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Preface

This volume contains the proceedings of the 10th Doctoral Workshop on Mathematical
and Engineering Methods in Computer Science (MEMICS 2015) held in Telč, Czech
Republic, during October 23–25, 2015.

The aim of the MEMICS workshop series is to provide an opportunity for PhD
students to present and discuss their work in an international environment. The scope of
MEMICS is broad and covers many fields of computer science and engineering. In
2015, we paid special attention to submissions in the following (although not exclu-
sive) areas:

– Security and safety
– Bioinformatics
– Recommender systems
– High-performance and cloud computing
– Non-traditional computational models (quantum computing, etc.)

There were 25 submissions from PhD students from nine countries. Each submis-
sion was thoroughly evaluated by at least three Program Committee members, who also
provided extensive feedback to the authors. Out of these submissions, ten full papers
were selected for publication in these proceedings, and additional seven papers were
selected for presentation at the workshop.

The highlights of the MEMICS 2015 program included six keynote lectures
delivered by internationally recognized researchers from the aforementioned areas of
interest. The speakers were:

Ezio Bartocci (Vienna University of Technology, Austria)
Siegried Benkner (University of Vienna, Austria)
Mike Just (Heriot-Watt University, Edinburgh, UK)
Simone Severini (University College London, UK)
Natasha Sharygina (University of Lugano, Switzerland)
Peter Vojtáš (Charles University, Czech Republic)

The full papers of three of these keynote lectures are also included in the pro-
ceedings. In addition to regular papers, MEMICS workshops traditionally invite PhD
students to submit a presentation of their recent research results that have already
undergone a rigorous peer-review process and have been presented at a high-quality
international conference or published in a recognized journal. A total of 12 presenta-
tions out of 14 submissions from 11 countries were included into the MEMICS 2015
program.

The MEMICS tradition of best paper awards continued also in the year 2015. The
best contributed papers were selected during the workshop, taking into account their
scientific and technical contribution together with the quality of presentation. The 2015
awards went to the following papers:



Vojtěch Havlena and Dana Hliněná: “Fitting Aggregation Operators”

Agnis Arins: “Span-Program-Based Quantum Algorithms for Graph Bipartiteness
and Connectivity”

The two awards consisted of a diploma accompanied by a financial prize of 400
Euro each. The prize money was donated by ZONER software, a. s. and Brno
University of Technology.

The successful organization of MEMICS 2015 would not have been possible
without generous help and support from the organizing institutions: Brno University of
Technology, Masaryk University in Brno, and Charles University Prague.

We thank the Program Committee members and the external reviewers for their
careful and constructive work. We thank the Organizing Committee members who
helped to create a unique and relaxed atmosphere that distinguishes MEMICS from
other computer science meetings. We also gratefully acknowledge the support of the
EasyChair system and the great cooperation with the Lecture Notes in Computer
Science team of Springer.

November 2015 Jan Kofroň
Tomáš Vojnar

VI Preface
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Programming Support for Future Parallel
Architectures

Siegfried Benkner(B)

Research Group Scientific Computing, University of Vienna, Vienna, Austria
siegfried.benker@univie.ac.at

Abstract. Due to physical constraints the performance of single proces-
sors has reached its limits, and all major hardware vendors switched to
multi-core architectures. In addition, there is a trend towards hetero-
geneous parallel systems comprised of conventional multi-core CPUs,
GPUs, and other types of accelerators. As a consequence, the develop-
ment of applications that can exploit the potential of emerging parallel
architectures and at the same time are portable between different types of
systems is becoming more and more challenging. In this paper we discuss
recent research efforts of the European PEPPHER project in software
development for future parallel architectures. We present a high-level
compositional approach to parallel software development in concert with
an intelligent task-based runtime system. Such an approach can signifi-
cantly enhance programmability of future parallel systems, while ensur-
ing efficiency and facilitating performance portability across a range of
different architectures.

1 Introduction

Computer architectures are currently undergoing a significant shift from homo-
geneous multi-core designs to heterogeneous many-core systems, which com-
bine different types of execution units like conventional CPU cores, GPUs and
other accelerators within a single chip or compute node. While heterogeneous
many-core architectures promise to deliver superior performance and energy effi-
ciency, these architectures sharply increase the complexity of software develop-
ment. Ensuring both a reasonable level of performance and a sufficient degree
of performance portability of software between different systems is a fundamen-
tal challenge for current computer science research and engineering. In general,
there is no guarantee that software developed for a particular architecture will
be executable on another, related architecture. Even if functional portability
is achieved, there is no guarantee that the performance achieved on a specific
architecture will be preserved to a similar extent on other architectures. Expen-
sive manual work in adapting, optimizing or rewriting an application for a spe-
cific architecture may thus be lost when porting the application to another,
next generation architecture. There is therefore an urgent need for techniques
c© Springer International Publishing Switzerland 2016
J. Kofroň and T. Vojnar (Eds.): MEMICS 2015, LNCS 9548, pp. 1–10, 2016.
DOI: 10.1007/978-3-319-29817-7 1



2 S. Benkner

that facilitate efficient, productive and portable programming of heterogeneous
many-core systems, including means for preserving aspects of performance when
porting applications across different architectures.

The European PEPPHER project [4,10] addressed programmability and per-
formance portability for single-node heterogeneous many-core architectures, typ-
ically systems comprising multi-core CPUs with one or more GPUs, coprocessors
or other types of accelerators. Key to the PEPPHER approach is a performance-
aware component model in concert with a multi-level parallel task-based exe-
cution model. Within this model, programs are composed at a high-level of
abstraction from sequential or already parallelized program components. For
each component, different implementation variants optimized for different types
of cores are provided by skilled expert programmers or taken from vendor-
supplied libraries. A component-based high-level program is transformed into
code which employs the StarPU [2] runtime system to select suitable com-
ponent implementation variants and to schedule their parallel execution in a
performance- and resource-aware manner to the different execution units of a
heterogeneous many-core architecture, exploiting all levels of parallelism pro-
vided by the hardware.

In this paper we focus on describing some major aspects of the PEPPHER
framework. Other developments, including a toolbox with autotuned data struc-
tures and algorithms, hardware support for programmability and performance
portability, the software simulator for experimentation with future heterogeneous
many-core designs, and the PEPPHER Processing Unit (PePU), an experimen-
tal heterogeneous many-core hardware platform, are not covered.

2 The PEPPHER Methodology and Framework

The central aspects of PEPPHER for improving programmability and perfor-
mance portability are (1) to provide performance-critical parts of applications as
components with multiple implementation variants tailored for different types
of execution units in a heterogeneous many-core system and (2) to employ a
performance-aware runtime scheduling strategy that dynamically determines
which implementation variants to execute on which execution units of the target
system such that performance objectives are optimized. By decoupling the speci-
fication of component functionality from the actual implementation, the runtime
system can dynamically adapt applications to different hardware configurations
of a target platform without requiring source code changes.

Figure 1 illustrates the PEPPHER methodology, where mainstream program-
mers construct applications from components at a high level of abstraction,
expert programmers provide component implementation variants optimized for
different execution units available in a heterogeneous many-core system, and the
runtime system selects component implementation variants and schedules them
for execution on the target architecture with the goal of minimizing overall exe-
cution time and utilizing all available execution units as efficiently as possible.
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Fig. 1. The PEPPHER methodology of program development for heterogeneous many-
core systems. C/C++ applications are annotated by the mainstream programmer to
delineate the use of components. The more skilled, expert programmer provides com-
ponent implementation variants optimized for specific hardware. A transformation or
composition tool generates the necessary glue code such that component execution
is delegated to the runtime system. At runtime a PEPPHER program is represented
by a dynamically constructed acyclic task graph where each node (task) corresponds
to a component invocation and edges indicate data dependences. The task graph is
processed by the runtime system which selects proper implementation variants for
tasks and schedules them for execution on the available execution units of the target
system.

A PEPPHER component is a self-contained, side-effect free functional unit
that implements a specific functionality declared in an interface in several differ-
ent implementation variants, typically variants for each type of execution unit
(CPU, GPUs, etc.) available in a heterogeneous target architecture. Component
implementation variants are usually written by expert programmers possibly
using different programming APIs (e.g., CUDA, OpenCL) or are taken from
optimized vendor-supplied libraries. Further specialized variants may be gener-
ated, e.g., by means of autotuning. Components and implementation variants
are accompanied with rich meta-data, supplied via external XML descriptors.
Besides information about the data read and written by components, meta-data
includes information about resource requirements, possible target platforms,
and performance relevant parameters. For this purpose a Platform Description
Language (PDL) [16] for describing essential hardware- and software charac-
teristics of heterogeneous many-core systems has been developed. The PDL
allows describing a hierarchical aggregation of system components comprising
processing units, memory regions and interconnect capabilities. Component
implementation variants may be associated with generic performance models for
estimating at runtime their (relative) performance on different execution units.
Performance models may rely on the PDL to determine capabilities of potential
target execution units and might be realized using different approaches ranging
from analytical models to regression-based performance estimation using histor-
ical performance data.
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Non-expert programmers construct applications at a high level of abstraction
by invoking component functionality via conventional interfaces and use source
code annotations to delineate asynchronous (or synchronous) component calls.
A source-to-source compiler transforms annotated component calls such that
they are registered with the runtime system and generates corresponding glue-
code. With this approach, a sequential program spawns component calls, which
are then scheduled for task-parallel execution by the runtime system. At run-
time, component invocations result in tasks that are managed by the runtime
system and executed non-preemptively. The execution model is parallel at mul-
tiple levels: ready component tasks can be executed in parallel on different parts
of the system, and component tasks can themselves be parallel, e.g., OpenCL or
CUDA variants for the GPU and multi-core parallel variants for the CPU.

The PEPPHER framework and methodology makes it possible to gradually
make an existing application more efficient for a given, heterogeneous parallel
system, as well as more performance portable across different types of hetero-
geneous systems, by progressively supplying more suitable and efficient com-
ponent variants, and by outlining more and more parts of the application into
components.

Figure 2 illustrates the PEPPHER software stack to assist in development
and generation of efficient, performance portable applications for heterogeneous
many-core systems.

Fig. 2. The PEPPHER software stack.
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3 Coordination Language and Transformation Tool

The PEPPHER coordination language provides a small set of directives (prag-
mas) for coordinating the use of PEPPHER components from within C/C++
applications at a high level of abstraction. The coordination language enables
users to indicate that certain functionality of a program should be realized by
means of components, while delegating to the runtime system the decision which
implementation variants to select. By means of basic coordination directives,
calls to components may be performed asynchronously or synchronously. Addi-
tional information that may be provided at component call sites includes parame-
ter assertions, performance expectations, preferred execution targets, and data
partitioning information and access patterns for array parameters.

Fig. 3. Examples of PEPPHER coordination constructs.

Besides providing the user with means for integrating PEPPHER components
into an application, the coordination language offers high-level support for the
structured implementation of parallel patterns, in particular for pipelining [3],
as well as for task farming [7]. Using all these features, PEPPHER supports
multiple forms of parallelism, including task parallelism between asynchronous
component invocations, data parallelism within components, as well as pipelining
across components. Examples of basic component calls as well as a pipeline
pattern are shown in Fig. 3.

Two prototype implementations of the PEPPHER framework have been
developed, a transformation tool and a composition tool. In the following we
outline some aspects of the transformation tool. More information about the
composition tool can be found in [7].
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The PEPPHER transformation tool is a source-to-source transformation sys-
tem that transforms a C++ application with coordination language pragma
directives into a C++ code with calls to the runtime system. When executed,
the generated target code submits for each component call a task to the runtime
system resulting in a dynamic, directed acyclic graph of component tasks with
data dependencies. If a task has multiple implementation variants it is up to the
runtime to chose the best variant such that overall performance is optimized.

While basic component calls are transformed into code that submits tasks
directly to the underlying StarPU runtime system, pipeline patterns are trans-
formed in such a way that they utilize a special pipeline coordination layer [3],
which has been implemented on top of StarPU. The pipeline coordination layer
controls all higher-level aspects of pipeline patterns, including the automatic
generation and management of pipeline stages and the data transfer between
stages by means of buffers. The pipeline coordination layer also controls the
granularity of parallelism, e.g. using an external autotuner, by replicating com-
pute intensive pipeline stages such that the execution is as balanced as possible
and decides when and how many tasks are submitted to the runtime system. For
each instance of a pipeline stage the coordination layer registers a task with the
runtime system which is then responsible for executing the component associated
with this stage. The transformation systems utilizes a component repository to
look up component descriptors and a PDL descriptor of the target architecture
to preselect component implementation variants to be considered for execution
by the runtime system.

4 Task-Based Heterogeneous Runtime System

Execution of a PEPPHER application is managed by StarPU [2,8], a flexible,
performance- and resource-aware, heterogeneous run-time system.

StarPU relies on a representation of the program as a directed acyclic graph
(DAG) where nodes represent component calls (tasks) and edges represent data
dependences. The runtime system dynamically schedules component calls to the
available execution units of a heterogeneous many-core architecture such that
(1) independent component calls execute in parallel on different execution units
and (2) the “best” implementation variants for a given architecture are selected
based on (historical) performance information captured in performance models.

Run-time component implementation variant selection is based on optimiza-
tion objectives (e.g., minimizing execution time), resource availability, data avail-
ability and placement, and available performance information for the variants,
while respecting data dependencies between components. Performance informa-
tion, input information, optimization criteria, resource requirements and avail-
ability, data placement in the system, e.g., in main CPU or in GPU memory, are
all used to determine which of the ready component task variants are scheduled
onto which execution unit(s) of the system.

For CPU-GPU based systems with separate memory spaces, StarPU imple-
ments a software virtual shared memory with relaxed consistency and data
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Fig. 4. Speedup results for a face detection application on various configurations of
two different CPU/GPU systems relative to the OpenCV baseline version which can
utilize only one CPU core and one GPU.

replication capability. The application just has to register the different pieces
of data by providing their addresses and sizes in the main memory. To handle
data distribution among processing units, StarPU also provides an additional
high-level abstraction to easily handle partitioned data for block- and tile-based
parallelism. Besides the Heterogeneous Earliest Finish Time (HEFT) schedul-
ing policy [17], which is the default strategy, StarPU supports eager scheduling,
priority scheduling and several variants of work-stealing. The HEFT policy con-
siders inter-component data dependencies, and schedules components to workers
taking into account the current system load, available component implementa-
tion variants, and historical execution profiles, with the goal of minimizing overall
execution time by favoring implementations variants with the lowest expected
execution time.

5 Experimental Results

Among several other benchmarks and applications, we have implemented a
computer vision application for detecting faces in a stream of images based
on pipeline patterns (see Fig. 3). For the detection stage two different compo-
nent implementation variants, one for CPUs and one for GPUs, have been re-
engineered from the popular Open Source Computer Vision (OpenCV) library
[5] and utilized within the PEPPHER framework.

For performance comparison, we use a baseline OpenCV implementation,
which, however, due to the restrictions of the OpenCV library, can only exploit
a single GPU.

Figure 4 shows speedup results achieved with the PEPPHER implementation
on different configurations of two different CPU/GPU systems. The first machine
is equipped with two quad-core Intel Xeon X5550 CPUs and NVIDIA Tesla
C2050 and C1060 GPUs, respectively. The second machine is equipped with two
octa-core Intel Xeon E5-2650 CPUs and 4 NVIDIA Kepler K20 GPUs.
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The left-hand side diagram in Fig. 4 shows speedup results for the Tesla-based
GPU system relative to the baseline OpenCV version, which, as mentioned, can
only utilize one CPU core and one GPU. The PEPPHER variant can harness
multiple CPU cores and multiple GPUs without any source code changes and
achieves a speedup of more than three over the OpenCV baseline. Compared to
a sequential (single core) execution, the PEPPHER implementation achieves a
speedup of about a factor of 20 using all available resources in the system. The
right-hand side diagram in Fig. 4 shows the results for the Kepler-based GPU
system. Again significant speedups are achieved by utilizing multiple CPU cores
and GPUs. As opposed to the baseline OpenCV version, the PEPPHER version
can seamlessly take advantage of all available computing resources of a het-
erogeneous system demonstrating that performance portability can be achieved
without any changes to the high-level code.

Results of a performance evaluation of the PEPPHER composition tool with
benchmarks from the RODINIA suite and other codes can be found in [7].
All these results indicate that with PEPPHER’s high-level approach, the same
source code can adapt to different target architecture configurations thanks to
the flexibility offered by the framework and the dynamic scheduling facilities of
the runtime system.

6 Related Work

Language, compiler and runtime support for future parallel architectures is a
very active research area with many research efforts and projects world-wide.
We can discuss only a few related approaches here. Several European projects
addressed different aspects of programming support for multi- and many-core
architectures including 2PARMA, APPLE-CORE, ENCORE, PARAPHRASE,
RePhrase and others (see https://www.hipeac.net/network/projects/). In con-
trast to many of these efforts, PEPPHER is not focusing on providing a com-
mon programming model or virtual machine type portability layer to cope with
heterogeneity. Through the use of component interfaces PEPPHER shields the
mainstream programmer from architectural details while facilitating the use of
vendor-specific libraries and enabling expert programmers to optimize imple-
mentation variants down to the metal using low-level APIs.

A key role in PEPPHER is played by the performance- and resource-ware
StarPU runtime system, which dynamically adapts a program to the actual
target platform by selecting suitable implementation variants. Other task-based
runtime systems that share similarities with StarPU include OmpSs [6], HPX [9]
and the Open Community Runtime OCR [14].

As opposed to implicit parallelization and performance portability via
domain specific languages, as for example in [11], PEPPHER is taking a general-
purpose approach, but also provides support for common parallel patterns.

Many other projects also rely on the provision of implementation variants of
functions, methods, or components for addressing performance and performance
portability issues including PetaBricks [1], Merge [12], and Elastic computing [18].

https://www.hipeac.net/network/projects/
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PetaBricks addresses performance portability mostly across homogeneous multi-
core architectures by focusing on auto-tuning methods for different types of opti-
mization criteria. Merge also provides variants, but focuses on MapReduce as a
unified, high-level programming model. Elastic computing provides so called elas-
tic functions which represent a large number of variants, among which the best
combination is composed guided by performance profiles and models.

PEPPHER also facilitates the use of auto-tuning techniques by exposing tun-
able parameters of both components and parameterized, adaptive library algo-
rithms. Within the Autotune project [15], the PEPPHER framework has been
coupled with the Periscope Tuning Framework, in order to tune pipeline pat-
terns by dynamically selecting stage replication factors, buffer sizes (see Fig. 3),
as well as to determine the best number of CPU cores and GPUs that should be
used for a specific application run.

The EXCESS project builds on the PEPPHER component model and
extends the approach with a focus on energy optimization by taking into account
both software and hardware aspects [13].

7 Conclusion

In this paper we provided an overview of the PEPPHER methodology and frame-
work for facilitating programmability and performance portability for single-
node heterogeneous many-core architectures. Due to the increased complexity
and performance variability exhibited by emerging parallel architectures, soft-
ware for such systems needs to become more flexible in order to be portable
across different systems and architecture generations. Achieving portability while
ensuring programmability will require mechanisms that allow expressing the par-
allelism available in applications at a higher level of abstractions, while decou-
pling computations from their actual implementation and loci of execution. To
support such approaches, intelligent runtime systems for dynamically manag-
ing parallel execution and adapting the granularity of parallelism to the actual
hardware will become increasingly important.
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Abstract. Symbolic model checking is one of the most successful tech-
niques for formal verification of software and hardware systems. Many
model checking algorithms rely on over-approximating the reachable
state space of the system. This task is critical since it not only greatly
affects the efficiency of the verification but also whether the model-
checking procedure terminates. This paper reports an implementation
of an over-approximation tool based on first computing a propositional
proof, then compressing the proof, and finally constructing the over-
approximation using Craig interpolation. We give examples of how the
system can be used in different domains and study the interaction
between proof compression techniques and different interpolation algo-
rithms based on a given proof. Our initial experimental results suggest
that there is a non-trivial interaction between the Craig interpolation and
the proof compression in the sense that certain interpolation algorithms
profit much more from proof compression than others.

1 Introduction

Automated methods for formally verifying the absence of faults in a computer
system are becoming increasingly important due to the significant role computers
have in the society. Model checking [4] is one of the most successful approaches
for formal verification. The underlying idea in model checking is to exhaustively
explore a well-defined part of the state space of a system and either find errors
or prove their absence in the studied state space. The problem is generally seen
to be very hard and often undecidable, especially when the state space to be
explored is the full state space of the system. To overcome the computational
difficulty of verification many of the efficient approaches are based on describing
the system using a logic-based formalism in which the lack of faults can be
checked using efficient reasoning engines [3,6,7].

Many of the tools supporting traversal of the search space using logic-based,
symbolic representation require methods for over-approximating parts of the
state-space of the system being studied. A widely used approach is based on
constructing Craig interpolants [5]. The idea is to partition an unsatisfiable logic
formula into two parts A∧B of which the A part needs to be over-approximated.

c© Springer International Publishing Switzerland 2016
J. Kofroň and T. Vojnar (Eds.): MEMICS 2015, LNCS 9548, pp. 11–22, 2016.
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Craig interpolation provides a way of constructing an interpolant I which safely
over-approximates A in the sense that A → I and I ∧ B is still unsatisfiable.

This paper studies a framework for constructing propositional Craig inter-
polants through compressed resolution refutations and the labeled interpolation
system [8]. The approach itself has been discussed in our previous work [1,12,13];
the novelty of this paper is in presenting the techniques under a uniform notation
and reporting initial experimental results on combining the previously studied
techniques.

The presented techniques have been implemented in the PeRIPLO interpo-
lation engine http://verify.inf.usi.ch/periplo. The paper is organized as follows:
Sect. 2 discusses approaches for symbolic model checking where interpolation has
natural applications and introduces interpolation and our notation for proposi-
tional logic. Section 3 discusses the approach PeRIPLO uses for compressing the
refutations it creates, and Sect. 4 discusses the PeRIPLO implementation of the
labeled interpolation system. We report the experimental study in Sect. 5 and
conclude in Sect. 6.

2 Preliminaries

Symbolic model checking consists of determining exhaustively whether the imple-
mentation of a system conforms to its specification. The system is defined as a
finite set of variables X = {x1, . . . , xn} whose values change over discrete time
t = 0, 1, . . . according to a transition relation T , and at time t = 0 satisfy the ini-
tial condition I(X). The initial condition and the transition relation are defined
as formulas over first order logic. An assignment σ(X) mapping each variable in
X to a concrete value is a state of the system. Given two copies of the system
variables X and X ′ and two states σ(X) and σ′(X ′) the system can transition
from σ(X) to σ′(X ′) from time t to t+1 if the assignments satisfy the transition
relation T (X,X ′). In this paper we consider specifications on the safety of a
system: A system is safe if, whenever the system starts from a state satisfying
the initial conditions and transitions according to the transition relation, the
visited states σ0, σ1, . . . never satisfy the error condition E(X) defined in the
specification also as a formula in first order logic.

To show a system unsafe it sufficies to find a sequence of states σ0, . . . σn

satisfying
I(X0) ∧ T (X0,X1) ∧ . . . ∧ T (Xn−1,Xn) ∧ E(Xn). (1)

To show a system safe one needs to find a formula R(X) such that

|= I(X) → R(X) (2)
|= R(X) ∧ T (X,X ′) → R(X ′), and (3)

R(X) ∧ E(X) is unsatisfiable. (4)

The formula R(X) above is the safe inductive invariant which is inductive by
the second tautology and safe by the third formula. It is often more practical
to interchange the roles of initial and error conditions since this will make the

http://verify.inf.usi.ch/periplo


Flexible Interpolation for Efficient Model Checking 13

problem solving more incremental. In some algorithms this requires the definition
of the inverse of the transition relation T−1(X,X ′).

In the following we will present two model-checking applications using
this generic framework that will motivate our work on computing over-
approximations: the k-induction for unbounded model checking, and function
summarization. Finally we give the notation for propositional satisfiability and
interpolation we will use in the paper.

k-Induction. A widely used algorithm for symbolic model checking is based on
constructing the safe inductive invariant R(X) by means of unrolling the transi-
tion relation k times, showing that the states reached after k steps do not satisfy
the error condition, and trying to obtain a safe over-approximation of the initial
condition based on the proof to heuristically compute an inductive invariant.
This process is known as k-induction. To obtain the invariant in the form given
in Eq. (2) the problem is stated as an over-approximation of the initial condition.
In case of over-approximation of the final condition the resulting invariant will
be safe in the sense that the inverse transition function T−1 cannot lead to a
state satisfying the initial condition starting from a state satisfying the error
condition. The critical part of this algorithm is the construction of the safe tran-
sitive invariant through over-approximation of the initial condition. A widely
used approach for computing the over-approximation is through interpolation.

Function Summarization. In typical programming languages the programmer
imposes a logical structure for a system by organizing the program into func-
tions. From the perspective of model checking the functions offer an interesting
approach for guiding the construction of the proof of correctness through func-
tion summaries.

Functions and their summaries are encoded into the transition function T
modularly. Let program P have a function f , and let the encoding of the function
f in logic be |f |(X). If a proof of safety with respect to a verification condition c
for a program is obtained, the function f can be over-approximated with respect
to the verification condition in a safe way by replacing the encoding |f |(X)
with the over-approximating encoding |f̂c|(X) that can still be used to prove
correctness of the condition c(X).

We mention two potential uses for this approach. The first is in verifying
a sequence of verification conditions. Often the error condition E(X) can be
split in a natural way to several verification conditions c0, . . . , cn such that
E(X) = ∨n

i=0ci(X). Depending on the over-approximation and the relations
between the conditions in the sequence it is often possible to organize the
sequence so that the strong conditions are checked before the weak conditions.
For instance [9] presents a heuristic for ordering verification conditions in a way
that likely results in such a sequence. In this case an initial over-approximation
can be used to verify the remaining conditions. The second application of func-
tion summaries is in verifying software upgrades. Given a function f and an
upgraded function f ′, depending on the type of the upgrade it might be possible
to avoid checking the compatibility of the new version of the software against
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the error condition. Instead of the expensive re-verification the check can be
done locally by determining whether the safe over-approximation of the encod-
ing |f̂c|(X) contains the behavior of the upgraded function |f ′|(X), that is, by
checking whether |f̂c|(X) → |F ′|(X).

Interpolation and Propositional Satisfiability. All the above presented scenarios
need an approach for constructing over-approximations of parts of the formula in
Eq. (1). A widely used framework for this purpose is the Craig interpolation [5].
In this work we study in particular the proof compression and the labeled inter-
polation system [8] for propositional satisfiability.

Propositional satisfiability provides a convenient an expressive language for
presenting instances of different model checking problems. Given finite set of
Boolean variables B, the set of literals over B is {p,¬p | p ∈ B}. A clause is a set
of literals and a formula in conjunctive normal form (CNF) is a set of clauses. We
use interchangeably the notation {l1, . . . , ln} and l1∨. . .∨ln, where li are literals,
to denote clauses. Given a clause n, the set vars(n) = {p | p ∈ n or ¬p ∈ n}
gives the variables of n.

