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The determination of an appropriate ARMA(p, q) model to represent an observed
stationary time series involves a number of interrelated problems. These include
the choice of p and q (order selection) and estimation of the mean, the coefficients
{φi, i = 1, . . . , p}, {θi, i = 1, . . . , q}, and the white noise variance σ 2. Final
selection of the model depends on a variety of goodness of fit tests, although it can
be systematized to a large degree by use of criteria such as minimization of the
AICC statistic as discussed in Section 5.5. (A useful option in the program ITSM
is Model>Estimation>Autofit, which automatically minimizes the AICC
statistic over all ARMA(p, q) processes with p and q in a specified range.)

This chapter is primarily devoted to the problem of estimating the parameters
φ = (φi, . . . , φp), θ = (θi, . . . , θq), and σ 2 when p and q are assumed to be known,
but the crucial issue of order selection is also considered. It will be assumed throughout
(unless the mean is believed a priori to be zero) that the data have been “mean-
corrected” by subtraction of the samplemean, so that it is appropriate to fit a zero-mean
ARMAmodel to the adjusted data x1, . . . , xn. If the model fitted to the mean-corrected
data is

φ(B)Xt = θ(B)Zt, {Zt} ∼ WN
(
0, σ 2

)
,

then the corresponding model for the original stationary series {Yt} is found on
replacing Xt for each t by Yt − y, where y = n−1∑n

j=1 yj is the sample mean of the
original data, treated as a fixed constant.

When p and q are known, good estimators of φ and θ can be found by imagining
the data to be observations of a stationary Gaussian time series and maximizing
the likelihood with respect to the p + q + 1 parameters φ1, . . . , φp, θ1, . . . , θq
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122 Chapter 5 Modeling and Forecasting with ARMA Processes

and σ 2. The estimators obtained by this procedure are known as maximum likelihood
(or maximum Gaussian likelihood) estimators. Maximum likelihood estimation is
discussed in Section 5.2 and can be carried out in practice using the ITSM option
Model>Estimation>Max likelihood, after first specifying a preliminary
model to initialize the maximization algorithm. Maximization of the likelihood and
selection of the minimum AICC model over a specified range of p and q values can
also be carried out using the option Model>Estimation>Autofit.

Themaximization is nonlinear in the sense that the function to bemaximized is not
a quadratic function of the unknown parameters, so the estimators cannot be found by
solving a system of linear equations. They are found instead by searching numerically
for the maximum of the likelihood surface. The algorithm used in ITSM requires the
specification of initial parameter values with which to begin the search. The closer the
preliminary estimates are to the maximum likelihood estimates, the faster the search
will generally be.

To provide these initial values, a number of preliminary estimation algorithms
are available in the option Model>Estimation>Preliminary of ITSM. They
are described in Section 5.1. For pure autoregressive models the choice is between
Yule-Walker and Burg estimation, while for models with q > 0 it is between the
innovations and Hannan–Rissanen algorithms. It is also possible to begin the search
with an arbitrary causal ARMA model by using the option Model>Specify and
entering the desired parameter values. The initial values are chosen automatically in
the option Model>Estimation>Autofit.

Calculation of the exact Gaussian likelihood for an ARMA model (and in fact for
any second-order model) is greatly simplified by use of the innovations algorithm. In
Section 5.2 we take advantage of this simplification in discussing maximum likelihood
estimation and consider also the construction of confidence intervals for the estimated
coefficients.

Section 5.3 deals with goodness of fit tests for the chosen model and Section 5.4
with the use of the fittedmodel for forecasting. In Section 5.5 we discuss the theoretical
basis for some of the criteria used for order selection.

For an overview of the general strategy for model-fitting see Section 6.2.

5.1 Preliminary Estimation

In this section we shall consider four techniques for preliminary estimation of the
parameters φ = (φ1, . . . , φp)

′, θ = (θ1, . . . , φp)
′, and σ 2 from observations x1,. . ., xn

of the causal ARMA(p, q) process defined by

φ(B)Xt = θ(B)Zt, {Zt} ∼ WN
(
0, σ 2

)
. (5.1.1)

The Yule–Walker and Burg procedures apply to the fitting of pure autoregressive
models. (Although the former can be adapted to models with q > 0, its performance is
less efficient than when q = 0.) The innovation and Hannan–Rissanen algorithms are
used in ITSM to provide preliminary estimates of the ARMA parameters when q > 0.

For pure autoregressive models Burg’s algorithm usually gives higher likelihoods
than the Yule–Walker equations. For pure moving-average models the innovations
algorithm frequently gives slightly higher likelihoods than the Hannan–Rissanen
algorithm (we use only the first two steps of the latter for preliminary estimation). For
mixed models (i.e., those with p > 0 and q > 0) the Hannan–Rissanen algorithm is
usually more successful in finding causal models (which are required for initialization
of the likelihood maximization).
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5.1.1 Yule–Walker Estimation

For a pure autoregressive model the moving-average polynomial θ(z) is identically 1,
and the causality assumption in (5.1.1) allows us to write Xt in the form

Xt =
∞∑

j=0

ψjZt−j, (5.1.2)

where, fromSection 3.1,ψ(z) =∑∞
j=0 ψjz j = 1/φ(z).Multiplying each side of (5.1.1)

by Xt−j, j = 0, 1, 2, . . . , p, taking expectations, and using (5.1.2) to evaluate the right-
hand side of the first equation, we obtain the Yule–Walker equations

�pφ = γp (5.1.3)

and

σ 2 = γ (0) − φ′γp, (5.1.4)

where �p is the covariance matrix [γ (i − j)]pi, j=1 and γp = (γ (1), . . . , γ (p))′. These
equations can be used to determine γ (0), . . . , γ (p) from σ 2 and φ.

On the other hand, if we replace the covariances γ (j), j = 0, . . . , p, appearing
in (5.1.3) and (5.1.4) by the corresponding sample covariances γ̂ ( j), we obtain a set
of equations for the so-called Yule–Walker estimators φ̂ and σ̂ 2 of φ and σ 2, namely,

�̂pφ̂ = γ̂p (5.1.5)

and

σ̂ 2 = γ̂ (0) − φ̂′γ̂p, (5.1.6)

where �̂p = [γ̂ (i − j)
]p
i, j=1 and γ̂p = (γ̂ (1), . . . , γ̂ (p)

)′
.

If γ̂ (0) > 0, then �̂m is nonsingular for every m = 1, 2, . . . (see Brockwell and
Davis (1991), Problem 7.11), so we can rewrite equations (5.1.5) and (5.1.6) in the
following form:

Sample Yule–Walker Equations:

φ̂ =
(
φ̂1, . . . , φ̂p

)′ = R̂−1
p ρ̂p (5.1.7)

and

σ̂ 2 = γ̂ (0)
[
1 − ρ̂′

pR̂
−1
p ρ̂p

]
, (5.1.8)

where ρ̂p = (ρ̂(1), . . . , ρ̂(p)
)′ = γ̂p/γ̂ (0).

With φ̂ as defined by (5.1.7), it can be shown that 1 − φ̂1z − · · · − φ̂pzp �= 0 for
|z| ≤ 1 (see Brockwell and Davis (1991), Problem 8.3). Hence the fitted model

Xt − φ̂1Xt−1 − · · · − φ̂pXt−p = Zt, {Zt} ∼ WN
(
0, σ̂ 2

)

is causal. The autocovariances γF(h), h = 0, . . . , p, of the fittedmodel therefore satisfy
the p + 1 linear equations

γF(h) − φ̂1γF(h − 1) − · · · − φ̂pγF(h − p) =
{

0, h = 1, . . . , p,

σ̂ 2, h = 0.
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However, from (5.1.5) and (5.1.6) we see that the solution of these equations is γF(h) =
γ̂ (h), h = 0, . . . , p, so that the autocovariances of the fitted model at lags 0, 1, . . . , p
coincide with the corresponding sample autocovariances.

The argument of the preceding paragraph shows that for every nonsingular
covariance matrix of the form �p+1 = [γ (i− j)]p+1

i, j=1 there is an AR(p) process whose
autocovariances at lags 0, . . . , p are γ (0), . . . , γ (p). (The required coefficients and
white noise variance are found from (5.1.7) and (5.1.8) on replacing ρ̂(j) by γ (j)/γ (0),
j = 0, . . . , p, and γ̂ (0) by γ (0).) There may not, however, be an MA(p) process with
this property. For example, if γ (0) = 1 and γ (1) = γ (−1) = β, the matrix �2 is a
nonsingular covariance matrix for all β ∈ (−1, 1). Consequently, there is an AR(1)
process with autocovariances 1 and β at lags 0 and 1 for all β ∈ (−1, 1). However,
there is an MA(1) process with autocovariances 1 and β at lags 0 and 1 if and only if
|β| ≤ 1

2 . (See Example 2.1.1).

It is often the case that moment estimators, i.e., estimators that (like φ̂) are obt-
ained by equating theoretical and sample moments, have much higher variances than
estimators obtained by alternative methods such as maximum likelihood. However,
the Yule–Walker estimators of the coefficients φ1, . . . , φp of an AR( p) process have
approximately the same distribution for large samples as the corresponding maximum
likelihood estimators. For a precise statement of this result see Brockwell and Davis
(1991), Section 8.10. For our purposes it suffices to note the following:

Large-Sample Distribution of Yule–Walker Estimators:
For a large sample from an AR( p) process,

φ̂ ≈ N
(
φ, n−1σ 2�−1

p

)
.

If we replace σ 2 and �p by their estimates σ̂ 2 and �̂p, we can use this result to find
large-sample confidence regions for φ and each of its components as in (5.1.12) and
(5.1.13) below.

Order Selection
In practice we do not know the true order of the model generating the data. In fact, it
will usually be the case that there is no true ARmodel, in which case our goal is simply
to find one that represents the data optimally in some sense. Two useful techniques for
selecting an appropriate AR model are given below. The second is more systematic
and extends beyond the narrow class of pure autoregressive models.

• Some guidance in the choice of order is provided by a large-sample result (see
Brockwell and Davis (1991), Section 8.10), which states that if {Xt} is the causal
AR( p) process defined by (5.1.1) with {Zt} ∼ iid

(
0, σ 2

)
and if we fit a model with

orderm > p using the Yule–Walker equations, i.e., if we fit a model with coefficient
vector

φ̂m = R̂−1
m ρ̂m, m > p,

then the last component, φ̂mm, of the vector φ̂m is approximately normally dis-
tributed with mean 0 and variance 1/n. Notice that φ̂mm is exactly the sample partial
autocorrelation at lag m as defined in Section 3.2.3.

Now, we already know from Example 3.2.6 that for an AR( p), process the partial
autocorrelations φmm, m > p, are zero. By the result of the previous paragraph,
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if an AR( p) model is appropriate for the data, then the values φ̂kk, k > p, should
be compatible with observations from the distribution N(0, 1/n). In particular, for
k > p, φ̂kk will fall between the bounds ±1.96n−1/2 with probability close to 0.95.
This suggests using as a preliminary estimator of p the smallest value m such that∣∣φ̂kk

∣∣ < 1.96n−1/2 for k > m.

The program ITSM plots the sample PACF
{
φ̂mm,m = 1, 2, . . .

}
together with the

bounds ±1.96/
√
n. From this graph it is easy to read off the preliminary estimator

of p defined above.

• Amore systematic approach to order selection is to find the values of p and φp that
minimize the AICC statistic (see Section 5.5.2 below)

AICC = −2 ln L(φp, S(φp)/n) + 2(p + 1)n/(n − p − 2),

where L is the Gaussian likelihood defined in (5.2.9) and S is defined in (5.2.11).
The Preliminary Estimation dialog box of ITSM (opened by pressing the
blue PRE button) allows you to search for the minimum AICC Yule–Walker (or
Burg) models by checking Find AR model with min AICC. This causes
the program to fit autoregressions of orders 0, 1, . . . , 27 and to return the model
with smallest AICC value.

