-

rithm and the associated ratio. In this example, we can see that the ratio is consistent

along the entire polar angles interval which corroborates the idea of a shape-invariant

scale transformation. Moreover, the ratio is here equal to 1.4 which is the value of 𝛽.

We have seen in this example that it was possible to estimate a shape-invariant

scale transformation. The same work can be done along an interval of polar angles

that would highlight amplitudes changes on this interval.

3.4 Application Example

In order to characterize transient modifications due to its propagation through a cable,

we now conduct an experiment using the facilities existing in our lab. We generate

a partial discharge (PD) on an electric cable whose ends T1 and T2 are connected

to a data acquisition system. The PD source is respectively localized at L1 and L2
distances from the recording devices, as presented in Fig. 3.26. The main idea is

to estimate the relative propagation distances by comparing the relative deforma-

tions between the recorded signals. We note s0(n) the generated PD, s1(n) the signal

recorded at T1 and s2(n) the signal recorded at T2.

Time representation of emitted and recorded signals are presented in Fig. 3.27.

As we can notice, signals recorded after propagation through the cable reels differ

from the emitted one due to the propagation through the medium. They present non-

linear dilation and amplitude changes that are more or less stronger depending on the

propagation range. Temporal changes are shown in Fig. 3.28 where studied signals

have been superposed and normalized.

What is interesting with this kind of signals is that we can easily visualize that

a time-scale analysis would not be enough to characterize the modifications caused

by the propagation. There are dilation and also a modification of the envelop of the

signal that would be difficult to analyze with a single type of mother wavelet function.

This is shown by Fig. 3.29 where a time-scale study is performed for the three signals

using the Symlet mother wavelet. The results highly depend on the choice of mother

wavelet used and for the three cases, even if it is easy to detect them, it is quite

difficult to claim that they come from the same source as waveforms changes with

the propagation. This is the reason why it is useful to move forward MLPDA which

is presented next.

×T1 T2

L1 = 304m L2 = 762 m

Fig. 3.26 Experimental outline
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Fig. 3.27 Time

representation of emitted

signal and recorded signals

after propagation through the

cable reels
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To begin with, we need to normalize the signals by their maximal values, then

compute their phase diagrams for 𝜏 = 1,… , 20, search for the 4 extremum points

A, B, C and D, and finally compute the distance matrices HA, HB, HC and HD as

presented in Sect. 3.3.3. We then look for the sets of lags
[
𝜏1, 𝜏2

]
that minimize the

distances between each extremum points.

Thus, after the computation, we can see that it is not possible to superpose the dif-

ferent C and D coordinates, which is coherent with the normalization of the signals

by their maximum values. On the contrary, we can superpose the A and B coordi-

nates. To illustrate this, we compute T2,4(s1) and T2,6(s2) shown in Fig. 3.30, and

T2,5(s1) and T2,8(s1) shown in Fig. 3.31. We can see that the top right parts of the

two trajectories superpose well in the first case compared to the other one, even if

the distances between A1 and A2, and B1 and B2 are smaller in the second case. This

result confirms that the bounding box method cannot be used alone to determine dila-
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Fig. 3.29 Time-scale study using the symlet mother wavelet for a s0(n), b s1(n) and c s2(n)

Fig. 3.30 Superposition of

T2,4(s1) and T2,6(s2) phase

space diagrams. Even if the

distances d(A1,A2) and

d(B1,B2) are not minimal,

the top right parts of the

diagrams superpose well
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tion relationship. It needs to be coupled with a verification of the trajectories and/or

other methods. Nevertheless, according to Fig. 3.30, we can conclude that there is a

dilation coefficient equal to
𝜏2
𝜏1

= 3∕2 between the positive parts of s1(n) and s2(n).
In order to quantify the time-scale coefficients obtained with MLPDA tool, we

propose to define an estimated dilation coefficient obtained as follows. For the nor-

malized signal’s parts of interest, we calculate the number of samples where the

signal’s amplitude is higher than half the maximal value, i.e. 0.5 and then compute

the ratio between the two numbers to obtain the estimated dilation coefficient. For

positive part, we obtain a ratio 𝜏1∕𝜏2 equal to 8∕12, i.e. 2∕3 which corresponds to

the coefficient we previously estimated.

As a conclusion, we can say that multi-lag tools have been used on partial dis-

charge in order to characterize two signals received at two ends of cable reels. We

have highlighted a time-scale transformation of the positive parts of the recorded

data after propagation. Therefore, MLPDA tools have shown that they are promising

to extract information from signals that suffer nonlinear modification.

3.5 Conclusions and Perspectives

In this article, we have shown in a first part that transients that were connected by

time-shifted operator, time-scaling operator and amplitude modification, have invari-

ant (or shape-invariant) phase diagrams if the lags were chosen wisely. We then

proposed different methods to extract parsimonious parameters from each represen-

tation and combine all of them to highlight the named properties. So far, the devel-

oped methods provided good results for numerical examples as we showed in the

last section.

Future axis of research can propose to extend this work to higher embedding

dimensions. One possible idea could be to apply the same methods to the projec-

tions of phase diagrams onto the different planes of the phase space. More work

should also be done to explore linear and nonlinear amplitude modifications.
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Chapter 4
Analysis of Non-stationary Signals
by Recurrence Dissimilarity

Andrzej Rysak, Grzegorz Litak and Romuald Mosdorf

Abstract We propose a new method for testing non-stationary and intermittent

signals. Using a basic recurrence plot quantifier, i.e. a recurrence rate, we create

a relative measure which is sensitive to changes in the nature of signal. Given the

specificity of this measure, we call it recurrence dissimilarity (RD). First, we test it

using well-known non-linear systems for which we generate signals with different

intermittent characteristics. In addition, the generated signals are disturbed by noise.

The effectiveness of our measure is verified by applying different variables and noise

levels. The results allow us to draw a number of conclusions concerning the proposed

method. Finally, we give examples of using this method for experimental data analy-

sis. We report the results of detecting changes in flowing patterns in two-phase flows

and of switching heart modes in the signals recorded in ECG Holter tests.

4.1 Introduction

According to basic statistical moments, nonlinear signals are stationary at longer

intervals without showing any trends. However, due to the nonlinear character of

the system, multiple solutions of periodic and non-periodic attractors could appear

together with short time reversible switching in time evolution. This effect is referred

to intermittency and local non-stationarities and can be measured by recurrence

quantification including RR [1]. Intermittent signals were studied systematically by

Pomeau and Mannevielle [2]. Their studies were motivated by observations of the

intermittent route to turbulence in convective fluids. More generally, intermittency
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in dynamical systems consists in irregular time alternation of phases with periodic

and chaotic dynamics or of different forms characterized by chaotic dynamics [3].

Pomeau and Manneville described three different routes to intermittency where a

nearly periodic system showed irregular bursts of chaos [2]. They classified intermit-

tences into type I, II and III, these types corresponding to a saddle-node bifurcation,

a subcritical Hopf bifurcation and an inverse period-doubling bifurcation, respec-

tively. In periodic phases, the behavior was only nearly periodic, slowly drifting away

from an unstable periodic orbit. Evolving with time, the system became closer to the

unstable orbit again and returned to a nearly periodic behavior. Lengths of individ-

ual phases were unpredictable and characterized by different statistics depending

on an intermittency type. In this chapter we examine the stationarity of time series

using criteria that are based on their recursive properties. The main assumption is

that non-stationary signals are those signals for which the RR(𝜀) curve changes over

time. The main aim was to convert this concept into a stationarity measure and test

its potential with respect to detecting periodicity, non-periodicity, and intermittency

in several exemplary mathematical and real signals. Signal detection and extraction

as well as estimation of its periodicity and noise level are intensively investigated

problems, particularly with regard to the physiological time series. In one of the first

works in developing recurrence quantification analysis (RQA), Zbilut et al. [4] pro-

posed a new technique, based on cross-recurrence quantification analysis, that allows

to extract signals with very low signal-to-noise ratio and immediately assesses their

degree of periodicity. Another interesting method for the detection of recurring pat-

terns in the ECG signals was described by Sternickel [5]. This technique uses neural

networks, which are trained with wavelet transformed templates. It allows to detect

even temporally varying patterns within the ECG time series and works stable for

signal-to-noise ratios larger then one. More recently, Urbanowicz et al. [6] used a

general method estimating the noise level in heart rate variability by using a coarse-

grained entropy and discovered that usually the level of such noise is within 5–15 %.

The methods of nonlinear dynamics are often used in studies of ECG signals as

a very effective tool in cardiac research [7, 8]. A review of some methods imple-

menting recurrence quantification analysis in diagnosing changes of non-stationary

cardiac signals was presented by Zbilut et al. [9]. They shown that this approach can

be successful in regarding cardiac system state changes as well as its degrees of com-

plexity and/or randomness. In the approach of Zhu et al. [10] heart rate variability

and QT variability were characterized by short-term nonlinear RQA indexes. They

tested Holter ECG signals of two groups: patients with dysfunction of the autonomic

nervous system and healthy people. Significant differences were discovered between

mutual information of paired RQA indexes (DET and LAM) in comparison of both

groups. Application of nonlinear methods to cardiac study becomes more common.

Therefore, the ECG time series seems to be a most attractive data to perform the first

tests of the new recurrence measure.

An intermittent flow can also occur in two-phase (air-water) flows in mini-

channel. This phenomenon is reflected in the flow patterns consisting with the water

content and various sizes bubbles including small and elongated bubbless (slugs).

Various gas-liquid two-phase flow patterns were visualized and identified by Triplett
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et al. [11] and Serizawa et al. [12]. Recently, the formation of periodic patterns was

investigated by Gorski et al. [13, 14]. It is worth noticing that two-phase flow typical

of technical systems where, apart from a liquid phase, a gas phase appears. Such sys-

tems include boilers producing steam for turbines or in pumps, which operate close to

a vapor pressure of a fluid being pumped. Intermittencies and local non-stationarity

were studied by various tools including wavelets, multifractals, multiscale entropy,

and recurrence plots [1, 15–17]. In particular, the recurrence plots quantification

technique was applied to successive windows in the corresponding time series [1].

In this study, we test a new recurrence measure designed to distinguishing states

of non-stationary signals. The main focus is to assess effectiveness of this mea-

sure. Therefore, we first generate a series of numerical values which are then tested

using this measure. We employ well-known nonlinear systems as source of the non-

stationary signals. To simulate real conditions, a noise component is added to the

numerical series. We test all simulated results for different noise levels. Given the

limited scope of this work, only selected results are presented and discussed in

Sect. 4.4. Section 4.3 describes the measure of signal state applied in this work. In

Sect. 4.5 we present the results of ECG signals analysis produced with this method.

In the subsequent section, we report the results of applying this method to study

changes in the flowing patterns of the two-phase flows measured in circular channels.

A comparison with the traditional method of periodogram is presented in Sect. 4.7,

where the selected mathematical time series have been tested by both methods. The

results show good agreement between both test methods, pointing to the advantage

of the RD measure in some cases.

4.2 Investigated Nonlinear Systems

Prior to using the new measure of the signal status defined in Sect. 4.3 for analysis of

real waveforms, we first tested this measure using numerically generated time series.

These time series were obtained as a solutions of well known nonlinear systems:

1. Burke–Shaw system

2. Duffing–van der Pol oscillator

3. Windmi system.

In order to unify the description of all investigated waveforms in both the time and

frequency domain, we denote the independent variable of the studied nonlinear sys-

tems as time. By applying the proposed measure to above systems, we examine how

this measure can be used to distinguish between the intermittent signal states. Arti-

ficial data were prepared in the following way. For each system were found three

solutions with different intermittent characteristics:
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∙ Solution ‘A’—a periodic signal with rare and short-term switching to a chaotic

state

∙ Solution ‘B’—a signal which switches intermittently between periodic and chaotic

states

∙ Solution ‘C’—a chaotic signal with rare and short-term switching to a periodic

state.

The above characteristics of signals A, B and C were selected to check effectiveness

of the RD measure regarding each of the above-mentioned nonlinear systems. The

A-type signal enables us to test the measure with respect to finding chaotic windows

or transient disturbances. The time series of type B typically have intermittent char-

acteristics. The researches on these series focuses on detecting intermittent switching

between different signal states. In the case of signal C, the task of the RD measure is

to find a short periodic windows immersed in the chaotic background. Tables with

the applied parameter values and diagrams illustrating the generated time series are

given in Sects. 4.2.1–4.2.3. To give an exhaustive presentation of the investigated

mathematical data, the time series are shown together with their time-frequency rep-

resentations in the form of spectrograms. In addition, different levels of noise were

added to the numerically generated time series. The use of the proposed measure to

investigate the numerical waveforms with a noise enables us to assess its suitability

for analysis of real signals. The procedure for interfering waveforms by adding noise

is described in Sect. 4.2.4.

4.2.1 Burke–Shaw

The first set of a basic time series is obtained as a solution of the Burke–Shaw system.

This system was derived by B. Burke and R. Shaw from the Lorenz equations [18].

The set of ordinary differential equations is

ẏ1 = − U(y1 + y2)
ẏ2 = − Uy1y3 − y2
ẏ3 =Uy1y2 + V ,

(4.1)

where y1, y2 and y3 are variables while U and V are constants. The superscript dot

denotes the time derivative. The corresponding time-series for y1 solutions: A, B

and C (Fig. 4.1) were obtained by using selected values of the U and V coefficients

(Table 4.1). The characteristics of signal A are described in the introduction to this

section. This time series reveals the presence of two chaotic windows and a few

short-term disturbances. Signals B and C are similar. In the chaotic time-series we

can observe visible periodic windows. The system coefficients are selected such that

periodic windows occur more frequently in time series B. In Fig. 4.2, the spectro-

grams of the A, B, and C signals present their time–frequency characteristics.
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Fig. 4.1 Time series of the first coordinate of the BS system’s solution. The diagrams of solutions

A, B, C are shown in the same sequence from top to bottom. Diagrams B and C show time lengths

with periodic fluctuations. They occur less frequently in C

Table 4.1 Coefficients of the Burke–Shaw system

Type of signal U V
A 13.979645 13

B 13.97755 13

C 13.97 13

A B C

Fig. 4.2 Time–frequency characteristics of X1 solution of the Burke–Shaw system obtained for

signals A, B, and C

4.2.2 Duffing–van der Pol Oscillator

Another system we employed to generate non-stationary signals was the extensively

studied periodically forced Duffing–van der Pol oscillator [19, 20]. This system is

defined by the equation
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Fig. 4.3 Time series A, B and C as were generated by the Duffing–van der Pol system. The first

coordinate of the solution obtained for the coefficient values given in Table 4.2

Table 4.2 Coefficients of the Duffing–van der Pol system

Type of signal 𝜇 𝛾 A 𝜔

A 0.20 9 0.358 1.06239

B 0.20 9 0.35 1.06239

C 0.18 9 0.35 1.06239

ẍ − 𝜇(1 − 𝛾x2)ẋ + 𝜂x + x3 = A sin(𝜔t), (4.2)

where x is a variable and 𝜇, 𝛾 are constants parametrizing the self excitation effect,

𝜂 is a spring coefficient and A sin(𝜔t) is an external harmonic force with the ampli-

tude A and frequency 𝜔. To obtain the corresponding time series for x: A, B and C

(Fig. 4.3), we have assumed that 𝜂 = 0 and that the values of other coefficients are

set as listed in Table 4.2. Signal A has a very regular amplitude and only two visible

periodicity breaks. Signal B is typically intermittent. Periodic areas are difficult to

see in the diagram for signal C. This being the case, brief periodic windows could

only be detected by detailed examination of the magnified fragments of the series.

The spectrograms of the Duffing–van der Pol signals, A, B, and C are presented in

Fig. 4.4.
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A B C

Fig. 4.4 Time–frequency characteristics of the Duffing–van der Pol X1 solution of signals A, B,

and C

4.2.3 Windmi

The third analyzed nonlinear system was the WINDMI attractor introduced by Hor-

ton and Doxas [21] to describe the solar-wind-driven magnetosphere-ionosphere sys-

tem. In this chapter we analyze a simplified form of the system which was developed

by Sprott [22]:

ẏ1 =y2
ẏ2 =y3
ẏ3 = − ay3 − y2 + b − exp(y1),

(4.3)

where y1, y2 and y3 are variables while a, b are constants. The corresponding time

series for y3 are shown in Fig. 4.5. They were obtained for the coefficients listed in

Table 4.3. For this system we generate an additional time series (P), characterized

by switching between two periodic signal states. As in the case of the Duffing–van

der Pol system, signal C appears to be completely chaotic. Therefore, it seems to be

a good experimental field to assess effectiveness of the applied measure in detecting

periodicity. Spectrograms of the Windmi system are shown in Fig. 4.6.

4.2.4 Noise Generation

The aim of this work is to detect intermittent states of non-stationary signals using a

new recurrence measure. To test the measure’s usefulness under conditions similar to

real ones, different levels of noise are added to the numerically obtained time series.

Values of the noise signal are drawn from a standard normal distribution (Gaussian

noise). For each coordinate k of a non-linear system the noise vector is expressed as

follows:

𝐧𝐤 = {nki}, i = 1, 2,… , n (4.4)

The noise level is defined with respect to a source signal level. Whenever noise is

added to the numerical signal, its amplitude is multiplied by a coefficient calculated

as part of the standard deviation 𝜎k of the source signal 𝐲𝐤
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Fig. 4.5 Time series obtained for the Windmi system, i.e. third coordinate of the solution. The top
trace is a P-type waveform in which two different periodic-like states were observed

Table 4.3 Coefficients of the Windmi system

Type of signal a b
P 0.5061541215 2.5

A 0.704695 2.684

B 0.678795 1.99816

C 0.715 1.95

A B C

Fig. 4.6 Time–frequency characteristics of the Windmi X1 solution for signals A, B, and C



4 Analysis of Non-stationary Signals by Recurrence Dissimilarity 73

Table 4.4 Signal to noise ratio for different noise levels

Noise level (%) SNR SNR (dB)

5 400 26

10 100 20

20 25 14

40 6.25 8

60 4.44 2.8

80 1.94 1.56

𝐲𝐤 = {yki}, i = 1, 2,… , n

𝜎k =

[
1

n − 1

n∑
i=1

(yi − ỹ)2
] 1

2

The value of this coefficient is marked in the figures as the noise level and expressed

as a percentage. It is denoted as NP. Then the signal disturbed by noise about the NP

level is calculated as follows:

𝐲𝐤NP = 𝐲𝐤 +
NP
100

𝜎k𝐧𝐤 (4.5)

All non-stationary signals listed in Sect. 4.2 were tested in terms of adding different

noise levels. By convention, the noise was added to the investigated signals at the fol-

lowing levels: 5, 10, 20, 40, 60 and 80 %. The values of SNR for different noise levels

are listed in Table 4.4. The disturbance of the signal due to different noise levels is

clearly visible in the case of the BS-A (Burke–Shaw A-type) signal (Fig. 4.7).

4.3 Recurrence Dissimilarity

In this chapter, we propose a new measure to distinguish between non-stationary

signal based on differences in recurrence plot patterns. The Recurrence Plot method

was developed by Eckmann [23] and extended by Webber and Zbilut [24], Casdagli

[25], later by Marwan et al. [26, 27] and others. This approach is very useful for

analysis of short and noise-affected experimental data. Prior to the application of the

RP method, it is necessary to move a considered time series to an m-dimensional

embedding space. After Takens [28] and based on our initial time series x(ti), i =
1, 2, 3,… , n, we define the vector 𝐘 in the m-dimensional embedding space as:

𝐘(ti) = [x(ti), x(ti − 𝜏), x(ti − 2𝜏), … , x(ti − (m − 1)𝜏)] (4.6)
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Fig. 4.7 Burke–Shaw A-type signal (time series) with different noise levels

In the embedding space, for the vector𝐘we define the distance matrix R which deter-

mines neighbors for each element of the vectorial time series. Two vector elements

are called neighbors if the distance between them in the embedding space is lower

than the threshold value 𝜀. The elements R𝜀

ij of the distance matrix R are defined as:

R𝜀

ij = 𝛩

(
𝜀 − ||𝐘i − 𝐘j||

)
, (4.7)

and they are equal to 1 for the components that are neighbors, and 0 otherwise. A

recurrence rate (RR) is a recurrence plot quantifier, the value of which is equal to

the number of elements of the R matrix equal to 1. By calculating the RR values for

different values of 𝜀, we obtain an RR(𝜀) curve.
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The proposed measure determines a relative difference between the state of the

signal on a reference section at about t = t1 (reference window) and the state of the

signal on a section of the same length about the point t. For each window, the RP pat-

terns are calculated for a few threshold values 𝜀, and for each pattern (R matrix) the

RR quantifier is determined. In this manner, a RR(𝜀) curve is created for every win-

dow. This curve is the core of the measure. In our preliminary studies, we examined

the relationship between the RR curves obtained for windows set in various states

of non-stationary signals. Both the tested time series and the windows for which the

RR(𝜀) curves were computed are shown on the left in Fig. 4.8.

The first calculations demonstrated that the RR(𝜀) curve obtained for both win-

dows (colors agreement) differ only when both windows are placed in the areas

described by a different signal state (Fig. 4.8b). The black RR curve was obtained

for a cross-recurrence plot pattern of both windows. This observation inspired us to

define the measure of non-stationary signal state as a distance between the RR(𝜀)
lines of both windows (at two time points). We call this measure ‘recurrence dis-

similarity’ because it reflects the difference between recurrence plot patterns of both

windows. In this work, the result of the RD method, i.e. the distance between lines

of RR(𝜀), is denoted as DRR. The DRR distance is calculated with a simple formula

DRR =
{∑

[RR1(ei) − RR2(ei)]2
} 1

2
. (4.8)
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Fig. 4.8 Two windows located in places with similar (a) and different (b) signal characteristics.

The corresponding RR(𝜀) curves do not overlap in (b). The black curve is the RR(𝜀) function cal-

culated for cross-RP
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Below are listed the most important parameters for this method.

∙ W—window width

∙ S—sliding window step

∙ t1—starting point (reference window position)

∙ m—space dimension

∙ 𝜏—delay

∙ 𝛥—𝜀 growth rate (in m-dimensional space), 𝜀(i) = i𝛥, i = 1…5.

Without proper selection of values of the embedding coefficients: m, 𝜏, we do not

get the results determining recurrence similarity. We found experimentally that the

method is effective for m set to 3 (even for the 2-dimensional Duffing–van der Pol

system) and 𝜏 made equal to at least 10. With a correctly specified range of values of

the 𝜀 parameter, we can assess the sensitivity of the method. When 𝛥 is too high or

small, DRR = 0. Optimal values of 𝛥 were determined experimentally for each sys-

tem depending on the level of noise. The step S is related to the time resolution of

the result, whereas the width W of the sliding window determines its precision. By

definition, the relationship RR(𝜀) is always on the increase, but the variability of the

RR curve can be different in both windows, i.e. the reference and current window.

As a result, the difference between relative RR(𝜀i) values can be either positive or

negative. The measure adopted in this work (4.8) is rough. The use of more precise

measure, the DRR, which takes into account the sign when calculating the distance

between the two curves should increase the functionality and sensitivity of this tech-

nique. Further improvement of this method can be achieved by reducing the step

shift of the sliding window. This should significantly improve the resolution of the

method. Good quality time series DRR(t) can then be used to determine the recur-

rence plot of the RD measure (RD-RP). Diagrams obtained in this way can be an

interesting way of presenting characteristic properties of the examined time series.

4.4 Examination of the Signal State

This study involved testing all generated signals with an addition of different noise

levels. An analysis of signals with numerically generated noise under controlled con-

ditions enables formation of signals with known characteristics. By analyzing these

signals, it is relatively easy to interpret the results and assess the proper operation

of the employed method. In this section, we present only some examples to demon-

strate what kind of results can be obtained for different types of signals and to show

the impact of the noise on recurrence dissimilarity measurements. In every case, the

reference window is set such that it is compatible with the purpose of the test in

terms of recurrence dissimilarity. That is, for example, searching for chaotic inserts,

we must set the reference window in location with a periodic signal, and vice versa.

The reference window is marked in the figures by a rectangular green frame. If it

is not visible, this means that the image is magnified and the window is beyond the

scope of the figure.
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Fig. 4.9 The function DRR(t) (magenta) calculated for the time series A-X1 of the Burke–Shaw

system (corresponding time series in the background). Detection of chaotic windows in the signal

with different noise levels. In each case, the reference window was set outside the scope of the figure

4.4.1 Detection of Chaotic Windows in the Burke–Shaw
System

The DRR curves detected in Burke–Shaw system with different noise levels are pre-

sented in Fig. 4.9. The RD method identifies well chaotic episodes in the A-type

signal which is dominated by a periodic-like behavior of the system. As can be seen

in the figure, the applied technique detects the areas of the chaotic windows correctly,

even after the addition of 80 % noise to the original signal.

4.4.2 Recurrence Dissimilarity in the Duffing–van der
Pol System

The recurrence dissimilarity for the B signal in the Duffing–van der Pol system

is presented in Fig. 4.10. For the B-type signal, the nonlinear system often and
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Fig. 4.10 DRR function (magenta) calculated for the B-X1 signal of Duffing–van der Pol system.

Investigation of the intermittent switching for the signal with different noise level. In each case, the

reference window was set outside the scope of the figure

intermittently switches between periodic-like and chaotic states of the signal. It can

be observed that periodic states are still detectable up to a noise level of 20 %.

In Fig. 4.11 we present the results obtained for the C-type signal dominated by

chaotic changes where short and infrequent periodic excitations mingle. In addition,

the signal was disturbed by a 10 % noise level. Even under these difficult condi-

tions, weak and narrow periodical areas can still be detected with the RD method.

Figure 4.12 shows a magnified image of one of DRR peak and thereby detected

periodic-like fluctuations.
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Fig. 4.11 The first coordinate of the C-type signal generated by the Duffing–van der Pow system

with a 10 % noise level. The DRR line is plotted in magenta. The reference window is marked in

green
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Fig. 4.12 Magnified

fragment of the Fig. 4.11

with a DRR peak, marking a

short periodic area
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4.4.3 Detection of Chaotic and Periodic Windows
in the Windmi System

The C-type signal of the Windmi system seems to be completely chaotic (Fig. 4.13).

But the RD analysis reveals two high peaks of the DRR function, which indicates

some differences of the signal in these places. In Fig. 4.14 we show a magnified

image of these two peaks. The area identified by the left peak (left figure) is clearly

periodic and stands out from the chaotic signal. But the regularity indicated by the

right peak (right figure) is difficult to distinguish from the surrounding chaotic back-

ground. After adding 10 % noise to the W-C-X3 solution (Fig. 4.15), the RD measure

produces a result which is partially consistent with that which was obtained for the

undisturbed signal. Both areas identified in Fig. 4.13 can still be detected. How-

ever, a comparison of the results presented in Figs. 4.13 and 4.15 shows some dis-

tinctive phenomena caused by noise. Following the addition of noise, some vertices

of the DRR function—which in the noise-free case had a small value—significantly

increase. This effect occurs for the peaks located in the vicinity of t= 2100 s and

t= 9000 s. The noise also induces an entirely new peaks which are invisible in the

undisturbed signal (for t= 5500 s).

The recurrence dissimilarity obtained for the A-type signal of the Windmi system

for different noise levels is shown in Fig. 4.16. As can be seen in the figure, the noise

strongly alters the results obtained with the RD method. The increase in the noise
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Fig. 4.13 DRR function (magenta) of C-X3 solution of the Windmi system with a zero noise level.

Short-term periodic areas are effectively detected. The corresponding time series is plotted in the

background
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Fig. 4.14 Fragments of the Fig. 4.13 which show areas with the DRR peaks detecting narrow peri-

odic windows
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Fig. 4.15 DRR function (magenta) of C-X3 of the Windmi system time series with 10 % noise level
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Fig. 4.16 DRR function (magenta) of A-X1 solution of the Windmi system time series with differ-

ent noise levels. In each case, the reference window was set outside the scope of the figure
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level significantly reduces the detection of the chaotic windows. For the signal with

added 20 % of noise, the chaotic windows are no longer detectable. Comparing these

results with the analogous results obtained for the Burke–Shaw system (Fig. 4.9), we

can notice that the Windmi system is much less resistant to the effect of noise. There-

fore, we can conclude that in terms of recurrence similarity, the difference between

chaotic and periodic signals is significantly higher for the Burke–Shaw system.

4.5 Recurrence Dissimilarity in the ECG Signals

To test the method for real signals, we used the RD measure to study the variability

of ECG Holter signals. Analyzed were the results derived from active patients with

possible heart defects. Under such conditions it can be expected that in the results of

the study will reveal a visible impact of such phenomena as:

∙ changes in heart rate

∙ changes in the amplitude of the ECG signal (the effect of apparatus)

∙ electrical interference

∙ error in electrodes connections

∙ changes in the ECG signal resulting from the revealing of a disease state.

Below we provide a few examples which illustrate how the RD measure works under

such circumstances. Wherever it is drawn, the red horizontal line marks the zero

of the DRR signal level. Figure 4.17a shows the ECG signal, a portion of which (at

around t= 1200 s) has an amplitude which is significantly higher than the rest. The

DRR line takes high values over this length, which indicates that its nature differs

from that of the signal in the selected reference window. In the analysis of the next

ECG waveform Fig. 4.17b only one short disturbance is identified.

The ECG signal, shown in Fig. 4.18 (top) has in its central part evident excitations.

The DRR function detects strong but short-term disturbances in the region of these

excitations. It can be noted, that the DRR function increases once these excitations

are over. The lower part of Fig. 4.18 shows magnified fragments of the ECG signal

before (left) and after (right) these excitations. Comparing them, we can detect a

difference between both signals responsible for the increase in the DRR function.

Further on, we analyze the ECG waveform which has a long region with a higher

amplitude in the centre (Fig. 4.19). The DRR function gives high peaks only in the

boundaries between the time regions with different signal levels. A similar signal is

presented in Fig. 4.20. In this case, intermittent changes are visible in the ECG signal

level. The DRR function does not detect either changes in the nature of the signal or

transitions between the areas with different signal levels. Thus, the RD detects only

disturbance points and is insensitive to signal levels. One visible DRR peak appears

in the region of noticeable time series disturbance at about t = 3310 s. The next two

diagrams in Fig. 4.20 show the magnified details of the ECG results for lower (left)

and higher (right) signal levels. Both series are qualitatively identical and differ only

with respect to signal level.
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Fig. 4.17 Recurrence dissimilarity (magenta) detects a fragment of signal with different charac-

teristics (a) and relatively short signal disturbance (b). In both cases, the location of the reference

window is marked by green. The corresponding time series is plotted in the background
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Fig. 4.18 Recurrence dissimilarity (magenta) detects a signal disturbance after which the level of

dissimilarity slightly increases. Below are shown magnified images of fragments from both sides

of the signal disturbance
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Fig. 4.19 RD (magenta) detects signal disturbance in the regions where the signal level changes
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Fig. 4.20 Signal level switching. RD (magenta) detects only disturbance points and is insensitive

to the signal levels. Below are presented magnified fragments

4.6 Evolution of the Two-Phase Flowing Systems

In this section, we test changes of flowing structures in two-phase air-water flow sys-

tems by the RD method. In the experiment, the gas flow rate is kept constant whereas

the water flow rate is systematically decreased with time, thus the flow velocity of

the mixture decreases as well. We report here the results obtained for the gas flow

rate set equal to 0.1, 0.2, and 0.3 l/min. In each case, the water flow rate decreases

from 0.085 to 0.01 l/min. A schematic design of the experimental stand is shown in

Fig. 4.21, where the water loop (blue) and air branch (yellow) supply a bubble gen-

erator (BG). In both subsystems, the most important elements such as pumps (WP,

AP), tanks, valves (WV, AV), and flow meters (WM, AM) are marked. Flow patterns

were recorded with a Phantom digital camera at 5000 fps. The content of the mini-

channel (bubbles or liquid) was qualitatively assessed using a laser-phototransistor

sensor. The sensor consisted of a laser which generated the laser beam with a
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Fig. 4.21 Two-phase

system flows in a channel.

Air is provided to the water

loop (blue) from a side

branch (yellow). Pressure is

measured by two sensors

(P1, P2). Two lasers measure

the perturbations of the

system (L1, L2). The camera

collects video frames

diameter of 3 mm, the laser and silicon sensor placed in focal point of lens. Data

from the laser-phototransistor sensors was acquired by the acquisition system at a

sampling rate of 5 kHz. If both, gas and water flow rates are high the flow nature is

turbulent and chaotic. This occurs at the beginning of measurement for flows with a

high value of the gas flow rate. The data are collected by a laser probe. The laser beam

has a diameter of 3 mm. Therefore, only the structures with comparable dimensions

have a significant impact on the results.

The non-stationarity of the two-phase flow increases with changing the ratio of

both phases. These processes lead to reducing flow instabilities; they also change

the flowing structures and their organization. As the water flow rate decreases, the

frames collected with a high-speed camera reveal changes in the shape of flowing

gas structures from chaotic small bubbles, and mixed flows of bubbles and slugs,

to more stable flows of long slugs. Along with the changes in shape, the distances

between the structures and their configurations change, too. During these changes,

the flowing sequences of structures often become periodically arranged. At a rel-

atively high gas content, the flow system tends to an annular or long slugs flow.

Figures 4.22, 4.23, 4.24 present the RD results of the laser-collected data for the gas

flow rate set to 0.1, 0.2, and 0.3 l/min, respectively. In the first case, for the water

flow rate q= 0.1 l/min (Fig. 4.22) flow begins as a chaotic motion of bubbles, later

becoming a mixture of bubbles and unstable slugs. During this period of time, the

DRR function value remains unchanged. Starting from t= 55 s the number of chaotic

bubbles decreases and the movement of slugs becomes more stable. The value of the

Fig. 4.22 Changes in

recurrence similarity in the

two-phase flow when the gas

flow rate is set to to 0.1 l/min
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Fig. 4.23 Changes in

recurrence similarity in the

two-phase flow when the gas

flow rate is set to 0.2 l/min.
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gas flow rate
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Fig. 4.24 Changes in

recurrence similarity in the

two-phase flow when the gas

flow rate is set to 0.3 l/min.
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function increases slightly. Until about t= 100 s, the flowing slugs change their con-

figuration and size only to a little extent. After this time, their size increases rapidly,

which causes a sudden increase in the DRR function. A comparison of changes in the

DRR function with video images enables better interpretation and verification of the

results produced with the RD method. The selected video frames collected during

measurement with the gas flow rate set equal to 0.1 l/min are presented in Fig. 4.25.

In the next experiment, for q= 0.2 l/min (Fig. 4.23), the flow begins in a similar

vein, but then slugs quickly emerge. Because of slugs instability and the presence

of chaotic bubbles, this change causes, however, only a small increase in DRR. After

the t= 60 s, the slugs are more stable and the number of bubbles is reduced. Starting

from this point, they length increases, which makes the DRR function increase. In

the last example (q= 0.3 l/min, Fig. 4.24), the flow starts as a chaotic movement of a

bubble and slug mixture. With a lapse of time, both the flow rate and the number of

chaotic bubbles decrease. At the same time the slugs become stable. Looking at the

t=21s
t=33s
t=40s
t=53s
t=69s
t=80s
t=91s
t=97s
t=101s
t=104s
t=106s
t=108s

Fig. 4.25 Photo-frames of the structures flowing in the channel taken for the flow where the gas

flow rate equals to 0.1 l/min
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function DRR, we can observe a slow increase in their value in a wide range of time

(decreasing the water flow rate), corresponding to the expansion of slugs length and

increased stabilization of the flow.

The RD results reflect well the evolution of gas structures in two-phase flows,

even when analyzing signals with a low spatial resolution (laser). The method detects

chaotic flow and slug formation, and produces a high value of the DRR function for a

steady flow of long structures. In the final stage of the measurement of each flows, the

DRR function’s value saturates. This is due to the stabilization of the water flow rate

at minimum and the reconfigurations of gas structures under these conditions. The

changes in gas structure configurations occur together with changes in the relative

flow velocity of water and gas. In the RD measurements, such reconfigurations of

gas structures lead to variations in the DRR function.

4.7 Recurrence Dissimilarity Versus Periodogram Map

As has been shown in the above sections, the RD effectively detects changes in signal

characteristics. Because the RD measure analyzes the recurrence similarity, it is not

sensitive to changes in signal amplitude but successfully detects many other signal

exceptions. To assess the effectiveness of the RD method, we compare its results

with the results produced with one of the standard time series analysis methods—

the periodogram technique. TheDRR(t) function is determined by the sliding window

technique. For each analyzed waveform the appropriate window width and time step

are used. Comparing both techniques, the periodograms are calculated for the same

values of the window widths and step shifts that have been applied in determining the

function DRR(t). Figure 4.26 shows exemplary periodograms obtained for the stud-

ied mathematical systems. For each system we report PSD (power spectrum density)

results obtained for one selected time window. The frequency axis is scaled to a 0–

1 value range. By moving the time window, we get a series of periodograms—one

periodogram for each point of the DRR(t) curve. To compare the results obtained by

both methods, each series of periodograms is presented on one 3D time-frequency

chart. To simplify the graph, we project the 3D chart to a 2D color map and convert

the colors to gray scale so that the drawing’s background is white. For the obtained

periodogram maps, the gray color marks the frequencies for which the signal ampli-

tude at any given time is relatively high. On such a map, a periodic component stable

in time is indicated as a dark horizontal line. The darkness of the line is proportional

to the frequency peak value. In the all presented periodogram maps we narrow the

frequency range to a scope where the PSD have significant values.

In Fig. 4.27 the results of the RD measure and periodogram map (RD-P) are com-

pared for the time series type-A of the BS system without added noise. The figure

shows long gray lines corresponding to the frequency peaks of the PSD function,

which do not change theirs position over time. The breaks in these lines correspond

to the peaks of the DRR(t) function and show time windows in which the system

switches to non-periodic solutions. As once can observe, both methods work simi-
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Fig. 4.26 Examples of periodograms calculated for the mathematical systems: a BS A X1 N0, b
W B X3 N10, c DvP B X1 N10, and d BS C X3 N10
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Fig. 4.27 The RD-P (RD in Magenta) comparison of the time series type-A of the Burke–Shaw

system without added noise

larly, but some DRR peaks indicate signal changes that are difficult to notice on the

periodogram map (about 500, 950, and 1350 s). In Fig. 4.28 both methods are applied

to the W B X3 signal with a 10 % noise level. The signal is characterized by frequent

intermittent hops between different solutions. The results of both methods are con-

sistent. In the subsequently analyzed case we compare the results of both methods for
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Fig. 4.28 The RD-P (RD in Magenta) comparison of the time series type-B of the Windmi system

with a 10 % noise level
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Fig. 4.29 The RD-P (RD in Magenta) comparison of the time series type-B of the Duffing–van

der Pol system with a 10 % noise level

the signal DvP B X1 with a 10 % noise level (Fig. 4.29). As in the previous case, the

signal is characterized by intermittent hopping between periodic and non-periodic

solutions. Both methods give similar results. However, we can observe the pres-

ence several of the DRR(t) function peaks detecting windows with signal changes

which are invisible on the periodogram map. For example, there are two peaks in

the range (100–300 s), two peaks in the range (850–1000 s) and the highest peak of

the DR function occurring around t= 1650 s. In this case, the RD analysis detects

more changes in the signal state than is shown by the periodogram map. The last

discussed comparison of the two methods pertains to the results of analysis for the

signal BS C X3 with a 10 % noise level. For the type-C non-periodic signal, rare

and narrow periodic windows are practically unnoticeable on the periodogram map,

while the DR function identifies them pointing to clear peaks at these moments of
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Fig. 4.30 The RD-P (RD in Magenta) comparison of the time series type-C of the Burke–Shaw

system with a 10 % noise level

time (Fig. 4.30). Concluding the above, it can be said that both the RD and peri-

odogram method can be applied to test stationarity of the time series. However, on

the basis of this comparison, we can conclude that the results of the RD are more

legible and that this method detects more signal changes. This is primarily due to the

fact that the concept of recurrensivity includes but is not limited to periodicity.

4.8 Conclusions

The results demonstrates effectiveness of the proposed method in analysis of chaotic

non-stationary signals. The method successfully detects different events, including

chaotic and periodic windows, changes in the nature of the signal, signal modifica-

tions and short-term disturbances. The application of this method to study signals

disturbed by environmental noise produces different results for different chaotic sys-

tems. This study showed that the RD method detects chaotic windows in signals with

even 80 % noise level in the case of the Burke–Shaw system, while ceases to be effec-

tive for the Duffing–van der Pol system where the noise level is 20 %. On this basis

it can be concluded that the recurrence dissimilarity between chaotic and periodic

fragments has a completely different level in the two nonlinear systems. The useful-

ness of the RD measure has been demonstrated in Sect. 4.7 by comparing its results

with periodoram maps. We can assume that following some improvements the RD

measure will be useful for studying basic problems related to nonlinear signals such

as chaos, order, periodicity and noise level. The RD results greatly depend on the

reference window choice and the characteristics of a signal in a selected period of

time. Other parameters also affect the quality of the collected data. To improve the

method such that it could be used to study general characteristics of nonlinear sig-

nals, we must first solve the problem pertaining to selection of a reference window.
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We claim that the most important improvement is to development a technique for

artificial creation of a reference signal based on a preliminary analysis of the exam-

ined time series. This should render RD measurement results more universal and

comparable.

The software for determining the RD measure will be prepared and made available

to interested researchers on request.
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Chapter 5
New Insights for Testing Linearity
and Complexity with Surrogates:
A Recurrence Plot Approach

A. Carrión and R. Miralles

Abstract The detection and characterization of non-linearities in temporal series

is a hot topic in some disciplines such as nondestructive testing of materials, bioa-

coustics and biomedical research domains. This is a complex interdisciplinary field

where many different researchers are striving to achieve better and more sophisti-

cated techniques. In this scenario, the search for new perspectives that can explain

and unify some of the theories is of key importance. Recurrence Plots (RPs) and

Recurrence Quantification Analysis (RQA) can play such a role. In this work, we

show how RPs can be used to design tests for non-linear detection and character-

ization of complexity. The proposed tests are less parameter dependent and more

robust than some of the traditional discriminating measures. We also illustrate the

applicability of the proposed algorithms in simulations and real-world signals such

as the analysis of anomalies in the voice production of mammals.

5.1 Introduction

Detecting non-linearities and complexity in time signals can be used in many situa-

tions as an indicator of changes in the underlying dynamical system that is respon-

sible for the generation of those signals. In some disciplines, the study of these phe-

nomena has not been addressed and it is a common practice to model these processes

using suboptimal, but mathematically, tractable models. However, an appropriate

detection and characterization of the non-linear and deterministic nature of the sig-

nal can convey important information in a large number of situations such as: early

detection of epileptic symptoms with EEG signals [1], non-linear phenomena in
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mammalian voice production [2], stock market predictability [3], river flow discharge

rates [4], etc.

Many authors have worked on different techniques to detect and characterize non-

linearities in time series. One of the most commonly used methods is the Monte-

Carlo approach, namely the surrogate data bootstrapping method. This approach is

based on the computation of an ensemble of surrogates which are representative

realizations of the null hypothesis under study. A statistical measure is computed for

the original time series and the surrogates. If the statistic is significantly different

from the values obtained for the surrogate set, the null hypothesis can be rejected.

Therefore, there are three major aspects of the surrogate data method that need to be

considered: (1) the exact definition of the null hypothesis, (2) the realization of the

null hypothesis, and (3) the test statistic.

In the literature, different kinds of surrogate generation algorithms can be found

based on the null hypothesis under study: stationarity/non-stationarity [5], determin-

ism/randomness [6], linearity/non-linearity [7, 8], chaos [9], etc. A surrogate data

generation algorithm for testing fluctuations and trends in data is the small-shuffle

surrogate algorithm (SSS) [10], surrogate data generation algorithms for testing

pseudo-periodic or oscillating time series are the pseudoperiodic surrogates (PPS)

[11] and the twin surrogates (TS) [12, 13], and surrogate data generation algorithms

for testing linearity include the well-known Amplitude Adjusted Fourier Transform

(AAFT) [7] and its improved version, the iterative Amplitude Adjusted Fourier

Transform (iAAFT) [14]. In each analysis, different statistical measures are applied

to quantify the differences between the original data and the surrogates. Some of

the methods applied in linear analysis are Kaplans 𝛿-𝜀 [15], Deterministic Versus

Stochastic plots [16], or Delay Vector Variance (DVV) [17].

The use of the RP may have an important role in the signal modality charac-

terization framework. In this work, we analyze how this visualization tool not only

can be applied for the generation of surrogate data but also for the quantification

of statistical differences between the original data and the surrogate data. We have

mainly focused on two main features of signal modality: the characterization of the

linear/non-linear nature of a signal and its complexity.

To explain these ideas, the following definitions are used throughout this work.

We can compute the phase-space representation of a given N-point signal xt for an

embedding dimension (m) and a time lag (𝜏) by computing the Delay Vectors (DVs)

using (5.1) [18]:

𝐱(i) = [xi−m⋅𝜏 , xi−(m−1)⋅𝜏 ,… , xi−𝜏] (5.1)

Every delay vector has a corresponding target which is basically the next sample

xi [19]. The proper selection of 𝜏 and m is crucial in the following analysis since it
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affects the correct representation of the data evolution in time. A common approach

to determine the time lag is the one proposed by [20], which uses the first local min-

imum of the time-delayed mutual information as a reasonable value for 𝜏. The selec-

tion of the minimum embedding dimension m is based on the false nearest neighbor

algorithm proposed in [21, 22].

RPs are calculated using (5.2) [23]:

RPi,j =
{

1 if ||𝐱(i) − 𝐱(j)|| ≤ 𝜀

0 otherwise
(5.2)

where || ⋅ || is the Euclidean norm and the parameter 𝜀 is a threshold distance (or

recurrence threshold). The quantification of RPs can be done by means of RQA.

The remainder of this work is structured as follows. In Sect. 5.2, we present a

selection of surrogate techniques that can be applied to test the linear/non-linear

nature of real signals that have a non-stationary behaviour. In this section, we also

present a new surrogate technique to test the presence of high complexity in oscil-

latory signals. In Sect. 5.3, we illustrate how new discriminating measures for non-

linear statistical tests can be designed using RQA. Section 5.4 presents some exam-

ples of signal modality characterization with both simulated and real signals. Finally,

we present our conclusions in Sect. 5.5.

5.2 Surrogate Techniques

Theiler et al. [7] introduced the concept of ‘surrogate data’, which has been exten-

sively used in the context of statistical non-linearity testing. A surrogate time series

(or surrogate for short) is generated as a realization of the null hypothesis under

study. Thus, given an original signal, realizations of this data must be generated by

modifying only the desired characteristic of the signal that is being tested, while the

rest of the characteristics remain the same. Care must be taken when using surrogate

data to ensure that the statistical differences come from the desired characteristic

and not from an undesired one, such as a failure of the surrogate algorithm to mimic

non-stationary data. Choosing a surrogate technique that does not mimic these fluc-

tuations or that changes the statistical distribution may lead to false positives.

Below we next present two techniques for the generation of surrogates that will be

used later in a statistical analysis based on RQA. The first technique is used to detect

the presence of non-linearities; whereas the second technique uses RP concepts to

generate surrogates that are valid for testing high complexity in short oscillatory

signals.
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5.2.1 Surrogates for Testing Non-linearity

One of the key issues in signal processing is the definition of a linear signal. The stan-

dard definition is that it is a signal that is generated by a Gaussian linear stochastic

process. Based on this definition, the null hypothesis refers to the properties of any

AR-model that is driven by white noise. Since any AR-model can be described by its

amplitude spectrum (and thus the phase spectrum is irrelevant), most surrogate data

generation algorithms for testing linearity are based on a phase spectrum random-

ization. The most common established method for generating constrained surrogates

is the Iterative Amplitude Adjusted Fourier Transform (iAAFT) [14].

Let xt be the original time series, sk the sorted version of xt, and Xk the Fourier

transform of the original data series. The original iAAFT algorithm is based on the

following steps:

1. Make a random permutation of the time samples of the original time series

xt, namely rt.
1. Compute the phase spectrum of rt, namely 𝜙k.

3. Compute the Inverse Fourier Transform of {||Xk
|| ⋅ exp(j𝜙k)}, namely ct.

4. Obtain a new version of the time series rt by rank-ordering (sort in increas-

ing order) ct so as to match sk.
5. Repeat steps 2–4 until the discrepancy between ||Xk

|| and the amplitude

spectrum of rt is lower than a chosen tolerance.

This iterative algorithm has been shown to converge after a finite number of steps

[14]. Each initial random permutation gives a different output surrogate data rt with

identical signal distribution and approximately identical amplitude spectra as the

original signal.

The original iAAFT method has recently been refined to not only retain the signal

distribution and amplitude spectrum of the original time series but also to retain the

local mean and variance of the original time series [24]. This new approach uses a

wavelet transform to preserve the behavior in the time-frequency plane. It makes this

new technique very suitable for non-stationary signals whose time-changing proper-

ties would be destroyed using the original iAAFT algorithm.

Let xt be the N-point original time series and sk the sorted version; xt is decom-

posed in J scales, where N = 2J , j = 1, 2,… , J. The Wavelet Iterative Amplitude

Adjusted Fourier Transform (WiAAFT) algorithm can be summarized as follows:
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1. Compute the Maximal Overlap Discrete Wavelet Transform (MODWT)

of the original time series xt using a high number of vanishing moments

to deal with any potential non-stationarity in the series [25]. The result is

a vector of wavelet detail coefficients, cj, at each scale j.
2. Apply the iAAFT algorithm to each cj to generate a constrained realization

of the original detail coefficients, c′j , preserving the original values and

their periodicity.

3. Transpose c′j so that the first detail coefficient in the transposed case is the

last one in the new variant, c′′j .

4. Find the best match in each scale between cj and the two variants, c′j and

c′′j , by circularly rotating until an error function is minimized. In this work,

least-squares algorithm is used. This means that the positions with high

energies in the original data are mimicked in the surrogates.

5. Invert the MODWT (using the original approximation coefficients) to

yield a surrogate dataset, wt.

6. Perform rank-ordering (sort in increasing order) to wt so as to match st.
7. Use the new time series wt as the initialization of the described iAAFT

algorithm.

Figure 5.1 compares the surrogate data computed with the original iAAFT algo-

rithm and the new WiAAFT for a heart-rate variability signal (HRV) that is recorded

during a meditation session. HRV signals are widely used to analyze human health;

however, from the signal processing point of view, one of the main drawbacks is

the presence of many artifacts or temporal changes in the recorded time series due

to different factors such as patient motion, eye blinking, etc. that may lead to non-

stationarities. The blue line represents the original time series. The green line corre-

sponds to the surrogate data that is computed using the iAAFT. Note that the iAAFT

has almost destroyed the temporal structure of the original signal. The red line plots

the surrogate data that is computed with the WiAAFT algorithm. Even though, this

new surrogate data is still a random realization compared with the original data, it

greatly preserves the time evolution of the original data. The WiAAFT algorithm

has been observed to yield superior results when testing for linearity (Fig. 5.1).

5.2.2 Pseudo-Periodic Twin Surrogates (PPTS)

Oscillatory signals can often be found in the solution of real-world problems. Some-

times these signals have a high complexity in the oscillations, which may indicate

the presence of non-linearities. Some examples are: the study of biphonation, sub-

harmonics or other pathologies in animal sounds [26], the study of non-linearities in

ultrasonic signals [27], etc. In most of these problems, conventional surrogates have
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Fig. 5.1 Comparison between two surrogate data generation algorithms (iAAFT and WiAAFT) for

a heart-rate variability signal (HRV) recorded during a meditation session. The blue line represents

the original non-stationary signal; the green line represents the surrogate data computed with the

iAAFT; and the red line corresponds to the surrogate data computed with the WiAAFT

a limited use, mainly due to the finite duration of the events that need to be analyzed

and due to the sensitivity that needs to be achieved. Some of the techniques that rely

on the Fourier Transform require long data series, and therefore, specific algorithms

for the generation of surrogates in short-length oscillating data have to be designed.

In the literature, there are several methods that preserve the higher order moments

for the surrogate generation of oscillatory signals. The most representative methods

for this work are the pseudoperiodic surrogates (PPS) method [11], the twin surro-

gates (TS) method [12, 13], and the pseudoperiodic twin surrogate (PPTS) method

[28]. The PPTS method is a combination of the PPS and the TS which allows tests

to be designed in order to check the null hypothesis that the observed time series

is a quasi-periodic signal obtained as the sum of sinusoids with incommensurate

frequencies.

The PPTS algorithm uses the phase space and RP concepts to obtain the surro-

gates. This is achieved by employing the idea of jumping among twin points in the

same way that the TS algorithm does. Twin points are points that are neighbors,

||𝐱(i) − 𝐱(j)|| < 𝜀TP, and they also share the same neighborhood Ri,l = Rj,l ∀l. Twin

points are indistinguishable with respect to their neighborhoods, but they generally

have different pasts and, more importantly, different futures. We can generate sur-

rogates by changing the structures in the RP consistently with those produced by

the underlying dynamic system. Jumping among twin points produces surrogates

with RP representations that are very similar to the RP representation of the original

signal if the time signal is periodic or quasi-periodic (similar futures). In contrast,

jumping among twin points produces surrogates with RP representations that are

quite different if the time signal is chaotic.

Unfortunately, jumping among twin points is not always enough to generate sur-

rogates that allow the confidence level for null test rejection to be established. Addi-

tionally, there are some practical implementation problems with the TS algorithm

for short time series (such us the limited number of twins [13]). Thus, the PPTS

algorithm uses a second randomization technique. This technique consists of mov-
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ing from point to point in the phase space in accordance with a probability that is

inversely proportional to the distance between the two points (using (5.3) as is done

in the PPS algorithm [11]). The proposed PPTS algorithm is summarized as follows:

1. Compute the RP of the original signal using (5.2), with an appropriate

choice of 𝜀, denoted by 𝜀TP, and identify the twin points (Ri,l = Rj,l ∀l).
The choice of 𝜀TP is not crucial for the PPTS; it has been shown in [12]

that a choice of 𝜀TP corresponding to 5–10 % of black points in the RP is

appropriate.

2. Randomly choose an initial condition i0 and make i = i0. Initialize n = 1.

3. If there is a twin point for 𝐱(i), make the next point of the surrogate

𝐱𝐬(n) = 𝐱(j), where j is randomly chosen among the twin points with the

probability 1∕T (T is the number of twin points for the state 𝐱(i)). Let i = j
and n = n + 1.

4. For 𝐱(i), choose a neighbour 𝐱(j) from all of the elements of the phase

space representation (j = m ⋅ 𝜏,… ,N − 1) with probability

Prob(𝐱(j)) ∝ exp
−||𝐱(i) − 𝐱(j)||

𝜌

(5.3)

where 𝜌 is the noise radius studied in [11]. Make the next point of the

surrogate 𝐱𝐬(n) = 𝐱(j). Let i = j and n = n + 1.

5. Repeat from Step 3 until n = N.

The surrogate is formed from the first scalar component of 𝐱𝐬(n).
The proposed PPTS algorithm generates surrogates that are very similar to the

original signal as long as the original signal is periodic or quasi-periodic. When

the original signal deviates from a periodic or quasi-periodic oscillation, the PPTS

generates surrogates that have a RP matrix that is quite different while still preserving

the approximate phase-space shape of the original signal. Thus, these surrogates are

appropriate for testing the null hypothesis that the observed time series is consistent

with a quasi-periodic orbit. This is illustrated in the following example.

5.2.2.1 Example

Consider the following signals: a quasi-periodic time series composed of the sum

of two sinusoids with incommensurate frequencies and a Rössler chaotic time

series [29].
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The quasi-periodic signal was generated as given by:

x(t) = 8 ⋅ sin(2 ⋅ 𝜋 ⋅ f1 ⋅ t) + 4 ⋅ sin(2 ⋅ 𝜋 ⋅ f2 ⋅ t) (5.4)

where f1 =
√
3 Hz, f2 =

√
5 Hz. The discrete time series version xquasin is obtained

using a sample period of 𝛥t = 0.02 s. We only generate 400 samples of this signal.

The Rössler signal is generated as given by:

⎧
⎪⎨⎪⎩

ẋ = −y − z
ẏ = x + ay
ż = b + z(x − c)

(5.5)

with the initial conditions x(0) = y(0) = z(0) = 0.1, a = 0.2, b = 0.2, c = 5.7 (chaotic

state) and a sampling time of 𝛥ts = 0.2. The system was integrated 1400 times using

the Matlab ODE solver ODE45, and the time series xRosslern was obtained from the x
component after discarding the first 1000 data points to avoid transient states (again,

only 400 data points were used).

Figure 5.2 illustrates the phase-space reconstruction (with m = 2 and 𝜏 = 6) of

the following: (a) the original Rössler time series, and (b) the PPTS. From the com-

parison of (a) and (b), it can be observed how the proposed PPTS algorithm achieves

a phase-space representation that removes most of the details that indicate chaos (the

large number of trajectories that run arbitrarily close together) while at the same time

preserving the shape of the original time series. In the same way, the panels (c) and

(d) show the phase-space reconstruction of the original quasi-periodic time series

and the phase-space reconstruction of the the PPTS of the quasi-periodic signal. In

this situation both the phase-space diagram of the quasi-periodic and its PPTS look

very similar.

Fig. 5.2 a Phase-space

reconstruction of the Rössler

attractor; b phase space

reconstruction of the PPTS

for the Rössler attractor;

c phase space reconstruction

of the quasi-periodic time

series; d phase space

reconstruction of the PPTS

for the quasi-periodic time

series. The PPTS were

computed with 𝜀TP
corresponding to 10 % of

black points in the RP and a

𝜌 = 0.25
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Fig. 5.3 a RP

representation of the Rössler

attractor; b RP representation

of the PPTS for the Rössler

attractor; c RP representation

of the quasi-periodic time

series; d RP representation

of the PPTS for the

quasi-periodic time series.

The PPTS were computed

with 𝜀TP corresponding to

10 % of black points in the

RP and a 𝜌 = 0.25
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All of these details are captured and represented in the structures of the RPs (see

Fig. 5.3). The appropriate metrics for testing using the PPTS (or some of the other

surrogates presented) can then be obtained by means of the RQA. This idea, which

is detailed in the following section, allows us to create tests to distinguish between

oscillatory signals with different complex patterns of amplitude modulation.

5.3 Discriminating Non-linearity Tests and Statistics
Based on Recurrence Plots

In order to test the null hypothesis of linearity, a statistical discriminating measure

has to be performed on both the original data and the surrogates. Many different

techniques and statistical tests have been suggested for this purpose. Some of the

discriminating statistics are based on computing Lyapunov exponents, return maps,

or some other graphs or functions that are representative of the topology of the under-

lying dynamics. The computation of these functions can be quite complex in real-

world signals. As a result of this difficulty, a large number of techniques that com-

pute a much more simple graphical representation of the underlying system have

been developed. Some of the most cited methods are Deterministic versus Stochas-

tic plots [16], Kaplans 𝛿-𝜀 [15], correlation exponent [30], or Delay Vector Variance

(DVV) [17].

All of these methods introduce the DV 𝐱i presented above (5.1), as well as the

concept of the target of the DV xi (basically, the next sample). The idea underpin-
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ning these methods is that the study of the locality of the unknown models (which

maps the DVs onto their corresponding targets) when combined with the method of

the surrogates provides information of the non-linear behaviour of the underlying

process. The degree of locality of a time series is closely related to the distribution

of the nearest neighbour points; however, each method analyzes the degree of local-

ity using different approaches: the mean of the targets, the variance of the targets,

the prediction error, etc. Even though these studies are very thorough, none of them

exploit the advantages of RP, and thus, the advantages of RQA.

RPs can help greatly in the design of robust and less parameter dependent tests

for non-linearity detection. In the following, a detailed analysis of one of the above-

mentioned methods is done in order to further understand the motivation of this new

approach and its potential.

5.3.1 Reformulation of the DVV Using RPs

The delay vector variance (DVV) method is a phase-space based technique that

examines the deterministic nature of a time series and that provides information

of the non-linear behavior of the underlying process when it is combined with the

method of surrogate data.

The DVV method can be summarized as follows [17].

1. Compute the optimal embedding parameters, m and 𝜏, and generate the

delay vectors (DVs) using (5.1). Every DV , 𝐱(i), has a corresponding tar-

get, namely the next sample xi.
2. Compute the mean, 𝜇d, and the standard deviation, 𝜎d, over all pairwise

Euclidean distances between DVs, ||𝐱(i) − 𝐱(j)||(i ≠ j).
3. Generate the sets 𝛺k(rd) such that 𝛺k(rd) =

{
𝐱(i) ∣ ||𝐱(k) − 𝐱(i)|| ≤ rd

}
(sets that consist of all DVs that lie closer to 𝐱(k) than a certain distance

rd, taken from the interval
[
max

{
0, 𝜇d − nd𝜎d

}]
). For example, generate

Ntv uniformly spaced distances, where nd is a parameter controlling the

span over which to perform the DVV analysis.

4. Compute the variance of the corresponding targets, 𝜎
2
k (rd) for every set

𝛺k(rd). The average over all sets 𝛺k(rd), normalized by the variance of

the time series, 𝜎k, yields the target variance, 𝜎
∗2(rd):

𝜎

∗2(rd) =
1
N0

∑N0
k=1 𝜎

2
k (rd)

𝜎
2
x

, (5.6)

where N0 denotes the total number of sets 𝛺k(rd).
5. Repeat steps 1–4 for the Ns surrogates.
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Fig. 5.4 Example of how to find the nearest DVs and the normalized variance of its targets using

RP(𝜀). The red and blue vertical lines are two randomly chosen DVs (𝐱(i1) and 𝐱(i2) using m = 3,

𝜏 = 1) represented in the bottom panel using asterisks. The red and blue horizontal dashed lines
are their corresponding neighbours that lie within the distance 𝜀. The red circles in the left panel
are the corresponding targets of 𝐱(i1); the blue squares are the corresponding targets of 𝐱(i2). The

RP was computed for an 𝜀 corresponding to 14% of black points

Due to the standardization of the intervals of rd, the DVV analysis can be con-

veniently illustrated in the resulting DVV plots, where the x-axis corresponds to the

standardized distance rd and the y-axis corresponds to the target variance. If the sur-

rogate data yields similar results to that of the original signal, the target variance of

the original signal falls within the confidence interval and the null hypothesis can

not be rejected.

Those readers familiar with RPs can readily understand that the computation of

the DVV plot can be explained by using RP concepts. The RP is a 2D plot that for

a given moment in time shows the times at which a phase-space trajectory visits

roughly the same area in the phase space.

Thus, for a given DV, using the RP, we can easily find the DVs that are closer

than a given distance rd just by looking in the corresponding column of the RP(𝜀).

The distance rd is completely equivalent to the so-called 𝜀 in the RP (5.2). Figure 5.4

illustrates this idea and shows how we can obtain the corresponding set of targets

(horizontal red and blue lines), 𝛺k(rd) in the DVV algorithm, for the later compu-

tation of its variance. Thus, for a given ik and 𝜀, we obtain l
𝜀

⊆ {j} s.t. Rikj = 1, and

𝜎

2
ik
(𝜀) = VAR[xl

𝜀

], where VAR[⋅] is a variance estimator and xl
𝜀

is the target of the

DV 𝐱(l
𝜀

). Averaging this variance for N0 different DVs and dividing by the variance

of the time series (𝜎
2
x ), we obtain (5.7) which is clearly equivalent to (5.6). Note that
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the plot of this normalized variance 𝜎
∗2(𝜀) as a function of the standardized distance

is the DVV plot.

𝜎

∗2(𝜀) =
1
N0

∑N0
k=1 𝜎

2
ik
(𝜀)

𝜎
2
x

(5.7)

The analysis of target variance based on a distance rd in the DVV algorithm, or a

distance 𝜀 in the RP, is an indicator of the recurrence behavior of the studied phase

space. This is not the only way to quantify the number and duration of recurrences

of a dynamic system represented by its phase-space trajectory. A proper selection of

a RQA measure allows an equivalent analysis that is less parameter dependent and

that has greater robustness.

5.3.2 RQA Measures as Discriminating Statistics

The recurrence plots exhibit characteristic large-scale and small-scale patterns that

are caused by typical dynamic behaviour. The appearance of diagonal lines is related

to a similar local evolution of different parts of the trajectory, whereas the appear-

ance of vertical and horizontal black lines means that the trajectory does not change

its state for some time [31]. Zbilut and Webber developed Recurrence Quantification

Analysis (RQA) to quantify a RP [32]. They define measures using the recurrence

point density and the diagonal structures in the recurrence plot: the recurrence rate

(RR), the determinism (DET), the maximal length of the diagonal structures, the

entropy and the trend (see Table 5.1). The recurrent points delineate the number of

embedded vector pairs that are near each other in the m-dimensional; however, the

measures related to the diagonal patterns distinguish between points individually dis-

persed and those that represent parts of the signal where the signal similarly evolves.

Gao and Cai [33, 34] carried out a detailed analysis about the reasons for the appear-

ance of vertical lines (and horizontal lines for fixed values of 𝜀) and its relation with

the appearance of square-like textures in RPs. The underlying reasons for the abun-

dance of vertical lines (and therefore square-like structures) are: (i) the usage of a

high sampling frequency (i.e., a small sampling time); and (ii) the usage of a fairly

large recurrence radius 𝜀 for constructing a RP. Based on this analysis, some recur-

rence time statistics corresponding to vertical structures were introduced. Marwan

et al. [31, 35] extended this view on the vertical structures and defined measures of

complexity based on the distribution of the vertical line length: laminarity (LAM),

trapping time (TT), and the maximal length of the vertical structures (see Table 5.1).

Those variables have widely been applied to identify laminar states and their transi-

tions between regular and chaotic regimes [36], as well as to detect the presence of

unstable singularities which are often found in biological dynamics [31, 37].

