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In recent years state-space representations and the associated Kalman recursions
have had a profound impact on time series analysis and many related areas. The
techniques were originally developed in connection with the control of linear systems
(for accounts of this subject see Davis and Vinter 1985; Hannan and Deistler 1988).
An extremely rich class of models for time series, including and going well beyond
the linear ARIMA and classical decomposition models considered so far in this book,
can be formulated as special cases of the general state-space model defined below in
Section 9.1. In econometrics the structural time series models developed by Harvey
(1990) are formulated (like the classical decomposition model) directly in terms of
components of interest such as trend, seasonal component, and noise. However, the
rigidity of the classical decomposition model is avoided by allowing the trend and
seasonal components to evolve randomly rather than deterministically. An introduction
to these structural models is given in Section 9.2, and a state-space representation is
developed for a general ARIMA process in Section 9.3. The Kalman recursions, which
play a key role in the analysis of state-space models, are derived in Section 9.4. These
recursions allow a unified approach to prediction and estimation for all processes
that can be given a state-space representation. Following the development of the
Kalman recursions we discuss estimation with structural models (Section 9.5) and
the formulation of state-space models to deal with missing values (Section 9.6). In
Section 9.7 we introduce the EM algorithm, an iterative procedure for maximizing the
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260 Chapter 9 State-Space Models

likelihood when only a subset of the complete data set is available. The EM algorithm
is particularly well suited for estimation problems in the state-space framework. Gen-
eralized state-space models are introduced in Section 9.8. These are Bayesian models
that can be used to represent time series of many different types, as demonstrated by
two applications to time series of count data. Throughout the chapter we shall use the
notation

{Wt} ∼ WN(0, {Rt})
to indicate that the random vectors Wt have mean 0 and that

E
(
WsW′

t

) =
{
Rt, if s = t,

0, otherwise.

9.1 State-Space Representations

A state-space model for a (possibly multivariate) time series {Yt, t = 1, 2, . . .}
consists of two equations. The first, known as the observation equation, expresses
the w-dimensional observationYt as a linear function of a v-dimensional state variable
Xt plus noise. Thus

Yt = GtXt + Wt, t = 1, 2, . . . , (9.1.1)

where {Wt} ∼ WN(0, {Rt}) and {Gt} is a sequence of w × v matrices. The second
equation, called the state equation, determines the state Xt+1 at time t+ 1 in terms of
the previous state Xt and a noise term. The state equation is

Xt+1 = FtXt + Vt, t = 1, 2, . . . , (9.1.2)

where {Ft} is a sequence of v × v matrices, {Vt} ∼ WN(0, {Qt}), and {Vt} is
uncorrelated with {Wt} (i.e., E(WtV′

s) = 0 for all s and t). To complete the
specification, it is assumed that the initial state X1 is uncorrelated with all of the noise
terms {Vt} and {Wt}.

Remark 1. A more general form of the state-space model allows for correlation
betweenVt andWt (see Brockwell and Davis (1991), Chapter 12) and for the addition
of a control termHtut in the state equation. In control theory,Htut represents the effect
of applying a “control” ut at time t for the purpose of influencing Xt+1. However, the
system defined by (9.1.1) and (9.1.2) with E

(
WtV′

s

) = 0 for all s and twill be adequate
for our purposes. �

Remark 2. In many important special cases, the matrices Ft,Gt,Qt, and Rt will
be independent of t, in which case the subscripts will be suppressed. �

Remark 3. It follows from the observation equation (9.1.1) and the state equation
(9.1.2) that Xt and Yt have the functional forms, for t = 2, 3, . . .,

Xt = Ft−1Xt−1 + Vt−1

= Ft−1(Ft−2Xt−2 + Vt−2) + Vt−1

...

= (Ft−1 · · ·F1)X1 + (Ft−1 · · ·F2)V1 + · · · + Ft−1Vt−2 + Vt−1

= ft(X1,V1, . . . ,Vt−1) (9.1.3)
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and

Yt = gt(X1,V1, . . . ,Vt−1,Wt). � (9.1.4)

Remark 4. From Remark 3 and the assumptions on the noise terms, it is clear that

E
(
VtX′

s

) = 0, E
(
VtY′

s

) = 0, 1 ≤ s ≤ t,

and

E
(
WtX′

s

) = 0, 1 ≤ s ≤ t, E(WtY′
s) = 0, 1 ≤ s < t. �

Definition 9.1.1 A time series {Yt} has a state-space representation if there exists a state-space
model for {Yt} as specified by equations (9.1.1) and (9.1.2).

As already indicated, it is possible to find a state-space representation for a large
number of time-series (and other) models. It is clear also from the definition that
neither {Xt} nor {Yt} is necessarily stationary. The beauty of a state-space representa-
tion, when one can be found, lies in the simple structure of the state equation (9.1.2),
which permits relatively simple analysis of the process {Xt}. The behavior of {Yt}
is then easy to determine from that of {Xt} using the observation equation (9.1.1).
If the sequence {X1,V1,V2, . . .} is independent, then {Xt} has the Markov property;
i.e., the distribution of Xt+1 given Xt, . . . ,X1 is the same as the distribution of Xt+1

given Xt. This is a property possessed by many physical systems, provided that we
include sufficiently many components in the specification of the stateXt (for example,
we may choose the state vector in such a way that Xt includes components of Xt−1 for
each t).

Example 9.1.1 An AR(1) Process

Let {Yt} be the causal AR(1) process given by
Yt = φYt−1 + Zt, {Zt} ∼ WN

(
0, σ 2

)
. (9.1.5)

In this case, a state-space representation for {Yt} is easy to construct. We can, for
example, define a sequence of state variables Xt by

Xt+1 = φXt + Vt, t = 1, 2, . . . , (9.1.6)

where X1 = Y1 = ∑∞
j=0 φjZ1−j and Vt = Zt+1. The process {Yt} then satisfies the

observation equation

Yt = Xt,

which has the form (9.1.1) with Gt = 1 and Wt = 0.
�

Example 9.1.2 An ARMA(1,1) Process

Let {Yt} be the causal and invertible ARMA(1,1) process satisfying the equations

Yt = φYt−1 + Zt + θZt−1, {Zt} ∼ WN
(
0, σ 2

)
. (9.1.7)

Although the existence of a state-space representation for {Yt} is not obvious, we can
find one by observing that

Yt = θ(B)Xt = [θ 1
] [Xt−1

Xt

]
, (9.1.8)
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where {Xt} is the causal AR(1) process satisfying
φ(B)Xt = Zt,

or the equivalent equation
[
Xt

Xt+1

]
=
[

0 1
0 φ

] [
Xt−1

Xt

]
+
[

0
Zt+1.

]
. (9.1.9)

Noting that Xt =∑∞
j=0 φjZt−j, we see that equations (9.1.8) and (9.1.9) for t = 1, 2, . . .

furnish a state-space representation of {Yt} with

Xt =
[
Xt−1

Xt

]
and X1 =

⎡

⎢⎢
⎣

∞∑

j=0
φ jZ−j

∞∑

j=0
φ jZ1−j

⎤

⎥⎥
⎦ .

The extension of this state-space representation to general ARMA and ARIMA pro-
cesses is given in Section 9.3.

�
In subsequent sections we shall give examples that illustrate the versatility of state-

space models. (More examples can be found in Aoki 1987; Hannan and Deistler 1988;
Harvey 1990; West and Harrison 1989.) Before considering these, we need a slight
modification of (9.1.1) and (9.1.2), which allows for series in which the time index
runs from −∞ to ∞. This is a more natural formulation for many time series models.

9.1.1 State-Space Models with t ∈ {0, ±1, . . .}
Consider the observation and state equations

Yt = GXt + Wt, t = 0,±1, . . . , (9.1.10)

Xt+1 = FXt + Vt, t = 0,±1, . . . , (9.1.11)

where F and G are v× v and w× v matrices, respectively, {Vt} ∼ WN(0,Q), {Wt} ∼
WN(0,R), and E(VsW′

t) = 0 for all s, and t.
The state equation (9.1.11) is said to be stable if the matrix F has all its eigen-

values in the interior of the unit circle, or equivalently if det(I − Fz) �= 0 for all z
complex such that |z| ≤ 1. The matrix F is then also said to be stable.

In the stable case equation (9.1.11) has the unique stationary solution (Prob-
lem 9.1) given by

Xt =
∞∑

j=0

FjVt−j−1.

The corresponding sequence of observations

Yt = Wt +
∞∑

j=0

GFjVt−j−1

is also stationary.
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9.2 The Basic Structural Model

A structural time series model, like the classical decomposition model defined by
(1.5.1), is specified in terms of components such as trend, seasonality, and noise,
which are of direct interest in themselves. The deterministic nature of the trend
and seasonal components in the classical decomposition model, however, limits its
applicability. A natural way in which to overcome this deficiency is to permit random
variation in these components. This can be very conveniently done in the framework
of a state-space representation, and the resulting rather flexible model is called a
structural model. Estimation and forecasting with this model can be encompassed in
the general procedure for state-space models made possible by the Kalman recursions
of Section 9.4.

Example 9.2.1 The Random Walk Plus Noise Model

One of the simplest structural models is obtained by adding noise to a random walk.
It is suggested by the nonseasonal classical decomposition model

Yt = Mt + Wt, where {Wt} ∼ WN
(
0, σ 2

w

)
, (9.2.1)

and Mt = mt, the deterministic “level” or “signal” at time t. We now introduce
randomness into the level by supposing that Mt is a random walk satisfying

Mt+1 = Mt + Vt, and {Vt} ∼ WN
(
0, σ 2

v

)
, (9.2.2)

with initial valueM1 = m1. Equations (9.2.1) and (9.2.2) constitute the “local level” or
“random walk plus noise” model. Figure 9-1 shows a realization of length 100 of this
model withM1 = 0, σ 2

v = 4, and σ 2
w = 8. (The realized values mt ofMt are plotted as

a solid line, and the observed data are plotted as square boxes.) The differenced data

Dt := ∇Yt = Yt − Yt−1 = Vt−1 + Wt − Wt−1, t ≥ 2,

constitute a stationary time series with mean 0 and ACF

ρD(h) =

⎧
⎪⎨

⎪⎩

−σ 2
w

2σ 2
w + σ 2

v

, if |h| = 1,

0, if |h| > 1.

Figure 9-1
Realization from a random

walk plus noise model.
The random walk is

represented by the solid
line and the data are
represented by boxes 0 20 40 60 80 100

0
10

20
30
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Figure 9-2
Sample ACF of the series
obtained by differencing

the data in Figure 9-1 Lag
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Since {Dt} is 1-correlated, we conclude from Proposition 2.1.1 that {Dt} is an MA(1)
process and hence that {Yt} is an ARIMA(0,1,1) process. More specifically,

Dt = Zt + θZt−1, {Zt} ∼ WN
(
0, σ 2

)
, (9.2.3)

where θ and σ 2 are found by solving the equations

θ

1 + θ2
= −σ 2

w

2σ 2
w + σ 2

v

and θσ 2 = −σ 2
w.

For the process {Yt} generating the data in Figure 9-1, the parameters θ and σ 2 of
the differenced series {Dt} satisfy θ/(1 + θ2) = −0.4 and θσ 2 = −8. Solving these
equations for θ and σ 2, we find that θ = −0.5 and σ 2 = 16 (or θ = −2 and σ 2 = 4).
The sample ACF of the observed differences Dt of the realization of {Yt} in Figure 9-1
is shown in Figure 9-2.

The local level model is often used to represent a measured characteristic of the
output of an industrial process for which the unobserved process level {Mt} is intended
to be within specified limits (to meet the design specifications of the manufactured
product). To decide whether or not the process requires corrective attention, it is
important to be able to test the hypothesis that the process level {Mt} is constant. From
the state equation, we see that {Mt} is constant (and equal to m1) when Vt = 0 or
equivalently when σ 2

v = 0. This in turn is equivalent to the moving-average model
(9.2.3) for {Dt} being noninvertible with θ = −1 (see Problem 8.2). Tests of the unit
root hypothesis θ = −1 were discussed in Section 6.3.2.

�
The local level model can easily be extended to incorporate a locally linear trend

with slope βt at time t. Equation (9.2.2) is replaced by

Mt = Mt−1 + Bt−1 + Vt−1, (9.2.4)

where Bt−1 = βt−1. Now if we introduce randomness into the slope by replacing it
with the random walk

Bt = Bt−1 + Ut−1, where {Ut} ∼ WN
(
0, σ 2

u

)
, (9.2.5)

we obtain the “local linear trend” model.
To express the local linear trend model in state-space form we introduce the state

vector
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Xt = (Mt,Bt)
′.

Then (9.2.4) and (9.2.5) can be written in the equivalent form

Xt+1 =
[

1 1
0 1

]
Xt + Vt, t = 1, 2, . . . , (9.2.6)

where Vt = (Vt,Ut)
′. The process {Yt} is then determined by the observation equation

Yt = [1 0] Xt + Wt. (9.2.7)

If {X1,U1,V1,W1,U2,V2,W2, . . .} is an uncorrelated sequence, then equations (9.2.6)
and (9.2.7) constitute a state-space representation of the process {Yt}, which is a model
for data with randomly varying trend and added noise. For this model we have v =
2, w = 1,

F =
[

1 1
0 1,

]
G = [1 0], Q =

[
σ 2
v 0

0 σ 2
u

]
, and R = σ 2

w.

Example 9.2.2 A Seasonal Series with Noise

The classical decomposition (1.5.11) expressed the time series {Xt} as a sum of trend,
seasonal, and noise components. The seasonal component (with period d ) was a
sequence {st} with the properties st+d = st and

∑d
t=1 st = 0. Such a sequence can

be generated, for any values of s1, s0, . . . , s−d+3, by means of the recursions

st+1 = −st − · · · − st−d+2, t = 1, 2, . . . . (9.2.8)

A somewhat more general seasonal component {Yt}, allowing for random deviations
from strict periodicity, is obtained by adding a term St to the right side of (9.2.8), where
{Vt} is white noise with mean zero. This leads to the recursion relations

Yt+1 = −Yt − · · · − Yt−d+2 + St, t = 1, 2, . . . . (9.2.9)

To find a state-space representation for {Yt}we introduce the (d−1)-dimensional state
vector

Xt = (Yt,Yt−1, . . . ,Yt−d+2)
′.

The series {Yt} is then given by the observation equation

Yt = [1 0 0 · · · 0] Xt, t = 1, 2, . . . , (9.2.10)

where {Xt} satisfies the state equation
Xt+1 = FXt + Vt, t = 1, 2 . . . , (9.2.11)

Vt = (St, 0, . . . , 0)′, and

F =

⎡

⎢⎢⎢⎢
⎢
⎣

−1 −1 · · · −1 −1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤

⎥⎥⎥⎥
⎥
⎦

. (9.2.12)

�

Example 9.2.3 A Randomly Varying Trend with Random Seasonality and Noise
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A series with randomly varying trend, random seasonality and noise can be constructed
by adding the two series in Examples 9.2.1 and 9.2.2. (Addition of series with state-
space representations is in fact always possible bymeans of the following construction.
See Problem 9.9.) We introduce the state vector

Xt =
[
X1

t

X2
t

]
,

whereX1
t andX

2
t are the state vectors in (9.2.6) and (9.2.11). We then have the follow-

ing representation for {Yt}, the sum of the two series whose state-space representations
were given in (9.2.6)–(9.2.7) and (9.2.10)–(9.2.11). The state equation is

Xt+1 =
[
F1 0
0 F2

]
Xt +

[
V1

t

V2
t

]
, (9.2.13)

where F1, F2 are the coefficient matrices and {V1
t }, {V2

t } are the noise vectors in the
state equations (9.2.6) and (9.2.11), respectively. The observation equation is

Yt = [1 0 1 0 · · · 0]Xt + Wt, (9.2.14)

where {Wt} is the noise sequence in (9.2.7). If the sequence of random vectors
{X1,V1

1,V
2
1,W1,V1

2,V
2
2,W2, . . .} is uncorrelated, then equations (9.2.13) and (9.2.14)

constitute a state-space representation for {Yt}.
�

9.3 State-Space Representation of ARIMA Models

We begin by establishing a state-space representation for the causal AR(p) process and
then build on this example to find representations for the general ARMA and ARIMA
processes.

