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A key role in time series analysis is played by processes whose properties, or some
of them, do not vary with time. If we wish to make predictions, then clearly we
must assume that something does not vary with time. In extrapolating deterministic
functions it is common practice to assume that either the function itself or one of its
derivatives is constant. The assumption of a constant first derivative leads to linear
extrapolation as a means of prediction. In time series analysis our goal is to predict
a series that typically is not deterministic but contains a random component. If this
random component is stationary, in the sense of Definition 1.4.2, then we can develop
powerful techniques to forecast its future values. These techniques will be developed
and discussed in this and subsequent chapters.

2.1 Basic Properties

In Section 1.4 we introduced the concept of stationarity and defined the autocovari-
ance function (ACVF) of a stationary time series {Xt} as

γ (h) = Cov(Xt+h, Xt), h = 0,±1,±2, . . . .

The autocorrelation function (ACF) of {Xt} was defined similarly as the function ρ(·)
whose value at lag h is

ρ(h) = γ (h)

γ (0)
.
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40 Chapter 2 Stationary Processes

The ACVF and ACF provide a useful measure of the degree of dependence among
the values of a time series at different times and for this reason play an important role
when we consider the prediction of future values of the series in terms of the past and
present values. They can be estimated from observations of X1, . . . , Xn by computing
the sample ACVF and ACF as described in Section 1.4.1.

The role of the autocorrelation function in prediction is illustrated by the following
simple example. Suppose that {Xt} is a stationary Gaussian time series (see Defi-
nition A.3.2) and that we have observed Xn. We would like to find the function of
Xn that gives us the best predictor of Xn+h, the value of the series after another h
time units have elapsed. To define the problem we must first say what we mean by
“best.” A natural and computationally convenient definition is to specify our required
predictor to be the function ofXn withminimummean squared error. In this illustration,
and indeed throughout the remainder of this book, we shall use this as our criterion
for “best.” Now by Proposition A.3.1 the conditional distribution of Xn+h given that
Xn = xn is

N
(
μ + ρ(h)(xn − μ), σ 2

(
1 − ρ(h)2

))
,

where μ and σ 2 are the mean and variance of {Xt}. It was shown in Problem 1.1 that
the value of the constant c that minimizes E(Xn+h − c)2 is c = E(Xn+h) and that the
function m of Xn that minimizes E(Xn+h − m(Xn))

2 is the conditional mean

m(Xn) = E(Xn+h|Xn) = μ + ρ(h)(Xn − μ). (2.1.1)

The corresponding mean squared error is

E(Xn+h − m(Xn))
2 = σ 2

(
1 − ρ(h)2

)
. (2.1.2)

This calculation shows that at least for stationary Gaussian time series, prediction of
Xn+h in terms of Xn is more accurate as |ρ(h)| becomes closer to 1, and in the limit as
ρ(h) → ±1 the best predictor approaches μ ± (Xn − μ) and the corresponding mean
squared error approaches 0.

In the preceding calculation the assumption of joint normality of Xn+h and Xn

played a crucial role. For time series with nonnormal joint distributions the correspond-
ing calculations are in general much more complicated. However, if instead of looking
for the best function of Xn for predicting Xn+h, we look for the best linear predictor,
i.e., the best predictor of the form �(Xn) = aXn + b, then our problem becomes that of
finding a and b to minimize E(Xn+h − aXn − b)2. An elementary calculation (Problem
2.1), shows that the best predictor of this form is

�(Xn) = μ + ρ(h)(Xn − μ) (2.1.3)

with corresponding mean squared error

E(Xn+h − �(Xn))
2 = σ 2(1 − ρ(h)2). (2.1.4)

Comparison with (2.1.1) and (2.1.3) shows that for Gaussian processes, �(Xn) and
m(Xn) are the same. In general, of course, m(Xn) will give smaller mean squared
error than �(Xn), since it is the best of a larger class of predictors (see Problem 1.8).
However, the fact that the best linear predictor depends only on the mean and ACF of
the series {Xt} means that it can be calculated without more detailed knowledge of the
joint distributions. This is extremely important in practice because of the difficulty of
estimating all of the joint distributions and because of the difficulty of computing the
required conditional expectations even if the distributions were known.
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As we shall see later in this chapter, similar conclusions apply when we consider
the more general problem of predicting Xn+h as a function not only of Xn, but also of
Xn−1,Xn−2, . . . . Before pursuing this question we need to examine in more detail the
properties of the autocovariance and autocorrelation functions of a stationary time
series.

Basic Properties of γ(·):
γ (0) ≥ 0,

|γ (h)| ≤ γ (0) for all h,

and γ (·) is even, i.e.,
γ (h) = γ (−h) for all h.

Proof The first property is simply the statement that Var(Xt) ≥ 0, the second is an immediate
consequence of the fact that correlations are less than or equal to 1 in absolute value
(or the Cauchy–Schwarz inequality), and the third is established by observing that

γ (h) = Cov(Xt+h,Xt) = Cov(Xt,Xt+h) = γ (−h). �

Autocovariance functions have another fundamental property, namely that of
nonnegative definiteness.

Definition 2.1.1 A real-valued function κ defined on the integers is nonnegative definite if
n∑

i, j=1

aiκ(i − j)aj ≥ 0 (2.1.5)

for all positive integers n and vectors a = (a1, . . . , an)′ with real-valued compo-
nents ai.

Theorem 2.1.1 A real-valued function defined on the integers is the autocovariance function of a
stationary time series if and only if it is even and nonnegative definite.

Proof To show that the autocovariance function γ (·) of any stationary time series {Xt} is
nonnegative definite, let a be any n×1 vector with real components a1, . . . , an and let
Xn = (Xn, . . . , X1)

′. Then by equation (A.2.5) and the nonnegativity of variances,

Var(a′Xn) = a′�na =
n∑

i, j=1

aiγ (i − j)aj ≥ 0,

where �n is the covariance matrix of the random vector Xn. The last inequality,
however, is precisely the statement that γ (·) is nonnegative definite. The converse
result, that there exists a stationary time series with autocovariance function κ if
κ is even, real-valued, and nonnegative definite, is more difficult to establish (see
Brockwell and Davis (1991), Theorem 1.5.1 for a proof). A slightly stronger statement



42 Chapter 2 Stationary Processes

can be made, namely, that under the specified conditions there exists a stationary
Gaussian time series {Xt} with mean 0 and autocovariance function κ(·). �

Remark 1. An autocorrelation function ρ(·) has all the properties of an autocovari-
ance function and satisfies the additional condition ρ(0) = 1. In particular, we can say
that ρ(·) is the autocorrelation function of a stationary process if and only if ρ(·) is an
ACVF with ρ(0) = 1. �

Remark 2. To verify that a given function is nonnegative definite it is often simpler
to find a stationary process that has the given function as its ACVF than to verify the
conditions (2.1.5) directly. For example, the function κ(h) = cos(ωh) is nonnegative
definite, since (see Problem 2.2) it is the ACVF of the stationary process

Xt = A cos(ωt) + B sin(ωt),

where A and B are uncorrelated random variables, both with mean 0 and variance 1.
Another illustration is provided by the following example. �

Example 2.1.1 We shall show now that the function defined on the integers by

κ(h) =

⎧
⎪⎨

⎪⎩

1, if h = 0,

ρ, if h = ±1,

0, otherwise,

is the ACVF of a stationary time series if and only if |ρ| ≤ 1
2 . Inspection of the ACVF

of the MA(1) process of Example 1.4.4 shows that κ is the ACVF of such a process if
we can find real θ and nonnegative σ 2 such that

σ 2(1 + θ2) = 1

and

σ 2θ = ρ.

If |ρ| ≤ 1
2 , these equations give solutions θ = (2ρ)−1

(
1 ± √

1 − 4ρ2
)
and σ 2 =

(
1 + θ2

)−1
. However, if |ρ| > 1

2 , there is no real solution for θ and hence no MA(1)
process with ACVF κ . To show that there is no stationary process with ACVF κ ,
we need to show that κ is not nonnegative definite. We shall do this directly from the
definition (2.1.5). First, if ρ > 1

2 , K = [κ(i − j)]ni, j=1, and a is the n-component vector
a = (1,−1, 1,−1, . . .)′, then

a′Ka = n − 2(n − 1)ρ < 0 for n > 2ρ/(2ρ − 1),

showing that κ(·) is not nonnegative definite and therefore, by Theorem 2.1.1, is not
an autocovariance function. If ρ < − 1

2 , the same argument with a = (1, 1, 1, 1, . . .)′
again shows that κ(·) is not nonnegative definite.

�
If {Xt} is a (weakly) stationary time series, then the vector (X1, . . . , Xn)

′ and the
time-shifted vector (X1+h, . . . , Xn+h)

′ have the same mean vectors and covariance
matrices for every integer h and positive integer n. A strictly stationary sequence is
one in which the joint distributions of these two vectors (and not just the means and
covariances) are the same. The precise definition is given below.
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Definition 2.1.2 {Xt} is a strictly stationary time series if

(X1, . . . , Xn)
′ d= (X1+h, . . . ,Xn+h)

′

for all integers h and n ≥ 1. (Here
d= is used to indicate that the two random vectors

have the same joint distribution function.)

For reference, we record some of the elementary properties of strictly stationary
time series.

Properties of a Strictly Stationary Time Series {Xt}:

a. The random variables Xt are identically distributed.

b. (Xt,Xt+h)
′ d= (X1,X1+h)

′ for all integers t and h.

c. {Xt} is weakly stationary if E(X2
t ) < ∞ for all t.

d. Weak stationarity does not imply strict stationarity.

e. An iid sequence is strictly stationary.

