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Abstract. The rapid growth of unstructured data over the last few years, has led
to the emergence of new database management systems. Traditional relational
databases, despite their wide adoption and plethora of features, begin to show
weaknesses when having to deal with very large amounts of data. Numerous types
of databases have emerged in the Cloud domain, in order to exploit the elasticity
of Cloud environments, while relaxing the typical ACID considerations and
investigating trade-offs of the CAP theorem. The aim of this paper is to investigate
how such offerings (MongoDB, Cassandra and HBase namely), based on these
tradeoffs, behave when deployed in virtual environments (of the BONFIRE
facility) and how they are measured against widely used benchmarks such as
YCSB. The results may be helpful for potential adopters to choose from these
offerings, based on their individual needs for specific workloads or query struc‐
tures.
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1 Introduction

In recent years, the generation and storage of enormous data sizes has led to the creation
and investigation of numerous, tailored per case data management systems, that go
beyond the typical SQL databases applications. It is estimated that the total data size of
the digital universe is equivalent to 2.84 ZB (billion terabytes) with predictions raising
this number to 40 ZB for 2020 [1]. Facebook alone gathers 300 PB of data, from which
it processes at least 1 PB per month [2]. The Large Hadron Colider in CERN gathers
approximately 15 PB per year for processing [3]. The term Big Data is used for one of
the most emerging technologies in order to describe the concentration, storage and anal‐
ysis of especially large data volumes for the extraction of conclusions, correlations and
trends. Areas that are affected by this analysis include meteorology, genomics, market
analysis among others.

Data management solutions can considerably benefit from their deployment and
instantiation in cloud computing environments [16], however their performance may
often differ, significantly in many cases depending on the configuration and offering,
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which affects the operational aspects of each solution so as to effectively exploit the
cloud computing innovations [17]. However, the operation in an abstracted and distrib‐
uted environment introduces also significant challenges e.g. the CAP theorem [18]
which states that you can obtain at most two out of three properties: Consistency, Avail‐
ability and tolerance to network Partitions. In large scale data management approaches
where data are replicated and distributed, consistency is compromised in order provide
high availability, thus relaxing the ACID guarantees (Atomicity, Consistency, Isolation,
Durability) of the system for database transactions [19].

Traditional relational databases portray a number of significant weaknesses in the
analysis of these data, that may origin either from their sheer volume or from the fact
that in many cases they follow unstructured data formats that are difficult to be translated
into rigid database schemas. While the SQL solutions are oriented towards aspects such
as consistency and concurrent transactions, they fall short in use cases where large
partitioning or availability needs are necessary. This gap has started to be covered in
recent years through the development of NoSQL systems that tend to abandon some of
the typical characteristics of relational databases (such as ACID characteristics) in order
to ensure the ability for parallel and distributed storage and processing without structural
constraints (e.g. table structures).

Development of NoSQL systems has been extremely rapid in recent years. Currently
there are 150 available systems [4]. The separation in categories is performed mainly
through their capabilities or through the way they store data. An indicative categorization
of NoSQL systems appears in [5]. The main purpose of this paper is to investigate a
number of such solutions (namely MongoDB, HBase and Cassandra) in a variety of
usage scenarios, based on different types of workloads, and extract a number of meas‐
urements and conclusions with relation to each system’s ability to handle the respective
traffic. To this end, the YCSB benchmark client [6] is used in order to launch queries
against deployed system instances in the Bonfire experimental Cloud platform [7]. The
paper is structured as follows. In Sect. 2 related work in the respective field of Cloud
and DB benchmarking is presented, while in Sect. 3 the key characteristics of the selected
databases are presented, along with information on the automation and setup of the
measurement process. Section 4 presents the performed experiments and measurements
results while Sect. 5 concludes the paper.

