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Many time series arising in practice are best considered as components of some vector-
valued (multivariate) time series {Xt} having not only serial dependence within each
component series {Xti} but also interdependence between the different component
series {Xti} and {Xtj}, i �= j. Much of the theory of univariate time series extends in
a natural way to the multivariate case; however, new problems arise. In this chapter
we introduce the basic properties of multivariate series and consider the multivariate
extensions of some of the techniques developed earlier. In Section 8.1 we introduce
two sets of bivariate time series data for which we develop multivariate models later
in the chapter. In Section 8.2 we discuss the basic properties of stationary multivariate
time series, namely, the mean vector μ = EXt and the covariance matrices �(h) =
E(Xt+hX′

t) − μμ′, h = 0,±1,±2, . . ., with reference to some simple examples,
including multivariate white noise. Section 8.3 deals with estimation of μ and �(·)
and the question of testing for serial independence on the basis of observations of
X1, . . . ,Xn. In Section 8.4 we introduce multivariate ARMA processes and illustrate
the problem of multivariate model identification with an example of a multivariate
AR(1) process that also has an MA(1) representation. (Such examples do not exist
in the univariate case.) The identification problem can be avoided by confining
attention to multivariate autoregressive (or VAR) models. Forecasting multivariate
time series with known second-order properties is discussed in Section 8.5, and in
Section 8.6 we consider the modeling and forecasting of multivariate time series
using the multivariate Yule–Walker equations and Whittle’s generalization of the
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228 Chapter 8 Multivariate Time Series

Durbin–Levinson algorithm. Section 8.7 contains a brief introduction to the notion
of cointegrated time series.

8.1 Examples
In this section we introduce two examples of bivariate time series. A bivariate time
series is a series of two-dimensional vectors (Xt1, Xt2)

′ observed at times t (usually
t = 1, 2, 3, . . .). The two component series {Xt1} and {Xt2} could be studied indepen-
dently as univariate time series, each characterized, from a second-order point of view,
by its own mean and autocovariance function. Such an approach, however, fails to take
into account possible dependence between the two component series, and such cross-
dependence may be of great importance, for example in predicting future values of the
two component series.

We therefore consider the series of random vectors Xt = (Xt1, Xt2)
′ and define

the mean vector

μt := EXt =
[
EXt1

EXt2

]

and covariance matrices

�(t + h, t) := Cov
(
Xt+h,Xt

) =
[
cov(Xt+h,1,Xt1) cov(Xt+h,1,Xt2)

cov(Xt+h,2,Xt1) cov(Xt+h,2,Xt2)

]
.

The bivariate series
{
Xt

}
is said to be (weakly) stationary if the moments μt and

�(t + h, t) are both independent of t, in which case we use the notation

μ = EXt =
[
EXt1

EXt2

]

and

�(h) = Cov
(
Xt+h,Xt

) =
[

γ11(h) γ12(h)
γ21(h) γ22(h)

]
.

The diagonal elements are the autocovariance functions of the univariate series {Xt1}
and {Xt2} as defined in Chapter 2, while the off-diagonal elements are the covariances
between Xt+h,i and Xtj, i �= j. Notice that γ12(h) = γ21(−h).

A natural estimator of the mean vector μ in terms of the observations X1, . . . ,Xn

is the vector of sample means

Xn = 1

n

n∑
t=1

Xt,

and a natural estimator of �(h) is

�̂(h) =

⎧⎪⎨
⎪⎩
n−1

n−h∑
t=1

(
Xt+h − Xn

) (
Xt − Xn

)′
for 0 ≤ h ≤ n − 1,

�̂(−h)′ for − n + 1 ≤ h < 0.

The correlation ρij(h) between Xt+h,i and Xt,j is estimated by

ρ̂ij(h) = γ̂ij(h)(γ̂ii(0)γ̂jj(0))−1/2.

If i = j, then ρ̂ij reduces to the sample autocorrelation function of the ith series.
These estimators will be discussed in more detail in Section 8.2.



8.1 Examples 229

Figure 8-1
The Dow Jones Index
(top) and Australian
All Ordinaries Index

(bottom) at closing on
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Example 8.1.1 Dow Jones and All Ordinaries Indices; DJAO2.TSM

Figure 8-1 shows the closing valuesD0, . . . ,D250 of the Dow Jones Index of stocks on
the New York Stock Exchange and the closing values A0, . . . ,A250 of the Australian
All Ordinaries Index of Share Prices, recorded at the termination of trading on 251
successive trading days up to August 26th, 1994. (Because of the time difference
between Sydney and New York, the markets do not close simultaneously in both
places; however, in Sydney the closing price of the Dow Jones index for the previous
day is known before the opening of the market on any trading day.) The efficient
market hypothesis suggests that these processes should resemble random walks with
uncorrelated increments. In order to model the data as a stationary bivariate time series
we first reexpress them as percentage relative price changes or percentage returns
(filed as DJAOPC2.TSM)

Xt1 = 100
(Dt − Dt−1)

Dt−1
, t = 1, . . . , 250,

and

Xt2 = 100
(At − At−1)

At−1
, t = 1, . . . , 250.

The estimators ρ̂11(h) and ρ̂22(h) of the autocorrelations of the two univariate series
are shown in Figures 8-2 and 8-3. They are not significantly different from zero.

To compute the sample cross-correlations ρ̂12(h) and ρ̂21(h) using ITSM, select
File>Project>Open>Multivariate. Then click OK and double-click on
the file name DJAOPC2.TSM. You will see a dialog box in which Number of
columns should be set to 2 (the number of components of the observation vectors).
Then click OK, and the graphs of the two component series will appear. To see the
correlations, press the middle yellow button at the top of the ITSM window. The
correlation functions are plotted as a 2 × 2 array of graphs with ρ̂11(h), ρ̂12(h) in the
top row and ρ̂21(h), ρ̂22(h) in the second row. We see from these graphs (shown in
Figure 8-4) that although the autocorrelations ρ̂ii(h), i = 1, 2, are all small, there is
a much larger correlation between Xt−1,1 and Xt,2. This indicates the importance of
considering the two series jointly as components of a bivariate time series. It also
suggests that the value of Xt−1,1, i.e., the Dow Jones return on day t − 1, may be of
assistance in predicting the value of Xt,2, the All Ordinaries return on day t. This last
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Figure 8-2
The sample ACF ρ̂11 of the
observed values of {Xt1} in

Example 8.1.1, showing the
bounds ±1.96n−1/2 Lag
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Figure 8-3
The sample ACF ρ̂22 of the
observed values of {Xt2} in

Example 8.1.1, showing
the bounds ±1.96n−1/2 Lag
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observation is supported by the scatterplot of the points (xt−1,1, xt,2), t = 2, . . . , 250,
shown in Figure 8-5.

�

Example 8.1.2 Sales with a leading indicator; LS2.TSM

In this example we consider the sales data {Yt2, t = 1, . . . , 150} with leading indicator
{Yt1, t = 1, . . . , 150} given by Box and Jenkins (1976, p. 537). The two series are
stored in the ITSM data files SALES.TSM and LEAD.TSM, respectively, and in
bivariate format as LS2.TSM. The graphs of the two series and their sample autocorre-
lation functions strongly suggest that both series are nonstationary. Application of the
operator (1 − B) yields the two differenced series {Dt1} and {Dt2}, whose properties
are compatible with those of low-order ARMA processes. Using ITSM, we find that
the models
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Figure 8-4
The sample correlations

ρ̂ij(h) between Xt+h,i and Xt,j
for Example 8.1.1. (ρij(h) is
plotted as the jth graph in

the ith row, i, j = 1, 2. Series
1 and 2 consist of the daily

Dow Jones and All
Ordinaries percentage
returns, respectively.)
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Figure 8-5
Scatterplot of (xt−1,1, xt,2),

t = 2, . . . ,250, for the
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Dt1 − 0.0228 = Zt1 − 0.474Zt−1,1, {Zt1} ∼ WN(0, 0.0779), (8.1.1)

Dt2 − 0.838Dt−1,2 − 0.0676 = Zt2 − 0.610Zt−1,2,

{Zt2} ∼ WN(0, 1.754), (8.1.2)

provide good fits to the series {Dt1} and {Dt2}.
The sample autocorrelations and cross-correlations of {Dt1} and {Dt2}, are com-

puted by opening the bivariate ITSM file LS2.TSM (as described in Example 8.1.1).
The option Transform>Difference, with differencing lag equal to 1, generates
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Figure 8-6
The sample correlations

ρ̂ij(h) of the series {Dt1} and
{Dt2} of Example 8.1.2,

showing the bounds
±1.96n−1/2. (ρ̂ij(h) is

plotted as the jth graph in
the ith row, i, j = 1,2.)
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the bivariate differenced series {(Dt1,Dt2)}, and the correlation functions are then
obtained as in Example 8.1.1 by clicking on the middle yellow button at the top of the
ITSM screen. The sample auto- and cross-correlations ρ̂ij(h), i, j = 1, 2, are shown
in Figure 8-6. As we shall see in Section 8.3, care must be taken in interpreting the
cross-correlations without first taking into account the autocorrelations of {Dt1} and
{Dt2}.