A resolution step is a triple n+, n−, (n+ ∪ n−) \ {p,¬p}, where n+ and n−

are two clauses such that p ∈ n+, ¬p ∈ n−, and for no other variable q both
q ∈ n−∪n+ and ¬q ∈ n−∪n+. The clauses n+ and n− are called the antecedents,
the latter is the resolvent and p is the pivot of the resolution step. A resolution
refutation R of an unsatisfiable formula φ is a directed acyclic graph where
the nodes are clauses and the edges are directed from the antecedents to the
resolvents. The leaf nodes of a refutation R, i.e., nodes with no incoming edge,
are the clauses of φ, and the rest of the clauses are resolvents derived with a
resolution step. The unique node with no outgoing edges is the empty clause.

3 Methods of Proof Compression

A common approach for constructing interpolants is to compute a resolution
refutation and label the refutation iteratively in a way that finally results in an
interpolant. Since the resolution proof is often big and the interpolant size is one
of the critical factors determining the usability of the interpolant it is preferable
to obtain as small interpolants as possible. This section gives an in-depth view of
the techniques implemented in the PeRIPLO tool for compressing the refutation
once it has been constructed. In particular we cover the local transformation
framework, the pivot recycling algorithm and an approach for delaying resolution
steps that involve a unit clause as an antecedent.

The local transformation framework. In our experiments an important factor
making resolution proofs of SAT solvers big is that the solver often resolves on
a pivot several times. This type of redundancy can always be removed from a
refutation and the resulting refutation will remain sound. The local transforma-
tion framework [13] addresses this issue. The framework consists of two rules for
reducing a proof, complemented with two reshuffling rules that are employed to
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Fig. 1. Transformation rules

give more opportunities for the application of the two reducing rules. The four
reduction and reshuffling rules are presented in Fig. 1. The restrictions on the
application on the rule are listed on the leftmost column.

The PeRIPLO system uses the local transformation system to detect and
remove redundancies from a refutation. The algorithm for applying the system
is given in Fig. 2. The critical part of the algorithm is on lines 8–9 where the
algorithm identifies a context, an environment which matches one of the rules
in Fig. 1. The context consists of the two pivots p and q and the surrounding
clauses, and since the system is symmetric the resolvents have both left and right
contexts. Once a context is found the algorithm applies heuristically one of the
transformation rules on the context on line 10.

The use of the transformation rules might render the refutation invalid if a
clause is a resolvent in more than one resolution steps. To avoid the problem
the rules R1 and R2 are not used in such cases. Finally the lines 12, 14, and
16 take care of the cases where resolution step has become useless due to the
compression.

The pivot recycling algorithm. While the removal of the doubly appearing pivots
can be done with the proof transformation system of Fig. 1, it is often useful to
combine the approach with a more aggressive approach based on reachability
on the refutation. One way of implementing the safe removal of extra resolu-
tion steps in a refutation DAG is to prevent the removal operation on resolvents
that are used in more than one resolution step. However this approach is too
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Input : R — A refutation
T — A time limit

Output : R′ — a compressed refutation
1 while T is not surpassed:
2 TS := topologically sorted list of clauses in R
3 for n ∈ TS :
4 if n is not a leaf:
5 p := piv(n)
6 if ¬p ∈ n− and p ∈ n+:
7 n := (n− ∪ n+) \ {p,¬p}
8 lc := left context of n
9 rc := right context of n
10 ApplyRule(lc, rc)
11 else if p ∈ n+:
12 Substitute n with n−

13 else if ¬p ∈ n−:
14 Substitute n with n+

15 else
16 Heuristically choose either n+ or n− and substitute n with it

Fig. 2. The local transformation framework algorithm.

restrictive since often the literals are resolved on other paths as well. For this
purpose PeRIPLO uses the recycle pivots with intersection algorithm, presented
in [10] and based on the original recycle pivots algorithm of [2]. We present an
implementation adapted from [13] in Fig. 3, designed for a slightly more general
case where the root of the refutation might contain a non-empty clause. The
algorithm takes as input a refutation R and computes for each clause n in R the
set of literals that can be safely removed from the literal into the set RL. The
respective literals in n∩RL[n] are then removed from n and the algorithm guar-
antees that the refutation can be transformed to a valid refutation afterwards.
The critical reasoning is done on lines 14, 20, 25, and 29 where the information
on which literals can be removed on other paths where a resolvent n is resolved
is used to refine the removable literals for its parents n− and n+.

Delaying unit resolution. A good heuristic for reducing the size of the refutation
is to move the resolution steps where one of the resolvents is a unit clause to
the root. This is useful since it gives a natural way of guaranteeing that the unit
clauses are resolved only once in the refutation. The PeRIPLO solver implements
this idea as the PushdownUnits algorithm [13] by identifying sub-refutations
that end in a unit clause, detaching them from the refutation and, if necessary,
attaching them above the resolution step resulting in the root.

The PeRIPLO proof compression algorithm. The PeRIPLO system uses an app-
roach for proof compression that combines both the pivot recycling algorithm
presented in Fig. 3 and the proof reduction framework (Fig. 2). The hybrid algo-
rithm is presented in Fig. 4. The algorithm calls as the first step the procedure
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Input : R — A refutation
Output : RL — the mapping from resolvents to the literals that can be removed in them
1 TS := topologically sorted list of clauses in R
2 RL := ∅ // The set of removable literals
3 for n ∈ TS :
4 if n is not a leaf:
5 if n is the root:
6 RL[n] := {¬p | p ∈ n}
7 else:
8 p := piv(n)
9 if p ∈ RL[n]:
10 n+ := null
11 if n− not seen yet:
12 RL[n−] := RL[n]
13 Mark n− as seen
14 else RL[n−] := RL[n−] ∩ RL[n]
15 else if ¬p ∈ RL[n]:
16 n− := null
17 if n+ not seen yet:
18 RL[n+] := RL[n]
19 Mark n+ as seen
20 else RL[n+] := RL[n+] ∩ RL[n]
21 else if p �∈ RL[n] and ¬p �∈ RL[n]:
22 if n− not seen yet:
23 RL[n−] := RL ∪ {p}
24 Mark n− as seen
25 else RL[n−] := RL[n−] ∩ (RL[n] ∪ {p})
26 if n+ not seen yet:
27 RL[n+] := RL[n] ∪ {¬p}
28 Mark n+ as seen
29 else RL[n+] := RL[n+] ∩ (RL[n] ∪ {¬p})
30return RL.

Fig. 3. The RecyclePivotsWithIntersection algorithm

Input : R — A refutation;
I — the number of loop iterations;
T — A time limit for the proof reduction framework

Output : R — A compressed refutation
1 R := PushdownUnits(R)
2 for i = 0 to I
3 R := RecyclePivotsWithIntersection(R )
4 R := ReduceAndExpose(R ,T )
5 return R .

Fig. 4. The hybrid algorithm for proof compression

for moving unit resolutions to the root of the refutation and then repeatedly calls
the functions RecyclePivotsWithIntersection and ReduceAndExpose to gradually
obtain a more compact proofs.
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4 Labeling in Interpolation

The PeRIPLO interpolation algorithm is based on computing the propositional
interpolant from a refutation and a labeling which allows tuning of the inter-
polant to specific needs and the refutation. The implementation is based on the
labeled interpolation system originally presented in [8] (LIS) and further devel-
oped in [1].

The system works on an interpolation instance (R,A,B), where R is the
refutation of A ∧ B and A is the formula to be over-approximated. Given a
clause n in R and a variable p ∈ vars(n) occurring in the clause, the system
assigns a unique label L(p, n) from the set {a, b, ab} to the occurrence (p, n).
In the leaf clauses the labeling is restricted to L(p, n) = a if p �∈ vars(B) and
L(p, n) = b if p �∈ vars(A), but can be freely chosen for leaf occurrences of
variables in vars(A) ∩ vars(B). In the resolvent clauses nr of R the labeling
L(p, nr) is determined by the label in n+ and n−. If p ∈ vars(n+) ∩ vars(n−)
and L(p, n+) �= l(p, n−), then L(p, n) = ab, and in all other cases the label of
the occurrence L(p, n) is either L(p, n+) or L(p, n−).

The final interpolant is constructed based on the labeling and the refutation
R iteratively for each clause in R starting from the leaf clauses and ending in
the root. In particular, for a leaf clause nl the interpolant is

I(nl) =
{∨{p | p ∈ nl and L(vars(p), nl) = b} if nl ∈ A, and∧{¬p | p ∈ nl and L(vars(p), nl) = a} if nl ∈ B

(5)

The partial interpolant of a resolvent clause nr with pivot p and antecedents n+

and n−, where p ∈ n+ and ¬p ∈ n−, is

I(nr) =

⎧⎨
⎩

I(n+) ∨ I(n−) if L(p, n+) = L(p, n−) = a,
I(n+) ∧ I(n−) if L(p, n+) = L(p, n−) = b, and
(I(n+) ∨ p) ∧ (I(n−) ∨ ¬p) otherwise.

(6)

Several different approaches for constructing efficient labelings have been pro-
posed. These include approaches for logically strong and weak interpolants [8,11],
and our recent work on proof-sensitive labelings [1].

5 Experiments

We report here experimental results on both the proof compression approaches
discussed in Sect. 3 and the labeled interpolation system of Sect. 4 using the
PeRIPLO tool. Figure 5 shows the architecture of the tool. The experiments use
a very basic form of proof compression where the algorithm in Fig. 4 uses the iter-
ation count I = 1 and does not run ReduceAndExpose on line 4. The interpolator
is used with six different interpolation algorithms: the weakest and the strongest
interpolants Mw ,Ms available from the LIS; three versions PSw ,PS ,PSs of a
labeling function that attempt to minimize the interpolant size by labeling occur-
rences so that the minimum number of literals appear in the partial interpolants
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Fig. 5. The PeRIPLO architecture.

Table 1. Relative compression efficiency for different labeling functions.

Mw PSw P PS PSs Ms

time 3.25 3.10 2.77 2.19 2.10 2.20

size 15.15 15.86 12.04 7.20 6.57 6.13

1000

10000

100000

1 × 106

1000 10000 100000 1 × 106
1

10

100

1000
1 10 100 1000

P
S s

co
m
pr
es
si
on

PSs no compression

1000

10000

100000

1 × 106

1000 10000 100000 1 × 106
1

10

100

1000
1 10 100 1000

P
S

co
m
pr
es
si
on

PS no compression

1000

10000

100000

1 × 106

1000 10000 100000 1 × 106
1

10

100

1000
1 10 100 1000

M
s
co
m
pr
es
si
on

Ms no compression

Fig. 6. Run time and interpolant sizes for the PSs ,PS , and Ms interpolation algorithms
with and without proof compression. The left and bottom axes are in bytes and the
top and right axes are in seconds. The × and �	 symbols are, respectively, the time and
the size measurements.
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Fig. 7. Run time and interpolant sizes for the P ,PSw , and Mw interpolation algorithms
with and without proof compression. The left and bottom axes are in bytes and the
top and right axes are in seconds. The × and �	 symbols are, respectively, the time and
the size measurements.

of the leaves; and P , an algorithm that labels all occurrences with ab. The
experiments are done using the FunFrog system as the application. The system
employs function summarization as explained in Sect. 2.

Table 1 reports the relation of size and time between the interpolants result-
ing from the algorithm without and with proof compression over roughly 25
interpolation instances. In general the proof compression helps in reducing both
the size of the interpolant and the time required to construct the interpolant.
The reduction in size is more significant than in run time. This is not unexpected
since the run time contains several constant elements such as the time required
to solve the instance. Interestingly the efficiency of the proof compression is not
the same for all the interpolation algorithms. The algorithms Mw ,PSw , and P
profit significantly more from the compressed refutation than the other algo-
rithms. These algorithms often produce bigger interpolants, and there seems
to be a non-trivial interaction between how the proof is reduced and how the
different labeling functions are able to use the smaller proof.

We report the individual results as scatter plots in Figs. 6 and 7 for both
time (×) and size (	
). The results show a consistent reduction in all cases but
also show several cases where the compression results in two orders of magnitude
reduction in size.
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6 Conclusions

This paper presents a range of applications in model checking where interpolation
plays a critical role. We present two major techniques that affect the efficiency
of interpolation: proof compression and labeling. Both techniques are described
in detail showing how they are implemented in the propositional interpolation
tool PeRIPLO. Finally we analyze the effect of proof compression when com-
bined with different interpolant labellings on one of the applications. We reveal
an interesting behavior that not all labeling functions profit in the same way
from the proof compression. This suggests a non-trivial interaction between the
interpolation and the proof compression that requires further studying.

Currently we are planning to extend the ideas presented in this paper to Sat-
isfiability Modulo Theories in general, and applying them in other novel appli-
cation domains where interpolation is useful.
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Abstract. In this paper we are concerned with user understanding in content
based recommendation. We assume having explicit ratings with time-stamps
from each user. We integrate three different movie data sets, trying to avoid
features specific for single data and try to be more generic. We use several
metrics which were not used so far in the recommender systems domain.
Besides classical rating approximation with RMSE and ratio of order agreement
we study new metrics for predicting Next-k and (at least) 1-hit at Next-k. Using
these Next-k and 1-hit we try to model display of our recommendation – we can
display k objects and hope to achieve at least one hit.
We trace performance of our methods and metrics also as a distribution along

each single user. We define transparent and complicated users with respect to
number of methods which achieved at least one hit.
We provide results of experiments with several combinations of methods,

data sets and metrics along these three axes.

Keywords: Content based recommendation � Explicit ratings � Integration of
three movie datasets � User understanding � User preference learning � RMSE �
Next-k � 1-hit � Order agreement metrics

1 Introduction

In this paper we are concerned with user understanding in content based recommen-
dation displayed on the k-objects sized screen. We assume having a user-item matrix
with explicit ratings and time-stamps. Our tasks vary from estimating subjective
ordering of items based on either explicit or synthetic attributes of items to
learning/predicting user preferences on unseen/unrated items.

In this paper we are not going to present any new mining techniques nor improve
achievements of comparable efforts on same data and metrics. Rather, we concentrate
on three issues:

First, we integrate three different data sets from the same domain of movie rec-
ommendation, trying to avoid features specific for single data and try to be more
generic. We consider also semantic enrichment of movie data to enable content based
recommendation.
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Second, we use several metrics which were not used so far in the recommender
systems domain. Besides classical rating approximation with RMSE and top-k we
study new metrics for predicting Next-k and (at least) 1-hit.

Finally and most importantly, we trace performance of our methods and metrics as
a distribution along each single user. This helps us to detect transparent and compli-
cated users. Improving these metrics (for instance 1-hit) can contribute to the increase
of user satisfaction (we display Next-k and hope to achieve at least 1-hit).

We provide results of experiments with several combinations of methods, data sets
and metrics along of these three axes. Nevertheless, all our experiments are offline on
public accessible data. A validation in real online A/B testing needs access to an
application. We were not able to realize this so far. We concentrate only on algorithmic
part of recommendation, business and marketing part of recommendation problem is
out of scope of this study.

In the area of recommender systems same-data-challenges probably the most
famous is the Netflix challenge. Results were measured by improvement in RMSE of
ranking prediction. In [7] we have described our participation in ESWC 2014 Linked
Open Data-enabled Recommender Systems Challenge. In [8, see also 9] we described
our approach to Movie Tweets Popularity Challenge at ACM-RecSys 2014. In [11] we
presented some initial results on enriched MovieLens data sets in the RuleML challenge
competition. In [6] we presented a more detailed analysis of results in [11].

We try to base our recommendation on rules to provide human understandable
explanation. For rules we use GAP – generalized annotated logic programming rules of
[5]. Induction of many valued rule systems was handled in [4]. Nevertheless data sets
for induction were small and we did not consider recommendation for multiple users at
that time.

Prediction of recommendation/ranking for multiple users started to be popular also
with the Yahoo Challenge. For our purpose we found relevant mining tricks from [1]
and winners of 2014 ACM RecSys Challenge [3]. One of main motivation for us was
presentation Kate Smith-Miles at EURO 2014 ([10]), where difficulty of instances of
graph colouring was modelled according to number of algorithms which found the
instance difficult. Here, instead of graphs, we consider difficulty of users.

Last but not least we are following the CRISP-DM – the Cross Industry Standard
Process for Data Mining methodology described in [2]. CRISP-DM consists of fol-
lowing steps: Business Understanding, Data Understanding, Data Preparation,
Modelling, Evaluation and Deployment (this will not be considered here).

1.1 Main Contribution of This Paper Are

Main contributions of this paper are:

• Data integration of three different movie data sets
• Distinguishing between preferences represented as function and as ordering – this

influences both learning and metrics (function approximation/order agreement).
• All our experiments are offline – nevertheless to make our recommendation more

realistic we consider new metrics Next-k2 l (recommending k elements we try to hit
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l element test set, which is – according to time stamps – “next”) and 1-hit (Next-
k2 l). We discuss our results also as distributed along users– this gives more insight
than global averages of user’s achievements

• We define transparency/difficulty of a user by number of methods where at least
1-hit into target set was achieved.

Paper is organized according to CRISP-DM categories: Business Understanding,
Data Understanding, Data Preparation, Modelling and Evaluation.

2 Data Understanding, Data Preparation, Cleaning,
Sampling, Integration

We analysed samples of three datasets from movie domain, referred as MovieLens
(extracted from MovieLens1 M data), Flix (a sample of the famous competition enri-
ched by movie titles), and MovieTweets (extracted from RecSysChallenge2014 – from
tweets table we used only time stamps). We restricted all three datasets to movies for
that we have IMDB identifier to be able to join the datasets and enable content based
recommendation. Further we restricted all three datasets to those movies we have
DBPedia attributes available from RuleML Challenge [12].

After these restrictions data sets substantially differ in the number of rated movies
for a user. Most ratings per user we have in the Flix dataset. On the other hand, in
MovieTweets dataset only 42 users (out of 1547) rated more than 10 movies. To keep
similar evaluation criteria for Next-k and 1-hit (explained later), we restricted the
MovieTweets dataset to these 42 users for those two experiments. Distribution of users’
ratings is depicted in Fig. 1.

MovieLens Flix MovieTweets

1000 users 499 users 170 out of 1547 users
rated 5 or more movies

Fig. 1. Number of ratings distribution in our testing datasets – MovieLens, Flix and
MovieTweets
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Furthermore we use the movie attributes obtained from the DBpedia ([12]). These
data were available in form of 5 003 binary flags like Films_set_in_New_York_City,
Screenplays_by_James_Cameron, Films_shot_in_Arizona, Film_scores_by_
_John_Williams, etc. Our first guess when we started analysing MovieLens dataset was
to take most frequent properties and check their influence of our prediction the most
used flags relevant to this dataset are shown in Table 1.

We saw that these do not influence our achievements on the task significantly. The
relevance of most of these attributes on our task was very small. We can also see that
most of those flags do not seem to influence user’s preference.

Our second attempt was based on observation that certain types of properties
repeat. In Table 2 we see most frequent repetitions in properties wording. Nevertheless,
this did not bring us much further either.

Third attempt brought some progress. We started to look what is inside those
attributes – the rest of URI’s were considered as natural language expressions. We
counted occurrences of individual values of properties in all movies and compared it
with number of occurrences of these movies in ratings (see Table 3).

Other approach was to create set of explanatory attributes of movies and set them to
1, respectively 0 according to appearance of some word or phrase in the movie flag
descriptions. So we created explanatory attribute SPIELBERG and set it to 1 for each
movie directed, produced or any other way connected to Steven Spielberg, similarly we
created attribute LA and assigned it to all movies located to LA etc.

Table 1. Some of most frequent properties (out of 5 003 DBPedia properties)

Order number Category name Number of movies

1 English-language_films 2104
2 American_films 1188
3 Directorial_debut_films 371
4 1990s_drama_films 344
… Warner_Bros._films 294
8 Films_set_in_New_York_City 278
51 Miramax_Films_films 103

Table 2. Many properties repeat, form clusters, nevertheless do not influence the task.

Repeated part of property Number of properties

Films_directed_by_… 995
1757-2032… 443
Films_set_in_… 364
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3 Modelling, Methods, Feature Engineering

3.1 Evaluation Metrics

We studied selected models against different evaluation criteria. The basic task was to
predict movies the user is going to watch next. We “hide” 10 last records according to
the timestamp as test data, and the trained our model on remaining data.

Next-k from l – size and precision. Based on the model, we recommended k=5
and k=10 movies and tested the recommendation against l=10 hidden records. The
Table 6 below presents the number of correct recommendations. From this, the pre-
cision can be calculated.

1-hit.We tried to recommend at least one correct movie for any user. In this metric,
it does not matter whether the user got one or five good predictions – either he got
some, or not. Again, percentage of met user can be calculated.

RMSE, mean absolute error (MAE). We trained linear regression model for each
dataset to predict Rating. These models can be used for ordering movies and recom-
mending the ones with the highest rating.

Ordering (dis)agreements. Completely different approach was not to approximate
user ratings by some function, but understand them as a partial ordering of movies with
respect to given user. If the user rated movie A lower than the movie B, we understood
this fact as user’s verdict that A is less than B. If the user rated both movies A and B the
same, we have taken it as information, that A is equal to B. Then we tried to create
different types of movie orderings based mainly on explanatory attributes, and observe
the rate of agreement, respectively disagreement between such estimated ordering and
the user’s opinion.

3.2 Algorithms

Linear regression models. We trained linear regression models to predict Rating.
Concerning movie attributes we only started to deal seriously with them. In our first

Table 3. RatingCNT is the number of movies in our internal candidate set with respective
property. MovieCNT is a number of movies with this property. R/M is 1000-times ratio of these
two numbers and last column is the Excel formula for weighted average between MovieCNT and
R/M ratio (we show only an initial segment).

A PROP B VALUE C
Rating
CNT

D
Movie
CNT

E
R/M

IF(D>3;
3*E+C; 0)

Films_set_in New_York_City 18259 278 657 20230
Films_shot_in California 13193 149 885 15848
Films_set_in Los_Angeles,_Calif* 12460 160 779 14797
Films_shot_in Los_Angeles,_Calif* 10025 121 829 12512
Films_that_won best_Sound_Edit*_Aw* 5369 24 2237 12080
Films_shot_in New_York_City 9239 128 722 11405
Films_based_on novels 9548 232 412 10784
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experiments at the beginning they appeared not to be very important and so we have
chosen simple models based on following input attributes:

The most relevant input attributes are following:

• MovieAvg, an average movie rating over training data. This was the most important
attribute for MovieLens and MovieTweets datasets, the second most important for
Flix data.

• UserShift, an average difference for ratings of given user related to average movie
ratings. This attribute was the most important for Flix data (the data with the most
ratings per user), it was also important in MovieTweets dataset, while mostly
unimportant in the MovieLens dataset.

• GenreMatch, for any user, we have found the most watched genre. If a movie
genre corresponds to user genre, this attribute is set to 1 and to 0 otherwise. This
attribute was important in MovieLens and Flix datasets, while it was not important
in MovieTweets dataset (where the user genre was set from a very small set of
training examples, usually 1-3).

The attribute coefficients for different datasets are listed in the Table 4.

Models for Next-k prediction. For Next-k prediction, we ordered movies according
some criteria (“models”) and recommended the top k movies. We used different models
to order movies:

• As a basis, ordering according MovieAVG rating (the same for all users) was used.
In some datasets, we have only small number of ratings for a movie, therefore we
used also Bayesian estimate that makes the estimate more stable by prior probability
for the overall estimate AVG, precisely: bayesAvg=(AVG*50+MovieAVG*Mo-
ovieCNT)/(MovieCNT+50). Third choice was to use the linear regression model for
each specific dataset.

• We tried specific algorithms for prediction described in ([1]). GENREMATCH
prefers movies that belong to the genre mostly rated by the specific user. Matched
movies are ordered according to bayesAVG. SPIELBERG and KSI models use
specific movie attributes, Spielberg and Original the first one, KSI uses attributes
listed in Table 6.

Table 4. Linear regression model trained on same attributes (GenreMatch is present for all data
sets thanks to data integration)

Linear Regression Model coefficients
MovieAVG userAVGshift GenreMatch Intercept

MovieTweets 0.900 0.293 0.000 0.808
MovieLens 0.997 0.000 0.062 −0.019
Flix 1.003 1.002 0.076 −0.035
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4 Experiments, Evaluation

4.1 Evaluation of Algorithms

We present Tables 5, 6 and 7 summarizing the evaluation measures for different
datasets and methods. It shows kind of similarity of MovieLens and MovieTweets
datasets. The algorithm SPIELBERG (recommend a movie if Spielberg is mentioned)
gives good results. Instead of taking avgRating we added 50 hypothetical users voting
for the overall average ([1]). For large data samples, like in Flix datasets, this Bayesian
estimate bayesAVG does not change the estimate much. For small data samples, like
MovieLens and MovieTweets, this method makes the estimate more stable.

Table 7. Results for MovieTweets dataset

Method Maximum KSI-10
att.

Spielberg G.M. +bayes
AVG

avg
Rating

bayes
AVG

k=5 Next-k-size 210 8 10 1 2 9

Next-k-P 3.81% 4.76% 0.48% 0.95% 4.29%

1-hit-size 42 7 7 1 2 8

k=10 Next-k-size 420 13 14 10 4 19
Next-k-P 3.10% 3.33% 2.38% 0.95% 4.52%

1-hit-size 42 10 10 8 4 12

Table 5. Results for MovieLens dataset

Method Maximum KSI-10
att.

Spielberg Genre Match
+bayes AVG

avg
Rating

bayes
AVG

Linear
Regression
ML

k=5 Next-k-size 5000 378 559 309 7 195 6

Next-k-P 7.56% 11.18% 6.18% 0.14% 3.90% 0.12%

1-hit-size 1000 371 487 256 7 172 6

1-hitUserRatio 37.10% 48.70% 25.6% 17.20%

k=10 Next-k-size 10000 415 728 585 7 351 8

Next-k-P 4.15% 7.28% 5.85% 3.51% 0.08%

1-hit-size 1000 394 582 389 7 291

Table 6. Results for Flix dataset

Method Maximum KSI-10 att. G.M.+bayes AVG avg Rating bayes AVG

k=5 Next-k-size 2495 51 160 232 232
Next-k-P 2.04% 6.41% 9.30% 9.30%
1-hit-size 499 50 134 197 192

k=10 Next-k-size 4990 96 4.81% 7.23% 6.91%
Next-k-P 1.92% 183 258 243
1-hit-size 499 90 160 32 232
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We predicted k records and compare the agreement with l=10 hidden last records
(per user). For Flix dataset, and only for it, the linear regression method trained to
predict rating gives good results also for prediction next movies.

4.2 Comparison of Movie Ordering Estimations

First, we taken thirteen different explanatory attributes, extracted from the DBPedia:
ARIZONA, CALIF, CAMERON, LA, MAKEUP, NOVELS, NY, ORIGINAL,
SOUNDEDIT, SOUNDMIX, SPIELBERG, VISUAL, WILLIAMS and for each of
them we defined the movie ordering according to value of given explanatory attribute.
If the movie A had given explanatory attribute set to 0, while the movie B had set it to
1, we define it as A is less than B etc. Then we took all combinations of [u, A, B] where
user u rated both movies and our estimate was A<B. If the A was less than B also
according to user’s ratings, we took it as a sharp agreement with our estimate. If the
user’s rating were equal, we still count it together with the previous case as an (not
sharp) agreement. Then we were interested in the ratio of sharp agreements and
agreements to the count of all combinations. Results, ordered in descending order
according to agreement ratio in the MovieLens dataset are present in Table 6. The best
results are highlighted by bold font, while the worst ones are in italic.

