
GPU-Accelerated Real-Time Mesh
Simplification Using Parallel Half Edge Collapses

Thomas Odaker1(B), Dieter Kranzlmueller1, and Jens Volkert2

1 Ludwig Maximilians Universitaet, Muenchen, Germany
odaker@a1.net, kranzlmueller@ifi.lmu.de
2 Johannes Kepler University, Linz, Austria

jv@gup.jku.at

Abstract. Mesh simplification is often used to create an approximation
of a model that requires less processing time. We present the results of
our approach to simplification, the parallel half edge collapse. Based on
the half edge collapse that replaces an edge with one of its endpoints,
we have devised a simplification method that allows the execution of
half edge collapses on multiple vertex pairs of a mesh in parallel, using a
set of per-vertex boundaries to avoid topological inconsistencies or mesh
foldovers. This approach enables us to remove up to several thousand
vertices of a mesh in parallel, depending on the model and mesh topology.
We have developed an implementation that allows to exploit the parallel
capabilities of modern graphics processors, enabling us to compute a
view-dependent simplification of triangle meshes in real-time.

1 Introduction

Highly detailed polygonal models are commonly used for visually appealing
scenes. The triangle count still poses an important factor in performance consid-
erations. A wide variety of simplification operators have been devised that can
be used to reduce the complexity of 3-d models. Falling back on these operators
a plethora of algorithms and approaches have been developed to create simpli-
fications of given objects. Over the last decade various algorithms have been
presented that are designed to utilize the parallel processing power of modern
GPUs to speed up the simplification process (Papageorgiou and Platis [9]) with
some focussing on calculating the simplified results in real-time such as Hu et al.
[3] or DeCoro and Tatarchuk [4].

We present the results of our approach, the parallel half edge collapse. It
is designed to provide a parallel solution to simplification of manifold triangle
meshes that can be executed on a GPU.

1.1 Previous Work

Hoppe et al. [2] present the edge collapse. This operator replaces an edge of
a triangle mesh with a single vertex, so effectively removing a vertex and one
or two triangles. A more restrictive version is the half edge collapse, where the
c© Springer International Publishing Switzerland 2016
J. Kofroň and T. Vojnar (Eds.): MEMICS 2015, LNCS 9548, pp. 107–118, 2016.
DOI: 10.1007/978-3-319-29817-7 10



108 T. Odaker et al.

position of the replacement vertex cannot be freely chosen, but is one of the
endpoints of the collapsed edge. The edge collapse has the disadvantage that it
may create foldovers in the mesh as well as topological inconsistencies [6].

In Hoppe [5], this operator and its inverse - the vertex split - are used to
describe an algorithm to coarsen or refine a mesh. Given a detailed mesh Hoppe
performs a series of edge collapses on it, storing the applied operations in a data
structure. Then the mesh is represented using the coarse version and a series of
refinement operations (vertex splits) that can be used to compute the desired
refinement of the mesh. In Hu et al. [3] (with further explanation in [8]) this
approach is adapted for execution on a GPU. While Hoppe defines a series of
strictly iterative operations, Hu et al. replace Hoppe’s data structure with a
tree that defines dependencies between the precomputed edge collapses/vertex
splits. This improved algorithm allows for a parallel execution and improved
performance.

Another method of simplification is the cell collapse originally described in
Rossignac and Borrell [1]. Here a number of cells is superimposed over the mesh
with all vertices within a cell being combined into a single vertex. While this
allows for fast generation of a coarse mesh, it has the disadvantage of ignoring
the topology of the mesh which can result in low quality simplifications.

DeCoro and Tatarchuk [4] have adapted this approach to be executed on
programmable graphics hardware. Their algorithm executes three passes over
the mesh: cell creation, calculation of replacement position for each cell and
generation of the decimated mesh.