�
8.2 Second-Order Properties of Multivariate Time Series

Consider m time series {Xti, t = 0,±1, . . . , }, i = 1, . . . ,m, with EX2
ti < ∞ for all

t and i. If all the finite-dimensional distributions of the random variables {Xti} were
multivariate normal, then the distributional properties of {Xti} would be completely
determined by the means

μti := EXti (8.2.1)

and the covariances

γij(t + h, t) := E[(Xt+h,i − μti)(Xtj − μtj)]. (8.2.2)

Even when the observations {Xti} do not have joint normal distributions, the quantities
μti and γij(t + h, t) specify the second-order properties, the covariances providing us
with a measure of the dependence, not only between observations in the same series,
but also between the observations in different series.

It is more convenient in dealing with m interrelated series to use vector notation.
Thus we define
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Xt :=
⎡
⎢⎣
Xt1
...

Xtm

⎤
⎥⎦ , t = 0,±1, . . . . (8.2.3)

The second-order properties of the multivariate time series {Xt} are then specified by
the mean vectors

μt := EXt =
⎡
⎢⎣

μt1
...

μtm

⎤
⎥⎦ (8.2.4)

and covariance matrices

�(t + h, t) :=
⎡
⎢⎣

γ11(t + h, t) · · · γ1m(t + h, t)
...

. . .
...

γm1(t + h, t) · · · γmm(t + h, t)

⎤
⎥⎦ , (8.2.5)

where

γij(t + h, t) := Cov(Xt+h,i, Xt, j).

Remark 1. The matrix �(t + h, t) can also be expressed as

�(t + h, t) := E[(Xt+h − μt+h)(Xt − μt)
′],

where as usual, the expected value of a random matrix A is the matrix whose
components are the expected values of the components of A. �

As in the univariate case, a particularly important role is played by the class of
multivariate stationary time series, defined as follows.

Definition 8.2.1 The m-variate series {Xt} is (weakly) stationary if
(i) μX(t) is independent of t

and

(ii) �X(t + h, t) is independent of t for each h.

For a stationary time series we shall use the notation

μ := EXt =
⎡
⎢⎣

μ1
...

μm

⎤
⎥⎦ (8.2.6)

and

�(h) := E[(Xt+h − μ)(Xt − μ)′] =
⎡
⎢⎣

γ11(h) · · · γ1m(h)
...

. . .
...

γm1(h) · · · γmm(h)

⎤
⎥⎦ . (8.2.7)

We shall refer to μ as the mean of the series and to �(h) as the covariance matrix at
lag h. Notice that if {Xt} is stationary with covariance matrix function �(·), then for
each i, {Xti} is stationary with covariance function γii(·). The function γij(·), i �= j, is
called the cross-covariance function of the two series {Xti} and {Xtj}. It should be noted
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that γij(·) is not in general the same as γji(·). The correlation matrix function R(·) is
defined by

R(h) :=
⎡
⎢⎣

ρ11(h) · · · ρ1m(h)
...

. . .
...

ρm1(h) · · · ρmm(h)

⎤
⎥⎦ , (8.2.8)

where ρij(h) = γij(h)/[γii(0)γjj(0)]1/2. The function R(·) is the covariance matrix
function of the normalized series obtained by subtracting μ from Xt and then dividing
each component by its standard deviation.

Example 8.2.1 Consider the bivariate stationary process {Xt} defined by
Xt1 = Zt,

Xt2 = Zt + 0.75Zt−10,

where {Zt} ∼ WN(0, 1). Elementary calculations yield μ = 0,

�(−10) =
[

0 0.75

0 0.75

]
, �(0) =

[
1 1

1 1.5625

]
, �(10) =

[
0 0

0.75 0.75

]
,

and �( j) = 0 otherwise. The correlation matrix function is given by

R(−10) =
[

0 0.60
0 0.48

]
, R(0) =

[
1 0.8

0.8 1

]
, R(10) =

[
0 0

0.60 0.48

]
,

and R( j) = 0 otherwise.
�

Basic Properties of �(·):

1. �(h) = �′(−h),
2. |γij(h)| ≤ [γii(0)γjj(0)]1/2, i, j,= 1, . . . ,m,
3. γii(·) is an autocovariance function, i = 1, . . . ,m, and
4.

∑n
j,k=1 a

′
j�( j − k)ak ≥ 0 for all n ∈ {1, 2, . . .} and a1, . . . , an ∈ R

m.

Proof The first property follows at once from the definition, the second from the fact that
correlations cannot be greater than one in absolute value, and the third from the
observation that γii(·) is the autocovariance function of the stationary series {Xti, t =
0,±1, . . .}. Property 4 is a statement of the obvious fact that

E

( n∑
j=1

a′
j(Xj − μ)

)2

≥ 0. �

Remark 2. The basic properties of the matrices �(h) are shared also by the cor-
responding matrices of correlations R(h) = [ρij(h)]mi, j=1, which have the additional
property

ρii(0) = 1 for all i.

The correlation ρij(0) is the correlation between Xti and Xtj, which is generally not
equal to 1 if i �= j (see Example 8.2.1). It is also possible that |γij(h)| > |γij(0)| if i �= j
(see Problem 7.1). �
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The simplest multivariate time series is multivariate white noise, the definition of
which is quite analogous to that of univariate white noise.

Definition 8.2.2. The m-variate series {Zt} is called white noise with mean 0 and covariance
matrix �| , written

{Zt} ∼ WN(0, �| ), (8.2.9)

if {Zt} is stationary with mean vector 0 and covariance matrix function

�(h) =
{

�| , if h = 0,

0, otherwise.
(8.2.10)

Definition 8.2.3. The m-variate series {Zt} is called iid noise with mean 0 and covariance matrix
�| , written

{Zt} ∼ iid(0, �| ), (8.2.11)

if the random vectors {Zt} are independent and identically distributed with mean 0
and covariance matrix �| .

Multivariate white noise {Zt} is used as a building block from which can be
constructed an enormous variety of multivariate time series. The linear processes are
generated as follows.

Definition 8.2.4. The m-variate series {Xt} is a linear process if it has the representation

Xt =
∞∑

j=−∞
CjZt−j, {Zt} ∼ WN(0, �| ), (8.2.12)

where {Cj} is a sequence of m × m matrices whose components are absolutely
summable.

The linear process (8.2.12) is stationary (Problem 7.2) with mean 0 and covariance
function

�(h) =
∞∑

j=−∞
Cj+h�|Cj

′, h = 0,±1, . . . . (8.2.13)

An MA(∞) process is a linear process with Cj = 0 for j < 0. Thus {Xt} is an
MA(∞) process if and only if there exists a white noise sequence {Zt} and a sequence
of matrices Cj with absolutely summable components such that

Xt =
∞∑
j=0

CjZt−j.

Multivariate ARMA processes will be discussed in Section 8.4, where it will be shown
in particular that any causal ARMA( p, q) process can be expressed as an MA(∞)
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process, while any invertible ARMA( p, q) process can be expressed as an AR(∞)
process, i.e., a process satisfying equations of the form

Xt +
∞∑
j=1

AjXt−j = Zt,

in which the matrices Aj have absolutely summable components.

8.2.1 Second-Order Properties in the Frequency Domain

Provided that the components of the covariance matrix function �(·) have the property∑∞
h=−∞ |γij(h)| < ∞, i, j = 1, . . . ,m, then � has a matrix-valued spectral density

function

f (λ) = 1

2π

∞∑
h=−∞

e−iλh�(h), −π ≤ λ ≤ π,

and � can be expressed in terms of f as

�(h) =
∫ π

−π

eiλhf (λ)dλ.

The second-order properties of the stationary process {Xt} can therefore be described
equivalently in terms of f (·) rather than �(·). Similarly, {Xt} has a spectral represen-
tation

Xt =
∫ π

−π

eiλtdZ(λ),

where {Z(λ),−π ≤ λ ≤ π} is a process whose components are complex-valued
processes satisfying

E
(
dZj(λ)dZk(μ)

) =
{
fjk(λ)dλ if λ = μ,

0 if λ �= μ,

and Zk denotes the complex conjugate of Zk. We shall not go into the spectral
representation in this book. For details see Brockwell and Davis (1991).

8.3 Estimation of the Mean and Covariance Function

As in the univariate case, the estimation of the mean vector and covariances of a
stationary multivariate time series plays an important role in describing and model-
ing the dependence structure of the component series. In this section we introduce
estimators, for a stationarym-variate time series {Xt}, of the componentsμj, γij(h), and
ρij(h) of μ, �(h), and R(h), respectively. We also examine the large-sample properties
of these estimators.

8.3.1 Estimation of μ

A natural unbiased estimator of the mean vector μ based on the observations
X1, . . . ,Xn is the vector of sample means
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Xn = 1

n

n∑
t=1

Xt.

