
Ioannis Karydis
Spyros Sioutas
Peter Triantafillou
Dimitrios Tsoumakos (Eds.)

 123

LN
CS

 9
51

1

First International Workshop, ALGOCLOUD 2015
Patras, Greece, September 14–15, 2015
Revised Selected Papers

Algorithmic Aspects
of Cloud Computing

Lecture Notes in Computer Science 9511

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Ioannis Karydis • Spyros Sioutas
Peter Triantafillou • Dimitrios Tsoumakos (Eds.)

Algorithmic Aspects
of Cloud Computing
First International Workshop, ALGOCLOUD 2015
Patras, Greece, September 14–15, 2015
Revised Selected Papers

123

Editors
Ioannis Karydis
Department of Informatics
Ionian University
Kerkyra
Greece

Spyros Sioutas
Ionian University
Corfu
Greece

Peter Triantafillou
University of Glasgow
Glasgow
UK

Dimitrios Tsoumakos
Ionian University
Kerkyra
Greece

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-29918-1 ISBN 978-3-319-29919-8 (eBook)
DOI 10.1007/978-3-319-29919-8

Library of Congress Control Number: 2016931342

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

The International Workshop on Algorithmic Aspects of Cloud Computing (ALGO-
CLOUD) is an annual event aiming to tackle the diverse new topics in the emerging
area of algorithmic aspects of computing and data management in the cloud. The
increasing adoption of cloud computing introduces a variety of parallel and distributed
algorithmic models and architectures. To leverage elastic cloud resources, scalability
has to be a fundamental architectural design trait of new cloud databases. This chal-
lenge is manifested in new data models (NoSQL), replication, caching and partitioning
schemes, relaxed consistency and transaction guarantees, as well as new protocols,
APIs, indexing and storage services.

The aim of the workshop is to bring together researchers and practitioners in cloud
computing algorithms, service design, and data architectures to exchange ideas and
contribute to the development of this exciting and emerging new field.

ALGOCLOUD welcomes submissions of theoretical, experimental, methodologi-
cal, as well as application papers. Demonstration papers and high-quality survey papers
are also welcome. As such, contributions are expected to span a wide range of algo-
rithms for modeling, constructing, and evaluating operations and services in a variety
of systems, including (but not limited to) virtualized infrastructures, cloud platforms,
datacenters, mobile ad hoc networks, peer-to-peer and grid systems, HPC architectures,
etc.

Topics of interest addressed by this workshop include, but are not limited to:

• Algorithmic aspects of elasticity and
scalability for distributed, large-scale
data stores (e.g., NoSQL and colum-
nar databases)

• Search and retrieval algorithms for
cloud infrastructures

• Monitoring and analysis of elasticity
for virtualized environments

• NoSQL, schemaless data modeling,
integration

• Caching and load-balancing
• Storage structures and indexing for

cloud databases

• New algorithmic aspects of parallel
and distributed computing for cloud
applications

• Scalable machine learning, analytics,
and data science

• High availability, reliability, failover
• Transactional models and algorithms

for cloud databases
• Query languages and processing,

programming models
• Consistency, replication and parti-

tioning CAP, data structures and
algorithms for eventually consistent
stores

ALGOCLOUD 2015 took place during September 14–15, 2015, at the Conference
and Cultural Center of the University of Patras, Greece. It collocated and was part of
ALGO 2015, the major annual congress that combines the premier algorithmic con-
ference European Symposium on Algorithms (ESA) and a number of other specialized
conferences and workshops, all related to algorithms and their applications, making

ALGO the major European event for researchers, students, and practitioners in
algorithms.

ALGOCLOUD 2015 was organized by the University of Patras and its Department
of Computer Engineering and Informatics, and it was supported by Springer as well as
by the European Social Fund (ESF) complemented with Greek national funds through
the Operational Program Education and Lifelong Learning of the National Strategic
Reference Framework (NSRF) – Research Funding Program THALES: Investing in
Knowledge Society through the European Social Fund.

The Program Committee (PC) of ALGOCLOUD 2015 was delighted by the positive
response to the call for papers. The diverse nature of papers submitted demonstrated the
vitality of the algorithmic aspects of cloud computing. All submissions underwent the
standard peer-review process and were reviewed by at least three PC members,
sometimes assisted by external reviewers. The PC decided to accept 13 original
research papers that were presented at the workshop.

The program of ALGOCLOUD 2015 was complemented by two highly interesting
tutorials. The first one, entitled “Performance and Scalability of Indexed Subgraph
Query Processing Methods,” was delivered by Prof. Peter Triantafillou (School of
Computing Science, University of Glasgow, UK). The second tutorial, entitled “Dis-
tributed Privacy Preserving Record-Linkage,” was delivered by Prof. Vassilios
Verykios (School of Science and Technology, Hellenic Open University, Greece). We
wish to express our sincere gratitude to both distinguished scientists for the excellent
tutorials they provided.

We hope that these proceedings will help researchers to understand and be aware of
state-of-the-art algorithmic aspects of cloud computing, and that they will stimulate
further research in the domain of algorithmic approaches in cloud computing in
general.

September 2015 Ioannis Karydis
Spyros Sioutas

Peter Triantafillou
Dimitrios Tsoumakos

VI Preface

Organization

Program Co-chairs

Spyros Sioutas Ionian University, Greece
Peter Triantafillou University of Glasgow, UK
Dimitrios Tsoumakos Ionian University, Greece

Program Committee

Christos Anagnostopoulos University of Glasgow, UK
Alexis Delis University of Athens, Greece
Marios Dikaiakos University of Cyprus, Cyprus
Schahram Dustdar Technical University of Vienna, Austria
Anastasios Gounaris AUTH, Greece
Seif Haridi Royal Institute of Technology, Sweden
Ioannis Karydis Ionian University, Greece
Yannis Konstantinou NTUA, Greece
Christos Makris University of Patras, Greece
Haralambos Mouratidis University of Brighton, UK
Nikos Ntarmos University of Glasgow, UK
George Pallis University of Cyprus, Cyprus
Mema Roussopoulos University of Athens, Greece
Hong-Linh Truong Technical University of Vienna, Austria

External Reviewers

Marios Kendea
Andreas Kosmatopoulos
Nikolaos Nodarakis
Athanasios Naskos

Abstracts

Performance and Scalability of Indexed
Subgraph Query Processing Methods

Peter Triantafillou

School of Computing Science, University of Glasgow, UK

Abstract. Graph data management systems have become very popular, as
graphs are the natural data model for many applications. One of the main
problems addressed by these systems is subgraph query processing; i.e., given a
query graph, return all graphs that contain the query. The naive method for
processing such queries is to perform a subgraph isomorphism test against each
graph in the dataset. This obviously does not scale, as subgraph isomorphism is
NP-complete. Thus, many indexing methods have been proposed to reduce the
number of candidate graphs that have to underpass the subgraph isomorphism
test. In this tutorial, we identify a set of key factors–parameters that influence the
performance of related methods: namely, the number of nodes per graph, the
graph density, the number of distinct labels, the number of graphs in the dataset,
and the query graph size. We then discuss comprehensive and systematic
experiments that analyze the sensitivity of the various methods on the values
of the key parameters. Our aims are twofold: first to draw conclusions about the
relative performance of the algorithms, and, second, to stress-test all algorithms,
deriving insights as to their scalability and highlighting how both performance
and scalability depend on these factors. We present six well-established
indexing methods, namely, Grapes, CT-Index, GraphGrepSX, gIndex, Tree+,
and gCode, as representative approaches of the overall design space, including
the most recent and best-performing methods. We report on their index con-
struction time and index size as well as on query processing performance in
terms of time and false-positive ratio. We discuss performance on both real and
synthetic datasets. Specifically, four real datasets of different characteristics are
used: AIDS, PDBS, PCM, and PPI. In addition, we report on a large number of
synthetic graph datasets, empowering us to systematically study the perfor-
mance and scalability of the algorithms as they depend on the aforementioned
key parameters.

A Tutorial on Blocking Methods
for Privacy-Preserving Record Linkage

Dimitrios Karapiperis1,&, Vassilios S. Verykios1,
Eleftheria Katsiri2, and Alex Delis3

1 School of Science and Technology, Hellenic Open University, Patras, Greece
{dkarapiperis, verykios}@eap.gr

2 Department of Electrical and Computer Engineering,
Democritus University of Thrace, Xanthi, Greece

eli@imis.athena-innovation.gr
3 Department of Informatics and Telecommunications,

University of Athens, Athens, Greece
ad@di.uoa.gr

Abstract. In this paper, we first present five state-of-the-art private blocking
methods which rely mainly on random strings, clustering, and public reference
sets. We emphasize on the drawbacks of these methods, and then, we present
our L-fold redundant blocking scheme, that relies on the Locality-Sensitive
Hashing technique for identifying similar records. These records have under-
gone an anonymization transformation using a Bloom filter-based encoding
technique. Finally, we perform an experimental evaluation of all these methods
and present the results.

Contents

Tutorial

A Tutorial on Blocking Methods for Privacy-Preserving Record Linkage 3
Dimitrios Karapiperis, Vassilios S. Verykios, Eleftheria Katsiri,
and Alex Delis

Regular Contributions

Algorithmic Aspects of Large-Scale Data Stores

Secret Shared Random Access Machine . 19
Shlomi Dolev and Yin Li

Column Generation Integer Programming for Allocating Jobs
with Periodic Demand Variations . 35

Ikbel Belaid and Lionel Eyraud-Dubois

SSSDB: Database with Private Information Search 49
Hillel Avni, Shlomi Dolev, Niv Gilboa, and Ximing Li

Graph DBs VS. Column-Oriented Stores: A Pure Performance Comparison. . . 62
Marios Kendea, Vassiliki Gkantouna, Angeliki Rapti, Spyros Sioutas,
Giannis Tzimas, and Dimitrios Tsolis

Distributed XML Filtering Using HADOOP Framework 75
Panagiotis Antonellis, Christos Makris, and Georgios Pispirigos

Efficient Bin Packing Algorithms for Resource Provisioning in the Cloud . . . 84
Shahin Kamali

Software Tools and Distributed Architectures for Cloud-Based Data
Management

Transaction Management for Cloud-Based Graph Databases 99
Georgia Koloniari and Evaggelia Pitoura

Convex Polygon Planar Range Queries on the Cloud: Grid vs. Angle-Based
Partitioning . 114

Nikolaos Nodarakis, Spyros Sioutas, Panagiotis Gerolymatos,
Athanasios Tsakalidis, and Giannis Tzimas

http://dx.doi.org/10.1007/978-3-319-29919-8_1
http://dx.doi.org/10.1007/978-3-319-29919-8_2
http://dx.doi.org/10.1007/978-3-319-29919-8_3
http://dx.doi.org/10.1007/978-3-319-29919-8_3
http://dx.doi.org/10.1007/978-3-319-29919-8_4
http://dx.doi.org/10.1007/978-3-319-29919-8_5
http://dx.doi.org/10.1007/978-3-319-29919-8_6
http://dx.doi.org/10.1007/978-3-319-29919-8_7
http://dx.doi.org/10.1007/978-3-319-29919-8_8
http://dx.doi.org/10.1007/978-3-319-29919-8_9
http://dx.doi.org/10.1007/978-3-319-29919-8_9

ARTþ: A Fault-Tolerant Decentralized Tree Structure with Ultimate
Sub-logarithmic Efficiency . 126

Spyros Sioutas, Efrosini Sourla, Kostas Tsichlas,
and Christos Zaroliagis

Comparison of Database and Workload Types Performance in Cloud
Environments . 138

George Seriatos, George Kousiouris, Andreas Menychtas,
Dimosthenis Kyriazis, and Theodora Varvarigou

Cloud Elasticity: A Survey . 151
Athanasios Naskos, Anastasios Gounaris, and Spyros Sioutas

A Survey on Software Tools and Architectures for Deploying
Multimedia-Aware Cloud Applications . 168

Christos Tselios and George Tsolis

An Overview of Methods for Handling Evolving Graph Sequences 181
Andreas Kosmatopoulos, Kalliopi Giannakopoulou,
Apostolos N. Papadopoulos, and Kostas Tsichlas

Author Index . 193

XIV Contents

http://dx.doi.org/10.1007/978-3-319-29919-8_10
http://dx.doi.org/10.1007/978-3-319-29919-8_10
http://dx.doi.org/10.1007/978-3-319-29919-8_10
http://dx.doi.org/10.1007/978-3-319-29919-8_11
http://dx.doi.org/10.1007/978-3-319-29919-8_11
http://dx.doi.org/10.1007/978-3-319-29919-8_12
http://dx.doi.org/10.1007/978-3-319-29919-8_13
http://dx.doi.org/10.1007/978-3-319-29919-8_13
http://dx.doi.org/10.1007/978-3-319-29919-8_14

Tutorial

A Tutorial on Blocking Methods for
Privacy-Preserving Record Linkage

Dimitrios Karapiperis1(B), Vassilios S. Verykios1, Eleftheria Katsiri2,
and Alex Delis3

1 School of Science and Technology, Hellenic Open University, Patras, Greece
{dkarapiperis,verykios}@eap.gr

2 Department of Electrical and Computer Engineering,
Democritus University of Thrace, Xanthi, Greece

eli@imis.athena-innovation.gr
3 Department of Informatics and Telecommunications,

University of Athens, Athens, Greece
ad@di.uoa.gr

Abstract. In this paper, we first present five state-of-the-art private
blocking methods which rely mainly on random strings, clustering, and
public reference sets. We emphasize on the drawbacks of these methods,
and then, we present our L-fold redundant blocking scheme, that relies on
the Locality-Sensitive Hashing technique for identifying similar records.
These records have undergone an anonymization transformation using
a Bloom filter-based encoding technique. Finally, we perform an experi-
mental evaluation of all these methods and present the results.

Keywords: Bloom filter · Locality-sensitive hashing · Blocking

1 Introduction

A series of economic collapses of bank and insurance companies recently triggered
a financial crisis of unprecedented severity. In order for these institutions to get
back on their feet, they had to engage in merger talks inevitably. One of the
tricky points for such mergers is to be able to estimate the extent to which the
customer bases of the constituent institutions are in common, so that the benefits
of the merger can be proactively assessed [33]. The process of comparing the
customer bases and finding out records that refer to the same real world entity,
is known as the Record Linkage, the Entity Resolution or the Data Matching
problem [3]. Record Linkage consists of two steps. In the first step potentially
matched pairs are searched while in the second step these pairs are matched.
The searching step addresses the problem of bringing together for comparison
tentative matched pairs of records, while disregarding the unpromising ones. The
searching step should be able to identify a minimal superset of the matched pairs
so that no computational resources are wasted in comparison operations during
the following step. The second step, known as the matching step, entails the
c© Springer International Publishing Switzerland 2016
I. Karydis et al. (Eds.): ALGOCLOUD 2015, LNCS 9511, pp. 3–15, 2016.
DOI: 10.1007/978-3-319-29919-8 1

4 D. Karapiperis et al.

comparison of record pairs which have been brought together for comparison in
the previous step. The matching step is implemented either in an exact or in an
approximate manner. An exact matching of two records can be regarded as a
binary decision problem with two possible outcomes denoting the agreement or
disagreement of these records. Approximate matching comprises the calculation
of a continuous value similarity metric that usually assumes values in the range
of [0, 1].

When data to be matched is deemed to be sensitive or private, such as health
data or data kept by national security agencies, Privacy-Preserving Record Link-
age (PPRL) techniques should be employed [11]. PPRL investigates how to make
linkage computations secure by respecting the privacy of the data, and imposes
certain constraints on the two steps of Record Linkage just described, on the top
of the necessary anonymization of the input records. First of all, the anonymiza-
tion of the records must be implemented in such a way that (a) no sensitive
information in a record is disclosed to parties other than the owner, (b) the
anonymization process is time and cost efficient (c) it preserves the distance
of the values in the record fields, i.e., if record a is closer to record b than it
is to record c, then the same relationships should hold for their anonymized
counterparts, and (d) the final deliberation about the linking status of a pair
of records, that relies on the comparison of their anonymized form, should be a
close approximation of the distance between their original record counterparts.
The PPRL process is summarized in Fig. 1.

anonymization
of data sets

secure
searching

secure
matching

Fig. 1. The PPRL process.

The secure searching solutions, which have been developed to solve the PPRL
problem, rely mostly on traditional blocking, where all records that have the
same value in a specific field(s) are placed together for comparison. However,
the proposed solutions exhibit a considerable overhead in terms of performance,
when applied to voluminous data and especially to high-dimensional data.
In [13] by Inan et al. as an example, blocking relies on the categorization of
records into generalized hierarchies based on the semantics of values of selected
fields, which may lead to load imbalance problems, if most values semantically
belong to certain categories. Karakasidis et al. in [17] present a blocking tech-
nique which relies on a sliding window that creates blocks of records. Its per-
formance is considerably degraded, when the size of that window is increased in
order to produce more accurate results. Authors in [7,19,21] use redundant prob-
abilistic methods, where each record is blocked to several independent blocking
groups, in order to amplify the probability of bringing together similar records
for comparison. Authors though utilize an arbitrary number of blocking groups,

A Tutorial on Blocking Methods for Privacy-Preserving Record Linkage 5

which has as a result either unnecessary and expensive comparisons or missed
similar record pairs.

In this paper, we first present five state-of-the-art private blocking meth-
ods which rely mainly on random strings, clustering, and public reference sets.
We emphasize on their drawbacks, and then present our new flexible L-fold
redundant blocking scheme which is structured around an efficient technique
for searching potentially matching record pairs. More specifically, our scheme
relies on the idea of blocking one record to multiple groups in order to amplify
the probability of inserting similar records into the same block. We use the
so-called Locality-Sensitive Hashing technique [9], where we utilize only the nec-
essary number of blocking groups. By doing so, we achieve accurate results with-
out imposing any additional computational overhead. This LSH-based searching
method, as shown experimentally in Sect. 5, can reduce the number of record
pairs that are brought together for comparison up to 98 % of the total compari-
son space. Experimental results demonstrate the effectiveness and the superiority
of our method by comparing it to five state-of-the-art private blocking methods.

The structure of the paper is organized as follows: Related work is given
in Sect. 2. In Sect. 3, we illustrate some basic building components used by the
private blocking methods presented in Sect. 4. These methods are evaluated in
Sect. 5, while conclusions are discussed in Sect. 6.

2 Related Work

Several solutions have been provided in the literature in the filed of efficient
searching for similar records [2,5,7,13–15,17,19,21,26]. However, the proposed
solutions exhibit poor performance when applied to large data sets. In [5] for
example, a cheap distance metric is used for creating clusters of records and
then a more expensive, accurate distance metric is used to evaluate the record
pairs that are tagged for further evaluation. Nevertheless, the number of record
pairs that should be compared can still be excessively large. Authors in [2] use
TF/IDF [25] in order to generate weight vectors from each record, which are used
as keys during the blocking mechanism. Various levels of privacy protection are
presented at the expense of efficiency. The tree-based indexing methods used in
[14,15,26], in order to reduce the number of candidate record pairs, as reported
and proved in [10,32] and [1], deteriorate rapidly to quadratic complexity, by
scanning the whole index structure repeatedly, when these structures are used
for representing records even with moderate dimensionality (≥10). A detailed
survey of blocking techniques for Record Linkage can be found in [4]. An overview
of privacy-preserving blocking techniques is provided in [31].

Our scheme utilizes a trusted third-party and we make the assumption that
this party does not collude with the other participants. Two-party techniques,
like the ones in [29,30], may reduce the risk of privacy breach but they are
complex and they add high communication cost.

6 D. Karapiperis et al.

3 Building Components

In this section, we present two basic building components of the blocking meth-
ods which will be presented later.

3.1 Secure Multi-party Computations

A reliable Secure Multi-Party (SMC) technique of performing a joint
computation among several parties is the partially homomorphic Paillier
cryptosystem [24]. A joint computation could be the addition of some values,
where these values should remain secret due to privacy concerns. Successive
encryption of the same value generates different cipher texts with high proba-
bility.

A trusted authority is required in order to issue a public/private key pair,
needed for the encryption and decryption operations respectively. Given two
values (messages), x1 and x2, encryption is performed by using the public key
and the produced cipher texts are denoted by x̃1 and x̃2 respectively. Given
the cipher texts, we can perform either homomorphic addition (x̃1 ⊕ x̃2) or
multiplication with a constant c (c � x̃1). The cipher texts can be decrypted
by the trusted authority by using its private key. SMC protocols are effective,
reliable but add high computational overhead.

3.2 Differential Privacy

Generally, Differential Privacy (DP) [8] aims to maximize the accuracy of queries
posed to statistical databases, while minimizing the chances of disclosing the
identities of the real-world entities represented therein. DP is achieved (a) by
defining the sensitivity of each query, and (b) by adding noise. The sensitivity is
the maximum difference obtained by applying a query on two databases which
differ on at most one row. These databases are termed as sibling or neighboring
databases.

Let us assume, two sibling medical databases which contain records that
represent patients. Let us also assume, one boolean attribute which denotes if
a patient has a certain disease or not (e.g., diabetes). The output of the count
query “How many patients have diabetes?” applied on both databases will differ
by at most one, which is the sensitivity S of that query.

A randomized mechanism M : D → O applied on the sibling databases D1

and D2, which are essentially two sets of rows of database D, is differentially
private if for all sets O ⊆ O, it holds that

Pr[M(D1) ∈ O] ≤ eε Pr[M(D2) ∈ O], (1)

where the probability is taken over the coins of M. In order to achieve Eq. 1,
mechanism M adds to the true value of the query, noise drawn from a zero-
mean Laplace distribution with scale S/ε, where ε is the privacy parameter.
By increasing the value of ε, we achieve stronger privacy guarantees but we
experience accuracy loss in the responses.

A Tutorial on Blocking Methods for Privacy-Preserving Record Linkage 7

4 Private Blocking Methods

In this section, we present six state-of-the-art private blocking methods.

4.1 Method HG

This hierarchy-based blocking method (HG) [13] relies on the categorization of
records into generalized hierarchies based on the semantics of values of selected
attributes. The authors use k-anonymity [28] to generate these hierarchies which
comprise blocks of possible matching record pairs. Generalized attribute values
are sent to a third party, who classifies the formulated record pairs as matches,
non-matches, or possible matches. Then, an SMC approach is used to calculate
similarities of the possible matches. The records of the sample database shown
in Table 1 are categorized into hierarchies illustrated in Table 2.

Table 1. Sample database

1 John Smith Doctor

2 Andy Petterson Doctor

3 John Smyth Teacher

4 Susan Devon Teacher

Table 2. Generalized 2-anonymous database

1 Doctor

2 Doctor

3 Teacher

4 Teacher

A modification of HG, proposed in [14], relies on the notion of DP for pro-
viding strong privacy guarantees. In this method, the data custodians indepen-
dently partition their records into d-dimensional regions (hyper-rectangles) using
tree-based indexing structures (i.e., BSP-Tree, KD-Tree, or R-Tree), and then
exchange the differentially-private perturbed size and extents of these regions.
During the blocking phase, only records which have been partitioned into regions
that are compliant to a certain decision rule are considered. For example, record
a which belongs to region [Female/age 40–45] cannot formulate a pair with
record b which belongs to [Male/age 20–25]. The generalized hierarchies may
lead to load imbalance problems, if most values semantically belong to certain
generalized hierarchies.

The main drawbacks are (a) the computationally expensive SMC approach,
and (b) the difficulty of applying it on strings that do not semantically belong
to a certain generalized hierarchy.

8 D. Karapiperis et al.

4.2 Method EUC

The Euclidean distance-based blocking method (EUC), was proposed by
Scannapiecco et al. [26]. This method represents strings in a private manner
by embedding them in a Euclidean space. EUC uses P reference sets, common
to both data custodians who participate in the linkage process. In these reference
sets, each element comprises a random sequence of characters of length approx-
imately equal to the average length of strings in the data sets. Embedding a
string s results in a vector of size P , where each component of this vector stores
the minimum edit distance of s from all the elements in a reference set. Figure 2
illustrates the process of building the vectors of two similar string. The authors,
in order to find the similar vectors, use a multidimensional tree-based index,
which has the performance drawback described in Sect. 2. For this reason, we
utilize the Euclidean LSH-based blocking scheme [6,20] specifically developed
for finding similar points in Euclidean spaces.

wyZrTBpuVH

aepIyhWHJD

QLUHoZuawdQLUHoZuawd

fOOiwfOOiwwyZrTwyZrT

P1

P2

P3

P4

Mary
5
5

4
4

5
5

4
5

4
4

5
5

5
5

4
4

4
4

4
4

5
5

5
5

embedding of Mary v 1=(4,4,4,4)
embedding of Mara v 2=(4,5,4,4)

Mara

Fig. 2. Building the vectors of strings ‘Mary’ and ‘Mara’.

4.3 Method PHN

The phonetic encoding-based blocking method (PHN), by Karakasidis and
Verykios [16], used phonetic encoding functions to generalize strings. For exam-
ple, using the Double Metaphone encoding method, ‘SMITH’ and ‘SMYTH’ are
both encoded as ‘SM0’. The phonetic algorithms are computationally fast, which
makes them appealing to settings with a large number of records. First, the data
custodians convert their strings into phonetic codes and additionally inject fake
codes into the encoded data sets, which are then sent to a trusted third party.
The third-party builds blocks using common codes from both data sets. Next,

A Tutorial on Blocking Methods for Privacy-Preserving Record Linkage 9

the matching codes are returned to the data custodians and the corresponding
records are exchanged.

This method falls short of representing similar strings effectively due to the
inadequacy of the phonetic codes to represent these similar values with the same
code.

4.4 Method AHC

Kuzu et al. proposed an agglomerative hierarchical clustering-based blocking
method (AHC) [22], which is based on public reference sets and DP. Global
clusters are generated by the trusted third-party for a set of public reference
values of a chosen field. Each data custodian assigns her records into these clus-
ters according to their similarity with respect to the elements of each cluster.
Differential privacy is used in order to perturb the cardinality of each cluster
by adding noise randomly drawn from a zero-mean Laplace distribution. The
authors add two types of noise, namely (a) positive noise which is incorporated
by adding fake records to the blocks, while (b) negative noise requires suppress-
ing original records. This addition/suppression of records, which is illustrated in
Fig. 3, entails accuracy loss in the final result set.

Next for the matching step, for the field values found in common clusters, an
SMC approach is followed by representing each field value as a binary vector,
where each component represents a distinct bigram. A component of that vec-
tor is set to 1 if the bigram that represents appears in the corresponding field
value. However, these vectors suffer from excessively high dimensionality and
also exhibit high degree of sparsity.

The main drawback of AHC is the strong dependence on the public reference
sets, which should be a subset of the values used in the data sets (as will be
shown in Sect. 5). Additionally, the SMC approach followed is computationally
expensive.

4.5 Method TPB

In this two-party blocking method (TPB), introduced in [30], each data custo-
dian creates a separate reference set for a sorting attribute value (e.g., ‘Last-
Name’), merges her records with it, and sorts the results. The data custodians
independently generate clusters, which contain a reference value, and a list of
attribute values sorted before that reference value. These clusters are merged
such that each cluster contains at least k attribute values in order to achieve
k-anonymity [28].

Then, those reference values which correspond to each cluster are first
exchanged between the data custodians and then are merged and sorted. We
note that the number of the reference values, denoted by ne, exchanged for each
cluster can be 1 or more. This parameter plays an important role on the privacy
guarantees of TPB. The sorted nearest neighborhood method [12] is applied on

10 D. Karapiperis et al.

a1, a2, a3 a4, a5

a1, a2, a3 a4, a5, r1

C1 C2

Fig. 3. Suppressing record a3 in cluster C1 and adding fake record r1 in C2.

the this sorted list of reference values using a sliding window of size w. Eventu-
ally, record pairs are formulated by using the reference values, which represent
certain clusters, that fall into the same window.

TPB exhibits the same deficiency with AHC, since there is a strong depen-
dence on the choice of the public reference sets. As we will see in the experi-
ments, the reference values should be a subset of the values used in the data
sets in order to achieve accurate results. Also, the authors do not mention any-
thing about the protocol/method which will be used for computing the distance
between the records of each pair.

4.6 Method HLSH

Method HLSH [20] is based on Hamming Locality-Sensitive Hashing tech-
nique [9] and on a Bloom filter-based encoding method [27]. Schnell et al. have
shown that Bloom filters are able to preserve the distance between strings. A
bitmap array of size S, initialized with zeros, is created by hashing all consec-
utive bigrams of a string (sequences of pairs of adjacent characters), by using
independent composite cryptographic hash functions which may include either
MD5 and SHA1, or more advanced keyed hash message authentication code
(HMAC) functions like HMAC-MD5 and HMAC-SHA1, which utilize a secret
key. We concatenate Bloom filters, which represent single field values of a record,
in order to compose record-level Bloom filters. Figure 4 illustrates the creation
of two similar record-level Bloom filters.

HLSH utilizes L independent hash tables. Each hash table, denoted by Tl

where l = 1, . . . , L, consists of key-bucket pairs where a bucket hosts a linked
list which is aimed at grouping similar Bloom filter pairs. Each hash table has
been assigned a composite hash function gl which consists of a fixed number K
of base hash functions. A base hash function applied to a Bloom filter returns the
value of its j-th position where j ∈ {0, . . . , S − 1} chosen uniformly at random.

A Tutorial on Blocking Methods for Privacy-Preserving Record Linkage 11

110101

Jo oh hn

composite cryptographic hash function for each bigram x
 Gi(x) = [sha1(x) + (i * md5(x))] mod S

Bf1

Bf2

110111

Sm mi it th

Jo oh hn

110101

Sm my yt th

101111

Fig. 4. Creating two similar Bloom filters from similar strings.

We assume a pair of Bloom filters of distance less than or equal to a predefined
threshold as similar. The smaller the Hamming distance of a Bloom filter pair is,
the higher the probability for a gl to produce the same result. The result of a gl,
which constitutes the blocking key and is applied to a Bloom filter, specifies into
which bucket of some Tl, this Bloom filter will be stored. The intuition behind
HLSH is the random choices of bits, which are performed redundantly, and result
in grouping similar Bloom filters in at least one Tl. During the matching step,
we scan the buckets of each Tl and formulate pairs.

The optimal number of the Tl’s that should be utilized is:

L = 	 ln(δ)
ln(1 − pK)

,

where p denotes the probability of a base hash function of producing the same
result by hashing two similar Bloom filters. The similarity of a Bloom filter pair
is user-defined and denoted by θ. By using this structure, each similar Bloom
filter pair will be returned with high probability 1 − δ, as δ is usually set to a
small value, say δ = 0.1. A method, which relies on random sampling of Bloom
filter pairs, for choosing the optimal value of K is presented in [18].

5 Evaluation

We evaluate the above-mentioned methods in terms of (a) the accuracy in finding
the truly matched record pairs, (b) the efficiency in reducing the number of candi-
date pairs, and (c) the execution time. We use semi-synthetic data sets, denoted
by A and B, with size of 1, 000, 000 records each, extracted from the NCVR [23]
list. Each record contains as fields the LastName, FirstName, Address, and Town.
Insert, edit, delete, and transpose operations, chosen in random order, are used
to perturb the values of each field of certain marked records from A. Eventually,
those perturbed records are placed in data set B. For the experiments, we used
a simple PC with an Intel i5-2400 and 16 GB RAM. The software components
were developed using the Java programming language (JDK 1.7)

12 D. Karapiperis et al.

5.1 Selected Measures

The Pairs Completeness (PC), and the Reduction Ratio (RR) metrics [4] are
employed to evaluate the accuracy in identifying the matching record pairs and
the reduction of the comparison space, respectively. PC is equal to |M∩M |/|M |,
where M and M denote the sets of the identified and the truly matching record
pairs, respectively. RR indicates the percentage of the reduction of the compari-
son space given by RR = 1.0−|CR|/|A×B|, where CR is the set of the candidate
record pairs and A×B denotes the comparison space. Each experiment was run
50 times and we plotted the average values in the figures shown below.

5.2 Configuration Parameters

In order to achieve higher accuracy rates in EUC, we (a) set 30 dimensions
for each field, and (b) turned off both the greedy re-sampling and the distance
approximation heuristic, both illustrated in [26]. For the LSH-based mechanism,
we set K = 5, and thresholds to 4.5 and 8 for each perturbation scheme, respec-
tively. We experimented with several values for L and we chose L = 30 and
L = 140 which achieve a good balance between efficiency and accuracy. In AHC,
we set the LastName field as the blocking field, the privacy parameter ε to 0.5,
and the number of clusters to 500. We did not apply any negative noise in
order not to suppress any records from those clusters. For HG, we categorized
the records into the educational hierarchies, which were assigned randomly to
records, as illustrated in [13]. In TPB, we used the configuration parameters
proposed by the authors in [30], which are k = 100, w = 2, and ne = 50%.
For HLSH, we set the distance threshold θ = 200, the size of the record-level
Bloom filters S = 2, 000, K = 30, and δ = 0.1. Using these parameters, HLSH
generated L = 54 blocking groups.

0

0.5

0.7

0.9

P
ai

rs
 C

om
pl

et
en

es
s

EUC HG PHN AHC TPB HLSH

Fig. 5. Measuring the Pairs Completeness (accuracy) rates.

A Tutorial on Blocking Methods for Privacy-Preserving Record Linkage 13

R
ed

uc
tio

n
R

at
io

EUC HG PHN AHC TPB HLSH
0

0.5

0.7

0.9

Fig. 6. Measuring the Reduction Ratio.

0

20

40

60

tim
e

(in
 m

in
ut

es
)

EUC HG PHN AHC TPB HLSH

Fig. 7. Measuring the time consumed.

5.3 Comparative Results

Figure 5 illustrates the PC rates of each method and it can be clearly seen that
HLSH, AHC, and TPB achieve the highest scores. However, we have to note
that the performance of AHC and TPB is highly dependent on the choice of the
reference values. We tested several sets of reference values and achieved high PC
rates only when those sets were supersets of the field values. Conversely, if those
sets were not supersets of the field values, the PC rates dropped considerably
below 70%. HG and PHN exhibited stable performance, while EUC had large
deviations from its mean rate mainly due to the embedding method and the
random formulation of the reference set of strings.

The reduction of the comparison space, as measured by the RR, is shown in
Fig. 6. HLSH, AHC, TPB, and PHN exhibit comparable performance reaching

14 D. Karapiperis et al.

almost 98% reduction. Finally, Fig. 7 demonstrates the running time consumed,
where HLSH outperforms clearly all the other methods. Also, we notice that the
rates of PHN are quite close to those of HLSH. To be fair though, AHC and
TPB perform SMC computations, which are reliable but are computationally
expensive, during the matching step. EUC and HG crashed the system throwing
the ‘Out of Memory’ error.

6 Conclusions

Linking large collections of records by simultaneously protecting their privacy
has arisen recently as an intriguing problem in the core of the domain known as
Privacy-Preserving Record Linkage. In this paper we compare the HLSH method,
which relies on the Locality-Sensitive Hashing technique and the Bloom filter-
based encoding method, with five state-of the-art private blocking methods.
HLSH outperformed these methods in terms of the accuracy of the results as
well as the running time required.

References

1. Aggarwal, C., Yu, P.: The IGrid index: reversing the dimensionality curse for sim-
ilarity indexing in high dimensional space. In: SIGKDD, pp. 119–129 (2000)

2. Al-Lawati, A., Lee, D., McDaniel, P.: Blocking-aware private record linkage. In:
IQIS, pp. 59–68 (2005)

3. Christen, P.: Data Matching - Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Data-Centric Systems and Applications.
Springer, Heidelberg (2012)

4. Christen, P.: A survey of indexing techniques for scalable record linkage and dedu-
plication. TKDE 24(9), 1537–1555 (2012)

5. Cohen, W., Richman, J.: Learning to match and cluster large high-dimensional
datasets for data integration. In: SIGKDD, pp. 475–480 (2002)

6. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Symposium on Computational Geom-
etry, pp. 253–262 (2004)

7. Durham, E.: A Framework For Accurate Efficient Private Record Linkage. Ph.D.
thesis, Vanderbilt Univ., US (2012)

8. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

9. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: VLDB, pp. 518–529 (1999)

10. Goodman, J., O’Rourke, J., Indyk, P.: Handbook of Discrete and Computational
Geometry. CRC, Boca Raton (2004)

11. Hall, R., Fienberg, S.E.: Privacy-preserving record linkage. In: Domingo-Ferrer, J.,
Magkos, E. (eds.) PSD 2010. LNCS, vol. 6344, pp. 269–283. Springer, Heidelberg
(2010)

12. Hernandez, M., Stolfo, S.: Real world data is dirty: data cleansing and the
merge/purge problem. DMKD 2(1), 9–37 (1988)

A Tutorial on Blocking Methods for Privacy-Preserving Record Linkage 15

13. Inan, A., Kantarcioglou, M., Bertino, E., Scannapieco, M.: A hybrid approach to
private record linkage. In: ICDE, pp. 496–505 (2008)

14. Inan, A., Kantarcioglu, M., Ghinita, G., Bertino, E.: Private record matching using
differential privacy. In: EDBT, pp. 123–134 (2010)

15. Jin, L., Li, C., Mehrotra, S.: Efficient record linkage in large datasets. In: DASFAA,
pp. 137–146 (2003)

16. Karakasidis, A., Verykios, V.: Privacy preserving record linkage using phonetic
codes. In: BCI, pp. 101–106. IEEE (2009)

17. Karakasidis, A., Verykios, V.: A sorted neighborhood approach to multidimensional
privacy preserving blocking. In: ICDM Workshops, pp. 937–944 (2012)

18. Karapiperis, D., Verykios, V.: A distributed near-optimal LSH-based framework
for privacy-preserving record linkage. COMSIS 11(2), 745–763 (2014)

19. Karapiperis, D., Verykios, V.: A distributed framework for scaling up LSH-based
computations in privacy preserving record linkage. In: BCI, pp. 102–109. ACM
(2013)

20. Karapiperis, D., Verykios, V.: An LSH-based blocking approach with a homo-
morphic matching technique for privacy-preserving record linkage. TKDE 27(4),
909–921 (2015)

21. Kim, H., Lee, D.: Fast iterative hashed record linkage for large-scale data collec-
tions. In: EDBT, pp. 525–536 (2010)

22. Kuzu, M., Kantarcioglu, M., Inan, A., Bertino, E., Durham, E., Malin, B.: Efficient
privacy-aware record integration. In: EDBT, pp. 167–178 (2013)

23. NCVR: North Carolina voter registration database. ftp://www.app.sboe.state.nc.
us/data

24. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

25. Rivest, R.: Chaffing and winnowing: Confidentiality without encryption. MIT
Internal paper (2011)

26. Scannapieco, M., Figotin, I., Bertino, E., Elmagarmid, A.: Privacy preserving
schema and data matching. In: SIGMOD, pp. 653–664 (2007)

27. Schnell, R., Bachteler, T., Reiher, J.: Privacy-preserving record linkage using bloom
filters. BMC Med. Inf. Decis. Mak. 9(41), 1–11 (2009)

28. Sweeney, L.: k-anonymity: a model for protecting privacy. Uncertainty Fuzziness
Knowl. Based Syst. 10(5), 557–570 (2002)

29. Vatsalan, D., Christen, P., Verykios, V.: An efficient two-party protocol for approx-
imate matching in private record linkage. In: AUSDM, pp. 125–136 (2011)

30. Vatsalan, D., Christen, P., Verykios, V.: Efficient two-party private blocking based
on sorted nearest neighborhood clustering. In: CIKM, pp. 1949–1958 (2013)

31. Vatsalan, D., Christen, P., Verykios, V.: A taxonomy of privacy-preserving record
linkage techniques. Inf. Sys. 38(6), 946–969 (2013)

32. Weber, R., Schek, H., Blott, S.: A quantitative analysis and performance study
for similarity search methods in high dimensional spaces. In: VLDB, pp. 194–205
(1998)

33. Yakout, M., Atallah, M., Elmagarmid, A.: Efficient private record linkage. In:
ICDE, pp. 1283–1286 (2009)

ftp://www.app.sboe.state.nc.us/data
ftp://www.app.sboe.state.nc.us/data

Regular Contributions

Secret Shared Random Access Machine

Shlomi Dolev and Yin Li(B)

Department of Computer Science,
Ben-Gurion University of the Negev, Beersheba, Israel

dolev@cs.bgu.ac.il, yunfeiyangli@gmail.com

Abstract. The computations over RAM are preferred over computa-
tions with circuits or Turing machines. Secure and private RAM execu-
tions become more and more important in the scope avoiding information
leakage when executing programs over a single computer as well as over
the clouds. In this paper, we propose a distributed scheme for evaluating
RAM programs without revealing any information on the computation
including the program, the data and the result. We use the Shamir secret
sharing to share all the program instructions and private string match-
ing technique to ensure the correct instruction execution. We stress that
our scheme obtains information theoretic security and does not rely on
any computational hardness assumptions, therefore, gaining indefinite
private and secure RAM execution of perfectly unrevealed programs.

Keywords: Shamir secret sharing · Random access machine · Informa-
tion theoretic secure

1 Introduction

Cloud computing provides cost-efficient and flexible shared infrastructure and
computational services on demand for various customers who need to store and
operate on a huge amount of data. Until now, there are various services providers
such as Amazon [1] and Google [13] offering platforms, software, and storage
outsourcing applications. Much attention has been paid to them due to the
potential benefits and business opportunities that clouds could bring [9].

However, cloud computing also introduces security and privacy risks for the
clients. For example, some of the cloud providers are not perfectly reliable and
are vulnerable to network attacks and data leakage. Furthermore, even a single
computer with the same cloud organization is untrustworthy. There are possible
attacks on a single computer during which information is copied from the bus
of the computer and sent to an adversary.

Several techniques are applied to address data storage privacy [18–20,26]
and security computation on clouds [17,29]. Among these studies, security

S. Dolev—Partially supported by Kamin grant of the Israeli economy ministry, and
the Rita Altura Trust Chair in Computer Sciences.
Y. Li—The author would like to acknowledge the Lynne and William Frankel Center
as it supports students travel for presenting their works.

c© Springer International Publishing Switzerland 2016
I. Karydis et al. (Eds.): ALGOCLOUD 2015, LNCS 9511, pp. 19–34, 2016.
DOI: 10.1007/978-3-319-29919-8 2

20 S. Dolev and Y. Li

in evaluating random access machine (RAM) program is an important task
[2,23], since many modern algorithms are operating on the von Neumann RAM
architecture. Until now, there are mainly two ways, the first is to convert a
RAM program into circuits and the second is to use oblivious RAM, introduced
by Goldreich and Ostrovsky [19]. Oblivious RAM schemes are preferred as there
is no need to convert the program into a binary circuit which leads to a huge
blowup in program size and its running time.

Even though the propositions for secure RAM evaluation can address various
privacy challenges including two-party [22,23], multiparty [5,10] or large-scale
computation [6] against semi-honest or malicious adversaries, they all assume
that the processors used by clouds are trustworthy. Thus, in these proposals,
the CPU has to decrypt the input data before processing and then encrypt
the output data again. In fact, an adversary can introduce a special hardware
Trojan [28] designed to disable or destroy a system in the future, or leak confi-
dential information. Similar attack has already been demonstrated in [3], where
a specially designed Trojan in the CPU revealed sensitive information to the
adversary.

Threat Model. We assume that there is a client that wants to run a program on
the clouds. But the client does not want to reveal any information about both
the program and the data. The adversary, has deployed the untrusted hardware
to the clouds. That is to say, the adversary can listen to the bus, may extract
information on the internal activity of the processor. All the clouds are not
necessarily semi-honest.

Unfortunately, none of the above protocols can avoid information leakage
under such threat model. Thus, one may wish to execute an encrypted program
on encrypted data without decrypting neither the program nor the data. A
straightforward approach is to execute the encrypted instructions in the clouds
processors directly. Fully homomorphic encryption [14,15] (FHE) is a way to
achieve this goal. Several schemes are proposed to implemented secret pro-
gram execution over FHE (e.g., [7,8,31]). However, the main problem is that
the proposed schemes have high overhead of computation [16] which make FHE
more theoretical result than practical. Moreover, Gentry’s scheme and later FHE
schemes relied on the hardness assumptions such that of the ideal lattices, which
are only computationally secure, rather than key-less information theoretical
secure.

Our Contribution. In this paper, an alternative architecture is proposed with
security and privacy that are based on theoretically security promises. The main
technique is a combination of Shamir Secret Sharing [25] and the recently pro-
posed Accumulating Automata [12].

Secret sharing is used to utilize perfect privacy of the client’s program and
processor states and secret string matching [12] is used to facilitate instruction
execution. We note that the modern instruction set, for example, CISC and
RISC, originally designed for efficiency and performance [21], are too complicated
when there is a need to hide their nature of operation and the sequence of
operations they form. Thus we apply One Instruction Set Computer (OISC) to

Secret Shared Random Access Machine 21

our model. We simulate the OISC instruction subtract and branch if less than
or equal to zero (Subleq) that is proven complete and for which there exists a
compiler from high-level programming languages to Subleq [24]. As a result, our
scheme has the following significant characteristics

– Information theoretic security. We use Shamir secret sharing which could
provide information theoretic security for clients. In our scheme, the user’s
program is secret shared and run on independent machines and clouds. Each
cloud only needs to perform computation without communicating with other
clouds. Moreover, note that we use the instruction Subleq proven to be com-
plete in terms of Turing-complete computation. Thus, our model can execute
any RAM programs privately and securely.

– Program protection. During the whole execution of the program, for every
instruction, the processors have to “touch” all the instructions in the memory.
Moreover, for every data access, the processors also have to access all of the
data items. The execution mode and access pattern make the client program
“oblivious” to the clouds, thus ensuring both data and program privacy. Still,
the operations can be delegated by the users to powerful machines in the
clouds, which perform these linear access to all items for executing operations
without revealing their nature and sequence.

– Error correcting. Notice that the clients run their programs in E independent
machines/clouds. According to the conclusion of Ben-Or et al. [4], as long as
less than one-third of clouds are malicious (do not follow the protocol possibly
returning wrong results), the client can detect their actions by reconstructing
the final result using Lagrange interpolation.

The rest of the paper is organized as follows: in Sect. 2, we briefly introduce
the settings used in our paper. Section 3 describes the basic primitives we use
in our construction. Explicit application and its security analysis are given in
Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Preliminary

In this section, we briefly introduce the basic ingredients used in the sequel.

Shamir Secret Sharing. Shamir secret sharing (SSS) is an information the-
oretic secure protocol, which allows a dealer to secret share a values s among
E players. There is a threshold δ for the scheme, such that, the knowledge of
δ or fewer player secrets make the adversary learn no information about s, but
if more than δ players communicate their shares to each other, they can easily
recover the secret.

Distribution: The dealer picks a random polynomial f ∈ Fp[x] of degree δ < E
such that f(0) = s ∈ Fp. The dealer also chooses E arbitrary non-zero indices
α1, · · · , αE , computes f(αi) for 1 ≤ i ≤ E and send (αi, f(αi)) to each corre-
sponding players.

22 S. Dolev and Y. Li

Reconstruction: Any δ + 1 players can reconstruct the polynomial f by apply-
ing Lagrange interpolation to the tuples (αi, f(αi)). They recover the secret by
computing f(0) mod p = s.

Shamir secret sharing is additively homomorphic but is not multiplicatively
homomorphic. Namely, if we want to perform multiplication using Shamir secret
shares, a special “degree reduction step” is required. We will discuss this problem
more explicitly in the following section.

Private String Matching. Recently, Dolev et al. proposed a secret string
matching algorithm using Accumulating Automata [12]. The algorithm runs on
several cloud servers. The strings to be compared are originally secret shared
using Shamir secret sharing and therefore stay unknown to the processing
servers. Note that the comparison of two strings represented in secret shares
is different from the comparison of strings in a plaintext format, as each partic-
ipant cannot judge the compare result independently.

Unary representation: The authors of [12] demonstrated their scheme over unary
letter representation, where each letter is represented by a binary number with
hamming weight 1. For example, letter a–z are expressed by the binary strings:
a = [100 · · · 00], b = [010 · · · 00], c = [001 · · · 00], · · · , z = [000 · · · 01] with each
representation consists of 26 bits. We use the expression S =

∑r
i=0 ui × vi, to

compare two letters, where [u0u1 · · · ur] and [v0v1 · · · vr] are two unary represen-
tations. It is clear that whenever the two representations are identical, S is equal
to 1, otherwise S is equal to 0. Assume that each cloud has the secret shares of
these two representations, i.e., (α, fi(α)) and (α, gi(α)), where fi(0) = ui and
gi(0) = vi. Similarly, it can compute the following equation to identify whether
the two letters are identical:

r
∑

i=1

(fi(α) × gi(α)). (1)

We have following lemma.

Lemma 1. If the two letters are identical, then the result of Eq. (1) is the secret
share of 1, otherwise the result of this equation is a secret share of 0.

Proof. Note that ui, vi are the secret bit and would be either 1 or 0. Let f ′
i(α)

and g′
i(α) denote the evaluation of f(x) and g(x) at point α without the constant

term ui, vi, respectively. We can see

fi(α) × gi(α)
= (f ′

i(α) + ui) × (g′
i(α) + vi)

= f ′
i(α)g′

i(α) + uig
′
i(α) + vif

′
i(α) + uivi

= F (α) + uivi,

where F (α) = f ′
i(α)g′

i(α)+uig
′
i(α)+vif

′
i(α). Therefore, fi(α)×gi(α) can be seen

as a secret share of uivi. It is clear that only when ui = vi = 1, fi(α) × gi(α)
is a secret share of 1, and otherwise it is a secret share of 0. Note that the
hamming weight of unary representation is only 1, one can directly find the
finial summation is at most 1 which conclude the result.

Secret Shared Random Access Machine 23

Based on this observation, it is easy to compare a string using Accumulating
Automata, which is a type of finite automata. Only when the string letters are
exactly the same, the last node will be set to 1, otherwise this node will stay
0. One can reconstruct the values of this node to identify whether the string
matching is successful or not.

Binary representation: The main drawback of unary representation is that it
has too many redundant bits. For example if we want to represent the numbers
1 to 1000, we have to use 1000 bits. An alternative method is to use binary
representation.

Assume that there are two letters represented as [u0u1 · · · ur]2 and
[v0v1 · · · vr]2, where ui, vi ∈ {0, 1}. We compare these letters using the
Algorithm 1.

Algorithm 1. Secret comparison using
binary representation
1: for i = 1 to r do
2: si = [ui − vi]

2

3: end for
4: S = 0
5: for i = 1 to r do
6: S = S + si − S × si
7: end for
8: return 1 − S

As a simple example, we consider
two binary strings [1010]2 and [1101]2.
According to previous description, we
perform the following computations:

– Bitwise subtraction,
[1, 0, 1, 0] − [1, 1, 0, 1] = [1 − 1, 0 −
1, 1 − 0, 0 − 1] = [0,−1, 1,−1];

– Bitwise squaring,
[02, (−1)2, 12, (−1)2] = [0, 1, 1, 1];

– Bitwise OR, S = 0|1|1|1 = 1;1

It is easy to check that if the two strings are equal, S is equal to 0 and otherwise
to 1. In this example, the value of S is 1. In order to return the same value as the
unary representation, we prefer to return 1−S rather than S. Note that we only
use the subtraction/addition and multiplication in the above algorithm, similarly
to the unary case, these operations can also be implemented using Shamir secret
sharing. However, compared with unary representation, it requires either more
participants or (more) degree reduction operations.

One Instruction Computer Set. OISC is an abstract machine that uses
only one instruction. It is proven that OISC is capable of being a universal
computer in the same manner as traditional computers with multiple instructions
[24]. This indicates that one instruction set computers are very powerful despite
the simplicity of the design, and can achieve high throughput under certain
configurations.

Since there is only one instruction in the system, it needs no identification to
determine which instruction to execute. Thus, we only need to design the imple-
mentation of one instruction. Actually, there are several options for choosing
the OISC instruction, such as subtract and branch if not equal to zero (SBNZ),
subtract and branch if less than or equal to zero (Subleq), add and branch unless
positive (Addleq). Among these instructions, Subleq is the most commonly used.
Nowadays, there are Subleq compiler and Subleq-based processor [27] which

1 One can check that Step 6 in Algorithm 1 is equivalent to the bitwise OR operation.

24 S. Dolev and Y. Li

make Subleq a practical and efficient choice. Therefore, in this paper, we focus
on how to simulate Subleq privately and secretly. Comparing the values of two
memory words that are represented by secret shares, is hard to implement, hence
we secret share the words bit by bit, perform the arithmetic over secret shared
bits and then branch according to the sign bit of the result. This leads to a novel
scheme for executing secret shared Subleq (SSS-Subleq) programs. The details
are presented in Sect. 3.

3 SSS-Subleq Programs and Their Execution

Since our architecture is built on Subleq, for any client programs written by
high-level languages, it needs to be compiled into Subleq codes at first [27].
Then the client executes the set of Subleqs over the system. In the following,
we will investigate the implementation details of Subleq using Shamir secret
sharing.

The SSS-Subleq Format and Architecture Overview. According to the
definition of Subleq, it has three parameters A,B,C where the contents at
address B are subtracted from the contents at address A, and the result is
stored at address B, and then, if the result is not greater than 0, the execution
jumps to the memory address C, otherwise it continues to the next instruction
in the sequence. The pseudo code is given in the procedure Subleq(A,B,C).
Here, the PC (program counter) is a pointer that indicates the address of next
instruction.

Procedure. Subleq(A,B,C)
1: Mem[B] = Mem[B]−Mem[A]
2: if Mem[B]≤ 0 then
3: goto C
4: else
5: goto PC + 1
6: end if

Note that the Subleq contains
some important operations: load,
store, subtraction and conditional
branch. Thus, in order to execute Sub-
leq using Shamir secret sharing, we
have to simulate the following oper-
ations using secret shares:

– Load(H): Load the instruction in address H to the processor.
– Jump(C): Transfers control to index C, implement the branching operation.
– Read(X): Read the data at address X.
– Write(X,Y): Write the data Y in address X.

Please note that the operation goto PC + 1 and goto C can be implemented
by the operation Jump with different parameters. Among all these operations,
a critical problem is how to find the right address secretly. Fortunately, secret
string matching allows us to implement these operations without revealing any
information. According to the description in Sect. 2, we use unary representation
to represent the addresses including memory addresses and instruction indices
where each bit of the unary representation is encoded as a secret shared value.
The format of the SSS-Subleq instruction has five parts which are shown in
Fig. 1.

Secret Shared Random Access Machine 25

index A B C PC + 1

Fig. 1. Format of SSS-Subleq

The first block stores the instruc-
tion index number which is equiva-
lent to the instruction address, the sec-
ond and third blocks store the operand
addresses and the fourth to fifth blocks
store the branch index C and the index of next instruction, respectively.

Besides the former operations, there is a need to implement the subtraction
between two operands and determine the next instruction address according to
the subtraction result. Therefore, we choose to represent every operand as a
signed number. In order to perform subtraction in an easy way, we use two’s
complement representation where subtraction can be transformed into addition.
The most significant bit (MSB) is the sign bit. Analogous with the address,
each bit of the operands is secret shared. The outline of our RAM architecture
is presented Fig. 2. In our architecture, we use a modified Harvard architecture
which not only physically separates storage and signal pathways for instructions
and data, but also separates the read-only and read/write part of data. Note
that since Shamir secret sharing is not multiplicatively homomorphic, degree
reduction is needed after several multiplications. This special structure allows
us to implement read and write operations in relatively efficient manner. In
particular, the degree of the polynomials used for the read-only part (possibly
big-data corpus) is unchanged throughout the execution(s).

Fig. 2. Architecture

26 S. Dolev and Y. Li

Table 1. The parameters of a program

Parameter Description

m The number of instructions of the user program

n The number of data items that can be accessed for read and write

k The number of data items that can be accessed for read only

t The bit length of the data stored in the memory

The parameters of our architecture are presented in Table 1. Here, we assume
that the client program reads a large number of data items compared with the
data items the program writes to, thus we have k � n. In the following, we
will show how to simulate the four basic operations using the Accumulating
Automata technique.

Operation Details. We start describing the implementation of a function
called: compare(U, V, r), where U and V are secret shares of the unary address
consisting of r elements. For example, let U = u1, u2, · · · , ur, V = v1, v2, · · · , vr
denote the secret shares of two such parameters, we compute

compare(U, V, r) =
r

∑

i=1

(ui × vi) (2)

According to Sect. 2, the above expression testifies whether U, V are identical or
not. It is easy to check that the result of compare(U, V, r) is a secret share of 1
if U = V , and otherwise, if U �= V , is 0.

