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We have focused until now on the construction of time series models for stationary
and nonstationary series and the determination, assuming the appropriateness of these
models, of minimum mean squared error predictors. If the observed series had in
fact been generated by the fitted model, this procedure would give minimum mean
squared error forecasts. In this chapter we discuss three forecasting techniques that
have less emphasis on the explicit construction of a model for the data. Each of the
three selects, from a limited class of algorithms, the one that is optimal according to
specified criteria.

The three techniques have been found in practice to be effective on wide ranges
of real data sets (for example, the economic time series used in the forecasting com-
petition described by Makridakis et al. 1984).

The ARAR algorithm described in Section 10.1 is an adaptation of the ARARMA
algorithm (Newton and Parzen 1984; Parzen 1982) in which the idea is to apply auto-
matically selected “memory-shortening” transformations (if necessary) to the data
and then to fit an ARMA model to the transformed series. The ARAR algorithm we
describe is a version of this in which the ARMA fitting step is replaced by the fitting
of a subset AR model to the transformed data.

The Holt–Winters (HW) algorithm described in Section 10.2 uses a set of simple
recursions that generalize the exponential smoothing recursions of Section 1.5.1 to
generate forecasts of series containing a locally linear trend.
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310 Chapter 10 Forecasting Techniques

The Holt–Winters seasonal (HWS) algorithm extends the HW algorithm to handle
data in which there are both trend and seasonal variation of known period. It is
described in Section 10.3.

Each of these three algorithms can be applied to specific data sets with the aid of
the ITSM options Forecasting>ARAR, Forecasting>Holt-Winters and
Forecasting>Seasonal Holt-Winters.

10.1 The ARAR Algorithm

10.1.1 Memory Shortening

Given a data set {Yt, t = 1, 2, . . . , n}, the first step is to decide whether the underlying
process is “long-memory,” and if so to apply a memory-shortening transformation be-
fore attempting to fit an autoregressive model. The differencing operations permit-
ted under the option Transform of ITSM are examples of memory-shortening
transformations; however, the ones used by the option Forecasting>ARAR selects
are members of a more general class. There are two types allowed:

Ỹt = Yt − φ̂
(
τ̂
)
Yt−τ̂ (10.1.1)

and

Ỹt = Yt − φ̂1Yt−1 − φ̂2Yt−2. (10.1.2)

With the aid of the five-step algorithm described below, we classify {Yt} and take
one of the following three courses of action:

• L. Declare {Yt} to be long-memory and form
{
Ỹt

}
using (10.1.1).

• M. Declare {Yt} to be moderately long-memory and form
{
Ỹt

}
using (10.1.2).

• S. Declare {Yt} to be short-memory.

If the alternative L or M is chosen, then the transformed series
{
Ỹt

}
is again

checked. If it is found to be long-memory or moderately long-memory, then a further
transformation is performed. The process continues until the transformed series is
classified as short-memory. At most three memory-shortening transformations are
performed, but it is very rare to require more than two. The algorithm for deciding
among L, M, and S can be described as follows:

1. For each τ = 1, 2, . . . , 15, we find the value φ̂(τ ) of φ that minimizes

ERR(φ, τ ) =
∑n

t=τ+1[Yt − φYt−τ ]2

∑n
t=τ+1 Y

2
t

.

We then define

Err(τ ) = ERR
(
φ̂(τ ), τ

)

and choose the lag τ̂ to be the value of τ that minimizes Err(τ ).
2. If Err

(
τ̂
) ≤ 8/n, go to L.

3. If φ̂
(
τ̂
) ≥ 0.93 and τ̂ > 2, go to L.

4. If φ̂
(
τ̂
) ≥ 0.93 and τ̂ = 1 or 2, determine the values φ̂1 and φ̂2 of φ1 and φ2 that

minimize
∑n

t=3[Yt − φ1Yt−1 − φ2Yt−2]2; then go to M.
5. If φ̂

(
τ̂
)

< 0.93, go to S.
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10.1.2 Fitting a Subset Autoregression

Let {St, t = k + 1, . . . , n} denote the memory-shortened series derived from {Yt} by
the algorithm of the previous section and let S denote the sample mean of Sk+1, . . . , Sn.