2 Related Work

There are several approaches that analyze the performance aspects of the database
management solutions in cloud. In RDBMS, the TPC benchmarks were the most prom‐
inent benchmarking approaches for measuring the performance characteristics [10]. [11]
conducted benchmarks on several existing cloudbased management systems: (a) data
read and write benchmark with seven tasks to evaluate the read and write performance
in different situations, and (b) structured query benchmark focusing on basic operations
in the structured query language such as key words matching, range query and aggre‐
gation.
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NoSQL cloud management systems can be categorized as key-value stores, docu‐
ment stores, column stores and graph stores [12]. Their characteristics include a variety
of different data models (fully structured semi structured and unstructured), different
querying and most importantly different scaling methodologies to support data parti‐
tioning, replication, consistency and concurrent access. These characteristics, the execu‐
tion environment configuration, have immense effect on the performance of the data
management operations, positive or negative. Brian F. Cooper et al. propose YCSB
framework [6] that facilitates performance comparisons of modern cloud data serving
systems and define a core set of benchmarks and report results for four widely used
systems: Cassandra, HBase, Yahoo!’s PNUTS and MySQL. Their analysis examines
the aspects of (a) read performance versus write performance, (b) latency versus dura‐
bility, (c) synchronous versus asynchronous replication and (d) data partitioning, in
operation of read, update, scan and insert.

Authors in [13] argue that standardized performance benchmarking is required so as
to evaluate the eventual consistency in distributed key-value storage systems and
propose a methodology that extends the popular YCSB benchmark to measure the stale‐
ness of data returned by reads using the concept of ∆-atomicity [14]. [15] presents an
evaluation of the performance for database management, SQL and NoSQL, in the
domain of IoT and particularly for sensor data. Besides the difference in performance
between SQL and NoSQL solutions, their analysis results show a considerable impact
on the performance when the databases are deployed in virtualized cloud environments.
In most cases the impact is negative however, only a specific deployment has been tested
and no other cloud offerings and/or configurations are examined.

3 DB Features and Measurement Automation

3.1 DB Features

With regard to the selected databases, the goal was to differentiate between features and
strategies of available systems. Thus in terms of architecture, HBase follows a more
centralized master slave approach, while Cassandra a more peer to peer one. HBase is
written in Java and is tightly integrated with the underlying file system (HDFS) and with
the MapReduce Apache Hadoop framework and can offer consistency guarantees. It
follows a key value approach and stores data in a column oriented format on disk. It also
offers atomicity of operations on a row level. Cassandra is also written in Java and the
main difference is that it does not portray a single point of failure. In order to enroll a
node in the system, one only needs to start the basic daemon process and insert infor‐
mation on one existing system node. In practice a number of nodes are determined as
seeds and they are the ones that undertake the role of enrolling a new node in the ring.
Cassandra’s main benefit is the lack of one master node, which improves system resil‐
iency and availability, however it comes with a price on the consistency levels achieved.
It follows a column oriented data organization. One extra feature with relation to HBase
is the ability to define composite column families that can serve as an extra layer of
organization. Thus it may depict concentrated data from multiple columns. Cassandra
also offers atomicity on a row level, however contrary to HBase it can not offer atomicity
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in cases of updating more than one rows in a single transaction. Different consistency
levels are offered, that are coupled with the used replication factor and they regulate the
need to have consistent replicas across the system.

MongoDB on the other hand is a document oriented DB, meaning that it stores the
data in fields and can be directly queried based on their contents. Data are stored in the
form of BSON (Binary JSON). It may also support secondary indexes for faster search.
The replica sets in Mongo are defined as primary or secondary. Update of the secondary
instances is performed synchronously, affecting latency, by adjusting the “write
concern” option or asynchronously, in order not to bottleneck the system. However the
latter has an effect on consistency for read operations from them. Based on the consis‐
tency option selection this read operation may be limited only to the primary copy. A
major difference of this DB is the fact that it mainly uses memory-mapped files in order
to enhance performance.

3.2 Cloud Facility Setup

The experiments were performed in the BonFIRE Cloud computing testbed [7]. The
purpose of this facility is to provide an experimental facility for Cloud Computing
research, across various locations and heterogeneous resources. Management of the
available resources is performed through OCCI [8], in order to offer a homogeneous
interface with heterogeneous infrastructures (OpenNebula, Virtual Wall, Cells). For the
purposes of the experiment, the resources in Table 1 were used. Node 1 was selected
with increased capabilities in order to serve as the Master node in HBase and HDFS and
it was enriched with more functionalities in the other two systems as well. OS in all
cases was Debian Squeeze v6 (kernel:2.6.32-5-amd64).

HBase was the system that presented the most challenges in terms of setup, since in
many cases the errors occurred were not adequately described. Special care was given
to the networking setup (especially to restrict the use of IPv6), and to remove the loop‐
back address since it caused connection errors to the other nodes. It was also the system
that appeared to be more affected by the RAM shortage in the available nodes.