Papageorgiou and Platis [9] present an algorithm that executes multiple edge
collapses in parallel. However, they do not rely on precomputed data structures.
Their approach divides a mesh into a series of independent areas. In each area
an edge collapse can be safely executed without influencing another one. The
algorithm is designed to be executed on a GPU, with the steps of computa-
tion of independent areas and performing a series of edge collapses in parallel
being repeated until the desired simplification is achieved. This speeds up the
computation, but does not provide real-time simplification.

In [10] we presented the concept of our approach, the parallel half edge col-
lapse. In this paper we want to introduce further details of this algorithm and
discuss the results of this approach in detail.

1.2 Algorithm Overview

The parallel half edge collapse aims to provide a view-dependent, real time sim-
plification of a triangle mesh. The goal is to compute the simplification at run-
time without relying on pre-computed operations. The simplification operator
used is the half edge collapse. We determine a set of vertices R that are to be
removed from the mesh and the complementary set S (remaining vertices of
the mesh). Vertices are removed by performing half edge collapses on edges of
the mesh that connect vertices in R with a vertex in S (removing the vertex



GPU-Accelerated Real-Time Mesh Simplification 109

in R and replacing the edge with the vertex in S), while executing as many of
these operations as possible in parallel. To avoid mesh foldovers or topological
inconsistencies - even when neighbouring vertices are removed at the same time
- we compute a set of per-vertex boundaries to determine if a half edge collapse
would cause any of the aforementioned issues. Since only vertices in R that have
a neighbour in S can be removed using this approach, we apply multiple itera-
tions of the parallel half edge collapse until all vertices in R have been processed.
After each iteration, we execute a reclassification step. This analyses the remain-
ing vertices in R taking changes in the topology and surface shape into account
and may move them from R to S to avoid low quality simplifications.

2 Classification

The vertex classification analyses all vertices of a triangle mesh and assigns each
one to either R or S. This step is divided into the vertex analysis and the initial
classification.

Vertex analysis is performed before the simplification. For each vertex V an
error value e(V ) is computed. The initial classification falls back on e(V ), applies
scaling based on camera data like view vector and distance between camera and
vertex and compares the result to a user-defined threshold u which leads to the
creation of S and R.

2.1 Static Vertex Error

The static vertex error is calculated using a geometric error metric. We chose the
average distance between the neighbouring vertices and the tangential plane of
V for this purpose. The tangential plane is constructed from the position of V as
well as the normal vector stored in V and expressed as ax+by+cz+d = 0 with t =
[a, b, c, d]. For each neighbouring vertex Ni with the position n = [nx, ny, nz, 1]
the quadratic distance from the tangential plane d(V,Ni) = (t•n)2 is calculated
with e(V ) being the average quadratic distance.

e(V ) =
∑m

i=1(d(V,Ni))
m

(1)

Since this metric is computed per-vertex and does not take a possible removal
of neighbouring vertices into account, a large user threshold u could potentially
select a large number of - if not all - vertices for removal. This could severely
limit parallelism or in case of all vertices being marked for removal prevent a
simplification at all. A metric manipulation is applied as a part of the error
computation to avoid these issues.

2.2 Vertex Error Manipulation

This step aims to select a number of vertices from the mesh and assign them
an error value e(V ) > u to guarantee their classification into S. We apply a



110 T. Odaker et al.

Fig. 1. Example point generation (left to right: layer L0, layer L1, layer L2) and vol-
umes for L0 and L1

layered version of the error manipulation. Layer L0 contains the vertices that
are assigned e(V ) > u. Every additionally created layer selects additional points
and manipulates their vertex error with a user selected value assigned to the
layer.

For this approach a number of vertices has to be selected for each layer:

– Bounding box computation and creation of a set of points P (L0) =
{P 0

0 , P
0
1 , . . . , P

0
n} within the bounding box with equal axial distance d(L0)

between points.
– Creation of additional layers Li with points P (Li) = {P i

1, P
i
2, . . . P

i
o} cre-

ated at halfway points between the points in Li−1 (d(Li) = d(Li−1)
2 , i > 0,

2-dimensional example on the left in Fig. 1).
– Generation of volume B(P i

j ) for each point. B(P i
j ) is centered around P i

j and
has a side length of d(Li) (trimmed to the bounding box). Right side of Fig. 1
shows the volumes for the first two sample layers.