Example 9.3.1 State-Space Representation of a Causal AR(p) Process

Consider the AR(p) process defined by

Yt+1 = φ1Yt + φ2Yt−1 + · · · + φpYt−p+1 + Zt+1, t = 0,±1, . . . , (9.3.1)

where {Zt} ∼ WN
(
0, σ 2

)
, and φ(z) := 1 − φ1z− · · · − φpzp is nonzero for |z| ≤ 1. To

express {Yt} in state-space form we simply introduce the state vectors

Xt =

⎡

⎢⎢⎢
⎣

Yt−p+1

Yt−p+2
...

Yt,

⎤

⎥⎥⎥
⎦

, t = 0,±1, . . . . (9.3.2)

From (9.3.1) and (9.3.2) the observation equation is

Yt = [0 0 0 · · · 1]Xt, t = 0,±1, . . . , (9.3.3)
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while the state equation is given by

Xt+1 =

⎡

⎢
⎢⎢⎢⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
φp φp−1 φp−2 · · · φ1

⎤

⎥
⎥⎥⎥⎥
⎦
Xt +

⎡

⎢
⎢⎢⎢⎢
⎣

0
0
...

0
1

⎤

⎥
⎥⎥⎥⎥
⎦
Zt+1, t = 0,±1, . . . .

(9.3.4)

These equations have the required forms (9.1.10) and (9.1.11) withWt = 0 and Vt =
(0, 0, . . . ,Zt+1)

′, t = 0,±1, . . . .

�

Remark 1. In Example 9.3.1 the causality conditionφ(z) �= 0 for |z| ≤ 1 is equivalent
to the condition that the state equation (9.3.4) is stable, since the eigenvalues of
the coefficient matrix in (9.3.4) are simply the reciprocals of the zeros of φ(z)
(Problem 9.3). �

Remark 2. If equations (9.3.3) and (9.3.4) are postulated to hold only for t =
1, 2, . . . , and if X1 is a random vector such that {X1,Z1,Z2, . . .} is an uncorrelated
sequence, then we have a state-space representation for {Yt} of the type defined
earlier by (9.1.1) and (9.1.2). The resulting process {Yt} is well-defined, regardless
of whether or not the state equation is stable, but it will not in general be stationary.
It will be stationary if the state equation is stable and if X1 is defined by (9.3.2) with
Yt =∑∞

j=0 ψjZt−j, t = 1, 0, . . . , 2 − p, and ψ(z) = 1/φ(z), |z| ≤ 1. �

Example 9.3.2 State-Space Form of a Causal ARMA(p, q) Process

State-space representations are not unique. Here we shall give one of the (infinitely
many) possible representations of a causal ARMA(p,q) process that can easily be
derived from Example 9.3.1. Consider the ARMA(p,q) process defined by

φ(B)Yt = θ(B)Zt, t = 0,±1, . . . , (9.3.5)

where {Zt} ∼ WN
(
0, σ 2

)
and φ(z) �= 0 for |z| ≤ 1. Let

r = max(p, q + 1), φj = 0 for j > p, θj = 0 for j > q, and θ0 = 1.

If {Ut} is the causal AR( p) process satisfying

φ(B)Ut = Zt, (9.3.6)

then Yt = θ(B)Ut, since

φ(B)Yt = φ(B)θ(B)Ut = θ(B)φ(B)Ut = θ(B)Zt.

Consequently,

Yt = [θr−1 θr−2 · · · θ0]Xt, (9.3.7)

where

Xt =

⎡

⎢⎢⎢
⎣

Ut−r+1

Ut−r+2
...

Ut

⎤

⎥⎥⎥
⎦

. (9.3.8)
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But from Example 9.3.1 we can write

Xt+1 =

⎡

⎢⎢⎢
⎢⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
φr φr−1 φr−2 · · · φ1

⎤

⎥⎥⎥
⎥⎥
⎦
Xt +

⎡

⎢⎢⎢
⎢⎢
⎣

0
0
...

0
1

⎤

⎥⎥⎥
⎥⎥
⎦
Zt+1, t = 0,±1, . . . .

(9.3.9)

Equations (9.3.7) and (9.3.9) are the required observation and state equations. As in
Example 9.3.1, the observation and state noise vectors are again Wt = 0 and Vt =
(0, 0, . . . ,Zt+1)

′, t = 0,±1, ….
�

Example 9.3.3 State-Space Representation of an ARIMA(p, d, q) Process

If
{
Yt
}
is an ARIMA(p, d, q) process with {∇dYt} satisfying (9.3.5), then by the

preceding example
{∇dYt

}
has the representation

∇dYt = GXt, t = 0,±1, . . . , (9.3.10)

where {Xt} is the unique stationary solution of the state equation
Xt+1 = FXt + Vt,

F and G are the coefficients of Xt in (9.3.9) and (9.3.7), respectively, and Vt =
(0, 0, . . . ,Zt+1)

′. Let A and B be the d × 1 and d × d matrices defined by A = B = 1
if d = 1 and

A =

⎡

⎢⎢⎢
⎢⎢
⎣

0
0
...

0
1

⎤

⎥⎥⎥
⎥⎥
⎦

, B =

⎡

⎢⎢⎢
⎢⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
(−1)d+1

(d
d

)
(−1)d

( d
d−1

)
(−1)d−1

( d
d−2

) · · · d

⎤

⎥⎥⎥
⎥⎥
⎦

if d > 1. Then since

Yt = ∇dYt −
d∑

j=1

(
d

j

)
(−1)jYt−j, (9.3.11)

the vector

Yt−1 := (Yt−d, . . . ,Yt−1)
′

satisfies the equation

Yt = A∇dYt + BYt−1 = AGXt + BYt−1.

Defining a new state vector Tt by stacking Xt and Yt−1, we therefore obtain the state
equation

Tt+1 :=
[
Xt+1

Yt

]
=
[
F 0
AG B

]
Tt +

[
Vt

0

]
, t = 1, 2, . . . , (9.3.12)
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and the observation equation, from (9.3.10) and (9.3.11),

Yt=
[
G (−1)d+1

(
d

d

)
(−1)d

(
d

d − 1

)
(−1)d−1

(
d

d − 2

)
· · · d

] [
Xt

Yt−1

]
,

t = 1, 2, . . . ,

(9.3.13)

with initial condition

T1 =
[
X1

Y0

]
=
⎡

⎣

∞∑

j=0
F j V−j

Y0

⎤

⎦ , (9.3.14)

and the assumption

E(Y0Z
′
t) = 0, t = 0,±1, . . . , (9.3.15)

where Y0 = (Y1−d,Y2−d, . . . ,Y0)
′. The conditions (9.3.15), which are satisfied in

particular if Y0 is considered to be nonrandom and equal to the vector of observed
values (y1−d, y2−d, . . . , y0)

′, are imposed to ensure that the assumptions of a state-
space model given in Section 9.1 are satisfied. They also imply that E

(
X1Y′

0

) = 0 and
E(Y0∇dY ′

t ) = 0, t ≥ 1, as required earlier in Section 6.4 for prediction of ARIMA
processes.

State-space models for more general ARIMA processes (e.g., {Yt} such that
{∇∇12Yt} is an ARMA(p, q) process) can be constructed in the sameway. See Problem
9.4.

�
For the ARIMA(1, 1, 1) process defined by

(1 − φB)(1 − B)Yt = (1 + θB)Zt, {Zt} ∼ WN
(
0, σ 2

)
,

the vectors Xt and Yt−1 reduce to Xt = (Xt−1,Xt)
′ and Yt−1 = Yt−1. From (9.3.12)

and (9.3.13) the state-space representation is therefore (Problem 9.8)

Yt = [θ 1 1
]
⎡

⎣
Xt−1

Xt

Yt−1

⎤

⎦ , (9.3.16)

where
⎡

⎣
Xt

Xt+1

Yt

⎤

⎦ =
⎡

⎣
0 1 0
0 φ 0
θ 1 1

⎤

⎦

⎡

⎣
Xt−1

Xt

Yt−1

⎤

⎦+
⎡

⎣
0

Zt+1

0

⎤

⎦ , t = 1, 2, . . . , (9.3.17)

and

⎡

⎣
X0

X1

Y0

⎤

⎦ =

⎡

⎢⎢
⎢⎢⎢
⎣

∞∑

j=0
φjZ−j

∞∑

j=0
φjZ1−j

Y0

⎤

⎥⎥
⎥⎥⎥
⎦

. (9.3.18)
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9.4 The Kalman Recursions

In this section we shall consider three fundamental problems associated with the state-
space model defined by (9.1.1) and (9.1.2) in Section 9.1. These are all concerned with
finding best (in the sense of minimum mean square error) linear estimates of the state-
vector Xt in terms of the observations Y1,Y2, . . . , and a random vector Y0 that is
orthogonal to Vt and Wt for all t ≥ 1. In many cases Y0 will be the constant vector
(1, 1, . . . , 1)′. Estimation of Xt in terms of:

a. Y0, . . . ,Yt−1 defines the prediction problem,
b. Y0, . . . ,Yt defines the filtering problem,
c. Y0, . . . ,Yn (n > t) defines the smoothing problem.

Each of these problems can be solved recursively using an appropriate set of Kalman
recursions, which will be established in this section.

In the following definition of best linear predictor (and throughout this chapter)
it should be noted that we do not automatically include the constant 1 among the
predictor variables as we did in Sections 2.5 and 8.5. (It can, however, be included
by choosing Y0 = (1, 1, . . . , 1)′.)

Definition 9.4.1 For the random vector X = (X1, . . . ,Xv)
′,

Pt(X) := (Pt(X1), . . . ,Pt(Xv))
′,

where Pt(Xi) := P(Xi|Y0,Y1, . . . ,Yt), is the best linear predictor of Xi in terms
of all components of Y0,Y1, . . . ,Yt.

Remark 1. By the definition of the best predictor of each component Xi of X,
Pt(X) is the unique random vector of the form

Pt(X) = A0Y0 + · · · + AtYt

with v × w matrices A0, . . . ,At such that

[X − Pt(X)] ⊥ Ys, s = 0, . . . , t

[cf. (8.5.2) and (8.5.3)]. Recall that two random vectors X and Y are orthogonal
(written X ⊥ Y) if E(XY′) is a matrix of zeros. �

Remark 2. If all the components of X,Y1, . . . ,Yt are jointly normally distributed
and Y0 = (1, . . . , 1)′, then

Pt(X) = E(X|Y1, . . . ,Yt), t ≥ 1. �

Remark 3. Pt is linear in the sense that if A is any k × v matrix and X,V are two
v-variate random vectors with finite second moments, then (Problem 9.10)

Pt(AX) = APt(X)

and
Pt(X + V) = Pt(X) + Pt(V).

�
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Remark 4. If X and Y are random vectors with v and w components, respectively,
each with finite second moments, then

P(X|Y) = MY,

whereM is a v×wmatrix,M=E(XY′)[E(YY′)]−1 with [E(YY′)]−1 any generalized
inverse of E(YY′). (A generalized inverse of a matrix S is a matrix S−1 such that
SS−1S = S. Every matrix has at least one. See Problem 9.11.)

In the notation just developed, the prediction, filtering, and smoothing problems
(a), (b), and (c) formulated above reduce to the determination of Pt−1(Xt), Pt(Xt), and
Pn(Xt) (n > t), respectively. We deal first with the prediction problem. �

Kalman Prediction:
For the state-space model (9.1.1)–(9.1.2), the one-step predictors X̂t := Pt−1(Xt)

and their error covariance matrices Ωt = E
[(
Xt − X̂t

)(
Xt − X̂t

)′]
are uniquely

determined by the initial conditions

X̂1 = P(X1|Y0), Ω1 = E
[(
X1 − X̂1

)(
X1 − X̂1

)′]

and the recursions, for t = 1, . . . ,

X̂t+1 = FtX̂t + 	tΔ
−1
t

(
Yt − GtX̂t

)
, (9.4.1)

Ωt+1 = FtΩtF
′
t + Qt − 	tΔ

−1
t 	′

t, (9.4.2)

where

Δt = GtΩtG
′
t + Rt,

	t = FtΩtG
′
t,

and Δ−1
t is any generalized inverse of Δt.

Proof. We shall make use of the innovations It defined by I0 = Y0 and

It = Yt − Pt−1Yt = Yt − GtX̂t = Gt

(
Xt − X̂t

)
+ Wt, t = 1, 2, . . . .

The sequence {It} is orthogonal by Remark 1. Using Remarks 3 and 4 and the relation

Pt(·) = Pt−1(·) + P(·|It) (9.4.3)

(see Problem 9.12), we find that

X̂t+1 = Pt−1(Xt+1) + P(Xt+1|It) = Pt−1(FtXt + Vt) + 	tΔ
−1
t It

= FtX̂t + 	tΔ
−1
t It, (9.4.4)

where

Δt = E(It I′t) = GtΩtG
′
t + Rt,

	t = E(Xt+1I′t) = E

[(
FtXt + Vt

) ([
Xt − X̂t

]′
G′

t + W′
t

)]
= FtΩtG

′
t.

To verify (9.4.2), we observe from the definition of Ωt+1 that

Ωt+1 = E
(
Xt+1X′

t+1

)− E
(
X̂t+1X̂′

t+1

)
.
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With (9.1.2) and (9.4.4) this gives

Ωt+1 = FtE(XtX′
t)F

′
t + Qt − FtE

(
X̂tX̂′

t

)
F′
t − 	tΔ

−1
t 	′

t

= FtΩtF
′
t + Qt − 	tΔ

−1
t 	′

t. �

9.4.1 h-Step Prediction of {Yt} Using the Kalman Recursions

The Kalman prediction equations lead to a very simple algorithm for recursive
calculation of the best linear mean square predictors PtYt+h, h = 1, 2, . . . . From
(9.4.4), (9.1.1), (9.1.2), and Remark 3 in Section 9.1, we find that

PtXt+1 = FtPt−1Xt + 	tΔ
−1
t (Yt − Pt−1Yt), (9.4.5)

PtXt+h = Ft+h−1PtXt+h−1

...