Definition 5.1.1 The fitted Yule–Walker AR(m) model is

Xt − φ̂m1Xt−1 − · · · − φ̂mmXt−m = Zt, {Zt} ∼ WN
(
0, v̂m

)
, (5.1.9)

where

φ̂m =
(
φ̂m1, . . . , φ̂mm

)′ = R̂−1
m ρ̂m (5.1.10)

and

v̂m = γ̂ (0)
[
1 − ρ̂′

mR̂
−1
m ρ̂m

]
. (5.1.11)

For both approaches to order selection we need to fit AR models of gradually
increasing order to our given data. The problem of solving the Yule–Walker equations
with gradually increasing orders has already been encountered in a slightly different
context in Section 2.5.3, where we derived a recursive scheme for solving the
equations (5.1.3) and (5.1.4) with p successively taking the values 1, 2, . . . . Here we
can use exactly the same scheme (the Durbin–Levinson algorithm) to solve the Yule–
Walker equations (5.1.5) and (5.1.6), the only difference being that the covariances
in (5.1.3) and (5.1.4) are replaced by their sample counterparts. This is the algorithm
used by ITSM to perform the necessary calculations.

Confidence Regions for the Coefficients

Under the assumption that the order p of the fitted model is the correct value, we can
use the asymptotic distribution of φ̂p to derive approximate large-sample confidence
regions for the true coefficient vector φp and for its individual components φpj. Thus,
if χ2

1−α(p) denotes the (1 − α) quantile of the chi-squared distribution with p degrees
of freedom, then for large sample-size n the region

{
φ ∈ Rp :

(
φ̂p − φ

)′
�̂p

(
φ̂p − φ

)
≤ n−1v̂pχ

2
1−α(p)

}
(5.1.12)
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contains φp with probability close to (1 − α). (This follows from Problem A.7 and
the fact that

√
n
(
φ̂p − φp

)
is approximately normally distributed with mean 0 and

covariance matrix v̂p�̂−1
p .) Similarly, if �1−α denotes the (1 − α) quantile of the

standard normal distribution and v̂jj is the jth diagonal element of v̂p�̂−1
p , then for large

n the interval bounded by

φ̂pj ± �1−α/2n
−1/2v̂1/2

jj (5.1.13)

contains φpj with probability close to (1 − α).

Example 5.1.1 The Dow Jones Utilities Index, Aug. 28–Dec. 18, 1972; DOWJ.TSM

The very slowly decaying positive sample ACF of the time series contained in the
file DOWJ.TSM this time series suggests differencing at lag 1 before attempting to
fit a stationary model. One application of the operator (1 − B) produces a new series
{Yt} with no obvious deviations from stationarity. We shall therefore try fitting an AR
process to this new series

Yt = Dt − Dt−1

using the Yule–Walker equations. There are 77 values of Yt, which we shall denote
by Y1, . . . ,Y77. (We ignore the unequal spacing of the original data resulting from
the five-day working week.) The sample autocovariances of the series y1, . . . , y77 are
γ̂ (0) = 0.17992, γ̂ (1) = 0.07590, γ̂ (2) = 0.04885, etc.

Applying the Durbin–Levinson algorithm to fit successively higher-order autore-
gressive processes to the data, we obtain

φ̂11 = ρ̂(1) = 0.4219,

v̂1 = γ̂ (0)
[
1 − ρ̂2(1)

] = 0.1479,

φ̂22 =
[
γ̂ (2) − φ̂11γ̂ (1)

]
/v̂1 = 0.1138,

φ̂21 = φ̂11 − φ̂11φ̂22 = 0.3739,

v̂2 = v̂1

[
1 − φ̂2

22

]
= 0.1460.

The sample ACF and PACF of the data can be displayed by pressing the second
yellow button at the top of the ITSM window. They are shown in Figures 5-1 and 5-2,
respectively. Also plotted are the bounds ±1.96/

√
77. Since the PACF values at lags

greater than 1 all lie between the bounds, the first order-selection criterion described
above indicates that we should fit an AR(1) model to the data set {Yt}. Unless we wish
to assume that {Yt} is a zero-mean process, we should subtract the sample mean from
the data before attempting to fit a (zero-mean) AR(1) model. When the blue PRE
(preliminary estimation) button at the top of the ITSM window is pressed, you will be
given the option of subtracting the mean from the data. In this case (as in most) click
Yes to obtain the new series

Xt = Yt − 0.1336.

You will then see the Preliminary Estimation dialog box. Enter 1 for the AR
order, zero for the MA order, select Yule-Walker, and click OK. We have already
computed φ̂11 and v̂1 above using the Durbin–Levinson algorithm. The Yule–Walker
AR(1) model obtained by ITSM for {Xt} is therefore (not surprisingly)

Xt − 0.4219Xt−1 = Zt, {Zt} ∼ WN(0, 0.1479), (5.1.14)
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Figure 5-1
The sample ACF of

the differenced series
{Yt} in Example 5.1.1 Lag 
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Figure 5-2
The sample PACF of

the differenced series
{Yt} in Example 5.1.1 Lag
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and the corresponding model for {Yt} is

Yt − 0.1336 − 0.4219(Yt−1 − 0.1336) = Zt, {Zt} ∼ WN(0, 0.1479).

(5.1.15)

Assuming that our observed data really are generated by an AR process with
p = 1, (5.1.13) gives us approximate 95% confidence bounds for the autoregressive
coefficient φ,

0.4219 ± (1.96)(0.1479)1/2

(0.17992)1/2
√

77
= (0.2194, 0.6244).

Besides estimating the autoregressive coefficients, ITSM computes and prints out
the ratio of each coefficient to 1.96 times its estimated standard deviation. From these
numbers large-sample 95% confidence intervals for each of the coefficients are easily
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obtained. In this particular example there is just one coefficient estimate, φ̂1 = 0.4219,
with ratio of coefficient to 1.96×standard error equal to 2.0832. Hence the required
95% confidence bounds are 0.4219 ± 0.4219/2.0832 = (0.2194, 0.6244), as found
above.

A useful technique for preliminary autoregressive estimation that incorporates
automatic model selection (i.e., choice of p) is to minimize the AICC [see equa-
tion (5.5.4)] over all fitted autoregressions of orders 0 through 27. This is achieved
by selecting both Yule-Walker and Find AR model with min AICC in the
Preliminary Estimation dialog box. (The MA order must be set to zero, but
the AR order setting is immaterial.) Click OK, and the program will search through
all the Yule–Walker AR(p) models, p = 0, 1, . . . , 27, selecting the one with smallest
AICC value. The minimum-AICC Yule–Walker AR model turns out to be the one
defined by (5.1.14) with p = 1 and AICC value 74.541.

�

Yule–Walker Estimation with q > 0; Moment Estimators

The Yule–Walker estimates for the parameters in an AR(p) model are examples
of moment estimators: The autocovariances at lags 0, 1, . . . , p are replaced by the
corresponding sample estimates in the Yule–Walker equations (5.1.3), which are then
solved for the parameters φ = (φ1, . . . , φp)

′ and σ 2. The analogous procedure
for ARMA( p, q) models with q > 0 is easily formulated, but the corresponding
equations are nonlinear in the unknown coefficients, leading to possible nonexistence
and nonuniqueness of solutions for the required estimators.

From (3.2.5), the equations to be solved for φ1, . . . , φp, θ1, . . . , θq and σ 2 are

γ̂ (k) − φ1γ̂ (k − 1) − · · · − φpγ̂ (k − p) = σ 2
q∑

j=k

θjψj−k, 0 ≤ k ≤ p + q,

(5.1.16)

where ψj must first be expressed in terms of φ and θ using the identity ψ(z) =
θ(z)/φ(z) (θ0 := 1 and θj = ψj = 0 for j < 0).

Example 5.1.2 For the MA(1) model the equation (5.1.16) are equivalent to

γ̂ (0) = σ̂ 2
(

1 + θ̂2
1

)
, (5.1.17)

ρ̂(1) = θ̂1

1 + θ̂2
1

. (5.1.18)

If
∣∣ρ̂(1)

∣∣ > 0.5, there is no real solution, so we define θ̂1 = ρ̂(1)/
∣∣ρ̂(1)

∣∣. If
∣∣ρ̂(1)

∣∣ ≤
0.5, then the solution of (5.1.17)–(5.1.18) (with |θ̂ | ≤ 1) is

θ̂1 =
(

1 − (1 − 4ρ̂2(1)
)1/2
)

/
(
2ρ̂(1)

)
,

σ̂ 2 = γ̂ (0)/
(

1 + θ̂2
1

)
.

For the overshort data of Example 3.2.8, ρ̂(1) = −0.5035 and γ̂ (0) = 3416, so the
fitted MA(1) model has parameters θ̂1 = −1.0 and σ̂ 2 = 1708.

�
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Relative Efficiency of Estimators
The performance of two competing estimators is often measured by computing their
asymptotic relative efficiency. In a general statistics estimation problem, suppose θ̂ (1)

n

and θ̂ (2)
n are two estimates of the parameter θ in the parameter space 
 based on the

observations X1, . . . ,Xn. If θ̂ (i)
n is approximately N

(
θ, σ 2

i (θ)
)
for large n, i = 1, 2, then

the asymptotic efficiency of θ̂ (1)
n relative to θ̂ (2)

n is defined to be

e
(
θ, θ̂ (1), θ̂ (2)

)
= σ 2

2 (θ)

σ 2
1 (θ)

.

If e
(
θ, θ̂ (1), θ̂ (2)

) ≤ 1 for all θ ∈ 
, then we say that θ̂ (2)
n is a more efficient estimator

of θ than θ̂ (1)
n (strictly more efficient if in addition, e

(
θ, θ̂ (1), θ̂ (2)

)
< 1 for some θ ∈


). For the MA(1) process the moment estimator θ(1)
n discussed in Example 5.1.2 is

approximately N
(
θ1, σ

2
1 (θ1)/n

)
with

σ 2
1

(
θ1) = (1 + θ2

1 + 4θ4
1 + θ6

1 + θ8
1

)
/
(
1 − θ2

1

)2

(see Brockwell and Davis (1991), p. 254). On the other hand, the innovations estimator
θ̂ (2)
n discussed in the next section is distributed approximately as N

(
θ1, n−1

)
. Thus,

e
(
θ1, θ̂

(1), θ̂ (2)
) = σ−2

1 (θ1) ≤ 1 for all |θ1| < 1, with strict inequality when θ �= 1. In
particular,

e
(
θ1, θ̂

(1), θ̂ (2)
)

=

⎧
⎪⎨

⎪⎩

0.82, θ1 = 0.25,

0.37, θ1 = 0.50,

0.06, θ1 = 0.75,

demonstrating the superiority, at least in terms of asymptotic relative efficiency, of θ̂ (2)
n

over θ̂ (1)
n . On the other hand (Section 5.2), the maximum likelihood estimator θ̂ (3)

n of
θ1 is approximately N(θ1, (1 − θ2

1 )/n). Hence,

e
(
θ1, θ̂

(2), θ̂ (3)
)

=

⎧
⎪⎨

⎪⎩

0.94, θ1 = 0.25,

0.75, θ1 = 0.50,

0.44, θ1 = 0.75.

While θ̂ (3)
n is more efficient, θ̂ (2)

n has reasonably good efficiency, except when |θ1| is
close to 1, and can serve as initial value for the nonlinear optimization procedure in
computing the maximum likelihood estimator.

While the method of moments is an effective procedure for fitting autoregressive
models, it does not perform as well for ARMA models with q > 0. From a computa-
tional point of view, it requires asmuch computing time as themore efficient estimators
based on either the innovations algorithm or the Hannan–Rissanen procedure and is
therefore rarely used except when q = 0.

