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In this chapter we discuss some of the time series models which have been found useful
in the analysis of financial data. These include both discrete-time and continuous-
time models, the latter being used widely, following the celebrated work of Black,
Merton and Scholes, for the pricing of stock options. The closing price on trading
day t, say Pt, of a particular stock or stock-price index, typically appears to be non-
stationary while the log asset price, Xt := log(Pt), has observed sample-paths like
those of a random walk with stationary uncorrelated increments, i.e., the differenced
log asset price, Zt := Xt − Xt−1, known as the log return (or simply return) for
day t, has sample-paths resembling those of white noise. Although the sequence Zt
appears to be white noise, there is strong evidence to suggest that it is not independent
white noise. Much of the analysis of financial time series is devoted to representing
and exploiting this dependence, which is not visible in the sample autocorrelation
function of {Zt}. The continuous time analogue of a random walk with independent
and identically distributed increments is known as a Lévy process, the most familiar
examples of which are the Poisson process and Brownian motion. Lévy processes
play a key role in the continuous-time modeling of financial data, both as models
for the log asset price itself and as building blocks for more complex models. We
give a brief introduction to these processes and some of the continuous-time models
constructed from them. Finally we consider the pricing of European stock options
using the geometric Brownian motion model for stock prices, a model which, in spite
of its limitations, has been found useful in practice.
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196 Chapter 7 Time Series Models for Financial Data

7.1 Historical Overview

For more than 30 years now, discrete-time models (including stochastic volatility,
ARCH, GARCH and their many generalizations) have been developed to reflect the
so-called stylized features of financial time series. These properties, which include tail
heaviness, asymmetry, volatility clustering and serial dependence without correlation,
cannot be captured with traditional linear time series models such as the ARMA
models considered earlier in this book. If Pt denotes the price of a stock or other
financial asset at time t, t ∈ Z, then the series of log returns, {Zt := logPt − logPt−1},
is typically modeled as a stationary time series. An ARMA model for the series {Zt}
would have the property that the conditional variance ht of Zt given {Zs, s < t} is
independent of t and of {Zs, s < t}. However even a cursory inspection of most
empirical log return series (see e.g., Figure 7-4) strongly suggests that this is not
the case in practice. The fundamental idea of the ARCH (autoregressive conditional
heteroscedasticity) model (Engle 1982) is to incorporate the sequence {ht} into the
model by postulating that

Zt = √htet, where {et} ∼ IID N(0, 1)

and ht (known as the volatility) is related to the past values of Z2
t via a relation of the

form,

ht = α0 +
p∑

i=1

αiZ
2
t−i,

for some positive integer p, where α0 > 0 and αi ≥ 0, i = 1, . . . , p. The GARCH
(generalized ARCH) model of Bollerslev (1986) postulates a more general relation,

ht = α0 +
p∑

i=1

αiZ
2
t−i +

q∑

i=1

βiht−i,

with α0 > 0, αi ≥ 0, i = 1, . . . , p, and βi ≥ 0, i = 1, . . . , q. These models have
been studied intensively since their introduction and a variety of parameter estimation
techniques have been developed. They will be discussed in Section 7.2 and some of
their extensions in Section 7.3.

An alternative approach to modeling the changing variability of log returns, due
to Taylor (1982), is to suppose that Zt = √

htet, where {et} ∼ IID(0, 1) and the
volatility sequence {ht} is independent of {et}. (Taylor originally allowed {et} to be
an autoregression, but it is now customary to use the more restrictive definition just
given.) A critical difference from the ARCH and GARCH models is the fact that the
conditional distribution of ht given {hs, s < t} is independent of {es, s < t}. A widely
used special case of this model is the so-called log-normal stochastic volatility (SV)
model in which {et} ∼ IID N(0, 1), ln ht = γ0 + γ1 ln ht−1 + ηt, {ηt} ∼ IID N(0, σ 2)

and {ηt} and {et} are independent. We shall discuss this model in Section 7.4.
Continuous-time models for financial time series have a long history, going back

at least to Bachelier (1900), who used Brownian motion to represent the prices
{P(t), t ≥ 0} of a stock in the Paris stock exchange. This model had the unfortunate
feature of permitting negative stock prices, a shortcoming which was eliminated in
the geometric Brownian motion model of Samuelson (1965), according to which P(t)
satisfies an Itô stochastic differential equation of the form,

dP(t) = μP(t) dt + σP(t) dB(t),



7.2 GARCH Models 197

where μ ∈ R, σ > 0 and B is standard Brownian motion. For any fixed positive value
of P(0) the solution (see Section 7.5.2 and Appendix D.4) is

P(t) = P(0) exp
[
(μ − σ 2/2)t + σB(t)

]
, t ≥ 0,

so that the log asset price, X(t) := logP(t), is Brownian motion and the log return over
the time-interval (t, t + Δ) is

X(t + Δ) − X(t) = (μ − 1

2
σ 2)Δ + σ(B(t + Δ) − B(t)).

For disjoint intervals of length Δ the log returns are therefore independent normally
distributed random variables withmean (μ−σ 2/2)Δ and variance σ 2Δ. The normality
is a conclusion which can easily be checked against observed log returns, and it is
found that although the observed values are approximately normally distributed for
intervalsΔ greater than 1 day, the deviations from normality are substantial for shorter
time intervals. This is one of the reasons for developing the more realistic models
described in Section 7.5. The parameter σ 2 is called the volatility parameter of the
geometric Brownianmotionmodel and plays a key role in the celebrated option pricing
results (see Section 7.6) developed for this model by Black, Scholes and Merton,
earning the Nobel Economics Prize for Merton and Scholes in 1997 (unfortunately
Black died before the award was made). These results inspired an explosion of interest,
not only in the pricing of more complicated financial derivatives, but also in the
development of new continuous-time models which, like the discrete-time ARCH,
GARCH and stochastic volatility models, better reflect the observed properties of
financial time series.

7.2 GARCH Models

For modeling changing volatility as discussed above, Engle (1982) introduced the
ARCH(p) process {Zt} as a stationary solution of the equations

Zt = √htet, {et} ∼ IID N(0, 1), (7.2.1)

where ht is the (positive) function of {Zs, s < t}, defined by

ht = α0 +
p∑

i=1

αiZ
2
t−i, (7.2.2)

with α0 > 0 and αj ≥ 0, j = 1, . . . , p. The name ARCH signifies autoregressive
conditional heteroscedasticity and ht is the conditional variance of Zt given {Zs, s < t}.

The simplest such process is the ARCH(1) process. In this case the recursions
(7.2.1) and (7.2.2) give

Z2
t = α0e

2
t + α1Z

2
t−1e

2
t

= α0e
2
t + α1α0e

2
t e

2
t−1 + α2

1Z
2
t−2e

2
t e

2
t−1

= · · ·

= α0

n∑

j=0

α
j
1e

2
t e

2
t−1 · · · e2

t−j + αn+1
1 Z2

t−n−1e
2
t e

2
t−1 · · · e2

t−n.
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If α1 < 1 and {Zt} is stationary and causal (i.e., Zt is a function of {es, s ≤ t}), then
the last term has expectation αn+1EZ2

t and converges to zero as n → ∞. The first term
converges as n → ∞ since it is non-decreasing in n and its expected value is bounded
above by α0/(1 − α1). Hence

Z2
t = α0

∞∑

j=0

α
j
1e

2
t e

2
t−1 · · · e2

t−j (7.2.3)

and

EZ2
t = α0/(1 − α1). (7.2.4)

Since

Zt = et

√√√√√α1

⎛

⎝1 +
∞∑

j=1

α
j
1e

2
t−1 · · · e2

t−j

⎞

⎠, (7.2.5)

it is clear that {Zt} is strictly stationary and hence, since EZ2
t < ∞, also stationary

in the weak sense. We have now established the following result.

Solution of the ARCH(1) Equations:
If α1 < 1, the unique causal stationary solution of the ARCH(1) equations is given
by (7.2.5). It has the properties

E(Zt) = E(E(Zt|es, s < t)) = 0,

Var(Zt) = α0/(1 − α1),

and

E(Zt+hZt) = E(E(Zt+hZt|es, s < t + h)) = 0 for h > 0.

Thus theARCH(1) process withα1 < 1 is strictly stationarywhite noise. However,
it is not an iid sequence, since from (7.2.1) and (7.2.2),

E(Z2
t |Zt−1) = (α0 + α1Z

2
t−1)E(e2

t |Zt−1) = α0 + α1Z
2
t−1.

This also shows that {Zt} is not Gaussian, since strictly stationary Gaussian white noise
is necessarily iid. From (7.2.5) it is clear that the distribution of Zt is symmetric, i.e.,
that Zt and −Zt have the same distribution. From (7.2.3) it is easy to calculate E

(
Z4
t

)

(Problem 7.1) and hence to show that E
(
Z4
t

)
is finite if and only if 3α2

1 < 1. More
generally (see Engle 1982), it can be shown that for every α1 in the interval (0, 1),
E
(
Z2k
) = ∞ for some positive integer k. This indicates the “heavy-tailed” nature of

the marginal distribution of Zt. If EZ4
t < ∞, the squared process Yt = Z2

t has the same
ACF as the AR(1) process Wt = α1Wt−1 + et, a result that extends also to ARCH(p)
processes (see Problem 7.3).

The ARCH(p) process is conditionally Gaussian, in the sense that for given values
of {Zs, s = t − 1, t − 2, . . . , t − p}, Zt is Gaussian with known distribution. This
makes it easy to write down the likelihood of Zp+1, . . . ,Zn conditional on {Z1, . . . ,Zp}
and hence, by numerical maximization, to compute conditional maximum likelihood
estimates of the parameters. For example, the conditional likelihood of observations
{z2, . . . , zn} of the ARCH(1) process given Z1 = z1 is
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Figure 7-1
A realization of the process

Zt = et
√
1 + 0.5Z2t−1
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L =
n∏

t=2

1
√

2π
(
α0 + α1z 2

t−1

) exp

{

− z 2
t

2
(
α0 + α1z 2

t−1

)

}

.