The next step in the modeling procedure is to fit an autoregressive process to the
mean-corrected series

Xt = St − S, t = k + 1, . . . , n.

The fitted model has the form

Xt = φ1Xt−1 + φl1Xt−l1 + φl2Xt−l2 + φl3Xt−l3 + Zt,

where {Zt} ∼ WN
(
0, σ 2

)
, and for given lags, l1, l2, and l3, the coefficients φj and the

white noise variance σ 2 are found from the Yule–Walker equations
⎡

⎢⎢
⎣

1 ρ̂(l1 − 1) ρ̂(l2 − 1) ρ̂(l3 − 1)

ρ̂(l1 − 1) 1 ρ̂(l2 − l1) ρ̂(l3 − l1)
ρ̂(l2 − 1) ρ̂(l2 − l1) 1 ρ̂(l3 − l2)
ρ̂(l3 − 1) ρ̂(l3 − l1) ρ̂(l3 − l2) 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

φ1

φl1

φl2

φl3

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

ρ̂(1)

ρ̂(l1)
ρ̂(l2)
ρ̂(l3)

⎤

⎥⎥
⎦

and

σ 2 = γ̂ (0)
[
1 − φ1ρ̂(1) − φl1 ρ̂(l1) − φl2 ρ̂(l2) − φl3 ρ̂(l3)

]
,

where γ̂ (j) and ρ̂(j), j = 0, 1, 2, . . . , are the sample autocovariances and autocor-
relations of the series {Xt}.

The program computes the coefficients φj for each set of lags such that

1 < l1 < l2 < l3 ≤ m,

where m can be chosen to be either 13 or 26. It then selects the model for which the
Yule–Walker estimate σ 2 is minimal and prints out the lags, coefficients, and white
noise variance for the fitted model.

A slower procedure chooses the lags and coefficients (computed from the Yule–
Walker equations as above) that maximize the Gaussian likelihood of the observations.
For this option the maximum lag m is 13.

The options are displayed in the ARAR Forecasting dialog box, which
appears on the screen when the option Forecasting>ARAR is selected. It allows
you also to bypass memory shortening and fit a subset AR to the original (mean-
corrected) data.

10.1.3 Forecasting

If the memory-shortening filter found in the first step has coefficients ψ0(= 1),
ψ1, . . . , ψk (k ≥ 0), then the memory-shortened series can be expressed as

St = ψ(B)Yt = Yt + ψ1Yt−1 + · · · + ψkYt−k, (10.1.3)

where ψ(B) is the polynomial in the backward shift operator,

ψ(B) = 1 + ψ1B + · · · + ψkB
k.

Similarly, if the coefficients of the subset autoregression found in the second step are
φ1, φl1, φl2 , and φl3 , then the subset AR model for the mean-corrected series

{
Xt =

St − S
}
is

φ(B)Xt = Zt, (10.1.4)
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where {Zt} ∼ WN
(
0, σ 2

)
and

φ(B) = 1 − φ1B − φl1B
l1 − φl2B

l2 − φl3B
l3 .

From (10.1.3) and (10.1.4) we obtain the equations

ξ(B)Yt = φ(1)S + Zt, (10.1.5)

where

ξ(B) = ψ(B)φ(B) = 1 + ξ1B + · · · + ξk+l3B
k+l3 .

Assuming that the fitted model (10.1.5) is appropriate and that the white noise
term Zt is uncorrelated with {Yj, j < t} for each t, we can determine the minimum
mean squared error linear predictors PnYn+h of Yn+h in terms of {1,Y1, . . . ,Yn}, for
n > k + l3, from the recursions

PnYn+h = −
k+l3∑

j=1

ξjPnYn+h−j + φ(1)S, h ≥ 1, (10.1.6)

with the initial conditions

PnYn+h = Yn+h, for h ≤ 0. (10.1.7)

The mean squared error of the predictor PnYn+h is found to be (Problem 10.1)

E
[
(Yn+h − PnYn+h)

2
] =

h−1∑

j=0

τ 2
j σ 2, (10.1.8)

where
∑∞

j=0 τjzj is the Taylor expansion of 1/ξ(z) in a neighborhood of z = 0.
Equivalently the sequence {τj} can be found from the recursion