5.1.2 Burg’s Algorithm

The Yule–Walker coefficients φ̂p1, . . . , φ̂pp are precisely the coefficients of the best
linear predictor of Xp+1 in terms of {Xp, . . . , X1} under the assumption that the ACF
of {Xt} coincides with the sample ACF at lags 1, . . . , p.

Burg’s algorithm estimates the PACF {φ11, φ22, . . .} by successively minimizing
sums of squares of forward and backward one-step prediction errors with respect to the
coefficients φii. Given observations {x1, . . . , xn} of a stationary zero-mean time series
{Xt} we define ui(t), t = i + 1, . . . , n, 0 ≤ i < n, to be the difference between
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xn+1+i−t and the best linear estimate of xn+1+i−t in terms of the preceding i observations.
Similarly, we define vi(t), t = i + 1, . . . , n, 0 ≤ i < n, to be the difference between
xn+1−t and the best linear estimate of xn+1−t in terms of the subsequent i observations.
Then it can be shown (see Problem 5.6) that the forward and backward prediction
errors {ui(t)} and {vi(t)} satisfy the recursions

u0(t) = v0(t) = xn+1−t,

ui(t) = ui−1(t − 1) − φiivi−1(t), (5.1.19)

and

vi(t) = vi−1(t) − φiiui−1(t − 1). (5.1.20)

Burg’s estimate φ
(B)

11 of φ11 is found by minimizing

σ 2
1 := 1

2(n − 1)

n∑

t=2

[
u2

1(t) + v2
1(t)
]

with respect to φ11. This gives corresponding numerical values for u1(t) and v1(t) and
σ 2

1 that can then be substituted into (5.1.19) and (5.1.20) with i = 2. Then weminimize

σ 2
2 := 1

2(n − 2)

n∑

t=3

[
u2

2(t) + v2
2(t)
]

with respect to φ22 to obtain the Burg estimate φ
(B)

22 of φ22 and corresponding values
of u2(t), v2(t), and σ 2

2 . This process can clearly be continued to obtain estimates φ(B)
pp

and corresponding minimum values, σ (B)2
p , p ≤ n − 1. Estimates of the coefficients

φpj, 1 ≤ j ≤ p − 1, in the best linear predictor

PpXp+1 = φp1Xp + · · · + φppX1

are then found by substituting the estimates φ
(B)
ii , i = 1, . . . , p, for φii in the recursions

(2.5.20)–(2.5.22). The resulting estimates of φpj, j = 1, . . . , p, are the coefficient
estimates of the Burg AR(p) model for the data {x1, . . . , xn}. The Burg estimate of the
white noise variance is the minimum value σ (B)2

p found in the determination of φ(B)
pp .

The calculation of the estimates of φpp and σ 2
p described above is equivalent (Problem

5.7) to solving the following recursions:

Burg’s Algorithm:

d(1) =
n∑

t=2

(u2
0(t − 1) + v2

0(t)),

φ
(B)
ii = 2

d(i)

n∑

t=i+1

vi−1(t)ui−1(t − 1),

d(i + 1) =
(

1 − φ
(B)2
ii

)
d(i) − v2

i (i + 1) − u2
i (n),

σ
(B)2
i =

[(
1 − φ

(B)2
ii

)
d(i)
]
/[2(n − i)].
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The large-sample distribution of the estimated coefficients for the Burg estimators
of the coefficients of an AR(p) process is the same as for the Yule–Walker estimators,
namely, N

(
φ, n−1σ 2�−1

p

)
. Approximate large-sample confidence intervals for the

coefficients can be found as in Section 5.1.1 by substituting estimated values for σ 2

and �p.

Example 5.1.3 The Dow Jones Utilities Index

The fitting of AR models using Burg’s algorithm in the program ITSM is completely
analogous to the use of the Yule–Walker equations. Applying the same transformations
as in Example 5.1.1 to the Dow Jones Utilities Index and selecting Burg instead
of Yule-Walker in the Preliminary Estimation dialog box, we obtain the
minimum AICC Burg model

Xt − 0.4371Xt−1 = Zt, {Zt} ∼ WN(0, 0.1423), (5.1.21)

with AICC = 74.492. This is slightly different from the Yule–Walker AR(1) model
fitted in Example 5.1.1, and it has a larger likelihood L, i.e., a smaller value of
−2 lnL (see Section 5.2). Although the two methods give estimators with the same
large-sample distributions, for finite sample sizes the Burg model usually has smaller
estimated white noise variance and larger Gaussian likelihood. From the ratio of the
estimated coefficient to (1.96× standard error) displayed by ITSM, we obtain the 95%
confidence bounds for φ: 0.4371 ± 0.4371/2.1668 = (0.2354, 0.6388).

�

Example 5.1.4 The Lake Data

This series {Yt, t = 1, . . . , 98} has already been studied in Example 1.3.5. In this
example we shall consider the problem of fitting an AR process directly to the data
without first removing any trend component. A graph of the data was displayed in
Figure 1-9. The sample ACF and PACF are shown in Figures 5-3 and 5-4, respectively.

The sample PACF shown in Figure 5-4 strongly suggests fitting an AR(2) model
to the mean-corrected data Xt = Yt − 9.0041. After clicking on the blue preliminary
estimation button of ITSM select Yes to subtract the sample mean from {Yt}. Then

Figure 5-3
The sample ACF of the lake

data in Example 5.1.4 Lag
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Figure 5-4
The sample PACF of the

lake data in Example 5.1.4 Lag 
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specify 2 for the AR order, 0 for the MA order, and Burg for estimation. Click OK to
obtain the model

Xt − 1.0449Xt−1 + 0.2456Xt−2 = Zt, {Zt} ∼ WN(0, 0.4706),

with AICC value 213.55 and 95% confidence bounds

φ1 : 1.0449 ± 1.0449/5.5295 = (0.8559, 1.2339),

φ2 : −0.2456 ± 0.2456/1.2997 = (−0.4346,−0.0566).

Selecting the Yule–Walker method for estimation, we obtain the model

Xt − 1.0538Xt−1 + 0.2668Xt−2 = Zt, {Zt} ∼ WN(0, 0.4920),

with AICC value 213.57 and 95% confidence bounds

φ1 : 1.0538 ± 1.0538/5.5227 = (0.8630, 1.2446),

φ2 : −0.2668 ± 0.2668/1.3980 = (−0.4576,−0.0760).

We notice, as in Example 5.1.3, that the Burg model again has smaller white noise
variance and larger Gaussian likelihood than the Yule–Walker model.

If we determine the minimum AICC Yule–Walker and Burg models, we find that
they are both of order 2. Thus the order suggested by the sample PACF coincides again
with the order obtained by AICC minimization.

�

5.1.3 The Innovations Algorithm

Just as we can fit autoregressive models of orders 1, 2, . . . to the data {x1, . . . , xn} by
applying the Durbin–Levinson algorithm to the sample autocovariances, we can also
fit moving average models

Xt = Zt + θ̂m1Zt−1 + · · · + θ̂mmZt−m, {Zt} ∼ WN
(
0, v̂m

)
(5.1.22)

of orders m = 1, 2, . . . by means of the innovations algorithm (Section 2.5.4). The
estimated coefficient vectors θ̂m := (

θ̂m1, . . . , θ̂mm
)′

and white noise variances v̂m,
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m = 1, 2, . . ., are specified in the following definition. (The justification for using
estimators defined in this way is contained in Remark 1 following the definition.)

Definition 5.1.2 The fitted innovations MA(m) model is

Xt = Zt + θ̂m1Zt−1 + · · · + θ̂mmZt−m, {Zt} ∼ WN(0, v̂m),

where θ̂m and v̂m are obtained from the innovations algorithm with the ACVF
replaced by the sample ACVF.

Remark 1. It can be shown (see Brockwell andDavis 1988) that if {Xt} is an invertible
MA(q) process

Xt = Zt + θ1Zt−1 + · · · + θqZt−q, {Zt} ∼ IID
(
0, σ 2

)
,

with EZ4
t < ∞, and if we define θ0 = 1 and θj = 0 for j > q, then the innovation

estimates have the following large-sample properties. If n → ∞ and m(n) is any
sequence of positive integers such that m(n) → ∞ but n−1/3m(n) → 0, then for each
positive integer k the joint distribution function of

n1/2
(
θ̂m1 − θ1, θ̂m2 − θ2, . . . , θ̂mk − θk

)′

converges to that of the multivariate normal distribution with mean 0 and covariance
matrix A = [aij]ki, j=1, where

aij =
min(i, j)∑

r=1

θi−rθj−r. (5.1.23)

This result enables us to find approximate large-sample confidence intervals for the
moving-average coefficients from the innovation estimates as described in the exam-
ples below. Moreover, the estimator v̂m is consistent for σ 2 in the sense that for every
ε > 0, P

(∣∣v̂m − σ 2
∣
∣ > ε

)→ 0 as m → ∞. �

Remark 2. Although the recursive fitting of moving-average models using the inno-
vations algorithm is closely analogous to the recursive fitting of autoregressive models
using the Durbin–Levinson algorithm, there is one important distinction. For an
AR(p) process the Yule–Walker and Burg estimators φ̂p are consistent estimators of
(φ1, . . . , φp)

′ as the sample size n → ∞. However, for anMA(q) process the estimator
θ̂q = (θq1, . . . , θqq)

′ is not consistent for (θ1, . . . , θq)
′. For consistency it is necessary

to use the estimators (θm1, . . . , θmq)
′ with m(n) satisfying the conditions of Remark 1.

The choice ofm for any fixed sample size can be made by increasingm until the vector
(θm1, . . . , θmq)

′ stabilizes. It is found in practice that there is a large range of values of
m for which the fluctuations in θmj are small compared with the estimated asymptotic

standard deviation n−1/2
(∑j−1

i=0 θ̂2
mi

)1/2
as found from (5.1.23) when the coefficients θj

are replaced by their estimated values θ̂mj. �

Order Selection
Three useful techniques for selecting an appropriate MA model are given below. The
third is more systematic and extends beyond the narrow class of pure moving-average
models.
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• We know from Section 3.2.2 that for an MA(q) process the autocorrelations ρ(m),
m > q, are zero. Moreover, we know from Bartlett’s formula (Section 2.4) that the
sample autocorrelation ρ̂(m), m > q, is approximately normally distributed with
mean ρ(m) = 0 and variance n−1

[
1 + 2ρ2(1) + · · · + 2ρ2(q)

]
. This result enables

us to use the graph of ρ̂(m), m = 1, 2, . . . , both to decide whether or not a given
data set can be plausibly modeled by a moving-average process and also to obtain
a preliminary estimate of the order q as the smallest value ofm such that ρ̂(k) is not
significantly different from zero for all k > m. For practical purposes “significantly
different from zero” is often interpreted as “larger than 1.96/

√
n in absolute value”

(cf. the corresponding approach to order selection for AR models based on the
sample PACF and described in Section 5.1.1).

• If in addition to examining ρ̂(m), m = 1, 2, . . ., we examine the coefficient vectors
θ̂m, m = 1, 2, . . . , we are able not only to assess the appropriateness of a moving-
average model and estimate its order q, but at the same time to obtain preliminary
estimates θ̂m1, . . . , θ̂mq of the coefficients. By inspecting the estimated coefficients
θ̂m1, . . . , θ̂mm for m = 1, 2, . . . and the ratio of each coefficient estimate θ̂mj to

1.96 times its approximate standard deviation σj = n−1/2
[∑j−1

i=0 θ̂2
mi

]1/2
, we can

see which of the coefficient estimates are most significantly different from zero,
estimate the order of the model to be fitted as the largest lag j for which the ratio is
larger than 1 in absolute value, and at the same time read off estimated values for
each of the coefficients. A default value of m is set by the program, but it may be
altered manually. As m is increased the values θ̂m1, . . . , θ̂mm stabilize in the sense
that the fluctuations in each component are of order n−1/2, the asymptotic standard
deviation of θm1.