Example 7.2.1 An ARCH(1) Series

Figure 7-1 shows a realization of the ARCH(1) process with α0 = 1 and α1 = 0.5. The
graph of the realization and the sample autocorrelation function shown in Figure 7-2
suggest that the process is white noise. This conclusion is correct from a second-order
point of view.

However, the fact that the series is not a realization of iid noise is very strongly
indicated by Figure 7-3, which shows the sample autocorrelation function of the series{
Z2
t

}
. (The sample ACF of {|Zt|} and that of {Z2

t } can be plotted in ITSM by selecting
Statistics>Residual Analysis>ACF abs values/Squares.)
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Figure 7-3
The sample autocorrelation
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It is instructive to apply the Ljung–Box and McLeod–Li portmanteau tests for
white noise to this series (see Section 1.6). To do this using ITSM, open the file
ARCH.TSM, and then select Statistics>Residual Analysis>Tests of
Randomness. We find (with h = 20) that the Ljung–Box test (and all the others
except for the McLeod–Li test) are passed comfortably at level 0.05. However,
the McLeod–Li test gives a p-value of 0 to five decimal places, clearly reject-
ing the hypothesis that the series is iid.

�
The GARCH(p, q) process (see Bollerslev 1986) is a generalization of the

ARCH(p) process in which the variance equation (7.2.2) is replaced by

ht = α0 +
p∑

i=1

αiZ
2
t−i +

q∑

j=1

βjht−j, (7.2.6)

with α0 > 0 and αj, βj ≥ 0, j = 1, 2, . . . .

In the analysis of empirical financial data such as percentage daily stock returns
(defined as 100 ln(Pt/Pt−1), where Pt is the closing price on trading day t), it is usually
found that better fits to the data are obtained by relaxing the Gaussian assumption in
(7.2.1) and supposing instead that the distribution of Zt given {Zs, s < t} has a heavier-
tailed zero-mean distribution such as Student’s t-distribution. To incorporate such
distributions we can define a general GARCH(p, q) process as a stationary process
{Zt} satisfying (7.2.6) and the generalized form of (7.2.1),

Zt = √htet, {et} ∼ IID(0, 1). (7.2.7)

For modeling purposes it is usually assumed in addition that either

et ∼ N(0, 1), (7.2.8)

(as in (7.2.1)) or that
√

ν

ν − 2
et ∼ tν, ν > 2, (7.2.9)
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Figure 7-4
The daily percentage returns
of the Dow Jones Industrial
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where tν denotes Student’s t-distribution with ν degrees of freedom. (The scale factor
on the left of (7.2.9) is introduced to make the variance of et equal to 1.) Other
distributions for et can also be used.

One of the striking features of stock return data that is reflected byGARCHmodels
is the “persistence of volatility,” or the phenomenon that large (small) fluctuations in
the data tend to be followed by fluctuations of comparablemagnitude. GARCHmodels
reflect this by incorporating correlation in the sequence {ht} of conditional variances.

Example 7.2.2 Fitting GARCH Models to Stock Data

The top graph in Figure 7-4 shows the percentage daily returns of the Dow Jones
Industrial Index for the period July 1st, 1997, through April 9th, 1999, contained
in the file E1032.TSM. The graph suggests that there are sustained periods of both
high volatility (in October, 1997, and August, 1998) and of low volatility. The sample
autocorrelation function of this series, like that in Example 7.2.1, has very small values,
however the sample autocorrelations of the absolute values and squares of the data (like
those in Example 7.2.1) are significantly different from zero, indicating dependence in
spite of the lack of autocorrelation. (The sample autocorrelations of the absolute values
and squares of the residuals (or of the data if no transformations have been made and
no model fitted) can be seen by clicking on the third green button at the top of the
ITSM window.) These properties suggest that an ARCH or GARCH model might be
appropriate for this series.

�
The model

Yt = a + Zt, (7.2.10)

where {Zt} is the GARCH(p, q) process defined by (7.2.6)–(7.2.8), can be fitted using
ITSM as follows. Open the project E1032.TSM and click on the red button labeled
GAR at the top of the ITSM screen. In the resulting dialog box enter the desired values
of p and q, e.g., 1 and 1 if you wish to fit a GARCH(1,1) model. You may also enter
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initial values for the coefficients α0, . . . , αp, and β1, . . . , βq, or alternatively use the
default values specified by the program. Make sure that Use normal noise is
selected, click on OK and then click on the red MLE button. You will be advised to
subtract the sample mean (unless you wish to assume that the parameter a in (7.2.10)
is zero). If you subtract the sample mean it will be used as the estimate of a in
the model (7.2.10). The GARCH Maximum Likelihood Estimation box will
then open. When you click on OK the optimization will proceed. Denoting by {Z̃t}
the (possibly) mean-corrected observations, the GARCH coefficients are estimated
by numerically maximizing the likelihood of Z̃p+1, . . . , Z̃n conditional on the known
values Z̃1, . . . , Z̃p, and with assumed values 0 for each Z̃t, t ≤ 0, and σ̂ 2 for each ht,
t ≤ 0, where σ̂ 2 is the sample variance of {Z̃1, . . . , Z̃n}. In other words the program
maximizes

L(α0, . . . , αp, β1, . . . , βq) =
n∏

t=p+1

1

σt
φ

(
Z̃t
σt

)
, (7.2.11)

with respect to the coefficients α0, . . . , αp and β1, . . . , βq, where φ denotes the stan-
dard normal density, and the standard deviations σt = √

ht, t ≥ 1, are computed
recursively from (7.2.6) with Zt replaced by Z̃t, and with Z̃t = 0 and ht = σ̂ 2 for
t ≤ 0. To find the minimum of −2ln(L) it is advisable to repeat the optimization by
clicking on the red MLE button and then on OK several times until the result stabilizes.
It is also useful to try other initial values for α0, . . . , αp, and β1, . . . , βq, to minimize
the chance of finding only a local minimum of −2ln(L). Note that the optimization
is constrained so that the estimated parameters are all non-negative with

α̂1 + · · · + α̂p + β̂1 + · · · + β̂q < 1, (7.2.12)

and α̂0 > 0. Condition (7.2.12) is necessary and sufficient for the corresponding
GARCH equations to have a causal weakly stationary solution.

Comparison of models with different orders p and q can be made with the aid of
the AICC, which is defined in terms of the conditional likelihood L as

AICC := −2
n

n − p
lnL + 2(p + q + 2)n/(n − p − q − 3). (7.2.13)

The factor n/(n − p) multiplying the first term on the right has been introduced to
correct for the fact that the number of factors in (7.2.11) is only n−p. Notice also that
the GARCH(p, q) model has p + q + 1 coefficients.

The estimated mean is â = 0.0608 and the minimum-AICC GARCHmodel (with
Gaussian noise) for the residuals, Z̃t = Yt − â, is found to be the GARCH(1,1) with
estimated parameter values

α̂0 = 0.1300, α̂1 = 0.1266, β̂1 = 0.7922,

and an AICC value [defined by (7.2.13)] of 1469.02. The bottom graph in Figure 7-4
shows the corresponding estimated conditional standard deviations, σ̂t, which clearly
reflect the changing volatility of the series {Yt}. This graph is obtained from ITSM
by clicking on the red SV (stochastic volatility) button. Under the model defined by
(7.2.6)–(7.2.8) and (7.2.10), the GARCH residuals,

{
Z̃t/σ̂t

}
, should be approximately

IID N(0,1). A check on the independence is provided by the sample ACF of the
absolute values and squares of the residuals, which is obtained by clicking on
the fifth red button at the top of the ITSM window. These are found to be not
significantly different from zero. To check for normality, select Garch>Garch
residuals>QQ-Plot(normal). If the model is appropriate the resulting graph
should approximate a straight line through the origin with slope 1. It is found that the
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deviations from the expected line are quite large for large values of
∣∣Z̃t
∣∣, suggesting the

need for a heavier-tailed model, e.g., a model with conditional t-distribution as defined
by (7.2.9).

To fit the GARCH model defined by (7.2.6), (7.2.7), (7.2.9) and (7.2.10) (i.e.,
with conditional t-distribution), we proceed in the same way, but with the conditional
likelihood replaced by

L(α0, . . . , αp, β1, . . . , βq, ν) =
n∏

t=p+1

√
ν

σt

√
ν − 2

tν

(
Z̃t

√
ν

σt

√
ν − 2

)

.

(7.2.14)

Maximization is now carried out with respect to the coefficients, α0,. . . ,αp, β1,. . . ,βq

and the degrees of freedom ν of the t-density, tν . The optimization can be performed
using ITSM in exactly the sameway as described for theGARCHmodel withGaussian
noise, except that the option Use t-distribution for noise should be
checked in each of the dialog boxes where it appears. In order to locate the minimum
of −2ln(L) it is often useful to initialize the coefficients of the model by first fitting
a GARCH model with Gaussian noise and then carrying out the optimization using
t-distributed noise.

The estimated mean is â = 0.0608 as before and the minimum-AICC GARCH
model for the residuals, Z̃t = Yt − â, is the GARCH(1,1) with estimated parameter
values

α̂0 = 0.1324, α̂1 = 0.0672, β̂1 = 0.8400, ν̂ = 5.714,

and an AICC value (as in (7.2.13) with q replaced by q + 1) of 1437.89. Thus from
the point of view of AICC, the model with conditional t-distribution is substantially
better than the conditional Gaussian model. The sample ACF of the absolute values
and squares of the GARCH residuals are much the same as those found using Gaussian
noise, but the qq plot (obtained by clicking on the red QQ button and based on the t-
distribution with 5.714 degrees of freedom) is closer to the expected line than was the
case for the model with Gaussian noise.