τ0 = 1,

n∑

j=0

τjξn−j = 0, n = 1, 2, . . . . (10.1.9)

10.1.4 Application of the ARAR Algorithm

To determine an ARAR model for a given data set {Yt} using ITSM, select Fore-
casting>ARAR and choose the appropriate options in the resulting dialog
box. These include specification of the number of forecasts required, whether or
not you wish to include the memory-shortening step, whether you require prediction
bounds, and which of the optimality criteria is to be used. Once you have made
these selections, click OK, and the forecasts will be plotted with the original data.
Right-click on the graph and then Info to see the coefficients 1, ψ1, . . . , ψk of the
memory-shortening filter ψ(B), the lags and coefficients of the subset autoregression

Xt − φ1Xt−1 − φl1Xt−l1 − φl2Xt−l2 − φl3Xt−l3 = Zt,

and the coefficients ξj of Bj in the overall whitening filter

ξ(B) = (
1 + ψ1B + · · · + ψkB

k
) (

1 − φ1B − φl1B
l1 − φl2B

l2 − φl3B
l3
)
.

The numerical values of the predictors, their root mean squared errors, and the pre-
diction bounds are also printed.

Example 10.1.1 To use the ARAR algorithm to predict 24 values of the accidental deaths
data, open the file DEATHS.TSM and proceed as described above. Selecting
Minimize WN variance [max lag=26] gives the graph of the data and
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Figure 10-1
The data set DEATHS.TSM

with 24 values predicted by
the ARAR algorithm
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)
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predictors shown in Figure 10-1. Right-clicking on the graph and then Info, we
find that the selected memory-shortening filter is

(
1 − 0.9779B12

)
. The fitted subset

autoregression and the coefficients ξj of the overall whitening filter ξ(B) are shown
below: �

Optimal lags 1 3 12 13
Optimal coeffs 0.5915 −0.3822 −0.3022 0.2970
WN Variance: 0.12314E+06
COEFFICIENTS OF OVERALL WHITENING FILTER:
1.0000 −0.5915 0.0000 −0.2093 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 −0.6757 0.2814 0.0000
0.2047 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 −0.2955
0.2904

�
In Table 10.1 we compare the predictors of the next six values of the accidental

deaths series with the actual observed values. The predicted values obtained from
ARAR as described in the example are shown together with the predictors obtained
by fitting ARIMA models as described in Chapter 6 (see Table 10.1). The observed

root mean squared errors (i.e.,
√∑6

h=1(Y72+h−P72Y72+h)2/6 ) for the three prediction
methods are easily calculated to be 253 for ARAR, 583 for the ARIMAmodel (6.5.8),
and 501 for the ARIMA model (6.5.9). The ARAR algorithm thus performs very
well here. Notice that in this particular example the ARAR algorithm effectively fits
a causal AR model to the data, but this is not always the case.
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10.2 The Holt–Winters Algorithm

10.2.1 The Algorithm

Given observations Y1,Y2, . . . ,Yn from the “trend plus noise” model (1.5.2), the
exponential smoothing recursions (1.5.7) allowed us to compute estimates m̂t of
the trend at times t = 1, 2, . . . , n. If the series is stationary, then mt is constant and the
exponential smoothing forecast of Yn+h based on the observations Y1, . . . ,Yn is

PnYn+h = m̂n, h = 1, 2, . . . . (10.2.1)

If the data have a (nonconstant) trend, then a natural generalization of the forecast
function (10.2.1) that takes this into account is

PnYn+h = ân + b̂nh, h = 1, 2, . . . , (10.2.2)

where ân and b̂n can be thought of as estimates of the “level” an and “slope” bn of
the trend function at time n. Holt (1957) suggested a recursive scheme for computing
the quantities ân and b̂n in (10.2.2). Denoting by Ŷn+1 the one-step forecast PnYn+1, we
have from (10.2.2)

Ŷn+1 = ân + b̂n.