• As for autoregressive models, a more systematic approach to order selection for
moving-average models is to find the values of q and θ̂q = (

θ̂m1, . . . , θ̂mq
)′
that

minimize the AICC statistic

AICC = −2 ln L(θq, S(θq)/n) + 2(q + 1)n/(n − q − 2),

where L is the Gaussian likelihood defined in (5.2.9) and S is defined in (5.2.11).
(See Section 5.5 for further details.)

Confidence Regions for the Coefficients
Asymptotic confidence regions for the coefficient vector θq and for its individual
components can be found with the aid of the large-sample distribution specified in
Remark 1. For example, approximate 95% confidence bounds for θj are given by

θ̂mj ± 1.96n−1/2

(
j−1∑

i=0

θ̂2
mi

)1/2

. (5.1.24)

Example 5.1.5 The Dow Jones Utilities Index

In Example 5.1.1 we fitted an AR(1) model to the differenced Dow Jones Utilities
Index. The sample ACF of the differenced data shown in Figure 5-1 suggests that
an MA(2) model might also provide a good fit to the data. To apply the innovation
technique for preliminary estimation, we proceed as in Example 5.1.1 to difference
the series DOWJ.TSM to obtain observations of the differenced series {Yt}. We then
select preliminary estimation by clicking on the blue PRE button and subtract the mean
of the differences to obtain observations of the differenced and mean-corrected series
{Xt}. In the Preliminary Estimation dialog box enter 0 for the AR order and



5.1 Preliminary Estimation 135

2 for the MA order, and select Innovations as the estimation method. We must
then specify a value of m, which is set by default in this case to 17. If we accept the
default value, the program will compute θ̂17,1, . . . , θ̂17,17 and print out the first two
values as the estimates of θ1 and θ2, together with the ratios of the estimated values to
their estimated standard deviations. These are

MA COEFFICIENT
0.4269 0.2704

COEFFICIENT/(1.96*STANDARD ERROR)
1.9114 1.1133

The remaining parameter in the model is the white noise variance, for which two
estimates are given:

WN VARIANCE ESTIMATE = (RESID SS)/N
0.1470

INNOVATION WN VARIANCE ESTIMATE
0.1122

The first of these is the average of the squares of the rescaled one-step prediction errors
under the fitted MA(2) model, i.e., 1

77

∑77
j=1

(
Xj − X̂j

)2
/rj−1. The second value is the

innovation estimate, v̂17. (By default ITSM retains the first value. If you wish instead
to use the innovation estimate, you must change the white noise variance by selecting
Model>Specify and setting the white noise value to the desired value.) The fitted
model for Xt(= Yt − 0.1336) is thus

Xt = Zt + 0.4269Zt−1 + 0.2704Zt−2, {Zt} ∼ WN(0, 0.1470),

with AICC = 77.467.
To see all 17 estimated coefficients θ̂17, j, j = 1, . . . , 17, we repeat the preliminary

estimation, this time fitting an MA(17) model withm= 17. The coefficients and ratios
for the resulting model are found to be as follows:

MA COEFFICIENT
0.4269 0.2704 0.1183 0.1589 0.1355 0.1568 0.1284 −0.0060
0.0148 −0.0017 0.1974 −0.0463 0.2023 0.1285 −0.0213 −0.2575
0.0760

COEFFICIENT/(1.96*STANDARD ERROR)
1.9114 1.1133 0.4727 0.6314 0.5331 0.6127 0.4969 −0.0231
0.0568 −0.0064 0.7594 −0.1757 0.7667 0.4801 −0.0792 −0.9563
0.2760

The ratios indicate that the estimated coefficients most significantly different from zero
are the first and second, reinforcing our original intention of fitting anMA(2) model to
the data. Estimated coefficients θ̂mj for other values of m can be examined in the same
way, and it is found that the values obtained for m > 17 change only slightly from the
values tabulated above.

By fittingMA(q)models of orders 0, 1, 2, . . . , 26 using the innovations algorithm
with the default settings for m, we find that the minimum AICC model is the one with
q = 2 found above. Thus the model suggested by the sample ACF again coincides
with the more systematically chosen minimum AICC model.

�
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Innovations Algorithm Estimates when p > 0 and q > 0
The causality assumption (Section 3.1) ensures that

Xt =
∞∑

j=0

ψjZt−j,

where the coefficients ψj satisfy

ψj = θj +
min(j, p)∑

i=1

φiψj−i, j = 0, 1, . . . , (5.1.25)

and we define θ0 := 1 and θj := 0 for j > q. To estimate ψ1, . . . , ψp+q we can use
the innovation estimates θ̂m1, . . . , θ̂m,p+q, whose large-sample behavior is specified in
Remark 1. Replacing ψj by θ̂mj in (5.1.25) and solving the resulting equations

θ̂mj = θj +
min(j,p)∑

i=1

φiθ̂m,j−i, j = 1, . . . , p + q, (5.1.26)

for φ and θ, we obtain initial parameter estimates φ̂ and θ̂. To solve (5.1.26) we first
find φ from the last q equations:

⎡

⎢
⎢⎢
⎣

θ̂m,q+1

θ̂m,q+2
...

θ̂m,q+p

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

θ̂mq θ̂m,q−1 · · · θ̂m,q+1−p

θ̂m,q+1 θ̂m,q · · · θ̂m,q+2−p
...

...
...

θ̂m,q+p−1 θ̂m,q+p−2 · · · θ̂m,q

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎣

φ1

φ2
...

φp

⎤

⎥
⎥⎥
⎦

. (5.1.27)

Having solved (5.1.27) for φ̂ (which may not be causal), we can easily determine the
estimate of θ from

θ̂j = θ̂mj −
min(j, p)∑

i=1

φ̂iθ̂m, j−i, j = 1, . . . , q.

Finally, the white noise variance σ 2 is estimated by

σ̂ 2 = n−1
n∑

t=1

(
Xt − X̂t

)2
/rt−1,

where X̂t is the one-step predictor of Xt computed from the fitted coefficient vectors φ̂
and θ̂, and rt−1 is defined in (3.3.8).

The above calculations can all be carried out by selecting the ITSMoptionModel>
Estimation>Preliminary. This option also computes, if p = q, the ratio of
each estimated coefficient to 1.96 times its estimated standard deviation. Approximate
95% confidence intervals can therefore easily be obtained in this case. If the fitted
model is noncausal, it cannot be used to initialize the search for the maximum
likelihood estimators, and so the autoregressive coefficients should be set to some
causal values (e.g., all equal to 0.001) using the Model>Specify option. If both the
innovation and Hannan–Rissanen algorithms give noncausal models, it is an indication
(but not a conclusive one) that the assumed values of p and q may not be appropriate
for the data.
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Order Selection for Mixed Models
For models with p > 0 and q > 0, the sample ACF and PACF are difficult to recognize
and are of far less value in order selection than in the special cases where p = 0 or
q = 0. A systematic approach, however, is still available through minimization of the
AICC statistic

AICC = −2 ln L(φp,θq, S(φp,θq)/n) + 2(p + q + 1)n/(n − p − q − 2),

which is discussed in more detail in Section 5.5. For fixed p and q it is clear from the
definition that the AICC value is minimized by the parameter values that maximize the
likelihood. Hence, final decisions regarding the orders p and q that minimize AICC
must be based on maximum likelihood estimation as described in Section 5.2.

Example 5.1.6 The Lake Data

In Example 5.1.4 we fitted AR(2) models to the mean-corrected lake data using the
Yule–Walker equations and Burg’s algorithm. If instead we fit an ARMA(1,1) model
using the innovations method in the option Model>Estimation>Preliminary
of ITSM (with the default value m = 17), we obtain the model

Xt − 0.7234Xt−1 = Zt + 0.3596Zt−1, {Zt} ∼ WN(0, 0.4757),

for the mean-corrected series Xt = Yt − 9.0041. The ratio of the two coefficient
estimates φ̂ and θ̂ to 1.96 times their estimated standard deviations are given by ITSM
as 3.2064 and 1.8513, respectively. The corresponding 95% confidence intervals are
therefore

φ : 0.7234 ± 0.7234/3.2064 = (0.4978, 0.9490),

θ : 0.3596 ± 0.3596/1.8513 = (0.1654, 0.5538).

It is interesting to note that the value of AICC for this model is 212.89, which is
smaller than the corresponding values for the Burg and Yule–Walker AR(2) mod-
els in Example 5.1.4. This suggests that an ARMA(1,1) model may be superior to
a pure autoregressive model for these data. Preliminary estimation of a variety of
ARMA( p, q) models shows that the minimum AICC value does in fact occur when
p = q = 1. (Before committing ourselves to this model, however, we need
to compare AICC values for the corresponding maximum likelihood models. We shall
do this in Section 5.2.)

�

5.1.4 The Hannan–Rissanen Algorithm

The defining equations for a causal AR(p) model have the form of a linear regression
model with coefficient vector φ = (φ1, . . . , φp)

′. This suggests the use of simple
least squares regression for obtaining preliminary parameter estimates when q = 0.
Application of this technique when q > 0 is complicated by the fact that in
the general ARMA(p, q) equations Xt is regressed not only on Xt−1, . . . , Xt−p, but also
on the unobserved quantities Zt−1, . . . ,Zt−q. Nevertheless, it is still possible to apply
least squares regression to the estimation of φ and θ by first replacing the unobserved
quantities Zt−1, . . . ,Zt−q in (5.1.1) by estimated values Ẑt−1, . . . , Ẑt−q. The parameters
φ and θ are then estimated by regressing Xt onto Xt−1, . . . ,Xt−p, Ẑt−1, . . . , Ẑt−q. These
are the main steps in the Hannan–Rissanen estimation procedure, which we now
describe in more detail.
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Step 1.A high-order AR(m)model (withm > max( p, q)) is fitted to the data using the
Yule–Walker estimates of Section 5.1.1. If

(
φ̂m1, . . . , φ̂mm

)′
is the vector of estimated

coefficients, then the estimated residuals are computed from the equations

Ẑt = Xt − φ̂m1Xt−1 − · · · − φ̂mmXt−m, t = m + 1, . . . , n.

Step 2. Once the estimated residuals Ẑt, t = m + 1, . . . , n, have been computed as
in Step 1, the vector of parameters, β = (

φ′,θ′)′ is estimated by least squares linear

regression of Xt onto
(
Xt−1, . . . , Xt−p, Ẑt−1, . . . , Ẑt−q

)
, t = m + 1 + q, . . . , n, i.e., by

minimizing the sum of squares

S(β) =
n∑

t=m+1+q

(
Xt − φ1Xt−1 − · · · − φpXt−p − θ1Ẑt−1 − · · · − θqẐt−q

)2

with respect to β. This gives the Hannan–Rissanen estimator

β̂ = (Z′Z)−1Z′Xn,

where Xn = (Xm+1+q, . . . ,Xn)
′ and Z is the (n − m − q) × (p + q) matrix

Z =

⎡

⎢⎢
⎢
⎣

Xm+q Xm+q−1 · · · Xm+q+1−p Ẑm+q Ẑm+q−1 · · · Ẑm+1

Xm+q+1 Xm+q · · · Xm+q+2−p Ẑm+q+1 Ẑm+q · · · Ẑm+2
...

... · · · ...
...

... · · · ...

Xn−1 Xn−2 · · · Xn−p Ẑn−1 Ẑn−2 · · · Ẑn−q

⎤

⎥⎥
⎥
⎦

.

(If p = 0, Z contains only the last q columns.) The Hannan–Rissanen estimate of the
white noise variance is

σ̂ 2
HR =

S
(
β̂
)

n − m − q
.