Procedure. Load(H)
1: for i = 1 to m do
2: Numi ← compare(H, ηi, m)
3: S1 ← S1 + Numi × Ai

4: S2 ← S2 + Numi × Bi

5: S3 ← S3 + Numi × Ci

6: S4 ← S4 + Numi × (PCi + 1)
7: end for
8: return S1‖S2‖S3‖S4

Now we describe the details of the
four operations:

Description of Load: The initial val-
ues of Si are set to 0, and the sym-
bol ‖ means concatenation of all values
from S1 to S4. H represents the secret
shares of the instruction address which
we want to load and ηi represents secret
shares of the i-th instruction address. It
is clear that the value returned is the
right instruction we want to load.

Procedure. Read(X)
1: for i = 1 to n + k do
2: Numi ← compare(X, εi, n + k)
3: S ← S + Numi × θi
4: end for
5: return S

Description of Read: According to
Fig. 2, the format of memory table con-
sists of two parts: the address number
εi and data θi. Analogous to the corre-
sponding analysis for the Load opera-
tion, we can easily check that S is the
data whose index number is equal to X.

Secret Shared Random Access Machine 27

Procedure. Write(X,Y)
1: for i = 1 to n do
2: Numi ← compare(X, εi, n + k)
3: θi ← θi + Numi × (Y − θi)
4: end for

Description of Write: The operation
implements writing the data Y in the
address X using secret shares. Note
that only when εi equals X, the Numi

is the secret shares of 1, and then the
data Y can substitute the former data
item, otherwise the data will not be
changed.

Procedure. Jump(C)
1: PC ← C
2: Load(PC)

Description of Jump: The operation
Jump is nearly the same as the oper-
ation Load. If the program needs to
execute the C-th instruction in the pro-
gram table, it just assigns the last part of current instruction to the PC. Then
the program will “jump” to the destination.

Implementation of SSS-Subleq. We then investigate the conditional branch
that required in Subleq in secret shares form. It is difficult to compare two
numbers directly since all the numbers are secret shared and the clouds never
know the secrets. Here, we use two’s complement to represent the operands and
using the sign bit to implement the comparison. In two’s complement, the sign bit
of positive integer is 0 and negative integer is 1. Therefore, when implementing
Subleq(A,B,C), we can use the sign bit of Mem[B] − Mem[A] to (blindly)
decide whether to branch or not. The only problem is that the integer 0, for which
the sign bit in its representation is also 0, while it should imply branching. This
problem can be fixed by a slight modification: using the sign bit of Mem[B] −
Mem[A] − 1 instead of sign bit of Mem[B] − Mem[A]. Moreover, we will show
that this sign bit can be obtained during the computation of Mem[B]−Mem[A]
in the following paragraphs.

Two’s Complement Subtraction. The advantage of using two’s complement is the
elimination of examining the signs of the operands to determine if addition or
subtraction is needed. Therefore, to compute subtraction β − α, it only need to
perform following steps:

– Convert α: Invert every bit of α and add one, denoted by ᾱ + 1.
– Addition: Perform binary addition and discard any overflowing bit, denoted

by β + ᾱ + 1.

Note that we also need the sign bit of β − α − 1. As described above, using
two’s complement representation, the subtraction β−α is converted to β+ ᾱ+1.
Similarly, the subtraction β − α − 1 is implemented as

β − α − 1 = β + ᾱ + 1 − 1 = β + ᾱ.

The similarity allows us to implement these two subtractions together.
The algorithm for two’s complement subtraction using Shamir secret sharing

is given in Algorithm 2. According to previous description in Sect. 2, we know

28 S. Dolev and Y. Li

Algorithm 2. The two’s complement subtraction using Shamir secret sharing
1: procedure SSS-SUB(A, B)
2: Input: A = [at−1at−2 · · · a1a0], B = [bt−1bt−2 · · · b1b0] where ai, bi are secret

shares of bits of two’s complement represented number.
3: Output: R = [rt−1rt−2 · · · r1r0] where R = B−A, and the sign bit of B−A−1
4: a0 = 1 − a0 � Invert of the least significant bit
5: carry[0] = a0 · b0
6: r0 = a0 + b0 − 2 · carry[0] � Addition of the least significant bit
7: for i = 1 to t − 1 do
8: ai = 1 − ai � invert each bit A → Ā
9: ri = ai + bi − 2aibi

10: carry[i] = aibi + carry[i − 1] · ri � The carry bit
11: ri = ri + carry[i − 1] − 2 · carry[i − 1] · ri � The result bit
12: end for
13: sign = rt−1 � The sign bit of B − A − 1, used for branch
14: carry[0] = r0 � Add 1 to the result obtain B − A
15: r0 = 1 − r0
16: for i = 1 to t − 1 do
17: carry[i] = ri · carry[i − 1]
18: ri = ri + carry[i − 1] − 2 · carry[i]
19: end for
20: return (R‖sign)
21: end procedure

Algorithm 3. The Shamir secret sharing based Subleq
1: procedure SSS-Subleq(A, B, C)
2: R1 ← Read(A)
3: R2 ← Read(B)
4: R‖Num = SSS-SUB(R1, R2)
5: Write(B, R)
6: Jump(Num · C + (1 − Num) · (PC + 1))
7: end procedure

the multiplications and additions/subtractions of the shares correspond to those
of the secrets. Thus one can easily check that Algorithm 2 implements the two’s
complement subtraction.

Therefore, Subleq can be implemented with secret shares by Algorithm 3. In
step 6, we can check that if the value represented by R2 is less than R1, then
Num = 1, PC = C, else Num = 0, PC = PC + 1. Therefore, this expression
implement the conditional branch of Subleq.

Degree Reduction. The main bottleneck of our scheme is the multiplication
with shares used in the basic operations, as the Shamir secret sharing is not mul-
tiplication homomorphic. Note that multiplying two polynomials gives a poly-
nomial with a degree that is equal to the sum of the degrees of the source poly-
nomials. We observe that the Read, Jump and Load increase the polynomial
degrees related to each secret shared bit stored in the registers, the subtraction

Secret Shared Random Access Machine 29

and Write increase the degrees related to the data items stored in the memory.
Therefore, we have to process the degree reduction for these data items at a cer-
tain time. In [11], Dolev et al. proposed a method for reducing the polynomial
degree without revealing the original secret. In our model, we define a reducer
that is in charge of reducing the polynomial degrees and a randomizer in charge
of generating random polynomials for all the participants. Note that the codes
of the reducer and the randomizer should be executed independently in order to
protect the secret s, but either of them can be executed by the dealer machine.
The polynomial degree reduction algorithm appears in Algorithm4.2

Algorithm 4. Polynomial degree reduction for secret shares
1: procedure Decrease(P (x), d, d∗)
2: Let u1, · · · , uE be E participants, D be the randomizer and R be the reducer.
3: Let P (x) ∈ Fp[x] of degree d is the polynomial for secret s.
4: D randomly selects polynomial f(x) of degree d and g(x) of degree d∗, where

f(x) and g(x) have the same constant term.
5: for i = 1 to E do
6: D sends (f(ui), g(ui)) to ui.
7: ui computes P (ui) + f(ui) and sends it to R.
8: end for
9: R interpolates and computes a polynomial Q(x) = P (x) + f(x).

10: for i = 1 to E do
11: R sends to ui the coefficients qj of Q(x) with degree more than d∗.
12: ui computes S = P (ui) + f(ui) −∑d

j=d∗+1 qju
j − g(ui).

13: return S.
14: end for
15: end procedure

Different from the original algorithm presented in [11], we use the random
polynomials f(x) of degree d instead of d∗. It is clear that adding f(x) to P (x)
can hide all the coefficients of P (x) which prevent the reducer from obtaining
any information about the secret s. We also use another random polynomial
g(x) of degree d∗, where the constant term of f(x) and g(x) are identical. In the
end of Algorithm 4, each cloud subtracts g(ui) from the result which will keep
the secret s unchanged To protect the secrets, for every degree reduction, the
random polynomial f(x), g(x) should be updated. In practical implementation,
the dealer (with no randomizer) can secret share these polynomials to the clouds
in advance or let clouds interact with the randomizer, thus supplies on-line these
f(x) and g(x) pairs upon requests and the degree reduction process is performed
with no involvement of the dealer during the execution.

In our proposed architecture, the read/write memory is separated from the
read-only memory. This design is more convenient for degree reduction com-
pared with the classic architecture. Compared with the whole memory space,
2 The original algorithm is designed for bivariate polynomial, we modified it accord-

ingly.

30 S. Dolev and Y. Li

Algorithm 5. The SSS-Subleq plus degree reduction
1: procedure SSS-Subleq-DR(A, B, C)
2: Decrease(A‖B‖C‖PC + 1, 3�, �)
3: R1 ← Read(A)
4: R2 ← Read(B)
5: R‖Num = SSS-SUB(R1, R2)
6: Decrease(R‖Num, ∗, �)
7: Write(B, R)
8: Jump(Num · C + (1 − Num) · (PC + 1))
9: end procedure

the read/write registers are very small, thus, the number of items for which we
need to reduce the degree is relatively small. Assume that both the addresses
and data items are secret shared using the polynomials of the same degree �,
plus degree reduction step, the Subleq can be implemented as in Algorithm 5. In
step 6, we use ∗ instead of the exact degree parameter, as each secret shared bit
of R has different polynomial degree.

4 Applications

In our model, assume that a client wants to outsource a program in clouds and
the program is compiled into Subleq-based program. The address is encoded
using unary representation and the data item is encoded using two’s comple-
ment representation. The dealer picks random polynomials of degree � to share
every bit of the address and data. Then the dealer sends the secret shared pro-
gram to E clouds. The integer E should be greater than the highest polynomial
degree generated during Algorithm 5. Note that the participating clouds do not
communicate with each other and are possibly not aware concerning the number
and identity of the other participants. Also note that all the clouds (including
reducer and randomizer) need not to be reliable.

Initial Stage. The PC of each cloud is initially set by the dealer. The values of
the PC are the secret shares of the first address of the client’s program. In case
there is no randomizer in the system, the dealer can guarantee that each cloud
has enough precomputed values of polynomials to be used for degree reductions.

Execution Stage. In this stage, the clouds have to perform the following works:

– Program Execution: Each cloud executes the secret shared program indepen-
dently and does not communicate with other clouds.

– Degree Reduction: Each cloud performs Algorithm 4 to reduce the polynomial
degree of the shares which increased during the Subleq procedure.

Memory Refresh. Although we decreased the polynomial degree of the shared
secret before write, the operation Write does increase the polynomial degree
by � each time. Thus, the read/write part of memory needs to be refreshed at
intervals (e.g., every ten Write operations). Note that this part of memory can

Secret Shared Random Access Machine 31

be relatively small compared with the whole memory, so it will not lead to too
much bandwidth usage.

Dealer

Cloud 1

Cloud 2

Cloud E

Reducer

Randomizer

Fig. 3. The outline of Our RAM model

In Fig. 3, we give the outline of
the program execution. The com-
munication between the clouds and
the dealer, and the communica-
tion between the clouds and the
reducer(s) are all bidirectional. The
dealer sends the secret shares of
the client program and receives
and reconstructs the program results
executed by clouds. Moreover, we
can use more than one reducer in
order to check the integrity of the results and identify which reducer is
malicious.

Storage and Bandwidth. The storage of each cloud consists of the secret
shares of the program instructions and the data. Notice that secret share of one
bit needs one or multi-word size storage which is denoted by ω(1).

Data Table. Each row of the data table consists of the index and data item, it
totally requires (n + k)(n + k + t)ω(1) words storage. As we previously assumed
that the size of read-only table is much bigger than that of the read/write table,
i.e., k � n, the storage requires roughly O(k2)ω(1) words.

Instruction Table. The cloud stores an instruction table of size m, and each
instruction consists of five parts. This requires O(m) blocks storage with each
block requires O(3m + 2n + 2k)ω(1) words.

Degree Reduction Table. According to the corresponding description of Algo-
rithm4, if a randomizer (or several randomizers) are used to produce secret
shares of random polynomials on-line, no tables are needed. Otherwise every
cloud needs to store a certain amount of shares which are pre-computed and
dispatched by the dealer. These values could be generated and managed by a
special database. The size of this database is dependent on the execution length
of the program, i.e., about O(mt�)ω(1) words.

Bandwidth. For each Subleq, the clouds need to reduce the polynomial degrees of
their data twice via communication with the reducer (and the randomizer). For
each degree reduction from d to d∗, every cloud first obtains two shared evalua-
tions from the randomizer, and then sends the reducer one word and receive d−d∗

coefficients from it, resulting in a total of approximately O(k+m+ t)ω(1) words
bandwidth used per cloud for one Subleq. In addition, the read/write memory
needs to be refreshed at interval, it will result in O(kt)ω(1) words bandwidth
usage. Therefore, in the worst case, the bandwidth of each cloud is O(kt)ω(1).

Security Analysis Sketch. We note that during the whole procedure of our
model, all of the information are secret shared in E clouds and no original
information will be leaked to the cloud itself. Besides this, our model has two
characteristics:

32 S. Dolev and Y. Li

Security Against Adversary Eavesdropping. For every Load operation, we had
to compare the values stored in PC with all the indices in program table. It
“touches” every position in the program table. Even through the adversary could
eavesdrop on all the contents of PC, registers, etc., the adversary could not
know which instruction in the table was executed. The same thing also happens
in read/write operations. The characteristic is similar to the schemes that are
based on fully homomorphic encryption, but here is information-theoretically
secure.

Security Against Malicious Clouds. The malicious clouds include malicious par-
ticipants and malicious randomizer and reducer. Informally, a malicious server
can corrupt data in storage; and deviate from the prescribed protocol, particu-
larly, not performing execution correctly.

For the participants: note that the program is outsourced to E clouds. Even
if some of them output the wrong answers, the client can compare the results
interpolated from different set of answers and obtain the correct result, or better
off, use [30].

For the reducer and randomizer: every cloud may record the communication
with the randomizer and reducer for audit, revealing possible malicious reducers.
A possible strategy is to use several reducers simultaneously. After each cloud
received the answers from the reducers, they could compare these results and
notified the client/dealer whether the reducers were malicious or not. Similarly
the actions of the randomizer can be monitored, say by forwarding the values
sent by the randomizer to the reducer, requesting to the reducers to reveal all
coefficients, and not use these values, requesting new values from the randomizer.

Unary vs. Binary. In our scheme, we use the unary representation for the
instruction and data addresses. This type of representation is inappropriate if
the clients program is very large because of its redundant bits. In a secret shared
form, we have to use n words to represent these n bit which will lead to many
operations over Fp. As described in Sect. 2, we can use binary representation as
a substitution. Compared with unary representation, binary representation can
express exponentially more numbers with the same number of bits. However,
using binary representation to perform secret string matching is more compli-
cated and will require more degree reduction operations. In practical implemen-
tation, one can choose the representation based on the consideration of their
memory and computation capacity.

5 Conclusions

We discussed a novel model for outsourcing arbitrary computations that pro-
vide confidentiality, integrity, and verifiability. Unlike the former RAM-based
secure computation models, our scheme hides the client program and data all
the time and manipulates the secrets directly. Therefore, no confidential infor-
mation would be revealed. The setting is particularly interesting in the scope of
big data that is stored in secret sharing fashion over the clouds, and there is a
need to repeatedly compute functions over the data without reconstructing the
data from the shares.

Secret Shared Random Access Machine 33

An important observation is that the dealer (and reducer(s)) may share com-
mon roots of all polynomials, unknown to the participating clouds, where addi-
tion and multiplications keep the roots unchanged. These unknown roots can
serve as additional keys, the number of possible roots grows exponentially with
the degree of the polynomials. Furthermore, implementation of interactive pro-
gram is possible by reading and writing specific memory locations during the
execution. Lastly, using several RISC instructions instead of OISC is possible
to implement the program obliviously. For every instruction execution, we can
perform each instruction once and using secret string match technique to ensure
the right execution.

References

1. Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2
2. Afshar, A., Hu, Z., Mohassel, P., Rosulek, M.: How to efficiently evaluate RAM

programs with malicious security, Cryptology ePrint Archive, Report 2014/759
(2014)

3. Becker, G.T., Regazzoni, F., Paar, C., Burleson, W.P.: Stealthy dopant-level hard-
ware trojans. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp.
197–214. Springer, Heidelberg (2013)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing (STOC 1988), NY, USA,
pp. 1–10. ACM, New York (1988)

5. Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-
party computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 356–376.
Springer, Heidelberg (2013)

6. Boyle, E., Chung, K.M., Pass, R.: Large-scale secure computation, Cryptology
ePrint Archive, Report 2014/404 (2014)

7. Brenner, M., Wiebelitz, J., von Voigt, G., Smith, M.: Secret program execution in
the cloud applying homomorphic encryption. In: Proceedings of the 5th IEEE Inter-
national Conference on Digital Ecosystems and Technologies Conference (DEST),
pp. 114–119 (2011)

8. Brenner, M., Perl, H., Smith, M.: How practical is homomorphically encrypted
program execution? An implementation and performance evaluation. In: IEEE
11th International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), pp. 375–382 (2012)

9. Clash of the clouds. The Economist. http://www.economist.com/displaystory.cfm?
story id=14637206;2009

10. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM with-
out random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163.
Springer, Heidelberg (2011)

11. Dolev, S., Garay, J., Gilboa, N., Kolesnikov, V.: Swarming secrets. In: 47th Annual
Allerton Conference, pp. 1438–1445 (2009)

12. Dolev, S., Gilboa, N., Li, X.: Accumulating automata and cascaded equations
automata for communicationless information theoretically secure multi-party com-
putation. In: Proceedings of the 3rd International Workshop on Security in Cloud
Computing (SCC 2015), pp. 21–29. ACM, New York (2015)

http://aws.amazon.com/ec2
http://www.economist.com/displaystory.cfm?story_id=14637206;2009
http://www.economist.com/displaystory.cfm?story_id=14637206;2009

34 S. Dolev and Y. Li

13. Google Cloud Platform. https://cloud.google.com/storage/
14. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of

the 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM
(2009)

15. Gentry, C.: A fully homomorphic encryption scheme, Ph.D. dissertation, Stanford
University (2009)

16. Gentry, C., Halevi, S.: Implementing Gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

17. Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Opti-
mizing ORAM and using it efficiently for secure computation. In: De Cristofaro,
E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg
(2013)

18. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: STOC (1987)

19. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43, 431–473 (1996)

20. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Oblivious RAM
simulation with efficient worst-case access overhead. In: ACM Cloud Computing
Security Workshop (CCSW) (2011)

21. HOMOMORPHIC ENCRYPTION. http://sites.nyuad.nyu.edu/moma/projects.
html

22. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.: Automating efficient RAM-model
secure computation. In: Proceedings of the 2014 IEEE Symposium on Security and
Privacy (SP 2014), pp. 623–638. IEEE Computer Society, Washington, D.C. (2014)

23. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer,
Heidelberg (2013)

24. Mazonka, O., Kolodin, A.: A simple multi-processor computer based on subleq,
arXiv preprint arxiv:1106.2593 (2011). http://da.vidr.cc/projects/subleq/

25. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
26. Stefanov, E., Shi, E.: Multi-cloud oblivious storage. In: Proceedings of the 2013

ACM SIGSAC Conference on Computer and Communications Security (CCS
2013), NY, USA, pp. 247–258. ACM, New York (2013)

27. SUBLEQ. http://mazonka.com/subleq/
28. Tehranipoor, M., Koushanfar, F.: A survey of hardware trojan taxonomy and detec-

tion. IEEE Des. Test Comput. 27(1), 10–25 (2010)
29. Wang, X., Huang, Y., Chan, T.-H.H., Shelat, A., Shi, E.: SCORAM: oblivious

RAM for secure computation. In: The 21st ACM Conference on Computer and
Communications Security (CCS), Scottsdale, Arizona, USA, November 2014

30. Welch, L., Berlekamp, E.R.: Error correction for algebraic block codes, US Patent,
4 633 470 (1983)

31. Zhuravlev, D., Samoilovych, I., Orlovskyi, R., Bondarenko, I., Lavrenyuk, Y.:
Encrypted program execution. In: IEEE 13th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom), pp. 817—
822 (2014)

https://cloud.google.com/storage/
http://sites.nyuad.nyu.edu/moma/projects.html
http://sites.nyuad.nyu.edu/moma/projects.html
http://arxiv.org/abs/1106.2593
http://da.vidr.cc/projects/subleq/
http://mazonka.com/subleq/

Column Generation Integer Programming
for Allocating Jobs with Periodic

Demand Variations

Ikbel Belaid1,2(B) and Lionel Eyraud-Dubois1,2

1 Inria Bordeaux – Sud-Ouest, Talence, France
2 University of Bordeaux, Talence, France

{Ikbel.Belaid,Lionel.Eyraud-Dubois}@inria.fr

Abstract. In the context of service hosting in large-scale datacenters,
we consider the problem faced by a provider for allocating services to
machines. An analysis of a public Google trace corresponding to the use
of a production cluster over a long period shows that long-running ser-
vices experience demand variations with a periodic (daily) pattern, and
that services with such a pattern account for most of the overall CPU
demand. This leads to an allocation problem where the classical Bin-
Packing issue is augmented with the possibility to co-locate jobs whose
peaks occur at different times of the day, which is bound to be more
efficient than the usual approach that consist in over-provisioning for
the maximum demand. In this paper, we propose a column-generation
approach to solving this problem, where the subproblem uses a sophis-
ticated SOCP (Second Order Cone Program) formulation. This allows
to explicitely select jobs which benefit from being co-allocated together.
Experimental results comparing with theoretical lower bounds and with
standard packing heuristics shows that this approach is able to provide
very efficient assignments in reasonable time.

1 Introduction

The Cloud paradigm provides an illusion of infinite elasticity and seamless provi-
sioning of IT resources. However, as providers keep scaling their infrastructures
year after year, the efficient allocation of services in Platform-as-a-Service (PaaS)
becomes crucial.

We concentrate on the case of a Cloud platform in which several independent
services, typically virtualized as Virtual Machines (VMs) or lightweight contain-
ers, are serving user queries and need to be allocated onto physical machines
(PMs) [1,19]. We consider the static case where a set of dominant services define
the overall resource usage of the physical platform, which has proved to be com-
monplace in large datacenters [3]. In this context, mapping services with hetero-
geneous computing demands onto PMs is amenable to a multi-dimensional Bin-
Packing problem (each dimension corresponding to a different kind of resource,
memory, CPU, disk, bandwidth,. . .). Indeed, on the infrastructure side, each
physical machine presents a given computing capacity (i.e. the number of Flops
c© Springer International Publishing Switzerland 2016
I. Karydis et al. (Eds.): ALGOCLOUD 2015, LNCS 9511, pp. 35–48, 2016.
DOI: 10.1007/978-3-319-29919-8 3

36 I. Belaid and L. Eyraud-Dubois

it can process during one time-unit), a memory capacity and a failure rate
(i.e. the probability that the machine will fail during the next time period).
On the client side, each service has a set of requirements along the same dimen-
sions (memory and CPU footprints) and a reliability requirement that has been
negotiated typically through an SLA [9].

In this work, we consider a specific feature of CPU demand that arises in the
context of service allocation. Previous work on the subject [4] argues that many
services representing most of the overall CPU demand exhibit daily patterns and
their demand can be modeled as a set of sinusoids, each comprising a constant
component, an amplitude and a phase. This premise gives rise to a model for
jobs with time-varying resource demands and to the associated packing problem.
Such a model can be used to aggregate onto the same physical machines more
resources than it would be possible based on their maximal demands only, taking
advantage of the fact that different phases for different services imply that peak
demands do not occur simultaneously. In this paper, we propose an algorithm
based on column generation for packing jobs with periodic demands on the
hosting platform. This algorithm provides very efficient allocations, compared
to state-of-the-art greedy packing heuristics.

The remaining of this paper is organized as follows. We discuss some related
works in Sect. 2. In Sect. 3, we present the formulation of the optimization prob-
lem as a Second Order Cone Program (SOCP). In Sect. 4, we propose our efficient
packing algorithm based on column generation, whose performance is analyzed
and validated on realistic and simulated data in Sect. 5. Finally, conclusions are
drawn in Sect. 6.

2 Related Works

In order to deal with resource allocation problems arising in the context of
Clouds, several sophisticated techniques have been developed in order to opti-
mally allocate user services onto PMs, either to achieve good load-balancing [5,8]
or to minimize energy consumption [6]. Most of the approaches in this domain
are based on offline [10] and online [11] variants of Bin-Packing strategies.

In this paper, we concentrate on the allocation of jobs that last for a long
time and whose CPU demands exhibit periodic patterns. Some other work deal
with allocating jobs whose demands varies over time, either with predictable
(static) or unknown (dynamic) behavior. In the static case which is the focus
of this present work, historical average resource utilization is typically used as
input to an algorithm that maps services to physical machines. Therefore, the
mapping is done off-line. In contrast, dynamic allocation schemes are imple-
mented on shorter timescales. Dynamic allocation leverages the ability to per-
form runtime migrations of jobs and to recompute resource allocation amongst
services. A dynamic migration algorithm Measure Forecast Remap is introduced
in [7], where highly variable workloads are forecast over intervals shorter than
the time scale of demand variability to ensure dynamic execution minimization
of the number of required machines. Based on stochastic vector packing model,

Column Generation Integer Programming for Allocating Jobs 37

the static scheme proposed in [15] makes use of customers’ periodic access pat-
terns in web server farms to assign each customer to a server so as to min-
imize the total number of required servers. In this latter work, the variable
demand is analyzed at a different time scale to extract probability distributions
that are independent of time. Then, stream-packing heuristics are employed to
select the most complementary jobs to be packed in the same server. Urgaonkar
et al. [16] rely on on-line application profiling to demonstrate the feasibility and
benefits of overbooking resources in shared platforms to guide the application
placement onto dedicated resources while providing performance guarantees at
runtime. A new mechanism for dynamic resource management in cluster-based
network servers [2], called cluster reserve, allows performance isolation between
service classes and provides a minimal amount of resources, irrespective of the
load imposed by other requests. In contrast to these other directions, our work
focuses on a part of the workload which exhibits deterministic periodic variabil-
ity. In this context, dynamic resource management is unnecessary: the migration
cost can be avoided by using periodicity-aware static approaches for service allo-
cation. By focusing on long-running services with high workloads, it is possible to
apply sophisticated techniques to provide efficient packing policies, which results
in increased resource usage. Smaller or short-lived jobs, which are much more
numerous but represent a smaller part of the resource usage, can be handled
with usual greedy allocation schemes.

This paper is a followup to [4], which analyzes the performance of several
standard packing heuristics in the context of packing jobs with periodic demand
variation. In this paper, we propose the use of the Dantzig-Wolfe decomposi-
tion [17] to solve very efficiently the corresponding packing problem. In fact,
mathematical programs featured by a large space of integer variables are par-
ticularly suited for Dantzig-Wolfe decomposition that reformulates the original
compact problem to provide a tighter linear programming relaxation bound. This
decomposition relies on delayed column generation algorithm. The overarching
idea of this algorithm is that many programs are too large to consider all the
variables explicitly. Since most of the variables will be neglected in the optimal
solution, only a subset of variables need to be considered in theory when solving
the problem. Column generation leverages this idea to generate only the vari-
ables which have the potential to improve the objective function, that is, to find
variables with negative reduced costs. Section 4 details the utilisation of Dantzig-
Wolfe decomposition to reformulate the packing of jobs with variable demands
on hosted parallel machines based on the original formulation and employing the
column generation algorithm.

The Dantzig-Wolfe reformulation gives rise to a master problem and sub-
problems, whose typically large number of variables is dealt with implicitly
by using an integer programming column generation procedure, also known as
branch-and-price algorithm. Solving the master problem does not require an
explicit enumeration of all its columns because the column generation algorithm
allows one to generate columns if and when needed. In many cases, this allows
huge integer programs that had been previously considered intractable to be

38 I. Belaid and L. Eyraud-Dubois

solved. The technique of Dantzig-Wolfe using the approach of column genera-
tion has been applied successfully in many classical problems as: cutting stock,
vehicle routing, crew scheduling, etc.

3 Packing of Jobs with Periodic Demands

An analysis of a publicly available Google trace [13,14] has shown that about
two-thirds of the dominant, normal production jobs in that trace exhibit sig-
nificant daily pattern [3], and that their demand can be approximated with
sinusoidal functions. Based on this analysis, and following [4], we consider a
packing problem for those long running jobs, which account for a large portion
of the workload.

3.1 Notations and Problem Formulation

Let us assume that the cloud platform we consider consists of M homogeneous
nodes M1, . . . , Mk, . . . , MM and let us denote the processing capacity of a node
by C. For the sake of simplicity and in order to focus on issues related to the
aggregation of periodic demands, we will concentrate on CPU demands only.
The tasks of a job (corresponding to a service in the trace) can run on any node,
and job Jj is split into Nj tasks denoted by Tj,1, . . . , Tj,l, . . . , Tj,Nj

, who share
the same characteristics in terms of CPU demand.

In turn, platform nodes are allowed to run several tasks, provided that at any
time, their capacity is not exceeded. We assume that the set of tasks running on
a node does not change over time, what is a realistic assumption for dominant
Normal Production jobs, and we model the instantaneous demand at time t of
task Tj,l, which does not depend on l, as

Wj(t) = Cj + ρj sin
(

2π
t

P
+ φj

)

where Cj denotes the average of CPU demand of Task Tj,l, ρj denotes the
maximal amplitude of the variation of the demand, φj denotes its phase, and P
denotes the common period for all jobs.

In this context, our aim is to provide a static packing for the set of tasks Tj,l

such that at any step and on any resource, capacity constraints are not exceeded
and such that the number of required nodes is minimized. More specifically, this
model allows to take advantage of daily variations in order to obtain an efficient
packing of tasks. Indeed, most packing strategies are based on the maximal
demand of each task, what corresponds to Cj + ρj for a task of job j. Taking
advantage of the fact that all tasks do not achieve their peak demand at the
same time in the day, it is possible to pack more tasks, and therefore to use
fewer nodes whilst packing statically all the tasks.

The corresponding capacity constraint for a given machine Mk is thus

∀t,
∑

j,l: Tj,l∈Mk

Wj(t) ≤ C,

Column Generation Integer Programming for Allocating Jobs 39

and it can be rewritten [4] as an expression which does not depend on t:

∀k,
∑

j,l: Tj,l∈Mk

Cj +
√

(
∑

j,l: Tj,l∈Mk

ρj cos(φj))2 + (
∑

j,l: Tj,l∈Mk

ρj sin(φj))2 ≤ C

(1)
This modified packing constraint yields a quadratically constrained program-

ming (QCP) formulation of the problem. This formulation uses two types of
variables: integer variables Xj,k representing the number of tasks of job j allo-
cated on the node Mk, and boolean variables Yk representing whether node Nk

is used. With these variables, the formulation is the following:

Minimize
∑

k

Yk

∀j ∈ J,
∑

k∈M

Xj,k = Nj (2)

∀k ∈ M, (
∑

j∈J

Xj,k ρj cos(φj))2 + (
∑

j∈J

Xj,k ρj sin(φj))2

≤ (C Yk −
∑

j∈J

Xj,k Cj)2 (3)

∀k ∈ M, C Yk −
∑

j∈J

Xj,k Cj ≥ 0 (4)

In this formulation, constraint (2) ensures that all instances of all jobs are
allocated. Tasks belonging to the same job could co-exist in the same node.
Constraints (3) and (4) are a quadratic reformulation of Eq. (1), ensuring that
an unused node does not contribute any resource to the platform. Due to the
nature of this constraint, this formulation can be expressed as a Second Order
Cone Program (SOCP) [12], and can thus benefit from efficient general pur-
pose solvers [12] for convex optimization. However, as noticed in [4], on real-size
instances with thousands of machines, this formulation can not be solved in rea-
sonable time with integer and boolean values. Relaxing the problem by allowing
rational variables makes it possible to obtain a lower bound on the necessary
number of resources in reasonable time.

In the next Section, we describe how to reformulate this problem with a
Dantzig-Wolfe decomposition, which allows to quickly obtain very good solutions
to the packing problem.

4 Integer Programming Column Generation

Dantzig-Wolfe decomposition has been an important tool to solve large struc-
tured models that could not be solved using standard algorithms as they
exceeded the capacity of solvers. The main idea behind this technique is to
decompose the original problem into a number of independent subproblems,
whose solutions are then assembled by solving a so-called master problem. This

40 I. Belaid and L. Eyraud-Dubois

master problem is then solved iteratively. In our case, we can identify the nat-
ural decomposition of the problem: for two different values of k (i.e. for each
machine), the corresponding sets of constraints (3) and (4) are independent,
because they contain disjoint sets of variables. Since we assume that machines
are homogeneous, all those subproblems are actually identical, and we obtain a
special case where solving it only once is enough.

In the Dantzig-Wolfe reformulation, we obtain a master problem which con-
tains one variable for each solution to this subproblem. In our case, such a
solution is simply a valid packing configuration for a machine, i.e. a set of
jobs which can be allocated together on a single machine while respecting
the capacity constraint. One configuration Zi can be represented as a J-uplet
(X1,i,X2,i, . . . , XJ,i), where Xj,i is the number of tasks of job j in configuration
i. As discussed previously, this configuration is valid if it satisfies Eq. (1).

In the following, we will denote as K the set of all valid configurations.
The master problem contains one variable Yi for each configuration Zi ∈ K,
which represents the number of machines which use the configuration Zi, i.e.
the number of machines to which Xj,i tasks of job j are allocated. The packing
problem can now be formulated as follows:

Master Problem : Minimize
∑

i∈K Yi s.t

∀j ∈ J,
∑

i∈K

Xj,i Yi ≥ Nj (5)

Yi ∈ N (6)

This master problem cannot be solved directly due to an exponential number
of variables. However, the column generation approach consists in considering
variables only from a subset K ′ ⊂ K, and to solve the resulting restricted master
problem (RMP) on this set of variables.

This restricted problem may provide a sub-optimal solution, since there might
exist a configuration in K\K ′ which improves the solution. In order to find this
configuration, one can write the dual of the master problem, in which there is
one variable πj for each job, and one constraint for each configuration:

Dual Master Problem : Maximize
∑

j∈J Njπj s.t

∀i ∈ K,
∑

j∈J

Xj,i πj ≤ 1 (7)

πj ≥ 0 (8)

The sub-optimal solution obtained from the restricted master problem pro-
vides a solution π∗

j of the dual master problem which is possibly infeasible, since
not all constraints are included in the dual of the RMP. From this solution π∗

j ,
we can identify a variable to add to the problem by searching for a violated
constraint in the dual, i.e. a configuration Zi ∈ K such that

∑

j∈J Xj,i π∗
j > 1.

This gives rise to the following subproblem, with one variable Uj for each job:

Column Generation Integer Programming for Allocating Jobs 41

Subproblem: Periodic Knapsack : Minimize 1 − ∑

j∈J π∗
j Uj s.t

∀j ∈ J, (
∑

j∈J

Uj ρj cos(φj))2 + (
∑

j∈J

Uj ρj sin(φj))2 ≤ (C −
∑

j∈J

Uj Cj)2 (9)

Uj ∈ N (10)

If the optimal solution of this subproblem has a negative value, then we have
identified a configuration to add to the RMP. On the other hand, if this problem
has no solution with negative value, it means that all constraints in the dual of
the master problem are satisfied with the current solution, which implies that
this current solution of the RMP is actually optimal for the master problem.

This subproblem can be seen as a knapsack problem: given profits π∗
j for

each job, we search for the set of tasks with maximal profit which can fit in a
single machine. The strong point of the Dantzig-Wolfe reformulation in this case
is that we have isolated the quadratic constraint in the subproblem, which is of
much smaller scale than the original problem, with only one variable per job.
This problem can now be solved (quite efficiently as we will see in Sect. 5) with
a general integer SOCP solver.

The column generation algorithm is summarized in Algorithm1: starting
from an initial set of configurations (which we describe below), the algorithm
iteratively solves the RMP, and then uses the values of the dual variables as
prices in the knapsack subproblem. The solution to this subproblem yields a
new configuration which is added to the set, and a new iteration is performed.
The process ends when no solution to the subproblem has a negative cost. The
obtained RMP is then solved with integer constraints to obtain a feasible solution
to the original problem. In practice, this last step is often too time consuming for
the solver to obtain an optimal solution in reasonable time, so in our experimen-
tal evaluation, we included a 5 min time limit and use the best feasible solution
obtained by the solver in that time.

The initial set of configurations can be chosen arbitrarily, as long as the first
RMP is feasible, i.e. all jobs are represented in at least one configuration. For
simplicity, we build the initial set K0 with one configuration per job, where the
configuration for job j contains

⌊

C
Cj+ρj

⌋

tasks of job j (as many as can fit on
one machine), and 0 tasks of all other jobs.

5 Experimental Evaluation

In this section, we present the results of synthetic and realistic experiments pro-
vided by column-generation algorithm and best-effort heuristics. We investigate
the performance of each in reducing the number of used nodes as well as their
margin towards the lower bound. We show that our column generation algorithm
delivers good results in reducing the number of iterations and computation time.

42 I. Belaid and L. Eyraud-Dubois

Data: Job characteristics: Cj , ρj , φj and Nj

Result: Feasible solution: a set Kt of configurations and values (Yi)i∈Kt stating
how many machines use each configuration

t ← 0
Kt ← K0

repeat
Solve RMP with variables in Kt

Generate dual values π∗
j from the RMP solution

Solve the subproblem with prices π∗
j

if strictly negative reduced cost then
Col ← new column with the coefficients of the subproblem solution
t ← t + 1
Kt ← Kt−1 ∪ Col

end

until no negative reduced cost solution;
Solve RMP with variables in Kt as an integer program

Algorithm 1. Column generation algorithm

5.1 Complexity and Lower Bound

The optimization problem that consists in packing tasks with periodic demands
into nodes is clearly NP-Complete, since it is amenable to classical Bin-Packing
problems [10,11] in its most simplified setting where ∀j, ρj = 0, i.e. the case
when demands do not change over time. Indeed, in many cases the last step
of our column generation algorithm (where we look for an integer solution) is
unable to obtain an optimal solution in the alloted time. In order to asses the
performance of the obtained results, we rely on a simple but powerful lower
bound: the total workload at time t is

∑

j∈J Wj(t), whose peak can be computed

like in Sect. 3 as W =
∑

j∈J Cj +
√

(
∑

j∈J ρj cos(φj))2 + (
∑

j∈J ρj sin(φj))2.
Since in any solution, the sum of the capacity used on each machine is not
lower than P , we know that any solution must use at least

⌈

W
C

⌉

machines. This
solution is not feasible in general but it provides a lower bound on the number
of necessary nodes.

5.2 Heuristics

In this Section, we present some heuristics introduced in [4], adapted from clas-
sical efficient greedy Bin-Packing algorithms to the case of tasks exhibiting daily
patterns. In the following, we denote by L(Mk, Tj,l) the peak load on machine
Mk after adding one task Tj,l of job Jj to Mk.

– Best-Fit Decreasing BFD is a greedy algorithm in which tasks are considered
by decreasing values of Cj . At any step, task Tj,l (from job Jj) is allocated to
the node Mk such that L(Mk, Tj,l) is maximized (while remaining below C).
Note that contrarily to what happens in classical BFD, the size that is con-
sidered is the size after the allocation. If no such node exists, then a new node
is added to the system to hold the task.

Column Generation Integer Programming for Allocating Jobs 43

– In Min-Max MM(M), the target number of nodes is fixed to M a priori.
Then, MM is a greedy algorithm where tasks are considered by decreasing
values of Cj . At any step, task Tj,l (from job Jj) is allocated to the node
Mk such that L(Mk, Tj,l) is minimized, in order to balance the load between
the different nodes. The allocation may fail if M is too small. We thus use
dichotomic search to find the smallest value of M which allows to obtain a
solution.

– Min-Max-Module MMM is similar to MM, except that tasks are repre-
sented using their maximal demand over time Cj + ρj only. This is typically
what happens when one neglects the possibility to take advantage of the fact
that peak demands do not occur at the same time for all jobs.

5.3 Simulated Synthetic Data

First, we perform a set of experiments with synthetic data in order to assess
the influence of the parameters on the performance of the different proposed
methods. In all the experiments, we set the capacity of the nodes to 20, and we
display the ratio between the number of nodes provided by the corresponding
method against the lower bound on the number of necessary nodes described in
Sect. 5.1.

For synthetic jobs, we consider the following parameters:

– CPU footprint of the tasks: we consider the case of Large Tasks, Medium
Tasks and Small Tasks where Cj is chosen uniformly at random respectively
in [0, 10], [0, 5] and [0, 1]. To keep the total workload constant, we set the
number of tasks Nj in each job to 50 for Large Tasks, 100 for Medium Tasks,
and 500 for Small Tasks.

– Daytime amplitude: we consider the case of Large Daytime Amplitude (where
ρj is chosen uniformly at random in [0, Cj]) and Small Daytime Amplitude
(where ρj is chosen uniformly at random in [0, Cj

2]).

In all cases, the phase of each job is chosen uniformly at random in [0, 2π],
and the number of jobs is set to 100. We performed other experiments with
different number of jobs and tasks, but the results showed very little sensitivity
to these parameters and were excluded from the paper in order to save space.
For each scenario, we have performed 20 experiments, and the results are shown
on Fig. 1, where the 20 experiments for each scenario and each algorithm are
grouped together in a boxplot showing the mean, the first and third quantiles,
and minimum and maximum values.

The figure shows that the column generation algorithm is able to consistently
provide solutions with a number of required nodes very close to the lower bound,
in all of the scenarios. Actually, for some of the Large Tasks scenarios, the solver
is able to obtain a provably optimal integer solution in the final step of the
algorithm, meaning that the column generation algorithm actually provides an
optimal solution in these cases. This also shows that the lower bound is actually
very precise, since it is possible to exhibit a feasible solution with very close
performance.

44 I. Belaid and L. Eyraud-Dubois

●●

●

●●

●●

●

●

●

●

●

●

●

1.0

1.2

1.4

1.6

1.0

1.2

1.4

1.6

Large A
m

plitude
S

m
all A

m
plitude

Large Tasks Medium Tasks Small Tasks

R
at

io
 to

 lo
w

er
 b

ou
nd

Algorithm ColGen BestFit MinMax MinMaxModule

●

●

●
●

●●

●
●

●

1.00

1.05

1.10

1.15

1.00

1.05

1.10

1.15

Large A
m

plitude
S

m
all A

m
plitude

Large Medium Small

Algorithm ColGen MinMax

Fig. 1. Performance of all algorithms on synthetic data. The right plot is a focus on
the most efficient algorithms.

In the Small Tasks scenarios, in which each node can hold a few tens of tasks,
Min-Max MM performs extremely well and is always at most within 1 % of the
lower bound. This behaviour is usual in Bin-Packing problems: the presence of
very small objects makes the packing easier since they can be used to fill the
wasted space in the bins. Indeed, the results of Min-Max MM degrade when
tasks get larger: in this case, the number of tasks per node is relatively small
(a few units) and greedy heuristics fail to achieve close to optimal performance.
On the other hand, in the Small Tasks scenarios, the solution provided by the
column generation algorithm is not as good. This comes from the fact that the
integer problem of the final step is very difficult to solve in that case.

Nevertheless, the number of nodes required by the column generation algo-
rithm is always within 1 % of the lower bound. It is worth noting that in the
context which we consider in this work (long-running services with heavy work-
load), the task sizes are not small, and the medium-large task sizes are the most
realistic cases (see Sect. 5.4 for a comparison on a real trace).

The BestFit heuristic BFD represents the standard packing algorithm used
in such Cloud systems. We can see that its performance is consistently 10 %
above the lower bound, and even worse in the case of small tasks. This advo-
cates strongly in favor of more sophisticated algorithms like the one we propose.
Finally, we can also see that failing to take periodic demand variations leads to a
large waste of resources. Indeed, the performance of Min-Max-Module MMM
is consistently far from the lower bound, by 50 % in the case of Big Amplitudes
and by 25 % in the case of Small Amplitudes.

Column Generation Integer Programming for Allocating Jobs 45

●

●

Large Amplitude

Small Amplitude

0

100

200

300

0

100

200

300

Large Medium Small
Task Size

T
im

e
pe

r
ite

ra
tio

n
(m

s)

●

●

● ●

●

Large Amplitude

Small Amplitude

0

100

200

300

0

100

200

300

Large Medium Small
Task Size

N
um

be
r

of
 it

er
at

io
ns

●

●

●

●

Large Amplitude

Small Amplitude

0

20

40

60

0

20

40

60

Large Medium Small
Task Size

To
ta

l T
im

e
(s

ec
on

ds
)

Fig. 2. Running time of column generation algorithm.

Figure 2 analyses the computation time for the first phase of the column-
generation algorithm, which solves the rational relaxation of the problem (the
second phase is the final step where we obtain an integer feasible solution, whose
time is limited to 5 min in our experiments). We observe that the number of
iterations remains below 300, and the time per iteration is very low (around
200 ms), showing that the SOCP formulation for the subproblem is very efficient.
This allows the column generation algorithm to complete its first phase in about
40 s in all scenarios.

5.4 Jobs and Tasks of Google Trace

Then, we concentrate on the set of realistic periodically variable jobs in the
trace released by Google [18] and corresponding to one production center. In [4],
a instance has been extracted from this trace with 89 jobs corresponding to a
total of 22600 tasks. The largest job in terms of tasks consists of 1608 tasks
and the largest job in terms of CPU demand corresponds to the capacity of
184 nodes at its peak demand. A capacity equivalent to 2198 nodes would be
required if all jobs reached their peak demand at the same instant. The overall
peak demand for the whole set of jobs is equivalent to the capacity of 2090 nodes.
Therefore, there exists a potential improvement on the number of required nodes
of 5 %, what should be considered as large in the context of an actual production
center. We have applied our column-generation algorithm on this instance, and
the results achieved are displayed in Table 1.

The results of MM are deemed extremely good in [4], because the number
of required machines is only 1.1 % higher than the lower bound. Our column-
generation algorithm CG is able to provide an even more efficient solution, with
a number of nodes only 0.6 % higher than the lower bound, effectively halving

46 I. Belaid and L. Eyraud-Dubois

Table 1. Number of nodes required per heuristic.

Column generation Best-Fit Min-Max Min-Max-Module

CG BFD MM MMM
Number of nodes 2103 2182 2114 2226

the gap between the best solution and the lower bound. As shown previously, the
time complexity of our algorithm is very reasonable, showing that our column
generation algorithm can really make an impact for improving resource usage in
actual production centers.

6 Conclusions

Allocating computing resources for multiple time-varying job workloads is an
attractive yet challenging target for many providers of large-scale infrastruc-
tures of cloud computing. Towards this end, we address in this paper a resource
allocation problem for jobs that exhibit daily periodic sinusoidal patterns. Such
jobs have been shown to represent a significant part of the workload of large
production clusters, as exemplified by a trace from a Google center. Taking the
periodic pattern into account allows to coallocate jobs which reach their peaks
at different times, and this allows to significantly increase the resource usage on
these platforms.

In this paper, we present a novel packing technique relying on job aggrega-
tion mechanism by employing an exact method using column generation integer
programming. The Dantzig-Wolfe reformulation allows to isolate the quadratic
constraint in a small size subproblem, which can be solved very efficiently. Solv-
ing iteratively this subproblem and the reformulated packing problem allows to
efficiently identify the relevant machine configurations, i.e. the set of jobs which
should be allocated together. This technique is then compared to best-effort
heuristics inspired from the standard bin-packing methods, on both simulated
and realistic data. Experimental results show that this algorithm obtains good
results very consistently, even in difficult cases in which task sizes are large and
few tasks can fit together on the same machine. In the most realistic cases, the
column generation improves over the best heuristic by up to 5 %, effectively
halving the gap between the best known solutions and the lower bound.

As future work, we plan to extend job aggregation strategies to provide
performance guarantees for other resources like memory, disk, network band-
width, etc. Improving the column generation algorithm could focus on two dif-
ferent directions: using a more efficient routine to solve the subproblem could
lower further the running time of the first phase, and more efficient branching
schemes could improve the efficiency of the last step of the algorithm. Besides,
we target to address the problem of resource allocation and sharing for dynami-
cally arriving jobs while considering the already assigned static ones. This prob-
lem is challenging and attractive computing paradigm in cloud computing for a

Column Generation Integer Programming for Allocating Jobs 47

wide variety of applications. This dynamic co-allocation for unpredictable jobs
presents new challenges to resource management in multicluster systems, such
as locating sufficient resources for these dynamic jobs in distributed sites, man-
aging temporarily the job assignment and coordinating their executions with the
processing of the static jobs.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A.,
Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., et al.: Above the clouds: a Berkeley
view of cloud computing, University of California, Berkeley (2009)

2. Aron, M., Druschel, P., Zwaenepoel, W.: Cluster reserves: a mechanism for resource
management in cluster-based network servers. In: Proceedings of the ACM SIG-
METRICS Conference, pp. 90–101 (2000)

3. Beaumont, O., Eyraud-Dubois, L., Lorenzo-Del-Castillo, J.-A.: Analyzing real clus-
ter data for formulating allocation algorithms in cloud platforms. In: 2014 IEEE
26th International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), pp. 302–309 (2014)

4. Beaumont, O., Belaid, I., Eyraud-Dubois, L., Lorenzo-Del-Castillo, J.-A.: Allocat-
ing jobs with periodic demand variations. EuroPar 2015, (February 2015)

5. Beaumont, O., Eyraud-Dubois, L., Rejeb, H., Thraves, C.: Heterogeneous resource
allocation under degree constraints. IEEE Trans. Parallel Distrib. Syst. (2012)

6. Beloglazov, A., Buyya, R.: Energy efficient allocation of virtual machines in cloud
data centers. In: IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, pp. 577–578. IEEE (2010)

7. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for
managing SLA violations. In: 10th IFIP/IEEE International Symposium on Inte-
grated Network Management, IM 2007, pp. 119–128 (2007)

8. Calheiros, R.N., Buyya, R., De Rose, C.A.F.: A heuristic for mapping virtual
machines and links in emulation testbeds. In: Proceedings of International Confer-
ence on Parallel Processing (ICPP), pp. 518–525. IEEE (2009)

9. Cirne, W., Frachtenberg, E.: Web-scale job scheduling. In: Cirne, W., Desai, N.,
Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2012. LNCS, vol. 7698, pp.
1–15. Springer, Heidelberg (2013)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

11. Hochbaum, D.: Approximation Algorithms for NP-Hard Problems. PWS Publish-
ing Company, Boston (1997)

12. Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers.
Math. Program. 95(2), 407–430 (2003)

13. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Towards under-
standing heterogeneous clouds at scale: Google trace analysis. Technical report
ISTC–CC–TR–12–101, Intel science and technology center for cloud computing,
Carnegie Mellon University, Pittsburgh, PA, USA, April 2012. http://www.istc-cc.
cmu.edu/publications/papers/2012/ISTC-CC-TR-12-101.pdf

14. Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: format +
schema. Technical report, Google Inc., Mountain View, CA, USA, November
2011. Revised 20 March 2012. http://code.google.com/p/googleclusterdata/wiki/
TraceVersion2

http://www.istc-cc.cmu.edu/publications/papers/2012/ISTC-CC-TR-12-101.pdf
http://www.istc-cc.cmu.edu/publications/papers/2012/ISTC-CC-TR-12-101.pdf
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2

48 I. Belaid and L. Eyraud-Dubois

15. Shahabuddin, J., Chrungoo, A., Gupta, V., Juneja, S., Kapoor, S., Kumar, A.:
Stream-packing: resource allocation in web server farms with a QoS guarantee. In:
Monien, B., Prasanna, V.K., Vajapeyam, S. (eds.) HiPC 2001. LNCS, vol. 2228,
pp. 182–191. Springer, Heidelberg (2001)

16. Urgaonkar, B., Shenoy, P., Roscoe, T.: Resource overbooking, application profiling
in shared hosting platforms. SIGOPS Oper. Syst. Rev. 36(SI), 239–254 (2002)

17. Vanderbeck, F.: On dantzig-wolfe decomposition in integer programming and ways
to perform branching in a branch-and-price algorithm. Oper. Res. 111–128 (2000)

18. Wilkes, J.: More Google cluster data. Google research blog, November 2011. http://
googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

19. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010)

http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

SSSDB: Database with Private
Information Search

Hillel Avni1, Shlomi Dolev1, Niv Gilboa2, and Ximing Li3(B)

1 Department of Computer Science,
Ben Gurion University of Negev, Beer-Sheva, Israel
hillel.avni@gmail.com, dolev@cs.bgu.ac.il

2 Department of Communication Systems Engineering,
Ben Gurion University of the Negev, Beer-Sheva, Israel

niv.gilboa@gmail.com
3 College of Mathematics and Informatics,

South China Agricultutral Unversity, Guangzhou, China
liximing@scau.edu.cn

Abstract. This paper presents searchable secret shares (SSS), a novel
method to search and collect statistics about private information quickly
without retrieving secretly shared data, which is stored in public clouds
separately. The new capabilities of SSS serve as a base for a newly defined
SSS database SSSDB with reduced communication overhead and better
security compared with private information retrieval (PIR) based data-
bases. Clouds know neither the database stored in their disks nor the
searched patterns and the results. Unlike PIR based databases, SSSDB
does not need to maintain an access data structure for mapping keys to
indexes performing inserts and deletes in the user memory, and therefore
avoids possible information leakage. SSSDB is information-theoretically
secure and can be implemented using a small integer field which implies
high memory and computation efficiencies.

1 Introduction

Next generation IT infrastructures are based on private, public and hybrid cloud
infrastructures. When private files (documents, pictures, mails) are stored in
public clouds, cloud providers have full access to the data and control where it is
stored. While they do not have much information about the infrastructure and
the security mechanisms in place, in particular, the storage may be out of coun-
try, which could imply legal concerns. The lack of transparency concerning the
storage settings in the cloud prevents security officers, working for big enterprise
organizations, and managing sensitive data, from using cloud resources. As an
example, we can take a health care provider that is constantly looking for new
ways to reduce the cost of data centers and management operations is moving

X. Li—Supported by the National Natural Science Foundation of China
(No. 61472146, 61402184), Science and Technology Planning Project of Guangdong
Province (2013B010401020), the Project-sponsored by SRF for ROCS, SEM.

c© Springer International Publishing Switzerland 2016
I. Karydis et al. (Eds.): ALGOCLOUD 2015, LNCS 9511, pp. 49–61, 2016.
DOI: 10.1007/978-3-319-29919-8 4

50 H. Avni et al.

his/hers data centers to the cloud. Such a migration implies great savings, relia-
bility and efficiency. Still, organizations have doubts since patients’ data privacy
is not guaranteed. In addition, once the database is migrated to the cloud, clients
searching in the database also want to protect themselves from possible tracing,
by cloud providers, of their (or their medical doctor) inquires concerning their
health record. Many methods have been proposed to protect the privacy of the
data provider and the data user.

1.1 Private Data Search in Clouds

Private information retrieval [3] (PIR) allows a client to look up information in
an online database without letting the database servers learn the query terms or
responses. An inherent limitation of PIR is that searching in a record requires
retrieving the record. Retrieving secret shares for a record may incur significant
communication. One way to avoid retrieval is to use fully homomorphic encryp-
tion (FHE). In his seminal paper [5], Craig Gentry presented the first FHE
scheme which is capable of performing encrypted computation on Boolean cir-
cuits. A user specifies encrypted inputs to the program, and the server computes
on the encrypted inputs without gaining information concerning the input or
the computation state. Following the outline of Gentry’s, many subsequent FHE
schemes [6,7] are proposed, some of which are even implemented [8]. Recently,
Craig Gentry et al. executed one AES-128 encryption homomorphically in eight
days. Such overhead is unacceptable for most applications.

CryptDB [11] is a secure database implementation that uses several tech-
niques including complex mechanisms such as order preserving encryption
(OPE), which is computationally secure. The combination of the variety of mech-
anisms implies complicated security proof, attempting to identify the weak chain
in the composition of computational security based techniques and verify the
overall security. Secure searchable secret sharing schemes [13] base their security
on oblivious RAM, which has poor performance and does not completely hide
the searched item.

Some recent works [2,9,10,14] proposed private data searching schemes based
on Shamir’s secret sharing algorithm instead of single copy encryption. These
schemes are mainly based on sorting shares by secret value, which reveals some
information about the data.

