
Chapter 8
Calibration Techniques for Non-contacting Force Excitation
Part 2: Time Domain Methods

Tina Dardeno and Peter Avitabile

Abstract Experimental characterization of the higher frequency modes of a structure presents challenges due to the
frequency limitations of traditional excitation techniques. Non-contact excitation via low power ultrasonic transducer
presents the possibility of exciting higher frequencies not currently possible with shakers or impact hammers. However,
quantification of the actual force applied by the ultrasonic transducer requires that a relationship between the ultrasonic
pressure field and the voltage driving the transducer be established.

Part 1 of this paper described calibration methods using frequency domain techniques. Part 2 of this paper, described
herein, explores time domain calibration methods using conventional instrumentation before extending the techniques to the
ultrasonic transducer. Time domain methods of calibration in the context of this paper involve: (1) prediction of a response
for a given excitation using analytical and experimental models; and (2) determination of the sensitivity of an uncalibrated
force transducer. Specifically, an analytical model based on the principles of mode superposition is shown to accurately
predict the response of a structure to a digitized excitation. Furthermore, if the response of a structure due to an uncalibrated
force is plotted against that due to a calibrated force, the slope of the line can be used to determine the sensitivity of the
uncalibrated force transducer.

Keywords Non-contact excitation • High frequency excitation • Non-intrusive excitation • Ultrasonic transducer •
Calibration methods

8.1 Introduction

Use of ultrasonic waves is being explored as a means by which higher frequency modes of a test article may be characterized
without the need for direct contact. Traditional excitation via impact hammers and shakers permits measurement of the
force applied to a test article by measuring the voltage output from a force gage, but no analogous mechanism exists for the
ultrasonic transducer, which produces an ultrasonic pressure field that is dependent upon the voltage driving the transducer.
While some ultrasonic transducers produce an ultrasonic field which acts over a wide area, certain transducers focus the
ultrasonic pressure field over an area small enough to be approximated as a discrete point. The question then arises as to how
the effective force acting at the focal point can be related to the voltage driving the ultrasonic transducer.

The time domain method of ultrasonic transducer calibration is being developed to complement frequency domain
techniques [1]. This method, which utilizes the principle of mode superposition to compute the response of a structure
to a digitized excitation, has the benefit of being customizable to even very high frequencies. Furthermore, this method
can compute the response of a structure to single or multiple-frequency excitations. To validate the time domain method of
transducer calibration, testing was performed using a hammer of known calibration.

8.2 Physical System and Models Developed

A previously designed and fabricated aluminum cantilever structure was used throughout the analyses. The structure is
comprised of a cantilever beam with a mass at the base to approximate a built-in condition (Fig. 8.1).
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Fig. 8.1 (a) Cantilever calibration structure; (b) Structure with reflective tape applied
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Fig. 8.2 Cantilever model and out-of-plane mode shapes

This structure was designed to mimic turbine blade qualification tests and with dimensions and material properties to
generate high frequency mode shapes for calibration of the ultrasonic transducer. To improve laser signal for testing, reflective
tape was applied to the face of the structure. The structure was modeled in FEMAP as a plate mounted to a large mass with a
refined mesh of eight-noded bricks as shown in Fig. 8.2 [2]. The eigensolution was performed in FEMtools version 3.8 [3].
Only out-of-plane cantilever shapes were considered as no in-plane or base measurements were obtained.
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Fig. 8.3 Schematic of mode superposition approach

8.3 Theoretical Background

The analytical models described herein utilize the method of mode superposition to compute an analytical response to a
digitized excitation [4]. The basic approach is schematically shown in Fig. 8.3, where the structural system is decomposed
into single degree of freedom modal oscillators and the response of each mode is identified. The response is then expanded
from the modal response to the physically distributed response on the structure for each mode which is then summed to
identify the total response of the system.