Now, as in exponential smoothing, we suppose that the estimated level at time n + 1
is a linear combination of the observed value at time n + 1 and the forecast value at
time n + 1. Thus,

ân+1 = αYn+1 + (1 − α)
(
ân + b̂n

)
. (10.2.3)

We can then estimate the slope at time n+ 1 as a linear combination of ân+1 − ân and
the estimated slope b̂n at time n. Thus,

b̂n+1 = β
(
ân+1 − ân

) + (1 − β)b̂n. (10.2.4)

In order to solve the recursions (10.2.3) and (10.2.4) we need initial conditions.
A natural choice is to set

â2 = Y2 (10.2.5)

and

b̂2 = Y2 − Y1. (10.2.6)

Then (10.2.3) and (10.2.4) can be solved successively for âi and b̂i, i = 3, . . . , n, and
the predictors PnYn+h found from (10.2.2).

The forecasts depend on the “smoothing parameters” α and β. These can either
be prescribed arbitrarily (with values between 0 and 1) or chosen in a more systematic
way tominimize the sum of squares of the one-step errors

∑n
i=3(Yi−Pi−1Yi)2, obtained

Table 10.1 Predicted and observed values of the accidental deaths series for t = 73, . . . ,78

t 73 74 75 76 77 78

Observed Yt 7798 7406 8363 8460 9217 9316
Predicted by ARAR 8168 7196 7982 8284 9144 9465
Predicted by (6.5.8) 8441 7704 8549 8885 9843 10,279
Predicted by (6.5.9) 8345 7619 8356 8742 9795 10,179
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when the algorithm is applied to the already observed data. Both choices are available
in the ITSM option Forecasting>Holt-Winters.

Before illustrating the use of the Holt–Winters forecasting procedure, we discuss
the connection between the recursions (10.2.3) and (10.2.4) and the steady-state
solution of the Kalman filtering equations for a local linear trend model. Suppose {Yt}
follows the local linear structural model with observation equation

Yt = Mt + Wt

and state equation
[
Mt+1

Bt+1

]
=

[
1 1
0 1

] [
Mt

Bt

]
+

[
Vt

Ut

]

[see (9.2.4)–(9.2.7)]. Now define ân and b̂n to be the filtered estimates of Mn and Bn,
respectively, i.e.,

ân = Mn|n := PnMn,

b̂n = Bn|n := PnBn.

Using Problem 9.17 and the Kalman recursion (9.4.16), we find that
[
ân+1

b̂n+1

]

=
[
ân + b̂n

b̂n

]
+ Δ−1

n ΩnG
′
(
Yn − ân − b̂n

)
, (10.2.7)

where G = [
1 0

]
. Assuming that Ωn=Ω1=[Ωij]2

i, j=1 is the steady-state solution
of (9.4.2) for this model, then Δn=Ω11 + σ 2

w for all n, so that (10.2.7) simplifies to
the equations

ân+1 = ân + b̂n + Ω11

Ω11 + σ 2
w

(
Yn − ân − b̂n

)
(10.2.8)

and

b̂n+1 = b̂n + Ω12

Ω11 + σ 2
w

(
Yn − ân − b̂n

)
. (10.2.9)

Solving (10.2.8) for
(
Yn − ân − b̂n

)
and substituting into (10.2.9), we find that

ân+1 = αYn+1 + (1 − α)
(
ân + b̂n

)
, (10.2.10)

b̂n+1 = β
(
ân+1 − ân

) + (1 − β)b̂n (10.2.11)

with α = Ω11/
(
Ω11 + σ 2

w

)
and β = Ω21/Ω11. These equations coincide with the

Holt–Winters recursions (10.2.3) and (10.2.4). Equations relating α and β to the
variances σ 2

u , σ
2
v , and σ 2

w can be found in Harvey (1990).

Example 10.2.1 To predict 24 values of the accidental deaths series using the Holt–Winters algorithm,
open the file DEATHS.TSM and select Forecasting>Holt-Winters. In the
resulting dialog box specify 24 for the number of predictors and check the box marked
Optimize coefficients for automatic selection of the smoothing coefficients
α and β. Click OK, and the forecasts will be plotted with the original data as shown in
Figure 10-2. Right-click on the graph and then Info to see the numerical values of
the predictors, their root mean squared errors, and the optimal values of α and β. The
predicted and observed values are shown in Table 10.2.

