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Abstract. The continuous dependence on electronic media has radi-
cally changed our interactions, many of which are now performed online.
In many occasions users need to authenticate to remote machines, but
the hostile environment of the Internet may severely expose users and
service providers. To counter these shortcomings, strong authentication
is pushed forward. As a means to authenticate individuals, biometric
authentication is gradually gaining more and more ground. While the
use of biometric data enables many useful applications, these data are
very sensitive. For this reason, it is essential to handle them with the
least user exposure. In this work we propose a very efficient protocol for
privacy-preserving biometric authentication using lattice-based encryp-
tion. More precisely, we exploit the homomorphic properties of NTRU
to provide a robust and secure solution and provide experimental results
which illustrate the efficacy of our proposal.

Keywords: Biometric authentication · Privacy-preserving authentica-
tion · Lattice-based encryption

1 Introduction

While we have transferred a wide variety of our social, economic and working
interactions in the cyber world, one of the major challenges is to guarantee
that all the entities involved are the ones they claim to be. To provide entity
authentication most services depend on the secure exchange of credentials of the
entities, which are assumed to be properly registered. In general, users are given
a user name and they create a password which they use to access the services.
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While theoretically this model works and current protocols can provide high
security standards, the truth is that most users do not pick good passwords,
enabling an adversary to easily gain access.

The general concept of passwords is to authenticate users by something that
they know (password). Another paradigm is to authenticate users by something
that they are, something that cannot be forgotten or forged. The past decade,
the use of biometric authentication is gradually becoming more widespread since
the cost of the devices has been drastically reduced. While there is a variety of
biometric authentication methods, ranging from fingerprints and vein recogni-
tion, to retina and iris scanning, all these methods have two inherent drawbacks:

– They are not exact: Regardless of the underlying data, every measurement is
not exactly the same as the one registered. For instance, a user scans her iris to
register as a user. The system extracts the pattern and stores the feature vector
in the system. However, the next time that she will scan her iris, it is highly
improbable that the system will extract the exact same feature vector. This
differentiation is subject to many factors. For instance, the alterations might
be introduced due to angle, motion, imaging noise, reflection etc. Therefore, all
biometric authentication methods have a threshold τ which denotes how many
differences in two measurements can be tolerated in order to authenticate
a user.

– They are permanent: While one could easily pick another password if a service
has been compromised, she could not change her eyes or fingertips. If an
adversary could acquire the biometric measurements of a user, then she could
masquerade as her forever. Notably, depending on the method this data can
be easily acquired and replicated1.

Due to their nature and how they can be used, biometric data are very
sensitive and should be dealt with much caution. Their fuzziness; the fact that
two measurements of the same subject may differ, creates further problems.
Implicit authentication is fairly easy when using passwords, a user may prove the
knowledge of the password without actually revealing it. However, the fuzziness
of biometric measurements renders such protocols useless.

The problem where two entities want to check whether the values that they
hold are the same without presenting them to each other or to any other entity
is widely known as private equality testing, and there are many solutions in the
literature. However, if the underlying data are not equal, the case of biometric
data, then most of these protocols cannot work as well, or they will be inefficient.
For instance, if the two values may differ in τ bits, then one of the parties may
need to present 2τ candidate values for checking. Other approaches such as the
scheme of Feigenbaum et al. [19] are far more efficient, but not efficient enough
for such applications.

1.1 Contribution of This Work

In our work, we use the well-known NTRU [24] public encryption algo-
rithm and exploit its efficiency and additive homomorphic property to enable
1 http://www.ccc.de/en/updates/2014/ursel.

http://www.ccc.de/en/updates/2014/ursel
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privacy-preserving biometric authentication and matching. An overview of the
proposed protocol is the following. Assume that Alice and Bob hold a biometric
measurement and Alice wants to know whether Bob’s measurement differs from
her measurements by less than a threshold value. First, both of them split the
biometric measurement into blocks and Alice encrypts them with her NTRU
public key, blinding them from every other entity. However, Bob is still able to
perform some operations on the encrypted data, which in our case is to subtract
the according block value from his biometric measurements. To obfuscate the
results, Bob randomly permutes the results and returns them to Alice. While
Alice can decrypt each block, she cannot recover the order of the blocks to find
Bob’s measurements. Thus, she can compute whether their measurements are
below the required threshold without further information leakage. For the sake
of simplicity and performance, we will present the protocol for the standard
NTRU algorithm, nevertheless, adapting it to the more secure variant of Stehlé
and Steinfeld [34] is straightforward and does not imply further changes than
the obvious ones. In this paper the considered biometric modality is the iris.
However, our privacy-preserving methodology can be applied to any modality
which can be represented as sequence of bits such as faces, DNA etc.