Proof Properties (a) and (b) follow at once from Definition 2.1.2. If EX2
t < ∞, then by

(a) and (b) EXt is independent of t and Cov(Xt,Xt+h) = Cov(X1,X1+h), which is
also independent of t, proving (c). For (d) see Problem 1.8. If {Xt} is an iid sequence
of random variables with common distribution function F, then the joint distribution
function of (X1+h, . . . , Xn+h)

′ evaluated at (x1, . . . , xn)′ is F(x1) · · ·F(xn), which is
independent of h. �

One of the simplest ways to construct a time series {Xt} that is strictly stationary
(and hence stationary if EX2

t < ∞) is to “filter” an iid sequence of random variables.
Let {Zt} be an iid sequence, which by (e) is strictly stationary, and define

Xt = g(Zt,Zt−1, . . . ,Zt−q) (2.1.6)

for some real-valued function g(·, . . . , ·). Then {Xt} is strictly stationary, since

(Zt+h, . . . ,Zt+h−q)
′ d= (Zt, . . . ,Zt−q)

′ for all integers h. It follows also from the
defining equation (2.1.6) that {Xt} is q-dependent, i.e., that Xs and Xt are independent
whenever |t − s| > q. (An iid sequence is 0-dependent.) In the same way, adopting
a second-order viewpoint, we say that a stationary time series is q-correlated if
γ (h) = 0 whenever |h| > q. A white noise sequence is then 0-correlated, while
the MA(1) process of Example 1.4.4 is 1-correlated. The moving-average process of
order q defined below is q-correlated, and perhaps surprisingly, the converse is also
true (Proposition 2.1.1).

The MA(q) Process:

{Xt} is amoving-average process of order q if

Xt = Zt + θ1Zt−1 + · · · + θqZt−q, (2.1.7)

where {Zt} ∼ WN
(
0, σ 2

)
and θ1, . . . , θq are constants.
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It is a simple matter to check that (2.1.7) defines a stationary time series that is strictly
stationary if {Zt} is iid noise. In the latter case, (2.1.7) is a special case of (2.1.6) with
g a linear function.

The importance of MA(q) processes derives from the fact that every q-correlated
process is an MA(q) process. This is the content of the following proposition, whose
proof can be found in Brockwell and Davis (1991), Section 3.2. The extension of this
result to the case q = ∞ is essentially Wold’s decomposition (see Section 2.6).

Proposition 2.1.1 If {Xt} is a stationary q-correlated time series with mean 0, then it can be represented
as the MA(q) process in (2.1.7).

2.2 Linear Processes

The class of linear time series models, which includes the class of autoregressive
moving-average (ARMA) models, provides a general framework for studying
stationary processes. In fact, every second-order stationary process is either a linear
process or can be transformed to a linear process by subtracting a deterministic com-
ponent. This result is known as Wold’s decomposition and is discussed in Section 2.6.

Definition 2.2.1 The time series {Xt} is a linear process if it has the representation

Xt =
∞∑

j=−∞
ψjZt−j, (2.2.1)

for all t, where {Zt} ∼ WN
(
0, σ 2

)
and {ψj} is a sequence of constants with∑∞

j=−∞ |ψj| < ∞.

In terms of the backward shift operator B, (2.2.1) can be written more compactly as

Xt = ψ(B)Zt, (2.2.2)

where ψ(B) = ∑∞
j=−∞ ψjB j. A linear process is called amoving average orMA(∞)

if ψj = 0 for all j < 0, i.e., if

Xt =
∞∑

j=0

ψjZt−j.

Remark 1. The condition
∑∞

j=−∞ |ψj| < ∞ ensures that the infinite sum in (2.2.1)
converges (with probability one), since E|Zt| ≤ σ and

E|Xt| ≤
∞∑

j=−∞

(|ψj|E|Zt−j|
) ≤

⎛

⎝
∞∑

j=−∞
|ψj|

⎞

⎠ σ < ∞.

It also ensures that
∑∞

j=−∞ ψ2
j < ∞ and hence (see Appendix C, Example C.1.1) that

the series in (2.2.1) converges in mean square, i.e., that Xt is the mean square limit
of the partial sums

∑n
j=−n ψjZt−j. The condition

∑n
j=−n |ψj| < ∞ also ensures

convergence in both senses of the more general series (2.2.3) considered in
Proposition 2.2.1 below. In Section 11.4 we consider a more general class of linear
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processes, the fractionally integrated ARMA processes, for which the coefficients are
not absolutely summable but only square summable. �

The operator ψ(B) can be thought of as a linear filter, which when applied to
the white noise “input” series {Zt} produces the “output” {Xt} (see Section 4.3). As
established in the following proposition, a linear filter, when applied to any stationary
input series, produces a stationary output series.

Proposition 2.2.1 Let {Yt} be a stationary time series with mean 0 and covariance function γY . If∑∞
j=−∞ |ψj| < ∞, then the time series

Xt =
∞∑

j=−∞
ψjYt−j = ψ(B)Yt (2.2.3)

is stationary with mean 0 and autocovariance function

γX(h) =
∞∑

j=−∞

∞∑

k=−∞
ψjψkγY(h + k − j). (2.2.4)

In the special case where {Xt} is the linear process (2.2.1),

γX(h) =
∞∑

j=−∞
ψjψj+hσ

2. (2.2.5)

Proof The argument used in Remark 1, with σ replaced by
√

γY(0), shows that the series in
(2.2.3) is convergent. Since EYt = 0, we have

E(Xt) = E

⎛

⎝
∞∑

j=−∞
ψjYt−j

⎞

⎠ =
∞∑

j=−∞
ψjE(Yt−j) = 0

and

E(Xt+hXt) = E

⎡

⎣

⎛

⎝
∞∑

j=−∞
ψjYt+h−j

⎞

⎠
( ∞∑

k=−∞
ψkYt−k

)⎤

⎦

=
∞∑

j=−∞

∞∑

k=−∞
ψjψkE(Yt+h−jYt−k)

=
∞∑

j=−∞

∞∑

k=−∞
ψjψkγY(h − j + k),

which shows that {Xt} is stationary with covariance function (2.2.4). (The interchange
of summation and expectation operations in the above calculations can be justified by
the absolute summability of ψj.) Finally, if {Yt} is the white noise sequence {Zt} in
(2.2.1), then γY(h − j + k) = σ 2 if k = j − h and 0 otherwise, from which (2.2.5)
follows. �

Remark 2. The absolute convergence of (2.2.3) implies (Problem 2.6) that filters of
the form α(B) = ∑∞

j=−∞ αjB j and β(B) = ∑∞
j=−∞ βjB j with absolutely summable

coefficients can be applied successively to a stationary series {Yt} to generate a new
stationary series
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Wt =
∞∑

j=−∞
ψjYt−j,

where

ψj =
∞∑

k=−∞
αkβj−k =

∞∑

k=−∞
βkαj−k. (2.2.6)

These relations can be expressed in the equivalent form

Wt = ψ(B)Yt,

where

ψ(B) = α(B)β(B) = β(B)α(B), (2.2.7)

and the products are defined by (2.2.6) or equivalently by multiplying the series∑∞
j=−∞ αjB j and

∑∞
j=−∞ βjB j term by term and collecting powers of B. It is clear

from (2.2.6) and (2.2.7) that the order of application of the filters α(B) and β(B) is
immaterial. �

Example 2.2.1 An AR(1) Process

In Example 1.4.5, an AR(1) process was defined as a stationary solution {Xt} of the
equations

Xt − φXt−1 = Zt, (2.2.8)

where {Zt} ∼ WN(0, σ 2), |φ| < 1, and Zt is uncorrelated with Xs for each s < t. To
show that such a solution exists and is the unique stationary solution of (2.2.8), we
consider the linear process defined by

Xt =
∞∑

j=0

φ jZt−j. (2.2.9)

(The coefficients φ j for j ≥ 0 are absolutely summable, since |φ| < 1.) It is easy to
verify directly that the process (2.2.9) is a solution of (2.2.8), and by Proposition 2.2.1
it is also stationary with mean 0 and ACVF

γX(h) =
∞∑

j=0

φ jφ j+hσ 2 = σ 2φh

1 − φ2
,

for h ≥ 0.
To show that (2.2.9) is the only stationary solution of (2.2.8) let {Yt} be any

stationary solution. Then, iterating (2.2.8), we obtain

Yt = φYt−1 + Zt

= Zt + φZt−1 + φ2Yt−2

= · · ·
= Zt + φZt−1 + · · · + φkZt−k + φk+1Yt−k−1.

If {Yt} is stationary, then EY2
t is finite and independent of t, so that

E(Yt −
k∑

j=0

φ jZt−j)
2 = φ2k+2E(Yt−k−1)

2

→ 0 as k → ∞.
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This implies that Yt is equal to the mean square limit
∑∞

j=0 φ jZt−j and hence that the
process defined by (2.2.9) is the unique stationary solution of equation (2.2.8).

It the case |φ| > 1, the series in (2.2.9) does not converge. However, we can rewrite
(2.2.8) in the form

Xt = −φ−1Zt+1 + φ−1Xt+1. (2.2.10)

Iterating (2.2.10) gives

Xt = −φ−1Zt+1 − φ−2Zt+2 + φ−2Xt+2

= · · ·
= −φ−1Zt+1 − · · · − φ−k−1Zt+k+1 + φ−k−1Xt+k+1,

which shows, by the same arguments used above, that

Xt = −
∞∑

j=1

φ−jZt+j (2.2.11)

is the unique stationary solution of (2.2.8). This solution should not be confused with
the nonstationary solution {Xt} of (2.2.8) obtained when X0 is any specified random
variable that is uncorrelated with {Zt}.

The solution (2.2.11) is frequently regarded as unnatural, since Xt as defined by
(2.2.11) is correlated with future values of Zs, contrasting with the solution (2.2.9),
which has the property that Xt is uncorrelated with Zs for all s > t. It is customary
therefore in modeling stationary time series to restrict attention to AR(1) processes
with |φ| < 1. Then Xt has the representation (2.2.8) in terms of {Zs, s ≤ t}, and we
say that {Xt} is a causal or future-independent function of {Zt}, or more concisely that
{Xt} is a causal autoregressive process. It should be noted that everyAR(1) process with
|φ| > 1 can be reexpressed as an AR(1) process with |φ| < 1 and a new white noise
sequence (Problem 3.8). From a second-order point of view, therefore, nothing is lost
by eliminating AR(1) processes with |φ| > 1 from consideration.