�
The root mean squared error

(√∑6
h=1(Y72+h−P72Y72+h)2/6

)
for the nonseasonal

Holt–Winters forecasts is found to be 1143. Not surprisingly, since we have not taken
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seasonality into account, this is a much larger value than for the three sets of forecasts
shown in Table 10.1. In the next section we show how to modify the Holt–Winters
algorithm to allow for seasonality.

10.2.2 Holt–Winters and ARIMA Forecasting

The one-step forecasts obtained by exponential smoothing with parameter α (defined
by (1.5.7) and (10.2.1)) satisfy the relations

PnYn+1 = Yn − (1 − α)(Yn − Pn−1Yn), n ≥ 2. (10.2.12)

But these are the same relations satisfied by the large-sample minimum mean squared
error forecasts of the invertible ARIMA(0,1,1) process

Yt = Yt−1 + Zt − (1 − α)Zt−1, {Zt} ∼ WN
(
0, σ 2

)
. (10.2.13)

Forecasting by exponential smoothingwith optimalα can therefore be viewed as fitting
a member of the two-parameter family of ARIMA processes (10.2.13) to the data and
using the corresponding large-sample forecast recursions initialized by P0Y1 = Y1. In
ITSM, the optimal α is found by minimizing the average squared error of the one-step
forecasts of the observed data Y2, . . . ,Yn, and the parameter σ 2 is estimated by this
average squared error. This algorithm could easily be modified to minimize other error
measures such as average absolute one-step error and average 12-step squared error.

In the same way it can be shown that Holt–Winters forecasting can be viewed as
fitting a member of the three-parameter family of ARIMA processes,

(1 − B)2Yt = Zt − (2 − α − αβ)Zt−1 + (1 − α)Zt−2, (10.2.14)

where
{
Zt

} ∼ WN(0, σ 2). The coefficients α and β are selected as described after
(10.2.6), and the estimate of σ 2 is the average squared error of the one-step forecasts
of Y3, . . . ,Yn obtained from the large-sample forecast recursions corresponding to
(10.2.14).

Figure 10-2
The data set DEATHS.TSM

with 24 values predicted by
the nonseasonal

Holt–Winters algorithm
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Table 10.2 Predicted and observed values of the accidental deaths series
for t = 73, . . . ,78 from the (nonseasonal) Holt–Winters algo-
rithm

t 73 74 75 76 77 78

Observed Yt 7798 7406 8363 8460 9217 9316
Predicted by HW 9281 9322 9363 9404 9445 9486

10.3 The Holt–Winters Seasonal Algorithm

10.3.1 The Algorithm

If the series Y1,Y2, . . . ,Yn contains not only trend, but also seasonality with period d
[as in themodel (1.5.11)], then a further generalization of the forecast function (10.2.2)
that takes this into account is

PnYn+h = ân + b̂nh + ĉn+h, h = 1, 2, . . . , (10.3.1)

where ân, b̂n, and ĉn can be thought of as estimates of the “trend level” an, “trend
slope” bn, and “seasonal component” cn at time n. If k is the smallest integer such that
n + h − kd ≤ n, then we set

ĉn+h = ĉn+h−kd, h = 1, 2, . . . , (10.3.2)

while the values of âi, b̂i, and ĉi, i = d+2, . . . , n, are found from recursions analogous
to (10.2.3) and (10.2.4), namely,

ân+1 = α
(
Yn+1 − ĉn+1−d

) + (1 − α)
(
ân + b̂n

)
, (10.3.3)

b̂n+1 = β
(
ân+1 − ân

) + (1 − β)b̂n, (10.3.4)

and

ĉn+1 = γ (Yn+1 − ân+1) + (1 − γ )ĉn+1−d, (10.3.5)

with initial conditions

âd+1 = Yd+1, (10.3.6)

b̂d+1 = (Yd+1 − Y1)/d, (10.3.7)

and

ĉi = Yi −
(
Y1 + b̂d+1(i − 1)

)
, i = 1, . . . , d + 1. (10.3.8)

Then (10.3.3)–(10.3.5) can be solved successively for âi, b̂i, and ĉi, i = d + 1, . . . , n,
and the predictors PnYn+h found from (10.3.1).