1.2 Organization of This Work

The rest of this work is organized as follows. In Sect. 2 we provide a small
overview of the NTRU algorithm and then present the state of the art in privacy-
preserving biometric authentication. Section 3 introduces our protocol and dis-
cusses its security, mostly focusing on the semi-honest model. In Sect. 4 we pro-
vide some experimental results and compare its performance with current state
of the art. Then in Sect. 6 we present some application scenarios were our proto-
col could be applied. Finally the article concludes with some remarks and ideas
for future work.

2 Related Work

2.1 NTRU and Its Variants

Lattices are being studied for decades and several problems in their theory, such
as the shortest and closest lattice vector have been proven to be extremely hard
to solve, leading to the development of several public key encryption schemes.
However, in the past few years the interest in these schemes has been greatly
increased as these schemes provide many interesting features in terms of secu-
rity and applications. For instance, while the widely used public key algorithms
such as RSA and ElGamal could be broken with quantum algorithms, lattice-
based encryption algorithms seem to be immune to such attacks making them a
good candidate for the post-quantum era of cryptography [6]. Moreover, lattices
have very interesting algebraic features that can be exploited to develop fully
homomorphic encryption.



172 C. Patsakis et al.

Table 1. NTRU parameters for different security levels

Level(bits) p q n D1 D2 D3 Dg Dm

128 3 2048 439 9 8 5 146 112

192 3 2048 593 10 10 8 197 158

256 3 2048 743 11 11 15 247 204

One of the most well known lattice based algorithms is NTRU [24]. The
algorithm was developed in the mid 90 s and it is an extremely fast public key
encryption algorithm. In fact it so efficient that its performance can be com-
pared to symmetric ciphers [22]. Currently there are many variants, however
in this work we will work with the original algorithm of Hoffstein, Pipher and
Silverman. To generate the public/private key pair, we firstly, select some para-
meters N, p and q which are publicly known and determine the security of the
NTRU instance. N is a prime number, denoting the degree of the polynomials
that are going to be used. In what follows, every polynomial is reduced modulo
the polynomial xN − 1. The other two parameters, p and q are the two mod-
uli numbers, the “large” (q); current standards set q equal to 2048, and one
“small” (p) typically equal to 3. All NTRU operations are either performed in
Zq[x]/(xN − 1) or in Zp[x]/(xN − 1). We then select two random polynomials
f and g with small coefficients, that is -1, 0 and 1. We also require f to be
invertible in Zq[x]/(xN −1) and Zp[x]/(xN −1), and we denote these inverses fq

and fp respectively. The public key h is defined as h = pgfq, while f and fp are
the private key. The most common parameters for NTRU are shown in Table 2.

To encrypt a message we map it to a polynomial m with small coefficients
and pick a random “small” polynomial r, and send the message c = hr + m ∈
Zq[x]/(xN − 1). To decrypt c, the recipient multiplies it with f and rearranges
the coefficients to reside within [−q/2, q/2] and reduces it modulo p. Finally, she
multiplies the result with fp.

The amount of 1s, 0s and -1s in f, g,m and r are very important for NTRU.
More precisely, a message can be decrypted only if the following inequality holds:

‖f ∗ m + p ∗ r ∗ g‖∞ ≤ q

Otherwise the result will be a random polynomial. The randomness of r may
introduce some problems in the decryption of the ciphertext, that is some cipher-
text might not be decrypted. However proper parameter selection can bound this
probability so that this event can be considered improbable.

NTRU has been extensively studied and after many attacks, the original para-
meters have been updated [23]. Currently, the algorithm is considered highly
secure and has been standardized in both IEEE 1363.1 and X9.98. Moreover,
NTRU has triggered the introduction of many variants such as [3,15,29], how-
ever of specific interest are the recent variants of Stehlé and Steinfeld [34] and
the variant of Lopez et al. [27]. The first variant is CPA-secure in the standard
model under the assumed quantum hardness of standard worst-case problems
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over ideal lattices, using Regev’s learning with error approach [32]. The latter
exploits the homomorphic properties of NTRU to create a fully homomorphic
encryption scheme.