The principle of mode superposition described in Fig. 8.3 can be used to estimate the response of a physical system to
an actual force excitation. First, frequencies and damping are obtained via experimental frequency response spectra, which
are then used to generate mass, stiffness, and damping matrices in modal space. Next, mode shapes corresponding to the test
point(s) can be obtained through test or a reliable finite element model. Digitized, instantaneous time data is obtained via test,
and the digitized force excitation is transformed to modal space to identify the force contribution of each modal oscillator.
The Newmark direct integration method is then used to solve the differential equations of motion for each modal oscillator.
The response contribution of each modal oscillator in modal space is then scaled using the corresponding mode shape and
summed to compute the total system physical response at a given point. This computed response can be compared to the
measured response using overlay and response correlation metrics such as TRAC, as shown in Fig. 8.4. These computations
are performed using scripts and functions generated in MATLAB [5].

This response estimation method can be expanded to include transducer calibration. A digitized excitation is obtained;
however, an unscaled sensitivity is entered into the channel setup. The response is then computed using a numerical
integration scheme. A calibration curve can then be generated by plotting the measured response versus the calculated
response and determining the best linear fit of the data. The slope of the line can then be used to compute the sensitivity of
the force transducer.

8.4 Characterization of Cantilever Structure

This mode superposition approach requires frequencies, mode shapes, and damping from FEA, test, or both to compute the
response. Prior to data collection, measurement point geometry was generated in FEMtools using the sensor placement
method of nodal kinetic energy (NKE) and the sensor elimination method of effective independence (EIM) [3]. For
computational efficiency, the cantilever calibration structure was modeled as a fixed plate for the pre-test analysis. The
test geometry was then exported as a universal file for import into Polytec [6] and LMS [7]. Prior to importing the test
geometry into the Polytec data acquisition module [6], 2D and 3D alignments of the laser were performed to align the laser
with the measurement points and identify the coordinate system, respectively.
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Fig. 8.4 Time response estimation procedure

An impact test was performed to determine the out-of-plane rigid body and flexible modes up to approximately 20 kHz.
Figure 8.5 displays the equipment and test geometry used as well as the coherence, input spectrum, and frequency response
spectrum at the drive-point. A small metal-tipped hammer was used to excite the structure while velocity measurements were
obtained via a single Polytec laser head [6]. Note that the hammer was mounted to a tripod to ensure repeatability of impacts.
The hammer remained stationary at point 2645, which is located at the left corner of the free end of the cantilever, while the
laser was moved to each measurement point. Point 2645 was selected as the impact location because 2645 was one of the few
measurement points that significantly excited all of the target modes. However, point 2645 corresponded to a point of high
local flexibility, resulting in many multiple impacts. Five linear averages were taken to minimize error. Data collection was
performed in LMS with vibrometer data directly output to the LMS impact testing module [7]. Three rigid body modes and
15 out-of-plane flexible modes were obtained. These shapes were typical for a cantilever plate, as shown in Fig. 8.6. The test
results were correlated to the finite element model in FEMtools [3], as shown in Table 8.1. Table 8.1 shows good correlation
between model and test, as diagonal MAC values were consistently high for the 15 correlated mode pairs. Furthermore a
maximum frequency error of only 4.6 Hz was noted.

8.5 Concept Verification Study Using Hammer of Known Calibration

After determining the frequencies and mode shapes of the structure, time data was collected at point 2671 for response
estimation using the LMS spectral testing module [7], as shown in Fig. 8.7. A hammer with a plastic tip (nominal sensitivity
1.99 mV/N) was used to excite the structure at point 2671 to a frequency range less than that excited by the metal
tipped hammer. An uncalibrated sensitivity of 1000 mV/N was entered for the hammer into the channel setup. To satisfy
requirements of the numerical integration scheme, the smallest possible time step was used for data collection (4.88E-06s).
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Fig. 8.5 Instrumentation, representative measurement, and measurement point setup for determination of flexible and rigid body mode shapes of
cantilever structure
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Fig. 8.6 Experimental modal analysis frequencies, damping, and mode shapes

To determine how many flexible modes to include in the calculations, the input auto-spectrum was computed. The
spectrum indicated significant excitation up to approximately 10 kHz. Therefore, a total of three rigid body and six flexible
modes were included in the analysis (Fig. 8.8).