Example 5.1.7 The Lake Data

In Example 5.1.6 an ARMA(1,1) model was fitted to the mean corrected lake data
using the innovations algorithm. We can fit an ARMA(1,1) model to these data using
the Hannan–Rissanen estimates by selecting Hannan-Rissanen in the Preliminary
Estimation dialog box of ITSM. The fitted model is

Xt − 0.6961Xt−1 = Zt + 0.3788Zt−1, {Zt} ∼ WN(0, 0.4774),

for the mean-corrected series Xt = Yt−9.0041. (Two estimates of the white noise vari-
ance are computed in ITSM for the Hannan–Rissanen procedure, σ̂ 2

HR and
∑n

j=1(Xt −
X̂t−1)

2/n. The latter is the one retained by the program.) The ratios of the two co-
efficient estimates to 1.96 times their standard deviation are 4.5289 and 1.3120,
respectively. The corresponding 95% confidence bounds for φ and θ are

φ : 0.6961 ± 0.6961/4.5289 = (0.5424, 0.8498),

θ : 0.3788 ± 0.3788/1.3120 = (0.0901, 0.6675).

Clearly, there is little difference between this model and the one fitted using the
innovations method in Example 5.1.6. (The AICC values are 213.18 for the current
model and 212.89 for the model fitted in Example 5.1.6.)

�
Hannan and Rissanen include a third step in their procedure to improve the

estimates.
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Step 3. Using the estimate β̂ = (φ̂1, . . . , φ̂p, θ̂1, . . . , θ̂q
)′
from Step 2, set

Z̃t =

⎧
⎪⎪⎨

⎪⎪⎩

0, if t ≤ max(p, q),

Xt −
p∑

j=1
φ̂jXt−j −

q∑

j=1
θ̂jZ̃t−j, if t > max(p, q).

Now for t = 1, . . . , n put

Vt =

⎧
⎪⎨

⎪⎩

0, if t ≤ max(p, q),
p∑

j=1
φ̂jVt−j + Z̃t, if t > max(p, q),

and

Wt =

⎧
⎪⎨

⎪⎩

0, if t ≤ max(p, q),

−
p∑

j=1
θ̂jWt−j + Z̃t, if t > max(p, q).

(Observe that both Vt andWt satisfy the AR recursions φ̂(B)Vt = Z̃t and θ̂ (B)Wt = Z̃t
for t = 1, . . . , n.) If β̂† is the regression estimate of β found by regressing Z̃t on
(Vt−1, . . . ,Vt−p,Wt−1, . . . ,Wt−q), i.e., if β̂† minimizes

S†(β) =
n∑

t=max(p,q)+1

⎛

⎝Z̃t −
p∑

j=1

βjVt−j −
q∑

k=1

βk+pWt−k

⎞

⎠

2

,

then the improved estimate of β is β̃ = β̂† + β̂. The new estimator β̃ then has the
same asymptotic efficiency as the maximum likelihood estimator. In ITSM, however,
we eliminate Step 3, using the model produced by Step 2 as the initial model for the
calculation (by numerical maximization) of the maximum likelihood estimator itself.

5.2 Maximum Likelihood Estimation

Suppose that {Xt} is a Gaussian time series withmean zero and autocovariance function
κ(i, j) = E(XiXj). Let Xn = (X1, . . . ,Xn)

′ and let X̂n = (X̂1, . . . , X̂n)
′, where X̂1 = 0

and X̂j = E(Xj|X1, . . . ,Xj−1) = Pj−1Xj, j ≥ 2. Let �n denote the covariance matrix
�n = E(XnX′

n), and assume that �n is nonsingular.
The likelihood of Xn is

L(�n) = (2π)−n/2(det �n)
−1/2 exp

(
−1

2
X′

n�
−1
n Xn

)
. (5.2.1)

As we shall now show, the direct calculation of det �n and �−1
n can be avoided by

expressing this in terms of the one-step prediction errors Xj − X̂j and their variances
vj−1, j = 1, . . . , n, both of which are easily calculated recursively from the innovations
algorithm (Section 2.5.4).

Let θij, j = 1, . . . , i; i = 1, 2, . . ., denote the coefficients obtained when the
innovations algorithm is applied to the autocovariance function κ of {Xt}, and let Cn

be the n × n lower triangular matrix defined in Section 2.5.4. From (2.5.27) we have
the identity



140 Chapter 5 Modeling and Forecasting with ARMA Processes

Xn = Cn

(
Xn − X̂n

)
. (5.2.2)

We also know from Remark 5 of Section 2.5.4 that the components of Xn − X̂n are
uncorrelated. Consequently, by the definition of vj,Xn−X̂n has the diagonal covariance
matrix

Dn = diag{v0, . . . , vn−1}.
From (5.2.2) and (A.2.5) we conclude that

�n = CnDnC
′
n. (5.2.3)

From (5.2.2) and (5.2.3) we see that

X′
n�

−1
n Xn =

(
Xn − X̂n

)′
D−1

n

(
Xn − X̂n

)
=

n∑

j=1

(
Xj − X̂j

)2
/vj−1 (5.2.4)

and

det �n = (detCn)
2(detDn) = v0v1 · · · vn−1. (5.2.5)

The likelihood (5.2.1) of the vector Xn therefore reduces to

L(�n) = 1
√

(2π)nv0 · · · vn−1

exp

⎧
⎨

⎩
−1

2

n∑

j=1

(
Xj − X̂j

)2
/vj−1

⎫
⎬

⎭
. (5.2.6)

If �n is expressible in terms of a finite number of unknown parameters β1, . . . , βr

(as is the case when {Xt} is an ARMA( p, q) process), the maximum likelihood
estimators of the parameters are those values that maximize L for the given data
set. When X1,X2, . . . ,Xn are iid, it is known, under mild assumptions and for n
large, that maximum likelihood estimators are approximately normally distributed
with variances that are at least as small as those of other asymptotically normally
distributed estimators (see, e.g., Lehmann 1983).

Even if {Xt} is not Gaussian, it still makes sense to regard (5.2.6) as a mea-
sure of goodness of fit of the model to the data, and to choose the parameters
β1, . . . , βr in such a way as to maximize (5.2.6).We shall always refer to the estimators
β̂1, . . . , β̂r so obtained as “maximum likelihood” estimators, even when {Xt} is not
Gaussian. Regardless of the joint distribution of X1, . . . ,Xn, we shall refer to (5.2.1)
and its algebraic equivalent (5.2.6) as the “likelihood” (or “Gaussian likelihood”)
of X1, . . . ,Xn. A justification for using maximum Gaussian likelihood estimators of
ARMA coefficients is that the large-sample distribution of the estimators is the same
for {Zt} ∼ IID

(
0, σ 2

)
, regardless of whether or not {Zt} is Gaussian (see Brockwell

and Davis (1991), Section 10.8).
The likelihood for data from an ARMA( p, q) process is easily computed from the

innovations form of the likelihood (5.2.6) by evaluating the one-step predictors X̂i+1
and the corresponding mean squared errors vi. These can be found from the recursions
(Section 3.3)

X̂n+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n∑

j=1
θnj

(
Xn+1−j − X̂n+1−j

)
, 1 ≤ n < m,

φ1Xn + · · · + φpXn+1−p +
q∑

j=1
θnj

(
Xn+1−j − X̂n+1−j

)
, n ≥ m,

(5.2.7)
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and

E
(
Xn+1 − X̂n+1

)2 = σ 2E
(
Wn+1 − Ŵn+1

)2 = σ 2rn, (5.2.8)

where θnj and rn are determined by the innovations algorithm with κ as in (3.3.3) and
m = max(p, q). Substituting in the general expression (5.2.6), we obtain the following:

The Gaussian Likelihood for an ARMA Process:

L
(
φ,θ, σ 2

) = 1
√(

2πσ 2
)n
r0 · · · rn−1

exp

⎧
⎪⎨

⎪⎩
− 1

2σ 2

n∑

j=1

(
Xj − X̂j

)2

rj−1

⎫
⎪⎬

⎪⎭
. (5.2.9)

Differentiating lnL
(
φ,θ, σ 2

)
partially with respect to σ 2 and noting that X̂j and rj

are independent of σ 2, we find that the maximum likelihood estimators φ̂, θ̂, and σ̂ 2

satisfy the following equations (Problem 5.8):

Maximum Likelihood Estimators:

σ̂ 2 = n−1S
(
φ̂, θ̂

)
, (5.2.10)

where

S
(
φ̂, θ̂

)
=

n∑

j=1

(
Xj − X̂j

)2
/rj−1, (5.2.11)

and φ̂, θ̂ are the values of φ, θ that minimize

�(φ,θ) = ln
(
n−1S(φ,θ)

)+ n−1
n∑

j=1

ln rj−1. (5.2.12)

Minimization of �(φ,θ) must be done numerically. Initial values for φ and θ can
be obtained from ITSM using the methods described in Section 5.1. The program then
searches systematically for the values of φ and θ that minimize the reduced likelihood
(5.2.12) and computes the corresponding maximum likelihood estimate of σ 2 from
(5.2.10).

Least Squares Estimation for Mixed Models
The least squares estimates φ̃ and θ̃ of φ and θ are obtained byminimizing the function
S as defined in (5.2.11) rather than � as defined in (5.2.12), subject to the constraints
that the model be causal and invertible. The least squares estimate of σ 2 is

σ̃ 2 =
S
(
φ̃, θ̃

)

n − p − q
.

Order Selection
In Section 5.1 we introduced minimization of the AICC value as a major criterion for
the selection of the orders p and q. This criterion is applied as follows:
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AICC Criterion:
Choose p, q, φp, and θq to minimize

AICC = −2 lnL(φp,θq, S(φp,θq)/n) + 2(p + q + 1)n/(n− p− q− 2).

For any fixed p and q it is clear that the AICC is minimized when φp and θq are
the vectors that minimize −2 lnL(φp,θq, S(φp,θq)/n), i.e., the maximum likelihood
estimators. Final decisions with respect to order selection should therefore be made on
the basis of maximum likelihood estimators (rather than the preliminary estimators of
Section 5.1, which serve primarily as a guide). The AICC statistic and its justification
are discussed in detail in Section 5.5.

One of the options in the program ITSM is Model>Estimation>Autofit.
Selection of this option allows you to specify a range of values for both p and q, after
which the program will automatically fit maximum likelihood ARMA( p, q) values
for all p and q in the specified range, and select from these the model with smallest
AICC value. This may be slow if a large range is selected (the maximum range is from
0 through 27 for both p and q), and once the model has been determined, it should
be checked by preliminary estimation followed by maximum likelihood estimation
to minimize the risk of the fitted model corresponding to a local rather than a global
maximum of the likelihood. (For more details see Section E.3.1.)

Confidence Regions for the Coefficients
For large sample size the maximum likelihood estimator β̂ of β := (φ1, . . ., φp,
θ1, . . . , θq)′ is approximately normally distributed with mean β and covariance matrix[
n−1V(β)

]
which can be approximated by 2H−1(β), where H is the Hessian matrix

[
∂2�(β)/∂βi∂βj

]p+q

i,j=1. ITSM prints out the approximate standard deviations and corre-
lations of the coefficient estimators based on the Hessian matrix evaluated numerically
at β̂ unless this matrix is not positive definite, in which case ITSM instead computes
the theoretical asymptotic covariance matrix in Section 9.8 of Brockwell and Davis
(1991). The resulting covariances can be used to compute confidence bounds for the
parameters.

Large-Sample Distribution of Maximum Likelihood Estimators:

For a large sample from an ARMA(p, q) process,

β̂ ≈ N
(
β, n−1V(β)

)
.

The general form of V(β) can be found in Brockwell and Davis (1991), Section 9.8.
The following are several special cases.