In this paper we propose a method, which is based on pure secret sharing
scheme, to search in the secret shares without retrieving them, with a complexity
level similar to the best PIR based scheme. Security First Corp and Navajo Sys-
tems [1] use complicated secret share schemes combined with keys, or only keys
to obtain computational security, respectively. We believe that the information
theoretically secure level we obtain in SSSDB while supporting search operation
efficiently using the accumulating automata approach is significantly better.

SSSDB: Database with Private Information Search 51

Fig. 1. Settings of SSSDB

1.2 Our Contributions

In this paper, we propose the SSS method, which allows searching and collect-
ing statistics inside secret shared private information, without retrieving that
information. Then, we utilize the SSS to create a SSSDB scheme. The frame-
work of the SSSDB scheme is depicted in Fig. 1, where the Data Owner secretly
shares their data and sends the database share to public clouds separately. The
Data User sends the query share to each cloud and gets the result share from
each cloud. Each public cloud works on the database share and the query share
independently to calculate its result share. At the end, the Data User can recon-
struct the correct result from the result shares while Clouds know neither the
database and the query results. Actually, we extend the application of Accumu-
lating Automata [4] by secret sharing every character in the searched pattern.
Namely, we are able to secure the search pattern by sending a vector of secret
shared bits for selecting each character in the searched pattern.

Online Search. In SSSDB, if the client only wants to check the presence of
a certain allergy A in a specific medical record R, assuming R is associated in
the database with a unique ID N , it generates a private query from N and A,
and gets an indication I whether A is present in R, without retrieving R. The
response, i.e., I, is also private as it is secret shared as well.

The online search has three advantages over retrieving R and searching for
A in R locally:

Delegating computation: The search is not consuming the client computa-
tional resources.

52 H. Avni et al.

Short answer: Only I is sent to the client, and not R, which reduces the
communication complexity.

Concise answer: The presence of R on the client machine, may introduce
privacy hazards, as if the client machine is stolen or hacked, R may be com-
promised.

Privacy Preserving Statics. A company may collect statistics about the
database in a single query, without revealing any information on the records,
except the statistics, in the form of the number of appearance of the queried
string. For example, consider a database of medical records. A medical company
may run a private query to count the patients who have a certain disease, and
therefore predict the demand for its cure.

No Hash. Unlike TRANSPIR, SSSDB does not need a potentially leaking aux-
iliary access control data structure that maps keys to unique indexes in a way
that reveals the current set of keys and in turn reveals information on the records
in the secret shared files (in the clouds).

Dynamic Update. SSSDB is the first dynamic private database we are aware
of. By cutting the connection of keys and specific indexes in the database tables,
SSSDB allows clients to securely update the database tables by inserting and
deleting arbitrary 〈key, pattern〉 pairs.

1.3 Organization

In Sect. 2 we establish SSS, a method for searching private information which
may reside in the public cloud, without retrieving the private information.
Section 3 explains how to employ SSS to build SSSDB, a dynamic database
with private information, and online searches. Section 4 describes SSSDB imple-
mentation and its usage for storing (health) records. We conclude in Sect. 5.

2 Private Searchable Data

In this section we explain how SSS is working, for more detailed information
please refer to Accumulating Automata [4]. The classic Shamir secret sharing
scheme [12] allows a dealer to choose a secret value, and distribute shares of
that secret to many players. For the sake of simplicity, we present our idea
where each letter in the data to its unary representation, so if the alphabet α is
A1...Al, then the letter Ak, 1 ≤ k ≤ l, is represented by an array of size l, with 1
at index k and 0’s in all other slots. Now, if a file F holds s letters, L1...Ls, and
the alphabet is α, it is converted to a matrix MF of dimensions l × s, where if
Lm, 1 ≤ m ≤ s is Ak, then we have 1 at MF [m, k] and 0 at MF [m, j], j �= k. At
this point we generate p secret shares of MF . If σ is the length of the longest
pattern we intend to search in F then, to facilitate the search method, which we

SSSDB: Database with Private Information Search 53

explain shortly, p = (2 × σ) + 1. MF
q , 1 ≤ q ≤ p, is a matrix of l × s numbers,

MF
q [i, j] is a secret share of M [i, j].
At this point we distribute each share, MF

q , to a separate cloud, and verify
that no single entity will hold two shares of F . Note that, even if an entity
maintains shares of many files, it should identify the exact shares of a specific
file, it may also need to map the shares to the right x’s they represent.

The preprocessing secret share construction stage described above, is quite
resource consuming, both in computation and communication, but once it is
done we are ready to repeat indefinitely very efficient searches in F for any
pattern π that is p letters or less over α.

We convert π to its unary representation and generate the matrix Mπ, and
share Mπ to the p hosts in the cloud (or different clouds). It should not take too
much time or communication, as σ is usually small. Now the host Hq holds both
MF

q and Mπ
q . Each host should calculate a number, that is the y coordinate

for its x, in a polynomial of degree p. The calculation is given in the following
equation:

(Σs−σ
k=1(Π

σ
i=1(Σ

l
j=1(M

F [k + i, j] × Mπ[i, j])))) (1)

The polynomial created by the points that are calculated with Eq. 1, will
have the degree p − 1, and when x is 0, will be the number of times π appeared
in F . The reason is that the inner sum, of multiplications of the components of
the unary representation of a letter in α, is a polynomial of degree 2, which is 1
at x = 0, only if the character in π and F are the same.

Security. In SSS the clients distribute the secret shares and can interpolate
them, while the servers, have no knowledge of the data. Clients are free to com-
municate with each other and the servers, but the servers are assumed to not
communicate with each other, and are in fact, isolated from one another (possi-
bly competing with suppliers from different clouds in different geographic areas).

Initialization Complexity. At initialization, the client is creating the secret
shares of the data. If the length of the maximal search pattern is p, then there
are at least 2 × p + 1 shares. Each share involves calculating and storing n × s
values, where n is the alphabet size and s is the number of letters in the data.
The communication overhead is uploading ((2× p+1)× (n× s)) values, and the
size of a values in F. The F size should be at least max(p, output). Each server
needs to allocate storage for (n × s) values.

Search and Counting Query Complexity. As in initialization, the client
creates and distributes 2 × p + 1 shares of the pattern, but now SP , the size
of the pattern, replaces SD, and is small. Each server during the search is per-
forming n × SP × SD multiplications, and sends a value, which is the result of
the calculation in Eq. 1 to the client. The client then needs to interpolate the
polynomial to decode the results.

54 H. Avni et al.

3 SSSDB Structure

We leverage SSS to create SSSDB, a database that allows insertion and deletion
of 〈key, record〉 pairs. SSSDB can be used to retrieve records privately according
to keys, or to search for a pattern in a private online record, according to a given
〈key, pattern〉 pair. SSSDB uses the keys directly as pointers to the data tables,
which avoids the need for maintaining an auxiliary access data structure outside
the secret shared database.

In Sect. 3.1 we present the objects that add up to create SSSDB and in
Sect. 3.2 we discuss the details of SSSDB operations, namely, retrieving and
online search, insert and delete.

3.1 Database Components

The database always holds n 〈key, record〉 pairs, where each key size is u and
each record size is r. n is the actual maximal number of keys expected in the
database, and not the keys universe, i.e., not the maximal possible number of
different keys in the system.

We define the special characters ∅ and ⊥, which will never be used in the
client keys and records, and use ⊥ for keys in empty slots and ∅ for their records.
If there are u empty slots in the database, they will be marked ⊥1....⊥u. ⊥v is a
unique deleted key starting with the character ⊥ that is followed be characters
that encode the sequence number of the leftover (deleted) entries.

In initialization, the servers allocate an array of key-record pairs to accom-
modate n 〈keyj , recordj〉 pairs, where n is the maximal actual data size. The
initializing client then secret shares 〈⊥j , ∅′s〉 to each empty slot. We empha-
size that not all slots must be empty in initialization, which is important in
preventing an eavesdropper from distinguishing an insert from a delete.

We set a counter C, which is shared with all clients, to n, to indicate there
are n free slots in the database, which are marked 1...n. If there are multiple
clients, C must be adjusted to maintain serialization of the database operations,
therefore in this paper we consider, for the sake of simplicity (as for synchro-
nization and locking techniques during updates), the existence of one server that
serves all clients.

SSSDB defines a simple application protocol, which allows the client to call
commands on the server side. When we list the steps of a database operation, if
the step is executed on the host, it is executed as a result of a request sent with
this protocol, and it sends an output or acknowledgement to the client.

3.2 Database Operations

Now we show how the database components and SSS are employed to create the
operations of our SSSDB.

SSSDB: Database with Private Information Search 55

= = = = R1 R2

R3 R4 R5

k e y K

K

K K
K

Fig. 2. Extracting the record R, of size 5, with key K

Retrieving Search. A search operation executes the following steps:

1. Client: Gets a valid key K of size k. It generates and distributes the SSS
secret shares for K.

2. Each Server: Uses SSS to generate the record of K, if it exists, or a record
of all 0’s. Then each server sends the results to the client.

3. Client: Interpolate the record from the servers.

The search retrieves the record for a key, without knowing the index.
Step 1 is common to all operations where it creates and distributes the shares

of MK . After completing step 1, the server’s side, is calculating R in step 2. The
process of calculating R for a 5 letters record 〈R1, ..., R5〉, is illustrated in Fig. 2.
It starts with an SSS online search for the pattern, e.g. 〈k, e, y,K〉 from Fig. 2.
As the table is populated with n 〈key, record〉 pairs, and all keys are of size k
and all records are of size r, there are exactly n sequences of k characters that
may accommodate the key K1, ...,Kk. For each such sequence, Sj , j ∈ 1...n, we
sum the Ki × Sj

i , i ∈ 1...k, to get Qj which is 1 if Sj is K and 0 otherwise. The
server now multiplies Qj by Rj

i , i ∈ 1...n, to get n values. These values are Rj
i

if Qj is 1 and 0 otherwise. The function sums Rj
i × Qj for i ∈ 1...n, to get r

secret shared values. As K may appear in an SSSDB table at most once, these
values are the record for K, if K is found, or 0’s. The server sends r results to
the client which is then constructing the record.

Non Retrieving Counting in Records. In this operation the servers get a
pattern π and a key Kj and calculates how many times π appears in record Rj

which is associated with Kj . The phases are as follows:

1. Client: Gets a valid key Kj and a pattern π, generates their SSS shares and
distributes to the servers.

2. Each Server: We break this step to the following:
(a) Use SSS to generate the share of record Rj , which is associated with Kj ,

as done in Sect. 3.2.
(b) Uses Eq. 1 with s set to size of Rj , to compute the secret share of the

number of appearances of π in Rj , if Kj exists in the database, or 0
otherwise.

56 H. Avni et al.

(c) Send the result secret share to the client.
3. Client: Interpolate the appearances count of π in Rj from the servers.

This function is built on top of the retrieving search from Sect. 3.2. At step
2c, after the server generated the r secret shares, R1...Rr, which are either 0’s
or R, it goes to execute the SSS search on R1...Rr. If R is found, the result will
be the number of appearances of π at R, and otherwise, it would be zero.

Global Statistics. SSSDB has a special command to count a pattern in the
whole database. As the keys contain the ⊥, and the records are initialized to ∅s
when deleted, it is possible to count the total number of appearances of a pattern
in the database. This can be used, for example, to generate useful statistics such
as spread of epidemics by counting a disease name in online private medical
records.

Index. Both insert and delete require knowing whether a key K is in the data-
base and what is its index. For this purpose, we have the function index(K),
which is working like the retrieving search from Sect. 3.2, but it substitutes the
index, 1...n, instead of R. The index exists anyway in the process of server iter-
ation, and is not secret shared. index(K) allows the client to calculate the index
of K which is 1...n if K is in the database or 0 if it is not.

Delete. In this section and in Sect. 3.2 we assume the existence of index(K)
function from Sect. 3.2, and ignore, for simplicity of presentation, the fact it
executes on the host. The delete sequence:

1. Client: This step goes through the following phases:
(a) Get a valid key K.
(b) Calculate the index X of K, from the servers, and if X is 0 (K is not in

the database), terminate.
(c) Fetch C into Y and increment C.
(d) Generate SSS shares for ⊥Y , which is an unused key for an empty, deleted

slot. The process is described in Fig. 3.
(e) Distribute the shares of 〈⊥Y , 0′s〉 to the server, together with plan X.

2. Each Server: replace the 〈key, value〉 in index X with 〈⊥Y , 0′s〉, as demon-
strated in Fig. 4.

Step 1a is checking for the index of K. If K is absent, the delete operation
terminates, as there is nothing to delete. In step 1c the client uses C. C is
a counter of deleted keys, and deleting a key K means incrementing C and
then replacing K with a key that is a combination of ⊥ and the current C,
i.e., ⊥C. ⊥C must be unique, because ⊥ is never used in client keys, and C will
be decremented only if an insert used ⊥C to insert a 〈key, record〉 pair.

SSSDB: Database with Private Information Search 57

t1New database t2 t3 ti tn

× × × × ×

+ + + + +

0Update string 0 0 1 0

tiTuple needs to be updated ti ti ti ti

t1Original database t2 t3 ti tn

Fig. 3. Create the refreshing data

t1New database t2 t3 ti tn

+ + + + +

t1Refreshed data t2 t3 ti tn

t1Original database t2 t3 ti tn

Fig. 4. Update algorithm on secret shared database

Insert. The insert sequence is as follows:

1. Client: This step goes through the following phases:
(a) Get a valid key K, and a record R.
(b) Calculate the index X, of K from the servers, and if X is not 0 (K exists

in the database), terminate.
(c) Fetch C into Z and decrement C, and calculate the SSS secret shares for

⊥Z , a used key, which marks an empty slot.
(d) Calculate the index Y of ⊥Z , i.e., the index of an empty slot in the

database table.
(e) Generate SSS shares for 〈K,R〉 as well, and distributes it together with

plan Y . The process is described in Fig. 3.
2. Each Server: Replace the pair in index Y with 〈K,R〉, as illustrated in

Fig. 4.

Step 1a is checking for the index of the new key, K. If it is present, the insert
operation terminates. Now we need to find an empty slot for the insertion of
〈K,R〉. For this, we allocate a key which we know is occupying an empty slot,

58 H. Avni et al.

namely, ⊥C . We assume there is only one client in the system, otherwise we
would have to synchronize the allocation of ⊥C . At step 1d we set Y to the
index of the empty slot of ⊥C . To complete the insertion, the client sends Y and
the SSS shares of 〈K,R〉 to the server which writes 〈K,R〉 to index Y of the
table.

Now it is left to show that the operations we presented, maintain the privacy
of the operations.

3.3 Security

The search security is given by SSS security, which in turn is as secure as PIR.
The more challenging part is to show that privacy is kept in the dynamic updat-
ing operations. Cloud servers can track the updates of entries, but this informa-
tion, as we explain below, only reveals the time, possibly measured in the number
of updates elapsed since the last update of each entry in SSSDB. However, if
one wants to avoid such leakage, it is possible to refresh by adding secret shared
zeros to all but the updated entry. We can also somewhat hide the exact access
by updating (refreshing) a subset of other entries in addition to the entry we
need to update, rather than refreshing all. We recall that refreshing the secret
shares is always beneficial, as if an eavesdropper copied a subset of the shares
they will become useless.

To demonstrate the security advantage of inserts and deletes in SSSDB, we
assume two things. One is that the eavesdropper can not decode secret shares,
which is a fact. The other is that the dealer/inquiry server is trusted. The client
knows the keys and records, as it is the one generating them, thus we must trust
the client.

To show that any key can be in any index, thus knowing the index, and
leaking less information about the data, we will present a scenario where two full
keys are swapping indexes and a scenario where two empty keys swap indexes.
The scenario where any empty key may replace any full key, and the scenario
any full key may replace any empty key are trivial. We also assume that the
servers can not tell whether the table is full or empty, thus the servers can never
know if the update it intercepted was an insert or a delete.

Swap Full Keys. Assume n = 10 and C = 5. The client deletes Ki and replaces
it by ⊥6 and increments C to 6. Then it deletes Kj , j �= i, replaces it by ⊥7,
and increments C to 7. Now the client inserts Ki, which goes to ⊥7 which is in
the previous index of Kj . To complete the swap, it inserts Kj , which goes to ⊥6
which is in the previous index of Ki.

Swap Empty Keys. Assume n = 10 and C = 5. The client inserts Ki and
replacing ⊥5 and decrements C to 4. Then it inserts Kj , j �= i, replacing ⊥4, and
increments C to 3. Now the client deletes Ki, which is replaced by ⊥4. Recall
Ki replaced ⊥5, so ⊥4 swapped with ⊥5.

SSSDB: Database with Private Information Search 59

4 Evaluation

To check how our private database actually works we implemented it in
Python 2.7, using standard libraries. We choose EC2 to store our shares and
use sample US army veterans medical records as our testing data.

Testing environment: We used EC2 smallest VM, i.e. T2 micro, running Ama-
zon Linux AMI, for the database servers, and our local machine, Intel Core
I3-2310 M, 2.1 GHz, with 4 GB RAM, running Windows 7 Home Premium,
which is a standard laptop, as database clients.

Table 1. Pattern and data sizes are in bytes, while time for initialization an operations
is measured in seconds.

Global statistics

Data Pattern Initialization Operation

4 K 5 79 5

4 K 10 79 (reuse) 8

8 K 5 163 8

8 K 10 163 (reuse) 14

In Table 1 we show the results of global statistics collections. We count the
occurrences of 5 and 10 bytes patterns in 4 KB and 8 KB files. It can be seen
the initializations are long, but then extracting the statistics takes only a few
seconds.

Table 2. Keys and record sizes are in bytes, while time for initialization an operations
is measured in seconds.

Retrieving search

Keys # Key Record Initialization Operation

10 5 4 K 23 133

100 5 400 45 17

1000 5 40 83 9

10000 5 4 220 8

Table 2 is uploading a database, whose plain text is 40 KB, and is configured
to hold records of different sizes. From 1000 records of 4 bytes to 10 record of
4 KB. The keys size is 5 bytes. In the retrieving search operations, the bottleneck
is the calculation in the interpolation of the record, and in the initialization,
it is the calculations in creating the keys which is in unary representation. It
can be seen that the interpolation is much more consuming. We note that we
have started a new implementation using c++ indicating the potential for a
dramatically better performance.

60 H. Avni et al.

5 Discussion

This paper presents SSS, a method to search in private information without
retrieving it, in an efficient way, and SSSDB, a database based on SSS. In SSS
the clients distribute the secret shares and can interpolate them, while the servers
have no knowledge of the data. Clients are free to communicate with each other
and to servers, but the servers are assumed not to communicate with each other
and are, in fact, isolated from one another (possibly in different clouds in different
geographic areas).

Search security is given by SSS security. The more challenging part is to
show that privacy is kept in the dynamic updating operations. Cloud servers
can track the updates of entries, but this information only reveals the time,
possibly measured in number of updates elapsed since the last update of each
entry in SSSDB. However, if one wants to avoid such leakage, it is possible to
refresh by adding secret shared zeros to all but the updated entry. We can also
somewhat hide the exact access by updating (refreshing) a subset of other entries
in addition to the entry we need to update, rather than refreshing all.

The complexity of all operations involves a search which takes 2 × log2 n +
log n communication. The non retrieving operations from Sect. 3.2 does not add
this basic complexity, whereas the other does:

1. Retrieving Search (Sect. 3.2): Adds the size of a record from each server.
2. Delete (Sect. 3.2): A delete operation is performing only one search, to

find the index of the to be deleted key, and then replaces the full key with a
deleted key, so it sends another key, a secret shared empty key. Assuming the
key size is log n, we get 4 × log2 n + log n.

3. Insert (Sect. 3.2): An insert operation may execute two searches. The first,
to find that the key is absent, the second to find the index of the empty key
which it allocated. It then also sends the secret shared 〈key, record〉 pair, so
the communication complexity, again assuming key size is log n, is the size of
the record plus 6 × log2 n.

On our weak laptop, with no optimized python implementation, and the
slowest EC2 servers, a search for a keyword in a medical record took only a few
seconds. In addition to searching online, SSSDB allows dynamic updates and
does not use auxiliary access data structure. We note that standard methods
such as Berlekamp Welch techniques may be used to interact with servers, where
some of which are malicious.

Our future work includes: (1) How to securely store more than one database
share in one public cloud, say, EC2; (2) How to implement a flat database or a
Mongodb-like database based with the SSSDB idea.

SSSDB: Database with Private Information Search 61

References

1. Security First Corp. https://www.securityfirstcorp.com/, https://www.linkedin.
com/company/navajo-systems

2. Agrawal, D., El Abbadi, A., Emekci, F., Metwally, A., Wang, S.: Secure data
management service on cloud computing infrastructures. In: Agrawal, D., Candan,
K.S., Li, W.-S. (eds.) Information and Software as Services. LNBIP, vol. 74, pp.
57–80. Springer, Heidelberg (2011)

3. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

4. Dolev, S., Gilboa, N., Li, X.: Accumulating automata and cascaded equations
automata for communicationless information theoretically secure multi-party com-
putation. Cryptology ePrint Archive, Report /611 (2014). http://eprint.iacr.org/

5. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed) STOC 2009, Bethesda, MD, USA, May 31–June 2, 2009, pp. 169–178.
ACM (2009)

6. Gentry, C.: Toward basing fully homomorphic encryption on worst-case hard-
ness. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 116–137. Springer,
Heidelberg (2010)

7. Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. In: FOCS 2011, pp. 107–109. IEEE Computer Society
(2011)

8. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

9. Hadavi, M.A., Jalili, R.: Secure data outsourcing based on threshold secret sharing;
towards a more practical solution. In: Proceedings VLDB, Ph.D, Workshop, pp.
54–59 (2010)

10. Liu, Y., Wu, H.-L., Chang, C.-C.: A fast and secure scheme for data outsourcing
in the cloud. KSII Trans. Internet Inf. Syst. (TIIS) 8(8), 2708–2721 (2014)

11. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: protect-
ing confidentiality with encrypted query processing. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, SOSP 2011, pp. 85–100.
ACM, New York (2011)

12. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
13. Stefanov, E., Shi, E., Song, D.: Towards practical oblivious RAM (2011).

arxiv:1106.3652
14. Tian, X.X., Sha, C.F., Wang, X.L., Zhou, A.Y.: Privacy preserving query process-

ing on secret share based data storage. In: Yu, J.X., Kim, M.H., Unland, R. (eds.)
DASFAA 2011, Part I. LNCS, vol. 6587, pp. 108–122. Springer, Heidelberg (2011)

https://www.securityfirstcorp.com/
https://www.linkedin.com/company/navajo-systems
https://www.linkedin.com/company/navajo-systems
http://eprint.iacr.org/
http://arxiv.org/abs/1106.3652

Graph DBs vs. Column-Oriented Stores:
A Pure Performance Comparison

Marios Kendea1(B), Vassiliki Gkantouna1, Angeliki Rapti1, Spyros Sioutas2,
Giannis Tzimas3, and Dimitrios Tsolis4

1 Computer Engineering and Informatics Department,
University of Patras, 26504 Patras, Greece

{kendea,gkantoun,arapti}@ceid.upatras.gr
2 Department of Informatics, Ionian University, 49100 Corfu, Greece

sioutas@ionio.gr
3 Computer and Informatics Engineering Department,

Technological Educational Institute of Western Greece, 26334 Patras, Greece
tzimas@cti.gr

4 Department of Cultural Heritage, Management and New Technologies,
University of Patras, 26504 Patras, Greece

dtsolis@upatras.gr

Abstract. Cloud Computing has brought a great change in the way
information is stored and applications run. In order for one or more clus-
ters to work as a cloud we need a middleware framework, such as Apache
Hadoop [17], that provides reliability, scalability and distributed comput-
ing. Once the infrastructure has been established, a software framework
can be installed, which runs on top of it and will be the connection to
communicate with the applications developed by the users. The software,
in this regard, is a NoSQL database. This paper deals with the problem of
searching data in some widespread NoSQL databases used in cloud com-
puting. Two categories of NoSQL databases are compared; one based on
columns using a column-oriented key-value store, HBase [6], and a high-
available graph database, Neo4j [11]. HBase is a distributed, scalable
storage system that runs on top of HDFS, and has being designed based
on Google’s BigTable [4]. Neo4j has being designed and developed to be
a reliable database, optimized for graph structures, instead of tables, and
is a robust, scalable, high performance and high available database that
supports ACID transactions and queries written in Cypher language.
The aim of this paper is to create a novel system that will decide when
a query must be send to be executed in a key-value store or a graph
database. Thus, an experimental pure performance comparison has been
made between Apache HBase and Neo4j for a variety of queries, that
were programmed using systems API’s and Java language.

Keywords: NoSQL databases · Hadoop · HBase · Neo4j · Graph data-
bases · Distributed systems

c© Springer International Publishing Switzerland 2016
I. Karydis et al. (Eds.): ALGOCLOUD 2015, LNCS 9511, pp. 62–74, 2016.
DOI: 10.1007/978-3-319-29919-8 5

Graph DBs vs. Column-Oriented Stores 63

1 Introduction

The massive data generation and the need of real time query execution on them
lead the sql-like databases to be less useful. Furthermore, relational databases
can store large amounts of structured data with high performance and of course
ACID transactions. Because of the data explosion and the turnover to cloud
technologies, a new era of databases is born. That’s the basic reason of the
existence and development of the wide range of different types of data stores,
called NoSQL databases. This data may not follow a specific schema and the
NoSQL databases give us the chance of not worrying how we will explicit use
the raw data.

NoSQL databases have gain great attention consisting different types. The
most popular are Document databases, Key-Value stores, Column-oriented and
Graph stores. Some non-structure data storage NoSQL systems are HBase [6],
MongoDB [9], Dynamo [5], Cassandra [10], and Neo4J [11] etc. In this paper,
we are considering two of these categories and one open source system for each
one respectively. The first system is the Column-Oriented HBase and the second
one is a Graph store called Neo4j. Columnn-Oriented stores save the data within
columns in tables and each row is accessible via the key. Tables can be sparse
because each line can have different attributes than the other. A graph database
stores data in a graph, the most generic of data structures, capable of elegantly
representing any kind of data in a highly accessible way.

In order to create modern applications and satisfy users we need to test
these systems. Lizhi Cai et al. in [3] present a performance testing model for
those complicated systems pointing that performance testing should start from
two aspects: the architecture and business level. We follow up the first/second
level and we contribute an evaluation on the systems above.

The rest of this paper is organized as follows. Section 2 presents an overview
of the frameworks used. Section 3 then describes the dataset used and the types
of queries used to evaluate the systems. Section 4 discusses our results and finally
in Sect. 5 we conclude the paper.

2 Motivation

In a research area full of new NoSQL databases, we would like to see how a pure
performance comparison, between the two most popular types, Column-Oriented
and Graph Databases, can give us results that can be used to create a model
to distribute different kind of queries between databases in Cloud applications.
Different work is being made on this area, like comparison between a Graph and
a Relation database [16], but not a comparison between a Graph and a Column-
Oriented stores. A large part of publications about Graph Databases is being
evaluated on Neo4j Graph store [11], the different ways that this open-source
framework can be used for query processing [18], the feature of indexing and
that is 2–5 times faster than MySQL [7] are some of the reasons that led us to
this choice.

64 M. Kendea et al.

We made the choice to compare two systems with different data model. For
our data, Graph Database is the clear first choice, because we are interested in
graph data, but what we are trying to do is to see if only the data can led us
to the right choice and how a combination with an other system might give us
flexibility for more complex and critical applications.

3 Systems Overview

3.1 NoSQL Features

There are some characteristics that the large-scale distributed systems have to
implement at the minimum. Those are security, scalability, high fault-tolerance
and high- availability. Unfortunately, this characteristics can’t meet at the same
time. In [2] an updated version of CAP theorem is presented, which is a good
description about that fact. Figure 1 shows the distribution of some systems and
hence their lack in characteristics. The new rules say that we can achieve some
trade-off of all three. For example, HBase to have data consistency and partition
tolerance has some loss in availability.

Fig. 1. The NoSQL systems under the CAP theory

3.2 HBase

HBase is an open-source implementation of Bigtable [4], which runs on top of
Hadoop framework [17] that allows distributed processing. The logic behind
HBase is that tables can be created without any specific schema, and all columns
of a row can be accessed by a key. There is no support of queries and so there
is no direct access on columns of a row. Table 1 shows an abstract example of a

Graph DBs vs. Column-Oriented Stores 65

Table 1. Column-oriented storage example

Row key Time stamp ColumnFamily1 CF2 CF3

CF1-q1 CF1-q2 CF2-q2 CF3-q3

rk1 t1 value1

rk2 t2 value2

rk3 t3 v3

rk4 t4 v4

t5 v5

column-oriented storage. One cell of the table can be determined by the three
properties: row key, the timestamp, and column. Row key is the unique identifier
for the rows, timestamp is the data version assigned by the system. The column
is defined as the form “column family: qualifier”. A table can have multiple
column families, one column family is constituted by multiple columns.

HBase stores data in bytes form, alphabetical ordered and always returns the
line of data with the biggest timestamp. HBase provides distributed storage and
data access. Dividing the set of keys of a table in separate parts and assigning
each part to a separate cluster node-RegionServer, HBase ensures that the load
balancing of the system nodes is as evenly as possible. The Hadoop Distributed
File System (HDFS) [14] replicates table parts to ensure fault-tolerance.

3.3 Neo4j

Well known companies in the world like Google, Facebook and Twitter have a
common between them and that is they have connected data as the center of
their plans. Neo4j is the implementation chosen for this paper, on previously
unknown type of Graph No-SQL databases. It is open source for noncommercial
use. Quickly became one of the most popular graph database systems. According
to the Neo4j website, “Neo4j stores data in nodes connected by directed, typed
relationships with properties on both, also known as a Property Graph” [11].

The main features are the following [13]:
• it uses a graph model for data representation
• it’s reliable, with full ACID transactions
• it’s custom disk-based, durable and fast
• it has native storage engine
• it’s massively scalable, up to several billion nodes/ relationships/ properties
• it’s highly-available, when distributed across multiple machines,
• it’s expressive, with a powerful, human readable graph query language

(Cypher),
• it’s fast, with a powerful traversal framework for high-speed graph queries

and embeddable and accessible by a convenient REST interface or an object-
oriented Java API.

66 M. Kendea et al.

Neo4j supports indexing on specific attributes of nodes so the queries can
be written and executed easily and of course spending a small amount of time.
Imagine if you had to traverse a giant graph to find the nodes containing a
specific attribute.

Graph Data Model

Graph database models use data structures modeled as graphs or generalizations
of them [1,8]. The property graph model has the following characteristics:

• Let G = (V,E) be a directed graph where V is a set whose elements are
called vertices or nodes, and E a set of ordered pairs of vertices, called arcs,
directed edges, or arrows. In this case V can be a set of sets of nodes of a
particular type defined by the data the graph represents. V = {V1, V2, ..., Vn1}
where Vi = {vi1, vi2, ..., vin2}. The same applies for the edges of a graph.

• Each node can contain attributes.
• Relations can have a type, are always directed and always connect two

nodes.
• Each relation can contains attributes.

4 Design of Experiments

For our experiments we established a 3 computer nodes cluster running with
Hadoop-1.0.4 and HBase-0.94.5 which are connected with public IP’s, the con-
figuration is: CPU: 4 cores, memory: 8GB, disk: 40GB, os: 64bit Debian. The
same cluster used for Neo4j evaluation running in High Availability mode (HA)
using the version neo4j-1.9.4.

4.1 Dataset

We have created our own dataset, which can be found online1, by collecting
movies data including persons data which participate with different roles in-
front or behind the scenes. Movie data contain different attributes, not the same
for each movie so we are not violating the Hbase schema-less design. The dataset
contains about 205.000 movies and about 21.000 person information. Further-
more, we have the relations between movies and persons and the different types
that a movie is categorized. Figure 2 shows the difference between the two sys-
tems in storage terms for the same data described in this subsection and based
on the design choices made described in the following. We can see that the chosen
HBase schema gets about 2 times less space than Neo4j Store.
1 https://github.com/kendea/dataset movies.

https://github.com/kendea/dataset_movies

Graph DBs vs. Column-Oriented Stores 67

Fig. 2. Occupied database storage for the same data

4.2 Design Choices

HBase doesn’t support indexing on data so we had to find a way to associate
the data of the different tables in an efficient way. We created some extra HBase
tables from the data, whose basic structure is like an inverse index. For differ-
ent data we created different indexes so we can measure later how this different
indexes affect the time of queries execution. At this point, is important to high-
light the fact that we are dealing with real-time execution, so every aspect that
is possible to reduce the run time must be taken into account. First, we tok-
enize the text of movie titles or movie synopsis and then we create an inverted
index on produced (tokenized) words to columns of movie ids. An other index
table contains movie genres of specific type, as keys. Thus, we had to create very
long lines to store the movies ids in HBase and examine how the big number of
columns could affect the overall query performance. We split the HBase tables
so every part goes to a different cluster node. As mentioned earlier, we are inter-
ested in real-time processing so we couldn’t use Apaches’ Hive [15], which in
some point uses inverted index as we do, but it has been implemented for batch
analysis to large data sets, so it was not suitable for our use case. A lot pub-
lications suggest different types of multidimensional indexes running on top of
HBase for efficient query execution, but most of them are used for location aware
services [12] where the data can be represented in mathematical form. We choose
to use inverted indexes as the simplest implementation and by this way we can
generalize our model in different kind of datasets. The idea of inverted index is
coming along the naturally way of thinking the key-value stores capabilities.

Neo4j supports indexing on specific properties for a specific type of nodes.
In that in mind, it’s easier to create a “schema” that follows the data used. We
created nodes for movies, person and genres all indexed. With this choice we can
see how “fat” nodes affected positively or negatively varying difficulty queries.
By the term fat referring to a node means that this node has a large number of
in-direct or out-direct nodes. The relations are of two different types. The first
type connects a person with a movie while the second connects a movie with

68 M. Kendea et al.

the nodes representing the different genres of movies. Neo4j runs in HA (High
Availability) mode meaning that every node in cluster contains the same graph.

4.3 Queries

We have contacted different scenarios of queries that might be asked to a movie
database. Of course we had a more open minded thought when creating those
scenarios so as in case the data representing something different, to have a gen-
eralization on our results. We programmed a variety of query types from simple
ones to more complex ones and we executed a very large number from each
category on both systems running on a single cluster. Below, we describe the
queries logic and provide query examples. HBase doesn’t support any language
for queries so we programmed them manually using the JAVA API. Neo4j sup-
ports Cypher language having the ability to be able to give automatically the
different arguments of the queries. In some cases we use JAVA API provided by
Neo4j to execute the simple queries. The source code and the query engine can
be found online2.

Simple Aggregate Queries

Q1: These queries calculate and return the distinct cardinality of objects on a
specific attribute with different number of attribute values using AND or OR
operators.

COUNT the movies WHERE contain the word “word1” in title or synopsis
COUNT the movies WHERE contain the words 〈“word1” AND “word2”〉
in title
COUNT the movies WHERE contain the words 〈“word1” OR “word2” OR
“word3”〉 in synopsis

Q2: This query uses the same logic as above but this time returns also the
records obeying the logical expression between attribute values AND. In this
case we use an inverted index to find the movies ids and then we “join” this
with the HBase table containing the information for that movies. Joins are not
supported so we manually programmed them. In particular they are partly joins
because we know which lines are retrieved by the keys resulting at the first step
of join.

FIND the movies WHERE contain the words 〈“word1” AND “word2” AND
... AND “wordn”〉 in title or synopsis and RETURN the information stored

Q3: This query is the same as Q2 but this time we are sure that the attribute
values apply for the operator AND. This query is important for applications
that might use data with auto-filling and do not allow custom text from user.

2 https://github.com/kendea/hbase neo4j.

https://github.com/kendea/hbase_neo4j

Graph DBs vs. Column-Oriented Stores 69

FIND the movies WHERE contain the words 〈“word1”, “word2”〉 in title
and RETURN the information stored

Range Queries

Q4-Q5: Both of these queries are executed on one attribute. The first query
(Q4) returns records lexicographically close to the attribute values of the query.
This type of query is popular among applications that user might misspelled a
word or didn’t type the whole thing. The second query (Q5) returns only the
records that are matched exactly. Both of this queries join 3 tables in HBase to
produce the results. The joins are programmed optimally so each previous step
of join produces less results than the next one.

(Q4) FIND the people WHERE their name looks like the text “name” and
RETURN the information stored for them and their movies

(Q5) FIND the people WHERE their name contains the text “name” and
RETURN the information stored for them and their movies

The following 2 queries are more complex.

Q6: This query gets arguments for two attributes and involves 2 HBase tables;
so 1 join. Neo4j query has to find the nodes from index that apply for the first
attribute and the same time look inside those nodes for the second attribute.

FIND the movies WHERE contain the words 〈“word1” AND “word2”〉 and
their year production is in the range [year1,year2] and RETURN the infor-
mation stored

Q7: This query gets arguments for three attributes and involves 2 HBase tables
so 1 join. As before, Neo4j uses the index and then look inside the node for the
rest information.

FIND the movies WHERE contain the words 〈“word1” AND “word2”〉,
their year production is in the range [year1,year2] and the movies genres
must be [genre1, genre2, ...] and RETURN the information stored

Group-By Queries

Those queries are basically the same executed on different attributes to see how
the design of HBase index tables and Neo4j “fat” nodes affect this type of queries.

Q8: This query groups results on one attribute in a range of values. This
attribute is not indexed in any way on both HBase or Neo4j.

70 M. Kendea et al.

FIND the movies WHERE contain the words 〈“word1” AND “word2”〉, the
year production is in the range [year1,year2] and the movies genres must be
[genre1, genre2, ...] and GROUP BY year

Q9: This case groups results on one attribute with arguments, if there are more
than one, connected using operator AND. This time, we used HBase index table
and “fat” nodes for each object of this attribute.

FIND the movies WHERE contain the words 〈“word1” AND “word2”〉, the
year production is in the range [year1,year2] and the movies genres must be
[genre1, genre2, ...] and GROUP BY genre

Q10: This query is even more complex because is a combination of both of
previous queries (Q8 and Q9).

FIND the movies WHERE contain the words 〈“word1” AND “word2”〉, the
year production is in the range [year1,year2] and the movies genres must be
one of [genre1, genre2, ...] and GROUP BY year and genre

Top-K Queries

Q11: The last query examined was top-k. We used the most complex of query
from the previous, but this time we are not returning all results. So we had to
sort the nominated results on a specific attribute to see how this affects both
systems. We run the experiments on random values of k.

FIND the movies WHERE contain the words 〈“word1” AND “word2”〉, the
year production is in the range [year1,year2] and the movies genres must
be one of [genre1, genre2, ...] and RETURN the TOP-K GROUP BY year
and genre

Sorting

HBase returns results sorted based on key of table used. So we have to sort the
results manually if that is required; which is both time-consuming programming
and during execution. Cypher query language, used by Neo4j, can sort results
while retrieving the data. This is the reason we executed some of the previous
queries (Q1 to Q4) to see if Neo4j can sort data efficiently.

Q1-Q4: Those queries are the same as the first four presented queries but this
time we change the queries to sort results on a specific property.

FIND the people WHERE their name looks like the text “name” and
RETURN the information stored for them and their movies SORT BY
name

Graph DBs vs. Column-Oriented Stores 71

4.4 Analysis

We created experimental scripts for each query described in previous subsection.
Each script contains a very large number of queries which are executed on both
systems. This method is similar to bulk loading but instead of loading data we
execute predefined queries. So the results described in the next section show
the latency; which is the average time needed to complete the execution of a
query. Furthermore, the analysis made corresponds to the Amortized Analysis.
Amortized Complexity says that considering a sequence of operations of the
same type of a program, allows the establishment of a worst-case bound for the
performance of a program. In our case, a program corresponds to a query. This
analysis applies when the each execution time is different and there is no clue
about the real complexity of an algorithm. Amortized time can be estimated
using At =

∑n
i=1 T (qi)

n , where T (qi) is the time needed to execute a query of a
specific time and n is the total number of queries executed.

5 Results Discussion

Figure 3 shows, in logarithmic scale of thousand of milliseconds, the mean execu-
tion time of every query in both systems. It’s obvious that for the first category
of queries HBase always outperforms Neo4j; but as the queries become more
complex we observe that there is a turnover between the two systems.

Both systems, as we observe, in Fig. 3a drop their run time when the search
is more specific (AND operator). When HBase is asked for specific keys and the
result arises from the columns without more information; HBase outperforms
Neo4j by far. We can also see from Q2 that partial “joins” on HBase tables
doesn’t affect the run time in a wide scale. Q3 performance is slightly better on
Neo4j compared to the previous queries executed on the same system and that’s
because Neo4j can compare two strings faster instead of finding partial string
similarity; when an exact match on properties of nodes is done.

The first two queries shown in Fig. 3b show us the difference in execution
time of queries returning the lexicographical close results (Q4) and exact match
(Q5) on one attribute. We can clearly see that HBase needs one time of magni-
tude larger between the two queries while Neo4j outperforms both of them. The
large run time of HBase for Q4 arises from the fact that this query searches a
larger space (2 joins) between multiple parts of the HBase table because of the
partitioning, made by the system, on the different computer nodes of the clus-
ter. The other two queries, Q6 and Q7, are a bit more complex because they get
arguments for two and three attributes respectively. In HBase, only one join, on
both of them occurs, while in Neo4j we use the built-in indexing and properties
inside the nodes. We can see that Neo4j needs more time but while increasing
the number of attributes involved HBase time is getting very close to Neo4j’s
time.

Figures 3c and 3d show the performance of the most complex and most inten-
sive data processings. All the queries are pretty time consuming. The first two

72 M. Kendea et al.

Fig. 3. Comparison for each type of query in logarithmic scale

queries, Q8 and Q9, group results on one attribute with the difference, shown
in execution performance, that we used indexes. Both queries in Neo4j need
one time of magnitude less, from Q9. We can now see the clear excellence of
the Graph database in this kind of queries. So, we can surely say, that “fat”
nodes are not problem for the data schema and they can be used freely if they
can help us. For Q10, which executes a group-by on two attributes, Neo4j still
outperforms HBase, but is the first time that needs more time to execute the
query. For the last category, top-K queries (Q11), we can see that Neo4j out-
performs HBase and that HBase needs an amount of time to sort the data, on
the selected attribute, larger than Neo4j. Cypher query language supports sort
while in HBase it had to be done programmatically.

The last outcome lead us to see how fast Neo4j can sort data. So we ran the
first four queries (Q1 to Q4) but this time with option sort enabled. The results
are shown in Fig. 4. The time needed for sorting what almost nothing. Neo4j
sorts data while retrieving them.

It’s obvious that in some cases HBase runs extremely better but while the
difficulty and complexity of queries grows Neo4j starts to outperform HBase.
Furthermore, it’s easy to see that Neo4j has a steady performance for a large

Graph DBs vs. Column-Oriented Stores 73

Fig. 4. Sorting using Cypher query language

number of different queries executed. The fact that in HBase we had to manually
write the whole thing to debug and execute the queries was not an easy process.
But based on results this is worth doing for simple queries and using at the
same time different index structures based on these results. Neo4j can execute
different types of complex queries very fast using indexing. Based on the results
presented above, we implemented a useful and efficient query engine that dis-
tributes the queries, that are submitted by an application, to the best database
in terms of pre-known performance for a selected query. In the majority of cloud
use cases, the scalable cloud object storage provided from the huge volumes of
racks makes the cost of replicating an application’s data on two separate data-
base systems negligible. Thus, the proposed decision making engine is of great
practical interest.

6 Conclusions

In the context of this work, we presented the results on executing different types
of queries, scaling in complexity, in two NoSQL databases; so we can see the
performance difference between a Graph store and a Column-Oriented store
with different data design choices. We have seen that we can have a distinct
classification, depending on the complexity of a query and that lead us to the
conjecture that it might be good for some applications to store their data in
different NoSQL systems, based on the queries executed on them and an engine
can make the choice based on some analysis where the query must be send to
be executed.

Acknowledgments. Our thanks to C. Caratheodory Research Program from Univer-
sity of Patras, Greece to support this research.

74 M. Kendea et al.

References

1. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv.
40(1), 1:1–1:39 (2008)

2. Brewer, E.: Cap twelve years later: how the “rules” have changed. Computer 45(2),
23–29 (2012)

3. Cai, L., Huang, S., Chen, L., Zheng, Y.: Performance analysis and testing of hbase
based on its architecture. In: 2013 IEEE/ACIS 12th International Conference on
Computer and Information Science (ICIS), pp. 353–358, June 2013

4. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system
for structured data. In: Proceedings of the 7th Symposium on Operating Sys-
tems Design and Implementation, pp. 205–218. OSDI 2006, USENIX Association,
Berkeley, CA, USA (2006)

5. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. SIGOPS Oper. Syst. Rev. 41(6), 205–220 (2007)

6. George, L.: HBase: The Definitive Guide. O’Reilly Media Inc., Sebastopol (2011)
7. Holzschuher, F., Peinl, R.: Performance of graph query languages: comparison

of cypher, gremlin and native access in neo4j. In: Proceedings of the Joint
EDBT/ICDT 2013 Workshops, EDBT 2013, NY, USA, pp. 195–204. ACM,
New York (2013)

8. Kostylev, E.V., Reutter, J.L., Vrgoc, D.: Containment of data graph queries. In:
ICDT, pp. 131–142 (2014)

9. Kristina, C., Michael, D.: MongoDB: The Definitive Guide. O’Reilly Media,
Sebastopol (2010)

10. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)

11. Neo4j.org: Neo4j - the world’s leading graph database. http://www.neo4j.org/,
Accessed on 16 june 2014

12. Nishimura, S., Das, S., Agrawal, D., Abbadi, A.: Md-hbase: a scalable multi-
dimensional data infrastructure for location aware services. In: 2011 12th IEEE
International Conference on Mobile Data Management (MDM), vol. 1, pp. 7–16,
June 2011

13. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media, Inc.,
Sebastopol (2013)

14. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10, May 2010

15. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H.,
Wyckoff, P., Murthy, R.: Hive: a warehousing solution over a map-reduce frame-
work. Proc. VLDB Endow. 2(2), 1626–1629 (2009)

16. Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D.: A comparison
of a graph database and a relational database: a data provenance perspective. In:
Proceedings of the 48th Annual Southeast Regional Conference, ACM SE 2010,
NY, USA, pp. 42: 1–42: 6. ACM, New York (2010)

17. White, T.: Hadoop: The Definitive Guide, 3rd edn. O’Reilly Media Inc., Sebastopol
(2012)

18. Wood, P.T.: Query languages for graph databases. SIGMOD Rec. 41(1), 50–60
(2012)

http://www.neo4j.org/

Distributed XML Filtering Using HADOOP Framework

Panagiotis Antonellis, Christos Makris, and Georgios Pispirigos(✉)

Department of Computer Engineering and Informatics, Faculty of Engineering,
University of Patras, Patras, Greece

{adonel,makri,pispirig}@ceid.upatras.gr

Abstract. Publish-subscribe systems present the state of the art in information
dissemination to multiple users. Current XML-based pub-sub systems provide
users with considerable flexibility allowing the formulation of complex queries
on the content as well as the structure of the streaming messages. Messages that
contain one or more matches for a given user profile (query) are forwarded to the
user. Typically the use of XML representation entails the profile representation
with the use of the XPath query language and the employment of efficient heuristic
techniques for constraining the complexity of the filtering mechanism. However,
as the number of XML documents exchanged daily grows rapidly, the need for
distributed management is becoming crucial. In this paper we propose three
different approaches for distributed XML filtering using the Hadoop framework.
The experimental results clearly demonstrate that the proposed techniques
provide good scalability and effectiveness for very large number of document and
user queries, compared to traditional XML filtering.

1 Introduction

The rapidly increasing volume of information (e.g., news feeds, data reports, adver‐
tisements) made available on the Internet has motivated the development of a new
generation of applications based on selective data dissemination, where specific data
is selectively deployed to a large number (e.g., millions) of distributed clients [1].
This trend has led to the emergence of novel middleware architectures that asynchro‐
nously distribute data from a set of publishers (i.e., data generators) to a large number
of widely dispersed subscribers (i.e., data consumers) who have pre-registered their
interest in specific information item, using a predefined set of filters/interests. In
general, such publish-subscribe frameworks are implemented using a set of networked
servers that selectively propagate relevant messages to the consumer population,
where message relevance is determined by subscriptions representing the consumers’
interests in specific messages.

Initial attempts to represent user filters/interests and match them against the incoming
data items, typically employed “set of words” representations and keyword similarity
techniques that are closely related to the well-known vector space model representation
in the Information Retrieval area. These techniques, however, often suffer from limited
ability to express user interests, being unable to fully capture the semantics of the user
behavior and user interests. As an attempt to face this lack of richness in the

© Springer International Publishing Switzerland 2016
I. Karydis et al. (Eds.): ALGOCLOUD 2015, LNCS 9511, pp. 75–83, 2016.
DOI: 10.1007/978-3-319-29919-8_6

representation there have appeared lately [2, 3, 5, 6, 11] a number of systems that use
XML representations for both documents and user profiles and that employ various
filtering techniques to match the XML representations of user documents with the
provided profiles.

The basic mechanism used to describe user profiles in XML format is through the
XPath query language. XPath is a query language for addressing parts of an XML docu‐
ment, while also providing basic facilities for manipulation of strings, numbers and
booleans. XPath models an XML document as a tree of nodes; there are different types
of nodes, including element nodes, attribute nodes and text nodes and XPath defines a
way to compute a string-value for each type of node.

2 Background

2.1 Related Work

In recent years, many approaches have been proposed for providing efficient filtering of
XML data against large sets of user profiles. Depending on the way the user profiles and
XML documents are represented and handled, the existing filtering systems can be cate‐
gorized as follows:

Automata-Based Systems. Systems in this category utilize Finite State Automata
(FSA) to quickly match the incoming XML document with the stored user profiles.
While parsing the XML document, each node element causes one or more transitions
in the underlying FSA, based on the element’s name or tag. In XFilter [2], the user
profiles are represented as queries using the XPath language and the filtering engine
employs a sophisticated index structure and a modified Finite State Machine (FSM)
approach to quickly locate and examine relevant profiles. A major drawback of XFilter
is its lack of twig pattern support, as it handles only linear path expressions. Based on
XFilter, a new system was proposed in [6] termed YFilter that combined all of the path
queries into a single Nondeterministic Finite Automaton (NFA) and exploited common‐
ality among user profiles by merging common prefixes of the user profile paths such that
they were processed at most once. Unlike XFilter, YFilter handles twig patterns by
decomposing them into separate linear paths and then performing post-processing over
the intermediate matching results. In [16] a parallel implementation of YFilter for multi-
core systems (shared-memory) is proposed by splitting the NFA into smaller parts, with
each part assigned to a single thread. A distributed version of YFilter which also supports
value-based predicates is presented in [13]. In this approach the NFA is distributed along
the nodes of a DHT network to speed-up the filtering process and various pruning tech‐
niques are applied based on the defined value predicates on the stored user profiles.
Finally in [9] a parallel XML filtering that supports fine-grained filtering of the incoming
XML documents is described. A user can submit an hierarchy of filters and ever
incoming XML document will be filtered against the stored filter hierarchies. In addition,
the algorithm identifies exactly which parts of the incoming XML documents match
with the filters of each user and only those parts are actually send to the user.

76 P. Antonellis et al.

Sequence-Based Systems. Systems in this category encode both the user profiles and
the XML documents as string sequences and then transform the problem of XML
filtering into that of subsequence matching between the document and profile sequences.
FiST [11] employs a novel holistic matching approach, that instead of splitting the twig
patterns into separate linear paths, it transforms (through the use of the Prüfer sequence
representation) the matching problem into a subsequence matching problem. In order
to provide more efficient filtering, the user profiles sequences are indexed using hash
structures. In XFIS [3] it is employed, a holistic matching approach which eliminates
the need of extra post-processing of branch nodes by transforming the matching problem
into a subsequence matching problem between the string sequence representation of user
profiles and XML documents.

Stack-Based Systems. The representative system of this category is AFilter [5]. AFilter
utilizes a stack structure while filtering the XML document against user profiles. Its
novel filtering mechanism exploits both prefix and suffix commonalities across filter
statements, avoids unnecessarily eager result/state enumerations (such as NFA enumer‐
ations of active states) and decouples memory management task from result enumeration
to ensure correct results even when the memory is tight. XPush [10] translates the
collection of filter statements into a single deterministic pushdown automaton using
stacks. The XPush machine uses a SAX parser that simulates a bottom up computation
and hence doesn’t require the main memory representation of the document. XSQ [15]
utilizes a hierarchical arrangement of pushdown transducers augmented with buffers. In
[14], the author presents a system for evaluating XPath queries in a distributed envi‐
ronment, consisting of a large number of small mobile devices. Although the proposed
system is efficient in such environments, it cannot be actually applied in a single multi‐
threading machine.

2.2 Paper Motivation and Contribution

In this paper we explore the problem on distributed XML filtering using the Hadoop
framework. Especially, we propose three different distributed implementations of YFilter
that utilize Hadoop to distribute the load to multiple nodes and thus greatly improve the
efficiency of XML filtering. The experimental results clearly demonstrate the effective‐
ness of the proposed techniques with respect to the traditional non-distributed YFilter
approach.

3 Hadoop Implementation of YFilter

In this section we describe three different techniques and implementations of YFilter
using the Hadoop framework. Next, we perform a rich set of experiments in order to
evaluate and compare the three approaches.

Distributed XML Filtering Using HADOOP Framework 77

3.1 Implementation 1

The primary goal of the 1st implementation is to fully balance the processing workload
that each processing slave, aka reducer is going to process. During the mapping process,
the mapper splits the original XML file dataset, to equivalent subsets, regarding the
number of XML files contained. The produced subsets are as many as the number of
clusters’ reducers. Each reducer processes its’ assigned subset using the whole original
XPATH queries profile, hence anyone going to construct and utilize the same NFA data
structure. Despite the fact that this approach ensures a fair processing balance, the
disadvantage of this implementation lies on the big NFA that each reducer should handle
during processing, since the time needed per single XML is linearly increased as the
constructed NFA grows.

3.2 Implementation 2

The 2nd approach aims to balance the processing workload by splitting the original set
of XPATH queries profile. During the mapping process, the original constructed NFA,
regarding its inherent structure, breaks into parts, the subNFAs. Each produced subNFA
is assigned to a reducer. Each reducer, after merging all its assigned subNFAs to one,
proceeds to filter the entire original XML input file set. Despite the fact that each reducer
handles a much more manageable NFA, splitting the original XPATH queries set does
not ensure a fair processing balance, since either the original NFA might not be able to
break through equivalent parts due to its primary structure, or the different profile parts
meets different processing requirements. Another disadvantage is that, each reducer
should process the whole XML dataset, which is proven to be a very time consuming
strategy.

3.3 Implementation 3

The 3rd implementation combines the advantages of both previous implementations.
Specifically, during the mapping process, mapper not only splits the original constructed
NFA structure to subNFAs but also defines the set of XML files which refer to and might
be proven to interest, after complete processing, its respective produced subNFA. We
use the same splitting technique as in 2nd implementation to define the produced
subNFAs. In order to define each subNFA’s set of possibly interesting XML files,
mapper process the entire original XML dataset against an intermediate NFA structure,
that is constructed from the merged common parts of all produced subNFAs, the
common ancestor subNFA. The size of this intermediate structure depends on original
NFA’s native structure, but it is expected to be tremendously much more manageable
than the original. Thus, the workload balance across reducers is not limited to the defi‐
nition of XML files set that each one is going to process but also extended to the NFA
structure that each should construct and manage during filtering process. This imple‐
mentation theoretically seems to succeed the best workload balance, although inherits

78 P. Antonellis et al.

the disadvantage of the 2nd implementation where under certain circumstances, when
either the root XML tag of a subNFA might be the “*” tag that matches any other tag
or the split of subNFA revealed between nodes related with the ancestor-descendant
type of relationship, a reducer might have to process the whole XML dataset but even
though the size of its NFA would be much smaller than the used in a respective execution
during the 2nd implementation.

Fig. 1. CPU time spent (in minutes) for various Data sets of 10 K, 20 K, 50 K and 100 K of XML
files, that all included files contained the requested tags.

