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In this chapter we shall examine the problem of finding an appropriate model for a
given set of observations {x1, . . . , xn} that are not necessarily generated by a stationary
time series. If the data (a) exhibit no apparent deviations from stationarity and (b) have
a rapidly decreasing autocovariance function, we attempt to fit an ARMAmodel to the
mean-corrected data using the techniques developed in Chapter 5. Otherwise, we look
first for a transformation of the data that generates a new series with the properties
(a) and (b). This can frequently be achieved by differencing, leading us to consider
the class of ARIMA (autoregressive integrated moving-average) models, defined in
Section 6.1. We have in fact already encountered ARIMA processes. The model fitted
in Example 5.1.1 to the Dow Jones Utilities Index was obtained by fitting an ARmodel
to the differenced data, thereby effectively fitting an ARIMA model to the original
series. In Section 6.1 we shall give a more systematic account of such models.

In Section 6.2 we discuss the problem of finding an appropriate transformation for
the data and identifying a satisfactory ARMA(p, q) model for the transformed data.
The latter can be handled using the techniques developed in Chapter 5. The sample
ACF and PACF and the preliminary estimators φ̂m and θ̂m of Section 5.1 can provide
useful guidance in this choice. However, our prime criterion for model selection will
be the AICC statistic discussed in Section 5.5.2. To apply this criterion we compute
maximum likelihood estimators of φ, θ, and σ 2 for a variety of competing p and q
values and choose the fitted model with smallest AICC value. Other techniques, in
particular those that use the R and S arrays of Gray et al. (1978), are discussed in
the survey of model identification by de Gooijer et al. (1985). If the fitted model is
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158 Chapter 6 Nonstationary and Seasonal Time Series Models

satisfactory, the residuals (see Section 5.3) should resemble white noise. Tests for this
were described in Section 5.3 and should be applied to the minimum AICC model
to make sure that the residuals are consistent with their expected behavior under the
model. If they are not, then competing models (models with AICC value close to the
minimum) should be checked until we find one that passes the goodness of fit tests. In
some cases a small difference in AICC value (say less than 2) between two satisfactory
models may be ignored in the interest of model simplicity. In Section 6.3 we consider
the problem of testing for a unit root of either the autoregressive or moving-average
polynomial. An autoregressive unit root suggests that the data require differencing, and
a moving-average unit root suggests that they have been overdifferenced. Section 6.4
considers the prediction of ARIMA processes, which can be carried out using an
extension of the techniques developed for ARMA processes in Sections 3.3 and 5.4.
In Section 6.5 we examine the fitting and prediction of seasonal ARIMA (SARIMA)
models, whose analysis, except for certain aspects of model identification, is quite
analogous to that of ARIMAprocesses. Finally, we consider the problem of regression,
allowing for dependence between successive residuals from the regression. Such
models are known as regression models with time series residuals and often occur
in practice as natural representations for data containing both trend and serially
dependent errors.

6.1 ARIMA Models for Nonstationary Time Series

We have already discussed the importance of the class of ARMAmodels for represent-
ing stationary series. A generalization of this class, which incorporates a wide range of
nonstationary series, is provided by the ARIMA processes, i.e., processes that reduce
to ARMA processes when differenced finitely many times.

Definition 6.1.1 If d is a nonnegative integer, then {Xt} is an ARIMA(p,d,q) process if Yt :=
(1 − B)dXt is a causal ARMA( p, q) process.

This definition means that {Xt} satisfies a difference equation of the form

φ∗(B)Xt ≡ φ(B)(1 − B)dXt = θ(B)Zt, {Zt} ∼ WN
(
0, σ 2

)
, (6.1.1)

where φ(z) and θ(z) are polynomials of degrees p and q, respectively, and φ(z) �= 0
for |z| ≤ 1. The polynomial φ∗(z) has a zero of order d at z = 1. The process {Xt} is
stationary if and only if d = 0, in which case it reduces to an ARMA(p, q) process.

Notice that if d ≥ 1, we can add an arbitrary polynomial trend of degree
(d − 1) to {Xt} without violating the difference equation (6.1.1). ARIMA models
are therefore useful for representing data with trend (see Sections 1.5 and 6.2). It
should be noted, however, that ARIMA processes can also be appropriate for modeling
series with no trend. Except when d = 0, the mean of {Xt} is not determined by
equation (6.1.1), and it can in particular be zero (as in Example 1.3.3). Since for d ≥ 1,
equation (6.1.1) determines the second-order properties of {(1−B)dXt} but not those of
{Xt} (Problem 6.1), estimation of φ, θ, and σ 2 will be based on the observed differences
(1 − B)dXt. Additional assumptions are needed for prediction (see Section 6.4).

Example 6.1.1 {Xt} is an ARIMA(1,1,0) process if for some φ ∈ (−1, 1),

(1 − φB)(1 − B)Xt = Zt, {Zt} ∼ WN
(
0, σ 2

)
.
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Figure 6-1
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We can then write

Xt = X0 +
t∑

j=1

Yj, t ≥ 1,

where

Yt = (1 − B)Xt =
∞∑

j=0

φ jZt−j.

A realization of {X1, . . . ,X200} with X0 = 0, φ = 0.8, and σ 2 = 1 is shown in
Figure 6-1, with the corresponding sample autocorrelation and partial autocorrelation
functions in Figures 6-2 and 6-3, respectively.

�
A distinctive feature of the data that suggests the appropriateness of an ARIMA

model is the slowly decaying positive sample autocorrelation function in Figure 6-2.
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Figure 6-3
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Figure 6-4
199 observations of the

series Yt = ∇Xt with
{Xt} as in Figure 6-1 0 50 100 150 200
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If, therefore, we were given only the data and wished to find an appropriate model, it
would be natural to apply the operator ∇ = 1 −B repeatedly in the hope that for some
j, {∇ jXt} will have a rapidly decaying sample autocorrelation function compatible
with that of an ARMA process with no zeros of the autoregressive polynomial
near the unit circle. For this particular time series, one application of the operator
∇ produces the realization shown in Figure 6-4, whose sample ACF and PACF
(Figures 6-5 and 6-6) suggest an AR(1) [or possibly AR(2)] model for {∇Xt}. The
maximum likelihood estimates of φ and σ 2 obtained from ITSM under the assumption
that E(∇Xt) = 0 (found by not subtracting the mean after differencing the data) are
0.808 and 0.978, respectively, giving the model

(1 − 0.808B)(1 − B)Xt = Zt, {Zt} ∼ WN(0, 0.978), (6.1.2)

which bears a close resemblance to the true underlying process,

(1 − 0.8B)(1 − B)Xt = Zt, {Zt} ∼ WN(0, 1). (6.1.3)
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Figure 6-5
The sample ACF of the
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Figure 6-6
The sample PACF of the
series {Yt} in Figure 6-4 Lag
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Instead of differencing the series in Figure 6-1 we could proceed more directly by
attempting to fit an AR(2) process as suggested by the sample PACF of the original
series in Figure 6-3. Maximum likelihood estimation, carried out using ITSM after
fitting a preliminary model with Burg’s algorithm and assuming that EXt = 0, gives
the model

(1 − 1.808B + 0.811B2)Xt = (1 − 0.825B)(1 − 0.983B)Xt = Zt,

{Zt} ∼ WN(0, 0.970), (6.1.4)

which, although stationary, has coefficients closely resembling those of the true
nonstationary process (6.1.3). (To obtain the model (6.1.4), two optimizations were
carried out using the Model>Estimation>Max likelihood option of ITSM,
the first with the default settings and the second after setting the accuracy parameter
to 0.00001.) From a sample of finite length it will be extremely difficult to distinguish
between a nonstationary process such as (6.1.3), for which φ∗(1) = 0, and a process
such as (6.1.4), which has very similar coefficients but for which φ∗ has all of its
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Figure 6-7
200 observations of
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zeros outside the unit circle. In either case, however, if it is possible by differencing
to generate a series with rapidly decaying sample ACF, then the differenced data set
can be fitted by a low-order ARMA process whose autoregressive polynomial φ∗ has
zeros that are comfortably outside the unit circle. This means that the fitted parameters
will be well away from the boundary of the allowable parameter set. This is desirable
for numerical computation of parameter estimates and can be quite critical for some
methods of estimation. For example, if we apply the Yule–Walker equations to fit an
AR(2) model to the data in Figure 6-1, we obtain the model

(1 − 1.282B + 0.290B2)Xt = Zt, {Zt} ∼ WN(0, 6.435), (6.1.5)

which bears little resemblance to either the maximum likelihood model (6.1.4) or the
true model (6.1.3). In this case the matrix R̂2 appearing in (5.1.7) is nearly singular.

An obvious limitation in fitting an ARIMA(p, d, q) process {Xt} to data is that
{Xt} is permitted to be nonstationary only in a very special way, i.e., by allowing the
polynomial φ∗(B) in the representation φ∗(B)Xt = Zt to have a zero of multiplicity
d at the point 1 on the unit circle. Such models are appropriate when the sample ACF
is a slowly decaying positive function as in Figure 6-2, since sample autocorrelation
functions of this form are associated with models φ∗(B)Xt = θ(B)Zt in which φ∗ has a
zero either at or close to 1.

Sample autocorrelations with slowly decaying oscillatory behavior as in Fig-
ure 6-8 are associated with models φ∗(B)Xt = θ(B)Zt in which φ∗ has a zero close to
eiω for some ω ∈ (−π, π] other than 0. Figure 6-8 is the sample ACF of the series of
200 observations in Figure 6-7, obtained from ITSM by simulating the AR(2) process

Xt − (2r−1 cos ω)Xt−1 + r−2Xt−2 = Zt, {Zt} ∼ WN(0, 1), (6.1.6)

with r = 1.005 and ω = π/3, i.e.,

Xt − 0.9950Xt−1 + 0.9901Xt−2 = Zt, {Zt} ∼ WN(0, 1).

The autocorrelation function of the model (6.1.6) can be derived by noting that
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Figure 6-8
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1 − (
2r−1 cos ω

)
B + r−2B2 = (

1 − r−1eiωB
) (

1 − r−1e−iωB
)

(6.1.7)

and using (3.2.12). This gives

ρ(h) = r−h sin(hω + ψ)

sin ψ
, h ≥ 0, (6.1.8)

where

tan ψ = r2 + 1

r2 − 1
tan ω. (6.1.9)

It is clear from these equations that

ρ(h) → cos(hω) as r ↓ 1. (6.1.10)

With r = 1.005 and ω = π/3 as in the model generating Figure 6-7, the model
ACF (6.1.8) is a damped sine wave with damping ratio 1/1.005 and period 6. These
properties are reflected in the sample ACF shown in Figure 6-8. For values of r closer
to 1, the damping will be even slower as the model ACF approaches its limiting form
(6.1.10).