As in the nonseasonal case of Section 10.2, the forecasts depend on the parameters
α, β, and γ . These can either be prescribed arbitrarily (with values between 0 and 1) or
chosen in a more systematic way to minimize the sum of squares of the one-step errors∑n

i=d+2(Yi −Pi−1Yi)2, obtained when the algorithm is applied to the already observed
data. Seasonal Holt–Winters forecasts can be computed by selecting the ITSM option
Forecasting>Seasonal Holt-Winters.

Example 10.3.1 As in Example 10.2.1, open the file DEATHS.TSM, but this time select Forecast-
ing>Seasonal Holt-Winters. Specify 24 for the number of predicted
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values required, 12 for the period of the seasonality, and check the box marked
Optimize Coefficients. Click OK, and the graph of the data and predicted
values shown in Figure 10-3 will appear. Right-click on the graph and then on Info
and you will see the numerical values of the predictors and the optimal values of the
coefficients α, β, and γ (minimizing the observed one-step average squared error∑72

i=14(Yi −Pi−1Yi)2/59). Table 10.3 compares the predictors of Y73, . . . ,Y78 with the
corresponding observed values.

�
The root mean squared error (

√∑6
h=1(Y72+h − P72Y72+h)2/6 ) for the seasonal

Holt–Winters forecasts is found to be 401. This is not as good as the value 253
achieved by the ARAR model for this example but is substantially better than the
values achieved by the nonseasonal Holt–Winters algorithm (1143) and the ARIMA
models (6.5.8) and (6.5.9) (583 and 501, respectively).

10.3.2 Holt–Winters Seasonal and ARIMA Forecasting

As in Section 10.2.2, the Holt–Winters seasonal recursions with seasonal period d
correspond to the large-sample forecast recursions of an ARIMA process, in this
case defined by

(1 − B)(1 − Bd)Yt = Zt + · · · + Zt−d+1 + γ (1 − α)(Zt−d − Zt−d−1)

−(2 − α − αβ)(Zt−1 + · · · + Zt−d)

+(1 − α)(Zt−2 + · · · + Zt−d−1),

where {Zt} ∼WN
(
0, σ 2

)
. Holt–Winters seasonal forecasting with optimal α, β, and γ

can therefore be viewed as fitting a member of this four-parameter family of ARIMA
models and using the corresponding large-sample forecast recursions.

Table 10.3 Predicted and observed values of the accidental deaths series for
t = 73, . . . ,78 from the seasonal Holt–Winters algorithm

t 73 74 75 76 77 78

Observed Yt 7798 7406 8363 8460 9217 9316
Predicted by HWS 8039 7077 7750 7941 8824 9329

10.4 Choosing a Forecasting Algorithm

Real data are rarely if ever generated by a simple mathematical model such as an
ARIMA process. Forecasting methods that are predicated on the assumption of such a
model are therefore not necessarily the best, even in the mean squared error sense. Nor
is the measurement of error in terms of mean squared error necessarily always the most
appropriate one in spite of its mathematical convenience. Even within the framework
of minimum mean squared-error forecasting, we may ask (for example) whether we
wish to minimize the one-step, two-step, or twelve-step mean squared error.
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Figure 10-3
The data set DEATHS.TSM

with 24 values predicted by
the seasonal Holt–Winters

algorithm
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The use of more heuristic algorithms such as those discussed in this chapter
is therefore well worth serious consideration in practical forecasting problems. But
how do we decide which method to use? A relatively simple solution to this problem,
given the availability of a substantial historical record, is to choose among competing
algorithms by comparing the relevant errors when the algorithms are applied to the
data already observed (e.g., by comparing the mean absolute percentage errors of the
12-step predictors of the historical data if 12-step prediction is of primary concern).