Distributed XML Filtering Using HADOOP Framework 79

3.4 Experiments

In our experiments, we use 2 different datasets generated by our own XML generator.
The first one was 4.2 GB, consisted of 100.000 XML files which any of them could be
possibly interesting, while the second one was 5.5 GB, consisted of 100.000 XML files
that only half of them could be possibly interesting. Each generated XML file might
contain 27 equiprobably selected XML tags and might have up to 100 different XML
paths, where each path might be consisted of up to 25 different tags. The 4 different
XPATH profile sets used were generated by our own XPATH profile generator. Each
generated XPATH query might contain up to 25 of 27 equiprobably selected XML tags,
where the possibility of existence an ancestor-descendant relationship between 2 XML
tags was set to 5 %.

All the experiments were run on a cluster of 4 VirtualBox 4.3.28.r100309 Linux
CentOS 6.6 VMs. W. The Hadoop distribution used was the 2.6.0, provided by Clou‐
dera’s CDH-5.4.0-1 parcel. All cluster’s VMS were single processing thread machine
at 1.2 GHz, where mapper allocated 8 GB and each reducer 2 GB of RAM (Fig. 1).

Comparing the 3rd with the 1st approach, we can conclude that the 3rd algorithm is
in the average case 9 % quicker than the 1st one. Particularly, as far as the first dataset,
where any XML file can be possibly meet each XPATH profiles criteria, the 3rd imple‐
mentation is at least 3.8 % and up to 14.4 % times quicker. In the second dataset’s case,
where only half of inserted XML dataset might be interesting for the given XPATH
profiles, is at least 6 % and up to 9.8 % times quicker than the 1st implementation. We
can certainly come up to the result, that as either the inserted XML data set or the inserted
size of the XPATH profile increases, the CPU processing gains increases, since both
cases are equivalent to the increment of the required processing time. At this point, we
should also underline that the gain rate in the 2 experiments differs, since the amount of
interesting XML files, which is the subset of files that we obtain the bigger gains, differs
in each respective XML dataset (Fig. 2).

Comparing the 3rd with the 2nd implementation, we can conclude with certainty
from the presented graphs that the 3rd approach is in average 38.8 % times faster than
the 2nd one. Specifically, regarding the first dataset’s case is at least 32.9 % and up to
43.1 % times quicker than the 2nd, and in the second dataset’s occasion is at least 48.5 %
and up to 32.4 % times quicker. We can also observe that as the size of processing
subNFA that each reducer should handle increases the CPU processing gains reduces.
This is very logical, since the increment of the processing ssubNFA size is translated as
increment of the required processing time. Although, this reduction factor can be easily
reversed by extending the number of processing reducers (Fig. 3).

80 P. Antonellis et al.

Fig. 2. CPU time spent (in minutes) for various Data sets of 10 K, 20 K, 50 K and 100 K of XML
files, that half of included files contained the requested tags.

Distributed XML Filtering Using HADOOP Framework 81

Fig. 3. CPU processing time speedup for various Data sets of 10 K, 20 K, 50 K and 100 K of
XML files, for all different implementations.

4 Conclusions

In this paper we have introduced three different implementations of the traditional
YFilter algorithm that utilize the Hadoop framework for distributed XML filtering. All
the approaches split the global NFA in order to improve the efficiency of the distributed
XML filtering. The experimental results clearly demonstrate that the suggested
approaches scale very well even in very large number of XML documents and user
profiles, thus providing a boost in efficiency compared to the traditional YFilter
approach.

References

1. Aguilera, M.K., Strom, R.E., Stunnan, D.C., Ashey, M., Chandra, T.D.: Matching events in
a content-based subscription system. In: Proceedings of the ACM Symposium on Principles
of Distributed Computing, PODC 1999, pp. 53–61 (1999)

2. Altinel, M., Franklin, M.L.J.: Efficient filtering of XML documents for selective
dissemination of information. In: VLDB, pp. 53–64 (2000)

3. Antonellis, P., Makris, C.: XFIS: an XML filtering system based on string representation and
matching. Int. J. Web Eng. Technol., IJWET 4(1), 70–94 (2008)

82 P. Antonellis et al.

4. Budanitsky, A., Hirst, G.: Evaluating WordNet-based measures of lexical semantic
relatedness. In: Association for Computational Linguistics, vol. 32, pp. 32–47 (2006)

5. Canadan, K., Hsiung, W., Chen, S., Tatemura, J., Agrrawal, D.: AFilter: adaptable XML
filtering with prefix-caching and suffix-clustering. In: VLDB, pp. 559–570 (2006)

6. Diao, Y., Altinel, M., Franklin, M.L.J., Zhang, H., Fischer, P.: Path sharing and predicate
evaluation for high-performance XML filtering. TODS 28(4), 467–516 (2003)

7. Diaz, A.L., Lovell, D.: XML Generator. http://alphaworks.ibm.com/tech/xmlgenerator
8. Fellbaum, C. (ed.): WordNet, An Electronic Lexical Database. MIT Press, Cambridge (1998)
9. Grummt, E.: Fine-grained parallel XML filtering for content-based publish/subscribe

systems. In: Proceedings of the 5th ACM International Conference on Distributed Event-
Based System, DEBS 2011 (2011)

10. Gupta, A.K., Suciu, D.: Stream processing of XPath queries with predicates. In: SIGMOD,
pp. 419–430 (2003)

11. Kwon, J., Rao, P., Moon, B., Lee, S.: FiST: scalable XML document filtering by sequencing
twig patterns. In: VLDB, pp. 217–228 (2005)

12. Kwon, J., Rao, P., Moon, B., Lee, S.: Value-based predicate filtering of XML documents.
Data Knowl. Eng. (KDE) 67(1), 51–73 (2008)

13. Miliaraki, I., Koubarakis, M.: Distributed structural and value XML filtering. In: DEBS, pp.
2–13 (2010)

14. Olteanu, D.: SPEX: streamed and progressive evaluation of XPath. IEEE Trans. Knowl. Data
Eng. 19(7), 934–949 (2007)

15. Peng, F., Chawathe, S.: XSQ: a streaming XPath queries. TODS 30, 577–623 (2005)
16. Zhang, Y., Pan, Y., Chiu, K.: A parallel XPath engine based on concurrent NFA execution.

In: Proceedings of the IEEE 16th International Conference on Parallel and Distributed
Systems, ICPADS 2010, pp. 314–321 (2010)

Distributed XML Filtering Using HADOOP Framework 83

http://alphaworks.ibm.com/tech/xmlgenerator

Efficient Bin Packing Algorithms for Resource
Provisioning in the Cloud

Shahin Kamali(B)

Massachusetts Institute of Technology, Cambridge, MA 02139, USA
skamali@mit.edu

Abstract. We consider the Infrastructure as a Service (IaaS) model
for cloud service providers. This model can be abstracted as a form of
online bin packing problem where bins represent physical machines and
items represent virtual machines with dynamic load. The input to the
problem is a sequence of operations each involving an insertion, dele-
tion or updating the size of an item. The goal is to use live migration
to achieve packings with a small number of active bins. Reducing the
number of bins is critical for green computing and saving on energy
costs. We introduce an algorithm, named HarmonicMix, that supports
all operations and moves at most ten items per operation. The algorithm
achieves a competitive ratio of 4/3, implying that the number of active
bins at any stage of the algorithm is at most 4/3 times more than any
offline algorithm that uses infinite migration. This is an improvement
over a recent result of Song et al. [12] who introduced an algorithm,
named VISBP, with a competitive ratio of 3/2. Our experiments indi-
cate a considerable advantage for HarmonicMix over VISBP with respect
to average-case performance. HarmonicMix is simple and runs as fast as
classic bin packing algorithms such as Best Fit and First Fit; this makes
the algorithm suitable for practical purposes.

1 Introduction

We consider Infrastructure as a Service (IaaS) model in the cloud which has
received increasing attention in the past few years. In this model, a cloud service
provider such as Amazon EC2 rents virtual machines (VMs) to clients. Each VM
is capable of running several applications with dynamic loads that vary by the
time. The total load of applications encapsulated in a VM defines the load of
the VM. The applications are unpredictable in the sense that their load and the
pattern of their changes cannot be predicted in advance. In other words, the load
of VMs is not known beforehand and changes over time. A service provider has
to assign VMs into physical machines (PM’s) so that the total load of all VMs
in each machine is no more than the uniform capacity of PM’s. In other words,
servers should not be overloaded in order to avoid bottlenecks in the system and
to balance the load between PMs. Moreover, the number of PM’s that are used
to host VMs is desired to be as small as possible. This objective is important for
green computing and reducing energy costs. Particularly, inactive PMs which do
c© Springer International Publishing Switzerland 2016
I. Karydis et al. (Eds.): ALGOCLOUD 2015, LNCS 9511, pp. 84–98, 2016.
DOI: 10.1007/978-3-319-29919-8 7

Efficient Bin Packing Algorithms for Resource Provisioning in the Cloud 85

not host any VM can hibernate in fractions of a second [10] and hence save on
energy costs. The IaaS model, as described above, is closely related to the classic
bin packing problem.

In the bin packing problem, the input is a set of items each having a size in
the range (0,1]. The goal is to place these items into a minimum number of bins
of uniform capacity. In the IaaS model, items represent VMs; item sizes represent
the load of VMs; and bins represents PMs. The bin packing problem requires
the total size of items in each bin to be at most equal to the unique capacity of
bins, and the objective is to place items into a minimum number of bins. In the
online version of the problem, item sizes are not known in advance. Instead, they
form a sequence that is revealed item by item. An online algorithm should place
an item into a bin without any knowledge about the forthcoming items. In the
IaaS model, VMs’ loads are not known in advance; hence, the online bin packing
is more relevant compared to the offline bin packing where item sizes are known
beforehand. An example of an online bin packing algorithm is Next Fit which
keeps one active bin and places an incoming item in the active bin if it has enough
space; otherwise, it closes the bin and opens a new active bin. First Fit is another
online algorithm that places each item into the first bin, in the order that they
are opened, which has enough space (and opens a new bin if required). Best Fit is
similar to First Fit except that it maintains bins in the decreasing order of their
levels, where the level of a bin is total size of items in it. Harmonic algorithm has
a parameter K, where K is a positive integer, and partitions the unique interval
into sub-intervals (1/2, 1], (1/3, 1/2], . . . , (1/(K + 1), 1/K], (0, 1/K], and applies
a separate Next Fit strategy for items with sizes in each sub-interval.

Competitive analysis is the standard approach for comparing online algo-
rithms. For an online algorithm A, we use A(σ) to denote the number of bins
opened by A for packing a sequence σ. Similarly, we use Opt(σ) to denote
the number of bins opened by an optimal algorithm Opt for packing σ. In the
asymptotic sense, the value of Opt(σ) is assumed to be large and the asymp-
totic competitive ratio of A is defined as the maximum value of A(σ)

Opt(σ) for any
sequence σ1 . Next Fit has a competitive ratio of 2, Best Fit and First Fit both
have competitive ratio 1.7 [7], and the competitive ratio of Harmonic converges
to 1.69 for large values of K [8].

In the standard setting for online bin packing, the decisions of an online
algorithm are irrevocable and an item in a bin B cannot be moved to another
bin B′. In the IaaS model, however, the dynamic size of VMs requires moving
them between servers to avoid overloaded PMs (e.g., when the load all VMs
hosted by a PM increase). Live migration [3] enables moving VMs between PMs
without interrupting applications running inside them. Different strategies are
introduced for live migration (see, for example, Sandpiper [13] and VectorDot
[11]). However, these approaches are merely focused on load balancing and do

1 Throughout the paper, by competitive ratio, we mean asymptotic competitive ratio.
For results related to the absolute competitive ratio of bin packing algorithms, we
refer the reader to [4,5].

86 S. Kamali

not consider green computing. In this paper, we study the online bin packing
algorithms for the IaaS model, which is defined as follows.

Definition 1. In the IaaS model of bin packing, the input is an online sequence
of operations on items (VMs) with sizes (loads) in the range (0, 1]. Each opera-
tion involves either inserting an item to any bin (PM), removing an item from a
given bin, or updating the size of an item from x to y. Upon applying each oper-
ation, an online algorithm can use live migration to move a constant number of
items between bins. The size of items in each bin at any given time should not
be more than the uniform capacity of bins. The goal is to achieve packings with
minimum number of bins (active PMs).

1.1 Previous Work and Contribution

Gambosi et al. [6] studied a version of online bin packing where only insertion and
deletion are allowed. They introduced an online algorithm with a competitive
ratio of at most 4/3. Unfortunately, their algorithm is quite complicated and
does not seem suitable for practical purposes. Moreover, it does not support
update operation. An update operation can be simulated with a delete and then
an insert operation. However, as pointed out in [12], this might require moving
a large number of items between bins. For example, consider a packing in which
there are two bins each having an item of size 0.5 + ε and 0.5/ε − 1 items of size
ε. Other bins in the packing each include 1/ε − 1 items of size ε. If the size of
one of the items of size 0.5 + ε increases to 0.5 + 2ε, its bin gets overloaded. To
fix the packing, it suffices to move an item of size ε to another bin. However, if
we delete and re-insert the updated item, either an extra bins should be opened
or at least 0.5/ε items should be moved.

The IaaS model of bin packing has been recently studied by Songe et al. [12].
There, the authors introduced an algorithm, called bin packing with variable-
sized items (VISBP), which has a competitive ratio of 1.5 and supports all three
operation. Although this algorithm uses live migration to improve over the lower
bound 1.54037 [1] for competitive ratio of purely online algorithms, it leaves a lot
of space for improvement. In particular, we show that live migration can be used
more effectively to improve over the competitive ratio and, more importantly,
the average-case performance of VISBP.

In this paper, we apply more complicated packing techniques to introduce an
algorithm, called HarmonicMix, for the IaaS model. Recall that Harmonic algo-
rithm for bin packing includes i item in the range (1/(i+1), 1/i] in a bin of type
i. This particular structure makes the algorithm suitable for dynamic packing as
items of same type can replace each other in their harmonic bin. Unfortunately,
Harmonic algorithm has a poor average-case performance [9] when compared
to classic algorithms such as Best Fit and First Fit. To address this issue, in
HarmonicMix, we make use of live migration to improve the packings of Har-
monic algorithms. This ensures a good average-case performance in terms of the
number of active bins. At the same time, the algorithm moves a small num-
ber of items, at most ten items, per operation. We prove that the competitive

Efficient Bin Packing Algorithms for Resource Provisioning in the Cloud 87

ratio of HarmonicMix is 4/3, which is better than 3/2 of VISBP. To compare
average-case performance of these algorithms, similar to many related works for
average-case study of bin packing algorithms (see [4] for a review), we test the
algorithms on randomly-generated input sequences. Our experiments indicate
that HarmonicMix has an advantage over VISBP, not only in the worst-case,
but also in the average case.

2 HarmonicMix Algorithm

In this section, we introduce and analyse the HarmonicMix algorithm. Similar
to the previous works on dynamic bin packing (see, e.g., [6,12]), we assume
item sizes are larger than a fixed value. For example, in the VISBP algorithm
of [12], this fixed value is defined to be 1/6. Items with sizes at most 1/6 are
grouped together to form multi-items with sizes in the range (1/6,1/3]. For
HarmonicMix, we define this fixed value to be 1/8, i.e., we group items of size
at most 1/8 into multi-items with sizes in the range (1/8,1/4]. This can be done
with no computing overhead. In what follows, we always assume item sizes are
larger than 1/8. Before introducing the algorithm, we describe a general family
of packings called valid packings. We prove that any algorithm that maintain a
valid packing has a competitive ratio of at most 4/3. Later, we will show how to
maintain a valid packing by moving a small number of items after each operation.

2.1 Valid Packings

In what follows, we refer to an item as being large if it is larger than 1/2, medium
if it is in the range (1/3,1/2], small if it is in the range (1/4,1/3], and tiny if it is
in the range (1/8,1/4]. We correspond each bin with the largest item in the bin.
For example, a bin is medium if it includes a medium item and no large item.
A given packing of n items is valid if the following conditions hold. We use the
term ‘almost all’ for a set of bins to indicate all bins in the set except potentially
a constant number of them.

1. Almost all medium bins include two medium items and possibly one tiny
item.

2. Almost all small bins include three small items.
3. Almost all tiny bins have a level of at least 3/4.
4. For almost all large bins like B that does not contain a medium or small

item, and for any medium or small item y in bins other than large bins, we
have x + y > 1, where x is the size of the large item in B.

5. For almost all large or medium bins like B either level(B) ≥ 3/4 or there is
no tiny bin in the packing.

Intuitively, properties 1–3 can be maintained by placing medium, large, and
tiny items in separate bins in a similar fashion as the Harmonic algorithm does.
Property 4 implies that a large item should be accompanied with a medium or
a small if possible; if it is not possible, then the item might be accompanied

88 S. Kamali

by tiny items. Property 5 implies that tiny items should be placed in large and
medium bins to ensure a level of at least 3/4 for these bins. In other words, there
is a tiny bin in the packing only when the level of all large and medium bins is
3/4 or more.

Lemma 1. Any algorithm A that maintains a valid packing has a competitive
ratio of at most 4/3.

Proof. We consider the following two cases for a valid packing P of an input
sequence σ and prove the claim for each case separately.

Case I: Assume P includes a tiny bin. We prove that the level of all bins, except
possibly a constant number of them, is at least 3/4. This gives a competitive
ratio of 4/3 for the packing. Property 2 implies that almost all small bins include
three small items, i.e., they have a level in the range (3/4,1]. Property 3 indicates
that tiny bins also have level 3/4 or more. Property 5 implies that any large or
medium bin B has level 3/4 or more; otherwise, any of the tiny items placed in
the tiny bin should have been placed in B.

Case II: Assume P does not include a tiny bin. Consider a fixed optimal packing
of σ. In this packing, we refer to the large items that are accompanied by a small
or a medium item as blue large items and refer to the rest of large items as red
large items. For each item x, we define a weight w(x) for x as follows. For
a red large w(x) = 1, for a blue large item w(x) = 5/6, for a medium item
w(x) = 1/2, for a small item w(x) = 1/3, and for tiny items w(x) = 0. Let
W (σ) denote the total weight of items in σ. We prove A(σ) ≤ W (σ)+c for some
constant c and Opt(σ) ≥ 3/4×W (σ). From these two inequalities, we conclude
A(σ) ≤ 4/3 × W (σ) + c, which completes the proof.

First, we prove A(σ) ≤ W (σ)+c. We show that items in almost all bins in the
packing of A have an average total weight of at least 1. By property 1, almost all
medium bins include two medium items. The total weight of these items would
be 2 × 1/2 = 1. Similarly, by property 3, almost all small bins include three
items, each with weight 1/3. The total weight would be 3× 1/3 = 1. There is no
tiny bin in Case 2. It remains to show average the weight of items in large bins
is at least 1. Let R and B respectively denote the number of red and blue large
items; the total contribution of large items to the total weight of all large bins is
R+5/6 ·B. We claim that at least B/2 of large bins include a medium of a small
items. If that is true, the contribution of these small/medium items to the weight
of large bins would be at least B/2×1/3 = B/6. Hence, the total weight of items
in large bins would be at least R + 5/6 · B + B/6 = R + B. Since the algorithm
opens R + B large bins, the average weight of large bins would be at least 1. To
prove the claim, we consider set Sl formed by large items and set Sms formed
by the union of medium and small items in the input sequence. By definition of
blue bins, we have |Sl| ≥ B and |Sms| ≥ B. Let S∗

l and S∗
ms respectively denote

the smallest �B/2� items of Sl and Sms. For any pair (x, y), x ∈ S∗
l , y ∈ S∗

ms, we
have x + y ≤ 1. To sea that, consider the blue large item z which has median
size among the blue large items. There are roughly B/2 blue large items smaller

Efficient Bin Packing Algorithms for Resource Provisioning in the Cloud 89

than z and B/2 small/medium items smaller than 1 − z. So, all B/2 items of
S∗

l fit with all B/2 items of S∗
ms. By property 4, the algorithm tends to place

medium/small items in large bins (and for that, they have priority over tiny
items). Hence, at least B/2 medium/small items are placed in large bins and the
claim follows.

Next, we prove Opt(σ) ≥ 3/4W (σ). We show that any given bin in the fixed
optimal packing has a total weight of at most 4/3. By definition, bins with red
large items in the optimal packing do not include medium or small items. They
might contain tiny items which do not contribute to the total weight. So, the
total weight of large bins with a red item is one. Next, consider bins in the
optimal packing that includes a blue large item. These bins include at most one
other item, i.e., a medium or a small item (tiny items are ignored as their weight
is zero). In the former case, the weight of the bin would be 5/6 + 1/2 = 4/3.
In the latter case, the weight would be 5/6 + 1/3 < 4/3. Next, assume a bin
without large items. It might contain 1) two medium items with total weight of
one; 2) one medium and two small items with total weight 1/2 + 2/3 < 4/3; 3)
three small items with a total weight of one. In all cases, the total weight of bins
is at most 4/3. So, the total weight W of all items is distributed between at last
3/4 · W bins. ��

2.2 Nice Packings

The HarmonicMix algorithm maintains a certain type of valid packings, called
nice packings, which we describe here. By property 1 of valid packings, almost
all medium bins include two medium items. These two items would have a total
size in the range (2/3,1]. In order to fulfill property 5 of a valid packing, the
bin might also include a tiny bin. This implies that each medium bin has two
spots for two medium items and one spot for a tiny item. The tiny spot might
be empty but each medium spot includes a medium item. Similarly, property
2 indicates that small bins include three spots for small items, and in almost
all small bins the three spots are occupied (i.e., there is no empty spot). Each
large bin includes a non-empty spot for a large item. There is also a spot for
a medium or a small item. We call this spot medium/small spot (there is no
priority between medium and small items for occupying this spot). There are
also two tiny spots which are filled with tiny items only if the medium/small
spot is empty. This implies that if there is a medium/small item that can fill the
medium/small spot, the tiny spots need to be empty.

Note that the above description for bin spots is consistent with the definition
of a valid packing. In a nice packing, in addition to the five properties of valid
packings, we require that a tiny item be placed in the tiny spot of a large or
medium bin, and only if it is not possible then it is placed in a tiny bin. As an
example, consider a large bin B which includes an item of size 5/6 − ε for some
small positive value of ε. Clearly, no medium/small item fits in the remaining
space of the bin. However, a tiny item x of size 1/6 + ε does fit in B. For a valid
packing, it is not required to place x in B because property five holds (since B
has level more than 3/4). However, to have a nice packing, we require x to be

90 S. Kamali

Fig. 1. An example of a nice packing. Colors of items indicate their types (red for
large, blue for medium, amber for small, and different shades of green for subfami-
lies of tiny items). The arrows point to active bins of different groups. Assume we
remove the medium item 0.43 from the first bin. To maintain a nice packing, the
empty medium/small spot should be filled with a medium item (e.g., 0.35 in the active
medium bin) or a small item (e.g., 0.32 in the active small bin) (Color figure online).

in the tiny spot of B rather than a tiny bin. This property of nice packings is
not used in our worst-case analysis; however, it is essential for having a good
average-case performance.

In addition to the above-mentioned property, in a nice packing, tiny bins
are more structured in the following sense. Recall that an item is tiny if it
is in the range (1/8,1/4]. We further partition this interval into sub-intervals
T1 = (1/5, 1/4], T2 = (1/6, 1/5], T3 = (1/7, 1/6], and T4 = (1/8, 1/7]. Each tiny
bin of a nice packing includes tiny items of the same intervals. We say a tiny
bin has type Ti if it includes tiny items of type Ti (i ∈ {1, 2, 3, 4}). At any given
time, all tiny bins of type Ti include i + 3 items of type Ti. The only exception
is the most recently opened bin, called the active bin of type Ti, which might
include less than i + 3 items. This way, all tiny bins, except four of them (the
active bins), have level 4/5 or more, which ensures property 3 holds. We extend
the notion of active bins to medium and small items. Recall that there are two
medium spots in almost all medium bins. The only potential exception is the
most recently opened bin, which we call the active medium bin. Similarly, there
are three small spots in each small bin, again, with the exception of one active
small bin. Figure 1 provides an illustration of a nice packings.

Any of the insertion/deletion/update operations might result in a packing
which is not nice any more. To fix this, we apply live migration to maintain a
nice packing. In many cases, this involves moving an item from an active bin to
another bin of the same type. This might result in an empty active bin; in this
case we declare another bin of the same type as the new active bin. Similarly,
upon inserting an item to the active bin, we might need to open a new bin and
declare it as the new active bin.

Efficient Bin Packing Algorithms for Resource Provisioning in the Cloud 91

2.3 Insert/Delete Operations

In what follows, we describe how HarmonicMix updates maintains a nice packing
after an insert or a delete operation.

Lemma 2. It is possible to maintain a nice packing after an insert/delete oper-
ation by moving at most five items per operation.

Proof. To prove the lemma, we discuss how each operation separately.

insert-tiny (no move). Assume we want to insert a new tiny item of size x. To
maintain a nice packing, first we check if there is a tiny spot in large or medium
bins in which x fits. If there is, we place x there; otherwise, we place x into the
active bin of its type. No item is moved from the packing. If x does not fit into
the active bin, the level of the bin is more than 3/4 and property 3 holds. One
can easily check that the other properties of a valid packing also hold. Note that
no item is moved as a result of this operation.

remove-tiny (two moves). Assume we want to remove a tiny item x from a bin
B. If B is an active bin, we remove x and no other item is moved. The packing
remains valid since the properties of valid packing do not apply to active bins. If
B is a non-active tiny bin, we fill the empty spot of x in B with an item x′ in the
active bin of the same type as B. Since x and x′ belong to the same sub-class
of tiny items, the packing remains valid. Next, assume x is in the tiny spot of
a large or a medium bin. If we can replace x with another item x′ located in a
tiny bin, we move x′s to B. This might require moving another item x′′, from
the active bin of the same sub-class of x′, to the empty spot of x′. In total, at
most two items are moved.

insert-small (two moves). To insert a small item x, we first check if there is a
large bin B with an empty medium/small spot in which x fits. If there is, we
place x in B and remove at most two items from the tiny spots of B and re-insert
them; this would require moving at most two items. If there is no such large bin
B in which x fits, we simply place x in the active small bin.

remove-small (five moves). If we remove a small item from the active small bin,
the packing remains nice and no item is moved. To remove a small item x from
a non-active small bin B, we simply replace x with a small item x′ in the active
small bin. This requires moving one item, i.e., x′.

Next, assume a small item x is removed from a large bin B. We might need
to fill the empty spot of B with a medium or a small item in a non-large bin. If
a small item is moved, as discussed above, at most one other item is moved, i.e.,
two items are moved in total. If a medium item is moved, as will be discussed
later (see the first paragraph of remove-medium), we might need to move at most
four other items to fix the packing, i.e., at most five items are moved in total.

insert-medium (two moves). To insert a medium item x, we first check to see if
there is an empty medium/small spots in any of the large bins in which x fits. If
there is such spot in a bin B, we place x in B. In case B includes one or two tiny

92 S. Kamali

items, we remove them from B and re-insert them to the packing. As suggested
above, no item is moved after inserting tiny items. So, at most two items are
moved. Next, assume there is no spot for x in the large bins. We place x in the
active medium bin and open a new bin if required. In case we open a new bin,
the previous active bin will have an empty spot which might be filled with an
item in a tiny bin. Removing an reinserting such tiny item requires at most two
moves.

remove-medium (five moves). Assume a medium item x is removed from a
medium bin B. If B is the active medium bin, no item needs to be moved.
If B is a non-active bin, the empty spot of x in B is filled with a medium item
x′ from the active bin. This might result in an overloaded bin when x′ > x;
this happens only if there is a tiny item z in B. To fix the packing, we remove
z from B and re-insert it; this only requires moving z since no item is moved
after re-inserting a tiny item. To ensure a nice packing, we might need to fill the
empty spot of z with another tiny item z′ in a tiny bin B′. This requires filling
the empty spot of z′ in B′ with another tiny item z′′ in the active tiny bin of
the same sub-class. In total, we moved at most four items (x′, z, z′, and z′′).

Next, assume a medium item x is removed from a large bin B. To maintain
a valid packing, we might need to fill the empty spot of B with a medium or a
small item from the non-large bins. If a medium item is moved, as discussed in
the above paragraph, we might need to move at most four other items to fix the
packing, i.e., at most five items in total. If a small item is moved, at most one
other item is moved, i.e., two items are moved in total.

insert-large (five moves). Assume we want to insert a large item x. We open a
new bin B for x; this bin would have an empty medium/small spot. If there is
a medium/small item y in non-large bins which fits in the empty spot, we move
y to B. As discussed earlier, removing a medium or small item from a non-large
bin requires moving at most four other items, i.e., we move at most five items
in total.

If there is no medium or small item that fits in the medium/small spot, we
move tiny items into the two tiny spots of B. This requires moving at most two
tiny items from tiny bins, and each potentially need moving another tiny item
from the active bin of the same sub-class to the the new empty spots. In total,
we move at most four items.

remove-large (three moves). Assume we remove a large item x from a large bin
B. To maintain a nice packing, we remove other items in B and re-insert them
to the packing. Assume the medium/small spot in B is occupied with an item y.
Re-inserting y to the packing requires moving at most two other items. In total,
at most three items are moved. If the medium/small spot in B is empty, there
are at most two items in the tiny spots of B. Removing and re-inserting these
items requires at most two moves. ��

Efficient Bin Packing Algorithms for Resource Provisioning in the Cloud 93

2.4 Update Operations

A simple approach to implement updates is to remove the updated item and
re-insert it. By Lemma 2, each operation requires moving at most five items.
So, this approach requires moving at most ten items per update. While in the
worst-case we might indeed need ten moves, for most cases, we can maintain a
nice packing with less overhead.

Lemma 3. Updating the size of an item so that it becomes or remains a tiny
item requires at most five moves. If an item becomes or remains small or medium,
at most seven moves are required. If a tiny items becomes large, at most seven
moves are required. If a medium or small item becomes large, at most ten moves
are required. If a large item remains large after an update, at most six moves are
required.

Proof. As before, we discuss each operation separately.

update-to-tiny (five moves). Assume we update the size of an item x so that
it becomes tiny after the update. We remove x from the packing (at most five
moves) and re-insert it (no move). In total, we move at most five items.

update-to-small and update-to-medium (seven moves). Assume we update the
size of an item x so that it becomes small or medium after the update. We
remove x from the packing (at most five moves) and re-insert it (at most two
moves). In total, we move at most seven items.

update-to-large (ten moves). Assume we update the size of an item x so that
it becomes large after the update. If x is tiny before the update, we remove x,
using at most two moves, and re-insert it, using at most five moves. The number
of moves will be at most seven.

Assume x was a small item in a small bin B before the update. After the
update, we remove x (the first move), and fill its empty spot with an item from
the active small bin (the second move), and then re-insert x as a large item (at
most five additional moves). In total, at most seven moves are required. If x was
a small item in a large bin before the update, we remove and re-insert it with at
most ten moves.

Assume x was a medium item in a medium bin B before the update. So, x
was placed with another medium item x′ in B. If we have x + x′ ≤ 1 after the
update, we maintain the nice packing by removing and re-inserting the tiny item
of B (if there is one). That would require moving one item. If x + x′ > 1 after
the update, we need to remove x′ from B. If there is another medium item x′′

in a medium bin B′′ so that x+x′′ ≤ 1, we swap x and x′ (the first two moves).
Moreover, if there was an item in the tiny spot of B, we remove and re-insert
that item (the third move). Finally, if B′′ is overloaded after the insertion, we
remove and re-insert the tiny items in it (the fourth move). In that case, the tiny
spot of B′′ might be filled with another tiny item in a tiny bin (the fifth move).
The resulting empty tiny spot in the tiny bin might be filled with an item in the
active bin of the same sub-class (the sixth move).

94 S. Kamali

Assume x was a medium item in a large bin B before the update. We simply
remove x from B (at most five moves) and re-insert it as a large item (at most
five moves). In fact, there are instances in which, to maintain a nice packing,
these ten moves are required to maintain a nice packing.

Assume x was large before the update and its size is increased. If the medium/
small spot is empty, we might need to move and replace at most two tiny items
from the bin using at most six moves. Next, assume the medium/small spot
is filled with an item y. After the increase, if the bin B is not overloaded, the
packing is still nice. Otherwise, we need to remove y from B. Assume there
is another medium item y′, with size smaller than y, that can replace y in B.
Swapping y and y′ requires two moves. After that, the bin B′ of y′ might become
overloaded. In that case, we remove the tiny item in B′, denoted by z′, and re-
insert it to the packing (the third move). To fill the empty spot of z′ in B′,
we might need to move two more tiny items (the fourth and the fifth moves).
In total, we move at most five items. If there is no item y′ to swap with y, we
remove and re-insert y using two moves. Moreover, at most two tiny items will
be moved to B, each requiring moving at most one other item from the active
bin of their sub-class. In total, we move at most six items.

Next, assume x was large before the update and its size is decreased. If the
medium/small spot was occupied before the update, the packing remains nice
(no move). Otherwise, we should check if there is a medium or small item y in
non-large bins that can fill the medium/small spot. If there is, we move y to
B (the first move). The empty spot of y in its previous bin B′ will be replaced
by another item y′ from the active medium/small bin (the second move). If y is
medium, this might cause an overflow in B′ which can be fixed by moving the
tiny item z of B to the active bin of the same type (the third move) and replacing
it with another tiny item z′ (the fourth move). There might be tiny items in the
tiny spots of B before the update. We have to remove these items from B and
re-insert them to the packing (the fifth and the sixth moves). Note that inserting
a tiny item does not cause extra moves. If there is no medium/small item y to
be placed in B after the update, the tiny spots in B are filled with items in tiny
bins, using at most four moves. In total, we move at most six items when the
size of a large item decreases. ��
We use the case analysis presented in Lemmas 2 and 3 to devise the HarmonicMix
algorithm. From Lemmas 1, 2 and 3, we conclude the following theorem:

Theorem 1. HarmonicMix has a competitive ratio of at most 4/3 for the IaaS
model of bin packing. The number of items moved for each operation is at most ten.

3 Experiments

The results in the previous section imply that, in the worst case, HarmonicMix has
an advantage over VISBP, i.e., it opens a smaller number of bins. In this section,
we experimentally compare the two algorithms to study their average-case per-
formance. We generate random sequence of operations which involve items whose

Efficient Bin Packing Algorithms for Resource Provisioning in the Cloud 95

sizes are also generated independently at random. The size of items is in defined
to be in the range (1/6,1] so that HarmonicMix and VISBP work on the same set
of items (otherwise, multi-items of the two algorithms will be different).

We present three experiments. In the first experiment, item sizes are generated
uniformly at random from the range (1/6,1]. In the second experiment, item sizes
follow a normal distribution with mean 0.5 and standard deviation 1. In the third
experiments, item sizes take values from the set {1/1000, 2/1000, . . . , 1} following
a Zipfian distribution with skew parameter s = 1.1 (the smaller the size, the more
frequent the item). Each experiment has five phases. Each phase includes n =
50, 000 operations. In phase one, n random numbers are inserted to the packing.
No item is removed or updated during this insert-only phase. In the second phase,
with a chance of 90 percent an insert operation is performed while chances of delete
and update are equal to 5 percent. We call this the insert-intensive phase. In the
third phase, with a chance of 50 percent, an insert operation is applied and with
a chance of 50 percent, a delete or an update operation is applied (each with the
same chance of 25 percent). We call this phase, equal-load phase. In the fourth
phase, called delete/update intensive phase, with a chance of 10 percent an insert
is applied and with a chance of 90 percent, a delete or update operation is applied
(each with the same chance of 45 percent). Finally, in the last phase, called delete-
only phase, only delete operations are applied.

Next, we describe how these insert/delete/update operations are defined. On
an insertion, a new item of random size is inserted to the packing. On a deletion,
an existing item in the packing is selected uniformly at random and removed.
On an update, an existing item is selected randomly and a random value in the
range (−0.1,+0.1) is added to the size of x. If the size of x becomes larger than
1 or smaller than 1/6, another random change is added to have the size in the
desired range.

Besides VISBP and HarmonicMix, we also modified Best Fit and First Fit
to include them in our experiments. In contrast to the classic algorithms, our
modified algorithms use live migration when the size of an item is updated
(increased) so that the bin is overloaded, i.e., its level is more than 1. Only
in this case, the item with the updated size is removed and re-inserted in the
packing. Moreover, when the level of a bin becomes zero (when all items in the
bin are removed) the bin is removed from the packing, i.e., it is not counted as
one of the bins used by the algorithms.

Figure 2 show the number of bins for each algorithm at the end of each
phase. One interesting observation is that the packings of Best Fit and First Fit
are better than VISBP at the initial phases. This is partially because VISBP
is designed in a way to improve the worst-case performance with a minimum
number of live migrations. Moreover, Best Fit and First Fit algorithm are known
to be optimal algorithms for packing sequences that are generated randomly
(see, e.g., [2]). In particular, when items are removed and new random items,
the resulting empty spots in the packings of Best Fit and First Fit is likely to be
filled with new items (which have the same distribution on their sizes). In the
last two phases in which delete operations are more frequent than inserts, VISBP

96 S. Kamali

Fig. 2. The average number of active bins at the end of each phase of the experiments.

Efficient Bin Packing Algorithms for Resource Provisioning in the Cloud 97

shows its advantage over Best Fit and First Fit. HarmonicMix has advantage
over other algorithms in almost all phases. The algorithm has a visible advantage
over VISBP, and its advantage over Best Fit and First Fit is evident in the last
two phases.

We also counted the total number of times that items have been moved
in VISBP and HarmonicMix. The average number of migrations per opera-
tion in experiment 1 is 0.234 for VISBP and 0.457 for HarmonicMix. Similar
numbers are observed for experiments 2 and 3. One can conclude that Har-
monicMix tends to move more items to improve the quality of its packing while
VISBP tends to minimize the number of migrations instead. Note that, although
VISBP/HarmonicMix move at most seven/ten items per operation in the worst
case, the expected number of moves is much smaller.

4 Concluding Remarks

HarmonicMix maintains valid packings that are also nice packings. The algo-
rithm can be modified to maintain valid packings, which are not nice, while
moving at most five items per operation. Such algorithm has the same compet-
itive ratio of 4/3 of HarmonicMix. So, in the worst case, the algorithm has an
advantage over VISBP and HarmonicMix. However, the new algorithm performs
poorly on average. We leave further analysis of this algorithm and other variants
of HarmonicMix as a future work.

References

1. Balogh, J., Békési, J., Galambos, G.: New lower bounds for certain classes of bin
packing algorithms. Theor. Comput. Sci. 440–441, 1–13 (2012)

2. Bentley, J.L., Johnson, D.S., Leighton, F.T., McGeoch, C.C., McGeoch, L.A.: Some
unexpected expected behavior results for bin packing. In: Proceedings of 16th
Symposium on Theory of Computing (STOC), pp. 279–288 (1984)

3. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I.,
Warfield, A.: Live migration of virtual machines. In: 2nd Symposium on Networked
Systems Design and Implementation (NSDI) (2005)

4. Coffman, E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin
packing: a survey. In: Approximation Algorithms for NP-hard Problems. PWS
Publishing Co (1997)

5. Coffman Jr., E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin pack-
ing approximation algorithms: survey and classification. In: Pardalos, P.M., Du,
D.Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 455–531.
Springer, New York (2013)

6. Gambosi, G., Postiglione, A., Talamo, M.: Algorithms for the relaxed online bin-
packing model. SIAM J. Comput. 30(5), 1532–1551 (2000)

7. Johnson, D.S.: Near-optimal bin packing algorithms. Ph.D. thesis, MIT (1973)
8. Lee, C.C., Lee, D.T.: A simple online bin packing algorithm. J. ACM 32, 562–572

(1985)

98 S. Kamali

9. Lee, C.C., Lee, D.T.: Robust online bin packing algorithms. Technical report 83–03-
FC-02, Department of Electrical Engineering and Computer Science, Northwestern
University (1987)

10. Meisner, D., Gold, B.T., Wenisch, T.F.: Powernap: eliminating server idle power.
In: Proceedings of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 205–216 (2009)

11. Singh, A., Korupolu, M.R., Mohapatra, D.: Server-storage virtualization: integra-
tion and load balancing in data centers. In: Proceedings of the ACM/IEEE Con-
ference on High Performance Computing, pp. 53 (2008)

12. Song, W., Xiao, Z., Chen, Q., Luo, H.: Adaptive resource provisioning for the cloud
using online bin packing. IEEE Trans. Comput. 63(11), 2647–2660 (2014)

13. Wood, T., Shenoy, P.J., Venkataramani, A., Yousif, M.S.: Sandpiper: black-box and
gray-box resource management for virtual machines. Comput. Networks 53(17),
2923–2938 (2009)

Transaction Management for Cloud-Based
Graph Databases

Georgia Koloniari1(B) and Evaggelia Pitoura2

1 Applied Informatics Department, University of Macedonia, Thessaloniki, Greece
gkoloniari@uom.gr

2 Department of Computer Science and Engineering,
University of Ioannina, Ioannina, Greece

pitoura@cs.uoi.gr

Abstract. Many graph databases, both open and proprietary, have been
recently developed to efficiently store and manage graph structured data.
As the volume of such data grows, graph databases most often offer dis-
tributed solutions implemented in a cloud infrastructure. In this paper,
we focus on transaction management for such cloud-based graph data-
bases. In particular, we use various graph databases as case studies to
survey the different levels of transaction support and concurrency control
protocols offered. We also study data distribution issues and replication
protocols. Finally, we highlight open issues that need to be addressed in
the future.

Keywords: Graph database · Consistency · Cloud computing

1 Introduction

There is an abundance of graph-structured datasets that depict social networks,
citation and hyperlink as well as biology, traffic and computer networks. As these
datasets grow in volume, efficiently storing and querying them has become an
important problem.

There are two main approaches for efficiently managing graph-structured
data. The first approach is adopting a data-centric view by using a database
management system. In particular, a graph database is a database management
system that uses operations and queries that expose a graph data model [25].
Thus, graph databases use graph structures with edges, properties and nodes
for data storage. They are usually designed to support transactional processing
(OnLine Transaction Processing, OLTP) and enforce integrity constraints while
providing increased availability as all traditional relational databases. The basic
functionality of such graph databases is to support CREATE, READ, UPDATE
and DELETE operations on the graph model elements, i.e., nodes, edges and,
if available, properties. Some of the most common queries include querying for
nodes and edges with particular properties, for the neighbours of a node, for
shortest paths in the graph or for particular subgraphs. Popular graph databases
c© Springer International Publishing Switzerland 2016
I. Karydis et al. (Eds.): ALGOCLOUD 2015, LNCS 9511, pp. 99–113, 2016.
DOI: 10.1007/978-3-319-29919-8 8

100 G. Koloniari and E. Pitoura

include Neo4j [21], OrientDB [22], Sparksee (formerly known as DEX) [19,29],
InfiniteGraph [10], Titan [31] and others.

The second alternative to managing graph structured data is to view graphs
as a computational rather than a data model. Systems that adopt this approach
are based on parallel processing paradigms, and aim to exploit parallelism to sup-
port efficient graph analysis. In contrast to graph databases that focus on OLTP
processing, parallel graph processing systems deal with OLAP (OnLine Analyti-
cal Processing) analysis, supporting queries that require batch processing, which
starts on the whole graph and performs iterative computations. Such algorithms
include PageRank and finding cliques or counting triangles in the overall graph.
Important representatives include Pregel [18], Giraph [1], GraphLab [17] and
PowerGraph [8], Trinity [28], GraphChi [15] and KineoGraph [5].

While parallel graph processing systems consider analysis of mostly static
data, a graph database storing graphs corresponding to real networks that evolve
over time, needs to provide support for consistent concurrent execution of graph
queries and update operations. Thus, transaction support is required in such
graph databases. Based on well known graph databases, open source and propri-
etary, our goal is to study the different approaches graph databases deploy to deal
with transactions. We consider both the case of centralized and distributed cloud-
based graph databases. In the first case, concurrency control protocols ensure the
correct execution of multiple transactions, while in the second case, protocols for
replication consistency control and distributed transactions are also needed.

The rest of this paper is structured as follows. In Sect. 2, we briefly present
the basic consistency models. Using popular graph databases as case studies,
in Sect. 3, we describe data and storage models as well as distribution schemes
for the distributed scenario. Section 4 includes the concurrency control protocols
deployed and isolation levels achieved by the different databases. Finally, Sect. 5
summarizes our results and highlights open issues and future challenges.

2 Cloud Consistency

Transactions are used in most databases to enable consistent execution of con-
current operations, to provide isolation between users that access the database
concurrently and to support recovery from failures while maintaining consis-
tency even in the presence of failures. A transaction consists of one or more
independent operations (read or write) to a database viewed as one logical unit.

Most databases offer four guarantees namely, Atomicity, Consistency, Isola-
tion, Durability, i.e., the well known ACID properties.
Atomicity requires that all transactions follow an “all or nothing” rule. If one
part of the transaction fails, the entire transaction fails, and the database state
is left unchanged.
Consistency ensures that each transactions causes the database to transition
from one valid state to another valid state. A valid state is one in which all
integrity constraints are satisfied.
Isolation ensures that a transactions does not see the intermediate results of
other transactions.

Transaction Management for Cloud-Based Graph Databases 101

Durability ensures that if a transaction commits, its modifications are not lost.
When the database is distributed, providing high availability is a key require-

ment. Furthermore, other factors such as the unreliability of the communication
network may also influence system performance. As in such distributed settings
providing full ACID guarantees induces very large overheads and may be infea-
sible, other more relaxed consistency models seem to be more appropriate.

Consistency (C) is viewed as equivalent to having a single up-to-date copy of
the data, so as that each read operation in the database returns the most recent
value of any data item. High-availability (A) means that any request to a non
failed node in the system results in a response in a logical time frame. Finally,
partition-tolerance (P) ensures that the system remains functional under network
partitions. Focusing on these dimensions, Brewer stated the CAP theorem [2],
that assert that for any distributed system, “though it’s desirable to have con-
sistency, high-availability and partition-tolerance in every system, unfortunately
no system can achieve all three at the same time”.

In particular, it is proved using the asynchronous network model, which
assumes a directed graph of processes that use asynchronous (non-blocking) send
and synchronous (blocking) receive operations for their communication, that it
is impossible to have all three desirable properties, and only two out of the three
can be satisfied at the same time [7]. As most distributed systems do not nego-
tiate the requirement of partition-tolerance, the tradeoff that arises is between
consistency and availability. However, Brewer returns to the CAP theorem in [3]
to emphasize that since network partitions are rather rare, in all other cases a
system should offer both perfect availability and consistency.

Based on this tradeoff weaker forms of consistency such as eventual consis-
tency [34] have emerged. The eventual consistency model guarantees that if no
new updates are made to a data item, eventually all accesses will return the last
updated value. Eventual consistency is based on a distributed system paradigm
that takes an optimistic approach towards database consistency, while ensuring
higher service availability as defined in [23] that defines Basically Available, Soft
state, Eventually consistent services (BASE).

3 Graph Databases

3.1 Data and Storage Model

Graph databases use graph structures for representing and querying their data,
regardless of the underlying storage system. While each database may follow its
own specific data model with variations among them, most of them follow an
approach similar to the property graph as defined in Neo4j [21,25]. The prop-
erty graph model consists of nodes, relationships that correspond to the edges
between pairs of nodes, and properties contained both in nodes and relationships
that are used to describe them. Properties are usually arbitrary key-value pairs.

There are mainly two approaches regarding storage: (i) using a native storage
model or (ii) building a graph database on top of another storage model.

102 G. Koloniari and E. Pitoura

Native graph databases are based on a storage model specifically designed for
graph structures and optimized to support graph operations. Neo4j [21] uses a
native graph storage using separate files to store nodes, relationships and proper-
ties. Fixed size records are used both for nodes and relationships, while the latter
form a doubly linked list to enable efficient graph traversal. Pointers are also used
to link relationships and nodes with lists of their properties. Sparksee [29] takes an
object-oriented approach treating nodes and relationships as objects and storing
them with corresponding metadata and unique global identifiers.

Graph databases that build upon existing storage models, for instance, seri-
alize a graph structure to store it in a relational database and implement a
graph layer supporting the graph operations on top of the relational storage.
OrientDB [22] uses a document database and maps the graph model on top
of the document model, while InfiniteGraph [10] uses an object-oriented data-
base for storing nodes and relationships as persistent objects. Finally, Titan [31]
supports different storage backends: Cassandra [16] and HBase, two key-value
storage systems that focus on scalability and distribution and BerkleyDB, a
key-value database that offers single-site solutions. The choice of the backend
influences the behavior of the graph database with respect to both consistency
and scalability issues.

3.2 Distribution Schemes

To improve scalability, load-balance and availability, graph databases are
often distributed among multiple sites exploiting some cloud or other similar
infrastructure. When distributing a database among sites, one can either repli-
cate, partition or shard the database.

As the three terms are closely related, we first clarify their use in the con-
text of relational databases. Replication refers to creating copies of the entire
database or whole tables to more than one site. Data partition encompasses any
way of splitting data to different logical parts that are then distributed among
multiple sites. In particular, for a relational database, partitioning may refer
to either vertical (column-wise) or horizontal (row-wise) partitioning. Finally,
sharding refers particularly to horizontal partitioning of a table based on some
key value.

For graph databases, we discern between databases that store a single large
graph or many smaller graphs. Keeping that in mind, replicating a graph data-
base can either mean replicating the entire database or replicating entire graphs
to more than one site. As partition may refer to any type of splitting the data,
to avoid confusion we can use it to refer only to distributing different graphs of
the same database to different sites. Finally, sharding for graph databases refers
to partitioning a single graph among different sites.

When using replication, while availability and load balance is improved, addi-
tional consistency issues arise, as the different copies need to be synchronized to
provide the most up-to-date information. On the other hand, partitioning and
sharding do not involve such consistency concerns, however they may increase
the cost of querying and updating the graph as a single query may need infor-
mation from multiple sites involving increased communication costs.

Transaction Management for Cloud-Based Graph Databases 103

For sharding, graph traversal becomes expensive as it may require moving
from one site to another multiple times. Graph partitioning algorithms that
partition (shard) a single graph in different parts that are assigned to different
sites aim at reducing the cross site traversals and balancing the load among
these sites. Theoretical approaches to construct p-partitions of graphs with the
minimum cut, where cut size is defined as the number of edges that connect
nodes assigned to different partitions, have been studied in extent (see [6] for a
good survey). Recently, new approaches deal with partitioning graph data over
the cloud. Most such approaches were developed in the context of graph parallel
processing systems to deal with designing an efficient underlying storage model
that would be appropriate for the processing model.

Pregel [18] that views a node as the main processing unit, initially used simple
hash functions to partition nodes among different sites. As such a simple app-
roach does not consider the structural characteristics of the nodes, improvements
have been developed. Mizan [12] not only partitions the nodes of the graph, but
also applies corresponding changes and optimizations to the Pregel processing
algorithms. An optimizer evaluates the structure of the graph and if the nodes
degree distribution follows a power-law, with a small number of nodes having
a very large degree while the majority of the nodes have much smaller degrees,
then a traditional partitioning algorithm such as METIS [11] is used to derive
a partition with a minimum cut for the graph. When the graph does not follow
the power law, random partitioning is used instead, as the estimated gains from
applying an optimal partition do not justify the cost for its application.

Besides graph properties, the Surfer [4] framework also considers the charac-
teristics of the underlying communication network. The framework recursively
partitions with bisection both the data graph, and the network graph which is
formed by the sites among which the data will be partitioned. By partitioning
both graphs simultaneously, the number of cross-partition edges among data
graph partitions is gracefully adapted to the aggregated amount of bandwidth
among machine graph partitions. In [33], both graph and network properties are
modeled through weights to nodes and edges respectively and a multilevel par-
titioning algorithm such as [9] is applied outperforming traditional approaches.

For social network graphs, graph properties are exploited along with seman-
tic information in the form of graph communities. In [35], Trinity is used as
the graph processing framework and a multi-level label propagation method is
deployed. Each node is initially labeled and then labels are updated iteratively
as nodes take the label that is prevalent in their neighborhood. The SPAR [24]
framework combines partitioning with replication. Partitioning tries to maintain
the structure of the communities in the graph, and replication ensures that the
neighbors of each node are located at the same partition with the given node.
The problem is now formulated as the minimum number of required replicas
that satisfies the two requirements. The partitioning algorithm is an incremen-
tal greedy local optimization method. In [20], the goal is to reduce the cost
involved in SPAR [24] for keeping all the replicas up to date. Not all nodes are
replicated and decisions are made locally by monitoring the accesses on each
node and using a fairness criterion.

104 G. Koloniari and E. Pitoura

Finally, latest developments include dynamic partitioning and dealing with
streaming graph data. One partition scheme may not be appropriate for all graph
processing algorithms, since workload balancing in different iterations for each
algorithm is possibly different. In [27], dynamic workload balancing is proposed
by partitioning the active nodes involved in each graph processing algorithm
taking into account the communications required by the steps of the given algo-
rithm. Streaming graphs are considered in [30]. Heuristics are used that try to
compute balanced partitions, for instance, by greedily assigning each new node
to the partition with the smallest size, or by hashing, or by splitting the input
stream in segments and assigning each segment to a different partition.

Despite the recent advances in sharding (partitioning) in the context of graph
parallel systems, most graph databases do not inherently support sharding and
adopt replication instead. Sharding is delegated as the application’s responsibil-
ity or dealt with by the backend storage system if such a system exists.

Master-slave replication is the replication scheme most often used. In this
scheme, one replica is considered the primary (master), while all other are back-
ups (slaves). The master replica receives all requests and updates are propagated
to all slaves that acknowledge the changes. This scheme is used mainly to offer
high availability in the presence of failures, as then recovery schemes determine
one of the slave replicas as the new master. Multi-master replication allows all
replicas to receive and process requests, and updates are propagated to all other
replicas. While more efficient, this scheme requires more complex and expensive
distributed concurrency control mechanisms.

Sparksee, InfiniteGraph and Neo4j use master-slave replication with syn-
chronous updates and notifications. For instance, Neo4j’s distributed solution is
called Neo4j HA (High Availability). For a write transaction on a slave, each
write is synchronized with the master, while the slave has to be up to date with
the master. The transaction first commits on the master and then, if successful,
on the slave. Write transactions on the master execute normally as in non-HA
mode. If the transaction commits successfully, it is pushed on a number of slaves
by using an optimistic protocol. That is, if the push to the slaves fails, the
transactions remains successful.

OrientDB, when distributed across a number of clusters, multi master repli-
cation is supported within each cluster. All servers are allowed to perform reads
and writes on their own replicas, and then notify the rest of the nodes in their
cluster, using synchronous or asynchronous notification, increasing consistency
in the first case and efficiency in the latter where only eventual consistency is
achieved. Synchronization logs are maintained to resolve conflicts and the default
policy used gives precedence to older operations. Similarly to the other graph
database systems, sharding is not supported by OrientDB.

Titan relies on the backend to handle partition and replication as well.
BerkeleyDB is not appropriate for a distributed setting. For the distributed solu-
tions, Cassandra and HBase by default use random partitioning to distribute the
nodes among the different servers. However, using an explicit graph partition-
ing algorithm that tries to minimize the inter-server communication cost is also
possible for these two backends.

Transaction Management for Cloud-Based Graph Databases 105

4 Concurrency Control

With respect to concurrency control, first we discern between graph databases
that offer full ACID support and those that on the tradeoff of consistency and
availability choose availability and support weaker forms of consistency such
as eventual consistency. Non-native graph databases that are build on top of
another database or storage system, usually depend on that system and its
supported concurrency control. If the backend supports ACID, then the graph
database also supports ACID and so on. Databases like Titan, that support
different backends may treat transactions and concurrency control differently
according to the backend system used each time. Note however that regardless
of the approach they follow, most graph databases offer flexibility, allowing them
to be configured for weaker consistency when higher availability and efficiency
is needed according to the application requirements.

Concurrency controls protocols are divided into pessimistic and optimistic.

4.1 Pessimistic Concurrency Control

Pessimistic concurrency control blocks any operation of a transaction that may
cause a violation of the data integrity, until the danger of the violation no longer
exists. The main technique used to block operations is through locking. When a
transaction needs to access or update a resource, it is first required to acquire
a lock on that resource. Only the transaction that possesses the locks on each
resource can access or update it. When it completes its operation, the transaction
releases the lock so that other transactions can in turn acquire the lock to manip-
ulate the same data. Thus, concurrent access on the same data is controlled and
avoided.

Locking protocols may cause deadlocks, if two or more transactions become
mutually blocked when waiting for the release of some locks the other ones hold.
In this case, complementary techniques for deadlock detection and resolution
need to be deployed by the graph database system.