– For each volume: determination of all vertices V (P i
j ) within the volume

– For each volume: selection of one vertex from V (P i
j ) and manipulation of the

vertex error

Points P i
j may not correspond to vertices of the mesh. For each P i

j a vertex is
selected from within the corresponding volume B(P i

j ) if applicable. For a point
P i
j with position pij and a vertex Vk with position vk we calculate the weighted

error m(Vk, P
i
j ) using the maximum side length l of the volume B(P i

j ) as follows:

m(Vk, P
i
j ) = (l − |pij − vk|)2 ∗ e(Vk) (2)

For each volume the vertex with the maximum weighted error is used for error
manipulation. The weighted error takes the static vertex error and the distance
between P i

j and Vk into account. The weighted error is designed to preferably
select vertices closer to P i

j , to achieve a more uniform distribution of vertices
with a manipulated per-vertex error, while taking the original error value into
account, to avoid keeping vertices with little influence to the surface shape in
the simplified mesh.

3 Boundary Computation and Testing

The per-vertex boundaries are used to avoid half edge collapses causing mesh
foldovers or topological inconsistencies. Due to the parallel nature of this



GPU-Accelerated Real-Time Mesh Simplification 111

approach, we cannot rely on simple methods of testing for such occurrences
(e.g. a maximum rotation of triangle normals before and after a collapse).

3.1 Boundaries

The per-vertex boundaries B(V ) are a set of planes that is computed for each
vertex V that has at least one neighbour in S (subsequently referred to as
removal candidates). Each triangle containing V adds one or more planes to
B(V ). Boundary planes are constructed based on how many vertices of a tri-
angle are removal candidates (Boundary 1, 2 and 3 for 1, 2, and 3 removal
candidates respectively) and use the camera position E. The parallel execution
of half edge collapses has to be taken into account and the need for communi-
cation avoided. The planes are defined only to allow replacement positions for a
removal candidate that would not cause a foldover or inconsistency, no matter
what collapse - if any at all - is chosen for the other removal candidate in this
triangle. This can lead to possible valid combinations of half edge collapses being
blocked with boundaries 2 and 3.

Fig. 2. Boundaries 1, 2 and 3

Boundary 1 (Vertices V1, V2 and removal candidate Vr, Fig. 2 left). A single
plane p is constructed. It contains the vectors

−−−−→
V1 − E and

−−−−→
V2 − E as well as the

points V1 and V2.

Boundary 2 (Vertex V1 and removal candidates Vr1, Vr2, Fig. 2 middle). Two
planes p1 and p2 are constructed. Plane p1 is constructed using the vectors−−−−−−→
Vr1 − Vr2 and

−−−−→
V1 − E as well as the point V1. Plane p2 is constructed from−−−−→

V1 − E,
−−−−−−−−−→
Vr1+Vr2

2 − V1 and V1.

Boundary 3 (Removal candidates Vr1, Vr2 and Vr3, Fig. 2 right). Two planes
p1 and p2 are constructed for each removal candidate. They both contain the
centroid S. For Vr1, plane p1 contains the vectors

−−−−−−→
Vr2 − Vr1 and

−−−−→
S − E as well

as the point S. Plane p2 for Vr1 is constructed from
−−−−−−→
Vr3 − Vr1 and

−−−−→
S − E and

lies through the point S.