Further we wondered, if the combination of more explanatory attributes could
improve our ordering estimate, and so we tried to define another orderings based not on
individual attributes, but on vectors of first k of attributes from the previous table. So
we assigned the k-dimensional vector of zeros and ones to each movie, and declare
movie A less than movie B if and only if each A’s vector component was less or equal
than corresponding B’s vector component, and at least one dimension was sharply

Table 8. Most important explanatory attributes in MovieLens calculated as order of agreement.
Due to the data integration these attributes can be studied in other data sets

Explanatory
attribute

ML
Sharp
Agree

ML
Agree

Flix
Sharp
Agree

Flix
Agree

Movie Tweets
Sharp Agree

Movie
Tweets
Agree

SOUNDMIX 0.495 0.781 0.527 0.819 0.527 0.807
SOUNDEDIT 0.489 0.779 0.544 0.836 0.537 0.827
SPIELBERG 0.491 0.772 0.548 0.829 0.426 0.752
ORIGINAL 0.475 0.766 0.469 0.778 0.461 0.810
VISUAL 0.461 0.750 0.502 0.801 0.481 0.773
CAMERON 0.435 0.728 0.451 0.764 0.510 0.706
WILLIAMS 0.430 0.716 0.465 0.766 0.402 0.711
MAKEUP 0.399 0.696 0.460 0.765 0.510 0.822
NOVELS 0.381 0.688 0.355 0.682 0.338 0.692
CALIF 0.377 0.670 0.363 0.682 0.363 0.657
NY 0.359 0.655 0.345 0.670 0.352 0.629
LA 0.359 0.650 0.350 0.670 0.369 0.638
ARIZONA 0.348 0.639 0.356 0.677 0.286 0.563
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ordered. The results didn’t show improvement over usage of individual attributes, as it
is shown on 10-dimensional vector results in Table 9.

4.3 Evaluations of Users

We analysed the distribution of evaluation criteria for different users. The users are
displayed as circles or aggregated into a boxplot. The Fig. 2 shows a boxplot of Agree
measure on y-axis for different algorithms on x-axis. We depicted two single attribute
models (see top rows Table 8) and two multiple attribute models giving the highest
mean in at least one of datasets. Their results are displayed for all three datasets.

We compare the prediction success of models with RMSE and Sharp agree criteria.
On x-axis, a transparency of users for prediction models is displayed. The most
transparent user (right) got at least one prediction from any model, the difficult users
(left) did not get any correct prediction from any model. The RMSE error on y-axis
shows only very weak dependence on the prediction transparency. The Sharp agree
ratio (right part in Fig. 3) slightly increases with increasing transparency.

Table 9. Agreement for 4-dimensional and 10-dimensional vectors of explanatory attributes

Explanatory
attribute
vector

ML
Sharp
Agree

ML
Agree

Flix
Sharp
Agree

Flix
Agree

Movie Tweets
Sharp Agree

Movie
Tweets
Agree

<SMIX,…,
ORIG>

0.397 0.691 0.381 0.704 0.405 0.697

<SMIX,…,
CALIF>

0.377 0.670 0.363 0.682 0.363 0.657

Fig. 2. User distribution of Agree for different models on x-axis, datasets above the graph.
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Figure 4 visualizes a complex model from Table 6. Circles correspond to users,
x axis to Sharp Agree of ordering (left) and Agree (right), y axis shows RMSE, colours
correspond to number of models with at least 1 good prediction. Triangles denote users
for whom all 4 models give at least 1 good prediction. RMSE- is error measure (-),
Agree is positive (+), the best position is the lower right corner of the graph.

5 Conclusions, Future Work

For data integration of three different movie data sets and restriction to DBPedia
attributes from [12] we paid the price: we lost lot of data samples.

Fig. 3. Left: Distribution of RMSE (left) and Sharp Agree (right) between users distinguished by
number of methods by which the user has at least one hit.

Fig. 4. Comparison of three success/error measures on Flix data
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We presented two views to preferences: these can be understood as either function
or as ordering – this influences both learning and metrics – results are interesting and
need a deeper insight. Nevertheless it is a challenge for future work.

One of most interesting part we find our experiments on Next-k (1-hit(Next-k)).
This makes our recommendations more realistic as it is directly connected to what we
display to the user. Moreover it shows that some methods which are successful in
RMSE based metrics and functional view of recommendation need not be successful in
measure Next-k, 1-hit.

Main task was to discuss our results distributed along users – this gives more
insight than global averages of user’s achievements and also challenges future research.
Similarly as in [10], we define transparency/difficulty of a user by the number of
methods where at least 1-hit into target set was achieved.
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Abstract. Span program is a linear-algebraic model of computation
which can be used to design quantum algorithms. For any Boolean func-
tion there exists a span program that leads to a quantum algorithm with
optimal quantum query complexity. In general, finding such span pro-
grams is not an easy task.

In this work, given a query access to the adjacency matrix of a sim-
ple graph G with n vertices, we provide two new span-program-based
quantum algorithms:
– an algorithm for testing if the graph is bipartite that uses O(n

√
n)

quantum queries;
– an algorithm for testing if the graph is connected that uses O(n

√
n)

quantum queries.

1 Introduction

The concept of a span program as a linear-algebraic model of computation is
not new. It was introduced by Karchmer and Wigderson in 1993 [9] and has
many applications in classical complexity theory. Span programs can be used
to evaluate decision problems. In 2008 Reichardt and Spalek [12] introduced a
new complexity measure for span programs – witness size, which, as Reichardt
showed later in [10,11], has strong connection with the quantum query complex-
ity. There is a quantum algorithm for evaluating span programs [10] and these
two complexity measures are essentially equivalent. The difficulty is to come up
with a span program with a good witness size complexity.

In [12] authors dealt with bounded-size span programs evaluating Boolean
functions each on O(1) bits and posed an open question – do there exist interest-
ing quantum algorithms based directly on asymptotically large span program?
Belovs used span programs to construct learning graphs [3,4]. He also used span
program approach for the matrix rank problem [2]. In [1] Ambainis et al. came
up with a simple yet powerful span program for the graph collision problem.

In this paper, we extend the family of algorithms based on span programs.
We present two new span-program-based quantum algorithms – an O(n

√
n)

algorithm for the graph bipartiteness problem and an O(n
√
n) algorithm for the
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graph connectivity problem. Both algorithms in the quantum query sense are
optimal because the witness sizes match the quantum query complexity lower
bounds [6,7] for these problems. Thus we demonstrate that span programs can
be useful also for the problems with an asymptotically large input and possibly
our algorithms could be building blocks for bigger span programs in the future.

The graph connectivity problem has been studied before [7] and there already
exists a O(n

√
n) quantum query algorithm which requires O(n) qubits of quan-

tum memory. The advantage of our algorithm is that it uses only O(log n) qubits
of quantum memory because the span program P2 uses a vector space with O(n2)
dimensions. Similarly for the graph bipartiteness problem. It can be solved with
the breadth-first search method [8] which uses O(n) qubits of quantum mem-
ory, but our approach with a span program requires O(log n) qubits of quantum
memory.

2 Preliminaries

In this paper, we present algorithms which work on simple graphs, given in
adjacency model. If the given graph has n vertices then the input size for an
algorithm is n×n and we assume that the input variable xi,j corresponds to the
value of entry in i-th row and j-th column of the adjacency matrix.

2.1 Span Programs

Definition 1 [1]. A span program P is a tuple P = (H, |t〉 , V ), where H
is a finite-dimensional Hilbert space, |t〉 ∈ H is called the target vector, and
V = {Vi,b|i ∈ [n], b ∈ {0, 1}}, where each Vi,b ⊆ H is a finite set of vectors.

Denote by V (x) =
⋃ {Vi,b|i ∈ [n], xi = b}. The span program is said to com-

pute function f : D → {0, 1}, where the domain D ⊆ {0, 1}n, if for all x ∈ D,

f(x) = 1 ⇐⇒ |t〉 ∈ span(V (x)).

Basically, what this definition says is that for each input variable xi we have
two sets of vectors (as the span program authors, we define these vectors in
advance) – Vi,0 and Vi,1. If xi = b then we say that vectors from the set Vi,b

are available and vectors from the set Vi,1−b are not available. If some vector
is included in both sets Vi,0 and Vi,1 then we say that it is a free vector – it is
always available.

The function returns 1 iff the target vector can be expressed as a linear
combination of the available vectors, otherwise it returns 0.

Definition 2 [1].

(1) A positive witness for x ∈ f−1(1) is a vector w = (wv), v ∈ V (x), such that
|t〉 =

∑
v∈V (x) wvv. The positive witness size is

wsize1(P ) := max
x∈f−1(1)

min
w:witness of x

‖w‖2.
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(2) A negative witness for x ∈ f−1(0) is a vector w ∈ H, such that 〈t|w〉 = 1
and for all v ∈ V (x): 〈v|w〉 = 0. The negative witness size is

wsize0(P ) := max
x∈f−1(0)

min
w:witness of x

∑
v∈V

〈v|w〉2.

(3) The witness size of a program P is

wsize(P ) :=
√

wsize0(P ) · wsize1(P ).

(4) The witness size of a function f denoted by wsize(f) is the minimum witness
size of a span program that computes f .

Theorem 1 [10,11]. Q(f) and wsize(f) coincide up to a constant factor. That
is, there exists a constant c > 1 which does not depend on n or f such that
1
c wsize(f) ≤ Q(f) ≤ c · wsize(f).

3 Span Program for Testing Graph Bipartiteness

A bipartite graph is a graph whose vertices can be divided into two disjoint sets
such that there is no edge that connects vertices of the same set. An undirected
graph is bipartite iff it has no odd cycles.

Algorithm 1. There exists a span program P which for a graph with n vertices
detects if the graph is bipartite with wsize(P ) = O(n

√
n).

Proof. We will make a span program which detects if a graph has an odd cycle.
Let n = |G| be a number of vertices in the given graph G. Then the span

program is as follows:

Span program P1 for testing graph bipartiteness

– H is a (2n2 + 1) dimensional vector space with basis vectors {|0〉} ∪
{|vk,b〉 |v, k ∈ [1..n], b ∈ {0, 1}}.

– The target vector is |0〉.
– For every k ∈ [1..n] make available the free vector |0〉 + |kk,0〉 + |kk,1〉.
– For every k ∈ [1..n], for every edge u − v (where input xu,v = 1), make

available the vectors |uk,0〉 + |vk,1〉 and |uk,1〉 + |vk,0〉.

The states in the span program P1 are mostly in the form |vk,b〉 where v is
vertex index, k represents vertex from which we started our search for an odd
length cycle and b represents the parity of the current path length. The first
subindex k in state |vk,b〉 can also be considered as the subspace index for the
subspace Vk = span({|vk,b〉 |v ∈ [1..n], b ∈ {0, 1}}). Vectors corresponding to
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edges are in the form |uk,b〉 + |vk,1−b〉 consisting from sum of two states which
both belong to same subspace Vk.

In the span program P1 the target vector |0〉 can only be expressed as a linear
combination of the available vectors if at least one of the vectors in the form
|kk,0〉 + |kk,1〉 can be expressed. Without loss of generality, if there is an odd
length cycle v1 − v2 − · · · − v(2j+1) − v1 then the target vector can be expressed
by taking the vectors corresponding to the edges of this cycle, alternatingly with
plus and minus sign

|0〉 = (|0〉 + |11,0〉 + |11,1〉) − (|11,0〉 + |21,1〉) + · · · − (|(2j + 1)1,0〉 + |11,1〉)

therefore the span program P1 will always return 1 when the given graph is not
bipartite.

From the other side, if there is no odd length cycle then none of the vectors
in the form of |kk,0〉 + |kk,1〉 can be expressed using the available vectors from
P1. To cancel out the state |kk,0〉 we should be using a vector |kk,0〉 + |vk,1〉
corresponding to some edge k − v where v is some vertex adjacent to k because
no other vector contains the state |kk,0〉. By doing so we move from the state
|kk,0〉 to the state |vk,1〉 (possibly with some coefficient other than 1) which has
the parity bit flipped. Similarly, to cancel out the state |vk,1〉 we should be using
a vector corresponding to some edge going out from vertex v. To stop this process
we need to reach the state |kk,1〉. It can be done only if there is an odd cycle
because the path must be closed and the parity bit restricts it to odd length.
When there is no odd cycle, span program P1 will always return 0.

We can conclude that P1 indeed computes the expected function. It remains
to calculate the witness size of P1.

For the case when there is an odd cycle we need to calculate the positive
witness size. If there is an odd cycle v1 − v2 − · · · − vd − v1 with length d then
the target vector can be expressed in this way

|0〉 = 1 ·(|0〉 + |11,0〉 + |11,1〉)+(−1) ·(|11,0〉 + |21,1〉)+ · · ·+(−1) ·(|d1,0〉 + |11,1〉)

and the positive witness w here consists only from d + 1 entries ±1 therefore
‖w‖2 = d + 1.

If v1 − v2 − · · · − vd − v1 is a cycle then also v2 − v3 − · · · − vd − v1 − v2 is a
cycle and therefore the target vector can also be expressed in this way

|0〉 = (|0〉 + |22,0〉 + |22,1〉) − (|22,0〉 + |32,1〉) + · · · − (|12,0〉 + |22,1〉)

the same follows for all d vertices in this cycle and the target vector therefore
can be expressed in atleast d different ways. We can combine these d ways each
taken with coefficient 1/d and then we get that the positive witness size

wsize1(P1) ≤ d ∗ (1/d)2 ∗ (d + 1) < 2 (1)

To estimate the negative witness size we must find a negative witness w′. We
derive w′ by defining how it acts on basis vectors. From definition 〈w′|0〉 = 1.
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For every k we must have 〈w′| (|0〉 + |kk,0〉 + |kk,1〉)〉 = 0 therefore lets pick w′

in such a way that 〈w′|kk,0〉 = 0 and 〈w′|kk,1〉 = −1. Now repeat the following
steps until no changes happen:

– for every available vector |uk,0〉 + |vk,1〉 if 〈w′|uk,0〉 is defined then define
〈w′|vk,1〉 = −〈w′|uk,0〉.

– for every available vector |uk,1〉 + |vk,0〉 if 〈w′|uk,1〉 is defined then define
〈w′|vk,0〉 = −〈w′|uk,1〉.

For all not yet defined 〈w′|vk,b〉 define 〈w′|vk,b〉 = 0.
For any given vector v in span program P1 the value 〈w′|v〉2 ≤ 1. The total

number of vectors does not exceed n + n3 therefore the negative witness size is

wsize0(P1) ≤ 1 · (n + n3) (2)

Combining positive and negative witness sizes we obtain the upper bound
for witness size which also corresponds to quantum query complexity

wsize(P1) =
√

wsize0(P1) · wsize1(P1) = O
(
n
√
n
)

(3)

��

4 Span Program for Testing Graph Connectivity

A graph is said to be connected if every pair of vertices in the graph is connected.
If in an undirected graph one vertex is connected to all other vertices then by
transitivity the graph is connected.

Algorithm 2. There exists a span program P which for a graph with n vertices
detects if the graph is connected with wsize(P ) = O(n

√
n).

Proof. Let n = |G| be a number of vertices in the given graph G. Then the span
program is as follows:

Span program P2 for testing graph connectivity

– H is a n2 − 1 dimensional vector space with basis vectors {|vk〉 |v ∈
[0..n], k ∈ [2..n]}.

– The target vector is |t〉 = |02〉 + |03〉 + · · · + |0n〉.
– For every k ∈ [2..n] make available the free vector |0k〉 + |1k〉 − |kk〉.
– For every k ∈ [2..n], for every edge u − v (where u, v ∈ [1..n] and input
xu,v = 1), make available the vector |uk〉 − |vk〉.
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If all vertices are reachable from vertex with index 1 then the given graph is
connected. Here we use Belov’s [5] span program for s-t connectivity as subrou-
tine. This subroutine checks if in a given graph there is a path from the vertex
s to the vertex t. The span program for it has the target vector |s〉 − |t〉 and for
each edge i − j (input xi,j = 1) we can use the vector |i〉 − |j〉.

In span program P2, by using this subroutine n−1 times, we check if all other
vertices are connected to vertex with index 1. We create a separate subspace Vk =
span({|vk〉 |v ∈ [0..n]}) for each such subroutine call to avoid any interference
between them, which is a common technique [10] how to compose span programs.
The span program returns 1 when all vertices are connected, but otherwise it
returns 0.

For the case when the given graph is connected we need to calculate the
positive witness size. In each s-t subroutine the shortest path length from the
vertex s to the vertex t can not be larger than n− 1. Threfore each vector from
the set {|0k〉 |k ∈ [2..n]} requires no more than n vectors to express it. There are
n − 1 such subroutines. The positive witness size is

wsize1(P2) ≤ n · (n − 1) ≤ n2 (4)

To estimate the negative witness size we must find a negative witness w′. We
derive w′ by defining how it acts on the basis vectors. From definition 〈w′|t〉 = 1.
We need to talk about negative witness only when some vertex v is not connected
to vertex with index 1. Then the vertex v belongs to different connected compo-
nent than vertex with index 1. Lets name this connected component Cv and let
the count of vertices in this connected component be dv. Lets pick w′ in such a
way that for each vertex vk ∈ Cv set 〈w′|0k〉 = 1/dv and for each vertex vz /∈ Cv

set 〈w′|0z〉 = 0.
For k ∈ [2..n] we must have 〈w′|(|0k〉 + |1k〉 − |kk〉)〉 = 0 therefore set

〈w′|1k〉 = −〈w′|0k〉 and 〈w′|kk〉 = 0. Now repeat the following step until no
changes happen: for every available vector |uk〉 − |vk〉 if 〈w′|uk〉 is defined then
define 〈w′|vk〉 = 〈w′|uk〉. For all other not yet defined basis vectors |vk〉 set
〈w′|vk〉 = 0.

With such negative witness w′ choice the overall negative witness size will
only get increased by vectors which correspond to nonexistent graph edges which
connects Cv with other connected components in graph - i.e. border edges. An
edge u−v is a border edge if u ∈ Cv and v /∈ Cv. To a border edge u−v correspond
the vectors |uk〉 − |vk〉 where k ∈ [2..n] but only dv from these vectors will have
〈w′|uk〉 �= 〈w′|vk〉 and each such vector increases the negative witness size by
value (1/dv)2. For Cv there are at most dv · (n − 1) border edges therefore the
overall negative witness size is

wsize0(P2) ≤ d2v · (n − 1) · (1/dv)2 ≤ n (5)

Combining the positive and negative witness sizes we obtain the upper bound
for the witness size which also corresponds to the quantum query complexity

wsize(P2) =
√

wsize0(P2) · wsize1(P2) = O
(
n
√
n
)

(6)

��
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Abstract. This paper treats the problem of fitting aggregation opera-
tors to empirical data. Specifically, we are interested in modelling of the
conjunction in human language. To our knowledge, the first attempt to
see how humans “interpret” the conjunction for graded properties is due
to the paper [1]. In that case, simply the minimum t-norm came out. Our
results are different because our approach to the resolution is different.
We have experimentally rated simple statements and their conjunctions.
Then we have tried, on the basis of measured data, to find a suitable func-
tion, which corresponds to human conjunction. First, we discuss methods
applicable to associative operators, t-norms. Next, we propose an algo-
rithm for approximation of the t-norm’s generator based on the weighting
method and Lawson-Hanson’s algorithm. Suitable modifications of the
algorithm can generalize our solutions to aggregation operators. In this
way we get new results for generated means which are well-known repre-
sentatives of aggregation operators. Empirically measured data suggest
that people do not understand conjunction necessarily as a commutative
operation. Finally, we investigate the modelling of the conjunction via
generated Choquet integral.

1 Preliminaries

To start, we repeat some important definitions and theorems. In fuzzy logic,
conjunctions are often interpreted by the triangular norms.

Definition 1. [2] A triangular norm (t-norm for short) is a binary operation
on the unit interval [0, 1], i.e., a function T : [0, 1]2 → [0, 1], such that for all
x, y, z ∈ [0, 1] the following four axioms are satisfied:

– (T1) Commutativity
T (x, y) = T (y, x),

– (T2) Associativity
T (T (x, y), z) = T (x, T (y, z)) ,

– (T3) Monotonicity

T (x, y) ≤ T (x, z) whenever y ≤ z,

c© Springer International Publishing Switzerland 2016
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– (T4) Boundary Condition
T (x, 1) = x,

The four basic t-norms are:

– the minimum t-norm TM (x, y) = min{x, y},
– the product t-norm TP (x, y) = x × y,
– the �Lukasiewicz t-norm TL(x, y) = max{0, x + y − 1},

– the drastic product TD(x, y) =

{
0 if max{x, y} < 1,

min{x, y} otherwise.

We will deal only with such continuous t-norms, that are generated by a unary
function (generator). One possibility is to generate by an additive generator,
which is a strictly decreasing function f from the unit interval [0, 1] to [0,+∞]
such that f(1) = 0 and f(x) + f(y) ∈ H(f) ∪ [f(0+),+∞] for all x, y ∈ [0, 1].
Then the generated t-norm is given as follows

T (x, y) = f (−1) (f(x) + f(y)) ,

where f (−1) : [0,+∞] → [0, 1] and f (−1)(x) = sup{x ∈ [0, 1]; f(x) > y}. Note,
that f (−1) is a pseudo-inverse, which is a monotone extension of the ordinary
inverse function. For an illustration, we give the following examples of parametric
classes of t-norms and their additive generators.

The family of Frank t-norms, introduced by M. J. Frank in the late 1970s, is
given by the parametric definition for 0 ≤ p ≤ +∞ as follows:

TF
p (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

TM (x, y) if p = 0,

TP (x, y) if p = 1,

TL(x, y) if p = +∞,

logp

(
1 + (px−1)(py−1)

p−1

)
otherwise.

An additive generator for TF
p is

fF
p (x) =

⎧⎪⎨
⎪⎩

− log x if p = 1,

1 − x if p = +∞,

logp
p−1
px−1 otherwise.

The family of Yager t-norms, introduced in the early 1980 s by Ronald R.
Yager, is given for 0 ≤ p ≤ +∞ by

TY
p (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

TD(x, y) if p = 0,

TM (x, y) if p = +∞,

max
{

0, 1 − ((1 − x)p + (1 − y)p)
1
p

}
if 0 < p < +∞.

The additive generator of TY
p for 0 < p < +∞ is

fY
p (x) = (1 − x)p.
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Because of associativity, we can extend t-norms to the n-variete case as:

x
(n)
T =

{
x if n = 1,

T (x, x
(n−1)
T ) if n > 1.

A t-norm T is called Archimedean if for each x, y in the open interval
]0, 1[ there is a natural number n such that x

(n)
T ≤ y. It is sufficient to inves-

tigate Archimedean t-norms, because every non-Archimedean t-norm can be
approximated arbitrarily well with Archimedean t-norms [3,4]. For continuous
Archimedean t-norms there exist additive generators g : [0, 1] → [0,+∞], such
that

T (x1, x2, . . . , xn) = g(−1)

(
n∑

i=1

g(xi)

)
.

The generator g is strictly monotone decreasing with g(1) = 0 and either g(0) =
+∞ or g(0) = a < +∞.

One of the generalizations of t-norms are aggregation operators An, which are
monotone increasing functions An : [0, 1]n → [0, 1] with the boundary conditions:
An(0, 0, . . . , 0) = 0, An(1, 1, . . . , 1) = 1. The most popular aggregation opera-
tors are t-norms, t-conorms, uninorms, generalized means and ordered weighted
aggregation operators. In this paper we deal with generated quasi-arithmetic
means which are given by

M(x1, x2, . . . , xn) = g(−1)

(
n∑

i=1

1
n

g(xi)

)
,

where g is a monotone increasing function [0, 1] → [0, 1].
At the conclusion, we will work with Choquet integral as the aggregation

operator, so we repeat the definitions of universal fuzzy measures and Choquet
integrals:

Definition 2. [5] Let N = {1, 2, . . . ,m} and A = {(n,E);n ∈ N,E ⊆ N}. A
mapping M : A → [0, 1] is called a universal fuzzy measure whenever for each
fixed n ∈ N,M(n, .) is a fuzzy measure, that is

– M(n, ∅) = 0,M(n,N) = 1,
– M(n,E) ≤ M(n, F ) for all E ⊆ F ⊆ N.

For a given universal fuzzy measure M , an aggregation operator can be con-
structed by means of any fuzzy integral. We turn our attention to the Choquet
integral and we get

A(x1, x2, . . . , xn) = (C)
∫
N

xdmn =
n∑

i=1

(xα(i) − xα(i−1))M(n,Eα(i)),
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where mn = M(n, .), α is a permutation of (1, 2, . . . , n) yielding xα(1) ≤ xα(2) ≤
· · · ≤ xα(n), Eα(i) = {α(i), . . . , α(n)} and xα(0) = 0 by convention. The corre-
sponding Choquet integral based aggregation operator is given by

Ag(x1, x2, . . . , xn) =
n∑

i=1

xα(i)

(
g

(
i

n

)
− g

(
i − 1

n

))
=

n∑
i=1

wi,nxα(i).

2 Generator’s Approximation Algorithm

Beliakov and others in [5,6] introduced additive generator’s approximation of
some aggregation operators from empirical data via B-splines. The generator is
represented by

g(x) = Sm,t(x) =
J∑

j=1

cjBj,m(x),

where c is the vector of coefficients and Bj,m(x) are B-spline basic functions of
order m. These functions are defined by the following recurrent formula [7]

Bi,1(x) =
{

1 if ti ≤ x < ti+1,
0 otherwise,

Bi,n(x) =
x − ti

ti+n−1 − ti
Bi,n−1(x) +

ti+n − x

ti+n − ti+1
Bi+1,n−1(x),

where t1, . . . , tJ+m is a non-decreasing sequence of real numbers called the knot
sequence. Using the definitions from the previous section and generator’s bound-
ary conditions, the approximation problem is given as follows

Ac ≈ b, Dc ≥ 0, Ec = d, (1)

The first system determines the shape of an additive generator with respect to
empirical data. Matrices A,b are given by additive generator’s representation
of aggregation operators. Their exact values then depend on empirical data.
Vector c is the unknown vector of B-spline coefficients. Matrices E,d are given
by generator’s boundary conditions and D is either −I or I. The exact form of
these matrices depends on a concrete aggregation operator and it is described in
detail in [5]. This paper deals with an algorithmic solution for the approximation.
If the conditions (1) did not contain constrains on inequality and equality, the
generator’s approximation problem would be easily solvable by the method of
the least squares. The mentioned method solves the following approximation
problem [8]

Ax ≈ b, where A ∈ R
n×m, x ∈ R

m, b ∈ R
n. (2)

The resulting vector xLE is given by the expression

xLE = arg min
x

‖Ax − b‖22.
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However, due to our constrains, we have to use a more sophisticated method than
the classical least squares method. Since we have two restriction conditions, we
can divide algorithm into independent parts. Each of them will be explained in
the following text.