Generally, most lattice-based encryption schemes have homomorphic prop-
erties, however, there are specific constraints. In (partial) homomorphic encryp-
tion, the cryptographic primitives can transfer only one operation from the plain-
text to one operation of the ciphertext, while recently introduced fully homo-
morphic encryption can transfer two operations. Nevertheless, in both cases the
operations can be applied arbitrary amount of times. However, somewhat homo-
morphic or leveled encryption cannot support arbitrary homomorphic opera-
tions. For instance, in the case of NTRU, with each operation the amount of
“noise” that is added is increased. Therefore, at one point the added noise is
so high that the message cannot be recovered. Therefore, NTRU can support
only a limited amount of additions and multiplications. Note that the homomor-
phic properties of NTRU hold over Zp[x]/(xN − 1), so for instance the additive
property is applied over polynomials which is very important in our protocol.

2.2 Privacy-Preserving Biometric Authentication

Nowadays, biometric human identification is widely used in many large-scale
security applications such as border crossings, visa/passports etc. Also law
enforcement agencies use biometrics in order to search for criminals and ter-
rorists. Several modalities, including iris, face or fingerprint, are very mature
and the discussion now is not about the performance rates (FAR/FRR), but
rather about the scalability and throughput of the system as well as on assuring
privacy and fundamental human rights.

Iris is the part of the eye bounded by the pupil and sclera and it consists
of muscle tissue [17]. Nowadays, iris acquisition devices are gaining momentum
and can acquire high-quality images even of the walking subjects in operational
environment (e.g. airport) [31]. Typically, the iris recognition system consists of
the following steps: image acquisition using iris acquisition device(s), iris seg-
mentation, extraction of iris features (such as eg. iris codes, Gabor filters or
wavelets), and iris pattern matching. Hereby, in order to assure privacy and tem-
plate security, especially in realistic systems used by law enforcement agencies,
we also propose to add privacy-preserving methodology. The latter is considered
a basic ingredient in building cyber-physical systems which are compliant with
the “privacy-by-design” concept [11].

The first privacy-preserving identification protocol for iris was introduced
by Blanton et al. [7] which exploit the homomorphic properties of the encryp-
tion method of Damgard et al. [16]. Based on the Paillier homomorphic scheme,
Shahandashti et al. [33] propose a method for private fingerprint matching. Other
approaches include the use of oblivious RAM from Bringer et al. [12] or garbled
circuits from Luo et al. [28] and Bringer et al. [14]. Kulkarni and Namboodiri [26]
use the somewhat homomorphic scheme of Boneh et al. [9] to privately compute
the hamming distance of two sequences. Another approach, more focused on
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faces, would be to divide the biometric into smaller pieces, store them in inde-
pendent compartments and use methods such as the one of Forczmański and
�Labȩdź to identify them [20].

Similar methods have also been used in private DNA sequence matchmak-
ing, as genetic information is also very sensitive [2], however, the size of the
data render most of these methods inefficient. Therefore, many researchers have
resulted to the use of a semi-trusted third party which can significantly improve
computational and bandwidth requirements [25].

Recently, Blundo et al. [8] proposed a probabilistic protocol for the privacy-
preserving evaluation of sample set similarity. Based on the MinHash approach,
they sample each set, and perform the protocol of De Cristofaro et al. [18] to
determine the cardinality of the common elements of both sets. More precisely,
we assume that we have Alice and Bob, holding sets A and B respectively and
that each one selects k values (r1, r2, . . . , rk) for the sample of their set, that
is ar1 , ar2 , . . . , ark

and br1 , br2 , . . . , brk
. Furthermore, we assume that Bob has

published a prime p. Alice picks a random α, gcd(α, p − 1) = 1 and sends Bob
the message:

mA = {h(ari
)α mod p}, i ∈ [1, k]

On receiving this message, Bob picks a random β and computes:

m′
A = {mβ

Ai
mod p}, i ∈ [1, k]

Then, Bob computes:

mB = {h(h(bri
)β mod p)}, i ∈ [1, k]

and sends Alice the message: A′ = π(m′
A), B′ = mB where π is a random per-

mutation. Finally, Alice computes:

C = {h(cα−1 mod p−1 mod p)},∀c ∈ A′

and checks how many elements in common does C have with B′. If there are ν,
then Alice assumes that the Jaccard similarity of the two sets is approximately
ν/k, subject to O(1/

√
k) error.