Cassandra was the system that was easier to manage and configure, through the
configuration of seed node details. In the case of Mongo, a series of manual steps were
necessary. In order to ensure a replication factor of 3, 3 mongod processes need to start,
that are configured with relation to which one is the primary, in order to kick off the
different shards.

The distribution of the replicas followed the logic of a Cassandra ring. Ext4 file
system was used for the main data since it is considered more efficient. One characteristic
of Mongo is that due to the preallocation techniques used, it requires significantly higher
disk space to start, in comparison to the actual data stored. Given that the amount of disk
space was limited, a number of options needed to be utilized during the configuration
that limit the initial size of the DB (“–smallfiles” and “–oplogSize 128”).
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Table 1. BonFIRE resources used

Node 1 Nodes 2–6 Node 7

CPU 4 Physical Cores (AMD
Opteron 6176)

2 Physical Cores (2:AMD
Opteron 6176, 3–6: Intel
Xeon E5620)

4 Physical Cores (AMD
Opteron 6176)

RAM 10 GB 4 GB 1 GB

Disk 10 GB ext3: OS + Software 10 GB ext3: OS + Software 10 GB ext3: OS + Software

10 GB ext4: Data 10 GB ext4: Data

Software HBase 0.94.17 HBase 0.94.17 YCSB

Hadoop 1.2.1 Hadoop 1.2.1

Zookeeper 3.4.5 Zookeeper 3.4.5

Mongo 2.4.10 Mongo 2.4.10

Cassandra 2.05 Cassandra 2.05

Functionality HBase Datanode, Name‐
node, Secondary Name‐
node, RegionServer,
Zookeeper, Cassandra
Daemon, Mongod,
Mongo Router, Config
Server

HBase Datanode, Cassandra
peers, Mongod, Mongo
Router (Nodes 2–4)

YCSB client

Due to the fact that the existence of replication indirectly reduces disk space for the
original data, the limit of entries to the DB was set to 1.8 Million, given the available
resources. Each record consisted of 10 fields and each field of 100 bytes, resulting in
1 KB per record. Thus the overall actual data used in the tested systems were around
5.4 GB.

3.3 Measurement Process and Execution Automation

The actual benchmark execution is performed through the use of YCSB, a client that is
responsible for creating queries against the target databases, based on the input param‐
eters that define the type of operations, and for connecting and submitting the queries
based on a set of drivers for each system. One key parameter that needs to be clarified
is the Throughput (in Ops/sec) which is the desirable number of operations that must be
achieved by the system. This does not necessarily mean that the system will achieve this
rate however. Latency of the respective operations is also logged and monitored.
Average values for these metrics are reported in the end of the measurement cycle. YCSB
also contains a set of default workloads that are indicative of specific use cases. Examples
of this are Workload A (typical of user session storing for action logging), Workload B
(photo tagging in social networks), Workload C (caching of data), Workload D (user
status in social networks), Workload E (forum discussions retrieval) and Workload F
(user management DBs). More details on these workloads are given in Sect. 4.
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The automated framework for the experiment execution appears in Fig. 1. The user
inputs a number of parameters such as the number of nodes, the DB size in terms of
records, desired throughput, what type of DB to setup etc. This information is then passed
to the partial executors, which are responsible for creating the resources on BonFIRE
(via OCCI), configuring the nodes via ssh based on the DB type (setting up seed files,
alerting where to find the Namenode, creating, populating or cleaning up tables etc.) and
finally launching the YCSB client to perform the queries.

Fig. 1. Automated execution framework

4 Experiments and Results

In order to perform the experiments against the deployed databases, the YCSB bench‐
marking client was used. YCSB produces queries against the former, based on a
throughput that is determined by the parameters of execution. In reality, while this
throughput is set, it is perceived as the target limit. However it is limited by the size and
endurance of the underlying system. Thus, while the set throughput was starting from
1000 operations per second and increased each time by a thousand, the actual achieved
rates were not completely aligned, as will be seen by the measurements. Each meas‐
urement (for a given system, workload and set throughput) was performed 4 times and
the average was calculated. In many cases there were deviations that can be attributed
to the operation of the underlying Cloud service. Timing constraints were also used,
meaning that each series of measurements included an overall maximum time for
completion. This maximum time was calculated based on the types of actions performed
against the DB and the necessary throughput. If that throughput was less than the 2/3 of
the needed limit, then the experiment was stopped since it would not add any additional
information for the charts and would introduce unnecessary delays. Following, the
results per type of workload are presented.
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4.1 YCSB Workload a (50 % Updates–50 % Reads)