2.1 Method of Weighting

The first part is devoted to the equality Ex = d. The method of direct elimi-
nation or the method of weighting can be used for solving this approximation
problem. In our case the method of weighting is chosen because of its simplicity.
The method is based on an assignment of sufficiently big weights to the restricted
coefficients. This approach is summarized by following identity [8]

xLSE = arg min
x

lim
γ→∞

∥∥∥∥
(

γE
A

)
x −

(
γd
b

)∥∥∥∥
2

2

. (3)

where xLSE is the optimal solution of the least squares. It is evident from this
formula that the problem with the equality can be converted to the problem
solvable by ordinary least squares. Note that value γ is chosen to be significantly
bigger than the biggest value of the matrix A.

2.2 Lawson-Hanson’s Algorithm

In the previous section we have shown the method of weighting that solves
the equality. Now we will investigate the inequality, more precisely nonnegati-
vity. Lawson-Hanson’s algorithm allows us to solve such restricted optimization
problems, based on least squares [9]. This algorithm looks for a vector x fulfilling
the following condition

min
x

‖Ax − b‖22, subject to x ≥ 0.

The algorithm is based on the active set method. This set includes indices of
the variables whose regression coefficients are negative or zero. The remaining
indices of the variables are included to the passive set. If the passive set and the
active set are known, such restricted optimization problem’s solution is obtained
by the least squares method with variables in the passive set. Coefficients of
variables in the active set are set to zero.

Lawson-Hanson’s algorithm is an iterating algorithm. Current passive set
is determined in every iteration. The passive and the active sets are modified
according to results of the least squares over variables in the passive set. The
modification consists of exchanging the variables between each set. Simultane-
ously a new value of vector x is computed. During the set modification, indices
with zero value in vector x are exchanged. The algorithm in pseudo-code is
shown in Algorithm1 [9].

Note that the passive set is denoted as P , the active set as R. The number
of iterations can be affected by the parameter tolerance. Notation AP denotes
matrix associated with the indexes of variables in the passive set P . The least
squares are directly computed on lines 8 and 13.
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Algorithm 1. Lawson-Hanson’s

Input: A ∈ R
m×n,b ∈ R

m

Output: x∗ ≥ 0, where x∗ = arg min ‖Ax − b‖2
2

1: P ← ∅
2: R ← {1, 2, . . . , n}
3: x ← 0

4: w ← AT (y − Ax)
5: while R �= ∅ ∧ maxi∈R(wi) > tolerance do
6: j ← arg maxi∈R(wi)
7: Include index j into passive set P and remove j from R

8: sP ← [(AP )TAP ]−1(AP )Tb

9: while min(sP ) ≤ 0 do
10: α ← − mini∈P (xi/(xi − si))
11: x ← x + α(s − x)
12: Move from P to R all indexes i such as xi = 0

13: sP ← [(AP )TAP ]−1(AP )Tb

14: sR ← 0

15: end while
16: x ← s

17: w ← AT (y − Ax)

18: end while
19: return x

2.3 T-norm’s Generator Approximation Algorithm

As mentioned before, Lawson-Hanson’s algorithm outputs nonnegative coeffi-
cients. But in our case, we require a decreasing approximated additive generator.
It is ensured by negative coefficients of the B-spline. The first step is thus a trans-
formation of the input empirical data and boundary conditions. Transformation
and inverse transformation are given as follows

F(x) = F−1(x) = 1 − x. (4)

Using such transformated data, we specify the matrices A and E. The boundary
conditions are guaranteed by the method of weighting. The coefficients of an
approximated B-spline are computed by Lawson-Hanson’s algorithm. Due to
data transformation a resultant curve is increasing, so the inverse tranformation
(4) of a curve values is performed. This step ensures decreasing approximated B-
spline with demanded boundary conditions. Algorithm in pseudo-code is shown
in Algorithm 2 [10].

Note that the method of weighting is used on line 7. Lawson-Hanson’s algo-
rithm is in pseudo-code represented by function nonnegative. The number of
B-spline’s nodes and its values depend on specific empirical data and a choice
is made experimentally. The shape of the obtained curve is affected by these
values.
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Algorithm 2. Approximation of the additive generator

Input: The set of empirical data in the form {xk, yk}, k = 1, 2, . . . , n
Output: Values y of the approximated generator with constant step h

1: A ← 0,b ← 0,C ← 0,d ← (0 1)T

2: x̃k ← F(xk), ỹk ← F(yk) pro k = 1, 2, . . . , n
3: Choice of the B-spline’s degree m and values ε and γ
4: Setting number of the B-spline’s nodes J and its values t

5: Akj ←∑nk
i=1 Bj,m(x̃k

i ) − Bj,m(ỹk)
6: E0j ← Bm,j(F(1)), E1j ← Bm,j(F(ε))

7: A ←
(

γE
A

)

, b ←
(

γd
b

)

8: c ← nonnegative(A,b)

9: i ← ε
10: i ← h
11: while i ≤ 1 do
12: if i < ε then
13: y(i) ← 1

i
+ 1 − 1

ε

14: else

15: y(i) ←∑J
j=1 cjBj,m(F−1(i))

16: end if
17: 0 i ← i + h

18: end while

To obtain a better notion about the algorithm, let’s make an estimate of
a time complexity. Lawson-Hanson’s algorithm iteratively performs computa-
tion of least squares. The time complexity of least squares can be divided into
following suboperations.

– The multiplication of ATA (A ∈ R
n×m,b ∈ R

m) is performed with the
complexity O(mn2), ATb with complexity O(nm).

– Inverse matrix computation with O(n3) [11].
– Multiplication of the obtained inverse matrix with complexity O(n2).

Between the mentioned operations, the multiplication ATA and the inverse
matrix computation dominate in the sense of time complexity. The resulting
complexity estimate of least squares is thus O(n2(n+m)). The time complexity
of Lawson-Hanson’s algorithm depends, as mentioned before, on the number of
iterations, at which the least squares are computed. Therefore the complexity is
O(pn2(n + m)), where p is the maximum number of iterations. But this is only
an estimate, the actual value is smaller, because the least squares are computed
over matrix associated to passive set P (|P | ≤ n).

Regarding the analysis of the entire algorithm, the weighting method is
performed with time complexity O(Jn) and evaluating values of the B-spline
with O(� 1−ε

h Jm). The most complex task is thus computing coefficients using
Lawson-Hanson’s algorithm. Hence the complexity of the entire algorithm is
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O(pn2(n + J)). Since we assume that J < n, from the previous formula we get
O(pn3). Computing time can be improved by using specialized algorithms for
matrix multiplication (e.g. Strassen’s algorithm [11]) and inverse matrix compu-
tation [12] or using Cox-De Boor’s algorithm for B-spline evaluation [13] (Fig. 1).

Fig. 1. Example of Product t-norm’s additive generator approximation. Product
t-norm’s generator is given by g(x) = − log(x) in the interval [e−1, 1] (red curve).
B-spline of degree 3 was chosen for approximation (blue curve). Coefficients computa-
tion was based on 8 empirical values with two arguments. Approximation error is 0.013
(Color figure online).

2.4 Algorithm Modifications

The algorithm of t-norm’s generator approximation can be used with small mod-
ifications to approximate the generators of other classes of aggregation opera-
tors. In this paper, we consider means and Choquet integral based operators.
In the case of means the generators are increasing and in the case of Choquet
integral based operators the generators are non-decreasing. Due to this fact,
transformation of the input data and boundary conditions is not performed (i.e.
F(x) = F−1(x) = x).

The boundary conditions are identical for both considered aggregation oper-
ators (g(0) = 0, g(1) = 1). The ε value is thus set to zero. The 6th line of original
algorithm is therefore modified as follows

E0j = Bm,j(0), E1j = Bm,j(1).

Computing of the matrix A is different in each case. For means it is given by
the formula

Akj =
1
nk

nk∑
i=1

Bj,m(x̃k
i ) − Bj,m(ỹk). (5)
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For Choquet integral based operator it is given by

Akj =
nk∑
i=1

x̃k
i

(
Bj,m

(
i

nk

)
− Bj,m

(
i − 1
nk

))
. (6)

Note that the 5th line of original algorithm is replaced by (5) or (6). In the case
of Choquet integral, initiation of vector b on the first line of original algorithm
is replaced by b ← y, where y is the vector of empirical results. With the
above mentioned modifications, the original algorithm can be generalized for
approximation of certain class of aggregation operators. The time complexity of
the modified algorithms corresponds to the original algorithm.

3 Collected Empirical Data

Empirical data for our experiment were obtained from the respondents by means
of a paper questionnaire. The task of respondents was to assign a value in the
range of 1–10 to each statement. This value represents a level of truthfulness
according to respondent’s opinion. There were 20 statements, 10 of them are
elementary statements and the remaining 10 are composited to conjunction from
the elementary ones. Each conjunction was included in the questionnaire in both
forms, i.e. A ∧ B and B ∧ A. The respondents were selected especially among
students from Faculty of Information Technology and in total we received 204
questionnaires. This means more than 1000 empirical data. Examples of used
statements:

1. The tickets are significantly more expensive.
2. Traveling by public transport is comfortable.
3. The tickets are significantly more expensive, but traveling by public transport

is comfortable.
4. Traveling by public transport is comfortable, but the tickets are significantly

more expensive.

4 Experimental Results

The main objective of the experiment is a modelling of the conjunction in human
language. The second objective is to determine if the human conjunction is a
commutative operation. In this paper we consider modelling of the conjunction
via t-norms, means and Choquet integral. Collected data show, that respondents
understood conjunction as commutative operation only in 56 % of cases. But this
result probably depends on the pattern of respondents.

First we focus on modelling via t-norms. Before the approximation collected
empirical data are transformed into the interval [0, 1]. Since all values from the
set {1, . . . , 10} occur in empirical data, the boundary condition ε is set to zero.
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Fig. 2. Graph of a triangular norm that corresponds to conjunction in human use.

Using the algorithm described before, the quadratic additive generator g on the
interval [0, 1] is given by g(x) = (1−x)2. This generator corresponds to a t-norm

T (x, y) = max
{

0, 1 − (
(1 − x)2 + (1 − y)2

) 1
2
}

,

which is Yager’s t-norm with parameter p = 2. This t-norm is shown on Fig. 2.
The second considered aggregation operator for modelling conjunction are

means. Modified algorithm from Sect. 2.4 is used for mean’s generator approxi-
mation. Approximated generator g based on measured data is given by g(x) = x2

(Fig. 3b). For approximation, B-spline of degree 3 was chosen. The mean gener-
ated by g is in Fig. 3a.

Fig. 3. Result of the conjunction modelling via generated mean.

The last mentioned algorithm’s modification relates to Choquet based oper-
ators. For the generator approximation, B-spline of degree 3 was chosen, as in
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previous cases. The resulting generator is shown in Fig. 4b. As one can see on
Fig. 4a, approximated operator is not a commutative operation. In this way, the
approximated operator corresponds mostly to empirical data.

Fig. 4. Result of the conjunction modelling via Choquet integral.

5 Conclusion

We have tried to model human understanding conjunctions. We tested three
different approaches from those trials best reflects reality modelling by Choquet
integral. What is important is that we were able to approximate the empirically
measured data by aggregation operators. It can be used in many applications and
we plan to use our experience with approximation in the recommender systems.
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Abstract. We propose a new algorithm for practically feasible exhaus-
tive generation of small multiway cuts in sparse graphs. The purpose of
the algorithm is to support a complete analysis of critical combinations of
road disruptions in real-world road networks. Our algorithm elaborates
on a simple underlying idea from matroid theory – that a circuit-cocircuit
intersection cannot have cardinality one (here cocircuits are the gener-
ated cuts). We evaluate the practical performance of the algorithm on
real-world road networks, and propose algorithmic improvements based
on the technique of generation by a canonical construction path.

1 Introduction

In the area of real-world road network planning and management, one of the
vital tasks is to identify potential vulnerabilities of the network in advance. One
of the most critical such vulnerabilities is the possibility of a complete break-
up of the network as a result of simultaneous disruptions of several roads. In
graph theory terms, this corresponds to finding minimal cuts in the network
graph (here we consider edge cuts by default). However, not every graph cut
corresponds to a major disintegration of the whole network; e.g., a cut may just
isolate one or several unimportant road intersections (or small villages) and the
rest of the network remains fully functional. In fact, one can easily imagine that
most small cuts in a real-world network are of the latter (unimportant) kind.

There exist various rather complicated measures of severity of a network
break-up, taking into an account the numbers of inhabitants and the economic
importance of the nodes which get disconnected from each other, as well as the
number of components (cells) into which the network is broken up. See [1] for
further references. Notice that, in particular, we have to consider also cuts which
separate the network into more than two components (called multiway cuts). In
a nutshell, research shows that efficient identification of all severe network break-
ups does not seem possible without first exhaustively generating all the minimal
multiway cuts with small number of edges in the given network.

In our paper we focus right on this task. If we fix integers k,m, then the task of
generating all the minimal k-way cuts consisting of at most m edges is, in theory,
solvable in polynomial time by brute force testing all combinations of at most m
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edges of the network. However, experiments carried out over networks of around
1000 edges in [1] clearly show that such a brute force approach is practically
feasible, even on parallel machines, only for m ≤ 4. To support the analysis
of road network break-ups caused by more than 4 simultaneous disruptions, we
proposed a new approach to an exhaustive small cut generation whose simplified
heuristic version has already been implemented and successfully used in [1].

The underlying idea of our proposed approach is very natural and simple:
suppose we construct a (to-be) cut X iteratively, and there exists a cycle C such
that C intersects X in exactly one edge—then another edge of C must belong
to the resulting minimal cut extending X. Consequently, the next iteration can
choose only from the edges of C instead of the whole network. Since in real-world
road networks one can usually find an abundance of short cycles everywhere
(where “short” typically means 4 or 5), this approach can dramatically reduce
the search space and the runtime of the algorithm.

Here we provide a theoretical background for this new Circuit-cocircuit algo-
rithm scheme in terms of matroid theory, which seamlessly integrates generation
of minimal k-way cuts for all values of k into the one scheme. We further elab-
orate the algorithm towards the so-called canonical generation which provides
additional important speed-up. We also report on the results of practical com-
putational experiments carried out with different versions of our algorithm.

Related research. Computing a minimum two-terminal cut in a graph is a well-
known easy application of network flow theory. However, the seemingly similar
problem of counting the minimum cuts in a graph is #P-complete [7] (i.e., equiv-
alent to #SAT). Notice that there is a crucial difference between the terms
minimum and minimal cut—where “minimum” means of smallest possible car-
dinality and “minimal” cuts are those for which no proper subset of them is a
cut again (while their cardinality may be arbitrarily high). In our task, if we
set m equal to the minimum cut size in the graph (instead of fixing it to a
small value beforehand), we hence get that our generation problem is #P-hard
in general. Fortunately, experiments with real-world road networks show that
their particular case is often computationally much simpler.

Concerning k-terminal cuts for k > 2, already computing a minimum three-
terminal cut in a graph is an APX-hard problem [3]. Consequently, things do
not get any easier with generating multiway cuts. Besides obvious brute force
attempts, not much has been published in literature about exhaustive generation
of small cuts in graphs. One remarkable exception is the work of Reinelt and
Wenger [8], who elaborated on the classical so-called “cactus representation” of
Dinitz et al. [4] to provide a practically efficient algorithm for generation of all
minimum multiway cuts in a graph. However, the problem with [8] and previous
related papers is that they all compute “minimum” cuts, but in our case we have
to generate also all the larger minimal cuts (up to a cardinality bound m) in
addition to the minimum (in terms of cardinality) ones.

Paper organization. In Sect. 2 we give a brief introduction to the necessary
theoretical concepts. After that we state the abstract Circuit-cocircuit algorithm
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for matroids (Algorithm3) and illustrate a simple use of it for generating minimal
2-cuts in a graph (Algorithm 5). The full power of the Circuit-cocircuit meta-
algorithm shows up in Sect. 4 where we apply it to exhaustively generate all
minimal k-way cuts in a graph (Algorithm 7). Section 5 then outlines a further
improvement of the algorithm using the so-called canonical generation.

2 Preliminaries

We mostly follow standard terminology of graph theory. The vertex set of a
graph G is referred to as V (G) and the edge set as E(G). In the paper we pay
a particular attention to the following graph terms.

An edge-cut in a graph G is a set of edges X ⊆ E(G) such that G \ X (the
subgraph of G obtained by deleting the edges X) has more connected components
than G has. A k-way edge-cut in a graph G is a set of edges X ⊆ E(G) such
that G\X has at least k connected components. Note that in connected graphs,
an edge-cut coincides with a 2-way edge-cut, while in a disconnected graph this
assertion fails (the empty set is then a 2-way edge-cut).

Definition 1 (Bond). We call a bond any minimal edge-cut in a graph, and
a k-bond any minimal k-way edge-cut in a graph (minimality is considered with
respect to set inclusion).

A graph is a tree if it is connected but deleting any of its edges disconnects
it. In other words, a tree contains no cycles. A graph is a forest if each of its
connected components is a tree. If G is a graph and F ⊆ G is a tree (forest)
such that V (F ) = V (G), then F is a spanning tree (forest) of G.

It turns out that the most suitable framework for an abstract description of
our proposed algorithm is that of matroid theory. We follow Oxley [6] in matroid
terminology, and we give a brief introduction (with examples) next.

Definition 2 (Matroid). A matroid is a pair M = (E,B) where E = E(M) is
the finite ground set of M (elements of M), and B ⊆ 2E is a nonempty collection
of bases of M , no two of which are in an inclusion. Moreover, matroid bases
must satisfy the “exchange axiom”; if B1, B2 ∈ B and x ∈ B1 \ B2, then there is
y ∈ B2 \ B1 such that (B1 \ {x}) ∪ {y} ∈ B.

The following terminology is used in matroid theory. Subsets of bases are
called independent sets, and the remaining sets are dependent. Minimal sets not
contained in a basis (i.e., dependent sets) are called circuits, and maximal sets
not containing any basis are called hyperplanes.

Example 1. Let A = {a1, . . . , an} be a finite set of vectors. If B is the set of
all maximal independent subsets of A, then M = (A,B) is a matroid, called
the vector matroid of A. The independent sets of M are precisely the linearly
independent subsets of A.
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Example 2. If G is a connected graph, then its cycle matroid on the ground
set E(G) is as follows: bases are the (edge sets of the) spanning trees of G,
independent sets are the (edge sets of) forests in G, circuits are the usual cycles
in G, and hyperplanes are the set complements of bonds in G.

For a matroid M = (E,B), the matroid on the same ground set E and with
the (complementary) bases B∗ = {E \ B : B ∈ B} is called the dual matroid of
M and denoted by M∗. The circuits of M∗ are called cocircuits of M .

Example 3. Let G be a planar graph and M the cycle matroid of G. Then M∗

is the cycle matroid of the geometric dual of G.

Claim 1 (folklore, see [6]). Let M be a matroid.

(a) If B is a basis of M and e ∈ E \ B, then B ∪ {e} contains precisely one
circuit (through e).

(b) If H is a hyperplane of M and e ∈ E \ H, then H ∪ {e} contains a basis B
of M and e ∈ B.

(c) A set X ⊆ E is a cocircuit of M iff E \ X is a hyperplane of M .
(d) Cocircuits of M are precisely the minimal sets intersecting every basis of M .

Claim 2 (cf. Example 2). Let M be the cycle matroid of a graph G. Then the
cocircuits of M are precisely the bonds of G. ��

3 The Circuit-Cocircuit Meta-Algorithm

In view of Claim 2, it is possible to formulate the problem of generating all bonds
of a graph as generating all the cocircuits of its cycle matroid. This approach
might seem restrictive at the first sight as it does not directly capture generation
of k-bonds for k > 2, but precisely the opposite is true: we will later show that
k-bonds are the cocircuits under a suitably adjusted definition of the cycle
matroid of a graph.

It is quite natural to see that a cycle and a bond in a graph cannot intersect in
precisely one edge. A generalization of this observation is one of the fundamental
claims in matroid theory (note, however, that a matroid circuit and a cocircuit
may intersect in 3 or 5, etc., elements. . . ):

Proposition 1 (folklore, see [6]). If C is a circuit and X is a cocircuit in a
matroid M, then |C ∩ X| 	= 1.

With Proposition 1 at hand, we may simply proceed as follows: start with
any element of M in X, find a circuit C such that |C ∩ X| = 1, and then for
each element c ∈ C \X try to add c to X and recurse. The recursion proceeds as
long as E \ X contains a hyperplane of M , cf. Claim 1(c). The full pseudocode
is given in Algorithm 3.

Theorem 4. Algorithm3 generates all the cocircuits of size ≤ m in a matroid
M (with repetition – the same cocircuit may be generated several times).
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Algorithm 3. Abstract Circuit-Cocircuit Meta-algorithm
Input: Matroid M = (E, B) and an integer m ∈ N (a cocircuit size bound)
Output: All cocircuits of M with size ≤ m
1: B ← an arbitrary basis in B
2: for all b ∈ B do
3: X ← {b}
4: GenCocircuits(X)
5: end for
6: procedure GenCocircuits(X)
7: if E \ X contains no hyperplane of M or |X| > m then
8: return ⊥ � this branch fails
9: end if

10: Find any circuit C ⊆ E such that |C ∩ X| = 1
11: if such C doesn’t exist then
12: output X � X is a cocircuit
13: else
14: D ← C \ X
15: for all c ∈ D do
16: GenCocircuits(X ∪ {c})
17: end for
18: end if
19: end procedure

The proof follows rather straightforwardly (though not shortly) from Claim1,
but due to space restrictions it is skipped here.

Remark 1. Note thatAlgorithm 3makes somenondeterministic steps – the choices
(of B,C) on lines 1,10 and also the ordering (of D) on line 15. Theorem4 asserts
that for any particular implementation of these steps, the algorithm remains cor-
rect. We exploit this fact mainly with the choice of C on line 10, where we aim to
minimize |C|. If we are (mostly) able to choose C “very small”, bounded by a con-
stant such as 5 or 6, then we get a dramatic runtime speed-up over the basic brute
force approach trying all ≤ m-elements subsets of E. Indeed, this is the typical case
for the cycle matroids of real-world road networks.

Remark 2. There is one weakness of Algorithm 3 which is common to many
iterative/recursive combinatorial generation algorithms—the same object (here
a cocircuit or a bond) is generated many times in different orders of its elements.
While there is no easy general remedy for this common problem, we will provide
a practically working fast resolution in Sect. 5.

3.1 Generating 2-Bonds in a Graph

To better explain Algorithm 3 and its use, we now present a sample implemen-
tation for generating all the 2-bonds in a connected graph. The main task of our
implementation is to realize line 7—to be able to efficiently test whether E \ X
contains a hyperplane of M . This is based on the following claim:
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Lemma 1. Let G be a connected graph, M = (E,B) its cycle matroid and
Y ⊆ E = E(G). The set E \ Y contains a hyperplane of M if, and only if, the
vertices incident to the edges of Y can be coloured red and blue, such that each
edge of Y gets two colours and there exist two disjoint trees Tr and Tb in G \ Y
such that the tree Tr (Tb) connects all the red (blue, resp.) vertices of Y .

Proof. (=>) If E \ Y contains a hyperplane of M , then there exists a cocircuit
X ⊇ Y by Claim 1(c). Since X is a 2-bond in G, G \ X has precisely two
connected components (as otherwise X would not be minimal). Colouring the
ends of Y in one component red and in the other blue finishes the argument.

(<=) Let R = V (Tr) and B = V (Tb) be the vertex sets of the assumed two
trees in G\Y . Let U ⊆ V (G) be the set reachable from R in G\B and X ⊆ E(G)
be the edges having precisely one end in U . Then Y ⊆ X by the definition, and
X is a cut in G separating R from B. Moreover, X is minimal, and so X is a
2-bond and E \ X is a hyperplane of M which is contained in E \ Y .

��
In regard of Lemma 1, we choose the following implementation of the hyper-

plane test on line 7. During the progress of the algorithm, each edge e chosen to
be added to X gets the colours red and blue at its ends, such that this choice
is consistent (wrt. edges already in X) and fulfills the next conditions (Algo-
rithm5). This implementation results in the following algorithm:

Algorithm 5 (Circuit-Cocircuit algorithm for 2-bonds in a graph).
We specify Algorithm 1 with the following points:

(1) Let M of Algorithm 1 be the cycle matroid of an input graph G.
(2) With respect to implementation of line 7, the first edge added to X on line 3

gets the colours red/blue arbitrarily. Let, subsequently, V (X) = Vr ∪ Vb

where Vr are the red ends of X and Vb the blue ends. We actively maintain
only a red tree Tr interconnecting Vr (as expected by Lemma 1), while a blue
tree is implicit – the two trees are not treated symmetrically: see further
Algorithm 3 for details of building and maintaining Tr.

(3) Instead of a cycle C on line 10, we explicitly look for a (shortest) path P ⊆
G \ X such that one end of P is ur ∈ Vr and the other end is ub ∈ Vb. Note
that, for any f ∈ X with one end ub, there is a cycle C formed by P , f and
the unique path in Tr from ur to f such that C ∩ X = {f}, as expected by
Algorithm 1, but we do not explicitly invoke C in our implementation.

(4) On line 14, we set D ← E(P ) (which is a subset of the implicit circuit C).

Proposition 2. Algorithm5 generates all the 2-bonds of size ≤ m in a con-
nected graph G (with possible repetition).

The proof nearly immediately follows from Theorem4 and Claim 2, but there
is one catch: the set D computed on line 14 may be a strict subset of C \ X
expected in Algorithm 3. We can show that for every 2-bond X0 of G, at least
one of the computation paths leading to X0 is not affected by this deficiency.
Again, due to space restrictions a full proof is skipped here.
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4 k-Way Cycle Matroid and Generating k-Bonds

As mentioned before, Algorithm 3 can be used for generating k-bonds of a graph
for any k ≥ 2. We just have to extend the definition of a cycle matroid so that
cocircuits within the new definition are precisely the k-bonds.

Definition 3 (k-way cycle matroid). Let G be a graph of less than k ≥ 2
components. The k-way cycle matroid of G is a matroid on the ground set E(G),
such that its bases are the edge sets of the spanning forests of G consisting of
k−1 trees. The bases, circuits, cocircuits, hyperplanes of the k-way cycle matroid
are also called the k-way bases, circuits, cocircuits, hyperplanes of G.

From this definition one can easily conclude some basic properties.

Claim 6. Let G be a graph consisting of less than k ≥ 2 components.
The k-way cocircuits of G are precisely the k-bonds of G.
The k-way circuits of G are of two types, type-C and type-F:

– type-C circuits are the graph cycles in G.
– type-F circuits, also called spanning circuits, for k ≥ 3, are the spanning

forests of G that are formed by k − 2 trees.

Now, by Theorem 4, every implementation of Algorithm3 for the k-way cycle
matroid of a graph G generates all the k-bonds of G. Although, working with
the circuits of Claim 6 is somehow intricate. We thus restrict our attention to a
special variant of Algorithm 3 which has several advantages.

– First, this variant is compatible with and extends Algorithm5.
– Second, it coincides with the natural naive approach to generating k-bonds:

find a 2-cut, choose one of its sides and recursively find a 2-cut of this side,
and so on until k parts are generated. In other words, we also prove that such
a naive approach is indeed correct (if properly implemented).