If we were simply given the data shown in Figure 6-7, with no indication of the
model from which it was generated, the slowly damped sinusoidal sample ACF with
period 6would suggest trying tomake the sample ACF decaymore rapidly by applying
the operator (6.1.7) with r = 1 and ω = π/3, i.e.,

(
1 − B + B2

)
. If it happens, as in

this case, that the period 2π/ω is close to some integer s (in this case 6), then the
operator 1 − Bs can also be applied to produce a series with more rapidly decaying
autocorrelation function (see also Section 6.5). Figures 6-9 and 6-10 show the sample
autocorrelation functions obtained after applying the operators 1 −B+B2 and 1 −B6,
respectively, to the data shown in Figure 6-7. For either one of these two differenced
series, it is then not difficult to fit an ARMA model φ(B)Xt = θ(B)Zt for which the
zeros of φ are well outside the unit circle. Techniques for identifying and determining
such ARMA models have already been introduced in Chapter 5. For convenience we
shall collect these together in the following sections with a number of illustrative
examples.
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Figure 6-9
The sample ACF of
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Figure 6-10
The sample ACF
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6.2 Identification Techniques

(a) Preliminary Transformations. The estimation methods of Chapter 5 enable us to
find, for given values of p and q, an ARMA( p, q) model to fit a given series of data.
For this procedure to be meaningful it must be at least plausible that the data are in
fact a realization of an ARMA process and in particular a realization of a stationary
process. If the data display characteristics suggesting nonstationarity (e.g., trend and
seasonality), then it may be necessary to make a transformation so as to produce a new
series that is more compatible with the assumption of stationarity.

Deviations from stationarity may be suggested by the graph of the series itself or
by the sample autocorrelation function or both.



6.2 Identification Techniques 165

Figure 6-11
The Australian red
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Inspection of the graph of the series will occasionally reveal a strong dependence
of variability on the level of the series, in which case the data should first be
transformed to reduce or eliminate this dependence. For example, Figure 1-1 shows
the Australian monthly red wine sales from January 1980 through October 1991,
and Figure 1-17 shows how the increasing variability with sales level is reduced
by taking natural logarithms of the original series. The logarithmic transformation
Vt = lnUt used here is in fact appropriate whenever {Ut} is a series whose standard
deviation increases linearly with the mean. For a systematic account of a general class
of variance-stabilizing transformations, we refer the reader to Box and Cox (1964).
The defining equation for the general Box–Cox transformation fλ is

fλ(Ut) =
⎧
⎨

⎩

λ−1(Uλ
t − 1), Ut ≥ 0, λ > 0,

lnUt, Ut > 0, λ = 0,

and the program ITSM provides the option (Transform>Box-Cox) of applying fλ
(with 0 ≤ λ ≤ 1.5) prior to the elimination of trend and/or seasonality from the data.
In practice, if a Box–Cox transformation is necessary, it is often the case that either f0
or f0.5 is adequate.

Trend and seasonality are usually detected by inspecting the graph of the (possibly
transformed) series. However, they are also characterized by autocorrelation functions
that are slowly decaying and nearly periodic, respectively. The elimination of trend
and seasonality was discussed in Section 1.5, where we described two methods:

(i) “classical decomposition” of the series into a trend component, a seasonal
component, and a random residual component, and

(ii) differencing.

The program ITSM (in the Transform option) offers a choice between these tech-
niques. The results of applying methods (i) and (ii) to the transformed red wine data
Vt = lnUt in Figure 1-17 are shown in Figures 6-11 and 6-12, respectively. Figure 6-11
was obtained from ITSM by estimating and removing from {Vt} a linear trend
component and a seasonal component with period 12. Figure 6-12 was obtained by
applying the operator

(
1 − B12

)
to {Vt}. Neither of the two resulting series displays
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Figure 6-12
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any apparent deviations from stationarity, nor do their sample autocorrelation func-
tions. The sample ACF and PACF of

{
(1 − B12

)
Vt

}
are shown in Figures 6-13 and

6-14, respectively.
After the elimination of trend and seasonality, it is still possible that the sample

autocorrelation function may appear to be that of a nonstationary (or nearly nonsta-
tionary) process, in which case further differencing may be carried out.

In Section 1.5 we also mentioned a third possible approach:

(iii) fitting a sum of harmonics and a polynomial trend to generate a noise sequence
that consists of the residuals from the regression.

In Section 6.6 we discuss the modifications to classical least squares regression
analysis that allow for dependence among the residuals from the regression. These
modifications are implemented in the ITSM option Regression>Estimation>
Generalized LS.

(b) Identification and Estimation. Let {Xt} be the mean-corrected transformed
series found as described in (a). The problem now is to find the most satisfactory
ARMA( p, q) model to represent {Xt}. If p and q were known in advance, this would
be a straightforward application of the estimation techniques described in Chapter 5.
However, this is usually not the case, so it becomes necessary also to identify
appropriate values for p and q.

It might appear at first sight that the higher the values chosen for p and q, the
better the resulting fitted model will be. However, as pointed out in Section 5.5,
estimation of too large a number of parameters introduces estimation errors that
adversely affect the use of the fitted model for prediction as illustrated in Section 5.4.
We therefore minimize one of the model selection criteria discussed in Section 5.5 in
order to choose the values of p and q. Each of these criteria includes a penalty term
to discourage the fitting of too many parameters. We shall base our choice of p and
q primarily on the minimization of the AICC statistic, defined as

AICC(φ,θ) = −2 ln L(φ,θ, S(φ,θ)/n) + 2(p + q + 1)n/(n − p − q − 2),

(6.2.1)
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Figure 6-13
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Figure 6-14
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where L(φ,θ, σ 2) is the likelihood of the data under the Gaussian ARMAmodel with
parameters

(
φ,θ, σ 2

)
, and S(φ,θ) is the residual sum of squares defined in (5.2.11).

Once a model has been found that minimizes the AICC value, it is then necessary to
check the model for goodness of fit (essentially by checking that the residuals are like
white noise) as discussed in Section 5.3.

For any fixed values of p and q, the maximum likelihood estimates of φ and
θ are the values that minimize the AICC. Hence, the minimum AICC model (over
any given range of p and q values) can be found by computing the maximum
likelihood estimators for each fixed p and q and choosing from these the maximum
likelihood model with the smallest value of AICC. This can be done with the program
ITSM by using the option Model>Estimation>Autofit. When this option
is selected and upper and lower bounds for p and q are specified, the program
fits maximum likelihood models for each pair ( p, q) in the range specified and
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selects the model with smallest AICC value. If some of the coefficient estimates are
small compared with their estimated standard deviations, maximum likelihood subset
models (with those coefficients set to zero) can also be explored.

The steps in model identification and estimation can be summarized as follows:

• After transforming the data (if necessary) to make the fitting of an ARMA(p, q)
model reasonable, examine the sample ACF and PACF to get some idea of potential
p and q values. Preliminary estimation using the ITSM option Model>Esti-
mation>Preliminary is also useful in this respect. Burg’s algorithm with
AICCminimization rapidly fits autoregressions of all orders up to 27 and selects the
one with minimum AICC value. For preliminary estimation of models with q > 0,
each pair (p, q) must be considered separately.

• Select the option Model>Estimation>Autofit of ITSM. Specify the
required limits for p and q, and the program will then use maximum likelihood
estimation to find the minimum AICC model with p and q in the range specified.

• Examination of the fitted coefficients and their standard errors may suggest that
some of them can be set to zero. If this is the case, then a subset model can be
fitted by clicking on the button Constrain optimization in the Maximum
Likelihood Estimation dialog box and setting the selected coefficients to
zero. Optimization will then give the maximum likelihood model with the chosen
coefficients constrained to be zero. The constrainedmodel is assessed by comparing
its AICC value with those of the other candidate models.

• Check the candidate model(s) for goodness of fit as described in Section 5.3.
These tests can be performed by selecting the option Statistics>Residual
Analysis.

Example 6.2.1 The Australian Red Wine Data

Let {X1, . . . , X130} denote the series obtained from the red wine data of Example 1.1.1
after taking natural logarithms, differencing at lag 12, and subtracting the mean
(0.0681) of the differences. The data prior tomean correction are shown in Figure 6-12.
The sample PACF of {Xt}, shown in Figure 6-14, suggests that an AR(12) model
might be appropriate for this series. To explore this possibility we use the ITSM
option Model>Estimation>Preliminary with Burg’s algorithm and AICC
minimization. As anticipated, the fitted Burg models do indeed have minimum AICC
when p = 12. The fitted model is

(
1 − 0.245B − 0.069B2 − 0.012B3 − 0.021B4 − 0.200B5+0.025B6+0.004B7

− 0.133B8 + 0.010B9 − 0.095B10 + 0.118B11 + 0.384B12
)
Xt = Zt,

with {Zt} ∼ WN(0, 0.0135) and AICC value −158.77. Selecting the option Model>
Estimation>Max likelihood then gives the maximum likelihood AR(12)
model, which is very similar to the Burg model and has AICC value −158.87.
Inspection of the standard errors of the coefficient estimators suggests the possibility
of setting those at lags 2,3,4,6,7,9,10, and 11 equal to zero. If we do this by click-
ing on the Constrain optimization button in the Maximum Likelihood
Estimation dialog box and then reoptimize, we obtain the model,

(
1 − 0.270B − 0.224B5 − 0.149B8 + 0.099B11 + 0.353B12

)
Xt = Zt,

with {Zt} ∼ WN(0, 0.0138) and AICC value −172.49.

In order to check more general ARMA(p, q) models, select the option Model>
Estimation>Autofit and specify the minimum and maximum values of p and
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q to be zero and 15, respectively. (The sample ACF and PACF suggest that these limits
should be more than adequate to include the minimumAICCmodel.) In a few minutes
(depending on the speed of your computer) the program selects an ARMA(1,12) model
with AICC value −172.74, which is slightly better than the subset AR(12) model
just found. Inspection of the estimated standard deviations of the MA coefficients at
lags 1, 3, 4, 6, 7, 9, and 11 suggests setting them equal to zero and reestimating the
values of the remaining coefficients. If we do this by clicking on the Constrain
optimization button in the Maximum Likelihood Estimation dialog
box, setting the required coefficients to zero and then reoptimizing, we obtain the
model,

(1 − 0.286B)Xt =
(

1 + 0.127B2 + 0.183B5 + 0.177B8 + 0.181B10 − 0.554B12
)
Zt,

with {Zt} ∼ WN(0, 0.0120) and AICC value −184.09.

The subset ARMA(1,12) model easily passes all the goodness of fit tests
in the Statistics>Residual Analysis option. In view of this and its small
AICC value, we accept it as a plausible model for the transformed red wine series.