In workload A, HBase and Cassandra have achieved a significantly higher throughput
than MongoDB, as it appears in Fig. 2. The reason for this is the increased updates ratio.
MongoDB returns an update success when this is registered in RAM, providing rela‐
tively relaxed persistency guarantees, thus this element is not portrayed in the latency.
Persistency of data is programmed every 100 ms through the journaling mechanism and
the synchronization between the RAM data and disk file data is performed every 60 s.
However, due to the limited memory of the used system, it appears that the OS was
synchronizing the files in shorter intervals in order to free memory space and fetch the
necessary files for the read operations.
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Fig. 2. Comparative Latency vs Throughput in YCSB Workload A
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Fig. 3. Throughput Comparison for different DB sizes in (a) Workload A and (b) Workload B
(Color figure online)

On the contrary, HBase and Cassandra are not affected by updates since these
approaches do not fetch the data to be updated from the disk bit perform the changes in
new files (HFiles and SSTables) by using disk serial write capabilities. The update of
the data happens in the background by merging these files, without influencing signifi‐
cantly the performance of these systems due to the retrieval times of files from disk.
With regard to the effect of data volume in DB performance (Fig. 3), MongoDB seems
to be significantly affected (for the same reasons mentioned above) and its performance
is reduced by 37 % when operations are increased to 1.8 million, in comparison to
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1 million. When data are of a smaller volume, caching mechanisms portray a larger hit
ration and databases perform significantly better. HBase also dropped by 25 %, showing
the need for more RAM. Cassandra on the other hand was not significantly affected,
portraying a deterioration of 3 %.

4.2 YCSB Workload B (5 % Updates–95 % Reads)

In workload B, MongoDB performed significantly better (Fig. 4). The memory mapped
files in conjunction with the Zipfian distribution of YCSB, that selects a subset of data
to perform the multitude of operations, have enabled the caching mechanisms to be
exploited. Lack of increased updates has also helped towards this direction. HBase and
Cassandra performed significantly worse than in workload A, due to the limited memory
dedication to caching, since this value is a percentage of the Heap size (default 1 GB)
used in every node. On the other hand, MongoDB allocated dynamically all the available
memory not used by the remaining node operations. This difference is also portrayed in
the different DB sizes used, as depicted in Fig. 3b). A second reason for the reduced
performance of HBase is the fact that data retrieval is performed from the disk to the
volatile memory through the Java Heap process. Thus read intensive workloads cause
Heap fragmentation and are managed by the Garbage Collector, putting more strain on
the system. HBase in next versions (0.96.3) gives the opportunity to the volatile memory
“blockcache”, which is the memory part responsible for the caching mechanism, to be
decoupled from the Heap size of the RegionServer process, thus exploiting more the
available memory [9]. Cassandra in its default setting does not cache data but data keys,
making this their retrieval faster. Increased data volumes have caused a performance
degradation of 26 % in HBase, 16 % in Cassandra and 19 % in MongoDB (Fig. 3b).
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Fig. 4. Comparative Latency vs Throughput in YCSB Workload B

4.3 YCSB Workload C (100 % Read)

In workload C (Fig. 5a), given that it is an exclusively read workload, the issues
mentioned in the previous sections are clearly depicted. MongoDB achieves a very low
latency due to the lack of updates and synchronization issues. On the contrary, HBase’s
poor caching strategy under limited available RAM has significantly affected its
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performance. Of course in cases where the latter does not apply, results could be
improved with relation to this case. On the other hand, due to the fact that Cassandra
caches the value keys mostly used, it is not affected so intensively by the data read size.
However data retrieval on disk makes it less attractive than MongoDB for these kinds
of loads. For Cassandra, there is the ability to cache data rows that are requested for
reads, however this option was not used since it was not part of the default settings.
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Fig. 5. (a) Comparative Latency vs Throughput in YCSB Workload C (b) Throughput
Comparison for different DB sizes in Workload C (Color figure online)

As it was anticipated, the increased data volume (Fig. 5b) mainly affected Hbase
(39 % degradation). This was significantly lower in the other DBs (17.5 % for Cassandra
and 11.5 % for MongoDB).