This special variant is defined as follows:

Definition 4 (Stepwise Circuit-Cocircuit implementation scheme).
We call an implementation of Algorithm3 stepwise if, for every set X = X0,
|X0| = l, generated by the algorithm the following holds:

1. X0 is an ordered sequence (c1, c2, . . . , cl), where ci has been added to X0 at
the level i − 1 of recursion, and

2. there exists a mapping s : {1, 2, . . . , k} → {0, 1, . . . , l} such that s(1) = 0,
s(k) = l and, for each j ∈ {2, . . . , k − 1}, the set {c1, . . . , cs(j)} � X0 forms a
j-bond in G.

For j, 1 ≤ j < k, we call the j-th stage of the algorithm the steps the algorithm
does at the levels s(j), s(j) + 1, . . . , s(j + 1) − 1 of recursion. In other words, the
algorithm in its j-th stage selects the elements cs(j)+1, . . . , cs(j+1).

Before proceeding into details of the stepwise implementations, we first show
that the definition indeed makes sense.
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Algorithm 7. One stage of a stepwise implementation
Input: A conn. graph G, param. j, k, m ∈ N, j < k, m ≥ 1, and a j-bond Y1 ⊆ E(G)
Output: A collection of (j + 1)-bonds such that for each k-bond Y , Y1 ⊆ Y ⊆ E(G),

|Y | ≤ m, some subset of Y is among the generated (j + 1)-bonds

1: if j = 1 then � Y1 = ∅: select a k-way basis
2: F ← an arb. spanning forest of k − 1 trees
3: else � Y1 �= ∅: select a type-F circuit
4: F ← an arb. spanning forest of k − 2 trees and |F ∩ Y1| = 1
5: end if
6: for all d = {u, v} ∈ F \ Y1 do
7: GenStage(j, Y1, X = {d}, Vr = {u}, Vb = {v}, Tr = {u})
8: end for.

9: procedure GenStage(j, Y, X, Vr, Vb, Tr)
10: Let G1 ⊆ G be the component of G \ Y containing X
11: if |Y ∪ X| > m − k + j + 1 then
12: return ⊥ � no way to get a k-bond of size ≤ m
13: end if
14: if there does not exist a connected subgraph
15: Tb ⊆ (G1 \ V (Tr)) \ X such that Vb � V (Tb) then
16: return ⊥ � the “no hyperplane” condition
17: end if
18: P ← a minimal path in G1 from V (Tr) to Vb

19: if such P does not exist then
20: output Y ∪ X � Y ∪ X is a j + 1-bond
21: else
22: for all c ∈ P do � add c to X and update Tr

23: Let u be the vertex in c = {u, v} which is closer to Tr

24: Let Pu be the component of P − c which contains u
25: GenStage(j, Y, X ∪ {c}, Vr ∪ {u}, Vb ∪ {v}, Tr ∪ Pu)
26: end for
27: end if
28: end procedure

Proposition 3. A stepwise implementation of Algorithm3 is possible. Precisely,
for every k ≥ 2 there exists a stepwise implementation generating all the k-bonds
in a given connected graph.

One can, moreover, easily show that a “transition” from the j-th stage to
(j + 1)-st one in a stepwise implementation really means to construct a 2-bond
in one of the parts of the previous j-bond. A desired consequence is that we can
decompose the stepwise algorithm computation into these stages such that, in
each stage, we simply invoke Algorithm 5.

These findings directly lead to a stepwise algorithm whose one stage is shown
in pseudocode in Algorithm7. Validity of this new algorithm then, in turn, fol-
lows immediately from the following statement describing its one stage output.

Theorem 8. Let G be a graph, j, k,m integers such that j < k,m ≥ 1 and
Y1 ⊆ E(G) a j-bond in G. Algorithm 7 generates a set S of (j + 1)-bonds such
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that for each k-bond Y , Y1 ⊆ Y ⊆ E(G), |Y | ≤ m, some subset of Y is among
the generated (j + 1)-bonds in S.

The proof follows from Proposition 2 via the previous claims.

5 Canonical Generation

We now return to Remark 2; addressing the problem that one bond X0 is typ-
ically generated many times by our circuit-cocircuit algorithm, each time with
a different permutation of its elements. While such a repetition can be eas-
ily removed by a post-processing, it costs running time. Ideally, our algorithm
should for each X0 “guess” one computation path leading to X0 and imme-
diately dismiss all the other attempts, as early as possible in the generation
process. But how can this be done? This is not at all an easy question since,
for example, we have to ensure that (nearly) every two bonds X0,X1 sharing
many elements also share a long prefix of the guessed computation path, and so
on. Most importantly, the guessed computation path of X0 must be compatible
with Algorithm 3, i.e., each next element of X0 on the path must be from the
circuit C on line 10 of the algorithm, which is not a priori clear how to achieve.

There exists a sophisticated technique of generation by a canonical construc-
tion path by McKay [5], outlined next. Since we cannot fit the details of this
technique and its application to our case into the restricted conference paper,
we stay on a very informal level.

In our case, a computation path of a bond X0 in G is simply encoded by a
permutation �X0 of the elements of X0. The definition of a canonical form �X0 of
X0 respects the stepwise generation framework as follows:

(I) The permutation �X0 refines the order of the stages in some stepwise com-
putation path leading to X0 (cf. Definition 4).

(II) There is an arbitrary bijection ι : E(G) → {1, . . . , |E(G)|} indexing the
edges of G. The starting edges of the stages in �X0 are each ι-minimal
within its stage, and they are altogether strictly ordered by ι (first-to-last
stage).

(III) Within each stage, the corresponding sub-permutation of �X0 (except the
starting edge) is determined by the shortest path P selection and the
red/blue tree mechanism of Algorithm 5; see also the appropriate parts
of Algorithm 7.
Two additional details are important for a successful implementation of
this point. First, the red and blue sides of the hyperplane test are uniquely
decided with the first edge of the stage based on a fixed vertex index-
ing of G. Second, the unit lengths of edges of G are slightly perturbed to
achieve uniqueness of the shortest path P selection.

Concerning the canonical implementation of bond generation, point (I) and
parts of (III) of the scheme are already embedded in Algorithm 7, and the rest
of (III) is rather straightforward to add. The biggest runtime savings come from
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implementing point (II). At the beginning of each stage, the starting edge is
selected from an ι-minimal basis (or type-F circuit) among its edges of ι-value
higher than that of the previous stage. Then, the remaining edges of this stage
are restricted only to those candidates of higher ι-value than the starting edge.

Although the presented scheme is not truly canonical since one k-bond X0

can still be generated in more than one canonical form, it is implementation-wise
very easy and provides great speed-up for the algorithm; see the next section.

6 Evaluation

In this section we present the outcomes of measurements performed with imple-
mentations of our algorithms on the road networks of the regions of Czech repub-
lic: the Zĺın Region (723 vertices, 974 edges) and the Olomouc Region (1454
vertices, 2066 edges). Measurements using the larger road network of Central
Bohemian Region (4114 vertices, 5964 edges) gave similar results.

We have implemented the core algorithm of Sect. 4 which generates same
bonds multiple times (i.e., without canonical generation), and the improved algo-
rithm of canonical generation from Sect. 5. For the running time evaluation we
used a computer with 16 GB RAM and the Intel Core i7-3770 CPU @ 3.40 GHz.
The source code was compiled with gcc 4.8.2.

The measurement results are summarized in the tables below. To start,
Tables 1 and 2 show the overall runtimes where the entries marked ‘-’ did not
finish before the time limit. Tables 3 and 4 show the improvement, in terms
of runtime, of the canonical generation algorithm from Sect. 5 over the ordi-
nary algorithm from Sect. 4. The improvement achieved by preventing repeated
generation of the same bonds is up to 15× in the experiments. This runtime
improvement well correlates with the average multiplicity of repeatedly gen-
erated bonds by the ordinary algorithm in Table 5. Although the approach of
Sect. 5 does not completely prevent repeated generation of the same bonds, the
percentage of “leftover” multiply generated bonds is truly marginal and hence
negligible for practical computations; see Table 6.

To demonstrate superiority of the circuit-cocircuit algorithm over the brute-
force approach trying all m-tuples of edges for k-bonds, we include Table 7.
The table summarizes the distribution of lengths of the path P (Algorithm 7,
line 18), which represent the degrees of branching of the circuit-cocircuit algo-
rithm inside each stage. While the brute-force approach would result in a quite
bad running time of order O(|E(G)|m/m!

)
, the nature of Algorithm7 together

with the experimental data in Table 7 suggest that the running time can be,
roughly,

O(|V (G)|k · βm−k
)
, (1)

where the auxiliary constant β stands for a typical bound on the length of the
path P and can be guessed as β ≈ 5.

Comparing to Tables 1 and 2, one can see quite a good match in the runtime
dependence on (m − k) in (1), while the dependence on k seems overshadowed
by other aspects of the algorithm for the small experimental values of k,m.
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Table 1. Running time of an imple-
mentation of the canonical generation
in seconds. Zĺın Region

k
m

2 3 4 5 6 7 8

2 0.0 0.1 1 2 9 42 210
3 0.6 2.8 13 53 223 986 4604
4 29.5 198 1018 4771 21269 -
5 1156 9885 56847 - -

Table 2. Running time of an imple-
mentation of the canonical generation
in seconds. Olomouc Region

k
m

2 3 4 5 6 7 8

2 0.1 0.3 1 5 16 69 305
3 3.0 10.4 61 235 921 3482 13342
4 158.3 781 6008 - - -
5 6205 43242 - - -

Table 3. Ratio of running times
without and with canonical genera-
tion. Zĺın (top) and Olomouc (bottom)
Region

k
m

2 3 4 5 6 7

2 1.00 2.00 2.45 3.60 4.3 1.34
3 3.28 3.51 6.05 8.83 12.11 14.90
4 8.40 11.32 15.73 - -

k
m

2 3 4 5 6 7

2 1.14 1.93 1.91 2.18 4.30 5.06
3 1.97 3.47 4.49 6.69 8.31 9.41
4 5.96 10.16 15.53 - -

Table 4. Ratio of the numbers of gen-
erated bonds without and with canoni-
cal generation. Zĺın (top) and Olomouc
(bottom) Region

k
m

2 3 4 5 6 7

2 1.43 1.97 2.67 3.52 4.42 1.15
3 2.00 3.08 4.27 5.99 7.94 10.09
4 6.00 9.50 13.38 - -

k
m

2 3 4 5 6 7

2 1.32 1.93 2.53 3.26 4.04 4.78
3 2.00 2.84 4.03 5.50 7.41 9.59
4 6.00 8.79 12.37 - -

Table 5. The average multiplicity of
(repeatedly) generated bonds in the
non-canonical generation algorithm.
Zĺın (top) and Olomouc (bottom)

k
m

3 4 5 6 7

3 3.112 4.309 6.092 8.152 10.465
4 9.706 13.642 - -

k
m

3 4 5 6 7

3 2.840 4.038 5.536 7.491 9.739
4 8.817 12.432 - -

Table 6. The percentage of repeatedly
generated bonds in the canonical gener-
ation algorithm. Zĺın (top) and Olomouc
(bottom) Region

k
m

3 4 5 6 7

3 0.972% 0.814% 1.618% 2.664% 3.715%
4 2.177% 1.950% 3.462% -

k
m

3 4 5 6 7

3 0.156% 0.253% 0.649% 1.049% 1.568%
4 0.352% 0.541% - -

Lastly, we would like to comment on a possible parallelization of the new algo-
rithm. This is actually very easy: each time when adding a new edge to the bond X,
one may simply run all the computation branches in parallel, without any need for
synchronization or communication between the branches. Furthermore, especially
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Table 7. The distribution of lengths of the path P from Algorithm 7. Results of the
computation on Zĺın Region, k = 3, m = 6; on the left showing the second level of
recursion of GenStage, on the right the fifth level (the algorithm occasionally uses even
longer paths in later GenStage calls).

0 5 10 15 20 25 30 0 5 10 15 20 25 30

in the canonical generation case, no costly final post-processing of the generated
bonds is needed.

7 Conclusion

We have presented a new “Circuit-Cocircuit” algorithm for exhaustive genera-
tion of cocircuits in a matroid, with a practical application to finding all the
minimal k-way cuts in a graph. We have further elaborated on the algorithm
to achieve an almost canonical generation process, which significantly speeds-up
the algorithm by early removal of duplicate computation branches. This theoret-
ical work has been complemented by an implementation and extensive practical
evaluations of the algorithm on real-world data. The source code of our imple-
mentation is available at https://github.com/OndrejSlamecka/mincuts.

In a conclusion, our implementation solves the problem of finding all small
multiway cuts correctly as well as quickly (given the high theoretical complex-
ity of the problem) and with very low memory usage, thus demonstrating the
feasibility of this algorithm for practical computations, e.g., in road network
planning and management. In particular, the algorithm performs significantly
better than the brute-force algorithm on real-world networks. Our algorithm
will help to improve the results of [1] (where only a simplified heuristic version
of the Circuit-Cocircuit algorithm, without canonicity, was implemented).

Our main suggestions for future work are as follows. The main theoretical
question is whether there exists a method of truly canonical generation which
does not require costly explicit isomorphism checks. On the implementation side,
profiling shows that the algorithm spends most of time in the shortestPath
procedure—finding a good CPU-aware implementation [2] of this procedure
would benefit the running time.

https://github.com/OndrejSlamecka/mincuts
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Abstract. Architectural optimization for heterogeneous multi-sensor
processing is a real technological challenge. Most of the vision systems
involve only one single color sensor and they do not address the hetero-
geneous sensors challenge. However, more and more applications require
other types of sensor, in addition, such as infrared or low-light sensor, so
that the vision system could face various luminosity conditions. These
heterogeneous sensors could differ in the spectral band, the resolution
or even the frame rate. Such sensor variety needs huge computing per-
formance, but embedded systems have stringent area and power con-
straints. Reconfigurable architecture makes possible flexible computing
while respecting the latter constraints. Many reconfigurable architec-
tures for vision application have been proposed in the past. Yet, few
of them propose a real dynamic adaptation capability to manage sen-
sor heterogeneity. In this paper, a self-adaptive architecture is proposed
to deal with heterogeneous sensors dynamically. This architecture sup-
ports on-the-fly sensor switch. The architecture of the system is self-
adapted thanks to a system monitor and an adaptation controller. A
stream header concept is used to convey sensor information to the self-
adaptive architecture. The proposed architecture was implemented in
Altera Cyclone V FPGA. In this implementation, adaptation of the archi-
tecture consists in Dynamic and Partial Reconfiguration of FPGA. The
self-adaptive ability of the architecture has been proved with low resource
overhead and an average global adaptation time of 75 ms.

1 Introduction

The performance capability of modern embedded vision system is increasing day
by day. Requirements of a vision system mostly depend on the application of
the system, and priorities on performance criteria will be different whether it is
for public, automotive, medical or military purpose. In military application, for
instance, vision systems have to deal with multiple and various environmental
and operational contexts. They should handle all luminosity conditions, be it
day, night, indoor or outdoor environment. The operational context could either
be surveillance, tracking or targeting.
c© Springer International Publishing Switzerland 2016
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Most of time, both industrial and academic architecture of embedded vision
system integrate only one single image sensor. The widely used and known one
is the CMOS color sensor. This sensor can capture and produce a color digital
picture [1]. However, the CMOS color sensor is not sufficient to face the vari-
able environmental and luminosity context. The vision system has to integrate
different types of sensor such as color, infrared or intensified light sensor. These
sensors differ in many characteristics such as the spectral band, the Field of
View (FOV), the frame resolution, the frame rate or even the pixel size. This
sensor variety makes difficult the architecture designing. Actually, in the case of
heterogeneous sensors vision system, the processing architecture has to carry out
different types of data at different frequencies. While general purpose processor-
based systems are often designed for uniform data processing, reconfigurable
computing [2] offers the possibility to carry out heterogeneous data processing.

Many reconfigurable hardware-based or reprogrammable software-based solu-
tions have been proposed previously [3–5]. Nevertheless, these architectures do
not support dynamic replacement of the sensor. The real challenge that we want
to tackle here is the dynamic adaptability of the architecture in a heteroge-
neous multi-sensor vision system. The expected system should be able to adapt
its processing architecture dynamically to manage the on-the-fly replacement of
the sensor.

In this paper, we propose a novel self-adaptive architecture for heterogeneous
sensors vision system. The architecture can self-adapt its hardware organization
in response to a dynamic switch of the sensor. A stream header conveying infor-
mation about the sensor is included in the image stream. This information is used
to adapt the processing architecture according to the sensor characteristics.

The paper is organized as follows. An overview of related works is given in
Sect. 2. The new self-adaptive architecture and its features are presented in Sect. 3
while the experimental prototype for evaluation is presented in Sect. 4. Experi-
mental results are discussed in Sect. 5. Finally, Sect. 6 concludes and announces
perspectives for future work.

2 Multi-sensor Embedded Vision System

Photo and video camera are the most widely known vision systems. In these
systems, as like as in most of the vision systems, either academic or industrial
one, there is only one CMOS color sensor. The CMOS sensor is good enough
for day vision purpose, but it is not sufficient for variable luminosity condition.
Several other sensors, such as infrared or low-light sensor, are used for medical,
automotive or military applications. Infrared sensors, also known as thermal
sensors, are sensible to the infrared waves which stem from heat objects. The
specificity of the low-light sensors is their ability to work in very low luminosity
condition.

The multi-sensor concept has also been used in stereo vision systems [6,7].
In these vision systems, there are two image sensors, but both of them have the
same characteristics. They also have the same image processing for both sensors
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and the processing for both sensors is done in parallel. Our aim is to propose
an adaptive processing architecture for vision system involving different kind of
sensor.

Processing architecture in many embedded vision system is based on a soft-
ware solution with a DSP or general purpose processor. Most of the embedded
vision systems use an ARM-based video processing core, with an additional DSP
and specific image&video co-processing cores [8]. These solutions are mostly
designed for a given sensor, which is often a color sensor. Their poor flexibility
performance is not suitable for multiple heterogeneous sensor vision systems.

Reconfigurable hardware, such as Field Programmable Gate Arrays (FPGA),
are good trade-off for high performance, high flexibility and reasonable power
consumption. Many works have explored FPGA-based reconfigurable architec-
ture for vision application [3–5]. In [4], Dynamic and Partial Reconfiguration
(DPR) is used to evaluate acceleration performance of some image processing in
FPGA implementation. In [5], authors explore DPR to implement an automatic
white balance algorithm. Both works do not deal with heterogeneous sensors.

The DreamCam proposed in [3] presents an FPGA implementation for Har-
ris&Stephens corner and edge detection algorithm. This work proposes a recon-
figurable solution for embedded cameras involving heterogeneous sensors. How-
ever, the architecture can be only statically reconfigured when the sensor is
switched. For a given image processing chain, the architecture enables only para-
meter modifications. The sensor can not be switched dynamically.

Our work attempts to provide a self-adaptive architecture that supports
vision system involving multiple and heterogeneous sensors. This architecture
can dynamically adapt its organization to enable dynamic switch of the sensor.

3 Self-Adaptive Multi-Sensor System

A multi-sensor vision system involves more than one image sensor. There are
many types of sensor that a vision system could integrate. Table 1 gives some
examples of existing sensors and their characteristics.

Table 1. Example of sensors characteristics

Type Spectral band Color space Resolution Frame rate
(fps)

Pixel size
(bit)

Color [9] visible RGB 1280× 960 45 3× 12

Low-light [10] visible Grayscale 1280× 1024 60 10

Infrared [11] infrared Grayscale 640× 480 120 12

The proposed self-adaptive architecture is supposed to manage such a variety
of sensors mentioned in Table 1. In our framework, we suppose that only one
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Fig. 1. Overall architecture of the vision system

sensor is active at a time while the remaining sensor are unused. The overall
architecture of the vision system is presented in Fig. 1.

The system is mainly composed of a frame grabber including the sensor, the
proposed self-adaptive architecture, visualization hardware and external comput-
ing resources such as off-chip memory. The Sensor frame grabber is a removable
part that can be replaced when the sensor has to be changed.

3.1 Sensor Frame Grabber

Whatever is the sensor type, each Sensor frame grabber has the same hardware
organization. Figure 2 depicts the sensor frame grabber organization.

Sensor frame grabber 

Image 
sensor 

Frame grabber processing 

Frame 
Grabbing IP 

Data 
packaging 

Header 
Encoder 

Sensor 
I/F 

Pixel data 

Fig. 2. Architecture of the sensor preprocessing

The image sensor is followed by the Frame Grabbing Intellectual Property
(IP). This IP is specific to the image sensor and it is used to drive the latter and
readout the pixel values from the imager’s pixel array. Then the image frame
data are gathered into packets and sent to the processing architecture by the
communication core. The novelty that this work brings into the Sensor frame
grabber is the Header Encoder.
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This Header Encoder adds a Stream Header to the existing image stream.
This Stream Header is used as an identity card of the sensor. It conveys the
sensor’s characteristics to the Self-adaptive architecture.

3.2 Stream Header

Packet header concept is widely used in Network-On-Chip to add a description
of the packet within the packet. In real time vision application, this concept was
used to add a description of the image frame into the image packets [12]. In our
system, the Header Encoder is placed next to the Data packaging processing in
the Sensor frame grabber. The Stream Header does not need any extra datapath.
It is integrated into the image stream so that the image data and the Stream
Header data use the same datapath.

The Stream Header contains information that intends to be used to adapt
the image processing in the Self-adaptive architecture. The Stream Header is
mainly composed of the sensor’s characteristics. Its details are given in Fig. 3. In
this figure, frame synchronizations are presented in blue arrow. They announces
the beginning of a frame. The Stream Header in inserted between the frame
synchronization and the image frame data.

Sensor 
ID Resolution width Resolution height Frame rate 

0 1 3 14 25 31

Sensor 
Type 

timeline 

Image frame 
synchronization 

Header Image frame 

Fig. 3. Stream Header data format

The Stream Header is composed of five data. There are the sensor ID, the
sensor type, the resolution separated into resolution width and resolution height
and finally the frame rate. The sensor ID has two functions. In one hand, it is
used to recognize the given sensor among several sensors that the vision system
is ought to deal with. In other hand, the sensor ID will be used by the Self-
adaptive architecture to detect when the sensor is switched. The sensor type is
the main information that is used to adapt the image processing.

3.3 Self-Adaptive Architecture

Image frame data and Stream Header are then processed in the Self-adaptive
architecture. Figure 4 depicts the Self-adaptive architecture and its components.
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Fig. 4. Self-adaptive architecture

Input image stream coming from the Sensor frame grabber is collected through
the Sensor interface (I/F), then processed in the processing area, and finally
sent to the visualization hardware through the Visualization interface. Frame
buffers are used between the processing area and the external communication
interface both sensor and visualization sides, in order to separate the pixel clock
frequencies.

The adaptation brain of the Self-adaptive architecture is composed of four
main components: Header Decoder, System Monitor, Adaptation Controller and
Partial Reconfiguration Manager (PR Manager).

The input image stream is first introduced in the Header Decoder. The
Header Decoder extracts data from the Stream Header. The extracted data is
then sent separately to the System Monitor. The output image frame from the
Header Decoder does not contain the Stream Header anymore, only the image
data goes through the processing area.

All the image processing are implemented in the processing area. This area
is divided into two parts: Reconfigurable processing area and Static processing
area. Actually, the image processing chain to process the sensor data can be
divided into two parts. The first part of the processing depends on the sensor
type whereas the second one is common for every sensor. Image processing chain
of two different sensors differs only in the first part. Details on the considered
image processing chains in this work are given in the case study in Sect. 4.

When the sensor is switched, only the first part of the image processing chain
is modified. Hence, this part is placed in the Reconfigurable processing area.
The adaptation of the first part consist in Dynamic and Partial Reconfiguration
(DPR) of the Reconfigurable processing area. In the second part, only resolution
parameters are adapted without modifying the rest of image processing chain.
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3.4 Adaptation Process

The System Monitor collects Stream Header data coming from the Header
Decoder. It has local registers where these data can be saved. The System Mon-
itor first compares the previously saved sensor ID and the new sensor ID. If the
two IDs are not the same, it turns a new-sensor flag to the active state to inform
the Adaptation Controller that the sensor has been switched. Then it saves the
new Stream Header data in the local registers.

The System Monitor has also an additional register to save the current sensor
type of the system. This information will be used by the Adaptation Controller.
Finally, the System Monitor transmits the saved data to the Adaptation Con-
troller.

The Adaptation Controller is responsible for the adaptation of the image
processing when the sensor is switched. The adaptation process follows the Finite
State Machine (FSM) presented in Fig. 5.
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condition 
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Fig. 5. Finite State Machine of the adaptation process

This FSM has five states. Initially, the system starts with the default Idle
state. If the new-sensor flag is active, it means that the sensor has been switched.
Consequently, the FSM goes to the Check type state. In this state, the current
sensor’s type is compared to the new sensor’s type. If the new one is different
than the current one, then the Wait sync state is reached. Otherwise, the FSM
returns to Idle state.

In the Wait sync state the FSM waits for the next image frame synchro-
nization before sending a PR request. Actually, if the Partial Reconfiguration is
launched in the middle of the processing of a frame, it will corrupt the output
image stream. Once an image frame synchronization has passed, the Adaptation
Controller fires PR request to the PR Manager (Launch PR). The Adaptation
Controller also gives the new sensor’s type so that the PR Manager configures
the right image processing chain in the Reconfigurable processing area.
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When the Partial Reconfiguration has finished successfully, the System Mon-
itor saves the new sensor’s type (Save status) before coming back to the Idle
state. In case of a PR failure, the FSM returns to Check type state in order to
restart the adaptation process.

4 Experimental Prototyping

Evaluation of the proposed Self-Adaptive architecture concept has been made
in a case of study with two sensors. A test bench with one color sensor and one
infrared sensor has been used for experimental purpose only. Figure. 6 depicts the
Self-adaptive architecture with this test bench. In this test bench, the selection
of the sensor is made by a manual switch. This test bench intends to make easy
the technical manipulations to switch between the two sensors, otherwise the
concept of the Self-adaptive architecture remains unchanged.
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Memory 

Output image 
frame 

Memory  

image frame 

Sensor selector test bench 

Sensor frame grabber 

Color Sensor 

Sensor frame grabber 

Infrared Sensor 

Input image 
frame 

Fig. 6. Architecture of the vision system with the test bench

Image processing chain for color and infrared sensor of this case of study are
given in Fig. 7. The Reconfigurable Area contains the image processing that are
specific to the sensor. These processing perform image restoration.

In the case of the color sensor, these processing are White Balance, Demo-
saicing and finally color space transform processing to switch from RGB space
to YCbCr space. In the case of the infrared sensor, the restoration processing
are Non-Uniformity-Correction (NUC) and Median Filter processing.

Image quality enhancement processing are common for both color and infrared
sensor so they are placed in the static area. These processing are Digital zoom
and frame size readjusting, Contour Enhancing and Contrast Enhancing.
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Fig. 7. Image processing chain for color(a) and infrared(b) sensor

5 Evaluation and Results

The proposed architecture was implemented in a Cyclone V Altera FPGA [13].
In FPGA implementation, area occupation of an architecture is given in terms
of logical and memory resources, which are look-up-tables(LUT), registers and
memory blocks.