The resulting estimate of the mean of the jth time series is then the univariate sample
mean (1/n)

∑n
t=1 Xtj. If each of the univariate autocovariance functions γii(·), i =

1, . . . ,m, satisfies the conditions of Proposition 2.4.1, then the consistency of the
estimator Xn can be established by applying the proposition to each of the component
time series {Xti}. This immediately gives the following result.

Proposition 8.3.1. If {Xt} is a stationary multivariate time series with mean μ and covariance function
�(·), then as n → ∞,

E
(
Xn − μ

)′ (
Xn − μ

) → 0 if γii(n) → 0, 1 ≤ i ≤ m,

and

nE
(
Xn − μ

)′ (
Xn − μ

) →
m∑
i=1

∞∑
h=−∞

γii(h) if
∞∑

h=−∞
|γii(h)| < ∞, 1 ≤ i ≤ m.

Under more restrictive assumptions on the process {Xt} it can also be shown that
Xn is approximately normally distributed for large n. Determination of the covariance
matrix of this distribution would allow us to obtain confidence regions forμ. However,
this is quite complicated, and the following simple approximation is useful in practice.

For each i we construct a confidence interval for μi based on the sample mean Xi

of the univariate series X1i, . . . ,Xti and combine these to form a confidence region for
μ. If fi(ω) is the spectral density of the ith process {Xti} and if the sample size n is
large, then we know, under the same conditions as in Section 2.4, that

√
n
(
Xi − μi

)
is

approximately normally distributed with mean zero and variance

2π fi(0) =
∞∑

k=−∞
γii(k).

It can also be shown (see, e.g., Anderson 1971) that

2π f̂ i(0) :=
∑
|h|≤r

(
1 − |h|

r

)
γ̂ii(h)

is a consistent estimator of 2π fi(0), provided that r = rn is a sequence of numbers
depending on n in such a way that rn → ∞ and rn/n → 0 as n → ∞. Thus if Xi

denotes the sample mean of the ith process and Φα is the α-quantile of the standard
normal distribution, then the bounds

Xi ± Φ1−α/2

(
2π f̂ i(0)/n

)1/2

are asymptotic (1 − α) confidence bounds for μi. Hence

P

(
|μi − Xi| ≤ Φ1−α/2

(
2π f̂ i(0)/n

)1/2
, i = 1, . . . ,m

)

≥ 1 −
m∑
i=1

P

(∣∣μi − Xi

∣∣ > Φ1−α/2

(
2π f̂ i(0)/n

)1/2
)

,
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where the right-hand side converges to 1 −mα as n → ∞. Consequently, as n → ∞,
the set of m-dimensional vectors bounded by{

xi = Xi ± Φ1−(α/(2m))

(
2π f̂ i(0)/n

)1/2
, i = 1, . . . ,m

}
(8.3.1)

has a confidence coefficient that converges to a value greater than or equal to 1 − α

(and substantially greater if m is large). Nevertheless, the region defined by (8.3.1) is
easy to determine and is of reasonable size, provided that m is not too large.

8.3.2 Estimation of �(h)

As in the univariate case, a natural estimator of the covariance �(h) = E
[(
Xt+h −

μ
)(
Xt − μ

)′]
is

�̂(h) =

⎧⎪⎪⎨
⎪⎪⎩
n−1

n−h∑
t=1

(
Xt+h − Xn

) (
Xt − Xn

)′
for 0 ≤ h ≤ −1,

�̂′(−h) for − n + 1 ≤ h < 0.

Writing γ̂ij(h) for the (i, j)-component of �̂(h), i, j = 1, 2, . . ., we estimate the cross-
correlations by

ρ̂ij(h) = γ̂ij(h)(γ̂ii(0)γ̂jj(0))−1/2.

If i = j, then ρ̂ij reduces to the sample autocorrelation function of the ith series.
Derivation of the large-sample properties of γ̂ij and ρ̂ij is quite complicated in

general. Here we shall simply note one result that is of particular importance for testing
the independence of two component series. For details of the proof of this and related
results, see Brockwell and Davis (1991).

Theorem 8.3.1. Let {Xt} be the bivariate time series whose components are defined by

Xt1 =
∞∑

k=−∞
αkZt−k,1, {Zt1} ∼ IID

(
0, σ 2

1

)
,

and

Xt2 =
∞∑

k=−∞
βkZt−k,2, {Zt2} ∼ IID

(
0, σ 2

2

)
,

where the two sequences {Zt1} and {Zt2} are independent,
∑

k |αk| < ∞, and∑
k |βk| < ∞.

Then for all integers h and k with h �= k, the random variables n1/2ρ̂12(h)
and n1/2ρ̂12(k) are approximately bivariate normal with mean 0, variance∑∞

j=−∞ ρ11( j)ρ22( j), and covariance
∑∞

j=−∞ ρ11( j)ρ22( j + k − h), for n large.

[For a related result that does not require the independence of the two series {Xt1} and
{Xt2} see Bartlett’s Formula, Section 8.3.4 below.]

Theorem 8.3.1 is useful in testing for correlation between two time series. If one
of the two processes in the theorem is white noise, then it follows at once from the
theorem that ρ̂12(h) is approximately normally distributed with mean 0 and variance
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1/n, in which case it is straightforward to test the hypothesis that ρ12(h) = 0. However,
if neither process is white noise, then a value of ρ̂12(h) that is large relative to n−1/2 does
not necessarily indicate that ρ12(h) is different from zero. For example, suppose that
{Xt1} and {Xt2} are two independent AR(1) processes with ρ11(h) = ρ22(h) = 0.8|h|.
Then the large-sample variance of ρ̂12(h) is n−1

(
1 + 2

∑∞
k=1(0.64)k

) = 4.556n−1. It
would therefore not be surprising to observe a value of ρ̂12(h) as large as 3n−1/2 even
though {Xt1} and {Xt2} are independent. If on the other hand, ρ11(h) = 0.8|h| and
ρ22(h) = (−0.8)|h|, then the large-sample variance of ρ̂12(h) is 0.2195n−1, and an
observed value of 3n−1/2 for ρ̂12(h) would be very unlikely.

8.3.3 Testing for Independence of Two Stationary Time Series

Since by Theorem 8.3.1 the large-sample distribution of ρ̂12(h) depends on both ρ11(·)
and ρ22(·), any test for independence of the two component series cannot be based
solely on estimated values of ρ12(h), h = 0,±1, . . ., without taking into account the
nature of the two component series.

This difficulty can be circumvented by “prewhitening” the two series before
computing the cross-correlations ρ̂12(h), i.e., by transforming the two series to white
noise by application of suitable filters. If {Xt1} and {Xt2} are invertible ARMA ( p, q)
processes, this can be achieved by the transformations

Zti =
∞∑
j=0

π
(i)
j Xt−j,i,

where
∑∞

j=0 π
(i)
j z j = φ(i)(z)/θ(i)(z) and φ(i), θ(i) are the autoregressive and moving-

average polynomials of the ith series, i = 1, 2.
Since in practice the true model is nearly always unknown and since the data Xtj,

t ≤ 0, are not available, it is convenient to replace the sequences {Zti} by the residuals{
Ŵti

}
after fitting a maximum likelihood ARMA model to each of the component

series (see (5.3.1)). If the fitted ARMA models were in fact the true models, the series{
Ŵti

}
would be white noise sequences for i = 1, 2.

To test the hypothesis H0 that {Xt1} and {Xt2} are independent series, we observe
that under H0, the corresponding two prewhitened series {Zt1} and {Zt2} are also inde-
pendent. Theorem 8.3.1 then implies that the sample cross-correlations ρ̂12(h), ρ̂12(k),
h �= k, of {Zt1} and {Zt2} are for large n approximately independent and normally dis-
tributed with means 0 and variances n−1. An approximate test for independence can
therefore be obtained by comparing the values of |ρ̂12(h)| with 1.96n−1/2, exactly as
in Section 5.3.2. If we prewhiten only one of the two original series, say {Xt1}, then
under H0 Theorem 8.3.1 implies that the sample cross-correlations ρ̃12(h), ρ̃12(k),
h �= k, of {Zt1} and {Xt2} are for large n approximately normal with means 0, vari-
ances n−1 and covariance n−1ρ22(k − h), where ρ22(·) is the autocorrelation function
of {Xt2}. Hence, for any fixed h, ρ̃12(h) also falls (under H0) between the bounds
±1.96n−1/2 with a probability of approximately 0.95.