There are many important and interesting theoretical questions associated with
the existence and properties of stationary solutions of the GARCH equations and their
moments and of the sampling properties of these processes. As indicated above, in
maximizing the conditional likelihood, ITSM constrains the GARCH coefficients to
be non-negative and to satisfy the condition (7.2.12) with α̂0 > 0. These conditions
are sufficient for the process defined by the GARCH equations to be stationary. It is
frequently found in practice that the estimated values of α1, . . . , αp and β1, . . . , βq

have a sum which is very close to 1. A GARCH(p,q) model with α1 + · · · + αp +
β1 + · · · βq = 1 is called I-GARCH (or integrated GARCH). Many generalizations
of GARCH processes (ARCH-M, E-GARCH, I-GARCH, T-GARCH, FI-GARCH,
etc., as well as ARMA models driven by GARCH noise, and regression models with
GARCH errors) can now be found in the econometrics literature see Andersen et al.
(2009).

ITSM can be used to fit ARMA and regression models with GARCH noise by
using the procedures described in Example 7.2.2 to fit a GARCHmodel to the residuals
{Z̃t} from the ARMA (or regression) fit.

Example 7.2.3 Fitting ARMA Models Driven by GARCH Noise

If we open the data file SUNSPOTS.TSM, subtract the mean and use the option
Model>Estimation>Autofit with the default ranges for p and q, we obtain an
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ARMA(3,4) model for the mean-corrected data. Clicking on the second green button
at the top of the ITSM window, we see that the sample ACF of the ARMA residuals
is compatible with iid noise. However the sample autocorrelation functions of the
absolute values and squares of the residuals (obtained by clicking on the third green
button) indicate that they are not independent. To fit a Gaussian GARCH(1,1) model
to the ARMA residuals click on the red GAR button, enter the value 1 for both p and
q and click OK. Then click on the red MLE button, click OK in the dialog box, and
the GARCH ML Estimates window will open, showing the estimated parameter
values. Repeat the steps in the previous sentence two more times and the window will
display the following ARMA(3,4) model for the mean-corrected sunspot data and the
fitted GARCH model for the ARMA noise process {Zt},

Xt = 2.463Xt−1 − 2.248Xt−2 + 0.757Xt−3 + Zt − 0.948Zt−1

− 0.296Zt−2 + 0.313Zt−3 + 0.136Zt−4,

where

Zt = √htet

and

ht = 31.152 + 0.223Z2
t−1 + 0.596ht−1.

The AICC value for the GARCH fit (805.12) should be used for comparing alternative
GARCH models for the ARMA residuals. The AICC value adjusted for the ARMA
fit (821.70) should be used for comparison with alternative ARMA models (with
or without GARCH noise). Standard errors of the estimated coefficients are also
displayed.

Simulation using the fitted ARMA(3,4) model with GARCH (1,1) noise can
be carried out by selecting Garch>Simulate Garch process. If you retain
the settings in the ARMA Simulation dialog box and click OK you will see a simulated
realization of the model for the original data in SUNSPOTS.TSM.

�Some useful references for extensions and further properties of GARCH models are
Weiss (1986), Engle (1995), Shephard (1996), Gourieroux (1997), Lindner (2009) and
Francq and Zakoian (2010).

7.3 Modified GARCH Processes

The following are so-called “stylized features” associated with observed time series
of financial returns:

(i) the marginal distributions have heavy tails,
(ii) there is persistence of volatility,
(iii) the returns exhibit aggregational Gaussianity,
(iv) there is asymmetry with respect to negative and positive disturbances and
(v) the volatility frequently exhibits long-range dependence.

The properties (i), (ii) and (iii) are well accounted for by the GARCH models of
Section 7.2. Property (iii) means that the sum, Sn = ∑n

t=1 Zt, of the daily returns,



7.3 Modified GARCH Processes 205

Zt = lnPt−lnPt−1, is approximately normally distributed if n is large. For the GARCH
model with EZ2

t = σ 2 < ∞ it follows from the martingale central limit theorem (see
e.g. Billingsley (1995)) that n−1/2(lnPn − lnP0) = n−1/2∑n

t=1 Zt is asymptotically
N(0, σ 2), in accordance with (iii).

To account for properties (iv) and (v) the EGARCH and FIGARCH models were
devised.

7.3.1 EGARCH Models

To allow negative and positive values of et in the definition of the GARCH process
to have different impacts on the subsequent volatilities, hs, (s > t), Nelson (1991)
introduced EGARCH models, illustrated in the following simple example.

Example 7.3.1 EGARCH(1,1)

Consider the process {Zt} defined by the equations,
Zt = √htet, {et} ∼ IID(0, 1), (7.3.1)

where {�t := ln ht} is the weakly and strictly stationary solution of

�t = c + α1g(et−1) + γ1�t−1, (7.3.2)

c ∈ R, α1 ∈ R, |γ1| < 1,

g(et) = et + λ(|et| − E|et|), (7.3.3)

and et has a distribution symmetric about zero, i.e., et =d −et.
The process is defined in terms of �t to ensure that ht(= e�t) > 0. Equation (7.3.3)

can be rewritten as

g(et) =
{

(1 + λ)et − λE|et| if et ≥ 0,

(1 − λ)et − λE|et| if et < 0.

showing that the function g is piecewise linear with slope (1 +λ) on (0,∞) and slope
(1 − λ) on (−∞, 0). This asymmetry in g allows �t, to respond differently to positive
and negative shocks et−1 of the same magnitude. If λ = 0 there is no asymmetry.

When fitting EGARCHmodels to stock prices it is usually found that the estimated
value of λ is negative, corresponding to large negative shocks having greater impact
on volatility than positive ones of the same magnitude.

Properties of {g(et)}: (i) {g(et)} is iid.
(ii) Eg(et) = 0.

(iii) Var(g(et)) = 1 + λ2Var(|et|).
(The symmetry of et implies that et and |et| − E|et| are uncorrelated.)

�
More generally, the EGARCH(p, q) process is obtained by replacing the equation
(7.3.2) for lt := ln ht by

�t = c + α(B)g(et) + γ (B)�t, (7.3.4)
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where

α(B) =
p∑

i=1

αiB
i, γ (B) =

q∑

i=1

γiB
i.

Clearly {�t}, {ht} and {Zt} are all strictly stationary and causal if 1 − γ (z) is non-zero
for all complex z such that |z| ≤ 1.

Nelson also proposed the use of the generalized error distribution (GED) for et,
with density

f (x) = ν exp[(−1/2)|x/ξ |ν]
ξ · 21+1/ν�(1/ν)

,

where

ξ =
{

2(−2/ν)�(1/ν)

�(3/ν)

}1/2

and ν > 0. The value of ξ ensures that Var(et) = 1 and the parameter ν determines
the tail heaviness. For ν = 2, et ∼N(0, 1). Tail heaviness increases as ν decreases.

Properties of the GED: (i) f is symmetric and 1
2 |et/ξ |ν has the gamma distribution

with parameters 1/ν and 1 (see Appendix A.1, Example (d)).

(ii) The specified value of ξ ensures that Var(et) = 1.

(iii) E|et|k = �((k+1)/ν)

�(1/ν)
·
[

�(1/ν)

�(3/ν)

]k/2
.

Inference via Conditional Maximum Likelihood
As in Section 7.2 we initialize the recursions (7.3.1) and (7.3.4) by supposing that

(i) ht = σ̂ 2, t ≤ 0.

(ii) et = 0, t ≤ 0.

Then h1, e1 (= Z1/
√
h1), h2, e2, . . . , can be computed recursively from the

observations Z1,Z2, . . ., and the recursions defining the process.
The conditional likelihood is then computed as

L =
n∏

t=1

1√
ht
f

(
Zt√
ht

)
.

We therefore need to minimize

−2 lnL =
n∑

t=1

ln ht +
n∑

t=1

∣∣∣∣
Zt

ξ
√
ht

∣∣∣∣

ν

+ 2n ln

(
2ξ

ν
· 21/ν�(1/ν)

)

with respect to

c, λ, ν, α1, . . . , αp, γ1, . . . , γq.

Since ht is automatically positive, the only constraints in this optimization are the
conditions

ν > 0
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and

1 − γ (z) 	= 0 for all complex z such that |z| ≤ 1.

7.3.2 FIGARCH and IGARCH Models

To allow for the very slow decay of the sample ACF frequently observed in long daily
squared return series, the FIGARCH (fractionally integrated GARCH) models were
developed. Before introducing them we first give a very brief account of fractionally
integrated ARMA processes. (For more details see Section 11.4 and Brockwell and
Davis (1991), Section 13.2.)

Fractionally Integrated ARMA Processes and “Long Memory”

The autocorrelation function ρ(·) of an ARMA process at lag h converges rapidly
to zero as h → ∞ in the sense that there exists r > 1 such that

rhρ(h) → 0, as h → ∞.

The fractionally integrated ARMA (or ARFIMA) process of order (p, d, q), where
p and q are non-negative integers and 0 < d < 0.5, is a stationary time series with an
autocorrelation function which for large lags decays at a much slower rate. It is defined
to be the zero-mean stationary solution {Xt} of the difference equations

(1 − B)dφ(B)Xt = θ(B)Zt, (7.3.5)

where φ(z) and θ(z) are polynomials of degrees p and q respectively, with no common
zeroes, satisfying

φ(z) 	= 0 and θ(z) 	= 0 for all complex z such that |z| ≤ 1,

{Zt} ∼ WN(0, σ 2), B is the backward shift operator, and (1 − B)r, is defined via the
power series expansion,

(1 − z)r := 1 +
∞∑

j=1

r(r − 1) . . . (r − j + 1)

j! (−z)j, |z| < 1, r ∈ R.