If φ = ±1, there is no stationary solution of (2.2.8) (see Problem 2.8).
�

Remark 3. It is worth remarking that when |φ| < 1 the unique stationary solution
(2.2.9) can be found immediately with the aid of (2.2.7). To do this let φ(B) = 1−φB
and π(B) = ∑∞

j=0 φ jB j. Then

ψ(B) := φ(B)π(B) = 1.

Applying the operator π(B) to both sides of (2.2.8), we obtain

Xt = π(B)Zt =
∞∑

j=0

φ jZt−j

as claimed. �

2.3 Introduction to ARMA Processes

In this section we introduce, through an example, some of the key properties of an
important class of linear processes known as ARMA (autoregressive moving average)
processes. These are defined by linear difference equations with constant coefficients.
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As our example we shall consider the ARMA(1,1) process. Higher-order ARMA
processes will be discussed in Chapter 3.

Definition 2.3.1 The time series {Xt} is an ARMA(1, 1) process if it is stationary and satisfies (for
every t)

Xt − φXt−1 = Zt + θZt−1, (2.3.1)

where {Zt} ∼ WN
(
0, σ 2

)
and φ + θ �= 0.

Using the backward shift operator B, (2.3.1) can be written more concisely as

φ(B)Xt = θ(B)Zt, (2.3.2)

where φ(B) and θ(B) are the linear filters

φ(B) = 1 − φB and θ(B) = 1 + θB,

respectively.
We first investigate the range of values of φ and θ for which a stationary solution

of (2.3.1) exists. If |φ| < 1, let χ(z) denote the power series expansion of 1/φ(z),
i.e.,

∑∞
j=0 φ jz j, which has absolutely summable coefficients. Then from (2.2.7) we

conclude that χ(B)φ(B) = 1. Applying χ(B) to each side of (2.3.2) therefore gives

Xt = χ(B)θ(B)Zt = ψ(B)Zt,

where

ψ(B) =
∞∑

j=0

ψjB
j = (

1 + φB + φ2B2 + · · · ) (1 + θB) .

By multiplying out the right-hand side or using (2.2.6), we find that

ψ0 = 1 and ψj = (φ + θ)φ j−1 for j ≥ 1.

As in Example 2.2.1, we conclude that the MA(∞) process

Xt = Zt + (φ + θ)

∞∑

j=1

φ j−1Zt−j (2.3.3)

is the unique stationary solution of (2.3.1).
Now suppose that |φ| > 1. We first represent 1/φ(z) as a series of powers of zwith

absolutely summable coefficients by expanding in powers of z−1, giving (Problem 2.7)

1

φ(z)
= −

∞∑

j=1

φ−jz−j.

Then we can apply the same argument as in the case where |φ| < 1 to obtain the
unique stationary solution of (2.3.1). We let χ(B) = −∑∞

j=1 φ−jB−j and apply χ(B)

to each side of (2.3.2) to obtain

Xt = χ(B)θ(B)Zt = −θφ−1Zt − (θ + φ)

∞∑

j=1

φ−j−1Zt+j. (2.3.4)
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If φ = ±1, there is no stationary solution of (2.3.1). Consequently, there is no
such thing as an ARMA(1,1) process with φ = ±1 according to our definition.

We can now summarize our findings about the existence and nature of the sta-
tionary solutions of the ARMA(1,1) recursions (2.3.2) as follows:

• A stationary solution of the ARMA(1,1) equations exists if and only if φ �= ±1.

• If |φ| < 1, then the unique stationary solution is given by (2.3.3). In this case we
say that {Xt} is causal or a causal function of {Zt}, since Xt can be expressed in
terms of the current and past values Zs, s ≤ t.

• If |φ| > 1, then the unique stationary solution is given by (2.3.4). The solution is
noncausal, since Xt is then a function of Zs, s ≥ t.

Just as causality means that Xt is expressible in terms of Zs, s ≤ t, the dual concept
of invertibility means that Zt is expressible in terms of Xs, s ≤ t. We show now that
the ARMA(1,1) process defined by (2.3.1) is invertible if |θ | < 1. To demonstrate
this, let ξ(z) denote the power series expansion of 1/θ(z), i.e.,

∑∞
j=0(−θ)jz j, which has

absolutely summable coefficients. From (2.2.6) it therefore follows that ξ(B)θ(B) = 1,
and applying ξ(B) to each side of (2.3.2) gives

Zt = ξ(B)φ(B)Xt = π(B)Xt,

where

π(B) =
∞∑

j=0

πjB
j = (

1 − θB + (−θ)2B2 + · · · ) (1 − φB) .

By multiplying out the right-hand side or using (2.2.6), we find that

Zt = Xt − (φ + θ)

∞∑

j=1

(−θ) j−1Xt−j. (2.3.5)

Thus the ARMA(1,1) process is invertible, since Zt can be expressed in terms of the
present and past values of the process Xs, s ≤ t. An argument like the one used to
show noncausality when |φ| > 1 shows that the ARMA(1,1) process is noninvertible
when |θ | > 1, since then

Zt = −φθ−1Xt + (θ + φ)

∞∑

j=1

(−θ)−j−1Xt+j. (2.3.6)

We summarize these results as follows:

• If |θ | < 1, then the ARMA(1,1) process is invertible, and Zt is expressed in terms
of Xs, s ≤ t, by (2.3.5).

• If |θ | > 1, then the ARMA(1,1) process is noninvertible, and Zt is expressed in
terms of Xs, s ≥ t, by (2.3.6).

Remark 1. In the cases θ = ±1, the ARMA(1,1) process is invertible in the more
general sense that Zt is a mean square limit of finite linear combinations of Xs, s ≤ t,
although it cannot be expressed explicitly as an infinite linear combination of Xs, s ≤
t (see Section 4.4 of Brockwell and Davis (1991)). In this book the term invertible
will always be used in the more restricted sense that Zt = ∑∞

j=0 πjXt−j, where∑∞
j=0 |πj| < ∞. �
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Remark 2. If the ARMA(1,1) process {Xt} is noncausal or noninvertible with |θ | > 1,
then it is possible to find a new white noise sequence {Wt} such that {Xt} is a causal
and noninvertible ARMA(1,1) process relative to {Wt} (Problem 4.10). Therefore,
from a second-order point of view, nothing is lost by restricting attention to causal
and invertible ARMA(1,1) models. This last sentence is also valid for higher-order
ARMA models. �

2.4 Properties of the Sample Mean and Autocorrelation Function

A stationary process {Xt} is characterized, at least from a second-order point of view,
by its mean μ and its autocovariance function γ (·). The estimation of μ, γ (·), and the
autocorrelation function ρ(·) = γ (·)/γ (0) from observations X1, . . . ,Xn therefore
plays a crucial role in problems of inference and in particular in the problem of
constructing an appropriate model for the data. In this section we examine some of
the properties of the sample estimates x̄ and ρ̂(·) of μ and ρ(·), respectively.

2.4.1 Estimation of μ

The moment estimator of the mean μ of a stationary process is the sample mean

X̄n = n−1(X1 + X2 + · · · + Xn). (2.4.1)

It is an unbiased estimator of μ, since

E(X̄n) = n−1(EX1 + · · · + EXn) = μ.

The mean squared error of X̄n is

E(X̄n − μ)2 = Var(X̄n)

= n−2
n∑

i=1

n∑

j=1

Cov(Xi,Xj)

= n−2
n∑

i−j=−n

(n − |i − j|)γ (i − j)

= n−1
n∑

h=−n

(
1 − |h|

n

)
γ (h). (2.4.2)

Now if γ (h) → 0 as h → ∞, the right-hand side of (2.4.2) converges to zero,
so that X̄n converges in mean square to μ. If

∑∞
h=−∞ |γ (h)| < ∞, then (2.4.2)

gives limn→∞ nVar(X̄n) = ∑
|h|<∞ γ (h). We record these results in the following

proposition.

Proposition 2.4.1 If {Xt} is a stationary time series with mean μ and autocovariance function γ (·),
then as n → ∞,

Var(X̄n) = E(X̄n − μ)2 → 0 if γ (n) → 0,

nE(X̄n − μ)2 →
∑

|h|<∞
γ (h) if

∞∑

h=−∞
|γ (h)| < ∞.
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To make inferences about μ using the sample mean X̄n, it is necessary to know the
distribution or an approximation to the distribution of X̄n. If the time series is Gaussian
(see Definition A.3.2), then by Remark 2 of Section A.3 and (2.4.2),

n1/2(X̄n − μ) ∼ N

⎛

⎝0,
∑

|h|<n

(
1 − |h|

n

)
γ (h)

⎞

⎠ .

It is easy to construct exact confidence bounds for μ using this result if γ (·) is
known, and approximate confidence bounds if it is necessary to estimate γ (·) from
the observations.

For many time series, in particular for linear and ARMA models, X̄n is approxi-
mately normal with mean μ and variance n−1 ∑

|h|<∞ γ (h) for large n (see Brockwell
and Davis (1991), p. 219). An approximate 95% confidence interval for μ is then

(
X̄n − 1.96v1/2/

√
n, X̄n + 1.96v1/2/

√
n
)
, (2.4.3)

where v = ∑
|h|<∞ γ (h). Of course, v is not generally known, so it must be estimated

from the data. The estimator computed in the program ITSM is v̂ = ∑
|h|<√

n

(
1 −

|h|/√n
)
γ̂ (h). For ARMA processes this is a good approximation to v for large n.

Example 2.4.1 An AR(1) Model

Let {Xt} be an AR(1) process with mean μ, defined by the equations

Xt − μ = φ(Xt−1 − μ) + Zt,

where |φ| < 1 and {Zt} ∼ WN
(
0, σ 2

)
. From Example 2.2.1 we have γ (h) =

φ|h|σ 2/(1 −φ2) and hence v = (
1 +2

∑∞
h=1 φh

)
σ 2/

(
1 −φ2

) = σ 2/(1 −φ)2. Approx-
imate 95% confidence bounds for μ are therefore given by x̄n ± 1.96σn−1/2/(1 − φ).
Since φ and σ are unknown in practice, they must be replaced in these bounds by
estimated values.