Yasuda et al. [35,36] exploit the properties of the somewhat homomorphic
scheme of Brakerski and Vaikuntanathan [10] by packing the feature vectors of
the biometrics, however, their method was proven to be insecure [1].

An overview of these methods can also be found in [5,13].

3 The Proposed Protocol

3.1 Main Actors and Desiderata

Let us assume two entities, Alice, the initiator of the protocol and Bob, the
responder. Both Alice and Bob hold a sequence of bits A = a1, a2, . . . , ak

and B = b1, b2, . . . , bk respectively. The goal of Alice is to determine whether
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dH(A,B) < τ, τ ∈ N; and dH denotes the Hamming distance, without disclosing
any information to Bob or anyone else. On the other hand, Bob is willing to
allow this computation, nevertheless, he does not want to leak any information
regarding B to Alice or another entity.

In what follows, we work in the honest-but-curious/semi-honest model. There-
fore, while each party is assumed to follow each step of the protocol correctly
(honest), they may try to analyze any received information or messages to extract
information about their peers (curious). Therefore, if the protocol dictates that
a participant should send a message of a specific form, we assume that the par-
ticipant will conform, and will not send a tampered version.

3.2 The Protocol

We assume that Alice has created an NTRU key pair, so h is her public key
and f, fp her private. Both parties split their sequences in blocks of length λ,
creating k blocks. Moreover, we assume that both of them know a function
χ : {0, 1}λ → D, where D contains the polynomials of Zq[x]/(xN − 1) with
coefficients -1, 0 and 1. For the sake of simplicity instead of χ(m) we will write
m. Additionally, we denote αi and βi, i ∈ [1, k] the blocks of Alice and Bob
respectively.

The steps of the protocol are as follows. Initially, Alice sends Bob the message

MA = {hsi + αi},∀i ∈ [1, k]

where si are random polynomials in D. On receiving the vector mA, Bob com-
putes the vector

MB = {MAi
− (hs′

i + βi)},∀i ∈ [1, k]

where s′
i are random polynomials in D. That is the encryption of her blocks with

NTRU. Then, Bob picks a random permutation π and sends Alice M ′
B = π(MB).

So Bob encrypts his blocks with NTRU, subtracts them from Alice’s; he exploits
the additive homomorphic property of NTRU, and rearranges them.

On receiving this message, Alice can decrypt each MB′
i

and compute the
weight wi of each recovered message. If

∑k
i=1 wi < τ then Alice deduces that

dH(A,B) < τ . Figure 1 illustrates the proposed protocol.
Initially, Alice and Bob extract the templates of their biometrics and encrypt

them in blocks using the NTRU encryption algorithm using Alice’s public key.
Alice sends her encrypted data to Bob who subtracts them in the according
order and then permutes the results. Alice decrypts the messages to recover the
Hamming weight and compare it against the threshold τ .

3.3 Protocol Correctness

In the first step, the protocol splits A into blocks and encrypts them to hide
them from Bob. In the second step, Bob subtracts his values from the encrypted
ones. If two values are the same, then they will cancel each other out, otherwise,
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Fig. 1. The proposed protocol.

one coefficient (−1 or 1) is left in the encrypted block. Clearly, Bob’s permuta-
tion does not alter the weight of the encrypted messages, but hides their order
from Alice, who cannot recover Bob’s sequence. Nevertheless, each block can be
decrypted and the non-zero coefficients denote where each block differs with the
others. Thus, Alice can easily find dH(A,B).

3.4 Security of the Protocol

We do not consider active attacks; we assume that the messages exchanged in
a protocol run are authenticated and integrity protected, thus the adversary is
not able to modify or inject fake messages pretending to originate from another
legitimate user.

Alice’s input remains secret from Bob and any other active of passive adver-
sary. Throughout the protocol, Alice sends a single message to Bob which con-
tains her encrypted blocks. Therefore, anyone who wishes to recover Alice’s input
must break NTRU encryption which is considered infeasible. Note that NTRU
is considered secure even from quantum algorithms.