Example 5.2.1 An AR(p) Model

The asymptotic covariance matrix in this case is the same as that for the Yule–Walker
estimates given by

V(φ) = σ 2�−1
p .

In the special cases p = 1 and p = 2, we have
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AR(1) :V(φ) = (1 − φ2
1

)
,

AR(2) :V(φ) =
[

1 − φ2
2 −φ1(1 + φ2)

−φ1(1 + φ2) 1 − φ2
2

]
. �

Example 5.2.2 An MA(q) Model

Let �∗
q be the covariance matrix of Y1, . . . ,Yq, where {Yt} is the autoregressive process

with autoregressive polynomial θ(z), i.e.,

Yt + θ1Yt−1 + · · · + θqYt−q = Zt, {Zt} ∼ WN(0, 1).

Then it can be shown that

V(θ) = �∗−1
q .

Inspection of the results of Example 5.2.1 and replacement of φi by −θi yields

MA(1) :V(θ) = (1 − θ2
1

)
,

MA(2) :V(θ) =
[

1 − θ2
2 θ1(1 − θ2)

θ1(1 − θ2) 1 − θ2
2

]
.

�

Example 5.2.3 An ARMA(1, 1) Model

For a causal and invertible ARMA(1,1) process with coefficients φ and θ .

V(φ, θ) = 1 + φθ

(φ + θ)2

[
(1 − φ2)(1 + φθ) −(1 − θ2)(1 − φ2)

−(1 − θ2)(1 − φ2) (1 − θ2)(1 + φθ)

]
.

�

Example 5.2.4 The Dow Jones Utilities Index

For the Burg and Yule–Walker AR(1) models derived for the differenced and mean-
corrected series in Examples 5.1.1 and 5.1.3, the Model>Estimation>
Preliminary option of ITSM gives −2 ln(L)= 70.330 for the Burg model and
−2 ln(L)= 70.378 for the Yule–Walker model. Since maximum likelihood estimation
attempts to minimize −2 lnL, the Burg estimate appears to be a slightly better initial
estimate of φ. We therefore retain the Burg AR(1) model and then select Model>
Estimation>Max Likelihood and click OK. The Burg coefficient estimates
provide initial parameter values to start the search for the minimizing values. The
model found on completion of the minimization is

Yt − 0.4471Yt−1 = Zt, {Zt} ∼ WN(0, 0.02117). (5.2.13)

This model is different again from the Burg and Yule–Walker models. It has
−2 ln(L) = 70.321, corresponding to a slightly higher likelihood. The standard
error (or estimated standard deviation) of the estimator φ̂ is found from the program to
be 0.1050. This is close to the estimated standard deviation

√
(1 − (0.4471)2)/77 =

0.1019, based on the large-sample approximation given in Example 5.2.1. Using
the value computed from ITSM, approximate 95% confidence bounds for φ are
0.4471 ± 1.96 × 0.1050 = (0.2413, 0.6529). These are quite close to the bounds
based on the Yule–Walker and Burg estimates found in Examples 5.1.1 and 5.1.3.
To find the minimum-AICC model for the series {Yt} using ITSM, choose the
option Model>Estimation>Autofit. Using the default range for both p and
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q, and clicking on Start, we quickly find that the minimum AICC ARMA( p, q)
model with p ≤ 5 and q ≤ 5 is the AR(1) model defined by (5.2.13). The
corresponding AICC value is 74.483. If we increase the upper limits for p and q,
we obtain the same result.

�

Example 5.2.5 The Lake Data

Using the option Model>Estimation>Autofit as in the previous example, we
find that the minimum-AICC ARMA( p, q) model for the mean-corrected lake data,
Xt = Yt − 9.0041, of Examples 5.1.6 and 5.1.7 is the ARMA(1,1) model

Xt − 0.7446Xt−1 = Zt + 0.3213Zt−1, {Zt} ∼ WN(0, 0.4750). (5.2.14)

The estimated standard deviations of the two coefficient estimates φ̂ and θ̂ are found
from ITSM to be 0.0773 and 0.1123, respectively. (The respective estimated standard
deviations based on the large-sample approximation given in Example 5.2.3 are 0.0788
and 0.1119.) The corresponding 95% confidence bounds are therefore

φ : 0.7446 ± 1.96 × 0.0773 = (0.5941, 0.8961),

θ : 0.3208 ± 1.96 × 0.1123 = (0.1007, 0.5409).

The value of AICC for this model is 212.77, improving on the values for the prelim-
inary models of Examples 5.1.4, 5.1.6, and 5.1.7.

�

5.3 Diagnostic Checking

Typically, the goodness of fit of a statistical model to a set of data is judged by
comparing the observed values with the corresponding predicted values obtained from
the fitted model. If the fitted model is appropriate, then the residuals should behave in
a manner that is consistent with the model.

When we fit an ARMA(p, q) model to a given series we determine the maximum
likelihood estimators φ̂, θ̂, and σ̂ 2 of the parameters φ, θ, and σ 2. In the course of this
procedure the predicted values X̂t

(
φ̂, θ̂

)
of Xt based on X1, . . . ,Xt−1 are computed for

the fitted model. The residuals are then defined, in the notation of Section 3.3, by

Ŵt =
(
Xt − X̂t

(
φ̂, θ̂

))
/
(
rt−1

(
φ̂, θ̂

))1/2
, t = 1, . . . , n. (5.3.1)

If we were to assume that the maximum likelihood ARMA(p, q) model is the true
process generating {Xt}, then we could say that

{
Ŵt
} ∼ WN

(
0, σ̂ 2

)
. However,

to check the appropriateness of an ARMA(p, q) model for the data we should
assume only that X1, . . . ,Xn are generated by an ARMA(p, q) process with unknown
parameters φ, θ, and σ 2, whose maximum likelihood estimators are φ̂, θ̂, and σ̂ 2,
respectively. Then it is not true that

{
Ŵt
}
is white noise. Nonetheless Ŵt, t = 1, . . . , n,

should have properties that are similar to those of the white noise sequence

Wt(φ,θ) = (Xt − X̂t (φ,θ)) /(rt−1(φ,θ))1/2, t = 1, . . . , n.

Moreover,Wt(φ,θ) approximates the white noise term in the defining equation (5.1.1)
in the sense that E(Wt(φ,θ) − Zt)2 → 0 as t → ∞ (Brockwell and Davis (1991),
Section 8.11). Consequently, the properties of the residuals

{
Ŵt

}
should reflect those

of the white noise sequence {Zt} generating the underlying ARMA(p, q) process. In
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particular, the sequence
{
Ŵt

}
should be approximately (1) uncorrelated if {Zt} ∼

WN
(
0, σ 2

)
, (2) independent if {Zt} ∼ IID

(
0, σ 2

)
, and (3) normally distributed if

Zt ∼ N
(
0, σ 2

)
.

The rescaled residuals R̂t, t = 1, . . . , n, are obtained by dividing the residuals

Ŵt, t = 1, . . . , n, by the estimate σ̂ =
√(∑n

t=1 Ŵ
2
t

)
/n of the white noise standard

deviation. Thus,

R̂t = Ŵt/σ̂ . (5.3.2)

If the fitted model is appropriate, the rescaled residuals should have properties similar
to those of a WN(0, 1) sequence or of an iid(0,1) sequence if we make the stronger
assumption that the white noise {Zt} driving the ARMA process is independent white
noise.

The following diagnostic checks are all based on the expected properties of the
residuals or rescaled residuals under the assumption that the fitted model is correct
and that {Zt} ∼ IID

(
0, σ 2

)
. They are the same tests introduced in Section 1.6.

5.3.1 The Graph of {R̂t, t = 1, . . . , n}
If the fitted model is appropriate, then the graph of the rescaled residuals

{
R̂t, t =

1, . . . , n
}
should resemble that of a white noise sequence with variance one.While it is

difficult to identify the correlation structure of
{
R̂t
}
(or any time series for that matter)

from its graph, deviations of the mean from zero are sometimes clearly indicated by
a trend or cyclic component and nonconstancy of the variance by fluctuations in R̂t,
whose magnitude depends strongly on t.

The rescaled residuals obtained from the ARMA(1,1) model fitted to the mean-
corrected lake data in Example 5.2.5 are displayed in Figure 5-5. The graph gives no
indication of a nonzero mean or nonconstant variance, so on this basis there is no
reason to doubt the compatibility of R̂1, . . . , R̂n with unit-variance white noise.

Figure 5-5
The rescaled residuals after
fitting the ARMA(1,1) model
of Example 5.2.5 to the lake

data 0 20 40 60 80 100

− 1
0

1
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Figure 5-6
The sample ACF of
the residuals after

fitting the ARMA(1,1)
model of Example 5.2.5 to

the lake data Lag 
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The next step is to check that the sample autocorrelation function of
{
Ŵt

}
(or

equivalently of
{
R̂t

}
) behaves as it should under the assumption that the fitted model

is appropriate.

5.3.2 The Sample ACF of the Residuals

We know from Section 1.6 that for large n the sample autocorrelations of
an iid sequence Y1, . . . ,Yn with finite variance are approximately iid with distribution
N(0, 1/n). We can therefore test whether or not the observed residuals are consistent
with iid noise by examining the sample autocorrelations of the residuals and rejecting
the iid noise hypothesis if more than two or three out of 40 fall outside the bounds
±1.96/

√
n or if one falls far outside the bounds. (As indicated above, our estimated

residuals will not be precisely iid even if the true model generating the data is as
assumed. To correct for this the bounds ±1.96/

√
n should be modified to give a more

precise test as in Box and Pierce (1970) and Brockwell and Davis (1991), Section 9.4.)
The sample ACF and PACF of the residuals and the bounds ±1.96/

√
n can be viewed

by pressing the second green button (Plot ACF/PACF of residuals) at the
top of the ITSM window. Figure 5-6 shows the sample ACF of the residuals after
fitting the ARMA(1,1) of Example 5.2.5 to the lake data. As can be seen from the
graph, there is no cause to reject the fitted model on the basis of these autocorrelations.

5.3.3 Tests for Randomness of the Residuals

The tests (b), (c), (d), (e), and (f) of Section 1.6 can be carried out using the
program ITSM by selecting Statistics>Residual Analysis>Tests of
Randomness.
Applying these tests to the residuals from the ARMA(1,1) model for the mean-
corrected lake data (Example 5.2.5), and using the default value h = 22 suggested
for the portmanteau tests, we obtain the following results:
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RANDOMNESS TEST STATISTICS
LJUNG-BOX PORTM. = 10.23 CHISQUR(20) p=0.964
MCLEOD-LI PORTM. = 16.55 CHISQUR(22) p=0.788
TURNING POINTS = 69 ANORMAL(64.0, 4.14**2) p=0.227
DIFFERENCE-SIGN = 50 ANORMAL(48.5, 2.87**2) p=0.602
RANK TEST = 2083 ANORMAL(2376, 488.7**2) p=0.072
JARQUE-BERA=0.285 CHISQUR(2) p=0.867
ORDER OF MIN AICC YW MODEL FOR RESIDUALS = 0

This table shows the observed values of the statistics defined in Section 1.6, with each
followed by its large-sample distribution under the null hypothesis of iid residuals,
and the corresponding p-values. The observed values can thus be checked easily for
compatibility with their distributions under the null hypothesis. Since all of the p-
values are greater than 0.05, none of the test statistics leads us to reject the null
hypothesis at this level. The order of the minimum AICC autoregressive model for
the residuals also suggests the compatibility of the residuals with white noise.