= (Ft+h−1Ft+h−2 · · ·Ft+1)PtXt+1, h = 2, 3, . . . , (9.4.6)

and

PtYt+h = Gt+hPtXt+h, h = 1, 2, . . . . (9.4.7)

From the relation

Xt+h − PtXt+h = Ft+h−1(Xt+h−1 − PtXt+h−1) + Vt+h−1, h = 2, 3, . . . ,

we find that Ω(h)
t := E[(Xt+h − PtXt+h)(Xt+h − PtXt+h)

′] satisfies the recursions
Ω(h)

t = Ft+h−1Ω
(h−1)
t F′

t+h−1 + Qt+h−1, h = 2, 3, . . . , (9.4.8)

with Ω
(1)
t = Ωt+1. Then from (9.1.1) and (9.4.7), Δ(h)

t := E[(Yt+h − PtYt+h)(Yt+h −
PtYt+h)

′] is given by
Δ(h)

t = Gt+hΩ
(h)
t G′

t+h + Rt+h, h = 1, 2, . . . . (9.4.9)

Example 9.4.1. Consider the random walk plus noise model of Example 9.2.1 defined by

Yt = Xt + Wt, {Wt} ∼ WN
(
0, σ 2

w

)
,

where the local level Xt follows the random walk

Xt+1 = Xt + Vt, {Vt} ∼ WN
(
0, σ 2

v

)
.

Applying the Kalman prediction equations with Y0 := 1, R = σ 2
w, and Q = σ 2

v , we
obtain

Ŷt+1 = PtYt+1 = X̂t + 	t

Δt

(
Yt − Ŷt

)

= (1 − at)Ŷt + atYt

where

at = 	t

Δt
= Ωt

Ωt + σ 2
w

.
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For a state-space model (like this one) with time-independent parameters, the solution
of the Kalman recursions (9.4.2) is called a steady-state solution if Ωt is independent
of t. If Ωt = Ω for all t, then from (9.4.2)

Ωt+1 = Ω = Ω + σ 2
v − Ω2

Ω + σ 2
w

= Ωσ 2
w

Ω + σ 2
w

+ σ 2
v .

Solving this quadratic equation for Ω and noting that Ω ≥ 0, we find that

Ω = 1

2

(
σ 2
v +

√
σ 4
v + 4σ 2

v σ 2
w

)

Since Ωt+1 − Ωt is a continuous function of Ωt on Ωt ≥ 0, positive at Ωt = 0,
negative for large Ωt, and zero only at Ωt = Ω , it is clear that Ωt+1 − Ωt is negative
for Ωt > Ω and positive for Ωt < Ω . A similar argument shows (Problem 9.14) that
(Ωt+1 − Ω)(Ωt − Ω) ≥ 0 for all Ωt ≥ 0. These observations imply that Ωt+1 always
falls between Ω and Ωt. Consequently, regardless of the value of Ω1, Ωt converges
to Ω , the unique solution of Ωt+1 = Ωt. For any initial predictors Ŷ1 = X̂1 and any
initial mean squared error Ω1 = E

(
X1 − X̂1

)2
, the coefficients at := Ωt/

(
Ωt + σ 2

w

)

converge to

a = Ω

Ω + σ 2
w

,

and the mean squared errors of the predictors defined by

Ŷt+1 = (1 − at)Ŷt + atYt

converge to Ω + σ 2
w.

If, as is often the case, we do not knowΩ1, then we cannot determine the sequence
{at}. It is natural, therefore, to consider the behavior of the predictors defined by

Ŷt+1 = (1 − a)Ŷt + aYt

with a as above and arbitrary Ŷ1. It can be shown (Problem 9.16) that this sequence
of predictors is also asymptotically optimal in the sense that the mean squared error
converges to Ω + σ 2

w as t → ∞.
As shown in Example 9.2.1, the differenced process Dt = Yt − Yt−1 is the MA(1)

process

Dt = Zt + θZt−1,
{
Zt
} ∼ WN

(
0, σ 2

)
,

where θ/
(
1 + θ2

) = −σ 2
w/
(
2σ 2

w + σ 2
v

)
. Solving this equation for θ (Problem 9.15),

we find that

θ = − 1

2σ 2
w

(
2σ 2

w + σ 2
v −

√
σ 4
v + 4σ 2

v σ 2
w

)

and that θ = a − 1.
It is instructive to derive the exponential smoothing formula for Ŷt directly from

the ARIMA(0,1,1) structure of {Yt}. For t ≥ 2, we have from Section 6.5 that

Ŷt+1 = Yt + θt1(Yt − Ŷt) = −θt1Ŷt + (1 + θt1)Yt

for t ≥ 2, where θt1 is found by application of the innovations algorithm to an MA(1)
process with coefficient θ . It follows that 1 − at = −θt1, and since θt1 → θ
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(see Remark 1 of Section 3.3) and at converges to the steady-state solution a, we
conclude that

1 − a = lim
t→∞(1 − at) = − lim

t→∞ θt1 = −θ.

�

Example 9.4.2. The lognormal stochastic volatility model

We can rewrite the defining equations (7.4.2) and (7.4.3) of the lognormal SV process
{Zt} in the following state-space form

Xt = γ1Xt−1 + ηt, (9.4.10)

and

Yt = Xt + εt, (9.4.11)

where the (one-dimensional) state and observation vectors are

Xt = �t − γ0

1 − γ1
, (9.4.12)

and

Yt = lnZ2
t + 1.27 − γ0

2(1 − γ1)
(9.4.13)

respectively. The independent white-noise sequences {ηt} and {εt} have zero means
and variances σ 2 and 4.93 respectively.

Taking

X̂0 = EX0 = 0 (9.4.14)

and

Ω̂0 = Var(X0) = σ 2/(1 − γ 2
1 ), (9.4.15)

and we can directly apply the Kalman prediction recursions (9.4.1), (9.4.2), (9.4.6) and
(9.4.8), to compute recursively the best linear predictor of Xt+h in terms of {Ys, s ≤ t},
or equivalently of the log volatility �t+h in terms of the observations {ln Z2

s , s ≤ t}.
�

Kalman Filtering:
The filtered estimates Xt|t = Pt(Xt) and their error covariance matrices Ωt|t =
E[(Xt − Xt|t)(Xt − Xt|t)′] are determined by the relations

PtXt = Pt−1Xt + ΩtG
′
tΔ

−1
t

(
Yt − GtX̂t

)
(9.4.16)

and

Ωt|t = Ωt − ΩtG
′
tΔ

−1
t GtΩ

′
t . (9.4.17)

Proof. From (9.4.3) it follows that

PtXt = Pt−1Xt + MIt,

where

M = E(Xt I′t)[E(It I′t)]−1 = E
[
Xt(Gt(Xt − X̂t) + Wt)

′]Δ−1
t = ΩtG

′
tΔ

−1
t .

(9.4.18)
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To establish (9.4.17) we write

Xt − Pt−1Xt = Xt − PtXt + PtXt − Pt−1Xt = Xt − PtXt + MIt.

Using (9.4.18) and the orthogonality of Xt − PtXt and MIt, we find from the last
equation that

Ωt = Ωt|t + ΩtG
′
tΔ

−1
t GtΩ

′
t ,

as required. �

Kalman Fixed-Point Smoothing:
The smoothed estimates Xt|n = PnXt and the error covariance matrices Ωt|n =
E[(Xt − Xt|n)(Xt − Xt|n)′] are determined for fixed t by the following recursions,
which can be solved successively for n = t, t + 1, . . .:

PnXt = Pn−1Xt + Ωt,nG
′
nΔ

−1
n

(
Yn − GnX̂n

)
, (9.4.19)

Ωt,n+1 = Ωt,n[Fn − 	nΔ
−1
n Gn]′, (9.4.20)

Ωt|n = Ωt|n−1 − Ωt,nG
′
nΔ

−1
n GnΩ

′
t,n, (9.4.21)

with initial conditions Pt−1Xt = X̂t and Ωt,t = Ωt|t−1 = Ωt (found from Kalman
prediction).

Proof. Using (9.4.3) we can write PnXt = Pn−1Xt + CIn, where In = Gn

(
Xn − X̂n

) + Wn.
By Remark 4 above,

C = E

[
Xt

(
Gn(Xn − X̂n) + Wn

)′] [
E
(
InI′n
)]−1 = Ωt,nG

′
nΔ

−1
n , (9.4.22)

where Ωt,n := E
[(
Xt − X̂t

)(
Xn − X̂n

)′]
. It follows now from (9.1.2), (9.4.5), the

orthogonality of Vn and Wn with Xt − X̂t, and the definition of Ωt,n that

Ωt,n+1=E

[(
Xt − X̂t

) (
Xn − X̂n

)′ (
Fn − 	nΔ

−1
n Gn

)′
]

=Ωt,n

[
Fn − 	nΔ

−1
n Gn

]′
,

thus establishing (9.4.20). To establish (9.4.21) we write

Xt − PnXt = Xt − Pn−1Xt − CIn.

Using (9.4.22) and the orthogonality of Xt − PnXt and In, the last equation then gives

Ωt|n = Ωt|n−1 − Ωt,nG
′
nΔ

−1
n GnΩ

′
t,n, n = t, t + 1, . . . ,

as required. �

9.5 Estimation for State-Space Models
Consider the state-space model defined by equations (9.1.1) and (9.1.2) and suppose
that the model is completely parameterized by the components of the vector θ. The
maximum likelihood estimate of θ is found by maximizing the likelihood of the obser-
vations Y1, . . . ,Yn with respect to the components of the vector θ. If the conditional
probability density of Yt given Yt−1 = yt−1, . . . ,Y0 = y0 is ft(·|yt−1, . . . , y0), then
the likelihood of Yt, t = 1, . . . , n (conditional on Y0), can immediately be written as

L(θ;Y1, . . . ,Yn) =
n∏

t=1

ft(Yt|Yt−1, . . . ,Y0). (9.5.1)
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The calculation of the likelihood for any fixed numerical value of θ is extremely
complicated in general, but is greatly simplified if Y0,X1 and Wt,Vt, t = 1, 2, . . .,
are assumed to be jointly Gaussian. The resulting likelihood is called the Gaussian
likelihood and is widely used in time series analysis (cf. Section 5.2) whether the time
series is truly Gaussian or not. As before, we shall continue to use the term likelihood
to mean Gaussian likelihood.

If Y0,X1 and Wt,Vt, t = 1, 2, . . . , are jointly Gaussian, then the conditional
densities in (9.5.1) are given by

ft(Yt|Yt−1, . . . ,Y0) = (2π)−w/2 (detΔt)
−1/2 exp

[
−1

2
I′tΔ

−1
t It

]
,

where It =Yt − Pt−1Yt =Yt − GX̂t, Pt−1Yt, and Δt, t ≥ 1, are the one-step pre-
dictors and error covariance matrices found from the Kalman prediction recursions.
The likelihood of the observations Y1, . . . ,Yn (conditional on Y0) can therefore be
expressed as

L(θ;Y1, . . . ,Yn) = (2π)−nw/2

⎛

⎝
n∏

j=1

detΔj

⎞

⎠

−1/2

exp

⎡

⎣−1

2

n∑

j=1

I′jΔ
−1
j Ij

⎤

⎦ .

(9.5.2)

Given the observations Y1, . . . ,Yn, the distribution of Y0 (see Section 9.4), and a
particular parameter value θ, the numerical value of the likelihood L can be computed
from the previous equation with the aid of the Kalman recursions of Section 9.4. To
find maximum likelihood estimates of the components of θ, a nonlinear optimization
algorithm must be used to search for the value of θ that maximizes the value of L.

Having estimated the parameter vector θ, we can compute forecasts based on the
fitted state-space model and estimated mean squared errors by direct application of
equations (9.4.7) and (9.4.9).

9.5.1 Application to Structural Models

The general structural model for a univariate time series {Yt} of which we gave
examples in Section 9.2 has the form

Yt = GXt + Wt, {Wt} ∼ WN
(
0, σ 2

w

)
, (9.5.3)

Xt+1 = FXt + Vt, {Vt} ∼ WN(0,Q), (9.5.4)

for t = 1, 2, . . . , where F and G are assumed known. We set Y0 = 1 in order to
include constant terms in our predictors and complete the specification of the model
by prescribing the mean and covariance matrix of the initial state X1. A simple and
convenient assumption is that X1 is equal to a deterministic but unknown parameter
μ and that X̂1 = μ, so that Ω1 = 0. The parameters of the model are then μ, Q,
and σ 2

w.
Direct maximization of the likelihood (9.5.2) is difficult if the dimension of the

state vector is large. The maximization can, however, be simplified by the following
stepwise procedure. For fixedQwe find μ̂(Q) and σ 2

w(Q) that maximize the likelihood
L
(
μ,Q, σ 2

w

)
. We then maximize the “reduced likelihood” L

(
μ̂(Q),Q, σ̂ 2

w(Q)
)
with

respect to Q.
To achieve this we define the mean-corrected state vectors, X∗

t = Xt −Ft−1μ, and
apply the Kalman prediction recursions to {X∗

t } with initial condition X∗
1 = 0. This

gives, from (9.4.1),
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X̂∗
t+1 = FX̂∗

t + 	tΔ
−1
t

(
Yt − GX̂∗

t

)
, t = 1, 2, . . . , (9.5.5)

with X̂∗
1 = 0. Since X̂t also satisfies (9.5.5), but with initial condition X̂t = μ, it

follows that

X̂t = X̂∗
t + Ctμ (9.5.6)

for some v×vmatricesCt. (Note that although X̂t = P(Xt|Y0,Y1, . . . ,Yt), the quantity
X̂∗

t is not the corresponding predictor of X∗
t .) The matrices Ct can be determined

recursively from (9.5.5), (9.5.6), and (9.4.1). Substituting (9.5.6) into (9.5.5) and using
(9.4.1), we have

X̂∗
t+1 = F

(
X̂t − Ctμ

)
+ 	tΔ

−1
t

(
Yt − G

(
X̂t − Ctμ

))

= FX̂t + 	tΔ
−1
t

(
Yt − GX̂t

)
− (F − 	tΔ

−1
t G

)
Ctμ

= X̂t+1 − (F − 	tΔ
−1
t G

)
Ctμ,

so that

Ct+1 = (F − 	tΔ
−1
t G

)
Ct (9.5.7)

with C1 equal to the identity matrix. The quadratic form in the likelihood (9.5.2) is
therefore

S(μ,Q, σ 2
w) =

n∑

t=1

(
Yt − GX̂t

)2

Δt
(9.5.8)

=
n∑

t=1

(
Yt − GX̂∗

t − GCtμ
)2

Δt
. (9.5.9)

Now let Q∗ := σ−2
w Q and define L∗ to be the likelihood function with this new

parameterization, i.e., L∗ (μ,Q∗, σ 2
w

) = L
(
μ, σ 2

wQ
∗, σ 2

w

)
. Writing Δ∗

t = σ−2
w Δt and

Ω∗
t = σ−2

w Ωt, we see that the predictors X̂∗
t and the matrices Ct in (9.5.7) depend on

the parameters only through Q∗. Thus,

S
(
μ,Q, σ 2

w

) = σ−2
w S

(
μ,Q∗, 1

)
,

so that

−2 lnL∗ (μ,Q∗, σ 2
w

) = n ln(2π) +
n∑

t=1

ln Δt + σ−2
w S

(
μ,Q∗, 1

)

= n ln(2π) +
n∑

t=1

ln Δ∗
t + n ln σ 2

w + σ−2
w S

(
μ,Q∗, 1

)
.