�

Example 6.2.2 The Lake Data

Let {Yt, t = 1, . . . , 99} denote the lake data of Example 1.3.5. We have seen already
in Example 5.2.5 that the ITSM option Model>Estimation>Autofit gives the
minimum-AICC model

Xt−0.7446Xt−1=Zt+0.3213Zt−1, {Zt} ∼ WN(0, 0.4750),

for the mean-corrected series Xt = Yt − 9.0041. The corresponding AICC value is
212.77. Since the model passes all the goodness of fit tests, we accept it as a reasonable
model for the data.

�

6.3 Unit Roots in Time Series Models

The unit root problem in time series arises when either the autoregressive or moving-
average polynomial of an ARMA model has a root on or near the unit circle. A
unit root in either of these polynomials has important implications for modeling.
For example, a root near 1 of the autoregressive polynomial suggests that the data
should be differenced before fitting an ARMA model, whereas a root near 1 of
the moving-average polynomial indicates that the data were overdifferenced. In this
section, we consider inference procedures for detecting the presence of a unit root in
the autoregressive and moving-average polynomials.

6.3.1 Unit Roots in Autoregressions

In Section 6.1 we discussed the use of differencing to transform a nonstationary time
series with a slowly decaying sample ACF and values near 1 at small lags into one
with a rapidly decreasing sample ACF. The degree of differencing of a time series {Xt}
was largely determined by applying the difference operator repeatedly until the sample
ACF of

{∇dXt

}
decays quickly. The differenced time series could then be modeled by

a low-order ARMA( p, q) process, and hence the resulting ARIMA( p, d, q) model
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for the original data has an autoregressive polynomial
(
1−φ1z−· · ·−φpzp

)
(1−z)d [see

(6.1.1)] with d roots on the unit circle. In this subsection we discuss a more systematic
approach to testing for the presence of a unit root of the autoregressive polynomial in
order to decide whether or not a time series should be differenced. This approach was
pioneered by Dickey and Fuller (1979).

Let X1, . . . , Xn be observations from the AR(1) model

Xt − μ = φ1(Xt−1 − μ) + Zt, {Zt} ∼ WN
(
0, σ 2

)
, (6.3.1)

where |φ1| < 1 and μ = EXt. For large n, the maximum likelihood estimator φ̂1 of φ1

is approximately N
(
φ1,

(
1−φ2

1

)
/n

)
. For the unit root case, this normal approximation

is no longer applicable, even asymptotically, which precludes its use for testing the
unit root hypothesis H0 : φ1 = 1 vs. H1 : φ1 < 1. To construct a test of H0, write the
model (6.3.1) as

∇Xt = Xt − Xt−1 = φ∗
0 + φ∗

1Xt−1 + Zt, {Zt} ∼ WN
(
0, σ 2

)
, (6.3.2)

where φ∗
0 = μ(1 − φ1) and φ∗

1 = φ1 − 1. Now let φ̂∗
1 be the ordinary least squares

(OLS) estimator of φ∗
1 found by regressing ∇Xt on 1 and Xt−1. The estimated standard

error of φ̂∗
1 is

ŜE
(
φ̂∗

1

)
= S

(
n∑

t=2

(
Xt−1 − X̄

)2

)−1/2

,

where S2 = ∑n
t=2

(
∇Xt − φ̂∗

0 − φ̂∗
1Xt−1

)2
/(n − 3) and X̄ is the sample mean of

X1, . . . ,Xn−1. Dickey and Fuller derived the limit distribution as n → ∞ of the t-
ratio

τ̂μ := φ̂∗
1/ŜE

(
φ̂∗

1

)
(6.3.3)

under the unit root assumption φ∗
1 = 0, from which a test of the null hypothesis

H0 : φ1 = 1 can be constructed. The 0.01, 0.05, and 0.10 quantiles of the limit
distribution of τ̂μ (see Table 8.5.2 of Fuller 1976) are −3.43, −2.86, and −2.57,
respectively. The augmented Dickey–Fuller test then rejects the null hypothesis of a
unit root, at say, level 0.05 if τ̂μ < −2.86. Notice that the cutoff value for this test
statistic is much smaller than the standard cutoff value of −1.645 obtained from the
normal approximation to the t-distribution, so that the unit root hypothesis is less likely
to be rejected using the correct limit distribution.

The above procedure can be extended to the case where {Xt} follows the AR( p)
model with mean μ given by

Xt − μ = φ1 (Xt−1 − μ) + · · · + φp

(
Xt−p − μ

) + Zt, {Zt} ∼ WN
(
0, σ 2

)
.

This model can be rewritten as (see Problem 6.2)

∇Xt = φ∗
0 + φ∗

1Xt−1 + φ∗
2∇Xt−1 + · · · + φ∗

p∇Xt−p+1 + Zt, (6.3.4)

where φ0 = μ
(
1 − φ1 − · · · − φp

)
, φ∗

1 = ∑p
i=1 φi − 1, and φ∗

j = −∑p
i=j φi, j =

2, . . . , p. If the autoregressive polynomial has a unit root at 1, then 0 = φ (1) = −φ∗
1 ,

and the differenced series {∇Xt} is an AR(p − 1) process. Consequently, testing the
hypothesis of a unit root at 1 of the autoregressive polynomial is equivalent to testing
φ∗

1 = 0. As in the AR(1) example, φ∗
1 can be estimated as the coefficient of Xt−1 in the

OLS regression of ∇Xt onto 1,Xt−1,∇Xt−1, . . . , ∇Xt−p+1. For large n the t-ratio

τ̂μ := φ̂∗
1/ŜE

(
φ̂∗

1

)
, (6.3.5)
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where ŜE
(
φ̂∗

1

)
is the estimated standard error of φ̂∗

1 , has the same limit distribution as

the test statistic in (6.3.3). The augmented Dickey–Fuller test in this case is applied in
exactly the same manner as for the AR(1) case using the test statistic (6.3.5) and the
cutoff values given above.

Example 6.3.1 Consider testing the time series of Example 6.1.1 (see Figure 6-1) for the presence
of a unit root in the autoregressive operator. The sample PACF in Figure 6-3 sug-
gests fitting an AR(2) or possibly an AR(3) model to the data. Regressing ∇Xt on
1,Xt−1,∇Xt−1,∇Xt−2 for t = 4, . . . , 200 using OLS gives

∇Xt =0.1503 − 0.0041Xt−1 + 0.9335∇Xt−1 − 0.1548∇Xt−2 + Zt,

(0.1135) (0.0028) (0.0707) (0.0708)

where {Zt} ∼ WN(0, 0.9639). The test statistic for testing the presence of a unit root is

τ̂μ = −0.0041

0.0028
= −1.464.

Since −1.464 > −2.57, the unit root hypothesis is not rejected at level 0.10. In
contrast, if we had mistakenly used the t-distribution with 193 degrees of freedom
as an approximation to τ̂μ, then we would have rejected the unit root hypothesis at
the 0.10 level (p-value is 0.074). The t-ratios for the other coefficients, φ∗

0 , φ
∗
2 , and

φ∗
3 , have an approximate t-distribution with 193 degrees of freedom. Based on these

t-ratios, the intercept should be 0, while the coefficient of ∇Xt−2 is barely significant.
The evidence is much stronger in favor of a unit root if the analysis is repeated without
a mean term. The fitted model without a mean term is

∇Xt =0.0012Xt−1 + 0.9395∇Xt−1 − 0.1585∇Xt−2 + Zt,

(0.0018) (0.0707) (0.0709)

where {Zt} ∼ WN(0, 0.9677). The 0.01, 0.05, and 0.10 cutoff values for the
corresponding test statistic when a mean term is excluded from the model are −2.58,
−1.95, and −1.62 (see Table 8.5.2 of Fuller 1976). In this example, the test statistic is

τ̂ = −0.0012

0.0018
= −0.667,

which is substantially larger than the 0.10 cutoff value of −1.62.
�

Further extensions of the above test to AR models with p = O
(
n1/3

)
and to

ARMA( p, q) models can be found in Said and Dickey (1984). However, as reported
in Schwert (1987) and Pantula (1991), this test must be used with caution if the
underlying model orders are not correctly specified.

6.3.2 Unit Roots in Moving Averages

A unit root in the moving-average polynomial can have a number of interpretations
depending on the modeling application. For example, let {Xt} be a causal and invertible
ARMA( p, q) process satisfying the equations

φ(B)Xt = θ(B)Zt, {Zt} ∼ WN
(
0, σ 2

)
.

Then the differenced series Yt := ∇Xt is a noninvertible ARMA( p, q + 1) process
with moving-average polynomial θ(z)(1 − z). Consequently, testing for a unit root in
the moving-average polynomial is equivalent to testing that the time series has been
overdifferenced.
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As a second application, it is possible to distinguish between the competingmodels

∇kXt = a + Vt

and

Xt = c0 + c1t + · · · + ckt
k + Wt,

where {Vt} and {Wt} are invertible ARMA processes. For the former model the
differenced series

{∇kXt

}
has no moving-average unit roots, while for the latter model

{∇kXt} has amultiplemoving-average unit root of order k.We can therefore distinguish
between the twomodels by using the observed values of

{∇kXt

}
to test for the presence

of a moving-average unit root.
We confine our discussion of unit root tests to first-order moving-average models,

the general case being considerably more complicated and not fully resolved. Let
X1, . . . , Xn be observations from the MA(1) model

Xt = Zt + θZt−1, {Zt} ∼ IID
(
0, σ 2

)
.

Davis and Dunsmuir (1996) showed that under the assumption θ = −1, n(θ̂ +1) (θ̂ is
the maximum likelihood estimator) converges in distribution. A test of H0 : θ = −1
vs. H1 : θ > −1 can be fashioned on this limiting result by rejecting H0 when

θ̂ > −1 + cα/n,

where cα is the (1 − α) quantile of the limit distribution of n
(
θ̂ + 1

)
. (From

Table 3.2 of Davis et al. (1995), c0.01 = 11.93, c0.05 = 6.80, and c0.10 =
4.90.) In particular, if n = 50, then the null hypothesis is rejected at level 0.05 if
θ̂ > −1 + 6.80/50 = −0.864.

The likelihood ratio test can also be used for testing the unit root hypothesis. The

likelihood ratio for this problem is L(−1, S(−1)/n)/L
(
θ̂ , σ̂ 2

)
, where L

(
θ, σ 2

)
is the

Gaussian likelihood of the data based on anMA(1) model, S(−1) is the sum of squares
given by (5.2.11) when θ = −1, and θ̂ and σ̂ 2 are the maximum likelihood estimators
of θ and σ 2. The null hypothesis is rejected at level α if

λn := −2 ln

⎛

⎝L(−1, S(−1)/n)

L
(
θ̂ , σ̂ 2

)

⎞

⎠ > cLR,α

where the cutoff value is chosen such that Pθ=−1[λn > cLR,α] = α. The limit
distribution of λn was derived by Davis et al. (1995), who also gave selected quantiles
of the limit. It was found that these quantiles provide a good approximation to their
finite-sample counterparts for time series of length n ≥ 50. The limiting quantiles for
λn under H0 are cLR,0.01 = 4.41, cLR,0.05 = 1.94, and cLR,0.10 = 1.00.