In the context of graph databases, the main difference between locking pro-
tocols is locking granularity, that is which is the data unit on which locking
is acquired. Most graph databases, especially those which deal with workloads
consisting of multiple small graphs, require that each transaction that applies
any operation on a particular graph should acquire a lock for the entire graph.
Thus, the degree of parallelism is reduced since only one transaction per graph
is allowed. Graph databases that support more fine granularity in their locking
enabling transactions to acquire locks only on particular subsets of nodes and
edges support a higher degree of parallelism.

In Neo4j [21], all database operations that access the graph, indexes, or the
schema are performed within a transaction. Transactions can be nested as a
flat nested transaction, where all nested transactions are added to the scope
of a single top level transaction. If a nested transaction aborts or fails for some
reason, then the top level transaction is rolled back along with all its other nested
transactions. Only write locks are deployed in Neo4j and locking is applied on

106 G. Koloniari and E. Pitoura

node and edge level. In particular, when one creates or deletes a node, a write
lock is acquired for the particular node. Similarly, to create or delete an edge
locks are required for the given edge as well as the nodes that the edge connects.
Finally, when adding, deleting or updating properties on nodes or edges, write
locks are acquired for the respective nodes or edges. With respect to deadlocks,
deadlock detection and manipulation is handled by Neo4j ensuring that when
needed the involved transactions will be rolled back and the locks released.

Sparksee [29] supports two types of transactions, read or shared, and write or
exclusive, and follows a multiple read/single write model. All transactions unless
explicitly declared as write, begin as read transactions and are transformed to
write when the first update operation is encountered. For a transaction to be
allowed to become a write transaction all other read transactions must finish
first. Locking is applied on the graph level, as all manipulations of a graph are
encapsulated into sessions that do not allow sharing among multiple threads.

In InfiniteGraph [10], a single graph database is distributed across multi-
ple sites. There is a dedicated lock server process that manages access to the
complete database and cooperates with local data server processes that reside
in each site hosting a part of the database. Both full and relaxed consistency
are supported, where the latter trades off consistency for performance. Locking
is performed similarly to Sparksee at a graph level and for full consistency the
multiple reads/single write model is deployed. For relaxed consistency, an accel-
erated form of ingesting nodes is supported, in which the nodes are processed
in batches, by non blocking transactions and the database is made eventually
consistent. For full consistency, accelerated ingestion may also be supported by
secondary processes that handle the coordination of the ingestion.

4.2 Optimistic Concurrency Control

In contrast to pessimistic concurrency control, an optimistic approach operates
on the assumption that most likely no conflict will occur during the concurrent
execution of the transactions. Thus, it does not block transactions but instead
before committing a transaction, it checks whether any integrity constraint has
been violated by its execution. In case of a violation, the transaction is rolled
back and restarted, otherwise it is committed.

A multi-version concurrency control (MVCC) protocol is one of the tech-
niques used for optimistic concurrency control. An MVCC uses timestamps to
differentiate between different instances (snapshots) of data items in time. Trans-
actions are also assigned timestamps and determine through their use which ver-
sion of the database they are reading or writing. The database maintains several
versions of each data item which are assigned a write timestamp according to the
transaction that has written the item. A transaction can read the most recent
version of a data item that precedes the transaction’s timestamp. Similarly, each
data item is assigned a read transaction corresponding to the latest transaction
that has read the item. For a transaction to write an item (a new version), the
transaction’s timestamp should not precede the read timestamp of the item, and

Transaction Management for Cloud-Based Graph Databases 107

no pending transactions with preceding timestamps should exist. Otherwise, the
transaction is aborted and restarted.

OrientDB [22] adopts the MVCC approach for graph databases. Any graph
update operation automatically starts a new transaction if no transactions
are currently running. Updates made by the transactions are temporary and
not visible to other transactions unless the transactions that performed them
have committed. Multiple reads and writes are allowed and the versions of the
graph elements updated by a transaction are checked upon its commit to deter-
mine whether they have been updated by other transactions in which case the
first transaction is aborted. When transferring temporary versions to storage,
OrientDB additionally acquires exclusive locks to ensure consistency.

4.3 Backend Dependent Concurrency Control

Titan [31], a scalable distributed graph database, supports three different key-
value storage backends, Apache Cassandra [16], HBase and BerkeleyDB. Titan
relegates transaction management to the backend in use, supporting different
consistency guarantees. BerkeleyDB offers limited horizontal scalability and con-
currency, on the other hand it is the most appropriate solution for a central-
ized server scenario. Cassandra and HBase are the best solutions for distributed
setups as they provide native support for distributed solutions, but sacrifice
consistency or availability.

On BerkeleyDB, transactions are handled by the underlying storage and can
be configured to ACID transactions without requiring additional effort from
Titan. On eventually consistent storage backends, that is Cassandra and HBase,
Titan supports both pessimistic and optimistic concurrency control.

When the pessimistic approach is deployed, Titan must obtain locks in order
to ensure consistency because the underlying storage backend does not provide
transactional isolation. Titan does not use locking by default, thus, the user has
to determine whether locking should be used for each schema element that defines
a consistency constraint. The actual lock application mechanism is abstracted
such that Titan can use multiple implementations of a locking provider. Cur-
rently, it supports two lock implementations: (i) a locking mechanism based
on key-consistent reads and writes, which only requires that the backend stor-
age supports key-consistent operations, is supported by both Cassandra and
HBase, and implemented based on the use of timestamped lock operations, and
(ii) a Cassandra specific locking implementation based on the Astyanax locking
recipe, which defines a distributed row lock that performs a sequence of write-
read-write operations to effectively lock a row. The recipe also allows for reading
the entire row and committing it back as part of the last write. Both locking
implementations require that clocks are synchronized across all machines in the
cluster.

Optimistic concurrency control is usually preferred in distributed solutions.
Since edges are stored as single records in the storage backend, concurrently
modifying a single edge leads to conflict. Instead of locking, an edge label can be
forked. When modifying an edge whose label is configured to FORK the edge is

108 G. Koloniari and E. Pitoura

deleted and the modified edge is added as a new one. Hence, if two concurrent
transactions modify the same edge, two modified copies of the edge will exist
upon commit which can be resolved during querying traversals if needed.

4.4 Isolation Levels

The highest level of isolation is achieved by serializability that ensures that the
concurrent execution of multiple transactions is equivalent to some serial execu-
tion of them. Serializability incurs very high overheads and considerably limits
the degree of concurrent executions. Therefore, most databases relax isolation
to lower levels to tradeoff concurrency with efficiency. Reapatable reads and read
committed are usually the isolation levels chosen. With repeatable reads isola-
tion, all reads within the same transaction should read the snapshot established
by the first read, while with read committed, all transactions read data that
were committed when the query was started.

The supported isolation level in Neo4j is read committed, as a transaction
that traverses the graph is not aware of any updates applied by other transactions
unless these transactions are committed. This isolation protects transactions
from reading dirty data from uncommitted transactions that in the end may
be rolled back, but may allow non-repeatable reads as it is not guaranteed that
reissuing the same transaction will encounter the same data it has just read.
Similarly to Neo4j, OrientDB also supports read committed isolation level.

Compared to Neo4j and OrientDB, Sparksee ensures a higher isolation level,
as read and write transactions lock the graph for their duration ensuring serial-
izability. InfiniteGraph also supports a higher isolation level, snapshot isolation,
which is more relaxed than serializability but still ensures that no uncommitted
data is read and no non-repeatable reads allowed.

Finally, Titan when using the BerkeleyDB backend employs as default the
repeatable read isolation level. On the other hand, on the backends that do not
support transactions inherently, the isolation level is configurable depending on
the locking or other concurrency control mechanism deployed.

5 Comparison and Challenges

Tables 1 and 2 summarize the results of our study, focusing on 5 dimensions.
Table 1 includes our results regarding the storage model and distribution scheme
deployed, and the consistency guarantees offered, while Table 2 presents our
results with respect to the concurrency control mechanism used, and isolation
level and locking granularity (if applicable) supported.

Regarding the storage model, both native and non native approaches are very
popular. There is no clear advantage, and many have argued that even native
storage systems are actually based on other storage models such as objects or
records, making a comparison between the two options even more difficult.

With respect to the distribution scheme, all databases, besides Titan that
relies on Cassandra or HBase and uses their random partitioning scheme, support

Transaction Management for Cloud-Based Graph Databases 109

Table 1. Database comparison with respect to the storage model, distribution scheme
and consistency guarantees.

Storage Distribution Consistency

Neo4j Native Master-slave replication ACID

OrientDB Document-database Multi-master replication ACID

Sparksee Native Master-slave replication ACID

InfiniteGraph Object-oriented Synchronous replication ACID, relaxed

Titan BerkeleyDB, Cassandra, HBase Random partitioning ACID, eventual

Table 2. Database comparison with respect to the concurrency control protocol, iso-
lation level and locking granularity.

Concurrency control Isolation level Granularity

Neo4j Locking Read committed Node/edge

OrientDB MVCC Read committed –

Sparksee Locking Serializable Graph

InfiniteGraph Locking Snapshot isolation Graph

Titan Locking, optimistic Repeatable read, configurable Node/edge

only replication. Thus, graph partitioning is one of the open issues for graph
databases as it currently limits their scalability.

With regards to consistency, while most databases claim ACID properties, in
reality they all offer configurable consistency, opting for relaxing consistency to
improve availability. Titan is the one with the clearer option, enabling the user
to select the backend that offers the most for her application, either BerkeleyDB
with full ACID or Cassandra and HBase that support eventual consistency but
much higher scalability. Neo4j HA is also an option tailored for applications that
require higher availability, sacrificing consistency as well.

Locking is the most popular approach with respect to concurrency con-
trol. Only OrientDB fully supports optimistic concurrency control with multi-
versioning, and Titan when eventual consistency is deployed. As no benchmarks
are available, no clear winner can be picked, as depending on the workload, one
of the two approaches may be more appropriate.

The isolation level offered by each graph database also varies from read com-
mitted to serializable. Serializable is the strictest one offered by Sparksee, but
incurring large overheads and decreasing the degree of concurrency. Reapatable
reads chosen by Titan in BerkeleyDB offers also high isolation guarantees, while
the most popular option is read committed, which is the default option used by
most relational databases as well.

Locking granularity significantly influences the concurrency degree of the
system. As most systems that deploy locking (except Neo4j and Titan) offer
locking on the graph instance level, we consider it a major limitation of current
graph databases and another open issue that needs to be addressed.

110 G. Koloniari and E. Pitoura

5.1 Open Issues

We outline next some directions for future research.

Graph Database Partitioning. Though most graph databases offer dis-
tributed and cloud-based solutions, they do not support graph partitioning,
but instead adopt replication. While replication increases availability and load
balance, still it incurs high costs especially for update propagation to main-
tain consistency. Graph partitioning enables better exploitation of the available
resources, and requires less effort for consistency, but with increased communi-
cation costs as a query requires data from multiple sites. Though there are many
algorithms for finding an optimal graph partitioning scheme that minimizes the
nodes cut so as to minimize the number of cross site accesses for a graph tra-
versal, most such algorithms require access to the entire graph in memory and
cannot be efficiently applied to the voluminous graphs that are handled by graph
databases. Furthermore, as the graphs in graph databases are dynamic, i.e., often
updated, a good graph partitioning scheme would need to handle such updates
and adapt accordingly. In practice, a combination of replication and partition
seems the most promising direction, as queries in graphs often exhibit locality
and therefore, nodes in close vicinity should be stored at the same site.

Locking Granularity. When locking is used for concurrency control, most
graph databases enable locking at the graph level, i.e., locking an entire graph
each time one of its elements is written or read if shared locks are deployed.
For databases that consist of workloads of many small graphs this does not
seem as a big drawback. However, if the database maintains a few large or
even just one large graph, then we can easily discern how limiting this locking
mechanism is, restricting any concurrent operations. Neo4j and Titan are the
only graph databases that enable locking at a finer granularity, locking only the
node(s) and edge elements that are being affected by an update operation. This
leads to increased throughput and a greater degree of concurrent transactions.
While locking at a finer granularity requires more complex manipulations, it is
important for handling large graphs such as social networks and so on, where
an update in one node should not forbid any other operation on distant parts of
the graph.

Benchmarking. With the wide acceptance of graph databases and the many
alternatives which differ from the storage model to the concurrency and replica-
tion polices deployed, there is a need for developing a benchmark for comparing
the various graph databases with respect to performance. This benchmark, sim-
ilar to the TPC-C benchmark [32], which simulates a complete computing envi-
ronment where users issue transactions against a database system, should include
scenarios of concurrent transaction executions that combine reads, writes at dif-
ferent levels and measure the transactions per second and other performance
metrics, as well as the performance of different database components such as the
locking mechanism, deadlock detection and resolution.

Transaction Management for Cloud-Based Graph Databases 111

Streaming Data. If we consider social networks, and other graph-structured
data, an important characteristic is that they are very dynamic in nature, and
often show an append-only behavior, where new nodes and edges are added
to the graph and existing node and edge properties are updated. This behav-
ior necessitates that graph databases should efficiently handle streaming data.
Already, graph databases support node ingestion functionalities [10]. However,
more sophisticated operations are needed so that the databases can efficiently
handle such streaming data in real time.

Historical Data. As data change, the graph database should maintain older
versions of the current graph as valuable information may be mined by observ-
ing the evolution of graph data. Thus, graph databases should handle efficient
storage of historical graph data to support both historical queries, i.e., queries
for older versions of the graph elements that allow the users to query the past,
and analysis of historical data to enable users to mine the graph data with
applications such as link prediction, graph evolution, and pattern mining for
recommendation systems, social networks, but also fraud detection and so on.
Little work has been so far focused on dealing with the management of histori-
cal data, either proposing storage models outside the context of graph databases
[13,14] or dealing with efficient evaluation of specific type of queries [26].

Acknowledgements. Research co-financed by the ESF and Greek national funds
through the Operational Program “Education and Lifelong Learning” of NSRF-
Research Funding Program: Thales: Cloud9.

References

1. Apache Giraph. http://giraph.apache.org
2. Brewer, E.: Towards robust distributed systems. In: 19th Annual ACM Symposium

on Principles of Distributed Computing (Invited Talk), p. 7 (2000)
3. Brewer, E.: CAP twelve years later: how the “rules” have changed. IEEE Comput.

45(2), 23–29 (2012)
4. Chen, R., Weng, X., He, B., Yang, M., Choi, B., Li, X.: Improving large graph

processing on partitioned graphs in the cloud. In: 3rd ACM Symposium on Cloud
Computing, Article No. 3 (2012)

5. Cheng, R., Hong, J., Kyrola, A., Miao, Y., Weng, X., Wu, M., Yang, F., Zhou, L.,
Zhao, F., Chen, E.: Kineograph: taking the pulse of a fast-changing and connected
world. In: 7th ACM European Conference on Computer Systems (EuroSys), pp.
85–98 (2012)

6. Fjallstrom, P.O.: Algorithms for graph partitioning: a survey. Linkoping Electron.
Art. Comput. Inf. Sci. 3(10), 1–37 (1998)

7. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able. SIGACT News Partition-tolerant Web Serv. 33(2), 51–59 (2002)

8. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: distributed
graph-parallel computation on natural graphs. In: 10th USENIX Conference on
Operating Systems Design and Implementation (OSDI), pp. 17–30 (2012)

http://giraph.apache.org

112 G. Koloniari and E. Pitoura

9. Hendrickson, B., Leland, P.: A multilevel algorithm for partitioning graphs. In:
ACM/IEEE Supercomputing Conference, Article No. 28 (1995)

10. InfiniteGraph. http://www.objectivity.com/infinitegraph
11. Karypis, G., Kumar, V.: Multilevel k-way hypergraph partitioning. In: 36th

ACM/IEEE Conference on Design Automation, pp. 343–348 (1999)
12. Khayyat, Z., Awara, K., Alonazi, A., Jamjoom, H., Williams, D., Kalnis, P.: Mizan:

a system for dynamic load balancing in large-scale graph processing. In: 8th ACM
European Conference on Computer Systems (EuroSys), pp. 169–182 (2013)

13. Khurana, U., Deshpande, A.: Efficient snapshot retrieval over historical graph data.
In: 29th IEEE International Conference on Data Engineering (ICDE), pp. 997–1008
(2013)

14. Koloniari, G., Pitoura, E.: Partial view selection for evolving social graphs. In: 1st
International Workshop on Graph Data Management Experiences and Systems
(GRADES), Article No. 9 (2013)

15. Kyrola, A., Blelloch, G., Guestrin, C.: GraphChi: large-scale graph computation
on just a PC. In: 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pp. 31–46 (2012)

16. Lakshman, A., Malik, P.: Cassandra - a decentralized structured storage system.
ACM SIGOPS Operating Syst. Rev. 44(2), 35–40 (2010)

17. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed GraphLab: a framework for machine learning and data mining in the
cloud. PVLDB 5(8), 716–727 (2012)

18. Malewicz, G., Austern, M.H., Bik, A.J., Denhert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: 2010 ACM SIG-
MOD International Conference on Management of Data, pp. 135–146 (2010)

19. Martinez-Bazan, N., Muntés-Mulero, V., Gómez-Villamor, S., Nin, J., Sánchez-
Martinez, M.A., Larriba-Pey, J.L.: DEX: high-performance exploration on large
graphs for information retrieval. In: 16th ACM Conference on Information and
Knowledge Management (SIGMOD), pp. 573–582 (2007)

20. Mondal, J., Deshpande, A.: Managing large dynamic graphs efficiently. In: 2012
ACM SIGMOD Conference on Information and Knowledge Management, pp. 145–
156 (2012)

21. Neo4j. http://neo4j.com/
22. OrientDB. http://orientdb.com/
23. Pritchett, D.: Base: an acid alternative. ACM Queue 6(3), 48–55 (2008)
24. Pujol, J.M., Erramilli, V., Siganos, G., Yang, X., Laoutaris, N., Chhabra, P.,

Rodriguez, P.: The little engine(s) that could: scaling online social networks. In:
ACM SIGCOMM 2010 Conference, pp. 375–386 (2010)

25. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly, Sebastopol (2013)
26. Semertzidis, K., Pitoura, E., Lillis, K.: TimeReach: historical reachability queries

on evolving graphs. In: 18th International Conference on Extending Database Tech-
nology (EDBT), pp. 121–132 (2015)

27. Shang, Z., Yu, J.X.: Catch the wind: graph workload balancing on cloud. In: 29th
IEEE International Conference on Data Engineering (ICDE), pp. 553–564 (2013)

28. Shao, B., Wang, H., Li, Y.: Trinity: a distributed graph engine on a memory cloud.
In: 2013 ACM SIGMOD International Conference on Management of Data, pp.
505–516 (2013)

29. Sparksee. http://www.sparsity-technologies.com/
30. Stanton, I., Kliot, G.: Streaming graph partitioning for large distributed graphs.

In: 18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1222–1230 (2012)

http://www.objectivity.com/infinitegraph
http://neo4j.com/
http://orientdb.com/
http://www.sparsity-technologies.com/

Transaction Management for Cloud-Based Graph Databases 113

31. Titan. http://thinkaurelius.github.io/titan/
32. TPC Benchmark. http://www.tpc.org/
33. Verbelen, T., Stevens, T., De Turck, F., Dhoedt, B.: Graph partitioning algorithms

for optimizing software deployment in mobile cloud computing. J. Future Gener.
Comput. Syst. 29(2), 451–459 (2013)

34. Vogels, W.: Eventually consistent. Commun. ACM 52(1), 40–44 (2009)
35. Wang, L., Xiao, Y., Shao, B., Wang, H.: How to partition a billion-node graph.

In: IEEE 30th International Conference on Data Engineering (ICDE), pp. 568–579
(2014)

http://thinkaurelius.github.io/titan/
http://www.tpc.org/

Convex Polygon Planar Range Queries
on the Cloud: Grid vs. Angle-Based Partitioning

Nikolaos Nodarakis1(B), Spyros Sioutas2, Panagiotis Gerolymatos2,
Athanasios Tsakalidis1, and Giannis Tzimas3

1 Computer Engineering and Informatics Department,
University of Patras, 26500 Patras, Greece

{nodarakis,tsak}@ceid.upatras.gr
2 Department of Informatics, Ionian University, 49100 Corfu, Greece

{sioutas,c10gero}@ionio.gr
3 Computer and Informatics Engineering Department,

Technological Educational Institute of Western Greece, 26334 Patras, Greece
tzimas@cti.gr

Abstract. The polygon retrieval problem is, in essence, the problem of
preprocessing a set of n 2-dimensional points, so than given a special
ContainedIn spatial query, the subset of points falling inside the poly-
gon can be reported efficiently. Such queries find great applicability in
areas such as computer graphics, spatial databases and GIS applications.
However, as the size of spatial data grows rapidly existing centralized
solutions fail to retrieve the results in reasonable response time. In this
paper, we propose a novel MapReduce algorithm for efficiently process-
ing convex polygon planar range queries in a distributed manner. We
apply a grid-based and an angle-based partitioning scheme on the data
space and perform a comparative analysis. Through our experimental
evaluation we prove that our system is efficient, robust and scalable.

Keywords: Angle · Big data · Convex polygon · MapReduce · Grid ·
Hadoop · Range queries · Space partitioning

1 Introduction

During recent years, the advances in mobile computing technologies and the
massive use of social media has led to an explosive proliferation of available
spatial data. Most smartphones carry location positioning equipment (e.g. GPS)
and users tend to disseminate their own information to widespread Location
Based Services (LBS), such as Facebook, Twitter etc.

A spatial database is a database that manages space information. A spa-
tial query attempts to retrieve information from the database based on certain
parameters. An exemplary spatial query is the k-nearest neighbor (kNN) query
[4] and its variation aggregated k-nearest neighbor (AkNN) query [19]. However,
according to the type of the application and the purpose of use, the analysis may

c© Springer International Publishing Switzerland 2016
I. Karydis et al. (Eds.): ALGOCLOUD 2015, LNCS 9511, pp. 114–125, 2016.
DOI: 10.1007/978-3-319-29919-8 9

Convex Polygon Planar Range Queries on the Cloud 115

cover principles like range queries, similarity queries and common path search-
ing, points of interest data mining, etc. In the context of this work, we deal with
range queries over a given geographical two-dimensional region. The problem is
motivated by real life applications in traffic monitoring, cellular communications,
intelligent transportation systems and other domains.

Many centralized algorithms and data structures have been proposed in order
to process such queries efficiently (e.g. R-trees [6] and their variants). But, as
stated and above, the spatial data grow at an exponential rate. The shortcom-
ing of existing centralized solutions is that they cannot be applied any more, as
the resources needed to process such queries exceed the capabilities of a single
server. Consequently, high scalable implementations are required. Cloud com-
puting technologies provide tools and infrastructure to create such solutions and
manage the input data in a distributed way among multiple servers. The most
popular and notably efficient tool is the MapReduce [3] programming model,
developed by Google, for processing large-scale data.

In this paper, we propose a novel MapReduce algorithm for efficiently
processing convex polygon planar range queries in a distributed manner in
Hadoop [13,16], the open source MapReduce implementation. Our algorithm
depends on space partitioning on the data space in order to divide equally the
workload among the servers. We examine two schemes, the grid-based and the
angle-based, and compare their performance. To our best knowledge, we are the
first to study the process of convex polygon planar range queries under this
perspective.

The rest of the paper is organised as follows: Sect. 2 presents related work.
In Sect. 3 the preliminaries are presented and the problem definition is stated.
Section 4 pictures the partitioning schemes and describes the MapReduce algo-
rithm. In Sect. 5, we proceed to the experimental evaluation and provide the
outcomes. Finally, Sect. 6 concludes the paper and sketches future research direc-
tions.

2 Related Work

The literature of existing solutions in the field of location-dependent queries is
studied extensively by Ilarri et al. [7]. Range queries report the objects within
a specific distance range/region [14,17] and can be static or moving. Canoni-
cal polygon range queries have been studied in [12]. The authors present two
approaches that require less space and time compared to the best previous solu-
tions for the general polygon retrieval problem [10]. Moreover, in [11] they pro-
pose a method to transform the difficult problem of reporting the trajectory-
lines, which are intersected by a rectangle region, to the simpler one of reporting
points, which lie inside a canonical planar polygon (4-sides) region. To achieve
this, they make use of specific duality transformation methods.

Quite a few techniques and frameworks have been proposed to process spatial
queries on top of MapReduce. The solution presented in [8] process high selec-
tivity queries in HDFS and is based on popular spatial indices such as the R-tree

116 N. Nodarakis et al.

and its variants. One of the most popular operators in databases is the k nearest
neighbor join (kNN join) and has been studied extensively on the MapReduce
framework [9,18]. In addition, the frameworks presented in [2,5] support a wide
diversity of massive large scale spatial queries on top of MapReduce. Both solu-
tions utilize various indexing techniques to achieve efficient query processing.

In this paper, we propose a novel MapReduce algorithm for efficiently
processing convex polygon planar range queries in a distributed manner based
on space decomposition techniques. There are no restrictions considering the
shape of the polygon, unlike [12].

3 Preliminaries

In this section, at first we define some notation and provide some definitions used
throughout this paper and outline the MapReduce model. Then, we circumscribe
the halfspace range searching problem and define formally the problem we tackle
in the context of this work.

We consider points in a 2-dimensional metric space D defined by a set of 2
dimensions {d1, d2}. Given a dataset P on D with cardinality n, a point p ∈ P
can be represented as p = {p1, p2} where pi is the value on dimension di and
−∞ ≤ pi ≤ ∞. Moreover, we define R = {r1, r2, ..., rk} the k-vertex convex
polygon query on D, where ri is the i-th vertex of R. Given a dataset P and a
convex polygon R, a ContainedIn Query returns the set of points CIRP ⊆ P
which are contained in R.

Let us further assume that the dataset P is horizontally distributed to N
partitions, based on the partitioning technique, such that Pi is the set of points
belonging to partition Di where Pi ⊆ P , ∪1≤i≤NPi = P and Pi ∩Pj = ∅,∀i 	= j.
Consequently, a point p ∈ P belongs in CIRP if and only if there exists a
partition Pi(1 ≤ i ≤ N) with p ∈ Pi ⊆ P and p ∈ CIRPi

. In other words, we
distribute dataset P among the Map tasks (see below) that compute the Pi sets
and in the Reduce phase (see below) we compute the local CIRPi

sets, the union
of which consists the global CIRP set. For a complete reference to the symbols
used in this paper please see Table 1.

3.1 MapReduce Model

Here, we briefly describe the MapReduce model [3]. The data processing in
MapReduce is based on input data partitioning; the partitioned data is exe-
cuted by a number of tasks executed in many distributed nodes. There exist two

Table 1. Symbols and their meanings

P Dataset ri i-th vertex of R h Halfspace query hyperplane

d Dataset dimensionality Di i-th data space partition φi i-th angular coordinate

n Dataset cardinality Pi Points of i-th partition bi i-th cartesian coordinate

N Number of partitions pi i-th coordinate of point p MT Total number of Map tasks

R Convex polygon query CIRPi
Subset of Pi that lay inside R RT Total number of Reduce tasks

Convex Polygon Planar Range Queries on the Cloud 117

major task categories called Map and Reduce respectively. Given input data,
a Map function processes the data and outputs key-value pairs. Based on the
Shuffle process, key-value pairs are grouped and then each group is sent to the
corresponding Reduce task. A user can define his own Map and Reduce functions
depending on the purpose of his application. The input and output formats of
these functions are simplified as key-value pairs. Using this generic interface, the
user can focus on his own problem and does not have to care how the program
is executed over the distributed nodes.

3.2 Halfspace Range Searching

The halfspace range searching problem [1] is defined as follows: Preprocess a set
S of m points in R

d into a data structure so that all points satisfying a query
constraint a · x ≤ b can be reported efficiently. Note that a query corresponds to
reporting all points below a query hyperplane h defined by a · x = b.

3.3 Problem Statement

In this paper, we decompose the data space into N partitions and assign dataset
P to the Map tasks. They compute the local Pi sets and send the output to
the Reduce tasks that undertake the process to compute the local CIRPi

sets.
Therefore, we focus on the partitioning scheme and the efficient processing of
halfspace range searching queries that produce these CIRPi

sets. The formal
definition of the problem we tackle in the context of this work follows.

Definition 1. Problem Definition: Given a dataset P in 2-dimensional a
data space D, a convex polygon R = {r1, r2, ..., rk} and an integer number N ,
apply a partitioning scheme on D to create N partitions and determine an effec-
tive way to process halfspace range searching queries (in each partition) to sup-
port efficient convex polygon planar queries in a distributed fashion.

4 MapReduce Convex Polygon Query Processing

In this section, we introduce the partitioning schemes, describe the map reduce
algorithm and proceed in time and space complexity analysis. The angular par-
titioning scheme follows the principles of the space decomposition technique
presented in [15]. Here, we briefly describe the basic idea.

4.1 Hyperspherical Coordinates

We can map the cartesian coordinates of a d-dimensional point x to hyper-
spherical coordinates, that consist of a radial coordinate v and d − 1 angular
coordinates φ1, φ2, ..., φd−1. The transformation is computed using the following

equations: v =
√

x2
d + x2

d−1 + ... + x2
1, tan φ1 =

√
x2
d+x2

d−1+...+x2
2

x1
, ..., tan φd−2 =√

x2
d+x2

d−1
xd−2

, tan φd−1 = xd

xd−1
.

Note that generally 0 ≤ φi ≤ π for i < d − 1, and 0 ≤ φd−1 ≤ 2π. However,
in our case d = 2, tan φ1 = x2

x1
and 0 ≤ φ1 ≤ 2π.

118 N. Nodarakis et al.

4.2 Hyperspherical Partitioning

Given the number of partitions N and a d-dimensional space D, the angle-
based partitioning scheme assigns to each partition a part Di of the data space
(1 ≤ i ≤ N), where Di = [φi−1

1 , φi
1] × ... × [φi−1

d−1, φ
i
d−1], φ0

j = 0 and φN
j =

2π. The symbols φi−1
j , φi

j declare the boundaries on the angular coordinate φj

for the partition i. Observe that in our case, Di = [φi−1
1 , φi

1] since d = 2. To
derive the boundaries we distinguish two cases according to the distribution
of D. In the first case we assume a uniform data distribution. Let Vd be the
volume of D, then the volume of each partition should be Vd

N . The volume V i
d

of the data space that is projected in the i-th partition is defined as V i
d =

∫ v

0

∫ φi
1

φi−1
1

...
∫ φi

d−1

φi−1
d−1

vd−1 sind−2 φ1... sin φd−2dvdφ1...dφd−1. Again, since d = 2 we

have that V i
d =

∫ v

0

∫ φi
1

φi−1
1

vdvdφ1.
In the case of non-uniform distributions, we alleviate the problem by choosing

a suitable partitioning strategy according to the distribution of the dataset. To
derive such an outcome, we define a limit nmax = 2 ∗ n/N on the number of
points a partition can handle. Initially, only one partition exists and points are
assigned to the partition. When the limit is reached, the partition is split in two
partitions in a way that both of them contain the same number of points. We
continue analogously until all points have been assigned to a partition. For more
details please refer to [15].

4.3 Hypercube Partitioning

Respectively, we can define the hypercube partitioning. Given the number of
partitions N and a d-dimensional space D = [−L,L]d, the grid-based partition-
ing scheme assigns to each partition a part Di of the data space (1 ≤ i ≤ N),
where Di = [bi−1

1 , bi
1]× ...× [bi−1

d , bi
d], b0j = −L and bN

j = L. The symbols bi−1
j , bi

j

declare the boundaries on the cartesian coordinate bj for the partition i. In this
paper we consider 2-dimensional points, so Di = [bi−1

1 , bi
1] × [bi−1

2 , bi
2].

In case of uniform distributions the volume of each partition should be Vd

N , as

before. The volume V i
d is calculated by the equation V i

d =
∫ bi1

bi−1
1

...
∫ bid

bi−1
d

db1...dbd.

Because d = 2, we have that V i
d =

∫ bi1
bi−1
1

∫ bi2
bi−1
2

db1db2. In the case of non-uniform
distributions, we apply the same strategy we described in Sect. 4.2.

4.4 Grid vs. Angle-Based Scheme

Consider Fig. 1, where P follows a uniform distribution, N = 12 and we apply
a convex polygon query R. Moreover, we make the assumption that our dataset
is defined in the square [−L,L]2. The sets Pi(1 ≤ i ≤ N) are produced by
the Map tasks. Note that more than one hyperplane constrains may be applied
inside a partition (the partitions are defined by the dash lines); for example in
partition D11 in Fig. 1(a) (D3 in Fig. 1(b)) the Reduce task outputs the solid

Convex Polygon Planar Range Queries on the Cloud 119

black points (local CIRPi
) that are located below h1 and h2. The union of

CIRPi
sets derive the final CIRP set. Each hyperspherical coordinate φi is like

φ1 shown in Fig. 1(a). Respectively, each cartesian coordinate bi is like b1 and b2
in Fig. 1(b).

Fig. 1. Convex polygon planar range query example

In the case of parallel and distributed processing, where all partitions are
examined simultaneously, the performance of grid partitioning may degrade. In
this spirit, we propose the angle-based partitioning scheme that can alleviate this
problem and diminish the redundant processing. In Fig. 1, the angular partitions
are more homogeneous with respect to the query processing and all (only 7 in
grid partitioning) have contribution to the global CIRP set. Therefore, the load
balancing of the query process is expected to be evenly distributed among the
tasks. However, as seen and by the experiments, in some cases more better load
balanced partitions does not mean less processing time.

4.5 Pruning Optimization

In this subsection, we introduce an optimization that greatly enhances the perfor-
mance of the query processing. As expounded in Sect. 4.4 the Map tasks decide in
which partition each point belongs. However, we do not need to check all points
of data space whether they are contained in R or not (during Reduce phase).
On the contrary, we can prune a significant amount of points thus achieving a
huge reduction in the burden of the query process. Consider Fig. 2 in which we
display the pruning mechanism in the case of angular space decomposition (the
same thing applies for grid space decomposition). If we define the rectangle that
encompasses the polygon query R (Fig. 2(b)), we are enabled to prune all points
lying outside the rectangle with a simple check. This optimization greatly speeds
up the performance of our algorithm as shown by the experimental procedure.

120 N. Nodarakis et al.

Fig. 2. Pruning optimization of query processing

Since in this paper we consider 2-dimensional points, we examine the area of
the pruned region in the case of d = 2 without loss of generality. Given a dataset
defined in the hypercube C = [−L,L]2, a convex polygon query R and a rectangle
ER = [xmin, xmax]× [ymin, ymax] (Fig. 2(b)) that encloses R we define the prun-
ing optimization PO of ER as PO(ER) = 100 ∗

(

1 − (xmax−xmin)∗(ymax−ymin)
4L2

)

.

4.6 MapReduce Algorithm

In this subsection, we describe the MapReduce algorithm using pseudo-code and
proceed to time and space complexity analysis of each Map and Reduce task.
We assume that we have generated the partitions (angle and grid), using the
aforementioned equations, during a preprocessing step. At first, we calculate the
hyperspherical (cartesian) coordinates ∀p ∈ P and assign each p to the suitable
partition according to the angle-based (grid-based) scheme. Then, we aggregate
all points for each set Pi that fall in the same partition Di and report the
local CIRPi

. The Map and Reduce functions are outlined at MapReduce Job 1
pseudo-code that follows.

The Map task takes as input the points of P and outputs key-value records,
where the key is the partition Di, in which a point p belongs and the value
consists of the point p itself. Then, each Reduce task is assigned a partition Di

and for each p ∈ Pi we apply one or more halfspace range queries. The points
that satisfy these queries are added to a list L. The Reduce task emits a key-
value pair where the key is the number of partition Di and the value is list L,
i.e. the local CIRPi

set. By combining all CIRPi
sets generated from all Reduce

tasks, we yield the overall CIRP set.
Each Map task runs in O (n/MT) time, since dataset P is divided horizontally

among the total MT Map tasks. For each Reduce task, assume ni the number
of points that belong to partition Di and hi the number of hyperplanes that
intersect Di in the i-th execution of a Reduce function, where 1 ≤ i ≤ N/RT .

Convex Polygon Planar Range Queries on the Cloud 121

MapReduce Job 1
1: function Map(k1, v1)
2: R = {r1, r2, ..., rk}; , ER = {(xmin, xmax) × (ymin, ymax)};
3: coord vector = computeCoord(v1);Di = computePart(coord vector);
4: if prune(ER, coord vector) then \\Prune point if possible
5: return;
6: end if
7: if Di.intersects(R) then
8: output(Di, v1); \\v1 is a point p = [p1, p2]
9: end if

10: end function

11: function Reduce(k2, v2)
12: L = List{};hyperplanes = getHPlanes(k2);
13: for all v ∈ v2 do \\v2 is the set of points in Pi

14: for all h ∈ hyperplanes do
15: if !v.satisfies(h) then
16: break;
17: end if
18: end for
19: L.add(v);
20: end for
21: output(k2, L);
22: end function

The time complexity of the Reduce task is clearly affected by the halfspace
range query. For each point p ∈ Pi, we can decide if it is located above or below
a hyperplane h in constant time O(1). To prove this claim, consider a point
p = {p1, p2} and a hyperplane h = a · x + b, a < 0, b > 0. Firstly, we calculate
the x0 and y0 values where h intersects the x and y axis respectively. Then, we
perform the comparisons p1 ≤ x0 and p2 ≤ y0. If they are both true p is located
below h, above otherwise. Therefore, each Reduce task needs O(

∑

i ni · hi) time
to run. The output size is O (CIRP).

5 Experimental Evaluation

In this section, we conduct a series of experiments to evaluate the performance
of our method under many different perspectives. More precisely, we take into
consideration the number of partitions N , the size of the dataset and the pruning
optimization factor.

Our cluster includes 4 computing nodes (VMs), each one of which has four
2.4 GHz CPU processors, 11.5 GB of memory, 45 GB hard disk and the nodes are
connected by 1 GB Ethernet. On each node, we install Ubuntu 14.04 operating
system, Java 1.7.0 51 with a 64-bit Server VM, and Hadoop 1.2.1. Moreover, we
apply the following changes to the default Hadoop configurations: the replication
factor is set to 1; the maximum number of Map and Reduce tasks in each node

122 N. Nodarakis et al.

is set to 3 (consequently we set the number of Reduce tasks to 12), the DFS
chunk size is 64 MB and the size of virtual memory for each Map and Reduce
task is set to 512 MB.

We assess the approaches CPQMR-Grid and CPQMR-Angle in the experi-
ments, which refer to the aforementioned MapReduce algorithm when applied
the grid-based and angle-based partitioning scheme respectively. We evaluate our
solution, for both partitioning schemes, using a synthetic dataset of uniformly
distributed points. The dataset contains a total of 360,000,000 points and its size
is approximately 7.5 GB. We run the experiments against five different polygon
queries (R1−R5) of increasing size (R1 is the smallest and R5 the biggest respec-
tively). Polygons R1, R2 and R4 are of arbitrary shape, polygon R3 is a triangle
and R5 has a rectangular shape. Moreover, we set L equal to 10,000.

5.1 Effect of Number of Partitions

In this experiment, we test four different configurations for the number of par-
titions (N ∈ {9, 16, 36, 64}) against all polygon queries. The outcome of the
experimental process is displayed below in Fig. 3.

Fig. 3. Different number of partitions

In almost all cases the performance of CPQMR-Grid increases as the number
of partitions increments. The same thing does not apply for CPQMR-Angle and
this is somewhat expected. Regardless of the number of partitions we decompose
the target space, only a fraction of them participates in the query process (i.e.
those who intersect R). For R1 −R5 this fraction is bigger for angle-based parti-
tioning and consider that each partition is assigned in a Reduce task. Moreover,
the cluster infrastructure enables us to execute only 12 Reduce tasks simultane-
ously each time. Thereafter, as the number of partitions grows the performance

Convex Polygon Planar Range Queries on the Cloud 123

of CPQMR-Angle either gets worse, either meliorates at a slower pace com-
pared to grid-based scheme. If we could incorporate more nodes to the cluster,
CPQMR-Angle would dominate CPQMR-Grid.

Overall, CPQMR-Angle seems to be marginally better for convex polygon
queries of arbitrary shape and smaller in size (i.e. R1 and R2) as we increase N .
If the query area covers a substantial fraction of the data space (R4), CPQMR-
Grid performs better and the curves start to diverge notably for N > 36. A very
interesting case is the triangular query (R3) where the two approaches display
almost the same behavior and have the worst performance among all polygon
query shapes. This happens because the rectangle ER covers a much wider area
for R3 compared to the rest polygon queries. Thus, a lot of redundant points that
have no contribution to CIRP take place in the computation. Finally, we notice
that for rectangular queries (R5) CPQMR-Grid is far better than CPQMR-Angle
due to better load balancing between the partitions.

5.2 Effect of Pruning Optimization

In this section, we study the improvement that induces the factor PO to the
total query processing for N = 64. Due to space limitations we demonstrate
the amelioration in performance only for R1, R3 and R5. The results about the
enhancement of PO are pictured in Fig. 4. The ratio of improvement in running
time fluctuates between 20 % and 50 %. The same thing applies for R2 and R4.
The above corroborate our claim stated in Sect. 4.5.

Fig. 4. Pruning optimization efficiency

5.3 Scalability

In the last experiment, we investigate the scalability of the two approaches. We
create new chunks smaller in size that are a fraction F of the original dataset,
where F ∈ {1/6, 2/6, 3/6, 4/6, 5/6}. Moreover, we set the value of N to 9.
Figure 5 presents the scalability results yielded for both approaches, which are
extremely positive and validate the scalability, robustness and efficiency of our
solution. In case of CPQMR-Angle the inference is that the algorithm scales
almost linearly as the data size increases. The results for CPQMR-Grid are even
better and the behavior of the curve shows a logarithmic tendency for F > 4/6.

124 N. Nodarakis et al.

Fig. 5. Scalability

6 Conlusion and Future Steps

In the context of this work we presented a novel MapReduce algorithm for effi-
ciently processing convex polygon planar range queries in a distributed manner.
To our best knowledge, we are the first to study convex polygon range queries for
large-scale data using an angular partitioning scheme and perform a comparative
analysis with the grid partitioning scheme.

In the near future, we plan to perform a more extensive experimental analysis
for different data distributions and more dimensions. Moreover, we have in mind
to enhance our algorithm using a hybrid grid-angle-based partitioning scheme to
achieve even better performance. Finally, we intend to implement our algorithm
in other frameworks similar to Hadoop (e.g. Spark) and carry out a comparative
analysis between the implementations.

Acknowledgements. This research has been co-financed by the European Union
(European Social Fund ESF) and Greek national funds through the Operational Pro-
gram “Education and Lifelong Learning” of the National Strategic Reference Frame-
work (NSRF) - Research Funding Program: Thales. Investing in knowledge society
through the European Social Fund.

References

1. Agarwal, P.K., Arge, L., Erickson, J., Franciosa, P.G., Vitter, J.S.: Efficient search-
ing with linear constraints. In: Proceedings of the 17th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, NY, USA, pp. 169–178.
ACM, New York (1998)

2. Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., Saltz, J.: Hadoop GIS: a
high performance spatial data warehousing system over MapReduce. Proc. VLDB
Endow. 6, 1009–1020 (2013)

3. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Proceedings of the 6th Symposium on Operating Systems Design and Imple-
mentation, Berkeley, CA, USA, pp. 137–150. USENIX Association (2004)

4. Dunham, M.H.: Data Mining, Introductory and Advanced Topics. Prentice Hall,
Upper Saddle River (2002)

5. Eldawy, A.: SpatialHadoop: towards flexible and scalable spatial processing using
MapReduce. In: Proceedings of the 2014 SIGMOD Ph.D. Symposium, NY, USA,
pp. 46–50. ACM, New York (2014)

Convex Polygon Planar Range Queries on the Cloud 125

6. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management of
Data, NY, USA, pp. 47–57. ACM, New York (2008)

7. Ilarri, S., Mena, E., Illarramendi, A.: Location-dependent query processing: where
we are and where we are heading. ACM Comput. Surv. 42, 12:1–12:73 (2010)

8. Liao, H., Han, J., Fang, J.: Multi-dimensional index on hadoop distributed file sys-
tem. In: Proceedings of 5th IEEE International Conference on Networking, Archi-
tecture, and Storage, pp. 240–249. IEEE Computer Society, Washington, D.C.
(2010)

9. Lu, W., Shen, Y., Chen, S., Ooi, B.C.: Efficient processing of k nearest neighbor
Joins using MapReduce. Proc. VLDB Endow. 5, 1016–1027 (2012)

10. Paterson, M.S., Yao, F.F.: Point retrieval for polygons. J. Algorithms 7, 441–447
(1986)

11. Sioutas, S., Tsakalidis, K., Tsichlas, K., Makris, C., Manolopoulos, Y.: A new
approach on indexing mobile objects on the plane. Data Knowl. Eng. 67, 362–380
(2008)

12. Sioutas, S., Sofotassios, D., Tsichlas, K., Sotiropoulos, D., Vlamos, P.: Canonical
polygon queries on the plane: a new approach. J. Comput. 4, 913–919 (2009)

13. The apache software foundation: Hadoop homepage. http://hadoop.apache.org/
14. Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Managing uncertainty

in moving objects databases. ACM Trans. Database Syst. 29, 463–507 (2004)
15. Vlachou, A., Doulkeridis, C., Kotidis, Y.: Angle-based space partitioning for effi-

cient parallel skyline computation. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, NY, USA, pp. 227–238. ACM,
New York (2008)

16. White, T.: Hadoop: The Definitive Guide, 3rd edn. O’Reilly Media/Yahoo Press,
Sebastopol (2012)

17. Yu, P.S., Chen, S.K., Wu, K.L., Chamberlain, S.: Incremental processing of contin-
ual range queries over moving objects. IEEE Trans. Knowl. Data Eng. 18, 1560–
1575 (2006)

18. Zhang, C., Li, F., Jestes, J.: Efficient parallel kNN joins for large data in MapRe-
duce. In: Proceedings of the 15th International Conference on Extending Database
Technology, NY, USA, pp. 38–49. ACM, New York (2012)

19. Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-nearest-neighbors queries in
spatial databases. In: Proceedings of the 16th International Conference on Scien-
tific and Statistical Database Management, pp. 297–306. IEEE Computer Society,
Washington, D.C. (2004)

http://hadoop.apache.org/

ART+: A Fault-Tolerant Decentralized Tree
Structure with Ultimate Sub-logarithmic

Efficiency

Spyros Sioutas1, Efrosini Sourla2(B), Kostas Tsichlas3,
and Christos Zaroliagis2,4

1 Department of Informatics, Ionian University, 49100 Corfu, Greece
sioutas@ionio.gr

2 Department of Computer Engineering and Informatics, University of Patras,
26500 Patras, Greece

{sourla,zaro}@ceid.upatras.gr
3 Department of Informatics, Aristotle University of Thessaloniki,

54124 Thessaloniki, Greece
tsichlas@csd.auth.gr

4 Computer Technology Institute & Press “Diophantus”,
N. Kazantzaki Str., Patras University Campus, 26504 Patras, Greece

Abstract. In this paper, we focus on large-scale, decentralized environ-
ments. Our aim is to develop an architecture that can support range
queries and scale in terms of number of nodes as well as of data items
stored. The solutions proposed in literature are inadequate for our pur-
poses, since their classic logarithmic complexity is too expensive even for
single queries. In this work, we contribute the ART+ (Autonomous Range
Tree) structure, which outperforms the most popular decentralized struc-
tures, since it achieves sub-logarithmic complexity. ART+ achieves an
O(log2b logN) communication cost for query and update operations,
where b is a double-exponentially power of 2 and N is the total number of
nodes. Moreover, ART+ is a fully dynamic and fault-tolerant structure,
which supports the join/leave node operations in O(log logN) expected
w.h.p number of hops and performs load-balancing in O(log logN) amor-
tized cost. The theoretical performance is verified through experiments.

Keywords: Decentralized systems · Distributed data structures ·
Load-balancing · Fault tolerance

1 Introduction

Range query processing in decentralized network environments is a notoriously
difficult problem to solve efficiently and scalably. It has been studied in the last
years extensively, particularly in the realm of P2P, which is increasingly used
for content delivery among users. There are many more real-life applications in
which the problem also materializes. In cloud infrastructures, a most significant
and apparent requirement is the monitoring of thousands of computer nodes,
c© Springer International Publishing Switzerland 2016
I. Karydis et al. (Eds.): ALGOCLOUD 2015, LNCS 9511, pp. 126–137, 2016.
DOI: 10.1007/978-3-319-29919-8 10

ART+: A Fault-Tolerant Decentralized Tree Structure 127

which often requires support for range queries: consider range queries issued in
order to identify under-utilized nodes so as to assign them more tasks, or to
identify overloaded nodes so as to avoid bottlenecks in the cloud. For example,
we wish to execute range queries such as:

SELECT NodeID
FROM CloudNodes
WHERE Low < utilization < High AND os = UNIX

Moreover, in cloud infrastructures that support social network services like
Facebook, user profiles are stored distributed in several nodes and we wish to
retrieve user activity information, executing range queries such as:

SELECT COUNT(userID)
FROM CloudNodes
WHERE 3/1/2015 < time < 3/31/2015 AND userID = 123456

AND NodeID IN Facebook

An acceptable solution for processing range queries in such large-scale decen-
tralized environments must scale in terms of the number of nodes as well as in
terms of the number of data items stored. The available solutions in literature,
are inadequate for our purposes, since for very large volume data (trillions of
data items at millions of nodes) the classic logarithmic complexity offered by
these solutions, is still too expensive for single queries, not to mention range
queries. Further, all available solutions incur large overheads with respect to
other critical operations, such as join/leave of nodes, and insertion/deletion of
items. Our aim in this work is to provide a solution that is comprehensive and
outperforms related work with respect to all major operations, such as lookup,
join/leave, insert/delete and load-balancing and to the required routing state
that must be maintained in order to support these operations. In particular, we
aim at achieving a sub-logarithmic complexity for all the above operations.

In this paper, we contribute the ART+ structure, which outperforms the
most popular decentralized structures. The outer level of the proposed structure
is an ART1 structure [11], built by grouping clusters of nodes, whose communi-
cation cost of query and update operations is O(log2b log N) hops, where the base
b is a double-exponentially power of two and N is the total number of nodes.
Moreover, ART is a fully dynamic and fault-tolerant structure, which supports
the join/leave node operations in O(log log N) expected w.h.p number of hops
and performs load-balancing in O(log log N) amortized cost. Each cluster-node
of ART+ is organized as a D3-Tree2 [10], which achieves logarithmic bounds for
search operations and logarithmic amortized bounds for load-balancing opera-
tions. Moreover, D3-Tree is a highly fault-tolerant structure.

The rest of this paper is organized as follows: Sect. 2 presents related previous
work. Section 3 briefly describes the D3-Tree structure. Our main contribution,
the ART+ structure, is described in detail in Sect. 4. Section 5 presents the exper-
imental evaluation. The paper concludes in Sect. 6.
1 Autonomous Range Tree.
2 Dynamic Deterministic Decentralized Tree.

128 S. Sioutas et al.

2 Related Work

Existing structured P2P systems can be classified into two broad categories:
Distributed Hash Table (DHT)-based systems and tree-based systems. Exam-
ples of the former, which constitute the majority, include Chord, CAN, Pas-
try, Symphony, Tapestry (see [7] for an overview) and P-Ring [2]. In general,
DHT-based systems support exact match queries well and use (successfully)
probabilistic methods to distribute the workload among nodes equally. Since
hashing destroys the ordering on keys, DHT-based systems typically do not pos-
sess the functionality to support straightforwardly range queries, or more com-
plex queries based on data ordering (e.g., nearest-neighbour and string prefix
queries). Some efforts towards addressing range queries have been made in [3,8],
getting however approximate answers and also making exact searching highly
inefficient. The most recent effort towards range queries is the P-Ring [2], a
fully distributed structure, that supports both exact match and range queries,
achieving O(logd N + k) range search performance in average case (N is the
number of nodes, d is the order3 of the ring and k is the answer size). It also
provides load-balancing, maintaining a load imbalance factor of at most 2 + ε
in a stable system, for any given constant ε > 0, achieving an O(d · logd N)
performance. P-Ring is considered highly fault-tolerant, using the Chord’s Fault
Tolerant Algorithms [12].

Tree-based systems are based on hierarchical structures. They support range
queries more naturally and efficiently as well as a wider range of operations, since
they maintain the ordering of data. However, they lack the simplicity of DHT-
based systems, and they do not always guarantee data locality and load balancing
in the whole system. Important examples of such systems include Family Trees
[7], BATON [5], BATON∗ [4] and Skip List-based schemes like Skip Graphs (SG),
NoN SG, SkipNet (SN), Deterministic SN, Bucket SG, Skip Webs, Rainbow Skip
Graphs (RSG) and Strong RSG [7] that use randomized techniques to create
and maintain the hierarchical structure. We should emphasize that w.r.t. load-
balancing, the solutions provided in the literature are either heuristics, or provide
expected bounds under certain assumptions, or amortized bounds but at the
expense of increasing the memory size per node. In particular, in BATON [5],
the O(log N) amortized bound of the decentralized overlay (N is the number
of nodes in the network) is valid only subject to a probabilistic assumption
about the number of nodes taking part in the data migration process, and thus
it is in fact an amortized expected bound. Moreover, its successor BATON∗

[4], exploits the advantages of higher fanout (number of children per node), to
achieve reduced search cost of O(logm N), where m is the fanout. However, the
higher fanout leads to larger update and load-balancing cost of O(m · logm N).

Regarding the structures’ fault tolerance, BATON [5] maintains vertical and
horizontal routing information not only for efficient search, but to offer a large
number of alternative paths between two nodes. In its successor BATON∗ [4],
fault tolerance is greatly improved due to higher fanout. When fanout = 2,

3 Maximum fanout of the hierarchical structure on top of the ring.

ART+: A Fault-Tolerant Decentralized Tree Structure 129

approximately 25% of nodes must fail before the structure becomes partitioned,
while increasing the fanout up to 10 leads to increasing fault tolerance (60% of
failed nodes partition the structure). However, the cost of load-balancing and
updating routing information is greatly increased. A comparison of the afore-
mentioned architectures and our proposed structure is given in Table 1.

Table 1. Comparison of P-Ring, BATON∗, D2-Tree, ART and ART+.

Structures Lookup key Insert/Delete key Max. size of Join/Depart node

(with load-balancing) routing table (updating routing tables)

P-Ring O(logd N) Õ(d · logd N) O(logN) Õ(d · logd N)

BATON∗ O(logm N) O(m · logm N) O(m · logm N) O(m · logm N)

D3-Tree O(logN) Õ(logN) O(logN) Õ(logN)

ART Ô(log2
b logN) O(m · logm logN) O(N1/4/ logc N) O(m · logm logN)

ART+ Ô(log2
b logN) Õ(log logN) O(N1/4/ logc N) Õ(log logN)

N : number of nodes, d: order of ring, m: fanout, c > 0, b: double-exponentially power of 2,

Ô: expected bound, Õ: amortized bound, O expected amortized bound.

3 The D3-Tree Structure

In this section we briefly describe the D3-Tree structure [10] and present its
theoretical background.

The Node Structure: Let N be the number of nodes present in the network and
let n denote the size of data (N � n). The structure consists of two levels.
The upper level is a Perfect Binary Tree (PBT) of height O(log N). The leaves
of this tree are representatives of the buckets that constitute the lower level of
the D3-Tree. Each bucket is a set of O(log N) nodes which are structured as a
doubly linked list. The structure supports the join/departure operations, while
at the same time it tackles failures of nodes whenever these are discovered. Each
node v of the D3-Tree maintains an additional set of links to other nodes apart
from the standard links which form the tree:

1. Links to its father and its children.
2. Links to its adjacent nodes based on an in-order traversal of the tree.
3. Links to nodes at the same level as v.

The links are distributed in exponential steps; the first link points to a node
(if there is one) 20 positions to the left (right), the second 21 positions to the
left (right), and the i-th link 2i−1 positions to the left (right). These links
constitute the routing table of v and require O(log N) space per node.

4. Links to leftmost and rightmost leaf of its subtree. These links accelerate
the search process and contribute to the structure’s fault tolerance when a
considerable number of nodes fail.

5. For leaf nodes only, links to the buckets of the nodes in their routing tables.
The first link points to a bucket 20 positions left (right), the second 21 posi-
tions to the left (right) and the i-th link 2i−1 positions to the left (right).
These links require O(log N) space per node and keep the structure fault
tolerant, since each bucket has multiple links to the main structure.