Example 8.3.1. The sample correlation functions ρ̂ij(·), i, j = 1, 2, of the bivariate time series
E731A.TSM (of length n = 200) are shown in Figure 8-7. Without taking into
account the autocorrelations ρ̂ii(·), i = 1, 2, it is impossible to decide on the basis of
the cross-correlations whether or not the two component processes are independent
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Figure 8-7
The sample correlations

of the bivariate series
E731A.TSM of

Example 8.3.1, showing the
bounds ±1.96n−1/2
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of each other. Notice that many of the sample cross-correlations ρ̂ij(h), i �= j, lie
outside the bounds ±1.96n−1/2 = ±0.139. However, these bounds are relevant
only if at least one of the component series is white noise. Since this is clearly
not the case, a whitening transformation must be applied to at least one of the
two component series. Analysis using ITSM leads to AR(1) models for each. The
residuals from these maximum likelihood models are stored as a bivariate series in
the file E731B.TSM, and their sample correlations, obtained from ITSM, are shown
in Figure 8-8. All but two of the cross-correlations are between the bounds ±0.139,
suggesting by Theorem 8.3.1 that the two residual series (and hence the two original
series) are uncorrelated. The data for this example were in fact generated as two
independent AR(1) series with φ = 0.8 and σ 2 = 1.

�

8.3.4 Bartlett’s Formula

In Section 2.4 we gave Bartlett’s formula for the large-sample distribution of the
sample autocorrelation vector ρ̂ = (

ρ̂(1), . . . , ρ̂(k)
)′

of a univariate time series.
The following theorem gives a large-sample approximation to the covariances of the
sample cross-correlations ρ̂12(h) and ρ̂12(k) of the bivariate time series {Xt} under the
assumption that {Xt} is Gaussian. However, it is not assumed (as in Theorem 8.3.1)
that {Xt1} is independent of {Xt2}.
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Figure 8-8
The sample correlations
of the bivariate series of
residuals E731B.TSM,

whose components are
the residuals from the AR(1)
models fitted to each of the

component series in
E731A.TSM
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Figure 8-9
The sample correlations
of the whitened series

Ŵt+h,1 and Ŵt2 of
Example 8.3.2, showing the

bounds ±1.96n−1/2
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Bartlett’s Formula:
If {Xt} is a bivariate Gaussian time series with covariances satisfying∑∞

h=−∞ |γij(h)| < ∞, i, j = 1, 2, then

lim
n→∞ nCov

(
ρ̂12(h), ρ̂12(k)

)=
∞∑

j=−∞

[
ρ11( j)ρ22( j + k − h) + ρ12( j + k)ρ21( j − h)

−ρ12(h){ρ11( j)ρ12( j + k) + ρ22( j)ρ21( j − k)}
−ρ12(k){ρ11( j)ρ12( j + h) + ρ22( j)ρ21( j − h)}
+ρ12(h)ρ12(k)

{
1

2
ρ2

11( j) + ρ2
12( j) + 1

2
ρ2

22( j)

}]

Corollary 8.3.1. If {Xt} satisfies the conditions for Bartlett’s formula, if either {Xt1} or {Xt2} is white
noise, and if

ρ12(h) = 0, h /∈ [a, b],
then

lim
n→∞ nVar

(
ρ̂12(h)

) = 1, h /∈ [a, b].

Example 8.3.2. Sales with a leading indicator

We consider again the differenced series {Dt1} and {Dt2} of Example 8.1.2, for which
we found the maximum likelihood models (8.1.1) and (8.1.2) using ITSM. The resid-
uals from the two models (which can be filed by ITSM) are the two “whitened” series{
Ŵt1

}
and

{
Ŵt2

}
with sample variances 0.0779 and 1.754, respectively. This bivariate

series is contained in the file E732.TSM.
The sample auto- and cross-correlations of {Dt1} and {Dt2} were shown in

Figure 8-6. Without taking into account the autocorrelations, it is not possible to
draw any conclusions about the dependence between the two component series from
the cross-correlations.

Examination of the sample cross-correlation function of the whitened series
{
Ŵt1

}
and

{
Ŵt2

}
, on the other hand, is much more informative. From Figure 8-9 it is apparent

that there is one large-sample cross-correlation (between Ŵt+3,2 and Ŵt,1), while the
others are all between ±1.96n−1/2.

�
If

{
Ŵt1

}
and

{
Ŵt2

}
are assumed to be jointly Gaussian, Corollary 8.3.1 indicates

the compatibility of the cross-correlations with a model for which

ρ12(−3) �= 0

and

ρ12(h) = 0, h �= −3.

The value ρ̂12(−3) = 0.969 suggests the model

Ŵt2 = 4.74Ŵt−3,1 + Nt, (8.3.2)

where the stationary noise {Nt} has small variance compared with
{
Ŵt2

}
and

{
Ŵt1

}
,

and the coefficient 4.74 is the square root of the ratio of sample variances of
{
Ŵt2

}
and
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{
Ŵt1

}
. A study of the sample values of

{
Ŵt2 − 4.74Ŵt−3,1

}
suggests the model

(1 + 0.345B)Nt = Ut, {Ut} ∼ WN(0, 0.0782) (8.3.3)

for {Nt}. Finally, replacing Ŵt2 and Ŵt−3,1 in (8.3.2) by Zt2 and Zt−3,1, respectively, and
then using (8.1.1) and (8.1.2) to express Zt2 and Zt−3,1 in terms of {Dt2} and {Dt1}, we
obtain a model relating {Dt1}, {Dt2}, and {Ut1}, namely,

Dt2 + 0.0773 = (1 − 0.610B)(1 − 0.838B)−1[4.74(1 − 0.474B)−1Dt−3,1

+ (1 + 0.345B)−1Ut].
This model should be compared with the one derived later in Section 11.1 by the more
systematic technique of transfer function modeling.

8.4 Multivariate ARMA Processes

As in the univariate case, we can define an extremely useful class of multivari-
ate stationary processes {Xt} by requiring that {Xt} should satisfy a set of linear
difference equations with constant coefficients. Multivariate white noise {Zt} (see
Definition 8.2.2) is a fundamental building block from which these ARMA processes
are constructed.

Definition 8.4.1. {Xt} is an ARMA( p, q) process if {Xt} is stationary and if for every t,
Xt − Φ1Xt−1 − · · · − ΦpXt−p = Zt + Θ1Zt−1 + · · · + ΘqZt−q, (8.4.1)

where {Zt} ∼ WN(0, �| ). ({Xt} is anARMA(p, q) processwithmeanμ if {Xt−μ}
is an ARMA( p, q) process.)

Equations (8.4.1) can be written in the more compact form

Φ(B)Xt = Θ(B)Zt, {Zt} ∼ WN(0, �| ), (8.4.2)

where Φ(z) := I − Φ1z − · · · − Φpzp and Θ(z) := I + Θ1z + · · · + Θqzq are matrix-
valued polynomials, I is them×m identity matrix, andB as usual denotes the backward
shift operator. (Each component of the matrices Φ(z), Θ(z) is a polynomial with real
coefficients and degree less than or equal to p, q, respectively.)

Example 8.4.1. The multivariate AR(1) process

Setting p = 1 and q = 0 in (8.4.1) gives the defining equations

Xt = ΦXt−1 + Zt, {Zt} ∼ WN(0, �| ), (8.4.3)

for the multivariate AR(1) series {Xt}. By exactly the same argument as used in
Example 2.2.1, we can express Xt as

Xt =
∞∑
j=0

Φ jZt−j, (8.4.4)

provided that all the eigenvalues of Φ are less than 1 in absolute value, i.e., provided
that
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det(I − zΦ) �= 0 for all z ∈ C such that |z| ≤ 1. (8.4.5)

If this condition is satisfied, then the coefficients Φ j are absolutely summable, and
hence the series in (8.4.4) converges; i.e., each component of the matrix

∑n
j=0 Φ jZt−j

converges (see Remark 1 of Section 2.2). The same argument as in Example 2.2.1 also
shows that (8.4.4) is the unique stationary solution of (8.4.3). The condition that all
the eigenvalues of Φ should be less than 1 in absolute value (or equivalently (8.4.5))
is just the multivariate analogue of the condition |φ| < 1 required for the existence of
a causal stationary solution of the univariate AR(1) equations (2.2.8).

�
Causality and invertibility of a multivariate ARMA( p, q) process are defined

precisely as in Section 3.1, except that the coefficients ψj, πj in the representations
Xt = ∑∞

j=0 ψjZt−j and Zt = ∑∞
j=0 πjXt−j are replaced by m × m matrices Ψj

and �j whose components are required to be absolutely summable. The following
two theorems (proofs of which can be found in Brockwell and Davis (1991)) provide
us with criteria for causality and invertibility analogous to those of Section 3.1.

Causality:
An ARMA(p, q) process {Xt} is causal, or a causal function of {Zt}, if there
exist matrices {Ψj} with absolutely summable components such that

Xt =
∞∑
j=0

ΨjZt−j for all t. (8.4.6)

Causality is equivalent to the condition

det Φ(z) �= 0 for all z ∈ C such that |z| ≤ 1. (8.4.7)

The matrices Ψj are found recursively from the equations

Ψj = Θj +
∞∑
k=1

ΦkΨj−k, j = 0, 1, . . . , (8.4.8)

where we define Θ0 = I, Θj = 0 for j > q, Φj = 0 for j > p, and Ψj = 0 for
j < 0.