This work highlights the advantage of the partial reconfiguration for resource
optimization on a recent FPGA. Instead of using two static processing areas for
the changing part of the image processing chain, resources of the same Recon-
figurable processing area are temporally multiplexed for both color and infrared
sensor. The size of Reconfigurable processing area depends on the resource
requirements of the design that is deployed in the Reconfigurable processing
area. This area shall include all the resources required by anyone of the two
reconfigurable processing chains. Usually, the reconfigurable area includes little
bit more resources than the exact required amount.

Table 2 gives details about the selected reconfigurable area in the proposed
prototype. It gives available resources in the reconfigurable area. Percentage
between brackets in Table 2 represents the fraction of resources used by each
reconfigurable processing chain within the total resources available in the recon-
figurable area. The selected reconfigurable area has a 16-columns width and a
51-rows height.

Table 2. Resource utilization of processing chain

ALUT Register Memory (bit)

Reconfigurable area 12 240 24 480 1 044 480

Reconfigurable color processing 1 733 (14 %) 1 678 (6.9 %) 122 800 (12 %)

Reconfigurable infrared processing 1 747 (14 %) 5 055 (21 %) 98 304 (9.4 %)
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We can see in Table 2 that a number of resources in the reconfigurable area
is extremely higher than the resources required from anyone of the two reconfig-
urable processing chains. This unusual extra resources in the reconfigurable area
is due to the limitation of the Partial Reconfiguration flow in Altera FPGA. A
smaller area than the proposed one in Table 2 leads to a compilation failure.

In Xilinx Partial Reconfiguration flow, the reconfigurable area can be finely
defined, so that we get small amount of unused resources. In [5], authors relate
that only 25 % of unused resources in the PR area is enough to avoid compilation
failure.

Resource overhead of the adaptation components has also been evaluated
and reported in Table 3. We can see in these results that the total resource
overhead of the adaptation components are quite insignificant compared to the
resource utilization of the full design. This low resource overhead is justified by
the modest complexity of the proposed adaptation process.

Adaptation times are given in Table 4. This table gives adaptation time in
milliseconds for a system clock of 100 MHz. Most of the adaptation time is
due to the partial reconfiguration of the FPGA. An average adaptation time
of 75 ms has been measured both for color to infrared and infrared to color sen-
sor switches. The Adaptation process time includes all the states of the FSM of
the Adaptation Controller excluding the partial reconfiguration time.

Partial bitstreams of the two Reconfigurable processing areas has not the
same size. The color partial bitstream is about 5.8 MB whereas the infrared
one is about 5.7 MB. As the two partial bitstreams has not the same size, the
reconfiguration time differs lightly between the two adaptations.

Table 3. Resource overhead of adaptation components

ALUT Register Memory (bit)

Full design 24 947 31 945 1 726 056

Header encoder 43 5 0

Header decoder 12 24 0

System monitor 8 28 0

Adaptation controller 31 22 0

PR manager 22 15 0

Total adaptation components 116 (0,5%) 94 (0,3%) 0

Table 4. Adaptation times

Time (ms)

Header decoding 0.00003

Adaptation process 0.00015

PR color-to-infrared 75.02

PR infrared-to-color 75.10
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A partial reconfiguration time of 75 ms is to long compared to usual times
in Xilinx FPGA-based designs. This time represents about two image frames
time in a 25 fps system. This unusual long time is due to the limitation of the
partial reconfiguration in recent Altera FPGA. Actually, Altera FPGAs of the
series V offers only a column-wise partial reconfiguration like the first Virtex-II
Xilinx FPGAs [14]. However, two frames time is acceptable for sensor switch in
non-constrained applications. Future works will focus on implementation of this
architecture in a recent Xilinx FPGA enabling partial reconfiguration such as
series 7 FPGAs, to get better reconfiguration performance.

6 Conclusion

In this paper, we have presented a self-adaptive architecture for multi-sensor
vision system. The novelty of this work is that it proposes a new adaptive process-
ing architecture which can deal with multiple and heterogeneous sensors. This
architecture can dynamically adapt itself as a consequence of on-the-fly sensor
switch. This self-adaptive architecture is based on a stream header concept and
an adaptation controller to make the system aware of the sensor switch and
hence to adapt the processing architecture.

This work offers a performance evaluation of the proposed concept in an
FPGA implementation. The architecture was implemented in a Cyclone V Altera
FPGA. Processing architecture is dynamically adapted by Dynamic and Partial
Reconfiguration feature of FPGA. Rather than a performance comparison, the
aim of this work is to give the proof of concept above all.

An average adaptation time of 75 ms has been measured. This time is mostly
representative of the partial reconfiguration time. Because of the limitation of
the Altera’s newly released partial reconfiguration technology, reconfiguration
times are high. Nevertheless, this time remains admissible for non-constrained
applications. Resource overhead due to self-adaptation is almost insignificant
compared to the resources utilization of the full design. The concept of this
architecture is a promising start for further work on self-adaptive vision systems.

This work will be extended for multi-sensor vision systems with multiple and
parallel streams, such as color-infrared image fusion systems. Future works will
focus on improvement of the monitoring solution to enable a full self-awareness
and environment-awareness to the vision system.
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Abstract. We study search by quantum walk on a two-dimensional grid
using the algorithm of Ambainis, Kempe and Rivosh [AKR05]. We show
what the most natural coin transformation — Grover’s diffusion trans-
formation — has a wide class of exceptional configurations of marked
locations, for which the probability of finding any of the marked loca-
tions does not grow over time. This extends the class of known excep-
tional configurations; until now the only known such configuration was
the “diagonal construction” by [AR08].

1 Introduction

Quantum walks are the quantum counterparts of classical random walks [Por13].
They have been useful for designing quantum algorithms for a variety of problems
[CC+03,AKR05,MSS05,BS06,Amb07]. In many of those applications, quantum
walks are used as a tool for search.

To solve a search problem using quantum walks, we introduce the notion of
marked locations. Marked locations correspond to elements of the search space
that we want to find. We then perform a quantum walk on the search space with
one transition rule at the unmarked locations, and another transition rule at the
marked locations. If this process is set up properly, it leads to a quantum state
in which marked locations have higher probability than the unmarked ones. This
state can then be measured, finding a marked location with a sufficiently high
probability. This method of search using quantum walks was first introduced in
[SKW03] and has been used many times since then.

We study search by quantum walk on a finite two-dimensional grid using
the algorithm of Ambainis, Kempe and Rivosh (AKR). The original [AKR05]
paper proves that after O(

√
N log N) steps, a quantum walk with one or two

marked locations reaches a state that is significantly different from the initial
state. Szegedy [Sze04] has generalized this to an arbitrary number of marked
locations. Thus, quantum walks can detect the presence of an arbitrary number of
marked locations. [AKR05] also shows that for one or two marked locations, the
probability of finding a marked location after O(

√
N log N) steps is O(1/ log N).

Thus, for one or two marked locations, the AKR algorithm can also find a
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marked location. For a larger number of marked locations, this is not always the
case. Ambainis and Rivosh [AR08] have found an exceptional configuration of
marked locations for which AKR algorithm fails to find any of marked locations.

A step of the AKR algorithm consists of two transformations: the coin-flip
transformation, which acts on internal state of the walker and rearranges the
amplitudes of going to adjacent locations, and the shift transformation, which
moves the walker between the adjacent locations. The original AKR algorithm
uses D – Grover’s diffusion transformation – as the coin transformation for the
unmarked locations and −I as the coin transformation for the marked locations1.
Another natural choice for the coin transformation is D for the unmarked loca-
tions and −D for the marked locations.

Nahimovs and Rivosh [NR15] has analysed the dependence of the running
time of the AKR algorithm on the number and placement of marked locations
and showed that the algorithm is inefficient for grouped marked locations (mul-
tiple marked locations placed near-by). They showed that for a k × k group of
marked locations, the AKR algorithm needs the same number of steps and has
the same probability to find a marked location as for 4(k − 1) marked locations
placed as the perimeter of the group (with all internal locations being unmarked).
The reason for the inefficiency is the coin transformation used by the original
AKR algorithm. The original coin transformation does not rearrange direction
amplitudes within a marked location. As a result, marked locations inside the
group have almost no effect on the number of steps and the probability to find
a marked location of the algorithm.

We try to solve the above problem by replacing the original coin transforma-
tion by one which rearranges amplitudes within a marked location. We use the
most natural choice of such coin transformation — Grover’s diffusion transfor-
mation. We show what while the modified algorithm works well for some of the
“problematic” configurations, it has a wide class of exceptional configurations of
marked locations, for which the probability to find any of marked locations does
not grow over time. Namely, we prove that any block of marked locations of size
2m× l or m×2l, that is the block with one of its sides consisting of even number
of marked locations, is the exceptional configuration. This extends the class of
known exceptional configurations; until now the only known such configuration
was the “diagonal construction” by [AR08].

The AKR algorithm is very generic and can be adapted to other types of
graphs. In the appendix we describe the AKR algorithm for general graphs and
generalize the exceptional configurations that have been found.

2 Quantum Walks in Two Dimensions

Suppose we have N items arranged on a two dimensional grid of size
√

N ×√
N .

We denote n =
√

N . The locations on the grid are labelled by their x and
y coordinates as (x, y) for x, y ∈ {0, . . . , n − 1}. We assume that the grid has
1 According to authors of [AKR05], this coin transformation was chosen because it

leads to a simpler proof.
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periodic boundary conditions. For example, going right from a location (n−1, y)
on the right edge of the grid leads to the location (0, y) on the left edge of the
grid.

To introduce a quantum version of a random walk, we define a location
register with basis states |i, j〉 for i, j ∈ {0, . . . , n − 1}. Additionally, to allow
non-trivial walks, we define a direction or coin register with four basis states,
one for each direction: | ⇑〉, | ⇓〉, | ⇐〉 and | ⇒〉. Thus, the basis states of the
quantum walk are |i, j, d〉 for i, j ∈ {0, . . . , n − 1} and d ∈ {⇑,⇓,⇐,⇒}. The
state of the quantum walk is given by:

|ψ(t)〉 =
∑
i,j

(αi,j,⇑|i, j,⇑〉 + αi,j,⇓|i, j,⇓〉 + αi,j,⇐|i, j,⇐〉 + αi,j,⇒|i, j,⇒〉).

A step of the quantum walk is performed by first applying I ⊗C, where C is
unitary transform on the coin register. The most often used transformation on
the coin register is the Grover’s diffusion transformation D:

D =
1
2

⎛
⎜⎜⎝

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎞
⎟⎟⎠ .

Then, we apply the shift transformation S:

|i, j,⇑〉 → |i, j − 1,⇓〉
|i, j,⇓〉 → |i, j + 1,⇑〉
|i, j,⇐〉 → |i − 1, j,⇒〉
|i, j,⇒〉 → |i + 1, j,⇐〉

Notice that after moving to an adjacent location we change the value of the direc-
tion register to the opposite. This is necessary for the quantum walk algorithm
of [AKR05] to work.

We start the quantum walk in the state

|ψ0〉 =
1√
4N

∑
i,j

(|i, j,⇑〉 + |i, j,⇓〉 + |i, j,⇐〉 + |i, j,⇒〉).

It can be easily verified that the state of the walk stays unchanged, regardless
of the number of steps.

To use the quantum walk as a tool for search, we mark some locations. For
the unmarked locations, we apply the same transformations as above. For the
marked locations, we apply −I instead of D as the coin flip transformation. The
shift transformation remains the same for both the marked and the unmarked
locations.

Another way to look at the step of the algorithm is that we first perform a
query Q transformation, which flips signs of amplitudes of marked locations, then
conditionally perform the coin transformation (I or D depending on whether
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the location is marked or not) and then perform the shift transformation S. In
the case of the modified coin (D for unmarked locations and −D for marked
locations), the step of the algorithm consists of the query Q followed by D
followed by S.

If there are marked locations, the state of the algorithm starts to deviate
from |ψ(0)〉. It has been shown [AKR05] that after O(

√
N log N) steps, the inner

product 〈ψ(t)|ψ(0)〉 becomes close to 0.
In the case of one or two marked locations, the AKR algorithm finds a

marked location with O(1/ log N) probability. The probability is small, thus,
the algorithm uses amplitude amplification to get Θ(1) probability. The ampli-
tude amplification adds an additional O(

√
log N) factor to the number of steps.

Thus, the total running time of the algorithm is O(
√

N log N).

3 Quantum Walks with Grover’s Coin

The coin transformation used by the AKR algorithm does not rearrange ampli-
tudes within a marked location. As it was shown in [NR15], this results in the
AKR algorithm being inefficient for grouped marked locations.

In this section we consider an alternative coin transformation which rearranges
amplitudes at both the marked and unmarked locations. As the most natural
choice of such transformation we use D and −D as coin for the unmarked and
marked locations, respectively. We refer this coin transformation as Grover’s coin
and the original coin transformation of the AKR algorithm as the AKR coin.

First, we compare the Grover and AKR coins for a
√

k×√
k group of marked

locations (“inefficient” configuration of [NR15]). We run a series of numerical
experiments and demonstrate that in some cases, Grover’s coin works better
than AKR coin.

Next, we show a wide class of exceptional configurations of marked locations,
for which the probability to find any of marked locations does not grow over time.
We explain exceptional configurations based on stationary states of a step of the
algorithm with Grover’s coin.

3.1 AKR Vs Grover’s Coin: Numerical Experiment Results

In this subsection, we compare the AKR algorithm with the Grover and AKR
coins. We consider k marked locations placed as a

√
k ×√

k square and compare
the number of steps and the probability to find a marked location for

√
k ∈

[2, . . . , 10] and grid sizes from 100 × 100 to 1000 × 1000 with step 100.
Table 1 shows the results of numerical simulations for k = 9 (3 × 3 group of

marked locations). As one can see, the algorithm with Grover’s coin needs more
steps, however, it has much higher probability of finding a marked location and,
thus, has smaller total running time (number of steps of the single run of the
algorithm divided by square root of the probability).

Table 2 shows the ratio between running times of the algorithm with the AKR
and Grover coins for k = 9. Table 3 shows the ratio for different k and N . As one
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Table 1. Number of steps, probability and running time for the algorithm with the
AKR and Grover coins for k = 9 and different N .

AKR coin Grover’s coin

Grid size Steps Probability Runtime Steps Probability Runtime

100 156 0.086454 531 318 0.556187 427

200 345 0.066591 1337 653 0.527665 899

300 544 0.063212 2164 993 0.510679 1390

400 749 0.058022 3110 1337 0.499213 1893

500 959 0.055813 4060 1685 0.49053 2406

600 1172 0.055086 4994 2034 0.483683 2925

700 1389 0.052851 6042 2386 0.478038 3451

800 1608 0.051962 7055 2739 0.473336 3982

900 1829 0.049888 8189 3093 0.469256 4516

1000 2052 0.049255 9246 3449 0.465662 5055

can see, the ratio between the running times decreases with k and increases with
N . The below results are obtained by running a series of numerical simulations.
Thus, the interesting and important open question here is to find analytical
formula giving the running time of the algorithm with AKR and Grover’s coins
for a group of marked locations.

Table 2. Ratio between running times for the AKR and Grover coins for k = 9 and
different N .

Grid size AKR coin Grover’s coin Ratio

100 531 427 1.243559719

200 1337 899 1.487208009

300 2164 1390 1.556834532

400 3110 1893 1.642894876

500 4060 2406 1.687448047

600 4994 2925 1.707350427

700 6042 3451 1.75079687

800 7055 3982 1.771722752

900 8189 4516 1.813330381

1000 9246 5055 1.829080119

For k = 4, the quantum walk with Grover’s coin does not find any of the
marked locations. More precisely, the overlap between the current and initial
state of the algorithm never reaches 0, but stays close to 1. Thus, the probability
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Table 3. The ratio between the running times for the AKR and Grover coins for
different k and N .

Grid size k = 9 k = 25 k = 49 k = 81

100 1.243559719 1.016453382 0.771014493 0.624553039

200 1.487208009 1.286351472 1.059413028 0.829787234

300 1.556834532 1.420867526 1.205965909 1.02627451

400 1.642894876 1.480191554 1.268619838 1.123094959

500 1.687448047 1.552176918 1.345050619 1.196541248

600 1.707350427 1.631473534 1.406490777 1.224640497

700 1.75079687 1.655281776 1.458191978 1.275856335

800 1.771722752 1.695495113 1.500870777 1.344321812

900 1.813330381 1.730009407 1.56015444 1.356277391

1000 1.829080119 1.775771891 1.591205438 1.411492122

to find a marked location does not grow with the number of steps. The same
holds for k = 16, k = 36, k = 64, etc., that is, for any k having even

√
k.

Moreover, the same effect holds for any block of marked locations of size 2m × l
and m × 2l, that is, the block with one of it sides consisting of an even number
of marked locations.

Therefore, while the algorithm with Grover’s coin has a smaller running
time, compared to the algorithm with the AKR coin, for some configurations, it
completely fails for other configurations.

3.2 Exceptional Configurations of a Quantum Walk with Grover’s
Coin

As it was mentioned in the previous subsection, the AKR algorithm using
Grover’s coin fails to find any group of marked locations of size 2m× l or m×2l.
In this subsection, we explain this phenomenon. First, we prove that a group
of marked locations of size 1 × 2 (and by symmetry 2 × 1) is an exceptional
configuration. Next, we show how one can extend the argument to any group of
size 2m × l or m × 2l.

Consider a grid of size
√

N × √
N with two marked locations (i, j) and (i, j +

1). Let |φa
stat〉 be a state having amplitudes of all basis states except |i, j,⇒〉 and

|i, j+1,⇐〉 equal to a and amplitudes of basis states |i, j,⇒〉 and |i, j+1,⇐〉 equal
to −3a (see Fig. 1). Then this state is not changed by a step of the algorithm.

Theorem 1. Let locations (i, j) and (i, j + 1) be marked and let

|φa
stat〉 =

∑
i,j,d

a|i, j, d〉 − 4a|i, j,⇒〉 − 4a|i, j + 1,⇐〉.

Then, |φa
stat〉 is not changed by a step of the algorithm with Grover’s coin.
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Fig. 1. Stationary state for 1 × 2 block of marked locations.

Proof. Consider the effect of a step of the algorithm on |φa
stat〉. The query

transformation changes the signs of all the amplitudes of the marked locations.
The coin transformation perform an inversion above the average: for non-marked
locations, it does nothing as all amplitudes are equal to a; for marked locations,
the average is 0, so the inversion results in sign flip. Thus, CQ does nothing
for amplitudes of non-marked locations and twice flips the sign of amplitudes of
marked locations. Therefore, we have

CQ|φa
stat〉 = |φa

stat〉.
The shift transformation swaps the amplitudes of near-by locations. For |φa

stat〉,
it swaps a with a and −3a with −3a. Thus, we have

SCQ|φa
stat〉 = |φa

stat〉.
�

Consider the initial state of the algorithm

|ψ0〉 =
1√
4N

∑
i,j

(|i, j,⇑〉 + |i, j,⇓〉 + |i, j,⇐〉 + |i, j,⇒〉).

It can be written as

|ψ0〉 = |φa
stat〉 + 4a(|i, j,⇒〉 + |i, j + 1,⇐〉),

for a = 1/
√

4N . Therefore, the only part of the initial state which is changed by
the step of the algorithm is

√
4
N

(|i, j,⇒〉 + |i, j + 1,⇐〉).

Now, consider a group of marked locations of size m × 2l. It is equivalent to
m × l groups of marked locations of size 1 × 2. Thus, by repeating the above
construction m× l times, one can build the stationary state for the group. More-
over, if m > 1, then the group of size 2m × l has multiple tilings by groups of
size 2 × 1 and 1 × 2, where each tiling corresponds to a stationary state of the
step of the algorithm.
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3.3 Alternative Construction of Stationary States

In this subsection we describe general conditions for a state to be a stationary
state of the step of ARK algorithm with Grover’s coin. and give an alternative
construction of a stationary state for a group of marked locations.

General Conditions. A stationary state from the previous section has three
properties:

1. All directional amplitudes of unmarked locations are equal. This is necessary
for the coin transformation to have no effect on the unmarked locations.

2. The sum of the directional amplitudes of any marked location is equal to 0.
This is necessary for the coin transformation to have no effect on marked
locations.

3. Direction amplitudes of two adjacent locations pointing to each other are
equal. This is necessary for the shift transformation to have no effect on the
state.

It is easy to see that any state having these three properties is not changed by
the step of AKR algorithm with Grover’s coin and, thus, is a stationary state.

Alternative Construction of a Stationary State. Consider a group of
marked locations of size m × l. Without the loss of generality, let m ≤ l. We
build the stationary state iteratively. First, we set all directional amplitudes of
the unmarked locations to a. Next, we iteratively set amplitudes of the marked
locations. On each iteration we set the amplitudes of one rectangular layer of
the marked locations, starting from the outer layer (the perimeter of the group).
The iteration is as follows:

1. Set two directional amplitudes of a location pointing to its perimeter-wise
neighbours to −a.

2. Set two other directional amplitudes of the location (pointing to the inner
and the outer layers) to a.

Figure 2 illustrates the first iteration of the construction for the group of marked
locations of size 4 × 5. Amplitudes set on step 1 are colored in blue. Amplitudes
set on step 2 are colored in red. Figure 3 shows the resulting stationary state
after all amplitudes are set.

The iteration reduces the size of the unprocessed group of marked locations
from m × l to m′ × l′, where m′ = m − 2 and l′ = l − 2. We repeat the iteration
while m′ ≥ 2. If m′ = 0, we have assigned values to all direction amplitudes and,
thus, have built a stationary state. If m′ = 1, there are three possibilities:

– m′ = l′ = 1. The construction is not possible. The initial group of marked
locations was of odd-times-odd size.

– m′ = 1, l′ > 1, l is odd. The construction is not possible. The initial group of
marked locations was of odd-times-odd size.
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Fig. 2. The first iteration for a group of marked locations of size 4 × 5.

Fig. 3. The stationary state for a group of marked locations of size 4 × 5.

Fig. 4. The stationary state for a group of marked locations of size 4 × 5.
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– m′ = 1, l′ > 1, l′ is even. Fill the remaining block by 1× 2 constructions from
Theorem 1 (Fig. 4 shows this for the block of marked locations of size 1 × 4.).

It is easy to see that for a group of marked locations of size odd-times-even
and even-times-even, the above procedure leads to a state which satisfies all three
properties of the stationary state. First, all amplitudes of unmarked locations
are equal to a. Second, the sum of amplitudes of a marked location is always 0.
Third, direction amplitudes of any two adjacent locations pointing to each other
are equal.

4 Conclusions and Discussion

In this paper we have demonstrated a wide class of exceptional configurations
for the AKR algorithm with Grover’s coin. The above phenomenon is purely
quantum. Classically, additional marked locations result in a decrease of the
number of steps of the algorithm and an increase of the probability of finding a
marked location. Quantumly, as we have demonstrated in the paper, the addition
of a marked location can drastically drop the probability of finding a marked
location.

Another interesting consequence of the found phenomena is that the algo-
rithm with Grover’s coin “distinguishes” between odd-times-odd and even-times-
even groups of marked locations. Moreover, if there are multiple odd-times-odd
and even-times-even groups of marked locations, the algorithm will find only
odd-times-odd groups and “ignore” even-times-even groups. Nothing like this is
possible for classical random walks without adding additional memory resources
and complicating the algorithm. The described phenomenon might have algo-
rithmic applications which would be very interesting to find.

A General Graphs

In this appendix, we overview the stationary states of quantum walks with
Grover’s coin for general graphs.

Quantum Walks on a General Graph

Consider a graph G = (V,E) with a set of vertices V and a set of edges E. Let
n = |V | and m = |E|. Let N(x) be a neighbourhood of a vertex x, that is a
set of vertices x is adjacent to. We define a location register with n basis states
|i〉 for i ∈ {1, . . . , n} and a direction or coin register, which for a vertex vi has
di = deg(vi) basis states |j〉 for j ∈ N(vi). The state of the quantum walk is
given by:

|ψ(t)〉 =
n∑

i=1

∑
j∈N(vi)

αi,j |i, j〉.
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A step of the quantum walk is performed by first applying I⊗C, where C is a
unitary transformation on the coin register. The usual choice of transformation
on the coin register is Grover’s diffusion transformation D. Then, we apply the
shift transformation S:

S =
n∑

i=1

∑
j∈N(vi)

|j, i〉〈i, j|,

which for each pair of connected vertices i, j swaps an amplitude of vertex i
pointing to j with an amplitude of vertex j pointing to i.

We start the quantum walk in the equal superposition over all pairs vertex-
direction:

|ψ0〉 =
1√

n · deg(G)

n∑
i=1

∑
j∈N(vi)

|i, j〉,

where deg(G) =
∑

i deg(vi). It can be easily verified that the state of the walk
stays unchanged, regardless of the number of steps.

To use the quantum walk as a tool for search, we mark some vertices. For the
unmarked vertices, we apply the same transformations as above. For the marked
vertices, we apply −I instead of D as the coin flip transformation. The shift
transformation remains the same for both the marked and unmarked vertices.

Another way to look at a step of the algorithm is that we first perform a
query Q transformation, which flips signs of amplitudes of marked vertices, then
conditionally perform the coin transformation (I or D depending on whether a
vertex is marked or not) and then perform the shift transformation S. In case of
the Grover’s coin the step of the algorithm is the query Q followed by D followed
by S.

Stationary States of the Quantum Walk with Grover’s Coin for
General Graphs

Consider a graph G = (V,E) with two marked vertices vi and vj . Let vertices be
connected and let each of them be connected to some other k vertices. Let |φa

stat〉
be a state having amplitudes of all basis states except |i, j〉 and |j, i〉 equal to
a and amplitudes of basis states |i, j〉 and |j, i〉 equal to −ka (see Fig. 5). Then
this state is not changed by a step of the algorithm with Grover’s coin.

Fig. 5. Symmetric stationary state for 2 marked vertices.
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Theorem 2. Let G = (V,E) be a graph with two marked vertices i and j; let
(vi, vj) ∈ E and N(vi) = N(vj) = k + 1; and let

|φa
stat〉 =

n∑
i=1

∑
j∈N(vi)

|i, j〉 − (k + 1)a(|i, j〉 − |j, i〉).

Then, |φa
stat〉 is an eigenstate of a step of the quantum walk on G with Grover’s

coin.

Proof. Consider the effect of a step of the algorithm on |φa
stat〉. The query

transformation changes the signs of all amplitudes of the marked vertices. The
coin flip performs an inversion above the average: for unmarked vertices it does
nothing as all amplitudes are equal to a; for marked vertices the average is 0, so
the inversion results in sign flip. Thus, CQ does nothing for amplitudes of the
unmarked vertices and twice flips the sign of amplitudes of the marked vertices.
Therefore, we have

CQ|φa
stat〉 = |φa

stat〉.
The shift transformation swaps amplitudes of adjacent vertices. For |φa

stat〉, it
swaps a with a and −ka with −ka. Thus, we have

SCQ|φa
stat〉 = |φa

stat〉.

�
The initial state of the algorithm |ψ0〉 can be written as

|ψ0〉 = φa
stat + (k + 1)a(|i, j〉 + |j, i〉),

Fig. 6. Symmetric stationary state for 3 marked vertices.
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Fig. 7. Symmetric stationary state for 4 marked vertices.