Example 6.3.2 For the overshort data {Xt} of Example 3.2.8, the maximum likelihood MA(1) model
for the mean corrected data {Yt = Xt + 4.035} was (see Example 5.4.1)

Yt = Zt − 0.818Zt−1, {Zt} ∼ WN(0, 2040.75).

In the structural formulation of this model given in Example 3.2.8, the moving-average
parameter θ was related to the measurement error variances σ 2

U and σ 2
V through the

equation

θ

1 + θ2
= −σ 2

U

2σ 2
U + σ 2

V

.



6.4 Forecasting ARIMA Models 173

(These error variances correspond to the daily measured amounts of fuel in the tank
and the daily measured adjustments due to sales and deliveries.) A value of θ = −1
indicates that there is no appreciable measurement error due to sales and deliveries
(i.e., σ 2

V = 0), and hence testing for a unit root in this case is equivalent to testing
that σ 2

U = 0. Assuming that the mean is known, the unit root hypothesis is rejected
at α = 0.05, since −0.818 > −1 + 6.80/57 = −0.881. The evidence against H0 is
stronger using the likelihood ratio statistic. Using ITSM and entering theMA(1) model
θ = −1 and σ 2 = 2203.12, we find that −2 ln L(−1, 2203.12) = 604.584, while
−2 lnL(θ̂ , σ̂ 2) = 597.267. Comparing the likelihood ratio statistic λn = 604.584 −
597.267 = 7.317 with the cutoff value cLR,0.01, we reject H0 at level α = 0.01 and
conclude that the measurement error associated with sales and deliveries is nonzero.

In the above example it was assumed that the mean was known. In practice, these
tests should be adjusted for the fact that the mean is also being estimated.

Tanaka (1990) proposed a locally best invariant unbiased (LBIU) test for the unit
root hypothesis. It was found that the LBIU test has slightly greater power than the
likelihood ratio test for alternatives close to θ = −1 but has less power for alternatives
further away from −1 (see Davis et al. 1995). The LBIU test has been extended to
cover more general models by Tanaka (1990) and Tam and Reinsel (1995). Similar
extensions to tests based on the maximum likelihood estimator and the likelihood ratio
statistic have been explored in Davis et al. (1996).

�

6.4 Forecasting ARIMA Models

In this section we demonstrate how the methods of Sections 3.3 and 5.4 can be
adapted to forecast the future values of an ARIMA( p, d, q) process {Xt}. (The required
numerical calculations can all be carried out using the program ITSM.)

If d ≥ 1, the first and second moments EXt and E(Xt+hXt) are not determined by
the difference equations (6.1.1). We cannot expect, therefore, to determine best linear
predictors for {Xt} without further assumptions.

For example, suppose that {Yt} is a causal ARMA( p, q) process and that X0 is any
random variable. Define

Xt = X0 +
t∑

j=1

Yj, t = 1, 2, . . . .

Then {Xt, t ≥ 0} is an ARIMA(p, 1, q) process with mean EXt = EX0 and autocovari-
ances E(Xt+hXt) − (EX0)

2 that depend on Var(X0) and Cov(X0,Yj), j = 1, 2, . . . . The
best linear predictor of Xn+1 based on {1,X0,X1, . . . ,Xn} is the same as the best linear
predictor in terms of the set {1,X0,Y1, . . . ,Yn}, since each linear combination of the
latter is a linear combination of the former and vice versa. Hence, using Pn to denote
best linear predictor in terms of either set and using the linearity of Pn, we can write

PnXn+1 = Pn(X0 + Y1 + · · · + Yn+1) = Pn(Xn + Yn+1) = Xn + PnYn+1.

To evaluate PnYn+1 it is necessary (see Section 2.5) to know E(X0Yj), j=1, . . . , n+1,
and EX2

0 . However, if we assume that X0 is uncorrelated with {Yt, t ≥ 1}, then
PnYn+1 is the same (Problem 6.5) as the best linear predictor Ŷn+1 of Yn+1 in terms of
{1,Y1, . . . ,Yn}, which can be calculated as described in Section 3.3. The assumption
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that X0 is uncorrelated with Y1,Y2, . . . is therefore sufficient to determine the best
linear predictor PnXn+1 in this case.

Turning now to the general case, we shall assume that our observed process {Xt}
satisfies the difference equations

(1 − B)dXt = Yt, t = 1, 2, . . . ,

where {Yt} is a causal ARMA(p, q) process, and that the random vector (X1−d, …, X0)

is uncorrelated with Yt, t > 0. The difference equations can be rewritten in the form

Xt = Yt −
d∑

j=1

(
d

j

)
(−1) jXt−j, t = 1, 2, . . . . (6.4.1)

It is convenient, by relabeling the time axis if necessary, to assume that we observe
X1−d,X2−d, . . . ,Xn. (The observed values of {Yt} are then Y1, . . . ,Yn.) As usual, we
shall use Pn to denote best linear prediction in terms of the observations up to time n
(in this case 1,X1−d, . . . ,Xn or equivalently 1,X1−d, . . . ,X0,Y1, . . . ,Yn).

Our goal is to compute the best linear predictors PnXn+h. This can be done by
applying the operator Pn to each side of (6.4.1) (with t = n+h) and using the linearity
of Pn to obtain

PnXn+h = PnYn+h −
d∑

j=1

(
d

j

)
(−1) jPnXn+h−j. (6.4.2)

Now the assumption that (X1−d, . . . , X0) is uncorrelated with Yt, t> 0, enables us to
identify PnYn+h with the best linear predictor of Yn+h in terms of {1,Y1, . . . ,Yn}, and
this can be calculated as described in Section 3.3. The predictor PnXn+1 is obtained
directly from (6.4.2) by noting that PnXn+1−j = Xn+1−j for each j ≥ 1. The predictor
PnXn+2 can then be found from (6.4.2) using the previously calculated value of
PnXn+1. The predictors PnXn+3, PnXn+4, . . . can be computed recursively in the same
way.

To find the mean squared error of prediction it is convenient to express PnYn+h in
terms of {Xj}. For n ≥ 0 we denote the one-step predictors by Ŷn+1 = PnYn+1 and
X̂n+1 = PnXn+1. Then from (6.4.1) and (6.4.2) we have

Xn+1 − X̂n+1 = Yn+1 − Ŷn+1, n ≥ 1,

and hence from (3.3.12), if n > m = max(p, q) and h ≥ 1, we can write

PnYn+h =
p∑

i=1

φiPnYn+h−i +
q∑

j=h

θn+h−1, j

(
Xn+h−j − X̂n+h−j

)
. (6.4.3)

Setting φ∗(z) = (1 − z)dφ(z) = 1 − φ∗
1z − · · · − φ∗

p+dz
p+d, we find from (6.4.2) and

(6.4.3) that

PnXn+h =
p+d∑

j=1

φ∗
j PnXn+h−j +

q∑

j=h

θn+h−1, j

(
Xn+h−j − X̂n+h−j

)
,

(6.4.4)

which is analogous to the h-step prediction formula (3.3.12) for an ARMA process.
As in (3.3.13), the mean squared error of the h-step predictor is
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σ 2
n (h) = E(Xn+h − PnXn+h)

2 =
h−1∑

j=0

(
j∑

r=0

χrθn+h−r−1, j−r

)2

vn+h−j−1,

(6.4.5)

where θn0 = 1,

χ(z) =
∞∑

r=0

χrz
r = (

1 − φ∗
1z − · · · − φ∗

p+dz
p+d

)−1
,

and

vn+h−j−1 = E
(
Xn+h−j − X̂n+h−j

)2 = E
(
Yn+h−j − Ŷn+h−j

)2
.

The coefficients χj can be found from the recursions (3.3.14) with φ∗
j replacing φj. For

large n we can approximate (6.4.5), provided that θ(·) is invertible, by

σ 2
n (h) =

h−1∑

j=0

ψ2
j σ

2, (6.4.6)

where

ψ(z) =
∞∑

j=0

ψjz
j = (φ∗(z))−1θ(z).

6.4.1 The Forecast Function

Inspection of equation (6.4.4) shows that for fixed n > m = max(p, q), the h-step
predictors

g(h) := PnXn+h,

satisfy the homogeneous linear difference equations

g(h) − φ∗
1g(h − 1) − · · · − φ∗

p+dg(h − p − d) = 0, h > q, (6.4.7)

where φ∗
1 , . . . , φ

∗
p+d are the coefficients of z, . . . , z

p+d in

φ∗(z) = (1 − z)dφ(z).

The solution of (6.4.7) is well known from the theory of linear difference equations
(see Brockwell and Davis (1991), Section 3.6). If we assume that the zeros of φ(z)
(denoted by ξ1, . . . , ξp) are all distinct, then the solution is

g(h) = a0 + a1h+ · · · + ad−1h
d−1 + b1ξ

−h
1 + · · · + bpξ

−h
p , h > q− p− d,

(6.4.8)

where the coefficients a0, . . . , ad−1 and b1, . . . , bp can be determined from the p + d
equations obtained by equating the right-hand side of (6.4.8) for q − p − d < h ≤ q
with the corresponding value of g(h) computed numerically (for h ≤ 0, PnXn+h =
Xn+h, and for 1 ≤ h ≤ q, PnXn+h can be computed from (6.4.4) as already described).
Once the constants ai and bi have been evaluated, the algebraic expression (6.4.8)
gives the predictors for all h > q − p − d. In the case q = 0, the values of g(h) in
the equations for a0, . . . , ad−1, b1, . . . , bp are simply the observed values g(h)=Xn+h,
−p − d ≤ h ≤ 0, and the expression (6.4.6) for the mean squared error is exact.
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The calculation of the forecast function is easily generalized to deal with more
complicated ARIMA processes. For example, if the observations X−13,X−12, . . . , Xn

are differenced at lags 12 and 1, and (1−B)
(
1−B12

)
Xt is modeled as a causal invertible

ARMA(p, q) process with mean μ and max(p, q) < n, then {Xt} satisfies an equation
of the form

φ(B)[(1 − B)(1 − B12)Xt − μ] = θ(B)Zt, {Zt} ∼ WN
(
0, σ 2

)
, (6.4.9)

and the forecast function g(h) = PnXn+h satisfies the analogue of (6.4.7), namely,

φ(B)(1 − B)(1 − B12)g(h) = φ(1)μ, h > q. (6.4.10)

To find the general solution of these inhomogeneous linear difference equations, it
suffices (see Brockwell and Davis (1991), Section 3.6) to find one particular solution
of (6.4.10) and then add to it the general solution of the same equations with the right-
hand side set equal to zero. A particular solution is easily found (by trial and error)
to be

g(h) = μh2

24
,

and the general solution is therefore

g(h) = μh2

24
+ a0 + a1h +

11∑

j=1

cje
ijπ/6 + b1ξ

−h
1 + · · · + bpξ

−h
p ,

h > q − p − 13. (6.4.11)

(The terms a0 and a1h correspond to the double root z = 1 of the equation φ(z)(1 −
z)(1 − z12) = 0, and the subsequent terms to each of the other roots, which we assume
to be distinct.) For q − p − 13 < h ≤ 0, g(h) = Xn+h, and for 1 ≤ h ≤ q, the values
of g(h) = PnXn+h can be determined recursively from the equations

PnXn+h = μ + PnXn−1 + PnXn−12 − PnXn−13 + PnYn+h,

where {Yt} is the ARMA process Yt = (1 − B)
(
1 − B12

)
Xt − μ. Substituting these

values of g(h) into (6.4.11), we obtain a set of p + 13 equations for the coefficients
ai, bj, and ck. Solving these equations then completes the determination of g(h).