The zero-mean stationary process {Xt} defined by (7.3.5) has the mean-square conver-
gent MA(∞) representation,

Xt =
∞∑

j=0

ψjZt−j,

where ψj is the coefficient of zj in the power series expansion,

ψ(z) = (1 − z)−dθ(z)/φ(z), |z| < 1.

The autocorrelations ρ(j) of {Xt} at lag j and the coefficients ψj both converge to zero
at hyperbolic rates as j → ∞; specifically, there exist non-zero constants γ and δ such
that

j1−dψj → γ and j1−2dρ(j) → δ.

Thus ψj and ρ(j) converge to zero as j → ∞ at much slower rates than the
corresponding coefficients and autocorrelations of an ARMA process. Consequently
fractionally integrated ARMA processes are said to have “long memory". The spectral
density of {Xt} is given by
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f (λ) = σ 2

2π

|θ(e−iλ)|2
|φ(e−iλ)|2 |1 − e−iλ|−2d.

The exact Gaussian likelihood L of observations xn = (x1, . . . , xn)′ of a fraction-
ally integrated ARMA process is given by

−2 ln(L) = n ln(2π) + ln det �n + x′
n�

−1
n xn,

where �n = E(XnX′
n). Calculation and maximization with respect to the parameters

d, φ1, . . . , φp, θ1, . . . , θq and σ 2 is difficult. It is much easier to maximize theWhittle
approximation LW (see (11.4.10)), i.e. to minimize

−2 ln(LW) = n ln(2π) +
∑

j

ln(2π f (ωj)) +
∑

j

In(ωj)

2π f (ωj)
,

where In is the periodogram, and
∑

j denotes the sum over all nonzero Fourier
frequencies, ωj = 2π j/n ∈ (−π, π]. The program ITSM allows estimation of
parameters for ARIMA(p, d, q) models either by minimizing −2 ln(LW), or by the
slower and more computationally intensive process of minimizing −2 ln(L).

Fractionally Integrated GARCH Processes

In order to incorporate long memory into the family of GARCH models, (Baillie
et al. 1996) defined a fractionally integrated GARCH (FIGARCH) process as a causal
strictly stationary solution of the difference equations (7.3.9) and (7.3.10) specified
below.

To motivate the definition, we recall that the GARCH(p, q) process is the causal
stationary solution of the equations,

Zt = √htet, ht = α0 +
p∑

i=1

αiZ
2
t−i +

q∑

i=1

βiht−i, (7.3.6)

where α0 > 0, α1, . . . , αp ≥ 0 and β1, . . . , βq ≥ 0. It follows (Problem 7.5) that

(1 − α(B) − β(B))Z2
t = α0 + (1 − β(B))Wt, (7.3.7)

where {Wt := Z2
t −ht} is white noise, α(B) =∑p

i=1 αiBi and β(B) =∑q
i=1 βiBi. There

is a causal weakly stationary solution for {Zt} if and only if the zeroes of 1 − α(z) −
β(z) have absolute value greater than 1 and there is then exactly one such solution
(Bollerslev 1986).

In order to define the IGARCH(p, q) (integrated GARCH(p, q)) process, Engle
and Bollerslev (1986) supposed that the polynomial (1 − α(z) − β(z)) has a simple
zero at z = 1, and that the other zeroes all fall outside the closed unit disc as in (7.3.6).
Under these assumptions we can write

(1 − β(z) − α(z)) = (1 − z)φ(z),

where φ(z) is a polynomial with all of its zeroes outside the unit circle. We then say
[cf. (7.3.6)] that {Zt} is an IGARCH(p, q) process if it satisfies

φ(B)(1 − B)Z2
t = α0 + (1 − β(B))Wt, (7.3.8)

with Zt = √
htet, Wt = Z2

t − ht and {et} ∼ IID(0, 1). Bougerol and Picard (1992)
showed that if the distribution of et has unbounded support and no atom at zero then
there is a unique strictly stationary causal solution of these equations for {Zt}. The
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solution has the property that EZ2
t = ∞. In practice, for GARCH models fitted to

empirical data, it is often found that α(1)+β(1) ≈ 1, supporting the practical relevance
of the IGARCH model even though EZ2

t = ∞.

Baillie et al. (1996) defined the FIGARCH(p, d, q) process {Zt} to be a causal
strictly stationary solution of the equations,

Zt = √htet, (7.3.9)

and [cf. (7.3.8)]

φ(B)(1 − B)dZ2
t = α0 + (1 − β(B))Wt, 0 < d < 1, (7.3.10)

where Wt = Z2
t − ht, {et} ∼ IID(0, 1) and the polynomials φ(z) and 1 − β(z) are

non-zero for all complex z such that |z| ≤ 1. SubstitutingWt = Z2
t − ht in (7.3.10) we

see that (7.3.10) is equivalent to the equation,

ht = α0

1 − β(1)
+ [1 − (1 − β(B))−1φ(B)(1 − B)d

]
Z2
t , (7.3.11)

which means that the FIGARCH(p, q) process can be regarded as a special case of the
IARCH(∞) process defined by (7.3.9) and

ht = a0 +
∞∑

j=1

ajZ
2
t−j, (7.3.12)

with a0 > 0 and
∑∞

j=1 aj = 1. The questions of existence and uniqueness of causal
strictly stationary solutions of the IARCH(∞) (including FIGARCH) equations have
not yet been fully resolved. Any strictly stationary solution must have infinite variance
since if σ 2 := EZ2

t = Eht < ∞ then, since
∑∞

j=1 aj = 1, it follows from (7.3.12)
that σ 2 = a0 + σ 2, contradicting the finiteness of σ 2. Sufficient conditions for the
existence of causal strictly stationary solution of the IARCH)(∞), and in particular of
the FIGARCH equations, have been given by Douc et al. (2008).

Other models, based on changing volatility levels, have been proposed to explain
the “long-memory” effect in stock and exchange rate returns. Fractionally integrated E-
GARCH models have also been introduced (Bollerslev and Mikkelsen 1996) in order
to account for both long memory and asymmetry of the effects of positive and negative
shocks et .

7.4 Stochastic Volatility Models

The general discrete-time stochastic volatility (SV) model for the log return sequence
{Zt} defined in Section 7.1 is [cf. (7.2.1)]

Zt = √htet, t ∈ Z, (7.4.1)

where {et} ∼ IID(0, 1), {ht} is a strictly stationary sequence of non-negative random
variables, independent of {et}, and ht is known, like the corresponding quantity in the
GARCH models, as the volatility at time t. Note however that in the GARCH models,
the sequences {ht} and {et} are not independent since ht depends on es, s < t through
the defining equation (7.2.6).

The independence of {ht} and {et} in the SV model (7.4.1) allows us to model the
volatility process with any non-negative strictly stationary sequence we may wish to
choose. This contrasts with the GARCH models in which the processes {Zt} and {ht}
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are inextricably linked. Inference for the GARCH models, based on observations of
Z1, . . . ,Zn, can be carried out using the conditional likelihood, which is easily written
down, as in (7.2.14), in terms of the marginal probability density of the sequence {et}.
Inference for an SVmodel based on observations of {Zt} however is considerably more
difficult since the process is driven by two independent random sequences rather than
one and only {Zt} is observed. The unobserved sequence {ht} is said to be latent.

A general account of the probabilistic properties of SV models can be found in
Davis andMikosch (2009) and an extensive history and overview of both discrete-time
and continuous-time SV models in Shephard and Andersen (2009). In this section we
shall focus attention on an early, but still widely used, special case of the SV model
due to Taylor (1982, 1986) known as the lognormal SV model.

The lognormal SV process {Zt} is defined as,
Zt = √htet, {et} ∼ IID N(0, 1), (7.4.2)

where ht = e�t , {�t} is a (strictly and weakly) stationary solution of the equations
�t = γ0 + γ1�t−1 + ηt, {ηt} ∼ IID N(0, σ 2), (7.4.3)

|γ1| < 1 and the sequences {et} and {ηt} are independent. The sequence {�t} is clearly
a Gaussian AR(1) process with mean

μ� := E�t = γ0

1 − γ1
(7.4.4)

and variance

v� := Var(�t) = σ 2

1 − γ 2
1

. (7.4.5)

Properties of {Zt}.

(i) {Zt} is strictly stationary.
(ii) Moments:

EZr
t = E(ert )E exp(r�t/2)

=
⎧
⎨

⎩
0, if r is odd,

[∏m
i=1(2i − 1)] exp

(
mγ0

1−γ1
+ m2σ 2

2(1−γ 2
1 )

)
, if r = 2m.

(iii) Kurtosis:

EZ4
t

(EZ2
t )

2
= 3 exp

(
σ 2

1 − γ 2
1

)
≥ 3.

Kurtosis (defined by the ratio on the left) is a standard measure of tail heaviness.
For a normally distributed random variable it has the value 3, so, as measured by
kurtosis, the tails of the marginal distribution of the lognormal SV process are
heavier than those of a normally distributed random variable.

(iv) The autocovariance function of {Z2
t }:

We first observe that if t > s,

E(Z2
t Z

2
s |eu, ηu, u < t) = hshte

2
sE(e2

t |eu, ηu, u < t) = hshte
2
s ,

since hs, ht and e2
s are each functions of {eu, ηu, u < t} and e2

t is independent of{eu, ηu, u < t}. Taking expectations on both sides of the last equation and using
the independence of {ht} and {et} and the relation ht = exp(lt) gives

E(Z2
t Z

2
s ) = E exp(�t + �s).
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Hence, for h > 0,

Cov(Z2
t+h,Z

2
t ) = E exp(�t+h + �t) − E exp(�t+h)E exp(�t)

= exp[2μ� + v�(1 + γ 2
1 )] − exp[2μ� + v�].