�

2.4.2 Estimation of γ(·) and ρ(·)
Recall from Section 1.4.1 that the sample autocovariance and autocorrelation functions
are defined by

γ̂ (h) = n−1
n−|h|∑

t=1

(
Xt+|h| − X̄n

)(
Xt − X̄n

)
(2.4.4)

and

ρ̂(h) = γ̂ (h)

γ̂ (0)
. (2.4.5)

Both the estimators γ̂ (h) and ρ̂(h) are biased even if the factor n−1 in (2.4.4) is replaced
by (n − h)−1. Nevertheless, under general assumptions they are nearly unbiased for
large sample sizes. The sample ACVF has the desirable property that for each k ≥ 1
the k-dimensional sample covariance matrix
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�̂k =

⎡

⎢
⎢⎢
⎣

γ̂ (0) γ̂ (1) · · · γ̂ (k − 1)

γ̂ (1) γ̂ (0) · · · γ̂ (k − 2)
...

... · · · ...

γ̂ (k − 1) γ̂ (k − 2) · · · γ̂ (0)

⎤

⎥
⎥⎥
⎦

(2.4.6)

is nonnegative definite. To see this, first note that if �̂m is nonnegative definite, then
�̂k is nonnegative definite for all k < m. So assume k ≥ n and write

�̂k = n−1TT ′,

where T is the k × 2k matrix

T =

⎡

⎢⎢⎢
⎣

0 · · · 0 0 Y1 Y2 · · · Yk
0 · · · 0 Y1 Y2 · · · Yk 0
...

...

0 Y1 Y2 · · · Yk 0 · · · 0

⎤

⎥⎥⎥
⎦

,

Yi = Xi − X̄n, i = 1, . . . , n, and Yi = 0 for i = n + 1, . . . , k. Then for any real k × 1
vector a we have

a′�̂ka = n−1(a′T)(T ′a) ≥ 0, (2.4.7)

and consequently the sample autocovariance matrix �̂k and sample autocorrelation
matrix

R̂k = �̂k/γ (0) (2.4.8)

are nonnegative definite. Sometimes the factor n−1 is replaced by (n − h)−1 in the
definition of γ̂ (h), but the resulting covariance and correlation matrices �̂n and R̂n

may not then be nonnegative definite. We shall therefore use the definitions (2.4.4)
and (2.4.5) of γ̂ (h) and ρ̂(h).

Remark 1. The matrices �̂k and R̂k are in fact nonsingular if there is at least one
nonzero Yi, or equivalently if γ̂ (0) > 0. To establish this result, suppose that γ̂ (0) > 0
and �̂k is singular. Then there is equality in (2.4.7) for some nonzero vector a, implying
that a′T = 0 and hence that the rank of T is less than k. Let Yi be the first nonzero
value of Y1,Y2, . . . ,Yk, and consider the k × k submatrix of T consisting of columns
(i + 1) through (i + k). Since this matrix is lower right triangular with each diagonal
element equal to Yi, its determinant has absolute value |Yi|k �= 0. Consequently, the
submatrix is nonsingular, and T must have rank k, a contradiction. �

Without further information beyond the observed data X1, . . . , Xn, it is impos-
sible to give reasonable estimates of γ (h) and ρ(h) for h ≥ n. Even for h slightly
smaller than n, the estimates γ̂ (h) and ρ̂(h) are unreliable, since there are so few pairs
(Xt+h, Xt) available (only one if h = n − 1). A useful guide is provided by Jenkins
(1976), p. 33 who suggest that n should be at least about 50 and h ≤ n/4.

The sample ACF plays an important role in the selection of suitable models for
the data. We have already seen in Example 1.4.6 and Section 1.6 how the sample ACF
can be used to test for iid noise. For systematic inference concerning ρ(h), we need
the sampling distribution of the estimator ρ̂(h). Although the distribution of ρ̂(h) is
intractable for samples from even the simplest time series models, it can usually be
well approximated by a normal distribution for large sample sizes. For linear models
and in particular for ARMAmodels (see Theorem 7.2.2 of Brockwell andDavis (1991)
for exact conditions) ρ̂k = (ρ̂(1), . . . , ρ̂(k))′ is approximately distributed for large n
as N(ρk, n

−1W), i.e.,
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ρ̂ ≈ N
(
ρ, n−1W

)
, (2.4.9)

where ρ = (ρ(1), . . . , ρ(k))′, and W is the covariance matrix whose (i, j) element
is given by Bartlett’s formula

wij =
∞∑

k=−∞

{
ρ(k + i)ρ(k + j) + ρ(k − i)ρ(k + j) + 2ρ(i)ρ( j)ρ2(k)

− 2ρ(i)ρ(k)ρ(k + j) − 2ρ( j)ρ(k)ρ(k + i)
}
.

Simple algebra shows that

wij =
∞∑

k=1

{ρ(k + i) + ρ(k − i) − 2ρ(i)ρ(k)}
× {ρ(k + j) + ρ(k − j) − 2ρ( j)ρ(k)}, (2.4.10)

which is a more convenient form of wij for computational purposes.

Example 2.4.2 iid Noise

If {Xt} ∼ IID
(
0, σ 2

)
, then ρ(h) = 0 for |h| > 0, so from (2.4.10) we obtain

wij =
⎧
⎨

⎩

1 if i = j,

0 otherwise.

For large n, therefore, ρ̂(1), . . . , ρ̂(h) are approximately independent and identically
distributed normal random variables with mean 0 and variance n−1. This result is the
basis for the test that data are generated from iid noise using the sample ACF described
in Section 1.6. (See also Example 1.4.6.)

�

Example 2.4.3 An MA(1) Process

If {Xt} is the MA(1) process of Example 1.4.4, i.e., if

Xt = Zt + θZt−1, t = 0,±1, . . . ,

where {Zt} ∼ WN(0, σ 2), then from (2.4.10)

wii =
⎧
⎨

⎩

1 − 3ρ2(1) + 4ρ4(1), if i = 1,

1 + 2ρ2(1), if i > 1,

is the approximate variance of n−1/2(ρ̂(i) − ρ(i)) for large n. In Figure 2-1 we have
plotted the sample autocorrelation function ρ̂(k), k = 0, . . . , 40, for 200 observations
from the MA(1) model

Xt = Zt − .8Zt−1, (2.4.11)

where {Zt} is a sequence of iid N(0, 1) random variables. Here ρ(1) = −0.8/1.64 =
−0.4878 and ρ(h) = 0 for h > 1. The lag-one sample ACF is found to be ρ̂(1) =
−0.4333=−6.128n−1/2, which would cause us (in the absence of our prior knowledge
of {Xt}) to reject the hypothesis that the data are a sample from an iid noise sequence.
The fact that |ρ̂(h)|≤1.96n−1/2 for h=2, . . . , 40 strongly suggests that the data are
from a model in which observations are uncorrelated past lag 1. Figure 2-1 shows
the bounds±1.96n−1/2(1+ 2ρ2(1))1/2, indicating the compatibility of the data with
the model (2.4.11). Since, however, ρ(1) is not normally known in advance, the
autocorrelations ρ̂(2), . . . , ρ̂(40)would in practice have been compared with the more
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Figure 2-1
The sample autocorrelation

function of n = 200
observations of the MA(1)
process in Example 2.4.3,

showing the bounds
±1.96n−1/2(1+2ρ̂2(1))1/2 Lag 
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stringent bounds ±1.96n−1/2 or with the bounds ±1.96n−1/2(1+2ρ̂2(1))1/2 in order
to check the hypothesis that the data are generated by a moving-average process
of order 1. Finally, it is worth noting that the lag-one correlation −0.4878 is well
inside the 95% confidence bounds for ρ(1) given by ρ̂(1) ± 1.96n−1/2(1 − 3ρ̂2(1) +
4ρ̂4(1))1/2 = −0.4333 ± 0.1053. This further supports the compatibility of the data
with the model Xt = Zt − 0.8Zt−1.

�

Example 2.4.4 An AR(1) Process

For the AR(1) process of Example 2.2.1,

Xt = φXt−1 + Zt,

where {Zt} is iid noise and |φ| < 1, we have, from (2.4.10) with ρ(h) = φ|h|,

wii =
i∑

k=1

φ2i
(
φ−k − φk

)2 +
∞∑

k=i+1

φ2k
(
φ−i − φi

)2

= (
1 − φ2i

)(
1 + φ2

)(
1 − φ2

)−1 − 2iφ2i, (2.4.12)

i = 1, 2, . . . . In Figure 2-2 we have plotted the sample ACF of the Lake Huron
residuals y1, . . . , y98 from Figure 1-10 together with 95% confidence bounds for
ρ(i), i = 1, . . . , 40, assuming that data are generated from the AR(1) model

Yt = 0.791Yt−1 + Zt (2.4.13)

[see equation (1.4.3)]. The confidence bounds are computed from ρ̂(i) ± 1.96n−1/2

w1/2
ii , where wii is given in (2.4.12) with φ = 0.791. The model ACF, ρ(i) =

(0.791)i, is also plotted in Figure 2-2. Notice that the model ACF just touches
the confidence bounds at lags 2–4. This suggests some incompatibility of the data with
the model (2.4.13). A much better fit to the residuals is provided by the second-order
autoregression defined by (1.4.4).

�
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Figure 2-2
The sample autocorrelation
function of the Lake Huron

residuals of Figure 1-10
showing the bounds

ρ̂(i)±1.96n−1/2w1/2
ii and

the model ACF
ρ(i) = (0.791)i Lag
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2.5 Forecasting Stationary Time Series

We now consider the problem of predicting the values Xn+h, h > 0, of a stationary
time series with known mean μ and autocovariance function γ in terms of the
values {Xn, . . . , X1}, up to time n. Our goal is to find the linear combination of
1,Xn,Xn−1, . . . , X1, that forecasts Xn+h with minimum mean squared error. The best
linear predictor in terms of 1,Xn, . . . , X1 will be denoted by PnXn+h and clearly has
the form

PnXn+h = a0 + a1Xn + · · · + anX1. (2.5.1)

It remains only to determine the coefficients a0, a1, . . . , an, by finding the values that
minimize

S(a0, . . . , an) = E(Xn+h − a0 − a1Xn − · · · − anX1)
2. (2.5.2)

(We already know from Problem 1.1 that P0Y = E(Y).) Since S is a quadratic function
of a0, . . . , an and is bounded below by zero, it is clear that there is at least one value of
(a0, . . . , an) thatminimizes S and that theminimum (a0, . . . , an) satisfies the equations

∂S(a0, . . . , an)

∂aj
= 0, j = 0, . . . , n. (2.5.3)

Evaluation of the derivatives in equation (2.5.3) gives the equivalent equations

E

[
Xn+h − a0 −

n∑

i=1
aiXn+1−i

]
= 0, (2.5.4)

E

[
(Xn+h − a0 −

n∑

i=1
aiXn+1−i)Xn+1−j

]
= 0, j = 1, . . . , n. (2.5.5)

These equations can be written more neatly in vector notation as

a0 = μ

(

1 −
n∑

i=1

ai

)

(2.5.6)



56 Chapter 2 Stationary Processes

and

�nan = γn(h), (2.5.7)

where

an = (a1, . . . , an)
′, �n = [

γ (i − j)
]n
i, j=1 ,

and

γn(h) = (γ (h), γ (h + 1), . . . , γ (h + n − 1))′.