For Q∗ fixed, it is easy to show (see Problem 9.18) that this function is minimized
when

μ̂ = μ̂
(
Q∗) =

[
n∑

t=1

C′
tG

′GCt

Δ∗
t

]−1 n∑

t=1

C′
tG

′
(
Yt − GX̂∗

t

)

Δ∗
t

(9.5.10)
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and

σ̂ 2
w = σ̂ 2

w

(
Q∗) = n−1

n∑

t=1

(
Yt − GX̂∗

t − GCtμ̂
)2

Δ∗
t

. (9.5.11)

Replacing μ and σ 2
w by these values in −2 ln L∗ and ignoring constants, the reduced

likelihood becomes

�
(
Q∗) = ln

(

n−1
n∑

t=1

(
Yt − GX̂∗

t − GCtμ̂
)2

Δ∗
t

)

+ n−1
n∑

t=1

ln
(
det Δ∗

t

)
.

(9.5.12)

If Q̂∗ denotes the minimizer of (9.5.12), then the maximum likelihood estimator of the
parametersμ,Q, σ 2

w are μ̂, σ̂ 2
wQ̂

∗, σ̂ 2
w, where μ̂ and σ̂ 2

w are computed from (9.5.10) and
(9.5.11) with Q∗ replaced by Q̂∗.

We can now summarize the steps required for computing the maximum likelihood
estimators of μ, Q, and σ 2

w for the model (9.5.3)–(9.5.4).

1. For a fixed Q∗, apply the Kalman prediction recursions with X̂∗
1 = 0, Ω1 = 0,

Q = Q∗, and σ 2
w = 1 to obtain the predictors X̂∗

t . Let Δ∗
t denote the one-step

prediction error produced by these recursions.
2. Set μ̂ = μ̂(Q∗) = [∑n

t=1 C
′
tG

′GCt/Δt

]−1∑n
t=1 C

′
tG

′(Yt − GX̂∗
t )/Δ

∗
t .

3. Let Q̂∗ be the minimizer of (9.5.12).
4. The maximum likelihood estimators of μ, Q, and σ 2

w are then given by μ̂, σ̂ 2
wQ̂

∗,
and σ̂ 2

w, respectively, where μ̂ and σ̂ 2
w are found from (9.5.10) and (9.5.11)

evaluated at Q̂∗.

Example 9.5.1. Random Walk Plus Noise Model

In Example 9.2.1, 100 observations were generated from the structural model

Yt = Mt + Wt, {Wt} ∼ WN
(
0, σ 2

w

)
,

Mt+1 = Mt + Vt, {Vt} ∼ WN
(
0, σ 2

v

)
,

with initial values μ = M1 = 0, σ 2
w = 8, and σ 2

v = 4. The maximum likelihood
estimates of the parameters are found by first minimizing (9.5.12) with μ̂ given by
(9.5.10). Substituting these values into (9.5.11) gives σ̂ 2

w. The resulting estimates are
μ̂ = 0.906, σ̂ 2

v = 5.351, and σ̂ 2
w = 8.233, which are in reasonably close agreement

with the true values.
�

Example 9.5.2. International Airline Passengers, 1949–1960; AIRPASS.TSM

The monthly totals of international airline passengers from January 1949 to December
1960 (Box and Jenkins 1976) are displayed in Figure 9-3. The data exhibit both a
strong seasonal pattern and a nearly linear trend. Since the variability of the data
Y1, . . . ,Y144 increases for larger values of Yt, it may be appropriate to consider a
logarithmic transformation of the data. For the purpose of this illustration, however,
we will fit a structural model incorporating a randomly varying trend and seasonal and
noise components (see Example 9.2.3) to the raw data. This model has the form
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Figure 9-3
International airline
passengers; monthly

totals from January 1949
to December 1960
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Yt = GXt + Wt, {Wt} ∼ WN
(
0, σ 2

w

)
,

Xt+1 = FXt + Vt, {Vt} ∼ WN(0, Q),

where Xt is a 13-dimensional state-vector,

F =

⎡

⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎣

1 1 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 −1 −1 · · · −1 −1
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎦

,

G = [
1 0 1 0 · · · 0

]
,

and

Q =

⎡

⎢
⎢⎢⎢⎢
⎢⎢
⎣

σ 2
1 0 0 0 · · · 0

0 σ 2
2 0 0 · · · 0

0 0 σ 2
3 0 · · · 0

0 0 0 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 0

⎤

⎥
⎥⎥⎥⎥
⎥⎥
⎦

.

The parameters of the model are μ, σ 2
1 , σ 2

2 , σ 2
3 , and σ 2

w, where μ = X1. Minimizing
(9.5.12) with respect to Q∗ we find from (9.5.11) and (9.5.12) that

(
σ̂ 2

1 , σ̂ 2
2 , σ̂ 2

3 , σ̂ 2
w

) = (170.63, .00000, 11.338, .014179)

and from (9.5.10) that μ̂ = (146.9, 2.171, −34.92, −34.12, −47.00, −16.98, 22.99,
53.99, 58.34, 33.65, 2.204, −4.053, −6.894)′. The first component, Xt1, of the state
vector corresponds to the local linear trend with slope Xt2. Since σ̂ 2

2 = 0, the slope at
time t, which satisfies

Xt2 = Xt−1,2 + Vt2,
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Figure 9-4
The one-step predictors(

X̂t1, X̂t2, X̂t3
)′

for the
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in Example 9.5.2
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must be nearly constant and equal to X̂12 = 2.171. The first three components of the
predictors X̂t are plotted in Figure 9-4. Notice that the first component varies like a
random walk around a straight line, while the second component is nearly constant as
a result of σ̂ 2

2 ≈ 0. The third component, corresponding to the seasonal component,
exhibits a clear seasonal cycle that repeats roughly the same pattern throughout the 12
years of data. The one-step predictors X̂t1 + X̂t3 of Yt are plotted in Figure 9-5 (solid
line) together with the actual data (square boxes). For this model the predictors follow
the movement of the data quite well.

�

9.6 State-Space Models with Missing Observations

State-space representations and the associated Kalman recursions are ideally suited to
the analysis of data with missing values, as was pointed out by Jones (1980) in the
context of maximum likelihood estimation for ARMA processes. In this section we
shall deal with two missing-value problems for state-space models. The first is the
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evaluation of the (Gaussian) likelihood based on {Yi1, . . . ,Yir}, where i1, i2, . . . , ir
are positive integers such that 1 ≤ i1 < i2 < · · · < ir ≤ n. (This allows for
observation of the process {Yt} at irregular intervals, or equivalently for the possibility
that (n−r) observations are missing from the sequence {Y1, . . . ,Yn}.) The solution of
this problem will, in particular, enable us to carry out maximum likelihood estimation
for ARMA and ARIMA processes with missing values. The second problem to be
considered is the minimum mean squared error estimation of the missing values
themselves.

9.6.1 The Gaussian Likelihood of {Yi1, . . . ,Yir}, 1 ≤ i1 < i2 < · · · < ir ≤ n

Consider the state-space model defined by equations (9.1.1) and (9.1.2) and suppose
that the model is completely parameterized by the components of the vector θ. If there
are no missing observations, i.e., if r = n and ij = j, j = 1, . . . , n, then the likelihood
of the observations {Y1, . . . ,Yn} is easily found as in Section 9.5 to be

L(θ;Y1, . . . ,Yn) = (2π)−nw/2

⎛

⎝
n∏

j=1

detΔj

⎞

⎠

−1/2

exp

⎡

⎣−1

2

n∑

j=1

I′jΔ
−1
j Ij

⎤

⎦ ,

where Ij = Yj − Pj−1Yj and Δj, j ≥ 1, are the one-step predictors and error
covariance matrices found from (9.4.7) and (9.4.9) with Y0 = 1.

To deal with the more general case of possibly irregularly spaced observations
{Yi1, . . . ,Yir}, we introduce a new series {Y∗

t }, related to the process {Xt} by the
modified observation equation

Y∗
t = G∗

t Xt + W∗
t , t = 1, 2, . . . , (9.6.1)

where

G∗
t =

{
Gt if t ∈ {i1, . . . , ir},
0 otherwise,

W∗
t =

{
Wt if t ∈ {i1, . . . , ir},
Nt otherwise,

(9.6.2)

and {Nt} is iid with

Nt ∼ N(0, Iw×w), Ns ⊥ X1, Ns ⊥
[
Vt

Wt

]
, s, t = 0,±1, . . . .

(9.6.3)

Equations (9.6.1) and (9.1.2) constitute a state-space representation for the new series
{Y∗

t }, which coincides with {Yt} at each t ∈ {i1, i2, . . . , ir}, and at other times takes
random values that are independent of {Yt} with a distribution independent of θ.

Let L1
(
θ; yi1, . . . , yir

)
be the Gaussian likelihood based on the observed

values yi1, . . . , yir of Yi1, . . . ,Yir under the model defined by (9.1.1) and (9.1.2).
Corresponding to these observed values, we define a new sequence, y∗

1, . . . , y
∗
n, by

y∗
t =

{
yt if t ∈ {i1, . . . , ir},
0 otherwise.

(9.6.4)

Then it is clear from the preceding paragraph that

L1
(
θ; yi1, . . . , yir

) = (2π)(n−r)w/2L2
(
θ; y∗

1, . . . , y
∗
n

)
, (9.6.5)

where L2 denotes the Gaussian likelihood under the model defined by (9.6.1) and
(9.1.2).
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In view of (9.6.5) we can now compute the required likelihood L1 of the realized
values {yt, t = i1, . . . , ir} as follows:

i. Define the sequence {y∗
t , t = 1, . . . , n} as in (9.6.4).

ii. Find the one-step predictors Ŷ∗
t of Y∗

t , and their error covariance matrices Δ∗
t ,

using Kalman prediction and equations (9.4.7) and (9.4.9) applied to the state-
space representation (9.6.1) and (9.1.2) of {Y∗

t }. Denote the realized values of the
predictors, based on the observation sequence

{
y∗
t

}
, by

{
ŷ∗
t

}
.

iii. The required Gaussian likelihood of the irregularly spaced observations {yi1, . . . ,
yir} is then, by (9.6.5),

L1(θ; yi1, . . . , yir) = (2π)−rw/2

⎛

⎝
n∏

j=1

det Δ∗
j

⎞

⎠

−1/2

exp

⎧
⎨

⎩
−1

2

n∑

j=1

i∗j
′Δ∗−1

j i∗j

⎫
⎬

⎭
,

where i∗j denotes the observed innovation y∗
j − ŷ∗

j , j = 1, . . . , n.

Example 9.6.1. An AR(1) Series with One Missing Observation

Let {Yt} be the causal AR(1) process defined by
Yt − φYt−1 = Zt, {Zt} ∼ WN

(
0, σ 2

)
.

To find the Gaussian likelihood of the observations y1, y3, y4, and y5 of Y1,Y3,Y4, and
Y5 we follow the steps outlined above.

i. Set y∗
i = yi, i = 1, 3, 4, 5 and y∗

2 = 0.
ii. We start with the state-space model for {Yt} from Example 9.1.1, i.e., Yt =

Xt, Xt+1 = φXt + Zt+1. The corresponding model for {Y∗
t } is then, from (9.6.1),

Y∗
t = G∗

t Xt + W∗
t , t = 1, 2, . . . ,

where

Xt+1 = FtXt + Vt, t = 1, 2, . . . ,

Ft = φ, G∗
t =

⎧
⎨

⎩

1 if t �= 2,

0 if t = 2,
Vt = Zt+1, W∗

t =
⎧
⎨

⎩

0 if t �= 2,

Nt if t = 2,

Qt = σ 2, R∗
t =

⎧
⎨

⎩

0 if t �= 2,

1 if t = 2,
S∗
t = 0,

and X1 =∑∞
j=0 φjZ1−j. Starting from the initial conditions

X̂1 = 0, Ω1 = σ 2/
(
1 − φ2

)
,

and applying the recursions (9.4.1) and (9.4.2), we find (Problem 9.19) that

	tΔ
−1
t =

{
φ if t = 1, 3, 4, 5,

0 if t = 2,
Ωt =

⎧
⎪⎨

⎪⎩

σ 2/
(
1 − φ2

)
if t = 1,

σ 2
(
1 + φ2

)
if t = 3,

σ 2 if t = 2, 4, 5,

and

X̂1 = 0, X̂2 = φY1, X̂3 = φ2Y1, X̂4 = φY3, X̂5 = φY4.
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From (9.4.7) and (9.4.9) with h = 1, we find that

Ŷ∗
1 = 0, Ŷ∗

2 = 0, Ŷ∗
3 = φ2Y1, Ŷ∗

4 = φY3, Ŷ∗
5 = φY4,

with corresponding mean squared errors

Δ∗
1 = σ 2/

(
1 − φ2

)
, Δ∗

2 = 1, Δ∗
3 = σ 2

(
1 + φ2

)
, Δ∗

4 = σ 2, Δ∗
5 = σ 2.

iii. From the preceding calculations we can now write the likelihood of the original
data as

L1(φ, σ 2; y1, y3, y4, y5)=σ−4(2π)−2
[(

1−φ2
)
/
(
1+φ2

)]1/2

× exp

{
− 1

2σ 2

[
y2

1

(
1−φ2

)+(y3−φ2y1)
2

1+φ2
+(y4−φy3)

2+(y5−φy4)
2

]}
.

�

Remark 1. If we are given observations y1−d, y2−d, . . . , y0, yi1, yi2, . . . , yir of an
ARIMA( p, d, q) process at times 1 − d, 2 − d, . . . , 0, i1, . . . , ir, where 1 ≤ i1 <

i2 < · · · < ir ≤ n, a similar argument can be used to find the Gaussian likelihood of
yi1, . . . , yir conditional on Y1−d = y1−d,Y2−d = y2−d, . . . ,Y0 = y0. Missing values
among the first d observations y1−d, y2−d, . . . , y0 can be handled by treating them as
unknown parameters for likelihood maximization. For more on ARIMA series with
missing values see Brockwell and Davis (1991) and Ansley and Kohn (1985). �

9.6.2 Estimation of Missing Values for State-Space Models

Given that we observe only Yi1,Yi2, . . . ,Yir , 1 ≤ i1 < i2 < · · · < ir ≤ n, where {Yt}
has the state-space representation (9.1.1) and (9.1.2), we now consider the problem
of finding the minimum mean squared error estimators P

(
Yt|Y0,Yi1, . . . ,Yir

)
of Yt,

1 ≤ t ≤ n, where Y0 = 1. To handle this problem we again use the modified process
{Y∗

t } defined by (9.6.1) and (9.1.2) with Y∗
0 = 1. Since Y∗

s = Ys for s ∈ {i1, . . . , ir}
and Y∗

s ⊥ Xt, Y0 for 1 ≤ t ≤ n and s /∈ {0, i1, . . . , ir}, we immediately obtain the
minimum mean squared error state estimators

P
(
Xt|Y0,Yi1, . . . ,Yir

) = P
(
Xt|Y∗

0,Y
∗
1, . . . ,Y

∗
n

)
, 1 ≤ t ≤ n. (9.6.6)

The right-hand side can be evaluated by application of the Kalman fixed-point
smoothing algorithm to the state-space model (9.6.1) and (9.1.2). For computational
purposes the observed values of Y∗

t , t /∈ {0, i1, . . . , ir}, are quite immaterial. They
may, for example, all be set equal to zero, giving the sequence of observations of Y∗

t
defined in (9.6.4).