The large-sample approximation to the mean squared error is again given by
(6.4.6), with ψj redefined as the coefficient of zj in the power series expansion of
θ(z)/

[
(1 − z)

(
1 − z12

)
φ(z)

]
.

Example 6.4.1 An ARIMA(1,1,0) Model

In Example 5.2.4 we found the maximum likelihood AR(1) model for the mean-
corrected differences Xt of the Dow Jones Utilities Index (August 28–December 18,
1972). The model was

Xt − 0.4471Xt−1 = Zt, {Zt} ∼ WN(0, 0.1455), (6.4.12)

where Xt = Dt − Dt−1 − 0.1336, t = 1, . . . , 77, and {Dt, t = 0, 1, 2, . . . , 77} is the
original series. The model for {Dt} is thus

(1 − 0.4471B)[(1 − B)Dt − 0.1336] = Zt, {Zt} ∼ WN(0, 0.1455).

The recursions for g(h) therefore take the form

(1−0.4471B)(1−B)g(h) = 0.5529×0.1336 = 0.07387, h > 0. (6.4.13)

A particular solution of these equations is g(h) = 0.1336h, so the general solution is

g(h) = 0.1336h + a + b(0.4471)h, h > −2. (6.4.14)
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Substituting g(−1) = D76 = 122 and g(0) = D77 = 121.23 in the equations with
h = −1 and h = 0, and solving for a and b gives

g(h) = 0.1366h + 120.50 + 0.7331(0.4471)h.

Setting h = 1 and h = 2 gives

P77D78 = 120.97 and P77D79 = 120.94.

From (6.4.5) we find that the corresponding mean squared errors are

σ 2
77(1) = v77 = σ 2 = 0.1455

and

σ 2
77(2) = v78 + φ∗

1
2v77 = σ 2

(
1 + 1.44712

) = 0.4502.

(Notice that the approximation (6.4.6) is exact in this case.) The predictors and their
mean squared errors are easily obtained from the program ITSM by opening the file
DOWJ.TSM, differencing at lag 1, fitting a preliminary AR(1) model to the mean-
corrected data with Burg’s algorithm, and selecting Model>Estimation>Max
likelihood to find the maximum likelihood AR(1) model. Predicted values and
their mean squared errors are then found using the option Forecasting>ARMA.

�

6.5 Seasonal ARIMA Models

We have already seen how differencing the series {Xt} at lag s is a convenient way
of eliminating a seasonal component of period s. If we fit an ARMA( p, q) model
φ(B)Yt = θ(B)Zt to the differenced series Yt = (1 − Bs)Xt, then the model for the
original series is φ(B) (1 − Bs)Xt = θ(B)Zt. This is a special case of the general
seasonal ARIMA (SARIMA) model defined as follows.

Definition 6.5.1 If d and D are nonnegative integers, then {Xt} is a seasonal ARIMA( p, d, q) ×
(P,D,Q)s process with period s if the differenced series Yt = (1−B)d(1−Bs)DXt
is a causal ARMA process defined by

φ(B)�
(
Bs)Yt = θ(B)�

(
Bs) Zt, {Zt} ∼ WN

(
0, σ 2

)
, (6.5.1)

where φ(z) = 1 − φ1z − · · · − φpzp, �(z) = 1 − �1z − · · · − �PzP, θ(z) =
1 + θ1z + · · · + θqzq, and �(z) = 1 + �1z + · · · + �QzQ.

Remark 1. Note that the process {Yt} is causal if and only if φ(z) �= 0 and �(z) �= 0
for |z| ≤ 1. In applications D is rarely more than one, and P and Q are typically less
than three. �

Remark 2. Equation (6.5.1) satisfied by the differenced process {Yt} can be rewritten
in the equivalent form

φ∗(B)Yt = θ∗(B)Zt, (6.5.2)

where φ∗(·), θ∗(·) are polynomials of degree p + s P and q + sQ, respectively, whose
coefficients can all be expressed in terms of φ1, . . . , φp, �1, . . . , �P, θ1, . . . , θq, and
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�1, . . . , �Q. Provided that p < s and q < s, the constraints on the coefficients of φ∗(·)
and θ∗(·) can all be expressed as multiplicative relations

φ∗
is+j = φ∗

isφ
∗
j , i = 1, 2, . . . ; j = 1, . . . , s − 1,

and

θ∗
is+j = θ∗

isθ
∗
j , i = 1, 2, . . . ; j = 1, . . . , s − 1.

In Section 1.5 we discussed the classical decomposition model incorporating trend,
seasonality, and random noise, namely, Xt = mt + st + Yt. In modeling real data
it might not be reasonable to assume, as in the classical decomposition model, that
the seasonal component st repeats itself precisely in the same way cycle after cycle.
Seasonal ARIMAmodels allow for randomness in the seasonal pattern from one cycle
to the next. �

Example 6.5.1 Suppose we have r years of monthly data, which we tabulate as follows:

Year/Month 1 2 … 12

1 Y1 Y2 … Y12

2 Y13 Y14 … Y24

3 Y25 Y26 … Y36
...

...
...

...

r Y1+12(r−1) Y2+12(r−1) … Y12+12(r−1)

Each column in this table may itself be viewed as a realization of a time series. Suppose
that each one of these twelve time series is generated by the same ARMA(P,Q)
model, or more specifically, that the series corresponding to the jth month, Yj+12t,

t = 0, . . . , r − 1, satisfies a difference equation of the form

Yj+12t = �1Yj+12(t−1) + · · · + �PYj+12(t−P) + Uj+12t

+�1Uj+12(t−1) + · · · + �QUj+12(t−Q), (6.5.3)

where

{Uj+12t, t = . . . ,−1, 0, 1, . . .} ∼ WN
(
0, σ 2

U

)
. (6.5.4)

Then since the same ARMA(P,Q) model is assumed to apply to each month, (6.5.3)
holds for each j = 1, . . . , 12. (Notice, however, that E(UtUt+h) is not necessarily
zero except when h is an integer multiple of 12.) We can thus write (6.5.3) in the
compact form

�
(
B12

)
Yt = �

(
B12

)
Ut, (6.5.5)

where �(z) = 1 −�1z− · · ·−�PzP, �(z) = 1 +�1z+ · · ·+�QzQ, and {Uj+12t, t =
. . . ,−1, 0, 1, . . .} ∼ WN

(
0, σ 2

U

)
for each j. We refer to the model (6.5.5) as the

between-year model.
�

Example 6.5.2 Suppose P = 0, Q = 1, and �1 = −0.4 in (6.5.5). Then the series for any particular
month is a moving-average of order 1. If E(UtUt+h)=0 for all h, i.e., if the white noise
sequences for different months are uncorrelated with each other, then the columns
themselves are uncorrelated. The correlation function for such a process is shown in
Figure 6-15.

�
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Figure 6-15
The ACF of the model
Xt = Ut − 0.4Ut−12

of Example 6.5.2 Lag
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Figure 6-16
The ACF of the model
Xt − 0.7Xt−12 = Ut

of Example 6.5.3 Lag
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Example 6.5.3 Suppose P = 1, Q = 0, and �1 = 0.7 in (6.5.5). In this case the 12 series (one for
each month) are AR(1) processes that are uncorrelated if the white noise sequences
for different months are uncorrelated. A graph of the autocorrelation function of this
process is shown in Figure 6-16.

�
In each of the Examples 6.5.1–6.5.3, the 12 series corresponding to the dif-

ferent months are uncorrelated. To incorporate dependence between these series
we allow the process {Ut} in (6.5.5) to follow an ARMA( p, q) model,

φ(B)Ut = θ(B)Zt, {Zt} ∼ WN
(
0, σ 2

)
. (6.5.6)

This assumption implies possible nonzero correlation not only between consecutive
values of Ut, but also within the 12 sequences {Uj+12t, t = . . . ,−1, 0, 1, . . .}, each of
which was assumed to be uncorrelated in the preceding examples. In this case (6.5.4)
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may no longer hold; however, the coefficients in (6.5.6) will frequently have values
such that E(UtUt+12j) is small for j = ±1,±2, . . . . Combining the two models (6.5.5)
and (6.5.6) and allowing for possible differencing leads directly to Definition 6.5.1 of
the general SARIMA model as given above.

The first steps in identifying SARIMA models for a (possibly transformed) data
set are to find d and D so as to make the differenced observations

Yt = (1 − B)d (1 − Bs)
D Xt

stationary in appearance (see Sections 6.1–6.3). Next we examine the sample ACF
and PACF of {Yt} at lags that are multiples of s for an indication of the orders P and
Q in the model (6.5.5). If ρ̂(·) is the sample ACF of {Yt}, then P and Q should be
chosen such that ρ̂(ks), k = 1, 2, . . ., is compatible with the ACF of an ARMA(P,Q)
process. The orders p and q are then selected by trying to match ρ̂(1), . . . , ρ̂(s − 1)

with the ACF of an ARMA( p, q) process. Ultimately, the AICC criterion (Section 5.5)
and the goodness of fit tests (Section 5.3) are used to select the best SARIMA model
from competing alternatives.

For given values of p, d, q, P, D, and Q, the parameters φ, θ , �, �, and σ 2 can
be found using the maximum likelihood procedure of Section 5.2. The differences
Yt = (1 − B)d

(
1 − Bs

)D
Xt constitute an ARMA( p + sP, q + sQ) process in which

some of the coefficients are zero and the rest are functions of the ( p + P + q + Q)-
dimensional vector β′ = (φ′,�′, θ ′,�′). For any fixed β the reduced likelihood �(β)

of the differences Yt+d+sD, . . . ,Yn is easily computed as described in Section 5.2. The
maximum likelihood estimator of β is the value that minimizes �(β), and the
maximum likelihood estimate of σ 2 is given by (5.2.10). The estimates can be found
using the program ITSMby specifying the requiredmultiplicative relationships among
the coefficients as given in Remark 2 above.