Hence,

PnXn+h = μ +
n∑

i=1

ai(Xn+1−i − μ), (2.5.8)

where an satisfies (2.5.7). From (2.5.8) the expected value of the prediction error
Xn+h − PnXn+h is zero, and the mean square prediction error is therefore

E(Xn+h − PnXn+h)
2 = γ (0) − 2

n∑

i=1

aiγ (h + i − 1) +
n∑

i=1

n∑

j=1

aiγ (i − j)aj

= γ (0) − a′
nγn(h), (2.5.9)

where the last line follows from (2.5.7).

Remark 1. To show that equations (2.5.4) and (2.5.5) determine PnXn+h uniquely,
let

{
a(1)
j , j = 0, . . . , n

}
and

{
a(2)
j , j = 0, . . . , n

}
be two solutions and let Z be the

difference between the corresponding predictors, i.e.,

Z = a(1)

0 − a(2)

0 +
n∑

j=1

(
a(1)
j − a(2)

j

)
Xn+1−j.

Then

Z2 = Z

⎛

⎝a(1)

0 − a(2)

0 +
n∑

j=1

(
a(1)
j − a(2)

j

)
Xn+1−j

⎞

⎠ .

But from (2.5.4) and (2.5.5) we have EZ = 0 and E(Z Xn+1−j) = 0 for j = 1, . . . , n.
Consequently, E(Z2) = 0 and hence Z = 0. �

Properties of PnXn+h:

1. PnXn+h = μ+∑n
i=1 ai(Xn+1−i−μ), where an = (a1, . . . , an)′ satisfies (2.5.7).

2. E(Xn+h − PnXn+h)
2 = γ (0) − a′

nγn(h), where γn(h) = (γ (h), . . . , γ (h+ n−
1))′.

3. E(Xn+h − PnXn+h) = 0.
4. E[(Xn+h − PnXn+h)Xj] = 0, j = 1, . . . , n.

Remark 2. Notice that properties 3 and 4 are exactly equivalent to (2.5.4) and (2.5.5).
They can be written more succinctly in the form
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E[(Error) × (PredictorVariable)] = 0. (2.5.10)

The equations (2.5.10), one for each predictor variable, therefore uniquely determine
PnXn+h. �

Example 2.5.1 One-Step Prediction of an AR(1) Series

Consider now the stationary time series defined in Example 2.2.1 by the equations

Xt = φXt−1 + Zt, t = 0,±1, . . . ,

where |φ| < 1 and {Zt} ∼ WN
(
0, σ 2

)
. From (2.5.7) and (2.5.8), the best linear

predictor of Xn+1 in terms of {1,Xn, . . . , X1} is (for n ≥ 1)

PnXn+1 = a′
nXn,

where Xn = (Xn, . . . ,X1)
′ and

⎡

⎢
⎢⎢
⎣

1 φ φ2 · · · φn−1

φ 1 φ · · · φn−2

...
...

...
...

...

φn−1 φn−2 φn−3 · · · 1

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎣

a1

a2
...

an

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

φ

φ2

...

φn

⎤

⎥
⎥⎥
⎦

. (2.5.11)

A solution of (2.5.11) is clearly

an = (φ, 0, . . . , 0)′,

and hence the best linear predictor of Xn+1 in terms of {X1, . . . , Xn} is
PnXn+1 = a′

nXn = φXn,

with mean squared error

E(Xn+1 − PnXn+1)
2 = γ (0) − a′

nγn(1) = σ 2

1 − φ2
− φγ (1) = σ 2.

A simpler approach to this problem is to guess, by inspection of the equation defining
Xn+1, that the best predictor is φXn. Then to verify this conjecture, it suffices to check
(2.5.10) for each of the predictor variables 1,Xn, . . . , X1. The prediction error of the
predictor φXn is clearly Xn+1 − φXn = Zn+1. But E(Zn+1Y) = 0 for Y = 1 and for
Y = Xj, j = 1, . . . , n. Hence, by (2.5.10), φXn is the required best linear predictor
in terms of 1, X1, . . . , Xn.

�

2.5.1 Prediction of Second-Order Random Variables

Suppose now that Y and Wn, …, W1 are any random variables with finite second
moments and that the means μ = EY , μi = EWi and covariances Cov(Y,Y),
Cov(Y,Wi), and Cov(Wi,Wj) are all known. It is convenient to introduce the random
vector W = (Wn, . . . ,W1)

′, the corresponding vector of means μW = (μn, . . . , μ1)
′,

the vector of covariances

γ = Cov(Y,W) = (Cov(Y,Wn),Cov(Y,Wn−1), . . . ,Cov(Y,W1))
′,

and the covariance matrix

� = Cov(W,W) = [
Cov(Wn+1−i,Wn+1−j)

]n
i, j=1 .
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Then by the same arguments used in the calculation of PnXn+h, the best linear predictor
of Y in terms of {1,Wn, . . . ,W1} is found to be

P(Y|W) = μY + a′(W − μW), (2.5.12)

where a = (a1, . . . , an)′ is any solution of

�a = γ. (2.5.13)

The mean squared error of the predictor is

E
[
(Y − P(Y|W))2

] = Var(Y) − a′γ. (2.5.14)

Example 2.5.2 Estimation of a Missing Value

Consider again the stationary series defined in Example 2.2.1 by the equations

Xt = φXt−1 + Zt, t = 0,±1, . . . ,

where |φ| < 1 and {Zt} ∼ WN
(
0, σ 2

)
. Suppose that we observe the series at times 1

and 3 and wish to use these observations to find the linear combination of 1,X1, and X3

that estimates X2 with minimum mean squared error. The solution to this problem can
be obtained directly from (2.5.12) and (2.5.13) by setting Y = X2 andW = (X1,X3)

′.
This gives the equations

[
1 φ2

φ2 1

]

a =
[
φ

φ

]

,

with solution

a = 1

1 + φ2

[
φ

φ

]
.

The best estimator of X2 is thus

P(X2|W) = φ

1 + φ2
(X1 + X3) ,

with mean squared error

E[(X2 − P(X2|W))2] = σ 2

1 − φ2
− a′

⎡

⎢⎢
⎢
⎣

φσ 2

1 − φ2

φσ 2

1 − φ2

⎤

⎥⎥
⎥
⎦

= σ 2

1 + φ2
.

�

2.5.2 The Prediction Operator P(·|W)

For any given W = (Wn, . . . ,W1)
′ and Y with finite second moments, we have seen

how to compute the best linear predictor P(Y|W) of Y in terms of 1, Wn, . . . ,W1

from (2.5.12) and (2.5.13). The function P(·|W), which converts Y into P(Y|W),
is called a prediction operator. (The operator Pn defined by equations (2.5.7) and
(2.5.8) is an example with W = (Xn,Xn−1, . . . , X1)

′.) Prediction operators have a
number of useful properties that can sometimes be used to simplify the calculation of
best linear predictors. We list some of these below.
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Properties of the Prediction Operator P( ·| W):
Suppose that EU2 < ∞, EV2 < ∞, � = Cov(W,W), and β, α1, . . . , αn are
constants.

1. P(U|W) = EU + a′(W − EW), where �a = Cov(U,W).
2. E[(U − P(U|W))W] = 0 and E[U − P(U|W)] = 0.
3. E[(U − P(U|W))2] = Var(U) − a′Cov(U,W).
4. P(α1U + α2V + β|W) = α1P(U|W) + α2P(V|W) + β.
5. P

(∑n
i=1 αiWi + β|W) = ∑n

i=1 αiWi + β.
6. P(U|W) = EU if Cov(U,W) = 0.
7. P(U|W) = P(P(U|W,V)|W) if V is a random vector such that the compo-

nents of E(VV′) are all finite.

Example 2.5.3 One-Step Prediction of an AR(p) Series

Suppose now that {Xt} is a stationary time series satisfying the equations

Xt = φ1Xt−1 + · · · + φpXt−p + Zt, t = 0,±1, . . . ,

where {Zt} ∼ WN
(
0, σ 2

)
and Zt is uncorrelated with Xs for each s < t. Then if

n > p, we can apply the prediction operator Pn to each side of the defining equations,
using properties (4), (5), and (6) to get

PnXn+1 = φ1Xn + · · · + φpXn+1−p.

�

Example 2.5.4 An AR(1) Series with Nonzero Mean

The time series {Yt} is said to be an AR(1) process with mean μ if {Xt = Yt − μ} is a
zero-mean AR(1) process. Defining {Xt} as in Example 2.5.1 and letting Yt = Xt + μ,

we see that Yt satisfies the equation

Yt − μ = φ(Yt−1 − μ) + Zt. (2.5.15)

If PnYn+h is the best linear predictor of Yn+h in terms of {1,Yn, . . . ,Y1}, then appli-
cation of Pn to (2.5.15) with t = n + 1, n + 2, . . . gives the recursions

PnYn+h − μ = φ(PnYn+h−1 − μ), h = 1, 2, . . . .