Fig. 8. Generic stationary state for 3 marked vertices.

for a = 1/
√

n · deg(G). Therefore, the only part of the initial state, which is
changed by a step of the algorithm, is

k + 1√
n · deg(G)

(|i, j〉 + |j, i〉).

Next figures show similar constructions for three (Fig. 6) and four (Fig. 7)
marked vertices. We give them without a proof (which is similar to the two
marked vertex case). It is easy to see how one can extend the construction to
any number of marked vertices.

The above constructions are symmetric in the sense that each of the marked
vertices has the same number of neighbours. One can also construct a stationary
state without this restriction. The Fig. 8 shows the general stationary state of
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three marked locations. The parameters of the construction (number of adjacent
vertices) are restricted by Eq. 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

l12 + l12 = m1

l21 + l23 = m2

l31 + l32 = m3

l12 = l21

l23 = l32

l31 = l13

. (1)

For example, for l12 = l21 = 1, l23 = l32 = 2 and l31 = l13 = 3 we will have
m1 = 4, m2 = 3 and m3 = 5.

Again, it is easy to see how one can extend the construction to any number
of marked vertices.
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Abstract. Nowadays, a lot of data are produced every second and they
need to be processed immediately. Processing such unbounded streams
of data is often run in a distributed environment in order to achieve
high throughput. The challenge is the ability to predict the performance-
related characteristics of such applications. Knowledge of these proper-
ties is essential for decisions about the amount of needed computational
resources, how the computations should be spread in the distributed
environment, etc.

In this paper, we present performance analysis of distributed stream
processing applications using Colored Petri Nets (CPNs). We extend our
previously proposed model with processing strategies which are used to
specify performance effects when multiple tasks are placed on the same
resource. We also show a detailed conversion of the whole proposed model
to the CPNs. The conversion is validated through simulations of the
CPNs which are compared to real streaming applications.

Keywords: Stream processing · Performance analysis · Data stream
model · Colored Petri Nets

1 Introduction

1.1 Motivation

Nowadays, a lot of data are produced every second. Also such a huge amount of
data often need to be reprocessed later on. There are two basic ways of doing
so. The data can be processed in batches, i.e., the data are stored at first, and
then the whole dataset is processed. However, there are scenarios when the data
need to be processed immediately as soon as they are acquired, e.g., analyzing
surveillance video footage. For such types of applications, the so called stream
processing is appropriate.

The base of a stream processing application is a set of tasks (atomic com-
putation units) that are linked by precedence constraints. This is often called
workflow [2]. The tasks are used to process data streams (potentially infinite
sequences of data items) which enter the application. In order to achieve high
c© Springer International Publishing Switzerland 2016
J. Kofroň and T. Vojnar (Eds.): MEMICS 2015, LNCS 9548, pp. 93–106, 2016.
DOI: 10.1007/978-3-319-29817-7 9
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throughput, the applications can be deployed in a distributed environment. In
such cases, the tasks are placed on individual computational resources, and the
data streams are sent between the resources so that the required operations can
be evaluated.

For example, let there be a stream of images uploaded to a social network.
Suppose we need to extract visual features of the images, classify the images,
annotate them, or detect faces in them. Some of these tasks can be performed
independently of each other, but for some of them, precedence constraints have
to be employed. For instance, features of an image must be extracted before the
image is annotated.

When building streaming applications, performance metrics (such as delay
or throughput) of the final system are often big concern. For instance, one may
require that each data item can be fully processed in five seconds, i.e., the max-
imum acceptable delay of the whole process is five seconds. Whether or not the
system is able to meet such criteria is not always obvious in complex appli-
cations. The performance metrics heavily depend on the number of allocated
resources and on the way how the tasks are spread throughout the network.
In case of multiple tasks at a single resource, the task prioritization policy has
a considerable impact on the performance too. For instance, the delays may be
improved by prioritizing costly tasks so that they can keep up with the incoming
data items.

It may be too late to start measuring the performance characteristics once
the application has been deployed in a distributed environment since it can be
difficult or expensive to deal with load balancing then. A more appropriate time
to be interested in the performance is before the deployment when decisions
about the required resources and tasks assignment to the resources are made.

Therefore, it is important to be able to carry out performance analysis of
streaming applications without the need to deploy them. The performance analy-
sis can serve to derive characterictics of different settings of the system, e.g., dif-
ferent numbers of used resources, different task placements, or different arrival
rates of data items in the streams. Considering all these aspects is a key to
successful planning of distributed stream processing applications.

1.2 Objectives

In this paper, we present performance analysis of distributed stream processing
applications using Colored Petri Nets (CPNs) [7]. We focus mainly on multi-
media data streams and on detecting various events in them. We extend our
previously proposed model with processing strategy which is especially useful
when there are multiple tasks placed on the same resource. We also show a
detailed conversion of the whole proposed model to the CPNs. The conversion is
validated through simulations of the CPNs which are compared to real streaming
applications.
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1.3 Related Work

A lot of work has been devoted to models and performance analysis of distributed
computing systems.

Targeted at streaming applications in embedded systems, several formalisms
have been proposed ([3–5]). They all work with irregular arrival patterns of data
streams which cannot be described using standard periodic or sporadic event
models. They make use of the arrival function for a description of a variable
number of data items that can arrive to a particular component of the sys-
tem each time unit. This approach allows to define a rich collection of arrival
sequences.

These approaches are intended for multiprocessor architectures. Therefore
they do not consider network operations such as data transfers between resources.
The analytical methods focus on predicting maximal/minimal bounds of the sys-
tems whereas we want to analyze also the expected (most probable) behavior of
the applications. The approaches do not provide automatic support for features
typical for distributed systems, e.g., task replication. In addition, each task is
supposed to emit a new data item for each processed data item. This is a limiting
factor since we work with event detection tasks which emit new data only if an
event is detected.

In [2], an extensive survey of models and algorithms for workflow scheduling
is given. They organize various characteristics of the applications into three
components: the workflow model, the system model, and the performance model.

Another survey of workflow models is carried out in [11]. They propose several
novel taxonomies of the workflow scheduling problem, considering five facets:
workflow model, scheduling criteria, scheduling process, resource model, and
task model.

Both surveys provide a general structured look on the known results in the
area of workflow modelling and scheduling. They do not mention any approaches
to handle variable processing costs of a single task nor variable data sizes output
by a single task. Also, the tasks are assumed to emit a new data item for each
processed data item. In our research, we focus on a specific area of workflow
systems (event detection in multimedia streams) whose characteristics are not
completely dealt with by the current approaches.

Modelling and evaluation of processing strategies is considered in the papers
mentioned above too. In [3], a processing strategy based on the fixed task prior-
ity and length of queues is studied. Event count automata [4] allow to specify a
variety of processing strategies, however, a systematic way is not provided. Peri-
odic schedules [2] provide another way to specify processing strategies. Another
type of specification consists of giving the fraction of the time each processor
spends executing each task [2]. The two previous types of definition do not con-
sider dynamic features of the applications (e.g., variable queue lengths). In our
model, it is possible to define various processing strategies in a formal way while
taking into account also the dynamic properties of running applications.

All the related work above is specifically targeted at streaming applications.
Representatives of a general approach are Petri nets and their extensions which
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have been widely used as tools for analysis of distributed systems. In [10], Queue-
ing Petri Nets are used to estimate throughput in computer networks of modern
data centers. Colored Petri Nets are utilised for analysis of workflow models in
[4,6].

In summary, there are both general and specific models and methods for
performance analysis of stream processing systems. However, we see a lack
of approaches depicting specific features of distributed streaming applications
which deal with multimedia data (e.g., variable processing costs).

2 Model

In this section, we present a model of stream processing applications adopted
to systems working with multimedia data. More details about the model can be
found in our previous work [9]. The model is focused on those aspects of tasks
(atomic computation units), data, and underlying network of resources which
enable us to derive performance qualities of the applications.

The whole model consists of three different perspectives of the applications.
The workflow model describes streams of data and tasks which process the
streams. The system model is used to characterize the infrastructure of the
network of available computational resources. The deployment model puts both
models together and represents a mapping of individual tasks to computational
resources. In addition, the deployment model is used to express processing strate-
gies of the tasks at the resources.

Here is a list of the model features:

– Workflow model
• Workflow graph (task dependencies)
• Processing cost (the cost to process data items)
• Output frequency (how frequently new data items are output)
• Data size (the size of generated data items)

– System model
• Topology of the underlying network (resource connectivity)
• Resources (computational power)
• Connections (bandwidth)

– Deployment model
• Deployment graph (task to resource mapping)
• Processing strategy (task/stream prioritization)

2.1 Workflow Model

The workflow model is based on a directed acyclic graph where nodes repre-
sent tasks, and edges show flow of data streams between the tasks. Nodes with
no income edges represent entry points of the streams to the application. An
example of such a graph is in Fig. 1a.

We consider the following aspects of the tasks and the streams which are cru-
cial for performance analysis. We need to know the processing costs of individual
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data items at each task, i.e., how much computational resources are required.
Other important aspects are sizes of data items transferred between the tasks
and also how frequently the data are transferred (i.e., how often the tasks output
data to their successors).

To capture the variability in processing costs, we define the highest bound of
processing cost cumulatively for individual lengths of data sequences. Formally,
cost(Δ) = x where x is the highest possible number of processing units (e.g.,
CPU cycles) which are needed to process any sequence of data items of length
Δ. Analogically, the cost function can be defined to set the minimal limits. In
addition to the maximal and minimal limits defined above, also the probability
density cost function is specified so that it is possible to work with the distrib-
ution of possible costs during performance analysis.

Similarly, we define the cumulative limits and distribution of data sizes which
are transferred between two given tasks. The output frequency is also specified
by cumulative limits and probabilities of the number of output data items. The
frequency can be based on the number of processed data items, or it can be time
dependent.

Fig. 1. Graph examples of workflow and system models, and a corresponding deploy-
ment model

2.2 System Model

The system model represents the infrastructure of the network of available com-
putational resources. Only two components of this model are differentiated:
computational resources and connections between them. The topology of the
network is modelled by an undirected graph where nodes represent computa-
tional resources, and edges show their connections via the computer network
(see Fig. 1b).

2.3 Deployment Model

Finally, we have to specify which task is placed on which resource. This can be
represented as a directed acyclic graph. Each node is of the form (t, r) where t
is a task and r is a resource where the task is placed. The edges represent flow
of the data. Each task has to be placed on at least one resource. For the cases
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when a task is put on more than one resource, we define two special types of
nodes: (split, r) and (merge, r).

Node (split, r) splits one stream into two or more partial streams. The dis-
tribution of data items to the partial streams is specified by cumulative limits
and probability density function. Node (merge, r) merges two or more streams
output by different instances of the same task. See an example of the deployment
graph in Fig. 1c.

We extend the original model with processing strategies to describe how the
performance is affected when multiple tasks are collocated on the same resource.
The processing strategies are used, for instance, to decide whether and which of
the tasks should be prioritized. Also, the processing strategy takes place when
there are two or more data items to be processed by the same task. The question
may be whether only one data item should be processed at a time or whether the
data items can be processed in parallel. The processing strategy specifies how
much computational power should be dedicated to processing individual data
items at the resource. The assigned computational power is expressed in terms
of processing units which should be subtracted from the remaining processing
cost of a data item.

Let k be the number of tasks at a given resource. Suppose the tasks are
numbered 1 to k. We define

ProcessingStrategyResource(((t11, t12, . . . , t1i1), (t21, . . . , t2i2), . . . ,
(tk1, . . . , tkik))) = ((c11, c12, . . . , c1i1), (c21, . . . , c2i2), . . . , (ck1, . . . , ckik))

(1)

The ProcessingStrategy function returns the amount of processing units which
are subtracted from remaining processing cost of individual data items at the
resource per time unit. Each tuple in the input and output corresponds to a
single task. Elements of the input tuple (tj1, tj2, . . . , tjij ) represent data items
being currently processed by the task j; the order of the data items is given
by their arrival time, i.e., the earliest ones are in the beginning. Each tjm is a
pair (remainingCost, elapsedT ime) where remainingCost denotes the remain-
ing processing cost and elapsedT ime represents the time since the data item
arrived at the task. Elements of the output tuple (cj1, cj2, . . . , cjij ) symbolize
the amount of processing units which are subtracted from remaining processing
cost of corresponding data items of the task j at the resource per a time unit.

This definition allows to specify a wide range of processing strategies. The
strategies can be based on the order in which the data items arrive (e.g., FIFO);
the data items can be prioritized according to their remaining costs (e.g., least
remaining cost); the elapsed time information can be used to prevent items from
starvation.

To give a specific example, suppose there are two tasks A and B placed
on a given resource. Each task processes its data items sequentially (i.e., one
at a time). The task A has a priority over B, and consumes 70 % of available
computational power. Suppose, the resource can process up to 10 processing
units per a time unit. Then
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ProcessingStrategyRes(((tA1, tA2, . . . , tAiA), ())) = ((10, 0, 0, . . . , 0), ()) (2)

ProcessingStrategyRes(((), (tB1, tB2, . . . , tBiB ))) = ((), (10, 0, 0, . . . , 0)) (3)

ProcessingStrategyRes(((tA1, tA2, . . . , tAiA), (tB1, tB2, . . . , tBiB ))) =
((7, 0, 0, . . . , 0), (3, 0, 0, . . . , 0))

(4)

The first and second lines define the behavior when data items of just one
stream are available; they express that 10 processing units of the first data item
in the available stream are subtracted from the remaining processing cost. The
third line describes the situation when data items of both streams are available.
The first data item of the first stream consumes 7 processing units; the first data
item of the second stream consumes 3 processing units.

A similar approach can be adopted to specify also data transfer through
connections. This is useful to define, e.g., how many data items can be transferred
concurrently, or if any stream should be prioritized.

3 Performance Analysis

As soon as an application is described using the presented model, we may pro-
ceed to the performance analysis. For this purpose, the model is converted to a
Colored Petri Net (CPN) [7] which is an extension of the standard Petri nets.

Once the CPN is created, it can be analyzed using state space exploration
techniques (e.g., [8]). If a technique for a full space exploration is used, the state
space explosion problem is likely to emerge [4]. Therefore, we focus on simulation
based techniques in our experiments for the sake of efficiency.

3.1 Colored Petri Nets

Colored Petri Nets [7] is a discrete-event modelling language combining Petri
nets with the functional programming language Standard ML (SML). Petri nets
provide basic primitives for modelling concurrency, communication, and syn-
chronisation; Standard ML provides primitives for the definition of data types
and describing data manipulation. CPNs allow to model a system as a set of
hierarchically related modules; it also has a support for time representation in
the modelled systems.

3.2 Model to CPN

In this part of the paper, we show how an application represented by the pre-
sented model can be described as a Colored Petri Net.

The final CPN is built gradually by creating small modules and joining them
into bigger ones. The structure of the modules is depicted in Fig. 2a. Each mod-
ule is a CPN which is able to communicate with its parent and children. A child
module is represented by a transition (the so called substitution transition) in
its parent. Each non-root module defines its input and output places. Tokens
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of these input and output places are simultaneously present also in the corre-
sponding input and output places of the parent’s substitution transition and vice
versa.

The generic algorithm how the model is converted to the CPN is captured by
Algorithm 1. The CPN is generated in a top-down manner. The application mod-
ule is built at first; then a module for each substitution transition is generated
recursively.

Algorithm 1. Model to CPN
function buildCpn(model) return buildModule(null,model)
function buildModule(substitutionTransition,model)

module ← createModule(substitutionTransition,model)
for all trans ∈ module.getSubstitutionTransitions() do

module.addSubModule(buildModule(trans,model))
return module

Let us explore the individual modules. Note that the provided figures of the
modules are not precise models of CPNs, but they rather depict the schema of
the modules for the sake of simplicity.

At the top of the hierarchy, there is a view of the whole application. On this
level, it can be observed how the streams are sent through connections between
resources (see Fig. 2b). This module is generated according to the deployment
graph. The places are used to keep data items of the streams; the transitions
represent resource and connection modules. Also splits and merges of the streams
can be observed in this module which are defined in the deployment model.

Fig. 2. Model to CPN

The connection module (see Fig. 3a) is used to simulate transfer of data items
between two resources. The contents of the streams are passed by the application
module. Each data item of the input streams carries its remaining data size to
be transferred. Transfer decreases the remaining data size of individual data
items in the input streams based on the policy defined in the deployment model
(processing strategy). Once the remaining data size reaches zero, the data item
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is sent to the corresponding transferred stream whose content is reflected back
to the application module. The connection capacity ensures that the maximum
capacity of the connection specified in the system model is not exceeded per a
time unit.

The resource modules are made of several smaller modules covering the prop-
erties defined for the workflow, system and deployment models. Figure 3b shows
an example of the resource module. Contents of the input streams are passed
by the application module. Once a data item enters the resource module, its
processing cost is generated. Then, the data item enters the process module
which simulates the actual processing according to the processing strategy as
defined in the deployment model. After that, new data items are generated
based on the output frequency policy specified in the workflow model. We can
see that multiple output streams may be generated by a single output module
(Output1). Finally, data sizes are assigned to the new data items. Output3 in
the figure represents a time based output generator which is especially useful
for generating input streams of the system. It does not have any input streams
since it uses just the notion of time to generate new items.

Fig. 3. Connection and resource modules

Figure 4a shows a schema of a processing cost generator. Its task is to gener-
ate a cost for each data item of the input stream which is subsequently used by
the data processing module. The upper and lower limits keep the data of maxi-
mal and minimal cumulative functions respectively. Cost probabilities store data
of the probability density cost function. Cost history contains costs assigned to
recent data items. All these data serve as input to the underlying SML expres-
sions which generate the final cost and update the cost history. In the current
implementation, the cost is created randomly based on the probability density
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cost function, and it is validated whether it fits between the upper and lower
limits. The limits and probabilities are based on the corresponding functions in
the workflow model. Data size generators, data output and split modules are
modelled analogically. Figure 4b shows a module for generating new data items
based on time. The generated time is passed to timer which ensures that the
generate data item transition is enabled after time elapses.

Fig. 4. Cost generator and time-based output frequency

The schema of the data processing module is depicted in Fig. 5. Each data
item of input streams keeps information about its remaining processing cost.
The core functionality of the module is contained within the process transition.
The underlying SML expressions of the process transition are used to decrease
remaining processing units of input data items. The amount of decreased units
is based on the processing strategy defined in the deployment model. Once the
remaining processing units of a data item reach zero, the data item is sent to
the processed stream. The resource capacity ensures that the process transition
can be fired at most once per a time unit.

Fig. 5. Data process module

The final CPN captures all the aspects of the model presented in Sect. 2. As
of now, the conversion of the model to CPN is done manually. In future, we
intend to implement an automatic converter.

4 Experiments

To validate the proposed model and its representation in CPNs, two experiments
were conducted. For each of them, a stream processing application was created
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and deployed in a distributed environment. During the run of the applications,
performance related characteristics were gathered. Also the applications were
modelled using the proposed approach and subsequently converted to a CPN.
After that, simulations of the CPNs were run, and performance related properties
were derived. Finally, the results were compared. The experiments are focused
on the validation of a representation of the processing strategy since this is a
new feature of the proposed model. Other experiments validating the precision
of the model can be found in our previous work [9].

Both the applications consume a stream of images and detect faces in them.
If any faces are found, feature descriptors of the image are extracted (Fig. 6a).
The applications were implemented using the Apache Storm technology [1] and
deployed as a Storm topology in a distributed environment. The Storm cluster
is run on 2 virtual machines, each with 4 available CPUs and 4 GB RAM. The
virtual machines are managed by OpenNebula1 cloud manager (Fig. 6b).

Fig. 6. Experiment graphs

Figure 6c shows the deployment graph. The image generator is placed on
Header where the dataset is present. The face detector is duplicated and placed
on Header and Worker1 so that the images can be processed in parallel. The
split node distributes 70 % of the images to Header and 30 % to Worker1. The
feature extractor receives merged faces stream on Worker1. To model the transfer
of data items between the resources, the FIFO strategy is used, i.e., the data item
with the lowest elapsedT ime is sent. As there are two tasks placed on Worker1,
a processing strategy should be specified. In the experiment #1, both the face
detector and the feature extractor have the same priority. In the experiment #2,
the face detector task is prioritized by adjusting the processes’ priorities in the
1 http://opennebula.org/.

http://opennebula.org/
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operating system. The processing strategy when at least one data item of each
stream is available at the resource is the following:

ProcessingStrategyWorker1(((t11, t12, . . . , t1i1), (t21, t22, . . . , t2i2))) =
((1, 0, 0, . . . , 0), (0.4, 0, 0, . . . , 0))

(5)

where t1k are data items belonging to the face detector, and t2k items belong to
the feature extractor.

During the run of the applications in Storm and also during simulations of
the CPN, delays at the feature extractor were measured, i.e., the time since
an image is output by the image generator until it is processed by the feature
extractor.

In Table 1, we can see the results concerning the maximum (minimum) mea-
sured delays. Each row is labelled by either CPN or Storm; the columns corre-
spond to the two experiments. In the CPN rows, there are the maximum (min-
imum) delays retrieved during the simulation of the CPN. In the Storm rows,
there are the percentages of data items whose delay was equal or less (greater)
than the delay predicted by the CPN. It can be observed that nearly 100 % of
the data items processed by Storm were processed within the limits set by the
CPN. We can also notice a big difference between maximum delays when the
face detector is prioritized or not.

Table 1. Maximum and minimum delays at CPN and Storm

Face det. not prioritized Face det. prioritized

CPN: max delay [ms] 11586 22636

Storm: % of delays ≤ CPN max 99.70 99.97

CPN: min delay [ms] 1447 1536

Storm: % of delays ≥ CPN min 100 100

In Fig. 7, there are relative frequencies of the delays measured in Storm and
retrieved during the CPN simulations. The values for the relative frequencies are
computed as follows. The timeline is separated into time intervals (0.5 s long),
and for each of the intervals, number of data items having the corresponding
delay is counted. Finally, the number is divided by the overall amount of the
data items to obtain the relative frequency. The frequencies are represented as
a continuous line connecting the discrete values.

Figure 7a compares delay frequencies for both experiments measured in Storm;
Fig. 7b depicts the frequencies measured in CPN. It can be observed that the
most probable delays (5–6 s) were correctly predicted by the CPNs. When the
face detector is not prioritized, this peak is more significant both in Storm and
the CPNs. Also the frequency of delays between 2 and 3 s is greater when the
face detector is not prioritized. In case of the face detector prioritization, we can
notice higher frequencies of delays greater than 7 s both in Storm and the CPNs.
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In summary, through CPN simulations, it was managed to predict maximal,
minimal and most probable delays with high accuracy. According to the exper-
iment results, the proposed model and its representation in CPNs can be used
to compare different deployment scenarios of real streaming applications.

Fig. 7. Experiment delays (Exp. #1 – no priority, Exp. #2 – face detector prioritized)

5 Conclusion

In this paper, we present performance analysis of distributed stream processing
applications using Colored Petri Nets. We extended our previously proposed
model with processing strategies which are used to specify performance effects
when multiple tasks are placed on the same resource.

We show a detailed conversion of the whole proposed model to the CPNs.
The accuracy of the model was validated through a couple of experiments dealing
with multimedia data. CPN simulations results were compared to real measure-
ments performed on applications running in a Storm cluster. Our model was
able to predict nearly 100 % of the maximum and minimum delays precisely.
Moreover, it was possible to reliably predict the distribution of the delays using
the proposed methods.
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Abstract. Mesh simplification is often used to create an approximation
of a model that requires less processing time. We present the results of
our approach to simplification, the parallel half edge collapse. Based on
the half edge collapse that replaces an edge with one of its endpoints,
we have devised a simplification method that allows the execution of
half edge collapses on multiple vertex pairs of a mesh in parallel, using a
set of per-vertex boundaries to avoid topological inconsistencies or mesh
foldovers. This approach enables us to remove up to several thousand
vertices of a mesh in parallel, depending on the model and mesh topology.
We have developed an implementation that allows to exploit the parallel
capabilities of modern graphics processors, enabling us to compute a
view-dependent simplification of triangle meshes in real-time.

1 Introduction

Highly detailed polygonal models are commonly used for visually appealing
scenes. The triangle count still poses an important factor in performance consid-
erations. A wide variety of simplification operators have been devised that can
be used to reduce the complexity of 3-d models. Falling back on these operators
a plethora of algorithms and approaches have been developed to create simpli-
fications of given objects. Over the last decade various algorithms have been
presented that are designed to utilize the parallel processing power of modern
GPUs to speed up the simplification process (Papageorgiou and Platis [9]) with
some focussing on calculating the simplified results in real-time such as Hu et al.
[3] or DeCoro and Tatarchuk [4].

We present the results of our approach, the parallel half edge collapse. It
is designed to provide a parallel solution to simplification of manifold triangle
meshes that can be executed on a GPU.

1.1 Previous Work

Hoppe et al. [2] present the edge collapse. This operator replaces an edge of
a triangle mesh with a single vertex, so effectively removing a vertex and one
or two triangles. A more restrictive version is the half edge collapse, where the
c© Springer International Publishing Switzerland 2016
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position of the replacement vertex cannot be freely chosen, but is one of the
endpoints of the collapsed edge. The edge collapse has the disadvantage that it
may create foldovers in the mesh as well as topological inconsistencies [6].

In Hoppe [5], this operator and its inverse - the vertex split - are used to
describe an algorithm to coarsen or refine a mesh. Given a detailed mesh Hoppe
performs a series of edge collapses on it, storing the applied operations in a data
structure. Then the mesh is represented using the coarse version and a series of
refinement operations (vertex splits) that can be used to compute the desired
refinement of the mesh. In Hu et al. [3] (with further explanation in [8]) this
approach is adapted for execution on a GPU. While Hoppe defines a series of
strictly iterative operations, Hu et al. replace Hoppe’s data structure with a
tree that defines dependencies between the precomputed edge collapses/vertex
splits. This improved algorithm allows for a parallel execution and improved
performance.

Another method of simplification is the cell collapse originally described in
Rossignac and Borrell [1]. Here a number of cells is superimposed over the mesh
with all vertices within a cell being combined into a single vertex. While this
allows for fast generation of a coarse mesh, it has the disadvantage of ignoring
the topology of the mesh which can result in low quality simplifications.

DeCoro and Tatarchuk [4] have adapted this approach to be executed on
programmable graphics hardware. Their algorithm executes three passes over
the mesh: cell creation, calculation of replacement position for each cell and
generation of the decimated mesh.

Papageorgiou and Platis [9] present an algorithm that executes multiple edge
collapses in parallel. However, they do not rely on precomputed data structures.
Their approach divides a mesh into a series of independent areas. In each area
an edge collapse can be safely executed without influencing another one. The
algorithm is designed to be executed on a GPU, with the steps of computa-
tion of independent areas and performing a series of edge collapses in parallel
being repeated until the desired simplification is achieved. This speeds up the
computation, but does not provide real-time simplification.

In [10] we presented the concept of our approach, the parallel half edge col-
lapse. In this paper we want to introduce further details of this algorithm and
discuss the results of this approach in detail.