Invertibility:
An ARMA( p, q) process {Xt} is invertible if there exist matrices {�j} with
absolutely summable components such that

Zt =
∞∑
j=0

�jXt−j for all t. (8.4.9)

Invertibility is equivalent to the condition

det Θ(z) �= 0 for all z ∈ C such that |z| ≤ 1. (8.4.10)

The matrices �j are found recursively from the equations

�j = −Φj −
∞∑
k=1

Θk�j−k, j = 0, 1, . . . , (8.4.11)

where we define Φ0 = −I, Φj = 0 for j > p, Θj = 0 for j > q, and �j = 0 for
j < 0.
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Example 8.4.2. For the multivariate AR(1) process defined by (8.4.3), the recursions (8.4.8) give

Ψ0 = I,

Ψ1 = ΦΨ0 = Φ,

Ψ2 = ΦΨ1 = Φ2,

...

Ψj = ΦΨj−1 = Φ j, j ≥ 3,

as already found in Example 8.4.1.
�

Remark 3. For the bivariate AR(1) process (8.4.3) with

Φ =
[

0 0.5
0 0

]

it is easy to check that Ψj = Φ j = 0 for j > 1 and hence that {Xt} has the alternative
representation

Xt = Zt + ΦZt−1

as an MA(1) process. This example shows that it is not always possible to distinguish
between multivariate ARMA models of different orders without imposing further
restrictions. If, for example, attention is restricted to pure AR processes, the prob-
lem does not arise. For detailed accounts of the identification problem for general
ARMA( p, q) models see Hannan and Deistler (1988) and Lütkepohl (1993). �

8.4.1 The Covariance Matrix Function of a Causal ARMA Process

From (8.2.13) we can express the covariance matrix �(h) = E(Xt+hX′
t) of the causal

process (8.4.6) as

�(h) =
∞∑
j=0

Ψh+j�| Ψ ′
j , h = 0,±1, . . . , (8.4.12)

where the matrices Ψj are found from (8.4.8) and Ψj := 0 for j < 0.
The covariance matrices �(h), h = 0,±1, . . ., can also be found by solving the

Yule–Walker equations

�( j) −
p∑

r=1

Φr�( j − r) =
∑
j≤r≤q

Θr�| Ψr−j, j = 0, 1, 2, . . . ,

(8.4.13)

obtained by postmultiplying (8.4.1) by X′
t−j and taking expectations. The first p+1 of

the equation (8.4.13) can be solved for the components of �(0), . . . , �(p) using the
fact that �(−h) = �′(h). The remaining equations then give �(p + 1), �(p + 2), . . .
recursively. An explicit form of the solution of these equations can be written down
by making use of Kronecker products and the vec operator (see e.g., Lütkepohl 1993).

Remark 4. If z0 is the root of det Φ(z) = 0 with smallest absolute value, then it can
be shown from the recursions (8.4.8) that Ψj/r j → 0 as j → ∞ for all r such that
|z0|−1 < r < 1. Hence, there is a constant C such that each component of Ψj is smaller
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in absolute value than Cr j. This implies in turn that there is a constant K such that each
component of the matrixΨh+j�|Ψ ′

j on the right of (8.4.12) is bounded in absolute value
byKr 2j. Provided that |z0| is not very close to 1, this means that the series (8.4.12) con-
verges rapidly, and the error incurred in each component by truncating the series after
the term with j = k− 1 is smaller in absolute value than

∑∞
j=k Kr

2j = Kr 2k/
(
1 − r 2

)
.

8.5 Best Linear Predictors of Second-Order Random Vectors

Let
{
Xt = (Xt1, . . . ,Xtm)′} be an m-variate time series with means EXt = μt and

covariance function given by the m × m matrices

K(i, j) = E
(
XiX′

j

) − μiμ
′
j.

If Y = (Y1, . . . ,Ym)′ is a random vector with finite second moments and EY = μ, we
define

Pn(Y) = (PnY1, . . . ,PnYm)′, (8.5.1)

where PnYj is the best linear predictor of the component Yj of Y in terms of all
of the components of the vectors Xt, t = 1, . . . , n, and the constant 1. It follows
immediately from the properties of the prediction operator (Section 2.5) that

Pn(Y) = μ + A1(Xn − μn) + · · · + An(X1 − μ1) (8.5.2)

for some matrices A1, . . . ,An, and that

Y − Pn(Y) ⊥ Xn+1−i, i = 1, . . . , n, (8.5.3)

where we say that twom-dimensional random vectorsX andY are orthogonal (written
X ⊥ Y) if E(XY′) is a matrix of zeros. The vector of best predictors (8.5.1) is uniquely
determined by (8.5.2) and (8.5.3), although it is possible that there may be more than
one possible choice for A1, . . . ,An.

As a special case of the above, if {Xt} is a zero-mean time series, the best linear
predictor X̂n+1 of Xn+1 in terms of X1, . . . ,Xn is obtained on replacing Y by Xn+1 in
(8.5.1). Thus

X̂n+1 =
⎧⎨
⎩
0, if n = 0,

Pn(Xn+1), if n ≥ 1.

Hence, we can write

X̂n+1 = Φn1Xn + · · · + ΦnnX1, n = 1, 2, . . . , (8.5.4)

where, from (8.5.3), the coefficients Φnj, j = 1, . . . , n, are such that

E
(
X̂n+1X′

n+1−i

)
= E

(
Xn+1X′

n+1−i

)
, i = 1, . . . , n, (8.5.5)

i.e.,
n∑

j=1

ΦnjK(n + 1 − j, n + 1 − i) = K(n + 1, n + 1 − i), i = 1, . . . , n.

In the case where {Xt} is stationary with K(i, j) = �(i − j), the prediction equations
simplify to the m-dimensional analogues of (2.5.7), i.e.,

n∑
j=1

Φnj�(i − j) = �(i), i = 1, . . . , n. (8.5.6)
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Provided that the covariance matrix of the nm components of X1, . . . ,Xn is nonsin-
gular for every n ≥ 1, the coefficients {Φnj} can be determined recursively using
a multivariate version of the Durbin–Levinson algorithm given by Whittle (1963)
(for details see Brockwell and Davis (1991), Proposition 11.4.1). Whittle’s recursions
also determine the covariance matrices of the one-step prediction errors, namely,
V0 = �(0) and, for n ≥ 1,

Vn = E(Xn+1 − X̂n+1)(Xn+1 − X̂n+1)
′

= �(0) − Φn1�(−1) − · · · − Φnn�(−n). (8.5.7)

Remark 5. The innovations algorithm also has a multivariate version that can be used
for prediction inmuch the sameway as the univariate version described in Section 2.5.4
(for details see Brockwell and Davis (1991), Proposition 11.4.2). �

8.6 Modeling and Forecasting with Multivariate AR Processes

If {Xt} is any zero-mean second-order multivariate time series, it is easy to show from
the results of Section 8.5 (Problem 8.4) that the one-step prediction errors Xj − X̂j,
j = 1, . . . , n, have the property

E
(
Xj − X̂j

) (
Xk − X̂k

)′ = 0 for j �= k. (8.6.1)

Moreover, the matrix M such that⎡
⎢⎢⎢⎢⎢⎣

X1 − X̂1

X2 − X̂2

X3 − X̂3
...

Xn − X̂n

⎤
⎥⎥⎥⎥⎥⎦

= M

⎡
⎢⎢⎢⎢⎢⎣

X1

X2

X3
...

Xn

⎤
⎥⎥⎥⎥⎥⎦

(8.6.2)

is lower triangular with ones on the diagonal and therefore has determinant equal to 1.
If the series {Xt} is also Gaussian, then (8.6.1) implies that the prediction errors

Uj = Xj − X̂j, j = 1, . . . , n, are independent with covariance matrices V0, . . . ,Vn−1,
respectively (as specified in (8.5.7)). Consequently, the joint density of the prediction
errors is the product

f (u1, . . . ,un) = (2π)−nm/2

⎛
⎝ n∏

j=1

detVj−1

⎞
⎠

−1/2

exp

⎡
⎣−1

2

n∑
j=1

u′
jV

−1
j−1uj

⎤
⎦ .

Since the determinant of the matrix M in (8.6.2) is equal to 1, the joint density of the
observations X1, . . . ,Xn at x1, . . . , xn is obtained on replacing u1, . . . ,un in the last
expression by the values of Xj − X̂j corresponding to the observations x1, . . . , xn.

If we suppose that {Xt} is a zero-mean m-variate AR( p) process with coefficient
matrices Φ = {Φ1, . . . , Φp} and white noise covariance matrix �| , we can therefore
express the likelihood of the observations X1, . . . ,Xn as

L(Φ, �| ) = (2π)−nm/2

⎛
⎝ n∏

j=1

detVj−1

⎞
⎠

−1/2

exp

⎡
⎣−1

2

n∑
j=1

U′
jV

−1
j−1Uj

⎤
⎦ ,
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where Uj = Xj − X̂j, j = 1, . . . , n, and X̂j and Vj are found from (8.5.4), (8.5.6),
and (8.5.7).