A rough check for normality is provided by visual inspection of the histogram
of the rescaled residuals, obtained by selecting the third green button at the top of the
ITSM window. A Gaussian qq-plot of the residuals can also be plotted by selecting
Statistics > Residual Analysis > QQ-Plot (normal). No obvi-
ous deviation from normality is apparent in either the histogram or the qq-plot. The
Jarque-Bera statistic, n[m2

3/(6m
3
2)+(m4/m3

2−3)2/24], wheremr =∑n
j=1(Yj−Ȳ)r/n, is

distributed asymptotically as χ2(2) if {Yt} ∼ IID N(μ, σ 2). This hypothesis is rejected
if the statistic is sufficiently large (at level α if the p-value of the test is less than α). In
this case the large p-value computed by ITSM provides no evidence for rejecting the
normality hypothesis.

5.4 Forecasting

Once a model has been fitted to the data, forecasting future values of the time series
can be carried out using the method described in Section 3.3. We illustrate this method
with one of the examples from Section 3.2.

Example 5.4.1 For the overshort data {Xt} of Example 3.2.8, selection of the options Model>
Estimation >Preliminary, the innovations algorithm, and then Model>
Estimation>Max likelihood, gives the maximum likelihood MA(1) model
for {Xt},

Xt + 4.035 = Zt − 0.818Zt−1, {Zt} ∼ WN(0, 2040.75). (5.4.1)

To predict the next 7 days of overshorts, we treat (5.4.1) as the true model for the data,
and use the results of Example 3.3.3 with φ = 0. From (3.3.11), the predictors are
given by

P57X57+h = −4.035 +
1∑

j=h

θ57+h−1,j

(
X57+h−j − X̂57+h−j

)

=
⎧
⎨

⎩
−4.035 + θ57,1

(
X57 − X̂57

)
, if h = 1,

−4.035, if h > 1,



148 Chapter 5 Modeling and Forecasting with ARMA Processes

Table 5.1 Forecasts of the next seven observations
of the overshort data of Example 3.2.8
using model (5.4.1)

# XHAT SQRT(MSE) XHAT+MEAN

58 1.0097 45.1753 −3.0254
59 0.0000 58.3602 −4.0351
60 0.0000 58.3602 −4.0351
61 0.0000 58.3602 −4.0351
62 0.0000 58.3602 −4.0351
63 0.0000 58.3602 −4.0351
64 0.0000 58.3602 −4.0351

with mean squared error

E(X57+h − P57X57+h)
2 =

{
2040.75r57, if h = 1,

2040.75(1 + (−0.818)2), if h > 1,

where θ57,1 and r57 are computed recursively from (3.3.9) with θ = −0.818.
These calculations are performed with ITSM by fitting the maximum likeli-

hood model (5.4.1), selecting Forecasting>ARMA, and specifying the number of
forecasts required. The 1-step, 2-step, . . . , and 7-step forecasts of Xt are shown in
Table 5.1. Notice that the predictor of Xt for t ≥ 59 is equal to the sample mean, since
under the MA(1) model {Xt, t ≥ 59} is uncorrelated with {Xt, t ≤ 57}.

Assuming that the innovations {Zt} are normally distributed, an approximate 95%
prediction interval for X64 is given by

−4.0351 ± 1.96 × 58.3602 = (−118.42, 110.35).

�
Themean squared errors of prediction, as computed in Section 3.3 and the example

above, are based on the assumption that the fitted model is in fact the true model for
the data. As a result, they do not reflect the variability in the estimation of the model
parameters. To illustrate this point, suppose the data X1, . . . , Xn are generated from
the causal AR(1) model

Xt = φXt−1 + Zt, {Zt} ∼ iid
(
0, σ 2

)
.

If φ̂ is the maximum likelihood estimate of φ, based on X1, . . . ,Xn, then the one-step
ahead forecast of Xn+1 is φ̂Xn, which has mean squared error

E
(
Xn+1 − φ̂Xn

)2 = E
((

φ − φ̂
)
Xn + Zn+1

)2 = E((φ − φ̂)Xn)
2 + σ 2.

(5.4.2)

The second equality follows from the independence of Zn+1 and
(
φ̂,Xn

)′
. To evaluate

the first term in (5.4.2), first condition on Xn and then use the approximations

E

((
φ − φ̂

)2 |Xn

)
≈ E

(
φ − φ̂

)2 ≈ (1 − φ2
)
/n,

where the second relation comes from the formula for the asymptotic variance of φ̂

given by σ 2�−1
1 = (1 − φ2

)
(see Example 5.2.1). The one-step mean squared error is

then approximated by
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E
(
φ − φ̂

)2
EX2

n + σ 2 ≈ n−1
(
1 − φ2

) (
1 − φ2

)−1
σ 2 + σ 2 = n + 1

n
σ 2.

Thus, the error in parameter estimation contributes the term σ 2/n to the mean squared
error of prediction. If the sample size is large, this factor is negligible, and so for the
purpose of mean squared error computation, the estimated parameters can be treated
as the true model parameters. On the other hand, for small sample sizes, ignoring
parameter variability can lead to a severe underestimate of the actual mean squared
error of the forecast.

5.5 Order Selection

Once the data have been transformed (e.g., by some combination of Box–Cox and
differencing transformations or by removal of trend and seasonal components) to the
point where the transformed series {Xt} can potentially be fitted by a zero-meanARMA
model, we are faced with the problem of selecting appropriate values for the orders p
and q.

It is not advantageous from a forecasting point of view to choose p and q arbi-
trarily large. Fitting a very high order model will generally result in a small estimated
white noise variance, but when the fitted model is used for forecasting, the mean
squared error of the forecasts will depend not only on the white noise variance of
the fitted model but also on errors arising from estimation of the parameters of the
model (see the paragraphs following Example 5.4.1). These will be larger for higher-
order models. For this reason we need to introduce a “penalty factor” to discourage
the fitting of models with too many parameters.

Many criteria based on such penalty factors have been proposed in the literature,
since the problem of model selection arises frequently in statistics, particularly in
regression analysis. We shall restrict attention here to a brief discussion of the FPE,
AIC, and BIC criteria of Akaike and a bias-corrected version of the AIC known as the
AICC.

5.5.1 The FPE Criterion

The FPE criterion was developed by Akaike (1969) to select the appropriate order of
an AR process to fit to a time series {X1, . . . , Xn}. Instead of trying to choose the order
p to make the estimated white noise variance as small as possible, the idea is to choose
the model for {Xt} in such a way as to minimize the one-step mean squared error when
the model fitted to {Xt} is used to predict an independent realization {Yt} of the same
process that generated {Xt}.

Suppose then that {X1, . . . , Xn} is a realization of an AR(p) process with coef-
ficients φ1, . . . , φp, p < n, and that {Y1, . . . ,Yn} is an independent realization of the
same process. If φ̂1, . . . , φ̂p, are the maximum likelihood estimators of the coefficients
based on {X1, . . . , Xn} and if we use these to compute the one-step predictor φ̂1Yn +
· · · + φ̂pYn+1−p of Yn+1, then the mean square prediction error is

E
(
Yn+1−φ̂1Yn− · · · −φ̂pYn+1−p

)2

= E
[
Yn+1 −φ1Yn− · · ·−φpYn+1−p−

(
φ̂1 − φ1

)
Yn − · · · −

(
φ̂p − φp

)
Yn+1−p

]2

= σ 2 + E

[(
φ̂p − φp

)′ [
Yn+1−iYn+1−j

]p
i,j=1

(
φ̂p − φ

)]
,
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Table 5.2 σ̂ 2
p and FPEp for AR(p)

models fitted to the
lake data

p σ2
p FPEp

0 1.7203 1.7203
1 0.5097 0.5202
2 0.4790 0.4989
3 0.4728 0.5027
4 0.4708 0.5109
5 0.4705 0.5211
6 0.4705 0.5318
7 0.4679 0.5399
8 0.4664 0.5493
9 0.4664 0.5607
10 0.4453 0.5465

where φ′
p = (φ1, . . . , φp)

′, φ̂′
p =

(
φ̂1, . . . , φ̂p

)′
, and σ 2 is the white noise variance

of the AR(p) model. Writing the last term in the preceding equation as the expecta-
tion of the conditional expectation given X1, . . . ,Xn, and using the independence of
{X1, . . . ,Xn} and {Y1, . . . ,Yn}, we obtain

E
(
Yn+1 − φ̂1Yn − · · · − φ̂pYn+1−p

)2 = σ 2 + E

[(
φ̂p − φp

)′
�p

(
φ̂p − φ

)]
,

where �p = E[YiYj]pi,j=1. We can approximate the last term by assuming that the

random variable n−1/2
(
φ̂p − φp

)
has its large-sample distribution N

(
0, σ 2�−1

p

)
as

given in Example 5.21. Using Problem 5.13, we then find that

E
(
Yn+1 − φ̂1Yn − · · · − φ̂pYn+1−p

)2 ≈ σ 2
(

1 + p

n

)
. (5.5.1)

If σ̂ 2 is the maximum likelihood estimator of σ 2, then for large n, nσ̂ 2/σ 2 is distributed
approximately as chi-squared with (n − p) degrees of freedom (see Brockwell and
Davis (1991), Section 8.9). We therefore replace σ 2 in (5.5.1) by the estimator
nσ̂ 2/(n − p) to get the estimated mean square prediction error of Yn+1,

FPEp = σ̂ 2 n + p

n − p
. (5.5.2)

To apply the FPE criterion for autoregressive order selection we therefore choose the
value of p that minimizes FPEp as defined in (5.5.2).

Example 5.5.1 FPE-Based Selection of an AR Model for the Lake Data

In Example 5.1.4 we fitted AR(2) models to the mean-corrected lake data, the order 2
being suggested by the sample PACF shown in Figure 5-4. To use the FPE criterion to
select p, we have shown in Table 5.2 the values of FPE for values of p from 0 to 10.
These values were found using ITSM by fitting maximum likelihood AR models with
the option Model>Estimation>Max likelihood. Also shown in the table
are the values of the maximum likelihood estimates of σ 2 for the same values of p.
Whereas σ̂ 2

p decreases steadily with p, the values of FPEp have a clear minimum at
p = 2, confirming our earlier choice of p = 2 as the most appropriate for this data set.

�
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5.5.2 The AICC Criterion

A more generally applicable criterion for model selection than the FPE is the infor-
mation criterion of Akaike (1973), known as the AIC. This was designed to be an
approximately unbiased estimate of the Kullback–Leibler index of the fitted model
relative to the true model (defined below). Here we use a bias-corrected version of the
AIC, referred to as the AICC, suggested by Hurvich and Tsai (1989).

If X is an n-dimensional random vector whose probability density belongs to
the family {f (·; ψ),ψ ∈ �}, the Kullback–Leibler discrepancy between f (·; ψ) and
f (·; θ) is defined as

d(ψ |θ) = �(ψ |θ) − �(θ |θ),

where

�(ψ |θ) = Eθ (−2 ln f (X; ψ)) =
∫

Rn
−2 ln(f (x; ψ))f (x; θ) dx

is the Kullback–Leibler index of f (·; ψ) relative to f (·; θ). (Note that in general,
�(ψ |θ) �= �(θ |ψ).) By Jensen’s inequality (see, e.g., Mood et al., 1974),

d(ψ |θ) =
∫

Rn
−2 ln

(
f (x; ψ)

f (x; θ)

)
f (x; θ) dx

≥ −2 ln

(∫

Rn

f (x; ψ)

f (x; θ)
f (x; θ) dx

)

= −2 ln

(∫

Rn
f (x; ψ) dx

)

= 0,

with equality holding if and only if f (x; ψ) = f (x; θ).
Given observations X1, . . . ,Xn of an ARMA process with unknown parameters

θ = (
β, σ 2

)
, the true model could be identified if it were possible to compute the

Kullback–Leibler discrepancy between all candidate models and the true model. Since
this is not possible, we estimate the Kullback–Leibler discrepancies and choose the
model whose estimated discrepancy (or index) is minimum. In order to do this, we
assume that the true model and the alternatives are all Gaussian. Then for any given
θ = (β, σ 2

)
, f (·; θ) is the probability density of (Y1, . . . ,Yn)′, where {Yt} is a Gaussian

ARMA(p, q) process with coefficient vector β and white noise variance σ 2. (The
dependence of θ on p and q is through the dimension of the autoregressive andmoving-
average coefficients in β.)