The digitized impulse, test frequencies, test damping, test rigid body shapes, and finite element flexible shapes from the
cantilever and block model were used to compute the unscaled response via mode superposition with Newmark integration.
In order to identify the calibration, a plot of the calculated time response versus measured time response will provide an
approximate straight line. The sensitivity was then computed via linear regression of the calculated and measured responses,
as shown in Fig. 8.9. Then, for better visualization, the calculated response was rescaled using the computed sensitivity, as
shown in Fig. 8.10.
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Table 8.1 Correlation between finite element and test data
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Fig. 8.7 Collection of digitized impulse and time response for hammer calibration

The calculated sensitivity of 2.0066 mV/N is 0.83 % higher than the manufacturer’s nominal sensitivity of 1.99 mV/N.
The R2 value of 0.9570 shows a high correlation between the measured and calculated responses. The results shown are very
promising; this time domain approach to force calibration presents a viable way to further validate the calibration values
obtained from frequency domain methods.

8.6 Observations

The time domain/mode superposition approach to transducer calibration presented herein appears promising. Several
observations related to accuracy of this method were made while performing the analyses. First, because the response is
calculated using finite element shapes, model accuracy is crucial. The analysis performed in the previous section utilized a
simple fixed cantilever model to develop the pre-test geometry, but extracted shapes from a more detailed model to compute
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Fig. 8.9 Plot of calculated time response vs. measured time response at point 2671 and calculations to determine hammer calibration value

the response. To demonstrate the importance of the calibration finite element model, the fixed cantilever model is revisited.
Figure 8.11 shows the model, shape pairs between the model and test, and correlation results between the model and test.

Figure 8.11 shows that while finite element and test frequencies exhibited some variation, the first six flexible modes
demonstrated high diagonal MAC correlation. Test frequencies and finite element mode shapes are used to compute the time
response for calibration; therefore, having accurate finite element mode shapes is far more important than having accurate
finite element frequencies. Using the finite element shape values from the fixed cantilever model, the transducer sensitivity
was recomputed. The original calibration results using shapes from the cantilever and block model are compared to the
calibration results using shapes from the fixed cantilever model in Fig. 8.12.

Figure 8.12 shows that both the correlation coefficient and sensitivity value were affected by the model used. The
correlation coefficient reduced from 0.9570 to 0.9482 when the response was computed using fixed cantilever shapes.
Likewise, the error in the computed sensitivity increased from 0.83 to 12.22 %. Even though the fixed cantilever model
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Fig. 8.11 Correlation between test and fixed cantilever model

was shown to correlate highly to the test results via MAC, the local shape values at the measurement location were clearly
different for the fixed model compared to the cantilever and block model. These results stress the importance of model
accuracy when performing this calibration method.

The second observation is that improper node-point pairing can occur due to discrepancies between test and model
coordinates. If the test geometry does not align perfectly with the model, the test points may be paired with finite element
nodes that do not share the same dynamic characteristics, as shown in Fig. 8.13.

The cantilever and block model has a distance of 0.0625 in. between each node. Recall that the measurement obtained for
input into the mode superposition code was taken at point 2671, which corresponds to the model node shown in Fig. 8.13.
This node returns a shape value of 5.32 (normalized to unit modal mass, metric) for the first mode. However, if the model
were aligned such that point 2671 was paired with the node directly below (error of 0.0625 in.), the shape value returned
would be 5.22. Likewise, if the model were aligned such that point 2671 was paired with two nodes directly below (error of
0.125 in.), the shape value returned would be 5.11. The hammer calibration was recomputed using these nearby nodes, as
shown in Fig. 8.14.
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Fig. 8.13 Differences in mode shape values among adjacent nodes
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Fig. 8.14 Effect of node-point pairing selection on transducer calibration results

Figure 8.14 shows that an error in node-point pairing can markedly affect the accuracy of the time domain approach to
calibration. An error of 0.0625 in. in node placement resulted in an increase from 0.83 % error to 3.97 % error. Likewise, an
error of 0.125 in. in node placement increased the error to 8.22 %.