130 S. Sioutas et al.

The next lemma captures some important properties of the routing tables
w.r.t. their construction.

Lemma 1. (i) If a node v contains a link to node u in its routing table, then
the parent of v also contains a link to the parent of u, unless u and v have the
same father. (ii) If a node v contains a link to node u in its routing table, then
the left (right) sibling of v also contains a link to the left (right) sibling of u,
unless there are no such nodes. (iii) Every non-leaf node has two adjacent nodes
in the in-order traversal, which are leaves.

Join and Departure of Nodes: The join and departure of nodes may cause the
size of the buckets to be uneven, which in the long run renders the structure
unbalanced (imagine a bucket holding almost all nodes). To control the size of
the buckets a weight-based mechanism is used, which is described in [1], in order
to avoid the existence of hotspots.

Redistribution of Nodes: The redistribution guarantees that if there are z nodes
in total in the y buckets of the subtree of v, then after the redistribution
each bucket maintains either �z/y� or �z/y� + 1 nodes. It also guarantees that
each bucket contains O(log N) nodes, throughout joins or departures of nodes,
by employing two operations on the PBT, the contraction and the extension
(Fig. 1). When a redistribution takes place at the root of the PBT, the structure
also checks whether any of these two operations can be applied to the PBT.
The extension operation adds one more level of nodes at the PBT from existing
nodes in the buckets, thus increasing its height by one. The contraction opera-
tion removes one level of nodes from the PBT and puts them into the buckets,
thus decreasing its height by one. These two operations involve a reconstruction
of the structure which rarely happens.

The Index Structure: The range of all values stored in the overlay is partitioned
into sub-ranges, each one of which is assigned to a node of the overlay. An internal
node v with range [xv, x

′
v] may have a left child u and a right child w with ranges

[xu, x′
u] and [xw, x′

w] respectively such that xu < x′
u < xv < x′

v < xw < x′
w.

Ranges are dynamic in the sense that they depend on the values maintained by
the node.

Search and Range Queries: The search for an element a in a D3-Tree of N nodes
may be initiated from any node v at level l and is carried out in O(log N) steps.
A range query [a, b] reports all elements x such that x ∈ [a, b]. A range query
[a, b] initiated at node v, invokes a search operation for element a. Node u that
contains a returns to v all elements in this range and then the range query is
forwarded to the right adjacent node (in-order traversal) and continues until an
element larger than b is reached for the first time.

Updates and Load-Balancing: Assume that an update operation (insertion/ dele-
tion) is initiated at node v involving element a. By invoking a search operation,
node u with range containing element a is located and the update operation is

ART+: A Fault-Tolerant Decentralized Tree Structure 131

Fig. 1. The initial D3-Tree structure (middle) and the operations of extension (left)
and contraction (right).

performed on u. Afterwards, the weight-based mechanism [1] is applied if neces-
sary, to redistribute elements among nodes.

Fault Tolerance: Searches and updates in the D3-Tree do not tend to favour any
node, and in particular nodes near the root. However, a single node can be easily
disconnected from the overlay, when all nodes with which it is connected fail.
This means that 4 failures (two adjacent nodes and two children) are enough
to disconnect the root. The most easily disconnected nodes are those which are
near the root, since their routing tables are small in size.

If a node v discovers that node u is unreachable, then it contacts a sibling
of u through the routing tables of the siblings of v. This sibling of u is able to
reconstruct all links of node u and a node departure for u is initiated, which
resolves this failure.

Performance: A D3-Tree structure with N nodes and n data elements residing
on them achieves: (i) O(log N) space per node; (ii) deterministic O(log N) search
cost; (iii) deterministic amortized O(log N) update cost both for element updates
and for node joins and departures; (iv) deterministic amortized O(log N) bound
for load-balancing. The D3-Tree supports ordered data queries optimally, and
tolerates node failures. For evaluation purposes, a simulator was built, with a
user friendly interface and a graphical representation of the structure, which is
publicly available4.

4 The ART+ Structure

In this work, we contribute the ART+ structure, which outperforms the most
popular decentralized structures of literature. ART+ is similar to its predecessor,
ART [11] regarding the structure’s outer level. Their difference, which introduces
performance enhancements, lies in the fact that each cluster-node of ART+ is
structured as a D3-Tree [10].

Building the ART+ Structure: The backbone structure of ART+ is similar to
LRT5, in which some interventions have been made to improve its performance
and increase the robustness of the whole system. ART+ is built by grouping
4 https://github.com/sourlaef/d3-tree-sim.
5 LRT: Level Range Tree.

https://github.com/sourlaef/d3-tree-sim

132 S. Sioutas et al.

Fig. 2. The ART+ structure for b = 2.

cluster-nodes having the same ancestor and organizing them in a tree struc-
ture recursively. A cluster-node is defined as a bucket of ordered nodes. The
innermost level of nesting (recursion) will be characterized by having a tree in
which no more than b cluster-nodes share the same direct ancestor, where b is
a double-exponentially power of two (e.g. 2, 4, 16,...). Thus, multiple indepen-
dent trees are imposed on the collection of cluster-nodes. The height of ART+ is
O(log logb N) in the worst case. The ART+ structure remains unchanged w.h.p.
Figure 2 illustrates a simple example, where b = 2.

The degree of the cluster-nodes at level i > 0 is d(i) = t(i), where t(i)
indicates the number of cluster-nodes at level i. It holds that d(0) = b and
t(0) = 1. At initialization step, the 1st node, the (lnn + 1) − th node, the
(2 · ln n+1)− th node and so on are chosen as bucket representatives, according
to the balls in bins combinatorial game presented in [6]. Let n be w-bit keys,
N be the total number of nodes and N ′ be the total number of cluster-nodes.
Each node with label i (where 1 ≤ i ≤ N) of a random cluster, stores ordered
keys that belong in the range [(i − 1) ln n, i ln n − 1], where N = n/ ln n. Each
cluster-node with label i′ (where 1 ≤ i′ ≤ N ′) stores ordered nodes with sorted
keys belonging in the range [(i′ − 1) ln2 n, i′ ln2 n − 1], where N ′ = n/ ln2 n or
N ′ = N/ ln n is the number of cluster-nodes.

ART+ stores cluster-nodes only, each of which is structured as an indepen-
dent decentralized architecture, which changes dynamically after node join/leave
and element insert/delete operations inside it. In contrast to its predecessor,
ART, whose inner level was structured as a BATON∗, each cluster-node of
ART+ is structured as a D3-Tree. Each cluster-node is equipped with a routing
table named Random Spine Index (RSI), which stores pointers to cluster-nodes

ART+: A Fault-Tolerant Decentralized Tree Structure 133

belonging to a random spine of the tree (instead of the LSI6 of LRT which stores
pointers to the nodes of the left-most spine, decreasing this way the robustness of
the structure). Moreover, instead of using fat CI7 tables, which store pointers to
the collections of nodes presented at the same level, the appropriate collection of
cluster-nodes is accessed by using a 2-level LRT structure. In ART+, the overlay
of cluster-nodes remains unaffected in the expected case w.h.p. when nodes join
or leave the network.

Load Balancing: The operation of join/leave of nodes inside a cluster-node is
modelled as the combinatorial game of balls in bins presented in [6]. In this
way, for an μ(·) random sequence of join/leave node operations, the load of each
cluster node never exceeds Θ(log N) size and never becomes zero in expected
w.h.p. case. In skew sequences, though, the load of each cluster-node may become
Θ(N) in worst case. The load-balancing mechanism for a D3-tree structure, as
described previously, has an amortized cost of O(log K), where K is the total
number of nodes in the D3-tree. Thus, in an ART+ structure, the cost of load-
balancing is O(log log N) amortized.

Routing Overhead: We overcome the problem of fat CI tables with routing over-
head of O(

√
N) in worst case, using a 2-level LRT structure. The 2-level LRT is

an LRT structure over log2c Z buckets each of which organizes Z/ log2c Z collec-
tions in a LRT manner, where Z is the number of collections at current level and
c is a big positive constant. As a consequence, the routing information overhead
becomes O(N1/4/ logc N) in the worst case.

Lookup Algorithms: Since the structure’s maximum number of nesting levels
is O(logb log N) and at each nesting level i we have to apply the standard LRT
structure in N1/2i collections, the whole searching process requires O(log2b log N)
hops. Then, we have to locate the target node by searching the respective decen-
tralized structure. Through the polylogarithmic load of each cluster node, the
total query complexity O(log2b log N) follows. Exploiting now the order of keys
on each node, range queries require O(log2b log N + |A|) hops, where |A| is the
answer size.

Join/Leave Operations: A node u can make a join/leave request to a node
v, which is located at cluster node W . Since the size of W is bounded by a
polylogN size in expected w.h.p. case, the node join/leave can be carried out in
O(log log N) hops. The outer structure of ART+ remains unchanged w.h.p. as
mentioned before, but each D3-tree structure changes dynamically after node
join/leave operations. According to D3-Tree performance evaluation, the node
join/leave can be carried out in O(log log N) hops.

Node Failures and Network Restructuring: In the ART+ structure, similarly to
ART, the overlay of cluster-nodes remains unchanged in the expected case w.h.p.,
so in each cluster-node the algorithms for node failure and network restructuring

6 LSI: Left Spine Index.
7 CI: Collection Index.

134 S. Sioutas et al.

are according to the decentralized architecture used. D3-Tree is a highly fault-
tolerant structure, since it supports procedures for node withdrawal and handles
massive node failures efficiently.

5 Performance Evaluation

In this section we evaluate the performance of ART+ structure and compare it
to the previous structure, ART. Each cluster node of the ART and ART+ is a
BATON∗ and D3-Tree structure respectively. BATON∗ was implemented and
evaluated in [4], while ART was evaluated in [11], using the Distributed Java
D-P2P-Sim simulator presented in [9]. The source code of the whole evaluation
process, which showcases the improved performance, scalability, and robustness
of ART over BATON∗ is publicly available8. For the performance evaluation of
ART+, we used the D3-Tree simulator.

To evaluate the performance of ART and ART+ for the lookup and load-
balancing operations, we ran experiments with different number of total nodes N
from 50,000 to 500,000. As proved in [11], each cluster node stores no more than
0.75 log2 N nodes in smooth distributions (normal, beta, uniform) and no more
than 2.5 log2 N nodes in non-smooth distributions (powlow, zipfian, weibull).
Moreover, we inserted elements equal to the network size multiplied by 2000,
which are numbers from the universe [1...1, 000, 000, 000]. We used the number
of passing messages to measure the performance.

Note here that, as proved in [11], ART outperforms BATON∗ in lookup
operations, except for the case where b = 2. Moreover, ART achieves better
load-balancing compared to BATON∗, since the cluster-node overlay remains
unaffected w.h.p. through joins/departures of nodes and the load-balancing per-
formance is restricted inside a cluster-node. Consequently, in this work, ART+

is compared directly to ART.

Cost of Lookup Operations. To measure the network performance for the
lookup operations (single and range queries), we conducted experiments for dif-
ferent values of b, 2, 4 and 16, in which for each N , we executed 1,000 single
queries and 1,000 range queries. The search cost is depicted in Fig. 3. Both nor-
mal (beta, uniform) and worst cases (powlow, zipfian, weibull) are depicted in
the same graph. Experiments confirm that the query performance of ART and
ART+ is O(log2b log N) and the slight performance divergences are due to the
fact that BATON∗, as the inner structure of ART’s cluster-node, performs better
that D3-Tree in search operations.

In case of massive failures, the search algorithm has to find alternative paths
to overcome the unreachable nodes. Thus, an increase in node failures results in
an increase in search costs. To evaluate the system in case of massive failures,
we initialized the system with 10,000 nodes and let them randomly fail without
recovering. At each step, we check if the network is partitioned or not. Since
the backbone of ART and ART+ remains unaffected w.h.p., the search cost

8 http://code.google.com/p/d-p2p-sim/.

http://code.google.com/p/d-p2p-sim/

ART+: A Fault-Tolerant Decentralized Tree Structure 135

Fig. 3. Cost of lookup operations

Fig. 4. Lookup operations with node failures

is restricted inside a cluster-node (BATON∗ or D3-Tree respectively), meaning
that b parameter does not affect the overall expected cost. Figure 4a illustrates
the effect of massive failures.

We observe that both structures are fault tolerant since the failure percentage
has to reach the threshold of 60% to partition them. Moreover, even in the worst
case scenario, the ART+ maintains lower search cost compared to ART, since

136 S. Sioutas et al.

D3-Tree handles node failures more effectively than BATON∗. To strengthen our
claim regarding the enhanced performance of D3-Tree towards BATON∗ in case
of massive failures, we present their performances, as depicted in Fig. 4b. We
observe that D3-Tree maintains low search cost, compared to BATON∗, even
for failure percentage of ≥ 30%.

Cost of Load-Balancing Operations. To evaluate the cost of load-balancing,
we tested the network with a variety of distributions. For a network of N total
nodes, we performed 2N node updates. Both ART and ART+ remain unaffected
w.h.p., when nodes join or leave the network, thus the load-balancing perfor-
mance is restricted inside a cluster-node (BATON∗ or D3-Tree respectively),
meaning that b parameter does not affect the overall expected cost. The load-
balancing cost is depicted in Fig. 5a. Both normal and worst cases are depicted
in the same graph.

Experiments confirm that ART+ has an O(log log N) load-balancing perfor-
mance, instead of the ART performance of O(m · logm log N). Thus, even in
the worst case scenario, the ART+ outperforms ART, since D3-Tree has a more
efficient load-balancing mechanism than BATON∗ (Fig. 5b).

Fig. 5. Cost of load-balancing operation

6 Conclusions

In this paper, we presented a new efficient decentralized infrastructure for
range query processing with probabilistic guarantees, the ART+ structure.
We presented in brief the theoretical algorithmic analysis, which showed that
the communication cost of query operations, element update and node join/leave
operations scale sub-logarithmically expected w.h.p. Moreover, the cost for the
load-balancing operation is sub-logarithmic amortized. Experimental compari-
son to its predecessor, the ART structure, showed slightly less efficiency towards
lookup operations (single and range queries), but improved performance for the

ART+: A Fault-Tolerant Decentralized Tree Structure 137

load-balancing operation and the lookup operations in case of node failures. More-
over, experiments confirm that ART+ is highly fault-tolerant in case of mas-
sive failures. Note that, so far, ART outperforms the state-of-the-art decentral-
ized structures.

Acknowledgments. This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds through the Operational Pro-
gram “Education and Lifelong Learning” of the National Strategic Reference Frame-
work (NSRF) – Research Funding Programs Thales & Heracletus II, Investing in
knowledge society through the European Social Fund.

References

1. Brodal, G., Sioutas, S., Tsichlas, K., Zaroliagis, C.: D2-tree: a new overlay with
deterministic bounds. Algorithmica, pp. 1–22, April 2014

2. Crainiceanu, A., Linga, P., Machanavajjhala, A., Gehrke, J., Shanmugasundaram,
J.: Load balancing and range queries in p2p systems using p-ring. ACM Trans.
Internet Technol. 10(4), 16: 1–16: 30 (2011)

3. Gupta, A., Agrawal, D., Abbadi, A.E.: Approximate range selection queries in
peer-to-peer systems. In: Proceedings of the 1st Biennial Conference on Innovative
Data Systems Research (CIDR 2003) (2003)

4. Jagadish, H.V., Ooi, B.C., Tan, K., Vu, Q.H., Zhang, R.: Speeding up search in p2p
networks with a multi-way tree structure. In: Proceedings of ACM International
Conference on Management of Data (SIGMOD 2006), Chicago, Illinois, USA, pp.
1–12 (2006)

5. Jagadish, H.V., Ooi, B.C., Vu, Q.H.: Baton: a balanced tree structure for peer-to-
peer networks. In: Proceedings of the 31st Conference on Very Large Databases
(VLDB 2005), Trondheim, Norway, pp. 661–672 (2005)

6. Kaporis, A.C., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, C.D.:
Improved bounds for finger search on a RAM. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 325–336. Springer, Heidelberg (2003)

7. Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Springer,
New York (2011)

8. Sahin, O., Gupta, A., Agrawal, D., Abbadi, A.E.: A peer-to-peer framework for
caching range queries. In: Proceedings of the 20th Conference on Data Engineering
(ICDE 2004), pp. 165–176. IEEE, March 2004

9. Sioutas, S., Papaloukopoulos, G., Sakkopoulos, E., Tsichlas, K., Manolopoulos, Y.:
A novel distributed p2p simulator architecture: D-p2p-sim. In: ACM CIKM, pp.
2069–2070 (2009)

10. Sioutas, S., Sourla, E., Tsichlas, K., Zaroliagis, C.: D3-Tree: a dynamic determinis-
tic decentralized structure. Algorithms - ESA 2015. LNCS, vol. 9294, pp. 989–1000.
Springer, Heidelberg (2015)

11. Sioutas, S., Triantafillou, P., Papaloukopoulos, G., Sakkopoulos, E., Tsichlas, K.:
Art: sub-logarithmic decentralized range query processing with probabilistic guar-
antees. J. Distrib. Parallel Databases (DAPD) 31(1), 71–109 (2012)

12. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput.
Commun. Rev. 31(4), 149–160 (2001)

Comparison of Database and Workload Types
Performance in Cloud Environments

George Seriatos, George Kousiouris(✉), Andreas Menychtas,
Dimosthenis Kyriazis, and Theodora Varvarigou

National Technical University of Athens, 9 Heroon Polytechniou Street,
15779 Zografou, Greece

{g.seriatos,gkousiou,ameny,dimos,dora}@mail.ntua.gr

Abstract. The rapid growth of unstructured data over the last few years, has led
to the emergence of new database management systems. Traditional relational
databases, despite their wide adoption and plethora of features, begin to show
weaknesses when having to deal with very large amounts of data. Numerous types
of databases have emerged in the Cloud domain, in order to exploit the elasticity
of Cloud environments, while relaxing the typical ACID considerations and
investigating trade-offs of the CAP theorem. The aim of this paper is to investigate
how such offerings (MongoDB, Cassandra and HBase namely), based on these
tradeoffs, behave when deployed in virtual environments (of the BONFIRE
facility) and how they are measured against widely used benchmarks such as
YCSB. The results may be helpful for potential adopters to choose from these
offerings, based on their individual needs for specific workloads or query struc‐
tures.

Keywords: Cloud computing · NoSQL · Performance · YCSB · HBase ·
MongoDB · Cassandra · Benchmarks

1 Introduction

In recent years, the generation and storage of enormous data sizes has led to the creation
and investigation of numerous, tailored per case data management systems, that go
beyond the typical SQL databases applications. It is estimated that the total data size of
the digital universe is equivalent to 2.84 ZB (billion terabytes) with predictions raising
this number to 40 ZB for 2020 [1]. Facebook alone gathers 300 PB of data, from which
it processes at least 1 PB per month [2]. The Large Hadron Colider in CERN gathers
approximately 15 PB per year for processing [3]. The term Big Data is used for one of
the most emerging technologies in order to describe the concentration, storage and anal‐
ysis of especially large data volumes for the extraction of conclusions, correlations and
trends. Areas that are affected by this analysis include meteorology, genomics, market
analysis among others.

Data management solutions can considerably benefit from their deployment and
instantiation in cloud computing environments [16], however their performance may
often differ, significantly in many cases depending on the configuration and offering,

© Springer International Publishing Switzerland 2016
I. Karydis et al. (Eds.): ALGOCLOUD 2015, LNCS 9511, pp. 138–150, 2016.
DOI: 10.1007/978-3-319-29919-8_11

which affects the operational aspects of each solution so as to effectively exploit the
cloud computing innovations [17]. However, the operation in an abstracted and distrib‐
uted environment introduces also significant challenges e.g. the CAP theorem [18]
which states that you can obtain at most two out of three properties: Consistency, Avail‐
ability and tolerance to network Partitions. In large scale data management approaches
where data are replicated and distributed, consistency is compromised in order provide
high availability, thus relaxing the ACID guarantees (Atomicity, Consistency, Isolation,
Durability) of the system for database transactions [19].

Traditional relational databases portray a number of significant weaknesses in the
analysis of these data, that may origin either from their sheer volume or from the fact
that in many cases they follow unstructured data formats that are difficult to be translated
into rigid database schemas. While the SQL solutions are oriented towards aspects such
as consistency and concurrent transactions, they fall short in use cases where large
partitioning or availability needs are necessary. This gap has started to be covered in
recent years through the development of NoSQL systems that tend to abandon some of
the typical characteristics of relational databases (such as ACID characteristics) in order
to ensure the ability for parallel and distributed storage and processing without structural
constraints (e.g. table structures).

Development of NoSQL systems has been extremely rapid in recent years. Currently
there are 150 available systems [4]. The separation in categories is performed mainly
through their capabilities or through the way they store data. An indicative categorization
of NoSQL systems appears in [5]. The main purpose of this paper is to investigate a
number of such solutions (namely MongoDB, HBase and Cassandra) in a variety of
usage scenarios, based on different types of workloads, and extract a number of meas‐
urements and conclusions with relation to each system’s ability to handle the respective
traffic. To this end, the YCSB benchmark client [6] is used in order to launch queries
against deployed system instances in the Bonfire experimental Cloud platform [7]. The
paper is structured as follows. In Sect. 2 related work in the respective field of Cloud
and DB benchmarking is presented, while in Sect. 3 the key characteristics of the selected
databases are presented, along with information on the automation and setup of the
measurement process. Section 4 presents the performed experiments and measurements
results while Sect. 5 concludes the paper.

2 Related Work

There are several approaches that analyze the performance aspects of the database
management solutions in cloud. In RDBMS, the TPC benchmarks were the most prom‐
inent benchmarking approaches for measuring the performance characteristics [10]. [11]
conducted benchmarks on several existing cloudbased management systems: (a) data
read and write benchmark with seven tasks to evaluate the read and write performance
in different situations, and (b) structured query benchmark focusing on basic operations
in the structured query language such as key words matching, range query and aggre‐
gation.

Comparison of Database and Workload Types Performance 139

NoSQL cloud management systems can be categorized as key-value stores, docu‐
ment stores, column stores and graph stores [12]. Their characteristics include a variety
of different data models (fully structured semi structured and unstructured), different
querying and most importantly different scaling methodologies to support data parti‐
tioning, replication, consistency and concurrent access. These characteristics, the execu‐
tion environment configuration, have immense effect on the performance of the data
management operations, positive or negative. Brian F. Cooper et al. propose YCSB
framework [6] that facilitates performance comparisons of modern cloud data serving
systems and define a core set of benchmarks and report results for four widely used
systems: Cassandra, HBase, Yahoo!’s PNUTS and MySQL. Their analysis examines
the aspects of (a) read performance versus write performance, (b) latency versus dura‐
bility, (c) synchronous versus asynchronous replication and (d) data partitioning, in
operation of read, update, scan and insert.

Authors in [13] argue that standardized performance benchmarking is required so as
to evaluate the eventual consistency in distributed key-value storage systems and
propose a methodology that extends the popular YCSB benchmark to measure the stale‐
ness of data returned by reads using the concept of ∆-atomicity [14]. [15] presents an
evaluation of the performance for database management, SQL and NoSQL, in the
domain of IoT and particularly for sensor data. Besides the difference in performance
between SQL and NoSQL solutions, their analysis results show a considerable impact
on the performance when the databases are deployed in virtualized cloud environments.
In most cases the impact is negative however, only a specific deployment has been tested
and no other cloud offerings and/or configurations are examined.

3 DB Features and Measurement Automation

3.1 DB Features

With regard to the selected databases, the goal was to differentiate between features and
strategies of available systems. Thus in terms of architecture, HBase follows a more
centralized master slave approach, while Cassandra a more peer to peer one. HBase is
written in Java and is tightly integrated with the underlying file system (HDFS) and with
the MapReduce Apache Hadoop framework and can offer consistency guarantees. It
follows a key value approach and stores data in a column oriented format on disk. It also
offers atomicity of operations on a row level. Cassandra is also written in Java and the
main difference is that it does not portray a single point of failure. In order to enroll a
node in the system, one only needs to start the basic daemon process and insert infor‐
mation on one existing system node. In practice a number of nodes are determined as
seeds and they are the ones that undertake the role of enrolling a new node in the ring.
Cassandra’s main benefit is the lack of one master node, which improves system resil‐
iency and availability, however it comes with a price on the consistency levels achieved.
It follows a column oriented data organization. One extra feature with relation to HBase
is the ability to define composite column families that can serve as an extra layer of
organization. Thus it may depict concentrated data from multiple columns. Cassandra
also offers atomicity on a row level, however contrary to HBase it can not offer atomicity

140 G. Seriatos et al.

in cases of updating more than one rows in a single transaction. Different consistency
levels are offered, that are coupled with the used replication factor and they regulate the
need to have consistent replicas across the system.

MongoDB on the other hand is a document oriented DB, meaning that it stores the
data in fields and can be directly queried based on their contents. Data are stored in the
form of BSON (Binary JSON). It may also support secondary indexes for faster search.
The replica sets in Mongo are defined as primary or secondary. Update of the secondary
instances is performed synchronously, affecting latency, by adjusting the “write
concern” option or asynchronously, in order not to bottleneck the system. However the
latter has an effect on consistency for read operations from them. Based on the consis‐
tency option selection this read operation may be limited only to the primary copy. A
major difference of this DB is the fact that it mainly uses memory-mapped files in order
to enhance performance.

3.2 Cloud Facility Setup

The experiments were performed in the BonFIRE Cloud computing testbed [7]. The
purpose of this facility is to provide an experimental facility for Cloud Computing
research, across various locations and heterogeneous resources. Management of the
available resources is performed through OCCI [8], in order to offer a homogeneous
interface with heterogeneous infrastructures (OpenNebula, Virtual Wall, Cells). For the
purposes of the experiment, the resources in Table 1 were used. Node 1 was selected
with increased capabilities in order to serve as the Master node in HBase and HDFS and
it was enriched with more functionalities in the other two systems as well. OS in all
cases was Debian Squeeze v6 (kernel:2.6.32-5-amd64).

HBase was the system that presented the most challenges in terms of setup, since in
many cases the errors occurred were not adequately described. Special care was given
to the networking setup (especially to restrict the use of IPv6), and to remove the loop‐
back address since it caused connection errors to the other nodes. It was also the system
that appeared to be more affected by the RAM shortage in the available nodes.

Cassandra was the system that was easier to manage and configure, through the
configuration of seed node details. In the case of Mongo, a series of manual steps were
necessary. In order to ensure a replication factor of 3, 3 mongod processes need to start,
that are configured with relation to which one is the primary, in order to kick off the
different shards.

The distribution of the replicas followed the logic of a Cassandra ring. Ext4 file
system was used for the main data since it is considered more efficient. One characteristic
of Mongo is that due to the preallocation techniques used, it requires significantly higher
disk space to start, in comparison to the actual data stored. Given that the amount of disk
space was limited, a number of options needed to be utilized during the configuration
that limit the initial size of the DB (“–smallfiles” and “–oplogSize 128”).

Comparison of Database and Workload Types Performance 141

Table 1. BonFIRE resources used

Node 1 Nodes 2–6 Node 7

CPU 4 Physical Cores (AMD
Opteron 6176)

2 Physical Cores (2:AMD
Opteron 6176, 3–6: Intel
Xeon E5620)

4 Physical Cores (AMD
Opteron 6176)

RAM 10 GB 4 GB 1 GB

Disk 10 GB ext3: OS + Software 10 GB ext3: OS + Software 10 GB ext3: OS + Software

10 GB ext4: Data 10 GB ext4: Data

Software HBase 0.94.17 HBase 0.94.17 YCSB

Hadoop 1.2.1 Hadoop 1.2.1

Zookeeper 3.4.5 Zookeeper 3.4.5

Mongo 2.4.10 Mongo 2.4.10

Cassandra 2.05 Cassandra 2.05

Functionality HBase Datanode, Name‐
node, Secondary Name‐
node, RegionServer,
Zookeeper, Cassandra
Daemon, Mongod,
Mongo Router, Config
Server

HBase Datanode, Cassandra
peers, Mongod, Mongo
Router (Nodes 2–4)

YCSB client

Due to the fact that the existence of replication indirectly reduces disk space for the
original data, the limit of entries to the DB was set to 1.8 Million, given the available
resources. Each record consisted of 10 fields and each field of 100 bytes, resulting in
1 KB per record. Thus the overall actual data used in the tested systems were around
5.4 GB.

3.3 Measurement Process and Execution Automation

The actual benchmark execution is performed through the use of YCSB, a client that is
responsible for creating queries against the target databases, based on the input param‐
eters that define the type of operations, and for connecting and submitting the queries
based on a set of drivers for each system. One key parameter that needs to be clarified
is the Throughput (in Ops/sec) which is the desirable number of operations that must be
achieved by the system. This does not necessarily mean that the system will achieve this
rate however. Latency of the respective operations is also logged and monitored.
Average values for these metrics are reported in the end of the measurement cycle. YCSB
also contains a set of default workloads that are indicative of specific use cases. Examples
of this are Workload A (typical of user session storing for action logging), Workload B
(photo tagging in social networks), Workload C (caching of data), Workload D (user
status in social networks), Workload E (forum discussions retrieval) and Workload F
(user management DBs). More details on these workloads are given in Sect. 4.

142 G. Seriatos et al.

The automated framework for the experiment execution appears in Fig. 1. The user
inputs a number of parameters such as the number of nodes, the DB size in terms of
records, desired throughput, what type of DB to setup etc. This information is then passed
to the partial executors, which are responsible for creating the resources on BonFIRE
(via OCCI), configuring the nodes via ssh based on the DB type (setting up seed files,
alerting where to find the Namenode, creating, populating or cleaning up tables etc.) and
finally launching the YCSB client to perform the queries.

Fig. 1. Automated execution framework

4 Experiments and Results

In order to perform the experiments against the deployed databases, the YCSB bench‐
marking client was used. YCSB produces queries against the former, based on a
throughput that is determined by the parameters of execution. In reality, while this
throughput is set, it is perceived as the target limit. However it is limited by the size and
endurance of the underlying system. Thus, while the set throughput was starting from
1000 operations per second and increased each time by a thousand, the actual achieved
rates were not completely aligned, as will be seen by the measurements. Each meas‐
urement (for a given system, workload and set throughput) was performed 4 times and
the average was calculated. In many cases there were deviations that can be attributed
to the operation of the underlying Cloud service. Timing constraints were also used,
meaning that each series of measurements included an overall maximum time for
completion. This maximum time was calculated based on the types of actions performed
against the DB and the necessary throughput. If that throughput was less than the 2/3 of
the needed limit, then the experiment was stopped since it would not add any additional
information for the charts and would introduce unnecessary delays. Following, the
results per type of workload are presented.

Comparison of Database and Workload Types Performance 143

4.1 YCSB Workload a (50 % Updates–50 % Reads)

In workload A, HBase and Cassandra have achieved a significantly higher throughput
than MongoDB, as it appears in Fig. 2. The reason for this is the increased updates ratio.
MongoDB returns an update success when this is registered in RAM, providing rela‐
tively relaxed persistency guarantees, thus this element is not portrayed in the latency.
Persistency of data is programmed every 100 ms through the journaling mechanism and
the synchronization between the RAM data and disk file data is performed every 60 s.
However, due to the limited memory of the used system, it appears that the OS was
synchronizing the files in shorter intervals in order to free memory space and fetch the
necessary files for the read operations.

0 1000 2000 3000 4000 5000 6000 7000 8000

0

0.5

1

1.5

2

2.5

3

3.5

Update

Workload A (Update 50% - Read 50%)

HBase

Cassandra

MongoDB

Throughput (Ops/s)

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

0 1000 2000 3000 4000 5000 6000 7000 8000

0

2

4

6

8

10

12

Read

Workload A (Update 50% - Read 50%)

HBase

Cassandra

MongoDB

Throughput (Ops/s)

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Fig. 2. Comparative Latency vs Throughput in YCSB Workload A

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

9683.11

7301.51 7176.116959.45

4656.68

2943.55

Workload A

1000000 vs 1800000 records

HBase 1000000

HBase 1800000

Cassandra 1000000

Cassandra 1800000

MongoDB 1000000

MongoDB 1800000

M
ax

 T
hr

ou
gh

pu
t (

O
ps

/s
)

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

5457.95

4017.29

5256.05

4410.39

7228.55

6072.06

Workload B

1000000 vs 1800000 records

HBase 1000000

HBase 1800000

Cassandra 1000000

Cassandra 1800000

MongoDB 1000000

MongoDB 1800000

M
ax

 T
hr

ou
gh

pu
t (

O
ps

/s
)

(a) (b)

Fig. 3. Throughput Comparison for different DB sizes in (a) Workload A and (b) Workload B
(Color figure online)

On the contrary, HBase and Cassandra are not affected by updates since these
approaches do not fetch the data to be updated from the disk bit perform the changes in
new files (HFiles and SSTables) by using disk serial write capabilities. The update of
the data happens in the background by merging these files, without influencing signifi‐
cantly the performance of these systems due to the retrieval times of files from disk.
With regard to the effect of data volume in DB performance (Fig. 3), MongoDB seems
to be significantly affected (for the same reasons mentioned above) and its performance
is reduced by 37 % when operations are increased to 1.8 million, in comparison to

144 G. Seriatos et al.

1 million. When data are of a smaller volume, caching mechanisms portray a larger hit
ration and databases perform significantly better. HBase also dropped by 25 %, showing
the need for more RAM. Cassandra on the other hand was not significantly affected,
portraying a deterioration of 3 %.

4.2 YCSB Workload B (5 % Updates–95 % Reads)

In workload B, MongoDB performed significantly better (Fig. 4). The memory mapped
files in conjunction with the Zipfian distribution of YCSB, that selects a subset of data
to perform the multitude of operations, have enabled the caching mechanisms to be
exploited. Lack of increased updates has also helped towards this direction. HBase and
Cassandra performed significantly worse than in workload A, due to the limited memory
dedication to caching, since this value is a percentage of the Heap size (default 1 GB)
used in every node. On the other hand, MongoDB allocated dynamically all the available
memory not used by the remaining node operations. This difference is also portrayed in
the different DB sizes used, as depicted in Fig. 3b). A second reason for the reduced
performance of HBase is the fact that data retrieval is performed from the disk to the
volatile memory through the Java Heap process. Thus read intensive workloads cause
Heap fragmentation and are managed by the Garbage Collector, putting more strain on
the system. HBase in next versions (0.96.3) gives the opportunity to the volatile memory
“blockcache”, which is the memory part responsible for the caching mechanism, to be
decoupled from the Heap size of the RegionServer process, thus exploiting more the
available memory [9]. Cassandra in its default setting does not cache data but data keys,
making this their retrieval faster. Increased data volumes have caused a performance
degradation of 26 % in HBase, 16 % in Cassandra and 19 % in MongoDB (Fig. 3b).

0 1000 2000 3000 4000 5000 6000 7000

0

1

2

3

4

5

6

7

8

Read

Workload B (Update 5% - Read 95%)

HBase

Cassandra

MongoDB

Throughput (Ops/s)

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

0 1000 2000 3000 4000 5000 6000 7000
0

1

2

3

4

5

6

7

8

Update

Workload B (Update 5% - Read 95%)

HBase

Cassandra

MongoDB

Throughput (Ops/s)

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

(a) (b)

Fig. 4. Comparative Latency vs Throughput in YCSB Workload B

4.3 YCSB Workload C (100 % Read)

In workload C (Fig. 5a), given that it is an exclusively read workload, the issues
mentioned in the previous sections are clearly depicted. MongoDB achieves a very low
latency due to the lack of updates and synchronization issues. On the contrary, HBase’s
poor caching strategy under limited available RAM has significantly affected its

Comparison of Database and Workload Types Performance 145

performance. Of course in cases where the latter does not apply, results could be
improved with relation to this case. On the other hand, due to the fact that Cassandra
caches the value keys mostly used, it is not affected so intensively by the data read size.
However data retrieval on disk makes it less attractive than MongoDB for these kinds
of loads. For Cassandra, there is the ability to cache data rows that are requested for
reads, however this option was not used since it was not part of the default settings.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6

7

8

Read

Workload C (Read 100%)

HBase

Cassandra

MongoDB

Throughput (Ops/s)

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

9000.00

10000.00

3996.92

2437.36

4967.46
4224.98

8863.69

7947.26

Workload C

1000000 vs 1800000 records

HBase 1000000

HBase 1800000

Cassandra 1000000

Cassandra 1800000

MongoDB 1000000

MongoDB 1800000M
ax

 T
hr

ou
gh

pu
t (

O
ps

/s
)

(a) (b)

Fig. 5. (a) Comparative Latency vs Throughput in YCSB Workload C (b) Throughput
Comparison for different DB sizes in Workload C (Color figure online)

As it was anticipated, the increased data volume (Fig. 5b) mainly affected Hbase
(39 % degradation). This was significantly lower in the other DBs (17.5 % for Cassandra
and 11.5 % for MongoDB).

4.4 YCSB Workload D (95 % Reads–5 % Inserts)

In workload D, a significant difference is the fact that reads are performed with a Latest
distribution on the more recently used data and not a Zipfian one. Thus MongoDB again
exploits the memory mapped files and portrays a very good performance (Fig. 6). Data
insertion does not seem to affect the system’s performance, since MongoDB uses mech‐
anisms to preallocate the necessary space. This on the other hand creates an issue of
needing too much space for initialization of the DB. Inserts in HBase and Cassandra are
performed by creating new files (HFiles and SSTables), thus eliminating the need for
concrete data positioning retrieval on the disk during insertion. The usage of Latest
distribution helped Cassandra to perform significantly better with relation to workload
B and to approach the ratings of MongoDB. This was probably caused by the fact that
an increased number of reads were served by the data contained in the system’s memT‐
able. The same behavior was expected from HBase, however the large read number has
probably affected also the garbage collection in the JVM. On the contrary, in Cassandra
the memory part responsible for storing the keys is off heap. HBase demonstrated a 40 %
drop in case of increased data volumes (Fig. 7a), while for Cassandra and HBase the
respective percentages were 5 % and 15.1 %.

146 G. Seriatos et al.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6

Insert

Workload D (Insert 5% - Read 95%)

HBase

Cassandra

MongoDB

Throughput (Ops/s)

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

Read

Workload D (Insert 5% - Read 95%)

HBase

Cassandra

MongoDB

Throughput (Ops/s)

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

(a) (b)

Fig. 6. Comparative Latency vs Throughput in YCSB Workload D

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

9000.00

10000.00

4910.26

2920.47

7057.70
6726.96

9138.96

7935.92

Workload D

1000000 vs 1800000 records

HBase 1000000

HBase 1800000

Cassandra 1000000

Cassandra 1800000

MongoDB 1000000

MongoDB 1800000

M
ax

 T
hr

ou
gh

pu
t (

O
ps

/s
)

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

5000.00

3625.30

2364.28

4298.44

3692.70

3250.89

2123.92

Workload F

1000000 vs 1800000 records

HBase 1000000

HBase 1800000

Cassandra 1000000

Cassandra 1800000

MongoDB 1000000

MongoDB 1800000

M
ax

 T
hr

ou
gh

pu
t (

O
ps

/s
)

(a) (b)

Fig. 7. Throughput Comparison for different DB sizes in (a) Workload D and (b) workload F
(Color figure online)

4.5 YCSB Workload F (50 % Reads- 50 % Read/Modify/Write)

In this workload, also caching mechanisms seem to be the key for reaching high
performance. Due to the fact that the available RAM in each node was 4 GB (much less
than the recommended size), systems that invest in achieving good memory mapping
are hindered by the complexity of the workload in this case. Thus MongoDB portrayed
a reduced performance (similar to the one in workload (A) while HBase continued to
deteriorate as in the cases of B, C and D. On the other hand, Cassandra that does not try
to perform these optimizations portrayed less deviation, as it appears in Fig. 8. With
relation to DB size (Fig. 7b), HBase had a deterioration in performance by 53 %, the
same as MongoDB, while Cassandra was more stable portraying a 16.4 % drop.

Comparison of Database and Workload Types Performance 147

500 1000 1500 2000 2500 3000 3500 4000 4500

0

1

2

3

4

5

6

7

8

Read

Workload F (Read-Modify-Write 50% - Read 50%)

HBase

Cassandra

MongoDB

Throughput (Ops/s)

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

500 1000 1500 2000 2500 3000 3500 4000 4500

0

1.5

3

4.5

6

7.5

9

10.5

Read-Modify-Write

Workload F (Read-Modify-Write 50% - Read 50%)

HBase

Cassandra

MongoDB

Throughput (Ops/s)

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

(a) (b)

Fig. 8. Comparative Latency vs Throughput in YCSB Workload F

4.6 YCSB Workload E (Scan 95 %–Insert 5 %)

In workload E scan operation, YCSB uses a Zipfian distribution to select a specific datum
and then to request the next data in a serial manner from that location. The size of this
retrieval is decided via a uniform distribution with a maximum number of 100. In this
case HBase and Cassandra performed better than MongoDB since their data are stored
serially in files and thus their retrieval is more efficient (Fig. 9). MongoDB on the other
hand performed a number of operations per file to retrieve the data from disk, if these
data were not located in memory at the time of request. Another reason is that the
retrievals in the DB are based on the actual data fields inside the records (due to the
document orientation of Mongo) and not based on indexes like in the case of HBase and
Cassandra. In terms of database size influence (Fig. 10), Cassandra and HBase seem not
to be affected (HBase improves actually its performance by 11 %), however MongoDB
suffers from an 88 % drop in performance, due to the limited memory size, type of
operation and data access.

0 50 100 150 200 250 300 350 400 450 500

0

5

10

15

20

25

30

35

40

45

Insert

Workload E (Scan 95% - Insert 5%)

HBase

Cassandra

MongoDB

Throughput (Ops/s)

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

0 50 100 150 200 250 300 350 400 450 500

0

100

200

300

400

500

Scan

Workload E (Scan 95% - Insert 5%)

HBase

Cassandra

MongoDB

Throughput (Ops/s)

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

(a) (b)

Fig. 9. Comparative Latency vs Throughput in YCSB Workload E

148 G. Seriatos et al.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

404.06

455.81
420.74417.10

260.88

28.83

Workload E

1000000 vs 1800000 records

HBase 1000000
HBase 1800000

Cassandra 1000000
Cassandra 1800000

MongoDB 1000000
MongoDB 1800000

M
ax

 T
hr

ou
gh

pu
t (

O
ps

/s
)

Fig. 10. Throughput Comparison for different DB sizes in Workload E (Color figure online)

5 Conclusions

In conclusion, and following the analysis performed in the previous sections, we can
identify cases for which each of the investigated solutions performed optimally.
MongoDB was especially efficient in cases where reads constituted the majority of
performed operations thanks to the memory-mapped files that it uses. This system
however exemplified a particular weakness in scan and retrieval workloads, in which
disk operations were necessary. On the other hand, Cassandra’s enablement of caching
only for the data location on disk resulted in it being the more stable solution despite
the change in workload types of the YCSB client and maintained a satisfactory and stable
performance in all cases. This was enhanced by the selection of the relaxed consistency
option and the usage of a triple replication setup in order to balance the workload in the
system. Finally, HBase was severely affected by the choice to store temporary data on-
heap especially in conjunction with the limited memory resources in the available nodes.
Thus it was not only unable to exploit caching mechanisms, but the latter seemed also
to hinder the efficient system operation in some cases.

The systems used in the context of this paper heavily rely on the caching mechanisms
enabled in each case and the according design. The experiment aided in identifying
several aspects of these mechanisms and their effect on performance, especially under
limited available memory in the systems.

During setup and execution, numerous parameters of the examined tools could be
toggled in order to adapt to the given tests. This kind of adaptation is worth to consider
as future work, extending the insights gained from the initial examination attempted in
this work and based on the envisioned usage and deployment by potential adopters of
NoSQL technologies and available offerings.

Acknowledgments. This research has been co-financed by the European Union (European
Social Fund – ESF) and Greek national funds through the Operational Program “Education and
Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding
Program: Thales. Investing in knowledge society through the European Social Fund.

Comparison of Database and Workload Types Performance 149

References

1. Digital Universe Infographic.IDC, December 2012. http://www.emc.com/infographics/
digital-universe-business-infographic.htm

2. Presto: Interacting with petabytes of data at Facebook. Lydia Chan, November 2013. https://
www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-
at-facebook/10151786197628920

3. CERN Computing. http://home.web.cern.ch/about/computing
4. List of NoSQL databases. http://nosql-database.org
5. Han, J., et al.: Survey on NoSQL database. In: 2011 6th International Conference on Pervasive

Computing and Applications (ICPCA), 26–28 October 2011, pp. 363–366 (2011). doi:
10.1109/ICPCA.2011.6106531

6. Cooper, B.F., et al.: Benchmarking cloud serving systems with YCSB. In: Proceedings of the
1st ACM Symposium on Cloud computing, pp. 143–154. ACM (2010)

7. Bonfire project Cloud testbeds. http://www.bonfire-project.eu/
8. Open Cloud Computing Interface Standard. http://occi-wg.org/
9. BlockCache 101.Nick Dimiduk. http://www.n10k.com/blog/blockcache-101/. Accessed

Sep 2014
10. Poess, M., Floyd, C.: New TPC benchmarks for decision support and web commerce. ACM

SIGMOD Rec. 29(4), 64–71 (2000)
11. Shi, Y., et al.: Benchmarking cloud-based data management systems. In: Proceedings of the

Second International Workshop on Cloud Data Management (CloudDB 2010) (2010)
12. Hecht, R., Jablonski, S.: NoSQL evaluation: a use case oriented survey. In: Proceedings of

the 2011 International Conference Cloud Service Computing, pp. 336–341 (2011)
13. Rahman, M.R., et al.: Toward a principled framework for benchmarking consistency. In:

Proceedings of the Eighth USENIX Conference on Hot Topics in System Dependability.
USENIX Association (2012)

14. Golab, W., et al: Analyzing consistency properties for fun and profit. In: PODC 2011:
Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, pp. 197–206 (2011)

15. Van der Veen, J.S., et al.: Sensor data storage performance: SQL or NoSQL, physical or
virtual. In: 2012 IEEE 5th International Conference on Cloud Computing (CLOUD). IEEE
(2012)

16. Abadi, Daniel J.: Data management in the cloud: limitations and opportunities. IEEE Data
Eng. Bull. 32(1), 3–12 (2009)

17. Iosup, A., et al: On the performance variability of production cloud services. In: 2011 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid).
IEEE (2011)

18. Brewer, E.A.: Towards robust distributed systems. In: Symposium on Principles of
Distributed Computing (2000)

19. Sakr, S., et al.: A survey of large scale data management approaches in cloud environments.
IEEE Commun. Surv. Tutorials 13(3), 311–336 (2011)

150 G. Seriatos et al.

http://www.emc.com/infographics/digital-universe-business-infographic.htm
http://www.emc.com/infographics/digital-universe-business-infographic.htm
https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
http://home.web.cern.ch/about/computing
http://nosql-database.org
http://dx.doi.org/10.1109/ICPCA.2011.6106531
http://www.bonfire-project.eu/
http://occi-wg.org/
http://www.n10k.com/blog/blockcache-101/

Cloud Elasticity: A Survey

Athanasios Naskos1(B), Anastasios Gounaris1, and Spyros Sioutas2

1 Department of Informatics, Aristotle University of Thessaloniki,
Thessaloniki, Greece

{anaskos,gounaria}@csd.auth.gr
2 Department of Informatics, Ionian University, Corfu, Greece

sioutas@ionio.gr

Abstract. Cloud elasticity is a unique feature of cloud environments,
which allows for the on demand (de-)provisioning or reconfiguration of
the resources of cloud deployments. The efficient handling of cloud elas-
ticity is a challenge that attracts the interest of the research community.
This work constitutes a survey of research efforts towards this direction.
The main contribution of this work is an up-to-date review of the lat-
est elasticity handling approaches and a detailed classification scheme,
focusing on the elasticity decision making techniques. Finally, we discuss
various research challenges and directions of further research, regard-
ing all phases of cloud elasticity, which can be deemed as a special
case of autonomic behavior of computing systems (This research has
been co-financed by the European Union (European Social Fund - ESF)
and Greek national funds through the Operational Program “Education
and Lifelong Learning of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Thales. Investing in knowledge
society through the European Social Fund.”).

1 Introduction

Cloud computing forms a deployment model, which aims to reduce the momen-
tary cost of the computing resources through the leasing of dynamically adjusted
virtual resources, which can be occupied on-demand. Virtual resources are vir-
tual versions of actual resources, most commonly in the form of Virtual Machines
(VMs), which leverage the virtualization technology [65]. The offered pay-as-you-
go pricing model accompanied by the elastic resource handling, has assisted the
wide adoption of the cloud deployments, as the client is obliged to pay only for
the used resource. As such, cloud computing has managed to make the provision
of remote computing resources (e.g., VMs) the main option not only for scientific
institutions but any size of organizations and enterprises. However, the efficient
resource handling is a key aspect to the deployment cost reduction.

There are numerous works that propose various cloud elasticity handling
mechanisms. In this work, our focus is on all aspects of elasticity, but we par-
ticularly aim to shed light on the decision making mechanisms in relation with
the underlying models employed. Additionally, through our taxonomy, we aim to

c© Springer International Publishing Switzerland 2016
I. Karydis et al. (Eds.): ALGOCLOUD 2015, LNCS 9511, pp. 151–167, 2016.
DOI: 10.1007/978-3-319-29919-8 12

152 A. Naskos et al.

render the various techniques, which nowadays tend to be developed in isolation,
more comparable with each other.

We regard elasticity techniques as an interdisciplinary field of two main areas:
distributed/cloud computing and autonomic computing. As a field of autonomic
computing, it comprises all four phases of the MAPE loop [44], namely Moni-
toring, Analysis, Planning and Execution. Each distinct phase presents unique
research challenges, which are addressed by the presented works with various
approaches. In this work, we mostly focus on the last three phases.

Some efforts to create an overview of the cloud elasticity area have been made
in the past, for example [26] is complementary to our work, but it focuses more on
the tools, the benchmarks and the workloads. We present elasticity strategies in a
more broader fashion as we elaborate more on the elasticity decision mechanism.
[48] is also complementary to our work, but we present more up-to-date proposals
and cover a more extended range of elasticity actions and objectives. An older
and narrower survey has also appeared in [33]. A general systematic review
about commercial cloud services is conducted in [46], where the authors present
the main challenges regarding the elasticity property. As such, our work fills an
important gap on a timely issue.

The structure of this survey paper is as follows. In Sect. 2, we present the
taxonomy and the classification table. In Sect. 3, we delve into more details for
each classification dimension of our taxonomy and we outline the main findings.
We conclude in Sect. 4.

2 Taxonomy and Classification

In order to provide a concise classification of the existing approaches to cloud
elasticity, we first propose a taxonomy that will enable our work to shed light on
the differentiating aspects of the various proposals. The taxonomy is summarized
in Fig. 1 and consists of the following dimensions:

Fig. 1. Classification scheme

Cloud Elasticity: A Survey 153

– Scope. This aspect is divided into two classification categories (i) the Enactor
and the (ii) Application Type. The former indicates whether the elastic tech-
nique is applied by the cloud infrastructure provider (Cloud Provider (CP))
or the user of the cloud infrastructure, who deploys and manages cloud appli-
cations on top of the cloud infrastructure (Service Provider (SP)). Application
Type indicates whether the proposal refers to the elastic handling of a par-
ticular type of cloud application from the following list: relational databases
(DBs), NoSQL databases (NoSQL DBs), Multi-tier Applications (e.g., typi-
cal business web applications), Generic (if the tool is application-agnostic) or
Storage.

– Purpose. In this dimension, we classify the techniques according to the purpose
of elasticity actions. The purpose can be one of the following: (i) Performance,
(ii) Availability, (iii) Cost, (iv) Energy. Performance, refers to the maintenance
or guarantee of acceptable, either user or Service Level Agreement (SLA)
specified, application performance. Availability refers to the degree to which
applications and resources are in an operable and committable state at the
time point when they are needed by end users [42]. Cost refers either to the
reduction of the operational cost of the application deployed in the cloud,
commonly also maintaining the Performance goal, or to the maintenance of
cost thresholds under specific performance constraints. Finally, the Energy
category, is closely related to the Cost one but covers elastic techniques, which
directly aim at minimizing the energy footprint.

– Decision Making. There are four distinct categorization criteria that charac-
terize the decision making procedure of every work in our taxonomy, namely
(i) Trigger, which indicates whether the elasticity mechanism is triggered in
a reactive or proactive manner; (ii) Mechanism, which refers to the decision
making methodology; (iii) Prediction Model (PM), which denotes the utiliza-
tion of a model to predict future incoming load variations or specific mea-
surement values; and (iv) System Model (SM), which refers to the utilization
of a model to represent the (elastic) behavior of the system, on top of which
the complete elasticity policy is built (e.g., queues). Elasticity mechanisms are
further classified into the following categories: (1) Rule Based, (2) Mathemat-
ical/Statistical Optimization, (3) Machine Learning, (4) Control Theory and
(5) Model Checking according to the main field to which the elasticity policy
belongs.

– Elastic Action. Cloud resource elasticity may be applied in different forms
and can refer to modifications in (i) the size (Vertical Scaling (VS)), (ii) the
location (VM Live Migration (VMLM)) or (iii) the number of VMs employed
(Horizontal Scaling (HS)). Examples of these three elasticity types are the
allocation of more memory or CPU to a VM, moving a VM to a less loaded
physical machine and increasing the number of VMs of an application cluster,
respectively. Elastic Action additionally includes two other elasticity types,
(iv) the Application Reconfiguration (AR), where the elastic tool is capable
of handling specific application aspects (e.g., DB cache size) and (v) Applica-
tion Live Migration (ALM), where only application-specific components are
migrated instead of the full VM, such as database instances.

154 A. Naskos et al.

– Provider. This classification category refers to the number of cloud infrastruc-
ture providers that the elastic tool supports simultaneously. The possible val-
ues are (i) Single, which denote that only one cloud provider is supported, (ii)
Single*, which denotes that more than one providers are supported, however
not simultaneously and (iii) multiple, where the elasticity control is spread
across multiple cloud providers simultaneously.

– Evaluation. Finally, the last aspect refers to the type of the Evaluation of
every work. The possible values are: (i) Simulation, where the results are
obtained based on computations on a simulated artificial environment (e.g.,
OMNeT++), (ii) Emulation where the evaluations results are obtained in an
artificial environment that behaves according to real-world traces, and (iii)
Real, where the elastic tool is applied on a real cloud infrastructure.

Based on the taxonomy above, we classify the existing proposals for cloud
elasticity as shown in Table 1. The taxonomy above does not cover the type of the
feedback information collected by the environment to drive the elasticity decision
making and enforcement, because the type of the feedback seems to play a less
important role in classifying the proposals. More specifically, all proposals utilize
a mechanism to monitor specific system/network/application-specific metrics to
assist the decision making. To deal with possible load spikes or measurement
instabilities, many works utilize smoothing techniques like Exponential Weighted
Moving Average (EWMA), Exponential Moving Average (EMA) or just Moving
Average (MA). Further details are omitted due to space constraints.

3 Overview of Existing Solutions

In this section, we provide details with respect to the main solution approaches
for each taxonomy dimension in turn.

3.1 Scope

The first aspect of the scope dimension indicates who is responsible for the elas-
ticity mechanism. In several proposals, the elasticity technique is bundled with
the core cloud infrastructure and the corresponding techniques are described as
Cloud Provider -specific. For example, [37] relies on a tool that is installed on
top of IaaS infrastructures, and the DejaVu system in [68] extends the function-
ality of such infrastructures. Another set of proposals require special privileges
to resources (e.g., [54] depends on a custom KVM module and interface, [21] is
integrated into OpenStack, and [61] configures the CPU voltage and frequency)
or access to information that only a cloud provider is able to provide (e.g.,
[50] depends on physical machine local information). Nevertheless, the major-
ity of proposals enable the provision of advanced elasticity for cloud-based ser-
vices regardless of or extending the built-in elasticity functionalities of the cloud
providers; those are referred to as Service Provider -specific.

Regarding the application type on which the proposals focus, most of them
are either application independent or tailored to web service-based multi-tier

Cloud Elasticity: A Survey 155

T
a
b
le

1
.
T

h
e

cl
a
ss

ifi
ca

ti
o
n

o
f
re

se
a
rc

h
p
ro

p
o
sa

l
a
cc

o
rd

in
g

to
o
u
t

ta
x
o
n
o
m

y.
C
it
a
ti
o
n

S
c
o
p
e

P
u
rp

o
se

D
e
c
is
io
n

m
a
k
in
g

E
la
st
ic

a
c
ti
o
n

P
ro
v
id
e
ra

E
v
a
lu
a
ti
o
n

E
n
a
c
to

r
A
p
p
l.

ty
p
e

T
ri
g
g
e
r

M
e
ch

a
n
is
m

P
M

S
M

[5
4
]

C
P

G
e
n
e
ri
c

P
e
rf
.