Suppose, therefore, that our observations X1, . . . ,Xn are from a Gaussian ARMA
process with parameter vector θ = (

β, σ 2
)
and assume for the moment that the true

order is (p, q). Let θ̂ = (
β̂, σ̂ 2

)
be the maximum likelihood estimator of θ based on

X1, . . . , Xn and let Y1, . . . ,Yn be an independent realization of the true process (with
parameter θ). Then

−2 lnLY
(
β̂, σ̂ 2

)
= −2 ln LX

(
β̂, σ̂ 2

)
+ σ̂−2SY

(
β̂
)

− n,

where LX,LY, SX , and SY are defined as in (5.2.9) and (5.2.11). Hence,

Eθ (�(θ̂ |θ)) = Eβ,σ 2

(
−2 ln LY

(
β̂, σ̂ 2

))
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= Eβ,σ 2

(
−2 ln LX

(
β̂, σ̂ 2

))
+ Eβ,σ 2

⎛

⎝
SY
(
β̂
)

σ̂ 2

⎞

⎠− n.

(5.5.3)

It can be shown using large-sample approximations (see Brockwell and Davis (1991),
Section 10.3 for details) that

Eβ,σ 2

⎛

⎝
SY
(
β̂
)

σ̂ 2

⎞

⎠ ≈ 2(p + q + 1)n

n − p − q − 2
,

from which we see that −2 lnLX
(
β̂, σ̂ 2

) + 2(p + q + 1)n/(n − p − q − 2) is an ap-
proximately unbiased estimator of the expected Kullback–Leibler index Eθ

(
�
(
θ̂ |θ))

in (5.5.3). Since the preceding calculations (and the maximum likelihood estimators
β̂ and σ̂ 2) are based on the assumption that the true order is (p, q), we therefore select
the values of p and q for our fitted model to be those that minimize AICC

(
β̂
)
, where

AICC(β) := −2 lnLX(β, SX(β)/n) + 2(p+ q+ 1)n/(n− p− q− 2).

(5.5.4)

The AIC statistic, defined as

AIC(β) := −2 ln LX(β, SX(β)/n) + 2(p + q + 1),

can be used in the same way. Both AICC
(
β, σ 2

)
and AIC

(
β, σ 2

)
can be defined

for arbitrary σ 2 by replacing SX(β)/n in the preceding definitions by σ 2. The value
SX(β)/n is used in (5.5.4), since AICC

(
β, σ 2

)
(like AIC

(
β, σ 2

)
) is minimized for any

given β by setting σ 2 = SX(β)/n.
For fitting autoregressive models, Monte Carlo studies (Jones 1975; Shibata 1976)

suggest that the AIC has a tendency to overestimate p. The penalty factors 2( p + q+
1)n/(n−p−q−2) and 2( p+q+1) for the AICC and AIC statistics are asymptotically
equivalent as n → ∞. The AICC statistic, however, has a more extreme penalty for
large-order models, which counteracts the overfitting tendency of the AIC. The BIC
is another criterion that attempts to correct the overfitting nature of the AIC. For a
zero-mean causal invertible ARMA( p, q) process, it is defined (Akaike 1978) to be

BIC = (n − p − q) ln
[
nσ̂ 2/(n − p − q)

]+ n
(

1 + ln
√

2π
)

+(p + q) ln

[(
n∑

t=1

X2
t − nσ̂ 2

)

/(p + q)

]

, (5.5.5)

where σ̂ 2 is the maximum likelihood estimate of the white noise variance.
The BIC is a consistent order-selection criterion in the sense that if the data

{X1, . . . , Xn} are in fact observations of an ARMA(p, q) process, and if p̂ and q̂ are
the estimated orders found by minimizing the BIC, then p̂ → p and q̂ → q with
probability 1 as n → ∞ (Hannan 1980). This property is not shared by the AICC or
AIC. On the other hand, order selection by minimization of the AICC, AIC, or FPE
is asymptotically efficient for autoregressive processes, while order selection by BIC
minimization is not (Shibata 1980; Hurvich and Tsai 1989). Efficiency is a desirable
property defined in terms of the one-step mean square prediction error achieved by the
fitted model. For more details see Brockwell and Davis (1991), Section 10.3.
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In the modeling of real data there is rarely such a thing as the “true order.” For
the process Xt =∑∞

j=0 ψjZt−j there may be many polynomials θ(z), φ(z) such that the
coefficients of zj in θ(z)/φ(z) closely approximate ψj for moderately small values of j.
Correspondingly, there may be many ARMA processes with properties similar to {Xt}.
This problem of identifiability becomes much more serious for multivariate processes.
The AICC criterion does, however, provide us with a rational criterion for choosing
among competing models. It has been suggested (Duong 1984) that models with AIC
values within c of the minimum value should be considered competitive (with c = 2
as a typical value). Selection from among the competitive models can then be based
on such factors as whiteness of the residuals (Section 5.3) and model simplicity.

We frequently need, particularly in analyzing seasonal data, to fit ARMA(p, q)
models in which all except m(≤ p + q) of the coefficients are constrained to be zero.
In such cases the definition (5.5.4) is replaced by

AICC(β) := −2 lnLX(β, SX(β)/n) + 2(m + 1)n/(n − m − 2). (5.5.6)

Example 5.5.2 Models for the Lake Data

In Example 5.2.4 we found that the minimum-AICCARMA(p, q) model for the mean-
corrected lake data is the ARMA(1,1) model (5.2.14). For this model ITSM gives the
values AICC = 212.77 and BIC = 216.86. A systematic check on ARMA( p, q) mod-
els for other values of p and q shows that the model (5.2.14) also minimizes the BIC
statistic. The minimum-AICC AR( p) model is found to be the AR(2) model satisfying

Xt − 1.0441Xt−1 + 0.2503Xt−2 = Zt, {Zt} ∼ WN(0, 0.4789),

with AICC = 213.54 and BIC = 217.63. Both the AR(2) and ARMA(1,1) models
pass the diagnostic checks of Section 5.3, and in view of the small difference between
the AICC values there is no strong reason to prefer one model or the other.

�

Problems

5.1 The sunspot numbers {Xt, t = 1, . . . , 100}, filed as SUNSPOTS.TSM, have
sample autocovariances γ̂ (0) = 1382.2, γ̂ (1) = 1114.4, γ̂ (2) = 591.73, and
γ̂ (3) = 96.216. Use these values to find the Yule–Walker estimates of φ1, φ2,
and σ 2 in the model

Yt = φ1Yt−1 + φ2Yt−2 + Zt, {Zt} ∼ WN
(
0, σ 2

)
,

for the mean-corrected series Yt = Xt − 46.93, t = 1, . . . , 100. Assuming
that the data really are a realization of an AR(2) process, find 95% confidence
intervals for φ1 and φ2.

5.2 From the information given in the previous problem, use the Durbin–Levinson
algorithm to compute the sample partial autocorrelations φ̂11, φ̂22, and φ̂33 of the
sunspot series. Is the value of φ̂33 compatible with the hypothesis that the data
are generated by an AR(2) process? (Use significance level 0.05.)
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5.3 Consider the AR(2) process {Xt} satisfying
Xt − φXt−1 − φ2Xt−2 = Zt, {Zt} ∼ WN

(
0, σ 2

)
.

a. For what values of φ is this a causal process?

b. The following sample moments were computed after observing X1,…,X200:

γ̂ (0) = 6.06, ρ̂(1) = 0.687.

Find estimates of φ and σ 2 by solving the Yule–Walker equations. (If you
find more than one solution, choose the one that is causal.)

5.4 Two hundred observations of a time series, X1, . . . , X200, gave the following
sample statistics:

sample mean: x200 = 3.82;
sample variance: γ̂ (0) = 1.15;
sample ACF: ρ̂(1) = 0.427;

ρ̂(2) = 0.475;
ρ̂(3) = 0.169.

a. Based on these sample statistics, is it reasonable to suppose that {Xt − μ} is
white noise?

b. Assuming that {Xt − μ} can be modeled as the AR(2) process

Xt − μ − φ1(Xt−1 − μ) − φ2(Xt−2 − μ) = Zt,

where {Zt} ∼ IID
(
0, σ 2

)
, find estimates of μ, φ1, φ2, and σ 2.

c. Would you conclude that μ = 0?

d. Construct 95% confidence intervals for φ1 and φ2.

e. Assuming that the data were generated from an AR(2) model, derive esti-
mates of the PACF for all lags h ≥ 1.

5.5 Use the program ITSM to simulate and file 20 realizations of length 200 of the
Gaussian MA(1) process

Xt = Zt + θZt−1, {Zt} ∼ WN(0, 1),

with θ = 0.6.
a. For each series find the moment estimate of θ as defined in Example 5.1.2.

b. For each series use the innovations algorithm in the ITSM option Model>
Estimation>Preliminary to find an estimate of θ . (Use the default
value of the parameter m.) As soon as you have found this preliminary
estimate for a particular series, select Model>Estimation>Max
likelihood to find the maximum likelihood estimate of θ for the series.

c. Compute the sample means and sample variances of your three sets of esti-
mates.

d. Use the asymptotic formulae given at the end of Section 5.1.1 (with n =
200) to compute the variances of the moment, innovation, and maximum
likelihood estimators ofθ. Compare with the corresponding sample variances
found in (c).

e. What do the results of (c) suggest concerning the relative merits of the three
estimators?
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5.6 Establish the recursions (5.1.19) and (5.1.20) for the forward and backward
prediction errors ui(t) and vi(t) in Burg’s algorithm.

5.7 Derive the recursions for the Burg estimates φ
(B)
ii and σ

(B)2
i .

5.8 From the innovation form of the likelihood (5.2.9) derive the equations (5.2.10),
(5.2.11), and (5.2.12) for the maximum likelihood estimators of the parameters
of an ARMA process.

5.9 Use equation (5.2.9) to show that for n > p, the likelihood of the observations
{X1, . . . , Xn} of the causal AR(p) process defined by

Xt = φ1Xt−1 + · · · + φpXt−p + Zt, {Zt} ∼ WN
(
0, σ 2

)
,

is

L
(
φ, σ 2

) = (2πσ 2
)−n/2

(detGp)
−1/2

× exp

⎧
⎨

⎩
− 1

2σ 2

⎡

⎣X′
pG

−1
p Xp +

n∑

t=p+1

(Xt − φ1Xt−1 − · · · − φpXt−p)
2

⎤

⎦

⎫
⎬

⎭
,

where Xp = (X1, . . . ,Xp)
′ and Gp = σ−2�p = σ−2E(XpX′

p).

5.10 Use the result of Problem 5.9 to derive a pair of linear equations for the least
squares estimates of φ1 and φ2 for a causal AR(2) process (with mean zero).
Compare your equations with those for the Yule–Walker estimates. (Assume that
the mean is known to be zero in writing down the latter equations, so that the
sample autocovariances are γ̂ (h) = 1

n

∑n−h
t=1 Xt+hXt for h ≥ 0.)

5.11 Given two observations x1 and x2 from the causal AR(1) process satisfying

Xt = φXt−1 + Zt, {Zt} ∼ WN
(
0, σ 2

)
,

and assuming that |x1| �= |x2|, find the maximum likelihood estimates of φ

and σ 2.

5.12 Derive a cubic equation for the maximum likelihood estimate of the coefficient
φ of a causal AR(1) process based on the observations X1, . . . , Xn.

5.13 Use the result of Problem A.7 and the approximate large-sample normal distri-
bution of the maximum likelihood estimator φ̂p to establish the approximation
(5.5.1).
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