While Alice can decrypt the encrypted blocks to compute their differences, in
order to recover Bob’s private input she has to find the proper order of κ blocks.
This means κ! arrangements, so finding the right order is infeasible. Clearly, an
external adversary will not be able to recover any information about Bob’s input,
since it is encrypted with NTRU. Note that Bob does not simply subtract his
input but he subtracts his encrypted input further confusing his output.

However, if Alice were malicious she could try to trick Bob and recover his
input. For instance, instead of sending her input, she could mark each block
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and then put them in the right order. Since the information in each block is
not going to fill it up to capacity, e.g. for 128 bits of security, NTRU can accept
messages up to 439 bits but it will take only a fraction such as 32 or 64 bits, Alice
could hide additional information in the unused bits. To counter such attack Bob
could simply use a random padding for each message and alert Alice about its
existence so that Alice would correctly calculate the weight of each block.

4 Experimental Results

We chose to compare our algorithm against the algorithm of Blundo et al. as it
is the most efficient one in current state of the art, even though it samples the
retinas and does not return exact results. The computer where the experiments
were made has an Intel Core i3-2100 CPU at 3.1 GHz with 6 GB of RAM, running
on Ubuntu 15.04 64 bit. The implementation in both cases is made in Sage
6.52. For NTRU we have used the parameters proposed by SecurityInnovation3,
illustrated in Table 1. According to their recommendations, to generate f , we
compute a polynomial P (x) which is of the form A1(x)A2(x) + A3(x), where
polynomial Ai, i ∈ {1, 2, 3} have Di coefficients set to 1 and Di coefficients set
to −1. Similarly, to construct polynomial g, we select a polynomial having Dg

coefficients set to 1 and Dg − 1 coefficients set to −1. Finally, each message,
when converted to polynomial must have at most Dm coefficients set to 1 and
Dm −1 coefficients set to −1. The set of parameters used for RSA and NTRU is
shown in Table 2. The role of D1,D2 and D3 is going to be discussed in Sect. 4.

Table 2. Parameters for the most popular security levels (in bits). For RSA the
numbers denote the length (in bits) of the underlying modulo field according to
NIST [4]. For NTRU, the numbers are precise and recommended by SecurityInno-
vation (https://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/doc/
NewParameters.pdf).

Security level RSA NTRU

p q n Public key (bits)

128 3072 3 2048 439 4829

192 7680 3 2048 593 6523

256 15360 3 2048 743 8173

The experimental results in Table 3 clearly indicate the performance gains
of our protocol. It should be highlighted that Alice in the Blundo et al. pro-
tocol has to perform light calculations as the exponentiations are “soft”, the
exponent is 216, however the RSA decryptions of Bob are very intensive. Note
2 sagemath.org.
3 https://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/doc/

NewParameters.pdf.

https://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/doc/NewParameters.pdf
https://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/doc/NewParameters.pdf
http://sagemath.org
https://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/doc/NewParameters.pdf
https://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/doc/NewParameters.pdf
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Table 3. Comparison of the Blundo et al. protocol with the proposed. Time in seconds
and security in bits.

Security Blundo et al. Proposed

Alice Bob Total Alice Bob Total

128 0.024 2.227 2.251 0.187 0.115 0.302

192 0.066 12.352 12.418 0.250 0.153 0.403

256 0.183 59.421 59.605 0.299 0.220 0.519

Table 4. Approximate communication cost in KB. Security in bits.

Security Blundo et al. Proposed

128 78.125 75.453

192 190.625 101.922

256 378.125 127.703

that the reported times account for a single thread in both cases, therefore, by
multithreading these timings will be significantly reduced.

In our tests, we used random feature vectors of 2048 bits, such as iris. The
sample for the Blundo et al. protocol was 100 bits, which accounts for an error
of 10 %. Practically, this means that the “hard” computations for Alice and Bob
are 100 RSA encryptions and 200 decryptions respectively.

In our protocol, we split retinas in blocks of 32 bits; that is 64 blocks, so
Alice had to perform 64 encryptions and decryptions, while Bob had to perform
64 encryptions. The comparison of the communication cost for different security
levels is shown in Table 4. Again, our proposed algorithm introduces lower com-
munication costs compared to the protocol of Blundo et al. In fact, the higher
the security level, the better our protocol performs. Note that the increase in
the key length of NTRU is lower than RSA when the security level increases.