Here we have used the facts that �t+h is normally distributed with mean and
variance which are easily computed from (7.2.17) and that for a normally
distributed random variable X with mean μ and variance v, E exp(X) = exp(μ+
v/2). From (ii) we also have

Var(Z2
t ) = EZ4

t − (EZ2
t )

2 = 3 exp(2μ� + 2vl) − exp(2μ� + vl).

Hence, for h > 0,

ρZ2
t
(h) = Cov(Z2

t+h,Z
2
t )

Var(Z2
t )

= exp(v�γ
h
1 ) − 1

3 exp(v�) − 1
∼ v�

3 exp(v�) − 1
γ h

1 , as γ1 → 0,

suggesting the approximation of the autocorrelation function of {Z2
t } by that of

an ARMA(1,1) process. (Recall from Example 3.2.1 that the autocorrelation
function of an ARMA(1,1) process has the form ρ(h) = cφh, h ≥ 1, with
ρ(0) = 1.) There is a similarity here to the autocovariance function of the squared
GARCH(1,1) process which (see Problem 7.3) has the autocovariance function
of an ARMA(1,1) process.

(v) The process {lnZ2
t }:

lnZ2
t = �t + ln e2

t . (7.4.6)

If et ∼ N(0, 1) then E ln e2
t = −1.27 and Var(ln e2

t ) = 4.93. From (7.4.6) we find
at once that Var(lnZ2

t ) = vl + 4.93 and Cov(Z2
t+h,Zt) = vlγ

|h|
1 for h 	= 0. Hence

the process {ln Z2
t } has the autocovariance function of an ARMA(1,1) process

with autocorrelation function

ρlnZ2
t
(h) = vlγ

|h|
1

vl + 4.93
, h 	= 0.

Estimation for the lognormal SV model

The parameters to be estimated in the defining equations (7.4.2) and (7.4.3) are σ 2, γ0

and γ1. They can be estimated by maximization of the Gaussian likelihood which can
be calculated, for any specified values of the parameters, as follows.

By property (v) above, the process {Yt := ln Z2
t −E lnZ2

t } satisfies the ARMA(1,1)
equations,

Yt − φYt−1 = Zt + θZt−1, {Zt} ∼ WN(0, σ 2
Z ), (7.4.7)

for some coefficients φ and θ in the interval (−1, 1) and white-noise variance σ 2
Z .

Comparing the autocorrelation function of (7.4.7) with the autocorrelation function of
{lnZ2

t } given above in Property (v), we find that
γ1 = φ (7.4.8)

and
v�

v� + 4.93
= (θ + φ)(1 + θφ)

1 + 2θφ + θ2
. (7.4.9)

To ensure that the right-hand side falls in the interval (0, 1) it is necessary and sufficient
(assuming that φ ∈ (−1.1) and θ ∈ (−1, 1)) that φ + θ > 0. The maximum
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Gaussian likelihood estimators φ̂ and θ̂ can be found using the program ITSM and
the corresponding estimators γ̂1 and v̂� on replacing φ and θ by their estimators in
(7.4.8) and (7.4.9) respectively. From (7.4.5) the corresponding estimator of σ 2 is

σ̂ 2 = (1 − γ̂1
2
)v̂�,

where γ̂1 = φ̂ and, from (7.4.4) and (7.4.6), the corresponding estimator of γ0 is

γ̂0 = (1 − γ̂1)(lnZ2
t + 1.27),

where lnZ2
t denotes the sample mean of the observations of lnZ2

t . If it turns out that
the estimators φ̂ and θ̂ satisfy φ̂ + θ̂ ≤ 0 then, from (7.4.9), v̂� ≤ 0, suggesting that
the lognormal SV model is not appropriate in this case.

Forecasting the log volatility

The minimum mean-squared error predictor of �t+h conditional on {�s, s ≤ t} is
easily found from (7.4.3) to be

Pt�t+h = γ h
1 �t + γ0

1 − γ h
1

1 − γ1
, (7.4.10)

with mean-squared error,

E(�t+h − Pt�t+h)
2 = σ 2 1 − γ 2h

1

1 − γ 2
1

. (7.4.11)

We have seen how to estimate γ0, γ1 and σ 2, but unfortunately �t is not observed.
In order to forecast �t+h using the observations {Zs, s ≤ t}, we can however use the
Kalman recursions as described in Section 9.4, Example 9.4.2

7.5 Continuous-Time Models

7.5.1 Lévy Processes

Continuous-time models for asset prices have a long history, going back to Bachelier
(1900) who used Brownian motion to represent the movement of asset prices in
the Paris stock exchange. Continuous-time models have since moved to a central
place in mathematical finance, largely because of their use in the field of option-
pricing, initiated by the Nobel-Prize-winning work of Black, Scholes and Merton, and
partly also because of the current availability of high-frequency and irregularly-spaced
transaction data which are represented most naturally by continuous-time models.

We earlier defined the daily return on day t of a stock whose closing price is Pt as

Zt = Xt − Xt−1, (7.5.1)

where

Xt = logPt (7.5.2)

is the log asset price at the close of day t. If the daily returns were iid this would mean
that the process {Xt} is a random walk (Example 1.4.3). This is an over-simplified
model for daily asset prices as there is very strong evidence suggesting that the daily
returns, although exhibiting little or no autocorrelation, are not independent.
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Nevertheless it will be a useful starting point, in the construction of continuous-
time models to introduce the continuous-time analogue of a random walk, known as a
Lévy process. Like iid noise in discrete time, it is the building block for the construction
of a large family of more complex models for financial data.

Definition 7.5.1 A Lévy process, {L(t), t ∈ R} is a process with the following properties:

(i) L(0) = 0.

(ii) L(t)−L(s) has the same distribution as L(t− s) for all s and t such that s ≤ t.

(iii) If (s, t) and (u, v) are disjoint intervals then L(t) − L(s) and L(v) − L(u) are
independent.

(v) {L(t)} is continuous in probability, i.e. for all ε > 0 and for all t ∈ R,

lim
s→t

P(|L(t) − L(s)| > ε) = 0.

The essential properties of Lévy processes are discussed in Appendix D. For thorough
accounts of Lévy processes and their properties see the books of Applebaum (2004),
Protter (2010) and Sato (1999) and for an extensive account of their applications to
finance see Schoutens (2003) and Andersen et al. (2009). For now we restrict attention
to two of the most familiar examples of Lévy processes, Brownian motion, whose
sample-paths are continuous, and the compound Poisson process, whose sample-paths
are constant except for jumps.

Example 7.5.1 Brownian Motion

This is a Lévy process for which L(t) ∼ N(μt, σ 2t), t ≥ 0, with parameters μ ∈ R

and σ > 0. The sample-paths are continuous and the characteristic function of L(t)
for t > 0 is

EeiθL(t) = etξ(θ), θ ∈ R, (7.5.3)

where

ξ(θ) = iθμ − θ2σ 2/2.

The defining properties (ii) and (iii) imply that for any finite collection of times t1 <

t2 < · · · < tn, the increments Δi := L(ti+1) − L(ti), i = 1, . . . , n, are independent
random variables satisfying Δi ∼ N(μ(ti+1 − ti), σ 2(ti+1 − ti)). Brownian motion
with μ = 0 and σ = 1 is known as standard Brownian motion. We shall denote it
henceforth as {B(t), t ∈ R}. A realization of B(t), 0 ≤ t ≤ 10, is shown in Figure 7-5.

�

Example 7.5.2 The Poisson Process

The Poisson process {N(t), t ∈ R} with intensity or jump-rate λ is a Lévy process such
that N(t), for t ≥ 0, has the Poisson distribution with mean λt. Its sample paths are
right-continuous functions which are constant except for jumps of size 1, the number
of jumps occurring in any time interval of length � having the Poisson distribution with
mean λ�. The characteristic function of N(t) for t > 0 is given by (7.5.3) with

ξ(θ) = eiθ − 1.
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Figure 7-5
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Figure 7-6
A realization of a Poisson
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A sample-path of a Poisson process with λ = 5 on the time-interval [0, 10] is shown
in Figure 7-6.

�
Example 7.5.3 The Compound Poisson Process

The compound Poisson process {X(t), t ∈ R} with jump-rate λ and jump-size
distribution function F is a Lévy process with sample-paths which are constant except
for jumps. The jump-times are those of a Poisson process {N(t)} with jump-rate λ and
the sizes of the jumps are independent random variables, independent of the process
{N(t)}, with a distribution function F assigning probability zero to the value zero. The
characteristic function of L(t) for t > 0 is again given by (7.5.3) but now with

ξ(θ) = iθc +
∫

R

(eiθx − 1 − iθxI(−1,1)(x))λdF(x), (7.5.4)

where c = λ
∫
|x|<1 xdF(x) and I(−1,1)(x) = 1 if |x| < 1 and zero otherwise.

A realization of a compound Poisson process on the interval [0,10] is shown in
Figure 7-7

�
The above examples give some idea of the immense variety in the class of Lévy

processes. The Lévy-Itô decomposition implies that every Lévy process L can be
expressed as the sum of a Brownian motion and an independent pure-jump process.
The marginal distribution of L(t) can be any distribution from the class of infinitely
divisible distributions (which includes the gamma, Gaussian, Student’s t, stable,
compound Poisson and many additional well-known distributions). See Appendix D
and the references given there for more details.