To evaluate P
(
Yt|Y0,Yi1, . . . ,Yir

)
, 1 ≤ t ≤ n, we use (9.6.6) and the relation

Yt = GtXt + Wt. (9.6.7)

Since E
(
VtW′

t

) = St = 0, t = 1, . . . , n, we find from (9.6.7) that

P
(
Yt|Y0,Yi1, . . . ,Yir

) = GtP
(
Xt|Y∗

0,Y
∗
1, . . . ,Y

∗
n

)
. (9.6.8)

Example 9.6.2. An AR(1) Series with One Missing Observation

Consider the problem of estimating the missing value Y2 in Example 9.6.1 in terms of
Y0 = 1,Y1,Y3,Y4, and Y5. We start from the state-space model Xt+1 = φXt + Zt+1,
Yt = Xt, for {Yt}. The corresponding model for {Y∗

t } is the one used in Example 9.6.1.
Applying the Kalman smoothing equations to the latter model, we find that
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P1X2 = φY1, P2X2 = φY1, P3X2 = φ(Y1 + Y3)

(1 + φ2)
,

P4X2 = P3X2, P5X2 = P3X2,

Ω2,2 = σ 2, Ω2,3 = φσ 2, Ω2,t = 0, t ≥ 4,

and

Ω2|1 = σ 2, Ω2|2 = σ 2, Ω2|t = σ 2

(1 + φ2)
, t ≥ 3,

where Pt(·) here denotes P
(·|Y∗

0 , . . . ,Y∗
t

)
and Ωt,n,Ωt|n are defined correspondingly.

We deduce from (9.6.8) that the minimummean squared error estimator of the missing
value Y2 is

P5Y2 = P5X2 = φ(Y1 + Y3)(
1 + φ2

) ,

with mean squared error

Ω2|5 = σ 2

(
1 + φ2

) . �

Remark 2. Suppose we have observations Y1−d,Y2−d, . . . ,Y0,Yi1, . . . ,Yir (1 ≤ i1 <

i2 · · · < ir ≤ n) of an ARIMA(p, d, q) process. Determination of the best linear
estimates of the missing values Yt, t /∈ {i1, . . . , ir}, in terms of Yt, t ∈ {i1, . . . , ir},
and the components of Y0 := (Y1−d,Y2−d, . . . ,Y0)

′ can be carried out as in
Example 9.6.2 using the state-space representation of the ARIMA series {Yt} from
Example 9.3.3 and the Kalman recursions for the corresponding state-space model
for {Y∗

t } defined by (9.6.1) and (9.1.2). See Brockwell and Davis (1991) for further
details. �

We close this section with a brief discussion of a direct approach to estimating
missing observations. This approach is often more efficient than the methods just
described, especially if the number of missing observations is small and we have
a simple (e.g., autoregressive) model. Consider the general problem of computing
E(X|Y) when the random vector (X′,Y′)′ has a multivariate normal distribution with
mean 0 and covariance matrix �. (In the missing observation problem, think of X as
the vector of the missing observations and Y as the vector of observed values.) Then
the joint probability density function of X and Y can be written as

fX,Y(x, y) = fX|Y(x|y)fY(y), (9.6.9)

where fX|Y(x|y) is a multivariate normal density with mean E(X|Y) and covariance
matrix �X|Y (see Proposition A.3.1). In particular,

fX|Y(x|y) = 1
√

(2π)q det �X|Y
exp

{
−1

2
(x − E(X|y))′�−1

X|Y(x − E(X|y))
}

,

(9.6.10)

where q = dim(X). It is clear from (9.6.10) that fX|Y(x|y) (and also fX,Y(x, y))
is maximum when x = E(X|y). Thus, the best estimator of X in terms of Y can be
found by maximizing the joint density ofX andYwith respect to x. For autoregressive
processes it is relatively straightforward to carry out this optimization, as shown in the
following example.
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Example 9.6.3. Estimating Missing Observations in an AR Process

Suppose {Yt} is the AR( p) process defined by

Yt = φ1Yt−1 + · · · + φpYt−p + Zt, {Zt} ∼ WN
(
0, σ 2

)
,

and Y = (Yi1, . . . ,Yir)
′, with 1 ≤ i1 < · · · < ir ≤ n, are the observed values. If there

are no missing observations in the first p observations, then the best estimates of the
missing values are found by minimizing

n∑

t=p+1

(Yt − φ1Yt−1 − · · · − φpYt−p)
2 (9.6.11)

with respect to the missing values (see Problem 9.20). For the AR(1) model in
Example 9.6.2, minimization of (9.6.11) is equivalent to minimizing

(Y2 − φY1)
2 + (Y3 − φY2)

2

with respect to Y2. Setting the derivative of this expression with respect to Y2 equal to
0 and solving for Y2 we obtain E(Y2|Y1,Y3,Y4,Y5) = φ(Y1 + Y3)/

(
1 + φ2

)
.

�

9.7 The EM Algorithm

The expectation-maximization (EM) algorithm is an iterative procedure for computing
the maximum likelihood estimator when only a subset of the complete data set is
available. Dempster et al. (1977) demonstrated the wide applicability of the EM
algorithm and are largely responsible for popularizing this method in statistics. Details
regarding the convergence and performance of the EM algorithm can be found in Wu
(1983).

In the usual formulation of the EM algorithm, the “complete” data vector W is
made up of “observed” data Y (sometimes called incomplete data) and “unobserved”
data X. In many applications, X consists of values of a “latent” or unobserved process
occurring in the specification of the model. For example, in the state-space model of
Section 9.1, Y could consist of the observed vectors Y1, . . . ,Yn and X of the unob-
served state vectors X1, . . . ,Xn. The EM algorithm provides an iterative procedure
for computing the maximum likelihood estimator based only on the observed data Y.
Each iteration of the EM algorithm consists of two steps. If θ(i) denotes the estimated
value of the parameter θ after i iterations, then the two steps in the (i + 1)th iteration
are

E-step. Calculate Q(θ |θ(i)) = Eθ(i) [�(θ;X,Y)|Y]

and

M-step. Maximize Q(θ |θ(i)) with respect to θ.

Then θ(i+1) is set equal to the maximizer ofQ in the M-step. In the E-step, �(θ; x, y) =
ln f (x, y; θ), and Eθ(i) (·|Y) denotes the conditional expectation relative to the condi-
tional density f

(
x|y; θ(i)

) = f
(
x, y; θ(i)

)
/f
(
y; θ(i)

)
.

It can be shown that �
(
θ(i);Y) is nondecreasing in i, and a simple heuristic

argument shows that if θ(i) has a limit θ̂ then θ̂ must be a solution of the likelihood
equations �′(θ̂;Y) = 0. To see this, observe that ln f (x, y; θ) = ln f (x|y; θ) + �(θ; y),
from which we obtain

Q
(
θ |θ(i)

) =
∫

(ln f (x|Y; θ)) f
(
x|Y; θ(i)

)
dx + �(θ;Y)
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and

Q′(θ |θ(i)) =
∫ [

∂

∂θ
f (x|Y; θ)

]
/f (x|Y; θ)f

(
x|Y; θ(i)

)
dx + �′(θ;Y).

Now replacing θ with θ(i+1), noticing that Q′(θ(i+1)|θ(i)) = 0, and letting i → ∞, we
find that

0 =
∫

∂

∂θ

[
f (x|Y; θ)

]
θ=θ̂

dx + �′
(
θ̂;Y

)
= �′

(
θ̂;Y

)
.

The last equality follows from the fact that

0 = ∂

∂θ
(1) = ∂

∂θ

[∫
( f (x|Y; θ) dx

]

θ=θ̂

=
∫ [

∂

∂θ
f (x|Y; θ)

]

θ=θ̂

dx.

The computational advantage of the EM algorithm over direct maximization of the
likelihood is most pronounced when the calculation and maximization of the exact
likelihood is difficult as comparedwith themaximization ofQ in theM-step. (There are
some applications in which the maximization ofQ can easily be carried out explicitly.)

9.7.1 Missing Data

The EM algorithm is particularly useful for estimation problems in which there are
missing observations. Suppose the complete data set consists of Y1, . . . ,Yn of which
r are observed and n − r are missing. Denote the observed and missing data by Y =
(Yi1, . . . ,Yir)

′ and X = (Yj1, . . . ,Yjn−r)
′, respectively. Assuming that W = (X′,Y′)′

has a multivariate normal distribution with mean 0 and covariance matrix �, which
depends on the parameter θ, the log-likelihood of the complete data is given by

�(θ;W) = −n

2
ln(2π) − 1

2
ln det(�) − 1

2
W′�W.

The E-step requires that we compute the expectation of �(θ;W) with respect to the
conditional distribution of W given Y with θ=θ(i). Writing �(θ) as the block matrix

� =
[
�11 �12

�21 �22

]
,

which is conformable with X and Y, the conditional distribution of W given Y is

multivariate normal with mean
[X̂
Y

]
and covariance matrix

[
�11|2(θ) 0

0 0

]
, where X̂ =

Eθ(X|Y) = �12�
−1
22 Y and �11|2(θ) = �11 − �12�

−1
22 �21 (see Proposition A.3.1).

Using Problem A.8, we have

Eθ(i)

[
(X′,Y′)�−1(θ)(X′,Y′)′|Y] = trace

(
�11|2(θ(i))�−1

11|2(θ)
)

+ Ŵ′�−1(θ)Ŵ,

where Ŵ =
(
X̂′,Y′

)′
. It follows that

Q
(
θ|θ(i)

) = �
(
θ, Ŵ

)
− 1

2
trace

(
�11|2

(
θ(i)
)
�−1

11|2(θ)
)

.

The first term on the right is the log-likelihood based on the complete data, but with
X replaced by its “best estimate” X̂ calculated from the previous iteration. If the
increments θ(i+1) − θ(i) are small, then the second term on the right is nearly constant
(≈ n− r) and can be ignored. For ease of computation in this application we shall use
the modified version

Q̃
(
θ|θ(i)

) = �
(
θ; Ŵ

)
.
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With this adjustment, the steps in the EM algorithm are as follows:

E-step. Calculate Eθ(i) (X|Y) (e.g., with the Kalman fixed-point smoother) and form
�
(
θ; Ŵ).

M-step. Find the maximum likelihood estimator for the “complete” data problem,
i.e., maximize �

(
θ : Ŵ). For ARMA processes, ITSM can be used directly, with

the missing values replaced with their best estimates computed in the E-step.

Example 9.7.1. The Lake Data

It was found in Example 5.2.5 that the AR(2) model

Wt − 1.0415Wt−1 + 0.2494Wt−2 = Zt, {Zt} ∼ WN(0, .4790)

was a good fit to the mean-corrected lake data {Wt}. To illustrate the use of the EM
algorithm for missing data, consider fitting an AR(2) model to the mean-corrected
data assuming that there are 10 missing values at times t = 17, 24, 31, 38, 45, 52, 59,
66, 73, and 80. We start the algorithm at iteration 0 with φ̂

(0)

1 = φ̂
(0)

2 = 0. Since this
initial model represents white noise, the first E-step gives, in the notation used above,
Ŵ17 = · · · = Ŵ80 = 0. Replacing the “missing” values of themean-corrected lake data
with 0 and fitting a mean-zero AR(2) model to the resulting complete data set using
the maximum likelihood option in ITSM, we find that φ̂(1)

1 = 0.7252, φ̂(1)

2 = 0.0236.
(Examination of the plots of the ACF and PACF of this new data set suggests an AR(1)
as a better model. This is also borne out by the small estimated value of φ2.) The
updated missing values at times t = 17, 24, . . . , 80 are found (see Section 9.6 and
Problem 9.21) by minimizing

2∑

j=0

(
Wt+j − φ̂

(1)

1 Wt+j−1 − φ̂
(1)

2 Wt+j−2

)2

with respect to Wt. The solution is given by

Ŵt =
φ̂

(1)

2 (Wt−2 + Wt+2) +
(
φ̂

(1)

1 − φ̂
(1)

1 φ̂
(1)

2

)
(Wt−1 + Wt+1)

1 +
(
φ̂

(1)

1

)2 +
(
φ̂

(1)

2

)2
.

The M-step of iteration 1 is then carried out by fitting an AR(2) model using
ITSM applied to the updated data set. As seen in the summary of the results reported
in Table 9.1, the EM algorithm converges in four iterations with the final parameter
estimates reasonably close to the fitted model based on the complete data set. (In
Table 9.1, estimates of the missing values are recorded only for the first three.)
Also notice how −2�

(
θ(i),W

)
decreases at every iteration. The standard errors of

the parameter estimates produced from the last iteration of ITSM are based on a
“complete” data set and, as such, underestimate the true sampling errors. Formulae for
adjusting the standard errors to reflect the true sampling error based on the observed
data can be found in Dempster et al. (1977).

�

9.8 Generalized State-Space Models

As in Section 9.1, we consider a sequence of state variables {Xt, t ≥ 1} and a sequence
of observations {Yt, t ≥ 1}. For simplicity, we consider only one-dimensional state and
observation variables, since extensions to higher dimensions can be carried out with
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Table 9.1 Estimates of the missing observations at times t = 17,
24, 31 and the AR estimates using the EM algorithm in
Example 9.7.1

Iteration i Ŵ17 Ŵ24 Ŵ31 φ̂
(i)
1 φ̂

(i)
2 −2�

(
θ (i),W

)

0 0 0 322.60

1 0 0 0 0.7252 0.0236 244.76

2 0.534 0.205 0.746 1.0729 −0.2838 203.57

3 0.458 0.393 0.821 1.0999 −0.3128 202.25

4 0.454 0.405 0.826 1.0999 −0.3128 202.25

little change. Throughout this section it will be convenient to writeY(t) andX(t) for the
t dimensional column vectors Y(t) = (Y1,Y2, . . . ,Yt)′ and X(t) = (X1,X2, . . . ,Xt)

′.
There are two important types of state-space models, “parameter driven” and

“observation driven,” both of which are frequently used in time series analysis. The
observation equation is the same for both, but the state vectors of a parameter-driven
model evolve independently of the past history of the observation process, while the
state vectors of an observation-driven model depend on past observations.

9.8.1 Parameter-Driven Models

In place of the observation and state equations (9.1.1) and (9.1.2), we now make the
assumptions that Yt given

(
Xt,X(t−1),Y(t−1)

)
is independent of

(
X(t−1),Y(t−1)

)
with

conditional probability density

p( yt|xt) := p
(
yt|xt, x(t−1), y(t−1)

)
, t = 1, 2, . . . , (9.8.1)

and that Xt+1 given
(
Xt,X(t−1),Y(t)

)
is independent of

(
X(t−1),Y(t)

)
with conditional

density function

p(xt+1|xt) := p
(
xt+1|xt, x(t−1), y(t)

)
t = 1, 2, . . . . (9.8.2)

We shall also assume that the initial state X1 has probability density p1. The joint
density of the observation and state variables can be computed directly from (9.8.1)–
(9.8.2) as

p( y1, . . . , yn, x1, . . . , xn) = p
(
yn|xn, x(n−1), y(n−1)

)
p
(
xn, x(n−1), y(n−1)

)

= p( yn|xn)p
(
xn|x(n−1), y(n−1)

)
p
(
y(n−1), x(n−1)

)

= p( yn|xn)p(xn|xn−1)p
(
y(n−1), x(n−1)

)

= · · ·

=
⎛

⎝
n∏

j=1

p( yj|xj)
⎞

⎠

⎛

⎝
n∏

j=2

p(xj|xj−1)

⎞

⎠ p1(x1),

and since (9.8.2) implies that {Xt} is Markov (see Problem 9.22),

p(y1, . . . , yn|x1, . . . , xn) =
⎛

⎝
n∏

j=1

p( yj|xj)
⎞

⎠ . (9.8.3)
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We conclude that Y1, . . . ,Yn are conditionally independent given the state variables
X1, . . . ,Xn, so that the dependence structure of {Yt} is inherited from that of the state
process {Xt}. The sequence of state variables {Xt} is often referred to as the hidden or
latent generating process associated with the observed process.