The main purpose of the statistical test within the surrogate data method is to

be sensitive to any changes that are exclusively related to the null hypothesis under
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study. For that reason, it is necessary to point out the need to understand the signal

modality characteristic being studied and its relationship with the applied surrogate

data generation algorithm.

As discussed in Sect. 5.2.1, the hypothesis of non-linearity is linked to the pres-

ence of information in the phase spectrum. The randomization of the phase spectrum

leads to significant changes in the structure of the signal. Even though the surrogates

of a non-linear signal (using the WiAAFT algorithm) preserve the probability dis-

tribution and the spectrum amplitude (and therefore the autocorrelation function) of

the original signal, they have a new arrangement of closest points. The DVV algo-

rithm detects these changes through the variance of the targets of the closest points.

An equivalent measure of RQA that is susceptible to the distribution of the closest

points is the Trapping Time (TT), which is a statistic that is linked to the laminarity

of a dynamic system. The study of the TT measure as a function of the recurrence

threshold 𝜀, TT(𝜀), allows the evolution of recurrent states to be studied as the per-

centage of nearby points increases. In the case of linear signals, the statistic vector

computed for the surrogate data will coincide with the vector TT (𝜀) of the original

signal. In the case of the non-linear data will not coincide, and this permits the non

linear signals to be identified.

A similar argument can be made regarding the hypothesis of complexity using

the PPTS algorithm (Sect. 5.2.2) for oscillatory signals. When generating the sur-

rogates, jumping among twin points breaks the diagonals when the signals deviate

from a quasi-periodic oscillation. This produces surrogates with different diagonal

line lengths in the RP for temporal series having high complexity while maintaining

approximately the same diagonal line lengths in quasi-periodic ones. An equivalent

measure of RQA that is susceptible to the diagonal line length distribution is the aver-

age diagonal line length L, or any other measure related to the diagonal line length

(see Table 5.1). The study of L as a function of the recurrence threshold 𝜀, L(𝜀), and

the comparison with that of its surrogates allows the complexity to be identified.

Note that in both analyses, the phase-space reconstruction for the original and

the surrogates data must be done with the same embedding parameters, 𝜏 and m.

Moreover, the statistics compared (the original signal and the surrogates) need to be

computed with the same percentage of black points in the RP matrix. In this work, a

sweep between 10 and 80 % of the black points has been performed. This new repre-

sentation (herein called DVRQA, Delay Vector Recurrence Quantification Analysis)

eliminates the problem of choosing the most appropriate threshold for computing

the RP in an unknown situation. Unlike the technique described above, which only

takes into account some randomly chosen points, one of the advantages of statisti-

cal analysis based on RQA is that it uses the entire signal. This is supposed to be

a more robust technique that is less parameter dependent and has smaller resultant

confidence intervals. In addition, this technique eliminates the need for an estima-

tor, such as the variance, that needs a high minimum number of points for a correct

estimation.

The DVRQA analysis can be summarized as follows:
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Table 5.1 Some of the possible measures for the recurrence quantification analysis (RQA) [31,

32, 35]

Symbol Description Equation

RR Recurrence rate: density of recurrence

points

1
N2

∑N
i,j=1 Ri,j

TT Averaged vertical line length
a

∑N
v=vmin

v⋅P(v)
∑N

v=vmin
P(v)

(5.8)

LAM Laminarity: percentage of recurrence

points that form vertical lines
a

∑N
v=vmin

v⋅P(v)
∑N

v=1 v⋅P(v)

L Averaged diagonal line length
b

∑N
l=lmin

l⋅P(l)
∑N

l=lmin
P(l)

(5.9)

DET Determinism: percentage of

recurrence points that form diagonal

lines
b

∑N
l=lmin

l⋅P(l)
∑N

i,j=1 Ri,j

aP(v) is the histogram of the lengths v of the black diagonal lines, and vmin is the minimal length of

what should be considered to be a vertical line (typically, vmin = 2)
bP(l) is the histogram of the lengths l of the black diagonal lines, and lmin is the minimal length of

what should be considered to be a diagonal line (typically, lmin = 2)

1. Compute the distance vector 𝜀 that produces a RP with a percentage of

black points between 10 and 80 % of the total number of points.

2. For each one of the elements in the vector 𝜀, compute the RP (5.2) and

obtain the selected RQA measure based on the null-hypothesis under

study. We refer to the RQA measure as DVRQAorig(𝜀).
3. Repeat steps 1–2 for the Ns surrogates to establish the confidence inter-

vals. The RQA measure for the ith surrogate is now referred to as

DVRQAsurr,i(𝜀).
4. Plot both variables on the same normalized graph. This will be referred as

the DVRQA plot.

The computational complexity of the DVRQA analysis depends on the RQA mea-

sure selected. For simple RQA measures, the computational complexity can be sim-

ilar to that of the DVV method. In more sophisticated measures, fast algorithms such

as those described in [38] can be used.

5.3.3 Hypothesis Test

The modality tests done in this work compare different kinds of Recurrence Quan-

tification measures that are computed for the original signal to those obtained for

an ensemble of surrogates. So far in this work, only a visual comparison of the sta-
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tistical measures studied for the original signal, DVRQAorig(𝜀), and the surrogates,

DVRQAsurr,i(𝜀) has been done. However, it is easy to implement a statistical test to

quantify the level of similarity or difference that allow the hypothesis under study to

be accepted or rejected.

The metric used in the analysis is the same as in the original DVV algorithm but

substituting the variance estimator for each of the applied RQA measures, 𝜉, in each

case:

t
𝜉

=

√√√√√
⟨⎛
⎜⎜⎝
𝜉
2(𝜀) −

∑Ns
i=1 DVRQA

2
surr,i(𝜀)

Ns

⎞
⎟⎟⎠

⟩

𝜀

(5.10)

where DVRQAsurr,i(𝜀) is the corresponding RQA metric at recurrence threshold 𝜀 for

the ith surrogate, and the average (⟨⋅⟩
𝜀

) is taken for each component of the threshold

vector, 𝜀. The variable 𝜉 is replaced by DVRQAorig(𝜀) to compute the metric corre-

sponding to the original signal, to, and replaced by DVRQAsurr,i(𝜀)(i = 1,… ,Ns) to

compute the metric corresponding to each surrogate, ts,i.
Since the analytical form of the probability distribution of the applied metric is not

known, a non-parametric, rank-based test is used [39]. In this work, for every original

time series, we generateNs = 99 surrogates. The metric for the original signal, to, and

for the surrogates, ts,i(i = 1,… ,Ns), are computed, and the series {to, ts,i} is sorted in

increasing order, after which the position index (rank) r of to is determined. A right-

tailed test is rejected (and therefore the null hypothesis under study) if the rank r of

the original time series exceeds 90. In this way, a single test statistic is obtained, and

the above-mentioned right-tailed surrogate testing quantifies the level of rejection of

the null hypothesis. In Sect. 5.4, the results of the corresponding rank tests for the

analyzed examples are presented.

5.4 Applications

This section presents some results of signal modality characterization for the detec-

tion of non-linearities and complexity using both the surrogate data generation algo-

rithms presented in Sect. 5.2 and the test statistics based on RQA measures presented

in Sect. 5.3.

The linear and non-linear nature of time series is examined by performing the

DVRQA analysis on both the original and 99 surrogates time series computed with

the WiAAFT algorithm. The statistical measure applied was the TT measure. To

verify the proposed technique, a number of time series with different linear and non-

linear natures were generated. Each of the generated signals consisted of 1000 sam-

ples. The first two signals correspond to the examples in the text seen so far: the

quasiperiodic signal (5.4) and the Rössler signal (5.5). Two random signals were

also studied: Model 1 (5.11) and Model 2 (5.12).
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Fig. 5.5 DVRQA analysis with 99 WiAAFT surrogates performed on four simulated time series

using the embedding parameters obtained via the mutual information algorithm (𝜏) and the Cao

method (m): a Quasiperiodic signal; b Rossler signal; c Model 1; and d Model 2

yk = 0.3 + 0.7 ⋅ yk−1 + vk + 0.4 ⋅ vk−1 (5.11)

where y0 = 0 and vk is a standard normal distribution, N(0, 1).

yk = vk + 0.8 ⋅ vk−1 ⋅ vk−2 (5.12)

where vk is a standard normal distribution, N(0, 1). For each signal, the optimal

embedding parameters were determined using the mutual algorithm and the Cao

method.

The results of the DVRQA analysis are illustrated in Fig. 5.5. The first signal

analyzed is the quasiperiodic signal (Fig. 5.5a). The computed TT vector for the

original signal coincides with the results obtained for the surrogates. The resulting

rank-test is equal to 34, and therefore the linear null hypothesis can not be rejected.

Figure 5.5b corresponds to the simulation of the Rössler signal, a well-known exam-

ple of a chaotic (non-linear and deterministic) signal. In this case, the resulting TT
values for the original signal significantly differ from the ones for the surrogates at
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both ends of the graph. The resulting value of the rank-order test, r, is 100, and the

signal can be identified as non-linear. For the stochastic Model 1, the values of TT
fall into the confidence interval defined by the surrogates (the rank-test equals to 65).

However, in the case of the non-linear Model 2 (Fig. 5.5d), the original and surro-

gate statistics are clearly different. Undoubtedly, the variable r is equal to 100 and

the null-hypothesis related to linearity can be rejected.

Note that for the continuous time systems (the quasiperiodic and the Rössler sig-

nals), the maximum value of the TT measure is higher than the one computed for the

stochastic signals, Model 1 and Model 2. As stated above, the trapping time is closely

related to the sampling time and the recurrence radius. High values of TT appear for

continuous time systems with a high time resolution and with a recurrence thresh-

old 𝜀 that is not too small. However, the vertical structures are less prominent for

maps and continuous systems that are reconstructed with small values of 𝜀, unless

the signals present any kind of singularities or intermittences [31, 34]. The DVRQA

analysis based on the TT can also provide information about the laminarity of the

phase space under study.

We are now going to illustrate how the proposed algorithms can be used in a real

application for the characterization and detection of irregular animal vocalizations.

We analyzed a recording containing dog barking sounds with different Harmonic

to Noise Ratio (HNR). This parameter can be used in animal bioacoustics to quan-

tify dysphonia. Normal sounding dogs occupy a middle HNR range, while dysphonic

dogs exceed this range with higher as well as lower HNR values [40, 41]. To demon-

strate this idea, we used a database from [42] which contains dysphonic sounds from

animals that were recorded with a sample frequency of 22050 Hz.

Due to the oscillatory nature of the animal vocalizations and the fact that the

appearance of this non-linear phenomenon results in the generation of an immea-

surable number of new frequencies, it seems appropriate for the null hypothesis to

be the measure of the complexity of each of the signals. The increase in complex-

ity may indicate some kind of pathology [43]. Therefore, we propose the use of the

PPTS algorithm and the average diagonal line length (L) to detect and characterize

dysphonia phenomena.

Figure 5.6 (top) shows the time representation of a medium HNR dog bark

together with the phase-space representation (only the first two components of the

DVs). Figure 5.6 (bottom) shows the time representation of one of the computed

PPTS together with its phase-space representation. It is important to note that the

phase-space representation of both the original and one of the surrogates are quite

similar.

A DVRQA test was done to analyze the dog barking sounds. We chose the average

diagonal line length (L) as the discriminating measure. This measure (and any other

RQA measures related to diagonal line length) captures determinism or predictabil-

ity and is therefore a good candidate for the null test hypothesis of deviation of a

periodic or quasi-periodic oscillation. We analyzed three different dog barks with

three different HNR values: low HNR, medium HNR, and high HNR. The panels on

the left in Fig. 5.7 show the temporal series together with their corresponding time

frequency representation. Only fragments of 400 samples were analyzed. The start-
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Fig. 5.6 Top Time representation of the medium HNR dog sound alongside with its phase-

space representation. Bottom Time representation of one of the surrogates obtained with the PPTS

together with its phase-space representation

ing point for the selection of the DVRQA analysis is not crucial (we obtained very

similar results independently of the initial position of the 400 samples window). The

red vertical line indicates the exact point where the DVRQA analysis was done. The

panels on the right of the Fig. 5.7 show the DVRQA tests for each one of the dog

barks. The confidence intervals were obtained computing 99 PPTS for each example

of dog barks. The null hypothesis is that the signal can be obtained as the sum of

sinusoids with incommensurate frequencies.

The low and medium HNR dog barks are very difficult to distinguish by looking

at their corresponding time frequency representations. However, the DVRQA plot

allows a clear differentiation between these two sounds. The null hypothesis can not

be rejected for the low HNR bog bark since the rank-test results in r equals to 1,

meaning that the DVRQAorig almost exactly match with the average of its surrogates,

DVRQAsurr,i (the red line in Fig. 5.7b falls in the middle of the confidence interval).

On the other hand, the hypothesis test for the medium HNR dog bark can be rejected

with a value of the rank-order test, r, equals to 90. This can be used to help distinguish

between normal and dysphonic dogs.

In the time frequency representation of the high HNR dog barks, it is easy to see

the presence of frequencies that lie between or below the main harmonic frequencies.

This is a non-linear phenomenon known as subharmonic generation that also appears

in pathological voices. For the high HNR dog bark, the DVRQA plot clearly shows

a deviation from a periodic or a quasiperiodic oscillation, and the null test can be

rejected with the variable r equals to 100 in the confidence interval. It must be high-

lighted that RQA measures combined with the surrogate approach can characterize

phenomena that are usually analyzed by means of time-frequency techniques.
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Fig. 5.7 a TFR of a low HNR dog bark, b DVRQA analysis of a low HNR dog bark, c TFR of a

medium HNR dog bark, d DVRQA analysis of a medium HNR dog bark, e TFR of a high HNR

dog bark, f DVRQA analysis of a high HNR dog bark. The red vertical line indicates where the

DVRQA analysis was performed (99 PPTS were used for the analyses)
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5.5 Conclusions

In this work, we have analyzed the problem of using hypothesis testing for the non-

linear detection and characterization of complexity in temporal series from the RPs

point of view. In order to do this, we have focused on both the generation of surro-

gates and the design of new statistical tests. To generate surrogates, we worked with

the WiAAFT algorithm, which is a technique that maintains the temporal structure

of the original signal and at the same time provides a sufficient degree of random-

ness to obtain valid surrogates for testing non-linearity (which are suitable for non-

stationary signals). We have also created surrogates of a different kind, the PPTS,

which are valid for detecting non-linear determinism and complexity in short oscil-

lating signals. RPs play an important role both in the definition of twin points and

the understanding of the PPTS algorithm. We have also demonstrated that RPs are

not only a valid tool for the generation of surrogates but also for the design of the

statistical tests. This has been illustrated by reformulating the DVV method using

RPs.

This analysis has led to the creation of new discriminating tests that are based

on RQA oriented to hypothesis testing (i.e., non-linear and complexity detection).

The proposed test (DVRQA) has the advantage of analyzing the recurrent structures

without having to choose the most appropriate recurrence threshold in an unknown

situation. The selection of the RQA metrics must be carefully chosen based on the

surrogates. The trapping time measure captures significant differences in the degree

of locality and is therefore appropriate for testing non-linearity with the WiAAFT

algorithm. The PPTS has proven to be useful for testing complexity in short oscil-

lating signals using the averaged diagonal line length.

We have demonstrated through simulations that we can detect non-linearities in

signals of different nature (stochastic and deterministic) using the proposed algo-

rithms. Moreover, we have analyzed the problem of anomalies in the voice produc-

tion of mammals and the use of algorithms for their detection and characterization.

The analysis of a database containing real-world sounds from dysphonic dogs has

shown that the L measure, together with the PPTS algorithm, allows the relationship

among HNR, complexity and dysphonic dog barking sounds to be established. This

technique has the potential to be applied in many other domains.
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Chapter 6
Approximate Recurrence Quantification
Analysis (aRQA) in Code of Best Practice

Stephan Spiegel, David Schultz and Norbert Marwan

Abstract Recurrence quantification analysis (RQA) is a well-known tool for study-

ing nonlinear behavior of dynamical systems, e.g. for finding transitions in climate

data or classifying reading abilities. But the construction of a recurrence plot and

the subsequent quantification of its small and large scale structures is computational

demanding, especially for long time series or data streams with high sample rate. One

way to reduce the time and space complexity of RQA are approximations, which

are sufficient for many data analysis tasks, although they do not guarantee exact

solutions. In earlier work, we proposed how to approximate diagonal line based

RQA measures and showed how these approximations perform in finding transi-

tions for difference equations. The present work aims at extending these approxima-

tions to vertical line based RQA measures and investigating the runtime/accuracy of

our approximate RQA measures on real-life climate data. Our empirical evaluation

shows that the proposed approximate RQA measures achieve tremendous speedups

without losing much of the accuracy.
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6.1 Introduction

In recent years, recurrence quantification analysis (RQA) has gained popularity in

the time series community [1–3], where recurrence plot-based tools have been devel-

oped (i) to measure the pairwise (dis)similarity between temporal measurements

based on co-occurring patterns [3, 4], (ii) for classification purposes in different

scientific disciplines [5–9], (iii) to detect regime transitions [10–12], or even (iv) to

study interrelationships and synchronization between different dynamical systems

[13–15].

Since the quantification of recurring patterns is computational expensive, speedup

techniques [16] and approximations [17] have been proposed. Speedup techniques

commonly use distributed computing that ensures exact RQA results, e.g. by per-

forming parallel processes on multiple Graphic Processing Units (GPUs), whereas

approximation techniques estimate the RQA measures by means of less computa-

tional expensive algorithms. Given a time series with about one million data points,

distributed computing with two GPUs has been shown to reduce the RQA calcula-

tion time by 1–2 orders of magnitude [16]. However, this work demonstrates that

the proposed approximations [17] are able to reduce the RQA calculation time (for

the same one million measurements) by 4 orders of magnitude. This tremendous

speedup makes the approximation approach extremely valuable for many real-life

data analysis tasks, although it does not yield exact results.

In this work we extend the approximation approach [17] to vertical line based

measures, assess the runtime of our approximate RQA measures for relatively long

time series (from climate impact research), and investigate the use our approximate

RQA measures for transition detection.

6.2 Background and Notation

6.2.1 Recurrence Plots (RPs)

Recurrence plots (RPs) have been introduced to study the dynamics of complex sys-

tems that is represented in anm-dimensional phase space by its phase space trajectory

𝐱i ∈ ℝm
(assuming discrete sampling, i = 1,… ,N) [18]. A phase space trajectory

can be reconstructed from a time series ui (t = iΔt, where Δt is the sampling time)

by different embedding schemes. The most frequently used scheme is the time delay

embedding [19],

𝐱i =
(
ui, ui+1,… , ui+(m−1)𝜏

)
, (6.1)

with m the embedding dimension and 𝜏 the embedding delay. Both parameters can

be estimated from the original data using false nearest neighbors and mutual infor-

mation [20]. In the following we only consider the trajectory 𝐱 and no longer the

underlying time series u. That means the process of creating x from u by time delay
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embedding is considered to be completed. Later on, we will apply time delay embed-

ding to the trajectory x again. It is important to distinguish between both embedding

procedures. The first is used for reconstruction purposes and the latter is used to

express RQA-measures in a way that allows fast computation.

A RP is a 2-dimensional representation of those times when the phase space tra-

jectory 𝐱i recurs. As soon as a dynamical state at time j comes close to a previous

(or future) state at time i, the recurrence matrix 𝐑 at (i, j) has an entry one [20]:

Ri,j ∶= 𝛩(𝜀 − ‖𝐱i − 𝐱j‖), i, j = 1,… ,N, (6.2)

where ‖ ⋅ ‖ is a norm (representing the spatial distance between the states at times i
and j), 𝜀 is a predefined recurrence threshold, and 𝛩 is the Heaviside function (ensur-

ing a binary𝐑). The RP has a square form and usually the identityRi,i ≡ 1 is included

in the graphical representation, although for calculations it might be useful to remove

it [20]. The graphical representation of the RP allows to derive qualitative character-

izations of the dynamical systems. For the quantitative description of the dynamics,

the small-scale patterns in the RP can be used, such as diagonal and vertical lines.

The histograms of the lengths of these lines are the base of the recurrence quantifi-

cation analysis (RQA) developed by Webber and Zbilut and later by Marwan et al.

[7, 21, 22].

6.2.2 Recurrence Rate (RR)

The simplest measure of RQA is the density of recurrence points in the RP, the

recurrence rate:

RR ∶= 1
N2

N∑
i,j=1

Ri,j, (6.3)

that can be interpreted as the probability that any state of the system will recur.

6.2.3 Determinism (DET)

The fraction of recurrence points that form diagonal lines of minimal length 𝜇 is the

determinism measure:

DET (𝜇) ∶=
∑N

l=𝜇 l ⋅ D(l)∑N
i,j=1 Ri,j

=
∑N

l=𝜇 l ⋅ D(l)∑N
l=1 l ⋅ D(l)

(6.4)
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where

D(l) ∶=
N∑

i,j=1

{ (
1 − Ri−1,j−1

)
⋅
(
1 − Ri+l,j+l

)
⋅
l−1∏
k=0

Ri+k,j+k

}

is the histogram of the lengths of the diagonal lines. The understanding of ‘deter-

minism’ in this sense is of heuristic nature.

6.2.4 Average Diagonal Line Length (L)

The average length of all diagonal lines (of at least length 𝜇) in the RP is

L(𝜇) ∶=
∑N

l=𝜇 l ⋅ D(l)∑N
l=𝜇 D(l)

, (6.5)

and can be interpreted as the mean prediction time. As the diagonal lines in the RP

are related to the divergence behavior of the phase space trajectory, its relationship

with the Lyapunov exponents are obvious. Indeed, there is clear link between the

distribution of the diagonal line lengths and the K2 entropy of the system [23].

6.2.5 Laminarity (LAM)

Similar to the measure DET , the fraction of recurrence points that form vertical

lines of a certain minimum length 𝜇 can be calculated. The corresponding measure

is called laminarity:

LAM(𝜇) ∶=
∑N

l=𝜇 l ⋅ V(l)∑N
l=1 l ⋅ V(l)

, (6.6)

with

V(l) ∶=
N∑

i,j=1

{ (
1 − Ri,j−1

)
⋅
(
1 − Ri,j+l

)
⋅
l−1∏
k=0

Ri,j+k

}
,

the histogram of the lengths of the vertical lines in the RP. Vertical (as well as hor-

izontal) lines appear when states do not change or change only very slowly, as it is

typical for intermittence and laminar regimes [7].

Further measures have been introduced that incorporate such line length distribu-

tions and also network properties [20, 24]. All these measures can be used to classify

different dynamical regimes and to detect their transitions.
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6.3 Approximate Recurrence Quantification Analysis

In this section we propose an alternative way of computing the RQA measures intro-

duced previously. Our idea can be expressed as follows: (1) We propose two novel

quantification techniques, namely pairwise proximities PP and stationary states SS,

which account for diagonal and vertical lines by means of an embedded trajectory. (2)

Based on PP and SS we introduce alternative formulations of the traditional RQA

measures that are equivalent to the original formulations, provided that the phase

space norm that measures the spatial distances (e.g. in (6.2)) is the maximum-norm,

defined by ‖𝐲‖∞ = maxi |𝐲i|. (3) Using these new formulations, the RQA measures

can be computed quickly if the similarity threshold is zero (𝜀 = 0). (4) If the similar-

ity threshold is greater than zero, we first discretize the data and then set the threshold

to zero in order to make use of fast algorithms that are facilitated by our alternative

formulations. In this case—due to discretization—we only get an approximation of

the exact RQA measures.

In earlier work [17] we have proven the equivalence between our alternative

and the original formulation of the RQA measures and, furthermore, analyzed the

approximation error theoretically. Moreover, we have provided detailed informa-

tion on the discretization and employed algorithms [17], which have complexity of

(N log(N)). Our implementation of the discretization and employed algorithms can

be found in Sect. 6.4.

Important Note. In this section we assume that the similarity threshold is zero.

That means the recurrent states we aim at quantifying are only states that are equal.

This case is relevant if the trajectory 𝐱 is discrete-valued or has been discretized

beforehand in order to compute the approximate RQA-measures. To be more clear

on the role of the threshold, we define PP and SS for general 𝜀 ≥ 0, but the reader

may imagine that in application of the fast (approximate) RQA algorithms we have

𝜀 = 0.

Given a phase space trajectory 𝐱, the number of pairwise proximities PP can be

defined as follows:

PP(𝜈) ∶=
N−𝜈+1∑
i,j=1

𝛩(𝜀 − ‖𝐱(𝜈)i − 𝐱(𝜈)j ‖), (6.7)

where 𝐱(𝜈) is a time-delay embedded version of the trajectory 𝐱 with embedding

dimension 𝜈 ∈ ℕ and time-delay 1, i.e.,

𝐱(𝜈)i = (𝐱i,… , 𝐱i+𝜈−1), i = 1,… ,N − 𝜈 + 1. (6.8)

We want to emphasize that the key idea of our quantification techniques (PP and SS)

is to embed the trajectory, since recurrent states of embedded trajectories indicate

recurrent sequences in the original trajectory 𝐱 if the phase space norm is ‖ ⋅ ‖∞. To

see this, assume that, for instance, the recurrence plot of the embedded trajectory

𝐱(2) indicates a recurrence point at position (i, j), that means
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‖𝐱(2)i − 𝐱(2)j ‖∞ ≤ 𝜀.

By definition of ‖ ⋅ ‖∞ and the trajectory embedding, this is equivalent to

‖𝐱i − 𝐱j‖∞ ≤ 𝜀 and ‖𝐱i+1 − 𝐱j+1‖∞ ≤ 𝜀,

which exactly means that the recurrence plot of the original trajectory 𝐱 contains a

diagonal line of length 2 starting at position (i, j). Note that this equivalence is not

true for arbitrary norms.

Our implementation of the general time delay embedding, (6.1), can be found in

Sect. 6.4.1.

As shown in [17], if 𝜀 = 0, the measure of pairwise proximities PP(𝜈)
can also be

interpreted as the sum over the squared frequencies of recurring states, which can be

determined using the histogram h(𝐱(𝜈)) of the embedded trajectory:

PP(𝜈) = h(𝐱(𝜈)) ⋅ h(𝐱(𝜈)). (6.9)

In (6.9) the histograms are represented as vectors containing the frequencies of the

elements in 𝐱(𝜈) and the dot denotes the inner product, defined by u ⋅ w =
∑

i uiwi.

This relation is the key for the fast computation of the RQA-measures since the

histograms can be obtained in O(N log(N)), where N is the length of the trajectory

𝐱. It is important to note that (6.9) does only hold for 𝜀 = 0. This is the reason why

the data has to be discretized if 𝜀 > 0 is required.

Based on our definition of pairwise proximities PP we can introduce alterna-

tive formulations for the original diagonal line based RQA measures introduced in

Sect. 6.2. In the following we discuss an alternative formulation for recurrence rate

RR, determinism DET , average diagonal line length L, and laminarity LAM.

Before moving on to more advanced recurrence quantification measures, we want

to provide an image representation of pairwise proximities PP. Figure 6.1 shows

the recurrence plot 𝐑 of a discrete-valued sample trajectory 𝐱 and its corresponding

histogram h(𝐱(𝜈)) for trajectory embedding dimension 𝜈 = 1 (note that 𝐱(1) = 𝐱). The

pairwise proximities PP(1)
are equal to the total number of recurrence points in 𝐑

and are given by the sum over the squared frequencies:

PP(1) = h(𝐱(1)) ⋅ h(𝐱(1)) = 32 + 52 + 22 = 38

6.3.1 Reformulation of Recurrence Rate (RR)

The pairwise proximities PP(𝜈)
for trajectory embedding dimension 𝜈 = 1 can be

interpreted as the number of recurrence points, which are traditionally expressed

by the sum over all recurrence plot entries
∑N

i,j=1 Ri,j (see 6.3). To compute the
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Fig. 6.1 Recurrence plot 𝐑
of trajectory 𝐱 =
(3, 2, 2, 1, 2, 2, 2, 1, 1, 3) with

similarity threshold 𝜀 = 0
(left) and its histogram h(𝐱𝜈)
for embedding dimension

v = 1 (right), showing the

frequencies of recurring

states. The pairwise

proximities PP(1)
equal the

total number of recurrence

points in 𝐑 and are given by

the sum over the squared

frequencies (see 6.9)

recurrence rate, the number of recurrence points is divided by the size of the recur-

rence plot, which is the squared length N2
of the time series under study. Hence, the

alternative way of computing the recurrence rate RR can be formalized as followed:

RR = PP(1)∕N2
. (6.10)

For our sample trajectory 𝐱 (shown in Fig. 6.1) with pairwise proximities PP(1) =
38 and length N = 10 the recurrence rate is:

RR = 38∕102 = 0.38

6.3.2 Reformulation of Determinism (DET)

The determinism DET can also be expressed in terms of pairwise proximities. Tra-

ditionally the determinism DET is described as the percentage of recurrence points

which form diagonal lines (refer to 6.4). In the previous Sect. 6.3.1 we have already

explained that the total number of recurrence points is equivalent to the pairwise

proximities PP(1)
. Hence, the denominator of DET is known and it remains the ques-

tion of how to compute the number of recurrence points that contribute to diagonal

lines of minimum length 𝜇. Our idea is to quantify the recurrence plot 𝐑(𝜇)
of the

embedded trajectory 𝐱(𝜇) in relation to the recurrence plot 𝐑 of the original trajectory

𝐱. First note that each point in 𝐑(𝜇)
indicates that there is a diagonal line of length

≥ 𝜇 in 𝐑. Consequently, only lines we are interested in remain in 𝐑(𝜇)
. However,

each diagonal line in 𝐑(𝜇)
is 𝜇 − 1 shorter than the corresponding line in 𝐑. Thus,

we need to add the missing points. Evidently, the number of missing points is exactly

given by “the number of diagonal lines of length ≥ 𝜇” times 𝜇 − 1, where “the
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number of diagonal lines of length ≥ 𝜇” in 𝐑 is given by (PP(𝜇) − PP(𝜇+1)). To sum

up, we have argued that

N∑
l=𝜇

l ⋅ D(l) = PP(𝜇) + (PP(𝜇) − PP(𝜇+1)) ⋅ (𝜇 − 1). (6.11)

By simplifying (6.11) we achieve our alternative formulation for the determin-

ism (proved in [17]), which is true for arbitrary similarity threshold 𝜀 ≥ 0 and arbi-

trary minimum diagonal line length 𝜇, provided that the phase space norm is the

maximum-norm ‖ ⋅ ‖∞:

DET (𝜇) = 𝜇 ⋅ PP(𝜇) − (𝜇 − 1) ⋅ PP(𝜇+1) … − N
PP(1) . (6.12)

Depending on whether or not we want to include the recurrence points of the main

diagonal in our calculation, we need to subtract N in the numerator (6.12).

Figure 6.2 illustrates how to employ the concept of pairwise proximities in order

to compute the determinism for our sample time series 𝐱 introduced in Fig. 6.1.

For example in Fig. 6.2, the determinism DET (2)
for minimum diagonal line

length 𝜇 = 2 can be described as the number of recurrence points that rest on high-

lighted lines divided by the total number of recurrence points (i.e. 14∕38). The total

number of recurrence points is given by PP(1)
(see Sect. 6.3.1) and the number of

recurrence points that form diagonals of minimum length 𝜇 = 2 can be expressed

in terms of PP(2)
and PP(3)

(see 6.12). In Fig. 6.2, single circles illustrate the recur-

rences that are given by our formulation of pairwise proximities PP(2)
for embedding

dimension 𝜈 = 2. By multiplying the length 𝜇 = 2 and number PP(2)
of the identi-

fied structures we quantify all recurrence points that rest on diagonal lines, including

those of overlapping structures. To subtract recurrence points of overlapping struc-

Fig. 6.2 Recurrence plot R
of time series 𝐱, where

highlighted lines indicate

diagonals that contribute the

determinism DET , single
circles illustrate recurrences

that are given by our

formulation of pairwise

proximities PP(2)
for

embedding dimension 𝜈 = 2,

and double circles show

recurrences that are

quantified by PP(3)
for 𝜈 = 3

respectively
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tures we compute the pairwise proximities PP(3)
of higher embedding dimension

𝜈 = 2 + 1, which are illustrated by double circles. Consequently, the determinism

DET (2)
for our sample time series 𝐱 is computed in the following way:

DET (2) = 2 ⋅ PP(2) − 1 ⋅ PP(3)

PP(1)(
=

2 ⋅ Single Circles − 1 ⋅ Double Circles
Total Number of Recurrences

)

= 2 ⋅ 8 − 1 ⋅ 2
38

= 14
38

≈ 0.37

6.3.3 Reformulation of Average Diagonal Line Length (L)

Given our new formulation for the determinism (see 6.12), the formalization of the

average diagonal line length L in terms of pairwise proximities PP is straightfor-

ward. Informally speaking, L is defined as the number of recurrence points that form

diagonals of minimum length 𝜇 divided by the number of diagonals of minimum

length 𝜇 (see 6.5). We have already shown how to compute the first term or numera-

tor in the previous Sect. 6.3.2. The second term or denominator can be computed by

PP(𝜇) − PP(𝜇+1)
, which is the number of diagonals with minimum length 𝜇. Since we

know that PP(𝜇)
accounts for all the diagonal line structures with minimum length 𝜇

including overlapping ones, we need to subtract the number of overlapping structures

which are quantified by the term PP(𝜇+1)
. Ultimately, under the same assumptions as

for DET , our alternative formulation of L can be formalized as followed:

L(𝜇) = 𝜇 ⋅ PP(𝜇) − (𝜇 − 1) ⋅ PP(𝜇+1) ⋯ − N
PP(𝜇) − PP(𝜇+1) . (6.13)

Same as for the determinism, we might not want to consider the main diagonal for our

calculation and, thus, need to subtract N (the time series length) from the numerator.

For our sample time series 𝐱 (shown in Fig. 6.2) we can compute the average

diagonal line length for 𝜇 = 2 as followed:

L(2) = 2 ⋅ 8 − 1 ⋅ 2
8 − 2

= 14
6

≈ 2.33

6.3.4 Reformulation of Laminarity (LAM)

The laminarity is the percentage of recurrence points which form vertical lines (see

6.6) and cannot be computed by means of the PP measure, since it quantifies diag-

onal line structures. Therefore, we need to introduce a novel measure for stationary
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states SS, which accounts for time intervals where the corresponding trajectory stays

in the same phase space. Stationary states SS which stay stable for 𝜈 time points can

be quantified in the following way.

SS(𝜈) ∶=
N−𝜈+1∑
i=1

N∑
j=1

𝛩(𝜀 − ‖𝐱(𝜈)i − 𝟏(𝜈)𝐱j‖), (6.14)

where 𝟏(𝜈)𝐱j = (𝐱j,… , 𝐱j) is the concatenation of 𝜈 copies of 𝐱j. Hence SS accounts

for states where all elements in 𝐱(𝜈)i = (𝐱i,… , 𝐱i+𝜈−1) are in a 𝜀-neighborhood of 𝐱j,
indicating that state 𝐱i stays stationary for 𝜈 time points.

Analogously to (6.9) we can compute the stationary states efficiently inO(N log(N))
using histograms if 𝜀 = 0:

SS(𝜈) = ℏ(𝐱(𝜈)) ⋅ ℏ(𝐱(1)), (6.15)

where ℏ(𝐱(𝜈)) is the stationary state histogram of the embedded trajectory, which—

that is important—only accounts for stationary states of exact length 𝜈 (including

overlapping structures in 𝐱); and ℏ(𝐱(1)) is the histogram of the original trajectory.

Attention should be paid to the calculation of the inner product between stationary

state histograms, since only frequencies of corresponding states are multiplied. For

example the frequency of the stationary state (1, 1) in 𝐱(2) is multiplied with the

frequency of state (1) in 𝐱. Furthermore, it is important to mention that although

non-stationary states may occur in an embedded trajectory (e.g. (2, 1), in 𝐱(2)), their

frequency in the corresponding stationary state histogram is always zero.

Given our new definition of stationary states SS and assuming that the phase space

norm is the maximum-norm ‖ ⋅ ‖∞, we can compute the laminarity LAM for a given

minimum vertical line length 𝜇 and an arbitrary threshold 𝜀 ≥ 0 as follows:

LAM(𝜇) = 𝜇 ⋅ SS(𝜇) − (𝜇 − 1) ⋅ SS(𝜇+1) ⋯ − N
SS(1)

, (6.16)

where the denominator SS(1) denotes the total number of recurrence points and the

numerator 𝜇 ⋅ SS(𝜇) − (𝜇 − 1) ⋅ SS(𝜇+1) denotes the number of recurrence points that

form vertical lines of minimum length 𝜇. The thoughtful reader might have noticed

that our new formulation of LAM and DET (6.16) and (6.12) resemble each other.

The difference is that DET accounts for diagonal lines using PP and LAM quantifies

vertical lines using SS. Therefore the proof of the LAM formula (6.16) is very similar

to the proof of the DET formula presented in earlier work [17].

Figure 6.3 illustrates how to compute the laminarity LAM(2)
for our sample trajec-

tory 𝐱. As defined in (6.16), the laminarity LAM(2)
for minimum vertical (or rather

horizontal) line length 𝜇 = 2 can be computed in terms of SS(1), SS(2), and SS(3).
For example in Fig. 6.3, the total number of recurrences points is described by the

term SS(1), which can also be interpreted as the sum over the square frequencies of

stationary states, given by the histogram ℏ(𝐱(1)) (see Table 6.1).
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Fig. 6.3 Recurrence plot of

trajectory 𝐱 with similarity

threshold 𝜀 = 0 and

highlighted vertical lines of

minimum length 𝜇 = 2. The

laminarity LAM(2) = 31∕38
is the percentage of

recurrence points that form

vertical lines of minimum

length 𝜇

Table 6.1 Stationary state

histograms for our sample

trajectory 𝐱 in Fig. 6.3,

showing the frequency of

states that are stationary over

𝜇 time points

State #

ℏ(𝐱(1)) [1] 3

[2] 5

[3] 2

ℏ(𝐱(2)) [1,1] 1

[2,2] 3

[3,3] 0

ℏ(𝐱(3)) [1,1,1] 0

[2,2,2] 1

[3,3,3] 0

Furthermore, the highlighted lines in Fig. 6.3 indicate all recurrence points that

form vertical structures of minimum length 𝜇 = 2, which can be quantified in terms

of SS(2) and SS(3). For our sample trajectory 𝐱 in Fig. 6.3, all stationary states SS(2)
that are stable for 2 time points are illustrated by single circles. Moreover, double

circles indicate stationary states SS(3) that are stable for 3 successive observations.

The terms SS(2) and SS(3) can be computed by means of (6.14) and expressed in terms

of the respective stationary state histograms ℏ(𝐱(1)), ℏ(𝐱(2)) and ℏ(𝐱(3)):

SS(1) = ℏ(𝐱(1)) ⋅ ℏ(𝐱(1)) = 38
SS(2) = ℏ(𝐱(2)) ⋅ ℏ(𝐱(1)) = 18
SS(3) = ℏ(𝐱(3)) ⋅ ℏ(𝐱(1)) = 5.

The corresponding stationary state histograms for our plot in Fig. 6.3 are shown

in Table 6.1. The multiplication of stationary state histograms is performed element-

wise using the inner product, i.e. multiplying the frequencies of unique states with the

corresponding stationary state counterparts and summing the results (see
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Algorithm 4). For our sample trajectory 𝐱, the inner product is ℏ(𝐱(1)) ⋅ ℏ(𝐱(2)) = 18,

since 3 ⋅ 1 + 5 ⋅ 3 + 2 ⋅ 0 = 18.

By multiplying the length 𝜇 = 2 and the number SS(2) of identified stationary

states we quantify all recurrence points that rest on highlighted lines, including those

of overlapping vertical structures. To subtract the recurrence points of overlapping

structures we compute the number of stationary states SS(3) with higher length 𝜇 =
2 + 1, leading to the following formalization: 2 ⋅ SS(2) − 1 ⋅ SS(3). Eventually, we can

compute the laminarity LAM(2)
for the plot in Fig. 6.3 by dividing the amount of

recurrence point that form vertical lines by the total number of recurrences SS(1):

LAM2 = 2 ⋅ SS(2) − 1 ⋅ SS(3)
SS(1)(

=
2 ⋅ Single Circles − 1 ⋅ Double Circles

Total Number of Recurrences

)

= 2 ⋅ 18 − 1 ⋅ 5
38

= 31
38

≈ 0.82.

Given our proposed definition of stationary states SS (6.14), we can also restate

other vertical line based measures, such as trapping time TT or longest vertical line

length Vmax. However, this goes beyond the scope of this study.

6.4 Approximate Recurrence Quantification
Analysis with MATLAB

Before we present our empirical results we want to discuss the implementation of

our proposed approximate recurrence quantification analysis. The provided source

code will help other researchers to reproduce our results and to continue with further

ideas right where we left off. We decided to provide MATLAB code since it is very

compact and often used in academia. However, our code snippets can also be exe-

cuted in Octave, which is an open source alternative to MATLAB. Please note that

our code is protected by copyright laws and is not provided for commercial use. If

you plan to use our implementation for academic purpose (e.g. for reproduction of

experimental results or further enhancements of the introduced concepts) we kindly

remind you to cite this chapter.

In the following subsections we explain our implementation of: (i) time delay

embedding (according to Takens’ theorem), (ii) discretization (e.g. of a multivariate

time series or an embedded phase space trajectory), (iii) pairwise proximities (for

diagonal line based measures), (iv) stationary states (for vertical line based mea-

sures), and (v) our experimental protocol for the approximate recurrence quantifica-

tion analysis of the Potsdam time series of hourly air temperature [16].
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6.4.1 Time Delay Embedding

Our implementation of the time delay embedding is used for the following purposes:

(i) given a sequence of temporal observations we aim at embedding the recorded

time series into the phase space using predetermined parameters for the embedding

dimension and time delay, (ii) given a (reconstructed) phase space trajectory we aim

at embedding it (once again) in order to quantify recurring segments PP(𝜈)
and sta-

tionary intervals SS(𝜈) with a certain number of time points 𝜈.

In general our time delay embedding function accepts an input time series of size

n × d, where n denotes the number of time points and d represents the dimensional-

ity of the data. The function call furthermore requires us to specify the embedding

dimension m and time delay 𝜏. It is important to note that, in contrast to the time

series embedding (i), the trajectory embedding (ii) always assumes unit time delay

(𝜏 = 1) [17]. The output of our time delay embedding function is a time series of size

[n − (m − 1) ∗ t] × [d ∗ m]. What makes our fTDE implementation time efficient is

the fact that the for loop in Line 11 does not run over the length n of the time series,

but iterates over the embedding dimension m which is usually much smaller.

1 function X = fTDE(x,m,t)
2 %FTDE time delay embedding (C) Spiegel. et al.
3 % x .. time series [n times d]
4 % m .. embedding
5 % t .. dalay
6 % X .. time series [n-(m-1)*t times d*m]
7

8 [n,d] = size(x);
9

10 X = zeros(n-(m-1)*t,d*m);
11 for i = 1:m
12 a = i+(t-1)*(i-1);
13 b = a+n-1-(m-1)*t;
14 X(:,d*(i-1)+1:d*i) = x(a:b,:);
15 end
16 end

6.4.2 Discretization

In most real-life time series applications we aim at analyzing temporal data with con-

tinuous values. Since our concept of pairwise proximities PP and stationary states

SS mainly relies on histograms, we need to apply some kind of binning to the contin-

uous values beforehand. In our approach we first discretize the original time series

and then create a histogram for the previously discretized data.
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Our implemented discretization function requires an input time series of size

n × d and the specification of a similarity threshold 𝜀, which defines the size of the

bins. In earlier work [17] we proposed to perform the discretization according to

the size of the 𝜀-neighborhood in the following manner: x̃ = ⌊x∕2𝜀⌋ (see Line 23).

The discretization is done element-wise and effects the approximation error of the

subsequent recurrence quantification analysis [17].

17 function x = fDiscrete(x,eps)
18 %FDISCRETE Discretize Time Series (C) Spiegel et al.
19 % x .. time series [n-times-d]
20 % eps .. similarity thresholds [1-times-d]
21

22 if eps>0
23 x = floor(x*diag(1./(2*eps)));
24 end
25 end

6.4.3 Pairwise Proximity

Given a (reconstructed and subsequently embedded) phase space trajectory, we can

use the concept of pairwise proximities PP(𝜇)
to quantify recurring segments of cer-

tain length 𝜇 that correspond to diagonal line structures in a recurrence plot. Having

quantified the number of length of recurring segments, we can compute all diago-

nal line based RQA measures in a straightforward manner. For example in Sect. 6.3

we have explained how to use pairwise proximities PP to calculate the determinism

DET and average diagonal line length L.

Our implementation of the pairwise proximities function takes an input time

series of size n × d and returns the number recurring d-dimensional states, which

(in our case) are the result of phase space reconstruction and subsequent trajectory

embedding. The pairwise proximities function requires a time series with discrete

values, since we aim at finding unique states (Line 31). Having identified unique

states, we create a histogram that captures the frequency of the unique state in the

next step (Line 32). Finally, we calculate the sum over the squared frequencies, which

is equivalent to the inner product (dot-product) of the histogram with itself (Line 33).

26 function pp = fPProximities(x)
27 %FPPROXIMITIES pairwise proximities (C) Spiegel et al.
28 % x .. time series [nx-times-d]
29 % pp .. pairwise proximities
30

31 [˜,˜,ix] = unique(x,’rows’);
32 hx = hist(ix,min(ix)-1:max(ix)+1);
33 pp = dot(hx,hx);
34 end
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6.4.4 Stationary States

The idea of stationary states SS is an extension of earlier work [17] on approximate

recurrence quantification analysis, but the concept is novel in that it enables us to

quantify vertical line structures in an efficient way (without creating the recurrence

plot). Although our definition of stationary states SS (6.14) resembles our definition

of pairwise proximities PP (6.7), there is an important difference between the two

concepts. In contrast to pairwise proximities PP, the computation of stationary states

SS(𝜈) with length 𝜈 is performed by comparing an embedded version of the recon-

structed phase space trajectory 𝐱(𝜈) with the original trajectory 𝐱(1) (see 6.14). This

is due to the fact that we aim at identifying states that are stationary over a segment

of 𝜈 time points (as explained at full length by our running example in Sect. 6.3.4).

Our implementation of the stationary state function requires as input the recon-

structed phase space trajectory and its embedded version, regardless in which order.

In Line 43–44 we identify stationary states by extracting those rows from the cor-

responding time series matrix, where all entries are the same. For this purpose we

calculate the root mean squared value for each row vector, that is sqrt(sum(x.∧

2,2)/d), and check for which row values the remainder after division by 1 equals 0,

using the modulo operator (𝚖𝚘𝚍(𝚟𝚊𝚕𝚞𝚎, 𝟷)= = 𝟶). In case that the remainder equals

0 we know that the corresponding row solely contains one and the same discrete

entries.

Having identified the rows that contain only same entries, we create a stationary

state histogram for the reconstructed phase trajectory as well as for its embedded

version (see Line 46–47). By multiplying both histograms using the inner product

(Line 48) we eventually get the number of stationary states that are steady for a

certain time interval, whose length is given by the embedding dimension.

35 function ss = fSStates(x,y)
36 %FSSTATES stationary states (C) Spiegel et al.
37 % x .. time series [nx-times-d1]
38 % y .. time series [ny-times-d2]
39 % ss .. stationary states
40

41 [˜,d1] = size(x);
42 [˜,d2] = size(y);
43 x = x(mod(sqrt(sum(x.ˆ2,2)/d1),1)==0,1);
44 y = y(mod(sqrt(sum(y.ˆ2,2)/d2),1)==0,1);
45

46 hx = hist(x,min([x;y])-1:max([x;y])+1);
47 hy = hist(y,min([x;y])-1:max([x;y])+1);
48 ss = dot(hx,hy);
49 end
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6.4.5 Approximate RQA

Having explained the implementation of time delay embedding, discretization, pair-

wise proximities, and stationary states, we are now in the position to introduce our

experimental setup. First of all we load the Potsdam time series (Line 54), set the

predefined parameters [16] (Line 57), and apply the time delay embedding (Line 59)

to reconstruct the phase space trajectory. Afterwards we discretize the reconstructed

trajectory (Line 62), which is a prerequisite for computing the approximate RQA

measures. In the next step we embed the reconstructed and discretized trajectory

(Line 63–64) in order to quantify the pairwise proximities (Line 66–68) and station-

ary states (Line 70–72). Given the number of pairwise proximities and stationary

states for different embedding dimensions we are able to approximate the discussed

diagonal and vertical line based RQA measures (Line 75–78). The results and run-

times of our experiments are presented in Sect. 6.5.

50 function fApproxRQA
51 %FAPPROXRQA approximate RQA (C) Spiegel et al.
52

53 % load Potsdam time series
54 x = load(’../Data/temp_pdm_1893-2011.txt’);
55

56 % set (predefined) parameters
57 eps = 1; m = 5; tau = 3; minL = 2;
58

59 x = fTDE(x,m,tau); % time delay embedding
60 [n,˜] = size(x); % length of trajectory
61

62 x1 = fDiscrete(x,eps); % discretized trajectory
63 x2 = fTDE(x1,minL,1); % trajectory embedding
64 x3 = fTDE(x1,minL+1,1); % trajectory embedding
65

66 pp1 = fPProximities(x1); % pairwise proximities
67 pp2 = fPProximities(x2); % pairwise proximities
68 pp3 = fPProximities(x3); % pairwise proximities
69

70 ss1 = pp1; % stationary states
71 ss2 = fSStates(x1,x2); % stationary states
72 ss3 = fSStates(x1,x3); % stationary states
73

74 % compute approximate RQA measures
75 RR = pp1/(n*n);
76 DET = (minL*pp2 - (minL-1)*pp3) / (pp1 + 10ˆ-10);
77 L = (minL*pp2 - (minL-1)*pp3) / (pp2 - pp3);
78 LAM = (minL*ss2 - (minL-1)*ss3) / (ss1 + 10ˆ-10);
79 end
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6.5 Empirical Results

The goal of our empirical evaluation is twofold: (i) we assess the runtime of original

and approximate RQA measures for relatively long time series (with about a million

data points); and (ii) investigate the correlation between original and approximate

RQA measures for the purpose of finding transitions in time series streams using

the sliding window technique. Both experiments are performed on the same real-life

data set described in Sect. 6.5.1.

6.5.1 Data

For illustrating the approximation approach and to evaluate it we use the measured

time series of hourly air temperature in Potsdam [16], which covers the period from

1893 until 2014 and contains 1,069,416 data points. This time series is one of the

longest, non-interrupted, hourly climate records in the world. The Potsdam time

series is divided into two intervals (1893–1974 and 1975–2014), because the warm-

ing trend of the annual mean temperature shows an abrupt change in 1975 [16].

However, recurrence quantification analysis has shown that, in contrast to longer

time-scales, the short-term dynamics, and, thus, the short-term weather predictabil-

ity, has not (yet) changed due to climate change [16]. Moreover, between 1975 and

1976 the measurement protocol has changed from manual to electronic recording.

Such changes could be systematically influencing the measurements and should be

visible by recurrence quantification. We, therefore, apply a windowing approach in

order to investigate a potential shift in the recurrence properties after 1975. This

approach can be further used to detect regime transitions in the local weather regime

of Potsdam, but this is focus of a separate future study.

6.5.2 Experimental Protocol

We conducted experiments on (i) the runtime and (ii) the accuracy between original

and approximate RQA measures.

Our experiments on (i) runtime were performed on different intervals of the Pots-

dam time series, namely 1893–1974, 1975–2014, and 1893–2014, as well as on

yearly intervals (sliding window analysis). Before analysis the time series has been

normalized to zero mean and standard deviation one. The original RQA measures

have been calculated using three different implementations, basing on C++ for (i)

single thread and (ii) multi thread CPU, and on Python (pyRQA) for (iii) GPU com-

puting [16, 25]. The approximate RQA measures have been calculated by our own

MATLAB implementation as described in Sect. 6.4.5, while the runtime has been

determined for each measure individually (using one CPU). The runtime comparison
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of both original and approximate RQA measures for all three time intervals can be

found in Sect. 6.5.3.

Our evaluation on (ii) the accuracy between original and approximate RQA mea-

sures is presented in Sect. 6.5.4. For these experiments we considered the Potsdam

time series in its entire length (1893–2014) and slide a ‘1-year’ window with ‘1-year’

step size from the beginning to the end. This approach is often referred to as sliding

window technique and is commonly used to detect transitions in time series [20]. For

each window we compute both original and approximate RQA measures (and using

different recurrence thresholds to demonstrate the effect of the threshold), which

gives us the temporal changes of the RQA measures under study. Given these tem-

poral changes, we are able to compare the variations of the original and approximate

RQA measures. For comparison we are using the Pearson correlation coefficient, the

root mean square error, and the relative root mean square error. A high correlation,

i.e., both measures vary in a similar way would confirm our hypothesis that the loss

in accuracy is still a reasonable trade-off with the gain of speed and that the proposed

approximations can be used to find transitions in time series streams.

6.5.3 Results on Runtime

Table 6.2 shows the runtimes of various RQA implementations. It is important to

mention that the runtimes are merely an indicator for the performance of the exam-

ined implementations, since the experiments were performed under different condi-

tions (using various hardware setups and programming languages).

The runtime experiments were conducted on a computer cluster (PIK HLRS2015

—Lenovo/IBM NeXtScale nx360M5), consisting of compute nodes with Intel Xeon

E5-2667v3 2 × 8 core CPUs at up to 3.2 GHz and 64 GB main memory. It further-

more includes NVIDIA Tesla K40 nodes that provide GPU processors running at

up to 745 GHz, 2880 stream processors and each supplied with 12 GB of mem-

ory. The cluster runs on a 64-bit version of Suse Linux Enterprise Server 11 SP3

with version 7.0.28 of CUDA. The CUDA platform was utilized for the experiment

that employ the OpenCL/Python implementation. One CPU node of the cluster was

Table 6.2 Runtime (in sec) for RQA calculation for Potsdam temperature time series

Data set 1893–1974 1975–2014 1893–2014

Data points 718,776 350,640 1,069,416

Single thread (CPU) 9,978.00 2,373.00 22,067.00

16 thread OpenMP

(CPU)

782.00 188.00 1,743.00

OpenCL (1x GPU) 439.00 104.00 995.00

Approximation (CPU) 1.83 0.79 2.88
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Table 6.3 RQA results for Potsdam time series for three different epochs calculated using

maximum-norm, embedding dimension 5, embedding delay 3, threshold 0.75, and Theiler

window 0

Data set 1893–1974 1975–2014 1893–2014

Data points 718,776 350,640 1,069,416

RR 0.15 0.15 0.15

RR approx. 0.12 0.12 0.12

DET 0.92 0.92 0.92

DET approx. 0.89 0.90 0,89

L 7.6 7.7 7.7

L approx. 6.9 7.2 7.0

LAM 0.96 0.95 0.96

LAM approx. 0.91 0.91 0.91

exploited for the single-thread and 16 core multi-thread (OpenMP) implementation,

using C++ programming language. The approximation experiment was performed

on the same hardware using MATLAB 2011b.

Although the runtime experiments were conducted with varying hardware setups

and programming languages, the results give some indication of the speed-up factor

achieved by our proposed approximation techniques. However, the approximation

error is not to be neglected. Table 6.3 demonstrates the results for the original and

approximate RQA measures, which also confirm the previous climatological find-

ings and interpretations given in [16].

Although the results presented in Table 6.3 slightly differ for the original and

approximate RQA measures, it is more important that the variation (tendency) of

these measures is similar. This is considered in more detail in the next section.

6.5.4 Results on Correlation

In several applications, such as RQA based transition detection, the absolute values

of the RQA measures are less important than the tendency of their variation with

time. Here we compare the ability of the approximation approach to uncover vari-

ations that are similar to ones found by the exact measures. We apply both (exact

and approximate) RQA measures to the Potsdam temperature series using a sliding

windowing technique (non-overlapping windows with length of 1 year), which is the

standard approach for detecting transitions or regime changes.

In Fig. 6.4 we find a similar variation between the RQA measures calculated using

the exact as well as the approximation approaches. Figure 6.4a was derived with the

same recurrence threshold 𝜀 = 0.75 that was taken for the analysis of the whole Pots-

dam time series (see Table 6.3). This threshold is considered as baseline here, mean-

ing that the exact RQA measures show desired characteristics. Visually, the most
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Fig. 6.4 Windowed RQA results for Potsdam time series calculated using a non-overlapping slid-

ing window of length 1 year, maximum-norm, embedding dimension 5, embedding delay 3, Theiler

window 0 and (a) threshold 0.75, (b) threshold 0.5. a Baseline similarity threshold: 𝜀 = 0.75, b
Lower Similarity Threshold: 𝜀 = 0.5
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Table 6.4 Correlation coefficient, root mean square and relative error between exact and approx-

imate RQA measures for Potsdam temperature series as shown in Fig. 6.4

𝜀 = 0.75 Correlation RMSE rel. RMSE

(%)

𝜀 = 0.5 Correlation RMSE rel. RMSE

(%)

RR 0.79 0.034 17 RR 0.94 0.013 16

DET 0.81 0.028 3 DET 0.88 0.064 7

L 0.84 0.79 7 L 0.82 0.526 8

LAM 0.67 0.054 6 LAM 0.78 0.124 13

similar variation (and amplitude) is for the measure L, followed by DET , whereas

the amplitude of the LAM measure has the largest deviation. This is quantitatively

confirmed by the correlation coefficient and the error measures (Table 6.4). The high-

est correlations, thus the best coincidence of the variation, have the measures L and

DET , whereas LAM has the lowest correlation. In contrast, the relative error is small-

est for DET but largest for RR.

The values of the correlation and the errors can be controlled by changing the

threshold 𝜀 (Fig. 6.5). For L and LAM, we find the best correlation for recurrence

thresholds between 0.4 and 0.6 in units of the signal’s standard deviation. The root

mean square error decreases for Lwhere it increases for LAM with decreasing thresh-

old. The threshold that leads to the overall best correlation is 𝜀 = 0.5 (Fig. 6.4b),

the corresponding windowed analysis is illustrated in Fig. 6.4b. Hence, if we choose

this threshold for the sliding window analysis, then the mean correlation between the

exact and the approximate RQA measures is greater than 0.85, which indicates a very

strong linear relationship. But how does the choice of a lower threshold influence the

sliding window analysis? Visually, the corresponding exact measures in Fig. 6.4 vary

in a similar fashion, they only obey a different scale. This observation is confirmed

by Table 6.5, all corresponding exact measures have a correlation of about 0.99 for

the baseline threshold 𝜀 = 0.75 compared with the lower threshold 𝜀 = 0.5. In sum-

mary, the choice of a lower threshold can keep nearly the entire information on the

variation of the exact RQA measures, and at the same time can significantly improve

the approximate RQA in that the correlation between the exact and the approximate

RQA measures increases.

From the climatological point of view, both approaches reveal some variation

in the dynamics represented by the temperature time series. A general shift after the

time point of the change in recording procedure 1975 is not visible. However, besides

several short periods of decrease in the measures, around 1975 a clear drop can be

identified and might be more an indication of a sudden change in the general climate

regime by passing a tipping point [26] than of a change in the recording procedure.

A future study will investigate these variations more systematically and should also

consider significance tests [10].
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Fig. 6.5 Correlation coefficient, root mean square error (RMSE), and relative RMSE between

exact and approximate RQA measures with varying thresholds 𝜀, for our sliding window analysis

of the Potsdam temperature series as shown in Fig. 6.4. a Individual RQA measures, b Mean over

all RQA measures from (a)

6.6 Conclusion and Future Work

This chapter extends our theoretical work on approximate recurrence quantification

analysis (aRQA) [17] and includes some practical considerations that occur when

analyzing real-life data such as the Potsdam temperature time series [16]. We have
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Table 6.5 Correlation between exact RQA measures for threshold 𝜀 = 0.75 and exact RQA mea-

sures for 𝜀 = 0.5 for Potsdam temperature series as shown in Fig. 6.4

RR DET L LAM

Correlation 0.9953 0.9915 0.9877 0.9942

not only discussed the formulation of diagonal line based measures by means of

pairwise proximities (PP) [17], but also introduced our novel idea of stationary states

(SS) that enables us to reformulate vertical line based RQA measures. In addition

to our new formulation of the original RQA measures, we furthermore presented

an efficient implementation that allows fast computation of the approximate RQA

measures based on histograms.

Our experiments on relatively long time series (with about a million measure-

ments) demonstrated that the proposed approximation is not only up to four orders

of magnitude faster than single thread (exact) computations, but also gives results

that are very close to the original measures. Furthermore, we were able to show

that our approximate RQA measures strongly correlate with the corresponding exact

RQA measures (when applying the sliding window technique) and, therefore, can be

used for an efficient transition detection. The presented empirical results are also in

agreement with our theoretical analysis [17] in that the error of the approximation is

decided by the discretization or strictly speaking depends on the similarity threshold

and the distribution of the data under study.

In future work we are going to investigate the discretization more deeply and

develop time series representations that enable us to bound the approximation error.

Moreover, we will transfer our idea of pairwise proximities (PP) and stationary states

(SS) to cross recurrence plots (CRPs) and corresponding measures.
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Chapter 7
Splayed Recurrence Analysis of Iterated
Dynamical Systems

Charles L. Webber, Jr.

Abstract Splayed Recurrence Analysis (SRA) is a new method for identifying and
quantifying recurrent events in iterated systems. The technique is fully applicable to
difference equations, Poincaré sections of continuous time series, and independent
random events. Inspiration for SRA comes from American roulette wheel gaming.
It has been postulated that non-random wheel determinism is introduced by
unbalanced wheels (mechanical) and non-random repeated motions of house
spinners (human). Primary data were taken from actual roulette outcomes in which
ball landing slots were reported sequentially according to spin orders. These data
were stored in a matrix [slot #, spin #] and lines were passed through all possible
pairs of points in the matrix and extrapolated to the border. Centers of points falling
exactly on these extended lines, including the initial pair, were scored as recurrent
points. Necessarily, there were gaps between points which led to point-to-point
intervals being splayed-out. Six variables were extracted from the recurrent points
comprising lines: (1) number of recurrent points per line; (2) intervals between
recurrent points; (3) lengths of lines; (4) slopes of lines; (5) entropy of line lengths;
(6) density of recurrent points. Besides the American roulette data, these SRA
strategies were also applied to natural random numbers, chaotic models, and natural
phenomenon. No differences could be detected for roulette data and naturally
occurring random processes. But SRA was able to detect non-random structures in
mathematically chaotic systems as well as in eruption times of the Old Faithful
geyser. Because the methodology does not depend upon embeddings and delays as
required for nonlinear analyses, SRA is classified as fully linear.
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7.1 Introduction

This study was inspired by the challenge of a roulette wheel enthusiast who claimed
the ability to predict future outcomes of roulette spins if given the results of a short
series of runs. Casinos routinely post some 20 outcomes of previous rounds (spin
#s), enticing gamers to detect patterns in the sequential numbers (slot #s). Indeed,
there is a vast literature on beating the roulette wheel by finding patterns, using
mathematical probabilities, ballistic physics and even applying chaos theory [1–4].
In the spirit of expert systems analysis, I sat down with the enthusiast and had him
slowly describe and diagram his methodology for discovering patterns in sequences
of actual roulette data. In return I challenged him with 10 data sets of slots from
sequential roulette spins. Each set consisted of 30 spins, but I only gave him the first
10 slot outcomes. This enabled me to score the accuracy of his predictions among
the following 20 hidden spins. The results are discussed later in this chapter.

At first glance, it appears that Roulette would produce sequences of totally
random numbers, rendering future predictions impossible. The game is played by
the croupier spinning the rotor in one direction (clockwise or counter clockwise)
and rolling the ball in the opposite direction along the wheel track [5]. When the
velocity of the ball slows, the ball falls onto the rotating apron, is jostled by
deflectors, and finally lands into one of 38 slots discriminated by frets (American
roulette). As shown in Fig. 7.1, the pockets are numbered from 1 through 36, half

Slot Order Slot Order

0 0 00 19

2 1 1 20

14 2 13 21

35 3 36 22

23 4 24 23

4 5 3 24

16 6 15 25

33 7 34 26

21 8 22 27

6 9 5 28

18 10 17 29

31 11 32 30

19 12 20 31

8 13 7 32

12 14 11 33

29 15 30 34

25 16 26 35

10 17 9 36

27 18 28 37

Fig. 7.1 The American roulette wheel with 38 slots (18 red, 18 black and 2 green). The physical
location of the slots are mapped (linearized) into 38 ascending integer values (0–37) in the
counterclockwise direction (CCW) starting with green slot 0 and ending with black slot 28

138 C.L. Webber, Jr.



red and half black, and with two green zeros (0 and 00), but are not positioned in
any kind of numerical order. But two interfering factors may introduce bias
(so-called determinism) into an otherwise random system [4]. First, wheel bias
might cause certain slots to recur more frequently than others (like loaded dice).
This is not unlike spinners in children’s games often landing on the same (recurrent)
number if the playing board is warped. Second, the spinning motions of the
croupier are periodic, non-random and unique to the person. This may be one
reason why croupiers are frequently rotated among different roulette wheels in the
house. The gaming enthusiast defended these deterministic features using principles
from nonlinear dynamics [6].

7.2 Graphical Theory

The roulette enthusiast showed me how his strategy for beating the house edge of
5.26 % for American roulette [2] was based on graphical theory. Figure 7.2 illus-
trates the methodology. Graphs (roulette matrices) are constructed by plotting
points at the intersection of slot outcomes (vertical axis) and round spins (horizontal
axis). Lines are defined as linear projections that pass exactly through the centers of
three or more points. Lines passing through merely two points are rejected as being
trivial. Using this simple rule, the data of Fig. 7.2 (22 spins with 38 possible slots)
has a total of 16 recurrent points (circled) comprising 6 lines. For example, the first
line, L1(3), is defined by 3 points [27, 1], [19, 3] and [0, 7] which are unevenly
spaced. The second and third lines, L2(3) and L3(3), also pass through 3 points
each as do the last two lines, L5(3) and L6(3). The fourth line, L4(4), however,
passes through 4 points (rarer). Clearly, the six defined lines have different slopes,
some lines share common points: L2 and L5 at [22, 11]; L3 and L4 at [3, 9]; L5 and
L6 at [00, 16]. And six points (not circled) in the matrix are never recurrent: [26, 8];
[0, 10]; [34, 13]; [29, 14]; [25, 21]; and [11, 22].