P
ro

a
c
ti
v
e

M
a
th

./
st
a
t.

o
p
ti
m
iz
a
ti
o
n

x
x

H
S

V
M

L
M

S
in
g
le

R
e
a
l

[2
1
]

C
P

G
e
n
e
ri
c

P
e
rf
.

R
e
a
c
ti
v
e

R
u
le

b
a
se
d

H
S

S
in
g
le

a
R
e
a
l

[3
7
]

C
P

G
e
n
e
ri
c

P
e
rf
.

R
e
a
c
ti
v
e

R
u
le

b
a
se
d

H
S

V
S

S
in
g
le

R
e
a
l

[5
0
]

C
P

G
e
n
e
ri
c

P
e
rf
.
e
n
e
rg

y
R
e
a
c
ti
v
e

M
a
th

./
st
a
t.

o
p
ti
m
iz
a
ti
o
n

V
M

L
M

S
in
g
le

R
e
a
l

[6
1
]

C
P

G
e
n
e
ri
c

P
e
rf
.
e
n
e
rg

y
R
e
a
c
ti
v
e
p
ro

a
c
ti
v
e

R
u
le

b
a
se
d

m
a
th

./
st
a
t.

o
p
ti
m
iz
a
ti
o
n

x
V
S

V
M

L
M

S
in
g
le

R
e
a
l

[6
8
]

C
P

M
u
lt
i-
ti
e
r
a
p
p
li
c
a
ti
o
n
s

P
e
rf
.

P
ro

a
c
ti
v
e

M
a
ch

.
le
a
rn

.
x

H
S

V
S

S
in
g
le

R
e
a
l

[3
1
]

S
P

D
B
s

P
e
rf
.

R
e
a
c
ti
v
e

M
a
ch

.
le
a
rn

.
x

A
L
M

S
in
g
le

R
e
a
l

[2
0
]

S
P

D
B
s

P
e
rf
.

R
e
a
c
ti
v
e
p
ro

a
c
ti
v
e

R
u
le

b
a
se
d

x
H
S

V
M

L
M

A
L
M

S
in
g
le

R
e
a
l

[5
9
]

S
P

D
B
s

P
e
rf
.

P
ro

a
c
ti
v
e

R
u
le

b
a
se
d

m
a
th

./
st
a
t.

o
p
ti
m
iz
a
ti
o
n

H
S

A
L
M

S
in
g
le

R
e
a
l

[5
5
]

S
P

G
e
n
e
ri
c

A
v
a
il
.

R
e
a
c
ti
v
e

R
u
le

b
a
se
d

H
S

M
u
lt
ip
le

R
e
a
l

[6
3
]

S
P

G
e
n
e
ri
c

P
e
rf
.

P
ro

a
c
ti
v
e

M
a
ch

.
le
a
rn

.
x

x
V
S

V
M

L
M

S
in
g
le

R
e
a
l

[3
9
]

S
P

G
e
n
e
ri
c

P
e
rf
.

P
ro

a
c
ti
v
e

R
u
le

b
a
se
d

m
a
th

./
st
a
t.

o
p
ti
m
iz
a
ti
o
n

x
x

H
S

S
in
g
le

R
e
a
l

[6
0
]

S
P

G
e
n
e
ri
c

P
e
rf
.

R
e
a
c
ti
v
e

C
o
n
tr
o
l
th

e
o
ry

x
x

H
S

S
in
g
le

a
R
e
a
l

[4
9
]

S
P

G
e
n
e
ri
c

P
e
rf
.

R
e
a
c
ti
v
e

R
u
le

b
a
se
d

x
H
S

S
in
g
le

a
R
e
a
l

[1
7
]

S
P

G
e
n
e
ri
c

P
e
rf
.

R
e
a
c
ti
v
e
p
ro

a
c
ti
v
e

R
u
le

b
a
se
d

x
H
S

S
in
g
le

S
im

u
la
ti
o
n

[1
6
]

S
P

G
e
n
e
ri
c

P
e
rf
.

R
e
a
c
ti
v
e
p
ro

a
c
ti
v
e

C
o
n
tr
o
l
th

e
o
ry

x
H
S

S
in
g
le

S
im

u
la
ti
o
n

[5
1
,5

2
]

S
P

G
e
n
e
ri
c

P
e
rf
.

R
e
a
c
ti
v
e
p
ro

a
c
ti
v
e

R
u
le

b
a
se
d

m
a
ch

.
le
a
rn

.
x

x
H
S

S
in
g
le

S
im

u
la
ti
o
n

[2
9
]

S
P

G
e
n
e
ri
c

P
e
rf
.
c
o
st

P
ro

a
c
ti
v
e

M
a
ch

.
le
a
rn

.

m
a
th

./
st
a
t.

o
p
ti
m
iz
a
ti
o
n

x
x

H
S

V
S

S
in
g
le

R
e
a
l

[2
5
]

S
P

G
e
n
e
ri
c

P
e
rf
.
c
o
st

P
ro

a
c
ti
v
e

R
u
le

b
a
se
d

x
H
S

A
R

M
u
lt
ip
le

R
e
a
l

[6
6
]

S
P

G
e
n
e
ri
c

P
e
rf
.
c
o
st

R
e
a
c
ti
v
e

R
u
le

b
a
se
d

x
H
S

V
S

A
R

S
in
g
le

R
e
a
l

[4
0
]

S
P

M
u
lt
i-
ti
e
r
a
p
p
li
c
a
ti
o
n
s

P
e
rf
.

P
ro

a
c
ti
v
e

C
o
n
tr
o
l
th

e
o
ry

V
S

S
in
g
le

R
e
a
l

(C
o
n
ti
n
u
ed

)

156 A. Naskos et al.

T
a
b
le

1
.
(C

o
n
ti

n
u
ed

)

C
it
a
ti
o
n

S
c
o
p
e

P
u
rp

o
se

D
e
c
is
io
n

m
a
k
in
g

E
la
st
ic

a
c
ti
o
n

P
ro
v
id
e
ra

E
v
a
lu
a
ti
o
n

E
n
a
c
to

r
A
p
p
l.

ty
p
e

T
ri
g
g
e
r

M
e
ch

a
n
is
m

P
M

S
M

[4
3
]

S
P

M
u
lt
i-
ti
e
r
a
p
p
li
c
a
ti
o
n
s

P
e
rf
.

R
e
a
c
ti
v
e
p
ro

a
c
ti
v
e

R
u
le

b
a
se
d

m
a
th

./
st
a
t.

o
p
ti
m
iz
a
ti
o
n

x
H
S

S
in
g
le

R
e
a
l

[3
8
]

S
P

M
u
lt
i-
ti
e
r
a
p
p
li
c
a
ti
o
n
s

P
e
rf
.

R
e
a
c
ti
v
e
p
ro

a
c
ti
v
e

R
u
le

b
a
se
d

m
a
th

./
st
a
t.

o
p
ti
m
iz
a
ti
o
n

x
H
S

S
in
g
le

R
e
a
l

[3
5
]

S
P

M
u
lt
i-
ti
e
r
a
p
p
li
c
a
ti
o
n
s

P
e
rf
.
a
v
a
il
.

R
e
a
c
ti
v
e

R
u
le

b
a
se
d

x
H
S

S
in
g
le

R
e
a
l

[5
6
]

S
P

M
u
lt
i-
ti
e
r
a
p
p
li
c
a
ti
o
n
s

P
e
rf
.
a
v
a
il
.

R
e
a
c
ti
v
e

R
u
le

b
a
se
d

H
S

V
S

M
u
lt
ip
le

R
e
a
l

[3
2
]

S
P

M
u
lt
i-
ti
e
r
a
p
p
li
c
a
ti
o
n
s

P
e
rf
.
c
o
st

P
ro

a
c
ti
v
e

M
a
th

./
st
a
t.

o
p
ti
m
iz
a
ti
o
n

x
x

H
S

S
in
g
le

R
e
a
l

[2
2
]

S
P

M
u
lt
i-
ti
e
r
a
p
p
li
c
a
ti
o
n
s

P
e
rf
.
c
o
st

P
ro

a
c
ti
v
e

M
a
th

./
st
a
t.

o
p
ti
m
iz
a
ti
o
n

x
H
S

A
R

S
in
g
le

S
im

u
la
ti
o
n

[1
8
]

S
P

M
u
lt
i-
ti
e
r
a
p
p
li
c
a
ti
o
n
s

P
e
rf
.
c
o
st

P
ro

a
c
ti
v
e

R
u
le

b
a
se
d
c
o
n
tr
o
l
th

e
o
ry

x
H
S

A
R

S
in
g
le

R
e
a
l

[3
6
]

S
P

M
u
lt
i-
ti
e
r
a
p
p
li
c
a
ti
o
n
s

P
e
rf
.
c
o
st

R
e
a
c
ti
v
e

R
u
le

b
a
se
d

m
a
th

./
st
a
t.

o
p
ti
m
iz
a
ti
o
n

x
H
S

S
in
g
le

R
e
a
l

[5
7
]

S
P

M
u
lt
i-
ti
e
r
a
p
p
li
c
a
ti
o
n
s

P
e
rf
.
c
o
st

R
e
a
c
ti
v
e

R
u
le

b
a
se
d

m
a
th

./
st
a
t.

o
p
ti
m
iz
a
ti
o
n

H
S

S
in
g
le

E
m
u
la
ti
o
n

[6
2
]

S
P

M
u
lt
i-
ti
e
r
a
p
p
li
c
a
ti
o
n
s

P
e
rf
.
c
o
st

R
e
a
c
ti
v
e
p
ro

a
c
ti
v
e

R
u
le

b
a
se
d

x
V
S

S
in
g
le

R
e
a
l

[4
1
,4

5
,6

4
]

S
P

N
o
S
Q
L

D
B
s

P
e
rf
.

P
ro

a
c
ti
v
e

M
a
ch

.
le
a
rn

.
x

H
S

S
in
g
le

a
R
e
a
l

[5
8
]

S
P

N
o
S
Q
L

D
B
s

P
e
rf
.

P
ro

a
c
ti
v
e

M
a
ch

.
le
a
rn

.
m
a
th

./
st
a
t.

o
p
ti
m
iz
a
ti
o
n

x
H
S

A
R

S
in
g
le

R
e
a
l

[5
3
]

S
P

N
o
S
Q
L

D
B
s

P
e
rf
.

P
ro

a
c
ti
v
e

M
o
d
e
l
ch

e
ck

in
g
m
a
ch

.

le
a
rn

.
m
a
th

./
st
a
t.

o
p
ti
m
iz
a
ti
o
n

x
H
S

S
in
g
le

a
E
m
u
la
ti
o
n

[1
5
]

S
P

N
o
S
Q
L

D
B
s

P
e
rf
.

R
e
a
c
ti
v
e

C
o
n
tr
o
l
th

e
o
ry

m
a
ch

.

le
a
rn

.

x
H
S

S
in
g
le

R
e
a
l

[2
3
]

S
P

N
o
S
Q
L

D
B
s

P
e
rf
.

R
e
a
c
ti
v
e

R
u
le

b
a
se
d

H
S

A
R

S
in
g
le

R
e
a
l

[4
7
]

S
P

N
o
S
Q
L

D
B
s

P
e
rf
.

R
e
a
c
ti
v
e

R
u
le

b
a
se
d
c
o
n
tr
o
l
th

e
o
ry

H
S

S
in
g
le

R
e
a
l

[2
7
]

S
P

N
o
S
Q
L

D
B
s

P
e
rf
.

R
e
a
c
ti
v
e

R
u
le

b
a
se
d

m
a
th

./
st
a
t.

o
p
ti
m
iz
a
ti
o
n

H
S

A
R

S
in
g
le

R
e
a
l

[1
9
]

S
P

S
to

ra
g
e

P
e
rf
.

R
e
a
c
ti
v
e
p
ro

a
c
ti
v
e

R
u
le

b
a
se
d

H
S

S
in
g
le

R
e
a
l

a
M

u
lt
ip
le

p
ro
v
id
e
rs

su
p
p
o
rt
e
d
,
n
o
t
si
m
u
lt
a
n
e
o
u
sl
y

Cloud Elasticity: A Survey 157

applications. Most of the latter proposals support the elastic handling of all three
tiers of a web application (i.e., Web Server, Application Server, Storage Server
tiers), except from [18,32], which handle only the elasticity of the Application
Server tier, and [62,68], which simply target web services. A significant portion
of elasticity proposals targets the NoSQL area. The techniques in this group
are either system-specific (e.g., [23] targets Cassandra, [27] targets HBase, [58]
targets Infinispan, while [47] considers HDFS) or applicable to a larger set of
NoSQL systems, such as Cassandra, HBase, Voldemort and Infinispan [15,41,
45,53,64]. Elasticity in relational databases is considered by [20,31,59]. [20,31]
can be used with any relational database as they do not modify the database
engine, while in [59], the database engine is modified to support live migrations
employing a technique inspired by [30]. Finally, there is a single proposal that is
categorized as Storage [19], where the elasticity handling of storage functionality
in virtual machines is considered, through caching techniques.

3.2 Purpose

All the techniques appearing in Table 1 aim to improve performance. The only
exception is [55], where the elasticity aim is the increased availability through the
utilization of multiple cloud providers. The performance goal can be either fixed
(e.g., in SLAs or stated as user-defined thresholds) or expressed as continuous
monitoring and optimization of the system utility. In such works, the monetary
cost reduction is typically indirectly considered, through the pursue of utilizing as
few resources as possible while maintaining acceptable performance. In [35,56],
the performance goal is coupled with offering Availability guarantees.

Several proposals target financial cost reduction explicitly. More specifically,
[29,36,57] employ cost estimation to scale-in or -out the cloud resources, while
[25] use similar estimates to select between deployment on public or private
cloud infrastructure, and [62] performs a Return on Investment (ROI) analysis
before the actual deployment. Other techniques handle elasticity according to
budget limits. More specifically, [66] prevents scaling if the maximum available
cost is exceeded, [22] enforces an application reconfiguration (i.e. textual server
responses for bandwidth saving) to keep the cost below the budget limit and
[32] offers a budget classification (i.e. metal classification: gold/silver/bronze),
which configures the resource scaling limits. Finally, [18] tries to co-locate several
applications on the same VM to reduce the provisioning cost.

Additionally, there are two works that consider the Energy saving combined
with the Performance purpose. In [50] live migration is employed to set as many
machines to sleep mode as possible, whereas, in [61], VM resources are subject
to dynamic voltage and frequency scaling to save energy.

3.3 Decision Making

Triggering of Decision Making Process. The works are divided into (i)
Reactive, (ii) Proactive and (iii) combined Reactive and Proactive. On the one
hand, Reactive approaches are typically based on the continuous monitoring of

158 A. Naskos et al.

specific metrics and the validation of threshold-based rules. Most commonly,
upon a single threshold violation, the decision making process is triggered. How-
ever, the decision process can be also triggered only after a pre-specified time
period of threshold violations (e.g., [55,57]), or a pre-specified number of violat-
ing measurements (e.g., [21]), to avoid over-reacting. On the other hand, Proac-
tive approaches employ a mechanism to predict the future load variation and/or
the future behavior of the system. However, purely proactive approaches tend
to suffer from the fact that they are not able to cope with sudden workload
spikes. To overcome this concern, works like [17,20,43] adopt a hybrid approach.
In addition, [16,38] propose the utilization of reactive approaches for scaling-out
and proactive approaches for scaling-in. The former is used to allow for quick
adaptations to workload spikes. There are also proposals that utilize reactive
approaches when the proactive mechanism is uncertain about the decision [61],
or when the predictor is not adequately trained to take a proper decision [51,52].
[62] proposes the combination of reactive and proactive techniques, where the
latter is activated on a daily basis. Finally, in [19], the reactive and proactive
approaches are not concurrently activated, but the system can support any of
them separately.

Decision Making Mechanism. In the previous section, we mentioned the
main methodologies used for elasticity decision making. Here, we elaborate on
this issue, describing the application first of single methodologies and then of
hybrid solutions.

However, the corresponding techniques need not be simple. For example, [17]
utilizes a bunch of concurrent prediction models to estimate load and check
for potential future threshold violations. Also, [20] uses a prediction model to
estimate the load for proactive scaling based on specified rules. System modeling
in general enhances the decision policies. In [49], the system is modeled as a queue
of jobs and an elasticity action is triggered upon a job arrival or completion. Two
interesting rule-based approaches that build on non-trivial system models are the
[35], where the system is modeled as an automaton moving to different states
because of rule enforcement, and [25], where a graph model that captures the
impact of elasticity rules on the entire system is adopted. As a final example, in
[39], a fuzzy rule-based approach is followed, where the user specifies rules in the
form “IF the workload is high, AND response-time is slow, THEN add two more
VMs to the existing resources”, without the need of characterizing the “high”
and “slow” values; those values are computed based on information provided by
technical stakeholders.

Mathematical/Statistical Optimization-Based Policies. These techniques model
the elasticity problem as an optimization one. In [32], the optimal scaling strat-
egy is found following a branch-and-bound technique after having performed
sophisticated time-series analysis to predict future external load. In [22], elastic-
ity decision making is reduced to a utility maximization problem amenable to
dynamic programming; this technique employs a queue model and model check-
ing as a pre-processing step to quantify the potential benefits of the employment

Cloud Elasticity: A Survey 159

of different types of algorithms for self-adaptation. The approach in [50] lever-
ages Bernoulli trials to find appropriate VM placing to guide the live migration.
Finally, optimization may refer to system modeling itself that then drives elastic-
ity; for example, [54] uses online profiling and curve fitting to yield a performance
model, which can predict whether the application is going to violate a target.

Machine Learning-Based Policies. Machine learning is commonly used in elas-
ticity decision making. [68] builds a system model in the form of a classifier,
while also clusters workloads in representative groups. Past elasticity decisions
for the same group influence future decisions. [31]’s approach is similar. In [63], a
markov-chain-based prediction model provides estimates that are fed to a multi-
variant classifier in order to classify future states as either normal or anomalous,
and take elasticity actions accordingly. An example of more advanced techniques
is in [41,45,64], where a Q-Learning approach is followed to compute the optimal
action-state values in order to indirectly solve a Markov Decision Model (MDP)
describing the system.

Control Theoretical Policies. Control theory, being a scientific field capable of
providing principled autonomic computing solutions, has been adopted by cer-
tain elasticity policies. As an example, [60] follows a control theoretical approach
that builds on top of a queue modeling representation of the system and also
employs a predictor. Also, in [40], an example of using Kalman filters and feed-
back controllers to drive elasticity is provided. Finally, [16] discusses a controller
scheme that combines proactive and reactive policies. As in other similar works,
the cloud infrastructure is modeled as a queue, while estimators for future exter-
nal load are assumed to be in place.

Hybrid Policies. The afore-mentioned policies correspond to decision modules
that employ one of the specified mechanisms. However, elasticity techniques often
employ several such mechanisms, as described below.

The most common hybrid approach is to combine rules with one of the rest
mechanisms. Rules can effectively extend control theoretical solutions. For exam-
ple, in [47], an integral controller is proposed, which is based on proportional
thresholding to dynamically adjust the upper and lower CPU utilization thresh-
olds used for elasticity decisions. In [18], linear regression is used to predict the
future load, and subsequently, the predicted values are fed into a custom model-
free proportional-derivative controller. The final decisions about the number of
VMs to be added or removed are taken according to a rule-based policy. Rules
can be combined with machine learning techniques as well. A representative of
this hybrid category is [51,52], where three models from the WEKA tool are used
to support the decision making. The first model is a time series forecaster that
estimates the future workload. The second model is an incrementally updateable
Naive Bayes model that learns the relationship between the current workload
and a classification schema of threshold violation, and the third model is also an
updateable Naive Bayes model which estimates the optimal number of VMs.

160 A. Naskos et al.

Another family of hybrid solutions combine rules with some form of optimiza-
tion. In [43], the system is modeled as a closed form queueing network, where
mean value analysis is used to compute the queue lengths, and the response time,
throughput and utilization of the system. Following an iterative optimization tech-
nique based on Binary Search Trees, the technique tries to minimize the number
of VMs needed at each tier without violating performance thresholds. In [57], first
an optimization problem that finds the number of VMs maximizing the applica-
tion profit is solved, before dynamically generating the elasticity rules. [27] first
evaluates a rule to determine if a scaling action is required, and if this is the case,
a variant of a bin-packing problem is solved. [36] also uses rules to detect work-
load changes, and then runs an algorithm to decide on VM additions and removals
at each layer of a multi-tier application, so that the response time of the applica-
tion is below a specified threshold and the deployment cost is minimized. Another
form of combination of mechanisms appears in [38], where a rule-based reactive
technique is used to scale out the resources, while a more elaborate predictive tech-
nique, based on regression models (System Model), is used to scale in. [61] is based
on rules and prediction models and an interesting feature is that it directly tackles
prediction error through an adaptive padding technique.

The last family of hybrid techniques are those that combine machine learn-
ing with either optimization or control theory. In [29], the resource requirements
are continuously estimated according to the expected workload. The workload
is predicted using a polynomial approximation technique and then classified to
a set of workload classes. Then, a two-phase technique runs. First, the opti-
mal VM size (i.e., CPU and RAM amount) and the corresponding throughput
is specified, thus defining the potential need for vertical scaling. In the second
phase, the optimal number of VMs of the specified size is computed, thus defin-
ing the potential need for horizontal scaling. In [58], neural networks are used to
estimate the throughput and response time of the system and then, a controller
solves a constraint optimization problem to determine an optimal resource con-
figuration in terms of number of VMs and data replication degree. In [15], a
feedforward controller is used, which monitors the workload and uses a logistic
regression model to predict whether the workload will cause SLA violations and
react accordingly. This controller is combined with a feedback controller, which
monitors the performance and reacts based on the amount of deviation from the
desired performance specified in the Service Level Objective (SLO). Finally, in
[53], the system behavior for a given external load is clustered in representative
groups. This helps to instantiate descriptive models of horizontal scaling in the
form of Markov Decision Processes, which are optimally solved. A unique feature
of this work is that it employs in parallel model checking to provide probabilistic
guarantees regarding the expected performance of elasticity actions.

3.4 Elastic Action

The big majority of works on elasticity considers only Horizontal Scaling, where
the number of VMs is modified on the fly, e.g., [18,22,45,53,56,64]. There are
also works that utilize only Vertical Scaling, e.g., dynamically configuring the

Cloud Elasticity: A Survey 161

CPU [40] and the RAM and Disk size [62]. We also report a single technique
that performs VM Live Migration [50] and a work that performs Application
Live Migration [31], where only specific databases are migrated, instead of full
VMs. However, there are techniques that combine multiple actions. Horizon-
tal Scaling along with Application Reconfiguration is considered in [23,27,58].
The applied reconfiguration varies between the proposals. More specifically, in
[58], the replication degree is configured dynamically. In [23], the cache size is
dynamically controlled, while [27] can scale the maximum number of data par-
titions per node. [29,37,68] combine Horizontal and Vertical Scaling. From the
techniues that use a fixed number of VMs, [61,63] combine Vertical Scaling and
Live Migration. Horizontal Scaling is also combined with Live Migration [54]
and Application Live Migration [59]. Finally, there are two works that combine
three types of resource elasticity. [20] uses Horizontal Scaling and DB and VM
Live Migration, while [66] uses Horizontal Scaling, Vertical Scaling (i.e. CPU and
RAM configuration) and Application Reconfiguration (i.e., application architec-
tural changes).

3.5 Provider

Most of the works support a Single cloud provider, either public or private.
Some works support more than one provider, however not simultaneously. More
specifically, all of these works are compatible with Amazon-EC2 and also support
Grid5000 (used by [60]), Nimbus-based cloud platform (used by [49]), OpenNeb-
ula (used by [66]), Eucalyptus (used by [38]), DAS-4 (i.e. a multi-cluster system
hosted by universities in the Netherlands used by [32]) and OpenStack (used by
[41,45,64]). Finally, there are works that handle the elasticity between multiple
cloud providers simultaneously, such as [55,56] that are deployed on a variety of
private and public cloud infrastructures.

3.6 Evaluation

As presented in Table 1, most of the works use Real deployments for the evalu-
ation of their proposals. The RUBiS benchmark [11] is used in [35,38,40,54,68],
the TCP-[C/W] [13,36,37,60]. Another popual benchmark is YCSB [24] used in
[15,20,23,41,45,64]. [60] additionally utilizes the Apache Hadoop [1] with the
MRBS benchmark suite [6]. Some works use both TPC and YCSB [27,59] or
both RUBiS and IBM System S [34,61,63]. CloudStone [3] is used in [29,47]; the
latter uses the Olio web 2.0 toolkit [9] of the CloudStone in combination with
the Faban workload driver [4]. MediaWiki [7] with the WikiBench benchmark
[14] is used in [32] and the FIO micro-benchmarking tool [5] is used in [19] in
combination with the USR-1 trace of the MSR traces [8]. The Apache JMeter
[2] is used in [39]. Finally, there are other proposals that utilize custom made
benchmarks like [21,31,43,58].

There are also works that perform evaluation using simulations [16,17,22,51,
52], e.g., utilizing the R statistics suite [10], or OMNeT++ [67]. The simulations
can also encapsulate benchmarks, such as the one in [12]. Finally, [53,57] use

162 A. Naskos et al.

emulations. [57] uses the FIFA 1998 World Cup traces and the Amazon EC2
payment policy, while [53] uses real traces from a Cassandra NoSQL cluster.

3.7 Discussion and Research Challenges

In this survey we examined the Analysis, Planning and Execution aspects of the
state-of-the-art in cloud elasticity. In the Analysis phase, the retrieved measure-
ments are used to examine the current state of the system (e.g., whether it is
under- or over-utilized) and/or estimate the future load variations. In the former
case, a practical approach to determine the current state of the system is to use
threshold-based rules. However, the specification of such rules is not a simple
task, as it depends on the application needs and demands system administra-
tive skills. To overcome this concern, various approaches are proposed, like the
fuzzy rule specification, where the stakeholders knowledge is already analyzed
and stored, allowing the user to define high-level thresholds, which are automat-
ically mapped to concrete threshold-based rules. Other approaches propose the
transformation of the SLAs and SLOs to threshold based rules, utilizing custom
SLA and SLO specification languages and rule conflict solving mechanisms. In
the case of future load prediction, there are numerous approaches, which deal
with the prediction inaccuracies. There are works that attempt to bound the
prediction error, or take inaccuracies into consideration. There are also propos-
als that utilize more than one prediction algorithms implementing mechanisms
to select the most appropriate one based on the current workload.

Knowing the current state of the system and/or the future load variations,
in the Planning phase, the actual elastic decision should be made. However, this
step also hides some difficulties like the decision between the scale-in or scale-
out, the selection of the appropriate elasticity type or the determination of the
degree of scaling. To deal with these decisions, various approaches are used like
pre-specified rules (i.e. the simplest form of planning), utility functions, system
models, prediction mechanisms, machine learning techniques or any combina-
tion of the previous, to obtain the system behavior before the actual decision
enforcement. Each approach has its own drawbacks, as discussed below:

– The usage of pre-specified rules restricts the flexibility of the application, as
the amount and the type of scaling is defined a-priory. To deal with this
concern, dynamic rule specification or rule update has been proposed in the
literature.

– The optimization of a utility function, which contains appropriately selected
and weighted metrics, can lead to an acceptable trade-off between contra-
dicting scaling options, however the specification of such a function demands
special administrative knowledge. To overcome these concerns, fixed utility
functions are proposed, which are generic enough to be applied to many sys-
tems.

– The specification of a system model is not a trivial task as it is difficult to
create a reliable model that maps the input and output variables of the system.
In addition, the system model hinders the flexibility of the elastic mechanism

Cloud Elasticity: A Survey 163

as, after any structural change of the system, the model needs to be rebuilt.
To this end, model generators are proposed, which generate a model without
user interference.

– The approaches that utilize system behavior predictions suffer from predic-
tion inaccuracies. The proposed solution is similar to those mentioned for the
analysis phase.

– A promising approach is the utilization of machine learning, where the elastic
mechanism is trained before its actual deployment. The training phase can
also be applied during the actual deployment, allowing for dynamical train-
ing. However, in the latter case, the mechanism may not able to handle the
elasticity well from the beginning of the deployment. To avoid wrong decisions
that under- or over-provision the system, proposals tend to use a threshold-
based reactive mechanism until the mechanism is considered well-trained and
capable of efficiently handling the elasticity. An interesting related discussion
is also in [28].

In the Execution phase, the actual elastic decision is enforced through the
elastic manager orchestration. The elastic manager is either a standard mecha-
nism provided by the cloud providers as a service or through a remote API (e.g.,
Amazon EC2 Auto Scale service), or an external manager.

Aspects Requiring Further Research. As a final observation, although a
big set of elasticity proposals exists and a considerable amount of them deal with
multiple objectives, no systematic solution for dynamic multi-objective optimiza-
tion under several conflicting objectives, e.g., guaranteeing Pareto optimality, has
been proposed. We believe that this is an interesting direction for future work.
Another interesting direction is to provide frameworks that can combine several
of the solutions that are now isolated. Finally, more research on benchmarks is
needed to better assess the quality of each of the proposals.

4 Summary

This survey aims to classify and provide a concise summary of the several pro-
posals for cloud resource elasticity today. We presented a taxonomy covering
a wide range of aspects, and we discussed details for each of the aspects, and
the main research challenges. Finally, we proposed fields that require further
research.

References

1. Apache hadoop. https://hadoop.apache.org/. Accessed 11 Jun 2015
2. Apache jmeter: Graphical server performance testing tool. http://jmeter.apache.

org/. Accessed 11 Jun 2015
3. Cloudstone. http://parsa.epfl.ch/cloudsuite/web.html. Accessed 11 Jun 2015

https://hadoop.apache.org/
http://jmeter.apache.org/
http://jmeter.apache.org/
http://parsa.epfl.ch/cloudsuite/web.html

164 A. Naskos et al.

4. Faban: Performance workload creation and execution framework. http://faban.
org/. Accessed 11 Jun 2015

5. Fio: A micro-benchmarking tool. http://freshmeat.net/projects/fio. Accessed 11
Jun 2015

6. Hadoop mapreduce dependability, performance benchmarking. http://sardes.
inrialpes.fr/research/mrbs/. Accessed 11 Jun 2015

7. Mediawiki: Web hosting benchmark. http://www.wikibench.eu. Accessed 11 Jun
2015

8. Msr cambridge traces. http://iotta.snia.org/traces/388. Accessed 11 Jun 2015
9. Olio web 2.0 toolkit. http://incubator.apache.org/projects/olio.html. Accessed 11

Jun 2015
10. The r project for statistical computing. http://www.r-project.org. Accessed 11 Jun

2015
11. Rubis: Rice university bidding system. http://rubis.ow2.org. Accessed 11 Jun 2015
12. Specjenterprise benchmark system. https://www.spec.org/jEnterprise2010/.

Accessed 11 Jun 2015
13. Tcp. http://www.tpc.org. Accessed 11 Jun 2015
14. Wikibench: Web hosting benchmark. http://www.wikibench.eu. Accessed 11 Jun

2015
15. Al-Shishtawy, A., Vlassov, V.: Elastman: elasticity manager for elastic key-value

stores in the cloud. In: ACM Cloud and Autonomic Computing Conference, CAC
2013, Miami, FL, USA, 5–9 August 2013, p. 7 (2013)

16. Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adaptive hybrid elasticity controller
for cloud infrastructures. In: 2012 IEEE Network Operations and Management
Symposium (NOMS), pp. 204–212 (2012)

17. Almeida Morais, F., Vilar Brasileiro, F., Vigolvino Lopes, R., Araujo Santos, R.,
Satterfield, W., Rosa, L.: Autoflex: service agnostic auto-scaling framework for
IaaS deployment models. In: 2013 13th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), pp. 42–49 (2013)

18. Ashraf, A., Byholm, B., Porres, I.: Cramp: cost-efficient resource allocation for
multiple web applications with proactive scaling. In: 2012 IEEE 4th International
Conference on Cloud Computing Technology and Science (CloudCom), pp. 581–
586 (2012)

19. Bairavasundaram, L.N., Soundararajan, G., Mathur, V., Voruganti, K., Srinivasan,
K.: Responding rapidly to service level violations using virtual appliances. SIGOPS
Oper. Syst. Rev. 46(3), 32–40 (2012)

20. Barker, S.K., Chi, Y., Hacigümüs, H., Shenoy, P.J., Cecchet, E.: Shuttledb:
database-aware elasticity in the cloud. In: 11th International Conference on Auto-
nomic Computing, ICAC 2014, Philadelphia, PA, USA, 18–20 June 2014, pp. 33–43
(2014)

21. Beernaert, L., Matos, M., Vilaça, R., Oliveira, R.: Automatic elasticity in open-
stack. In: Proceedings of the Workshop on Secure and Dependable Middleware for
Cloud Monitoring and Management, p. 2 (2012)

22. Cámara, J., Moreno, G.A., Garlan, D.: Stochastic game analysis and latency aware-
ness for proactive self-adaptation. In: SEAMS, pp. 155–164 (2014)

23. Chalkiadaki, M., Magoutis, K.: Managing service performance in the cassandra
distributed storage system. In: IEEE 5th International Conference on Cloud Com-
puting Technology and Science, CloudCom 2013, Bristol, UK, 2–5 December 2013,
vol. 1, pp. 64–71 (2013)

http://faban.org/
http://faban.org/
http://freshmeat.net/projects/fio
http://sardes.inrialpes.fr/research/mrbs/
http://sardes.inrialpes.fr/research/mrbs/
http://www.wikibench.eu
http://iotta.snia.org/traces/388
http://incubator.apache.org/projects/olio.html
http://www.r-project.org
http://rubis.ow2.org
https://www.spec.org/jEnterprise2010/
http://www.tpc.org
http://www.wikibench.eu

Cloud Elasticity: A Survey 165

24. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, pp. 143–154 (2010)

25. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: On controlling cloud services
elasticity in heterogeneous clouds. In: 2014 IEEE/ACM 7th International Confer-
ence on Utility and Cloud Computing (UCC), pp. 573–578 (2014)

26. Coutinho, E.F., de Carvalho Sousa, F.R., Rego, P.A.L., Gomes, D.G., de Souza,
J.N.: Elasticity in cloud computing: a survey. Ann. Telecommun.-Annales des
TéléCommuni 70, 289–309 (2015)

27. Cruz, F., Maia, F., Matos, M., Oliveira, R., Paulo, J., Pereira, J., Vilaça, R.: Met:
workload aware elasticity for NoSQL. In: Eighth Eurosys Conference 2013, EuroSys
2013, Prague, Czech Republic, 14–17 April 2013, pp. 183–196 (2013)

28. Dutreilh, X., Rivierre, N., Moreau, A., Malenfant, J., Truck, I.: From data center
resource allocation to control theory and back. In: IEEE CLOUD, pp. 410–417
(2010)

29. Dutta, S., Gera, S., Verma, A., Viswanathan, B.: Smartscale: automatic application
scaling in enterprise clouds. In: IEEE CLOUD. pp. 221–228 (2012)

30. Elmore, A.J., Das, S., Agrawal, D., El Abbadi, A.: Zephyr: live migration in shared
nothing databases for elastic cloud platforms. In: Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data, pp. 301–312 (2011)

31. Elmore, A.J., Das, S., Pucher, A., Agrawal, D., El Abbadi, A., Yan, X.: Character-
izing tenant behavior for placement and crisis mitigation in multitenant DBMSS,
pp. 517–528 (2013)

32. Fernandez, H., Pierre, G., Kielmann, T.: Autoscaling web applications in hetero-
geneous cloud infrastructures. In: 2014 IEEE International Conference on Cloud
Engineering, pp. 195–204 (2014)

33. Galante, G., de Bona, L.C.E.: A survey on cloud computing elasticity. In: 2012
IEEE Fifth International Conference on Utility and Cloud Computing (UCC), pp.
263–270 (2012)

34. Gedik, B., Andrade, H., Wu, K.L., Yu, P.S., Doo, M.: SPADE: the system s declar-
ative stream processing engine. In: Proceedings of the 2008 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 1123–1134 (2008)

35. Gueye, S.M.K., Palma, N.D., Rutten, É., Tchana, A., Berthier, N.: Coordinating
self-sizing and self-repair managers for multi-tier systems. Future Gener. Comp.
Syst. 35, 14–26 (2014)

36. Han, R., Ghanem, M., Guo, L., Guo, Y., Osmond, M.: Enabling cost-aware and
adaptive elasticity of multi-tier cloud applications. Future Gener. Comp. Syst. 32,
82–98 (2014)

37. Han, R., Guo, L., Ghanem, M.M., Guo, Y.: Lightweight resource scaling for
cloud applications. In: 2012 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pp. 644–651 (2012)

38. Iqbal, W., Dailey, M.N., Carrera, D., Janecek, P.: Adaptive resource provisioning
for read intensive multi-tier applications in the cloud. Future Gener. Comput. Syst.
27(6), 871–879 (2011)

39. Jamshidi, P., Ahmad, A., Pahl, C.: Autonomic resource provisioning for cloud-
based software. In: Proceedings of the 9th International Symposium on Software
Engineering for Adaptive and Self-managing Systems, SEAMS 2014, Hyderabad,
India, 2–3 June 2014, pp. 95–104 (2014)

166 A. Naskos et al.

40. Kalyvianaki, E., Charalambous, T., Hand, S.: Self-adaptive and self-configured
CPU resource provisioning for virtualized servers using Kalman filters. In: Pro-
ceedings of the 6th International Conference on Autonomic Computing, ICAC
2009, 15–19 June 2009, Barcelona, Spain, pp. 117–126 (2009)

41. Kassela, E., Boumpouka, C., Konstantinou, I., Koziris, N.: Automated workload-
aware elasticity of NoSQL clusters in the cloud. In: 2014 IEEE International Con-
ference on Big Data, Big Data 2014, Washington, DC, USA, 27–30 October 2014,
pp. 195–200 (2014)

42. Katukoori, V.K.: Standardizing Availability Definition. University of New Orleans,
New orleans (1995)

43. Kaur, P.D., Chana, I.: A resource elasticity framework for QOS-aware execution
of cloud applications. Future Gener. Comp. Syst. 37, 14–25 (2014)

44. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput.
36(1), 41–50 (2003)

45. Konstantinou, I., Angelou, E., Tsoumakos, D., Boumpouka, C., Koziris, N.,
Sioutas, S.: Tiramola: elastic NoSQL provisioning through a cloud management
platform. In: Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, pp. 725–728. ACM (2012)

46. Li, Z., Zhang, H., Obrien, L., Cai, R., Flint, S.: On evaluating commercial cloud
services: a systematic review. J. Syst. Softw. 86, 2371–2393 (2013)

47. Lim, H.C., Babu, S., Chase, J.S.: Automated control for elastic storage. In: Pro-
ceedings of the 7th International Conference on Autonomic Computing, pp. 1–10
(2010)

48. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling tech-
niques for elastic applications in cloud environments. J. Grid Comput. 12(4), 559–
592 (2014)

49. Marshall, P., Keahey, K., Freeman, T.: Elastic site: using clouds to elastically
extend site resources. In: CCGRID, pp. 43–52 (2010)

50. Mastroianni, C., Meo, M., Papuzzo, G.: Probabilistic consolidation of virtual
machines in self-organizing cloud data centers. IEEE Trans. Cloud Comput. 1(2),
215–228 (2013)

51. Moore, L., Bean, K., Ellahi, T.: A coordinated reactive and predictive approach
to cloud elasticity. In: The Fourth International Conference on Cloud Computing,
GRIDs, and Virtualization, CLOUD COMPUTING 2013, pp. 87–92 (2013)

52. Moore, L.R., Bean, K., Ellahi, T.: Transforming reactive auto-scaling into proactive
auto-scaling. In: Proceedings of the 3rd International Workshop on Cloud Data and
Platforms, pp. 7–12 (2013)

53. Naskos, A., Stachtiari, E., Gounaris, A., Katsaros, P., Tsoumakos, D., Konstanti-
nou, I., Sioutas, S.: Dependable horizontal scaling based on probabilistic model
checking. In: CCGrid (2015)

54. Nguyen, H., Shen, Z., Gu, X., Subbiah, S., Wilkes, J.: AGILE: elastic distributed
resource scaling for infrastructure-as-a-service. In: 10th International Conference
on Autonomic Computing, ICAC 2013, San Jose, CA, USA, 26–28 June 2013, pp.
69–82 (2013)

55. Paraiso, F., Merle, P., Seinturier, L.: Managing elasticity across multiple cloud
providers. In: Proceedings of the 2013 International Workshop on Multi-cloud
Applications and Federated Clouds, pp. 53–60 (2013)

56. Paraiso, F., Merle, P., Seinturier, L.: soCloud: a service-oriented component-based
PaaS for managing portability, provisioning, elasticity, and high availability across
multiple clouds. CoRR abs/1407.1963 (2014)

http://www.arxiv.org/abs/1407.1963

Cloud Elasticity: A Survey 167

57. Perez-Palacin, D., Mirandola, R., Calinescu, R.: Synthesis of adaptation plans for
cloud infrastructure with hybrid cost models. In: 2014 40th EUROMICRO Con-
ference on Software Engineering and Advanced Applications, Verona, Italy, 27–29
August 2014, pp. 443–450 (2014)

58. di Sanzo, P., Rughetti, D., Ciciani, B., Quaglia, F.: Auto-tuning of cloud-based
in-memory transactional data grids via machine learning. In: Second Symposium
on Network Cloud Computing and Applications, NCCA 2012, London, UK, 3–4
December 2012, pp. 9–16 (2012)

59. Serafini, M., Mansour, E., Aboulnaga, A., Salem, K., Rafiq, T., Minhas, U.F.:
Accordion: elastic scalability for database systems supporting distributed transac-
tions. PVLDB 7(12), 1035–1046 (2014)

60. Serrano, D., Bouchenak, S., Kouki, Y., Ledoux, T., Lejeune, J., Sopena, J., Arantes,
L., Sens, P.: Towards QOS-oriented sla guarantees for online cloud services. In: 2013
13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), pp. 50–57 (2013)

61. Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: Cloudscale: elastic resource scaling for
multi-tenant cloud systems. In: Proceedings of the 2nd ACM Symposium on Cloud
Computing, pp. 5:1–5:14 (2011)

62. da Silva Dias, A., Nakamura, L.H.V., Estrella, J.C., Santana, R.H.C., Santana,
M.J.: Providing IaaS resources automatically through prediction and monitoring
approaches. In: IEEE Symposium on Computers and Communications, ISCC 2014,
Funchal, Madeira, Portugal, 23–26 June 2014, pp. 1–7 (2014)

63. Tan, Y., Nguyen, H., Shen, Z., Gu, X., Venkatramani, C., Rajan, D.: Prepare:
predictive performance anomaly prevention for virtualized cloud systems. In: 2012
IEEE 32nd International Conference on Distributed Computing Systems (ICDCS),
pp. 285–294 (2012)

64. Tsoumakos, D., Konstantinou, I., Boumpouka, C., Sioutas, S., Koziris, N.: Auto-
mated, elastic resource provisioning for NoSQL clusters using tiramola. In: 2013
13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), pp. 34–41 (2013)

65. Uhlig, R., Neiger, G., Rodgers, D., Santoni, A.L., Martins, F., Anderson, A.V.,
Bennett, S.M., Kägi, A., Leung, F.H., Smith, L.: Intel virtualization technology.
Computer 38(5), 48–56 (2005)

66. Vaquero, L.M., Morán, D., Galán, F., Alcaraz-Calero, J.M.: Towards runtime
reconfiguration of application control policies in the cloud. J. Netw. Syst. Man-
age. 20(4), 489–512 (2012)

67. Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment.
In: Proceedings of the 1st International Conference on Simulation Tools and Tech-
niques for Communications, Networks and Systems & Workshops, p. 60. ICST
(2008)

68. Vasic, N., Novakovic, D.M., Miucin, S., Kostic, D., Bianchini, R.: Dejavu: accel-
erating resource allocation in virtualized environments. In: ASPLOS, pp. 423–436
(2012)

A Survey on Software Tools and Architectures
for Deploying Multimedia-Aware Cloud Applications

Christos Tselios(✉) and George Tsolis

Citrix - Bytemobile, Patras, Greece
{christos.tselios,george.tsolis}@citrix.com

Abstract. Multimedia-aware cloud is a novel cloud paradigm which addresses
the overall framework needed for cloud infrastructure to effectively process
multimedia services in a distributed fashion, provides Quality of Experience
(QoE) provisioning for a broad spectrum of multimedia applications and facili‐
tates all sorts of parallel processing schemes and adaptation methods for various
types of end-user devices. The main purpose of this paper is to present some of
the dominant platforms, software packages and application delivery tools and
architectures that might help a multimedia-related application to be easily
deployed, maintained and scale-up with as little limitations to performance and
end-user QoE as possible.

Keywords: Cloud computing · Virtualization · Multimedia-aware cloud ·
Hypervisors · Containers · IaaS · PaaS · SaaS

1 Introduction

Cloud computing is probably one of the most successful computing paradigms ever to
be introduced in computer science. Since user liberation from computer hardware always
seemed like a groundbreaking idea, the notion of physical freedom in the virtual domain
that this novel ecosystem of hardware and software resources introduced attracted a
significant number of researchers from both industry and academia.

According to [1] cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources such
as networks, servers, storage, applications, and services that can be rapidly provisioned
and released with minimal management effort or service provider interaction. Such a
sophisticated and innovative computational system has revolutionized the imminent way
that users interact with their personal devices by reducing the overall client side
complexity and the hardware requirements it demanded.

One certain type of cloud-based services, which has strongly benefited by the growth
and vast improvement of cloud computing, is no other than multimedia-related appli‐
cations. Paired with the introduction of Web 2.0 and facilitated by the technological
leaps that occurred in the last years, multimedia services appeared to have almost domi‐
nated the Internet [2]. Multimedia processing such as image and video retrieval typically
requires intensive computational resources especially when similar content needs to be

© Springer International Publishing Switzerland 2016
I. Karydis et al. (Eds.): ALGOCLOUD 2015, LNCS 9511, pp. 168–180, 2016.
DOI: 10.1007/978-3-319-29919-8_13

simultaneously delivered to a substantial number of Internet or mobile users. Having
this intensive computation executed in the power-constrained mobile devices users own,
might prove to be quite an error-prone approach. By using cloud-based multimedia
services, consumers do not need to pay for costly computing devices but simply have
all sorts of multimedia applications processed, rendered and stored on powerful cloud
servers and pay for the utilized resources instead [3].

The overall growth of cloud computing along with the constant demand for better
multimedia services and applications, lead to a plethora of architectural and software
solutions aiming to dominate this exponentially growing market. Several companies
offer series of products throughout the architectural spectrum of the cloud, from Hyper‐
visor and Container-based virtualization technologies to overall Platform-as-a- Service
(PaaS) and Infrastructure-as-a-Service (IaaS) products. This paper aims to present
certain solutions in each of the aforementioned categories, specifically those available
by key industry players and opensource consortiums. Based on the overall presentation,
the reader will acquire an overview of the overall ecosystem, the available proprietary
and opensource components for design and deployment of a multimedia-oriented cloud
service along with some significant hints that might ease a potential architectural deci‐
sion in the first place.

The rest of the paper is organized as follows. Section 2 contains the available Hyper‐
visor and Container-based virtualization solutions that mostly facilitate an in-house
private-hosted multimedia cloud. Section 3 describes certain PaaS architectures, which
natively support multimedia applications, while Sect. 4 gives an insight on similar IaaS
solutions that are considered multimedia-friendly. Finally Sect. 5 summarizes and
concludes this survey.

2 Hypervisor and Container-Based Virtualization

A Hypervisor is a dedicated software or firmware component that is able to virtualize
system resources by utilizing highly efficient and sophisticated algorithms, thus allowing
multiple operating systems running on different Virtual Machines (VMs) to share a
single hardware host [4]. The hypervisor is actually in charge of all available resources,
which are allocated accordingly, making sure that all VMs operate independently
without disrupting each other.

Container-based Virtualization is a server virtualization method in which the virtu‐
alization layer runs as an application within the operating system allowing the kernel to
support several completely functional yet totally isolated user space instances called
guests. In this approach guests share hardware resources in a more direct way without
having the overhead of installing an operating system in each one. Performance is
significantly improved since hardware calls are handled by a single operating system
while guests are not subjected to any short of software emulation. In addition, container-
based virtualization implementations capable of live migration can also be used for
dynamic load balancing inside a cluster. The major drawback of this approach is the
diminished flexibility since all guests need to have identical kernels to the host.

A Survey on Software Tools and Architectures 169

Three of the most significant hypervisor examples are Xen, VMware ESXi and
Kernel-based Virtual Machine (KVM) while the most popular Container-based virtu‐
alization schemas and management software are Linux Containers, Docker, Rocket,
Kubernetes and Mesos.

2.1 Xen

Xen [5, 6] is an open-source hypervisor consisted by a small software layer on top of
the physical hardware that provides all necessary services for allowing multiple oper‐
ating systems to be concurrently executed on the same underlying hardware. It intro‐
duces the notion of separate domains, which are VMs build on top of the hypervisor
itself. The most privileged of those VMs with direct access to hardware, called dom0
(domain zero), is created first and is used to initiate management tasks (i.e. create,
discard, migrate, save, restore) and allowing access to I/O devices for all other VMs.
One of the main advantages of Xen-based virtual machines is live migration between
physical hosts without any availability loss or service interruption. During live migration
Xen copies VM memory to the destination node and executes a certain synchronization
process thus providing an illusion of seamless migration. Such an attribute might
strongly benefit Multimedia clouds, which demand constant transformation and high
availability under stress. Many recent enhancements of Xen focus in the area of GPU
support, implemented via VGA pass-through [40], providing opportunities of leveraging
graphics acceleration in multimedia (transcoding) applications.

2.2 VMware ESXi

VMware ESXi [37] is an enterprise-class hypervisor developed by WMware for
deploying and serving virtual computers. It is categorized as type-1 hypervisor meaning
that it is able to operate on bare metal infrastructure and includes all necessary compo‐
nents to do so, such as modified microkernel, known as vmkernel which directly handles
CPU and memory utilization. Access to other hardware resources such as network and
storage devices is enabled through specific modules most of which derived from modi‐
fied versions of the same pieces of code used in the official Linux kernel. For facilitating
the overall interface connection to all modules ESXi uses the vmklinux module, an
intermediate emulation layer with direct access to the vmkernel itself. One of the main
features of ESXi bare-metal hypervisor is its significantly small footprint, which only
reveals a very small attack surface for malware and over-the-network threats, thus
improving reliability and security.

2.3 Kernel-Based Virtual Machine

KVM is a free, open-source virtualization solution, which enables advanced hypervisor
attributes on the Linux kernel. It consists of a loadable kernel module, kvm.ko, which
facilitates the core virtualization infrastructure and a processor-specific module kvm-
intel.ko or kvm-am.ko for Intel and AMD processors respectively [7]. Upon loading the
aforementioned kernel modules, KVM converts Linux kernel into a bare metal

170 C. Tselios and G. Tsolis

hypervisor and leverages the advanced features of modern hardware, thus delivering
unsurpassed performance levels [8].

2.4 Linux Container

Linux Container (LXC) is an operating-system-level virtualization environment, which
allows a single Linux host to deploy and control multiple isolated Linux containers [9].
It is based on native kernel support for isolated namespaces along with cgroups, a kernel
feature that handles resource usage for a collection of processes enabling resource limi‐
tation, prioritization, accountability and control. In particular, cgroups is designed to
cooperate with the kernel in order to handle the CPU, memory, block I/O and networking
demands of each process separately thus ensuring the aforementioned isolation of an
overall application, including aspects such as process trees (through a separate process
identifier allocation scheme), networking parameters, user IDs and even mounted file
systems. In this way the container is able to execute native instructions to the whole
spectrum of hardware resources without any special interpretation mechanism.

2.5 Docker

Docker [10, 11] is an open-source project that uses a custom container type to automate
application deployment. Once heavily dependent not only to kernel virtualization capa‐
bilities but to cgroups and namespaces as well, Docker evolved recently to a more inde‐
pendent solution after introducing the libcontainer library. Using Docker, a hardware/
platform-agnostic element as a universal method of container creation and management,
the creation of highly distributed and lightweight systems which might operate on both
localhost and cloud is going to be significantly more simple, allowing scaling up to be
fast and precise [13], exactly the type of service a multimedia cloud success depends
upon.

2.6 Rocket

Rocket (abbreviated as rkt) is a container runtime, or in order to be more precise, a
command line interface (CLI) for running application containers in Linux [12]. Rocket
is designed to be composable, fast and secure, currently offering integration with init
systems such as systemd and upstart, compatibility with existing container software
(such as Docker) and some advanced network configuration plugins along with KVM-
based swappable execution engines. Rocket appears to have certain security enhance‐
ments over Docker since each container is launched independently, while in the later
the parent process of all container process is the Docker daemon itself [13]. Therefore,
for providing one additional level of security in all applications deployed in multimedia
clouds, this container type seems to be marginally prevailing.

A Survey on Software Tools and Architectures 171

2.7 Kubernetes

Kubernetes [14] is an open-source system for managing containerized applications
across multiple hosts in a cluster, which includes certain mechanisms for facilitating
application deployment, scaling, scheduling and maintenance [15]. One of its main
features is the introduction of Pods, defined as a collocated group of applications
connected by a common context. This element, that also defines the smallest deployable
unit that can be created, scheduled and managed, is a conjunction of several namespaces
all of them having access to shared resources. Once Pods are created, the system contin‐
uously monitors their health as well as the state of the machine they are operating on. If
a failure is detected, the system utilizes an API object caller Replication Controller,
which automatically creates new Pods on a healthy machine. The replicated set of Pods
might constitute an entire application, a micro-service or one layer in a multi-tier appli‐
cation [15]. Such level of granularity is ideal for multimedia clouds in order to obtain a
high level of end user Quality of Experience by introducing all necessary services for
network monitoring, transmission control and error correction that ensure seamless
media delivery under complex network conditions.

2.8 Mesos

Mesos [16] is an open-source cluster management solution, which provides efficient
resource isolation and sharing across distributed applications. According to [17] the
main intention of the platform is to distribute a scalable and resilient core and define a
minimal interface, which would allow cross-framework asset handling. A key charac‐
teristic of Mesos implementation is its ability to push control of task scheduling and
execution to cooperating functions and entities. This strategy is considered crucial for
allowing frameworks operating on top of it to implement diverse approaches to various
cluster issues while in the same time Mesos retain its scalability and robustness by
minimizing the rate of changes in code required for the system to remain up-to-date.
Mesos uses a two-level scheduling mechanism where resource offers are made to frame‐
works (applications that run on top of Mesos). The Mesos master node decides how
many resources to offer on each framework, while each framework determines the
resources it accepts and what application to execute on those resources. This method of
resource allocation allows near-optimal data locality when sharing a cluster of nodes
amongst diverse frameworks [18].

3 Platform-as-a-Service Media Cloud Solutions

One of the major models for delivering cloud computing services is Platform-as-a-
Service (PaaS), in which providers deliver a cloud-hosted virtual development envi‐
ronment along with the necessary solution stack, allowing customers to develop, run
and manage applications without the complexity of building, configuring and main‐
taining the infrastructure typically associated with application development and
launching. PaaS simply encapsulates a software layer and provides it as a service,
making it usable as a solid foundation for higher-level service implementation [3]. This

172 C. Tselios and G. Tsolis

approach greatly benefits the overall design of Multimedia cloud since all related appli‐
cations can be deployed easier, faster and with less layers of fine-tuning from the devel‐
oper point of view. There are several PaaS solutions tailored for multimedia application
deployment with the most suitable to be presented in the sections below.

3.1 Amazon CloudFront

Amazon CloudFront [19] is a Content Delivery Network (CDN) currently residing
within the Amazon Web Services (AWS) framework [23], offering solutions via
programmable API for video streaming, website acceleration, content download and
traffic logging. Unlike other CDN platforms, CloudFront does not require customers to
sign long-term or monthly usage contract but operates on a pay-as-you-go basis. In
addition, it provides benefits to users with more predictable bandwidth usage given the
fact that they agree on committing to certain delivery volumes per time unit. Although
the core functionality of CloudFront is optimized to operate in parallel with other AWS
services such as Amazon Elastic Compute Cloud (EC2) [20], Elastic Load Balancing
[21] and S3 storage [22], customers are able to use it configured with services located
outside the Amazon ecosystem, even inside private datacenters.