In order to solve the filtering and prediction problems in this setting, we shall
determine the conditional densities p

(
xt|y(t)

)
of Xt given Y(t), and p

(
xt|y(t−1)

)
of Xt

given Y(t−1), respectively. The minimum mean squared error estimates of Xt based on
Y(t) and Y(t−1) can then be computed as the conditional expectations, E

(
Xt|Y(t)

)
and

E
(
Xt|Y(t−1)

)
.

An application of Bayes’s theorem, using the assumption that the distribution of
Yt given

(
Xt,X(t−1),Y(t−1)

)
does not depend on

(
X(t−1),Y(t−1)

)
, yields

p
(
xt|y(t)

) = p(yt|xt)p
(
xt|y(t−1)

)
/p
(
yt|y(t−1)

)
(9.8.4)

and

p
(
xt+1|y(t)

) =
∫

p
(
xt|y(t)

)
p(xt+1|xt) dμ(xt). (9.8.5)

(The integral relative to dμ(xt) in (9.8.4) is interpreted as the integral relative to dxt
in the continuous case and as the sum over all values of xt in the discrete case.) The
initial condition needed to solve these recursions is

p
(
x1|y(0)

) := p1(x1). (9.8.6)

The factor p
(
yt|y(t−1)

)
appearing in the denominator of (9.8.4) is just a scale factor,

determined by the condition
∫
p
(
xt|y(t)

)
dμ(xt) = 1. In the generalized state-

space setup, prediction of a future state variable is less important than forecasting a
future value of the observations. The relevant forecast density can be computed from
(9.8.5) as

p
(
yt+1|y(t)

) =
∫

p( yt+1|xt+1)p
(
xt+1|y(t)

)
dμ(xt+1). (9.8.7)

Equations (9.8.1)–(9.8.2) can be regarded as a Bayesian model specification. A
classical Bayesian model has two key assumptions. The first is that the data Y1, . . . ,Yt,
given an unobservable parameter (X(t) in our case), are independent with specified
conditional distribution. This corresponds to (9.8.3). The second specifies a prior
distribution for the parameter value. This corresponds to (9.8.2). The posterior
distribution is then the conditional distribution of the parameter given the data. In
the present setting the posterior distribution of the component Xt of X(t) is determined
by the solution (9.8.4) of the filtering problem.

Example 9.8.1. Consider the simplified version of the linear state-space model of Section 9.1,

Yt = GXt + Wt, {Wt} ∼ iid N(0,R), (9.8.8)

Xt+1 = FXt + Vt, {Vt} ∼ iid N(0,Q), (9.8.9)

where the noise sequences {Wt} and {Vt} are independent of each other. For this model
the probability densities in (9.8.1)–(9.8.2) become

p1(x1) = n(x1;EX1,Var(X1)), (9.8.10)

p(yt|xt) = n( yt;Gxt,R), (9.8.11)

p(xt+1|xt) = n(xt+1;Fxt,Q), (9.8.12)

where n
(
x; μ, σ 2

)
is the normal density with mean μ and variance σ 2 defined in

Example (a) of Section A.1.
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To solve the filtering and prediction problems in this new framework, we first
observe that the filtering and prediction densities in (9.8.4) and (9.8.5) are both normal.
We shall write them, using the notation of Section 9.4, as

p
(
xt|Y(t)

) = n(xt;Xt|t,Ωt|t) (9.8.13)

and

p
(
xt+1|Y(t)

) = n
(
xt+1; X̂t+1,Ωt+1

)
. (9.8.14)

From (9.8.5), (9.8.12), (9.8.13), and (9.8.14), we find that

X̂t+1 =
∫ ∞

−∞
xt+1p(xt+1|Y(t))dxt+1

=
∫ ∞

−∞
xt+1

∫ ∞

−∞
p(xt|Y(t))p(xt+1|xt) dxt dxt+1

=
∫ ∞

−∞
p(xt|Y(t))

[∫ ∞

−∞
xt+1p(xt+1|xt) dxt+1

]
dxt

=
∫ ∞

−∞
Fxtp(xt|Y(t)) dxt

= FXt|t

and (see Problem 9.23)

Ωt+1 = F2Ωt|t + Q.

Substituting the corresponding densities (9.8.11) and (9.8.14) into (9.8.4), we find by
equating the coefficient of x2

t on both sides of (9.8.4) that

Ω−1
t|t = G2R−1 + Ω−1

t = G2R−1 + (F2Ωt−1|t−1 + Q)−1

and

Xt|t = X̂t + Ωt|tGR−1
(
Yt − GX̂t

)
.

Also, from (9.8.4) with p
(
x1|y(0)

) = n(x1;EX1,Ω1) we obtain the initial conditions

X1|1 = EX1 + Ω1|1GR−1(Y1 − GEX1)

and

Ω−1
1|1 = G2R−1 + Ω−1

1 .

The Kalman prediction and filtering recursions of Section 9.4 give the same results for
X̂t and Xt|t, since for Gaussian systems best linear mean square estimation is equivalent
to best mean square estimation.

�

Example 9.8.2. A non-Gaussian Example

In general, the solution of the recursions (9.8.4) and (9.8.5) presents substantial
computational problems. Numerical methods for dealing with non-Gaussian models
are discussed by Sorenson and Alspach (1971) and Kitagawa (1987). Here we shall
illustrate the recursions (9.8.4) and (9.8.5) in a very simple special case. Consider the
state equation

Xt = aXt−1, (9.8.15)
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with observation density

p(yt|xt) = (πxt) yte−πxt

yt! , yt = 0, 1, . . . , (9.8.16)

where π is a constant between 0 and 1. The relationship in (9.8.15) implies that the
transition density [in the discrete sense—see the comment after (9.8.5)] for the state
variables is

p(xt+1|xt) =
{

1, if xt+1 = axt,

0, otherwise.

We shall assume that X1 has the gamma density function

p1(x1) = g(x1; α, λ) = λαx α−1
1 e−λx1

Γ (α)
, x1 > 0.

(This is a simplified model for the evolution of the number Xt of individuals at time
t infected with a rare disease, in which Xt is treated as a continuous rather than an
integer-valued random variable. The observation Yt represents the number of infected
individuals observed in a random sample consisting of a small fraction π of the
population at time t.) Because the transition distribution of {Xt} is not continuous,
we use the integrated version of (9.8.5) to compute the prediction density. Thus,

P
(
Xt ≤ x|y(t−1)

) =
∫ ∞

0
P(Xt ≤ x|xt−1)p

(
xt−1|y(t−1)

)
dxt−1

=
∫ x/a

0
p
(
xt−1|y(t−1)

)
dxt−1.

Differentiation with respect to x gives

p
(
xt|y(t−1)

) = a−1pXt−1|Y(t−1)

(
a−1xt|y(t−1)

)
. (9.8.17)

Now applying (9.8.4), we find that

p(x1|y1) = p( y1|x1)p1(x1)/p( y1)

=
(

(πx1)
y1e−πx1

y1!
)(

λαxα−1
1 e−λx1

Γ (α)

)(
1

p( y1)

)

= c( y1)x
α+y1−1
1 e−(π+λ)x1, x1 > 0,

where c(y1) is an integration factor ensuring that p(·|y1) integrates to 1. Since p(·|y1)

has the form of a gamma density, we deduce (see Example (d) of Section A.1) that

p(x1|y1) = g(x1; α1, λ1), (9.8.18)

where α1 = α + y1 and λ1 = λ + π . The prediction density, calculated from (9.8.5)
and (9.8.18), is

p
(
x2|y(1)

) = a−1pX1|Y(1)

(
a−1x2|y(1)

)

= a−1g
(
a−1x2; α1, λ1

)

= g(x2; α1, λ1/a).

Iterating the recursions (9.8.4) and (9.8.5) and using (9.8.17), we find that for t ≥ 1,

p
(
xt|y(t)

) = g(xt; αt, λt) (9.8.19)
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and

p
(
xt+1|y(t)

) = a−1g
(
a−1xt+1; αt, λt

)

= g(xt+1; αt, λt/a), (9.8.20)

where αt = αt−1 + yt = α + y1 + · · · + yt and λt = λt−1/a + π = λa1−t +
π
(
1 − a−t

)
/(1 − a−1). In particular, the minimum mean squared error estimate of

xt based on y(t) is the conditional expectation αt/λt with conditional variance αt/λ
2
t .

From (9.8.7) the probability density of Yt+1 given Y(t) is

p( yt+1|y(t)) =
∫ ∞

0

(
(πxt+1)

yt+1e−πxt+1

yt+1!
)
g(xt+1; αt, λt/a) dxt+1

= Γ (αt + yt+1)

Γ (αt)Γ (yt+1 + 1)

(
1 − π

λt+1

)αt
(

π

λt+1

)yt+1

= nb(yt+1; αt, 1 − π/λt+1), yt+1 = 0, 1, . . . ,

where nb(y; α, p) is the negative binomial density defined in example (i) of Sec-
tion A.1. Conditional on Y(t), the best one-step predictor of Yt+1 is therefore the mean,
αtπ/(λt+1 − π), of this negative binomial distribution. The conditional mean squared
error of the predictor is Var

(
Yt+1|Y(t)

) = αtπλt+1/(λt+1 − π)2 (see Problem 9.25).
�

Example 9.8.3. A Model for Time Series of Counts

We often encounter time series in which the observations represent count data. One
such example is the monthly number of newly recorded cases of poliomyelitis in the
U.S. for the years 1970–1983 plotted in Figure 9-6. Unless the actual counts are large
and can be approximated by continuous variables, Gaussian and linear time series
models are generally inappropriate for analyzing such data. The parameter-driven
specification provides a flexible class of models for modeling count data. We now
discuss a specific model based on a Poisson observation density. This model is similar
to the one presented by Zeger (1988) for analyzing the polio data. The observation
density is assumed to be Poisson with mean exp{xt}, i.e.,

p( yt|xt) = e xtyt e−e xt

yt! , yt = 0, 1, . . . , (9.8.21)

while the state variables are assumed to follow a regression model with Gaussian
AR(1) noise. If ut = (ut1, . . . , utk)′ are the regression variables, then

Xt = β′ut + Wt, (9.8.22)

where β is a k-dimensional regression parameter and

Wt = φWt−1 + Zt, {Zt} ∼ IID N
(
0, σ 2

)
.

The transition density function for the state variables is then

p(xt+1|xt) = n(xt+1;β′ut+1 + φ
(
xt − β′ut), σ 2

)
. (9.8.23)

The case σ 2 = 0 corresponds to a log-linear model with Poisson noise.
Estimation of the parameters θ = (

β′, φ, σ 2
)′
in the model by direct numerical

maximization of the likelihood function is difficult, since the likelihood cannot be
written down in closed form. (From (9.8.3) the likelihood is the n-fold integral,

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

{
n∑

t=1

(
xtyt − e xt

)
}

L
(
θ; x(n)

)
(dx1 · · · dxn)

/ n∏

i=1

(yi!),
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Figure 9-6
Monthly number of U.S.
cases of polio, January
1970–December 1983
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where L(θ; x) is the likelihood based on X1, . . . ,Xn.) To overcome this difficulty,
Chan and Ledolter (1995) proposed an algorithm, called Monte Carlo EM (MCEM),
whose iterates θ(i) converge to the maximum likelihood estimate. To apply this
algorithm, first note that the conditional distribution ofY(n) givenX(n) does not depend
on θ, so that the likelihood based on the complete data

(
X(n)′,Y(n)′)′ is given by

L
(
θ;X(n),Y(n)

) = f
(
Y(n)|X(n)

)
L
(
θ;X(n)

)
.

The E-step of the algorithm (see Section 9.7) requires calculation of

Q(θ|θ(i)) = Eθ(i)

(
lnL(θ;X(n),Y(n))|Y(n)

)

= Eθ(i)

(
ln f (Y(n)|X(n))|Y(n)

)+ Eθ(i)

(
lnL(θ;X(n))|Y(n)

)
.

We delete the first term from the definition ofQ, since it is independent of θ and hence
plays no role in the M-step of the EM algorithm. The new Q is redefined as

Q(θ|θ(i)) = Eθ(i)

(
lnL(θ;X(n))|Y(n)

)
. (9.8.24)

Even with this simplification, direct calculation of Q is still intractable. Suppose
for the moment that it is possible to generate replicates of X(n) from the conditional
distribution ofX(n) givenY(n) when θ = θ(i). If we denotem independent replicates of
X(n) by X(n)

1 , . . . ,X(n)
m , then a Monte Carlo approximation to Q in (9.8.24) is given by

Qm
(
θ|θ(i)

) = 1

m

m∑

j=1

lnL
(
θ;X(n)

j

)
.

The M-step is easy to carry out using Qm in place of Q (especially if we condition on
X1 = 0 in all the simulated replicates), since L is just the Gaussian likelihood of the
regression model with AR(1) noise treated in Section 6.6. The difficult steps in the
algorithm are the generation of replicates of X(n) given Y(n) and the choice of m. Chan
and Ledolter (1995) discuss the use of the Gibb’s sampler for generating the desired
replicates and give some guidelines on the choice of m.

In their analyses of the polio data, Zeger (1988) and Chan and Ledolter (1995)
included as regression components an intercept, a slope, and harmonics at periods of
6 and 12 months. Specifically, they took

ut = (1, t/1000, cos(2π t/12), sin(2π t/12), cos(2π t/6), sin(2π t/6))′.
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Figure 9-7
Trend estimate for the

monthly number of
U.S. cases of polio,

January 1970–December
1983
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The implementation of Chan and Ledolter’s MCEMmethod by Kuk and Cheng (1994)
gave estimates β̂ = (0.247, −3.871, 0.162, −0.482, 0.414, −0.011)′, φ̂ = 0.648, and
σ̂ 2 = 0.281. The estimated trend function β̂′ut is displayed in Figure 9-7. The negative
coefficient of t/1000 indicates a slight downward trend in the monthly number of polio
cases.