Again, it is worth noting that the spacings of recurrent points are uneven and
irregular. From the recurrence perspective, points (or hits) can be thought of as
recurrent points (on lines) whereas missed points (off lines) define gaps between
recurrent points. It is in this sense that the recurrent points are splayed out along
linear trajectories defined by the slopes of lines each passing through a minimum of
3 points.

7.3 Algorithmic Implementation

Splayed recurrence analysis (SRA) consists of a suite of 9 programs (SRB, SRC,
SRN, SRI, SRS, SRL, SRE, SRD and SRH, described below). Two key parameters
control the size of the roulette matrix: (1) the number of possible outcomes (# slots)
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and (2) the length of the recurrence window (# spins). A third parameter adds
statistical rigor to the analysis: (3) the number of sequential adjacent windows.

For roulette wheel data, the number of outcome slots or bins is fixed at 38
(American roulette). However, to generalize the methodology to any other
dynamical system, program SRB (Bin rescaling of input vector elements) is used to
confine amplitudes of the floating point input into fixed integer bins of any
selectable number (not just 38). Outputs of program SRB are then accepted as
inputs to program SRC (Coordinates of 3 or more points falling alone linear tra-
jectories) which reports the x, y coordinates of all recurrent points within each
window of preselected window length.

Proof of concept was first explored by applying SRA to natural random numbers
to check for chance recurrences in roulette matrices. A long series of 102,400

Spin #

S
lo

t #

L1 (3)

L2 (3)

L3 (3)

L4 (4)

L5 (3)

L6 (3)

Fig. 7.2 Linear trajectories passing exactly through the centers of 3 or more points define
splayed-out recurrent points (circled) with uneven spacing and variable slopes. Slot numbers (slot
#) are given in their physical counterclockwise sequence order (spin #)

140 C.L. Webber, Jr.



integers ranging from 0 to 255 (step 1) were obtained from genuine random
numbers (HotBits) generated from natural beta radioactive decay of Cæsium-137
[7]. From this master set, four integer data sets were constructed ranging from 0 to
different maxima (31, 63, 127, 257) for different number of slots (32, 64, 128, and
256 respectively). SRA was run on all four data sets were using six different
window lengths (25, 50, 100, 200, 300, and 400 spins). The resultant 24 histograms
are reported as bin counts in Table 7.1 and color coded according to number of
outcomes (# slots) chosen. As anticipated, the number of chance recurrent points
per line (horizontal axis) increases with increasing # spins and decreasing number
of slots (vertical axes). Figure 7.3 captures this principle graphically. SRA results
from these natural random numbers were used as controls for all dynamical systems
studied (see below). In no cases were any of the data series scrambled, but
admittedly this would be another way in future studies to shuffle or randomize the
data sequences [8].

7.4 SRA Variables

Six recurrence variables are derived directly from the coordinates of recurrent
points for each line. Each variable is computed by six separate programs using as
inputs the outputs generated from program SRC (described in Sect. 7.3). Thus,

Table 7.1 Histograms of number of recurrent points per line based upon the number of outcomes
(# slots) and the size of the window (# spins). Within most horizontal color bands, the number of
bin counts decreases as the number of recurrent points per line increases

Number of Points per Line
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# 
S
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ts
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si

ng
 #

 S
pi

ns

RANDOM HITS IN RECURRNECE MATRIX
32 400 50869 4628 556 119 130 226 282 445 503 591 590 490 437 383 274 197 133 70 39 22 12 3 1 1 2

32 300 68126 6161 985 598 738 955 1073 1064 864 802 551 374 236 122 66 27 20 1 1 0 1

32 200 103709 11050 3419 2603 2371 1886 1289 816 438 209 108 45 9 4 4 1 1

32 100 107910 15266 4801 1959 774 296 76 31 3 0 1

32 50 61360 7893 1485 281 50 7

32 25 30155 2653 265 25 1

64 400 62207 5734 1813 1485 1400 1181 854 605 297 155 87 34 10 6 3

64 300 85734 9363 3668 2465 1707 1027 517 235 107 32 7 5 1

64 200 137303 16574 5090 2063 858 306 99 23 9 2

64 100 79928 8833 1645 322 55 9 1 1

64 50 40423 3143 299 36 1

64 25 18540 854 54 2 1

128 400 77813 8786 3248 1522 659 259 80 33 12 1

128 300 109637 12177 3247 1036 297 89 25 5 1

128 200 100047 9433 1726 365 49 14 3

128 100 51349 3528 336 43 1

128 50 23923 1033 49 2

128 25 12576 281 9

256 400 94460 8531 1593 338 59 16 1

256 300 92137 6757 967 159 22 3

256 200 62294 3686 381 40 6

256 100 29408 1128 53 4

256 50 13114 274 6

256 25 9911 121 1

# Slots # Spins 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
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(1) program SRN computes the Number of recurrent points per line (NUM).
(2) Program SRI computes the Intervals between recurrent points (INT). (3) Pro-
gram SRL computes the Lengths of lines defined by recurrent points (LEN).
(4) Program SRS computes the Slopes of lines defined by recurrent points (SLP).
(5) Program SRE computes the Entropy of line-length distributions (ENT). And
finally, (6) program SRD computes the Density of recurrent points over sequential
epochs (DEN). Interval lengths and line lengths are computed as the diagonal
distances between the x, y coordinates of interval points or line end-points,
respectively, according to the following formula.

INT or LEN=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x1 − x2Þ2 + (y1 − y2Þ2

q
ð7:1Þ

A ninth and last program completes the SRA suite of programs. Program SRH
computes the Histogram distributions of the first four SRA variables over
sequential epochs. The only exceptions are the fifth and sixth variables, ENT and
DEN, which are not a distributed variables, but rather compute as single values for
each epoch (described below).
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Fig. 7.3 Histograms of data from Table 7.1 color-coded by # spins and clustered by # slots
selected
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7.5 Test Data Sets

SRA strategies were applied first to the random and roulette data and next to six
other systems (8 systems total). In order to compare all systems, the number of slots
was held constant at 38 (Roulette defined) and the number of spins was held
constant at 50. As demonstrated by Table 7.1 and Fig. 7.3, there is nothing special
about numbers 38 and 50, of course, they were merely selected as proof of concept.
Thus the roulette matrix was consistently sized as RM [38, 50] for the purposes at
hand.

The eight systems were classified into one of two data sets. The data first set
comprised four steady-state systems and the second set consisted of four transient
signals. The four steady-state systems each possessed 14,979-point vectors and 299
epochs as dictated by the window length of 50 are shown in Fig. 7.4 (only the first
450 points are plotted for each system). These systems included HotBit natural
random numbers (RANDOM), slot outcomes of roulette wheel spins (WHEEL) [9],
the x-variable of the Hénon chaotic attractor (HENON, formulae 2 & 3), and geyser
eruption intervals of Old Faithful in Yellowstone National Park (GEYSER) [10].
The vector elements of each system were rescaled into 38 discriminating amplitude
bins (not shown) before processing by SRA.
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xi+ 1 = yi + 1− 1.4 x2i ð7:2Þ

yi+ 1 = 0.3xi ð7:3Þ

Prior to SRA, the integer data (14,979 points) of the four steady-state systems
were distributed into histograms to check for bias as shown in Fig. 7.5. The dis-
tributions of the RANDOM and WHEEL integers are flat indicating lack of “wheel
bias.” However, the distributions of the HENON and GEYSER data are non-flat or
biased with “wheel tilts” as it were. But of course, flat histograms do not rule out
deterministic structures. And neither do biased histograms rule in deterministic
structures. However, such differences can be discriminated by classical recurrence
plots and their quantifications [11, 12].

The four transient systems each possessed 37,446-point vectors and 748 epochs
as dictated by the window size of 50 are shown in Fig. 7.6. These systems included
HotBit natural random numbers with added sine wave and ramp (RANDET, for-
mula 7.4), vocabulary word in the English text of Genesis (TEXT), the x variable of
the adiabatic logistic equation in its period doubling route to chaos (LOGISTIC,
formula 7.5) [13], and biceps electromyogram en route to muscle fatigue
(EMG) [14]. (Actually, the EMG was the single continuous system included in this
study.) The vectors of each system were rescaled into 38 discriminating amplitude
bins (not shown) before processing by SRA.
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RANDETi = HBi + SINE HBið Þ + RAMPi ð7:4Þ

where HB = 0 to 255; RAMPi = INT(RAMPi−1 + 0.02); RAMP0 = 0.0.

xi + 1 = axi 1− xið Þ ð7:5Þ

where a = 2.8 to 3.93 step 0.00003.
Prior to SRA, the integer data (37,446 points) of the four transient systems were

distributed into histograms to check for bias as shown in Fig. 7.7. None of the
distributions are flat indicating the presence of “wheel bias.” These “wheel tilts”
were unimodal (RANDT, GENESIS, EMG) or multi-modal (LOGISTIC) with
uniform (RANDET, EMG) or skewed distributions (GENESIS, LOGISTIC).

7.6 Splayed Recurrence Analysis of Test Data Sets

SRA was applied to the two data sets, the first set with four steady-state systems and
the second set with four transient signals. For simplicity and easy comparisons, for
all eight examples the number of slot outcomes was consistently set to 38 (e.g. #
slots in American roulette) and the window length was fixed at 50 (e.g. # spins).
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Figure 7.8 shows the results displayed in histogram format (identical format as
Fig. 7.3). For the steady-state systems (Fig. 7.8 left), no differences could be
detected between the natural random numbers (RANDOM), roulette wheel out-
comes (WHEEL) or the Hénon chaotic attractor (HENON). However, the Old
Faithful eruption times (GEYSER) showed a clear skewing to the right of the
logarithmic histogram counts indicative of non-random (deterministic?) structuring
of this quasi-periodic and quasi-predictable event of nature. For the transient sys-
tems (Fig. 7.8 right) all four signals showed dramatic right skewing because of the
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strong non-random (deterministic?) structuring in each of the signals. Because of
the crossing over of the curves it is difficult to rank the degrees of structuring among
these systems, but perhaps the Genesis text (GENESIS) possesses the strongest
bias. The high bias in the RANDET is due to the addition of two linear (deter-
ministic) signals to the natural random numbers.

7.7 Splayed Recurrence Intervals

The name Splayed Recurrence Analysis stems directly from the fact that recurrent
points falling along linear trajectories in the roulette matrix are unevenly dis-
tributed. Gaps of all sizes are present depending upon the dynamic under study.
Quantification of all the intervals over all combined epochs is best illustrated by
histogram distributions of the SRA intervals. The four steady state systems (299
epochs) and four transient systems (748 epochs) can be compared directly (visually)
because they have identical horizontal scales and vertical scales proportioned to the
different number of epochs (max 4,000/max 10,000 = 299 steady state epochs/748
transient epochs).

Interval histograms for the four steady state systems are shown in Fig. 7.9.
Non-paired student t-tests were performed (RANDOM as the reference) to provide
statistical rigor (P < 0.05 considered significantly different). Each distribution is
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skewed to the left (toward the shorter intervals) with tails to the right (toward the
longer intervals), but to different degrees.

Recurrence intervals and their distributions comprising the natural random
numbers (RANDOM) and roulette wheel outcomes (WHEEL) are essentially
identical (P = 0.600). Once again, this result indicates that the roulette wheel is an
excellent random number generator (and therefore not predictable). The histogram
intervals and distributions for the Hénon chaotic attractor (HENON) are barely
significantly different from random (P = 0.050). This suggests that from the linear
perspective of SRA, the Hénon chaotic attractor, although fully deterministic
mathematically, is near-random statistically (poor sensitivity for chaoticity).
Finally, the Old Faithful Geyser data (GEYSER) are strongly significant when
compared to the random intervals (P = 0.010).

Interval histograms for the four transient systems are shown in Fig. 7.10. As seen
for the steady state systems, each distribution is skewed to the left (toward the
shorter intervals) with tails to the right (toward the longer intervals), but to different
degrees. The modal intervals of these transient systems are all left (shorter periods)
of those encountered with the steady state systems. This effect is due to the dis-
allowance of long recurrences occurring across full transitions. For statistical
comparisons, recurrent intervals from each of the four transient systems were
compared against SRA random intervals (mean = 12.44; stdev = 8.39; n = 49,620)
generated from natural random numbers (38 slots, 50 spins, 748 epochs) using the
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non-paired Student’s t test. In each case (RANDET, GENESIS, LOGISTIC and
EMG) the P values were highly significant (P < 0.00001) implying they were
non-random.

7.8 Line Entropy and Recurrence Density

Possibly the most instructive SRA variable for sorting out deterministic dynamics
from stochastic system dynamics is the recurrence density variable (DEN). Alter-
nately, line entropy (ENT) is probably the worst SRA variable for discriminating
dynamics. Density is related to recurrence rate and is computed by scoring in a
density matrix (identical in size to the roulette matrix) all x, y coordinates identified,
epoch by epoch. The density matrix [# slots, # spins] was initially filled with zeros
before hits were recorded as ones. As sequential epochs were computed, the density
of hits increased as virgin cell hits were added. This analysis is much like watching
rain fall on a dry sidewalk. At first the drops are sparsely spread out in a non-grid
pattern, but over time the entire sidewalk is wetted leaving no spaces dry [15].

The cumulative line entropy and density results for the four steady-state systems
and four transient systems are shown in Fig. 7.11. The line-length entropy data are
not very instructive (Fig. 7.11, upper panels) for all maxed out at some 5
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bits/symbol with similar profiles save the LOGISTIC system which was delayed in
achieving the max entropy. Conversely, the density values reach or approach 100 %
recurrence rate with different slopes for three of the steady-state systems (RAN-
DOM, WHEEL, HENON) in 299 epochs and three of the transient systems
(RANDET, GENESIS, LOGISTIC) in 748 epochs (Fig. 7.11, bottom panels). The
Old Faithful Geyser (GEYSER) and the electromyographic (EMG) signals on the
other hand both have very slow rise times, reaching only about 60 % recurrence
rate. Assuming that the slower the increases in density the higher the degree of bias
(determinism?), the seven of the eight systems can be ranked as follows (low to
high bias): RANDOM/WHEEL (tied rank), HENON, RANDET, GENESIS,
GEYSER and EMG. It is not clear how LOGISTIC system with its first low and
then high recurrence rate should be ranked.

7.9 Line Lengths and Slopes

The remaining two variables, lengths of lines (LEN) and slopes of lines (SLP) were
also studied. The results are presented in Table 7.2. For all systems, steady-state and
transient, the distributions of slopes were all Gaussian-like with different standard
deviations and ranges (compare with the statistics of recurrence intervals in Figs.
7.9 and 7.10). For the steady-state systems, the line length distributions were
Gaussian-like (RANDOM, WHEEL, HENON) or left-skewed (GEYSER). For the
transient systems, the distributions were left-skewed (RANDET, EMG) or
non-Gaussian-like (GENESIS, LOGISTIC).

7.10 Roulette Wheel Challenge

Finally, we come to the results of the roulette-wheel enthusiast whom I challenged
with 10 data sets from actual roulette spins. Each set consisted of 30 slot positions
for 30 consecutive spins, but only the first 10 slot outcomes were provided (spins

Table 7.2 Histograms of number of recurrent points per line based upon the number of outcomes
(# slots) and the epoch size of the roulette window (# spins)

System = RANDOM SLOT HENON GEYSER RANDET TEXT LOGISTIC EMG

Mean LEN = 26.670 26.565 26.461 22.557 21.543 23.791 29.061 21.449
Stdev LEN = 10.7 10.6 10.7 11.7 12.3 12.6 12.7 12.2

N LEN = 9,190 9,290 9,842 16,219 44,870 21,071 11,066 40,536

Mean SLP = 0.095 0.080 0.066 0.010 0.016 0.060 0.044 0.034
Sdev SLP = 1.96 2.07 2.12 0.81 0.58 1.11 1.41 0.72

N SLP = 9,190 9,290 9,842 16,219 44,870 21,071 11,066 40,536

Statistics on Line Lengths and Line Slopes
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1–10). Using his own strategies the enthusiast returned his best guesses among the
remaining 20 slot outcomes (spins 11–30). The results were scored for the 10 tests
(T) as follows: T1 (12 lines, 73 points, 0 matches); T2 (8 lines, 31 points, 1 match);
T3 (15 lines, 34 points, 0 matches); T4 (15 lines, 65 points, 2 matches); T5 (12
lines, 43 points, 1 match); T6 (14 lines, 60 points, 0 matches); T7 (13 lines, 40
points, 1 match); T8 (12 lines, 43 points, 2 matches); T9 (14 lines, 40 points, 1
match); and T10 (7 lines, 29 points, 0 matches). The probability of scoring a match
by random chance in any one corresponding bin (ignoring the spin order) is 1/38.
The probability rises to # points/38 when bin position is ignored. (The number of
points guessed exceeds 20 because single points sometimes presented in multiple
lines.) Clearly, the cumulative correct score of only 8 correct is below the predicted
number of 13 matches by chance alone. These results demonstrate that either the
roulette wheel data had no patterns or, if patterns were present, the enthusiast’s
logic was unable to detect them. All humans are experts at seeing patterns in
otherwise random systems and are dogmatic about defending what is “seen”! As is
written on Casino Advisor: “Like sportsmen gamblers are superstitious people.
Some sportsmen carry lucky charms. They win on their ability but still find comfort
in their lucky handkerchief or coin” [16].

7.11 Discussion

Splayed recurrence analysis (SRA) was inspired from the game of American
roulette in which a rotating ball falls into one of 38 counter-rotating slots. The
methodology can be generalized for any iterated dynamical system by selecting the
number of slots and spins for as many epochs as desired. Thus SRA has only 3
parameters: # slots; # spins; and # epochs.

SRA methodology was encoded according to the graphical rules of a
roulette-wheel enthusiast. Lines were defined as passing exactly through the centers
of a minimum of 3 points within a roulette matrix [# slots, # spins]. The coordinates
of all points on lines were collected from which 6 SPA variables were defined:
(1) number of recurrent points per line (NUM); (2) intervals between recurrent
points (INT); (3) lengths of lines (LEN); (4) slopes of lines (SLP); (5) entropy of
line-length distributions (ENT); and (6) density of recurrent points over sequential
epochs (DEN). The order of importance of these variables is distinguishing
deterministic dynamics from stochastic dynamics or their mixtures is as follows
(best to worst): DEN; NUM; INT; LEN; ENT; and SLP.

It must quickly be recognized that SRA is a linear methodology. In this context,
one is reminded of the visibility graph (VG) technique of Lacasa et al. [17]. But the
two systems are decidedly different. For example, SRA skips intervals to construct
lines connecting distant points whereas VG draws lines between paired points at all
interval spacings. Possibly SRA might map into VA, but this remains to be proven
mathematically.
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I am greatly indebted to the roulette-wheel enthusiast. Although his ideas did not
pan out for roulette wheel predictions, his graphical algorithm for finding recurrent
points within the roulette matrix has herein been shown effective in detecting biased
(deterministic?) structures in other non-random and natural test systems. It is
concluded that mechanical roulette wheels are carefully (but not perfectly) bal-
anced, nullifying the formation of patterns. And any repeat (deterministic) motions
of the croupier are non-repetitive and nullified by the starting positions of the ball
and wheel, and ball deflections by the deflectors and frets on the rotating apron.

Future studies could be designed to compare linear SRA against nonlinear RQA
(both originated by the author). The operating hypothesis (hunch) is that RQA is
probably superior to SRA because it embodies more sophisticated embedding and
delay theories [18]. Circular wheel wrap-around could be included in SRA
extending lines to points arising beyond the first wheel rotation. Much more work is
required to fine tune SRA strategies (theory) as well as apply the methodology to
numerous other iterated systems (practice).

7.12 Conclusions

In summary, SPR failed to detect biased structures in both natural random numbers
(RANDOM) and roulette slot outcomes (WHEEL). But SRA was good at detecting
biases in random numbers to which linear signals were added (RANDET), math-
ematically chaotic systems (HENON, LOGISTIC); natural systems (GEYSER,
EMG); and linguist texts (GENESIS). The link between bias detection and deter-
ministic structures remains to be made. Lastly, SRA is another tool for studying
dynamical systems, but it cannot be included in the non-linear tool box simply
because SRA is linear. The methodology is integer-based (which constitutes a type
of signal filtering) and is designed for iterated systems (e.g. Poincaré sections [19]).
SRA may be applicable for continuous systems (e.g. EMG). The lesson learned is
that recurrences and their quantifications come in many practical and useful forms.
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Part II
Practical/Utilitarian Recurrences



Chapter 8
Assessment of Heart Rate Complexity
Recovery from Maximal Exercise Using
Recurrence Quantification Analysis

Rosangela Akemi Hoshi, Carlos Marcelo Pastre,
Luiz Carlos Marques Vanderlei and Moacir Fernandes Godoy

Abstract Recurrence Plots have been described as suitable method for nonsta-
tionary and short data analysis, however, up to date, there is no registered study
using this technique to evaluate exercise and recovery, which are conditions that
provide unstable and variable heart rate time series. Objectives: To analyze heart
rate complexity of healthy and young subjects during recovery from maximal
exercise, using RQA measurements. Methods: Twenty participants were submitted
to 120 min of passive recovery assessment after exercise at 100 % of maximal
velocity until exhaustion. HR and R-R intervals (RRi) were recorded during the
whole process and segments containing 300 RRi were selected from the baseline
period and at each 10 min of recovery to be analyzed by the Kubios HRV Analysis
software. Results: At baseline, the median values of Recurrence Rate, Determin-
ism, Entropy and Lmean were 25.1 %, 97.2 %, 2.9 % and 8.6 %, respectively. After
the exercise, all these variables showed significant increase until 80 min. Then,
from 90 min and onwards, no significant difference was found between recovery
moments and baseline. Conclusions: The regularity of heart rate rhythm increases
expressively after maximal exercise and the complexity reduces. During recovery
period, these conditions gradually return to rest levels and reach recovery after 80
min. As the variables showed pre-exercise levels at a similar moment, RQA seems
to be a suitable method to evaluate exercise and recovery conditions.

R.A. Hoshi (✉) ⋅ M.F. Godoy
NUTECC-Transdisciplinary Nucleus of Studies on Complexity and Chaos, Sao Jose do Rio
Preto Medicine School (FAMERP), 5416 Brigadeiro Faria Lima Ave., 15090-000 Sao Jose
do Rio Preto, Sao Paulo, Brazil
e-mail: rosangela.hoshi@gmail.com

C.M. Pastre ⋅ L.C.M. Vanderlei
UNESP-State of Sao Paulo University, Campus of Presidente Prudente, Physical Therapy
Department, 305 Roberto Simonsen Street, Presidente Prudente 19060-900, Brazil

© Springer International Publishing Switzerland 2016
C.L. Webber, Jr. et al. (eds.), Recurrence Plots and Their Quantifications:
Expanding Horizons, Springer Proceedings in Physics 180,
DOI 10.1007/978-3-319-29922-8_8

157



8.1 Introduction

Heart Rate Variability (HRV) is the measurement of periodic and non-periodic
fluctuations between consecutive heartbeats employed as a tool for Autonomic
Nervous System (ANS) assessment [1–5]. Since the 1960s, linear and nonlinear
methods, based on mathematics, statistics and physics were developed and
improved to provide reliable measurements [6]. Its application in clinical practice
and research has been exploited by searching for its relationship with health and
disease conditions, which helps to clarify their physiological meanings, yielding
a more comprehensive description of indices and improving HRV analysis
methods [4].

Linear methods based on time and frequency domains translate R-R intervals
(RRi) oscillations into numeric values and are widely applied on research and clinical
practice due to easy calculations and simple interpretation [1, 3, 7, 8]. According to the
review article by Lombardi [9], time domain parameters should have a primary role as
non-invasive stratifiers of patients with increased mortality, and frequency compo-
nents are suitable indices of autonomic modulation of sinus node.

However, to ensure results reliability of linear indices, long and stationary time
series are required, which may be impracticable in the real world, due to evaluation
session time and heart rate natural oscillations [4, 10]. Sometimes, these charac-
teristics may be considered a limitation and even meaningless, especially when the
aim is to assess acute and unstable responses to certain conditions, such as during
and after physical activities, when fast organic changes occur to provide the energy
required by increased metabolism. Specifically regarding autonomic activity, there
is a parasympathetic inhibition followed by sympathetic stimulation, which rise
regularity and predictability of heart rate, reducing complexity. When the effort is
interrupted, mechanical stimuli cease, metabolic stress reduces and autonomic
functions are reset, then HR variations as well as complexity return to baseline
levels [11, 12].

In these situations of rapid state changes, short time series are more appropriate,
because organic functions are inherently time-varying processes that exhibit com-
plex dynamics and state-dependent behaviors. Therefore, nonlinear analysis is
suggested as suitable because it is less dependent of signal preprocessing, does not
require stationarity and represents the complex nature of heart rate [13–15]. In this
sense, Recurrence Quantification Analysis (RQA), based on Recurrence Plots (RP),
is a nonlinear method described as ideal for physiological data. According to
Webber et al. [16], RP does not impose rigid constraints on data set size, station-
arity, or statistical distribution, thus it is suitable to assess conditions in which there
are unstable behavior, fast oscillations and high levels of noise.

Several authors analyzed postexercise recovery using standard linear indices [12,
17–22], as well as nonlinear measures [23–26], concluding that the HRV is a
reliable technique for ANS recovery assessment. However, as RQA application is a
novel method in this field and so far there is no study, the objective of this research
is to analyze heart rate complexity of healthy and young subjects during recovery
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from maximal exercise, using RQA measurements, aiming to enhance the knowl-
edge about this method and its physiological interpretations regarding heart rate
time series.

8.2 Methods

Participants
Twenty healthy, young male university students (22.69 ± 2.98 years) were recruited
and their anthropometric characteristics are presented in Table 8.1. All were clas-
sified as physically active, as they were regularly engaged in various intermittent
activities (i.e., soccer, basketball, or handball three times per week), with each
session lasting 1–2 h [12]. They were non-smokers and free of any known car-
diovascular, metabolic or endocrine disease, as determined in interviews. None of
the participants was taking any kind of medication. All participants signed a con-
sent form after receiving verbal and written explanations about the procedures and
the experimental protocol as approved by the Institutional Research Ethics Com-
mittee, protocol number 465/2011.

Study Design
All tests were performed in a quiet laboratory under standardized conditions
(temperature: 21–23 °C; relative humidity: 40–60 %), between 2:00 and 6:00 pm.
Each participant came to the laboratory two consecutive days and was asked to
refrain from any exercise and not consume alcoholic or caffeinated beverages
24 h prior to each test. Additionally, participants were asked to have at least 2 h
fasting prior to each test. On the first visit, participant height and weight were
recorded, after which they underwent the Maximal Incremental Test in order to
determine the peak of oxygen consumption (VO2peak) and maximal aerobic speed
(MAS).

Table 8.1 Anthropometric
and cardiorespiratory
parameters of participants (N
= 20)

Variables Mean ± SD

Age (year) 22 ± 1.2
Body mass (kg) 72.8 ± 8.4
Height (m) 1.76 ± 0.07
Body Mass Index (kg m−2) 23.49 ± 1.93
VO2max (ml. kg−1 min−1) 55.85 ± 4.75
MAS (km h−1) 15.6 ± 0.88
HRmax (bpm) 180.7 ± 9.7
VO2max maximum oxygen consumption; MAS maximal aerobic
speed; HRmax maximal heart rate

8 Assessment of Heart Rate Complexity Recovery … 159



On the second day, the participants first lay down for 30 min for the resting RRi
recording, and then carried out constant exercise at the 100 % of MAS until voli-
tional exhaustion, i.e., the Limit Time Test. Immediately after the exercise they kept
a supine position for 120 min for the passive recovery period.

Maximal Incremental Test
After a standard warm-up, (which consisted in 5 min of 8 km h−1 jogging followed
by 5 min in sitting position rest), VO2peak and MAS were determined on a treadmill
(Inbramed Super ATL, Inbrasport, Rio Grande do Sul, Brazil) using an incremental
protocol. The slope was set at 1 % and the initial test speed was 10 km h−1,
increasing 1 km h−1 every minute until volitional exhaustion [27]. Breath-by-breath
respiratory was measured and averaged every ten seconds by VO2000 Gas Analyzer
(MedGraphics, Minnesota, USA). Expired oxygen (O2) and carbon dioxide (CO2)
concentrations were determined using a galvanic fuel cell for the O2 and a
non-dispersive infrared analyzer for the CO2. Flow was determined using a
bi-directional differential pressure pneumotach (preVent™). Heart rate (HR) was
recorded continuously with a Polar RS800CX monitor (Polar Electro, Kempele,
Finland) in the RR mode [28].

At least two of the following criteria were required to ensure that VO2max had
been attained: (1) the occurrence of a plateau (i.e., <150 mL·min−1 increase
between 2 successive stages); (2) a respiratory exchange ratio above 1.10; and/or
(3) HR in excess of 90 % of age-predicted maximum. The MAS was recorded as the
speed corresponding to the last complete stage on the incremental test [29].

Limit Time Test and Recovery
On the second day, after lying supine for 30 min for the recording of resting RRi,
the participants performed the standard warm-up and then they ran until volitional
exhaustion on a treadmill velocity set at 100 % of each individual’s MAS. Addi-
tionally, strong verbal encouragement was provided. Exhaustion was determined by
the same criteria as on the first day [12]. The sustained time average is shown in
Table 8.1. Immediately following exercise, volunteers assumed a supine position
for 120 continuous minutes for passive recovery.

Heart Rate Recordings and HRV Linear Analysis
The RRi were continuously recorded with Polar RS800 CX monitor (Polar Electro
Oy, Kempele, Finland) in the RR mode at 1000 Hz of sampling rate. Time series
were downloaded to the Polar Pro Trainer (v. 5, Polar Electro, Finland) software,
which enables HR visualization. Only series with more than 95 % sinus rhythm
were included in the study [30].

Suitable RRi were then selected for analysis and extracted into a .txt format to be
analyzed. Then, a fixed number of 300 consecutive RRi were taken from the
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baseline period, immediately after the end of the exercise, as well as right before
each 10 min of the recovery period.

We analyzed linear indices SDNN (standard deviation of consecutive RR
intervals) and RMSSD (root mean square successive difference between adjacent
normal RR intervals), in time domain, and LF and HF (low and high frequency
component of spectral analysis, respectively) in frequency domain [1].

Recurrence Quantification Analysis
The time series containing 300 RRi were analyzed by the Kubios HRV analysis
software (v. 2.2, Kuopio, Finland), which considers vectors that represent the RRi
time series as a trajectory in a m dimensional space (m = 10), with embedding lag
(τ = 1) and a fixed threshold 3.1623xSD.

We analyzed all the recurrence variables provided by this software: Recurrence
Rate (%RR), defined as the percentage of recurring points, Determinism (%DET),
the percentage of recurrence points forming diagonal lines, Shannon Entropy
(ENT), which represents the complexity of line’s distributions, Average Diagonal
Line Length (Lmean) and Maximal Line Length (Lmax) [23, 31, 32]. Since the last
variable has a limited maximum value, we did not consider it for the statistical
analysis because most of participants reached the peak, due to the intensity of the
exercise performed.

Statistical Analysis
Kolmogorov-Smirnov test verified a nonadherence of variables to a Gaussian dis-
tribution. Therefore we used nonparametric Friedman’s test, followed by Multiple
Comparisons Dunn’s test, to detect contrasts between observation moments and
baseline data. StatsDirect software (v. 2.7.8b, StatsDirect Ltd., Cheshire, UK) was
used for statistical analyses and the significance level was set at P < 0.05 for all
tests.

8.3 Results

Figures 8.1, 8.2, 8.3 and 8.4 display the recovery course along time of %RR, %
DET, ENT and Lmean, respectively, of Recurrence Quantification Analysis. We
observe that in the first analyzed moment after exercise, all variables increased
expressively in comparison to baseline. After 80 min and onwards, Friedman’s test
detected no differences between recovery moments and rest in none of these
variables, suggesting recovery at the same moment for the four analyzed variables.
Additionally, at 120 min we found values very close, but still higher, to pre-exercise
levels.
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Table 8.2 shows linear indices variation during recovery time, compared to
baseline values. We can observe that all variables presented an expressive decrease
after exercise and SDNN as well as LF reach rest levels after 60 min, while RMSSD
and HF, after 70 min.

Fig. 8.1 Box Plots (Mean, Median, 1° and 3° quartiles, Minimum and Maximum) showing results
of Recurrence Rate from RQA, according to the recovery time. **P < 0.01; ***P < 0.001

Fig. 8.2 Box Plots (Mean, Median, 1° and 3° quartiles, Minimum and Maximum) showing results
of Determinism rate from RQA, according to the recovery time. *P < 0.05; ***P < 0.001
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8.4 Discussion

In this study, we applied high-intensity exercise as a stressful element to the ANS to
follow how RQA variables would behavior. Thus, we analyzed the moment
immediately after the maximal effort, which presented high levels of recurrence

Fig. 8.3 Box Plots (Mean, Median, 1° and 3° quartiles, Minimum and Maximum) showing results
of Shannon Entropy from RQA, according to the recovery time. *P < 0.05; **P < 0.01;
***P < 0.001

Fig. 8.4 Box Plots (Mean, Median, 1° and 3° quartiles, Minimum and Maximum) showing results
of Mean Length of Diagonal Lines from RQA, according to the recovery time. *P < 0.05;
**P < 0.01; ***P < 0.001
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compared to baseline, due to parasympathetic inhibition and sympathetic stimula-
tion during physical efforts. It is described that vagal modulation is the major
effector over cardiac rhythm complexity, thus, this reciprocity that reduces RRi and
increases regularity plays an important role decreasing complexity levels [33–35].
Sympathetic activity controls epinephrine and norepinephrine release into the blood
stream, which will reach the heart, increasing HR and contraction strength to supply
metabolic demand.

The following 120 min after exercise were also analyzed and we observed slow
and gradual restoration of linear indices and RQA variables towards rest values.
When the effort is interrupted, an efferent vagus nerve reactivation occurs followed
by sympathetic activity inhibition [11, 12]. At the intensity applied in this study, we
detected an apparent sequence of events: first, SDNN and LF, which reflect global
variability, reached recovery levels; then RMSSD and HF, reflecting parasympa-
thetic modulation and, lastly, RQA variables. This result converges to the fact that
parasympathetic modulation is considered the major responsible for HR complexity
[33, 35], since the periodic dynamics manifestations, as well as the interactions
among them, the distribution of diagonal line lengths and the mean duration of a
stable interaction, represented by %RR, %DET, ENT and Lmean [16, 36],
respectively, showed recovery after autonomic branches reorganization, especially
parasympathetic system.

RQA variables are mathematically calculated but they have physiological
meanings, so that the results suggest some coherence, since they reached baseline
levels at a similar moment, between 80 and 90 min. This parallelism of time courses
was hypothesized since the studied variables are interdependent and result from the
same features (recurrence points). In this sense, looking at the subjects individually,
we detected that at 90 min, those participants who have reached pre-exercise levels
in one of the four recurrence variables, also showed recovery on other two or three
measurements.

Other studies, concerned about physiological recovery processes, mentioned at
least one hour after intensive exercise as the time required for homeostasis
restoration, including plasma catecholamines concentration removal [37], blood
lactate clearance [38] and fast/slow components of oxygen uptake recovery [39].
These organic events contribute for autonomic activity normalization due to ces-
sation of mechanical and metabolic stimuli [40].

Thus, our findings support the hypothesis that RQA is a consistent method for
heart rate dynamics assessment after exercise. Although recurrence analysis is a
nonlinear graphical method designed for nonstationary short time series analysis,
we have not found other studies that applied this method to exercise, as mentioned
before. Therefore, as “nonlinear techniques may offer advantages over linear
techniques in identifying and quantifying the modulation of interactions among
neurocardiac control mechanisms” [41], it is very worth the application of these
measures over varied conditions.

Due to the importance of postexercise restoration processes, cardiac issues
regarding performing physical exercises do not limit to the effort phase, but extend
to recovery period, when the system is still unstable and vulnerable [42]. Therefore,
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it is worthy to include RQA in the evaluation of physical conditions, likewise in
performance tests or routine ergometric exams.

There is no doubt about nonlinear relevance for HRV analyses, but its appli-
cation is not widespread due to several aspects that are still unclear, like results
interpretation and practical relevance. According to the review article of Mansier
et al. [43], “numerous methods of analysis, derived from classical signal processing
or nonlinear dynamics, are available and no single measure is more appropriate than
the others for physiological research or clinical practice” and other studies [44–47]
describe that linear and nonlinear analysis are complementary in the evaluation
processes, providing additional and non-redundant information. Therefore we
highlight the importance of enhancing the knowledge about HRV, because it helps
to understand various physiological aspects, such as cardiovascular function in
health and disease.

As a limitation of this study we can point out the selected sample, because
although all the participants had been classified as physically active, based on a
questionnaire, and they reached similar levels of aerobic capacity, it was a marked
variation in recurrence variables and linear indices. This may be due to e fact that it
was not possible to ensure the activities specificity and, since the ANS is directly
influenced by the frequency, load, and type of exercise [21, 48], it is reasonable to
expect some variability among the participants. Moreover, fitness is not the only
and not even the primary effector over autonomic modulation of cardiovascular
system, but rather it is also the result of vasomotor and breathing centers activity,
vascular autoregulation, and baroreflex and chemoreflex regulation [49, 50].

8.5 Conclusions

Based on the analysis performed in this study, we conclude that the regularity of
heart rate rhythm increases expressively after maximal exercise and the complexity
reduces. During recovery period, these conditions gradually return to rest levels and
reach recovery after 80 min, in young healthy and trained men. As the variables
showed pre-exercise levels at a similar moment and results are compatible to
physiology, RQA seems to be a suitable method to evaluate exercise and recovery
conditions.
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Chapter 9
Recurrence Analysis of Cardiac
Restitution in Human Ventricle

Humberto Arce, Ayari Fuentes and G. Hortensia González

Abstract The cardiac restitution curve describes functional relationships between
diastolic intervals and their corresponding action potential durations. Although the
simplest relationship is that restitution curves are monotonic, empirical studies have
suggested that cardiac patients present a more complex dynamical process char-
acterized, for instance, by a non-monotonic restitution curve. The purpose of this
chapter is to analyze the dynamical properties of a non-monotonic cardiac resti-
tution curve model derived from previously published clinical data. To achieve this
goal, we use Recurrence Quantitative Analysis combined with Lyapunov exponents
and Supertrack Functions in order to describe the complex dynamics underlying
non-monotonic restitution curves. We conclude by highlighting that a consequence
of the advanced complex dynamics that emerges from the aforementioned
non-monotonicity, is the increasing risk of alternant rhythms.

9.1 Introduction

Cardiovascular accidents are a major cause of death worldwide. Among the diverse
risk indicators, a significant one is the appearance of T-wave amplitude alternans on
electrocardiograms consequence of a beat-to-beat oscillation on the intracellular
action potential duration (APD) [1]. APD alternans have been studied using the
electrical restitution curve or cardiac restitution curve (CRC) since the 70’s of the
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last century, an approach based on studying the interaction between the action
potential duration and the diastolic interval (DI) [2, 3]. The simplest interpretation
is that the APD depends exclusively on the previous DI because cardiac cells only
have a cycle length time to recover its ionic kinetics [4, 5]. However, theoretical and
experimental results have suggested a memory effect that depends not just on the
immediate previous cycle [6, 7].

The relevance of this approach is partly a consequence of results showing that
the slope of the CRC can be modulated by pharmacological interventions [8–11] or
by changing the propensity for ventricular fibrillation in cardiac preparations
through pacing protocols [12–16]. In general, modeling studies consider the CRC
as a monotonically-growing exponential curve [8, 13, 17–20] and, as a conse-
quence, if the slope of the APD adaptation is higher than one, a reduction on the
stimulation interval eventually leads to a period-doubling bifurcation [2, 21].
Indeed, a CRC slope >1 amplifies APD alternans and therefore it can lead to
fibrillatory rhythms. For this reason, electrical restitution curve analysis has become
an important tool for cardiac risk prediction [4, 6, 10, 13]. However, since 1975
multiple empirical studies have reported the occurrence of non-monotonic curves in
different cardiac assays [11, 22, 23]. In particular, for the human ventricle, Franz
and colleagues found in 1985 the existence of a shoulder or local maximum in the
CRC [4, 23]. These results were exhaustively verified in 2005 by Yue et al. [24]
using a S1–S2 stimulation protocol. Furthermore, their array of non-contact elec-
trodes revealed CRC with diverse profiles in contiguous cardiac cells of the same
patient; from purely monotonic to a non-monotonic profile with a very pronounced
local maximum, a feature illustrated in Fig. 9.1a.
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Fig. 9.1 Cardiac Restitution Curve with Local Maximum (CRC-LM). a the red asterisks
correspond to 13 experimental points taken from Yue et al. [24] obtained using a S1-S2
stimulation protocol; the blue trace is the function that we used to fit the data based on the addition
of an exponential and a Gaussian functions. Activation Recovery Interval (ARI) is an indirect
measurement of the intracellular APD. DI denotes the Diastolic Interval and represents the resting
time between activations. b iteration map used to obtain the time series (see methods for an
extended explanation)
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In this work, we show that the presence of a local maximum in a human
data-driven CRC model can considerably advance the alternant behavior and, as a
result, the bifurcation diagrams (BD) for these CRC are highly complex. Our
analysis is based on a methodological extension of recurrence plots analysis known
as recurrence quantitative analysis (RQA) based on the following indexes: re-
currence times of the second type (T2), recurrence rate (RR), the maximum
diagonal length (Lmax) and the maximum vertical length (Vmax). We then com-
pare the predictions obtained using RQA with the results obtained using Lyapunov
exponents. Using both approaches we demonstrate how an increment in the local
maximum height has the effect of increasing the complex region size in the BD, as
well as the magnitude of the alternans. Finally, we describe the different transitions
observed.

9.2 Methods

9.2.1 Generation of Time-Series

In this chapter we propose a model based on data obtained by Yue et al. [24] who
used an experimental protocol that introduces an extracellular electrode array into
the right or left ventricle of a cardiac patient. This protocol allows the authors to
measure a time interval equivalent to the intracellular APD known as the activation
recovery interval (ARI). ARI was measured between the time of (dV/dt)min of the
QRS and the (dV/dt)max of the T-wave on the unipolar electrograms of the ven-
tricular endocardium employing a S1–S2 stimulation protocol based on a constant
stimulation period maintained for 2 min, with an extra stimulus intercalated at a
different time point [24].

For the purpose of this chapter we will define the CRC with local maximum as
CRC-LM and estimate the experimental points in Fig. 9.2 panel C of Yue et al.
[24]. We discarded the two shorter ones because they overlap with a third exper-
imental point. Then, in order to fit the 13 remaining points, we added a Gaussian
function to an exponential curve matching the local maximum position with the
corresponding experimental maximum, as illustrated in Fig. 9.1a. We then obtain
the following semi-quantitative function

ARI= 206− 70 exp −DI 7̸8ð Þ+20 exp − − 75+DIð Þ2 2̸20ð Þð Þ ð9:1Þ

where the Gaussian coefficient (third term) is representative of its height, h, which
in (9.1) corresponds to 20. Note that when this parameter equals zero the CRC is
monotonic, and therefore here we are interested in changing its value to evaluate the
CRC-LM deviation from the well-characterized behavior of monotonic curves.

We then consider a series of stimuli applied with a given period denoted by
P. The effect of each stimulus will be to generate a voltage deflection with a given
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ARIi followed by a diastolic interval, DIi and therefore we obtain the following
constant value of P for each series of stimulus:

P=ARIi +DIi. ð9:2Þ

Now, (9.1) states that each ARI depends on the previous DI so, we can define a
discrete map, denoted as F, such that

ARIi+ 1 = F DIið Þ ð9:3Þ

and thus from (9.2) we obtain

ARIi+ 1 = F P−ARIið Þ. ð9:4Þ

So, in order to produce a time-series for a given pair P and h, we only need to
propose an initial ARI and perform the necessary iterations. Figure 9.1 panel B
shows the results obtained with h = 30, P = 220 and with an initial ARI of 140 ms.
Note that after a short transient interval, a 2-period rhythm is achieved, that is, ARI
values repeat every two other pulses. Indeed, N-rhythm is defined as repeated
pattern every N elements, a pattern that depends on P. Longer periods move F to the
right-hand side and the shorter ones to the left, displacing the intersection of F with
the identity line. Then we have that each time-series depends on h for a given
CRC-LM and P.

Fig. 9.2 Biparametric BD using T2. T2 was obtained from RP as index. N-Rhythms are longer
as h is increased. White numbers indicate the basic rhythm observed in the corresponding band
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9.2.2 Dynamic Bifurcation Diagrams

Weused three approaches to study theCRC-LMcurves. Initially, we applied amethod
proposed by Trulla et al. [25] to obtain the BD and RQA indexes very quickly. This
method is based on incrementing in small steps the bifurcation parameter before every
new iteration of F. First, we obtained the BD for hwith values ranging from 0 to 35 ms
with steps every 0.05 ms. For each h, a modified ARI time-series was generated
starting from P = 100 ms with increments of 0.001–300 ms. Once identified the
region of interest inside the P × h space, we calculated the T2-RQA index and the
maximum Lyapunov exponent in the region defined by h from 26 to 35 ms with
0.05 ms steps and P between 245 and 280 ms with 0.0001 ms steps. The time-series
consists of 350,000 points that were sub-divided in 500-point blocks in order to
calculate T2 and the higher Lyapunov exponent. Recurrence times of the second type
(T2)were proposed byGao [26] and correspond to the recurrence time remaining after
the sojourn times in a specified epsilon are discarded. Here we obtained T2 using
CRP-TOOLS (http://tocsy.pik-potsdam.de/CRPtoolbox/).

To calculate Lyapunov exponents, we used the logarithm of the derivatives
product of F in each element of the 500 points orbit [27], moving along the
time-series with 10-point steps. Based on previously published results [25, 26], we
defined D = 2 and t = 1, as well as used the Euclidean norm and epsilon = 2−5.
Then, to compare our results with the standard stationary method, we obtained
time-series for each P and h with 2,000 values in each case, but calculated T2 and
the Lyapunov exponent based on the last 500 values of the time-series.

In the second part of this study, we followed the evolution of the system as
h changes using the stationary procedure to estimate the recurrence rate (RR), the
maximum diagonal length (Lmax) and the maximum vertical length (Vmax) from
the time-series. These indexes are part of the RQA proposed as an extension of the
Recurrence Plots [28, 29] where RR quantifies the percentage of recurrent points
falling within the specified epsilon, Lmax is the length of the longest diagonal line
segment in the plot (excluding the main diagonal line of the identity) and Vmax
measures the length of the longest vertical line in the RP. This index was proposed
later [30, 31] and reveals information about the time duration of the laminar states,
allowing the investigation of intermittency possible.

Finally, in order to study the evolution of laminar zones, we obtained the nor-
malized recurrence frequency (NRF) with a maximum that coincides with the super
track functions (STF) for the CRC-LM under consideration. NRF is a histogram
obtained for each P that measures how a time-series recurs to some particular value.
The extreme ARI values in all the BD were identified; these intervals were divided
in 0.001 ms bins to count the ARI values and normalized to the highest frequency
found. The obtained values allowed us to analyze the most visited frequency bands
in the BD. STF were obtained following Oblow [32]. In the map defined by F the
invariant point corresponds to the maximum point, so we considered this value as
the first s1 function that results constant. The following sn are then the n-th iteration
value obtained from the map for each BD parameter, in our case P.
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9.3 Results

9.3.1 Dynamic Method

The most relevant result we found is that, for a clinically and physiologically relevant
context, the presence of a local maximum markedly advances the initiation of alter-
nans. Furthermore, as alternans are cardiac risk predictors, we conclude that CRC-LM
increases the risk for arrhythmia. We studied local maxima from 0 to 35 ms in height,
with increments of 0.05 ms and, for each h studied, P was taken as a bifurcation
parameter starting in 100 ms and going to 300 ms with 0.001 ms steps. When h = 0
the CRC corresponds to a monotonic curve and alternans appear when P is reduced to
121.3 ms. Moreover, increasing h leads to a new alternans zone. When h = 10.5 ms
we see that the system is in a 2-rhythm alternant pattern between 244 and 246 ms.
A larger value of h has the effect of increasing this region and therefore its behavior is
more complex. For h = 11, the alternans region spans from 243 to 250 ms, while for
h = 35, from 223.7 to 285.9 ms. To carefully analyze this alternans region, we
defined the h interval between 26 and 35 ms and P from 245 to 280 ms and calculated
T2 as well as the higher Lyapunov exponents using Trulla et al.’s method [25] with
0.0001 ms variations in the bifurcation parameter.

Figure 9.2 presents the results obtained for T2 index. The period P (in ms) is on
the horizontal axis, and the height h (also in ms) on the vertical axis. T2 is indicated
by the color bar at right. The general shape of the plot is of colored bands similar to
upwards parabolas barely shifted to the right. As h grows, the rhythms (denoted
with white numbers) move simultaneously inward from the left and right border,
and new N-rhythms emerge. This pattern is interrupted by shorter periodicity bands
(shown in blue).

Figure 9.3 shows the results obtained for the Lyapunov exponents. For clarity
purposes, exponents <–0.2 have been truncated. Interestingly, this Figure has the
same bands pattern as those shown in Fig. 9.2. The frontiers between 2, 4 and
8-rhythms are highlighted because Lyapunov exponents in these zones are very
close to zero. We can see that zones with positive exponents (corresponding to
chaotic regions) are related to zones with T2 higher than 20 in Fig. 9.2. In this
Figure, we sketched a couple of white dotted horizontal lines; the first one in
h ∼ 26.9 ms is the highest limit to the periodic behaviors. It is important to notice
that in the region between the two lines, chaotic behavior without laminar states can
be present, while laminar states exist only above the higher line.

9.3.2 The Stationarity Method

For each time-series obtained with this procedure, the last 500 points were taken
into account in order to obtain the RQA indexes (RR, Lmax and Vmax). Figure 9.4
illustrates the behavior of the system in the period-doubling bifurcation zone, from
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h = 10.5 up to approximately h = 26.95. For h = 10.5, the alternans zones is only
of 2 ms. Interestingly, alternans magnitude calculated as the difference between
highest and shortest ARI is 1.4 ms. In Fig. 9.4a shows the BD for h = 20 ms.
Although alternans are still between 2-period rhythms, their magnitude has grown
to 37.5 ms (and therefore arrhythmia risk is increased) and the width of the region
where they exist is of 40 ms. We can see that alternans magnitude reduces as
P grows.

Figure 9.4b displays the typical bubble shape of the BD associated with this
system. Increments in P produce period-doubling bifurcations in a sequence 1, 2, 4,
…2n where n depends on h. As P increases, the inverse sequence 2n, …4, 2, 1
develops. Figures 9.4c and 9.4d show RR (Fig. 9.4c), Lmax and Vmax (Fig. 9.4d)
indexes. The RR inverse is the rhythm value of the corresponding orbits. An Lmax
change in short steps is signaling transitions between periodic rhythms.

Figure 9.5 shows the behavior in the h region where chaos without laminar states
can exist, an interval that spans from h = 26.95 to h = 29.1 ms. Figure 9.5a shows
the BD for h = 26.95 ms, while Fig. 9.5b shows the evolution of Lmax and Vmax
with P. It can be noted that there is a marked reduction in Lmax which is related to
the appearance of chaotic activity, in this case the region has 2 ms in size. In
Fig. 9.5c it is shown the BD for h = 29.1 ms and from Fig. 9.5d we can infer that

Fig. 9.3 Biparametric BD for Lyapunov exponent. Periodic states are found exclusively under
the bottom white line, while chaos without laminar states can be found between both dotted white
lines. Above the top dotted white line we can find chaos with laminar states. To recognize them we
used the Lmax and Vmax evolution, explained afterwards in the text and shown in Figs. 9.4, 9.5
and 9.6
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chaotic region size increased more than 10 ms. In this case, in the interior of the
chaotic region there are clearly distinguishable periodic windows. As Vmax is not
different than zero (during the entire h interval) we know that there are no laminar
states. The h interval for chaotic behavior and laminar states is from h = 29.1 to
h = 35 ms, the latter being the highest h we considered in this study. Figure 9.6
shows the behavior found in this region.

Figure 9.6a displays the BD with the two chaotic bands that in Fig. 9.5c were
unjointed and now partially merged, while Fig. 9.6b shows Lmax and Vmax for
P values ranging from 262.2 to 269.3 ms, a region where there are windows with
Vmax different from zero and therefore laminar states occur in these windows. To
illustrate these states, we produced the corresponding RP for P = 262.2 ms that
leads to chaotic behavior (only the last 200 points in the time-series were consid-
ered in this plot). It is important to mention that here, as in all the cases previously
presented, we consider D = 2 and t = 1. Now, we can see that the observed pattern
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Fig. 9.4 Periodic Rhythms. In a, two consecutive period-doubling bifurcations are shown,
occurring at h = 20 ms. b shows two bifurcation cascades from 2 to 32-rhythms and vice versa.
c shows that recurrence density (RR) reflects the BD rhythms. d shows that Vmax = zero because
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is characterized by small diagonals whose length is related with the exponential
divergence of their phase space trajectories [31]. Figure 9.6d displays the RP for the
last 200 points in the time-series generated when P = 266.3 ms. Note how small
black blocks can be observed, corresponding to consecutive ARI with similar
values.

To follow in detail the evolution of the region that presents laminarity, we
calculated the NRF (see methods) for the case h = 30 ms. We see that the highest
ARI value is slightly smaller than 210 ms and the lowest is slightly larger than
165 ms. We divided the interval in 45,000 equidistant windows and, for each P,
counted the amount of elements in every window.

We also produced a histogram for the normalized time-series (with frequency
values ranging from 0 to 1). Figure 9.7a shows the ARI when NRF = 1. This plot
shows the surrounding lines that contain the two merged chaotic zones. In Fig. 9.7b,
the first four STF are superposed to the plot in Fig. 9.7a. We see that the STF and
the surrounding lines are in exact correspondence.
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Fig. 9.5 Chaos without laminar states. a displays the BD for h = 26.95 ms. b shows that for
this h there are already chaotic states since Lmax has sudden drops in respect to its value under
periodic regimes. c shows BD for h = 29.1 ms and d indicates that the main effect due to h
increase is the expansion of the region presenting chaos, revealed as Lmax index has more frequent
drops
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Figure 9.7c displays ARI values with STF > 0.5. Note that it is possible to
identify new accumulation lines immersed in the BD; these lines coincide with the
next four STF shown in Fig. 9.7d. The STF intersecting points are called star points
[32] and we can observe two of them (indicated with black arrows) in Fig. 9.7d.

Finally, we observe that the laminar states occur inside the interval between
these two star points. In Fig. 9.8 we show the growth of this inter-star zone with
h variation. In Fig. 9.8a we have the case previous to the star point’s emergence; in
Fig. 9.8b there are already two star points with the intermittence zone between
264.22 and 266.58 ms. For h = 30 ms, shown in Fig. 9.8c, this interval ranges
from 262.2 to 267.2 ms. In Fig. 9.8d, for h = 35 ms, the P interval spans from
257.9 to 278.8 ms, and shows a region where 3-period rhythm is present. This
region is also observed in the right upper corner of Fig. 9.2. The P intervals for
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Fig. 9.6 Chaos with laminar states. a displays the BD for h = 30 ms. Note how in the middle
of the plot, two chaotic zones are superposed. b shows that this superposition leads to a Vmax
different from zero for some values of P. c and d show the RP built with 200 points, D = 2,
delay = 1, epsilon = 0.2. c corresponds to P = 262.2 ms where there is chaotic behavior. d shows
that, for P = 266.3 ms, there are laminar states. Recurrence is calculated after each stimulus
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these reported laminar states were verified by calculating the corresponding Vmax.
A final observation is that if h = 29.3 ms and there are not yet star points, there
exists a very short laminarity zone ranging from 264.6 to 265.8 ms.

9.4 Discussion

CRC has been employed before as a theoretical and experimental tool to study the
occurrence of alternans in portions of cardiac tissue or in isolated cardiac cells. The
first authors to propose a graphic method to predict this phenomenon were Nolasco
and Dahlen [3]. In 1984 Guevara et al. proposed an iteration map over the CRC
obtained from the embryonic chick cardiomyocytes [2]. They showed that by
reducing the stimulation period, a period-doubling bifurcation was achieved,
moving from 1-period rhythm to a 2-period rhythm in the APD. This bifurcation
occurred when the fixed-point in the map has a slope equal to 1. Later, it was shown
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Fig. 9.7 Super Track Functions. a displays the plot for NRF = 1. b shows the superposition of
points in a with the first four STF. In c, points with NRF > 0.5 are shown, while d shows the first
eight STF superposed to points in c. Arrows indicate the star points where laminar states can be
found in between
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that drugs like verapamil (a calcium channel blocker) modified the slope of the
CRC and consequently the bifurcation behavior in cardiac assays [5, 10]. However,
other studies have found that, in some cases, the alternant behavior is reached even
with slopes less than 1, suggesting that theoretical models should consider further
complexities, for instance including memory effects [6, 7, 12].

The experimental results for the human ventricle CRC of cardiac patients
obtained by Franz and colleagues, showed the existence of a local maximum in
some of the ventricular cells, contiguous to others with monotonic CRC. Further-
more, they showed that inhomogeneous conditions can prevail in the ventricle of a
cardiac patient [24]. Although most of the experimental studies can be made in very
controlled settings, this is, of course, faraway from clinical conditions [16, 20, 22].
Therefore, exploring different bifurcation scenarios for the onset of alternans in
different CRC profiles is still a relevant task.

Here we have modeled the profile of the non-monotonic CRC as the addition of
two functions, an exponential and a Gaussian function, adjusting the maximum of
the Gaussian function to the local maximum of the experimental curve. We showed
that this local maximum leads to an advance in the emergence of alternans of
122.7 ms respect to the observed P in a monotonic CRC. Using analytical tools
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derived from RQA, we described how the alternans region is increased as the
parameters are varied, as well as how the alternans magnitude and complexity of the
system are modified. Also, RP was shown to be a very useful tool to study the
complex behaviors nested in the irregular zones. In summary, we found that, as
h grows, a period-doubling bifurcation in direct and inverse cascades appears,
characterized by chaotic zones without laminar states and subsequently by chaotic
zones with laminar states. We showed that the evolution of these regions can be
followed-up using the STF built with the orbits obtained from time-series generated
from the CRC-LM.

Although to our knowledge there is no experimental data in human ventricle to
contrast with our theoretical results, there is a report by Watanabe et al. [11] that
qualitatively reproduced our findings employing sheep epicardial strips with a
biphasic CRC. Indeed, varying the stimulation period from 200 to 110 ms, the
sequence of rhythms observed was 1:1, irregular, 8:8, 4:4, irregular, 2:2. This
sequence starts with short couplings (1:1) goes through longer coupled rhythm to
finish again with a short coupling (2:2) and with irregularity windows in between. In
our analysis, we showed that, for h values higher than 26.95 ms, short stimulation
periods produce a period-doubling bifurcation cascade that ends in chaotic behavior.
Furthermore, subsequent stimulation period reduction leads to an inverse bifurcation
cascade that ends in a 1-period rhythm, again with irregular behavior in between.

As we mentioned before, alternans are considered a cardiac risk predictor. In
clinical examinations, alternant T-waves are generally not present without chron-
otropic challenge. Here we have shown, in a model for cardiac patient ventricle
cells, that CRC with a local maximum advances the response to accelerated acti-
vation, as well as increasing the complexity of the system. However, it is not clear
how this complex behavior propagates or influences the neighboring cells which
may or may not have a monotonic CRC. A simulation considering an expanded
range of CRC would be important for a better understanding of the evolution and
dynamics of the CRC-LM and, hopefully, contribute in the development of a new
type of indexes or cardiac risk metrics.
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Chapter 10
The Early Phases of Epileptogenesis
Induced by Status Epilepticus Are
Characterized by Persistent Dynamical
Regime of Intermittency Type

Massimo Rizzi, Federica Frigerio and Valentina Iori

Abstract Pre-clinical studies aimed to test potential anti-epileptogenic therapies by
using the animal models of epileptogenesis induced by status epilepticus (SE),
highlighted that the early days following the end of this primary insult represent a
crucial temporal window for the subsequent development of epilepsy. In this study,
we characterized the EEG dynamics during such crucial period of epileptogenesis,
according to the conceptual framework of nonlinear dynamical systems. To this aim,
we analyzed by recurrence quantification analysis (RQA) the EEG signals associated
to the early days of epileptogenesis induced by SE in rodents according to two
well-known experimental protocols, i.e., (i) SE induced by electrical stimulation of
the hippocampus in rats (n = 7) and (ii) SE induced by the intra-amygdala adminis-
tration of kainic-acid in mice (n = 6). We show that the EEG signals during the early
1–2 days post-SE are characterized by an enhanced and persistent rate of occurrence of
dynamical regimes of intermittency type. This finding is common to both models of
SE, hence it could represent the dynamical hallmark of pro-epileptogenic insults and
could correlate with the efficacy of such insults to promote functional changes leading
to the development of epilepsy. Future works aimed to deepen our findings could lead
to the identification of a potential prognostic factor of the development of epilepsy as
well as improve the portability of pre-clinical studies aimed to target new potential
therapeutics designed to prevent the development of epilepsy.

10.1 Introduction

Brain insults as, for instance, traumatic brain injury, stroke or infectious diseases,
are known as risk factors for the development of epilepsy and the prevention of this
neurological disorder in individuals at risk still represents an important medical
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challenge. In this context, the term epileptogenesis (or latent period) is referred to as
the period which elapses between the occurrence of a pro-epileptogenic insult and
the emergence of the first spontaneous seizure. Pre-clinical studies accomplished by
using several animal models of epileptogenesis have highlighted the occurrence of
many cellular and functional alterations in the brain tissue. Among these alterations,
to name a few, the neurodegeneration of brain tissue and the reorganization of the
molecular architecture of individual neurons, as well as alterations of the
blood-brain barrier permeability and the alteration of patterns of expression of
molecules related to the immune response [1]. Targeting of some of these patho-
logical mechanisms has shown favorable effects on the development of epilepto-
genesis in clinical studies (for a comprehensive review see [2], and references there
in), pointing out that all cases of potential antiepileptogenic therapies which show a
beneficial effect are to be administered during the early days of the latent period,
often soon after the end of the primary insult [2]. This bulk of evidence strongly
suggests that the very early days following the induction of a pro-epileptogenic
insult represent a crucial time window for the development of epilepsy.

Many efforts are currently aimed to investigate on the potentially epileptogenic
cellular and functional alterations occurring during such crucial early phases of
epileptogenesis. However, much less effort is aimed to characterize the brain
electrical activity which subtend the EEG during the same period. It cannot be
underestimated that the characterization of the nature of the dynamics of the EEG
activity during the latent period may contribute to shed light on the mechanisms of
epileptogenesis as well as suggest new strategies of therapeutic intervention aimed
to prevent the development of epilepsy. Accordingly, in this study we characterized
the EEG dynamics occurring during the early phases of epileptogenesis, according
to the paradigm of nonlinear dynamical systems. To this aim, we analysed the EEG
signals associated to two well-known experimental models of status epilepticus
(SE) induced in rodents, i.e., SE induced by the electrical stimulation of the hip-
pocampus in rats and SE induced by intra-amygdala administration of kainic-acid in
mice. As analytical method we specifically choose the recurrence quantification
analysis [3], a valuable mathematical tool, aimed to efficiently characterize the
nonlinear dynamics embedded in short, noisy and nonstationary time-series, being
the latter two features intrinsically associated to the nature of EEG signals [3–5]. In
the context of epilepsy, several research groups have already applied the RQA to
analyse EEG signals, gaining intriguing results (for a reliable and updated survey of
the state-of-the art of the application of the RQA to epileptic EEGs, see http://www.
recurrence-plot.tk/bibliography.php). Nonetheless, one notices that all the available
studies were aimed to predict/detect the occurrence of seizures or classify epileptic
EEG patterns in cases of overt epilepsy in humans or following acute seizures
induced in experimental animals. At present, despite the growing importance of the
experimental models of SE in the epilepsy research, the characterization of non-
linear EEG dynamics during the development of epileptogenesis is lacking.
Therefore, the application of the RQA to investigate the EEG dynamics during the
early phases of epileptogenesis can be reasonably considered not only as a novelty
per se but also as a necessity to better characterize these models.
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10.2 Methods

10.2.1 Animals

Male Sprague-Dawley rats (275–300 g; Charles-River, Calco, Italy; n = 7) and
male C57BL6N mice (∼20 g; Charles-River, Calco, Italy; n = 6) were maintained
in SPF facilities at the Mario Negri Institute and housed at a constant room tem-
perature (23 °C) and relative humidity (60 ± 5 %) with free access to food and water
and a fixed 12 h light/dark cycle.

10.2.2 Models of Epileptogenesis

A major contribution to the understanding of mechanisms involved in epileptoge-
nesis comes from animal models where the primary pro-epileptogenic insult is the
status epilepticus (SE) [6, 7]. SE is a condition defined as a seizure that persists for
at least 5–10 min, or it repeats itself frequently enough so that there is not a
resolution of contiguity [8]. In humans, SE may occur in association with different
forms of brain injury and conditions such as stroke, brain trauma, withdrawal of
anti-epileptic drug treatment and exposure to toxic nerve agents. As an experi-
mental model of epileptogenesis, SE is commonly induced in rodents by electrical
stimulation of specific brain areas or by the systemic or local administration of
convulsive drugs [2, 6, 7, 9, 10]. In this work, we exploited the EEG signals
originated from two well-known experimental models of SE, i.e., SE induced by the
electrical stimulation of the hippocampus in rats [11, 12] and SE induced by
intra-amygdala administration of kainic-acid in mice [13, 14].