A more direct approach to modeling the differenced series {Yt} is simply to fit a
subset ARMAmodel of the form (6.5.2) without making use of the multiplicative form
of φ∗(·) and θ∗(·) in (6.5.1).

Example 6.5.4 Monthly Accidental Deaths

In Figure 1-27we showed the series
{
Yt = (

1−B12
)
(1−B)Xt

}
obtained by differencing

the accidental deaths series {Xt} once at lag 12 and once at lag 1. The sample ACF of
{Yt} is shown in Figure 6-17.

�
The values ρ̂(12) = −0.333, ρ̂(24) = −0.099, and ρ̂(36) = 0.013 suggest a

moving-average of order 1 for the between-year model (i.e., P = 0 and Q = 1).
Moreover, inspection of ρ̂(1), . . . , ρ̂(11) suggests that ρ(1) is the only short-term
correlation different from zero, so we also choose a moving-average of order 1 for
the between-month model (i.e., p = 0 and q = 1). Taking into account the sample
mean (28.831) of the differences {Yt}, we therefore arrive at the model

Yt = 28.831 + (1 + θ1B)(1 + �1B
12)Zt, {Zt} ∼ WN

(
0, σ 2

)
,

(6.5.7)

for the series {Yt}. The maximum likelihood estimates of the parameters are obtained
from ITSM by opening the file DEATHS.TSM and proceeding as follows. After
differencing (at lags 1 and 12) and then mean-correcting the data, choose the option
Model>Specify. In the dialog box enter an MA(13) model with θ1 = −0.3,
θ12 = −0.3, θ13 = 0.09, and all other coefficients zero. (This corresponds to the initial
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Figure 6-17
The sample ACF of the
differenced accidental

deaths {∇∇12Xt} Lag
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guess Yt = (1 − 0.3B)
(
1 − 0.3B12

)
Zt.) Then choose Model>Estimation>Max

likelihood and click on the button Constrain optimization. Specify the
number of multiplicative relations (one in this case) in the box provided and define the
relationship by entering 1, 12, 13 to indicate that θ1 × θ12 = θ13. Click OK to return
to the Maximum Likelihood dialog box. Click OK again to obtain the parameter
estimates

θ̂1 = −0.478,

�1 = −0.591,

and

σ̂ 2 = 94, 255,

with AICC value 855.53. The corresponding fitted model for {Xt} is thus the SARIMA
(0, 1, 1) × (0, 1, 1)12 process

∇∇12Xt = 28.831 + (1 − 0.478B)
(
1 − 0.591B12

)
Zt, (6.5.8)

where {Zt} ∼ WN(0, 94390).
If we adopt the alternative approach of fitting a subset ARMA model to {Yt}

without seeking a multiplicative structure for the operators φ∗(B) and θ∗(B) in (6.5.2),
we begin by fitting a preliminary MA(13) model (as suggested by Figure 6-17) to
the series {Yt}. We then fit a maximum likelihood MA(13) model and examine the
standard errors of the coefficient estimators. This suggests setting the coefficients at
lags 2, 3, 8, 10, and 11 equal to zero, since these are all less than one standard error from
zero. To do this select Model>Estimation>Max likelihood and click on the
button Constrain optimization. Then highlight the coefficients to be set to
zero and click on the button Set to zero. Click OK to return to the Maximum
Likelihood Estimation dialog box and again to carry out the constrained
optimization. The coefficients that have been set to zero will be held at that value, and
the optimization will be with respect to the remaining coefficients. This gives a model
with substantially smaller AICC than the unconstrained MA(13) model. Examining
the standard errors again we see that the coefficients at lags 4, 5, and 7 are promising
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candidates to be set to zero, since each of them is less than one standard error from
zero. Setting these coefficients to zero in the sameway and reoptimizing gives a further
reduction in AICC. Setting the coefficient at lag 9 to zero and reoptimizing again gives
a further reduction in AICC (to 855.61) and the fitted model

∇∇12Xt = 28.831 + Zt − 0.596Zt−1 − 0.407Zt−6 − 0.685Zt−12 + 0.460Zt−13,

{Zt} ∼ WN(0, 71240). (6.5.9)

The AICC value 855.61 is quite close to the value 855.53 for the model (6.5.8). The
residuals from the two models are also very similar, the randomness tests (with the
exception of the difference-sign test) yielding high p-values for both.

6.5.1 Forecasting SARIMA Processes

Forecasting SARIMA processes is completely analogous to the forecasting of ARIMA
processes discussed in Section 6.4. Expanding out the operator (1 − B)d

(
1 − Bs

)D
in

powers of B, rearranging the equation

(1 − B)d (1 − Bs)
D Xt = Yt,

and setting t = n + h gives the analogue

Xn+h = Yn+h +
d+Ds∑

j=1

ajXn+h−j (6.5.10)

of equation (6.4.2). Under the assumption that the first d+Ds observations X−d−Ds+1,

. . . ,X0 are uncorrelated with {Yt, t ≥ 1}, we can determine the best linear predictors
PnXn+h of Xn+h based on {1,X−d−Ds+1, . . . ,Xn} by applying Pn to each side of (6.5.10)
to obtain

PnXn+h = PnYn+h +
d+Ds∑

j=1

ajPnXn+h−j. (6.5.11)

The first term on the right is just the best linear predictor of the (possibly nonzero-
mean) ARMA process {Yt} in terms of {1,Y1, . . . ,Yn}, which can be calculated as
described in Section 3.3. The predictors PnXn+h can then be computed recursively for
h = 1, 2, . . . from (6.5.11), if we note that PnXn+1−j = Xn+1−j for each j ≥ 1.

An argument analogous to the one leading to (6.4.5) gives the prediction mean
squared error as

σ 2
n (h) = E(Xn+h − PnXn+h)

2 =
h−1∑

j=0

(
j∑

r=0

χrθn+h−r−1,j−r

)2

vn+h−j−1,

(6.5.12)

where θnj and vn are obtained by applying the innovations algorithm to the differenced
series {Yt} and

χ(z) =
∞∑

r=0

χrz
r =

[
φ(z)�

(
z s

)
(1 − z)d

(
1 − z s

)D]−1
, |z| < 1.
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Table 6.1 Predicted values of the Accidental Deaths series for
t = 73, . . . ,78, the standard deviations σt of the
prediction errors, and the corresponding observed
values of Xt f r the same period

t 73 74 75 76 77 78

Model (6.5.8)
Predictors 8441 7704 8549 8885 9843 10279

σt 308 348 383 415 445 474
Model (6.5.9)

Predictors 8345 7619 8356 8742 9795 10179
σt 292 329 366 403 442 486

Observed values
Xt 7798 7406 8363 8460 9217 9316

For large n we can approximate (6.5.12), if θ(z)� (z s) is nonzero for all |z| ≤ 1, by

σ 2
n (h) =

h−1∑

j=0

ψ2
j σ

2, (6.5.13)

where

ψ(z) =
∞∑

j=0

ψj z
j = θ(z)� (z s)

φ(z)� (z s) (1 − z)d (1 − z s)D
, |z| < 1.

The required calculations can all be carried out with the aid of the program ITSM.
The mean squared errors are computed from the large-sample approximation (6.5.13)
if the fitted model is invertible. If the fitted model is not invertible, ITSM computes the
mean squared errors by converting the model to the equivalent (in terms of Gaussian
likelihood) invertible model and then using (6.5.13).

Example 6.5.5 Monthly Accidental Deaths

Continuing with Example 6.5.4, we next use ITSM to predict six future values of
the Accidental Deaths series using the fitted models (6.5.8) and (6.5.9). First fit the
desired model as described in Example 6.5.4 or enter the data and model directly
by opening the file DEATHS.TSM, differencing at lags 12 and 1, subtracting the
mean, and then entering the MA(13) coefficients and white noise variance using the
option Model>Specify. Select Forecasting>ARMA, and you will see the ARMA
Forecast dialog box. Enter 6 for the number of predicted values required. You will
notice that the default options in the dialog box are set to generate predictors of the
original series by reversing the transformations applied to the data. If for some reason
you wish to predict the transformed data, these check marks can be removed. If you
wish to include prediction bounds in the graph of the predictors, check the appropriate
box and specify the desired coefficient (e.g., 95%). Click OK, and you will see a
graph of the data with the six predicted values appended. For numerical values of
the predictors and prediction bounds, right-click on the graph and then on Info. The
prediction bounds are computed under the assumption that the white noise sequence in
the ARMAmodel for the transformed data is Gaussian. Table 6.1 shows the predictors
and standard deviations of the prediction errors under both models (6.5.8) and (6.5.9)
for the Accidental Deaths series.

�
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6.6 Regression with ARMA Errors

6.6.1 OLS and GLS Estimation

In standard linear regression, the errors (or deviations of the observations from the
regression function) are assumed to be independent and identically distributed. In
many applications of regression analysis, however, this assumption is clearly
violated, as can be seen by examination of the residuals from the fitted regression
and their sample autocorrelations. It is often more appropriate to assume that the
errors are observations of a zero-mean second-order stationary process. Since many
autocorrelation functions can be well approximated by the autocorrelation function of
a suitably chosen ARMA(p, q) process, it is of particular interest to consider the model

Yt = x′
tβ + Wt, t = 1, . . . , n, (6.6.1)

or in matrix notation,

Y = Xβ + W, (6.6.2)

where Y = (Y1, . . . ,Yn)′ is the vector of observations at times t = 1, . . . , n, X
is the design matrix whose tth row, x′

t = (xt1, . . . , xtk), consists of the values of
the explanatory variables at time t, β = (β1, . . . ,βk)

′ is the vector of regression
coefficients, and the components of W = (W1, . . . ,Wn)

′ are values of a causal zero-
mean ARMA( p, q) process satisfying

φ(B)Wt = θ(B)Zt, {Zt} ∼ WN
(
0, σ 2

)
. (6.6.3)

The model (6.6.1) arises naturally in trend estimation for time series data. For
example, the explanatory variables xt1 = 1, xt2 = t, and xt3 = t2 can be used to
estimate a quadratic trend, and the variables xt1 = 1, xt2 = cos(ωt), and xt3 = sin(ωt)
can be used to estimate a sinusoidal trend with frequency ω. The columns of X are
not necessarily simple functions of t as in these two examples. Any specified column
of relevant variables, e.g., temperatures at times t = 1, . . . , n, can be included in the
design matrix X, in which case the regression is conditional on the observed values of
the variables included in the matrix.

The ordinary least squares (OLS) estimator of β is the value, β̂OLS, which
minimizes the sum of squares

(Y − Xβ)′(Y − Xβ) =
n∑

t=1

(
Yt − x′

tβ
)2

.