Noting that PnYn = Yn, we can solve these equations recursively for PnYn+h,
h = 1, 2, . . ., to obtain

PnYn+h = μ + φh(Yn − μ). (2.5.16)

The corresponding mean squared error is [from (2.5.14)]

E(Yn+h − PnYn+h)
2 = γ (0)[1 − a′

nρn(h)]. (2.5.17)

From Example 2.2.1 we know that γ (0) = σ 2/
(
1−φ2

)
and ρ(h) = φh, h ≥ 0. Hence,

substituting an = (
φh, 0, . . . , 0

)′
[from (2.5.16)] into (2.5.17) gives

E(Yn+h − PnYn+h)
2 = σ 2

(
1 − φ2h

)
/
(
1 − φ2

)
. (2.5.18)

�
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Remark 3. In general, if {Yt} is a stationary time series with mean μ and if {Xt} is
the zero-mean series defined by Xt = Yt − μ, then since the collection of all linear
combinations of 1,Yn, . . . ,Y1 is the same as the collection of all linear combinations of
1, Xn, . . . , X1, the linear predictor of any random variableW in terms of 1, Yn, . . . , Y1

is the same as the linear predictor in terms of 1,Xn, . . . ,X1. Denoting this predictor by
PnW and applying Pn to the equation Yn+h = Xn+h + μ gives

PnYn+h = μ + PnXn+h. (2.5.19)

Thus the best linear predictor of Yn+h can be determined by finding the best linear
predictor of Xn+h and then adding μ. Note from (2.5.8) that since E(Xt) = 0, PnXn+h

is the same as the best linear predictor of Xn+h in terms of Xn, . . . ,X1 only. �

2.5.3 The Durbin–Levinson Algorithm

In view of Remark 3 above, we can restrict attention from now on to zero-mean
stationary time series, making the necessary adjustments for the mean if we wish to
predict a stationary series with nonzero mean. If {Xt} is a zero-mean stationary series
with autocovariance function γ (·), then in principle the equations (2.5.12) and (2.5.13)
completely solve the problem of determining the best linear predictor PnXn+h of Xn+h

in terms of {Xn, . . . , X1}. However, the direct approach requires the determination
of a solution of a system of n linear equations, which for large n may be difficult
and time-consuming. In cases where the process is defined by a system of linear
equations (as in Examples 2.5.2 and 2.5.3) we have seen how the linearity of Pn can
be used to great advantage. For more general stationary processes it would be helpful
if the one-step predictor PnXn+1 based on n previous observations could be used to
simplify the calculation of Pn+1Xn+2, the one-step predictor based on n + 1 previous
observations. Prediction algorithms that utilize this idea are said to be recursive. Two
important examples are the Durbin–Levinson algorithm, discussed in this section, and
the innovations algorithm, discussed in Section 2.5.4 below.

We know from (2.5.12) and (2.5.13) that if the matrix �n is nonsingular, then

PnXn+1 = φ′
nXn = φn1Xn + · · · + φnnX1,

where

φn = �−1
n γn,

γn = (γ (1), . . . , γ (n))′, and the corresponding mean squared error is

vn := E(Xn+1 − PnXn+1)
2 = γ (0) − φ′

nγn.

A useful sufficient condition for nonsingularity of all the autocovariance matrices
�1, �2, . . . is γ (0) > 0 and γ (h) → 0 as h → ∞. (For a proof of this result see
Brockwell and Davis (1991), Proposition 5.1.1.)
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The Durbin–Levinson Algorithm:
The coefficients φn1, . . . , φnn can be computed recursively from the equations

φnn =
⎡

⎣γ (n) −
n−1∑

j=1

φn−1, jγ (n − j)

⎤

⎦ v−1
n−1, (2.5.20)

⎡

⎢
⎣

φn1
...

φn,n−1

⎤

⎥
⎦ =

⎡

⎢
⎣

φn−1,1
...

φn−1,n−1

⎤

⎥
⎦ − φnn

⎡

⎢
⎣

φn−1,n−1
...

φn−1,1

⎤

⎥
⎦ (2.5.21)

and

vn = vn−1
[
1 − φ2

nn

]
, (2.5.22)

where φ11 = γ (1)/γ (0) and v0 = γ (0).

Proofs 1 The definition of φ11 ensures that the equation

Rnφn = ρn (2.5.23)

(where ρn = (ρ(1), . . . , ρ(n))′) is satisfied for n = 1. The first step in the proof is to
show that φn, defined recursively by (2.5.20) and (2.5.21), satisfies (2.5.23) for all n.
Suppose this is true for n = k. Then, partitioning Rk+1 and defining

ρ
(r)
k := (ρ(k), ρ(k − 1), . . . , ρ(1))′

and

φ
(r)
k := (φkk, φk,k−1, . . . , φk1)

′,

we see that the recursions imply

Rk+1φk+1 =
[
Rk ρ

(r)
k

ρ
(r)
k

′ 1

] [
φk − φk+1,k+1φ

(r)
k

φk+1,k+1

]

=
[

ρk − φk+1,k+1ρ
(r)
k + φk+1,k+1ρ

(r)
k

ρ
(r)
k

′φk − φk+1,k+1ρ
(r)
k

′φ(r)
k + φk+1,k+1

]

= ρk+1,

as required. Here we have used the fact that if Rkφk = ρk, then Rkφ
(r)
k = ρ

(r)
k . This is

easily checked by writing out the component equations in reverse order. Since (2.5.23)
is satisfied for n = 1, it follows by induction that the coefficient vectors φn defined
recursively by (2.5.20) and (2.5.21) satisfy (2.5.23) for all n.

It remains only to establish that the mean squared errors

vn := E(Xn+1 − φ′
nXn)

2

satisfy v0 = γ (0) and (2.5.22). The fact that v0 = γ (0) is an immediate consequence
of the definition P0X1 := E(X1) = 0. Since we have shown that φ′

nXn is the best linear
predictor of Xn+1, we can write, from (2.5.9) and (2.5.21),

vn = γ (0) − φ′
nγn = γ (0) − φ′

n−1γn−1 + φnnφ
(r)′
n−1γn−1 − φnnγ (n).
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Applying (2.5.9) again gives

vn = vn−1 + φnn

(
φ

(r)′
n−1γn−1 − γ (n)

)
,

and hence, by (2.5.20),

vn = vn−1 − φ2
nn(γ (0) − φ′

n−1γn−1) = vn−1
(
1 − φ2

nn

)
. �

Remark 4. Under the conditions of the proposition, the function defined by α(0) =
1 and α(n) = φnn, n = 1, 2, . . ., is known as the partial autocorrelation function
(PACF) of {Xt}, discussed further in Section 3.2. Equation (2.5.22) shows the relation
between α(n) and the reduction in the one-step mean squared error as the number of
predictors is increased from n − 1 to n. �

2.5.4 The Innovations Algorithm

The recursive algorithm to be discussed in this section is applicable to all series with
finite secondmoments, regardless of whether they are stationary or not. Its application,
however, can be simplified in certain special cases.

Suppose then that {Xt} is a zero-mean series with E|Xt|2 < ∞ for each t and

E(Xi Xj) = κ(i, j). (2.5.24)

We denote the best one-step linear predictors and their mean squared errors by

X̂n =
⎧
⎨

⎩

0, if n = 1,

Pn−1Xn, if n = 2, 3, . . . ,

and

vn = E(Xn+1 − PnXn+1)
2.

We shall also introduce the innovations, or one-step prediction errors,

Un = Xn − X̂n.

In terms of the vectors Un = (U1, . . . ,Un)
′ and Xn = (X1, . . . ,Xn)

′ the last equations
can be written as

Un = AnXn, (2.5.25)

where An has the form

An =

⎡

⎢⎢
⎢⎢⎢
⎣

1 0 0 · · · 0
a11 1 0 · · · 0
a22 a21 1 · · · 0
...

...
...

. . . 0
an−1,n−1 an−1,n−2 an−1,n−3 · · · 1

⎤

⎥⎥
⎥⎥⎥
⎦

.

(If {Xt} is stationary, then aij = −aj with aj as in (2.5.7) with h = 1.) This implies that
An is nonsingular, with inverse Cn of the form

Cn =

⎡

⎢⎢⎢⎢
⎢
⎣

1 0 0 · · · 0
θ11 1 0 · · · 0
θ22 θ21 1 · · · 0
...

...
...

. . . 0
θn−1,n−1 θn−1,n−2 θn−1,n−3 · · · 1

⎤

⎥⎥⎥⎥
⎥
⎦

.
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The vector of one-step predictors X̂n := (X1,P1X2, . . . , Pn−1Xn)
′ can therefore be

expressed as

X̂n = Xn − Un = CnUn − Un = �n

(
Xn − X̂n

)
, (2.5.26)

where

�n =

⎡

⎢⎢⎢
⎢⎢
⎣

0 0 0 · · · 0
θ11 0 0 · · · 0
θ22 θ21 0 · · · 0
...

...
...

. . . 0
θn−1,n−1 θn−1,n−2 θn−1,n−3 · · · 0

⎤

⎥⎥⎥
⎥⎥
⎦

and Xn itself satisfies

Xn = Cn

(
Xn − X̂n

)
. (2.5.27)

Equation (2.5.26) can be rewritten as

X̂n+1 =

⎧
⎪⎨

⎪⎩

0, if n = 0,

n∑

j=1
θnj

(
Xn+1−j − X̂n+1−j

)
, if n = 1, 2, . . . ,

(2.5.28)

from which the one-step predictors X̂1, X̂2, . . . can be computed recursively once
the coefficients θij have been determined. The following algorithm generates these

coefficients and the mean squared errors vi = E
(
Xi+1 − X̂i+1

)2
, starting from the

covariances κ(i, j).

The Innovations Algorithm:
The coefficients θn1, . . . , θnn can be computed recursively from the equations

v0 = κ(1, 1),

θn,n−k = v−1
k

⎛

⎝κ(n + 1, k + 1) −
k−1∑

j=0

θk,k−jθn,n−jvj

⎞

⎠ , 0 ≤ k < n,

and

vn = κ(n + 1, n + 1) −
n−1∑

j=0

θ2
n,n−jvj.

(It is a trivial matter to solve first for v0, then successively for θ11, v1; θ22,
θ21, v2; θ33, θ32, θ31, v3; . . . .)