7.5 Continuous-Time Models 215

Figure 7-7
A realization of a
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7.5.2 The Geometric Brownian Motion (GBM) Model for Asset Prices

In his pioneering mathematical analysis of stock prices, contained in his doctoral
thesis, Théorie de la speculation, Bachelier (1900) introduced a model in which
the price of an asset {P(t)} is Brownian motion with parameters μ and σ (see
Example 7.5.1). Measuring time in units of 1 day, this implies in particular that the
daily closing prices, P(t), t = 0, 1, 2, . . ., constitute a random walk with increments
P(t) − P(t − 1) which are independent and normally distributed with mean μ and
variance σ 2. The normality of these increments and the fact that P(t) takes negative
values with positive probability clearly limit the value of this model as a realistic
approximation to observed daily prices. However, interest in the work of Bachelier
and his use of the Brownian motion model to solve problems in mathematical finance
led (Samuelson 1965) to develop and apply the more realistic geometric Brownian
motion model for asset prices. A fascinating account of Bachelier’s work, including
an English translation of his thesis and comments on its place in the history of both
probability theory and mathematical finance is contained in the book of Davis and
Etheridge (2006). The geometric Brownian motion model is the one for which the
celebrated option-pricing formulae of Black, Scholes and Merton were first derived.

In the Brownian motion model the asset price {P(t), t ≥ 0} satisfies the stochastic
differential equation,

dP(t) = μdt + σdB(t), (7.5.5)

where {B(t)} is standard Brownian motion, i.e., Brownian motion with EB(t) = 0 and
VarB(t) = t, t ≥ 0. Equation (7.5.5) is shorthand for the integrated form,

P(t) − P(0) = μt + σB(t).

In addition to the obvious flaw that P(t) will take negative values for some values
of t, the increments P(t) − P(t − 1) are normally distributed, while in practice it is
observed that these increments have marginal distributions with heavier tails than the
normal distribution. The geometric Brownian motion model addresses both of these
shortcomings.

The geometric Brownian motion model for {P(t), t ≥ 0} is defined by the Itô
stochastic differential equation,

dP(t) = P(t)[μdt + σdB(t)], with P(0) > 0. (7.5.6)

Solution of this equation requires knowledge of Itô calculus, a brief introduction to
which is given in Appendix D. A more extensive and very readable account with
financial applications can be found in the book of Mikosch (1998). The solution of
(7.5.6) satisfies (see Appendix D)
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Figure 7-8
A realization of GBM,
P(t),0 ≤ t ≤ 10, with
P(0) = 1. μ = 0 and
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P(t) = P(0) exp

[
(μ − σ 2

2
)t + σB(t)

]
, (7.5.7)

from which it follows at once that the log asset price X(t) = logP(t) satisfies

X(t) = X(0) + (μ − σ 2

2
)t + σB(t), (7.5.8)

or equivalently

dX(t) =
(

μ − σ 2

2

)
dt + σdB(t). (7.5.9)

A realization of the process P(t), 0 ≤ t ≤ 10, with P(0) = 1, μ = 0 and σ = 0.01 is
shown in Figure 7-8.

The return for the time interval (t − Δ, t) is

ZΔ(t) = X(t) − X(t − Δ) = (μ − σ 2

2
)Δ + σ [B(t) − B(t − Δ)]. (7.5.10)

For disjoint intervals of length Δ the returns are therefore independent normally
distributed random variables withmean (μ−σ 2/2)Δ and variance σ 2Δ. The normality
of the returns implied by this model is a property which can easily be checked against
observed returns. It is found from empirically observed returns that the deviations from
normality are substantial for time intervals of the order of a day or less, becoming less
apparent as Δ increases. This is one of the reasons for developing the more complex
models described in later sections.

Remark 1. An asset-price model which overcomes the normality constraint is the so-
called Lévy market model (LMM), in which the log asset price X is assumed to be a
Lévy process, not necessarily Brownian motion as in the GBMmodel. For a discussion
of such models see Eberlein (2009).

The parameter σ 2 in the GBM model is called the volatility parameter. It plays
a key role in the option pricing analysis of Black and Scholes (1973) and Merton
(1973) to be discussed in Section 7.6. Although σ 2 cannot be determined from discrete
observations of a GBM process it can be estimated from closely-spaced discrete
observations X(i/N), i = 1, . . . ,N, with large N, as described in the following
paragraph.

From (7.5.8) we can write

(ΔiX)2 := [X(i/N) − X((i − 1)/N)]2 = (c/N + σΔiB)2, (7.5.11)
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where ΔiB = B(i/N) − B((i − 1)/N) and c = μ − σ 2/2. A simple calculation then
gives

E[(ΔiX)2] = σ 2

N
+ c2

N2
,

and

Var[(ΔiX)2] = 4σ 2c2

N3
+ 2σ 4

N2
.

By the independence of the summands,
∑N

i=1(ΔiX)2 has mean σ 2 +c2/N and variance
2σ 4/N + 4σ 2c2/N2, showing that, as N → ∞,

N∑

i=1

(ΔiX)2 −→m.s. σ 2 =
∫ 1

0
σ 2dt. (7.5.12)

This calculation shows that, for the GBM process, the sum on the left is a consistent
estimator of σ 2 as N → ∞. The sum (for suitably large N) is known as the realized
volatility for the time interval [0, 1] and the integral on the right is known as the
integrated volatility for the same interval. σ 2 itself is known as the spot volatility.
The realized volatility is widely used as an estimator of the integrated volatility and
is consistent for a wide class of models in which the spot volatility is not necessarily
constant as it is in the GBM model. For a discussion of realized volatility in a more
general context see the article of Andersen and Benzoni (2009).

We shall denote the realized volatility, computed for day n, n = 1, 2, 3, . . ., by σ̂ 2
n .

It is found in practice to vary significantly from 1 day to the next. The sequence {σ̂ 2
n } of

realized volatilities exhibits clustering, i.e., periods of low values interrupted by bursts
of large values, and has the appearance of a positively correlated stationary sequence,
reinforcing the view that volatility is not constant as in the GBMmodel and suggesting
the need for a model in which volatility is stochastic. Such observations are precisely
those which led to the development in discrete time of stochastic volatility, ARCH,
and GARCHmodels, and suggest the need for analogous models with continuous time
parameter.

7.5.3 A Continuous-Time SV Model

In the discrete-time modeling of asset prices we have seen how both the GARCH
and SV models allow for the variation of the volatility with time by modeling {ht} as a
random process. A continuous-time analogue of this ideawas introduced byBarndorff-
Niesen and Shephard (2001) in their celebrated continuous-time SV model for the log
asset price X(t) [cf. (7.5.9)],

dX(t) = [m + bh(t)]dt +√h(t)dB(t), t ≥ 0, with X(0) = 0, (7.5.13)

where m ∈ R, b ∈ R, {B(t)} is standard Brownian motion and {h(t)} is a
stationary subordinator-driven Ornstein-Uhlenbeck process independent of {B(t)}.
The connection with discrete-time SV models is clear if we set m = b = 0 in (7.5.13)
and compare with (7.4.1). Notice also that (7.5.13) has the same form as the GBM
equation (7.5.9) except that the constant volatility parameter σ 2 has been replaced by
the random volatility h(t).

A subordinator is a Lévy process with non-decreasing sample paths. The simplest
example of a subordinator is the Poisson process of Example 7.5.2. If the compound
Poisson process in Example 7.5.3 has non-negative jumps, i.e., if the jump-size
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distribution function F satisfies F(0) = 0, then it too is a subordinator. Other examples
of subordinators are the gamma process (see Appendix D), whose increments on
disjoint intervals have a gamma distribution, and the stable subordinators, whose
increments on disjoint intervals are independent non-negative stable random variables.

An Ornstein-Uhlenbeck process driven by the subordinator L satisfies the stochas-
tic differential equation,

dh(t) = λh(t)dt + dL(t), t ∈ R, (7.5.14)

where λ < 0. If EL(1)r < ∞ for some r > 0 this equation has a unique strictly
stationary causal solution

h(t) =
∫ t

−∞
eλ(t−u)dL(u). (7.5.15)

(Causal here means that h(t) is independent of the increments {L(u)−L(t) : u > t} for
every t.) A crucial feature of (7.5.15) is the non-negativity of h(t) which follows from
the non-decreasing sample-paths of the subordinator {L(t)} and the non-negativity of
the integrand. Non-negativity is clearly a necessary property if h(t) is to represent
volatility. For a detailed account of Lévy-driven stochastic differential equations and
integrals with respect to Lévy processes, see Protter (2010). In the case when L is a
subordinator, (7.5.15) has the very simple interpretation as a pathwise integral with
respect to the non-decreasing sample-path of L.

Quantities associated with the model (7.5.13) which are of particular interest are
the returns over time intervals of length Δ > 0, i.e.

Yn := X(nΔ) − X((n − 1)Δ), n ∈ N,

and the integrated volatilities,

In =
∫ nΔ

(n−1)Δ

h(t)dt, n ∈ N.

The interval Δ is frequently one trading day. The return for the day is an observ-
able quantity and the integrated volatility, although not directly observable, can
be estimated from high-frequency within-day observations of X(t), as discussed in
Section 7.5.2 for the GBM model.

For the model (7.5.13) with any second-order stationary non-negative volatility
process h which is independent of B and has the properties,

Eh(t) = ξ, Var(h(t)) = ω2

and

Cov(h(t), h(t + s)) = ω2ρ(s), s ∈ R,

it can be shown (Problem 7.8) that the stationary sequence {In} has mean,

EIn = ξΔ. (7.5.16)

and autocovariance function,

γI(k) =
⎧
⎨

⎩

2ω2r(Δ), if k = 0,

ω2 [r((k + 1)Δ) − 2r(kΔ) + r((k − 1)Δ)] , if k ≥ 1.

(7.5.17)
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where

r(t) :=
∫ t

0

∫ y

0
ρ(u)du dy. (7.5.18)

The stationary sequence of log returns {Yn} has mean m + bξδ and autocovariance
function,

γY(k) =
⎧
⎨

⎩

b2γI(0) + ξΔ, if k = 0,

b2γI(k), if k ≥ 1.