Equating to zero the partial derivatives with respect to each component of β and
assuming (as we shall) that X′X is nonsingular, we find that

β̂OLS = (X′X)−1X′Y. (6.6.4)

(If X′X is singular, β̂OLS is not uniquely determined but still satisfies (6.6.4) with
(X′X)−1 any generalized inverse of X′X.) The OLS estimate also maximizes the
likelihood of the observations when the errors W1, . . . ,Wn are iid and Gaussian. If
the design matrix X is nonrandom, then even when the errors are non-Gaussian and
dependent, the OLS estimator is unbiased (i.e., E

(
β̂OLS

) = β) and its covariance
matrix is

Cov(β̂OLS) = (
X′X

)−1
X′�nX

(
X′X

)−1
, (6.6.5)

where �n = E
(
WW′) is the covariance matrix of W.
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The generalized least squares (GLS) estimator of β is the value β̂GLS that
minimizes the weighted sum of squares

(Y − Xβ)′ �−1
n (Y − Xβ) . (6.6.6)

Differentiating partially with respect to each component of β and setting the deriva-
tives equal to zero, we find that

β̂GLS = (
X′�−1

n X
)−1

X′�−1
n Y. (6.6.7)

If the design matrix X is nonrandom, the GLS estimator is unbiased and has covariance
matrix

Cov
(
β̂GLS

)
= (

X′�−1
n X

)−1
. (6.6.8)

It can be shown that the GLS estimator is the best linear unbiased estimator of β, i.e.,
for any k-dimensional vector c and for any unbiased estimator β̂ of β that is a linear
function of the observations Y1, . . . ,Yn,

Var
(
c′β̂GLS

)
≤ Var

(
c′β̂

)
.

In this sense the GLS estimator is therefore superior to the OLS estimator. However,
it can be computed only if φ and θ are known.

Let V(φ,θ) denote the matrix σ−2�n and let T(φ,θ) be any square root of V−1

(i.e., a matrix such that T ′T = V−1). Then we can multiply each side of (6.6.2) by T
to obtain

TY = TXβ + TW, (6.6.9)

a regression equation with coefficient vector β, data vector TY, design matrix TX, and
error vector TW. Since the latter has uncorrelated, zero-mean components, each with
variance σ 2, the best linear estimator of β in terms of TY (which is clearly the same
as the best linear estimator of β in terms of Y, i.e., β̂GLS) can be obtained by applying
OLS estimation to the transformed regression equation (6.6.9). This gives

β̂GLS = (
X′T ′TX

)−1
X′T ′TY, (6.6.10)

which is clearly the same as (6.6.7). Cochran and Orcutt (1949) pointed out that if {Wt}
is an AR( p) process satisfying

φ(B)Wt = Zt, {Zt} ∼ WN
(
0, σ 2

)
,

then application of φ(B) to each side of the regression equations (6.6.1) transforms
them into regression equations with uncorrelated, zero-mean, constant-variance errors,
so that ordinary least squares can again be used to compute best linear unbiased
estimates of the components of β in terms of Y∗

t = φ(B)Yt, t = p + 1, . . . , n. This
approach eliminates the need to compute the matrix T but suffers from the drawback
thatY∗ does not contain all the information inY. Cochrane andOrcutt’s transformation
can be improved, and at the same generalized to ARMA errors, as follows.

Instead of applying the operator φ(B) to each side of the regression equations
(6.6.1), we multiply each side of equation (6.6.2) by the matrix T(φ,θ) that maps {Wt}
into the residuals [see (5.3.1)] of {Wt} from the ARMAmodel (6.6.3). We have already
seen how to calculate these residuals using the innovations algorithm in Section 3.3.
To see that T is a square root of the matrix V as defined in the previous paragraph, we
simply recall that the residuals are uncorrelated with zero mean and variance σ 2, so
that

Cov(TW) = T�nT
′ = σ 2I,
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where I is the n × n identity matrix. Hence

T ′T = σ 2�−1
n = V−1.

GLS estimation ofβ can therefore be carried out by multiplying each side of (6.6.2) by
T and applying ordinary least squares to the transformed regression model. It remains
only to compute TY and TX.

Any data vector d = (d1, . . . , dn)′ can be left-multiplied by T simply by reading it
into ITSM, entering the model (6.6.3), and pressing the green button labeled RES,
which plots the residuals. (The calculations are performed using the innovations
algorithm as described in Section 3.3.) The GLS estimator β̂GLS is computed as
follows. The data vector Y is left-multiplied by T to generate the transformed data
vector Y∗, and each column of the design matrix X is left-multiplied by T to generate
the corresponding column of the transformed design matrix X∗. Then

β̂GLS =
(
X∗′

X∗
)−1

X∗′
Y∗. (6.6.11)

The calculations ofY∗, X∗, and hence of β̂GLS, are all carried out by the program ITSM
in the option Regression>Estimation>Generalized LS.

6.6.2 ML Estimation

If (as is usually the case) the parameters of the ARMA(p, q) model for the errors
are unknown, they can be estimated together with the regression coefficients by
maximizing the Gaussian likelihood

L
(
β, φ,θ, σ 2

) = (2π)−n/2(det �n)
−1/2 exp

{
−1

2

(
Y − Xβ

)′
�−1
n

(
Y − Xβ

)}
,

where �n

(
φ,θ, σ 2

)
is the covariance matrix of W = Y − Xβ. Since {Wt} is an

ARMA(p, q) process with parameters
(
φ,θ, σ 2

)
, the maximum likelihood estimators

β̂, φ̂, and θ̂ are found (as in Section 5.2) by minimizing

�(β, φ,θ) = ln
(
n−1S(β, φ,θ)

) + n−1
n∑

t=1

ln rt−1, (6.6.12)

where

S(β, φ,θ) =
n∑

t=1

(
Wt − Ŵt

)2
/rt−1,

Ŵt is the best one-step predictor ofWt, and rt−1σ
2 is its mean squared error. The func-

tion �(β, φ,θ) can be expressed in terms of the observations {Yt} and the parametersβ,
φ, and θ using the innovations algorithm (see Section 3.3) and minimized numerically
to give the maximum likelihood estimators, β̂, φ̂, and θ̂. The maximum likelihood

estimator of σ 2 is then given, as in Section 5.2, by σ̂ 2 = S
(
β̂, φ̂, θ̂

)
/n.

An extension of an iterative scheme, proposed by Cochran and Orcutt (1949) for
the case q = 0, simplifies the minimization considerably. It is based on the observation
that for fixed φ and θ, the value of β that minimizes �(β, φ,θ) is β̂GLS(φ,θ), which
can be computed algebraically from (6.6.11) instead of by searching numerically for
the minimizing value. The scheme is as follows.

(i) Compute β̂OLS and the estimated residuals Yt − x′
tβ̂OLS, t = 1, . . . , n.
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(ii) Fit an ARMA(p.q) model by maximum Gaussian likelihood to the estimated
residuals.

(iii) For the fitted ARMA model compute the corresponding estimator β̂GLS from
(6.6.11).

(iv) Compute the residuals Yt − x′
tβ̂GLS, t = 1, . . . , n, and return to (ii), stopping

when the estimators have stabilized.

If {Wt} is a causal and invertible ARMA process, then under mild conditions on
the explanatory variables xt, the maximum likelihood estimates are asymptotically
multivariate normal (see Fuller 1976). In addition, the estimated regression coefficients
are asymptotically independent of the estimated ARMA parameters.

The large-sample covariance matrix of the ARMA parameter estimators, suitably
normalized, has a complicated form that involves both the regression variables xt and
the covariance function of {Wt}. It is therefore convenient to estimate the covariance
matrix as −H−1, where H is the Hessian matrix of the observed log-likelihood
evaluated at its maximum.

The OLS, GLS, and maximum likelihood estimators of the regression coefficients
all have the same asymptotic covariance matrix, so in this sense the dependence does
not play a major role. However, the asymptotic covariance of both the OLS and GLS
estimators can be very inaccurate if the appropriate covariance matrix �n is not used in
the expressions (6.6.5) and (6.6.8). This point is illustrated in the following examples.

Remark 1. The use of the innovations algorithm for GLS and ML estimation extends
to regression with ARIMA errors (see Example 6.6.3 below) and FARIMA errors
(FARIMA processes are defined in Section 10.5). �

Example 6.6.1 The Overshort Data

The analysis of the overshort data in Example 3.2.8 suggested the model

Yt = β + Wt,

where −β is interpreted as the daily leakage from the underground storage tank and
{Wt} is the MA(1) process

Wt = Zt + θZt−1, {Zt} ∼ WN
(
0, σ 2

)
.

(Here k = 1 and xt1 = 1.) The OLS estimate of β is simply the sample mean β̂OLS =
Ȳn = −4.035. Under the assumption that {Wt} is iid noise, the estimated variance
of the OLS estimator of β is γ̂Y (0)/57 = 59.92. However, since this estimate of the
variance fails to take dependence into account, it is not reliable.

To find maximum Gaussian likelihood estimates of β and the parame-
ters of {Wt} using ITSM, open the file OSHORTS.TSM, select the option
Regression>Specify and check the box marked Include intercept
term only. Then press the blue GLS button and you will see the estimated value
of β. (This is in fact the same as the OLS estimator since the default model in ITSM
is WN(0,1).) Then select Model>Estimation>Autofit and press Start. The
autofit option selects the minimum AICC model for the residuals,

Wt = Zt − 0.818Zt−1, {Zt} ∼ WN(0, 2041), (6.6.13)

and displays the estimated MA coefficient θ̂ (0)

1 = −0.818 and the corresponding GLS
estimate β̂

(1)
GLS = −4.745, with a standard error of 1.188, in the Regression

estimates window. (If we reestimate the variance of the OLS estimator, using
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(6.6.5) with�57 computed from themodel (6.6.13), we obtain the value 2.214, a drastic
reduction from the value 59.92 obtained when dependence is ignored. For a positively
correlated time series, ignoring the dependence would lead to underestimation of the
variance.)

Pressing the blue MLE button will reestimate the MA parameters using the
residuals from the updated regression and at the same time reestimate the regression
coefficient, printing the new parameters in the Regression estimates window.
After this operation has been repeated several times, the parameters will stabilize, as
shown in Table 6.2. Estimated 95% confidence bounds for β using the GLS estimate
are −4.75 ± 1.96(1.408)1/2 = (−7.07,−2.43), strongly suggesting that the storage
tank has a leak. Such a conclusion would not have been reached without taking into
account the dependence in the data.

�

Table 6.2 Estimates of β and θ1
for the overshort data of
Example 6.6.1

Iteration i θ̂ (i) β̂
(i)
1

0 0 −4.035
1 −0.818 −4.745
2 −0.848 −4.780
3 −0.848 −4.780

Example 6.6.2 The Lake Data

In Examples 5.2.4 and 5.5.2 we found maximum likelihood ARMA(1,1) and AR(2)
models for the mean-corrected lake data. Now let us consider fitting a linear trend to
the data with AR(2) noise. The choice of an AR(2) model was suggested by an analysis
of the residuals obtained after removing a linear trend from the data using OLS. Our
model now takes the form

Yt = β0 + β1t + Wt,

where {Wt} is the AR(2) process satisfying
Wt = φ1Wt−1 + φ2Wt−2 + Zt, {Zt} ∼ WN

(
0, σ 2

)
.