�

9.8.2 Observation-Driven Models

Again we assume that Yt, conditional on
(
Xt,X(t−1),Y(t−1)

)
, is independent of(

X(t−1),Y(t−1)
)
. These models are specified by the conditional densities

p( yt|xt) = p
(
yt|x(t), y(t−1)

)
, t = 1, 2, . . . , (9.8.25)

p
(
xt+1|y(t)

) = pXt+1|Y(t)

(
xt+1|y(t)

)
, t = 0, 1, . . . , (9.8.26)

where p
(
x1|y(0)

) := p1(x1) for some prespecified initial density p1(x1). The advantage
of the observation-driven state equation (9.8.26) is that the posterior distribution of
Xt given Y(t) can be computed directly from (9.8.4) without the use of the updating
formula (9.8.5). This then allows for easy computation of the forecast function
in (9.8.7) and hence of the joint density function of (Y1, . . . ,Yn)′,

p( y1, . . . , yn) =
n∏

t=1

p
(
yt|y(t−1)

)
. (9.8.27)

On the other hand, the mechanism by which the state Xt−1 makes the transition to
Xt is not explicitly defined. In fact, without further assumptions there may be state
sequences {Xt} and {X∗

t } with different distributions for which both (9.8.25) and
(9.8.26) hold (see Example 9.8.6). Both sequences, however, lead to the same joint
distribution, given by (9.8.27), for Y1, . . . ,Yn. The ambiguity in the specification of
the distribution of the state variables can be removed by assuming that Xt+1 given(
X(t),Y(t)

)
is independent of X(t), with conditional distribution (9.8.26), i.e.,

p
(
xt+1|x(t), y(t)

) = p
Xt+1|Y(t)

(
xt+1|y(t)

)
. (9.8.28)



9.8 Generalized State-Space Models 295

With this modification, the joint density of Y(n) and X(n) is given by (cf. (9.8.3))

p
(
y(n), x(n)

) = p( yn|xn)p
(
xn|y(n−1)

)
p
(
y(n−1), x(n−1)

)

= · · ·

=
n∏

t=1

(
p( yt|xt)p

(
xt|y(t−1)

))
.

Example 9.8.4. An AR(1) Process

An AR(1) process with iid noise can be expressed as an observation driven model.
Suppose {Yt} is the AR(1) process

Yt = φYt−1 + Zt,

where {Zt} is an iid sequence of random variables with mean 0 and some probability
density function f (x). Then with Xt := Yt−1 we have

p( yt|xt) = f ( yt − φxt)

and

p
(
xt+1|y(t)

) =
{

1, if xt+1 = yt,

0, otherwise.
�

Example 9.8.5. Suppose the observation-equation density is given by

p( yt|xt) = x yt
t e−xt

yt! , yt = 0, 1, . . . , (9.8.29)

and the state equation (9.8.26) is

p
(
xt+1|y(t)

) = g(xt; αt, λt), (9.8.30)

where αt = α + y1 + · · · + yt and λt = λ + t. It is possible to give a parameter-
driven specification that gives rise to the same state equation (9.8.30). Let {X∗

t } be the
parameter-driven state variables, where X∗

t = X∗
t−1 and X∗

1 has a gamma distribution
with parameters α and λ. (This corresponds to the model in Example 9.8.2 with π =
a = 1.) Then from (9.8.19) we see that p

(
x∗
t |y(t)

) = g(x∗
t ; αt, λt), which coincides

with the state equation (9.8.30). If {Xt} are the state variables whose joint distribution is
specified through (9.8.28), then {Xt} and {X∗

t } cannot have the same joint distributions.
To see this, note that

p
(
x∗
t+1|x∗

t

) =
{

1, if x∗
t+1 = x∗

t ,

0, otherwise,

while

p
(
xt+1|x(t), y(t)

) = p
(
xt+1|y(t)

) = g(xt; αt, λt).

If the two sequences had the same joint distribution, then the latter density could take
only the values 0 and 1, which contradicts the continuity (as a function of xt) of this
density.

�
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9.8.3 Exponential Family Models

The exponential family of distributions provides a large and flexible class of distribu-
tions for use in the observation equation. The density in the observation equation is
said to belong to an exponential family (in natural parameterization) if

p( yt|xt) = exp{ytxt − b(xt) + c(yt)}, (9.8.31)

where b(·) is a twice continuously differentiable function and c(yt) does not depend
on xt. This family includes the normal, exponential, gamma, Poisson, binomial, and
many other distributions frequently encountered in statistics. Detailed properties of
the exponential family can be found in Barndorff-Nielsen (1978), and an excellent
treatment of its use in the analysis of linear models is given by McCullagh and Nelder
(1989). We shall need only the following important facts:

eb(xt) =
∫

exp{ytxt + c(yt)} ν(dyt), (9.8.32)

b′(xt) = E(Yt|xt), (9.8.33)

b′′(xt) = Var(Yt|xt) :=
∫

y2
t p(yt|xt) ν(dyt) − [b′(xt)

]2
, (9.8.34)

where integration with respect to ν(dyt) means integration with respect to dyt in the
continuous case and summation over all values of yt in the discrete case.

Proof. The first relation is simply the statement that p(yt|xt) integrates to 1. The second rela-
tion is established by differentiating both sides of (9.8.32) with respect to xt and then
multiplying through by e−b(xt) (for justification of the differentiation under the integral
sign see Barndorff-Nielsen 1978). The last relation is obtained by differentiating
(9.8.32) twice with respect to xt and simplifying. �

Example 9.8.6. The Poisson Case

If the observation Yt, given Xt = xt, has a Poisson distribution of the form (9.8.21),
then

p(yt|xt) = exp
{
ytxt − ext − ln yt!

}
, yt = 0, 1, . . . , (9.8.35)

which has the form (9.8.31) with b(xt) = ext and c(yt) = − ln yt!. From (9.8.33)
we easily find that E(Yt|xt) = b′(xt) = ext . This parameterization is slightly different
from the one used in Examples 9.8.2 and 9.8.5, where the conditional mean of Yt given
xt was πxt and not e xt . For this observation equation, define the family of densities

f (x; α, λ) = exp{αx − λb(x) + A(α, λ)}, −∞ < x < ∞, (9.8.36)

where α > 0 and λ > 0 are parameters and A(α, λ) = − ln Γ (α) + α ln λ. Now
consider state densities of the form

p(xt+1|y(t)) = f (xt+1; αt+1|t, λt+1|t), (9.8.37)

where αt+1|t and λt+1|t are, for the moment, unspecified functions of y(t). (The subscript
t+ 1|t on the parameters is a shorthand way to indicate dependence on the conditional
distribution of Xt+1 given Y(t).) With this specification of the state densities, the
parameters αt+1|t are related to the best one-step predictor of Yt through the formula

αt+1|t/λt+1|t = Ŷt+1 := E
(
Yt+1|y(t)

)
. (9.8.38)
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Proof. We have from (9.8.7) and (9.8.33) that

E(Yt+1|y(t)) =
∞∑

yt+1=0

∫ ∞

−∞
yt+1p(yt+1|xt+1)p

(
xt+1|y(t)

)
dxt+1

=
∫ ∞

−∞
b′(xt+1)p

(
xt+1|y(t)

)
dxt+1.

Addition and subtraction of αt+1|t/λt+1|t then gives

E(Yt+1|y(t)) =
∫ ∞

−∞

(
b′(xt+1) − αt+1|t

λt+1|t

)
p
(
xt+1|y(t)

)
dxt+1 + αt+1|t

λt+1|t

=
∫ ∞

−∞
−λ−1

t+1|t p
′ (xt+1|y(t)

)
dxt+1 + αt+1|t

λt+1|t

=
[
−λ−1

t+1|t p
(
xt+1|y(t)

)]xt+1=∞
xt+1=−∞

+ αt+1|t
λt+1|t

= αt+1|t
λt+1|t

.

�

Letting At|t−1 = A(αt|t−1, λt|t−1), we can write the posterior density of Xt given
Y(t) as

p
(
xt|y(t)

) = exp{ytxt − b(xt) + c(yt)} exp{αt|t−1xt − λt|t−1b(xt)

+ At|t−1}/p
(
yt|y(t−1)

)

= exp{λt|t
(
αt|txt − b(xt)

)− At|t},
= f (xt; αt, λt),

where we find, by equating coefficients of xt and b(xt), that the coefficients λt and αt

are determined by

λt = 1 + λt|t−1, (9.8.39)

αt = yt + αt|t−1. (9.8.40)

The family of prior densities in (9.8.37) is called a conjugate family of priors for
the observation equation (9.8.35), since the resulting posterior densities are again
members of the same family.

As mentioned earlier, the parameters αt|t−1 and λt|t−1 can be quite arbitrary: Any
nonnegative functions of y(t−1) will lead to a consistent specification of the state
densities. One convenient choice is to link these parameters with the corresponding
parameters of the posterior distribution at time t − 1 through the relations

λt+1|t = δλt
(= δ(1 + λt|t−1)

)
, (9.8.41)

αt+1|t = δαt

(= δ(yt + αt|t−1)
)
, (9.8.42)

where 0 < δ < 1 (see Remark 4 below). Iterating the relation (9.8.41), we see that

λt+1|t = δ(1 + λt|t−1) = δ + δλt|t−1

= δ + δ(δ + δλt−2|t−2)

= · · ·
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= δ + δ2 + · · · + δt + δtλ1|0 (9.8.43)

→ δ/(1 − δ)

as t → ∞. Similarly,

αt+1|t = δyt + δαt|t−1

= · · ·
= δyt + δ2yt−1 + · · · + δty1 + δtα1|0. (9.8.44)

For large t, we have the approximations

λt+1|t = δ/(1 − δ) (9.8.45)

and

αt+1|t = δ

t−1∑

j=0

δ jyt−j, (9.8.46)

which are exact if λ1|0 = δ/(1−δ) and α1|0 = 0. From (9.8.38) the one-step predictors
are linear and given by

Ŷt+1 = αt+1|t
λt+1|t

=
∑t−1

j=0 δ jyt−j + δt−1α1|0
∑t−1

j=0 δ j + δt−1λ1|0
. (9.8.47)

Replacing the denominator with its limiting value, or starting with λ1|0 = δ/(1 − δ),
we find that Ŷt+1 is the solution of the recursions

Ŷt+1 = (1 − δ)yt + δŶt, t = 1, 2, . . . , (9.8.48)

with initial condition Ŷ1 = (1 − δ)δ−1α1|0. In other words, under the restrictions
of (9.8.41) and (9.8.42), the best one-step predictors can be found by exponential
smoothing.

�

Remark 1. The preceding analysis for the Poisson-distributed observation equation
holds, almost verbatim, for the general family of exponential densities (9.8.31). (One
only needs to take care in specifying the correct range for x and the allowable
parameter space for α and λ in (9.8.37).) The relations (9.8.43)–(9.8.44), as well as
the exponential smoothing formula (9.8.48), continue to hold even in the more general
setting, provided that the parameters αt|t−1 and λt|t−1 satisfy the relations (9.8.41)–
(9.8.42). �

Remark 2. Equations (9.8.41)–(9.8.42) are equivalent to the assumption that the prior
density of Xt given y(t−1) is proportional to the δ-power of the posterior distribution of
Xt−1 given Y(t−1), or more succinctly that

f (xt; αt|t−1, λt|t−1) = f (xt; δαt−1|t−1, δλt−1|t−1)

∝ f δ(xt; αt−1|t−1, λt−1|t−1).

This power relationship is sometimes referred to as the power steady model (Grun-
wald et al. 1993; Smith 1979). �

Remark 3. The transformed state variables Wt = eXt have a gamma state density
given by

p
(
wt+1|y(t)

) = g(wt+1; αt+1|t, λt+1|t)
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(see Problem 9.26). The mean and variance of this conditional density are

E
(
Wt+1|y(t)

) = αt+1|t and Var
(
Wt+1|y(t)

) = αt+1|t/λ2
t+1|t. �

Remark 4. If we regard the random walk plus noise model of Example 9.2.1 as the
prototypical state-space model, then from the calculations in Example 9.8.1 with G =
F = 1, we have

E
(
Xt+1|Y(t)

) = E
(
Xt|Y(t)

)

and

Var
(
Xt+1|Y(t)

) = Var
(
Xt|Y(t)

)+ Q > Var
(
Xt|Y(t)

)
.

The first of these equations implies that the best estimate of the next state is the same
as the best estimate of the current state, while the second implies that the variance
increases. Under the conditions (9.8.41), and (9.8.42), the same is also true for the
state variables in the above model (see Problem 9.26). This was, in part, the rationale
behind these conditions given in Harvey and Fernandes (1989). �

Remark 5. While the calculations work out neatly for the power steady model,
Grunwald et al. (1994) have shown that such processes have degenerate sample paths
for large t. In the Poisson example above, they argue that the observations Yt converge
to 0 as t → ∞ (see Figure 9-12). Although such models may still be useful in
practice for modeling series of moderate length, the efficacy of using such models
for describing long-term behavior is doubtful. �

Example 9.8.7. Goals Scored by England Against Scotland

The time series of the number of goals scored by England against Scotland in soccer
matches played at Hampden Park in Glasgow is graphed in Figure 9-8. The matches
have been played nearly every second year, with interruptions during the war years.We
will treat the data y1, . . . , y52 as coming from an equally spaced time series model {Yt}.
Since the number of goals scored is small (see the frequency histogram in Figure 9-9),
a model based on the Poisson distribution might be deemed appropriate. The observed
relative frequencies and those based on a Poisson distribution with mean equal to
ȳ52 = 1.269 are contained in Table 9.2. The standard chi-squared goodness of fit test,
comparing the observed frequencies with expected frequencies based on a Poisson
model, has a p-value of 0.02. The lack of fit with a Poisson distribution is hardly
unexpected, since the sample variance (1.652) is much larger than the sample mean,
while the mean and variance of the Poisson distribution are equal. In this case the
data are said to be overdispersed in the sense that there is more variability in the data
than one would expect from a sample of independent Poisson-distributed variables.
Overdispersion can sometimes be explained by serial dependence in the data.

Dependence in count data can often be revealed by estimating the probabilities of
transition from one state to another. Table 9.3 contains estimates of these probabilities,
computed as the average number of one-step transitions from state yt to state yt+1. If
the data were independent, then in each column the entries should be nearly the same.
This is certainly not the case in Table 9.3. For example, England is very unlikely to be
shut out or score 3 or more goals in the next match after scoring at least three goals in
the previous encounter.
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Figure 9-8
Goals scored by England

against Scotland
at Hampden Park,

Glasgow, 1872–1987
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Histogram of the
data in Figure 9-8
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Table 9.2 Relative frequency and fitted Poisson distribution of goals scored
by England against Scotland

Number of goals

0 1 2 3 4 5

Relative frequency 0.288 0.423 0.154 0.019 0.096 0.019

Poisson distribution 0.281 0.356 0.226 0.096 0.030 0.008

Harvey and Fernandes (1989) model the dependence in this data using an
observation-drivenmodel of the type described in Example 9.8.6. Theirmodel assumes
a Poisson observation equation and a log-gamma state equation:

p( yt|xt) = exp{ ytxt − ext}
yt! , yt = 0, 1, . . . ,

p
(
xt|y(t−1)

) = f (xt; αt|t−1, λt|t−1), −∞ < x < ∞,
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Table 9.3 Transition probabilities for the number of goals
scored by England against Scotland

yt+1

p(yt+1|yt) 0 1 2 ≥ 3

0 0.214 0.500 0.214 0.072

yt 1 0.409 0.272 0.136 0.182

2 0.250 0.375 0.125 0.250

≥ 3 0 0.857 0.143 0

Table 9.4 Prediction density of Y53 given Y(52) for data in Figure 9-7

Number of goals

0 1 2 3 4 5

p(y53|y(52)) 0.472 0.326 0.138 0.046 0.013 0.004

for t = 1, 2, . . . , where f is given by (9.8.36) and α1|0 = 0, λ1|0 = 0. The power
steady conditions (9.8.41)–(9.8.42) are assumed to hold for αt|t−1 and λt|t−1. The only
unknown parameter in the model is δ. The log-likelihood function for δ based on the
conditional distribution of y1, . . . , y52 given y1 is given by [see (9.8.27)]

�
(
δ, y(n)

) =
n−1∑

t=1

ln p
(
yt+1|y(t)

)
, (9.8.49)

where p
(
yt+1|y(t))

)
is the negative binomial density [see Problem 9.25(c)]

p
(
yt+1|y(t)

) = nb
(
yt+1; αt+1|t, (1 + λt+1|t)−1

)
,

with αt+1|t and λt+1|t as defined in (9.8.44) and (9.8.43). (For the goal data, y1 = 0,
which implies α2|1 = 0 and hence that p

(
y2|y(1)

)
is a degenerate density with unit

mass at y2 = 0. Harvey and Fernandes avoid this complication by conditioning the
likelihood on y(τ ), where τ is the time of the first nonzero data value.)