112 T. Odaker et al.

Each possible half edge collapse for a removal candidate V needs to be tested
against these boundaries to avoid foldovers or topological inconsistencies:

– Selection of all triangles T (V ) containing V
– For each triangle in T (V ) determination of the appropriate boundary
– Construction of boundary planes and adding them to B(V )
– Testing of each possible half edge collapse against all planes in B(V )

Each possible half edge collapse for V has to be tested against each plane in
B(V ) individually. If any intersection between the edge and any plane in B(V )
exists, the half edge collapse is considered invalid. This test can be simplified by
adapting the orientation of the plane normals with regards to V . The test checks,
if the dot product between the plane normal and the removal candidate V , as
well as the dot product between the second vertex of an edge V ′ and the plane
normal share the same sign. Planes are constructed so that the dot product of
the plane normal and V have the same sign for all planes in B(V ). This reduces
the test of a half edge collapse against a single plane in B(V ) to a dot product
and the checking of the sign of the resulting value.

3.2 Half Edge Collapse Selection

The selection of one half edge collapse for each removal candidate is based on
the approach by Garland and Heckbert [7]. We take Garland’s and Heckbert’s
approach, compute their error value �(V ′) for each valid replacement position
and execute the half edge collapse with the lowest error. While Garland and
Heckbert update their vertex error by computing a new error value from the
errors of V1 and V2, we deviate from this approach. We do not update the error
value, but rather compute it at every step for the current intermediate mesh.

4 Deadlock Prevention and Reclassification

Since boundary 2 and 3 can block valid combinations of half edge collapses, it is
possible for a deadlock to appear where two or more removal candidates mutu-
ally block each other and the simplification cannot be completed. Only bound-
ary 1 always computes a correct result that does not block any valid half edge
collapses. To avoid this, we create two sets of boundaries per removal candidate.
B(V ) contains the boundaries as described above.B′(V ) is created with the planes
of boundary 1 for all triangles containing V . This creates two results for each ver-
tex: Result r1 from checking with planes in B(V ) which allows to select a valid
half edge collapse. Result r2 from B′(V ) tells if any half edge collapse is allowed
when not taking parallel execution into account. If r1 and r2 block all half edge
collapses, the vertex cannot be removed and is reclassified. If only r1 blocks all
half edge collapses, the parallel execution prevents removal, the vertex remains in
R and is considered as “ignored”, excluding it from the removal candidates until
at least one neighbour has been processed (either removed or reclassified).

After each removal step the list of removal candidates is updated. The initial
vertex error is recomputed for all removal candidates using the current interme-
diate mesh. Since some neighbours of removal candidates are to be removed we



GPU-Accelerated Real-Time Mesh Simplification 113

adapt the metric here. We use the maximum distance between the tangential
plane and the neighbours that are to remain in the mesh. Like the static vertex
error, the updated vertex error is compared to the threshold and the vertex is
reclassified if necessary.

5 Implementation

We have devised an implementation of the parallel half edge collapse using
CUDA to be able to analyse our algorithm.

We had to extend per-vertex data for our algorithm. Each vertex stores a
vertex error that is used to classify the vertex and updated for removal candidates
after each iteration. Since boundary computation relies on the number of removal
candidates in a triangle, it is also necessary to store if a vertex is “marked” as
removal candidate.

The parallel half edge collapse requires information about all neighbouring
vertices. It is necessary to create an additional buffer that serves as data storage
containing a triangle strip for each vertex of the original mesh. The neighbouring
triangles are used for two purposes during the execution of the parallel half edge
collapse: boundary computation and calculation of the vertex error. Both appli-
cations need the geometric data, but do not rely on knowledge of the orientation
of the triangle. Since the triangle fan is stored per vertex in this data structure,
we can minimize storage requirements by only storing a list of neighbouring
vertices in the correct order.

A second data structure is used to maintain a list of removal candidates. After
the initial classification all removal candidates are determined by searching the
neighbours of all those vertices, that are selected to remain in the mesh, for
vertices to be removed. At the start of the removal step, the stored vertices are
distributed among the threads executing the simplification. After the removal
step has been completed, the list is repopulated with the new removal candidates
for the next step.