From Example 1.3.5, we find that the OLS estimate ofβ is β̂OLS=(10.202,−0.0242)′.
If we ignore the correlation structure of the noise, the estimated covariance matrix �n

ofW is γ̂ (0)I (where I is the identity matrix). The corresponding estimated covariance
matrix of β̂OLS is (from (6.6.5))

γ̂Y(0)
(
X′X

)−1 = γ̂Y(0)

[
n

∑n
t=1 t

∑n
t=1 t

∑n
t=1 t

2

]−1

=
[

0.07203 −0.00110
−0.00110 0.00002

]
.

(6.6.14)

However, the estimated model for the noise process, found by fitting an AR(2) model
to the residuals Yt − β̂′

OLSxt, is

Wt = 1.008Wt−1 − 0.295Wt−2 + Zt, {Zt} ∼ WN(0, 0.4571).
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Table 6.3 Estimates of β and φ for the lake data
after 3 iterations

Iteration i φ̂
(i)
1 φ̂

(i)
2 β̂

(i)
1 β̂

(i)
2

0 0 0 10.20 −0.0242

1 1.008 −0.295 10.09 −0.0216

2 1.005 −0.291 10.09 −0.0216

Assuming that this is the true model for {Wt}, the GLS estimate is found to be
(10.091,−0.0216)′, in close agreement with the OLS estimate. The estimated covari-
ance matrices for the OLS and GLS estimates are given by

Cov
(
β̂OLS

)
=

[
0.22177 −0.00335

−0.00335 0.00007

]

and

Cov
(
β̂GLS

)
=

[
0.21392 −0.00321

−0.00321 0.00006

]
.

Notice how the estimated variances of the OLS and GLS estimators are nearly three
times the magnitude of the corresponding variance estimates of the OLS calculated
under the independence assumption [see (6.6.14)]. Estimated 95% confidence bounds
for the slope β1 using the GLS estimate are−0.0216±1.96(0.00006)1/2 = −0.0216±
.0048, indicating a significant decreasing trend in the level of Lake Huron during the
years 1875–1972.

The iterative procedure described above was used to produce maximum likelihood
estimates of the parameters. The calculations using ITSM are analogous to those
in Example 6.6.1. The results from each iteration are summarized in Table 6.3.
As in Example 6.6.1, the convergence of the estimates is very rapid.

�

Example 6.6.3 Seat-Belt Legislation; SBL.TSM

Figure 6-18 shows the numbers of monthly deaths and serious injuries Yt, t =
1, . . . , 120, on UK roads for 10 years beginning in January 1975. They are filed
as SBL.TSM. Seat-belt legislation was introduced in February 1983 in the hope of
reducing the mean number of monthly “deaths and serious injuries,” (from t = 99
onwards). In order to study whether or not there was a drop in mean from that time
onwards, we consider the regression,

Yt = a + bf (t) + Wt, t = 1, . . . , 120, (6.6.15)

where ft = 0 for 1 ≤ t ≤ 98, and ft = 1 for t ≥ 99. The seat-belt legislation
will be considered effective if the estimated value of the regression coefficient b
is significantly negative. This problem also falls under the heading of intervention
analysis (see Section 11.2).

OLS regression based on the model (6.6.15) suggests that the error sequence {Wt}
is highly correlated with a strong seasonal component of period 12. (To do the regres-
sion using ITSM open the file SBL.TSM, select Regression>Specify, check
only Include intercept term and Include auxiliary variables,
press the Browse button, and select the file SBLIN.TSM, which contains the
function ft of (6.6.15) and enter 1 for the number of columns. Then select the
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Figure 6-18
Monthly deaths and serious
injuries {Yt} on UK roads,
January 1975–December
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option Regression>Estimation>Generalized LS. The estimates of the
coefficients a and b are displayed in the Regression estimates window, and
the data become the estimates of the residuals {Wt}.) The graphs of the data and
sample ACF clearly suggest a strong seasonal component with period 12. In order to
transform the model (6.6.15) into one with stationary residuals, we therefore consider
the differenced data Xt = Yt − Yt−12, which satisfy

Xt = bgt + Nt, t = 13, . . . , 120, (6.6.16)

where gt = 1 for 98 ≤ t ≤ 110, gt = 0 otherwise, and {Nt = Wt − Wt−12} is a
stationary sequence to be represented by a suitably chosen ARMA model. The series
{Xt} is contained in the file SBLD.TSM, and the function gt is contained in the file
SBLDIN.TSM.

The next step is to perform ordinary least squares regression of Xt on gt following
steps analogous to those of the previous paragraph (but this time checking only the
box marked Include auxiliary variables in the Regression Trend
Function dialog box) and again using the option Regression>Estimation>
Generalized LS or pressing the blue GLS button. The model

Xt = −346.92gt + Nt, (6.6.17)

is then displayed in the Regression estimates window together with the
assumed noise model (white noise in this case). Inspection of the sample ACF
of the residuals suggests an MA(13) or AR(13) model for {Nt}. Fitting AR
and MA models of order up to 13 (with no mean-correction) using the option
Model>Estimation>Autofit gives an MA(12) model as the minimum AICC
fit for the residuals. Once this model has been fitted, the model in the Regression
estimates window is automatically updated to

Xt = −328.45gt + Nt, (6.6.18)

with the fitted MA(12) model for the residuals also displayed. After several iterations
(each iteration is performed by pressing the MLE button) we arrive at the model

Xt = −328.45gt + Nt, (6.6.19)
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Figure 6-19
The differenced deaths and
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roads {Xt = Yt − Yt−12},
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with

Nt = Zt+0.219Zt−1+0.098Zt−2+0.031Zt−3+0.064Zt−4+0.069Zt−5+0.111Zt−6

+0.081Zt−7 + 0.057Zt−8+0.092Zt−9 − 0.028Zt−10+0.183Zt−11−0.627Zt−12,

where {Zt} ∼ WN(0, 12, 581). The estimated standard deviation of the regression
coefficient estimator is 49.41, so the estimated coefficient, −328.45, is very signifi-
cantly negative, indicating the effectiveness of the legislation. The differenced data are
shown in Figure 6-19 with the fitted regression function.

�
Problems

6.1 Suppose that {Xt} is an ARIMA(p, d, q) process satisfying the difference
equations

φ(B)(1 − B)dXt = θ(B)Zt, {Zt} ∼ WN
(
0, σ 2

)
.

Show that these difference equations are also satisfied by the processWt = Xt +
A0 + A1t + · · · + Ad−1td−1, where A0, . . . ,Ad−1 are arbitrary random variables.

6.2 Verify the representation given in (6.3.4).

6.3 Test the data in Example 6.3.1 for the presence of a unit root in an AR(2) model
using the augmented Dickey–Fuller test.

6.4 Apply the augmented Dickey–Fuller test to the levels of Lake Huron data
(LAKE.TSM). Perform two analyses assuming AR(1) and AR(2) models.

6.5 If {Yt} is a causal ARMA process (with zero mean) and if X0 is a random
variable with finite second moment such that X0 is uncorrelated with Yt for each
t = 1, 2, . . ., show that the best linear predictor of Yn+1in terms of 1,

X0,Y1, . . . ,Yn is the same as the best linear predictor of Yn+1 in terms of
1,Y1, . . . ,Yn.
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6.6 Let {Xt} be the ARIMA(2,1,0) process satisfying
(
1 − 0.8B + 0.25B2

)∇Xt = Zt, {Zt} ∼ WN(0, 1).

(a) Determine the forecast function g(h) = PnXn+h for h > 0.
(b) Assuming that n is large, compute σ 2

n (h) for h = 1, . . . , 5.

6.7 Use a text editor to create a new data set ASHORT.TSM that consists of the data
in AIRPASS.TSM with the last 12 values deleted. Use ITSM to find an ARIMA
model for the logarithms of the data in ASHORT.TSM. Your analysis should
include
(a) a logical explanation of the steps taken to find the chosen model,
(b) approximate 95% bounds for the components of φ and θ,
(c) an examination of the residuals to check for whiteness as described in

Section 1.6,
(d) a graph of the series ASHORT.TSM showing forecasts of the next 12 values

and 95% prediction bounds for the forecasts,
(e) numerical values for the 12-step ahead forecast and the corresponding 95%

prediction bounds,
(f) a table of the actual forecast errors, i.e.„ the true value (deleted from

AIRPASS.TSM) minus the forecast value, for each of the 12 forecasts.
Does the last value of AIRPASS.TSM lie within the corresponding 95% pre-
diction bounds?

6.8 Repeat Problem 6.7, but instead of differencing, apply the classical decomposi-
tion method to the logarithms of the data in ASHORT.TSM by deseasonalizing,
subtracting a quadratic trend, and then finding an appropriate ARMA model
for the residuals. Compare the 12 forecast errors found from this approach with
those found in Problem 6.7.

6.9 Repeat Problem 6.7 for the series BEER.TSM, deleting the last 12 values
to create a file named BSHORT.TSM.

6.10 Repeat Problem 6.8 for the series BEER.TSM and the shortened series
BSHORT.TSM.

6.11 A time series {Xt} is differenced at lag 12, then at lag 1 to produce a zero-mean
series {Yt} with the following sample ACF:

ρ̂(12j) ≈ (0.8) j, j = 0,±1,±2, . . . ,

ρ̂(12j ± 1) ≈ (0.4)(0.8) j, j = 0,±1,±2, . . . ,

ρ̂(h) ≈ 0, otherwise,

and γ̂ (0) = 25.

(a) Suggest a SARIMA model for {Xt} specifying all parameters.
(b) For large n, express the one- and twelve-step linear predictors PnXn+1 and

PnXn+12 in terms of Xt, t = −12,−11, . . . , n, and Yt − Ŷt, t = 1, . . . , n.
(c) Find the mean squared errors of the predictors in (b).

6.12 Use ITSM to verify the calculations of Examples 6.6.1–6.6.3.

6.13 The file TUNDRA.TSM contains the average maximum temperature over the
month of February for the years 1895-1993 in an area of the USA whose
vegetation is characterized as tundra.



Problems 193

(a) Fit a straight line to the data using OLS. Is the slope of the line significantly
different from zero?

(b) Find an appropriate ARMA model to the residuals from the OLS fit in (a).
(c) Calculate the MLE estimates of the intercept and the slope of the line and

the ARMA parameters in (a). Is the slope of the line significantly different
from zero?

(d) Use your model to forecast the average maximum temperature for the years
1994–2004.
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