Proof See Brockwell and Davis (1991), Proposition 5.2.2. �

Remark 5. While the Durbin–Levinson recursion gives the coefficients of Xn, . . . ,X1

in the representation X̂n+1 = ∑n
j=1 φnjXn+1−j, the innovations algorithm gives the

coefficients of
(
Xn − X̂n

)
, . . . ,

(
X1 − X̂1

)
, in the alternative expansion X̂n+1 =

∑n
j=1 θnj

(
Xn+1−j − X̂n+1−j

)
. The latter expansion has a number of advantages deriving

from the fact that the innovations are uncorrelated (see Problem 2.20). It can also be
greatly simplified in the case of ARMA(p, q) series, as we shall see in Section 3.3.
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An immediate consequence of (2.5.28) is the innovations representation of Xn+1 itself.
Thus (defining θn0 := 1),

Xn+1 = Xn+1 − X̂n+1 + X̂n+1 =
n∑

j=0

θnj

(
Xn+1−j − X̂n+1−j

)
, n = 0, 1, 2, . . . .

�

Example 2.5.5 Recursive Prediction of an MA(1)

If {Xt} is the time series defined by

Xt = Zt + θZt−1, {Zt} ∼ WN
(
0, σ 2

)
,

then κ(i, j) = 0 for |i−j| > 1, κ(i, i) = σ 2
(
1+θ2

)
, and κ(i, i+1) = θσ 2. Application

of the innovations algorithm leads at once to the recursions

θnj = 0, 2 ≤ j ≤ n,

θn1 = v−1
n−1θσ 2,

v0 = (1 + θ2)σ 2,

and

vn = [
1 + θ2 − v−1

n−1θ
2σ 2

]
σ 2.

For the particular case

Xt = Zt − 0.9Zt−1, {Zt} ∼ WN(0, 1),

the mean squared errors vn of X̂n+1 and coefficients θnj, 1 ≤ j ≤ n, in the innovations
representation

X̂n+1 =
n∑

j=1

θnj

(
Xn+1−j − X̂n+1−j

)
= θn1

(
Xn − X̂n

)

are found from the recursions to be as follows:

v0 = 1.8100,

θ11 = −0.4972, v1 = 1.3625,

θ21 = −0.6606, θ22 = 0, v2 = 1.2155,

θ31 = −0.7404, θ32 = 0, θ33 = 0, v3 = 1.1436,

θ41 = −0.7870, θ42 = 0, θ43 = 0, θ44 = 0, v4 = 1.1017.

If we apply the Durbin–Levinson algorithm to the same problem, we find that the
mean squared errors vn of X̂n+1 and coefficients φnj, 1 ≤ j ≤ n, in the representation

X̂n+1 =
n∑

j=1

φnjXn+1−j

are as follows:

v0 = 1.8100,

φ11 = −0.4972, v1 = 1.3625,

φ21 = −0.6606, φ22 = −0.3285, v2 = 1.2155,

φ31 = −0.7404, φ32 = −0.4892, φ33 = −0.2433, v3 = 1.1436,

φ41 = −0.7870, φ42 = −0.5828, φ43 = −0.3850, φ44 = −0.1914, v4 = 1.1017.
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Notice that as n increases, vn approaches the white noise variance and θn1 approaches θ .
These results hold for any MA(1) process with |θ | < 1. The innovations algorithm
is particularly well suited to forecasting MA(q) processes, since for them θnj = 0
for n − j > q. For AR(p) processes the Durbin–Levinson algorithm is usually more
convenient, since φnj = 0 for n − j > p.

�

2.5.5 Recursive Calculation of the h-Step Predictors

For h-step prediction we use the result

Pn(Xn+k − Pn+k−1Xn+k) = 0, k ≥ 1. (2.5.29)

This follows from (2.5.10) and the fact that

E[(Xn+k − Pn+k−1Xn+k − 0)Xn+j−1] = 0, j = 1, . . . , n.

Hence,

PnXn+h = PnPn+h−1Xn+h

= PnX̂n+h

= Pn

( n+h−1∑

j=1

θn+h−1, j

(
Xn+h−j − X̂n+h−j

))
.

Applying (2.5.29) again and using the linearity of Pn we find that

PnXn+h =
n+h−1∑

j=h

θn+h−1,j

(
Xn+h−j − X̂n+h−j

)
, (2.5.30)

where the coefficients θnj are determined as before by the innovations algorithm.
Moreover, the mean squared error can be expressed as

E(Xn+h − PnXn+h)
2 = EX2

n+h − E(PnXn+h)
2

= κ(n + h, n + h) −
n+h−1∑

j=h

θ2
n+h−1, jvn+h−j−1. (2.5.31)

2.5.6 Prediction of a Stationary Process in Terms of Infinitely
Many Past Values

It is often useful, when many past observations Xm, . . . , X0,X1, . . . , Xn (m < 0)
are available, to evaluate the best linear predictor of Xn+h in terms of 1,Xm, . . . , X0,

. . . , Xn. This predictor, which we shall denote by Pm,nXn+h, can easily be evaluated
by the methods described above. If |m| is large, this predictor can be approximated by
the sometimes more easily calculated mean square limit

P̃nXn+h = lim
m→−∞Pm,nXn+h.

We shall refer to P̃n as the prediction operator based on the infinite past, {Xt,

−∞ < t ≤ n}. Analogously we shall refer to Pn as the prediction operator based
on the finite past, {X1, . . . ,Xn}. (Mean square convergence of random variables is
discussed in Appendix C.)



66 Chapter 2 Stationary Processes

2.5.7 Determination of P̃nXn+h

If {Xn} is a zero-mean stationary process with autocovariance function γ (·) then, just as
PnXn+h is characterized by equation (2.5.10), P̃nXn+h is characterized by the equations

E
[(

Xn+h − P̃nXn+h

)
Xn+1−i

]
= 0, i = 1, 2, . . . .

If we can find a solution to these equations, it will necessarily be the uniquely defined
predictor P̃nXn+h. An approach to this problem that is often effective is to assume that
P̃nXn+h can be expressed in the form

P̃nXn+h =
∞∑

j=1

αjXn+1−j,

in which case the preceding equations reduce to

E

⎡

⎣

⎛

⎝Xn+h −
∞∑

j=1

αjXn+1−j

⎞

⎠Xn+1−i

⎤

⎦ = 0, i = 1, 2, . . . ,

or equivalently,
∞∑

j=1

γ (i − j)αj = γ (h + i − 1), i = 1, 2, . . . .

This is an infinite set of linear equations for the unknown coefficients αi that determine
P̃nXn+h, provided that the resulting series converges.

Properties of P̃n:
Suppose that EU2 < ∞, EV2 < ∞, a, b, and c are constants, and � =
Cov(W,W).

1. E[(U − P̃n(U))Xj] = 0, j ≤ n.
2. P̃n(aU + bV + c) = aP̃n(U) + bP̃n(V) + c.
3. P̃n(U) = U if U is a limit of linear combinations of Xj, j ≤ n.
4. P̃n(U) = EU if Cov(U, Xj) = 0 for all j ≤ n.

These properties can sometimes be used to simplify the calculation of
P̃nXn+h, notably when the process {Xt} is an ARMA process.

Example 2.5.6 Consider the causal invertible ARMA(1,1) process {Xt} defined by

Xt − φXt−1 = Zt + θZt−1, {Zt} ∼ WN
(
0, σ 2

)
.

We know from (2.3.3) and (2.3.5) that we have the representations

Xn+1 = Zn+1 + (φ + θ)

∞∑

j=1

φ j−1Zn+1−j

and

Zn+1 = Xn+1 − (φ + θ)

∞∑

j=1

(−θ) j−1Xn+1−j.
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Applying the operator P̃n to the second equation and using the properties of P̃n gives

P̃nXn+1 = (φ + θ)

∞∑

j=1

(−θ) j−1Xn+1−j.

Applying the operator P̃n to the first equation and using the properties of P̃n gives

P̃nXn+1 = (φ + θ)

∞∑

j=1

φ j−1Zn+1−j.

Hence,

Xn+1 − P̃nXn+1 = Zn+1,

and so the mean squared error of the predictor P̃nXn+1 is EZ2
n+1 = σ 2.

�

2.6 The Wold Decomposition
Consider the stationary process

Xt = A cos(ωt) + B sin(ωt),

where ω ∈ (0, π) is constant and A,B are uncorrelated random variables with mean 0
and variance σ 2. Notice that

Xn = (2 cos ω)Xn−1 − Xn−2 = P̃n−1Xn, n = 0,±1, . . . ,

so that Xn − P̃n−1Xn = 0 for all n. Processes with the latter property are said to be
deterministic.

The Wold Decomposition:
If {Xt} is a nondeterministic stationary time series, then

Xt =
∞∑

j=0

ψjZt−j + Vt, (2.6.1)

where

1. ψ0 = 1 and
∑∞

j=0 ψ2
j < ∞,

2. {Zt} ∼ WN
(
0, σ 2

)
,

3. Cov(Zs,Vt) = 0 for all s and t,
4. Zt = P̃tZt for all t,
5. Vt = P̃sVt for all s and t, and
6. {Vt} is deterministic.

Here as in Section 2.5, P̃tY denotes the best predictor of Y in terms of linear com-
binations, or limits of linear combinations of 1,Xs,−∞ < s ≤ t. The sequences
{Zt}, {ψj}, and {Vt} are unique and can be written explicitly as Zt = Xt − P̃t−1Xt,
ψj = E(XtZt−j)/E

(
Z2
t

)
, and Vt = Xt −∑∞

j=0 ψjZt−j. (See Brockwell and Davis (1991),
p. 188.) For most of the zero-mean stationary time series dealt with in this book
(in particular for all ARMA processes) the deterministic component Vt is 0 for all
t, and the series is then said to be purely nondeterministic.
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Example 2.6.1 If Xt = Ut + Y , where {Ut} ∼ WN
(
0, ν2

)
, E(UtY) = 0 for all t, and Y has mean

0 and variance τ 2, then P̃t−1Xt = Y , since Y is the mean square limit as s → ∞ of
[Xt−1 + · · · + Xt−s]/s, and E[(Xt − Y)Xs] = 0 for all s ≤ t − 1. Hence the sequences
in the Wold decomposition of {Xt} are given by Zt = Ut, ψ0 = 1, ψj = 0 for j > 0,
and Vt = Y .