We actually maintain two lists of removal candidates. Given that we assign
each CUDA thread a vertex from this list, we can never guarantee that we actually
have less vertices than cores. After the cores have completed processing the first
assigned candidates, the list may still be partially populated. To avoid this issue,
we use a separate input and output list, swapping them after each step.

6 Results

Figure 3 shows an example of a simplification of the Stanford Bunny in compari-
son to the original mesh (left) while Fig. 4 shows examples for other models that
were simplified.

We calculated several simplifications of the Stanford Bunny to achieve com-
parable results, assess processing time and find bottlenecks and weaknesses. All
measurements were taken using a Geforce GTX 670 GPU with 1344 cores. The
original mesh of the Stanford Bunny consists of 35 947 vertices that form 69 451



114 T. Odaker et al.

Fig. 3. Original model (left), simplified version (about 93% reduction in triangles,
right)

Fig. 4. Simplifications of the model Armadillo, Dragon and Happy Buddha (93%–95%
of triangles removed) from the Stanford 3-d scanning repository

Fig. 5. Wireframe models of test case 1–5. See Table 1 for details.

triangles. For the purpose of our measurements we compared 5 separate simpli-
fications, ranging from 48 831 to 7 059 triangles. Beside the overall runtime and
the number of triangles of the simplified mesh, we also analysed the number of
iterations, including the number of vertices processed in each iteration. Given
that our approach is executed on a GPU, we want a high number of processed
vertices with each iteration to be able to fully utilize the cores of the GPU and
increase the efficiency of the simplification. We measured the runtime of the
individual steps of the simplification process and analysed the impact of the
manipulation of the initial vertex error to the process.

Figure 5 shows the resulting wireframes for all 5 simplifications. Table 1 shows
an overview of the results, including the number of triangles the simplified mesh
is made up of, the number of triangles removed, the required iterations and
the processing time in milliseconds. These results show the rise in necessary



GPU-Accelerated Real-Time Mesh Simplification 115

Table 1. Test cases data overview (trian-
gles, triangles removed, number of itera-
tions and processing time in milliseconds)

Triangles Triangles rem. Iter. Time

1 48 831 20 620 2 1.94

2 41 732 27 719 3 2.13

3 29 014 40 437 5 3.36

4 17 565 51 886 8 4.43

5 7 059 62 392 12 5.76

Table 2. Data of simplifications of addi-
tional models (triangles, triangles removed
and processing time in milliseconds)

Model Triangles Triangles rem. Time

Bunny 69 451 62 392 5.76

Armadillo 345 944 323 356 29.1

Dragon 871 414 826 109 80.1

Buddha 1 087 716 1 022 232 96.1

Fig. 6. Silhouette comparison

Fig. 7. Vertices removed in each iteration (left) and runtime analysis (right)

iterations to process all vertices marked by the vertex analysis. Table 2 shows
the number of removed triangles and processing times for the additional models.

Figure 6 shows a comparison of a section of the image between the original
(left) and a simplified version (right). This visualizes that the silhouette of the
object is well preserved while the triangle count of the surface greatly reduced.

We further analysed the number of vertices processed in each step, which
uncovered a problem with the execution of the parallel half edge collapse.
A high grade of simplification causes a larger number of necessary iterations.
We observed a high number of processed vertices in the early iterations of each
simplification. During later iterations the number of vertices available for a half
edge collapse dropped significantly.

The chart on the left in Fig. 7 shows the number of vertices that were
removed in each step. As mentioned earlier, the GPU used for the test cases
offers 1344 cores. The implementation assigns each CUDA thread an individual
vertex to process and to remove. As this diagram illustrates, there are one or



116 T. Odaker et al.

more steps in several test cases where not all cores of the GPU can be utilized
due to an insufficient number of removal candidates. Especially test cases with
a high number of triangles removed suffer from this problem. This issue may be
further escalated by the mesh topology. A disadvantageous mesh topology can
cause some vertices not to have a neighbour in S until most vertices marked for
removal have been processed, effectively delaying the completion of the simplifi-
cation process. Another issue we identified, that can cause this behaviour, is the
deadlock prevention we implemented. As our approach can only recognize a pos-
sible deadlock once the subsequent iteration has started, the deadlock prevention
could potentially delay the completion of the simplification process. Since it can
mark a number of vertices as “to be ignored”, the removal of those vertices may
be distributed over several iterations, that might otherwise be unnecessary. In
a worst-case scenario the only vertices left waiting for removal could be ignored
ones with the topology only allowing a single removal per iteration.