Maximization of the Gaussian likelihood is much more difficult in the multivariate
than in the univariate case because of the potentially large number of parameters
involved and the fact that it is not possible to compute the maximum likelihood
estimator of Φ independently of �| as in the univariate case. In principle, maximum
likelihood estimators can be computed with the aid of efficient nonlinear optimization
algorithms, but it is important to begin the search with preliminary estimates that are
reasonably close to the maximum. For pure AR processes good preliminary estimates
can be obtained usingWhittle’s algorithm or amultivariate version of Burg’s algorithm
given by Jones (1978). We shall restrict our discussion here to the use of Whit-
tle’s algorithm (the multivariate option AR-Model>Estimation>Yule-Walker
in ITSM), but Jones’s multivariate version of Burg’s algorithm is also available
(AR-Model>Estimation>Burg). Other useful algorithms can be found in Lütke-
pohl (1993), in particular the method of conditional least squares and the method of
Hannan and Rissanen (1982), the latter being useful also for preliminary estimation in
the more difficult problem of fitting ARMA( p, q) models with q > 0. Spectral meth-
ods of estimation for multivariate ARMA processes are also frequently used. A dis-
cussion of these (as well as some time-domain methods) is given in Anderson (1980).

Order selection for multivariate autoregressive models can bemade byminimizing
a multivariate analogue of the univariate AICC statistic

AICC = −2 ln L(Φ1, . . . , Φp, �| ) + 2( pm2 + 1)nm

nm − pm2 − 2
. (8.6.3)

8.6.1 Estimation for Autoregressive Processes Using Whittle’s Algorithm

If {Xt} is the (causal) multivariate AR( p) process defined by the difference equations

Xt = Φ1Xt−1 + · · · + ΦpXt−p + Zt, {Zt} ∼ WN(0, �| ), (8.6.4)

then postmultiplying byX′
t−j, j = 0, . . . , p, and taking expectations gives the equations

�| = �(0) −
p∑

j=1

Φj�(−j) (8.6.5)

and

�(i) =
n∑

j=1

Φj�(i − j), i = 1, . . . , p. (8.6.6)

Given the matrices �(0), . . . , �(p), equation (8.6.6) can be used to determine the
coefficient matrices Φ1, . . . , Φp. The white noise covariance matrix �| can then
be found from (8.6.5). The solution of these equations for Φ1, . . . , Φp, and �| is
identical to the solution of (8.5.6) and (8.5.7) for the prediction coefficient matrices
Φp1, . . . , Φpp and the corresponding prediction error covariance matrix Vp. Conse-
quently, Whittle’s algorithm can be used to carry out the algebra.

The Yule–Walker estimators Φ̂1, . . . , Φ̂p, and �̂| for the model (8.6.4) fitted to
the data X1, . . . ,Xn are obtained by replacing �( j) in (8.6.5) and (8.6.6) by �̂( j),
j = 0, . . . , p, and solving the resulting equations for Φ1, . . . , Φp, and �| . The
solution of these equations is obtained from ITSM by selecting the multivariate
option AR-Model>Estimation>Yule-Walker. The mean vector of the fitted
model is the sample mean of the data, and Whittle’s algorithm is used to solve the
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equations (8.6.5) and (8.6.6) for the coefficient matrices and the white noise covariance
matrix. The fitted model is displayed by ITSM in the form

Xt = φ0 + Φ1Xt−1 + · · · + ΦpXt−p + Zt, {Zt} ∼ WN(0, �| ).
Note that the mean μ of this model is not the vector φ0, but

μ = (I − Φ1 − · · · − Φp)
−1φ0.

In fitting multivariate autoregressive models using ITSM, check the box Find
minimum AICC model to find the AR(p) model with 0 ≤ p ≤ 20 that mini-
mizes the AICC value as defined in (8.6.3).

Analogous calculations using Jones’s multivariate version of Burg’s algorithm can
be carried out by selecting AR-Model>Estimation>Burg.

Example 8.6.1 The Dow Jones and All Ordinaries Indices

To find the minimum AICC Yule–Walker model (of order less than or equal to 20) for
the bivariate series {(Xt1,Xt2)

′, t = 1, . . . , 250} of Example 8.1.1, proceed as follows.
Select File>Project>Open> Multivariate, click OK, and then double-click
on the file name, DJAOPC2.TSM. Check that Number of columns is set to 2,
the dimension of the observation vectors, and click OK again to see graphs of the two
component time series. No differencing is required (recalling from Example 8.1.1 that
{Xt1} and {Xt2} are the daily percentage price changes of the original Dow Jones and
All Ordinaries Indices). Select AR-Model>Estimation>Yule-Walker, check
the box Find minimum AICC Model, click OK, and you will obtain the model[

Xt1

Xt2

]
=

[
0.0288
0.00836

]
+

[−0.0148 0.0357
0.6589 0.0998

] [
Xt−1,1

Xt−1,2

]
+

[
Zt1
Zt2

]
,

where [
Zt1
Zt2

]
∼ WN

([
0
0

]
,

[
0.3653 0.0224
0.0224 0.6016

])
.

�

Example 8.6.2 Sales with a leading indicator

The series {Yt1} (leading indicator) and {Yt2} (sales) are stored in bivariate form
(Yt1 in column 1 and Yt2 in column 2) in the file LS2.TSM. On opening this file
in ITSM you will see the graphs of the two component time series. Inspection of
the graphs immediately suggests, as in Example 8.2.2, that the differencing operator
∇ = 1 −B should be applied to the data before a stationary AR model is fitted. Select
Transform>Difference and specify 1 for the differencing lag. Click OK and
you will see the graphs of the two differenced series. Inspection of the series and
their correlation functions (obtained by pressing the second yellow button at the top
of the ITSM window) suggests that no further differencing is necessary. The next
step is to select AR-model>Estimation>Yule-Walker with the option Find
minimum AICC model. The resulting model has order p = 5 and parameters
φ0 = (0.0328 0.0156)′,

Φ̂1 =
[−0.517 0.024
−0.019 −0.051

]
, Φ̂2 =

[−0.192 −0.018
0.047 0.250

]
, Φ̂3 =

[−0.073 0.010
4.678 0.207

]
,
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Φ̂4 =
[−0.032 −0.009

3.664 0.004

]
, Φ̂5 =

[
0.022 0.011
1.300 0.029

]
, �̂| =

[
0.076 −0.003

−0.003 0.095

]
,

with AICC=109.49. (Analogous calculations using Burg’s algorithm give an AR(8)
model for the differenced series.) The sample cross-correlations of the residual
vectors Ẑt can be plotted by clicking on the last blue button at the top of the ITSM
window. These are nearly all within the bounds ±1.96/

√
n, suggesting that the

model is a good fit. The components of the residual vectors themselves are plot-
ted by selecting AR Model>Residual Analysis>Plot Residuals. Sim-
ulated observations from the fitted model can be generated using the option AR
Model>Simulate. The fitted model has the interesting property that the upper right
component of each of the co- efficient matrices is close to zero. This suggests that {Xt1}
can be effectively modeled independently of {Xt2}. In fact, the MA(1) model

Xt1 = (1 − 0.474B)Ut, {Ut} ∼ WN(0, 0.0779), (8.6.7)

provides an adequate fit to the univariate series {Xt1}. Inspecting the bottom rows of
the coefficient matrices and deleting small entries, we find that the relation between
{Xt1} and {Xt2} can be expressed approximately as

Xt2 = 0.250Xt−2,2 + 0.207Xt−3,2 + 4.678Xt−3,1 + 3.664Xt−4,1 + 1.300Xt−5,1 +Wt,

or equivalently,

Xt2 = 4.678B3(1 + 0.783B + 0.278B2)

1 − 0.250B2 − 0.207B3
Xt1 + Wt

1 − 0.250B2 − 0.207B3
,

(8.6.8)

where {Wt} ∼ WN(0, 0.095). Moreover, since the estimated noise covariancematrix is
essentially diagonal, it follows that the two sequences {Xt1} and {Wt} are uncorrelated.
This reduced model defined by (8.6.7) and (8.6.8) is an example of a transfer function
model that expresses the “output” series {Xt2} as the output of a linear filter with “input”
{Xt1} plus added noise. Amore direct approach to the fitting of transfer functionmodels
is given in Section 11.1 and applied to this same data set.