5 Discussion

Our proposed protocol has many benefits compared to its peers. The one that is
most obvious is its performance, however, the there are other important aspects
as well. For instance, the protocol manages to pack far more information than
other protocols without reducing its security. Therefore, not only the bandwidth
is reduced, but the protocol is secure in the post-quantum era. Undoubtly, one
could use the Paillier [30] or the Goldwasser-Micali [21] cryptosystems to per-
form the XOR of the bits of the templates. However, to achieve the same level
of security the bandwith overhead is considerably higher as only one bit would
be processed at a time. Moreover, NTRU is far more efficient in terms of perfor-
mance than any of these algorithms. One could argue that Alice could potentially
find patterns regarding Bob’s biometrics, with the risk being subject to the block
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size, the bigger the block, the higher the probability. While this is true, in the
next paragraphs we provide a countermeasure for such attacks.

One generic attack of all these privacy preserving schemes is the following.
Alice performs one execution of the protocol with Bob using firstly the sequence
00 . . . 000 and then 10 . . . 000. Clearly, comparing the output values Alice can
determine whether the value of the first bit is 0 or 1. Having found the value
of the first bit, Alice can proceed to the second bit etc. The main problem is
that Bob uses the same template for each comparison and Alice can manipulate
her own to find a better match at each execution. To counter this problem we
propose the following method.

Let F(k, x) denote a Pseudo Random Function (PRF), where k is the PRF
key and x is the point at which the function is evaluated. Bob proposes a random
seed s so Alice and Bob compute the following for their sequences: F(s,mi||i)
mod 2, i ∈ {1, 2, . . . , k}. Clearly, for each position where the bits of Alice and
Bob are the same, the result is also going to be the same. However, when they
differ, the result is going to be equal 50 % of the times. By processing their
sequences like this, Bob’s input is always randomized so Alice cannot perform
this attack or find patterns in our scheme. Nevertheless, one should note that
the threshold should now be close to half.

6 Application Scenarios

The presented methodology can be applied in several scenarios and it is valid for
various biometric modalities. Herein, we are concerned with security scenarios,
especially those interesting for law enforcement agencies, where preserving the
privacy of citizens is challenging. On the one hand, the methodology can be
applied for access control, where a person (the subject) wants to get access to a
certain asset (e.g. terrain, building, room, laptop, service etc.), including critical
infrastructures and high-risk assets with high accuracy biometrics such as iris.
Such scenario can be realized in a verification mode (1:1 matching) or in the
identification mode (1:many matching). In the latter case, so called white-listing
is used, since the data (biometric feature vector) of the subject is matched versus
those who can enter/gain access to the asset.

The second scenario where the proposed methodology is useful, is the match-
ing of the subject biometric pattern versus templates from the law enforcement,
or vice versa from private organisations. It can be realized as the typical 1:many
identification or as the blacklisting. In such a case, e.g. the template of the sub-
ject (we can even imagine a wanted terrorist) is compared to the database of the
people that agencies search for or those who are not allowed cross borders etc.
The proposed methodology is useful because the law enforcement agency can
query the database without disclosing who is the terrorist, and without learn-
ing anything about the other templates. Vice versa, private organisations can
query law enforcement databases without disclosing any information about their
customers.
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7 Conclusions

The continuous use of biometrics might strengthen user authentication, however,
it implies serious privacy risks. It should be understood that unlike passwords
which can be easily generated, a user cannot generate a new body part, such as
an iris or face. Addressing this challenge, privacy-preserving biometric authen-
tication methods were recently introduced. These methods provide the needed
functionality: biometric authentication, while simultaneously minimizing user’s
privacy exposure using state of the art cryptographic primitives. Clearly, this
introduces a computational and communication overhead which might not be
considered important in one-to-one scenarios - a user wants to authenticate to
his device, but in one-to-many scenarios - a user authenticates to a server, the
overhead might be substantial and decrease the quality of the provided service.

Based on the above, we introduced a novel protocol that takes advantage
of the additive homomorphic property of NTRU to enable secure and exact
privacy-preserving biometric authentication. Even if our implementation is not
optimized, it is rather efficient, enabling it to be faster even than the “sampling”
method of Blundo et al. In the future, we plan to explore the possibility of
packing more data in each package with other algorithms and/or encodings to
further decrease the computational and communication cost.
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