4.4 YCSB Workload D (95 % Reads–5 % Inserts)

In workload D, a significant difference is the fact that reads are performed with a Latest
distribution on the more recently used data and not a Zipfian one. Thus MongoDB again
exploits the memory mapped files and portrays a very good performance (Fig. 6). Data
insertion does not seem to affect the system’s performance, since MongoDB uses mech‐
anisms to preallocate the necessary space. This on the other hand creates an issue of
needing too much space for initialization of the DB. Inserts in HBase and Cassandra are
performed by creating new files (HFiles and SSTables), thus eliminating the need for
concrete data positioning retrieval on the disk during insertion. The usage of Latest
distribution helped Cassandra to perform significantly better with relation to workload
B and to approach the ratings of MongoDB. This was probably caused by the fact that
an increased number of reads were served by the data contained in the system’s memT‐
able. The same behavior was expected from HBase, however the large read number has
probably affected also the garbage collection in the JVM. On the contrary, in Cassandra
the memory part responsible for storing the keys is off heap. HBase demonstrated a 40 %
drop in case of increased data volumes (Fig. 7a), while for Cassandra and HBase the
respective percentages were 5 % and 15.1 %.
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Fig. 6. Comparative Latency vs Throughput in YCSB Workload D
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Fig. 7. Throughput Comparison for different DB sizes in (a) Workload D and (b) workload F
(Color figure online)

4.5 YCSB Workload F (50 % Reads- 50 % Read/Modify/Write)

In this workload, also caching mechanisms seem to be the key for reaching high
performance. Due to the fact that the available RAM in each node was 4 GB (much less
than the recommended size), systems that invest in achieving good memory mapping
are hindered by the complexity of the workload in this case. Thus MongoDB portrayed
a reduced performance (similar to the one in workload (A) while HBase continued to
deteriorate as in the cases of B, C and D. On the other hand, Cassandra that does not try
to perform these optimizations portrayed less deviation, as it appears in Fig. 8. With
relation to DB size (Fig. 7b), HBase had a deterioration in performance by 53 %, the
same as MongoDB, while Cassandra was more stable portraying a 16.4 % drop.
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Fig. 8. Comparative Latency vs Throughput in YCSB Workload F

4.6 YCSB Workload E (Scan 95 %–Insert 5 %)

In workload E scan operation, YCSB uses a Zipfian distribution to select a specific datum
and then to request the next data in a serial manner from that location. The size of this
retrieval is decided via a uniform distribution with a maximum number of 100. In this
case HBase and Cassandra performed better than MongoDB since their data are stored
serially in files and thus their retrieval is more efficient (Fig. 9). MongoDB on the other
hand performed a number of operations per file to retrieve the data from disk, if these
data were not located in memory at the time of request. Another reason is that the
retrievals in the DB are based on the actual data fields inside the records (due to the
document orientation of Mongo) and not based on indexes like in the case of HBase and
Cassandra. In terms of database size influence (Fig. 10), Cassandra and HBase seem not
to be affected (HBase improves actually its performance by 11 %), however MongoDB
suffers from an 88 % drop in performance, due to the limited memory size, type of
operation and data access.
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Fig. 9. Comparative Latency vs Throughput in YCSB Workload E
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5 Conclusions

In conclusion, and following the analysis performed in the previous sections, we can
identify cases for which each of the investigated solutions performed optimally.
MongoDB was especially efficient in cases where reads constituted the majority of
performed operations thanks to the memory-mapped files that it uses. This system
however exemplified a particular weakness in scan and retrieval workloads, in which
disk operations were necessary. On the other hand, Cassandra’s enablement of caching
only for the data location on disk resulted in it being the more stable solution despite
the change in workload types of the YCSB client and maintained a satisfactory and stable
performance in all cases. This was enhanced by the selection of the relaxed consistency
option and the usage of a triple replication setup in order to balance the workload in the
system. Finally, HBase was severely affected by the choice to store temporary data on-
heap especially in conjunction with the limited memory resources in the available nodes.
Thus it was not only unable to exploit caching mechanisms, but the latter seemed also
to hinder the efficient system operation in some cases.

The systems used in the context of this paper heavily rely on the caching mechanisms
enabled in each case and the according design. The experiment aided in identifying
several aspects of these mechanisms and their effect on performance, especially under
limited available memory in the systems.

During setup and execution, numerous parameters of the examined tools could be
toggled in order to adapt to the given tests. This kind of adaptation is worth to consider
as future work, extending the insights gained from the initial examination attempted in
this work and based on the envisioned usage and deployment by potential adopters of
NoSQL technologies and available offerings.
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