3.2 Google Application Engine

Google Application Engine [24] (often abbreviated as App Engine) is a PaaS offering
that allows developers to build, execute and maintain applications on Google-managed
infrastructure. Fully compliant to the PaaS model, App Engine restricts users from
accessing the underlying datacenter, only providing a secure, sandboxed environment
along with the necessary options for scaling-up and request distribution in order to meet
all sorts of traffic demands. Compared to other PaaS solutions, App Engine provides
more infrastructures for developers to write scalable applications, however it allows
read-only access to the file system and can only execute pieces of code called from an
HTTP request.

3.3 Microsoft Azure Media Services

Microsoft Azure Media Services (AMS) [25] is an extensive cloud-based platform that
enables developers to build scalable media management and delivery applications. It is
mainly based on REST APIs that facilitate upload, encode, store and package video or
audio content in a secure way for live streaming and on demand delivery to a wide set
of client equipment. When it comes to live and On-demand streaming, AMS allows
scalable streaming for any size audience, just-in-time packaging using a variety of
protocols (i.e. HTTP Live Streaming – HLS and MPEG-DASH), direct integration with
Azure CDN for automatic provisioning and full cloud digital video recorder (DVR)
workflow capabilities. However, AMS maintains its end-to-end proprietary nature,
somehow discouraging adoption from low budget researchers and academic partners.
Microsoft recently offered limited platform access to startups for free [26], but the whole
spectrum of services remains relatively expensive for non-enterprise users.

A Survey on Software Tools and Architectures 173

3.4 OpenShift

OpenShift [27] is an open hybrid cloud service solution by Red Hat, based on the overall
software platform currently open-sourced under the name OpenShift Origin [28]. One
of the most interesting features of OpenShift solution ecosystem is automated provi‐
sioning and systems management inside the application platform stack. This enhances
application scalability rendering them capable of meeting the growing user and feature
demand much easier. Currently OpenShift seems to be an extremely stable and robust
platform, however the need for constant improvement still persists. In the upcoming
version of OpenShift Origin, OpenShift 3, an architecture re-design is imminent,
providing support for Docker containers, the Kubernetes container management system
[14] and a series of new extensions to accelerate application development and deploy‐
ment. In addition, the concept of an application as a separate object is removed in favor
of more flexible composition of “services”, allowing two web containers to reuse a
database or expose a database directly to the edge of the network. This new attribute
will hugely benefit multimedia cloud since applications not only will be executed faster
but also become less resource demanding in terms of computational speed.

3.5 CloudFoundry

CloudFoundry is an open source cloud computing PaaS solution mainly focused not
only on delivering applications but also provide continuous integration maintenance and
support. It is often described as the industry’s open PaaS, provides a wide choice of
clouds, frameworks and application services and by being open source attracts a broad
community of researchers and contributors. When an application is deployed to Cloud‐
Foundry, an image is created for it and stored locally. This image is then automatically
deployed to a special container called Warden for constant operation, which is deployed
inside a VM. Since an identical procedure is executed for all applications, the system
needs an internal controller entity to allocate resources for spinning up both VMs and
containers. This internal controller called BOSH [29], was developed as an independent
project to provision and deploy software over hundreds of VMs, is particularly well
suited for large distributed systems and can also be used to deploy almost all sorts of
software. This kind of scalability makes the particular solution attractive for multimedia
cloud deployment since BOSH ensures VM functionality and also a dedicated load-
balancing router is available for routing incoming requests to the correct application, in
particular to one of the containers where the application is operating.

3.6 IBM Bluemix

IBM Bluemix [30] is an open-standard, PaaS solution for building, running and
managing applications. It provides mobile and web developers access to enterprise-level
software tools for integration and security. The platform is designed to host scalable,
resilient apps and application artifacts that can both scale to meet all needs, and remain
highly available and quick to recover from problems. This can be achieved by a basic
component separation to those that track the state of interactions (stateful) and those that

174 C. Tselios and G. Tsolis

do not (stateless). In this way moving apps flexibly when needed to achieve scalability
and resiliency becomes seamless and efficient thus avoiding service interaction. In
general, Bluemix solution offers tailor-made cloud deployments by extending Cloud‐
Foundry technology, Docker container principals and OpenStack functionality, in an
IBM-orchestrated environment where all instances are centrally managed. When it
comes to facilitating multimedia cloud, IBM Bluemix uses a third-party solution, called
Ustream [31] to provide online secure video streaming and broadcasting services.

4 Infrastructure-as-a-ServiceMedia Cloud Architectures

Infrastructure-as-a-Service (IaaS) is the cloud model that clearly demonstrates the
difference between traditional IT approach and the cloud-based infrastructure service [1].
The consumer has the capability to provision processing, storage, networks and other
fundamental computing resources, being able to deploy and run arbitrary software,
including operating systems and applications. It allows consumers to tailor their require‐
ments at a more granular level can also deliver basic or complex capabilities as a service
over the Internet, therefore enabling pooling and sharing of hardware resources, such as
servers or storage as well as peripheral devices like firewalls and routers [3]. All modern
implementations of IaaS model that are presented in this section are generally consisted by
a series of independent yet cooperating sub-modules, each with a specific role in the
overall architecture. This modular approach not only facilitates constant module improve‐
ment in a parallel way but also renders new feature introduction easier and much more agile.

4.1 OpenStack

OpenStack [32] is a cloud operating system that controls large pools of compute, storage
and networking resources throughout a datacenter, all managed over a dashboard that
gives administrators total control while empowering all connected users to provision
resources through a web interface. The overall system is consisted of mainly three sepa‐
rate modules, Compute, Networking and Storage, which are all accessible via the Open‐
Stack Dashboard and over dedicated APIs, thus allowing ad-hoc system reconfiguration
and resource allocation. All OpenStack modules have certain legacy codenames marking
the original project they derived from.

Compute. Compute module (codename Nova) is a cloud computing fabric controller
implemented in Python, designed to manage and automate pools of computer resources.
It is designed to scale horizontally and has the ability to work with all sorts of hardware
setups, from bare metal to high performance computing configurations and the majority
of the available virtualization and container technologies, such as KVM, Xen and LXC
for minimal overhead and better performance.

Networking. Networking module (codename Neutron) provides pluggable, scalable,
API-driven network and IP management and ensures that networking would never
become a limiting factor or bottleneck in a constantly increasing environment where
number of nodes, routing configurations and security rules may quickly escalate to over

A Survey on Software Tools and Architectures 175

six-figure numbers. In such an environment traditional network management techniques
fall short on providing a truly scalable and automated method of control, constantly
supporting user’s ever-growing expectation for flexibility with quicker provisioning.
Neutron supports floating IPs that enable dynamic traffic rerouting, load balancing
features, software-defined-networking (SDN) technology like OpenFlow [33] and a vast
extension framework so that third-party network services can be seamlessly deployed
and managed.

Storage. Storage module (codenames Swift - Cinder) is a scalable redundant storage
system. Provided that many organizations now have a variety of storage needs with
certain requirements for cost and performance, Swift supports both Object and Block
storage. Object Storage (Swift) is not a traditional file system, but rather a distributed
storage system for static data such as virtual machine images, photo storage, email
storage, backups and archives. Having no central “brain” or master point of control
provides greater scalability, redundancy and durability. It provides a fully distributed,
API-accessible storage platform that can be integrated directly into applications or used
for backup, archiving and data retention, rendering it an excellent solution for cost-
effective, scale-out storage demands. Block Storage (Cinder) allows block devices to be
exposed and connected to compute instances for expanded storage, better performance
and integration with enterprise storage platforms. It is therefore better suited for
performance sensitive scenarios such as database storage, expandable file systems, or
providing a server with access to raw block level storage.

Dashboard. OpenStack Dashboard (codename Horizon) is the main graphical inter‐
face for accessing, provisioning and automating cloud-based resources. It provides an
extensible design allowing third-party service integration and monitoring. Dashboard
also allows branding for enterprise users and commercial vendors and is labeled as the
most user-friendly method of OpenStack administration.

4.2 Apache CloudStack

Apache CloudStack [34] is considered one of the most technologically advanced open-
source IaaS platforms, designed to manage and orchestrate pools of storage, network
and computational resources. It works with a variety of hypervisors and hypervisor-like
technologies such as KVM, Xen, VMware vSphere, LXC and bare-metal installation.
By using CloudStack it is possible to setup an on-demand elastic cloud computing
service and allow resource provisioning from administrators and end-users. The plat‐
form is able of managing a large amount of physical servers even when they are installed
on geographically distributed datacenters, automatically configure network and storage
settings for all deployments, all via a dedicated graphical user interface and the necessary
REST-like API support. These characteristics encapsulate services such as VM template
management and maintenance, routing, firewalling Virtual Private Networking (VPN),
storage access and storage replication. In addition, CloudStack offers a number of solu‐
tions for availability increase, for instance a multi-node installation of the main manage‐
ment server over load-balanced infrastructure and horizontally scalable VM initiation
capabilities. Last but not least, it provides an Amazon EC2 API translation layer to

176 C. Tselios and G. Tsolis

permit common EC2 tools utilization in a CloudStack-based deployment, a feature that
greatly enhances cloud interoperability.

The basic deployment architecture of CloudStack involves two major components:
the Management Server and the Cloud Infrastructure. In a simplistic approach, one might
describe the Management Server as the orchestration entity of the overall setup, which
it is possible to operate from a single node and the Cloud Infrastructure as the whole set
of resources that are going to be divided for application usage over the particular cloud.
However, since CloudStack-based IaaS solutions offer a tremendous amount of features,
this simplistic approach somehow fails to describe the whole spectrum of possibilities
that such a deployment is capable of, especially for multimedia cloud services and
applications.

4.3 VMware vCenter Server

VMware vCenter Server [35] provides a centralized and extensive platform for
managing virtual infrastructure implemented upon the core virtualization solution
provided by VMware, vSphere [36]. Using vCenter Server, administrators are able to
obtain simple and automated control over the virtual environment thus confidently
deliver infrastructure. vSphere, the underlying virtualization layer which encapsulates
ESXi hypervisor [37], operating between vCenter and bare metal, appears to be the basic
element towards building an overall IaaS platform, however it is the advanced and highly
proactive automated management features delivered by the vCenter that allow best-
practice, end-to-end workflows to be implemented. Constantly delivering business-crit‐
ical SLAs require heavy usage of the whole spectrum of the automated management
features provided by vCenter, such as distributed resource scheduling, high availability
practices and fault-tolerant operation. In addition, vCenter supports a variety of APIs,
which allow integration of physical and virtual management tools for maximum flexi‐
bility. Certain key features of paramount importance, especially when deploying a
multimedia cloud service, are vCenter’s

• Centralized Control and Visibility, where all essential functions of the platform
can be managed using single-sign on in a web client scheme.

• Multi-hypervisor Management, where simplified and integrated management of
different hypervisor types is supported.

• Dynamic Resource Allocation, where utilization across resource pools is constantly
monitored and all available resources are redistributed amongst VMs, according to
predefined rules based on operational needs and changing priorities.

Despite all the excellent features that VMware offers in the vCenter Server suite, the
proprietary nature along with the closed-garden mentality the company embraces
renders this substantial software solution strictly enterprise-oriented.

4.4 Eucalyptus

Eucalyptus [38] is an open source software platform for building AWS-compatible
private and hybrid clouds. Until recently the platform was marketed by the company

A Survey on Software Tools and Architectures 177

Eucalyptus Systems, until its later acquisition by Hewlett-Packard (HP) [39] and the
product rebrand to HP Helion Eucalyptus. Eucalyptus’ key objective is leveraging the
existing hardware infrastructure in order to create a self-service private cloud within a
company’s premises. IaaS features and services are delivered by abstracting the avail‐
able yet heterogeneous computational, networking and storage resources, thus creating
an elastic resource pool that can dynamically scale up or down depending on the overall
workload demands. In addition, after establishing a partnership with AWS, Eucalyptus
maintains a high level of Amazon API compatibility, empowering users to shift work‐
loads seamlessly over the two environments, public and private. The benefits span, from
increased organizational agility and enhanced cloud security to less expensive infra‐
structure utilization, making Eucalyptus a popular solution amongst content providers
who crave for AWS support and the robustness HP is able to offer. However, strongly
depending on a sole cloud service provider, even a market leader such as Amazon,
introduces a single point of failure hazard on delivering an application. Since multimedia
clouds are quite demanding in terms of availability, even the slightest amount of down-
time might lead to lower QoE score accumulation.

5 Conclusions

Multimedia-aware cloud is a novel cloud paradigm which addresses the overall frame‐
work needed for cloud to effectively process multimedia services in a distributed fashion,
provides QoE provisioning for a broad spectrum of multimedia applications and facil‐
itates all sorts of parallel processing schemes and adaptation methods for various types
of end-user devices.

The existing cloud ecosystem appears capable of supporting the aforementioned
service types, by offering a huge number of solutions covering all layers of modern cloud
infrastructure architecture, from simple PaaS products with the underlying hypervisor
and container technology, to overwhelmingly complicated yet end-to-end IaaS solu‐
tions. In addition, some of these solutions can be proprietary or open-source licensed,
thus linking the overall cost of multimedia application delivery to architectural choices,
most of which occur in the early design phases. The overall results of this survey can
be summarized in Table 1.

The main purpose of this paper was to track down the most important requirements
of multimedia-aware cloud and present some of the dominant platforms, software pack‐
ages and application delivery tools and architectures that might help a multimedia-
related application to be easily deployed, maintained and scale-up with as little limita‐
tions to performance and end-user QoE as possible. After reading this paper, architects,
software engineers and researchers should become aware of most of the cloud-related
solutions that could be considered, reviewed, and evaluated for deploying a multimedia-
aware application. The results of this survey show that although there are several propri‐
etary solutions that could be considered trustworthy and reliable, the cost factor is
significantly high to be neglected. In addition, open-source software and all related
platforms appear to have reached a certain level of maturity, that provided that the

178 C. Tselios and G. Tsolis

necessary manpower and time availability exists, they may well be a cost-effective and
absolutely noteworthy solution.

Acknowledgements. This paper was supported by the DIOGENES Project (GSRT/GR-IL
3274). The authors would like to thank all reviewers and members of the consortium for their
comments and remarks.

References

1. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. National Institute of
Standards and Technology, Special Publication 800–145, September 2011

2. Tselios, C., Politis, I., Tselios, V., Kotsopoulos, S., Dagiuklas, T.: Cloud computing: a great
revenue opportunity for telecommunication industry. In: 51st FITCE Congress (FITCE),
Poznan, Poland, September 2012

3. Tselios, C., Politis, I., Birkos, K., Dagiuklas, T., Kotsopoulos, S.: Cloud for Multimedia
applications and services over heterogeneous networks ensuring QoE. In: Proceedings of the
IEEE 18th Computer Aided Modeling and Design of Communication Links and Networks
(CAMAD) Workshop, Berlin, September 2013, pp. 94–98 (2013)

4. IBM: Hypervisors, virtualization, and the cloud: learn about hypervisors, system virtualization
and how it works in a cloud environment. http://www.ibm.com/developerworks/cloud/library/cl-
hypervisorcompare/cl-hypervisorcompare-pdf.pdf

5. Lee, M., Krishnakumar, S.A., Krishnan, P., Singh, N., Yajnik, S.: Supporting soft real-time
tasks in the Xen hypervisor. In: Proceedings of the 6th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE 2010), pp. 97–108. ACM, New York

6. Xen Hypervisor. http://www.xenproject.org/
7. Kernel Virtual Machine. http://www.linux-kvm.org/page/Main_Page
8. OVA: KVM Overview. https://openvirtualizationalliance.org/what-kvm/overview

Table 1. Summary of notable Hypervisor, Container, PaaS and IaaS solutions used for deploying
Media-aware Cloud Services

Hypervisors Type Key Contributors License Type Supported by
Xen Bare Metal Community, Citrix, Google, Intel GNU GPL v2 The Linux Foundation

ESXi Bare Metal VMware Inc. Proprietary VMware Inc.

KVM Native Open Virtualization Alliance GNU GPL v2 Red Hat, Canonical

Containers
LXC Container Soft. Community GNU GPL v2 Parallels, Google, IBM

Docker Container Soft. Community Apache License Docker Inc.

Rocket Container Soft. Community Apache License CoreOS

Kubernetes Cluster Management Community Expat/MIT Google, Docker

Mesos Cluster Management Apache Foundation Apache License Mesosphere

PaaS Type Provider License
CloudFront CDN Solution Amazon Proprietary

App Engine Dev Environment Google Proprietary

Azure Media Media Delivery Platf. Microsoft Proprietary

Openshift Hybrid Cloud Service Red Hat Proprietary

CloudFoundry PaaS software Pivotal Open Source

Bluemix Open standard IBM Proprietary

IaaS Key Supporters License
OpenStack AT&T, Red Hat, HP, Intel, Canonical, Citrix, Ericsson, Yahoo, NEC Apache License 2.0

CloudStack Citrix, Apache Foundation Apache License 2.0

vCenter Server VMware Inc Proprietary

Eucalyptus HP Proprietary

A Survey on Software Tools and Architectures 179

http://www.ibm.com/developerworks/cloud/library/cl-hypervisorcompare/cl-hypervisorcompare-pdf.pdf
http://www.ibm.com/developerworks/cloud/library/cl-hypervisorcompare/cl-hypervisorcompare-pdf.pdf
http://www.xenproject.org/
http://www.linux-kvm.org/page/Main_Page
https://openvirtualizationalliance.org/what-kvm/overview

9. IBM: LXC: Linux Container Tools. http://www.ibm.com/developerworks/linux/library/l-
lxc-containers/l-lxc-containers-pdf.pdf

10. Docker. https://www.docker.com/
11. Docker: Understand Docker Architecture. https://docs.docker.com/docker/introduction/

understanding-docker/
12. CoreOS: CoreOS is building a container runtime, rkt. Available: https://coreos.com/blog/

rocket/
13. IBM: Initial experiment and assessment of CoreOS Rocket. https://www.ibm.com/

developerworks/community/blogs/1ba56fe3efad432fa1ab58ba3910b073/entry/initial_
experiment_and_assessment_of_coreos_rocket?lang=en

14. Kubernetes. http://kubernetes.io/
15. KubernetesGithub Repository: User Documentation. https://github.com/GoogleCloudPlatform/

kubernetes/blob/master/docs/overview.md
16. Apache Foundation: Apache Mesos. http://mesos.apache.org/
17. Hindman, B., et al.: Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center.

NSDI (2011). https://www.cs.berkeley.edu/~alig/papers/mesos.pdf
18. Apache Foundation: Mesos Architecture. http://mesos.apache.org/documentation/latest/

mesos-architecture/
19. Amazon Web Services: CloudFront. http://aws.amazon.com/cloudfront/
20. Amazon Web Services: Amazon EC2. http://aws.amazon.com/ec2/
21. Amazon Web Services: Amazon Elastic Load Balancing. http://aws.amazon.com/

elasticloadbalancing/
22. Amazon Web Services: Amazon S3. http://aws.amazon.com/s3/
23. Amazon Web Services. http://aws.amazon.com/
24. Google: App Engine. https://cloud.google.com/appengine/
25. Microsoft Corp: Azure. https://azure.microsoft.com
26. Microsoft Corp: BizSpark. https://www.microsoft.com/bizspark/
27. Red Hat, OpenShift Enterprise. https://www.openshift.com/
28. Red Hat, OpenShift Origin. http://www.openshift.org/
29. BOSH. https://bosh.io
30. IBM: Bluemix. http://www.ibm.com/cloud-computing/bluemix/
31. Ustream. http://www.ustream.tv/
32. OpenStack. http://www.openstack.org/
33. ONF: OpenFlow. https://www.opennetworking.org/sdn-resources/openflow
34. Apache Foundation: Apache CloudStack. https://cloudstack.apache.org
35. VMware Inc.: vCenter Server. http://www.vmware.com/products/vcenter-server/
36. VMware Inc.: vSphere. https://www.vmware.com/products/vsphere
37. VMware Inc.: vSphere Hypervisor 6.0. https://my.vmware.com/web/vmware/evalcenter?

p=free-esxi6
38. Hewlett-Packard: HP Helion Eucalyptus. https://www.eucalyptus.com/
39. Hewlett-Packard: Eucalyptus acquisition. http://www8.hp.com/us/en/hp-news/press-release.html?

id=1790521#.VZFVzWSqpBc
40. Xen Project: Xen VGA Passthrough. http://wiki.xenproject.org/wiki/Xen_VGA_Passthrough

180 C. Tselios and G. Tsolis

http://www.ibm.com/developerworks/linux/library/l-lxc-containers/l-lxc-containers-pdf.pdf
http://www.ibm.com/developerworks/linux/library/l-lxc-containers/l-lxc-containers-pdf.pdf
https://www.docker.com/
https://docs.docker.com/docker/introduction/understanding-docker/
https://docs.docker.com/docker/introduction/understanding-docker/
https://coreos.com/blog/rocket/
https://coreos.com/blog/rocket/
https://www.ibm.com/developerworks/community/blogs/1ba56fe3efad432fa1ab58ba3910b073/entry/initial_experiment_and_assessment_of_coreos_rocket?lang=en
https://www.ibm.com/developerworks/community/blogs/1ba56fe3efad432fa1ab58ba3910b073/entry/initial_experiment_and_assessment_of_coreos_rocket?lang=en
https://www.ibm.com/developerworks/community/blogs/1ba56fe3efad432fa1ab58ba3910b073/entry/initial_experiment_and_assessment_of_coreos_rocket?lang=en
http://kubernetes.io/
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/overview.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/overview.md
http://mesos.apache.org/
https://www.cs.berkeley.edu/~alig/papers/mesos.pdf
http://mesos.apache.org/documentation/latest/mesos-architecture/
http://mesos.apache.org/documentation/latest/mesos-architecture/
http://aws.amazon.com/cloudfront/
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/s3/
http://aws.amazon.com/
https://cloud.google.com/appengine/
https://azure.microsoft.com
https://www.microsoft.com/bizspark/
https://www.openshift.com/
http://www.openshift.org/
https://bosh.io
http://www.ibm.com/cloud-computing/bluemix/
http://www.ustream.tv/
http://www.openstack.org/
https://www.opennetworking.org/sdn-resources/openflow
https://cloudstack.apache.org
http://www.vmware.com/products/vcenter-server/
https://www.vmware.com/products/vsphere
https://my.vmware.com/web/vmware/evalcenter%3fp%3dfree-esxi6
https://my.vmware.com/web/vmware/evalcenter%3fp%3dfree-esxi6
https://www.eucalyptus.com/
http://www8.hp.com/us/en/hp-news/press-release.html?id=1790521#.VZFVzWSqpBc
http://www8.hp.com/us/en/hp-news/press-release.html?id=1790521#.VZFVzWSqpBc
http://wiki.xenproject.org/wiki/Xen_VGA_Passthrough

An Overview of Methods for Handling
Evolving Graph Sequences

Andreas Kosmatopoulos1(B), Kalliopi Giannakopoulou2,
Apostolos N. Papadopoulos1, and Kostas Tsichlas1

1 Department of Informatics, Aristotle University of Thessaloniki,
Thessaloniki, Greece

{akosmato,papadopo,tsichlas}@csd.auth.gr
2 Department of Computer Engineering and Informatics,

University of Patras, Patras, Greece
gianakok@ceid.upatras.gr

Abstract. Graph data structures constitute a prominent way to model
real-world networks. Most of the graphs originating from these networks
are dynamic and constantly evolving. The state (snapshot) of a graph
at various time instances forms an evolving graph sequence. By incor-
porating temporal information in the traditional graph queries, valu-
able characteristics regarding the nature of a graph can be extracted
such as the evolution of the shortest path distance between two vertices
through time. Most modern graph processing systems are not suitable
for this task since they operate on single very large graphs. In this work
we review centralized and distributed methods and solutions proposed
towards handling evolving graph sequences.

Keywords: Snapshots · Evolving graph sequences · Temporal graphs

1 Introduction

Modern times, have witnessed a rapidly expanding volume of data generated
by significantly different types of sources. A substantial portion of the available
data, such as data originating from social networks, citation networks, sensor net-
works and others [13], can be modeled into graph data structures. The vertices
of these graphs represent the entities of each network while the edges express
relationships between the different entities. As an example, in a graph corre-
sponding to a social network, the vertices denote the users of the network and
the edges signify the friend-relationships between them.

A common characteristic of most real-world networks is that they do not
remain static and are constantly evolving. For instance, the state of Facebook
on one day is different to its state on the following day since there have been new
user accounts created and friendships formed or deleted. Other networks, such
as citation networks, only grow larger as they move forward in time since, due
to the network’s nature, vertices and edges are only added and never deleted.
c© Springer International Publishing Switzerland 2016
I. Karydis et al. (Eds.): ALGOCLOUD 2015, LNCS 9511, pp. 181–192, 2016.
DOI: 10.1007/978-3-319-29919-8 14

182 A. Kosmatopoulos et al.

It follows that, there exists a range of queries that aim to provide further insight
on the nature of each network by incorporating temporal aspects in the tradi-
tional graph processing methods. Some examples of these queries would be to
determine the evolution of a graph’s diameter, the shortest path distance of two
vertices through time and the vertex degree distribution of a graph at different
time instances.

By periodically collecting the state of a graph at various time instances
we form an evolving graph sequence. Current centralized and distributed graph
processing systems such as Pregel [14], Neo4j [15], Trinity [19], Giraph [7] and
others focus on processing single and very large graphs without supporting tem-
poral extensions to the typical graph processing queries. As a result, these
systems are not inherently suitable for performing analysis on evolving graph
sequences.

Most of the research conducted towards handling evolving graph sequences
aims to exploit the commonalities that exist between a graph in different time
instances in order to improve space or time efficiency. As an example, even
though social networks are dynamic and change over time, the majority of the
users and the friend relationships between them remain the same across multiple
time instances. For that reason, a system that effectively handles evolving graph
sequences should perform better compared to a single graph processing system
that operates on the individual graphs of the sequence.

The work performed in the area is in an inceptive stage and thus we present
solutions for both centralized and parallel or distributed approaches. Among the
centralized methods is the FVF framework by Ren et al. [17] that groups the
sequence graphs into clusters and operates on them. Another method was pro-
posed by Koloniari et al. [10] and it is based on maintaining a log of operations
(defined as deltas) that occur in the graph between various time instances and
employing it to reconstruct the graph at a particular time instance. Caro et al.
[2,4] proposed space-efficient methods that utilize compact and self-indexed data
structures to reduce the total space cost. Finally, methods have been proposed
[1,8,18,21] that index the sequence in a manner that permits the efficient eval-
uation of certain queries. In the parallel and distributed setting there have been
two main methods proposed: The DeltaGraph system [9] is based on the princi-
ple of deltas and aims to efficiently store and retrieve the graph at specific time
instances. Finally, the G* system [11,12,20] is a parallel graph database that
focuses on taking advantage of the commonalities present between a graph in
different time instances to store the sequence in an efficient manner.

The rest of the work is organised as follows. In Sect. 2 we provide formal
definitions regarding graphs, evolving graph sequences and a general problem
definition. In Sect. 3 we present centralized methods and in Sect. 4 we focus on
the parallel and distributed approaches. Finally, we conclude our work in Sect. 5.

2 Definitions

In this section we will provide some basic definitions about the general problem
setting. First, we will formally define evolving graph sequences and then move on

An Overview of Methods for Handling Evolving Graph Sequences 183

to discuss about the different query types that can be performed with regard to
evolving graph sequences. Without loss of generality we will focus on undirected
graphs since directed graphs mostly follow the same principles.

Definition 1 (Evolving Graph Sequence). We define an evolving graph
sequence G to be a collection of snapshots G = 〈G1, G2, G3, . . .〉. A graph snap-
shot Gi ∈ G where Gi = (Vi, Ei), corresponds to the graph G at time instance i
and is characterized by a set of vertices Vi and a set of incoming and outgoing
edges Ei.

a
c

b

d

a
c

b

d

a
c

b

d
e

G1 G2 G3

Fig. 1. An evolving graph sequence

The rate at which snapshots are obtained depends on the underlying network
that the graph represents and is largely application-specific. Figure 1 depicts an
evolving graph sequence which will serve as a running example for the remainder
of this work. In this example, the evolving graph sequence G is composed of three
snapshots G1, G2 and G3 with each snapshot corresponding to the state of the
graph G at time instances 1, 2 and 3 respectively. To obtain a particular snapshot
from another snapshot in the sequence a set of operations has to be performed
(e.g. by adding an edge between a and c in G1 and removing the edge between
c and d we obtain G2). It is worth noting that a set of vertices or edges may
not change at all in the entire sequence (e.g. b) and this fact can be exploited
to reduce the total space or time cost when storing or querying the sequence
respectively.

The aim of a system that handles evolving graph sequences is to efficiently
store or index the sequence so as to answer historical analytic queries. We dis-
tinguish between two versions of the problem setting. In the offline version the
entire sequence G is known beforehand and update operations are not supported
in any snapshot (i.e. G = 〈G1, G2, G3〉 only consists of G1, G2 and G3 and no
new snapshots are created). In the online version, G is constantly evolving and is
not characterized by a “final” snapshot (i.e. G = 〈G1, G2, G3, . . .〉 may eventually
end up with more than three snapshots).

184 A. Kosmatopoulos et al.

2.1 Query Types

The queries that can be performed upon evolving graph sequences can be char-
acterized with respect to two main types [10]: their time domain and their graph
scope. Regarding the time domain, queries are performed on either a particular
time point or a time interval. In the case of a time point query we are interested
in extracting a characteristic of the graph at a time instance t, while in a time
interval query the objective is to study the evolution of a graph measure through
an interval of time [t, t′]. Queries are also distinguished by the scope of the graph
that they operate on. More specifically, a query is focused on evaluating a graph
measure concerning either a small set of vertices or the entire graph.

Most of the queries can be mapped to a combination of these two categories.
As an example, consider the query “How has the shortest distance between
a and c evolved over time instances ts and te” which can be defined as a time
interval query that focuses on a set of vertices. Similarly, the query “What is the
diameter of G at time instance ti” is a time point query that is concerned with
the entire graph.

3 Centralized Methods

Having provided the basic definitions with respect to the problem of handling
evolving graph sequences, we move on to methods and solutions proposed for
centralized environments. We begin with the FVF framework by Ren et al. [17]
followed by the works of Koloniari et al. [10] and Caro et al. [4]. We conclude the
section by discussing indexing methods for evolving graph sequences that tackle
certain historical queries.

3.1 The FVF Framework

The first centralized method we review is the FVF (FIND - VERIFY - FIX)
framework proposed by Ren et al. [17]. The authors describe a method that
consists of two phases, a preprocessing phase and a query-processing phase,
and additionally propose storage models for the evolving graph sequences that
support the aforementioned framework.

In the preprocessing phase the initial snapshots of the sequence are grouped
into smaller clusters of similar snapshots. This is performed by defining a graph
similarity measure and by incrementally adding snapshots in a cluster (starting
from the first snapshot in the sequence) until a graph similarity threshold has
been surpassed. At that point, a new empty cluster is created and the above
procedure is repeated until all the snapshots have been examined. For each
cluster, two representative graphs G∩ and G∪ are extracted which are the largest
common subgraph and the smallest common supergraph of all snapshots in the
cluster respectively. For example, if we assume that G1 and G2 from Fig. 1 are
grouped in the same cluster their respective G∩ and G∪ graphs correspond to
the graphs in Fig. 2.

An Overview of Methods for Handling Evolving Graph Sequences 185

a
c

b

d

a
c

b

d

G∪ G∩

Fig. 2. G∪ and G∩ for the evolving graph sequence in Fig. 1

In the query-processing phase the authors use the clusters and their repre-
sentative graphs to answer shortest path and closeness centrality queries. At first
they evaluate the solution to a query for the representative graphs of the cluster
(“FIND” step) on the basis that the solution will readily apply to a number of the
snapshots in the cluster. In the “VERIFY” step, the evaluated solution is tested
with each snapshot in the cluster in conjunction with a set of intuitive lemmas.
For each snapshot that the evaluated solution does not apply, the framework
attempts to “FIX” the solution so that it also applies to the aforementioned
snapshot.

The authors also propose three storage models that can be used along with
the FVF framework. The models make use of the similarities exhibited between
successive snapshots and between representative graphs of successive clusters to
reduce the total space cost of the evolving graph sequence. Finally, they assess
their work through extensive experiments on both real and synthetic datasets.

3.2 Using Graph Deltas for Historical Queries

The authors in [10] advocate the use of graph deltas to support historical queries
on evolving graph sequences. They begin by stating the operations that are sup-
ported on each snapshot, namely, addNode(ui), remNode(ui), addEdge(ui, uj),
remEdge(ui, uj) which correspond to the addition or removal of a vertex ui and
the addition or removal of an edge between two vertices ui and uj respectively.
Graph deltas are defined to be sets of such operations that when applied on a
particular snapshot they yield another snapshot of the sequence. For example in
Fig. 1, G3 can be obtained by applying {addNode(e), addEdge(a, e)} to G2.

Furthermore, they define complete deltas to be sets of operations that when
applied on the first snapshot of the sequence they are able to yield any of the
sequence’s snapshots.1 Additionally, inverted deltas are defined to be sets of
1 Certain snapshots require applying only a subset of the operations in a complete

delta.

186 A. Kosmatopoulos et al.

operations that when applied on a snapshot Gt they yield a snapshot Gt′ where
t′ < t, that is, Gt′ occurs “earlier” in the sequence than Gt.

Having defined the different types of deltas, the authors discuss snapshot
materialization techniques and policies. More specifically, while any of the
sequence’s snapshots may be reconstructed if a complete and invertible delta
and another one of the sequence’s snapshots are maintained, it may be to the
method’s benefit to also maintain interposed snapshots to speed up snapshot
materialization.

The next body of the work proposes three plans for efficient query process-
ing. Perhaps the most universal of the proposed plans is a two-phase query plan
that first materializes a particular snapshot according to the techniques dis-
cussed and then executes the query on the materialized snapshot. Finally, the
authors discuss potential optimizations, delta indexing approaches and present
some preliminary results of their solutions.

3.3 Compact Sequence Representations

Until this point the previous work we discussed was focused on reducing the
total time cost of queries on evolving graph sequences. In the following works by
Caro et al. [4] the authors address the problem of reducing the space cost when
handling evolving graph sequences. Their proposed methods are heavily based on
compact and self-indexed data structures that coupled with certain compression
techniques (such as ETDC [3] and the PForDelta technique [22,23]) achieve
overall high space efficiency with a good trade-off on the total time cost of the
queries.

The authors use the concept of contacts as described by Nicosia et al. [16]
to define temporal graphs.2 A contact is defined to be a 4-tuple (u, v, ts, te) that
signifies the existence of an edge between vertices u and v during the time period
[ts, te]. The collection of all contacts is equivalent to the temporal graph itself,
while, a particular snapshot Gt corresponds to the set of contacts (u, v, ts, te)
such that t ∈ [ts, te].

Next, operations that can be performed upon temporal graphs are presented.
Those include:

– neighbor queries (i.e. report all neighbors of a vertex u),
– reverse neighbor queries (i.e. report all vertices that have a vertex u as neigh-

bor),
– active edge queries (i.e. does there exist an edge between two vertices u and

v at time instance t?),
– retrieving a snapshot of the graph at time instance t,
– edge state change queries (i.e. report all edges that have had their state

changed at time instance t, that is all contacts that ts = t or te = t)

2 Throughout the remainder of this work we will use the terms “evolving graph
sequences” and “temporal graphs” interchangeably.

An Overview of Methods for Handling Evolving Graph Sequences 187

After a brief overview of the compression techniques and compact data struc-
tures they use in their work, the authors focus on the four temporal graph rep-
resentations they propose along with their implementations that take advantage
of the compression techniques. The first representation, called EdgeLog is an
index that maintains for every vertex v in the temporal graph a list with the
neighbors of v. Each neighbor of v is also equipped with a list containing all
the time intervals that the particular edge exists in the sequence. The EdgeLog
structure for a sequence composed by the graphs G1 and G2 of the example in
Fig. 1, is depicted in Fig. 3.

a

b

c

d

c
2 3

d
1 3

d
1 3

a
2 3

d
1 2

a
1 3

b
1 3

c
1 2

Fig. 3. EdgeLog and EveLog for the evolving graph sequence in Fig. 1

The second representation, called EveLog, follows a similar approach to the
first. More specifically, EveLog is composed of a list with all the vertices that
appear in the temporal graph. For each vertex v, there exists a list with all
the “events” related to v (i.e. edge state change along with the vertex at the
other end of the edge). The third representation is titled Compact Adjacency
Sequence (CAS) and is based on the use of the Wavelet tree, while the fourth
representation (CET) is based on the Interleaved Wavelet tree which is a data
structure proposed in the same work as an additional asset to handling temporal
graphs.

The work is concluded with extensive experimental evaluation over synthetic
and real datasets through which the authors reach an interesting conclusion that
there isn’t a single best data structure for all the queries performed on temporal
graphs. As a last remark, we should note that the above work focuses on the
offline version of the problem, yet it also mentions alterations and modifications
that need to be done in order for the solutions to apply to the online version.

188 A. Kosmatopoulos et al.

3.4 Constructing Indices for Specific Queries

The work presented so far mostly focuses on efficiently storing, maintaining
and retrieving the snapshots of an evolving graph sequences. There have been
methods proposed in literature that instead aim to index the evolving graph
sequence in a manner that permits the effective evaluation of specific queries.
We present some notable examples in the section that follows.

Akiba et al. [1] describe dynamic indexing schemes that permit them to
answer distance queries on either the last snapshot (current) or in any “older”
snapshot in the sequence. Furthermore, they support the historical distance
change-point query that reports all the time instances in the sequence where
the distance between two vertices u and v changes. It is worth noting that in
their work, they handle graphs that only support vertex additions and edge
additions.

An other method that concentrates on answering shortest path queries was
proposed by Huo et al. [8]. The authors make use of a Temporally Evolving Graph
structure to store all the updates that occur in the sequence and proceed to use
variations of Dijkstra’s algorithm [5] to compute shortest paths. Furthermore,
they speed up their solutions by making use of preprocessing indexes, namely,
Contraction Hierarchies [6].

Yang et al. [21] propose an algorithm that discovers most frequently chang-
ing components in an evolving graph sequence. They begin by defining measures
of change between vertices and the general problem of extracting the most fre-
quently changing component and proceed to present their solutions.

Finally, Semertzidis et al. [18] tackle the problem of answering historical
reachability queries. Their proposed index structure is called TimeReach and it
is built in a manner that takes advantage of the strongly connected components
that are present in a graph.

4 Parallel and Distributed Methods

In this section we turn our attention to methods and solutions that were pro-
posed for parallel and distributed environments. The two systems that we will be
analyzing are the DeltaGraph system by Khurana et al. [9] and the G* parallel
graph database by Labouseur et al. [11,12,20].

4.1 The DeltaGraph System

Khurana et al. [9] designed and implemented a distributed system called Delta
Graph that aims to efficiently store and retrieve snapshots from an evolving
graph sequence. DeltaGraph supports time point (singlepoint) queries, time
interval snapshot queries and multiple time point (multipoint) queries. Fur-
thermore, along with the graph structure a query is also able to return the
attributes of vertices and edges (e.g. name, weight etc.) The system is composed
of two main components: the DeltaGraph index structure and the GraphPool
in-memory data structure.

An Overview of Methods for Handling Evolving Graph Sequences 189

The DeltaGraph index is described as a rooted hierarchical graph struc-
ture that resembles a tree with adjacent leaves connected to each other in a
bidirectional manner. The leaves of the structure correspond to snapshots of
the sequence while the inner nodes correspond to graphs that can be obtained
by applying a differential function (e.g. Intersection) to its children. The edges
between the nodes store sets of deltas that are used to obtain a child node from
its parent and they are horizontally partitioned between workers. It should be
noted at this point that the only data stored are the sets of deltas and not the
graphs themselves although the authors advocate the materialization of specific
snapshots in DeltaGraph so as to speed up query time.

To answer a singlepoint query for a time instance t, the system locates
through a binary search among the leaves the two adjacent leaves that “encom-
pass” the query point t. Afterwards, it finds the minimum-weight path from the
root to either of the two leaves, where the weight of an edge is set to be equal
to the size of its respective delta. For multipoint queries, the system follows the
same procedure with the difference being that instead of finding a path with
minimum weight the system has to find the lowest-weight Steiner tree between
the root and the multiple time instances.

The other component of the system is the GraphPool data structure which
maintains in-memory a combination of materialized snapshots. More specifically,
GraphPool maintains the current graph, historical snapshots and materialized
graphs in a single combined graph. To determine which graphs contain a cer-
tain component or attribute the system makes uses of a mapping table. Finally,
GraphPool is responsible for keeping the current graph index updated and clean-
ing up historical snapshots that are no longer needed.

4.2 The G* Graph Database

The last system we will be reviewing is the G* graph database by Labouseur
et al. [11,20] that focuses on taking advantage of the commonalities that exist
between snapshots in a sequence so that they are stored in an efficient manner.

In the G* system, each server is assigned a set of vertices along with all the
outgoing edges of each vertex in the set. This achieves significant data locality
since obtaining all of a vertex’s edges can be accomplished without the need to
contact any of the other servers. Furthermore, since the snapshots in a sequence
exhibit similarities between them, G* avoids storing redundant information by
only storing each version of a vertex once and, in that way, data that isn’t
modified between different snapshots isn’t needlessly stored again.

Additionally, each server maintains an index named Compact Graph Index
(CGI) that stores a single (vertexID, disk location) pair for each vertex version
that exists in a combination of the sequence’s snapshots. For example, the CGI
of a server maintaining vertex c of Fig. 1 would contain two pairs related to c:
A pair for version c1 in {G1} and another pair for version c2 in {G2, G3}.
It should be noted that the CGI has a low space overhead and can be mostly or
fully kept in memory. As a last remark, the authors have proposed splitting the

190 A. Kosmatopoulos et al.

Table 1. Summary of the works reviewed

Citation Setting/Environment Purpose/Approach

[17] Centralized Snapshot Storage & Retrieval, Shortest Paths,
Closeness Centrality Queries

[10] Centralized Snapshot Storage & Retrieval, Two-Phase Query
Plan

[4] Centralized Snapshot Storage & Retrieval, Compact and
Self-Indexed Data Structures

[1] Centralized Historical Distance Queries

[8] Centralized Shortest Path Queries

[21] Centralized Discovery of Most Frequently Changing
Components

[18] Centralized Historical Reachability Queries

[9] Distributed Snapshot Storage & Retrieval

[11] Distributed Snapshot Storage & Retrieval

CGI in a specific manner when a large number of graph combinations has been
formed in its contents.

In a similar spirit to the storage module of G*, the CGI can also be used
with regard to query processing to ensure that each version of vertex or edge is
only processed once per query evaluation. Furthermore, the G* system supplies
three types of primitives that can be used to construct graph query operators:
summaries, combiners and bulk synchronous parallel (BSP) operators. Finally,
in [12] the authors discuss snapshot replication and distribution techniques.

5 Conclusions

A significant fraction of contemporary networks can be modeled into graph data
structures that are dynamic and constantly evolving. By integrating temporal
information with typical graph queries we can obtain an improved understand-
ing of a graph’s overall nature. In this work we reviewed methods and systems
proposed that aim to efficiently handle evolving graph sequences. A concise sum-
mary of the works presented can be seen on Table 1.

Acknowledgments. This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds through the Operational Pro-
gram “Education and Lifelong Learning of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Thales. Investing in knowledge society through
the European Social Fund.”

An Overview of Methods for Handling Evolving Graph Sequences 191

References

1. Akiba, T., Iwata, Y., Yoshida, Y.: Dynamic and historical shortest-path distance
queries on large evolving networks by pruned landmark labeling. In: 23rd Interna-
tional World Wide Web Conference, WWW 2014, Seoul, Republic of Korea, 7–11
April 2014, pp. 237–248 (2014)

2. Brisaboa, N.R., Caro, D., Fariña, A., Rodŕıguez, M.A.: A compressed suffix-array
strategy for temporal-graph indexing. In: Moura, E., Crochemore, M. (eds.) SPIRE
2014. LNCS, vol. 8799, pp. 77–88. Springer, Heidelberg (2014)

3. Brisaboa, N.R., Fariña, A., Navarro, G., Paramá, J.R.: Lightweight natural lan-
guage text compression. Inf. Retr. 10(1), 1–33 (2007)

4. Caro, D., Rodŕıguez, M.A., Brisaboa, N.R.: Data structures for temporal graphs
based on compact sequence representations. Inf. Syst. 51, 1–26 (2015)

5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
mathematik 1(1), 269–271 (1959)

6. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster
and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA
2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

7. Apache Giraph: http://giraph.apache.org/
8. Huo, W., Tsotras, V.J.: Efficient temporal shortest path queries on evolving social

graphs. In: Conference on Scientific and Statistical Database Management, SSDBM
2014, Aalborg, Denmark, June 30–July 02, 2014, pp. 38:1–38:4 (2014)

9. Khurana, U., Deshpande, A.: Efficient snapshot retrieval over historical graph data.
In: 29th IEEE International Conference on Data Engineering, ICDE 2013, Bris-
bane, Australia, 8–12 April 2013, pp. 997–1008 (2013)

10. Koloniari, G., Souravlias, D., Pitoura, E.: On graph deltas for historical queries.
In: WOSS (2012)

11. Labouseur, A.G., Birnbaum, J., Olsen, P.W., Spillane, S.R., Vijayan, J., Hwang, J.,
Han, W.: The G* graph database: efficiently managing large distributed dynamic
graphs. Distrib. Parallel Databases 33(4), 479–514 (2015)

12. Labouseur, A.G., Olsen, P.W., Hwang, J.: Scalable and robust management of
dynamic graph data. In: Proceedings of the First International Workshop on Big
Dynamic Distributed Data, Riva del Garda, Italy, 30 August 2013, pp. 43–48 (2013)

13. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection,
June 2004. http://snap.stanford.edu/data

14. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N.,
Czajkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2010, Indianapolis, Indiana, USA, 6–10 June 2010, pp. 135–146 (2010)

15. Neo4j: http://neo4j.org/
16. Nicosia, V., Tang, J., Mascolo, C., Musolesi, M., Russo, G., Latora, V.: Graph met-

rics for temporal networks. In: Holme, P., Saramäki, J. (eds.) Temporal Networks,
pp. 15–40. Springer, Heidelberg (2013)

17. Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R.: On querying historical evolving graph
sequences. PVLDB 4(11), 726–737 (2011)

18. Semertzidis, K., Pitoura, E., Lillis, K.: Timereach: historical reachability queries on
evolving graphs. In: Proceedings of the 18th International Conference on Extending
Database Technology, EDBT 2015, Brussels, Belgium, 23–27 March 2015, pp. 121–
132 (2015)

http://giraph.apache.org/
http://snap.stanford.edu/data
http://neo4j.org/

192 A. Kosmatopoulos et al.

19. Shao, B., Wang, H., Li, Y.: Trinity: a distributed graph engine on a memory cloud.
In: Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2013, New York, NY, USA, 22–27 June 2013, pp. 505–516 (2013)

20. Spillane, S.R., Birnbaum, J., Bokser, D., Kemp, D., Labouseur, A.G., Olsen, P.W.,
Vijayan, J., Hwang, J., Yoon, J.: A demonstration of the g∗ graph database sys-
tem. In: 29th IEEE International Conference on Data Engineering, ICDE 2013,
Brisbane, Australia, 8–12 April 2013, pp. 1356–1359 (2013)

21. Yang, Y., Yu, J.X., Gao, H., Pei, J., Li, J.: Mining most frequently changing com-
ponent in evolving graphs. World Wide Web 17(3), 351–376 (2014)

22. Zhang, J., Long, X., Suel, T.: Performance of compressed inverted list caching
in search engines. In: Proceedings of the 17th International Conference on World
Wide Web, WWW 2008, Beijing, China, 21–25 April 2008, pp. 387–396 (2008)

23. Zukowski, M., Héman, S., Nes, N., Boncz, P.A.: Super-scalar RAM-CPU cache
compression. In: Proceedings of the 22nd International Conference on Data Engi-
neering, ICDE 2006, Atlanta, GA, USA, 3–8 April 2006, p. 59 (2006)

Author Index

Antonellis, Panagiotis 75
Avni, Hillel 49

Belaid, Ikbel 35

Delis, Alex 3
Dolev, Shlomi 19, 49

Eyraud-Dubois, Lionel 35

Gerolymatos, Panagiotis 114
Giannakopoulou, Kalliopi 181
Gilboa, Niv 49
Gkantouna, Vassiliki 62
Gounaris, Anastasios 151

Kamali, Shahin 84
Karapiperis, Dimitrios 3
Katsiri, Eleftheria 3
Kendea, Marios 62
Koloniari, Georgia 99
Kosmatopoulos, Andreas 181
Kousiouris, George 138
Kyriazis, Dimosthenis 138

Li, Ximing 49
Li, Yin 19

Makris, Christos 75
Menychtas, Andreas 138

Naskos, Athanasios 151
Nodarakis, Nikolaos 114

Papadopoulos, Apostolos N. 181
Pispirigos, Georgios 75
Pitoura, Evaggelia 99

Rapti, Angeliki 62

Seriatos, George 138
Sioutas, Spyros 62, 114, 126, 151
Sourla, Efrosini 126

Tsakalidis, Athanasios 114
Tselios, Christos 168
Tsichlas, Kostas 126, 181
Tsolis, Dimitrios 62
Tsolis, George 168
Tzimas, Giannis 62, 114

Varvarigou, Theodora 138
Verykios, Vassilios S. 3

Zaroliagis, Christos 126

	Preface
	Organization
	Abstracts
	Performance and Scalability of Indexed Subgraph Query Processing Methods
	A Tutorial on Blocking Methods for Privacy-Preserving Record Linkage
	Contents
	Tutorial
	A Tutorial on Blocking Methods for Privacy-Preserving Record Linkage
	1 Introduction
	2 Related Work
	3 Building Components
	3.1 Secure Multi-party Computations
	3.2 Differential Privacy

	4 Private Blocking Methods
	4.1 Method HG
	4.2 Method EUC
	4.3 Method PHN
	4.4 Method AHC
	4.5 Method TPB
	4.6 Method HLSH

	5 Evaluation
	5.1 Selected Measures
	5.2 Configuration Parameters
	5.3 Comparative Results

	6 Conclusions
	References

	Regular Contributions
	Secret Shared Random Access Machine
	1 Introduction
	2 Preliminary
	3 SSS-Subleq Programs and Their Execution
	4 Applications
	5 Conclusions
	References

	Column Generation Integer Programming for Allocating Jobs with Periodic Demand Variations
	1 Introduction
	2 Related Works
	3 Packing of Jobs with Periodic Demands
	3.1 Notations and Problem Formulation

	4 Integer Programming Column Generation
	5 Experimental Evaluation
	5.1 Complexity and Lower Bound
	5.2 Heuristics
	5.3 Simulated Synthetic Data
	5.4 Jobs and Tasks of Google Trace

	6 Conclusions
	References

	SSSDB: Database with Private Information Search
	1 Introduction
	1.1 Private Data Search in Clouds
	1.2 Our Contributions
	1.3 Organization

	2 Private Searchable Data
	3 SSSDB Structure
	3.1 Database Components
	3.2 Database Operations
	3.3 Security

	4 Evaluation
	5 Discussion
	References

	Graph DBs vs. Column-Oriented Stores: A Pure Performance Comparison
	1 Introduction
	2 Motivation
	3 Systems Overview
	3.1 NoSQL Features
	3.2 HBase
	3.3 Neo4j

	4 Design of Experiments
	4.1 Dataset
	4.2 Design Choices
	4.3 Queries
	4.4 Analysis

	5 Results Discussion
	6 Conclusions
	References

	Distributed XML Filtering Using HADOOP Framework
	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Paper Motivation and Contribution

	3 Hadoop Implementation of YFilter
	3.1 Implementation 1
	3.2 Implementation 2
	3.3 Implementation 3
	3.4 Experiments

	4 Conclusions
	References

	Efficient Bin Packing Algorithms for Resource Provisioning in the Cloud
	1 Introduction
	1.1 Previous Work and Contribution

	2 HarmonicMix Algorithm
	2.1 Valid Packings
	2.2 Nice Packings
	2.3 Insert/Delete Operations
	2.4 Update Operations

	3 Experiments
	4 Concluding Remarks
	References

	Transaction Management for Cloud-Based Graph Databases
	1 Introduction
	2 Cloud Consistency
	3 Graph Databases
	3.1 Data and Storage Model
	3.2 Distribution Schemes

	4 Concurrency Control
	4.1 Pessimistic Concurrency Control
	4.2 Optimistic Concurrency Control
	4.3 Backend Dependent Concurrency Control
	4.4 Isolation Levels

	5 Comparison and Challenges
	5.1 Open Issues

	References

	Convex Polygon Planar Range Queries on the Cloud: Grid vs. Angle-Based Partitioning
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 MapReduce Model
	3.2 Halfspace Range Searching
	3.3 Problem Statement

	4 MapReduce Convex Polygon Query Processing
	4.1 Hyperspherical Coordinates
	4.2 Hyperspherical Partitioning
	4.3 Hypercube Partitioning
	4.4 Grid vs. Angle-Based Scheme
	4.5 Pruning Optimization
	4.6 MapReduce Algorithm

	5 Experimental Evaluation
	5.1 Effect of Number of Partitions
	5.2 Effect of Pruning Optimization
	5.3 Scalability

	6 Conlusion and Future Steps
	References

	ART+: A Fault-Tolerant Decentralized Tree Structure with Ultimate Sub-logarithmic Efficiency
	1 Introduction
	2 Related Work
	3 The D3-Tree Structure
	4 The ART+ Structure
	5 Performance Evaluation
	6 Conclusions
	References

	Comparison of Database and Workload Types Performance in Cloud Environments
	Abstract
	1 Introduction
	2 Related Work
	3 DB Features and Measurement Automation
	3.1 DB Features
	3.2 Cloud Facility Setup
	3.3 Measurement Process and Execution Automation

	4 Experiments and Results
	4.1 YCSB Workload a (50 % Updates–50 % Reads)
	4.2 YCSB Workload B (5 % Updates–95 % Reads)
	4.3 YCSB Workload C (100 % Read)
	4.4 YCSB Workload D (95 % Reads–5 % Inserts)
	4.5 YCSB Workload F (50 % Reads- 50 % Read/Modify/Write)
	4.6 YCSB Workload E (Scan 95 %–Insert 5 %)

	5 Conclusions
	Acknowledgments
	References

	Cloud Elasticity: A Survey
	1 Introduction
	2 Taxonomy and Classification
	3 Overview of Existing Solutions
	3.1 Scope
	3.2 Purpose
	3.3 Decision Making
	3.4 Elastic Action
	3.5 Provider
	3.6 Evaluation
	3.7 Discussion and Research Challenges

	4 Summary
	References

	A Survey on Software Tools and Architectures for Deploying Multimedia-Aware Cloud Applications
	Abstract
	1 Introduction
	2 Hypervisor and Container-Based Virtualization
	2.1 Xen
	2.2 VMware ESXi
	2.3 Kernel-Based Virtual Machine
	2.4 Linux Container
	2.5 Docker
	2.6 Rocket
	2.7 Kubernetes
	2.8 Mesos

	3 Platform-as-a-Service Media Cloud Solutions
	3.1 Amazon CloudFront
	3.2 Google Application Engine
	3.3 Microsoft Azure Media Services
	3.4 OpenShift
	3.5 CloudFoundry
	3.6 IBM Bluemix

	4 Infrastructure-as-a-ServiceMedia Cloud Architectures
	4.1 OpenStack
	4.2 Apache CloudStack
	4.3 VMware vCenter Server
	4.4 Eucalyptus

	5 Conclusions
	Acknowledgements
	References

	An Overview of Methods for Handling Evolving Graph Sequences
	1 Introduction
	2 Definitions
	2.1 Query Types

	3 Centralized Methods
	3.1 The FVF Framework
	3.2 Using Graph Deltas for Historical Queries
	3.3 Compact Sequence Representations
	3.4 Constructing Indices for Specific Queries

	4 Parallel and Distributed Methods
	4.1 The DeltaGraph System
	4.2 The G* Graph Database

	5 Conclusions
	References

	Author Index