The following experimental procedures were conducted in conformity with
institutional guidelines that are in compliance with national (D.L. n.26, G.U. March
4, 2014) and international guidelines and laws (EEC Council Directive 86/609,
OJ L 358, 1, December 12, 1987, Guide for the Care and Use of Laboratory
Animals, U.S. National Research Council, 1996), and were reviewed and approved
by the intramural ethical committee.

10.2.2.1 Surgical Procedure and Induction of the SE for the Rat
Model of Epileptogenesis

Rats were surgically implanted under 1.5 % isoflurane anesthesia with 2 bipolar
Teflon-insulated stainless-steel depth electrodes placed bilaterally into the temporal
pole of the hippocampus (from bregma, mm: AP − 4.7; L ± 5.0; −5.0 below dura,
[15]). Two screw electrodes were positioned over the nasal sinus and the cerebellum,
and used as ground and reference electrodes, respectively. Electrodes were connected
to a multipin socket and secured to the skull by acrylic dental cement. After surgical
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procedures, rats were treated locally with Cicatrene powder (Neomicyn; Bacitracin;
Glicyne; L-Cistein; DL-Treonin) and injected with Ampicillin (100 mg/kg, s.c.) for 4
days to prevent infections. Rats were allowed to recover from surgery in their home
cage for 7–10 days. Before electrical stimulation, EEG baseline hippocampal activity
was recorded in freely-moving rats for 24 h. Then, rats were unilaterally stimulated
(50 Hz, 400 μA peak-to-peak, 1 ms biphasic square waves in 10 s trains delivered
every 11 s) in the CA3 region of the ventral hippocampus for 90 min to induce SE
according to a well-established protocol [11, 12]. SE was defined as the presence of
continuous spike activity with a frequency higher than 0.5 Hz intermixed with high
amplitude and frequency discharges lasting for at least 5 s, with a frequency of≥8 Hz
and an amplitude twofold-higher than the baseline. Spikes were defined as sharp
waves with amplitude of at least 2.5-fold higher than the baseline and duration lower
than 100 ms, or as a spike-and-wave with duration lower than 200 ms [9]. The end of
SEwas determined by the occurrence of inter-spike interval >2 s.No pharmacological
intervention was done to stop SE since nomortality is observed in this model. In order
to ascertain the development of epilepsy according to this model of epileptogenesis,
rats were continuously EEG recorded (24 h/day) from SE induction until 2 sponta-
neous EEG seizures occurred. EEG was recorded using the Twin EEG Recording
System connected with a Comet AS-40 32/8 Amplifier (sampling rate 400 Hz,
high-pass filter 0.3 Hz, low-pass filter 70 Hz, sensitivity 2000 mV/cm;
Grass-Telefactor, West Warwick, R.I., U.S.A.)

For this model of epileptogenesis, we considered for nonlinear analysis, the EEG
signal which originated from the hippocampal electrode used for the induction of
the SE by electrical stimulation.

10.2.2.2 Surgical Procedure and Induction of the SE for the Mouse
Model of Epileptogenesis

Mice were surgically implanted under general gas anesthesia (1–3 % isoflurane in
O2) and stereotaxic guidance. A 23-gauge cannula was unilaterally positioned on top
of the dura mater for the intra-amygdala injection of kainic acid (from bregma, mm:
nose bar 0; anteroposterior −1.06, lateral −2.75) [16]. A nichrome-insulated bipolar
depth electrodes (60 µm OD) was implanted in the dorsal hippocampus ipsilateral to
the injected amygdala (from bregma, mm: nose bar 0; anteroposterior –1.8, lateral
1.5 and 2.0 below dura mater) [16]. Additionally, a cortical electrode was implanted
onto the somatosensory cortex in the contralateral hemisphere. Electrodes were
connected to a multipin socket (PlasticOne Inc., USA). One week after surgery, mice
were connected to the EEG set up and the SE was induced by the injection of kainic
acid (0.3 μg in 0.2 μl) in the basolateral amygdala in freely moving mice using a
needle protruding of 3.9 mm below the implanted cannula. SE developed after
approximately 10 min from kainic acid injection, and was defined by the appearance
of continuous spikes with a frequency >1.0 Hz. Spikes were defined as sharp waves
with an amplitude at least 2.5-fold higher than the baseline and a duration of <20 ms,
or as a spike-and-wave with a duration of <200 ms [17].
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After 40 min from SE onset, mice received diazepam (10 mg/kg, ip) to improve
their survival. SE lasted for 7.0 ± 1.0 h and its end was determined by the
occurrence of inter-spike interval >2 s. In order to ascertain the development of
epilepsy according to this model of epileptogenesis, mice were continuously EEG
recorded (24 h/day) from SE induction until 2 spontaneous EEG seizures occurred.
EEG was recorded using the Twin EEG Recording System connected with a Comet
AS-40 32/8 Amplifier (sampling rate 400 Hz, high-pass filter 0.3 Hz, low-pass filter
70 Hz, sensitivity 2000 mV/cm; Grass-Telefactor, West Warwick, R.I., U.S.A.)

For this model of epileptogenesis, we considered for nonlinear analysis, the EEG
signal which originated from the hippocampal electrode positioned ipsilaterally to
the site of intra-amygdala administration of kainic-acid.

10.2.3 Selection Criteria of the Time Windows
of Epileptogenesis and the Related EEG Epochs,
for Nonlinear Analysis

The duration of the epileptogenesis was variable. For rats, which underwent the
protocol of induction of SE by electrical stimulation of the hippocampus, the duration
of the latent period ranged from 7 to 11 days (mean ± SD = 9.17 ± 1.60) whereas for
mice, which underwent the protocol of induction of SE by the intra-amygdala
injection of kainic-acid, ranged from 6 to 8 days (mean ± SD = 6.80 ± 0.84).
However, we focused our attention on the early days of epileptogenesis, since they
were shown as crucial for the development of epilepsy. Specifically, we evaluated
EEG signals associated to the early 5 days of epileptogenesis for rats and the early 4
days of epileptogenesis for mice. This criterion allowed to evaluate comparable time
windows of epileptogenesis between the two models of induction of SE. Indeed, for
rats, the early 5 days of epileptogenesis corresponded to 55.99 ± 10.03 % (mean ±
SD) of the total time of epileptogenesis, whereas for mice, the early 4 days of
epileptogenesis corresponded to 59.52 ± 7.14 % (mean ± SD) of the total time of
epileptogenesis. Additionally, in authors’ opinion, these temporal windows were
sufficiently far (at least 2 days) from the onset of the first seizure, thus reducing the
risk of bias due to the possibility of the emergence of mechanisms leading to the onset
of the first seizure.

The EEG signals associated to each day of the selected time windows, were
sampled at 400 Hz and analog-to-digital converted with 12 bit precision. Respect to
the original EEG recordings which were 0.3–70 Hz band-pass filtered, we further
restricted the range of EEG frequencies according to evidence suggesting a more
circumscribed frequency band (<50 Hz) as being more relevant to the aim of our
investigation. Indeed, significant changes of the power spectral density of the EEG
frequency bands, ranging from delta (1–4 Hz) to low-gamma frequency band
(30–50 Hz), were shown to occur in cortical structures, as the hippocampus, during
the early phases of epileptogenesis [18, 19]. These changes show a temporal profile
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similar to that of cellular and functional alterations occurring in the brain during the
latent period, and they correlate with the emergence of well-known comorbidities of
epilepsy (e.g., spatial memory deficits and/or social behavioral dysfunctions), which
were shown to develop during the early phases of epileptogenesis [18, 19].
Therefore, it is reasonable to expect that frequency bands below 50 Hz are those
bearing the majority of information on EEG dynamics during the early phases of
epileptogenesis. Accordingly, also considering the electrical noise due to the fre-
quency of the power grid (50 Hz), we applied a low-pass 50 Hz filter to all EEG
recordings. These recordings were also visually inspected for removal of evident
gross artifacts, if any. Successively, in the time interval from 01:00 pm to 07:00 pm,
we extracted 12-s epochs (i.e. 4800 data points) every 10 min of each EEG signal.
For rats, the same procedure was applied also to basal EEG recordings obtained
before the induction of the SE, whereas for mice there were no basal EEG
recordings available. We chose the time interval from 01:00 pm to 07:00 pm since
the ordinary tiding up of the animal housings is usually accomplished in the
morning and the light/dark cycle switches from one state to the other at 07:00
am/pm, respectively. Therefore, we decided to extract EEG epochs during this
period in order to minimize the potential effects of environmental stress and vari-
ation of circadian rhythms on the EEG dynamics of the animals. Each epoch was
then analyzed by the recurrence quantification analysis.

10.2.4 The Recurrence Quantification Analysis

All the possible states of a nonlinear dynamical system are usually represented as
trajectories in the phase (or state) space, being a trajectory the depiction of the time
evolution of a set of states of the system. A fundamental property of nonlinear
dynamical systems is the recurrence of states, which are expected to become
arbitrarily close to each other after a sufficient time [20]. By exploiting this property
of dynamical systems, Eckmann and colleagues [21] introduced the technique of
the Recurrence Plot (RP), which is a graphical representation of a square matrix, in
which the matrix elements correspond to those times at which a state of a dynamical
system recurs. Technically, the RP reveals all the times when the phase space
trajectory of the dynamical system visits roughly the same area in the phase space
[22] (see also www.recurrence-plot.tk). The RPs allow to represent any m-dimen-
sional phase space trajectory through a two-dimensional plot of its recurrences,
since each recurrence of a state at two different times is marked within the
two-dimensional squared matrix according to a binary decision, e.g., ones and zeros
(black and white dots in the plot) to denote if these two states are recurrent
(one/black) or not (zero/white). From the graphical perspective, the RPs exhibit
characteristic large scale and small scale patterns denoted by Eckmann et al. [21] as
typology and texture, respectively. Importantly, the small scale structures of texture
consist of single dots, diagonal lines as well as vertical and horizontal lines. Single,
isolated recurrence points can occur if states are rare and can be due to chance or
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noise. A diagonal line occurs when a segment of the trajectory is parallel to another
segment, i.e. the trajectory visits the same region of the phase space at different
times. The length of a diagonal line is determined by the duration of such similar
local evolution of the trajectory segments and was shown to be inversely related to
the extent of the Lyapunov exponent. A vertical (horizontal) line marks a time
length in which a state does not change or changes very slowly, as in laminar states
(intermittency).

As intended since their introduction, RPs allow the visual inspection of high
dimensional phase space trajectories by giving hints about their time evolution even
in case of short, noisy and nonstationary dataset. However, although important
behavioral properties of dynamical systems can be qualitatively inferred from a
visual inspection of RPs by a well-trained investigator, being RPs intrinsically a
visualizing tool, their usefulness is nevertheless limited when one considers to
exploit RPs extensively as analytical technique. Such limitation was totally
removed by Zbilut and Webber [3] who introduced the Recurrence Quantification
Analysis (RQA), a powerful analytical technique based on the mathematical defi-
nition of variables introduced in order to measure some important properties of a
nonlinear dynamical system by mean of an appropriate quantification of the small
scale structures of the corresponding RP. At the present state of development of the
RQA, several variables have been introduced [3, 23] (see also http://www.
recurrence-plot.tk). In this work, we considered the variables which have been
defined as follows:

• Recurrence Rate (REC), which represents the density of recurrence points in a
RP. The recurrence rate corresponds with the probability that a specific state will
recur and is expressed as

REC=
1
N2

� �
∑
N

i, j=1
Ri, j ð10:1Þ

with Ri, j = Θ (RADi − || xi − xj||), xi ∈ ℜm, i, j = 1… N, where N is the number of
considered states, xi, RADi is a threshold distance (a.k.a. radius), || · || a norm and
Θ(·) the Heaviside function;

• Determinism (DET), which is the fraction of recurrence points forming diagonal
lines. Diagonal lines represent epochs of similar time evolution of states of the
system. Therefore, DET is related with the determinism of the system and is
expressed as

DET =
∑N

l= lmin lPðlÞ
∑N

l=1 lPðlÞ
ð10:2Þ

where l is the diagonal line length considered when its value is ≥ lmin and PðlÞ is the
probability distribution of line lengths;
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• Longest Diagonal Line (DMAX), which measures the dynamical stability of the
system, being inversely related to the largest Lyapunov exponent

DMAX =max li, i=1, . . .Nif gð Þ ð10:3Þ

• Shannon Entropy (ENT) of the distribution of the line lengths, which is a
measure of the complexity of the recurrence structure

ENT = − ∑
N

l= lmin
pðlÞ ln p lð Þ ð10:4Þ

where p lð Þ=PðlÞ N̸l is the probability to find a diagonal line of exactly length l in
the RP, being Nl the total number of diagonal lines.

• Laminarity (LAM), which is the fraction of recurrence points forming vertical
lines. Vertical lines represent unchanged or slowly changing states of the system
and are associated to laminar states. LAM is defined as

LAM =
∑N

v= vmin vPðvÞ
∑N

v=1 vPðvÞ
ð10:5Þ

where v is the vertical line length considered when its value is ≥ vmin and PðvÞ is the
probability distribution of vertical line lengths;

• Trapping time (TT), which represents the average length of the vertical lines

TT =
∑N

v= vmin vPðvÞ
∑N

v= vmin vPðvÞ
ð10:6Þ

• Longest Vertical Line (VMAX), which represents the length of the longest
vertical line

VMAX =max vi, i=1, . . . ,Nvf gð Þ ð10:7Þ

The computation of RQA variables is based on the preliminary reconstruction of the
trajectories of the system in a phase space. In the specific case of a univariate time
series, as the EEG, such reconstruction is based on the so-called time
delay-embedding procedure as introduced by Takens [24]. The exceptional use-
fulness of the Takens’ theorem can be particularly appreciated in the fields of
biomedicine and life sciences in that the variables determining the underlining
dynamics of systems are often unknown, and time series of just one single
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observable can be the only data available. According to the Takens’ theorem, the
topological features of any high-dimensional system consisting of multiple coupled
variables can be reconstructed by measuring just a single variable of that system
[24, 25]. In other words, a single observable of the system is sufficient to allow the
reconstruction of the trajectories in a high-dimensional phase space. This phase
space is different from the ‘true’ phase space, and the reconstructed trajectories do
not preserve the geometric shape as they would have had in the ‘true’ phase space.
However, the reconstructed phase space preserves the properties of the dynamical
system, since they are unaffected by smooth coordinate changes (topological
invariants). A major advantage of the Takens’ theorem is in that the ‘true’ phase
space of the system can be totally unknown, as it is often the case in the context of
biological systems. A single point of a trajectory in a phase space reconstructed
according to the Takens’ theorem, represents a vector made of m time points
selected from the time series, where two consecutive time points are delayed by a
predetermined time lag (a.k.a. time delay). The number of time points (m) chosen as
components of vectors is referred to as the embedding dimension of the time-series.
Therefore, the reconstructed phase space has m-axis, one for each of the m com-
ponents of the vector. Besides the embedding dimension and the time delay, RQA
requires to set a threshold value, the radius (RAD), by which a state point
embedded in the reconstructed phase space can be considered as being recurrent, as
defined above, hence included in the recurrence matrix.

The embedding dimension, the RAD and, to a lesser extent, the time delay are the
most important parameters for an accurate RQA and their determination is a crucial
step. To this aim, we accomplished a preliminary scaling analysis of subsets of
epochs, according to the strategy suggested by Webber and Zbilut [25]. Scaling
analysis allows to determine sets of values of embedding dimension and RAD for
which the nonlinear deterministic patterns (if any) of the time series under investi-
gation are sufficiently unveiled. A significant deterministic pattern to consider as a
reference for an appropriate choice of parameters is the exponential scaling behavior
of the variable REC versus the variable RAD. This scaling behavior is graphically
manifested as a linear tract on a log-log plot of REC versus RAD and is usually
expected to occur at low percentage values of REC, typically from 0.05 to 2 %.
However, we noticed that the common approach of choosing a fixed RAD and then
to determine the RQA variables might not be the most appropriate method for the
analysis of our EEG epochs. Indeed, the log-log plots of REC versus RADmay show
a linear tract of variable extension. Therefore, a fixed RAD does not ensure that the
percentage of REC is within the linear range of the log-log plot of REC versus RAD,
being this condition a stringent requirement for an appropriate estimation of RQA
variables [25]. Therefore, in our study, it was advisable to consider the RAD as a
variable and the REC as a parameter that we set to 1 %, a percentage which assured a
sparse recurrence matrix and the preservation of the linear relationship of log-log
plot of REC versus RAD in all cases considered. Additionally, scaling analysis
suggested as a good choice for the embedding dimension, any value ranging from 10
to 15, hence we choose 12. We decided to not set a time delay common to all epochs
and to determine the appropriate time delay for each epoch by considering the first
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local minima of the mutual information function. The value of the time delay was
used also for the determination of the Theiler’s window [26], that we calculated
according to Gao [27], i.e., [(m − 1) * (time delay)], thus reducing the influence of
tangential motion in the estimate of the RQA variables [23].

The recurrence matrix was normalized to the maximum distance [25] and the
variable RAD was expressed as percentage of the recurrence matrix, whereas the
distance between vectors was computed as Euclidean distance. Additionally, the
minimum diagonal line length was set at a conservative value of 5, since the
observational noise was shown to significantly affect the value of DET by
increasing the amount of diagonal lines with spurious diagonal segments with
length ≤4 [28]. The minimum vertical line length was set at the default value of 2,
since there are no indications available on the effect of noise on this parameter.

10.2.5 Surrogates Technique and Test of Significance

The significance of each RQA variable was tested against the null hypothesis of
being the expression of a Gaussian linear stochastic process. According to the
surrogate data technique as introduced by Theiler [26, 29], and similarly to Ouyang
and colleagues [30], for each 12-s EEG epoch, we generated 50 surrogate epochs by
the technique of the inverse Fourier transform with phase randomization [29, 31],
thus creating surrogate epochs which preserved the Fourier amplitude as well as the
same distribution of values of the original epoch, with the exception that nonlinear
determinism, if any, was disrupted. For each of the 50 surrogate epochs, the RQA
variables were calculated and then the so-called Theiler’s sigma (TS) was deter-
mined [26, 30] as follows:

TS=
VARorig −VARsurr
�� ��

SD VARi
surr

� � ð10:8Þ

where VARorig refers to any RQA variable (RAD, DET, LAM, etc.…) calculated for
the original EEG epoch, and VARsurr and SD VARi

surr

� �
refer to the mean and the

standard deviation of the same variable as calculated considering the 50 surrogates
created from that original EEG epoch. For any RQA variable, when its corre-
sponding value of TS > 1.96, the amplitude of that variable reflects actual nonlinear
processes occurring in the original EEG epoch. In this work, only RQA variables
which passed the TS test were considered.

10.2.6 Computational Resources and Software

The time for calculation of the RQA variables was considerably shortened by the
High-Throughput-Computing Technology, a.k.a. Grid Computing Technology [32].
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A Grid infrastructure represents a network of geographically-distributed computa-
tional resources which allow scientific communities to develop applications to be
executed on distributed computational and storage resources across the Internet. The
computational resources used in this study were those of the Italian e-Infrastructure
of the INFN (National Institute of Nuclear Physics), which is part of the Italian Grid
Infrastructure (IGI) that is fully integrated in the EGI project (European Grid
Infrastructure), the Europe’s leading grid computing infrastructure co-funded by the
EU in the context of the 6th and 7th Framework Program. The middleware, i.e., the
software specifically developed to manage the workload across the distributed
computational and storage resources of a grid infrastructure, was gLite v. 3.1-3.2 and
the interactive sessions were made by a Scientific-Linux command-line interface.

In this study the RQA was accomplished by the applications RQS and RQH, as
developed by Webber [33] (freely available for Windows operating systems at
http://homepages.luc.edu/∼cwebber). However, in order to implement the Theiler’s
window and to make the applications executable in the Grid Computing environ-
ment, the applications RQS and RQH were adapted with minor modifications as
ANSI C code. The applications for the calculation of the time delay as well as for
construction of surrogates were mutual, minima, extrema and surrogates, available
in the TISEAN software package [34] (freely available at http://www.mpipks-
dresden.mpg.de/∼tisean).

10.2.7 Statistics

Statistical tests were performed by the software package GraphPad Prism 6
(GraphPad Software Inc., San Diego, California, USA). The great majority of
datasets did not passed the test for normality according to the D’Agostino and
Pearson omnibus test for normality as well as the Shapiro-Wilk normality test in case
of small datasets (P < 0.05). Therefore, we used the nonparametric Kruskal-Wallis
test, followed by Dunn’s multiple comparisons test, in case of significant variation of
medians. For graphical purposes, datasets were represented by the descriptive
statistics mean ± SEM.

10.3 Results

Results are organized in figures and tables so that for each figure representing the
trends of specific RQA metrics the related statistics are reported in the table labeled
with the same progressive number (e.g.: for metrics represented in Fig. 10.1 the
related statistics are reported in Table 10.1, and so on).
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For both models of SE, the early 1–2 days of epileptogenesis are characterized by a
significant reduction of the medians of the variable RAD (for rats, Fig. 10.1 panel A,
P<0.0001; formice, Fig. 10.3 panel A,P<0.0001—detailed statistics in Tables 10.1
and 10.3, respectively), thus suggesting an increased rate of recurrences during this
time window, i.e., a higher density of the trajectories in the phase space of the system.
Hence, a lower value of the variable RAD is sufficient to gain the percentage of
recurrent points that we kept fixed at 1 % in order to assure the exponential scaling
behavior of REC versus RAD, a basic requirement for a proper RQA [25].

The trends of the medians of the variables DET and LAM are reported in Figs.
10.1 (panel B) and 10.2 (panel A), for rats, whereas for mice are reported in Figs.
10.3 (panel B) and 10.4 (panel A). The detailed statistics for these metrics are
reported in Tables 10.1 and 10.2 for rats and in Tables 10.3 and 10.4 for mice. The
amount of DET significantly increases in the early 1–2 days post-SE for both
models (for rats, Fig. 10.1 panel B, P < 0.0001; for mice, Fig. 10.3 panel B, P =
0.0006—Tables 10.1 and 10.3, respectively, for detailed statistics), whereas the
amount of LAM shows opposite trends of variation (compare Fig. 10.2 panel A
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Fig. 10.1 Histograms (mean ± SEM) of datasets of RQA variables calculated in basal condition
(white bar) and during the early 5 days of epileptogenesis (grey bars) for the model of SE induced
in rats by the electrical stimulation of the hippocampus. Panel A depicts the variation of the
variable RAD, whereas panels B, C and D, show how RQA metrics based on the diagonal lines of
the RPs (DET, DMAX and ENT) are affected by the progression of epileptogenesis after the end of
the primary insult
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with Fig. 10.4 panel A—Tables 10.2 and 10.4, respectively, for detailed statistics).
Indeed, LAM significantly increases the day after the end of the primary insult in
rats (Fig. 10.2 panel A, P < 0.0001, as compared to basal and the following days of
epileptogenesis), but significantly decreases in mice (Fig. 10.4 panel A, P = 0.001,
as compared to the following days of epileptogenesis, no basal condition available).
However, it is necessary to consider that when the RAD is a variable and the REC
is a fixed parameter, the values of DET and LAM, per se, cannot correlate with the
actual amount of determinism and laminarity of the time-series, because the RAD,
although variable, can change only under the constrain to reach the imposed fixed
amount of recurrences. This may underestimate/overestimate the actual amount of
DET and LAM of the time-series. However, the values of DET and LAM calculated
considering a small value of the RAD are necessarily the expression of a greater
content of determinism and laminarity respect to the same values calculated for a
large value of the RAD, since the lower the value of the RAD, the higher the
density of trajectories. Therefore, when the RAD is a variable, the actual content of

Table 10.1 Nonparametric statistics (Kruskal-Wallis test, followed by Dunn’s multiple compar-
isons test) of RQA metrics reported in Fig. 10.1

RAD DET DMAX ENT

Kruskal-Wallis test

P value <0.0001**** <0.0001**** 0.0039** <0.0001****
No of groups 6 6 6 6
No of values (total) 231 336 162 366
Kruskal-Wallis statistic 89.48 76.85 17.33 90.04
Dunn’s multiple comparisons test

Groups P value P value P value P value

Basal versus day 1 <0.0001**** <0.0001**** 0.0074** <0.0001****
Basal versus day 2 0.0054 ** 0.0006 *** ns <0.0001****
Basal versus day 3 ns ns ns 0.0002***

Basal versus day 4 ns ns ns 0.0022**
Basal versus day 5 ns ns ns ns
Day 1 versus day 2 0.0002*** <0.0001**** ns 0.0008***
Day 1 versus day 3 <0.0001 **** <0.0001 **** 0.0043 ** 0.0001***
Day 1 versus day 4 <0.0001 **** <0.0001 **** ns <0.0001 ****
Day 1 versus day 5 <0.0001**** <0.0001**** 0.0449* <0.0001****
Day 2 versus day 3 ns ns ns ns
Day 2 versus day 4 ns ns ns ns
Day 2 versus day 5 ns ns ns ns
Day 3 versus day 4 ns ns ns ns
Day 3 versus day 5 ns ns ns ns
Day 4 versus day 5 ns ns ns ns
Asterisks summarize the level of significance
ns not significant

10 The Early Phases of Epileptogenesis Induced … 197



determinism and laminarity of the time-series can be estimated by the ratios
DET/RAD and LAM/RAD. Accordingly, the higher the ratios, the higher the
amount of DET and LAM in the time-series. This normalization is equivalent to say
that, in our context, if the RAD had been constant as it occurs in the classical RQA,
the fraction of recurrent points which form diagonal/vertical lines (i.e., DET and
LAM) would be greater for phase spaces with high densities of trajectories, because
a fixed RAD would include a greater number of recurrent points.

The normalization of variables DET and LAM respect to the variable RAD
immediately shows that the opposite trends of variation of LAM were only
apparent. Indeed, the normalization of the variables DET and LAM, highlights how
the early 1–2 days of epileptogenesis are characterized by a marked increase of
determinism (for rats, Fig. 10.5 panel A, P < 0.0001; for mice, Fig. 10.5 panel C,
P < 0.0001—the detailed statistics are reported in Table 10.5) and laminarity (for
rats, Fig. 10.5 panel B, P < 0.0001; for mice, Fig. 10.5 panel D, P < 0.0001—see
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Fig. 10.2 Histograms (mean ± SEM) of datasets of RQA variables calculated in basal condition
(white bar) and during the early 5 days of epileptogenesis (grey bars) for the model of SE induced
in rats by the electrical stimulation of the hippocampus. Panels A, B and C, depict how RQA
metrics based on the vertical lines of the RPs (LAM, TT and VMAX) are affected by the
progression of epileptogenesis after the end of the primary insult. Panel D reports the percentage
of epochs which passed the Theiler’s sigma test for the RQA variable LAM during the early phases
of epileptogenesis
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Table 10.5 for the detailed statistics) in the EEG dynamics which emerge after the
end of the SE, a feature occurring in both models of epileptogenesis.

Not only the amount of determinism and laminarity are markedly increased
following the end of the SE but, generally, all RQA variables show a significant
increase in the early 1–2 days of the latent period. Indeed, this occurred for RQA
metrics based on the diagonal line lengths (DMAX), and their related distributions
(ENT) (for rats, Fig. 10.1 panels C and D, P = 0.0039 and P < 0.0001 respectively;
for mice, Fig. 10.3 panels C and D, P = 0.0101 and P < 0.0001 respectively—the
detailed statistics for these metrics are reported in Table 10.1 for rats and Table 10.3
for mice) as well as for metrics based on vertical line lengths, as the TT (for rats,
Fig. 10.2 panel B, P < 0.0001—Table 10.2 for statistics; for mice, Fig. 10.4 panel
B, P = 0.0053—Table 10.4 for statistics) and the VMAX (for rats, Fig. 10.2 panel
C, P < 0.0001—Table 10.2 for statistics; for mice, Fig. 10.4 panel C, P < 0.0001—
Table 10.4 for statistics).
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Fig. 10.3 Histograms (mean ± SEM) of datasets of RQA variables calculated during the early 4
days of epileptogenesis for the model of SE induced in mice by the intra-amygdala administration
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how RQA metrics based on the diagonal lines of the RPs (DET, DMAX and ENT) are affected by
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Since the variation of the variable LAM gives a significant hint of the nature of
the underlying dynamics, we also calculated the percentage of EEG epochs which
passed the TS test for this variable. This metric depicts the probability of the
occurrence of a laminar state in the time interval 1:00 pm–7:00 pm depending on
the day of the epileptogenesis considered, i.e., how often this dynamic state
emerges in function of the day of progression of the epileptogenesis. Not surpris-
ingly, the early 1–2 days are those significantly affected by the highest percentage
of occurrence of EEG epochs with significant values of the variable LAM (for rats,
Fig. 10.2 panel D, P = 0.0004—statistics in Table 10.2; for mice, Fig. 10.4 panel D,
P = 0.0078—statistics in Table 10.4), thus denoting a general persistent condition
which is characterized by a high rate of laminarity states within the EEG epochs,
i.e., high values of the variable LAM (Fig. 10.5 panels B and D, for rats and mice,
respectively), with the additional evidence that this condition repeats frequently,
i.e., high percentages of occurrence of EEG epochs which passed the TS test
(Fig. 10.2 panel D, for rats; Fig. 10.4 panel D, for mice).
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Fig. 10.4 Histograms (mean ± SEM) of datasets of RQA variables calculated during the early 4
days of epileptogenesis for the model of SE induced in mice by the intra-amygdala administration
of kainic-acid. Panels A, B and C, depict how RQA metrics based on the vertical lines of the RPs
(LAM, TT and VMAX) are affected by the progression of epileptogenesis after the end of the
primary insult. Panel D reports the percentage of epochs which passed the Theiler’s sigma test for
the RQA variable LAM
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Table 10.2 Nonparametric statistics (Kruskal-Wallis test, followed by Dunn’s multiple compar-
isons test) of RQA metrics reported in Fig. 10.2

LAM TT VMAX % epochs LAM

Kruskal-Wallis test
P value <0.0001**** <0.0001**** <0.0001**** 0.0004***
No of groups 6 6 6 6
No of values (total) 307 352 186 41
Kruskal-Wallis statistic 66.94 82.44 35.35 22.67
Dunn’s multiple comparisons test
Groups P value P value P value P value
Basal versus day 1 <0.0001**** <0.0001**** <0.0001**** 0.0168*
Basal versus day 2 0.0037** <0.0001**** 0.0159* 0.023*
Basal versus day 3 ns <0.0001**** ns ns
Basal versus day 4 ns <0.0001**** ns ns
Basal versus day 5 ns ns ns ns
Day 1 versus day 2 0.0001*** ns ns ns
Day 1 versus day 3 <0.0001**** 0.0116* 0.0017** 0.0434*
Day 1 versus day 4 <0.0001**** 0.0014** ns ns
Day 1 versus day 5 <0.0001**** <0.0001**** 0.0002*** ns
Day 2 versus day 3 ns ns ns ns
Day 2 versus day 4 ns ns ns ns
Day 2 versus day 5 ns 0.0451* ns ns
Day 3 versus day 4 ns ns ns ns
Day 3 versus day 5 ns ns ns ns
Day 4 versus day 5 ns ns ns ns
Asterisks summarize the level of significance
ns not significant

Table 10.3 Nonparametric statistics (Kruskal-Wallis test, followed by Dunn’s multiple compar-
isons test) of RQA metrics reported in Fig. 10.3

RAD DET DMAX ENT
Kruskal-Wallis test
P value <0.0001**** 0.0006*** 0.0101* <0.0001****
No of groups 4 4 4 4
No of values (total) 184 208 76 259
Kruskal-Wallis statistic 44.23 17.36 11.33 32.62
Dunn’s multiple comparisons test
Groups P value P value P value P value
Day 1 versus day 2 ns 0.0002*** ns 0.024*
Day 1 versus day 3 0.0002*** 0.0098** ns <0.0001****
Day 1 versus day 4 <0.0001**** ns ns <0.0001****
Day 2 versus day 3 <0.0001**** ns ns ns
Day 2 versus day 4 <0.0001**** ns ns ns
Day 3 versus day 4 ns ns ns ns
Asterisks summarize the level of significance
ns not significant
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Table 10.4 Nonparametric statistics (Kruskal-Wallis test, followed by Dunn’s multiple compar-
isons test) of RQA metrics reported in Fig. 10.4

LAM TT VMAX % epochs LAM

Kruskal-Wallis test

P value 0.001** 0.0053** <0.0001**** 0.0078**
No of groups 4 4 4 4
No of values (total) 192 269 92 23
Kruskal-Wallis statistic 16.17 12.72 22.84 11.88
Dunn’s multiple comparisons test

Groups P value P value P value P value

Day 1 versus day 2 ns ns ns ns
Day 1 versus day 3 0.0166* 0.0192* <0.0001**** ns
Day 1 versus day 4 ns 0.0105* 0.0049** 0.0177*

Day 2 versus day 3 0.0017** ns ns ns
Day 2 versus day 4 ns ns ns 0.043*
Day 3 versus day 4 ns ns ns ns
Asterisks summarize the level of significance
ns not significant

bas
al

day
 1

day
 2

day
 3

day
 4

day
 5 

0

2

4

6

8
DET/RAD (rats)

fo
ld

-i
n

cr
ea

se
 p

er
 u

n
it

ar
y 

R
A

D

bas
al

day
 1

day
 2

day
 3

day
 4

day
 5

0

2

4

6

8

10
LAM/RAD (rats)

fo
ld

-i
n

cr
ea

se
 p

er
 u

n
it

ar
y 

R
A

D

day
 1

day
 2 

day
 3

day
 4 

0

2

4

6

8

10
DET/RAD (mice)

fo
ld

-i
n

cr
ea

se
 p

er
 u

n
it

ar
y 

R
A

D

day
 1

day
 2 

day
 3

day
 4

0

5

10

15
LAM/RAD (mice)

fo
ld

-i
n

cr
ea

se
 p

er
 u

n
it

ar
y 

R
A

D

A

C D

B

Fig. 10.5 Histograms (mean ± SEM) of datasets of the RQA variables DET and LAM after their
normalization respect to the variable RAD, during the progression of the early phases of
epileptogenesis in both models of SE
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10.4 Discussion

In this study we applied for the first time the RQA to investigate on the nature of
EEG dynamics during the early phases of epileptogenesis, thus extending the
application of the RQA to the characterization of important models of epilepto-
genesis in the context of the pre-clinical research in epilepsy. In particular, we
deepened the nature of the dynamics involved in the early crucial phases of
epileptogenesis elicited by the experimental models of SE.

In the following, we refer to the values of variables DET and LAM after their
normalization versus the variable RAD.

For a meaningful evaluation of the nature of the dynamics subtending EEG
activity following the end of a pro-epileptogenic primary insult as the SE, we
considered the variations of all the RQA metrics based on diagonal and vertical

Table 10.5 Nonparametric statistics (Kruskal-Wallis test, followed by Dunn’s multiple compar-
isons test) of RQA metrics reported in Fig. 10.5

DET/RAD
(rats)

LAM/RAD
(rats)

DET/RAD
(mice)

LAM/RAD
(mice)

Kruskal-Wallis test

P value <0.0001**** <0.0001**** <0.0001**** <0.0001****
No of groups 6 6 4 4
No of values (total) 333 303 208 165
Kruskal-Wallis
statistic

153.9 131.1 49.86 50.88

Dunn’s multiple comparisons test

Groups P value P value P value P value

Basal versus day 1 <0.0001**** <0.0001**** na na
Basal versus day 2 <0.0001**** <0.0001**** na na
Basal versus day 3 ns 0.0364* na na
basal versus day 4 ns 0.0166* na na
Basal versus day 5 0.0135* ns na na
Day 1 versus day 2 <0.0001**** 0.0003*** ns ns
Day 1 versus day 3 <0.0001**** <0.0001**** <0.0001**** <0.0001****
Day 1 versus day 4 <0.0001**** <0.0001**** <0.0001**** <0.0001****
day 1 versus day 5 <0.0001**** <0.0001**** na ns
Day 2 versus day 3 0.0002*** 0.0108* 0.0003*** 0.0007***
Day 2 versus day 4 0.0005*** 0.0117* <0.0001**** 0.0002***
Day 2 versus day 5 ns ns na ns
Day 3 versus day 4 ns ns ns ns
Day 3 versus day 5 ns ns na ns
Day 4 versus day 5 ns ns na ns
Asterisks summarize the level of significance
ns not significant
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lines of RPs. At a first sight, the marked increases of ENT, DMAX and DET in the
early 1–2 days post-SE may appear contradictory, since a greater degree of com-
plexity (i.e. a wider distribution of diagonal line lengths, hence a higher ENT)
usually implies an increase of the exponential instability, normally associated to a
decrease of the variables DMAX and DET. Indeed, the DMAX is inversely related
to the Lyapunov exponents, and the DET is a measure of the degree of pre-
dictability of the system. Nonetheless, the values of both these variables signifi-
cantly increase.

However, when one takes into account also recurrence measures based on the
vertical lines of RPs, it is immediate to notice that also the variables LAM, TT and
VMAX significantly increase in the same post-SE temporal window. Altogether,
the variations of these variables converge to point out the existence of bifurcation
points which subtend a specific non-linear behavior known as intermittency, a
dynamical state in which periods of apparent periodicity alternate irregularly with
periods which show dynamics driven by the emergence of one or more different
attractors, maybe of chaotic nature [23]. We did not determined the type of inter-
mittency. However, this will be done in the near future, also considering an
interesting application of the RQA in this context [35]. Intermittency may account
for the broad variability of the DMAX, hence the reason for which the statistics
related to the DMAX for both models of the SE, are those showing the highest P
values (according to the Kruskal-Wallis test), as also the lack of statistical signif-
icances (according to the Dunn’s post hoc test) for the same variable calculated
from the EEG epochs of mice (Fig. 10.3 panel C).

The episodes of intermittency in the early latent period are not only more
accentuated but, generally, they occur much more frequently, as evinced by the
significantly high percentage of EEG epochs which passed the TS test for LAM.
Therefore, the early post-SE days are affected by long-lasting temporal windows
characterized by persistent instability of intermittency type. This condition appears
as a general feature of the early phases of epileptogenesis triggered by SE, since we
investigated two different models of SE, yielding similar results.

In the context of the epilepsy research, the occurrence of intermittency as
dynamical regime is not a novelty since it was shown to emerge during ictal
activities in epileptic patients or in rodents during the progression of the SE [36,
37]. However, our study shows that intermittency regimes persist beyond the end of
the SE even without the occurrence of ictal events and emerge at high rates in the
early days following the end of the primary insult.

It is of interest to notice that also without the emergence of typical widespread
ictal activities, ictogenic brain areas are characterized by a high rate of occurrence
of spatially distributed micro-seizures [41]. Since the intermittency may charac-
terize the dynamics of ictal events [37], the emergence of intermittency regimes in
the early phases of epileptogenesis could be the expression of such micro-seizures
originating from an epileptogenic network under formation, due to the occurrence
of neurodegenerative phenomena and functional alterations affecting the early
phases of epileptogenesis following the end of the SE [38–40]. From this per-
spective, one also notices that our data show a general descending trend of the RQA

204 M. Rizzi et al.



variables after day 2 post-SE, likely due to a progressive weakening of the con-
tribution of nonlinear dynamics to the EEG signal detected by the measuring
electrode. Interestingly, this descending trend could be compatible with the for-
mation of topographically distributed ictogenic micro-domains, as a consequence of
the progression of epileptogenesis [41, 42].

In authors’ opinion, it is also of interest to notice that the percentage of epochs
passing the TS test for the variable LAM in basal conditions (Fig. 10.2 panel D) is
not negligible, thus suggesting that the intermittency could be a dynamical state
which may occur also without an overt pathology. This finding is consistent with
evidence of occurrence of micro-seizures also in basal conditions, as it was shown
in healthy humans [41]. Altogether, our findings could reasonably support the
hypothesis that the main aberrant feature of ictal events is not their nonlinear
dynamical nature, but their spreading over an abnormally extended spatio-temporal
scale, as proposed also by other investigators [41, 42].

Since it is reasonable to hypothesize that the emergence of intermittency could
be the dynamic hallmark of pro-epileptogenic insults and could correlate with the
efficacy of such insults to promote functional changes leading to the development of
epilepsy, an important future work will be to establish the existence (if any) of a
relationship between pro-epileptogenic insults and the emergence of such dynam-
ics. To this aim, the same therapeutic interventions which were shown able to
prevent/modify the development of epilepsy can be used, and this study could lead
to (i) the identification of the emergence of intermittency as a potential prognostic
factor of the development of epilepsy and (ii) a significant improvement of the
portability of pre-clinical studies aimed to test new potential therapeutics able to
prevent the development of epilepsy. From this perspective, it is worth considering
that, nowadays, the direct comparison of results obtained in different models of SE
is often impaired. Indeed, metrics which are commonly used to evaluate the efficacy
of potential therapeutics in the experimental models (e.g., the number of spikes per
hour) are based on the EEG patterns intrinsically associated to the progression of
the prolonged ictal activity of the SE. However, these patterns of EEG activity are
remarkably model-dependent. Therefore, it is often hard to compare experimental
results from different models, when considering these metrics. However, despite the
remarkable differences between the two models of SE that we investigated, we
clearly show that the enhanced and persistent rate of occurrence of laminarity states
in the EEG dynamics during the early days of epileptogenesis is a common feature
of both models. This suggests that such dynamic behaviour could be
model-independent and could be a better metric to validate results obtained from
the application of potential therapeutics using different models of epileptogenesis,
thus improving the portability of pre-clinical studies.
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Chapter 11
Chromatic and Anisotropic
Cross-Recurrence Quantification Analysis
of Interpersonal Behavior

Ralf F.A. Cox, Steffie van der Steen, Marlenny Guevara,
Lisette de Jonge-Hoekstra and Marijn van Dijk

Abstract Cross-recurrence quantification analysis (CRQA) is a powerful nonlinear
time-series method to study coordination and cooperation between people. This
chapter concentrates on two methodological issues related to CRQA on categorical
data streams, which are commonly encountered in the behavioral sciences. Firstly, we
introduce amore general definition of recurrence as ‘behavioral matching’, which can
be applied to several kinds of matches simultaneously, visualized by a color coding.
Wewill refer to this as cross-matching, and to the resulting quantification procedure as
Chromatic CRQA. Secondly, cross-recurrence plots of categorical data often
prominently consists of rectangular structures. This calls for a differential analysis of
vertical and horizontal lines, rather than of diagonal lines. We introduce a simple
procedure for this, referred to as Anisotropic CRQA. Both procedures are demon-
strated with empirical studies on children’s problem-solving behavior and by means
of a model simulation. The authors hope that the ideas presented here increase the
power and applicability of CRQA in the behavioral sciences, and that this chapter
serves as a stepping stone for their mathematical and methodological development.
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11.1 Introduction

Behavioral scientists intend to study human behavior as it unfolds in time, aiming to
capture the behavioral regularities at the different time scales that apply to a given
task and context, and within the existing methodological constraints. These regu-
larities are the key to understanding the processes underlying social behavior,
learning and development. Typically the measurement scale of the behavioral
dimension (eye movements, speech) is nominal in such studies, and signifies the
specific set of categories (gaze here or there, say this or that kind of word) into
which the researcher wishes to compress the behavior under study. Data collection
hence results in an ordered sequence of observed behavioral categories. When the
research context involves two people who are engaged in some form of interaction,
the collected data set consists of two such categorical behavioral streams. The task
at hand then is to analyze these streams in order to unravel the dynamic organi-
zation of the interactions.

To date, one of the best nonlinear techniques to analyze such data, which
exploits the temporal structure of the behavioral streams, is recurrence quantifica-
tion analysis (RQA) and its bivariate cousin cross-recurrence quantification analysis
(CRQA). Both RQA and CRQA were originally designed for time series variables
of a continuous measurement scale [1–4]. In the past decade, several method-
ological advances made these techniques more appropriate for the analysis of
categorical data, for instance as collected in the behavioral sciences. As a result
CRQA has found its way into the study of interpersonal behavior, and has now been
applied successfully to explore, for instance, syntactic coordination between chil-
dren and parents [5, 6], eye movement synchronization between speakers and
listeners [7, 8], mother-infant gaze during a still-face procedure [9], infant-parent
visual coordination in joint attention [10], nonverbal attunement in social interac-
tion [11–13], and transitions in parent-child conflict conversation due to interven-
tion [14]. In all these cases CRQA has provided valuable and unique knowledge
about interpersonal coordination and its relation to other psychological constructs or
its development.

Specific methodological issues which typically arise in CRQA on categorical
time series (and which set it apart somewhat from CRQA on continuous time series)
have been encountered in most if not all of the studies listed above. Although
several of these issues have been noted, described and (sometimes even) solved in
an ad hoc fashion (see also [15–18]), they have yet to be addressed more generally
and more formally. Here we will focus on the following main issues, which are
relevant to the behavioral sciences.

The first issue pertains to the definition of recurrence. Recurrence is essentially
operationalized in a rather straightforward way akin to mimicking, that is, as ‘being
of the same behavioral category’. However for interpersonal coordination to be
successful, oftentimes, entirely different behaviors of the two interacting persons are
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called for (from the same functional behavioral class), for instance, being silent as
the other person speaks. Recurrence procedures should be able to keep track of this,
which necessitates a proper generalization of the concept of recurrence. As a
corollary this creates the opportunity of distinguishing and analyzing different kinds
of recurrences within one context.

The second issue has to do with the prominent rectangular structures which are
common in cross-recurrence plots (CRPs) of categorical time series (see Fig. 11.1).
These structures reflect some persistence in the interaction, partly due to the
coarse-grained nature of the measurement. It makes sense to focus the analysis on
the non-diagonal line measures (LAM, TT, MaxL), because for categorical time
series these are often more reliable and informative. In addition, a differential
analysis of the CRQA-measures along the horizontal and vertical directions in the
(anisotropic) CRP might help to tear apart the respective contributions of each of
the two subsystems to the dynamics.

Concretely, the goal of this methodological chapter is twofold: First, to introduce
an alternate definition of cross-recurrence as cross-matching, for coupled dynamical
systems measured on a nominal scale. Second, to initiate the development of
recurrence procedures that enable the analysis of asymmetry in such systems, based
on anisotropy in the CRP. To dub their existence we will call these methodological
variations cross-matching and Chromatic CRQA and as Anisotropic CRQA,
respectively. The merit of the proposed techniques will be demonstrated by two
empirical studies and a model simulation. Note that although these issues will be
presented somewhat more formally than has been done previously, no claims are
made about mathematical rigour and methodological completeness.

Fig. 11.1 A patchwork or
multi-colored checkerboard
CRP produced by the
cross-matching procedure,
forming the basis for
Chromatic CRQA. In this
case two different matches of
behavioral categories were
distinguished, depicted by a
red and blue color code,
together with the
non-matching white areas.
(For more details see
Sect. 11.2.3)
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11.2 Cross-Matching and Chromatic Quantification
Analysis

11.2.1 Cross-Matching Procedure

There are numerous contexts and tasks in everyday behavior for which the atom of
dyadic interaction is not defined on the basis of an equal or similar behavioral state
for the two interacting people. More often than not effective and efficient interper-
sonal coordination requires individuals to behave quite differently from each other
and sometimes even perform opposite actions in a coupled way (e.g. [11–21]). In
addition, frequently behavioral scientists wish to keep track of, distinguish between,
and relate several behavioral atoms, and wish to distil their temporal structure. The
canonical concept of recurrence, that is, detecting similar behavioral categories at the
same or any other moment in time, is not sufficiently powerful or accurate to capture
the coordination dynamics of the interaction in those cases (cf. [16]). A variation of
this basic procedure based on ‘behavioral matching’ should then be applied, so as to
provide more flexibility in the analysis as well as a richer set of outcome measures.

The cross-matching (where ‘cross’ refers to the analysis of two time series)
procedure on categorical data uses a fairly simple parameter setting for the analysis.
It is largely similar to the canonical cross-recurrence procedure for categorical data
which essentially reflects the typical arrangement of categorical data, but implements
the research or context dependent choice of what recurrence should entail based on
some desired matching of categories in the two time series. Taking an embedding
dimension of 1 and a delay of 1 for the phase space reconstruction usually works
well (e.g. [15, 22]). Setting the radius or threshold to 0 classifies ‘perfect’ recurrence
within the reconstructed phase space, articulating a matching choice where behav-
ioral categories in the two time series need to be equal to qualify as recurrent. Other
matching choices can also be understood in terms of the radius parameter, when one
realizes that the reconstructed phase space for categorical data has a discrete
topology and the radius parameter can only take integer values. However, a more
efficient and direct way to implement cross-matching and the subsequent chromatic
quantification analysis is by means of the following procedure.1

The basic parameterization outlined above actually entails that the CRP can be
drawn without any formal phase space reconstruction. In fact, the CRP is con-
structed by plotting all congruent appearances of some pre-specified matching
values within a pair of time series in a plane, by placing one of the time series along
the horizontal axis and the other along the vertical axis. In this way the CRP
represents all those instances when the behavioral state of one subsystem at some
moment in time is matched appropriately by the behavioral state of the other
subsystem at the same or any other moment in time during the observation.

1Note that recoding the data oftentimes will also do the trick. However, complex cases with
multiple matches and non-matches require a more general and powerful approach. Interestingly,
this also gives rise to a set of additional measures, as will become clear further on.
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This essentially generalizes the canonical ‘recurrence’ notion by a more appropriate
‘behavioral matching’ notion, specified by the researcher beforehand on theoretical
or practical grounds in a specific context. And since this can readily be executed for
more than one combination of categories simultaneously, cross-matching enables
the distinction between several kinds of behavioral matches. The different matches
can be tracked by means of a color coding. A straightforward way to implement this
is by constructing multiple cross-recurrence matrices CRi,j(color), one for each
color. That is, one cross-recurrence matrix is constructed for each desired kind of
match between the behavioral states of the dyadic partners on the two axes of the
CRP. By applying this procedure, all recurrences of the different kinds of matching
are represented by differently colored dots in the plane, resulting in a patchwork or
multi-colored checkerboard CRP (see Fig. 11.1).

A straightforward application of the cross-matching procedure can be found for
instance in the context of turn-taking in a conversation. For instance, in a study by
Reuzel et al. [12, 13], speech rhythms of two conversing people were analyzed, by
tracking in their nonverbal time series those instances where only one of the
interlocutors was talking (‘matches’) and marking as ‘non-matches’ those instance
where both were talking or where both were silent. So recurrence was defined as
‘talking’ (code 1) in one time series and ‘silent’ (code 0) in the other. The other
combinations (0-0 and 1-1) were non-recurrent. This characterization of inter-
locutors nonverbal behavioral matching provided a meaningful partitioning of this
particular interaction. In this way, it was demonstrated that people achieved
interactional synchrony in their speech rhythm, which was related to the perceived
quality of the conversation.

11.2.2 Chromatic CRQA

Fundamental to regular CRQA is that the spatial layout of dots in the CRP gives
rise to several interesting recurrence measures [23]. Together the recurrence mea-
sures reveal the hidden structure concealed in the shared dynamics of the interacting
subsystems across all possible time scales. The simplest measure of Chro-
matic CRQA, based on multiple kinds of behavioral matching (i.e. colors in the
CRP), is the recurrence rate (RR) of a color:

RR colorð Þ= 1
N2 ∑

N

i, j=1
CRi, j colorð Þ, ð1Þ

where CRi,j(color) are the cross-recurrence matrices underlying the CRP with
respect to each individual color. RR(color) quantifies the density of one kind of
match of behavioral states in the CRP. In other words, RR(color) reflects the extent
to which the behaviors of one subsystem match those of the other subsystem in a
specific way, across all possible time scales. As such, RR(color) is a basic measure
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of the coordination between the two subsystems. Note that this definition equals
that of the regular RR(ε), for some radius ε, when the canonical concept of
recurrence is applied.

A related measure is the relative recurrence rate (rRR) of a color:

rRR colorð Þ= ∑N
i, j=1 CRi, j colorð Þ

∑color ∑
N
i, j=1 CRi, j colorð Þ , ð2Þ

quantifying which proportion of the entire amount of behavioral matches (i.e. all
colored dots) is of a particular kind (i.e. of a specific color). In other words, rRR
(color) expresses the relative contribution of the different kinds of behavioral
matches across all possible time scales to the overall coordination.

The other measures of Chromatic CRQA related to the diagonal and
non-diagonal line structures in the CRP are straightforward generalizations of their
regular definitions, which can be found, for instance, in [23]. Each of the measures
can be calculated for the desired kinds of behavioral matches separately, that is,
based on their respective cross-recurrence matrices CRi,j(color). A number of the
measures, viz. rDET(color) and rLAM(color) can also be calculated relative to all
the colors included in the CRP, similar to rRR(color) above.

11.2.3 Application of Chromatic CRQA: Children’s Dyadic
Problem Solving

As an example application of Chromatic CRQA in the behavioral sciences, consider
the following recent study on dyadic interaction between school-aged children in
the context of science and technology education [24]. In six subsequent sessions
over a period of 11 months, data was gathered about interpersonal behaviors of
seven dyads of children with a mean age of 5.1 years, while they performed
hands-on problem-solving tasks. For 20–25 min in each session, each child’s
individual interactive behaviors were coded at 1 Hz using five mutual exclusive
behavioral categories: No work, Passive work, Copy work, Parallel work, and
Collaborative work (for details see paper).

In this study the attractor dynamics of a small set of (predefined) quasi-stable
states was analyzed, by applying Chromatic CRQA. To this end the five individual
categories above, which potentially give rise to 25 a priori combinations, were
conceptually coarse grained by means of cross-matching into three dyadic attractor
states ‘distributed dyadic interaction’ (DDI) and ‘unequal dyadic interaction’
(UDI) and ‘no dyadic interaction’ (NDI), which were tracked separately. It should
be noted that not all combinations were possible. Children could not copy each
other at the same time, and collaboration always involved both individuals.

Figure 11.2 shows the discrete state space of the dyadic interaction. DDI indicates
that both children were actively engaged with the task and contributed to the solution.
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This dyadic interaction is the result of matching either collaborative-collaborative or
parallel-parallel behaviors. UDI indicates that only one child was contributing to the
solution while the other child was not active by the matching of three individual
behaviors: parallel-no work, parallel-passive and parallel-copy. NDI refers to all other
matches of behaviors that do not result in DDI or UDI. The result of the
cross-matching procedure for one particular dyad is shown in Fig. 11.1.

The research questions of the study addressed how the dyadic interactions
developed over six sessions in terms of the relative strength of the dyadic attractor
states DDI, UDI and NDI, and how this attractor dynamics was related to task
performance. In the confinement of this example we will only present the basic
results with respect to coordination based on the relative recurrence rates of DDI,
UDI, and NDI. The full article, however, also includes analyzes of other
CRQA-measures concerning the non-diagonal line structures in the CRP [24].

As said, the recurrence rate provides a basic measure for the coordination between
subsystem. To scale the degree of coordination and analyze the relative strength of
the three quasi-stable states a baseline is needed. This baseline is readily provided by
the discrete topology of the state space, with the color codes based on behavioral
matching overlaying the 25 cells, as shown in Fig. 11.2. This generates a priori
probabilities for the relative recurrence rates rRR(color) as follows: When color is
red (DDI) the baseline is 8 % (i.e. 2 of 25 cells), for blue (UDI) it is 24 % (i.e. 6 of 25
cells), for white (NDI and other non-matches) it is 68 % (i.e. 17 of 25 cells). If the
empirical rRR(color), especially rRR(red) and rRR(blue), significantly differ from
these baselines this indicates coordination in the dyadic interaction. That is to say,
children’s behavioral systems involved in the problem-solving task are governed by
a shared dynamics, with a non-random, non-uniform coupling between subsystems.

Fig. 11.2 State space or ‘behavioral matrix’ of dyadic problem-solving, presenting the potential
combinations of dyadic interaction states. The colored areas define the behavioral matches used for
Chromatic CRQA. The axis values represent the individual behaviors: No work 1, Passive work 2,
Copy work 3, Parallel work 4, and Collaborative work 5. DDI (red) corresponds to distributed
dyadic interaction, UDI (blue) to unequal dyadic interaction, NDI to no dyadic interaction. The
dashed areas indicate impossible combinations (i.e. non-matches), which entered the analysis in
the same category as NDI
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Figure 11.3 shows the rRR(color) of the two quasi-stable states DDI and UDI
across all sessions, for four of the dyads in the study separately and averaged
(dotted black line). It is clearly visible that rRR(red), referring to DDI, is above
baseline (full black line) for the entire series of six sessions. In contrast, rRR(blue),
referring to UDI, hovers around baseline (full black line). This makes DDI the
predominant attractor state throughout the six observations. This basically implies
that the distributed interactions remained more recurrent than the unequal interac-
tions. This example briefly shows how Chromatic CRQA can reveal the coupling of
both unequal and distributed ‘matches’ across all possible time scales and enables
their comparison.

11.3 Anisotropic CRQA

11.3.1 Analysis of Anisotropic CRPs

As can be seen in Fig. 11.1, most colored dots in the CRP are not isolated but
arrange to form rectangular and line structures. The “checkerboard texture” in
Fig. 11.1 generally indicates recurrence domains which reveal metastability in the
dynamics [25], an observation also made within the framework of symbolic
dynamics [26–29]. In fact, the predominant formation of non-diagonal structures, as
opposed to diagonal structures, is a typical feature of categorical time series, and is
obviously related to the discrete topology of the phase space. (Note that this also
appears when applying canonical recurrence, without matching and the color
coding.) The rectangular and line structures provide information about the attractor
dynamics of the interacting subsystems. They particularly inform about the strength
and direction of the coupling between the two subsystems under investigation, as
will be demonstrated later.

Thus far recurrence procedures have focused on diagonal lines with the measures
DET, MeanDiagLine, MaxDiagLine and ENT, and vertical lines with measures
LAM, TT and MaxVertLine ([23]; see below). However, as noted earlier, with

Fig. 11.3 Relative recurrence rates, rRR(red) and rRR(blue), for the two quasi-stable states DDI
and UDI, respectively, for four dyads, over the six sessions
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categorical time series dots mostly do not appear on diagonal lines but rather are
part of non-diagonal structures. In addition, it is clearly visible in Fig. 11.1 that
these non-diagonal line structures extend in two directions in the CRP, both hori-
zontally as well as vertically. This directionality can potentially provide differential
and complementary information about the coupling between the two subsystems
represented by the time series along the two axes. Generally, line structures indicate
instances where behavioral categories which are briefly expressed by one subsys-
tem are accompanied by episodes of lingering in the matching behavioral category
by the other subsystem. For instance, a vertical line structure in the CRP represents
that a brief occurrence of some behavior in the time series along the horizontal axis
is either followed (when above the Line-of-Synchrony) or preceded (when below
the Line-of-Synchrony), with some delay, by a much longer occurrence of the
matching behavior in the times series along the vertical axis.

Anisotropic CRQA, both in its cross-matching and cross-recurrence version, is
founded on the general observation of anisotropy in the CRP, that is, on direction
dependence along the two axes of the plot. Calculating the recurrence measures for
the horizontal and vertical line structures separately, and allowing for their com-
parison, can easily be performed by first computing the transpose matrices, CRi,

j
T(color), of the cross-recurrence matrices CRi,j(color). Subsequently, the algorithm
‘tt’ from Marwan’s crp toolbox for Matlab (available at http://www.recurrence-plot.
tk) can be applied to all CRi,j(color) as well as all CRi,j

T (color). The ‘tt’ function
computes the distribution of the length of the vertical line structures in the recur-
rence plot. Based on these distributions of both the vertical and the horizontal line
lengths, the corresponding direction-specific non-diagonal CRQA-measures can be
calculated. This will be explained below for canonical cross-recurrence (or:
cross-matching of a single kind) for the sake of simplicity.

The first measure derived from the non-diagonal line structures is laminarity,
defined as the proportion of colored dots that are part of a vertical (LAMV) or
horizontal (LAMH) line structure. Laminarity reflects the degree to which subsys-
tems are ‘trapped’ into expressing matching behaviors for some period of time.
LAMV depicts how much the subsystem on the vertical axis constitutes larger
structures, whereas LAMH does so for the subsystem on the horizontal axis. Second,
trapping time is the average length of either the vertical (TTV) or horizontal (TTH)
line structures. TT is measured in units of time and estimates how long subsystems
are, on average, lingering in a specific state. If TTV is high, the system on the
vertical axis tends to be trapped in relatively long periods of the same behaviors that
are matched by the subsystem on the horizontal axis at some point, and for high
TTH the system on the horizontal axis tends to be trapped in relatively long periods
of the same behaviors that are also expressed by the other subsystem at some point.
Finally, maximum line also gives information about maximum duration of the
non-diagonal line structures, with MaxLV being the length of the longest vertical
line and MaxLH the length of the longest horizontal line. In other words, MaxL
measures the duration of the longest behavioral matching for each subsystems.
High MaxLV means that the vertical subsystem is lingering for a long period in a
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single (matching) behavior, whereas MaxLH means that the horizontal subsystem
lingers for a long period in a single (matching) behavior.

11.3.2 Application of Anisotropic CRQA: Asymmetric
Gestures-Speech Attunement

In this example, the data do not concern dyadic interaction as in the previous
examples, but two behavioral dimensions. More specifically we were concerned
with the verbal and nonverbal problem-solving skills of children. This example
study of Anisotropic CRQA addresses the coupled dynamics of children’s gestures
(i.e. manual kinesics and task manipulations) and speech as they construct cognitive
understanding [30]. Contrary to the mainstream approach applied in most studies in
this field, gestures were considered as in-the-moment actions, originating from an
underlying complex dynamical system which is rooted in cognitive and
perception-action subsystems. CRQA helps us to get a more detailed understanding
of the role of gestures in learning and of their dynamic coordination with speech
and cognitive processes.

The data of 12 children with a mean age of 5.4 years were analyzed. Children’s
expressed gestures and speech during a hands-on science task were scored in a
common metric, which was based on their skill level as defined by dynamic skill
theory [31]. Within this theory, a total of ten hierarchically ordered levels of
cognitive skills (either actions or verbalizations) can be distinguished, divided over
three tiers: sensorimotor, representational, and abstract. Anisotropic CRQA was
performed on the (categorical) skill-level time series of children’s gestures and
speech. First the cross-matching as introduced above was applied: Skill levels of
speech and gestures belonging to the same tier were considered behavioral matches
of a specific kind. They received a designated color in the CRP, where blue was
reserved for the sensorimotor tier, red for the representational tier, and green for the
abstract tier. In Fig. 11.4 an example CRP is shown of the coupled gesture-speech
subsystems. Note that in the following presentation of part of the results the color
coding does not play a role. In other words, in the context of this example the data
were not subjected to Chromatic CRQA for the sake of brevity (however see [30]
for a more extensive account).

Results of the Anisotropic CRQA on the vertical and horizontal line structures in
the CRP, for all 12 children in the study are shown in Table 11.1. Monte Carlo
permutation tests2 revealed that all vertical line measures were significantly higher

2These tests can readily be applied to small sample sizes or unequal groups of data, in this case to
determine the statistical significance (p-value) of the differences between the line structures. The
test repeatedly (e.g., 1000 times) compares the observed difference to the difference found within a
range of simulated data drawn from the original sample. The p-value is computed by dividing the
number of times the observed or a bigger difference occurs in these random samples by the number
of drawn samples.
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than the horizontal line measures (all p-values < 0.01), with respectable effect sizes:
d(LAMV > LAMH) = 2.01; d(TTV > TTH) = 1.72; d(MaxLV > MaxLH) = 1.31. This
was not only true at the group level, but also for all children separately for LAM and
TT and for 9 out of 12 children also for MaxL. This finding reveals an asymmetric
dynamic attunement of gestures and speech, with gestures relatively more regularly
and more rigidly displaying the same-tier skill level compared to speech. For the
proposed meaning in terms of the difference in coupling between gestures and
speech, we refer to the simulation study in Sect. 11.4.

Fig. 11.4 Example CRP of
the coupled gesture-speech
subsystems for a single child,
demonstrating the color
coding for the three skill tiers
used in the cross-matching
procedure, with blue for
sensorimotor, red for
representational, and green
for abstract (did not occur
here). The child’s speech is
represented along the
horizontal axis, gestures along
the vertical axis

Table 11.1 Overview of RR and Anisotropic CRQA-measures (V = vertical lines; H = horizontal
lines) of all 12 children in the study, not specified for color

Child RR LAMV LAMH TTV TTH MaxLV MaxLH
1 0.013 0.99 0.91 5.2 3.4 21 7
2 0.019 1.00 0.89 6.4 3.8 19 10
3 0.004 0.97 0.69 4.3 2.6 12 3
4 0.011 1.00 0.89 7.4 5.1 26 11
5 0.002 0.89 0.90 3.2 3.1 5 6
6 0.010 0.96 0.70 6.6 2.6 16 5
7 0.009 0.98 0.92 5.8 4.0 18 12
8 0.006 0.97 0.62 4.8 2.8 12 5
9 0.025 0.99 0.92 6.3 5.1 15 15
10 0.016 1.00 0.79 6.0 5.5 25 27

11 0.002 0.96 0.63 5.4 2.7 18 3
12 0.018 1.00 0.79 8.3 3.6 24 6
Mean 0.011 0.98 0.81 5.8 3.7 17.6 9.2
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11.4 Model Example of Anisotropic CRQA

In order to facilitate the interpretation of the Anisotropic CRQA-measures and to
serve as a non-empirical illustration of Anisotropic CRQA on categorical time
series, the following model of two time-discrete oscillators will briefly be explored:

y1 n+1ð Þ= sin π ⋅ y1 nð Þð Þ+ c1 sin π ⋅ y2 nð Þð Þ,
y2 n+1ð Þ= sin π ⋅ y2 nð Þð Þ+ c2 sin π ⋅ y1 nð Þð Þ. ð3Þ

The model consists of a system of two coupled difference equations with cou-
pling parameters c1 and c2, which represent the coupling strength between the
oscillators y1 and y2.