�

Problems

2.1 Suppose that X1,X2, . . ., is a stationary time series with mean μ and ACF ρ(·).
Show that the best predictor of Xn+h of the form aXn +b is obtained by choosing
a = ρ(h) and b = μ(1 − ρ(h)).

2.2 Show that the process

Xt = A cos(ωt) + B sin(ωt), t = 0,±1, . . .

(where A and B are uncorrelated random variables with mean 0 and variance 1
and ω is a fixed frequency in the interval [0, π]), is stationary and find its mean
and autocovariance function. Deduce that the function κ(h) = cos(ωh), h =
0,±1, . . ., is nonnegative definite.

2.3 a. Find the ACVF of the time series Xt = Zt + 0.3Zt−1 − 0.4Zt−2, where {Zt} ∼
WN(0, 1).

b. Find the ACVF of the time series Yt = Z̃t − 1.2Z̃t−1 − 1.6Z̃t−2, where {Z̃t} ∼
WN(0, 0.25). Compare with the answer found in (a).

2.4 It is clear that the function κ(h) = 1, h = 0,±1, . . . , is an autocovariance func-
tion, since it is the autocovariance function of the process Xt = Z, t = 0,±1, . . .,
where Z is a random variable with mean 0 and variance 1. By identifying
appropriate sequences of random variables, show that the following functions
are also autocovariance functions:

a. κ(h) = (−1)|h|

b. κ(h) = 1 + cos

(
πh

2

)
+ cos

(
πh

4

)

c. κ(h) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if h = 0,

0.4, if h = ±1,

0, otherwise.

2.5 Suppose that {Xt, t = 0,±1, . . .} is stationary and that |θ | < 1. Show that for
each fixed n the sequence

Sm =
m∑

j=1

θ jXn−j

is convergent absolutely and in mean square (see Appendix C) as m → ∞.

2.6 Verify the equations (2.2.6).
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2.7 Show, using the geometric series 1/(1 − x) = ∑∞
j=0 x

j for |x| < 1, that 1/(1−
φz) = −∑∞

j=1 φ−jz−j for |φ| > 1 and |z| ≥ 1.

2.8 Show that the autoregressive equations

Xt = φ1Xt−1 + Zt, t = 0,±1, . . . ,

where {Zt} ∼ WN
(
0, σ 2

)
and |φ| = 1, have no stationary solution. HINT:

Suppose there does exist a stationary solution {Xt} and use the autoregressive
equation to derive an expression for the variance of Xt − φn+1

1 Xt−n−1 that con-
tradicts the stationarity assumption.

2.9 Let {Yt} be the AR(1) plus noise time series defined by

Yt = Xt + Wt,

where {Wt} ∼ WN
(
0, σ 2

w

)
, {Xt} is the AR(1) process of Example 2.2.1, i.e.,

Xt − φXt−1 = Zt, {Zt} ∼ WN
(
0, σ 2

z

)
,

and E(WsZt) = 0 for all s and t.
a. Show that {Yt} is stationary and find its autocovariance function.
b. Show that the time series Ut := Yt − φYt−1 is 1-correlated and hence, by

Proposition 2.1.1, is an MA(1) process.
c. Conclude from (b) that {Yt} is an ARMA(1,1) process and express the

three parameters of this model in terms of φ, σ 2
w, and σ 2

z .
2.10 Use the program ITSM to compute the coefficients ψj and πj, j = 1, . . . , 5, in

the expansions

Xt =
∞∑

j=0

ψjZt−j

and

Zt =
∞∑

j=0

πjXt−j

for the ARMA(1,1) process defined by the equations

Xt − 0.5Xt−1 = Zt + 0.5Zt−1, {Zt} ∼ WN
(
0, σ 2

)
.

(Select File>Project>New>Univariate, then Model>Specify.
In the resulting dialog box enter 1 for the AR and MA orders, specify
φ(1) = θ(1) = 0.5, and click OK. Finally, select Model>AR/MA
Infinity>Default lag and the values of ψj and πj will appear on the
screen.) Check the results with those obtained in Section 2.3.

2.11 Suppose that in a sample of size 100 from anAR(1) process withmeanμ, φ = .6,
and σ 2 = 2 we obtain x̄100 = 0.271. Construct an approximate 95% confidence
interval for μ. Are the data compatible with the hypothesis that μ = 0?

2.12 Suppose that in a sample of size 100 from an MA(1) process with mean μ,
θ = −0.6, and σ 2 = 1 we obtain x̄100 = 0.157. Construct an approximate
95% confidence interval for μ. Are the data compatible with the hypothesis that
μ = 0?

2.13 Suppose that in a sample of size 100, we obtain ρ̂(1) = 0.438 and ρ̂(2) = 0.145.
a. Assuming that the data were generated from an AR(1) model, construct

approximate 95% confidence intervals for both ρ(1) and ρ(2). Based on these
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two confidence intervals, are the data consistent with an AR(1) model with
φ = 0.8?

b. Assuming that the data were generated from an MA(1) model, construct
approximate 95% confidence intervals for both ρ(1) and ρ(2). Based on these
two confidence intervals, are the data consistent with an MA(1) model with
θ = 0.6?

2.14 Let {Xt} be the process defined in Problem 2.2.
a. Find P1X2 and its mean squared error.
b. Find P2X3 and its mean squared error.
c. Find P̃nXn+1 and its mean squared error.

2.15 Suppose that {Xt, t = 0,±1, . . .} is a stationary process satisfying the equations
Xt = φ1Xt−1 + · · · + φpXt−p + Zt,

where {Zt} ∼ WN
(
0, σ 2

)
and Zt is uncorrelated with Xs for each s < t. Show

that the best linear predictor PnXn+1 of Xn+1 in terms of 1,X1, . . . ,Xn, assuming
n > p, is

PnXn+1 = φ1Xn + · · · + φpXn+1−p.

What is the mean squared error of PnXn+1?
2.16 Use the program ITSM to plot the sample ACF and PACF up to lag 40 of the

sunspot series Dt, t = 1, 100, contained in the ITSM file SUNSPOTS.TSM.
(Open the project SUNSPOTS.TSM and click on the second yellow button at the
top of the screen to see the graphs. Repeated clicking on this button will toggle
between graphs of the sample ACF, sample PACF, and both. To see the numerical
values, right-click on the graph and select Info.) Fit an AR(2) model to the
mean-corrected data by selecting Model>Estimation>Preliminary and
click Yes to subtract the sample mean from the data. In the dialog box that
follows, enter 2 for the AR order andmake sure that theMA order is zero and that
the Yule-Walker algorithm is selected withoutAICCminimization. Click OK
and you will obtain a model of the form

Xt = φ1Xt−1 + φ2Xt−2 + Zt, where {Zt} ∼ WN
(
0, σ 2

)
,

for the mean-corrected seriesXt = Dt−46.93. Record the values of the estimated
parameters φ1, φ2, and σ 2. Compare the model and sample ACF and PACF by
selecting the third yellow button at the top of the screen. Print the graphs by
right-clicking and selecting Print.

2.17 Without exiting from ITSM, use the model found in the preceding problem to
compute forecasts of the next ten values of the sunspot series. (Select Fore-
casting>ARMA, make sure that the number of forecasts is set to 10 and the box
Add the mean to the forecasts is checked, and then click OK. You
will see a graph of the original data with the ten forecasts appended. Right-click
on the graph and then on Info to get the numerical values of the forecasts. Print
the graph as described in Problem 2.16.) The details of the calculations will be
taken up in Chapter 3 when we discuss ARMA models in detail.

2.18 Let {Xt} be the stationary process defined by the equations

Xt = Zt − θZt−1, t = 0,±1, . . . ,

where |θ | < 1 and {Zt} ∼WN
(
0, σ 2

)
. Show that the best linear predictor P̃nXn+1

of Xn+1 based on {Xj,−∞ < j ≤ n} is
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P̃nXn+1 = −
∞∑

j=1

θ jXn+1−j.

What is the mean squared error of the predictor P̃nXn+1?
2.19 If {Xt} is defined as in Problem 2.18 and θ = 1, find the best linear predictor

PnXn+1 of Xn+1 in terms of X1, . . . , Xn. What is the corresponding mean squared
error?

2.20 In the innovations algorithm, show that for each n ≥ 2, the innovation Xn − X̂n

is uncorrelated with X1, . . . , Xn−1. Conclude that Xn − X̂n is uncorrelated with
the innovations X1 − X̂1, . . . , Xn−1 − X̂n−1.

2.21 Let X1, X2, X4, X5 be observations from the MA(1) model

Xt = Zt + θZt−1, {Zt} ∼ WN
(
0, σ 2

)
.

a. Find the best linear estimate of the missing value X3 in terms of X1 and X2.
b. Find the best linear estimate of the missing value X3 in terms of X4 and X5.
c. Find the best linear estimate of the missing value X3 in terms of X1,X2,X4,

and X5.
d. Compute the mean squared errors for each of the estimates in (a)–(c).

2.22 Repeat parts (a)–(d) of Problem 2.21 assuming now that the observations X1, X2,
X4, X5 are from the causal AR(1) model

Xt = φXt−1 + Zt, {Zt} ∼ WN
(
0, σ 2

)
.


	2. Stationary Processes
	2.1. Basic Properties
	2.2. Linear Processes
	2.3. Introduction to ARMA Processes
	2.4. Properties of the Sample Mean and Autocorrelation Function
	2.4.1. Estimation of μ
	2.4.2. Estimation of (·) and ρ(·)

	2.5. Forecasting Stationary Time Series
	2.5.1. Prediction of Second-Order Random Variables
	2.5.2. The Prediction Operator P(·|W)
	2.5.3. The Durbin–Levinson Algorithm
	2.5.4. The Innovations Algorithm
	2.5.5. Recursive Calculation of the h-Step Predictors
	2.5.6. Prediction of a Stationary Process in Terms of Infinitely Many Past Values
	2.5.7. Determination of P̃nXn+h

	2.6. The Wold Decomposition
	 Problems