Secondly, Newmark integration has been shown to result in frequency distortion of higher order modes which appears to
be related to refinement of the integration time step. As such, other acquisition parameters such as sample rate and window
length need to be adjusted to obtain a sufficiently fine time step. When collecting the digitized impulse for this analysis, the
parameters were adjusted until the finest possible time step was achieved (dtD 4.88E-06s). This required that the maximum
sample rate of the system be used. Recall that the response solution included modes up to approximately 10 kHz. Ultrasonic
transducers are designed to operate at much higher frequencies, and as such issues may arise when using Newmark integration
to compute the response of the structure to an acoustic force. MATLAB’s resample function is a powerful tool that can be used
to prevent the frequency distortion that may result from numerical integration with an insufficient time step. This function
resamples uniform or non-uniform data to a new fixed rate and applies a low-pass filter to prevent aliasing [8]. This function
also provides compensation for the phase delay caused by the low-pass filter [8]. To demonstrate the effectiveness of this
function, the response of the structure to the same, unrefined digitized impulse (dtD 4.88E-06s) was recomputed using all
15 flexible modes. The digitized impulse was then refined by a factor of four (dtD 1.22E-06s) and the response recomputed.
The FFT was then computed for both responses, as shown in Fig. 8.15.

Figure 8.15 shows that higher order modes exhibited a frequency shift due to the integration process, and that resampling
the digitized impulse to a finer time step corrected the distortion. Note that resampling the data to compute the response as
described in the previous section was not necessary as the higher order modes contributed very little to the overall response.

However, resampling the data can result in some accumulation of error. Although MATLAB’s resample function does
provide compensation for the phase delay caused by the low-pass filter [8], phase distortion still has an effect on the
calibration curve, as shown in Fig. 8.16.

Figure 8.16 shows that some differences in the calibration results exist between the raw and resampled data. Notice that
when the full response was included in the calibration curve, the sensitivity did not change but the correlation coefficient
diminished slightly from 0.957 to 0.934. When only the trailing end of the response was included in the calibration curve,
the raw data actually showed an improvement in correlation from 0.957 to 0.984; however, the resampled data showed a
decreased correlation from 0.934 to 0.890 as well as a reduction in the accuracy of the computed sensitivity from less than
1 % error to more than 4 % error. The calibration curves computed using only the trailing portion of the response demonstrate
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Fig. 8.15 Correction of frequency distortion due to Newmark integration using MATLAB’s resample function
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Fig. 8.16 Effect of phase distortion caused by MATLAB’s resample function on the calibration curve



82 T. Dardeno and P. Avitabile

that phase distortion was present following MATLAB’s resample function. However, most of the higher frequency energy
had dissipated by the end of the response indicating that the phase distortion may have been limited to the lower order
modes. Investigation into whether this phase distortion will present a problem when extending this calibration method to the
ultrasonic transducer is ongoing.

Lastly, the acoustic pressure and subsequently the acoustic force must be characterized for this calibration method to be
successful, as the unscaled modal force and input location must be known. Current efforts to characterize this force using
both experimental data and simulation are in progress [9].

8.7 Conclusion

The results presented have shown that an analytical model based on the principles of mode superposition can produce an
effective representation of a structural response when provided with a digitized input of the excitation. Furthermore, this
analytical model has been shown to provide an accurate method of transducer calibration. The measured response from an
uncalibrated excitation can be scaled and calibrated using a comparison to the calculated response in order to determine the
force applied. The slope of the calculated response verses the measured response provides the unknown calibration. While
further investigation is required before extending this calibration approach to an ultrasonic transducer, the preliminary results
indicate good accuracy using this method.
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