The behavior of the model will be assessed in a coarse grained fashion to
realistically simulate data as it is commonly collected in the behavioral sciences.
Specifically, two dichotomous time series, x1 and x2, will be constructed by
applying the following rule3:

xi nð Þ= round
yi nð Þ−min yi nð Þð Þ

max yi nð Þð Þ−min yi nð Þð Þ
� �

, i∈ 1, 2f g. ð4Þ

Although there is some resemblance with a Kuramoto model [32, 33],4 this is by no
means the incentive of the present simulations. However, a potential connection to
human behavior would be, for instance, and without any claim of validity, two
people’s gazes during a conversation. The model articulates the (dichotomized)
dynamics of the weakly coupled oculomotor and cognitive systems of the two
individuals, in terms of a pair of nonlinear coupled oscillators. Variable y1 repre-
sents one person’s eye movements over time on some continuous spatial dimension
and variable y2 that of the other person. When transcribed at the behavioral level in
terms of the distinct categories (1) looking at the other person’s face and (2) looking
away from it, which is not uncommon in the behavioral sciences (e.g. [9, 12, 13];
see also [7, 8]), the resulting time series x1 and x2 are dichotomous.

Simulations will focus on the relation between relative coupling strength in the
model and the Anisotropic CRQA-measures, that is, the measures of vertical and
horizontal line structures in the CRP. The CRP will be based on straightforward
cross-recurrence of the discrete-time dichotomized time series x1 and x2.

3This basically constructs a symbolic dynamics by introducing a static encoding of the time series
(see e.g. [26, 27]).
4In fact written in this way the system models a system of three asymmetrically coupled Kuramoto
oscillators under a specific set of parameter settings, among which, in particular equal intrinsic
frequency.
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Model simulations for both the continuous and coarse-grained variables and the
related CRPs of the dichotomous system are given in Fig. 11.5, for two parameters
settings, over 100 time steps, after transient. The parameter settings are drawn from
a ‘realistic’ area of the parameters space (c1, c2). The impression of being realistic is
based on a visual comparison of time series and CRPs of the model outcomes and
the empirical data encountered in previous studies (esp. [12, 13]). We admit that
this reflects no robust mathematical or other kind of formal criterion at this point.
However, we would like to stress once more that the model is not intended as a
realist model of some type of behavior. It merely serves as a demonstration of
Anisotropic CRQA and to provide some directions for interpretation of anisotropy
in CRPs.

Figure 11.6 shows how the relative difference in coupling strength, (c1 – c2)/
(c1 + c2), is related to the relative difference in vertical and horizontal line measures
LAM, TT and MaxL, in two separate and realistic parts of the parameters space.
These graphs reveal a strong association between coupling and anisotropy, for the
Anisotropic CRQA-measures LAM and TT but not for MaxL, in both parameter
ranges.

Results like these remains difficult to interpret however, since the relation
between coupling and synchronization in complex dynamical systems is not
straightforward and might rely heavily on the specifics of the chosen model and
parameter range (cf. [23]).

Fig. 11.5 Time series and CRPs for a c1 = 3.0 and c2 = 2.5, with resulting RR = 0.51, vertical
line measures LAMV = 0.73, TTV = 3.88, MaxLV = 9, horizontal line measures LAMH = 0.62,
TTH = 2.38, MaxLH = 4, and b c1 = 1.8 and c2 = 2.0, with resulting RR = 0.50, vertical
line measures LAMV = 0.73, TTV = 3.46, MaxLV = 6, horizontal line measures LAMH = 0.65,
TTH = 2.82, MaxLH = 6
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11.5 Discussion

In the present chapter we tried to extend the existing recurrence procedures for the
study of coupled dynamical systems which are measured on a nominal scale, by
introducing two novel methodological variations: Chromatic CRQA, using
cross-matching, and Anisotropic CRQA, based on anisotropy in the CRP. These
advancements facilitate the study of a wider class of phenomena in the behavioral
sciences and the detection of asymmetry in the dynamic organization of interper-
sonal behavior, respectively.

Several issues related to these procedures need to be developed further, in order
for them to reach their full potential in the behavioral sciences. We will touch upon
a few of these open-ends only briefly below. First, and foremost, the formal
description as presented in this chapter should be extended and improved, with a
focus on mathematical rigour and methodological completeness. This will allow the
proposed methodological variations to be embedded in the larger framework of
recurrence based methods (see [23]).

Second, applying Chromatic CRQA and Anisotropic CRQA, especially when
done conjointly, results in substantial increase in the amount of measures to be
considered, compared to regular CRQA. Specifically, there is a new set of measures
for each added behavioral match (i.e. color) and the number of measures almost
doubles with the anisotropic analysis. However, the possibility of directly comparing

Fig. 11.6 Relative difference in coupling strength (c1 – c2)/(c1 + c2), for a c1 = 2 and c2 ∈ {1.5 :
0.05 : 2.5} and b c1 = 4 and c2 ∈ {3.5 : 0.05 : 4.5}, on the horizontal axis, and its relation to the
relative difference in vertical and horizontal line measures LAM, TT and MaxL, on the vertical axis
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the (relative) measures pertaining to the different kinds of matches in
Chromatic CRQA reduces this problem to a large extent. Also, as already demon-
strated, for Anisotropic CRQA, a focus on the (relative) differences of the aniso-
tropic measures is probably the best way to express and detect asymmetries in the
dynamics. The modeling approach initiated in Sect. 11.4 might be pursued further to
find out which combinations of measures are most informative in specific contexts.

Third, subsequent efforts in the development of these procedures should look into
the overlap between the anisotropic measures of rectangular structures. Since recur-
rent points within a rectangular structure are always part of both a horizontal line and
vertical line at the same time, they ‘count’ for the measures in both directions. This is
not the case for isolated recurrent points, or for those that form a line. Distinguishing
between rectangular and (actual) line structuresmight provide amore reliable estimate
of the anisotropy in the CRP and of the coupling between subsystems. Another
promising way to deal with this is to quantify the rectangular structures directly, for
instance in terms of their ‘area’ (i.e. horizontal length × vertical length), ‘asymmetry’
(i.e. horizontal length divided by vertical length), number, entropy etcetera (cf. [34]).

Fourth, and finally, the application of the behavioral matching procedure and
chromatic analysis to a single system measured on a nominal scale might be
interesting to pursue as well. Chromatic RQA on one categorical time series would
give additional and unique information about the structural connections between
different behavioral modes of a system. It might even be possible to (in a way)
reverse the technique, and use recurrence measures to detect which behavioral
matches are most dynamically stable in the behavior. Finally, it is not unlikely that
even Anisotropic RQA and Anisotropic CRQA of continuous times series might
find an application within a specific research context.

Acknowledgment The first author wishes to express his appreciation to Fred Hasselman, for the
many fruitful discussions arising from shared encounters with the methodological issues regarding
recurrence analysis on categorical behavioral time series.
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Chapter 12
Using Cross-Recurrence Quantification
Analysis to Understand Social Motor
Coordination in Children with Autism
Spectrum Disorder

Veronica Romero, Paula Fitzpatrick, R.C. Schmidt
and Michael J. Richardson

Abstract Interpersonal motor coordination is considered to be an integral part of
maintaining successful social interactions. Research has shown that simply coor-
dinating one’s movements with another actor can influence rapport as well as
feelings of social connection and social competence. Past research has also found
that deficits in social motor coordination are associated with psychological dys-
function such as schizophrenia and borderline personality disorders. However, the
potential association between interpersonal motor coordination and autism spec-
trum disorder (ASD) has only received a very limited amount of attention. In the
current experiment, children who had been previously diagnosed with ASD and
typically developing (TD) children were asked to synchronize with or imitate the
movements of an experimenter in two different interpersonal motor tasks: object
tapping and hand-clapping. Both the experimenter’s and the participants’ move-
ments were captured and compared to each other using relative phase analysis and
cross-recurrence quantification analysis (CRQA). The results reveal differences not
only in the patterning of the coordination that occurred for ASD and TD children,
but also in the stability and deterministic structure of the coordination. Of particular
interest was the finding that children with ASD exhibited less stable (robust), but
more deterministic patterns of interpersonal social motor coordination compared to
TD children.
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12.1 Introduction

Children with autism spectrum disorder (ASD) exhibit numerous impairments that
can severely impede learning and overall social functioning at home and in school,
as well as make successful treatment difficult. Even though the dynamics of
interpersonal motor coordination is considered to be an integral part of maintaining
successful social interactions [1, 2], this dimension of behavioral order remains
overlooked within the field of ASD research. This is despite the fact that there is
now a well-established body of research demonstrating how intentionally or
unintentionally coordinating one’s movements with those of another individual can
positively influence rapport, feelings of social connection, and feelings of social
competence [2–5]. Previous research has also found that deficits in social motor
coordination are associated with other social psychological disorders such as
schizophrenia [6, 7] and borderline personality disorders [8]. It is therefore
important to understand the degree to which social motor coordination (or the lack
thereof) is related to social competency in children diagnosed with ASD.

With regard to the previous research examining social motor impairments in
ASD, the general findings are often limited in scope and sometimes inconsistent
and contradictory [9]. The limited scope and contradictory nature of this previous
work is due, in part, to the fact that empirical, clinical, and observational research is
often treated in isolation, without any attempt to formalize an integrative method-
ological approach for identifying and understanding the core ASD deficits in social
motor coordination [9]. Thus, the social motor impairments that characterize chil-
dren with ASD and the degree to which these impartments relate to ASD severity
are largely unknown. Moreover, many researchers have simply focused their
inquiries on whether children with ASD are or are not capable of carrying out
certain social motor tasks, without examining how they perform these tasks over
time—i.e., without examining the patterns or dynamics of the social motor behavior
that occurs within a social context [9].

Of particular relevance for the current study, is that the few studies that have
investigated the dynamics of social motor coordination in children with ASD have
highlighted how these deficits might not be due to an absence of coordination, but
rather to a difference in the patterning compared to typically developing
(TD) children [1, 9, 10]. For example, Marsh and colleagues [1] investigated the
interpersonal movement coordination that occurred between children and their
parents sitting and rocking side-by-side in rocking chairs. The results revealed that
both ASD and TD children could coordinate with the movements of their parents,
but that the overall patterning (the relative phase relationship) that characterized the
coordination for ASD and TD children was different, with TD children more
spontaneously and reciprocally modifying their movements with respect to their
parents than children with ASD. The goal of the current study was to further
explore the dynamics of social motor coordination in children with ASD with the
use of non-linear, as well as linear time-series methods.
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Cross-Recurrence Quantification Analysis (CRQA) is a non-linear analysis
method that quantifies the dynamic (time-evolving) similarity between two
behavioral time- or event-series by identifying whether behavioral states/events in
the two series reoccur over time. The benefits of this analysis method over other
time-series methods (e.g., cross-correlation, cross-spectral analysis) is that it does
not require a researcher to make any a priori assumptions about the structure or
stationarity of the data analyzed. Moreover, this method can be employed to
uncover recurrent structure between the behaviors of two individuals regardless of
whether the behavior in question exists within a single state space or in a more
abstract multi-dimensional (multivariate) state space. Defined at a more intuitive
level, the method assesses whether the points (states) in a behavioral series visit the
same states over time and then quantifies the dynamic patterns of these
time-evolving recurrences using a range of statistics. Common statistics include:
Percent Recurrence (%REC), which measures the percentage of recurrent states
between the two time-series and is an index of the degree to which the two
behavioral signals are confined to a similar region of state or phase space; Percent
Determinism (%DET), which measures the percentage of recurrent states that form
sequential lines of recurrent points (i.e., diagonal lines in a recurrence plot) and
quantifies the degree to which the co-varying structure of two behavioral time-series
is the result of deterministic vs. random processes; and MaxLine, which extracts the
longest sequence of recurrent states (longest diagonal line in a recurrence plot), and
provides a proportional measure of the stability of the coordination present between
two behavioral time-series.

CRQA has previously been used to study the patterning and stability of coor-
dination between people in social situations. For instance, Richardson and col-
leagues [11] demonstrated through the use of CRQA that the coordination that
arises between the rhythmic limb movements of two people follows the same
dynamics as a person coordinating her two arms intrapersonally. Furthermore, they
were able to demonstrate that the increased variability in coordination observed in
social situations was not due to an increase in movement noise (indexed with the
use of %REC), but rather was due to the visual coupling of the interpersonal
situation being significantly weaker than the biomechanical coupling that charac-
terizes intrapersonal interlimb coordination (as indexed by MaxLine). In a more
realistic, full-body conversational task, Shockley and colleagues [12] found that
pairs of participants having a conversation in order to solve a puzzle showed higher
amounts of postural coordination (greater %REC; greater recurrent postural activ-
ity) than when participants were conversing with a confederate. Additionally, they
found that participants’ postural trajectories were more stable (as indexed by
MaxLine) when talking with each other, compared to when they were conversing
with a confederate.

Accordingly, the aim of the current study was to employ CRQA to investigate
the potential differences in the stability and patterning of the interpersonal coor-
dination that occurred for children diagnosed with ASD compared to TD children.
To achieve this aim we investigated two simple coordination tasks (i.e., an object
tapping and hand clapping tasks) performed between an experimenter and ASD or
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TD children. Once this aim is achieved, it would be feasible to use our new-found
understanding to extract the pertinent CRQA measures derived from an interper-
sonal task during the diagnostic process and include these findings as part of the
criteria when deciding whether to apply the ASD diagnosis. Furthermore, these
measures could instigate new intervention models focused on interpersonal coor-
dination for children and adults already diagnosed with ASD.

12.2 Method

Forty three children previously diagnosed with ASD (and with a confirmed diag-
nosis made by a research certified clinician administering the Autism Diagnostic
Observation Schedule second edition (ADOS-2)) who were classified as high
functioning, and 47 typically developing children participated in the study.1 Par-
ticipants were between the ages of 6 and 10 years (M = 7.92, SD = 1.45 years, see
Table 12.1 for age and gender distribution by group).

The study was conducted in a 10 by 12 foot laboratory room at Cincinnati
Children’s Hospital Medical Center (University of Cincinnati, Cincinnati, OH).
Children came into the laboratory room and were asked to sit at a 2 foot wide × 4
foot long × 2 foot high table next to the seated experimenter (see Fig. 12.1). Four
Polhemus Latus receptors were attached to the underside of the table top, one in
each corner, to create a 10 × 12 × 8 foot capture volume around the table. As soon
as the child was seated, the four Polhemus Liberty Latus wireless markers/sensors

Table 12.1 Demographic
information for all
participants

Group Age (in years) Gender

6 7 8 9 10 Male Female
ASD 10 7 7 10 7 34 7
TD 10 11 8 9 9 36 11

Fig. 12.1 Room set-up for the a tapping task and b, c interpersonal hand clapping game

1Due to measurement and experimenter error, data for two ASD participants in the object tapping
task and four TD participants in the interpersonal hand clapping game was missing.
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were placed in wristbands and slipped over the child’s and experimenter’s wrists
(one marker on each wrist of the child and experimenter). The motion of the
Polhemus sensors was recorded at 94 Hz on a Dell PC computer using a custom
software application written by the authors using the Polhemus Latus C/C ++ SDK
Library.

The data presented here was part of a bigger project, in which participants
performed a large range of motor, social and cognitive tasks. Here, we selected two
social motor coordination tasks that were performed by all of the children. The first
coordination task was a sequence of tapping movements, which involved children
using a stick to tap/hit three drum-like cylinders from left to right (see Fig. 12.1a).
Children repeated this left-to-right drumming sequence six separate times with the
experimenter showing the sequence previous to every child in a continuous manner.
Participants were randomly assigned to either an imitation or synchrony condition
for this task, in the ASD group 20 children were in the imitation condition, while 21
were in the synchrony, as for the TD group, 26 synchronized while 21 imitated. In
the imitation condition, the child was asked to repeat the tapping pattern demon-
strated by the experimenter. In the synchrony condition, children were asked to
repeat the tapping pattern in time with the experimenter after every sequence. The
second task was an interpersonal hand clapping game (pat-a-cake), in which
children completed a simple repetitive sequence of clapping their hands together
and then with the experimenter (see Fig. 12.1b, c). The hand clapping game was
completed twice, with each sequence involving around 15 consecutive intrapersonal
and interpersonal clapping movements.

12.2.1 Data Analysis

The x-plane (left-right), y-plane (forward-back) and z-plane (up-down) positional
coordinates of the sensors placed on the wrists of the experimenter and child were
recorded for each task. To best determine the stability and pattering of the
behavioral coordination that occurred between the child and experimenter, we first
isolated the primary plane of motion for each task. Since the primary plane of
motion for the tapping task was in the left-right (sagittal) plane, the x-plane
movement time series was used to assess the behavioral coordination that occurred
for this task (for a sample time series see Fig. 12.2a). For the interpersonal hand
clapping game, the largest amplitude of movement was in the up-down (transverse),
z-plane, with the intrapersonal clapping events occurring at a lower height than the
interpersonal clap events (see Fig. 12.2b). Accordingly, this plane of motion was
employed to assess the behavioral coordination that occurred for this task.2

2An analysis of secondary planes of motion produced results that were consistent with those
reported here.
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For the tapping task, we then performed a coordination analysis as well as a
cross-recurrence quantification analysis using the primary plane of motion time
series of the experimenter’s right forearm (the experimenter always used his right
hand/arm for all the tasks) and the primary plane of motion time series of the
forearm used by the child for analysis. Note that for this task the child was free to
use either left or right arm/hand. Although both arms/hands were employed by the
experimenter and child for the hand clapping game, we only report the analysis of
the right forearm movements of the experimenter and child because the coordina-
tion that occurred between the left forearm movements was completely redundant
with the right.

Prior to analysis all of the pre- and post-non-task relevant movement transient
periods were cropped from the different time series such as the period from the start
of the recording to the start of the task and the periods in the synchrony condition
where the experimenter repeated the sequence every time, otherwise all trials were
included in the analysis. The time series were allowed to vary in length across
participants. The resulting time series lengths in the tapping task were (ASD: Mean
(M) number of data points = 3286.82, Standard Deviation (SD) = 761.30; TD:

Time

Child Experimenter

Time

(a)

(b)

Fig. 12.2 Sample movement time series (raw unfiltered data) from a child in the a object tapping
task and the b interpersonal hand clapping game
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M = 3087.46, SD = 674.12) and in the hand clapping game (ASD: M = 4774.47,
SD = 491.03; TD M = 4194.15, SD = 439.01). These final motion time series were
then low-passed filtered using 10 Hz 4th order Butterworth filter to remove mea-
surement noise.

To determine the patterning and stability of the social motor coordination that
occurred between the children and the experimenter for each task and condition,
two measures of interpersonal coordination were employed: distribution of relative
phase (see [13] for a review of studies that have employed this measure) and
CRQA.

12.2.1.1 Distribution of Relative Phase Angles (DRP)

This measure evaluated the concentration of relative phase angles between the
movements of the child and experimenter (i.e., the relative space-time angular
location of the movements of the child and experimenter) across nine 20° regions of
relative phase (0–20°, 21–40°, 41–60°, 61–80°, 81–100°, 101–120°, 121–140°,
141–160°, 161–180°). To determine these distributions, we computed the contin-
uous relative phase of the two time series between −180° and 180° using the
Hilbert transform [14]. We then computed the percentage of occurrence of the
absolute value of the relative phase angles across the nine 20° relative phase regions
from 0° to 180°. Previous research has demonstrated that stable social motor
coordination is characterized by a concentration of relative phase angles in the
portions of the distribution near 0° and 180° (e.g., [9, 15, 16]), which corresponds
to inphase and antiphase patterns of coordination, respectively.

DRP was analyzed using a 9 (phase region: 0°, 30°, 50°, 70°, 90°, 110°, 130°,
150°, 180°) × 2 (diagnosis: ASD, TD) × 2 (condition: imitation, synchrony) mixed
ANOVA for the object tapping task with phase region as the repeated measures
factor (a Greenhouse-Geisser correction was employed where necessary). For the
interpersonal hand clapping game, DRP was analyzed using a 9 (phase region) × 2
(diagnosis) mixed ANOVA. Of particular interest was the difference between ASD
and TD children in the magnitude of inphase coordination (percentage of time in 0°
bin) for synchronous object-tapping and hand-clapping tasks and in the magnitude
of antiphase coordination (percentage of time in the 180° bin) for the imitation
object-tapping task. Therefore, when a phase region by diagnosis interaction was
found to be significant, planned t-tests were employed to compare these relative
phase regions as a function of diagnosis.

12.2.1.2 Cross Recurrence Quantification Analysis (CRQA)

This measure evaluated the time-evolving phase-space structure of coordination
that arose between the experimenter and the child when performing the two
coordinative tasks. When analyzing the object tapping task data, an embedding
dimension of 7, lag of 100, and radius of 15 % was used. For the interpersonal hand
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clapping game, an embedding dimension of 5, lag of 45 and radius of 10 % was
used.3 These differences in parameter settings were due to the different pace and
constraints of each experimental task. Since the goal of the study was to investigate
the differences that might arise between children previously diagnosed with ASD
and those who are typically developing, the parameters were kept constant for every
child in each task. The CRQA measures %REC, %DET, and MaxLine were then
analyzed using separate 2 (diagnosis: ASD, TD) × 2 (condition: imitation, syn-
chrony) between subjects ANOVAs for the object tapping task. For the interper-
sonal hand clapping game, %REC, %DET and MaxLine were analyzed using
separate independent samples t-tests.

12.3 Results

12.3.1 Object Tapping Task

For the object tapping task the DRP analysis revealed a main effect of phase region
(F(8,672) = 62.62, p < 0.01, ηp

2 = 0.43), a two-way interaction between phase region
and diagnosis (F(8,672) = 8.07, p < 0.01, ηp

2 = 0.09) a two-way interaction between
phase region and condition (F(8,672) = 316.52, p < 0.01, ηp

2 = 0.79) and, most
importantly, a three-way interaction between phase region, diagnosis and condition
(F(8,672) = 10.10, p < 0.01, ηp

2 = 0.11; see Fig. 12.3). Planned t-tests revealed a lack
of difference between the ASD and TD at the 180° phase region (t(39) = −0.68, p =
0.50) when the children were asked to imitate the experimenter. However, when
asked to synchronize with the experimenter, the children in the TD group showed
significantly larger occurrence of 0° phase relationship (M = 39.71, SD = 15.53)
than those in the ASD group (M = 23.44, SD = 9.71; t(45) = −4.18, p < 0.01).

Fig. 12.3 Mean DRP
observed in the object tapping
task by phase region,
diagnosis and condition. The
error bars represent the
standard error of the mean

3The embedding dimension was chosen through the use of the false nearest neighbor
(FNN) methodology while the lag was determined with the use of average mutual information
(AMI).
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Collectively, these DRP results would seem to indicate that children diagnosed
with ASD were just as capable of imitating the experimenter’s tapping movements
as TD children. In contrast, however, the stability of the synchronous coordination
for children with ASD was significantly weaker compared to TD children, which
suggests that the synchronous motor coordination that occurred between the chil-
dren with ASD and the experimenter was either less robust or more variable than
the coordination that occurred between the experimenter and TD children.

The analyses of the CRQA measures revealed no significant main effects of
diagnosis (all ps > 0.19). However, there was a significant main effect for condition
in all measures (%REC: F(1, 84) = 90.03, p < 0.01, ηp

2 = 0.52; MaxLine: F(1, 84) =
36.53, p < 0.01, ηp

2 = 0.30; and %DET: F(1, 84) = 22.08, p < 0.01, ηp
2 = 0.21), such

that children who were in the imitation group showed higher %REC (M = 1.97, SD =
1.06), %DET (M = 98.85, SD = 1.17) and MaxLine (M = 112.68, SD = 97.71) than
those in the synchrony group (%REC: M = 0.23, SD = 0.68; %DET:M = 92.20, SD
= 8.82; MaxLine: M = 23.32, SD = 18.79). Finally, there was a significant inter-
action between diagnosis and condition for %REC (F(1, 84) = 8.36, p = 0.01, ηp

2 =
0.09; for both %DET andMaxLine, ps > 0.20; see Fig. 12.4). Simple effects analyses
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Fig. 12.4 Mean a %REC, b %DET and c MaxLine by diagnosis and condition for the object
tapping task. The error bars show the standard error of the mean
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for %REC showed that in the imitation group, TD children had significantly more
recurrent activity (M = 2.34, SD = 1.10) than the children with ASD (M = 1.58, SD
= 0.89, t(39) = −2.44, p = 0.02), while there was no significant difference in the
synchrony group (t(45) = 1.42, p = 0.16). Accordingly, the results for CRQA with
respect to diagnosis are somewhat opposite the results observed for DRP above, in
that they appear to indicate that the similarity between the child and experimenter
phase-space trajectories is similar for ASD and TD children during synchronous
performance, but that this is not the case during imitative performance. That is, for
the imitation condition there was less recurrent activity for ASD compared to TD
children.

12.3.2 Interpersonal Hand Clapping Game

Consistent with the synchrony results for the object tapping task, the DRP analysis
for the synchronous hand-clapping task revealed a significant main effect of phase
region (F(8, 656) = 614.73, p < 0.01, ηp

2 = 0.88) and a significant phase region by
diagnosis interaction (F(1, 656) = 15.12, p < 0.01, ηp

2 = 0.16; see Fig. 12.5). Again,
the planned t-test revealed that children with ASD spent significantly less time in
the 0° phase region (M = 43.37, SD = 15.28) than those in the TD group (M =
57.10, SD = 14.31; t(82) = −4.25, p < 0.01), indicating that the coordination for the
ASD children was less stable or more variable compared to TD children.

The analyses of the CRQA measures showed no significant differences in %REC
between the ASD and TD children (t(84) = 0.18, p = 0.86). Surprisingly, however,
there was a significant difference between the ASD and TD groups for MaxLine (t
(84) = 1.95, p = 0.05), with children previously diagnosed with ASD having
significantly longer MaxLine scores (M = 141.53, SD = 120.25) than the TD
children (M = 97.47, SD = 86.30). Similarly, children previously diagnosed with

Fig. 12.5 Mean distribution
of relative phase angles
(DRP) by diagnosis. The error
bars represent standard error
of the mean
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ASD showed significantly higher %DET4 (M = 98.01, SD = 1.06) than the TD
children (M = 97.14, SD = 2.34; t(84) = 2.22, p = 0.03; see Fig. 12.6). Together,
these MaxLine and %DET results appear to suggest that the coordination observed
for the ASD children was more regular and exhibited a greater level of local
stability than the coordination observed for the TD children.
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Fig. 12.6 Mean a %REC, b %DET and c MaxLine by diagnosis for the interpersonal hand
clapping game. The error bars show the standard error of the mean

4Since %DET showed a ceiling effect in all of these analyses, the number of points required to be
considered a line in the recurrence plot was systematically raised from 3 up to 7 points in order to
investigate more fine-grained differences that might arise between the two groups in this particular
measure. The results of this additional analysis however, matched the main results and did not add
any new information.
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12.4 Discussion

The goal of the current study was to better understand the differences in social
motor coordination between typically developing children and those that have been
diagnosed with autism spectrum disorder through the use of a nonlinear analysis
technique (i.e. cross-recurrence quantification analysis, CRQA) as well as a linear
analysis technique (i.e. distribution of the relative phase, DRP). These differences
were explored using a simple imitative and synchronous interpersonal object tap-
ping task and synchronous hand-clapping task. For the object tapping task, chil-
dren’s movements were in general more stable in the imitation condition than in the
synchrony condition, as shown by the higher occurrence of antiphase relative phase
angles (a relative phase of 180°) during imitation trials as opposed to the diminished
occurrence of inphase relative phase angles in the synchrony trials. Additionally,
the TD children were able to maintain the desired inphase relationship more often
than those who had been previously diagnosed with autism in the synchrony
condition. This finding was supported by the CRQA measures where MaxLine was
significantly higher (i.e. showing a higher degree of stability) for the trials in the
imitation condition than those in the synchrony condition. Also, the measure of %
REC was able to capture the higher degree of coordination established between the
children and the experimenter in the imitation trials compared to the synchrony
trials. However, this measure was only able to differentiate the two diagnostic
groups in the imitation trials, and not in the synchrony trials.

Regarding the seemingly contradicting results of the object tapping task in the
context of diagnosis, where the DRP and CRQA measures differed, we would
conclude that DRP and %REC in particular are isolating different aspects of the
underlying coordination dynamics and, thus, that these measures provide a com-
plementary index of the stability of coordination for the social object tapping task.
Although conclusively defining what these different aspects are remains to be
determined, one possibility is that DRP is providing a greater overall index of
spatial-temporal coordination independent of movement amplitude or the degree of
asymmetric movement kinematics, whereas %REC is providing a better measure of
differences in the intrinsic dynamics (i.e., movement stiffness, variability, etc.) of the
children’s or experimenter’s movements during social motor coordination [11, 17].
Thus, for the object tapping task, the current results may indicate that the local
movement dynamics of children with ASD are more different than the experi-
menter’s compared to TD children, and that this is more apparent in the imitation
task due to the lack of local coupling (which is present in the synchronous
condition).

For the interpersonal hand clapping game, the distribution of relative phase
showed a significant difference by diagnosis, showing that TD children were able to
maintain the desired inphase relationship more often than those previously diag-
nosed with ASD. Again, however, the CRQA analysis provides a slightly different
picture compared to the DRP results. More specifically, although there was no
difference in %REC, children with ASD exhibited more deterministic (i.e., higher %
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DET) patterns of coordination compared to TD children, as well as a higher degree
of local stability (i.e., greater MaxLine) than the TD children. As argued above, the
DRP seems to capture an overall index of the spatio-temporal patterning of the
coordination, but is less sensitive to the underlying dynamics of the coordination or
the intrinsic dynamics of the movements themselves [11, 17]. Indeed, for the
synchronous hand-clapping task the CRQA analysis appears to be indicating that
the local stability and deterministic structure of the coordination for the ASD
children is significantly greater than for TD children. Why then, is the overall
coordination as measured by the DRP greater for TD children than for ASD chil-
dren? Normally, when coordination is seen as less stable, it is assumed that this
instability is created by increased random fluctuations, however, it seems that for
the synchronous hand-clapping task employed here that the decrease in overall
spatial-temporal coordination for ASD children compared to TD children is fueled
by more deterministic movements of the child or experimenter when the coordi-
nation task involves a child with ASD. This is consistent with previous research
examining the structure of movements in patients with Parkinson’s disease [18] and
Schizophrenia [6] and implies that the movements of the ASD children are less
flexible than the movements of TD children [19]. Finally, the current results also
highlight the need for future research more specifically aimed at examining the
influence of the experimenter’s movement modulation in cooperative tasks like the
hand clapping game. Indeed, although we see differences and an effect of diagnosis
in the task employed here, further work is required to tease apart how much of the
difference is mediated by experimenter versus the child since the experimenter in
this case was not blind to the child’s group membership (due to the easily
observable differences between the children’s behaviors).

In conclusion, the current study provides new insights about the differences in
social motor coordination in children with and without ASD and further exemplifies
how the dynamics of social motor coordination can be used as an ASD related
behavioral bio-marker in children, and eventually exploited as a diagnostic measure
to improve this process. It is important to note that the differences observed between
ASD and TD children were most pronounced during synchronized behavior, as
opposed to imitative behavior. Accordingly, simple cooperative synchrony tasks
seem to be better suited to uncovering ASD related social motor deficiencies [9].
The current results also demonstrate the importance of employing both linear (i.e.,
DRP) and nonlinear (i.e., CRQA) analysis techniques in order to fully understand
the processes underlying social motor deficits in ASD (as well as in other
disorders).
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Chapter 13
Restoring Corrupted Cross-Recurrence Plots
Using Matrix Completion: Application
on the Time-Synchronization Between
Market and Volatility Indexes

George Tzagkarakis and Thomas Dionysopoulos

Abstract The success of a trading strategy can be significantly enhanced by track-

ing accurately the implied volatility changes, which refers to the amount of uncer-

tainty or risk about the degree of changes in a market index. This fosters the need

for accurate estimation of the time-synchronization profile between a given market

index and its associated volatility index. In this chapter, we advance existing solu-

tions, which are based widely on the typical correlation, for identifying this temporal

interdependence. To this end, cross-recurrence plot (CRP) analysis is exploited for

extracting the underlying dynamics of a given market and volatility indexes pair,

along with their time-synchronization profile. However, CRPs of degraded quality,

for instance due to missing information, may yield a completely erroneous estimation

of this profile. To overcome this drawback, a restoration stage based on the concept

of matrix completion is applied on a corrupted CRP prior to the estimation of the

time-synchronization relationship. A performance evaluation on the S&P 500 index

and its associated VIX volatility index reveals the superior capability of our proposed

approach in restoring accurately their CRP and subsequently estimating a temporal

relation between the two indexes even when 80% of CRP values are missing.

13.1 Introduction

In nowadays rapidly evolving financial world, design of modern data analysis tech-

niques, as a means of understanding the underlying complex dynamics of economic

systems, becomes an emerging necessity. Due to the complex behavior of financial
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time series data, most of the existing methods, which either rely on linear stochastic

models or require long data series, may often lead to pitfalls concerning the accurate

description of the inherent dynamics, and subsequently the performance of further

decision making based on the evolution of the data generating process.

A major feature of any financial system is that markets constitute a complex

dynamically evolving universe, which consists of individual, yet interdependent,

components. The extraction and precise description of such interrelations is criti-

cal towards designing efficient trading strategies. This can be done only indirectly

by observing and analyzing the associated financial time series, which are consid-

ered to be realizations of the underlying dynamical process. The complex nature of

financial data, which cannot be captured by linear stochastic models [1, 2], has been

attributed to the fact that financial markets present a non-linear stochastic or chaotic

behavior, or a combination of both. Knowledge about the properties of the underly-

ing dynamics is crucial when investing in a market, since the incorporation of such

information may improve the robustness and reduce the risk of a trading strategy.

This makes non-linear time series analysis one of the most important tools, which

can foster radically the identification of opportunities which appear for investors.

In the modern global financial scene, the underlying dynamics of markets is

expected to vary across time. Market indexes are intended to represent an entire stock

market and thus track its changes over time. Furthermore, prior knowledge regard-

ing the level of confidence about the degree of changes in a market index is of high

importance for investors, in order to design efficient and successful trading strate-

gies. This confidence level is expressed via the so-called implied volatility, whose

variations can cause losses to investors even when correct predictions of stock values

included in a given market index are available. Implied volatility can have a negative

impact on the performance of a trading portfolio, thus affecting adversely the over-

all investment returns. As such, traders and portfolio managers incorporate volatility

expectations in their investment decisions, and adjust actively their positions to bet-

ter manage the risk associated with volatility fluctuations [3]. The impact of implied

volatility on market index returns necessitates the design of effective techniques for

estimating the degree of interdependence between a market index and its associated

volatility, in order to guarantee the performance of a trading strategy.

To this end, previous studies have given a strong empirical evidence for a negative

relation between market index returns and volatility fluctuations [4]. More specifi-

cally, negative (respectively, positive) changes of index returns are correlated with

positive (respectively, negative) changes of the associated volatility values. From

another perspective, volatility can be considered as an indirect realization of the

underlying market dynamics, as well as a descriptor of investors’ sentiment. Existing

methods for explaining the time-varying relation between market index returns and

volatility values, primarily rely on the typical correlation coefficient [5–7], on sim-

ple regression analysis [8], or on GARCH models [9, 10]. However, these models

often fail to capture the asymmetric effects of volatility on index returns, since the

absolute effect of returns is considered, while ignoring the positivity or negativity of

volatility changes [11]. To overcome some of those limitations, vector autoregres-
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sion (VAR) approaches [12, 13] have been proposed recently to better understand

the interrelation between index returns and volatility response. However, VAR-based

approaches can be quite sensitive to the time-varying selection of the proper lag order

for the VAR model.

Despite their drawbacks, all the previous works have identified contemporane-

ous and lead-lag relationships between index returns and changes in volatility. This

fosters the need to design improved algorithmic tools for extracting and monitoring

the time-synchronization profile between a given market index and the associated

volatility index, whilst accounting for their distinct underlying dynamics, towards

protecting the performance of a trading portfolio.

In late 1980’s, the method of recurrence plots (RP) [14, 15] was proposed as an

alternative to describe complex dynamics of a single system on the basis of recur-

rence theory, through phase-space reconstruction via time-delay embeddings. Then,

a considerable amount of diverse information on the dynamics of the system can

be extracted and quantified by means of appropriately defined quantitative mea-

sures [16–19], which constitute the framework of recurrence quantification analysis
(RQA) [15, 16]. In order to analyze the dependencies and interrelations between the

underlying dynamics of two different systems, the cross recurrence plot (CRP) was

introduced as a bivariate extension of RPs [20]. An important property of CRPs,

which will be exploited in our subsequent analysis of interdependencies between

market index values and volatility fluctuations, is that it reveals the local difference

of the dynamical evolution of close trajectory segments, represented in the form of

bowed lines. Then, a line of synchronization (LOS) can be estimated from these

curvilinear structures, which is capable of representing more complex lead-lag rela-

tionships when compared against the previous methods.

The advanced data analysis capabilities of RPs and CRPs yielded an increas-

ing interest in financial research. In particular, RQA has been exploited to identify

deterministic non-linearities in financial time series [21], to measure financial data

volatility and detect correlations between currency time series [22], as well as for

detecting the critical regime and estimate the bubble initial time in financial mar-

kets [23]. CRPs, in specific, have been already exploited in the financial industry to

analyze convergence and synchronicity of business and growth cycles [24], to exam-

ine the interactive behavior between the hourly accepted weighted average price and

the hourly required load in electricity markets [25], as well as for understanding the

interrelation between commodity and stock indexes [26] or the coupling of the Euro-

pean banking and insurance sectors [27].

Although CRPs are very efficient in extracting simultaneously the individual and

coupled dynamics of a pair of time series, however, there can be situations where

information is missing in financial data, thus hindering a robust decision making.

More specifically, we distinguish between structural missing and observational miss-
ing information. The former type is related to values that are not expected to be avail-

able, for instance, stock prices will be unavailable when stock markets are closed

at weekends or holidays. On the other hand, the later type corresponds to the case

where previously available values have been lost, for instance, due to malfunction of

the storage media. Furthermore, notice that although structural missing information
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refers mostly to the observed time series, however, this is also reflected to the asso-

ciated CRP in the form of gaps in the time intervals where one of the two time series

lacks observations. In both cases, appropriate meaningful values must be generated

to fill the gaps, prior to further data processing.

Focusing again on the problem of examining potential interrelations between

a pair of market and volatility indexes based on their CRP, any source of miss-

ing information may yield a completely erroneous interpretation of their time-

synchronization profile. Subsequently, this can influence significantly the perfor-

mance of a trading strategy, which is based on the accurate estimation of temporal

associations between stock market and volatility indexes, in order to predict future

investment returns.

To address the critical task of recovering missing information in CRPs, and sub-

sequently of improving the estimation of the time-synchronization relation between

a pair of stock market and volatility indexes, in this study we exploit the power of

matrix completion (MC) [28], which enables the accurate recovery of unknown or

missing entries of a matrix under certain conditions. More specifically, first we ver-

ify that the necessary conditions of the MC framework are satisfied for a CRP. Then,

an appropriate MC step is applied on a corrupted CRP prior to the estimation of the

time-synchronization relation between two time series, as expressed by their esti-

mated LOS. The performance of our proposed approach is illustrated for the pair of

S&P 500 and VIX indexes, which is of particular interest to investors and traders, as

it will be described in the following section.

We emphasize, though, that our proposed approach is generic enough and can

be applied for recovering missing information in any type of CRPs. The specific

choice of financial time series is motivated by the fact that financial data are typi-

cally complex, whereas they are characterized by non-linear interdependencies, thus

providing a challenging case study. Furthermore, to the best of our knowledge, this

is the first attempt to bridge the fields of recurrence analysis and matrix completion,

giving insights and paving the way for novel solutions in distinct application areas

other than finance and economics. As such, this work should not be considered as an

action plan for designing efficient trading strategies, but as a more general framework

to remedy the case of missing data. A more detailed examination of the effects of our

proposed framework on the performance of a trading portfolio is left as a separate

thorough study.

The rest of the chapter is organized as follows: Sect. 13.2 introduces the main con-

cepts and characteristics related to stock and volatility indexes, and specifically to the

S&P 500–VIX pair. In Sect. 13.3, the process for estimating the time-synchronization

relation between two time series from their CRP is reviewed, while in Sect. 13.4

our proposed approach for recovering the LOS of CRPs with missing entries, using

matrix completion, is analyzed in detail. Section 13.5 evaluates the performance of

our proposed approach applied on S&P 500 and VIX, in terms of estimating accu-

rately the LOS from a restored CRP and then detecting the critical times, where the

true S&P 500 values exceed the 30-day expected range, which is predicted by the

current VIX level. To further validate the capabilities of our proposed approach, we

compare against an interpolation-based technique, which is widely used for restor-
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ing missing entries of image data. Finally, Sect. 13.6 highlights the major quantitative

results and qualitative economic implications of our method, and provides directions

for further improvements.

13.2 Market and Volatility Indexes: The S&P 500–VIX
Case

In this section, the main concepts and properties of stock market and volatility

indexes are briefly reviewed for completeness of presentation. Special focus is given

to the S&P 500–VIX pair, which constitutes our selected case study for evaluating

the performance of our proposed approach.

In finance, a volatility index is a mathematical measure of how much the market

believes that a stock index will fluctuate in the future over a predetermined time

interval. This belief is based on an analysis of the difference between current put and

call option prices of the stock index. Although a volatility index is not expressed as

a percentage, however, it should be understood like that. For instance, a volatility

index value of 10 translates to an implied volatility of 10% on the associated stock

index. This means that the stock index has a probability of 68% (that is, one standard

deviation) of trading within a range, which is 10% higher or lower than its current

level over the next predetermined time interval [29]. Furthermore, a volatility index

typically rises when the interest for buying put options increases, and falls when the

buying activity of call options predominates
1

[30]. The importance for analyzing

stock index–volatility index pairs stems from the fact that low values of a volatility

index indicate a so-called bearish market, that is, a market whose economy is bad, its

recession is looming, and stock prices are falling, thus making it tough for investors

to select profitable stocks. On the contrary, high values of a volatility index indicate

a so-called bullish market, that is, a market whose economy is robust and stocks are

rising, thus enabling investors to identify profitable stocks [31].

A special case of a stock index–volatility index pair is the S&P 500–VIX pair.

S&P 500 is a core index of equities in the United States, which is composed of 500

market value-weighted stocks from a broad range of industries, that are traded on

the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX),

and the Nasdaq National Market System [32]. The weighting process controls the

influence of each company on the overall performance of the index in such a way

that is directly proportional to the market value of each company. It is exactly this

weighting scheme, which ranks the S&P 500 index among the prevalent standards

for measuring the performance of actual portfolios in the industry sector.

The volatility index which is associated with S&P 500, is the Chicago Board

Options Exchange (CBOE) market volatility index. The CBOE volatility index,

which is widely known under the trademarked ticker symbol “VIX”, is considered to

1
A put option gives the purchaser the right, but not the obligation, to sell a security for a specified

price at a certain time. A call option is a right to buy the same.
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Fig. 13.1 Daily close values for S&P 500 and VIX for the period 03/01/2000–08/05/2015

be among the world’s leading measures of equity market volatility. The calculation

of VIX is based on real-time prices of options on the S&P 500 and is designed to

reflect the consensus view of investors with respect to the future (30-day) expected

stock market volatility [33]. A characteristic property of the S&P 500–VIX pair is

that VIX has an inverse relationship with the market condition, as expressed by the

values of S&P 500 (Fig. 13.1) [7]. More specifically, low VIX values (typically below

15) indicate a reduced interest of investors to take decisions under the current market

conditions, which, in general, leads to a period of increased volatility. On the other

hand, high VIX values (typically greater than 30) are associated with a high volatility

as a result of investors’ fear. In particular, the value of VIX increases as the investors

become fearful and decreases when they feel confident about the future direction of

the market [34].

The subsequent analysis and experimental evaluations are performed on S&P 500

and VIX values which cover the period between January 03, 2000, and May 08,

2015. More specifically, daily close prices were obtained for S&P 500 from the S&P

Dow Jones Indices repository,
2

while the corresponding daily values for VIX were

acquired from the CBOE website.
3

The inverse relation between S&P 500 and VIX motivates the design of efficient

methods for monitoring accurately the time-synchronization profile between the cor-

responding index values. In particular, by tracking the changes in VIX, while having

estimated such a time-synchronization relation, we enable the prediction of critical

events for the stock index, and subsequently the protection of an investment. To this

end, the computation of the time-varying correlation between S&P 500 and VIX is

2
http://us.spindices.com/indices/equity/sp-500.

3
http://www.cboe.com/micro/vix/historical.aspx.

http://us.spindices.com/indices/equity/sp-500
http://www.cboe.com/micro/vix/historical.aspx
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a commonly used method to monitor their lead-lag relation. However, correlation

can be very sensitive to the presence of outliers, yielding erroneous results, whilst

it does not account for the true underlying dynamics that generate the two indexes.

Taking into consideration the dynamical processes, which drive the two indexes, may

reveal a more complex interdependence among them. To address this problem, cross-

recurrence analysis is employed as a powerful alternative in order to account for the

underlying index dynamics and estimate an accurate lead-lag relationship between

S&P 500 and VIX. The following section describes the process for extracting the

time-synchronization mapping between S&P 500 and VIX by employing their cross

recurrence plot.

13.3 Time-Synchronization Using CRPs

Recurrence is a fundamental feature of many non-linear dynamical systems, which

is defined as a time when the trajectory returns to a location it has visited before. The

study of recurrences, towards understanding the dynamics of non-linear systems, is

facilitated by means of a powerful tool, the so-called recurrence plot (RP), and its

quantification. The method of RPs was first introduced in [14] as an advanced tech-

nique of non-linear data analysis, to study recurrences and non-stationary behavior

of dynamical systems. An RP is a visualization (graph) of a square matrix, in which

the matrix elements correspond to those times at which a state of a dynamical system

recurs (columns and rows correspond then to a certain pair of times). Such a recur-

rence of a state, occurring at time i, at a different time j is represented within the two-

dimensional square matrix with ones (recurrence) and zeros (non-recurrence), where

both axes are time axes. In fact, an RP reveals all the times when the phase-space
trajectory of the dynamical system visits roughly the same area in the phase-space.

Given a time series with n samples, 𝐬 = {si}n
i=1, a phase-space trajectory can be

reconstructed via time-delay embedding,

𝐱i = [si, si+𝜏 ,… , si+(m−1)𝜏], i = 1,… ,N , (13.1)

where 𝐱i denotes the i-th state, m is the embedding dimension, 𝜏 is the delay, and

N = n − (m − 1)𝜏 is the number of states. The appropriate choice of the embedding

parameters is crucial and needs special attention, as we will discuss in the following

section. Having constructed a phase-space representation, an RP can be expressed

mathematically as follows:

𝐑i,j = 𝛩

(
𝜀 − ‖𝐱i − 𝐱j‖p

)
, i, j = 1,… ,N , (13.2)

where 𝐱i, 𝐱j ∈ ℝm
, 𝜀 is a distance threshold, ‖ ⋅ ‖p denotes a general 𝓁p norm (Euclid-

ean distance (p = 2) is commonly used), and 𝛩(⋅) is the Heaviside step function,

whose discrete form is defined as
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𝛩(k) =

{
1, if k ≥ 0
0, if k < 0

, k ∈ ℝ . (13.3)

The resulting matrix 𝐑 exhibits the main diagonal, 𝐑i,i = 1 (i = 1,… ,N), also

known as the line of identity (LOI). Typically, several linear (and/or curvilinear)

structures appear in RPs, which give hints about the time evolution of the high-

dimensional phase-space trajectories. Besides, a major advantage of RPs is that they

can be also applied to rather short and even non-stationary data.

A special case of RP, which is useful in the study of phase-space trajectories,

is the unthresholded RP [35] (also called global RP, or distance plot). Instead of

plotting the recurrences, the unthresholded version is simply obtained by plotting

the distances between states 𝐱i and 𝐱j,

𝐃i,j = ‖𝐱i − 𝐱j‖p, i, j = 1,… ,N . (13.4)

The cross recurrence plot (CRP) is a bivariate extension of the RP, which was

introduced to analyze the dependencies and interrelations between the underlying

dynamics of two different systems by comparing their states [20]. A CRP is a graph

showing all those times at which a state in one dynamical system occurs simulta-

neously in a second dynamical system. In other words, a CRP reveals all the times

when the phase-space trajectory of the first system visits roughly the same area in

the phase-space, where the trajectory of the second system is. Let 𝐱i and 𝐲j represent

the trajectories of two dynamical systems. Then, the corresponding cross recurrence

matrix is defined by

𝐑𝐂
i,j(𝜀) = 𝛩

(
𝜀 − ‖𝐱i − 𝐲j‖p

)
, i = 1,… ,N, j = 1,… ,M , (13.5)

where, in general, the two trajectories may not be of equal length (N ≠ M), and hence

the matrix 𝐑𝐂
is not necessarily square. However, we emphasize that both systems

must be represented in the same phase-space, since a CRP looks for those times

when a state of the first system recurs to one of the other system. If the embedding

parameters estimated from the two time series are not equal, the higher embedding

should be chosen.

Similarly to its RP counterpart, an unthresholded CRP is obtained by plotting the

distances between states 𝐱i and 𝐲j,

𝐃𝐂
i,j = ‖𝐱i − 𝐲j‖p, i = 1,… ,N, j = 1,… ,M . (13.6)

Notice also that, since the values of the main diagonal 𝐑𝐂
i,i (or 𝐃𝐂

i,i) (i = 1,… ,N) are

not necessarily equal to each other, usually there is not a (straight) main diagonal in

the CRP (or the unthresholded CRP).

An important property of CRPs, as well as of unthresholded CRPs, which will

be exploited in our subsequent analysis of interrelations between financial market

indexes, is that they reveal the local difference of the dynamical evolution of close
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trajectory segments, represented in the form of bowed lines. A time dilation or time

compression of one of the trajectories causes a distortion of the diagonal lines. Then,

the LOI will be disrupted, and in this case it will be called a line of synchronization
(LOS) [36]. Specifically, if we stretch or compress the second trajectory slightly,

then, a deformation of the LOS will be observed, and although still being continuous

it will not be a straight diagonal line, whereas a time shift between the trajectories

causes a displacement of the LOS. This enables the estimation of a non-parametric
rescaling function between our financial time series.

We emphasize that, although our proposed approach is generic and can be applied

on any type of CRPs, however, in the subsequent analysis we will mainly rely on

unthresholded CRPs. For our selected financial application, this is justified by the

fact that a thresholded CRP can reveal convergence properties between a stock mar-

ket index and its volatility index, in the sense that the CRP values will indicate

dynamics that occur to the two time series within some critical distance. On the

other hand, since we are interested in estimating their synchronization profile, an

unthresholded CRP can enhance the understanding of the phase-space trajectories

and detect phase synchronous dynamics even when the two time series do not con-

verge. This property of unthresholded CRPs, when compared with their thresholded

counterparts, has been exploited for the analysis of synchronicity in growth and busi-

ness cycles [37], as well as for the detection of financial crisis [38].

13.3.1 Estimation of Embedding Parameters

Without loss of generality, and for illustration purposes, we study the relationship

of our selected S&P 500 and VIX indexes by fixing the delay parameter at 𝜏 = 1.

Concerning the embedding dimension m, a minimal sufficient value is estimated

separately for the two time series, that is, S&P 500 prices and VIX values, using

the method of false nearest neighbours (FNN) [39]. In practice, the minimal embed-

ding dimension is defined as the dimension for which the fraction of false neigh-

boring points is zero, or at least sufficiently small. Let m
S&P 500

and m
VIX

denote the

embedding dimension of S&P 500 and VIX, respectively. As mentioned above, if

m
S&P 500

≠ m
VIX

, then, the higher embedding m = max{m
S&P 500

, m
VIX

} should be

chosen for the generation of the CRP or its unthresholded version.

Figure 13.2a shows the FNN ratio curves as a function of the embedding dimen-

sion for S&P 500 and VIX (Fig. 13.1). The minimal sufficient embedding dimen-

sions, which are estimated separately, are equal to m
S&P 500

= 5 and m
VIX

= 6, thus

the corresponding CRP is constructed for an embedding dimension m = 6. Using this

parameters setting, a detailed depiction of the relative distances between the corre-

sponding states is given by the unthresholded CRP, which is shown in Fig. 13.2b.
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Fig. 13.2 a False nearest neighbours ratio as a function of the embedding dimension, b unthresh-

olded CRP, for S&P 500 and VIX in the period 03/01/2000–08/05/2015 (m = 6, 𝜏 = 1)

13.4 Restoring Missing Entries in Unthresholded CRPs
Using Matrix Completion

Many of the sophisticated methods that have been developed for analyzing financial

data can be particularly sensitive to data loss, thus affecting subsequent data process-

ing and robust decision making. From the one hand, missing structural information

typically exists when data is not expected to be available, for instance, when stock

markets are closed at weekends or holidays. On the other hand, missing observa-

tional information is related to the case where previously available values have been

lost, for instance, due to malfunction of the storage media. We emphasize again that,

although structural missing information refers mostly to the observed time series,

however, this is also reflected to the associated CRP in the form of gaps in the time

intervals where at least one of the two time series lacks observations. As such, in both

cases we address the problem of recovering missing information from a corrupted

(unthresholded) CRP directly, prior to further data processing.

Several imputation methods [40] have been proposed in the past to address the

problem of recovering missing information in financial data sets. To this end, there

are two fundamental approaches: (i) fit a model and use it to predict the missing data;

(ii) find the observation that is most similar to the one with the missing value given

a predetermined “similarity” criterion. In the former case, the choice of a model can

come from statistics or machine learning and includes techniques, such as, regres-

sion, neural networks, support vector machines, and decision trees. However, the

main drawback of all those techniques is that complete data is needed to fit an accu-

rate model. In the later case, typical methods include interpolation (e.g., linear, cubic,

spline) or extrapolation methods to find the missing observation that is most “simi-

lar” to its neighboring values. However, the major limitation of such methods is that

they are mostly based on geometric features of the data, while ignoring the inherent

statistical or dynamical process generating the data.
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Advanced signal processing techniques have been introduced recently for pro-

viding highly accurate restoration of missing data. Among them, matrix completion
(MC) is a novel powerful framework, capable of recovering missing observations

in a reliable fashion. In [28], it was shown that most low-rank matrices could be

recovered from sufficiently large sets of entries by computing the matrix of mini-
mum nuclear norm that agrees with the provided entries. The nuclear norm is equal

to the sum of the singular values of a matrix and is the best convex lower bound of

the rank function on the set of matrices whose singular values are all bounded by 1.

Apart from the low rank assumption for our data, no additional prior knowledge is

required to estimate the missing observations.

More specifically, given a N × M unthresholded cross-recurrence matrix 𝐃𝐂
(the

same holds for the thresholded case), recovering the complete set of N ⋅ M entries of

the matrix from a much smaller number of K ≪ N ⋅ M entries is possible, provided

that both the number of missing entries and the rank of the matrix are appropriately

bounded [41]. Let M ∶ ℝN×M → ℝK
be a sampling operator (mask), which repre-

sents the process of selecting a subset of the entries of 𝐃𝐂
, that is,

di,j = M
(
𝐃𝐂)

i,j =

{
1, if (i, j) ∈ 𝛺

0, if (i, j) ∉ 𝛺

, (13.7)

where 𝛺 denotes the set of indices of the sampled entries, or, equivalently, of the

available entries of a given (unthresholded) CRP.

Let 𝐗 be the target matrix obtained by recovering all the missing entries of 𝐃𝐂
,

whilst posing an equality constraint between the entries of 𝐗 and 𝐃𝐂
whose indices

belong to the set𝛺. Then, the full matrix𝐗 can be estimated by solving the following

nuclear norm optimization problem:

min
𝐗

‖𝐗‖∗ subject to M (𝐗) = M (𝐃𝐂) . (13.8)

Recall that the nuclear norm of a matrix 𝐗 is defined as the sum of its singular values

‖𝐗‖∗ =
∑

k 𝜎k(𝐗), where 𝜎k(𝐗) denotes the k-th largest singular value of 𝐗. Further-

more, according to the spectral theorem associated with the singular value decom-

position of 𝐗, low-rank matrices, such as the ones produced by spatio-temporally

correlated processes, as we expect to be the case with the (unthresholded) CRPs

of stock and volatility indexes, are characterized by a small number of non-zero

singular values. As such, before proceeding, the first requirement to be verified is

whether the singular values of our unthresholded CRP decay very quickly. Indeed,

as it is shown in Fig. 13.3, the singular values of the unthresholded CRP, which is

depicted in Fig. 13.2b, decay very quickly to zero (notice the logarithmic scale of

the x-axis), thus indicating that the MC could be applied successfully to restore its

missing entries.

Various approaches have been proposed for the solution of the optimization prob-

lem (13.8). In this study, the Singular Value Thresholding (SVT) algorithm [42] is

employed, due to the minimal storage space requirements and low computational



252 G. Tzagkarakis and T. Dionysopoulos

Fig. 13.3 Singular values of the unthresholded CRP of S&P 500 and VIX for the period

03/01/2000–08/05/2015

Fig. 13.4 Flow diagram for estimating the time-synchronization profile (LOS) of two time series

from their corrupted CRP with missing information

cost per iteration, and also because it was shown to preserve the details (curvilinear

structures) in an (unthresholded) CRP. Let ̂𝐃𝐂
denote the restoration of the corrupted

unthresholded CRP, obtained as the solution of (13.8). The LOS is then estimated

for the corresponding stock and volatility indexes by applying the method described

in [36] on the restored CRP ̂𝐃𝐂
. Our proposed approach for estimating the time-

synchronization profile of stock and volatility indexes (or, in general, of any given

pair of time series) from a corrupted (unthresholded) CRP with missing information

is summarized in Fig. 13.4.

13.5 Performance Evaluation

In this section, the performance of our proposed approach is evaluated and compared

with a well-established interpolation technique, in terms of estimating accurately the

LOS from a corrupted unthresholded CRP between S&P 500 and VIX with missing

entries. As described in Sect. 13.2, our data set consists of daily close prices for S&P

500, along with the corresponding VIX values, covering the period between January

03, 2000 and May 08, 2015.
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First, an unthresholded CRP is calculated for the two indexes over the whole

time period of 15 years, by setting the embedding parameters to 𝜏 = 1 for the

delay and m = 6 for the embedding dimension (Sect. 13.3.1). We emphasize that

the subsequent performance analysis is not affected by the selection of the embed-

ding parameters, in the sense that our proposed approach is valid as soon as the

singular values of the calculated unthresholded CRP decay very quickly, as it was

described in Sect. 13.4. Then, the scenario of missing information from the origi-

nal unthresholded CRP is simulated by generating artificially corrupted versions of

it. This is done by randomly selecting a percentage 𝜌 of entries whose correspond-

ing unthresholded CRP value is set equal to NaN, thus being equivalent to miss-

ing entries. In the subsequent evaluation, the percentage of missing entries varies in

𝜌 ∈ {10%, 20%, … , 80%}.

The performance of both our proposed approach and the interpolation-based tech-

nique is measured in terms of the approximation accuracy between the original LOS,

which is estimated from the original unthresholded CRP, and the LOS estimated

from the restored unthresholded CRPs. In particular, let 𝐥 ∈ ℝL
and ̂𝐥 ∈ ℝL

denote

the original and restored LOS, respectively. In this study, we chose the root mean

squared relative error (RMSRE) as a metric for measuring the reconstruction quality

of the original LOS, which is defined as follows,

E(𝐥, ̂𝐥) =

√√√√√1
L

L∑
i=1

(
li − ̂li

li

)2

. (13.9)

Furthermore, in order to reduce the bias due to the random selection of missing

entries, for each value of 𝜌 the RMSRE is averaged over 100 Monte-Carlo runs,

where in each run a different subset of missing entries is chosen at random. Algo-

rithm 1 describes the steps for calculating the (unthresholded) CRP of two given

time series, while Algorithm 2 summarizes the main steps of our proposed approach

for restoring a corrupted CRP using MC and estimating the LOS.

Algorithm 1 Calculation of (unthresholded) CRP

1. Inputs: 𝐬1 ∈ ℝn1 , 𝐬2 ∈ ℝn2 (input time series), 𝜏 (delay parameter), p (𝓁p norm for the distance

plot)

2. Estimate embedding dimension:
∙ Use False Nearest Neighbours (FNN) to estimate m𝐬1 for the given 𝜏

∙ Use False Nearest Neighbours (FNN) to estimate m𝐬2 for the given 𝜏

∙ m = max{m𝐬1 , m𝐬2 }
3. Calculate CRP:

∙ Construct the states of 𝐬1, 𝐱i = [s1,i, s1,i+𝜏 ,… , s1,i+(m−1)𝜏 ] , i = 1,… ,N
∙ Construct the states of 𝐬2, 𝐲j = [s2,j, s2,j+𝜏 ,… , s2,j+(m−1)𝜏 ] , j = 1,… ,M
∙ Calculate unthresholded CRP, 𝐃𝐂

i,j = ‖𝐱i − 𝐲j‖p , i = 1,… ,N, j = 1,… ,M
4. Output: 𝐃𝐂 ∈ ℝN×M

(unthresholded CRP)
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Algorithm 2 Restoration of corrupted (unthresholded) CRPs using MC, and LOS

estimation

1. Inputs: ̃𝐃𝐂 ∈ ℝN×M
(corrupted (unthresholded) CRP), 𝛺 (set of indices of available CRP

entries)

2. Restore missing entries using MC:
(The SVT algorithm [42] is used to solve the following optimization problem)

̂𝐃𝐂 = argmin𝐗∈ℝN×M ‖𝐗‖∗ subject to M (𝐗) = M ( ̃𝐃𝐂)
3. Estimate the LOS:

Estimate the LOS, ̂𝐥 ∈ ℝL
, by applying on ̂𝐃𝐂

the method described in [36]

4. Outputs: ̂𝐃𝐂 ∈ ℝN×M
(restored unthresholded CRP), ̂𝐥 ∈ ℝL

(estimated LOS)

Concerning the interpolation-based technique against which we compare, among

the several existing solutions, we employ a widely used data inpainting method

that looks for NaN elements in an array and attempts to interpolate (or extrapolate)

smoothly, in order to restore the missing values. To this end, a corrupted unthresh-

olded CRP is treated as a monochromatic image, that is, an image with one color

component per pixel, whereas the regions with the missing entries (NaN values)

are considered to be the inpainting domains to be filled in. The core of this method

consists of a partial differential equation (PDE), which is applied in the inpainting

domains to fill the gaps [43]. Specifically, a fourth-order PDE model is formulated

to allow for the transportation of available information from the exterior towards

the interior of an inpainting domain and the simultaneous diffusion of the informa-

tion inside the inpainting region. Due to the increased computational complexity of

this method, in the subsequent evaluation we are restricted to a part of the original

unthresholded CRP (Fig. 13.2b), by randomly selecting the time period 16/12/2005–

01/12/2011 for both the S&P 500 and VIX. Then, the artificially corrupted CRPs,

along with their restored versions, correspond to a square region of size 1500 × 1500,

which is shown in Fig. 13.7a. In the rest of the text, whenever we refer to the orig-

inal unthresholded CRP we mean this 1500 × 1500 region. We also emphasize that

our objective is not to compare with the state-of-the-art data interpolation methods,

but instead to verify the efficiency of the MC framework when dealing with missing

CRP entries associated with financial data.

As a first evaluation, the reconstruction accuracy of the original LOS from the

restored unthresholded CRPs is calculated as a function of the percentage of miss-

ing entries 𝜌. To this end, Fig. 13.5 shows the average RMSRE as a function of

𝜌 (%) for our proposed approach based on MC (SVT) and the PDE-based method

(Data Inpaint), along with the error bars corresponding to one standard deviation

over the 100 Monte-Carlo runs. Clearly, the MC-based approach achieves a highly

accurate restoration of the original unthresholded CRP, which yields an equally high

accuracy in estimating the LOS. Furthermore, our proposed approach outperforms

significantly the PDE-based method, with the difference in LOS estimation accu-

racy being more prominent for high percentages of missing entries. In addition, the

small error bars of the MC-based approach, when compared with their much larger

counterparts of the PDE-based method, indicate a more robust performance over the

distinct Monte-Carlo runs.
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Fig. 13.5 Average RMSRE

between the original LOS

and its reconstructions from

the restored unthresholded

CRPs as a function of the

percentage of missing

entries, for our proposed

MC-based approach (SVT)

and the PDE-based method

(Data Inpaint)

For a visual inspection of the restoration capabilities of both the MC and the

PDE-based methods, we present the recovered unthresholded CRPs for two extreme

values of 𝜌, that is, a low percentage of missing entries 𝜌 = 20% and a very high per-

centage of missing entries 𝜌 = 80%. Specifically, Fig. 13.6 shows the original and

corrupted unthresholded CRPs of S&P 500 and VIX in the time period 16/12/2005–

01/12/2011, with 20% of missing CRP values, along with its restored version using

MC and data inpainting by employing the selected PDE-based method. At least visu-

ally, both of the restored CRPs look very similar to each other. This is also the

case when 80% of the original unthresholded CRP values are missing, as shown

in Fig. 13.7, where the differences between the MC-based and the PDE-based recov-

ered CRPs are hardly noticeable visually.