The chart on the right in Fig. 7 shows the cumulative runtime of the reclas-
sification, deadlock detection and parallel half edge collapse steps of the sim-
plification process for all five test cases. It is obvious that the majority of the
processing time is used for the execution of the parallel half edge collapse itself,
while reclassification and deadlock prevention take up less than 20 % of the total
run-time.

Another important factor proved to be the error manipulation during the
error computation for the static vertex error. It does not only serve to guarantee
the functionality of the algorithm, but it also provides additional vertices in
S that are regularly spaced out. This has the effect of reducing the necessary
number of iterations when many vertices are removed. Experiments with our
implementation showed that the error manipulation has very little measurable
impact on the test cases 1 and 2 where most vertices in R could be removed
in the first iteration. In test case 5, however, the error manipulation caused a
large reduction in necessary iterations, reducing them by a factor of 4, increasing
parallelism and reducing run-time.

The last factor we analysed is memory usage. The parallel half edge collapse
mainly relies on the fan data buffer as well as the buffers for the removal candi-
dates and the vertex error that is stored in the vertex data. The execution needed
2.3 (Bunny), 11.2 (Armadillo), 29.9 (Dragon) and 35.2 (Buddha) megabytes for
the tested models.

6.1 Comparison to Existing Algorithms

Given that the parallel half edge collapse is designed for computing the simplifi-
cation in real-time, the most similar approaches are Hu et al. [3,8] and DeCoro
and Tatarchuk [4]. While Papageorgiou and Platis [9] present an algorithm that
aims to execute multiple edge collapses in parallel, they do not aim at real-time
execution of the simplification. Even though their algorithm is faster than itera-
tive approaches like the quadric error metric by Garland and Heckbert [7], they
still take up to several seconds to compute the simplification. This fact leads to
its omission for this comparison.



GPU-Accelerated Real-Time Mesh Simplification 117

While Hu et al. provide real-time refinement of a triangle mesh, their app-
roach is a parallel version of progressive meshes presented by Hoppe [5] and is not
designed to calculate the complete simplification during rendering. It rather exe-
cutes incremental changes in the form of vertex splits and edge collapses between
frames. They report update times ranging from 10 ms (about 100 000 triangles)
to nearly 70 ms (about 450 000 triangles) using a Nvidia GeForce 8800GTX
GPU. Given that Hu et al. like Hoppe base their approach on a pre-simplified
mesh that can be refined, their approach is to be described as bottom-up. The
parallel half edge collapse on the other hand is a top-down approach. Due to
these facts, a direct comparison of run times between these algorithms is not
really meaningful.

DeCoro and Tatarchuk recalculate the simplification during image genera-
tion, but their approach is mainly designed to provide fast simplification time.
It does not preserve manifold connectivity and tends to produce overall low
quality (Fig. 8). Given that the parallel half edge collapse is a top-down app-
roach, it has the disadvantage of higher execution time when producing coarser
meshes. The approach by DeCoro and Tatarchuk has the advantage of producing
a much more stable and predictable runtime. They report taking 13 ms to create
a simplification of the Stanford Bunny on a “DirectX 10 GPU”.

Fig. 8. Comparison with DeCoro and Tatarchuk [4] (right)

7 Future Work

The current calculation of the vertex error and its application during the initial
classification only rely on geometrical data of the vertex. The classification of
neighbouring vertices is not taken into account. As a result a large number of
vertices can be marked for removal which can later be reconsidered during the
reclassification phase.