(7.5.19)

If in addition m = b = 0 then the log returns {Yn} are uncorrelated while the squared
sequence {Yn} (see Problem 7.11) has mean,

EY2
n = ξΔ (7.5.20)

and autocovariance function,

γY2(k) =
⎧
⎨

⎩

ω2
[
6r(Δ) + 2Δ2ξ 2/ω2

]
, if k = 0,

ω2 [r((k + 1)Δ) − 2r(kΔ) + r((k − 1)Δ)] , if k ≥ 1.

(7.5.21)

Thus, under these assumptions, the log returns, Yn, calculated from the model are
uncorrelated while the squares, Y2

n , are correlated, showing that the log returns are
uncorrelated but not independent, in keeping with the '“stylized facts” associated with
empirically observed log returns.

Example 7.5.4. The Ornstein-Uhlenbeck SV Model with m = b = 0

We can use the results (7.5.16)–(7.5.21) to determine properties of the sequences {Yn},
{Y2

n } and {In} associated with the Ornstein-Uhlenbeck SV model,

dX(t) = √h(t)dB(t), t ≥ 0, with X(0) = 0, (7.5.22)

where

h(t) =
∫ t

−∞
eλ(t−u)dL(u), (7.5.23)

λ < 0 and EL(1)2 < ∞.
In order to apply (7.5.16)–(7.5.21) we need to determine ξ = Eh(t), ω2 =

Var(h(t)) and the autocorrelation function ρ of h. To this end we rewrite (7.5.23) as

h(t) =
∫ ∞

−∞
g(t − u)dL(u), (7.5.24)

where

g(x) :=
⎧
⎨

⎩
eλx, if x ≥ 0,

0, otherwise
(7.5.25)

The function g in the representation (7.5.24) is called a kernel function. If EL(1)2 <

∞, as we shall assume from now on, and if f and g are integrable and square-integrable
functions on R, we have (see Appendix D),

E
∫ ∞

−∞
f (t − u)dL(u) = μ

∫ ∞

−∞
f (u)du (7.5.26)
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and

Cov

(∫ ∞

−∞
f (t − u)dL(u),

∫ ∞

−∞
g(t − u)dL(u)

)
= σ 2

∫ ∞

−∞
f (u)g(u)du,

(7.5.27)

whereμ = EL(1) and σ 2 = Var(L(1)). Taking g as in (7.5.25) and f (x) = g(s+x), x ∈
R, we find from these equations that the mean and autocovariance function of the
volatility process {h(t)} defined by (7.5.23) are given by

ξ = Eh(t) = μ

|λ|
and

Cov(h(t + s), h(t)) = σ 2

2|λ|e
λs = ω2ρ(s), s ≥ 0,

where ω2 = Var(h(t)) = σ 2/(2|λ|) and ρ(s) = eλs, s ≥ 0. Substituting for ρ into
(7.5.17) gives

r(t) = 1

λ2

(
eλt − 1 − λt

)
.

We can now substitute for ξ , ω2, ρ and r in equations (7.5.16)–(7.5.21) to get the
second-order properties of the sequences {Yn}, {Y2

n } and {In}. In particular we find that
{Yn} ∼ WN(0, |λ|−1μΔ),

EY2
n = EIn = |λ|−1μΔ

and

γY2(k) = γI(k) = 1

2
|λ|−3σ 2e(k−1)λΔ(1 − eλΔ)2, k ≥ 1.

The validity of the latter expressions for k ≥ 1 and not for k = 0 indicates that
both the squared return sequence {Y2

n } and the integrated volatility sequence {In} have
the autocovariances of ARMA(1, 1) processes. This demonstrates, for this particular
model, the covariance structure of the sequence {Y2

n } and the consequent dependence
of the white-noise returns sequence {Yn}.

�

Remark 2. Since equations (7.5.16)–(7.5.19) (derived by Barndorff-Niesen and
Shephard 2001) apply to any second-order stationary non-negative stochastic volatility
process, h, independent of B in (7.5.13), they can be used to calculate the second order
properties of {Yn} and {In} for more general models than the Ornstein-Uhlenbeck
model defined by (7.5.13) and (7.5.15). If m = b = 0 the second-order properties
of {Y2

n } can also be calculated using equations (7.5.20) and (7.5.21). In particular we
can replace the Ornstein-Uhlenbeck process, h, in Example 7.5.4 by a non-negative
CARMA process (see Section 11.5) to allow a more general class of autocovariance
functions for the sequences {In} and {Y2

n } in order to better represent empirically
observed financial data.

Remark 3. Continuous-time generalizations of the GARCH process have also been
developed (see Klüppelberg et al. (2004) and Brockwell et al. 2006). Details however
are beyond the scope of this book.
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7.6 An Introduction to Option Pricing

We saw in Section 7.5.2 that, under the geometric Brownian motion model, the asset
price P(t) satisfies the Itô equation,

dP(t) = P(t)[μdt + σdB(t)] with P(0) > 0, (7.6.1)

which leads to the relation,

P(t) = P(0) exp
[
(μ − σ 2/2)t + σB(t)

]
. (7.6.2)

In this section we shall determine the value of a European call option on an asset
whose price satisfies (7.6.2). The result, derived by Black and Scholes (1973) and
Merton (1973), clearly demonstrates the key role played by the volatility parameter σ 2.

A European call option, if sold at time 0, gives the buyer the right, but not the
obligation, to buy one unit of the stock at the strike time T for the strike price K. At
time T the option has the cash value h(P(t)) = max(P(T) − K, 0) since the option
will be exercised only if P(T) > K, in which case the holder of the option can buy the
stock at the price K and resell it instantly for P(T). However it is not clear at time 0,
since P(T) is random, what price the buyer should pay for this privilege. Assuming

(i) the existence of a risk-free asset with price process,

D(t) = D(0) exp(rt), r > 0, (7.6.3)

(ii) the ability to buy and sell arbitrary (positive or negative) amounts of the stock and
the risk-free asset continuously with no transaction costs, and

(iii) an arbitrage-free market ( i.e., a market in which it is impossible to make a profit
which is non-negative with probability one and strictly positive with probability
greater than zero).

Black, Scholes and Merton showed that there is a unique value for the option in the
sense that both higher and lower prices introduce demonstrable arbitrage opportunities.
Details of the derivation can be found in most books dealing with mathematical
finance (e.g., Campbell et al. 1996; Mikosch 1998; Klebaner 2005). In the following
paragraphs we give a sketch of two arguments, following Mikosch (1998), which
determine this value under the assumption that the asset price follows the GBMmodel.

In the first argument, we attempt to construct a self-financing portfolio, consisting
at time t of at shares of the stock and bt shares of the risk-free asset, where at and bt
are random variables which, for each t are functions of {B(s), s ≤ t}. We require the
value of this portfolio at time t, namely

V(t) = atP(t) + btD(t), (7.6.4)

to satisfy the self-financing condition,

dV(t) = at dP(t) + bt dD(t), (7.6.5)

and to match the value of the option at time T , i.e.,

V(T) = h(P(T)) = max(P(T) − K, 0). (7.6.6)

If such an investment strategy, {(at, bt), 0 ≤ t ≤ T} can be found, then V(0) must
be the value of the option at the purchase time t = 0. A higher price for the option
would allow the seller to pocket the difference δ and invest the amount V(0) in such
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a way as to match the value of the option at time T . Then at time T , if P(T) < K the
option will not be exercised and the portfolio and the option will both have value zero.
If P(T) > K the seller sells the portfolio for P(T) − K, then buys one stock for P(T)

and receives K for it from the holder of the option. Since there is no loss involved
in this transaction, the seller is left with a net profit of δ. The seller of the option
therefore makes a profit which is certainly non-negative and strictly positive with non-
zero probability, in violation of the no arbitrage assumption. Similarly a lower price
than V(0) would create an arbitrage opportunity for the buyer. In order to determine
V(t), at and bt we look for a smooth function v(t, x), t ∈ [0,T], x > 0, such that

V(t) = v(t,P(t)), t ∈ [0,T], (7.6.7)

satisfies the conditions (7.6.4)–(7.6.6).
Writing x for P(t) in v(t,P(t)) and applying Itô’s formula (see Appendix D) gives

dv = ∂v

∂t
dt + ∂v

∂x
dx + 1

2

∂2v

∂x2
(dx)2 (7.6.8)

where, from (7.6.1),

dx = x(μdt + σdB(t)) (7.6.9)

and

(dx)2 = x2σ 2dt. (7.6.10)

Applying Itô’s formula to (7.6.5) and using (7.6.3) and (7.6.4) gives

dv = at(μdt + σdB(t)) + r(v − atx)dt. (7.6.11)

Substituting (7.6.9) and (7.6.10) into (7.6.8) and comparing with (7.6.11), we find that

at = ∂v

∂x
(t,P(t)) (7.6.12)

and that v(t, x) satisfies the equation,

∂v

∂t
+ 1

2
σ 2x2 ∂2v

∂x2
+ rx

∂v

∂x
= rv. (7.6.13)

The condition (7.6.6) yields the boundary condition,

v(T, x) = h(x) = max(x − K, 0), (7.6.14)

which, with (7.6.13), uniquely determines the function v and hence V(t), at and
bt = (V(t) − atP(t))/D(t) for each t ∈ [0,T]. The corresponding investment strategy
{(at, bt), 0 ≤ t ≤ T} satisfies (7.6.5) and (7.6.6) and can, under the assumed idealized
trading conditions, be implemented in practice. Since at time T this portfolio has the
same value as the option, V(0) must be the fair value of the option at time t = 0,
otherwise an arbitrage opportunity would arise. The option is said to be hedged by the
investment strategy {(at, bt)}. A key feature of this solution [apparent from (7.6.12)–
(7.6.14)] is that both the strategy and the fair price of the option are independent of μ,
depending on the price process P only through the volatility parameter σ 2.