Maximizing this likelihood with respect to δ, we obtain δ̂ = 0.844. (Starting
equations (9.8.43)–(9.8.44) with α1|0 = 0 and λ1|0 = δ/(1 − δ), we obtain
δ̂ = 0.732.) With 0.844 as our estimate of δ, the prediction density of the next
observation Y53 given y(52) is nb(y53; α53|52, (1+λ53|52)

−1. The first five values of this
distribution are given in Table 9.4. Under this model, the probability that England
will be held scoreless in the next match is 0.471. The one-step predictors, Ŷ1 =
0, Ŷ2, . . . , Ŷ52 are graphed in Figure 9-10. (This graph can be obtained by using the
ITSM option Smooth>Exponential with α = 0.154.)

Figures 9-11 and 9-12 contain two realizations from the fitted model for the goal
data. The general appearance of the first realization is somewhat compatible with the
goal data, while the second realization illustrates the convergence of the sample path
to 0 in accordance with the result of Grunwald et al. (1994).

�
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Figure 9-10
One-step predictors

of the goal data

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o oo o

o

o o

o

o

o

o

o o

o

o

o

o o

o

o

o

o

o

o

o o

o

o

o

o

o

o o

o

o o

o o

G
oa

ls

0 5 10 15 20 25 30 35 40 45 50

0
1

2
3

4
5

Figure 9-11
A simulated time

series from the fitted
model to the goal data
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Example 9.8.8. The Exponential Case

Suppose Yt given Xt has an exponential density with mean −1/Xt (Xt < 0). The
observation density is given by

p(yt|xt) = exp{ytxt + ln(−xt)}, yt > 0,

which has the form (9.8.31) with b(x) = − ln(−x) and c(y) = 0. The state densities
corresponding to the family of conjugate priors (see (9.8.37)) are given by

p
(
xt+1|y(t)

) = exp{αt+1|t xt+1 − λt+1|t b(xt+1) + At+1|t}, −∞ < x < 0.

(Here p(xt+1|y(t)) is a probability density when αt+1|t > 0 and λt+1|t > −1.) The
one-step prediction density is
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Figure 9-12
A second simulated time

series from the fitted
model to the goal data
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p
(
yt+1|y(t

) =
∫ 0

−∞
ext+1yt+1+ln(−xt+1)+αt+1|tx−λt+1|tb(x)+At+1|t dxt+1

= (λt+1|t + 1)α
λt+1|t+1
t+1|t (yt+1 + αt+1|t)−λt+1|t−2, yt+1 > 0

(see Problem 9.28).WhileE(Yt+1|y(t)) = αt+1|t/λt+1|t, the conditional variance is finite
if and only if λt+1|t > 1. Under assumptions (9.8.41)–(9.8.42), and starting with λ1|0 =
δ/(1 − δ), the exponential smoothing formula (9.8.48) remains valid.

�

Problems

9.1 Show that if all the eigenvalues of F are less than 1 in absolute value (or
equivalently that Fk →0 as k→∞), the unique stationary solution of equation
(9.1.11) is given by the infinite series

Xt =
∞∑

j=0

F jVt−j−1

and that the corresponding observation vectors are

Yt = Wt +
∞∑

j=0

GF jVt−j−1.

Deduce that {(X′
t,Y

′
t)

′} is a multivariate stationary process. (Hint: Use a vector
analogue of the argument in Example 2.2.1.)

9.2 In Example 9.2.1, show that θ = −1 if and only if σ 2
v = 0, which in turn is

equivalent to the signal Mt being constant.

9.3 Let F be the coefficient of Xt in the state equation (9.3.4) for the causal AR(p)
process

Xt − φ1Xt−1 − · · · − φpXt−p = Zt, {Zt} ∼ WN
(
0, σ 2

)
.
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Establish the stability of (9.3.4) by showing that

det(zI − F) = zpφ
(
z−1
)
,

and hence that the eigenvalues of F are the reciprocals of the zeros of the
autoregressive polynomial φ(z) = 1 − φ1z − · · · − φpzp.

9.4 By following the argument in Example 9.3.3, find a state-space model for {Yt}
when {∇∇12Yt} is an ARMA(p, q) process.

9.5 For the local linear trend model defined by equations (9.2.6)–(9.2.7), show that
∇2Yt = (1 − B)2Yt is a 2-correlated sequence and hence, by Proposition 2.1.1,
is an MA(2) process. Show that this MA(2) process is noninvertible if σ 2

u = 0.
9.6 a. For the seasonal model of Example 9.2.2, show that ∇dYt = Yt − Yt−d is an

MA(1) process.
b. Show that ∇∇dYt is an MA(d + 1) process where {Yt} follows the seasonal
model with a local linear trend as described in Example 9.2.3.

9.7 Let {Yt} be the MA(1) process

Yt = Zt + θZt−1, {Zt} ∼ WN
(
0, σ 2

)
.

Show that {Yt} has the state-space representation
Yt = [1 0]Xt,

where {Xt} is the unique stationary solution of

Xt+1 =
[

0 1
0 0

]
Xt +

[
1
θ

]
Zt+1.

In particular, show that the state vector Xt can written as

Xt =
[

1 θ

θ 0

] [
Zt
Zt−1

]
.

9.8 Verify equations (9.3.16)–(9.3.18) for an ARIMA(1,1,1) process.

9.9 Consider the two state-space models
{
Xt+1,1 = F1Xt1 + Vt1,

Yt1 = G1Xt1 + Wt1,

and
{
Xt+1,2 = F2Xt2 + Vt2,

Yt2 = G2Xt2 + Wt2,

where {(V′
t1,W

′
t1,V

′
t2,W

′
t2)

′} is white noise. Derive a state-space representation
for {(Y′

t1,Y
′
t2)

′}.
9.10 Use Remark 1 of Section 9.4 to establish the linearity properties of the operator

Pt stated in Remark 3.

9.11 a. Show that if the matrix equation XS=B can be solved for X, then X=BS−1

is a solution for any generalized inverse S−1 of S.

b. Use the result of (a) to derive the expression for P(X|Y) in Remark 4 of
Section 9.4.
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9.12 In the notation of the Kalman prediction equations, show that every vector of
the form

Y = A1X1 + · · · + AtXt

can be expressed as

Y = B1X1 + · · · + Bt−1Xt−1 + CtIt,

where B1, . . . ,Bt−1 and Ct are matrices that depend on the matrices A1, . . . ,At.
Show also that the converse is true. Use these results and the fact that E(XsIt)=
0 for all s < t to establish (9.4.3).

9.13 In Example 9.4.1, verify that the steady-state solution of the Kalman recursions

(9.1.2) is given by Ωt =
(
σ 2
v +√σ 4

v + 4σ 2
v σ 2

w

)
/2.

9.14 Show from the difference equations for Ωt in Example 9.4.1 that (Ωt+1 −
Ω)(ΩtΩ) ≥ 0 for allΩt ≥ 0, whereΩ is the steady-state solution forΩt given in
Problem 9.13.

9.15 Show directly that for the MA(1) model (9.2.3), the parameter θ is equal to

−
(

2σ 2
w + σ 2

v −√σ 4
v + 4σ 2

v σ 2
w

)
/
(
2σ 2

w

)
, which in turn is equal to −σ 2

w/(Ω +
σ 2
w), where Ω is the steady-state solution for Ωt given in Problem 9.13.

9.16 Use the ARMA(0,1,1) representation of the series {Yt} in Example 9.4.1 to show
that the predictors defined by

Ŷn+1 = aYn + (1 − a)Ŷn, n = 1, 2, . . . ,

where a = Ω/(Ω + σ 2
w), satisfy

Yn+1 − Ŷn+1 = Zn+1 + (1 − a)n
(
Y0 − Z0 − Ŷ1

)
.

Deduce that if 0 < a < 1, the mean squared error of Ŷn+1 converges to Ω + σ 2
w

for any initial predictor Ŷ1 with finite mean squared error.

9.17 a. Using equations (9.4.1) and (9.4.16), show that X̂t+1 = FtXt|t.
b. From (a) and (9.4.16) show that Xt|t satisfies the recursions

Xt|t = Ft−1Xt−1|t−1 + ΩtG
′
tΔ

−1
t (Yt − GtFt−1Xt−1|t−1)

for t = 2, 3, . . . , with X1|1 = X̂1 + Ω1G′
1Δ

−1
1

(
Y1 − G1X̂1

)
.

9.18 In Section 9.5, show that for fixed Q∗, −2 ln L
(
μ,Q∗, σ 2

w

)
is minimized when

μ and σ 2
w are given by (9.5.10) and (9.5.11), respectively.

9.19 Verify the calculation of 	tΔ
−1
t and Ωt in Example 9.6.1.

9.20 Verify that the best estimates of missing values in an AR(p) process are found
by minimizing (9.6.11) with respect to the missing values.

9.21 Suppose that {Yt} is the AR(2) process
Yt = φ1Yt−1 + φ2Yt−2 + Zt, {Zt} ∼ WN

(
0, σ 2

)
,

and that we observe Y1,Y2,Y4,Y5,Y6,Y7. Show that the best estimator of Y3 is

(φ2(Y1 + Y5) + (φ1 − φ1φ2)(Y2 + Y4)) /
(
1 + φ2

1 + φ2
2

)
.
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9.22 Let Xt be the state at time t of a parameter-driven model (see (9.8.2)). Show that
{Xt} is a Markov chain and that (9.8.3) holds.

9.23 For the generalized state-space model of Example 9.8.1, show that Ωt+1 =
F2Ωt|t + Q.

9.24 If Y and X are random variables, show that

Var(Y) = E(Var(Y|X)) + Var(E(Y|X)).

9.25 Suppose that Y and X are two random variables such that the distribution of Y
given X is Poisson with mean πX, 0 < π ≤ 1, and X has the gamma density
g(x; α, λ).
a. Show that the posterior distribution of X given Y also has a gamma density

and determine its parameters.

b. Compute E(X|Y) and Var(X|Y).

c. Show that Y has a negative binomial density and determine its parameters.

d. Use (c) to compute E(Y) and Var(Y).

e. Verify in Example 9.8.2 that E
(
Yt+1|Y(t)

) = αtπ/(λt+1 − π) and
Var
(
Yt+1|Y(t)

) = αtπλt+1/(λt+1 − π)2.

9.26 For the model of Example 9.8.6, show that
a. E

(
Xt+1|Y(t)

) = E
(
Xt|Y(t)

)
, Var

(
Xt+1|Y(t)

)
>Var

(
Xt|Y(t)

)
, and

b. the transformed sequence Wt = eXt has a gamma state density.

9.27 Let {Vt} be a sequence of independent exponential random variables with EVt =
t−1 and suppose that {Xt, t ≥ 1} and {Yt, t ≥ 1} are the state and observation
random variables, respectively, of the parameter-driven state-space system

X1 = V1,

Xt = Xt−1 + Vt, t = 2, 3, . . . ,

where the distribution of the observation Yt, conditional on the random variables
Y1,Y2, . . . ,Yt−1,Xt, is Poisson with mean Xt.
a. Determine the observation and state transition density functions p(yt|xt) and

p(xt+1|xt) in the parameter-driven model for {Yt}.
b. Show, using (9.8.4)–(9.8.6), that

p(x1|y1) = g(x1; y1 + 1, 2)

and

p(x2|y1) = g(x2; y1 + 2, 2),

where g(x; α, λ) is the gamma density function (see Example (d) of Sec-
tion A.1).

c. Show that

p
(
xt|y(t)

) = g(xt; αt + t, t + 1)

and

p
(
xt+1|y(t)

) = g(xt+1; αt + t + 1, t + 1),

where αt = y1 + · · · + yt.
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d. Conclude from (c) that the minimum mean squared error estimates of Xt and
Xt+1 based on Y1, . . . ,Yt are

Xt|t = t + Y1 + · · · + Yt
t + 1

and

X̂t+1 = t + 1 + Y1 + · · · + Yt
t + 1

,

respectively.

9.28 Let Y and X be two random variables such that Y given X is exponential with
mean 1/X, and X has the gamma density function with

g(x; λ + 1, α) = αλ+1xλ exp{−αx}
Γ (λ + 1)

, x > 0,

where λ > −1 and α > 0.
a. Determine the posterior distribution of X given Y .

b. Show that Y has a Pareto distribution

p(y) = (λ + 1)αλ+1(y + α)−λ−2, y > 0.

c. Find the mean and variance of Y . Under what conditions on α and λ does the
latter exist?

d. Verify the calculation of p
(
yt+1|y(t)

)
and E

(
Yt+1|y(t)

)
for the model in

Example 9.8.8.

9.29 Consider an observation-driven model in which Yt given Xt is binomial with
parameters n and Xt, i.e.,

p(yt|xt) =
(
n

yt

)
xytt (1 − xt)

n−yt , yt = 0, 1, . . . , n.

a. Show that the observation equation with state variable transformed by the
logit transformationWt = ln(Xt/(1 − Xt)) follows an exponential family

p(yt|wt) = exp{ytwt − b(wt) + c(yt)}.
Determine the functions b(·) and c(·).

b. Suppose that the state Xt has the beta density

p(xt+1|y(t)) = f (xt+1; αt+1|t, λt+1|t),
where

f (x; α, λ) = [B(α, λ)]−1xα−1(1 − x)λ−1, 0 < x < 1,

B(α, λ) := Γ (α)Γ (λ)/Γ (α + λ) is the beta function, and α, λ > 0. Show that
the posterior distribution of Xt given Yt is also beta and express its parameters in
terms of yt and αt|t−1, λt|t−1.

c. Under the assumptions made in (b), show that E
(
Xt|Y(t)

) = E
(
Xt+1|Y(t)

)

and Var
(
Xt|Y(t)

)
<Var

(
Xt+1|Y(t)

)
.

d. Assuming that the parameters in (b) satisfy (9.8.41)–(9.8.42), show that the one-
step prediction density p

(
yt+1|y(t)

)
is beta-binomial,

p(yt+1|y(t)) = B(αt+1|t + yt+1, λt+1|t + n − yt+1)

(n + 1)B(yt+1 + 1, n − yt+1 + 1)B(αt+1|t, λt+1|t)
,

and verify that Ŷt+1 is given by (9.8.47).
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