�

8.6.2 Forecasting Multivariate Autoregressive Processes

The technique developed in Section 8.5 allows us to compute the minimum mean
squared error one-step linear predictors X̂n+1 for anymultivariate stationary time series
from the mean μ and autocovariance matrices �(h) by recursively determining the
coefficients Φni, i = 1, . . . , n, and evaluating

X̂n+1 = μ + Φn1(Xn − μ) + · · · + Φnn(X1 − μ). (8.6.9)

The situation is simplified when {Xt} is the causal AR(p) process defined by
(8.6.4), since for n ≥ p (as is almost always the case in practice)

X̂n+1 = Φ1Xn + · · · + ΦpXn+1−p. (8.6.10)

To verify (8.6.10) it suffices to observe that the right-hand side has the required form
(8.5.2) and that the prediction error

Xn+1 − Φ1Xn − · · · − ΦpXn+1−p = Zn+1
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is orthogonal to X1, . . . ,Xn in the sense of (8.5.3). (In fact, the prediction error is
orthogonal to all Xj,−∞ < j ≤ n, showing that if n ≥ p, then (8.6.10) is also the
best linear predictor of Xn+1 in terms of all components of Xj, −∞ < j ≤ n.) The
covariance matrix of the one-step prediction error is clearly E(Zn+1Z′

n+1) = �| .
To compute the best h-step linear predictor PnXn+h based on all the components

of X1, . . . ,Xn we apply the linear operator Pn to (8.6.4) to obtain the recursions

PnXn+h = Φ1PnXn+h−1 + · · · + ΦpPnXn+h−p. (8.6.11)

These equations are easily solved recursively, first for PnXn+1, then for PnXn+2,
PnXn+3, . . ., etc. If n ≥ p, then the h-step predictors based on all components of
Xj,−∞ < j ≤ n, also satisfy (8.6.11) and are therefore the same as the h-step
predictors based on X1, . . . ,Xn.

To compute the h-step error covariance matrices, recall from (8.4.6) that

Xn+h =
∞∑
j=0

ΨjZn+h−j, (8.6.12)

where the coefficient matrices Ψj are found from the recursions (8.4.8) with q = 0.
From (8.6.12) we find that for n ≥ p,

PnXn+h =
∞∑
j=h

ΨjZn+h−j. (8.6.13)

Subtracting (8.6.13) from (8.6.12) gives the h-step prediction error

Xn+h − PnXn+h =
h−1∑
j=0

ΨjZn+h−j, (8.6.14)

with covariance matrix

E
[
(Xn+h − PnXn+h)(Xn+h − PnXn+h)

′] =
h−1∑
j=0

Ψj�|Ψ ′
j , n ≥ p. (8.6.15)

For the (not necessarily zero-mean) causal AR(p) process defined by

Xt = φ0 + Φ1Xt−1 + · · · + ΦpXt−p + Zt, {Zt} ∼ WN(0, �| ),
Equations (8.6.10) and (8.6.11) remain valid, provided that φ0 is added to each of their
right-hand sides. The error covariance matrices are the same as in the case φ0 = 0.

The above calculations are all based on the assumption that the AR( p) model
for the series is known. However, in practice, the parameters of the model are usually
estimated from the data, and the uncertainty in the predicted values of the series will be
larger than indicated by (8.6.15) because of parameter estimation errors. See Lütkepohl
(1993).

Example 8.6.3 The Dow Jones and All Ordinaries Indices

The VAR(1) model fitted to the series {Xt, t = 1, . . . , 250} in Example 8.6.1 was[
Xt1

Xt2

]
=

[
0.0288
0.00836

]
+

[−0.0148 0.0357
0.6589 0.0998

] [
Xt−1,1

Xt−1,2

]
+

[
Zt1
Zt2

]
,

where [
Zt1
Zt2

]
∼ WN

([
0
0

]
,

[
0.3653 0.0224
0.0224 0.6016

])
.
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The one-step mean squared error for prediction of Xt2, assuming the validity of this
model, is thus 0.6016. This is a substantial reduction from the estimated mean squared
error γ̂22(0) = 0.7712 when the sample mean μ̂2 = 0.0309 is used as the one-step
predictor.

If we fit a univariate model to the series {Xt2} using ITSM, we find that the
autoregression with minimum AICC value (645.0) is

Xt2 = 0.0273 + 0.1180Xt−1,2 + Zt, {Zt} ∼ WN(0, 0.7604).

Assuming the validity of this model, we thus obtain a mean squared error for one-
step prediction of 0.7604, which is slightly less than the estimated mean squared error
(0.7712) incurred when the sample mean is used for one-step prediction.

The preceding calculations suggest that there is little to be gained from the
point of view of one-step prediction by fitting a univariate model to {Xt2}, while
there is a substantial reduction achieved by the bivariate AR(1) model for {Xt =
(Xt1,Xt2)

′}.
To test the models fitted above, we consider the next forty values {Xt, t =

251, . . . , 290}, which are stored in the file DJAOPCF.TSM. We can use these val-
ues, in conjunction with the bivariate and univariate models fitted to the data for
t = 1, . . . , 250, to compute one-step predictors of Xt2, t = 251, . . . , 290. The results
are as follows:

Predictor Average Squared Error
μ̂ = 0.0309 0.4706

AR(1) 0.4591
VAR(1) 0.3962

It is clear from these results that the sample variance of the series {Xt2, t = 251, . . . ,

290} is rather less than that of the series {Xt2, t = 1, . . . , 250}, and consequently,
the average squared errors of all three predictors are substantially less than expected
from the models fitted to the latter series. Both the AR(1) and VAR(1) models show
an improvement in one-step average squared error over the sample mean μ̂, but the
improvement shown by the bivariate model is much more pronounced.

�
The calculation of predictors and their error covariance matrices for multivari-

ate ARIMA and SARIMA processes is analogous to the corresponding univariate
calculation, so we shall simply state the pertinent results. Suppose that {Yt} is
a nonstationary process satisfying D(B)Yt = Ut where D(z) = 1 − d1z− · · · − drzr is
a polynomial with D(1) = 0 and {Ut} is a causal invertible ARMA process with mean
μ. Then Xt = Ut − μ satisfies

Φ(B)Xt = Θ(B)Zt, {Zt} ∼ WN(0, �| ). (8.6.16)

Under the assumption that the random vectors Y−r+1, . . . ,Y0 are uncorrelated with
the sequence {Zt}, the best linear predictors P̃nYj of Yj, j > n > 0, based on 1 and
the components of Yj,−r + 1,≤ j ≤ n, are found as follows. Compute the observed
values of Ut = D(B)Yt, t = 1, . . . , n, and use the ARMA model for Xt = Ut − μ to
compute predictors PnUn+h. Then use the recursions

P̃nYn+h = PnUn+h +
r∑

j=1

djP̃nYn+h−j (8.6.17)
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to compute successively P̃nYn+1, P̃nYn+2, P̃nYn+3, etc. The error covariance matrices
are approximately (for large n)

E
[
(Yn+h − P̃nYn+h)(Yn+h − P̃nYn+h)

′
]

=
h−1∑
j=0

Ψ ∗
j �|Ψ ∗

j
′, (8.6.18)

where Ψ ∗
j is the coefficient of z j in the power series expansion

∞∑
j=0

Ψ ∗
j z

j = D(z)−1Φ−1(z)Θ(z), |z| < 1.

The matrices Ψ ∗
j are most readily found from the recursions (8.4.8) after replacing

Φj, j = 1, . . . , p, by Φ∗
j , j = 1, . . . , p + r, where Φ∗

j is the coefficient of z j in
D(z)Φ(z).

Remark 6. In the special case where Θ(z) = I (i.e., in the purely autoregressive
case) the expression (8.6.18) for the h-step error covariance matrix is exact for all
n ≥ p (i.e., if there are at least p + r observed vectors). The program ITSM allows
differencing transformations and subtraction of the mean before fitting a multivariate
autoregression. Predicted values for the original series and the standard deviations of
the prediction errors can be determined using the multivariate option Forecast-
ing>AR Model. �

Remark 7. In the multivariate case, simple differencing of the type discussed in this
section where the same operator D(B) is applied to all components of the random
vectors is rather restrictive. It is useful to consider more general linear transformations
of the data for the purpose of generating a stationary series. Such considerations lead
to the class of cointegrated models discussed briefly in Section 8.7 below. �

Example 8.6.4 Sales with a leading indicator

Assume that the model fitted to the bivariate series {Yt, t = 0, . . . , 149} in Exam-
ple 8.6.2 is correct, i.e., that

Φ(B)Xt = Zt, {Zt} ∼ WN
(
0, �̂|

)
,

where

Xt = (1 − B)Yt − (0.0228, 0.420)′, t = 1, . . . , 149,

Φ(B) = I − Φ̂1B − · · · − Φ̂5B5, and Φ̂1, . . . , Φ̂5, �̂| are the matrices found
in Example 8.6.2. Then the one- and two-step predictors ofX150 andX151 are obtained
from (8.6.11) as

P149X150 = Φ̂1X149 + · · · + Φ̂5X145 =
[

0.163
−0.217

]

and

P149X151 = Φ̂1P149X150 + Φ̂2X149 + · · · + Φ̂5X146 =
[−0.027

0.816

]

with error covariance matrices, from (8.6.15),

�| =
[

0.076 −0.003
−0.003 0.095

]
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and

�| + Φ̂1�| Φ̂ ′
1 =

[
0.096 −0.002

−0.002 0.095

]
,

respectively.
Similarly, the one- and two-step predictors of Y150 and Y151 are obtained from

(8.6.17) as

P̃149Y150 =
[

0.0228
0.420

]
+ P149X150 + Y149 =

[
13.59
262.90

]

and

P̃149Y151 =
[

0.0228
0.420

]
+ P149X151 + P̃149Y150 =

[
13.59
264.14

]

with error covariance matrices, from (8.6.18),

�| =
[

0.076 −0.003
−0.003 0.095

]

and

�| +
(
I + Φ̂1

)
�|

(
I + Φ̂1

)′ =
[

0.094 −0.003
−0.003 0.181

]
,

respectively. The predicted values and the standard deviations of the predictors can
easily be verified with the aid of the program ITSM. It is also of interest to compare the
results with those obtained by fitting a transfer function model to the data as described
in Section 11.1 below.