However, the difference in restoration accuracy between the proposed MC-based

approach and its PDE-based counterpart becomes prominent in Fig. 13.8. This figure

shows the LOS estimated from the original unthresholded CRP, along with instances

of the LOS, which have been estimated from the restored unthresholded CRPs, for

𝜌 = 20% and 𝜌 = 80% of missing CRP values, by employing the two restoration

methods. Once again, the superiority of the MC-based approach is highlighted, in

terms of achieving a very accurate approximation of the original LOS, even for an

extremely high percentage (𝜌 = 80%) of missing CRP entries. This is not a surpris-

ing result, since most of the PDE-based techniques tend to smooth out the localized

discontinuities of piecewise constant curves, or piecewise smooth regions, thus gen-

erating artificial edges in order to resemble the human visual perception, but which

may confuse the algorithm used to estimate the LOS. On the other hand, this is not

the case with the MC-based method, which accounts both for local and global corre-

lations among the columns of the corrupted data matrix. Table 13.1 summarizes the

main advantages and limitations of our proposed MC-based approach, as well as of

the PDE-based method.
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Fig. 13.6 Restored unthresholded CRP of S&P 500 and VIX in the time period 16/12/2005–

01/12/2011 with 20% of missing entries using the MC and the PDE-based methods. a Original

unthresholded CRP. b 20 % missing entries. c Restoration using MC. d Restoration using data

inpainting

13.6 Qualitative Economic Implications and Future Work

In this study, the efficiency of matrix completion (MC) was exploited to restore

missing information in corrupted cross recurrence plots (CRP) and subsequently to

examine the interrelation between a pair of time series based on their line of synchro-

nization (LOS), which is estimated from the restored CRP. In particular, we focused

on the analysis of interdependencies across time among a pair of stock market index

and its associated volatility index, which is a challenging task due to the inherent

complexity that typically characterizes financial data. To this end, the power of MC
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Fig. 13.7 Restored unthresholded CRP of S&P 500 and VIX in the time period 16/12/2005–

01/12/2011 with 80% of missing entries using the MC and the PDE-based methods. a Original

unthresholded CRP. b 80 % missing entries. c Restoration using MC. d Restoration using data

inpainting

in recovering accurately the missing entries of an unthresholded CRP, which is cal-

culated for the market index–volatility index pair, was combined with the efficiency

of a cross recurrence analysis, which extracts simultaneously the individual and joint

underlying dynamics of the given time series.

For illustration purposes, we applied our proposed approach on a specific market

index–volatility index pair, namely, the S&P 500–VIX pair. Our choice was based

on the fact that S&P 500 is widely regarded as the best single gauge of large-cap

U.S. equities, which captures approximately 80% coverage of the available market

capitalization, whilst VIX is considered to be a key measure for quantifying the sen-

timent of investors and market volatility. We emphasize, though, that the approach

proposed in this study can be applied on any type of time series, as soon as the cor-

responding recurrence matrix satisfies a low-rank assumption, which is necessary
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Fig. 13.8 Instances of reconstructed LOS from the restored unthresholded CRPs of S&P 500 and

VIX, with 20 and 80% of missing entries. a 20 % missing entries. b 80 % missing entries

Table 13.1 Major advantages (Pros) and limitations (Cons) of the MC and PDE methods for restor-

ing corrupted unthresholded CRPs

MC PDE

Pros ✓ Adapts to complicated localized patterns ✓ Adapts to complicated localized patterns

✓ No prior assumption is required for the

statistical distribution of the data

✓ No prior assumption is required for the

statistical distribution of the data

✓ Accounts for both local and global

correlations between distinct elements

(columns) of the corrupted data matrix

✓ Preserves geometric structures

✓ Computationally tractable ✓ Restored image resembles human visual

perception

Cons − Decreased performance if low-rank

assumption is not satisfied

− Smooths discontinuities of piecewise

constant curves, introducing artificial

segments

− Increased number of iterations may be

required for high percentage of missing

entries

− Only localized information is exploited

to restore missing entries

− High computational complexity

− Diffusion process typically generates

blurred patterns in restored image

for the MC framework to achieve an accurate recovery of missing entries, and sub-

sequently, yield an accurate estimation of the time-synchronization relation (that is,

the LOS) between the given time series.

The experimental evaluation revealed a superior performance of our proposed

MC-based approach, when compared with a PDE-based interpolation technique,

which is used for image inpainting. More specifically, from a quantitative point of

view, our approach achieved an improved restoration quality of the original unthresh-



13 Restoring Corrupted Cross-Recurrence Plots . . . 259

olded CRP, even for a high percentage of missing CRP values, when compared

with the PDE-based counterpart. This was also verified by the significantly reduced

approximation error between the LOS, which is estimated from the original CRP,

and the LOS estimated from the CRPs restored using the MC-based method.

From a qualitative, financial, perspective, understanding the interrelation between

S&P 500 and VIX is very useful towards building a successful investment strategy.

More specifically, the actual VIX level represents the 30-day implied volatility of

S&P 500, which conveys information about the likely range of possible index levels

that the market expects in a month. Although this one-month-ahead index level is

only an expectation, however, it can be exploited in order to adjust the positions of

a trading portfolio.

In the following, let St and 𝛼t denote the value of S&P 500 and the correspond-

ing VIX level, respectively, at time t. Then, the VIX level can be easily converted

into useful information about the future, 30-day, expected range of the market index

values as follows:

1. The VIX level 𝛼t is seen as a percentage, 𝛼t%, which corresponds to the annual-
ized implied 30-day volatility for the S&P 500;

2. The VIX percentage level is de-annualized to obtain its true monthly value. This

is done simply by dividing with the square root of 12, that is, the number of

months in a year, �̃�t% = 𝛼t%√
12

;

3. The current index value St is multipled by the de-annualized factor, �̃�t%, to obtain

the bound bSt
of the expected range, bSt

= St ⋅ �̃�t%;

4. Finally, the expected range of the market index value in a month is given by

[St+30,lower, St+30,upper] = [St − bSt
, St + bSt

]. The range between St+30,lower and

St+30,upper is where the market expects the S&P 500 to trade in 30 days from now,

with a 68% level of confidence (that is, one standard deviation of a Gaussian

distribution).

Figure 13.9 shows the true S&P 500 values (blue curve), along with the 30-day

expected range (red curves) as it is predicted by the VIX levels using the above four

steps, in the period 01/02/2006–01/12/2011. As it can be seen, in general, the true

S&P 500 values lie in the expected range. However, there are cases, such as the

regions in the black rectangles, where the true S&P 500 values exceed the 30-day

expected values. The early detection of those time instants, where the true S&P 500

values start declining from their 30-day predicted range, could protect the perfor-

mance of a trading portfolio from becoming unstable due to positions that are taken

based on an erroneous prediction of the stock index prices.

To address this problem, towards increasing the robustness of a trading portfolio,

the use of the typical cross-correlation between S&P 500 and VIX does not suffice.

Indeed, as it can be seen in Fig. 13.10, there is not an obvious relationship among

the values of moving cross-correlation between the two indexes (using a 30-day win-

dow length with 1-day overlapping), and the time instants where the true S&P 500

values start declining from the 30-day expected range, indicated by the black ver-

tical lines. These time instants have been estimated by means of the original LOS,
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Fig. 13.9 True S&P 500

values (blue curve) and

30-day expected range (red
curves) using the VIX levels,

for the period

01/02/2006–01/12/2011

Fig. 13.10 Moving

cross-correlation between

S&P 500 and VIX (30-day

window length. 1-day

overlapping), along with the

time instants (black lines)

where the true S&P 500

values start declining from

the 30-day expected range,

for the period

01/02/2006–01/12/2011

that is, the LOS corresponding to the original unthresholded CRP, as follows: let

𝐥 = (l1, l2, … , lL) ∈ ℝL
be the estimated LOS vector. Then, a critical time, that is,

a time when the expected range is exceeded, is defined as the index i for which the

consecutive sample absolute difference |li − li−1| exceeds a threshold 𝛿, |li − li−1|
> 𝛿 (i = 1, … , L). From a more intuitive perspective, the critical times are defined

by those indices of the LOS vector, where “big steps” occur. In the following evalua-

tion, and for illustration purposes only, we set 𝛿 = 30 (one month). A detailed study

of the optimal value of 𝛿, which yields an optimal detection rate of the critical times,

is beyond the scope of this work.

To illustrate the efficiency of our proposed approach for detecting such critical

times, Fig. 13.11a shows the critical times obtained from the original LOS (black

lines), along with the critical times obtained from the LOS of a restored CRP
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Fig. 13.11 True S&P 500 values (blue curve) and 30-day expected range (red curves), along with:

(i) time instants estimated from the original LOS, where the true S&P 500 values start declining

from the expected range; (ii) time instants obtained from estimated LOS using MC restoration;

(iii) time instants obtained from estimated LOS using PDE restoration, for the period 01/02/2006–

01/12/2011. The orange circles indicate detected but misaligned times, red circles indicate erro-

neous times. a 𝜌 = 20%, b 𝜌 = 80% of missing CRP entries

using the MC-based method (green lines) and the PDE-based technique (magenta

lines), when 20% of the unthresholded CRP values are missing. For this restoration

instance, we observe that both methods achieve to detect the original times, except for

two misalignments (lines with orange circles) occurring for the MC-based method,

which detect two critical times before their actual appearance. We note also that, for

a better visualization, the three types (colors) of vertical lines are depicted with a

different length.

The difference in performance between the MC-based and the PDE-based meth-

ods becomes more prominent for a higher percentage of missing CRP entries. In par-

ticular, Fig. 13.11b shows the critical times obtained from the original LOS (black

lines), along with the critical times obtained from the LOS of a restored CRP using

the MC-based method (green lines) and the PDE-based technique (magenta lines),

when 80% of the unthresholded CRP values are missing. Clearly, the MC-based

approach achieves a high performance, in terms of detecting correctly all of the orig-

inal critical times, except for two misalignments, before the mid 2009 and about the

mid 2010. On the other hand, the performance of the PDE-based technique deterio-

rates dramatically for an increasing percentage of missing CRP values. More specif-

ically, we can see that it fails completely to detect two of the critical times (2007,

and mid 2010), whereas it generates four false critical times, as they are indicated by

the magenta lines with the red circles.

We emphasize, though, that the above qualitative interpretation should be com-

bined with a thorough study of the performance of a trading portfolio, whose future

positions are adjusted according to the detected critical times. Furthermore, we also

note that our present analysis is ex-post, in the sense that it is carried out by employ-
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ing all the available data. To strengthen the validity of the approach proposed in this

work, we have to examine the prediction capability of a (restored) LOS, in terms

of detecting future critical times from the currently available data set. Both of these

problems would be of great importance to investors, and are left as a separate thor-

ough study.

As a future extension of this work, we are interested in exploiting the restored

cross-recurrence profile to predict out-of-sample joint dynamics between a pair

of stock market and volatility indexes. Besides, the performance of our proposed

approach will be examined in terms of detecting jointly the co-movements between

stock and volatility indexes based on alternative recurrence plots, such as the joint

recurrence plot, in case of missing data. Furthermore, it would be also of great impor-

tance to investors a thorough study concerning the construction performance of S&P

500-based portfolios by employing the predicted interrelation between S&P 500 and

VIX, expressed in terms of their estimated time-synchronization relation, as a risk

premium indicator in case of missing information.
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Chapter 14
Time-Difference-of-Arrival Estimation Based
on Cross Recurrence Plots, with Application
to Underwater Acoustic Signals

Olivier Le Bot, Cédric Gervaise and Jérôme I. Mars

Abstract The estimation of the time difference of arrival (TDOA) consists of the

determination of the travel-time of a wavefront between two spatially separated

receivers, and it is the first step of processing systems dedicated to the identifica-

tion, localization and tracking of radiating sources. This article presents a TDOA

estimator based on cross recurrence plots and on recurrence quantification analy-

sis. Six recurrence quantification analyses measures are considered for this purpose,

including two new ones that we propose in this article. Simulated signals are used

to study the influence of the parameters of the cross recurrence plot, such as the

embedding dimension, the similarity function, and the recurrence threshold, on the

reliability and effectiveness of the estimator. Finally, the proposed method is vali-

dated on real underwater acoustic data, for which the cross recurrence plot estimates

correctly 77.6 % of the TDOAs, whereas the classical cross-correlation estimates

correctly only 70.2 % of the TDOAs.

14.1 Introduction

Various applications make use of arrays of hydrophones to estimate the direction of

arrival (DOA) of underwater acoustic sources, including military surveillance, bio-

acoustics, and environmental monitoring, to name but a few. Such estimations can

be made through two broad classes of methods:

O. Le Bot (✉) ⋅ J.I. Mars

GIPSA-Lab, Univ. Grenoble Alpes, 38000 Grenoble, France

e-mail: lebotol@gmail.com

O. Le Bot ⋅ J.I. Mars

GIPSA-Lab, CNRS, 38000 Grenoble, France

e-mail: jerome.mars@gipsa-lab.grenoble-inp.fr

C. Gervaise

Chaire Chorus, Foundation of Grenoble INP, 46 Avenue Félix Viallet,

38031 Grenoble Cedex 1, France

e-mail: cedric.gervaise@gipsa-lab.grenoble-inp.fr

© Springer International Publishing Switzerland 2016

C.L. Webber, Jr. et al. (eds.), Recurrence Plots and Their Quantifications:
Expanding Horizons, Springer Proceedings in Physics 180,

DOI 10.1007/978-3-319-29922-8_14

265



266 O. Le Bot et al.

1. Time-difference-of-arrival (TDOA) estimation.

2. Space-time processing for high-resolution estimation of the DOA, like beam-

forming [1] or spatial spectral estimation (Capon, MUSIC [2], ESPRIT [3, 4],

and others).

The first class of methods is commonly used for bio-acoustic and environmen-

tal applications, such as the localization of cetaceans [5–8], and it generally uses

a small number of hydrophones (i.e., from 2 to 10). The estimation of the TDOA,

which consists of the determination of the travel-time of the wavefront between two

spatially separated receivers, relies generally on the cross-correlation, which is clas-

sical and easy-to-use, even for non-specialists in signal processing. Moreover, the

cross-correlation gives good performances when the signal-to-noise ratio (SNR) is

high and the useful signal is slightly distorted. Thorough state-of-the-art reviews of

cross-correlation-based TDOA estimators can be found in [8–10].

The second class of methods is mostly used when the array has a much greater

number of receivers, and it is mostly used in applications such as SONAR [11],

acoustical tomography [12], seismic-wave analysis [13], and digital communication.

Methods from this class consist of the construction of a spatial spectrum by virtually

steering the array in various directions and estimating the received power. When the

array is steered in the direction of a source, the power received by the hydrophone

array is maximized, whereas in the directions where no sources radiate, the received

power is weak [1, 3, 4, 14].

In this article, we focus on the first class of methods, and more particularly, on

estimation of the TDOA of acoustic signals with low SNR and strong distortions

(when classical methods fail). Estimating the TDOA correctly is usually a challeng-

ing task, because underwater acoustic sources are immersed in a noisy environment

and the propagation through the oceanic canal significantly modifies the signal by

introducing amplitude and phase modulations. Thus, the signal received can be very

different from one hydrophone to another, and only a few series of samples will

remain similar on all of the hydrophones. After propagation, the received signals

can be expressed as follows:

{ s1(t) = A1(t)x(t) + n1(t)
s2(t) = A2(t)x(t + TDOA) + n2(t)

(14.1)

where x(t) is the unknown source signal, A1(t) and A2(t) are random amplitude mod-

ulations introduced during the propagation between the source and each hydrophone,

and n1(t) and n2(t) are uncorrelated additive white Gaussian noise (WGN).

Based on these observations, we propose a new approach to estimate the TDOA

that is derived from the field of nonlinear analysis of dynamical systems. Our esti-

mator relies on cross-recurrence plots (CRPs) [15, 16], which are used to identify

series of samples that are similar within the signals received by two hydrophones.

The TDOA is then estimated from the CRP using some specific measures, called

recurrence quantification analysis (RQA), which are especially dedicated to quantifi-

cation of the information contained in CRPs. In this article, we consider six different
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RQA measures to estimate the TDOA. Four of these RQA measures come from the

existing CRP literature [17, 18]. However, we will show that classical RQA measures

are not appropriate for TDOA estimation. Therefore, in Sect. 14.2.2, we propose two

new RQA measures that combine both the information contained in the CRPs and

in the distance plots (or unthresholded CRPs). These latter RQA measures appear to

be more appropriate for our purpose.

Cross recurrence plots have already been used for time-scale alignment of data

series [16], to find nonlinear interrelations from bivariate time series with applica-

tions in climatology [17, 19], and to study synchronization of dynamic systems [18].

To our knowledge, this is the first time that CRPs are used with acoustic signals for

TDOA estimation.

Section 14.2 recalls the basics of CRPs. Then some quantification measures are

proposed to estimate the TDOA from the CRP. Section 14.3 tests the proposed

method on simulated signals, and discusses the influence of the parameters involved

in the CRP on the performance of the estimator. The proposed method is finally val-

idated in Sect. 14.4 using real bio-acoustic signals recorded at sea by a hydrophone

array. This validation set shows that our method gives an increase of the correctly

estimated TDOAs of 7 % with respect to the classical cross-correlation estimator.

14.2 Method

14.2.1 About Cross-Recurrence Plots

Cross-recurrence plots are an extension to the bi-variate case of the recurrence plot

analysis (RPA) from Eckman [20], which was later introduced by Zbilut et al. [15],

and then described with a mathematical formalism by Marwan et al. [16]. CRPs

are used to study the similarities and dependencies between two different complex

systems, by comparisons of their respective states [16]. Three steps are involved to

transform a data series from two systems to a CRP representation.

Considering two measured signals (denoted x and y) recorded on two different

sensors, the first step aims at the simultaneous reconstruction of the trajectory of

each signal in the same phase space using the time-delay embedding method [21,

22]. The same embedding dimension m and delay 𝜏 are used for both signals. The

trajectory of each signal in the phase space domain is described by a series of phase

space vectors given by:

⃖⃖⃖⃖⃖⃖⃖⃗xm(i) = [x(i), x(i + 𝜏),… , x(i + (m − 1)𝜏)] (14.2)

⃖⃖⃖⃖⃖⃖⃖⃗ym(j) = [y(j), y(j + 𝜏),… , y(j + (m − 1)𝜏)] (14.3)

where i ={1, 2, . . . , Nx − (m − 1)𝜏} and Nx are the sample index and the total number

of samples of the measured signal x, respectively, and j ={1, 2, . . . , Ny − (m − 1)𝜏}
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and Ny are the sample index and the total number of samples of the measured signal

y, respectively. To simplify the notations, we will consider that x and y have the same

length N = Nx = Ny.

The second step consists of the measurement of the degree of similarity between

the phase space vectors ⃖⃖⃖⃖⃖⃖⃖⃗xm(i) and ⃖⃖⃖⃖⃖⃖⃖⃗ym(j) associated to the two measured signals. The

calculation of the similarities between all of the possible pairs of phase space vectors

gives the similarity matrix with dimension N × N defined by:

d(i, j) = Sim
(
⃖⃖⃖⃖⃖⃖⃖⃗xm(i) , ⃖⃖⃖⃖⃖⃖⃖⃗ym(j)

)
(14.4)

where Sim(., .) is the function that is chosen to study the likeness of the phase space

vectors. A lot of different mathematical functions can be used for this step [23]. The

Euclidean norm is mostly used for this purpose by the recurrence plot community

[18]. However, the Euclidean norm is not suitable for our application, because it is

not adapted to the strong amplitude differences that exist between the noise samples

and the useful signal samples. Using the Euclidean norm leads to finding similarities

between vectors associated to the noise, because the noise samples generally have

low amplitude, which leads to low Euclidean norm, although this also leads to finding

similarities between vectors associated to the vectors of useful signals that look alike

and where their Euclidean norms are also close to zero.

Instead, we prefer to use the dot product and Pearson’s correlation coefficient

(PCC), which are both particular cases of the cross-correlation classically used for

TDOA estimation. These last two similarity functions are more appropriate to our

signals because they both give high values when phase space vectors of the useful

signal look alike, while they give a value close to 0 when the vectors are not alike.

Therefore, when thresholding the similarity matrix obtained with these similarity

functions, we only get recurrences associated to the useful signal. We have already

used the dot product and PCC as a similarity function in previous studies relative to

the use of RPA for detection purposes [23]. These similarity functions have already

proven to be very interesting solutions when studying various kinds of simulated and

real signals with RPA [23–25].

The dot-product between two phase space vectors is given by:

di,j =
m∑
k=1

xk(i) × yk(j) (14.5)

where xk(i) and yk(j) are the kth components of vectors ⃖⃖⃖⃖⃖⃖⃖⃗xm(i) and ⃖⃖⃖⃖⃖⃖⃖⃗ym(j), respectively.

The PCC between two phase space vectors is given by:

di,j =

∑m
k=1

(
xk(i) − xk(i)

)(
yk(j) − yk(j)

)

√∑m
k=1

(
xk(i) − xk(i)

)2
√∑m

k=1

(
yk(j) − yk(j)

)2
(14.6)
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where xk(i) and yk(j) are the kth components of vectors ⃖⃖⃖⃖⃖⃖⃖⃗xm(i) and ⃖⃖⃖⃖⃖⃖⃖⃗ym(j), respectively,

and xk(i) and yk(j) are the empirical means of ⃖⃖⃖⃖⃖⃖⃖⃗xm(i) and ⃖⃖⃖⃖⃖⃖⃖⃗ym(j), respectively.

Finally, in the last step, the CRP is obtained by comparing each coefficient of the

similarity matrix to a threshold 𝜀. Therefore, the CRP is a binary matrix, where the

coefficient of index (i, j) is 1 if ⃖⃖⃖⃖⃖⃖⃖⃗xm(i) and ⃖⃖⃖⃖⃖⃖⃖⃗ym(j) are considered as similar, and it is 0

otherwise. In mathematical formalism, the CRP is defined as follows:

CRP(i, j) = 𝛩

(
Sim

(
⃖⃖⃖⃖⃖⃖⃖⃗xm(i), ⃖⃖⃖⃖⃖⃖⃖⃗ym(j)

)
− 𝜀

)
(14.7)

where 𝛩 is the Heaviside function.

14.2.2 Recurrence Quantification Analysis

When calculating the CRP of signals received by two spatially separated sensors, a

recurrence pattern shows up on the binary image obtained. As shown in Fig. 14.1, the

recurrence pattern, which is composed of 15 parallel diagonal lines in our example,

is only related to the useful signal (cosine function) and not to the noise. The noise

is not supposed to produce any recurrence pattern. The position of the recurrence

pattern of the useful signal depends on the TDOA. For example, in Fig. 14.1, receiver

1 is taken as the reference and three different TDOAs are simulated by translation of

the signal of receiver 2 from –70 samples to +70 samples. These translations of the

cosine on receiver 2 lead to horizontal translation of the associated recurrence pattern

on the CRP (Fig. 14.1). If receiver 2 was taken as the reference and the cosine was

translated on receiver 1, then the recurrence pattern associated to the cosine would

be translated vertically on the CRP.
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Fig. 14.1 Examples of CRP matrices in the case of a 100-sample cosine mixed with 300-sample

additive WGN received by two sensors with three different TDOAs: a TDOA = –70 samples;

b TDOA = 0 samples; c TDOA = +70 samples. The SNR is 6 dB. The CRP is built with m =

16, 𝜏 = 1, Sim(. , .) = dot product, 𝜀 = 0.075
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The automatic quantification of this pattern, like the diagonal or vertical struc-

tures, and of its position, can be performed using the measures known as RQA [26–

28]. The RQA measures can be computed on either the entire CRP or separately on

each diagonal parallel to the main diagonal [17, 18].

For the TDOA estimation we want to perform in this chapter, we use these latter

modified RQA measures, which are calculated for each diagonal of the CRP taken

separately, and are therefore based on recurrences that form diagonal lines parallel

to the main diagonal [17, 18].

Relying on notations introduced in [17], the RQA measures are expressed as a

function of the index of the diagonal t ∈ [−T , ...,T], where t = 0 corresponds to the

main diagonal, t > 0 are the diagonals above the main diagonal, and t < 0 are the

diagonals below the main diagonal. T is the maximum allowable TDOA (expressed

as samples) with respect to the geometry of the array. Diagonals with indices

t > 0 represent the positive TDOAs, while diagonals with indices t < 0 represent

the negative TDOAs.

We recall the expressions of the RQA measures from the literature [17, 18], and

we introduce two new RQA measures that we consider for the TDOA estimation. The

first four RQA measures from the literature only rely on the length of the diagonal

lines of the CRPs, and so they are based only on the binary information contained

in the CRPs. We will show that these RQA measures have some limitations and

are not appropriate for our purpose. To overcome these limitations. we propose two

new RQA measures, which combine the information from the CRP with that of the

distance matrix, and which leads to more accurate results.

The first RQA measure is the average diagonal line length given by:

L(t) =

N−|t|∑
l=lmin

lPt(l)

N−|t|∑
l=lmin

Pt(l)
(14.8)

where Pt(l) is the distribution of diagonal line lengths for diagonals with index t,
lmin is the threshold that sets the length of the shortest diagonal line considered,

and N is the total number of lines (resp. columns) of the CRP matrix. This RQA

measure characterizes the duration of similarities between both signals [17]. Thus,

for the diagonal with index t associated to the real TDOA value, we expect that the

diagonal lines are long, so that we reach a global maximum for L(t) that indicates

that the highest coincidence between both signals is reached for this specific delay t.
The second RQA measure is the determinism given by:

DET(t) =

N−|t|∑
l=lmin

lPt(l)

N−|t|∑
l=1

lPt(l)
(14.9)
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As for the average diagonal line length L(t), the determinism DET(t) characterizes

the proportion of recurrence points that form long diagonal structures of all of the

recurrence points. A high determinism for the diagonal t indicates that both sig-

nals have similar dynamic behavior over a long time span with a certain delay t [17].

Therefore, we expect that the determinism will reach a global maximum for the diag-

onal with index t associated to the TDOA that we try to estimate.

The third RQA measure is the longest diagonal line within diagonal t, given by:

Lmax(t) = arg max
i∈{1,...Nl}

(li) (14.10)

where i ∈ {1,… ,Nl} is the index of the diagonal line, and Nl is the total number of

diagonal lines within diagonal t. As above, we expect to get a global maximum for

Lmax(t) at the index t associated to the TDOA.

The fourth RQA measure is the recurrence rate, which is defined as:

RR(t) =

⎧
⎪⎪⎨⎪⎪⎩

1
N + t

N+t∑
i=1

CRP(i − t, i) (t < 0)

1
N − t

N−t∑
i=1

CRP(i, i + t) (t ≥ 0)

(14.11)

where N is the total number of lines (resp. columns) of the CRP matrix. This RQA

measure gives the probability of occurrence of similar waveforms in both signals

with a certain time delay t [17]. The greater the number of recurrences in the diagonal

t is, the greater the value of RR(t) is. Again, we expect that RR(t) reaches a global

maximum for the diagonal t associated to the TDOA value.

RR(t) only relies on the binary matrix obtained with the CRP, and does not take

into account all of the information contained in the similarity matrix d(i, j) given by

(14.4) that might be valuable. Therefore, we introduce two additional RQA measures

that also rely on the similarity matrix d(i, j).
The first proposed RQA measure is the sum of all similarity values d(i, j) from the

diagonal t that have led to recurrence points (i.e., CRP(i, j) = 1) in the CRP matrix.

This is defined as:

SS(t) =

⎧
⎪⎪⎨⎪⎪⎩

N+t∑
i=1

CRP(i − t, i)⊙ d(i − t, i) (t < 0)

N−t∑
i=1

CRP(i, i + t)⊙ d(i, i + t) (t ≥ 0)

(14.12)

where ⊙ is the Hadamard product.
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The last proposed RQA measure is a normalized version of the previous one, and

it is given by:

SR(t) =

⎧
⎪⎪⎨⎪⎪⎩

1
N + t

N+t∑
i=1

CRP(i − t, i)⊙ d(i − t, i) (t < 0)

1
N − t

N−t∑
i=1

CRP(i, i + t)⊙ d(i, i + t) (t ≥ 0)

(14.13)

As for RR(t), SS(t) and SR(t) are high if the number of recurrences in diagonal t
and the associated coefficients in the similarity matrix are simultaneously both high.

A global maximum is expected for RR(t), SS(t), and SR(t) when t is equal to the

TDOA to estimate.

14.2.3 Time-Difference-of-Arrival Estimated with RQA
Measures

For the six RQA measures presented in the previous section, we said that their values

would be high if both signals have similar waveforms with a certain delay t. There-

fore, the estimated TDOA is obtained by looking for the diagonal t that gives the

global maximum of each RQA measure. This is given by:

̂TDOA = t such that argmax
t

(
RQA(t)

)
(14.14)

where t ∈ [−T ,… ,T] and RQA(t) is either L(t), DET(t), Lmax(t), RR(t), SS(t) or

SR(t).

14.3 Results on Simulated Data

In this section, we use simulated signals to study the reliability of CRPs and RQA

measures as TDOA estimators. We will show that the RQA measure SS(t) is the most

appropriate one. We will also discuss the influence of the embedding dimensionm, of

the similarity function Sim(., .), of the SNR and the TDOA value to estimate, on the

overall performances of the proposed method. Finally, we will compare the proposed

method with the cross-correlation, which is classically used for TDOA estimation in

several fields.
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14.3.1 Performance Analysis Methodology

To analyze the performances of the proposed method, we use simulated signals as

they would be received independently by two sensors. The characteristics of these

simulated signals are representative of the real acoustic signals used in Sect. 14.4.

The received signals are cosine functions of frequency f0, where their respective

amplitudes A1(t) and A2(t) are modulated randomly according to a first-order autore-

gressive model. The WGN denoted as n1(t) and n2(t) is also added to the two

receivers, to achieve a certain SNR. A time-delay is added to the second signal to

model the TDOA. Therefore, the two simulated signals can be written as follows:

s1(t) = A1(t) × cos(2𝜋f0t) + n1(t) (14.15)

s2(t) = A2(t) × cos
(
2𝜋f0(t + TDOA)

)
+ n2(t) (14.16)

We can recall that a first-order autoregressive model is given by:

A(t) = 𝛼A(t − 1) + Y(t) (14.17)

where |𝛼| ∈ [0, 1[ so that the process remains stationary in a wide sense, and Y(t)
is WGN with zero mean and variance of 1.

For the simulations, we take f0 = 1 kHz, which is the frequency of the real acoustic

signal used in Sect. 14.4, and a sampling frequency fe = 12 kHz. The SNR varies as

follows: {−7; −5; −3; 0; 3; 5; 7; 10} dB. For the autoregressive model, we arbitrar-

ily choose 𝛼 = 0.98, so that the integration time of the process is about nine cosine

periods. Moreover, the peak amplitude of the autoregressive model is normalized to

the following values: Apeak = {0.4; 0.7; 1; 1.3; 1.5; 1.9}, to reach various modu-

lation indices. Figure 14.2 shows an example of the simulated signal as received by

the two sensors, with various SNRs.

We study the performances of the proposed estimator for five different theoretical

TDOA values; namely [0, 4, 15, 40, 100] samples. This is to determine the reliability

of the method when the TDOA corresponds to the diagonals that are either close to

or far from the main diagonal of the CRP matrix, and also when the TDOA is lower

or higher than the period of the cosine signal.

For each set of sextuple
(
m, 𝜀, Sim(. , .), SNR, Apeak, TDOA

)
we repeat the sim-

ulations 500 times, to derive a statistical analysis of the results. The performances

are assessed by calculation of the ratio of correct estimates over the total number of

estimates. An estimated TDOA is considered as correct if it is exactly equal to the

simulated TDOA.
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Fig. 14.2 a, b Simulated signals received by two sensors without additional noise. Each of these

is a cosine function where the amplitude is modulated by a first-order auto-regressive model, the

peak amplitude of which is Apeak = 1.5. c, d Simulated signal added to WGN with SNR = –3 dB.

e, f Simulated signal added to WGN with SNR = 3 dB. g, h Simulated signal added to WGN with

SNR = 7 dB

14.3.2 Performances of the RQA Measures

In this section, we study the relevance of the proposed RQA measures as tools for

TDOA estimation. We want to identify the RQA measures that appear to be appro-

priate for our TDOA estimation problem, and to discard the other ones. We will show

that the two proposed RQA measures outperform the classical ones.

Figure 14.3 shows the results of the simulations for three sets of parameters;

namely 𝜏 = 1, m = 16, Sim(. , .) = PCC, a recurrence threshold 𝜀 giving a fixed

recurrence point density of 10 % over the entire CRP, Apeak = 1, and TDOA = 0,

TDOA = 15 and TDOA = 40. However, the conclusions remain the same whatever

the variations of the parameters m, 𝜀, SNR, TDOA and Apeak.

We notice that the RQA measure SS (Fig. 14.3, solid line) always gives the best

performances, as its percentage of correct estimates is always the highest, whatever

the SNR, TDOA, similarity function Sim(. , .), and amplitude of the modulations

Apeak.

The RQA measure SR (Fig. 14.3, line with squares) follows the same trend as SS,

but with a lower performance. All of the other proposed RQA measures, i.e., L, Lmax,
DET , and RR, give very poor results and are not suitable for the TDOA estimation.
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Fig. 14.3 Percentages of good estimates over the total number of estimates as a function of the

SNR of the RQA measure and for three simulated TDOAs: a TDOA= 0; b TDOA = 15; c TDOA

= 40. The parameters of the simulations are: 𝜏 = 1, m = 16, Sim(. , .) = PCC, Apeak = 1. The RQA

measure SS almost always gives the highest percentages, and it is therefore the most appropriate

RQA measure for our TDOA estimator

A detailed observation of the simulation results shows that these four latter RQA

measures give estimates that are far from the true simulated TDOAs.

Finally here, it is important to note that the percentage of correct estimates

obtained with SS is independent of the TDOA, which is not the case with SR. For

example, the plots given in Fig. 14.3 show that for SNR = 7 dB the RQA measure SS
gives a percentage of correct estimates of about 69 % (±1 %) for all three TDOA val-

ues, whereas SR gives a percentage of correct estimates of about 30 % (±10 %). These

observations and conclusions remain valid for other simulated values of amplitude

modulations Apeak (not presented here). Thus, SS gives the most consistent results

for all of the sets of parameters, and it is therefore the most reliable RQA measure

to estimate TDOAs.

According to these results, in the remainder of this article we only use the RQA

measure SS, as defined by (14.12) to estimate TDOAs, and all of the results will now

be given with this particular RQA measure.

14.3.3 Performances as a Function of the Parameters Used
to Build the CRP

In this section, we study the influence of the similarity function Sim(. , .), of the

embedding dimension m, and of the recurrence threshold 𝜀 used to compute the

CRP on the performances of the TDOA estimator.
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Fig. 14.4 Percentage of good estimates over the total number of estimates as a function of the

embedding dimension m, of the SNR, and of the similarity function Sim(. , .): a Sim(. , .) = PCC;

b Sim(. , .) = Dot product. The parameters of the simulations are: 𝜏 = 1, Apeak = 1.5, TDOA = 100
and RQA measure SS

14.3.3.1 Influence of the Embedding M

Simulations are performed for numerous embedding dimension values within the

range of 4–24, while keeping 𝜏 = 1 constant, and 𝜀 so that the recurrence point den-

sity over the entire CRP is always 10 %. Figure 14.4 summarizes the results of these

simulations for a given set of parameter: (Apeak = 1.5, TDOA = 100, RQA = SS).

The conclusions remain similar for all of the other sets of parameters, whatever the

values given to Apeak and TDOA.

We can see in Fig. 14.4a that if the similarity function is the PCC, the percent-

age of correct estimates increases when m increases. When m increases from 4 to

10 in particular, the percentage of correct estimates is multiplied by three on average

(which depends on the SNR), while when m increases from 12 to 24, the percent-

ages of correct estimates increases by just a few percent. For example, from m = 12
to m = 24, the percentage of correct estimates increases only by about 15 %, what-

ever the SNR.

If the similarity function is the dot product, then the percentage of correct esti-

mates is very similar for all of the embedding dimensions (Fig. 14.4b).

14.3.3.2 Influence of the Similarity Function

For this subsection, we keep the parameters 𝜏, m, and 𝜀 used to build the CRP con-

stant, and we study the influence of the similarity function on the performances

of the proposed estimator. Simulations are carried out for various combinations of

TDOA and of amplitude modulations Apeak. The most significant results are shown

in Fig. 14.5.
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Fig. 14.5 Percentage of correct estimates over the total number of estimates as a function of the

SNR, of the TDOA (each column of the panel), and of the amplitude of the modulation Apeak (each

line of the panel). The results with Sim(. , .) = PCC are shown with the solid line. The results with

Sim(. , .) = Dot Product are shown with the stars (*). The parameters of the simulations are: 𝜏 = 1,

m = 16, and RQA measure SS

We note that when Apeak = 0.4 (Fig. 14.5, first row of the panel), the estimator

using the dot product always gives a better percentage of correct estimates than

the estimator with the PCC, whatever the SNR and the TDOA. When Apeak = 1
(Fig. 14.5, second row of the panel), both similarity functions give very similar

results, whatever the SNR and the TDOA. When Apeak = 1.5 (Fig. 14.5, third row

of the panel), the estimator with the PCC has better performances than the one with

the dot product.

By examination of the results of the simulations for all six simulated values of

amplitude modulation, we can conclude that when the signals are weakly modulated,

typically Apeak < 1, then the estimator using the dot product always outperforms the

estimator with the PCC. Then, as the signal is more and more modulated, i.e., the

Apeak increases, the performances of the estimator using the dot product decreases.

Similar performances are obtained with both estimators when Apeak = 1. Finally, for

highly modulated signals with a lot of fading (i.e., Apeak > 1), the estimator using

PCC always outperforms the estimator with the dot product.

Whatever the similarity function used, when Apeak increases, the percentage of

correct estimates decreases. However, the rate at which performances decrease is
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Fig. 14.6 Percentages of

correct estimates over the

total number of estimates as

a function of the SNR and

the recurrence densities: 1, 2,

10, 15 and 20 %. The

parameters of the simulations

are: 𝜏 = 1, m = 12,

Apeak = 1.5, TDOA = 40,

Sim(., .) = PCC, and RQA

measure SS
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not the same for all of the estimators. If the dot product is used, then for all SNRs the

percentages of correct estimates are divided by a factor of about 2.5 when Apeak goes

from 0.4 to 1.5. At the same time, the percentages of correct estimates are divided

by a factor of at most 1.5 if the estimator uses the PCC.

Relying on these observations and conclusions, we will choose the PCC as a sim-

ilarity function to estimate the TDOA on the real acoustic data used in Sect. 14.4.

14.3.3.3 Influence of the Recurrence Threshold

The choice of the recurrence threshold affects the number of recurrence points that

appear on the CRP. Simulations are made by keeping 𝜏 andm constant, while the val-

ues of 𝜀 are adjusted so that they give a fixed recurrence point density over the entire

CRP. Performances are studied for recurrence thresholds with the following recur-

rence densities: 1, 2, 5, 8, 10, 12, 15, 20 and 25 %. These simulations show that for a

given set of values for the quintuple (𝜏, m, Apeak, TDOA, SNR), the percentage of cor-

rect estimates is nearly the same for all of the recurrence densities used. Figure 14.6

shows an example of these results when 𝜏 = 1, m = 12, Apeak = 1.5, TDOA = 40,

SNR ∈ [−7 ; 10] dB. Therefore, we can conclude that our method is invariant with

regard to the recurrence threshold.

14.3.4 Comparison with the Classical Cross-Correlation

In this last section, we compare the performances of the proposed estimator with an

estimator based on the cross-correlation, which is classically used for this purpose.

Unlike the CRP, which divides the signal into multiple smaller pieces that are repre-

sented by the phase space vectors to estimate the TDOA, the cross-correlation uses

the whole signal at once and the estimated TDOA is then the lag associated to the
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global maximum of the cross-correlation function. All of the previous simulations

were performed with the cross-correlation as the TDOA estimator.

The results obtained here are shown in Fig. 14.7, and they are compared with

those of the proposed estimator. If the received signals are weakly modulated, then

the cross-correlation outperforms the CRP-based estimator with the PCC, whereas

this latter outperforms the cross-correlation when signals are highly modulated. For

a given TDOA, we note that the results of the cross-correlation are very dependent

of the amplitude of the modulations, while for a given amplitude of the modula-

tion, the results stay consistent for all simulated TDOAs. Comparing Figs. 14.5 and

14.7, we note that for a given triplet (SNR, Apeak, TDOA), the cross-correlation gives

exactly the same percentage of correct estimates as the CRP with the dot product as

a similarity function.
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Fig. 14.7 Percentages of correct estimates over the total number of estimates as a function of the

SNR, of the TDOA (each column of the panel), and of the amplitude of the modulation Apeak (each

line of the panel). The results of the proposed method with similarity function Sim(. , .) = PCC
are given by the solid line. The results obtained with classical cross-correlation are shown with the

diamonds (⋄). The parameters of the simulations are: 𝜏 = 1, m = 16, and RQA measure SS
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14.4 Validation on Real Data

In the previous subsection, we studied the performances of a CRP-based TDOA esti-

mator and looked at the influence of the parameters used to built a CRP represen-

tation using simulated signals. This helped us to define SS as the most appropriate

RQA measure to estimate the TDOA. We also showed that the PCC is the similar-

ity function that gives the most consistent results for various conditions of the SNR

and the modulation of the received signal. In this section, we validate the proposed

TDOA estimator on real acoustic signals, and show again that it outperforms the

classical cross-correlation.

14.4.1 Materials and Methods

The database used in this section contains underwater sounds that were recorded in

the Bay of Calvi (Corsica Island, France) with the support of STARESO team and

facilities in the framework of STARECAPMED program. The data were acquired

by an autonomous acoustic recorder (RTSys EA-SDA14) that recorded the signals

coming from four hydrophones (HTI-92, High Tech Inc., Gulport, MS, USA) simul-

taneously, at a sampling frequency of 156.25 kHz. The data were digitized at 24 bits,

and saved as WAV files on a hard drive. The four hydrophones form an array with

a pyramidal shape. The distance between each hydrophone pair was about 1.5 m.

Hydrophone 4 

Hydrophone 2 
Hydrophone 3 

Hydrophone 1 

Autonomous acoustic  
recorder 

Fig. 14.8 Set-up of the antenna used to record the data. Four hydrophones are connected to four

synchronized channels of an autonomous acoustic recorder
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Fig. 14.9 Examples of two distinct recordings of the sounds produced by a fish (undetermined

species) and recorded simultaneously by four hydrophones. a Record 1. b Record 2

The antenna was placed on the seafloor at a depth of 38 m and the hydrophones were

between 1 and 1.5 m above the seafloor (Fig. 14.8).

The sounds of interest come from a Mediterranean fish of undetermined species,

and they are short frequency modulated signals that last about 0.15 s and have a mean

frequency of between 800 and 1000 Hz. Figure 14.9 shows two examples of these

acoustic signals, from which we can clearly note that the amplitude modulations
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differ significantly from one hydrophone to another due to the effects of the propa-

gation in the seawater. We manually annotated 56 of these sounds and then estimated

the TDOAs between all of the possible pairs of hydrophones. As four hydrophones

form six separate pairs, we obtained a total of 336 estimated TDOAs to validate the

proposed TDOA estimator.

Prior to the TDOA estimation by our CRP-based method, the annotated sounds

were down-sampled at 10 kHz to reduce the size of the CRP matrix and to speed up

the algorithm, and then they were bandpass filtered between 100 and 2000 Hz. The

CRP was then computed with the following parameters: 𝜏 = 1, m = 18, Sim(. , .) =
PCC, and a fixed threshold 𝜀 = 0.75. The TDOAs were then estimated with the RQA

measure SS given by (14.12). The TDOAs were also estimated with classical cross-

correlation, and the results were compared to those of the CRP-based method, to

determine whether this latter was more accurate and efficient.

14.4.2 Methodology to Assess the Results on Real Data

When using real data, we face the problem of knowing the ground truth to validate

our results. To assess the validity of the estimated TDOAs given by our method and

by the cross-correlation, we used both automatic and visual checking.

The automatic checking was based on the idea that each annotated signal gives six

TDOA values, which are not independent of each other, but must respect transitive

relations. For example, the TDOA between hydrophones 1 and 4 must be equal to the

sum of the TDOA between hydrophones 1 and 2 and hydrophones 2 and 4. Checking

all of the possible transitive relations helped us to identify possible mis-estimated

TDOAs. Details of the method we followed for this automatic checking can be found

in the Appendix.

The visual inspection was performed by superimposing the waveform received

by each pair of hydrophones and compensating for the TDOA between both signals

with its estimated value. Because of the periodic nature of the received signals, we

could quickly assess whether both signals were re-aligned correctly or whether the

estimated TDOA was biased by a number of samples that are proportional to the

oscillation period of the signal.

As an example, Fig. 14.10a shows the signals received simultaneously by two

hydrophones without compensating for the TDOA. It appears that these signals are

not synchronized, as their respective waveforms are not superimposed. Figure 14.10b

shows the same signals after the TDOA between the two hydrophones was compen-

sated by the estimated value obtained with the proposed method (i.e., CRP with CPP

and SS). We note that the TDOA is estimated correctly, as both of the waveforms are

perfectly superimposed and oscillate similarly. On the contrary, the cross-correlation

misestimated the TDOA by a number of samples equivalent to one oscillation period

(Fig. 14.10c). Despite both signals oscillating the same way and at the same speed,

we see that they are not perfectly superimposed. Therefore, this visual inspection
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Fig. 14.10 Examples of waveforms received simultaneously by two distinct hydrophones. The sig-

nal from hydrophone 1 is shown in blue, and the signal from hydrophone 2 is shown in red. a Before

the signals were re-synchronized. b After the signals were re-synchronized by compensating for the

TDOA by the estimated value obtained with the CRP. c After the signals were re-synchronized by

compensating for the TDOA by the estimated value obtained with the cross-correlation. We note

that for this particular example, the CRP estimated the TDOA well, whereas the cross-correlation

failed to estimate the TDOA correctly

allowed validation of the estimated value obtained with the CRP, while discarding

that obtained with the cross-correlation.

For most of the annotated sounds, checking simultaneously all of the transitive

relations and the alignment of the waveform after compensation of the TDOAs

helped to determine the validity of the estimated TDOAs.

14.4.3 Results

Among the 56 annotated sounds, the CRP-based method succeeded in the estima-

tion of all six TDOAs for 18 of them, which represents a success rate of 32.1 %. The

classical cross-correlation succeeded in the estimation of all six TDOAs of only 10

annotated sounds, which represents a 17.6 % success rate. This first observation sug-

gests that the proposed TDOA estimator gives better performances than that using

the cross-correlation. This apparent low success rate obtained for the estimation of

all of the TDOAs of singular annotated sounds can be explained according to the

two following reasons: First, the periodic nature of the signal makes it very likely

to have mis-estimated the TDOA values. The error is then proportional to the sig-

nal period. Secondly, the underwater environment is a highly fluctuating and noisy

environment, which heavily affects the form of the acoustic signals received by the
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hydrophones of the antenna, even when the distance between these hydrophones is

very small. Therefore, despite the apparent good SNR of the annotated signals, the

waveforms recorded are very different from one hydrophone to another, as shown on

Fig. 14.9, which makes the TDOA estimation difficult.

Consequently, 38 of the annotated sounds had at least one TDOA misestimated

by the CRP-based estimator, and 46 sounds had at least one TDOA misestimated by

the cross-correlation. For these sounds, the results for the transitive relations were

studied closely, and visual checking was used to find the misestimated TDOA values.

The overall results of this analysis include all 336 estimated TDOAs from the

56 annotated sounds, which show that 77.6 % of the TDOAs were correctly esti-

mated by the CRP, while 70.2 % of the TDOAs were correctly estimated by the

cross-correlation.

Therefore, the proposed CRP method provides a gain of 7.4 % for the number of

correctly estimated TDOAs, with respect to the cross-correlation. Thus, these results

validate the use of the CRP as a tool to estimate the TDOA of signals received by

spatially separated sensors.

14.5 Conclusion

In this article, we proposed a method based on CRPs and on dedicated RQA mea-

sures to estimate the TDOA of signals that arrive at spatially separated sensors.

Instead of computing the RQA measures on the whole CRP, we computed them

on each diagonal parallel to the main diagonal to deduce the TDOA. We used four

existing RQA measures from the literature, and we proposed two new RQA mea-

sures. Among the investigated RQA measures, only the proposed RQA measure SS,

which gives the sum of all similarity values that lead to recurrence points in a given

diagonal of the CRP matrix, appeared to be appropriate and reliable to correctly

estimate the TDOAs.

The proposed TDOA estimator was tested and validated on simulated and real

data. The simulated data helped to confirm the reliability and the effectiveness of

the proposed method with controlled data for which the true TDOA to be estimated

was known. Also, these simulations let us study and understand the influence of the

parameters, such as the embedding dimension m, the similarity function Sim(. , .),
and the RQA measures, on the performances of the proposed method. In particular,

the PCC appeared to be the most appropriate similarity function for our purpose.

Moreover, the simulated data were also used to compare the CRP-based TDOA esti-

mator with a cross-correlation based estimator. This comparison showed that for

signals with weak amplitude modulations, the cross-correlation was better than the

proposed method (from 0 to 25 % higher, depending on the parameters of the sim-

ulations and the SNR), whereas for signals with strong amplitude modulations, the

CRP using the PCC gave a higher number of correctly estimated TDOAs than the

cross-correlation (0–30 % higher depending on the parameters of the simulations and

the SNR).
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All mis-estimated TDOAs obtained with the proposed method were due to a shift

of samples that was proportional to the oscillation period of the signal. The period-

icity of the simulated and real signals gave several parallel lines on the CRP, and the

distance between these diagonals corresponded exactly to the oscillation period of

the signal. Due to the high sensitivity of the proposed method, most of the time we

can obtain parts or all of these diagonals, even when the signal is highly modulated

or has a poor SNR. However, we then face the problem of picking up the diagonal

that corresponds to the true TDOA, with an ambiguity factor related to the oscillation

period of the signal. This constitutes the major challenge and the potential downfall

faced when using the CRP as a TDOA estimator.

Also, these results appear to be important in the choice and application of a TDOA

estimation method on real data. For signals with weak amplitude modulations, the

classical cross-correlation or the CRP with the dot product as a similarity function

might be sufficient to achieve good performances. On the contrary, more distorted

signals would require the use of CRP with PCC to achieve good performances. In the

case of underwater acoustics, these concepts of weak and strong amplitude modula-

tions can be related to three different acoustic phenomena: (1) controlled variations

in the amplitude of the sound during its emission by the animal; (2) amplitude modu-

lations introduced during the propagation due to the reflections and scattering at the

boundaries, the frequency-dependent attenuation in the sea, and the distance between

the source and receiver; and (3) the directivity of the sound source that affects the

waveform ‘viewed’ by the different hydrophones.

The proposed method was validated on real acoustic data recorded at sea by a

four-hydrophone array. As with the simulated data, we showed that the CRP-based

TDOA estimator gave better performances than the cross-correlation, with a global

score of 77 % of correct estimates for the CRP, as a gain of 7.4 % over the number of

correctly estimated TDOAs with respect to the cross-correlation
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Appendix

This appendix deals with the automatic controls performed to determine the validity

of TDOA estimated on real acoustic data.

This automatic checking is based on the concept that each annotated signal gives

six TDOA values, which are not independent of each other, but which must respect

transitive relations. A four-hydrophone array gives four independent transitive rela-

tions between all of the TDOA values (Fig. 14.11). Let TDOAij be the TDOA between

hydrophones i and j, with (i, j) ∈ {1, 2, 3, 4} the index of the hydrophones. The four
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(a) (b)

(c) (d)

Fig. 14.11 Four examples of independent transitive relations of the TDOAs given by (14.18):

a TDOA12 + TDOA23 = TDOA13; b TDOA12 + TDOA24 = TDOA14; c TDOA13 + TDOA34 =
TDOA14; d TDOA23 + TDOA34 = TDOA24

independent transitive relations between the estimated TDOA (expressed as samples)

are given by:

⎧
⎪⎪⎨⎪⎪⎩

TDOA12 + TDOA23 = TDOA13 ± 2
TDOA12 + TDOA24 = TDOA14 ± 2
TDOA13 + TDOA34 = TDOA14 ± 2
TDOA23 + TDOA34 = TDOA24 ± 2

(14.18)

As each TDOA was estimated with 1-sample precision (equiv. 10−4 s), the sum of

two TDOAs is estimated with 2-sample precision (equiv. 2 × 10−4 s).

If the four relations given in (14.18) are met, then we can assume that all of

the estimated TDOAs are true. Visual inspection is then performed to confirm the

validity of the estimates, and particularly to check whether there are any cumulative

errors within the relations; i.e., if two or more TDOAs are misestimated but their

sum respects the transitive relations.

If one of the transitive relations from (14.18) is not met, we check the transitive

relations of the third orders, to determine which TDOA is true and which TDOA is

misestimated. The TDOA values give three independent transitive third-order rela-

tions, which are given by:



14 Time-Difference-of-Arrival Estimation Based on Cross Recurrence Plots . . . 287

⎧
⎪⎨⎪⎩

TDOA13 + TDOA34 − TDOA24 = TDOA12 ± 3
TDOA12 + TDOA23 + TDOA34 = TDOA14 ± 3
TDOA13 − TDOA23 + TDOA24 = TDOA14 ± 3

(14.19)

For the relations in (14.19), the sum of three TDOAs is estimated with 3-samples

precision. If one of the relations in (14.19) is verified, then the four associated TDOA

values are assumed to be true and a visual inspection is performed to confirm the

results. Again the visual inspection aims to prevent cumulative errors.

Finally, for each transitive relation from (14.19) taken individually, two of the

estimated TDOAs are not involved. Either these two estimated TDOAs are false, or

only one of them is false. To determine which of these two TDOAs was effectively

misestimated, we looked back at the transitive relations given in (14.18) by assuming

that the four estimated TDOAs involved in the third-order transitive relations have

already been validated.

For example, if the relation TDOA12 + TDOA23 + TDOA34 = TDOA14 ± 3 is met,

we assume that TDOA12, TDOA23, TDOA34 and TDOA14 are true. In this transi-

tive relation, we note that TDOA13 and TDOA24 have not been used. Then, to check

whether TDOA13 was well estimated, we look to see whether the following rela-

tions are also true: TDOA13 = TDOA12 + TDOA23 ± 2 and TDOA13 = TDOA14 −
TDOA34 ± 2. If these are both true, it means thatTDOA13 was correctly estimated. We

can do the same forTDOA24 by checking whether TDOA24 = TDOA14 − TDOA12 ± 2
and TDOA24 = TDOA23 + TDOA34 ± 2 are satisfied. We repeat this reasoning for the

other two transitive third-order relations.
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Chapter 15
Reservoir-Induced Changes in Dynamics
and Synchrony of River Water
Temperatures Revealed by RQA
and CRQA

Mariola Kędra

Abstract River water temperature is a key environmental determinant for aquatic
biota. A range of and dynamic changes in temperature values through different
temporal scales from diurnal to annual ones determine conditions of life and
survival for fish and other aquatic organisms. As a result of heat exchange with
the environment (mainly at the air-water boundary), river water temperature
largely follows changes in local weather conditions and is related to the dynamics
of local air temperature. A retention reservoir operating in a course of river can
alter the dynamics of water temperature and the specific air-water relationship for
a given site below that reservoir. But to what extent? Water and air temperatures
measured some distance below a group of two reservoirs functioning on a
mountain river were studied in two separate time periods—occurring before and
after the reservoirs’ construction. Recurrence and cross-recurrence quantification
analyses revealed that the reservoirs in question have significantly altered the
temperature dynamics of water flowing out of them compared to the pre-dam
period, and caused the weakening of synchronization between the air and water
temperatures studied.

15.1 Introduction

River water temperature is a key environmental factor for aquatic ecosystems.
Water temperature directly affects the survival, growth, and reproduction of aquatic
biota as well their distribution within a river environment [1, 2]. Water temperature
at a given site in a river system is an indicator of a river’s thermal budget. It is
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determined by the energy transport processes in a river and heat exchange between
the river and its surroundings, that is, heat fluxes across the air-water interface and
at the streambed [1]. Small streams have less capacity for heat storage than large
rivers [3]. Water temperatures in streams are very dynamic and highly dependent on
atmospheric conditions [1], and physical characteristics of streams [4], including
bank-side vegetation and surrounding topography [3]. Temporal patterns of air and
water temperature are often highly correlated [4], and the stream-air temperature
relationship resembles an S-shaped function [5]. It was shown [6], that river water
temperatures follow air temperatures closely with some lag; the lag time ranged
from hours to days, increasing with stream depth. Other factors affecting water
temperature include solar radiation, wind speed, relative humidity, water depth,
ground water inflow, thermal conductivity of sediments, and artificial heat inputs
[6]. As a result, water temperatures are less sensitive to air temperature variations at
sites strongly affected by groundwater, river regulation, reservoir and waste water
releases, lake outflows, and shading by riparian vegetation [5, 7–10].

Dam reservoirs built on rivers provide numerous socio-economic benefits, but
at the expense of the ecological integrity of rivers [11]. The impoundments
markedly affect river hydrology, ultimately producing a hydrologic pattern of flow
differing significantly from a pre-impoundment natural flow regime [12]. Thermal
stratification develops in river water impounded by dam reservoirs, with
temperature-explained density differences; and in temperate areas deeper reservoirs
(mean depth 20 m) become dimictic, but shallower reservoirs or those with
enhanced flow turbulence become polymictic [13]. Reservoir releases from the
surface layer (epilimnion) usually closely follow air temperature, as opposed to
releases from the bottom layer (hypolimnion) [14]. Therefore, depending on the
time of the year, a water body with seasonal thermal stratification causes con-
siderable changes in the thermal regime of rivers, manifested in the warming or
cooling of water with respect to conditions undisturbed by reservoir operations
[15, 16]. As a result of thermal stratification, a dam reservoir can potentially cause
changes in the temperature dynamics of outflow water as well as—for downstream
sites—it can alter the existing synchronous air-water relationship. But to what
extent? And will these potential changes be statistically significant?

This chapter aims at determining changes in the water temperature dynamics of a
mountain river caused by reservoir operations as well as assessing the impact of
reservoirs on changes in the synchronous air-water temperature relationship. Water
temperature in the Carpathian river Dunajec at the Krościenko site and air tem-
perature in the same locality, approximately 22 km downstream of the
Czorsztyn-Sromowce Wyżne complex are subjected to analysis in this chapter. The
study period covers two disjoint 15 year intervals before and after the construction
of the studied reservoirs, which should facilitate appropriate comparisons and a
consistent interpretation of research results. The changes in question will be studied
with the use of recurrence plots [17] and cross-recurrence plots [18–20].
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15.2 Study Area and Data Description

The Dunajec River, with its source tributary—the Czarny Dunajec—originates in
the Western Tatra Mountains. It flows south west to north east across the Outer
Western Carpathians in southern Poland (Fig. 15.1) and eventually drains into the
Vistula River in its upper course. The Dunajec River is a permanent mountain river
with a total length of 247.1 km and a catchment area of 6,804 km2. The Krościenko
site, 98 km from the springs of the Dunajec, is situated at an elevation of 414 m
above sea level. The Dunajec sub-catchment at Krościenko covers an area of
1,580 km2, and its average elevation is 836 m a.s.l. [21].

A complex of two reservoirs (Czorsztyn-Sromowce Wyżne) was built
22–24 km upstream from the Krościenko locality in the period 1994–1997. The
Czorsztyn Reservoir, with a holding capacity of 231.9 million m3 became oper-
ational in 1997. Its function is flood prevention and electric energy generation as
well as increasing low flows in the Dunajec [22], from 1.5 to 9.0 m3·s−1

(November–March), and to 12.0 m3·s−1 (April–October). In the vicinity of its
dam, the reservoir is 50 m deep, but the average depth is about 17.6 m at max-
imum water level. Nearly 2 km downstream from the dam, the Sromowce Wyżne
Reservoir, with a holding capacity of 7.5 million m3, was constructed in 1994. It is

Fig. 15.1 Study area: the Krościenko site, 22 km downstream of the Czorsztyn–Sromowce
Wyżne complex, built on the Dunajec River in the Polish Carpathians
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a balancing reservoir for the Czorsztyn Reservoir, with a surface area of 0.9 km2

and a maximum depth of 9.9 m [22].
The present analysis uses temperature data excerpted from a complete daily

observation series collected over a period of 35 years by the Polish Institute of
Meteorology and Water Management. Water (Tw) and air (Ta) temperatures (taken
at 600 UTC) at the Krościenko locality pertain to the hydrologic years 1978–2012
(November 1st, 1977–October 31st, 2012). The entire 35 year period includes two
disjoint 15 year intervals, before and after the construction of the reservoirs, a
so-called pre-dam period (1978–1992) and a post-dam period (1998–2012). Water
temperature is measured approximately 0.3 m below the surface. The Dunajec
River at Krościenko is 1.2 m deep, on average. In winter, when the air temperature
is below freezing for a longer period of time and the water temperature drops to
0.1–0.2 °C, the river is partly frozen and frazil ice occurs as well. Descriptive
statistics of the data are given in Table 15.1.

15.3 Methods

Changes in the dynamics of the temperatures in question and changes in their
synchronous behavior were studied using suitable diagnostic tools: recurrence and
cross-recurrence plots. Recurrence plots (RP) [17] and recurrence quantification
analysis (RQA) [23–26] allow for the study and quantification of a nonlinear
dynamic system on the basis of its recurrence structure. A system’s dynamics can
be represented by a reconstruction of its phase space trajectory from a given time
series {xi}, using time delay embedding [27, 28]. RP is a two-dimensional

Table 15.1 Statistics for the daily temperatures (°C) studied at the Krościenko site for the period
1978–2012 (35 years)

Variable Period Minimum Maximum Mean Median Standard
deviation

Tw 1978–2012 0.0 22.1 7.4 7.2 5.8
1978–1992 0.0 22.1 7.3 6.8 6.1
1998–2012 0.0 18.9 7.6 7.6 5.4

Ta 1978–2012 −29.2 24.8 4.7 5.3 8.2
1978–1992 −29.2 23.3 4.5 5.1 8.1
1998–2012 −28.5 24.8 5.1 5.6 8.2

Annual
cycle of Tw

1978–2012 0.4 15.9 7.4 6.8 5.5
1978–1992 0.2 16.6 7.3 6.9 5.8
1998–2012 0.6 15.4 7.6 7.7 5.3

Annual
cycle of Ta

1978–2012 −6.6 15.3 4.7 4.2 6.8
1978–1992 −9.1 14.8 4.5 4.2 6.8
1998–2012 −7.3 16.8 5.1 4.8 6.9
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representation of recurrences in a system’s dynamics computed on the basis of its
reconstructed trajectory, and is defined as [17]

Ri, j =H ε− ‖xi − xj‖
� �

, xi ∈Rm, i, j=1 . . .N, ð15:1Þ

where ε is the predefined threshold or recurrence criterion, ║·║ is the norm, N is
the number of reconstructed points xi of a trajectory, and H(x) is the Heaviside
function. In the study, the following parameters were used: (1) embedding
dimension m = 4, (2) embedding delay τe = 91, (3) recurrence criterion ε = 15 % of
nearest neighbors; and without standardization of data. The embedding dimension
m = 4 was determined based on the false nearest neighbor method [29], with a
threshold Rtol = 20 and the Euclidean norm. The embedding delay was determined
on the basis of a mutual information function, with the first minimum criterion [30],
and this value coincided with the first zero of the autocorrelation function for each
time series considered. In order to avoid serial correlation, the Theiler window [31]
was set to 91 as well. The specified set of parameters, if not mentioned otherwise,
was used during all subsequent calculations.

Of several RQA measures developed by [23–26], four measures of complexity
were taken into account in this study. These are the following: (1) the measure
determinism (DET), defined as the fraction of the recurrence points forming
diagonal lines of at least length lmin; (2) the measure laminarity (LAM), which is the
ratio of the recurrence points forming vertical lines of at least length vmin; (3) and
the measures 〈L〉 and 〈V〉, which are the average lengths of diagonal and vertical
lines, respectively [23–26]. As a line structure, lmin = vmin = 7 was considered.
Moreover, these four employed measures were calculated in a moving window of
size w, shifted with a step of size s over the studied time series; yielding so-called
time-dependent RQA measures [32]. A moving window was applied to the entire
Tw and Ta series independently, with size w = 2100 and step s = 365. The statistical
significance of changes detected in a system’s dynamics was calculated using a
novel bootstrap-based approach providing confidence levels [32]. For that purpose,
test statistics are constructed with B resamplings, and then the confidence intervals
are derived on the basis of α-quantiles [32, 33]. This bootstrap approach was
employed [32] using B = 1,000 resamplings, and the 99 % confidence level (taking
into account both the upper and lower confidence level).

Cross-recurrence plots (CRP) allow for the study of the synchronous behavior of
two time series simultaneously embedded in the same phase space [19]. The
cross-recurrence plot is defined as [19]

CRi, j =H ε− ‖xi − yj‖
� �

, ð15:2Þ

where xi and yj are points of the first and second trajectories, respectively. The main
diagonal line, called the line of synchronization (LOS), is associated with the
frequencies and phases of the systems studied; the slope of the main diagonal line
represents the frequency ratio (frat), and the distance between the axes’ points of
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origin and the intersection of LOS with the ordinate indicates the phase difference
(Δφ) [19] of the systems considered.

Additionally, on the basis of RP, a generalized autocorrelation function RR(ε)(τ)
[34] is computed for each time series in question; the cross-correlation coefficient
(CPR) [34] for these functions allows for assessing the phase synchronization
between the two systems. The RQA and CRQA measures, and the resulting plots
were obtained with the use of the CRP Toolbox for MATLAB [35].

15.4 Results and Discussion

Figure 15.2a shows an S-shaped relationship between daily water and air temper-
atures at the Krościenko site for the pre-dam period. This relationship results from
complex interactions between two dynamic subsystems that these temperatures are
associated with, that is, the river system with its specific characteristics (Dunajec
River sub-catchment) and the local weather system at Krościenko site. The shape of
this curve is also determined by the fact that these temperatures relate to different
media (water and air); hence, water temperature, unlike air temperature, cannot be
lower than 0 °C in the winter or arbitrarily high in the summer. However, for the
post-dam period (Fig. 15.2b), the slope of the curve has changed (decreased).