As our analysis has shown, one of the major bottlenecks of our approach
is the lack of removal candidates. Improving the initial classification to reduce
the reliance on the reclassification step and providing a better set of removal
candidates can be used to increase parallelism. Vertices that are reclassified
during the execution in the current algorithm may provide additional removal
candidates at the start of the simplification when an improved classification
scheme is applied.



118 T. Odaker et al.

Another factor limiting the parallelism is the restriction of only executing half
edge collapses between vertices in R and S. Allowing vertices with no neighbours
in S to be subjected to a half edge collapse could be used to reduce the number
of necessary iterations and therefore increase the parallelism of the approach.

8 Conclusion

The parallel half edge collapse has proven to allow fast, view-dependant simpli-
fication that can make use on the parallel processing power of modern GPUs
by relying on isolated per-vertex operations. While our analysis has shown good
results in terms of overall quality and execution time, it has also uncovered some
limiting factors, namely the reduced parallelism that may be caused by the topol-
ogy or a lack of removal candidates. Another limiting factor of the parallel half
edge collapse lies in the execution of the simplification operator. Given that a
vertex is chosen for removal and one half edge collapse selected for each removal
candidate, it is not possible to select an “optimal” edge that is collapsed. While
this causes iterative approaches to achieve a better overall quality, it is consid-
ered as a trade-off for the parallel execution and the performance gain of the
parallel half edge collapse.

References

1. Rossignac, J., Borrell, P.: Multi-resolution 3D approximations for rendering com-
plex scenes. In: Falcidieno, B., Kunii, T.L. (eds.) Modeling of Computer Graphics:
Methods and Applications, pp. 455–465. Springer, Berlin (1992)

2. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J.A., Stuetzle, W.: Mesh opti-
mization. In: ACM SIGGRAPH Proceedings, pp. 19–26 (1993)

3. Hu, L., Sander, P.V., Hoppe, H.: Parallel view-dependent refinemnet of progressive
meshes. In: Proceedings of the Symposium on Interactive 3D Graphics and Games,
pp. 169–176 (2009)

4. DeCoro, C., Tatarchuk, N.: Real-time mesh simplification using the GPU. In: Pro-
ceedings of the Symposium on Interactive 3D Graphics, vol. 2007, pp. 161–166
(2007)

5. Hoppe, H.: Progressive meshes. In: ACM SIGGRApPH Proceedings, pp. 99–108
(1996)

6. Xia, J.C., El-Sana, J., Varshney, A.: Adaptive real-time level-of-detail-based ren-
dering for polygonal models. IEEE Trans. Visual Comput. Graph. 3(2), 171–187
(1997)

7. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In:
SIGGRAPH Proceedings 1997, pp. 209–216 (1997)

8. Hu, L., Sander, P., Hoppe, H.: Parallel view-dependent level of detail control. IEEE
Trans. Visual Comput. Graph. 16(5), 718–728 (2010)

9. Papageorgiou, A., Platis, N.: Triangular mesh simplification on the GPU. Vis.
Comput. Int. J. Comput. Graph. 31(2), 235–244 (2015)

10. Odaker, T., Kranzlmueller, D., Volkert, J.: View-dependent simplification using
parallel half edge collapses. In: WSCG Conference Proceedings, pp. 63–72 (2015)


	GPU-Accelerated Real-Time Mesh Simplification Using Parallel Half Edge Collapses
	1 Introduction
	1.1 Previous Work
	1.2 Algorithm Overview

	2 Classification
	2.1 Static Vertex Error
	2.2 Vertex Error Manipulation

	3 Boundary Computation and Testing
	3.1 Boundaries
	3.2 Half Edge Collapse Selection

	4 Deadlock Prevention and Reclassification
	5 Implementation
	6 Results
	6.1 Comparison to Existing Algorithms

	7 Future Work
	8 Conclusion
	References