�

8.7 Cointegration

We have seen that nonstationary univariate time series can frequently be made
stationary by applying the differencing operator ∇ = 1 − B repeatedly. If

{∇dXt

}
is

stationary for some positive integer d but
{∇d−1Xt

}
is nonstationary, we say that {Xt}

is integrated of order d, or more concisely, {Xt} ∼ I(d). Many macroeconomic
time series are found to be integrated of order 1.

If {Xt} is a k-variate time series, we define
{∇dXt

}
to be the series whose jth

component is obtained by applying the operator (1−B)d to the jth component of {Xt},
j = 1, . . . , k. The idea of a cointegrated multivariate time series was introduced by
Granger (1981) and developed by Engle and Granger (1987). Here we use the slightly
different definition of Lütkepohl (1993).We say that the k-dimensional time series {Xt}
is integrated of order d (or {Xt} ∼ I(d)) if d is a positive integer,

{∇dXt

}
is stationary,

and
{∇d−1Xt

}
is nonstationary. The I(d) process {Xt} is said to be cointegrated with

cointegration vector α if α is a k × 1 vector such that {α′Xt} is of order less than d.

Example 8.7.1 A simple example is provided by the bivariate process whose first component is the
random walk

Xt =
t∑

j=1

Zj, t = 1, 2, . . . , {Zt} ∼ IID
(
0, σ 2

)
,
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and whose second component consists of noisy observations of the same randomwalk,

Yt = Xt + Wt, t = 1, 2, . . . , {Wt} ∼ IID
(
0, τ 2

)
,

where {Wt} is independent of {Zt}. Then {(Xt,Yt)′} is integrated of order 1 and
cointegrated with cointegration vector α = (1,−1)′.

The notion of cointegration captures the idea of univariate nonstationary time
series “moving together.” Thus, even though {Xt} and {Yt} in Example 8.7.1 are both
nonstationary, they are linked in the sense that they differ only by the stationary
sequence {Wt}. Series that behave in a cointegrated manner are often encountered in
economics. Engle and Granger (1991) give as an illustrative example the prices of
tomatoes Ut and Vt in Northern and Southern California. These are linked by the fact
that if one were to increase sufficiently relative to the other, the profitability of buying
in one market and selling for a profit in the other would tend to push the prices (Ut,Vt)

′
toward the straight line v = u in R

2. This line is said to be an attractor for (Ut,Vt)
′,

since although Ut and Vt may both vary in a nonstationary manner as t increases, the
points (Ut,Vt)

′ will exhibit relatively small random deviations from the line v = u.
�

Example 8.7.2 If we apply the operator ∇ = 1 − B to the bivariate process defined in Example 8.7.1
in order to render it stationary, we obtain the series (Ut,Vt)

′, where

Ut = Zt

and

Vt = Zt + Wt − Wt−1.

The series {(Ut,Vt)
′} is clearly a stationary multivariate MA(1) process[

Ut

Vt

]
=

[
1 0
0 1

] [
Zt

Zt + Wt

]
−

[
0 0

−1 1

] [
Zt−1

Zt−1 + Wt−1

]
.

However, the process {(Ut,Vt)
′} cannot be represented as an AR(∞) process, since

the matrix
[1 0

0 1

] − z
[ 0 0
−1 1

]
has zero determinant when z = 1, thus violating condition

(8.4.10). Care is therefore needed in the estimation of parameters for such models (and
the closely related error-correction models). We shall not go into the details here but
refer the reader to Engle and Granger (1987) and Lütkepohl (1993).

�

Problems

8.1 Let {Yt} be a stationary process and define the bivariate process Xt1 = Yt, Xt2 =
Yt−d, where d �= 0. Show that {(Xt1,Xt2)

′} is stationary and express its cross-
correlation function in terms of the autocorrelation function of {Yt}. If ρY(h) → 0
as h → ∞, show that there exists a lag k for which ρ12(k) > ρ12(0).

8.2 Show that the covariancematrix function of the multivariate linear process defined
by (8.2.12) is as specified in (8.2.13).

8.3 Let {Xt} be the bivariate time series whose components are the MA(1) processes
defined by

Xt1 = Zt,1 + 0.8Zt−1,1, {Zt1} ∼ IID
(
0, σ 2

1

)
,
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and

Xt2 = Zt,2 − 0.6Zt−1,2, {Zt2} ∼ IID
(
0, σ 2

2

)
,

where the two sequences {Zt1} and {Zt2} are independent.
a. Find a large-sample approximation to the variance of n1/2ρ̂12(h).
b. Find a large-sample approximation to the covariance of n1/2ρ̂12(h) and

n1/2ρ̂12(k) for h �= k.

8.4 Use the characterization (8.5.3) of the multivariate best linear predictor of Y in
terms of {X1, . . .Xn} to establish the orthogonality of the one-step prediction
errors Xj − X̂j and Xk − X̂k, j �= k, as asserted in (8.6.1).

8.5 Determine the covariance matrix function of the ARMA(1,1) process satisfying

Xt − ΦXt−1 = Zt + ΘZt−1, {Zt} ∼ WN(0, I2),

where I2 is the 2 × 2 identity matrix and Φ = Θ ′ = [0.5 0.5
0 0.5

]
.

8.6 a. Let {Xt} be a causal AR( p) process satisfying the recursions

Xt = Φ1Xt−1 + · · · + ΦpXt−p + Zt, {Zt} ∼ WN(0, �| ).
For n ≥ p write down recursions for the predictors PnXn+h, h ≥ 0, and
find explicit expressions for the error covariance matrices in terms of the AR
coefficients and �| when h = 1, 2, and 3.

b. Suppose now that {Yt} is the multivariate ARIMA( p, 1, 0) process satisfying
∇Yt = Xt, where {Xt} is the AR process in (a). Assuming that E(Y0X′

t) = 0,
for t ≥ 1, show (using (8.6.17) with r = 1 and d = 1) that

P̃n(Yn+h) = Yn +
h∑

j=1

PnXn+j,

and derive the error covariance matrices when h = 1, 2, and 3. Compare these
results with those obtained in Example 8.6.4.

8.7 Use the program ITSM to find the minimum AICC AR model of order less
than or equal to 20 for the bivariate series {(Xt1,Xt2)

′, t = 1, . . . , 200} with
components filed as APPJK2.TSM. Use the fitted model to predict (Xt1,Xt2)

′,
t = 201, 202, 203 and estimate the error covariance matrices of the predictors
(assuming that the fitted model is appropriate for the data).

8.8 Let {Xt1, t = 1, . . . , 63} and {Xt2, t = 1, . . . , 63} denote the differenced series
{∇ ln Yt1} and {∇ lnYt2}, where {Yt1} and {Yt2} are the annual mink and muskrat
trappings filed as APPH.TSM and APPI.TSM, respectively).
a. Use ITSM to construct and save the series {Xt1} and {Xt2} as univariate

data files X1.TSM and X2.TSM, respectively. (After making the required
transformations press the red EXP button and save each transformed series to
a file with the appropriate name.) To enter X1 and X2 as a bivariate series in
ITSM, open X1 as a multivariate series with Number of columns equal
to 1. Then open X2 as a univariate series. Click the project editor button (at
the top left of the ITSM window), click on the plus signs next to the projects
X1.TSM and X2.TSM, then click on the series that appears just below X2.TSM
and drag it to the first line of the project X1.TSM. It will then be added as a
second component, making X1.TSM a bivariate project consisting of the two
component series X1 and X2. Click OK to close the project editor and close
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the ITSM window labeled X2.TSM. You will then see the graphs of X1 and
X2. Press the second yellow button to see the correlation functions of {Xt1} and
{Xt2}. For more information on the project editor in ITSM consult the Project
Editor section of the PDF file ITSM_HELP.

b. Conduct a test for independence of the two series {Xt1} and {Xt1}.
8.9 Use ITSM to open the data file STOCK7.TSM, which contains the daily returns

on seven different stock market indices from April 27th, 1998, through April
9th, 1999. (Consult the Data Sets section of the PDF file ITSM_HELP for more
information.) Fit a multivariate autoregression to the trivariate series consisting
of the returns on the Dow Jones Industrials, All Ordinaries, and Nikkei indices.
Check the model for goodness of fit and interpret the results.
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