Fig. 15.2 Daily water–air
temperature relationship at the
Krościenko site for a the
pre-dam period (1978–1992),
and b the post-dam period
(1998–2012)
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The water and air temperature (averaged) pattern for a year in Krościenko for
two different 15 year periods is shown in Fig. 15.3, and detailed information about
the annual cycles shown is given in Table 15.1. The annual cycles depicted were
calculated as mean values for each calendar day for the specified time period. In
natural conditions undisturbed by anthropogenic factors, mean water temperature
in Carpathian tributaries of the Vistula is higher than mean air temperature, due to
groundwater supply [36]. Comparing the upper (for the years 1978–1992) and
lower (for the years 1998–2012) panels of Fig. 15.3, it can be seen that, apart from
a perceptible change in the range of temperature values for both Tw and Ta (see
also Table 15.1), the Tw curve for the post-dam period is shifted to the right with
respect to the Ta curve. As a result, the Tw curve is no longer above the Ta curve
(as in the pre-dam period, Fig. 15.3a), but intersects the Ta curve (Fig. 15.3b).
This most likely indicates a noticeable, underlying change in synchronous
air-water temperature behavior.

The time-dependent RQA measures for the water and air temperature series are
shown in Fig. 15.4 and Fig. 15.5, respectively. As can be seen in Fig. 15.4, the
RQA measures for the Tw series show approximately the same change direction
over the entire period considered (1978–2012). RQA measures significantly
increase in value exactly in the same time window (15th point in each plot),
coinciding in time with the construction of the Czorsztyn and Sromowce Wyżne

Fig. 15.3 An annual cycle of
daily water (bold line) and air
(thin line) temperatures at the
Krościenko site for a the
pre-dam period (1978–1992),
and b the post-dam period
(1998–2012)
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reservoirs. An increase in DET for the water temperature series most likely indi-
cates an increase in the regularity and autocorrelation [32] of Dunajec River tem-
perature dynamics, which is also accompanied by an increase in the predictability of
water temperature (the 〈L〉 measure) [37].

An increase in LAM and a corresponding increase in the 〈V〉 measure likely
indicate an increase in the duration of laminar states [37] of the water temperature
dynamics on the river section below the studied reservoirs.

As illustrated in Fig. 15.5, the RQA measures for air temperature in Krościenko
show various significant change directions over the entire period considered. DET
and LAM significantly decrease in value in the same time windows (points 8–14,
corresponding with the years 1985–1995), coinciding with a decrease in 〈L〉 and
〈V〉 values; this reveals a period of more irregular and stochastic variability [32].
On the other hand, DET and LAM significantly increased in value in time windows
17–19 and 28–30, related to the years 1994–2000 and 2006–2012, respectively.
Comparing these time-dependent RQA measures for water temperature (Fig. 15.4)
with those for air temperature (Fig. 15.5), one can discern disparate starting points
of their significant increasing tendencies. Moreover, the increase in the considered
RQA measures for Tw precedes that for Ta, and corresponds with the entire period
of the reservoirs’ construction and operations.

Fig. 15.4 Corresponding
RQA measures for water
temperature over the period
1978–2012 a DET, b 〈L〉,
c LAM, and d 〈V〉.
Parameters: m = 4, τe = 91,
ε = 15 % of nearest neighbors,
Theiler window = 91,
lmin = vmin = 7, moving
window w = 2100, and
s = 365; 99 % confidence
levels are shown as
red dash-dotted lines
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Cross-recurrence plots for the water and air temperature series pertaining to two
different 15 year periods (1978–1992 and 1998–2012) are shown in Fig. 15.6. The
reconstructed phase space for each CRP is 4-dimensional, owing to the 2 variables
(Tw, Ta) and the embedding dimension m = 2 (while τe = 91). Each CRP contains
the LOS and long diagonal lines; these indicate a similar trajectory evolution [20] of
the two temperature series in question. The roughly uniform distance between
successive diagonal lines corresponds with an annual cycle.

A linear fit to the LOS (estimated non-parametrically via algorithm [19]) gives
the same frequency ratio (frat ≈ 1.0) for Tw and Ta both in the pre-dam period
(Fig. 15.6a) and in the post-dam period (Fig. 15.6b); however, the phase difference
in the latter period (Δφ ≈ 17.0) is approximately 6.3 times greater than that in the
pre-dam period (Δφ ≈ 2.7). The increase in phase difference between Tw and Ta

signifies a deterioration of their synchronous behavior.
The obtained results indicate that in the pre-dam period the time lag between the

Tw and Ta studied was less than 3 days, and a six-fold increase results in over
17 days of lag time for water temperatures in the Dunajec River relative to air
temperatures at the Krościenko site.

Fig. 15.5 Corresponding
RQA measures for air
temperature over the period
1978–2012 a DET, b 〈L〉,
c LAM, and d 〈V〉.
Parameters: m = 4, τe = 91,
ε = 15 % of nearest neighbors,
Theiler window = 91,
lmin = vmin = 7, moving
window w = 2100, and
s = 365; 99 % confidence
levels are shown as
red dash-dotted lines
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Figure 15.7 shows the generalized autocorrelation functions (RR(ε)(τ)) computed
for each time series in question, with the embedding dimension m = 2 (while
τe = 91). The local maxima of these functions occur at τ = n · 365, where n is an
integer, and their heights are different for both temperature series, corroborating
phase synchronization [37]. The cross-correlation coefficient for these functions is
CPR = 0.87 for the pre-dam period (Fig. 15.7a), and CPR = 0.82 for the post-dam
period (Fig. 15.7b), which clearly indicates phase synchronization between the two
temperatures studied. However, in the latter period, the value of CPR is slightly
lower, which points to slightly weaker synchronization.

Fig. 15.6 Cross-recurrence
plot for daily water and air
temperatures at the
Krościenko site a in the
pre-dam period (1978–1992);
and b in the post-dam period
(1998–2012). Parameters:
m = 2, τe = 91, and ε = 15 %
of nearest neighbors. A linear
fit to LOS:
y = 1.005 · x + 2.715 and
y = 1.001 · x + 17.002, for
pre-dam and post-dam
periods, respectively
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15.5 Conclusions

On the basis of RP and CRP, the conducted analyses have shown that the water
temperature dynamics in the Dunajec River 22 km downstream from the
Czorsztyn-Sromowce Wyżne reservoir complex has significantly changed after the
construction of the two reservoirs. An increase in the four considered complexity
measures was observed for water temperature dynamics, which was not accom-
panied by similar changes in air temperature dynamics in Krościenko. The increase
in the RQA measures for water temperature points to an increase in regularity,
autocorrelation, predictability, and laminarity of water temperature dynamics for the
river section below the two studied reservoirs.

Phase synchronization (with the same frequency ratio) between water and air
temperature was corroborated by LOS appearance in CRP; however, after the
construction of the impoundments, the phase difference increased six-fold, on
average, in comparison with the pre-dam period, which indicates a weakening of
their synchronization. The cross-correlation coefficient between the generalized
autocorrelation functions for the studied water and air temperature values was close
to 1, which again confirms the phase synchronization of the temperatures consid-
ered; though, in the latter period, the value of CPR is slightly lower, which signifies
a deterioration of their synchronous behavior.

Acknowledgements The author would like to thank Łukasz Wiejaczka for fruitful discussions
and his help in preparing one figure.

Fig. 15.7 The generalized
autocorrelation functions for
water (in black) and air (in
gray) temperatures at the
Krościenko site, and
cross-correlation coefficient
CPR for these functions
a CPR = 0.87 in the pre-dam
period (1978–1992); and
b CPR = 0.82 in the post-dam
period (1998–2012).
Parameters: m = 2, τe = 91,
and ε = 15 % of nearest
neighbors
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Chapter 16
Recurrence Analysis of Eddy Covariance
Fluxes

Milan Flach, Holger Lange, Thomas Foken and Michael Hauhs

Abstract Measuring energy and matter fluxes between the atmosphere and vege-

tation using the Eddy Covariance (EC) technique is the state-of-the-art method to

quantify carbon exchange between terrestrial ecosystems and their surrounding. The

EC equipment is usually mounted onto a flux tower reaching higher than the local

canopy. Today, more than 600 flux towers are in operation worldwide. The method-

ological requirements lead to high sampling frequency (20 Hz) and thus to the pro-

duction of very long time series. These are related to temperature, wind components,

water vapour, heat and gas exchange, and others. In this chapter, the potential of

Recurrence Analysis (RA) to investigate the dynamics of this atmosphere-vegetation

boundary system is elucidated. In particular, the effect of temporal resolution, the

identification of periods particular suitable for reliable EC flux calculations, and the

detection of transitions between dynamical regimes will be highlighted.

16.1 Introduction

Uptake and release of carbon from vegetation represent two large fluxes of oppo-

site direction. The sign of their difference determines whether an ecosystem, or the

biosphere as a whole, acts as carbon sink or carbon source to the atmosphere, and

thus the type of feedback to Earth’s climate. Every effort to reduce the impreci-

sion of incoming and outgoing carbon fluxes is more than welcome. The problem
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is intriguing since processes are involved which act on rather disparate time scales,

from turbulent exchange of CO2 molecules at vegetation surfaces, quantified through

Eddy Covariance (EC) measurements at a rate of 20 measurements per second, to

changes in carbon stocks in forest soils which are significant at decadal scales only.

High frequency measurements from flux towers come with special challenges ren-

dering both reliable calculations of carbon fluxes as well as statistical (time-series)

analysis difficult. Specifically, we seek answers to questions relevant to each detailed

investigation of EC-related fluxes. Is it possible to:

1. discern periods where the (atmospheric) conditions are particularly suitable to

obtain reliable EC fluxes?

2. detect dynamical transitions (different behaviour) beyond those obvious from

visual inspection?

3. recommend an optimal time resolution for measuring EC data and analyzing EC

fluxes?

Besides seeking answers to these specific questions, Recurrence Analysis (RA

henceforth) has the potential to provide insights into the dynamical system at the

atmosphere-vegetation boundary not easily obtained otherwise, such as the effec-

tive dimension of the (attractor of the) system, delays, memory effects, sensitivity to

initial conditions, and more.

16.2 Data and Preprocessing

This section describes the data sets obtained from flux towers. There are more than

600 of these towers in a worldwide net, organized in a network of networks called

FLUXNET (Fig. 16.1).

In the near future, the Integrated Carbon Observation System (ICOS) will be

operational. ICOS is a mulitnational research infrastructure founded to standardize

and harmonize flux tower operation and data gathering with an open access policy

(http://www.icos-ri.eu). Under the umbrella of ICOS, a substantial number of new

flux tower sites will be established.

To illustrate the potential of RA for this type of observations, we focus on two

towers, one with raw data on wind speed and gas concentrations at 20 Hz resolution,

serving as basis to compute EC fluxes, and one with multiyear time series of EC

fluxes at a temporal resolution of 30 min. An overview of the two sites, their coordi-

nates and climate is given in Table 16.1. Both sites are classified as evergreen needle

forests.

http://www.icos-ri.eu
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Fig. 16.1 Worldwide net of flux towers, http://fluxnet.ornl.gov/maps-graphics

Table 16.1 Overview of the used sites within Fluxnet

Site-ID Name Latitude Longitude Climate Data

DE-Bay Waldstein–

Weidenbrunnen,

Germany

50.1419
◦
N 11.8669

◦
E Temperate 20 Hz high

resolution

NL-Loo Loobos, Netherlands 52.1666
◦
N 5.7436

◦
E Temperate Half hourly

fluxes

16.2.1 High Resolution Data from DE-Bay

For this analysis, EC high resolution data obtained in the context of the EGER project

[1] at the Waldstein-Weidenbrunnen site (Bavaria, Germany) [2] between June, 24th

and July, 1st 2011 are used. Carbon dioxide (CO2) and water vapour (H2O) concen-

trations and vertical wind speed are sampled with 20 Hz at a height of 36 m above a

27 m high spruce forest floor at the slim tower. The period is considered as one with

a fairly good data quality (coined “the golden days”) according to several quality

flags and expert judgements. Unfortunately, we thus analyze only one week of high

resolution data, bringing seasonality and long term changes out of scope. However,

long term high quality time series at 20 Hz high resolution are almost non-existent,

and weather conditions do change of course also within this limited period.

16.2.2 Fluxnet Data from NL-Loo

In Fluxnet, the measurements at the individual towers seek to monitor fluxes across

the boundary of the ecosystem. The 20 Hz high resolution data provide the basis to

compute fluxes of the quantities of interest. A flux is retrieved by multiplying devia-

http://fluxnet.ornl.gov/maps-graphics
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tions of vertical wind speed from its mean with the deviations of the respective quan-

tity (e.g. CO2, H2O) from its respective mean, then averaging over a time interval of

usually 30 min, which is known as covariance (thus the name of the method). Multi-

plied by the density of dry air, EC fluxes are obtained [3]. Three EC fluxes are used

from Fluxnet: Net ecosystem exchange (NEEf ), latent heat flux (LEf ) and sensible

heat flux (Hf ). NEEf is the carbon flux, derived from deviations in CO2 concentra-

tions. This flux quantifies the effects of photosynthesis and respiration of the ecosys-

tem combined. LEf is derived from H2O concentrations in the atmosphere, quan-

tifying the process of condensation and evapotranspiration. Hf is derived from the

deviation of temperature in the atmosphere, quantifying the transport of energy. In

addition, also meteorological variables such as air temperature, precipitation, global

radiation and vapour pressure deficit are measured at the towers (typically at much

lower temporal resolution than wind speed and concentrations, such as one measure-

ment per minute) and made available via Fluxnet.

The EC method assumes the different measurements to be perfectly synchronized

in time (i.e. the same time stamp refers to the very same moment in time), which is

difficult to obtain due to limitations of the measurement devices. Thus, small devia-

tions between vertical wind and the quantity of interest are corrected by shifting one

of the series until maximal cross correlation at lag zero is obtained.

Another obstacle is purely geometrical: the EC method uses the mass balance

equation as physical basis, which assumes the coordinate system to be parallel to

the mean horizontal wind and homogeneous topography at its boundaries. Further-

more, small misalignments of the sonic anemometer (measuring wind speed) during

assembly are unavoidable. These biases are corrected for with a rotation of the coor-

dinate system (with methods called planar fit or double rotation, e.g. [3]).

A well-mixed turbulent atmosphere is an additional requirement for obtaining

reliable EC fluxes. For instance, low turbulence during nighttime leads to underesti-

mation of the ecosystem sequestration, as storage and advection processes might be

of importance as well. Periods of low turbulence are detected by using an heuristi-

cally estimated threshold of the friction velocity (u∗), and are removed from the time

series [4, 5].

The Fluxnet data set is run through a preprocessing chain, including quality con-

trol and assessment. Quality is enhanced by correcting the data for systematic biases,

removing spikes and other low quality data and finally gap-filling the time series.

This is mostly done by marginal distribution sampling. Marginal distribution sam-

pling works like a moving look up table, searching for similar conditions of cor-

related meteorological variables like global radiation, vapour pressure deficit and

temperature in the vicinity of the gap [5].

The interested reader is referred to an overview on the EC method in Aubinet et al.

[3] and further details on the Fluxnet standard data processing especially in Papale

et al. [4], Reichstein et al. [5], Moffat et al. [6].
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16.3 Recurrence Analysis of Eddy Covariance Fluxes

In the following we consider Eddy Covariance fluxes to be part of a dynamical system

at the atmosphere-biosphere boundary. Dynamical systems are usually described by

one or more differential equations, giving the behaviour of the system for a certain

time in the form of state transitions. All possible states of the system are represented

in its phase space. Analyzing system behaviour in phase space reveals the crucial

characteristics of the system. However, usually only little is known about the other

(unmeasured) variables which complete the characterization of the dynamical sys-

tem and thus its phase space. One way to characterize properties of the phase space

of unknown variables, given just one time series of a single variable, is embedding.

16.3.1 Embedding

The reconstruction of the m-dimensional phase space is motivated by the embedding

theorem [7] and done by considering an observation at time t, evolving from m − 1
observations, each one step ΔT in the past.

⃗X = (xt, xt−ΔT , xt−2⋅ΔT , ..., xt−(m−1)⋅ΔT ) (16.1)

For reconstructing the phase space, it is crucial to find appropriate embedding

parameters m and ΔT . m is estimated by searching for a minimal number of false
nearest neighbors (FNN) [8].

A suitable time delay ΔT can be either selected by accounting for nonlinear cor-

relations with the mutual information or with the autocorrelation of a time series.

The autocorrelation function (ACF) is one simple conventional measure of linear

dependence in the dynamics of a time series. In order to obtain independent sub-

sequent 𝐗, one has to determine a suitable time delay ΔT . One way would be to

choose the first zero-crossing of the ACF [9]. Another possibility is the length of the
autocorrelation (LAC). LAC is the time a signal needs until the absolute value of its

sample autocorrelation function falls below a significance threshold determined by

the length of the time series [10]. However, this has the caveat that strongly autocor-

related data, such as many environmental time series, might not exhibit a finite LAC.

The same holds even stronger when using the autocorrelation time [11] instead. Here

we use the assumption of Gaussian noise and a significance level 𝛼 with the conven-

tion 𝛼 = 5%.

LAC takes only linear correlations into account. Therefore, the second possibility

to find ΔT is looking for nonlinear dependencies. The mutual information (MI) is a

method introduced by Fraser and Swinney [12] which measures the nonlinear depen-

dence of two variables. The first local minimum of MI seems to be a good choice for

ΔT in time delay embedding [12].
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16.3.2 Recurrence Analysis

Ecosystems are considered to show a rather complex behaviour at their boundaries

[13]. As EC fluxes quantify the processes between ecosystems and the atmosphere,

it is expected that the data sets might display nonlinear behaviour. This requires

methods which can deal with chaotic data, like recurrence plots. The current analysis

was performed with the python package pyunicorn.
1

To quantify the visual structures of the recurrence plot, several measures have

been proposed [14–16], known as recurrence quantification analysis (RQA). A lot

of different RQA measures exist. If not referenced otherwise, all definitions of RQA

measures are according to Marwan et al. [17] in the following. Most of the measures

take the structures of diagonal and vertical lines into account.

For discrete time series, the recurrences in phase space form a recurrence matrix,

visualized by the recurrence plot. This matrix is also closely related to the adjacency

matrix of a corresponding complex network, by simply excluding the line of identity

to avoid self loops [18, 19]. Recurrence networks (RN) can be quantitatively charac-

terized taking their vertices, edges and the path between two vertices into account.

The definitions of the relevant network measures can be found in [19]. The quan-

tification of recurrence plots (RQA) and recurrence networks (RNA) will be jointly

referred to as recurrence analysis (RA) in the following. A comprehensive summary

of the RA measures used here is given in Table 16.2.

16.4 High Resolution Data at DE-Bay

As discussed above, high resolution data provide the basis for the computation of

EC fluxes. In this section we address the high resolution data of the DE-Bay site.

16.4.1 Fixing Embedding and RA Parameters

To perform RA on the high resolution data, the RA parameters have to be fixed first.

For reconstructing the dynamical system’s phase space, we choose an appropriate

time delay and embedding dimension and use a fixed recurrence rate (RR).

To find an appropriate time delay with the auto correlation function or mutual

information, which is not restricted to the normal diurnal cycle of the data, trend and

daily periodicity are provisionally removed. We remove the diurnal cycle in EC high

resolution data with singular spectrum analysis (a detailed description of the method

can be found in [20]). Then, the autocorrelation function and mutual information

(MI) is calculated as outlined above for different temporal resolutions of the EC

high resolution data.

1
Available at http://tocsy.pik-potsdam.de/pyunicorn.php.

http://tocsy.pik-potsdam.de/pyunicorn.php
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Table 16.2 Recurrence analysis measures and their interpretation

Measure Abbreviation Definition Interpretation

Laminarity LAM Proportion of vertical

lines

Laminarity of the

system

Determinism DET Proportion of diagonal

lines

Determinism of the

system

Trapping time TT Average length of

vertical lines

Time the system does

not change

Predictability PRE Average length of

diagonal lines

Time the system is

predictable, periodic

Entropy ENT Shannon entropy of

the probability to find

a line of a specific

length

Complexity of

recurrent trajectories

Trend TRE Change in density of

recurrent points along

diagonals, from the

line of identity towards

the upper left and

lower right corners

Non-stationarity of the

system

Assortativity  Preferable connection

of nodes

Continuity of vectors

in phase space

Average path length  Average length of all

shortest paths

connections

Indicator for

dynamical transitions

Transitivity  Probability that

directly connected

nodes are also

connected via one

neighbor

Chaotic versus.

regular behaviour

(chaotic < 0.75,

periodic = 0.75, etc.)

0.
0

0.
4

0.
8

lag [minutes]

A
C

F

0 60 120 180

(a)

0.
4

0.
8

1.
2

lag [minutes]

M
I

0 60 120 180

(b)

Fig. 16.2 a ACF, bMI of vertical wind speed for EC high resolution data

The first zero crossing of the ACF varies slightly around 1 h for vertical wind

speed (Fig. 16.2a), CO2 concentration and H2O concentration. Also MI flattens

approximately at this time, but does not exhibit an unambiguous local minimum

(Fig. 16.2b). Thus, 60 min, the first zero crossing of ACF, is used as ΔT for the time

delay embedding.
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After fixing the time delay parameter, the analysis continues with the original

data, including trends and diurnal cycles, with the idea to determine an appropriate

embedding dimension and a suitable recurrence rate as well as obtaining recurrence

measures.

False Nearest Neighbors calculations did not lead to conclusive results for the

choice of the embedding dimension that would fit all time series. This is common for

time series containing noise [21]. The long time series make higher dimensions fea-

sible, in contrast to many other applications with shorter data sets. Thus, we choose

a general embedding dimension of 5. The whole times series is long enough (8 days)

for m = 5 and ΔT = 1 h.

A fixed threshold (FTHR) 𝜀 is known to lead to a substantial variance of the RR

[22]. Thus, we choose a fixed recurrence rate (FRR) of 10 %, which is a typical choice

for RA in environmental applications [22]. Distances in phase space are computed

with the Euclidean norm. RA measures are calculated in moving windows of 6 h

length to take diurnal fluctuations of the data into account. Windows are overlapping

with a window distance of 4 h to avoid high computation times.

16.4.2 Changing the Temporal Resolution

Changes in temporal resolution have not been analyzed yet in a systematic way with

RA, although this happens often when processing high-resolution data. This is rele-

vant for EC data, as in typical EC data processing software, a cutoff frequency of 2 Hz

is used [23], i.e. the time series is decimated 10-fold. [24] even stated that sampling

with intervals of several seconds suffices for calculating EC fluxes.

One crucial aspect when changing the temporal resolution is the handling of the

embedding parameters of the time series. Both embedding parameters are fixed to

a certain dimension (m) and a certain time delay (ΔT) in units of time. The corre-

sponding lag of the time delay embedding is changed respectively. Thus, analysis of

the temporal resolution is restricted to the temporal resolutions of the (integer) set

of divisors of ΔT , which is 1 h in this case.
2

This ensures that changes of RA mea-

sures with changing temporal resolution are not an artifact of time delay embedding

parameters. Temporal resolution can be changed by applying two basic methods,

aggregation and decimation. Aggregation of data is done by forming the average or

the sum, depending on the type of variable. Then aggregated values are assigned to

the point in time referring to the end of the aggregated period [1]. Decimation is a

technique of downsampling. Decimation by the factor n is done by keeping every nth

sample of the time series, yielding a new time series of a lower temporal resolution.

Decimation in high resolution data is of special interest for the EC method, as some

gas concentrations cannot be measured at the high temporal resolution of the sonic

anemometer (10–20 Hz). A technique known as disjunct eddy accumulation method

2
We used temporal resolutions of 1, 2, 4, 6, 8, 10, 12, 15, 18, 20, 25, 30, 36, 40, 45, 50, 60, 72, 80,

90, 100, 120, 144, 150, 180, 200, 225, 240, 300, 360, 400, 450, 600, 720, and 900 s.
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makes use of concentrations from lower temporal resolutions to compute fluxes of

it, and is intended to minimize the error induced by the lower temporal resolution

[25, 26].

As aggregation and decimation are two completely different techniques, one

would expect large differences between RA measures computed after decimating

or aggregating the data. To quantify the differences between aggregation and deci-

mation, the data are binned in classes of temporal resolution, correlated and the R2

values between them are compared.

When aggregation or decimating the data up to 900 s, we can only observe as

few as 24 observations in one 6 h window. To judge whether results with such short

time series are stable and different from noise, a small simulation is done. According

to Kaimal et al. [27], the high frequency vertical wind time series might be resem-

bling pink noise processes with a spectral exponent of 𝛽 = −5
3
. Thus, pink noise

of different time series length is produced with the R-package of Ligges et al. [28],

embedded and TRE calculated. 1000 realizations of a pink noise process are used to

achieve confidence intervals (CI) of 5 %, 95 % and the median.

16.4.3 Results and Discussion

An important auxiliary information to understand the dynamics of EC high resolu-

tion data is an overview of meteorological conditions during the period of interest.

At the DE-Bay site during the selected period in 2011, the conditions are changing

between Day of the Year (DoY) 177 (June, 24th, 2011) and 179: Wind direction (dir)
from north-east winds to more changing winds coming from west to south between

DoY 177–179 noon (Fig. 16.3a). Air temperatures increase as well as the amplitude

of the diurnal cycle (Fig. 16.3b). An indicator of atmospheric stability shows neg-

ative values (unstable stratification) from early morning to late afternoon for these

nice days (DoY 177–179 noon), nighttime values (grey shaded) indicate neutral to

slightly stable stratification (Fig. 16.3b). In the following, we show that these changes

in meteorological elements (weather) can also be obtained with recurrence analysis.

(a) (b)

Fig. 16.3 Meteorological overview (June, 24th to July, 1st, 2011) of a wind velocity (u) and fric-

tion velocity (u∗, left axis), wind direction (dir), b stability parameter (zL−1) and air temperature

(Taf ). Night time (between sunset and sunrise) is grey-shaded
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(a) (b)

Fig. 16.4 Average path length  of vertical wind velocity at the Waldstein site in 2 h overlapping

moving windows of 6 h length, changing temporal resolution with a aggregation and b decimation

Table 16.3 Quantiles of average path length with simulated pink noise data on different length of

the time series (N) corresponding to 15, 10, 5, 2, 1 and 0.5 min temporal resolution of a 6 h window

N = 24 N = 36 N = 72 N = 180 N = 360 N = 720

5 % 1.36 2.24 2.54 2.56 2.51 2.46

50 % 2.09 3.19 3.03 2.76 2.64 2.60

95 % 3.48 4.70 3.86 3.32 2.97 2.89

RA measures are presented as contour of time in overlapping moving windows (x-

axis) by changing the temporal resolution (y-axis), e.g. Fig. 16.5.

Detecting Dynamical Transitions

Average path length () of vertical wind velocity varies between one (very simple)

and five nodes (very complex networks), needed on average to connect all pairs of

nodes in the network (Fig. 16.4). Higher  values occur in the evening of DoY 174,

176, 179 and in the morning of DoY 181. Especially with respect to the nice weather

period, it is interesting to note that for the aggregation method (Fig. 16.4a), temporal

resolutions shorter than one minute change from high to low , whereas temporal

resolutions aggregated longer than one minute tend to do the opposite. With respect

to the pink noise simulation,  is a relatively stable measure even for small recur-

rence networks shorter than 100 observations (Table 16.3). Most observed changes

of  in vertical wind speed exceed the confidence intervals of the pink noise simu-

lation and are indicating a following change in the dynamics of the time series. As

 is known to be a very sensitive indicator for dynamical transitions [18, 29] and

with the changes of the meteorological conditions in mind (Fig. 16.3), it seems that

increased values of  at DoY 176 indicate already in the evening the change into

the nice weather period, coming ahead with changed wind directions of the three

following days. Interestingly, these changes can be derived only from the analysis

of vertical wind speeds’ phase space. The visual interpretation of a set of standard

meteorological variables supports this indication of change in the system’s behav-

iour.
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(a) (b)

Fig. 16.5 TRE of vertical wind velocity at the Waldstein site in 2 h overlapping moving windows

of 6 h length, changing temporal resolution with a aggregation and b decimation

Discerning Stationary Periods

The trend (TRE) is an interesting RA measure for EC high resolution data as it is

interpreted as instationarity of the time series. Stationarity is one of the prerequisites

of the EC method, determining the commonly used fluxes from the high resolution

data of vertical wind speed and other variables [3].

TRE shows vertical structures with increased TRE for daytime values ofDoY 177–

179. These are days with very low wind velocity and thus unstable stratification. This

is more pronounced for aggregated and decimated temporal resolutions longer than

2 min (upper part of Fig. 16.5).

Temporal resolutions shorter than 2 min have only slightly negative trend values,

thus can be considered to be quasi stationary (Fig. 16.5); thus, this prerequisite of

flux derivation with the EC method is met for small temporal scales. Longer temporal

resolutions result in TRE values which are more negative for most days or larger than

zero for the nice weather period. Typically negative values of TRE indicate a drift

in the time series and positive values are very unlikely to occur, unless sampled in

discordance with periodicity.

TRE is already known to react sensitive on changes of the time series length, as it

is done when changing temporal resolution [22]. This can be confirmed by the pink

noise simulation (Table 16.4). TRE tend to be more negative for short time series.

Values of TRE for vertical wind speed (Fig. 16.5) are in the range of the pink noise

Table 16.4 Quantiles of TRE with simulated pink noise data on different length of the time series

(N) corresponding to 15, 10, 5, 2, 1 and 0.5 min temporal resolution of a 6 h window

N = 24 N = 36 N = 72 N = 180 N = 360 N = 720

5 % −8.76 −7.30 −3.63 −1.43 −0.63 −0.29

50 % −5.51 −4.08 −1.59 −0.59 −0.22 −0.08

95 % 3.07 2.16 1.08 0.40 0.26 0.09
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simulation (Table 16.4) up to a temporal resolution of approximately 5 min. Then

TRE gets mostly more negative, which is in concordance to the simulations, with

some exceptions for aggregation (noon of DoY 175, 181). Some positive values are

out of the upper bounds of TRE, especially for days with unstable stratification, indi-

cating that there might be longer periodicities of vertical wind speed, which cannot

be quantified with a time window of 6 h. To verify this, the size of the time window

has to be varied with a fixed temporal resolution, revealing the time of stationary

behaviour of vertical wind speed.

Summarizing the results for stationarity, it can be confirmed that TRE can detect

stationary parts of the EC high resolution data. In the case at issue, the time series

can be considered as stationary when aggregating or decimating up to 5 min. But

EC fluxes are typically calculated in 30 min intervals [3]. This interval is outside of

the methods limits, due to only 12 values in one 6 h window. Nevertheless, going

to the upper limit of the analysis, nonstationary parts are detected for single days

and especially for the nice weather days. Vertical wind speed in the 6 h window gets

nonstationary on certain days on temporal scales longer than 5 min, whereas it is

stationary in the same 6 h window on shorter time scales. This fact is contrary to

the expectations for the aggregation method, as vertical wind speed is expected to be

stationary and zero, when averaging it over longer periods. Non-zero average vertical

wind speed has been reported before especially over tall vegetation, as is the case

here [3]. This is accounted for by rotating the coordinate system before calculating

the fluxes, e.g. with the planar fit method (see [3]). TRE might be of interest as it

has the potential to complement the quality checks used so far for stationarity of EC

high resolution data in the EC community [30].

Recommending Temporal Resolution

According to the results above, RA can be used to recommend optimal temporal

resolutions. In the sense of RA, a temporal resolution is sufficient if the used RA

measures do not change (much) when aggregating or decimating the time series to

achieve another temporal resolution (stability on the y axis of Fig. 16.5). Further-

more, aggregation (Fig. 16.5a) and decimation (Fig. 16.5b) should exhibit different

structures. Obviously redundant information is available, if they do not. To quantify

this, we correlate all RA measures used (Table 16.2) at different temporal resolu-

tions, achieved by either decimating or aggregating.

A very high correlation close to R2 = 1.0 can be found between aggregation and

decimation of vertical wind velocity for temporal resolutions of 6 s or shorter (RA

measures minimal R2 = 0.98, Fig. 16.6b). CO2 has high correlations for temporal

resolutions of 20 s or shorter (Fig. 16.6a). Average path length of CO2 exhibits min-

imal R2 = 0.93. Excluding average path length, the correlation is very high at these

very high temporal resolution (R2 = 0.97).H2O shows very similar correlation struc-

tures as CO2 (not shown).

Summarizing, RA measures exhibit very similar structures for decimated versus

aggregated values for short temporal resolutions. This indicates that these resolutions

do not convey additional information. Thus, sampling rates seem to be higher than

necessary.
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Fig. 16.6 R2
of all RA measures’ correlations between aggregation and decimation for high reso-

lution data of a CO2 and b vertical wind velocity

For oversampled data, it would be expected that the aggregation method and the

decimation method are on the one to one line without loosing any structures as

derived by the RA measures. Normally aggregation and decimation are two very

different techniques of changing temporal resolution, thus should exhibit different

structures. Temporal resolutions shorter than 6 s (vertical wind) or shorter than 20 s

(CO2) are lying on the one to one line. Thus, sampling rate of vertical wind speed

could be reduced to 6 s, maintaining at least 98 % of the structures as derived from

6 s averaged vertical wind speed. CO2 concentrations maintain at least 93 % of the

structures at 20 s temporal resolution and 91 % at 30 s.

These results are in concordance to literature, stating that the correlation between

heat fluxes derived from 10 Hz data and disjunct eddy sampling (30 s) is consid-

ered to be very good with R2 = 0.94 [25]. In addition, the loss of structures due

to decimation (or disjunct sampling) as derived by RA is very low, which leads to

the conclusion that disjunct eddy accumulation is a very good alternative to derive

fluxes of specific chemical compounds, which cannot be measured with higher sam-

pling rates. As this loss of structures is lower for concentrations (CO2, H2O) than for

vertical wind speed, it is assumed that only large changes in vertical wind speed, pos-

sibly related to larger eddies, are actually transporting concentration differences. It

has already been stated by [24] that a sampling frequency of several seconds would

suffice for EC data, but it seems currently unlikely that a change in the sampling

frequency of EC data will occur anytime soon.

16.5 Fluxes at NL-Loo

In this section, we analyze EC fluxes of the NL-Loo site which are provided at 30 min

resolution but extend over several years. Similar to the high resolution data, we first

fix the parameters used for embedding and RA.

16.5.1 Fixing Embedding and RA Parameters

We fix the time delay after removing the diurnal and the annual cycle in the data with

singular spectrum analysis, to get results which are not constrained by these cycles.
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(a) (b)

Fig. 16.7 Determinism of NEEf to infer an optimal temporal resolution (NL-Loo). a Aggregation,

b Decimation

After fixing the delay, the embedding dimension is found and RA performed on the

original data, containing the cycles.

As MI and ACF still show structures depending on the diurnal cycle, and thus

indicate its insufficient removal, we use the length of the autocorrelation function

(LAC) to determine the time delay. LAC is the time lag at which the autocorrelation

function falls below a 5 % significance threshold of 0.015 taking the length of the

time series into account. LAC varied slightly around 180 lags. The corresponding

time period is used as time delay: ΔT = 90 h = 3.75 days. In concordance with the

high resolution data, an embedding dimension of 5 and a fixed recurrence rate of

10 % is used.

16.5.2 Results and Discussion

Temporal Resolution
We examine the impact of varying the temporal resolution on the RA measures. A

careful analysis, similar to that for the high resolution data (Sect. 16.4.2
3
), revealed

that an aggregation up to 6 h resolution does not affect the results of the recurrence

analysis: the correlation between RA measures of aggregated and decimated EC

fluxes is higher than 95 %. For longer temporal resolutions, however, the correla-

tion shows a steep drop, which is obvious also through visual inspection of the RA

measures. As a typical example, we show the Determinism of NEEf for the aggre-

gation method (Fig. 16.7a), which exhibits horizontal structures at certain temporal

resolutions. In the case of decimation (Fig. 16.7b), these are less pronounced. These

structures occur when the resulting sampling frequency is in disconcordance to the

diurnal cycle, which is known as aliasing. That there is a stronger aliasing effect

for aggregation than for decimation may be due to the fact that decimation quickly

3
We used divisors of 90 h with half hour accuracy: 0.5, 1, 2, 2.5, 3, 5, 6, 7.5, 9, 10, 15, 18, 22.5,

30, 45, and 90 h.
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destroys the correlation structure of the time series (into the direction of random

data) whereas aggregation smooths the autocorrelation function. This has not been

tested systematically, however.

At high resolution (less than around 2–3 h), for both methods a shift in the dynam-

ical regime is visible around the year 2001. Determinism is systematically lower after

this year. The second half of 2003 and the first half of 2004 is singled out as a special

period with a rather narrow range of determinism at intermediate values. This could

be related to the mid-European heatwave of 2003.

Beyond visual inspection

A more quantitative perspective towards the behaviour of RA measures is provided

by producing time series for them by running through moving windows. Here, we

aggregated the flux time series to 6 h resolution, fixed the embedding dimension to

5 and the time delay to ΔT = 3.75 days as before. Moving windows of exactly one

year length were chosen with 75 % overlap (shifting 91 days each time), and a fixed

recurrence rate of 10 % was chosen.

To assess the significance of individual structures in the time series of the RA

measures, one should estimate the confidence bounds against a “trivial” case. Here,

we calculated confidence bounds based on a bootstrap approach, where the line

length probability distributions are kept intact, but data are resampled with replace-

ment otherwise. This approach is available for RQA measures only [31]. The confi-

dence bounds are visualized as grey-shaded areas in Fig. 16.8.
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Fig. 16.8 RQA measures DET , PRE, ENT , LAM, TT with 5 % and 95 % confidence interval after

[31] and RNA measures  , ,  for NEEf at NL-Loo
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Very high values at the very beginning of the investigated period are related to

initial implementation problems. The nine RA measures presented share a common

peak at the beginning of the year 2000, which is significant in all (RQA) cases. After

that, the NEEf dynamics changes behaviour qualitatively, e.g. predictability or trap-

ping time show rather low values, indicating more random behaviour. These features

are not related to visually obvious changes in the time series from the site. Whether

they are indicators of proper dynamical transitions in the system or a mere sign of

problems with the sensors at the tower, remains an open question at the moment. But

Fig. 16.8 demonstrates that RA is capable of detecting subtle changes in time series

which easily escapes other methods.

16.6 Conclusions

It could be demonstrated that recurrence analysis is able to describe and quantify

various dynamical properties of time series produced from Eddy Covariance mea-

surements at flux towers.

Specifically it was hypothesized, that RA is capable to (1) discern periods where

the atmospheric conditions are particularly suitable to obtain reliable EC fluxes, (2)

to detect dynamical transitions beyond those obvious from visual inspection and (3)

to recommend an optimal time resolution for measuring EC data.

With respect to (1) especially one prerequisite for reliable EC fluxes has to be

mentioned, which is stationarity. It has been tested by comparing the sum of six

5-min fluxes with the 30-min flux [30]. A new approach would be to consider the

RA measure trend (density of recurrence points along diagonals). Trend indicates

instationarity of the data and could serve as an additional test for stationarity which

is more sensitive than the well established method.

Dynamical transitions (2) can be visually detected by inspecting numerous mete-

orological variables together. In EC high resolution data changes of the behaviour

of vertical wind speed are indicated by an increase in average path length of a recur-

rence network. These increases can be attributed to changes in weather, which are

only observable with a number of meteorological variables (air temperature, wind

direction, stability of the atmosphere). This RA perspective of dynamical transitions

has the advantage of being more objective, directly pointing to the interesting period

of time.

For long-term flux data, both unusual periods as well as more long-lasting changes

in dynamics can be observed. This may be used to detect changes in system properties

as well as deficient measurement devices. As with many other analysis techniques,

an attribution cannot be delivered by RA per se.

With respect to changes of temporal resolution (3), RA is capable to recommend

an optimal temporal resolution for further analysis. In EC high resolution data, RA

on different temporal resolutions (aggregated and decimated data) exhibits only very

little differences of structures in phase space between aggregation and decimation.
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This is astonishing, as aggregation and decimation are two very different methods of

changing the temporal resolution by using the average or sum (aggregation) or leav-

ing values out (decimation). This indicates that EC high resolution data are currently

sampled on rates higher than necessary. This oversampling is more pronounced for

CO2 concentrations (<20 s) than for vertical wind speed (<6 s). In the disjunct eddy

accumulation method, slow sensors (with a reaction time of 30 s) are already used

to determine EC fluxes of chemical compounds like 𝛼-pinene (e.g. [32]). Also for

standard EC measurements of CO2 and H2O, the oversampling can be confirmed by

RA. This has already been stated by [24], but seems to be not the case at issue at

the moment, as memory and data transfer are rather cheap. Nevertheless, one should

keep this in mind, e.g. for EC experiments in remote areas or for analysis of the EC

high resolution data, which suffers from long computation times.

Investigating the relations between the patterns found with recurrence analysis

and fundamental processes is an interesting option for future research. Another direc-

tion to follow is the usage of RA for quality checking and assessment of EC data, a

relevant activity e.g. in measurement networks such as ICOS
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Chapter 17
Recurrence Plots for the Analysis
of Combustion Dynamics

Lipika Kabiraj, Aditya Saurabh, Holger Nawroth, C.O. Paschereit,
R.I. Sujith and Nader Karimi

Practical applications involving combustion suffer from serious issues such as

combustion instabilities and sudden loss of flame: flame flashback and blowout.

These phenomena are related to dynamical changes in the combustion system. Here,

we summarize our recent studies on the application of recurrence-based methods to

identify such dynamical transitions as well as for the characterization of combustion

dynamics in laboratory combustors.

17.1 Introduction

Natural phenomena are governed by laws that are ubiquitously nonlinear, and their

dynamics are often characterized by—and often hidden due to—the presence of

inherent noise. We now know that the dynamics of unrelated naturally-occurring and

artificial dynamical systems can be strikingly similar to each other in nonlinear fea-
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tures such as bifurcations, scenarios (routes to chaos), and the effects of noise. This

success in characterization and identification of dynamical similarities between non-

linear systems has been made possible by techniques from dynamical systems analy-

sis, most particularly, recurrence analysis, which is the subject of this book. What is

more important is that recurrence analysis and related techniques have allowed us to

extract useful information from data that seem highly irregular or noisy upon direct

observation.

A subset of natural phenomena that we are dealing with involves complex cou-

pling between hydrodynamics, acoustics and combustion processes. More specif-

ically, the results in this chapter are concerned with combustion dynamics—and

related issues—observed in combustors such as those employed in practical systems

like the gas-turbine engine.

Three particular cases of combustion dynamics form the focus of this chapter:

(a) acoustic noise emitted by turbulent flames, (b) the nature of combustion (thermo)-

acoustic coupling, and (c) undesirable extreme events: flame blowout and flashback.

These phenomena obtain their characteristic features from a combination of deter-

ministic and non-deterministic processes. In the past, studies have been based pri-

marily on statistical analysis of the time series of observations and frequency-domain

analysis. The last of the three cases—extreme events—has been particularly difficult

to handle using these methods. In this chapter, we are summarizing recent advances

in characterizing complex cases of combustion dynamics through the incorporation

of recurrence-based methods [1–4]. We will be seeing how this new strategy helps

obtain new information and brings a new perspective of looking at the mentioned

issues.

The reason it is important to go further into the details of the physical processes

and (nonlinear) mechanisms related to our system is not only academic; our research

also has a huge practical motivation. A better understanding of combustion dynamics

and an improved ability to tackle related issues—thermoacoustic instability, flame

blowout and flashback—will enable the enhancement of the operating envelope of

combustors towards a regime that is favorable for higher efficiency and lower pol-

lutant emissions, and help the objective of controlling noise emissions [5–7]. Our

research is hence a step in the direction of sustainable development.

The implementation of nonlinear time series on combustion dynamics has pro-

vided several important results in the past. Strahle and co-authors [8–10], for instance,

have explored fractal analysis of time series obtained from experiments on com-

bustion noise. They found that such nonlinear analysis is able to provide useful

information from highly noisy time series. Furthermore fractal characterization of

time series yielded quantitative measures that could be used to characterize system

dynamics and could even be used for modeling, analysis, and validation. Their work

on turbulent combustion noise was inspired by previous studies on turbulent flows

and flames [11, 12]. Nonlinear methods, notably phase space based characteriza-

tion [13, 14] are increasingly being incorporated in studies on laminar [15] and

turbulent combustion [16–21], internal combustion engines [22] as well as related

fields [23, 24]. These techniques allow investigation through an alternate perspec-

tive: the phase space. For this reason, they have been quite successful in gaining addi-
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tional insight into system dynamics from scalar time series acquired experimentally

or from numerical analysis. Here, we look at results from our studies on combustion

dynamics, which deal particularly with recurrence analysis.

17.2 Case Studies

In the following section, we have presented the case studies to illustrate where

and how the application of recurrence plots and recurrence quantification analysis,

together with the conventional analysis such as proper orthogonal decomposition

and power spectral density estimates, has led to additional information on the sys-

tem. First we have dealt with the case of the noise emission from a turbulent flame:

combustion noise. In the second section we have presented a study of nonlinear ther-

moacoustic oscillations in a prototypical laboratory combustor, which consists of a

confined, laminar premixed flame. We have discussed dynamical transitions of the

self-excited instability from limit cycle to an intermittent state (and subsequently

blowout). In the last section, we have discussed a case where thermoacoustic insta-

bility induces flame flashback. Thermoacoustic instability, flame blowout, and flame

flashback are serious engineering issues for combustors. In worst cases, these have

even led to complete system failure.

17.2.1 Unveiling the Spatio-Temporal Nature of Combustion
Dynamics for Turbulent Flame

Flames can be laminar or turbulent depending on the base flow. A steady candle flame

is laminar, whereas, combustion within an aircraft engine involves turbulent flames.

While turbulent flames are essential whenever high power output from combustion

is required (turbulent fluctuations enhance mixing and support flame stabilization),

the turbulent nature of the flame is the source of acoustic emissions, which must

be suppressed (consider that combustion is a dominant source of noise in aircraft

engines).

Local fluctuations in the heat release rate in a turbulent flame lead to unsteady vol-

umetric expansion and contraction at the flame front: acoustic noise. Noise emission

from turbulent flames depends on several factors such as the flame type, shape and

the fuel-oxidizer ratio, but most importantly, it depends on the base flow turbulence,

whose spatial and temporal signature consists of random as well as coherent fluctu-

ations [25]. The broadband and intermittent nature of combustion noise [7] has been

well-established for a long time now. However, turbulent combustion and the noise

emitted is a complex subject involving interactions between multiple processes, and

therefore, modeling of turbulent combustion continues to be under active investiga-

tion. Investigations have primarily focused on understanding the physics underlying
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combustion noise through scaling laws and empirical relations governing the sound

pressure level and the spectral characteristics of far-field combustion noise.

By using recurrence techniques, we are essentially trying to incorporate the

advantages of recurrence plots in distinguishing the distribution of deterministic

and stochastic components in the signature of combustion noise—how the simul-

taneous presence of periodic components and noise is manifested in the temporal

signature of combustion noise. Typically, strong coupling overshadows noise from

turbulent combustion and the base flow. If the coupling is feeble, details of flow-

induced acoustics in the presence of the flame can be studied. Recurrence plots were

also found to reveal the intermittent presence of different deterministic processes

characterized by different time scales.

The investigated case involves the analysis of acoustic emission from the exper-

iments on an open bluff-body stabilized, turbulent premixed flame [26]. Experi-

ments were carried on in an anechoic environment to minimize wall-reflections, and

acoustic emission measurements were carried out using a 1/4 in. pressure micro-

phone mounted at a distance of nine burner diameters from the burner axis. To

observe changes in the acoustic emission due to the presence of the turbulent flame,

the parameter varied was equivalence ratio (air-fuel ratio), 𝜙. As the equivalence

ratio was varied, changes in the flame shape were observed (the flame shapes are

shown in Fig. 17.1). In the range of conditions investigated, the flame assumes two

shapes: a planar V and an M shape. The V shape exists because of the presence of

the wake of the bluff body, a horizontal tungsten rod. The flame assumes this shape

at lower equivalence ratios (𝜙 < 1.10). As equivalence ratio is increased (𝜙 > 1.2),

the flame attaches to the bluff body, as well as to the burner rim and thus, forms

an M shape. At intermediate equivalence ratios, the flame shape switches between

V and M shape. In addition to pure turbulent flame dynamics, the noise emis-

sions acquired in these experiments include intermittent coupling of the flame with

upstream acoustics. This, however, does not affect the analysis strategy or the demon-

stration of its importance. In addition to recurrence analysis of pressure time series,

the coherent dynamics of the flame that leads to the deterministic structures in the

recurrence plot are studied through Proper Orthogonal Decomposition, POD, of the

high-speed flame images sequences. Additional results on the spatio-temporal char-

acteristics of noise emission from the investigated rig have been discussed in other

reports [27].

Fig. 17.1 Instantaneous high speed flame images showing various shapes observed during exper-

iments. Left to right 𝜙 = 0.9 (V flame), 1.15 (transition to M shape), 1.2 (M flame). A schematic

outline of the experimental setup is shown in the right end frame
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Fig. 17.2 RP for the isothermal flow [26] (m = 5, 𝛿 = 0.015). Regions a–e, marked on the time

series, indicate regions in the RP with characteristic patterns

To begin with, we will show the RP for the isothermal case (without the flame).

The isothermal flow is expected to consist of noise due to turbulent nature of the

base flow. However, the acoustic signal also has periodic components due to flow-

induced acoustics in the burner at its resonance frequencies. The RP in Fig. 17.2

contains these features. The parameters, embedding dimension (m) and recurrence

threshold (𝛿, in the same units as the corresponding pressure oscillations), used for

constructing the RP are indicated in the figure captions. The chosen threshold results

in 1% recurrence rate [3].

The RP for noise emission during isothermal flow contains short line segments

of varying lengths as well as isolated points. The resulting characteristic patterns

have been marked in the corresponding time series as a, b, c, d and e. Along the

diagonal, region ‘a’ contains diagonally-aligned line segments, which indicate the

presence of periodic oscillations. Additionally, it can be seen that while entering and

exiting this periodic stretch, these segments converge and diverge with respect to the

diagonal. This could result from frequency modulation before and after a relatively

periodic window. The average separation between diagonal lines is about 12–13 ms

(i.e. 70–80 Hz). A high density of recurrence points is present in regions ‘b’ and ‘c’.

The lack of deterministic structures (line segments) indicates that these, and similar,

regions are dominated by noise and high frequency dynamics. Regions ‘d’ and ‘e’

are also noise dominated. In addition, however, the presence of strong, relatively
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slow modulations can be inferred from the large spacing between diagonally oriented

patterns.

Thus, the recurrence plot obtained for a duration of ∼1.25 s detailed the different

types of transient dynamics present in the pressure fluctuations. Periodic oscillations

due to flow-induced acoustics in the burner at its resonance frequencies appear inter-

mittently. This is most likely related to the unsteady nature of the inlet air flow and

turbulence. In the following, we will discuss the signature of combustion noise at

different equivalence ratios and compare the observations of individual cases with

each other, and to the isothermal flow.

Figure 17.3 presents the RPs for four different cases in the order of increasing

equivalence ratio. Corresponding spectra (see Ref. [26]) indicates that at 𝜙 = 0.9 and

Fig. 17.3 RPs for reacting cases at different equivalence ratios [26]. It can be noticed that each

plot clearly shows the contribution of periodic oscillations, noise and transitions between noise and

periodic behavior as well as between different periodic states. Regions with characteristic patterns

have been marked in the corresponding time traces. a Recurrence plot for 𝜙 = 0.9 (m = 5, 𝛿 = 0.1).

b Recurrence plot for 𝜙 = 1.1 (m = 5, 𝛿 = 0.15). c Recurrence plot for 𝜙 = 1.15 (m = 5, 𝛿 = 0.15).

d Recurrence plot for 𝜙 = 1.2 (m = 5, 𝛿 = 0.05)
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higher equivalence ratio cases, 𝜙 = 1.2 and higher, weak flame-acoustic coupling

is present. For intermediate values, the coupling is stronger. We also have identi-

fied that the flame undergoes intermittent shape transitions between V and M shape

(see Fig. 17.1 for flame shapes). With the help of RPs, more details of the coexistence

of periodic and noisy windows in combustion noise data are obtained. In addition,

transient behavior, such as intermittent flame shape transitions that are expected to

be accompanied by modifications in noise emission could also be clearly identified

as characteristic patterns in RPs.

At 𝜙 = 0.9, the presence of a minor periodic component is manifested in the

form of groups of short, diagonally-aligned line segments along the main diagonal

(Fig. 17.3a). Noise interrupts the weak flame-acoustic coupling and leads to bro-

ken diagonal line segments. Evidence of small frequency variations, similar to the

isothermal case, still exist (seen, for instance, in the regions ‘a’ and ‘b’ in Fig. 17.3a).

Compared to the isothermal (Fig. 17.2), this case contains a smaller count of regions

with high density recurrence points. This is a result of the impact of flame-acoustic

coupling at 67 Hz. At 𝜙 = 1.1, the periodic behavior is even more pronounced. This

feature is identified in the RP in the form of a higher density of relatively long,

equally-spaced, diagonal segments. The coupling is still unsteady and intermittent,

as indicated by the dominance of broken diagonal lines and isolated points. For 𝜙

= 1.15 (Fig. 17.3c), a V-M transition event is captured in the region demarcated

as ‘a’. While the plot contains the general features of the noise emission with a V

flame (Fig. 17.3a, b), in region ‘a’the flame assumes an M shape. This is due to the

attachment of the flame tips to the burner rim, assisted by vortical structures formed

due to flame-acoustic coupling, mentioned earlier. While the flame assumes an M

shape, noise emission features low amplitude noisy periodic (high-frequency) behav-

ior. This short change can clearly be identified in the RP.

Periodic events becomes less pronounced and high density recurrence regions

begin to emerge again as the equivalence ratio is increased further. This is observed

in the RP for 𝜙 = 1.2 (Fig. 17.3d). Frequency variation with time, which was present

in the isothermal case, can also be identified in this case within regions marked as

‘a’ ‘b’ and ‘c’ in Fig. 17.3d. The decrease in the periodic component observed in

the RPs is consistent with the frequency spectra results (not shown). At 𝜙 = 1.2,

the flame assumes an M shape and the flame-acoustic coupling is weak. The pat-

terns and features of the RP for this case bear similarity to those found in the RP

for the isothermal case. This similarity between the RPs of the isothermal case and

the high equivalence ratio case, 𝜙 = 1.2, indicates that the noise emission with the

M-flame configuration is largely due to flow induced noise. The most apparent differ-

ence between the two cases that can be identified is that the dark patches are relatively

larger in size for isothermal flow. This tells us that the duration of episodes of high

frequency noise are longer in the isothermal than in the reactive case. These dark

patches obtained in the RP (Fig. 17.3d) actually originate from high frequency fluc-

tuations that occur along the flame surface in the bluff-body-stabilized flame. The

high frequency generates the closely spaced diagonal lines, which appear as dark

patches when zoomed-out. These oscillations correspond to a frequency ∼385 Hz,
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which could be a higher acoustic mode of the burner or due to vortex shedding at

the bluff body, whose characteristic frequency is also close to this frequency.

To identify fluctuations in the flame that could be responsible for the acoustic

emission discussed above, Proper Orthogonal Decomposition (POD) of sequences

of instantaneous, line-of-sight flame images was performed. POD is a routine tech-

nique for extracting coherent oscillations from scalar and vector field data obtained

for turbulent flows and flames. Specifics of the implementation can be found in sev-

eral references, for instance in the detailed article by Berkooz et al. [28]. A short

description is as follows: Given a sequence of snapshots (instantaneous acquisition)

of a scalar or vector field, the POD routine is used to extract mutually-orthogonal

modes with the criteria that a linear combination of a given subset of the modes cap-

tures the maximum energy of the fluctuating field, which is possible using the num-

ber of modes in the subsets: If each snapshot is given by u(x, t), the time-dependent

field can be decomposed using POD as u(x, t) =
∑

i
ai(t)𝛷i(x), where ai(t) and 𝛷i(x)

are orthogonal temporal mode coefficients and the spatial mode shape respectively,

such that, when the modes are arranged in a decreasing order according to the fluctu-

ating energy content, mode 1 will represent the most dominant fluctuations, followed

by mode 2, and so on. With such decomposition, a spatially propagating fluctuation

will be captured by an orthogonal mode pair. For the results that follow, the sequence

of instantaneous flame images was fed to the POD routine and the resulting spa-

tial mode shapes, 𝛷i(x), have been discussed. The most energetic/dominant/relevant

modes have been discussed and have been referred to by their corresponding num-

bers, i.
For the discussion of the dominant/coherent flame fluctuations, we chose 𝜙 = 1.2,

as this case was found to contain the characteristic fluctuations and the advantage of

using RPs as a complementary analysis method emerges clearly. Dominant coherent

oscillations identified for 𝜙 = 1.2 are shown in Fig. 17.4. The first two mode pairs are

presented. The spectra of the corresponding mode coefficients, ai(t) (see Ref. [26]),

reveals that they correspond to low frequency (8 and 16 Hz respectively) vortical

oscillations convecting along the flame.

The point to be noted is that although these modes are the most dominant coherent

oscillations identified through POD, they do not contribute much to noise emissions.

In the corresponding recurrence plot, Fig. 17.3d, the visible deterministic patterns

correspond to a higher frequencies (identified as ∼70 Hz), which comes from the

weak thermoacoustic coupling of the flame with the burner. These are higher order

modes—specifically modes 5 and 6. While these low order modes might capture

most of the fluctuations of the flame, there are several other components that are

either intermittent, or low amplitude—hence, low in fluctuation energy—but still

contribute to the noise emission and its characteristics. For instance, the dark patches

in the RP Fig. 17.3d correspond to an even higher frequency (∼385 Hz). Coher-

ent flame oscillations corresponding to this frequency are seen in relatively higher

(less dominant) POD modes (modes 45–50), and are shown in Fig. 17.5. In fact, indi-

cation of such intermittent oscillations could also be seen in the instantaneous image

(Fig. 17.1, third frame). Owing to the asymmetric structure, these modes could be

related to vortex shedding at the bluff body.
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Fig. 17.4 The spatial structure (streamwise plane; see Fig. 17.1 for the burner schematic) of the

most dominant flame surface fluctuation mode pairs (𝜙 = 1.2), extracted via POD (red—positive,

blue—negative). Top modes 1, 2; bottom modes 3 and 4

Fig. 17.5 The streamwise spatial structure of the higher order POD mode pair (mode numbers

48 and 49) for the same conditions as in Fig. 17.4. The corresponding (high frequency) oscillatory

behavior was identified as dark patches in the RP (Fig. 17.3d). Oscillations corresponding to these

modes appear intermittently for short durations. Accordingly, neither spectral analysis nor POD

analysis could capture the significance of this mode

From the corresponding RP, Fig. 17.3d, it can clearly be seen that these modes are

short and intermittent. The modes are clearly relevant, but due to their nature, POD

and time series methods fail to identify their contribution. Hence, using POD, the

mode structures can be identified. Simultaneous analysis of the RP constructed from
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the time series of acoustic emission reveals which modes are relevant for combustion

noise—including those that appear only as short bursts.

Thus, we see that recurrence analysis can be advantageous for the investiga-

tion of acoustic emissions from the turbulent flame, which is a result of unsteady

heat release rate, hydrodynamically generated noise (shear layers, vortex generated

noise) and acoustics generated in the burner (flow-induced and/or due to flame-

acoustic coupling). Specific to the presented study, recurrence analysis has provided:

(a) a basis for characterizing combustion noise and comparing cases among each

other and to a reference case (the isothermal flow in this study) such that mode infor-

mation about the underlying physics is obtained, and (b) identifying features that are

hidden to conventional techniques.

17.2.2 RP Structures for Thermoacoustic Coupling
and a Precursor to Flame Blowout

In this section, we discuss a very specific application of recurrence plots: identi-

fying an apparently irregular dynamical state of combustion instability as type-II

intermittency [29]. Intermittency [30] has traditionally been identified via the statis-

tical features of the irregular “bursts” observed during intermittent dynamics. Due

to limitation of the data acquisition with respect to the time-scales of the bursts

(discussed in the following) that were observed in our system, this was not prac-

tical. Instead, following the report by Klimaszewska and Żebrowski [31], where the

intermittency types were associated with specific patterns in the recurrence plots,

we have been able to assign a type to the observed dynamical state of combustion

instability. As we will see later, this particular state was found to be associated with

repeated flame lift-off. Accordingly, the intermittent state also provides insights into

how, in a practical setting, flame blowout would be induced by thermoacoustic cou-

pling. The occurrence of the state thus provides an indication of an incipient flame

blowout event—a precursor to flame blowout.

Thermoacoustic coupling (and the resulting instability) is associated with dis-

crete acoustic modes of the combustor—unlike combustion noise, which leads to a

broadband spectrum. Thermoacoustic coupling is governed by a feedback coupling

between unsteady heat release rate from the flame and the acoustic field of the com-

bustor, conventionally represented by a second-order differential equation involving

a time-delay [32]: Fluctuations in the flame lead to acoustic oscillations, which dis-

turb the flame after being reflected from the boundaries of the combustor. The time-

delay involved is in the response of the flame to the perturbations. In addition to the

time-delay, the feedback coupling is also nonlinear; The non-linearity is associated

with the flame. In a practical system, the coupling also involves complex interactions

between combustion, hydrodynamics, and acoustics.

Previously, the nature of thermoacoustic system was understood to be associated

with Hopf (subcritical or supercritical) bifurcation and the resulting limit cycles.

However, recently it has been shown in several reports that the dynamics of thermoa-
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coustic coupling can be extremely complex including states such as quasi-periodicity

and chaos. That a thermoacoustic system exhibit routes to chaos has been shown

recently [15, 33]. We will show in the next section that the complexity in flame

dynamics is what supports such nonlinear behavior of thermoacoustic coupling.

Even in the case study that we will discuss here, secondary bifurcation of the

limit cycle leading to quasi-periodicity was observed. The quasi-periodic state then

undergoes a subsequent bifurcation to another state characterized by intermittent,

irregular bursts of oscillations.

17.2.2.1 Combustion Instability, Intermittency and Flame Blowout

The experiments were conducted on a simplified combustor configuration consist-

ing of a laminar conical premixed single flame inside a closed-open cylindrical glass

duct that acted as the combustion chamber [29]. Here, the control parameter for the

experimental bifurcation analysis that was varied was the location of the flame with

respect to the duct (see Fig. 17.6 for a schematic of the configuration). In this section,

the focus is to illustrate the importance of recurrence analysis to our investigation;

Only the intermittent oscillations that were observed and were found to be associ-

ated with the occurrence of flame blowout, are discussed in this part of the chapter.

Fig. 17.6 For quasi-periodic oscillations it is seen that diagonal line segments are separated by

unequal vertical spacings; a manifestation of irrationally related frequencies comprising the quasi-

periodic state. A four dimensional space was used to construct the recurrence plot, with a specified

recurrence threshold (𝛿) of 0.3 and 0.7 V for quasi-periodic oscillations. Figure reproduced from

Ref. [29], with permission from the Journal of Fluid Mechanics. A schematic outline of the exper-

imental setup is shown in the right frame
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Further details of the experiment and extended discussion on the analysis and results

can be found in [29, 34].

Limit cycle oscillations, which had appeared in the system as a result of subcrit-

ical Hopf bifurcation when the flame location was varied, underwent a secondary

Hopf bifurcation, leading to a quasi-periodic state. The recurrence plot for the corre-

sponding quasi-periodic oscillations is shown in Fig. 17.6. The presence of a second

frequency, which is incommensurate to the frequency of the former limit cycle, in the

quasi-periodic oscillations appears in the form of diagonally line segments separated

by unequal vertical (and horizontal for the symmetric RP) spacings [35]. The ther-

moacoustic coupling—the source of these oscillations—involves feedback between

acoustic fluctuations in the duct air column, and modulation of the flame surface

area. While, for the limit cycle, the flame featured periodic flame surface modula-

tions, the quasi-periodic state introduced new features: A sequence of instantaneous,

line-of-sight, high-speed flame images for an approximate cycle acquired during this

state are shown in Fig. 17.7. Flame surface area modulations during quasi-periodic

oscillations involve flame elongation (b), neck-formation (c), pinch-off (d, e), and

subsequent cusp formation (f), in addition to the overall modulation of the flame that

was present during limit cycle oscillations. Arrows and circles mark the evolution of

flame elongation and pinch-off events during the quasi-periodic oscillations.

The control parameter, the relative flame location, was varied further, and an

apparently random bursting behavior was observed where oscillatory behavior

repeatedly switched between large amplitude oscillations and relatively quiet states.

The oscillating flame was again simultaneously recorded and was observed to con-

stantly undergo a change in state from being attached to the burner tube, to leaving its

stabilization—lifting-off—and oscillating a short distance from the burner (shown

in Fig. 17.8). The sequence of instantaneous flame images is shown in Fig. 17.8. A

physical reasoning behind this could be that, as the control parameter was being

changed, the amplitude of quasi-periodic thermoacoustic oscillations was gradually

increasing. At one parameter value, the amplitude increased sufficiently for the flame

to loose stabilization. For this parameter, the flame constantly switched between a

relatively steady attached state and an oscillatory lifted state. The switch occurred

Fig. 17.7 Sequence of instantaneous flame images (framing rate, 5 kHz) at quasi-periodic oscil-

lations. a = 0ms, b = 2.6ms, c = 4ms, d = 4.2ms, e = 4.4ms, f = 4.6ms and g = 8ms. Figure

reproduced from Ref. [29], with permission from the Journal of Fluid Mechanics
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Fig. 17.8 Flame dynamics during intermittent oscillations are shown through instantaneous

images. Images are arranged in the order of their occurrence (left to right). Circles on the instanta-

neous images highlight the characteristic stretching, folding (i), and local extinction (j) in the flame

intermittently, and at irregular intervals. The flame continued to be involved in ther-

moacoustic coupling even while it was lifted. The lifted flame oscillates in the circu-

lar jet transition region, which is usually around 5 burner tube diameters downstream

from the burner exit plane. This indicates that jet flow dynamics could have a role

to play during the lifted state. The irregularity in the oscillations is also clearly dis-

cernible.