It is extremely difficult to make general theoretical statements about the relative
merits of the various techniques we have discussed (ARIMA modeling, exponential
smoothing, ARAR, and HW methods). For the series DEATHS.TSM we found on
the basis of average mean squared error for predicting the series at times 73–78
that the ARAR method was best, followed by the seasonal Holt–Winters algorithm,
and then the ARIMA models fitted in Chapter 6. This ordering is by no means
universal. For example, if we consider the natural logarithms {Yt} of the first 130
observations in the series WINE.TSM (Figure 1-1) and compare the average mean
squared errors of the forecasts of Y131, . . . ,Y142, we find (Problem 10.2 that anMA(12)
model fitted to the mean corrected differenced series {Yt − Yt−12} does better than
seasonal Holt–Winters (with period 12), which in turn does better than ARAR and
(not surprisingly) dramatically better than nonseasonal Holt–Winters. An interesting
empirical comparison of these and other methods applied to a variety of economic time
series is contained in Makridakis et al. (1984).

The versions of the Holt–Winters algorithms we have discussed in Sections 10.2
and 10.3 are referred to as “additive,” since the seasonal and trend components enter the
forecasting function in an additive manner. “Multiplicative” versions of the algorithms
can also be constructed to deal directly with processes of the form

Yt = mtstZt, (10.4.1)

where mt, st, and Zt are trend, seasonal, and noise factors, respectively (see, e.g.,
Makridakis et al. 1997). An alternative approach (provided that Yt > 0 for all t) is
to apply the linear Holt–Winters algorithms to {lnYt} (as in the case of WINE.TSM in
the preceding paragraph). Because of the rather general memory shortening permitted
by the ARAR algorithm, it gives reasonable results when applied directly to series
of the form (10.4.1), even without preliminary transformations. In particular, if we
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Figure 10-4
The first 132 values of the

data set AIRPASS.TSM
and predictors of the last

12 values obtained by direct
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consider the first 132 observations in the series AIRPASS.TSM and apply the ARAR
algorithm to predict the last 12 values in the series, we obtain (Problem 10.4) an
observed root mean squared error of 18.22. On the other hand if we use the same
data take logarithms, difference at lag 12, subtract the mean and then fit an AR(13)
model by maximum likelihood using ITSM and use it to predict the last 12 values, we
obtain an observed root mean squared error of 21.17. The data and predicted values
from the ARAR algorithm are shown in Figure 10-4.

Problems

10.1 Establish the formula (10.1.8) for the mean squared error of the h-step forecast
based on the ARAR algorithm.

10.2 Let {X1, . . . ,X142} denote the data in the file WINE.TSM and let {Y1, . . . ,Y142}
denote their natural logarithms. Denote by m the sample mean of the differenced
series {Yt − Yt−12, t = 13, . . . , 130}.
(a) Use the program ITSM to find the maximum likelihood MA(12) model for

the differenced and mean-corrected series {Yt −Yt−12 −m, t = 13, . . . , 130}.
(b) Use the model in (a) to compute forecasts of {X131, . . . ,X142}.
(c) Tabulate the forecast errors {Xt − P130 Xt, t = 131, . . . , 142}.
(d) Compute the average squared error for the 12 forecasts.
(e) Repeat steps (b), (c), and (d) for the corresponding forecasts obtained by

applying the ARAR algorithm to the series {Xt, t = 1, . . . , 130}.
(f) Repeat steps (b), (c), and (d) for the corresponding forecasts obtained by

applying the seasonal Holt–Winters algorithm (with period 12) to the
logged data {Yt, t = 1,. . . ,130}. (Open the file WINE.TSM, select
Transform>Box-Coxwith parameter λ = 0, then selectForecasting>
Seasonal Holt-Winters, and check Apply to original data
in the dialog box.)
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(g) Repeat steps (b), (c), and (d) for the corresponding forecasts obtained by
applying the nonseasonal Holt–Winters algorithm to the logged data {Yt, t =
1, . . . , 130}. (The procedure is analogous to that described in part (f).)

(h) Compare the average squared errors obtained by the four methods.

10.3 In equations (10.2.10) and (10.2.11), show that α=Ω11/
(
Ω11 + σ 2

w

)
and

β=Ω21/Ω11.

10.4 Verify the assertions made in the last paragraph of Section 10.4, comparing the
forecasts of the last 12 values of the series AIRPASS.TSM obtained from the
ARAR algorithm (with no log transformation) and the corresponding forecasts
obtained by taking logarithms of the original series, then differencing at lag 12,
mean-correcting, and fitting an AR(13) model to the transformed series.
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