Instead of attempting to solve (7.6.13) directly we now outline the martingale
argument which leads to the explicit solution for v(x, t), at and bt. It is based on the fact
that for the GBM model with B(t) defined on the probability space (�,F ,�), there
is a unique probability measure Q on (�,F ) which is equivalent to � (i.e., it has the
same null sets) and which, when substituted for�, causes the discounted price process
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P̃(t) := e−rtP(t), 0 ≤ t ≤ T , to be a B-martingale, i.e., to satisfy the conditions that
EQP̃(t) < ∞ and

EQ(P̃(t)|B(u), u ≤ s) = P̃(s) for all 0 ≤ s ≤ t ≤ T. (7.6.15)

The measure Q and the relation (7.6.15) can be derived as follows. Applying Itô’s
formula to the expression P̃(t) = e−rtP(t) and using (7.6.1) gives

dP̃(t)

P̃(t)
= (μ − r)dt + σdB(t) = σdB̃(t), (7.6.16)

where B̃(t) := (μ − r)t/σ + B(t). The solution of (7.6.16) satisfies

P̃(t) = P̃(0)eσ B̃(t)−σ 2t/2. (7.6.17)

By Girsanov’s theorem (see Mikosch 1998), if we define Q by

Q(A) =
∫

A
exp

(
−μ − r

σ
B(T) − (μ − r)2

2σ 2
T

)
d�, (7.6.18)

then, on the new probability space (�,F ,Q), B̃ is standard Brownian motion. A
simple calculation using (7.6.17) then shows that the discounted price process P̃ is
a B-martingale on (�,F ,Q), i.e. EQP̃(t) < ∞ and (7.6.15) holds.

Assuming the existence of a portfolio (7.6.4) which satisfies the self-financing
condition (7.6.5) and the boundary condition (7.6.6), the discounted portfolio value is

Ṽ(t) = e−rtV(t). (7.6.19)

Applying Itô’s formula to this expression we obtain

dṼ(t) = e−rt(−rV(t)dt + dV(t)) = ate
−rt(−rP(t)dt + dP(t)) = atdP̃(t),

and hence, from (7.6.16),

Ṽ(t) = Ṽ(0) +
∫ t

0
asdP̃(s) = V(0) + σ

∫ t

0
asP̃(s)dB̃(s). (7.6.20)

Since atP̃(t) is a function of {B(s), s ≤ t} for each t ∈ [0,T] and since, under the
probability measure Q, B̃ is Brownian motion and B̃(t) is a function of {B(s), s ≤ t}
for each t ∈ [0,T], we conclude that Ṽ is a B-martingale. Hence

Ṽ(t) = EQ[Ṽ(T)|B(s), s ≤ t], t ∈ [0,T],
and

V(t) = ertṼ(t) = EQ[e−r(T−t)h(P(T))|B(s), s ≤ t], (7.6.21)

where h(P(T)) is the value of the option at time T . For the European call option
h(P(T)) = max(P(T) − K, 0).

It only remains to calculate v(t, x) from (7.6.21). To do this we define θ := T − t.
Then, expressing P(T) in terms of P(t),

V(t) = EQ[e−rθh(P(t)e(r− σ2
2 )θ+σ(B̃(T)−B̃(t)))|B(s), s ≤ t] = v(t,P(t)),

where

v(t, x) = e−rθ
∫

h(xe(r− σ2
2 )θ+σyθ1/2))φ(y)dy (7.6.22)

and φ is the standard normal density function,
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φ(y) = 1√
2π

exp(−y2/2).

Substituting max(x − K, 0) for h(x) in (7.6.22) gives

v(t, x) = x�(z1) − Ke−r(T−t)�(z2), (7.6.23)

where� is the standard normal cumulative distribution function,�(x) = ∫ x
−∞ φ(u)du,

z1 = log(x/K) + (r + σ 2/2)(T − t)

σ
√
T − t

and z2 = z1 − σ
√
T − t.

The value of the option at time 0 is V(0) = v(0,P(0)) and the investment strategy
{at, bt, 0 ≤ t ≤ T} required to hedge it is determined by the relations at = ∂v

∂x (t,P(t))
and bt = (v(t,P(t) − atP(t))/D(t). It can be verified by direct substitution (Problem
7.12) that the function v given by (7.6.23) satisfies the partial differential equation
(7.6.13) and the boundary condition (7.6.14).

The quantity m = (μ − r)/σ which appears in the integrand in (7.6.18) is called
the market price of risk and represents the excess, in units of σ , of the instantaneous
rate of return μ of the risky asset S over that of the risk-free asset D. If m = 0 then
Q = � and the model is said to be risk-neutral.

Although the model (7.6.1) has many shortcomings as a representation of asset
prices, the remarkable achievement of Black, Scholes and Merton in using it to derive
a unique arbitrage-free option price has inspired enormous interest and progress in
the field of financial mathematics. As a result of their pioneering work, research
in continuous-time financial models has blossomed, with much of it directed at
the construction, estimation and analysis of more realistic continuous-time models for
the evolution of stock prices, and the pricing of options based on such models. A nice
account of option-pricing for a broad class of Lévy-driven stock-price models can be
found in the book of Schoutens (2003).

Problems

7.1 Evaluate EZ4
t for the ARCH(1) process (7.2.5) with 0 < α1 < 1 and {et} ∼

IID N(0, 1). Deduce that EX4
t < ∞ if and only if 3α2

1 < 1.

7.2 Let {Zt} be a causal stationary solution of the ARCH(p) equations (7.2.1) and
(7.2.2) with EZ4

t < ∞. Assuming that such a process exists, show that Yt =
Z2
t /α0 satisfies the equations

Yt = e2
t

(

1 +
p∑

i=1

αiYt−i

)

and deduce that {Yt} has the same autocorrelation function as the AR(p) process

Wt =
p∑

i=1

αiWt−i + et, {et} ∼ WN(0, 1).

(In the case p = 1, a necessary and sufficient condition for existence of a causal
stationary solution of (7.2.1) and (7.2.2) with EZ4

t < ∞ is 3α2
1 < 1, as shown

by the results of Section 7.2 and Problem 7.1.)
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7.3 Suppose that {Zt} is a causal stationary GARCH(p, q) process Zt = √
htet, where

{et} ∼ IID(0,1),
∑p

i=1 ai +
∑q

j=1 Bj < 1 and

ht = α0 + α1Z
2
t−1 + · · · + αpZ

2
t−p + β1ht−1 + · · · + βqht−q.

a. Show that E(Z2
t |Z2

t−1,Z
2
t−2, . . .) = ht.

b. Show that the squared process {Z2
t } is an ARMA(m, q) process satisfying the

equations

Z2
t = α0 + (α1 + β1)Z

2
t−1 + · · · + (αm + βm)Z2

t−m

+ Ut − β1Ut−1 − · · · − βqUt−q,

where m = max{p, q}, αj = 0 for j > p, βj = 0 for j > q, and Ut = Z2
t − ht

is white noise if EZ4
t < ∞.

c. For p ≥ 1, show that the conditional variance process {ht} is an
ARMA(m, p − 1) process satisfying the equations

ht = α0 +(α1 + β1)ht−1 + · · · + (αm + βm)ht−m

+Vt + α∗
1Vt−1 + · · · + α∗

pVt−p−1,

where Vt = α−1
1 Ut−1 and α∗

j = αj+1/α1 for j = 1, . . . , p − 1.

7.4 To each of the seven components of the multivariate time series filed as
STOCK7.TSM, fit an ARMA model driven by GARCH noise. Compare
the fitted models for the various series and comment on the differences.
(For exporting components of a multivariate time series to a univariate project,
see the topic Getting started in the PDF file ITSM_HELP which is included in
the ITSM software package.

7.5 Verify equation (7.3.7).

7.6 Show that the return, ZΔ(t) := logP(t) − logP(t − Δ), approximates the
fractional gain, FΔ(t) := (P(t) − P(t − Δ))/P(t − Δ), in the sense that

ZΔ(t)

FΔ(t)
→ 1 as FΔ(t) → 0.

7.7 For the GBM model (7.5.7) with P(0) = 1, evaluate the mean and variance of
P(t) and the mean and variance of the return, ZΔ(t).

7.8 If h is any second-order stationary non-negative volatility process with mean ξ ,
varianceω2 and autocorrelation function ρ, verify the relations (7.5.16)–(7.5.18).

7.9 Use (7.5.26) and (7.5.27) to evaluate the mean and autocovariance function of
the stationary Ornstein-Uhlenbeck process (7.5.23).

7.10 If h is the stationary Ornstein-Uhlenbeck process (7.5.23) and s is any fixed
value in [0,Δ], show that application of the operator φ(B) := (1 − eλΔB) to
the sequence {h(nΔ + s), n ∈ Z} gives

φ(B)h(nΔ + s) = Wn(s),

where {Wn(s), n ∈ Z} is the iid sequence,

Wn(s) =
∫ nΔ+s

(n−1)Δ+s
eλ(nΔ+s−u)dL(u).
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Deduce that the integrated volatility sequence, In = ∫ 0
−Δ

h(nΔ + s)ds, satisfies

(1 − eλΔB)In =
∫ 0

−Δ

Wn(s)ds.

Since the right-hand side is 1-correlated, it follows from Proposition 2.1.1 that
it is an MA(1) process and hence that the integrated volatility sequence is an
ARMA(1,1) process.

7.11 For the stochastic volatility model (7.5.13) with m = b = 0 and second-order
stationary volatility process h independent ofW, establish (7.5.20) and (7.5.21).

7.12 Verify that the expression (7.6.23) for v(t, s) satisfies (7.6.13) and (7.6.14) and
use it to write down the value of the option at time t = 0 and the corresponding
investment strategy {(at, bt), 0 ≤ t ≤ T}.
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