Fig. 17.9 Recurrence plot corresponding to intermittent oscillations (b). Embedding dimension

= 4, 𝜀 = 0.4 V. In (c), a closer look into the patterns comprising the recurrence plot is presented.

The end of laminar phases correspond to elongated structures, whose kite-like appearance indi-

cates type-II intermittency [31]. Acoustic pressure amplitude in the time series (a) corresponding

to recurrence plots is in Volts. Figure reproduced from Ref. [29], with permission from the Journal

of Fluid Mechanics
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This state appeared as a bifurcation of the quasi-periodic oscillations. It is of inter-

est to identify whether the observed new state corresponds to a particular dynamical

state; Intermittency [30], emerges as a possible candidate. More specifically, type-

II intermittency, owing to the nature of the preceding bifurcations, could explain

the observed change in behavior. Its presence however, is identified, in terms of

the statistical characteristics of the observed bursts and the laminar state. The data,

however, was not sufficient for statistical tests. Instead, we tested for the presence

of type-II intermittency through the identification of features in the corresponding

RP: We found that in our case the structure associated with the laminar state of the

burst has resemblance with the kite-like structure previously identified for type-II

intermittency [31]. This is illustrated in the RP in Fig. 17.9c. A closer look into the

structure of the RP is given in Fig. 17.10. It is seen that before the burst, transition

occurs from limit cycle behavior to quasi-periodic patterns—a trend similar to the

bifurcation scenario. Transition between the burner-attached and the lifted states of

Fig. 17.10 Recurrence behavior of the system prior to a burst (top-left frame). The evolution of

the system entering a burst state is analyzed by following the main diagonal. Windows a–c as

marked indicate the transition of the system from limit cycle to quasi-periodic oscillations before

the occurrence of a burst. Figure reproduced from Ref. [29], with permission from the Journal of

Fluid Mechanics
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the flame appears simultaneously. Further change in the control parameter results in

an increased rate of burst occurrence and accordingly, reduced duration of laminar

states—typical features of intermittency [30].

This identification of a known type of intermittency in the dynamics of thermoa-

coustic instability is an important result for at least three reasons: (a) the finding leads

to the argument that the fundamental (nonlinear) interaction mechanisms behind the

phenomenon are not unique to the system, but share significant features with other

naturally-occurring and model nonlinear systems, (b) the dynamical state is related

to, and could be considered a precursor to the extreme event of flame blowout in

practical systems (i.e. the dynamical state could be used as a warning), and (c) the

result demonstrates a previously unknown fact about thermoacoustic coupling.

In a recent analysis of a practical combustor configuration [36], the presence of

type-II intermittency was identified for a various sets of operating conditions. The

identification was again based on RP characterization. Intermittency in this case was

proposed to be associated with the presence of multiple modes of combustion and

multiple flames in the combustor.

The reason we were able to identify bifurcations and connect the intermittent

oscillations to blowout is because the configuration we have studied does not include

the noise and complexity of a practical system such as gas turbine combustor. Thus,

it has been easier to obtain the dynamical state of intermittency and relate the same to

flame-blowout. If the same investigation was to be performed on a more realistic con-

figuration, in the early stages in the bifurcation scenario, where the burst frequency

is low, flame destabilization would have caused complete flame extinction.

17.2.2.2 Flame Flashback

Flashback of a premixed flame is the unwanted upstream propagation of the reactive

front. As a result, the flame moves into the premixing section of the burner. Once

in the premixing section, the flame can become anchored, for example, in the wake

of the fuel injection jets. Sustained combustion in the premixing section is undesir-

able because it results in increased NOx emissions and can also severely damage the

burner [38]. Hence, it is important to ensure flashback does not occur. Ideally, this

is easy to achieve as long as the combustor operation is limited to “safe” regimes.

However, deviations from the prescribed operating range can practically occur. In

addition, the current and foreseeable development trends in combustor technology

for improved emissions and efficiency demand the prescribed operating regime to be

expanded in the direction where the system is more prone to flashback. Thus, there

has been a strong motivation to understand, detect, and control the issue of flashback.

We have progressed only so far as to propose potential mechanisms for flashback to

occur. However, flame flashback in turbulent flows involves complicated, nonlin-

ear physical and chemical processes including aerodynamics and turbulence, chem-

ical kinetics and unsteady transport of heat and mass. It is one of the most complex

combustion dynamics problems and is yet to be sufficiently understood. In addition,

flashback is a single transient event with a time span of a fraction of a second.
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Flashback, like other phenomenon discussed above has been traditionally dealt

with using time series and spectral analysis techniques. As expected, the short tem-

poral span of the transitional period, most conventional methods, including spectral

techniques, become inaccurate in analyzing the system. More importantly, such tech-

niques are inherently incapable of detecting subtle features associated with the onset

of flashback.

Motivated by the success of recurrence analysis in analyzing complex data [39],

we have—with significant success—investigated time series associated with flash-

back. Through the implementation of recurrence plots and recurrence quantification

analysis, we have found that prior to the actual flashback event, precursors can be

detected. A part of our work in this direction is presented in this section.

For this study, a more generic combustor configuration [21, 37] involving a pre-

mixed turbulent flame is employed. Figure 17.11 shows a typical time series acquired

during the flashback tests. The flashback event can be identified by the jump in the

amplitude. Flashback, in the investigated configuration, occurs while the combustor

is thermoacoustically unstable; It is likely that the instability has a contribution in

inducing flame flashback. We would like to find out whether the onset of flashback

can be identified prior to the observed jump in the amplitude. Also shown in the

figure are zoomed-in views (b and c in Fig. 17.11) of the time series at two instants:

one far away from the event and the other close to it.

Results of the recurrence quantification analysis (RQA) of the time series are

presented in Fig. 17.12. The results have been obtained by sliding a 0.25 s window

along the time series and calculating RQA measures for each window. The standard

deviation is plotted for comparison. We find that the RQA measures of acoustic

pressure oscillations start showing signs of change before the flashback event. In

Fig. 17.11 a A typical acoustic signature observed during the combustion induced flame flashback

event. b, c Zoomed-in views indicating a change in behavior prior to flashback
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Fig. 17.12 RQA measures

obtained with a sliding

window of 0.25 s, for the

time series in Fig. 17.11.

Precursors/variation in the

general trend of the measures

are indicated by arrows

particular, the determinism and the recurrence rate start increasing gradually from

the moment indicated by the arrows. The system is already under a rather deter-

ministic state due to thermoacoustic instability, as indicated by the high value of

determinism. RQA indicates that as flashback is approached, the determinism and—

consequently—the recurrence rate increases. This result also supports the hypothesis

that flashback in the studied configuration is induced by thermoacoustic coupling. It

is not clear whether the jumps in the divergence measure are associated with dynam-

ical changes in the system related to its proximity to flashback.

Thus, we find that recurrence analysis measures can be used to obtain additional

information about system dynamics compared to conventional time series analy-

sis methods. In specific, we find qualitative changes in the determinism of system

dynamics, divergence of trajectories and the recurrence rate prior to flashback. In

conclusion, our work illustrates that nonlinear methods, such as the RQA, can effec-

tively identify the onset of extreme events such as flashback in combustion sys-

tems. This study was specific to the case of thermoacoustically-induced flashback.

It remains to be seen if such results can be obtained for other cases, when thermoa-

coustic coupling is absent.

17.3 Conclusions

In this chapter we have discussed recent results dealing with the incorporation of

recurrence plots and quantification analysis for select, outstanding issues in the inves-

tigation of combustion dynamics. Specifically, we evaluate the additional insights

obtained by using recurrence methodologies in the process of (a) turbulent combus-

tion noise; (b) thermoacoustic coupling and induced blowout; and (c) flame flash-

back. For combustion noise, recurrence plots provide a novel tool for characterizing
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the signature of combustion noise, which consists of deterministic dynamics with

multiple scales as well as non-deterministic dynamics, and comparing noise emis-

sion from different cases. Through recurrence analysis we could identify a specific,

apparently irregular dynamical state of thermoacoustic coupling as type-II intermit-

tency. The most promising application of recurrence analysis appears to be in the

detection and characterization of transient events such as flashback and blowout—

combustion phenomena where conventional methods are disadvantaged. In the flash-

back case investigated, recurrence quantification analysis is able to detect the onset of

flashback in advance. Such analysis involving nonlinear time series techniques, in

particular recurrence analysis, is new in the field and results indicate that its incor-

poration can enable a better description of combustion dynamics. In general, research

on combustion dynamics will benefit significantly by following further developments

in such nonlinear analysis techniques.
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Chapter 18
Recurrence Analysis of Turbulent
Fluctuations in Magnetically Confined
Plasmas

R.L. Viana, Dennis L. Toufen, Z.O. Guimarães-Filho, I.L. Caldas,
K.W. Gentle and I.C. Nascimento

Abstract Recurrence plots and their quantification became a modern tool in nonlin-

ear data analysis, currently being used in a myriad of scientific disciplines, a diversity

that characterizes the Recurrence Plot Workshop since its beginning. In this work

we review some applications of recurrence quantification analysis to data analy-

sis in a fusion plasma, namely turbulent fluctuations in the plasma edge of Toka-

mak Chauffage Alfvén Brésilien tokamak, which is a magnetic confinement plasma

machine. A similar analysis was performed in a low-density plasma device called

Texas Helimak (University of Texas at Austin). Our results point out that the deter-

ministic content of the fluctuations tends to increase as we approach the plasma edge,

indicating a concentration of the recurrences therein. This favours the use of fluid

models to describe the physics of the plasma edge turbulence.
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18.1 Introduction

Recurrence plots are an extremely useful tool in nonlinear data analysis, particularly

when the data series are short, noisy and even non-stationary, a very typical situation

in realistic applications [1–3]. One promising field of study where recurrence plots

are potentially advantageous is the analysis of fusion plasmas such those generated

by tokamaks [4]. These advantages come from the complex nature of experimen-

tal signals from magnetically confined high-temperature plasmas, where we have

a mixture of deterministic and stochastic features, and which can be sorted out by

recurrence-based methods, unlike linear methods like Fourier analysis. Recurrence

plots and recurrence quantification analysis have been applied to a wealth of prob-

lems involving technological low-temperature plasmas [5–7], space and geophysical

plasmas [8] and fusion high-temperature plasmas [9–12].

Tokamaks are toroidal schemes of magnetic confinement of high-temperature

plasmas, and it is thought to be the basis of a future thermonuclear fusion reactor,

as in large-scale projects like the ITER (International Thermonuclear Experimental

Reactor), currently being built in France by an international consortium [13]. ITER,

which is to be completed in the next decade, will be the largest tokamak in the world,

expected to generate 500 MW of power, ten times more than the power used to gen-

erate and confine the plasma in which the fusion reactions take place [14].

Once a plasma column is generated in a tokamak, one wants to confine it for a

sufficiently large time, and for this to happen it is necessary that cross-field transport

of particles and energy be controlled [15]. A major goal in the study of magnetically

confined fusion plasmas has been to understand the causes and associated rates of

anomalously large cross-field transport, which is thought to be caused by plasma

turbulence [16]. One experimental signature of plasma turbulence in the plasma edge

of a tokamak is the fluctuating behavior of the electrostatic floating potential, which

often displays a broad fluctuation spectrum [17].

The deterministic content of the electrostatic fluctuations in the plasma edge has

been assigned to physical mechanisms governed by nonlinear systems, like the inter-

action between drift waves which appear due to the steep density gradients in the

plasma edge region of a tokamak [17, 18]. These drift wave interactions are known

to depend critically on the radial position such that the electrostatic turbulent fluctu-

ations should also exhibit some radial dependence.

However, the radial variation of the dynamical properties of the plasma turbulence

may not be immediately apparent from the experimental data obtained in tokamaks.

We used recurrence plots as a tool to quantify the recurrence properties of such series

to provide a precise diagnostic of the dynamical properties of the system and other

related measures of recurrence quantification analysis and their dependence on the

radial position near the plasma edge [4, 19]. It turned out that this radial depen-

dence, formerly elusive in conventional analysis using, e.g. spectral methods, is best

observed using recurrence-based techniques.
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We also have used recurrence-based techniques to investigate the effect of high

MHD activity in the electrostatic fluctuations in TCABR. The MHD activity

increases at different instants of time during the discharge, and reaches high ampli-

tudes with a narrow wave-number spectrum and a well-defined peak on the Mirnov

frequency [20].

This chapter is organized as follows: In Sect. 18.2 we present the experimental set-

ting and the kind of floating potential fluctuation data considered in our recurrence-

based analyses. Section 18.3 presents results for recurrence-based diagnostics of

potential fluctuations in different positions of the plasma column. Section 18.4 con-

siders the effect of bias voltage on the recurrence-based diagnostics. The last section

is devoted to our conclusions.

18.2 Electrostatic Potential Fluctuations

The experiments were performed in a hydrogen circular plasma in the Brazilian

tokamak TCABR operating at the Institute of Physics of University of Sao Paulo

(Fig. 18.1a), whose main parameters are listed in Table 18.1 [21]. Langmuir probes

Fig. 18.1 a Picture of the TCABR tokamak. b Top view of the toroidal chamber and the Langmuir

probes used to measure fluctuations of the floating electrostatic potential at the plasma edge. c Cross

section of the toroidal chamber. d Plasma density radial profile
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Table 18.1 Basic parameters of the TCABR tokamak

Major radius (R) 61 cm

Minor radius (a) 18 cm

Maximum plasma current ((Ip)max) 100 kA

Plasma duration (𝜏p) 100 m

Hydrogen filling pressure (p0) 3 × 10−4 Pa

Toroidal magnetic field (B
𝜙0) 1.1 T
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Fig. 18.2 Time evolution of the a plasma current, b plasma density, and c floating potential for a

discharge of TCABR tokamak

were used to measure the floating potential whose fluctuations are mainly due to

the the fluctuations of the plasma electrostatic potential (Fig. 18.1b) [22, 23]. The

probes are mounted on a movable shaft that can be displaced radially with respect to

the center of the plasma column, so as to cover both the plasma edge and the so-called

scrape-off layer, the latter comprising part of the vacuum layer existent between the

plasma column and the vessel wall (Fig. 18.1c, a and R stand for the minor and major

radius of the vessel, respectively, see Table 18.1). The probe displacement, however,

occurs only for separate discharges [4, 19]. The plasma density in the region sur-

rounding the plasma edge is shown in Fig. 18.1d, showing a significative reduction

as we go outwards to the scrape-off layer.

Figure 18.2 shows the time evolution of a typical tokamak plasma discharge in

TCABR. The plasma current (Fig. 18.2a) grows rapidly in the first dozen of mil-

liseconds and reaches a plateau where the current stays at a nearly constant level,

decaying slowly during the second half until the end of the discharge. The plasma

density evolution, indicated by Fig. 18.2b, exhibits a similar evolution. The time
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average power spectra

signals we are particularly interested to study are for the floating electrostatic poten-

tial, a representative example being depicted by Fig. 18.2c, which shows highly irreg-

ular fluctuations.

The nature of the electrostatic potential fluctuation is dependent on the radial

location where the probe is placed, as shown by Fig. 18.3, where two milliseconds

of the time window in the plasma current plateau have been selected. Figure 18.3

also shows the corresponding power spectra in each 1m (light lines) and the average

power spectra in a 10m window. Within the plasma column (Fig. 18.3a) the potential

fluctuations present a −50 to +50 V range. As we move to the edge of the plasma

column (Fig. 18.3b) the amplitude of such fluctuations increases by a factor of four,

indicating that the fluctuation level augments as we approach the plasma radius. Out-

side the plasma column (but inside the scrape-off layer of vacuum magnetic field)

(Fig. 18.3c) the floating potential amplitude range decreases to an in-between level.

Hence the turbulent fluctuations become weaker as we move both outside and inside

the plasma edge. This increase of amplitude at the plasma edge has been observed

in other Tokamaks [24].

The radial dependence of the electrostatic fluctuations level at the vicinity of the

plasma radius is a signature of the role played by radial density gradients in the

generation of drift waves, which is the essential cause of turbulence in the plasma
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edge [18]. In fact, the presence of steep density gradients in the plasma edge can give

rise to fully developed wave turbulence, which is considered a likely candidate for

explaining anomalous transport observed in experiments [25].

However, characterizing turbulence in order to quantify its level and radial depen-

dence is a difficult task, what can be illustrated by Fig. 18.3, where we also show the

power spectra of the potential fluctuations measured at three radial positions just ana-

lyzed [23, 26]. All of them are broadband, which is already expected from the chaotic

behavior related to turbulence but, apart from some unessential rippling, those spec-

tra do not show a distinguish feature which could be used to quantify the fluctuation

level and specific different dynamical regimes [27, 28].

18.3 Recurrence-Based Analysis of Turbulent Fluctuations

It turns out that recurrence quantification analysis can help us to characterize the

fluctuation level observed in tokamak experiments, especially because it does not

impose stationarity nor long series length as necessary conditions, and can also work

satisfactorily with moderate noise levels in data acquisition system. Basically the

major source of noise is thought to be the due to wave turbulence. Moreover, it also

yields reliable estimates of the Shannon entropy and can also indicate the amount of

determinism in a given time series, what gives us an idea of the noise level added to

the chaotic signal [29].

The recurrence plots for the first five hundred points (corresponding to half a mil-

lisecond interval) of the time series previously considered are depicted in Fig. 18.4.

We choose the embedding dimension as four and the time delay was selected

by considering the first local minimum of the autocorrelation function. We can
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Fig. 18.4 Recurrence plots for the time series of the floating potential for radial positions a Radial

position 17 cm; b Radial position 18 cm; and c Radial position 21 cm
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recognize the changes in the turbulent behavior at the plasma radius by comparing

the diagonal and vertical structures of the time series at the plasma edge (middle of

Fig. 18.4) with the scattered nature of the recurrence plots depicted in left and right

of Fig. 18.4, which suggest a pronounced stochastic effect, probably related to noise

and/or other mechanisms not accounted for in a deterministic theory.

From the recurrence plots of the time series of the floating potential for different

positions we have computed a number of recurrence-based diagnostics. One of them

is the determinism (DET) of the signal. By sliding the time window used to compute

this quantity in each radial position we obtain a statistical distribution of values of

DET. In Fig. 18.5 we plot histograms which stand for numerical approximations of

the probability distribution function of the values of DET for different radial posi-

tions, from 17 to 21 cm. This range was chosen not just because it is accessible for

measurements but also because it is one relevant region for cross flow transport. We

clearly see that the average value of DET increases as we approach the edge of the

plasma column, but decrease afterwards, with a nearly constant dispersion.

In Fig. 18.6a we plot the radial profile of DET from these average values. The

line joining those points is a polynomial fit just to guide the eye, i.e. it is not

intended to give a radial profile DET (r) but rather a trend: the degree of determinism

increases significantly as we approach the plasma radius, and decreases afterwards.

By sliding the time window used to compute this quantity in each radial position we

obtain a statistical distribution of values of DET in each 1m (1000 points, without

Fig. 18.5 Numerical

approximations of the

probability distribution

function of the determinism

for floating potential

fluctuations measured at

different radial positions
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superposition). This suggests a clear modification on the dynamical properties of the

plasma floating potential fluctuations in the analyzed region. The same trend is exhib-

ited by other recurrence-based diagnostics like the Laminarity LAM (Fig. 18.6b),

entropy of the diagonal line lengths (Fig. 18.6c), and trapping time (Fig. 18.6d).

These results reinforce our conclusion that the dynamical properties of the turbu-

lent fluctuations changes substantially in this region, with the simultaneous peak of

the DET, LAM and TT indicating that the recurrences are most concentrated around

the plasma edge than elsewhere.

18.4 Effects of a Bias Radial Electric Field

The investigation we just reported was the first work about recurrence plots in fusion

plasmas and one of the first on plasmas in general [4]. We have, since then, contin-

ued our pursuit of applying recurrence-based techniques to characterize a wealth of

dynamical phenomena related with turbulent plasma fluctuations. In order to control

plasma turbulence, external electric potentials have been applied, in several devices,
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to change the electric field profile. This turbulence reduction decreases the particle

loss at the plasma edge and, consequently, improves plasma confinement [14, 26]. In

a recent paper [19] we applied recurrence quantification analysis to the electrostatic

fluctuations at the edge of the plasma in TCABR tokamak with and without the appli-

cation of a radial electric bias in order to control the turbulence and improve plasma

confinement. The latter is a form of creating internal transport barriers in the plasma

so as to decrease the radial transport. Hence the quality of plasma confinement is

expected to improve through this procedure.

In order to keep the recurrence plots comparable among signals with very differ-

ent standard deviations, we fixed the recurrence rate. In other words, we consider

two points as being recurrent or not depending on the overall recurrence rate of the

series be equal to some given value. Hence, if most points are so close that they

would be considered recurrent if a fixed threshold be given, then with a fixed recur-

rence rate they will be recurrent only if their contribution falls into that percent-

age. We observed substantial changes in the turbulent behavior at the plasma edge

by comparing the diagonal and vertical structures of Fig. 18.7a—obtained without

biasing—with the recurrence plot with biasing depicted in Fig. 18.7b. Such compar-

ison suggests a reduction in the deterministic effect, probably related to the existence

of a lower number of large-scale structures due to biasing.

In Fig. 18.8 we show the radial profile of the determinism (from potential fluc-

tuations time series) with and without electric bias. The recurrence rate was kept at

1, 2.5 and 10 % in Fig. 18.8a–c, respectively. The overall trends are the same for the

three cases here considered, apart from presenting higher values of DET as the recur-

rence rate is larger, as expected from the higher density of recurrent points. The radial
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profile of determinism shows an increase as we approach the plasma radius with a

maximum value just after that location already, as we shown in the previous Section.

With biasing, however, the radial profile of determinism suffers a radical change,

since it decreases the most where it is more intense, namely at the vicinity of plasma

edge, an effect possibly caused by the breakup of vertical and horizontal large-scale

structures in that region. This structure reduction decreases the particle transport, so

improving plasma confinement. Moreover, this alteration in the recurrence properties

occurs over a wide radial interval, indicating that a broad region is modified due to the

biasing. The results are qualitatively similar as recurrence rate has been varied, what

suggests that our results are not artifacts of a too small or too large threshold radius.

Hence, as a general trend, the determinism decreases after biasing. We speculate

that this is due to the destruction of highly recurrent regions within the plasma that

enhance particle and heat transport.

Another experimental investigation of the effects of external biasing on turbu-

lence was performed in the Texas Helimak, a plasma toroidal device located at the

University of Texas at Austin [30]. It has a vacuum vessel with rectangular cross

section of external radius 1.6m, internal radius 0.6m and height 2.0m (Fig. 18.9a).

In this machine the combination between the toroidal and a small vertical field cre-

ates a helical magnetic field with curvature and shear, with magnetic field lines

with long (circa 40m) connection lengths (in such a way that end effects can be

neglected). One of the goals of this machine is to investigate plasma edge turbulence,

with a diagnostic system of more than 700 Langmuir probes mounted at four sets of

bias plates, where a bias electric field can be applied (Fig. 18.9b) [30]. For nega-

tive biasing, turbulence control has been investigated and states of greatly reduced

turbulence have been achieved [17]. On the other hand, for positive biasing turbu-

lence shows enhanced broadband spectran and non-gaussian probability distribution

functions (PDF) with extreme events associated to bursts [17].
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Fig. 18.9 a Picture of the Texas Helimak. b Langmuir probe distribution on the top plates
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Fig. 18.10 Recurrence plots for plasma turbulence data from Texas Helimak discharges with volt-

age bias a +20 V, b zero, and c −25V

In Fig. 18.10, we present the recurrence plots obtained from the measured fluc-

tuation data for short time intervals (of 4m, corresponding to 2.000 points) with

and without bias [31]. We see that for negative bias the size of the recurrence struc-

tures in the RPs is bigger than for positive bias. Hence the regularity is lower at

positive bias than at negative one, which can be interpreted as an increase of the tur-

bulence. Moreover the determinism of the corresponding time series increases from

0.61 (Fig. 18.10a), for a bias +20–0.85 V (Fig. 18.10c), for a bias −25 V). Hence the

value of determinism decreases as we go from negative to positive bias. These results

confirm those previously obtained from TCABR discharges in Brazil [19].
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18.5 Conclusions

The dynamical characterization of plasma turbulence is one of the outstanding the-

oretical and experimental problems in modern fusion plasma physics, specially tak-

ing into account the current large-scale projects for fusion tokamaks like ITER. It

is thought that at least part of the turbulent phenomena are related to deterministic

mechanisms, such as the existence of fluid wave turbulence [32]. On the other hand

there must be a variety of other factors that influence turbulent data, mostly from a

stochastic nature and hence only amenable to statistical analysis.

We have used recurrence plots as a major tool on analysing turbulent fluctuation

data so as to give a precise indication about the dynamical properties of them, in

order to understand how long we can advance using theoretical models to charac-

terize plasma edge turbulence in tokamaks. In this article we review past work on

this direction using data from the Brazilian tokamak TCABR [4, 19] and the Texas

Helimak [31].

Our results show that the recurrence-based diagnostics like determinism, lam-

inarity, entropy and trapping time increase as we approach the plasma edge. This

suggests that the concentration of the recurrences is higher at the plasma edge than

in its neighbourhood, where the stochastic content is comparatively higher. From the

theoretical point of view this means that fluid models like, for example, drift-wave

or interchange turbulence, are expected to explain better the features at the plasma

edge than elsewhere.

Mier et al. [9] also made a recurrence quantification analysis of fluctuating poten-

tial data (of the TJ-II stellarator), with focus on the radial dependence of the deter-

minism and other recurrence-based diagnostics, in a way similar to our analysis.

Their results indicate that the deterministic content of the fluctuations increase as we

approach the plasma edge, confirming our findings. Moreover, they show an inter-

esting increase of the determinism with the magnetic shear, a feature which we did

not consider up to now.

We have performed recurrence-based investigations on the application of a bias

electric field in the radial direction. We show that biasing is responsible to the con-

centration of the recurrences in most of the radial positions considered. Indeed, in

the Texas Helimak we found that the determinism actually increases as we go from

a positive to a negative bias.

In retrospect we see a wealth of potential applications for recurrence-based diag-

nostics in plasma physics, since the physical setting involved in plasma phenomena

are so complex that it is quite often the case in which the experimental data have

both deterministic and stochastic contents.
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Chapter 19
Recurrence Quantification Analysis
as an Approach for Ultrasonic Testing
of Porous Carbon Fibre Reinforced
Polymers

Carsten Brandt

Abstract A first investigation of Recurrence Quantification Analysis (RQA) for
the assessment of porosity in ultrasonic testing of Carbon Fibre Reinforced Poly-
mers (CFRP) is presented. The standard method for detecting porosity with
Non-Destructive Testing (NDT) using ultrasonic pulse-echo inspection is the
evaluation of the back-wall echo (BWE) from the side opposite to the ultrasonic
probe. The work presented aims at determining a BWE-equivalent out of the
ultrasonic intermediate echoes from the inner of the part if a BWE cannot be
evaluated, as for e.g. CFRP sandwich structures. Ultrasonic measurements on three
CFRP samples with artificial porosity were performed. A delay embedding to
reconstruct the state space for the intermediate echo time series and a subsequent
creation of Recurrence Plots are carried out. The features Recurrence Rate RR and
determinism DET are calculated with Euclidean and angular distance as metric.
RQA parameters are largely varied and the results are evaluated on best correlations
of RR and DET , respectively, with the BWE. The feature DET presents an
appropriate BWE-equivalent. When using Euclidean distance, higher values of
determinism are obtained for higher porosity, based on reduced amplitude due to
additional reflections not going back to the ultrasonic transducer. This effect can be
obtained with simpler evaluation (Quartile Coefficient of Dispersion), too, with a
correlation similar to RQA. For angular distance, determinism decreases with
higher porosity based on the randomness introduced by the pores. This first step of
ongoing research will be followed by investigations on CFRP samples of other
material and with “natural” porosity.
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19.1 Motivation

Carbon Fibre Reinforced Polymers (CFRP) play an increasing role in aeronautic
industry due to their high ratio of mechanical strength to weight. Their potential for
saving of weight and, thus, fuel burn and costs has led to an increasing usage in
aircrafts, for example from 25 % in the Airbus A380 to 53 % in the Airbus
A350XWB [1]. 100 % Non-Destructive Testing (NDT) of produced CFRP laminates
is standard for material used for example in structural components of Airbus air-
crafts, generally performed using ultrasonic testing in pulse-echo mode [2]. Defects
like delaminations (a material separation) or porosity have to be detected [3].
Porosity is evaluated via the height of the so-called back-wall echo (BWE), the
reflection of the ultrasonic wave at the opposite side of the part. However, there are
special situations as complex geometries, bonded components or sandwich struc-
tures (consisting of a honeycomb core between two CFRP laminates), in which this
analysis is not possible, cf. [ 2, 4] and Sect. 19.2. Parts have to be designed as if
porosity were present. It is therefore beneficial to create an evaluation method
without needing the back-wall echo, solely using the echoes out of the inside of the
part to be inspected (intermediate echoes) to create a “back-wall echo equivalent”
(BWE-equivalent). The aim of this chapter is to present first work on exploring the
use of Recurrence Quantification Analysis (RQA) to provide a BWE-equivalent.

The use of state space methods and RQA has been reported for the evaluation of
ultrasonic waves with the use of guided as well as diffuse ultrasonic waves for
Structural Health Monitoring with permanently installed sensors [5–7]. Cacciola
et al. [8] report about usage of Recurrence Plots for the NDT method eddy current
inspection on steel samples. An interesting work is presented in [9]. Signals from
ultrasonic pulse-echo testing of cement pastes are evaluated using state space based
prediction features and RQA to assess the porosity content. The authors assume that
porosity has a stochastic influence and thus decreases the determinism in the system.

For this chapter, two hypotheses are followed for the data analysis:

(1) Pores will lead to a perturbation of the otherwise almost periodic (decaying)
signal from the layered structure of the material.

(2) Reflections at the pores will also lead to changes of signal amplitudes, hence
comparing the time-localised energy of the signal between porous and
non-porous structures will reveal a change of energy.

See Sect. 19.3.3 for further discussion.
Up to the author’s knowledge, RQA has neither been used before for the

ultrasonic pulse-echo inspection of CFRP nor for the evaluation of porosity in
CFRP. Other approaches to generate information about porosity out of ultrasonic
intermediate echoes are presented in [4, 10], based on linear approaches.

This chapter contains an initial assessment of the ability of the two basic RQA
features Recurrence Rate and determinism to provide a back-wall echo equivalent
for the evaluation of porosity, and presents a first step of ongoing research.
Euclidean and as recently proposed angular distance are evaluated as metric for the
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Recurrence Plots. Results are processed from measurements of three CFRP samples
containing artificial porosity.

The remainder of this chapter is organised as follows:

• Section 19.2 contains some background to CFRP and ultrasonic pulse-echo
inspection,

• the theory of state space reconstruction and Recurrence Quantification Analysis
and the underlying hypotheses for the presented application are outlined in Sect.
19.3,

• Section 19.4 describes the measurements and
• the outcome of evaluations is shown in Sect. 19.5.

Some theoretical considerations are compiled in the appendix after conclusion
and outlook in Sect. 19.6.

19.2 CFRP and Ultrasonic Inspection

CFRP is a composite material consisting of a resin matrix with reinforcing carbon
fibres. One method of production is the build-up of laminates by placing of resin
pre-impregnated layers of carbon fibres (‘prepregs’) in a mould on top of each
other. The prepregs consist either of unidirectional material (tape) or of fabric
material containing fibres in several directions. They are then cured under pressure
and temperature in an autoclave to form a laminate. The “[…] cure parameters […]
affect laminate porosity”, being “[…] trapped pockets [or bubbles] of air, gas, or
vaccum […] [11]”. For reference to CFRP and its production, see also [12].

Different CFRP-parts can be joined using the co-bonding procedure, where pre-
pregs are placed on a cured (‘hard’) part to form a second (‘wet’) part, and the joining
of the hard and wet partner is done in one autoclave cycle together with the curing of
the second part. For a more detailed explanation see [11], and refer to the same
reference for information about CFRP sandwich structures mentioned in Sect. 19.1.

Ultrasonic testing in pulse-echo mode involves one transducer (also called
probe) sending an ultrasonic pulse wave into the part under inspection and receiving
the response of the part, the reflected echoes. The transducer can be directly coupled
to the part’s surface with water as a coupling medium (contact technique) or both
transducer and part are in a water tank (immersion technique). At boundaries
between materials that differ in the product of density and ultrasound velocity, the
acoustic impedance [13], part of the wave is transmitted and part of the wave is
reflected [14]. The highest reflections occur at the interface between water and
surface (surface echo), at the back-side of the part (back-wall echo) and, if present,
at material imperfections like delaminations. Furthermore, in the case of CFRP
inspection, many internal reflections occur due to the layered laminate build-up and
due to the inhomogeneity of the (composite) material.

The received echoes are converted to voltage in the transducer due to the direct
piezoelectric effect [15]. These can be shown against time as a so-called amplitude

19 Recurrence Quantification Analysis … 357



scan or A-scan [15] on a screen, similar to an oscilloscope. Figure 19.1 shows one
example of an A-scan out of measurements performed for the present work.

A calibration has to be performed to determine the correct gain (amplification) of
the ultrasonic device before carrying out an inspection; a common approach is to
have a constant BWE of 80 % screen height. For the present investigation, the gain
was chosen such as to have the complete surface echo recorded with signal height
less than 100 % (on the very left of the A-scan in Fig. 19.1), thus leading to a
back-wall echo much lower than usual for serial inspection. The large difference
between BWE and surface echo is due to the many internal reflections in the layered
CFRP material, which cause a higher attenuation of the signal after a greater time of
flight (i.e. in greater depth).

Nowadays, ultrasonic inspections are often carried out using phased array
technology [3], as utilised for the present investigations, too. Phased array ultra-
sonic probes consist of several (e.g. 64 or 128) elements, which can be individually
electronically controlled. This enables for example an electronic scanning, where a
certain number of elements (the aperture), e.g. element 1–8, is fired simultaneously,
then element 2–9, then element 3–10 and so on.

In automatic inspection, a part is scanned and a lot of A-scan data is generated.
A common way to display such results is the so-called C-scan [14]. Here, one
characteristic variable per A-scan is shown, such as the height or depth (where the
time scale is converted into depth by knowing the ultrasonic velocity) of a defined
echo, with different shades of grey or in different colors. The defined echo can be
for example the back-wall echo.

Evaluation of industrial ultrasonic inspection uses often the appearance, height
and depth of direct echoes [16], for example occurring from large defects like
delaminations. For porosity a different way has to be gone. The pores do not cause
significant direct echoes, which could be evaluated. They reflect only very small
echoes back to the ultrasonic probe or they reflect the ultrasound in other directions
than that of the probe, due to the geometrical appearance of the pores. That is why
the back-wall echo is evaluated in addition to direct echoes. The ultrasonic energy
of the reflections from the pores, however not significantly visible in an A-scan, is
lost in the portion of the ultrasonic wave travelling to the opposite side of the part,
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Fig. 19.1 Example of A-scan
out of measurements of
sample CG070M15
(cf. Sect. 19.4)
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the back-wall. The back-wall echo decreases. At Airbus, a reduction of the BWE of
6 dB, 12 dB or 18 dB, respectively, is considered critical [2].

As mentioned in Sect. 19.1, this standard way to evaluate CFRP on porosity
when inspected with ultrasonic testing via the back-wall echo fails in several special
situations:

• For complex geometries like wedge or curved parts, the opposite surface of the
part deviates significantly from being parallel to the upper side. Such deviations,
starting from a few to several degrees, cause the ultrasound to be not any more
directly reflected to the ultrasonic transducer. The back-wall echoes decrease.
Especially for spherical structures, for which the angle between the surfaces
varies from point to point on the surface, it is very difficult to make out whether
changes in the BWE originate from this geometrical effect or from porosity.

• For CFRP co-bonded parts, it may be beneficial to make a statement solely for
one bonding partner. This is difficult because the internal interface between the
partners after bonding may not deliver a stable echo comparable to the BWE.

• For sandwich parts, it is not yet possible to make a statement about porosity in
the CFRP skin, because the interface between the skin and the core does not
deliver a stable echo, similar to the situation with bonded parts above.

Still, intermediate echoes can be received in all these situations. The information
from these echoes shall be used to generate a back-wall echo equivalent in the
current chapter with the use of Recurrence Quantification Analysis.

19.3 Background and Basics of Recurrence Quantification
Analysis

The basis for Recurrence Quantification Analysis (RQA) is a presentation of a
dynamical system in a state space (also: phase space). Dynamical systems [17, 18] are
technical or economical or biological systems which evolve (deterministically) in
time. They are modelled via a set of dfirst order differential equations and represented
by d variables. These variables are called state or phase variables; their evolvement
over time can be represented in a d-dimensional space, the state or phase space.
A very simple example of a dynamical system is a frictionless (undamped), not
driven pendulum in earth’s gravity field [18]. Its state is completely determined by
the pendulum’s angle and angle velocity. The state space is two-dimensional in this
example. The pace the variables follow over time is called orbit or trajectory [19].

19.3.1 State Space Reconstruction

With the rise of chaos theory (starting in the 1970’s and 1980’s of the last century
and being concerned with systems apparently stochastic but indeed deterministic)
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powerful methods for the analysis of time series evolved [20]. These include state
space reconstruction [21–23]. In a normal experimental setting, it is not possible or
not economical to measure all state variables. Only a limited number or often, as in
the present investigations, merely one variable is recorded. Now, the reconstruction
method of delay embedding enables experimenters and scientists to reconstruct,
from the few or one measured variable(s), trajectories in a reconstructed state space
that are one-to-one to the ones in the original state space. One-to-one means that
distinct points of the original trajectories map to distinct points of the reconstructed
trajectories [24]. Takens [21] includes a mathematical proof for this, the recon-
struction theorem (cf. also [18, 25]).

As mathematically sophisticated as Takens’ proof is, as relatively simple is the
employment of delay embedding. In the following, we treat discrete systems: These
are easier to handle and are the general case in practise, since the measured signal is
digitised (as is the case with the ultrasonic signal). Here, the delay embedding is
presented with summation symbol as in [26], and d unit vectors el or ek +1,
respectively, assumed, representing the axes of the reconstructed state space of
dimension d:

xi = ∑
d− 1

k =0
xi+ τkek+1. ð19:1Þ

One point in state space, i.e. one point in time, is reconstructed by using the
value of the time series from this point in time and d− 1 points in the future, each
one shifted by a time delay τ for creating the other state variables.

Figure 19.2 visualises the method of delay embedding, where ξl is understood as
the coordinates of one point in time in direction of the unit vectors el. For further
details, refer to [2, 18].

It is interesting to ask for which cases this delay embedding truly delivers a
reconstruction which is one-to-one to the trajectories of original state space.

Fig. 19.2 Sketch for visualising the method of delay embedding [2]
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Mathematically, the function(s) describing the dynamical system as well as the
measurement function (mapping the trajectory in original state space on the real
line, i.e., creating one real number from one point in state space) have to be generic.
For further details refer to [18, 27, 28]. According to [29], “A mathematically
generic observation, by definition, monitors all degrees of freedom of the system.”
For the present case, it is assumed that the ultrasonic measurement at the surface of
the part gives sufficient information about the influence of porosity on the wave
propagation inside the part [2]. Refer to Sect. 19.3.3 for the effects expected.

First applied on chaotic systems, state space reconstruction and subsequent
investigation of the reconstructed dynamical systems have become a versatile tool
for evaluation of signals originating from nonlinear systems, known as Nonlinear
Time Series Analysis [30]. A part of this is based on the recurrence of dynamical
systems.

19.3.2 Recurrence Plots and Recurrence Quantification
Analysis

The formal concept of recurrences of dynamical systems was introduced by Henri
Poincaré [26]. In his paper about celestial three body movement [31] he introduced
what is now known as the Poincaré Recurrence Theorem [32, 33].

In 1987, Recurrence Plots (RPs) for the evaluation of dynamical systems were
proposed [34]. The mathematical representation of a Recurrence Plot is the recur-
rence matrix [26]. In the recurrence matrix, each state of the system xi at each
instant in time t= iΔt (Δt is the time between two subsequent measurements and
corresponds to the reciprocal of the sampling rate) is compared with all states xj.
Each entry i, j is either 1 in case that xi and xj are recurrent or 0 if they are not [26].
A Recurrence Plot is a two-dimensional plot in which recurrence points are plotted
with a dot (often a black dot whereas the non-recurrent points are white [34, 35]).

Recurrence is defined as two states of the system being similar, which is again
defined by having a distance lower than a threshold ε. The measure or metric for the
distance as well as the threshold ε have to be defined; one of the common metrics
used for Recurrence Plots is the Euclidean distance [35]

DEuc, ij = jjxi − xjjj; i, j=1, . . . , N, ð19:2Þ

where xi and xj are points in time and N is the number of points in state space. jj ⋅ jj
represents here the Euclidean metric (induced by the Euclidean norm, [36])

jjxi − xjjj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
d

m=1
ðξm, i − ξm, jÞ2

s
. ð19:3Þ
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The index m represents the coordinate of the d-dimensional state space. Alter-
natively, the angular distance is utilised:

Dang, ij =arccos
xixj

jjxijjjjxjjj
� �

, ð19:4Þ

where xi and xj are now understood as vectors pointing from the origin to the points
xi, xj. Equation (19.4) is nothing else but the angle between these two vectors.
Usage of this metric for Recurrence Plots has been proposed in [37] because of its
independence of scaling effects—(19.4) delivers the same result no matter what the
lengths of the vectors are. This is considered as great asset for NDT to be less
dependent on the adjustment of gain in the course of calibration. Because this often
involves a human factor, it is advisable to achieve an independence or reduced
dependence on this calibration. On the other hand, the amplitude may also contain
information about the porosity, cf. Sect. 19.3.3. Hence, both Euclidean and angular
distance are investigated in the present work.

A further method not yet investigated for the current application is the combi-
nation of order patterns with Recurrence Plots [38].

Using the distances of two points in state space according to (19.2) or (19.4),
respectively, a distance matrix D can be derived, consisting of the distance from
each to every point in state space:

D=Dij. ð19:5Þ

With recurrence threshold ε, and utilising the Heaviside function to derive a “1”
for recurrence points and a “0” for non-recurrent points, the recurrence matrix R is
created from the distance matrix:

R=Rij = θ ε−Dij
� �

, i, j=1, . . . , N, ð19:6Þ

ε is taken constant over the whole recurrence matrix. Recurrence matrices can also
be calculated with ε varied in a way such that the neighbourhood (the ball of radius
ε) around a point always contains the same number of points [34, 35]. Thus, every
row and every column in the recurrence matrix consists of the same amount of ones
and the Recurrence Rate (see below) has a fixed value.

Since their first occurrence in 1987, a whole field of time series analysis
involving Recurrence Plots has been developed, now known as Recurrence
Quantification Analysis (RQA) [35]. In the present chapter, two basic out of several
common RQA features are calculated [35] to check their suitability as back-wall
echo equivalent: Recurrence Rate RR and determinism DET . The Recurrence Rate
is the number of recurrence points divided by the number of all points,
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RR=
1
N2 ∑

N

i, j=1
Rij, ð19:7Þ

and can have values between 0 and 1. Equation (19.7) includes the main diagonal
line (line of identity) (which trivially contains only ones since a state is always
recurrent with itself) in the definition of RR as for example in [26].

The determinism DET is the number of all recurrence points that occur in
diagonal lines of a length equal to or greater than a number lmin (minimum line
length), divided by the number of all recurrence points. For its mathematical rep-
resentation, we consider first the number of all lines containing exactly l recurrence
points

HD lð Þ= ∑
N

i, j=1
ð1−Ri− 1, j− 1Þð1−Ri+1, j+1Þ ∏

l− 1

k=0
Ri+ k, j+ k, ð19:8Þ

which leads then to determinism DET

DET =
∑N

l= lmin lHDðlÞ
N2RR

. ð19:9Þ

lmin has to be at least 2; for lmin =1 the determinism equals 1.
Diagonal lines in Recurrence Plots represent states where (at least when con-

sidering Euclidean distance) a section of the trajectory of the dynamical system runs
nearly parallel to another section of the trajectory, or more exactly, in a region with
the shape of a tube (of radius ε) around the other section. This is an indication of
deterministic (or predictable) behaviour of the underlying dynamical system [26].
A system with a pure periodic motion of one frequency has a Recurrence Plot with
only diagonal lines [26], as for example a frictionless, non-driven pendulum in
earth’s gravity field.

19.3.3 RQA for the Detection of Porosity in CFRP

The author’s original motivation to use Recurrence Quantification Analysis for the
present application is the complexity of the elastic wave propagation in CFRP with
nonlinear multiple scattering [39] in the presence of pores [2]. The hypotheses now
followed in this chapter are

(1) Pores will lead to a perturbation of the otherwise almost periodic signal (which
has decaying amplitude due to the attenuation of the CFRP, Fig. 19.4). The
intermediate echoes obtained from the investigated samples are almost peri-
odic due to the layered structure of the material. Porosity leads to a pertur-
bation of these signals, bringing higher randomness into the system by
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randomly distributed scatterers as assumed in [9], thus decreasing
determinism.

(2) Reflections at the pores will also lead to changes of signal amplitudes, hence
comparing the time-localised energy of the signal between porous and
non-porous structures will reveal a change of energy. This may be a reduction
due to reflections not going back to the ultrasonic transducer or an increase
due to additional reflections measured by the transducer.

The presented work shall be the first step gaining knowledge towards or against
these hypotheses for porous CFRP.

19.4 Experiments

The measurements were performed on a set of three CFRP samples out of fabric
material 913C-926-35%F with artificially introduced porosity fields (using the
blowing agent Freon) of different amounts [40, 41]. These samples have a thickness
of approximately 7 mm and a size of 120 mm times 100 mm. Their designations are
CG070M15, the part with the highest porosity, on which most of the evaluations are
performed, and CG070M13/14 with lower contents of porosity. All samples are
plane-parallel and have thus a proper back-wall echo. The intermediate echo time
series is used for the attempt to generate a back-wall echo equivalent; the inter-
mediate echoes are no different whether or whether not the back-wall behind rep-
resents a proper reflector. This back-wall echo equivalent is then directly compared
with the back-wall echo of one and the same A-scan.

The measurement equipment consists of commercially available ultrasonic
electronics “Multi2000 32x128” by M2M including a laptop for controlling and
recording and an Olympus “5L64” 5 MHz phased array probe (Fig. 19.3).

The probe consists of 64 elements, covering an area of 46 mm times 10 mm. It
was driven with 5 MHz frequency and a voltage of 40 V with an aperture of eight

Fig. 19.3 Ultrasonic
measurement equipment:
electronics (top right), one
sample and phased array
probe (bottom right) and
controlling laptop (left)
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elements firing simultaneously. For all measurements, a constant gain of 18.9 dB
was used.

The samples were inspected manually in contact technique. Two scans per
sample were recorded. One scan covers approximately half of the sample.

No filters were applied and the received signals were sampled with a frequency
of 100 MHz, thus every 10 ns an amplitude value was recorded.

The measurement data obtained with the M2M equipment was read into the
evaluation software “Ultis” [42] and stored in data format “.nka”. This data format
was then read into Matlab, with which all following evaluations are carried out,
using self-programmed functions.

19.5 Results and Optimal Parameters

The choice of optimal parameters for the Recurrence Quantification Analysis pre-
sented in this work is very much driven by the RQA itself (a similar approach to the
one proposed in [43]). ε is varied between its extremes for both Euclidean and
angular distance (Table 19.1).

To have a starting point for time delay τ, a quick check using the autocorrelation
[44] is performed, which leads to values between 5 and 6 (time steps) for the
different time series; quite similar to the “good first guess” [30] to take a quarter of
the dominating wave length (if present). For the embedding dimension d, the
method of false nearest neighbours [30, 35] is merely checked on one representative
time series using the CRP-toolbox for MATLAB [26, 45]. This check delivered a
value of 4. Based on these values, τ and d are both varied in a range from 1 to 10.

The minimum line length lmin for the RQA feature determinism is initially set to
2 for Euclidean distance. For angular distance, lmin =2, 4, 8 is applied.

For 29 times 65 A-scans, thus 1885 time series, of one volume scan of sample
CG070M15, the RQA features RR and DET are generated for all parameter values
shown in Table 19.1. The linear correlation coefficient r (or Pearson’s r, [44]) is
determined between RR and BWE (rRR) and between DET and BWE (rDET ).

Table 19.1 Applied range of parameters for Recurrence Quantification Analysis

RQA parameter Min Max Steps/values used

Time delay τ 1 10 1
Embedding dimension d 1 10 1
Recurrence threshold ε for
Euclidean distance

0.1 10 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1, 1.2, 1.5,
2, 4, 6, 8, 10

Recurrence threshold ε for
angular distance

0.01π 0.75
π

0.01π, 0.025π, 0.05π, 0.075π, 0.1π,
0.25π, 0.5π, 0.75π

Minimum line length lmin 2 8 Euclidean distance: 2 ≤ 15
Angular distance: 2, 4, 8
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19.5.1 Euclidean Distance

The time series in these investigations have a dominating frequency of approxi-
mately 5 MHz (Fig. 19.4). Theoretical considerations for Euclidean distance based
on this fact lead to an assumption of optimum Recurrence Rate of approximately
0.055 (see Appendix).

Extrema of correlation coefficients for all variations of RQA parameters and in
the optimum Recurrence Rate range are determined (Table 19.2).

Three sets of parameters (row 3, 5 and 6) lead to Recurrence Rates extremely
low or high, respectively. The minimum rRR occurs for RR=0.004. The according
Recurrence Plots merely consist of the line of identity for non-porous areas. In the
case of time series measured from an area with porosity, this line simply gets
thicker on some sections. It is obvious that no serious RQA is possible with such
spurious results.

The maximum correlation coefficients go along with a Recurrence Rate of
almost 1 and with a range of Recurrence Rate RRR (difference between minimum
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Fig. 19.4 A-scan of Fig. 19.1, intermediate echoes from 1 to 4 µs magnified: the time series of
301 points used for RQA

Table 19.2 Optimum coefficients of linear correlations between BWE-equivalent and BWE in
dependence of RQA parameters for lmin =2 for Euclidean distance

Row nr Correlation coefficient r Mean RR R̸RR Mean DET R̸DET ε d τ

1 RR driven rRR = − 0.60 0.055/0.218 0.931/0.101 1 6 3

2 RR driven rDET = − 0.75 0.055/0.147 0.729/0.263 0.3 2 1

3 min rRR rRR = − 0.65 0.004/0.005 0.975/0.267 0.4 10 6

4 max rRR rRR =0.84 0.996/0.048 0.9999/0.0023 10 4 1

5 min rDET rDET = − 0.81 0.142/0.277 0.904/0.112 0.8 3 1

6 max rDET rDET =0.78 0.995/0.073 0.9998/0.0019 6 2 5
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and maximum) of only 0.2 % (the linear correlation coefficient makes no statement
about the magnitude of the slope of the regression line [44]). The Recurrence Plots
are almost black, recurrence and determinism decrease by a very small amount in
the case of porosity. These results are not further considered either.

The minimum correlation coefficient for DET , reaching a large absolute value of
−0.81, goes along with a reasonable Recurrence Rate of 0.142. The range of DET is
still rather low (0.112). The Recurrence Plots for the situation without porosity (Fig.
19.5 left) as well as with porosity (Fig. 19.5 right) show lines perpendicular to the
main diagonal, which may be caused by non-optimal embedding [46].

This choice of embedding parameters does not prove to be very robust: a
reduction of the embedding dimension from 3 to 2 causes the correlation coefficient
to change from −0.81 to −0.35, an increase of the time delay from 1 to 2 goes along
with a change to rDET = − 0.50.

The optimum correlation coefficients taking optimum RR into account (row 1
and 2 in Table 19.2) do not lead to satisfying results either. The best rRR takes a
value of merely −0.60. The best rDET = − 0.75 is achieved via RPs again with a
checkerboard-like structure as in Fig. 19.5 and the results are again sensitive against
change of embedding parameters as for the minimum rDET .

Earlier work by the author with exemplary evaluations revealed that increasing
lmin can lead to significant improvements. In [2], results for ε=2, d=3, τ=6 and
lmin =10 are presented. The Recurrence Plots for this choice of recurrence threshold
and embedding parameters show for the situation without as well as with porosity
partly diagonal thick lines and, especially on the upper right, almost black regions
(Fig. 19.6). The decaying amplitude of the original time series apparently leads to a
trajectory which falls for later instants in time completely into the ball with radius ε
in state space.

 RR = 0.1819 DET = 0.9206

Time [in 10 ns steps]

50 100 150 200 250

T
im

e 
[in

 1
0 

ns
 s

te
ps

]

50

100

150

200

250

 RR = 0.3381 DET = 0.9685

Time [in 10 ns steps]
50 100 150 200 250

T
im

e 
[in

 1
0 

ns
 s

te
ps

]

50

100

150

200

250

Fig. 19.5 Recurrence Plots for ε=0.8 (Euclidean distance), d=3, τ=1 from first scan of
CG070M15, non-porous (left, A-scan with coordinates 2,20) and porous area (right, A-scan with
coordinates 2,50)
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Porosity has a decreasing effect on the amplitudes of the intermediate echoes in
the current scans. The pores reflect the ultrasonic wave in other directions than to
the ultrasonic transducer and thus reduce the measured echoes coming from the
CFRP material. This loss in ultrasonic energy is reflected in an increase of recur-
rence, especially in the upper right of the Recurrence Plots (Fig. 19.6 right). This
increase is only severe for the area of highest porosity, from which this RP is taken:
the correlation between Recurrence Rate and BWE over all the A-scans is merely
rRR = − 0.12. The feature determinism however leads to rDET = − 0.75 with
lmin =2. A significantly better value −0.87 is achieved for a minimum line length
from 7 to 15 (with the highest in absolute value, precision of 4 decimals, for
lmin =8). Without the non-recurrent gaps in the Recurrence Plots due to the reduced
amplitude for the situation with porosity, considerable more diagonal lines are
detected: the feature DET increases with higher porosity (Fig. 19.7). This effect
may also be detected with the RQA features laminarity or trapping time, not
investigated here, which are related to the occurrence of vertical lines in the
Recurrence Plot [35].

The range of DET equals 0.242 for lmin =8, which is considered as sufficient.
The choice of embedding parameters is insensitive to variations in comparison to
results presented above: The correlation coefficient decreases to a minimum in
absolute value of −0.70 for a variation of either d or τ by ±1.

The optimum embedding parameters determined by autocorrelation and false
nearest neighbours method (Sect. 19.5, d=4 and τ=5 to τ=6) are similar to the
ones for which the above described good correlation on sample CG070M15 was
achieved.

This correlation on CG070M15 with RQA parameters d=3 and τ=6, recur-
rence threshold ε=2 (Euclidean distance) and lmin =8 is checked on a second scan
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Fig. 19.6 Recurrence Plots for ε=2 (Euclidean distance), d=3, τ=6 from first scan of
CG070M15, non-porous (left, A-scan with coordinates 2,20) and porous area (right, A-scan with
coordinates 2,50)
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of CG070M15 (rDET = − 0.89), on a scan of CG070M13 (rDET = − 0.69) as well as
of CG070M14 (rDET = − 0.76). The poorest correlation coefficient of CG070M13
may be related to the fact that the amount of porosity is not as high as in
CG070M15 (cf. C-scans Fig. 19.8; the range of the color scale is identical to
Fig. 19.7). The poorer scan quality may also negatively affect the correlation.
However, even the vertical line obviously showing a slip-stick effect of scanning at
approximately x=15 is represented in the DET-C-scan.

The amplitude effect observed with Recurrence Quantification Analysis turned
out to be detectable with the Quartile Coefficient of Disperson QCD [47], too. For
its determination, the time series is sorted in ascending order of amplitude values. It
is then in the present case calculated as

QCD=
xsort, 226 − xsort, 76

xsort, 226 − xsort, 76 − 2xmin
. ð19:10Þ
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Fig. 19.7 C-scans of CG070M15 first scan: BWE (left) and DET as BWE-equivalent with RQA
parameters ε=2 (Euclidean distance): d=3, τ=6 and lmin =8 (right)

Nr A-scan in x-direction

N
r 

A
-s

ca
n 

in
 y

-d
ire

ct
io

n

0

5

10

15

20

25

B
W

E
 [%

 s
cr

ee
n 

he
ig

ht
]

0

2

4

6

8

10

12

Nr A-scan in x-direction
0 20 40 60 0 20 40 60

N
r 

A
-s

ca
n 

in
 y

-d
ire

ct
io

n

0

5

10

15

20

25

B
W

E
-e

qu
iv

al
en

t: 
D

E
T

 

0.7

0.75

0.8

0.85

0.9

0.95

Fig. 19.8 C-scans of CG070M13: BWE (left) and DET as BWE-equivalent with RQA parameters
ε=2 (Euclidean distance): d=3, τ=6 and lmin =8 (right)
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An offset was added to the time series to make all values nonnegative, the lowest
value equalling zero. This is reflected by subtracting xmin twice from the denomi-
nator in (19.10).

Using QCD as back-wall echo equivalent, a correlation coefficient rQCD =0.81
for the first scan of CG070M15 is achieved, slightly lower in absolute value than
with Recurrence Quantification Analysis. Refer to Table 19.4 in Sect. 19.5.2 for
further results of rQCD for the other scan of the same part and scans of the other
investigated parts.

Whether this amplitude effect exists for other CFRP materials and “natural”
porosity, whether it can be detected by RQA and whether it can be determined
using the Quartile Coefficient of Dispersion or other simple means will be inves-
tigated in further steps of this ongoing research.

To summarise results for Euclidean distance, the RQA feature determinism has
been found to provide a good back-wall echo equivalent for the investigated sample
set. This is achieved with embedding parameters near to the ones determined with
autocorrelation and false nearest neighbours method, leading to higher determinism
for higher porosity. The cause is an amplitude effect, corresponding to hypothesis
(2) (see Sects. 19.1 and 19.3.3) with a loss of energy when porosity is present. This
effect can also be observed with the simpler means of Quartile Coefficient of
Dispersion, with a correlation almost as good as with RQA.

Next, angular distance is investigated, a metric independent of amplitude effects
by definition.

19.5.2 Angular Distance

The varied RQA parameters for angular distance (Table 19.1) are checked on
extrema of the coefficients of correlation of RR or DET , respectively, with the
back-wall echo. With the experience from Euclidean distance, lmin =4 and lmin =8
are included into the investigated RQA parameters. Three of the four extrema of the
coefficients are less than 0.7 in absolute value (Table 19.3) and are thus not further
considered.

The maximum coefficient is rDET =0.75 for the correlation between DET and
BWE. The range of determinism RDET =0.338, larger than any range of optimum

Table 19.3 Optimum coefficients of linear correlations between BWE-equivalent and BWE in
dependence of RQA parameters for lmin =2, 4, 8 for angular distance

Extrema r Correlation
coefficient r

Mean
RR R̸RR

Mean DET R̸DET

for lmin =8
ε d τ lmin

min rRR rRR = − 0.64 0.754/0.111 0.947/0.005 0.75π 8 1 –

max rRR rRR =0.64 0.101/0.063 0.551/0.102 0.1π 6 1 –

min rDET rDET = − 0.55 0.012/0.028 0.549/0.705 0.075π 10 7 8
max rDET rDET =0.75 0.504/0.201 0.910/0.338 0.5π 4 8 8
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correlation coefficients for Euclidean distance. The accordingRecurrence Plot derived
from anA-scan from a non-porous area exhibits as expected no special dependence on
time and consists almost exclusively of thick diagonals (Fig. 19.9 left). For porosity,
the Recurrence Plots loses partly its structure, which shows the reduced periodicity of
the signal. The Recurrence Rate is almost the same as for the non-porous situation, but
the determinism is significantly decreasing (Fig. 19.9 right).

The according C-scan for determinism DET displays the correlation (Fig. 19.10),
which is not as good as for the (in absolute value) greater minimum rDET for
Euclidean distance.

The optimum embedding dimension here equals the one determined by false
nearest neighbours method, whereas the time delay is 2–3 time steps higher than the
one determined with autocorrelation (Sect. 19.5).
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Fig. 19.10 C-scans of CG070M15 first scan; BWE (left) and DET as BWE-equivalent with RQA
parameters ε=0.5π (angular distance), d=4, τ=8 and lmin =8 (right)
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CG070M15, non-porous (left, A-scan with coordinates 2,20) and porous area (right, A-scan with
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A variation of embedding parameters by ±1 decreases rDET to a minimum of
0.65, which is considered as rather robust. The minimum line length has an
influence of the same magnitude: rDET =0.72 and rDET =0.69 for lmin =4 and
lmin =2, respectively.

For the optimum RQA parameters, which led to the maximum rDET =0.75 for
CG070M15, the correlation coefficient is determined at a second scan of
CG070M15 and at one scan each of CG070M13 and CG070M14. The correlation
coefficients are rDET =0.73, rDET =0.57 (C-scans in Fig. 19.11) and rDET =0.69,
respectively.

Summarising for angular distance, the RQA feature determinism has been found
as an appropriate back-wall echo equivalent. In contrast to the results with Eucli-
dean distance, the feature decreases with increasing porosity. Amplitude effects are
not taken into account with angular distance by definition, and the decreasing
determinism shows a lower periodicity in the ultrasonic wave propagation, caused
by the pores, corresponding to hypothesis (1) in Sects. 19.1 and 19.3.3.

The results with best parameters for angular distance in this section, originating
from the reduction of determinism, as well as the results for best parameters with
Euclidean distance and the hence derived Quartile Coefficient of Dispersion (Sect.
19.5.1), both originating from amplitude effects, are summarised in Table 19.4.
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Fig. 19.11 C-scans of CG070M13: BWE (left) and DET as BWE-equivalent with RQA
parameters ε=0.5π (angular distance), d=4, τ=8 and lmin =8 (right)

Table 19.4 Correlation coefficients r with the optimum RQA parameters for Euclidean distance
and angular distance and Quartile Coefficient of Dispersion

CG070M15
first scan

CG070M15
second scan

CG070M13 CG070M14

rDET ,Euc with ε=2, d=3,
τ=6, lmin =8

−0.87 −0.89 −0.69 −0.76

rQCD with time series offset 0.81 0.81 0.67 0.76

rDET , ang with ε=0.5π, d=4,
τ=8, lmin =8

0.75 0.73 0.57 0.69
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19.6 Conclusion and Outlook

Recurrence Quantification Analysis (RQA) is proposed as a tool to derive a
“back-wall echo equivalent” for evaluating porosity in Carbon Fibre Reinforced
Polymers with ultrasonic pulse-echo testing. Three samples with local porosity
fields of different severity have been measured. The trajectory in state space has
been reconstructed from the measured time series and Recurrence Plots have been
generated, using Euclidean and angular distance. The RQA features Recurrence
Rate and determinism DET have been determined out of the Recurrence Plots. For
the sample with highest porosity, embedding parameters and the recurrence
threshold, and partially the minimum line length have been varied. The results of
Recurrence Rate and determinism have been correlated with the back-wall echo to
assess their suitability as back-wall echo equivalent. Theoretical considerations
about optimum Recurrence Rate for Euclidean distance and the robustness of
results have been taken into account.

The feature determinism has been found to present an appropriate back-wall
echo equivalent. When using Euclidean distance, the coefficient of correlation with
the back-wall echo on the sample with highest porosity is −0.87; DET increases
with increasing porosity. This is caused by amplitude effects; measured interme-
diate echoes and thus the time-localised energy decrease due to reflections from the
pores not reaching the ultrasonic transducer. This effect can be shown with simpler
evaluations (quartile coefficient of dispersion) as well, leading to a correlation
coefficient of 0.81.

Using angular distance, the coefficient of correlation of the feature determinism
with the back-wall echo takes the value 0.75 for the sample with highest porosity.
Angular distance excludes amplitude effects by definition; the measured effect is
based on lower periodicity of the ultrasonic wave propagation with higher porosity
content, leading to lower values of determinism.

The presented first step of ongoing research will be continued by exploitation of
other features out of recurrence plots and include other samples of different CFRP
material and with “natural” porosity.
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Appendix

Considerations About Optimum Recurrence Rate

Based on the dominating 5 MHz frequency in the time series (Fig. 19.4) the
Recurrence Rate for an embedding of a sine wave with a wavelength of 20 time
steps (corresponding to 5 MHz at a sampling rate of 100 MHz) is considered. With
any recurrence threshold ε>0 (because of the ideal motion exactly equalling itself
after one wave length) and less than a value depending on the amplitude of the sine
wave and the embedding dimension (e.g. 0.3167 or 0.6258 times the amplitude for
d=3 or 8, respectively) this leads to a Recurrence Rate of 0.05, i.e. 5 %. The
according Recurrence Plot consists of diagonal lines ([26] Fig. 1A) occurring every
20 time steps. Thus it can be assumed that Recurrence Rates around 0.05 are
appropriate for Recurrence Quantification Analysis in the present case and may
reveal changes in determinism caused by porosity.

The Recurrence Rate differs significantly with the embedding dimension, as the
example with the ideal sine wave above shows (this is due to the larger distances
between points in state space with a larger embedding dimension for one and the
same time series).

Consequently, the recurrence thresholds, for which the mean Recurrence Rate
(i.e. the average of the Recurrence Rates of all measured time series per scan) is
nearest to a value of 0.05 (Fig. 19.12 right), are determined (Fig. 19.12 left).

For the values of ε shown in Fig. 19.12, the coefficients of linear correlation
between Recurrence Rate RR and back-wall echo BWE are shown in Fig. 19.13 left
hand side. The coefficients for the according correlation between determinism DET
and BWE are displayed in Fig. 19.13 right hand side.
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