1.2 Algorithm Overview

The parallel half edge collapse aims to provide a view-dependent, real time sim-
plification of a triangle mesh. The goal is to compute the simplification at run-
time without relying on pre-computed operations. The simplification operator
used is the half edge collapse. We determine a set of vertices R that are to be
removed from the mesh and the complementary set S (remaining vertices of
the mesh). Vertices are removed by performing half edge collapses on edges of
the mesh that connect vertices in R with a vertex in S (removing the vertex
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in R and replacing the edge with the vertex in S), while executing as many of
these operations as possible in parallel. To avoid mesh foldovers or topological
inconsistencies - even when neighbouring vertices are removed at the same time
- we compute a set of per-vertex boundaries to determine if a half edge collapse
would cause any of the aforementioned issues. Since only vertices in R that have
a neighbour in S can be removed using this approach, we apply multiple itera-
tions of the parallel half edge collapse until all vertices in R have been processed.
After each iteration, we execute a reclassification step. This analyses the remain-
ing vertices in R taking changes in the topology and surface shape into account
and may move them from R to S to avoid low quality simplifications.

2 Classification

The vertex classification analyses all vertices of a triangle mesh and assigns each
one to either R or S. This step is divided into the vertex analysis and the initial
classification.

Vertex analysis is performed before the simplification. For each vertex V an
error value e(V ) is computed. The initial classification falls back on e(V ), applies
scaling based on camera data like view vector and distance between camera and
vertex and compares the result to a user-defined threshold u which leads to the
creation of S and R.

2.1 Static Vertex Error

The static vertex error is calculated using a geometric error metric. We chose the
average distance between the neighbouring vertices and the tangential plane of
V for this purpose. The tangential plane is constructed from the position of V as
well as the normal vector stored in V and expressed as ax+by+cz+d = 0 with t =
[a, b, c, d]. For each neighbouring vertex Ni with the position n = [nx, ny, nz, 1]
the quadratic distance from the tangential plane d(V,Ni) = (t•n)2 is calculated
with e(V ) being the average quadratic distance.

e(V ) =
∑m

i=1(d(V,Ni))
m

(1)

Since this metric is computed per-vertex and does not take a possible removal
of neighbouring vertices into account, a large user threshold u could potentially
select a large number of - if not all - vertices for removal. This could severely
limit parallelism or in case of all vertices being marked for removal prevent a
simplification at all. A metric manipulation is applied as a part of the error
computation to avoid these issues.

2.2 Vertex Error Manipulation

This step aims to select a number of vertices from the mesh and assign them
an error value e(V ) > u to guarantee their classification into S. We apply a
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Fig. 1. Example point generation (left to right: layer L0, layer L1, layer L2) and vol-
umes for L0 and L1

layered version of the error manipulation. Layer L0 contains the vertices that
are assigned e(V ) > u. Every additionally created layer selects additional points
and manipulates their vertex error with a user selected value assigned to the
layer.

For this approach a number of vertices has to be selected for each layer:

– Bounding box computation and creation of a set of points P (L0) =
{P 0

0 , P
0
1 , . . . , P

0
n} within the bounding box with equal axial distance d(L0)

between points.
– Creation of additional layers Li with points P (Li) = {P i

1, P
i
2, . . . P

i
o} cre-

ated at halfway points between the points in Li−1 (d(Li) = d(Li−1)
2 , i > 0,

2-dimensional example on the left in Fig. 1).
– Generation of volume B(P i

j ) for each point. B(P i
j ) is centered around P i

j and
has a side length of d(Li) (trimmed to the bounding box). Right side of Fig. 1
shows the volumes for the first two sample layers.

– For each volume: determination of all vertices V (P i
j ) within the volume

– For each volume: selection of one vertex from V (P i
j ) and manipulation of the

vertex error

Points P i
j may not correspond to vertices of the mesh. For each P i

j a vertex is
selected from within the corresponding volume B(P i

j ) if applicable. For a point
P i
j with position pij and a vertex Vk with position vk we calculate the weighted

error m(Vk, P
i
j ) using the maximum side length l of the volume B(P i

j ) as follows:

m(Vk, P
i
j ) = (l − |pij − vk|)2 ∗ e(Vk) (2)

For each volume the vertex with the maximum weighted error is used for error
manipulation. The weighted error takes the static vertex error and the distance
between P i

j and Vk into account. The weighted error is designed to preferably
select vertices closer to P i

j , to achieve a more uniform distribution of vertices
with a manipulated per-vertex error, while taking the original error value into
account, to avoid keeping vertices with little influence to the surface shape in
the simplified mesh.

3 Boundary Computation and Testing

The per-vertex boundaries are used to avoid half edge collapses causing mesh
foldovers or topological inconsistencies. Due to the parallel nature of this
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approach, we cannot rely on simple methods of testing for such occurrences
(e.g. a maximum rotation of triangle normals before and after a collapse).

3.1 Boundaries

The per-vertex boundaries B(V ) are a set of planes that is computed for each
vertex V that has at least one neighbour in S (subsequently referred to as
removal candidates). Each triangle containing V adds one or more planes to
B(V ). Boundary planes are constructed based on how many vertices of a tri-
angle are removal candidates (Boundary 1, 2 and 3 for 1, 2, and 3 removal
candidates respectively) and use the camera position E. The parallel execution
of half edge collapses has to be taken into account and the need for communi-
cation avoided. The planes are defined only to allow replacement positions for a
removal candidate that would not cause a foldover or inconsistency, no matter
what collapse - if any at all - is chosen for the other removal candidate in this
triangle. This can lead to possible valid combinations of half edge collapses being
blocked with boundaries 2 and 3.

Fig. 2. Boundaries 1, 2 and 3

Boundary 1 (Vertices V1, V2 and removal candidate Vr, Fig. 2 left). A single
plane p is constructed. It contains the vectors

−−−−→
V1 − E and

−−−−→
V2 − E as well as the

points V1 and V2.

Boundary 2 (Vertex V1 and removal candidates Vr1, Vr2, Fig. 2 middle). Two
planes p1 and p2 are constructed. Plane p1 is constructed using the vectors−−−−−−→
Vr1 − Vr2 and

−−−−→
V1 − E as well as the point V1. Plane p2 is constructed from−−−−→

V1 − E,
−−−−−−−−−→
Vr1+Vr2

2 − V1 and V1.

Boundary 3 (Removal candidates Vr1, Vr2 and Vr3, Fig. 2 right). Two planes
p1 and p2 are constructed for each removal candidate. They both contain the
centroid S. For Vr1, plane p1 contains the vectors

−−−−−−→
Vr2 − Vr1 and

−−−−→
S − E as well

as the point S. Plane p2 for Vr1 is constructed from
−−−−−−→
Vr3 − Vr1 and

−−−−→
S − E and

lies through the point S.
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Each possible half edge collapse for a removal candidate V needs to be tested
against these boundaries to avoid foldovers or topological inconsistencies:

– Selection of all triangles T (V ) containing V
– For each triangle in T (V ) determination of the appropriate boundary
– Construction of boundary planes and adding them to B(V )
– Testing of each possible half edge collapse against all planes in B(V )

Each possible half edge collapse for V has to be tested against each plane in
B(V ) individually. If any intersection between the edge and any plane in B(V )
exists, the half edge collapse is considered invalid. This test can be simplified by
adapting the orientation of the plane normals with regards to V . The test checks,
if the dot product between the plane normal and the removal candidate V , as
well as the dot product between the second vertex of an edge V ′ and the plane
normal share the same sign. Planes are constructed so that the dot product of
the plane normal and V have the same sign for all planes in B(V ). This reduces
the test of a half edge collapse against a single plane in B(V ) to a dot product
and the checking of the sign of the resulting value.

3.2 Half Edge Collapse Selection

The selection of one half edge collapse for each removal candidate is based on
the approach by Garland and Heckbert [7]. We take Garland’s and Heckbert’s
approach, compute their error value �(V ′) for each valid replacement position
and execute the half edge collapse with the lowest error. While Garland and
Heckbert update their vertex error by computing a new error value from the
errors of V1 and V2, we deviate from this approach. We do not update the error
value, but rather compute it at every step for the current intermediate mesh.

4 Deadlock Prevention and Reclassification

Since boundary 2 and 3 can block valid combinations of half edge collapses, it is
possible for a deadlock to appear where two or more removal candidates mutu-
ally block each other and the simplification cannot be completed. Only bound-
ary 1 always computes a correct result that does not block any valid half edge
collapses. To avoid this, we create two sets of boundaries per removal candidate.
B(V ) contains the boundaries as described above.B′(V ) is created with the planes
of boundary 1 for all triangles containing V . This creates two results for each ver-
tex: Result r1 from checking with planes in B(V ) which allows to select a valid
half edge collapse. Result r2 from B′(V ) tells if any half edge collapse is allowed
when not taking parallel execution into account. If r1 and r2 block all half edge
collapses, the vertex cannot be removed and is reclassified. If only r1 blocks all
half edge collapses, the parallel execution prevents removal, the vertex remains in
R and is considered as “ignored”, excluding it from the removal candidates until
at least one neighbour has been processed (either removed or reclassified).

After each removal step the list of removal candidates is updated. The initial
vertex error is recomputed for all removal candidates using the current interme-
diate mesh. Since some neighbours of removal candidates are to be removed we
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adapt the metric here. We use the maximum distance between the tangential
plane and the neighbours that are to remain in the mesh. Like the static vertex
error, the updated vertex error is compared to the threshold and the vertex is
reclassified if necessary.

5 Implementation

We have devised an implementation of the parallel half edge collapse using
CUDA to be able to analyse our algorithm.

We had to extend per-vertex data for our algorithm. Each vertex stores a
vertex error that is used to classify the vertex and updated for removal candidates
after each iteration. Since boundary computation relies on the number of removal
candidates in a triangle, it is also necessary to store if a vertex is “marked” as
removal candidate.

The parallel half edge collapse requires information about all neighbouring
vertices. It is necessary to create an additional buffer that serves as data storage
containing a triangle strip for each vertex of the original mesh. The neighbouring
triangles are used for two purposes during the execution of the parallel half edge
collapse: boundary computation and calculation of the vertex error. Both appli-
cations need the geometric data, but do not rely on knowledge of the orientation
of the triangle. Since the triangle fan is stored per vertex in this data structure,
we can minimize storage requirements by only storing a list of neighbouring
vertices in the correct order.

A second data structure is used to maintain a list of removal candidates. After
the initial classification all removal candidates are determined by searching the
neighbours of all those vertices, that are selected to remain in the mesh, for
vertices to be removed. At the start of the removal step, the stored vertices are
distributed among the threads executing the simplification. After the removal
step has been completed, the list is repopulated with the new removal candidates
for the next step.

We actually maintain two lists of removal candidates. Given that we assign
each CUDA thread a vertex from this list, we can never guarantee that we actually
have less vertices than cores. After the cores have completed processing the first
assigned candidates, the list may still be partially populated. To avoid this issue,
we use a separate input and output list, swapping them after each step.

6 Results

Figure 3 shows an example of a simplification of the Stanford Bunny in compari-
son to the original mesh (left) while Fig. 4 shows examples for other models that
were simplified.

We calculated several simplifications of the Stanford Bunny to achieve com-
parable results, assess processing time and find bottlenecks and weaknesses. All
measurements were taken using a Geforce GTX 670 GPU with 1344 cores. The
original mesh of the Stanford Bunny consists of 35 947 vertices that form 69 451



114 T. Odaker et al.

Fig. 3. Original model (left), simplified version (about 93% reduction in triangles,
right)

Fig. 4. Simplifications of the model Armadillo, Dragon and Happy Buddha (93%–95%
of triangles removed) from the Stanford 3-d scanning repository

Fig. 5. Wireframe models of test case 1–5. See Table 1 for details.

triangles. For the purpose of our measurements we compared 5 separate simpli-
fications, ranging from 48 831 to 7 059 triangles. Beside the overall runtime and
the number of triangles of the simplified mesh, we also analysed the number of
iterations, including the number of vertices processed in each iteration. Given
that our approach is executed on a GPU, we want a high number of processed
vertices with each iteration to be able to fully utilize the cores of the GPU and
increase the efficiency of the simplification. We measured the runtime of the
individual steps of the simplification process and analysed the impact of the
manipulation of the initial vertex error to the process.

Figure 5 shows the resulting wireframes for all 5 simplifications. Table 1 shows
an overview of the results, including the number of triangles the simplified mesh
is made up of, the number of triangles removed, the required iterations and
the processing time in milliseconds. These results show the rise in necessary
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Table 1. Test cases data overview (trian-
gles, triangles removed, number of itera-
tions and processing time in milliseconds)

Triangles Triangles rem. Iter. Time

1 48 831 20 620 2 1.94

2 41 732 27 719 3 2.13

3 29 014 40 437 5 3.36

4 17 565 51 886 8 4.43

5 7 059 62 392 12 5.76

Table 2. Data of simplifications of addi-
tional models (triangles, triangles removed
and processing time in milliseconds)

Model Triangles Triangles rem. Time

Bunny 69 451 62 392 5.76

Armadillo 345 944 323 356 29.1

Dragon 871 414 826 109 80.1

Buddha 1 087 716 1 022 232 96.1

Fig. 6. Silhouette comparison

Fig. 7. Vertices removed in each iteration (left) and runtime analysis (right)

iterations to process all vertices marked by the vertex analysis. Table 2 shows
the number of removed triangles and processing times for the additional models.

Figure 6 shows a comparison of a section of the image between the original
(left) and a simplified version (right). This visualizes that the silhouette of the
object is well preserved while the triangle count of the surface greatly reduced.

We further analysed the number of vertices processed in each step, which
uncovered a problem with the execution of the parallel half edge collapse.
A high grade of simplification causes a larger number of necessary iterations.
We observed a high number of processed vertices in the early iterations of each
simplification. During later iterations the number of vertices available for a half
edge collapse dropped significantly.

The chart on the left in Fig. 7 shows the number of vertices that were
removed in each step. As mentioned earlier, the GPU used for the test cases
offers 1344 cores. The implementation assigns each CUDA thread an individual
vertex to process and to remove. As this diagram illustrates, there are one or



116 T. Odaker et al.

more steps in several test cases where not all cores of the GPU can be utilized
due to an insufficient number of removal candidates. Especially test cases with
a high number of triangles removed suffer from this problem. This issue may be
further escalated by the mesh topology. A disadvantageous mesh topology can
cause some vertices not to have a neighbour in S until most vertices marked for
removal have been processed, effectively delaying the completion of the simplifi-
cation process. Another issue we identified, that can cause this behaviour, is the
deadlock prevention we implemented. As our approach can only recognize a pos-
sible deadlock once the subsequent iteration has started, the deadlock prevention
could potentially delay the completion of the simplification process. Since it can
mark a number of vertices as “to be ignored”, the removal of those vertices may
be distributed over several iterations, that might otherwise be unnecessary. In
a worst-case scenario the only vertices left waiting for removal could be ignored
ones with the topology only allowing a single removal per iteration.

The chart on the right in Fig. 7 shows the cumulative runtime of the reclas-
sification, deadlock detection and parallel half edge collapse steps of the sim-
plification process for all five test cases. It is obvious that the majority of the
processing time is used for the execution of the parallel half edge collapse itself,
while reclassification and deadlock prevention take up less than 20 % of the total
run-time.

Another important factor proved to be the error manipulation during the
error computation for the static vertex error. It does not only serve to guarantee
the functionality of the algorithm, but it also provides additional vertices in
S that are regularly spaced out. This has the effect of reducing the necessary
number of iterations when many vertices are removed. Experiments with our
implementation showed that the error manipulation has very little measurable
impact on the test cases 1 and 2 where most vertices in R could be removed
in the first iteration. In test case 5, however, the error manipulation caused a
large reduction in necessary iterations, reducing them by a factor of 4, increasing
parallelism and reducing run-time.

The last factor we analysed is memory usage. The parallel half edge collapse
mainly relies on the fan data buffer as well as the buffers for the removal candi-
dates and the vertex error that is stored in the vertex data. The execution needed
2.3 (Bunny), 11.2 (Armadillo), 29.9 (Dragon) and 35.2 (Buddha) megabytes for
the tested models.

6.1 Comparison to Existing Algorithms

Given that the parallel half edge collapse is designed for computing the simplifi-
cation in real-time, the most similar approaches are Hu et al. [3,8] and DeCoro
and Tatarchuk [4]. While Papageorgiou and Platis [9] present an algorithm that
aims to execute multiple edge collapses in parallel, they do not aim at real-time
execution of the simplification. Even though their algorithm is faster than itera-
tive approaches like the quadric error metric by Garland and Heckbert [7], they
still take up to several seconds to compute the simplification. This fact leads to
its omission for this comparison.
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While Hu et al. provide real-time refinement of a triangle mesh, their app-
roach is a parallel version of progressive meshes presented by Hoppe [5] and is not
designed to calculate the complete simplification during rendering. It rather exe-
cutes incremental changes in the form of vertex splits and edge collapses between
frames. They report update times ranging from 10 ms (about 100 000 triangles)
to nearly 70 ms (about 450 000 triangles) using a Nvidia GeForce 8800GTX
GPU. Given that Hu et al. like Hoppe base their approach on a pre-simplified
mesh that can be refined, their approach is to be described as bottom-up. The
parallel half edge collapse on the other hand is a top-down approach. Due to
these facts, a direct comparison of run times between these algorithms is not
really meaningful.

DeCoro and Tatarchuk recalculate the simplification during image genera-
tion, but their approach is mainly designed to provide fast simplification time.
It does not preserve manifold connectivity and tends to produce overall low
quality (Fig. 8). Given that the parallel half edge collapse is a top-down app-
roach, it has the disadvantage of higher execution time when producing coarser
meshes. The approach by DeCoro and Tatarchuk has the advantage of producing
a much more stable and predictable runtime. They report taking 13 ms to create
a simplification of the Stanford Bunny on a “DirectX 10 GPU”.

Fig. 8. Comparison with DeCoro and Tatarchuk [4] (right)

7 Future Work

The current calculation of the vertex error and its application during the initial
classification only rely on geometrical data of the vertex. The classification of
neighbouring vertices is not taken into account. As a result a large number of
vertices can be marked for removal which can later be reconsidered during the
reclassification phase.

As our analysis has shown, one of the major bottlenecks of our approach
is the lack of removal candidates. Improving the initial classification to reduce
the reliance on the reclassification step and providing a better set of removal
candidates can be used to increase parallelism. Vertices that are reclassified
during the execution in the current algorithm may provide additional removal
candidates at the start of the simplification when an improved classification
scheme is applied.
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Another factor limiting the parallelism is the restriction of only executing half
edge collapses between vertices in R and S. Allowing vertices with no neighbours
in S to be subjected to a half edge collapse could be used to reduce the number
of necessary iterations and therefore increase the parallelism of the approach.

8 Conclusion

The parallel half edge collapse has proven to allow fast, view-dependant simpli-
fication that can make use on the parallel processing power of modern GPUs
by relying on isolated per-vertex operations. While our analysis has shown good
results in terms of overall quality and execution time, it has also uncovered some
limiting factors, namely the reduced parallelism that may be caused by the topol-
ogy or a lack of removal candidates. Another limiting factor of the parallel half
edge collapse lies in the execution of the simplification operator. Given that a
vertex is chosen for removal and one half edge collapse selected for each removal
candidate, it is not possible to select an “optimal” edge that is collapsed. While
this causes iterative approaches to achieve a better overall quality, it is consid-
ered as a trade-off for the parallel execution and the performance gain of the
parallel half edge collapse.
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Abstract. A novel approach for automatic mine detection using SONAR data
is proposed in this paper relying on a probabilistic based fusion method to
classify SONAR instances as mine or mine-like object. The proposed semi-
supervised algorithm minimizes some target functions, which fuse context
identification, multi-algorithm fusion criteria and a semi-supervised learning
term. Our optimization purpose is to learn contexts as compact clusters in
subspaces of the high-dimensional feature space through probabilistic feature
discrimination and semi-supervised learning. The semi-supervised clustering
component appoints degree of typicality to each data sample in order to identify
and reduce the influence of noise points and outliers. Then, the approach yields
optimal fusion parameters for each context. The experiments on synthetic
datasets and standard SONAR dataset illustrate that our semi-supervised local
fusion outperforms individual classifiers and unsupervised local fusion.

Keywords: Supervised learning � Ensemble learning � Classifier fusion

1 Introduction

Several wars and military fights over the last century have occurred around one hun-
dred million unexploded land mines in approximately seventy different countries [1].
Furthermore, approximately five million new mines are yearly buried in the ground [3].
Most of these mines are anti-personal, and claim the lives of around 70 civilians on
daily basis, in regions like Afghanistan, Angola, Bosnia, and Cambodia [1]. The main
reasons behind these land mines proliferation include their tactical and psychological
effectiveness, and their simple and low cost fabrication. In other words, they emerged
as an interesting alternative for country and armed organizations which cannot acquire
sophisticated defense systems [4]. Hence, in spite of mine-clearing attempts around the
world, million landmines are still deployed. According to the United Nations, over
1000 years would be required to clear out the mine fields around the world by con-
ventional mine neutralization methods [3]. The classical detection methods of buried
land mines i.e. hand probes and metal detectors cannot be utilized for large operations.
In addition, recent anti-personal mines are small sized and plastic made with small
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metal portion making their detection challenge even more critical [3]. Other techniques
like ground-penetrating radar and dogs trained to sniff out explosives turned out to be
slow and dangerous because they should operate very close to mines to be able to
detect them. Through the past decade, infrared camera based detection of buried mines
proved to be efficient when the field conditions are suitable. Moreover, novel mine
neutralization technologies include infrared emission, thermal neutron activation,
energetic photon detection, and ground-penetrating radar [3]. The most recent studies
seek to consolidate these technologies and conventional metal detectors in order to
improve their detection performance [6].

For submarine naval mines, the aquatic mammals such as Atlantic and Pacific
bottlenose dolphins, white whales, and sea lions have been used by the United States
navy to discover buried mines [5]. On the other hand, shallow water of the surf zone
impacts the performance of these mammals dramatically. Nowadays, a sound propa-
gation technology called the SOund NAvigation and Ranging (SONAR), has been used
for underwater mine detection. Considerable researches related to the detection and
classification of SONAR signals has been done increasingly [2]. Side-scan sonar
photography transfer high resolution shots of the sea floor scene. Although the these
images have contributed to applications promotion like Mine Counter Measure
(MCM) where speed is a key factor, they have not facilitated that much the detection of
objects of interest in these scenes. In factuality, due to the acoustical medium and the
wide heterogeneity of this environment for underwater scenes, the process of object
detection and classification is even more demanding. Furthermore it is difficult to detect
the objects located on the sea floor or buried under the sand inasmuch as their
appearance may vary considerably based on the nearby scene. In spite of these chal-
lenges, SONAR imagery would operate in poor visibility conditions without additional
light equipment, and then make researchers endeavor to develop submarine mine
detection systems based on this image modality. Moreover, the low fabrication cost
along with the low power consumption represents other main advantages that
encouraged researchers to include SONAR module in Autonomous Underwater
Vehicles (AUVs) for submarine mine detection. Processing this high-dimensional data
on board has become an urgent need for this solution. Also, embedding unsupervised
decision-making features and reducing the expert involvement in the recognition
process emerged as new active research field. Novel clearing operations of underwater
mines would rely on AUVs equipped with SONAR capabilities, and adopting Com-
puter Aided detection (CAD) solutions. The recognition task consists in classifying
signatures of region of interest as mine or not. The subsequent classification algorithms
are intended to recognize the false alarms as possible while detecting real mines.
Choosing an appropriate supervised classification model for sonar data pattern
recognition is a critical issue for objects of interest detection under the sea [7].

In this paper, a probabilistic based local approach is presented that adapts multi-
classifier fusion to different regions of the feature space. The proposed approach, first
categorizes the training samples into different clusters based on the subset of features
used by the single classifiers, and their confidences. This phase is a complicated
optimization problem which is prone to local minima. We utilized a semi-supervised
learning term in the proposed target function to relieve this problem. The process of
categorization associates a probabilistic membership, representing the degree of
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typicality, with each data sample in order to recognize and decrease the impact of noise
points and outliers [8]. Additionally, an expert is assigned to each obtained cluster.
These experts represent the best classifiers for the corresponding cluster/context. Then,
aggregation weights are estimated by the fusion component for each classifier. These
weights represent the performance of the classifiers within all contexts. Finally, for a
given test sample, the fusion of the individual confidence values is obtained using the
aggregation weights associated with the closest context.

2 Proposed Method

Today, the notion of classifier fusion has opened promising windows, and has outper-
formed single classifier systems both theoretically and experimentally. The character-
istic feature of a classifier ensemble is the classifiers evolutionary which makes them to
outperform individual learners by inheriting their strengths and restricting their weak-
nesses. However, diversity and accuracy are two critical conditions for fusion algo-
rithms to outperform individual classifiers. Classifier fusion, which relies on appropriate
aggregation of classifiers outputs, treats all learners equally trained and competitive over
the feature space. For testing, single expert classifications are yielded simultaneously,
and the resulting outputs are aggregated to perform a final fusion decision. Typical
fusion approaches include Borda count, average, majority vote, Bayesian, probabilistic,
and weighted average.

Different approaches of combining learners can be divided into two major classes:
local approaches and global approaches. Assuming that higher classification accuracy
can be attained using appropriate data-dependent weights, local approaches consider a
relevance degree to the different training set subspaces, but global approaches assign an
average relevance degree for each learner with respect to the whole training set. Local
fusion approach is required to put the input data samples into homogeneous clusters
during the training phase. This way of clustering can be achieved on the space of
individual learner classification, based on which classifiers behave similarly, or using
attributes of the input space. Then, the most accurate classifier is to be as an expert in
each space region. For classification, unknown instances are assigned to regions, and
the final decision is made by the corresponding expert learner of this region. A dynamic
data partitioning and classification during the testing phase is proposed here. The
authors estimate the classifier accuracies using sample nearby the local regions of the
feature space, and the most accurate one is used to predict the class of the test sample.
The local fusion approach called Context-Dependent Fusion (CDF) starts by clustering
the training instances into homogeneous categories of contexts. This clustering phase
and selecting a local expert learner are two independent stages of CDF, respectively.
The researchers have described a generic framework for context-dependent fusion
which simultaneously clusters the feature space, and aggregates the outputs of the
expert learners. This combining approach uses a simple linear aggregation to generate
fusion weights for individual learners. Nonetheless, these weights may be ineffective to
capture the classifiers mutual interaction.

An approach is outlined that evaluates the performance of each expert performance
in local regions of the feature space. The most accurate classifier is acquired to predict
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the final decision for each local region. However, the performance evaluation for test
instances is timely complex, and impacts the performance of the approach with large
data. The clustering and selection phase determines the statically most accurate clas-
sifier. First, the decision regions are discovered by clustering the training instances.
Next, the most accurate learner on this local region is opted. The main disadvantage of
this solution is that it does not deal with more than one classifier per region. The
researchers have extended the clustering and selection algorithm so it splits the training
dataset into correctly and incorrectly categorized instances. The feature space is then
grouped by clustering the training instances. For testing, the most effective classifier in
the vicinity of the test sample is chosen in order to generate the final decision. In other
words, each learner exploits its corresponding cluster. This approach decreases the
computational effectiveness of the solution. Recently, in [11], the authors outlined a
local fusion approach that divides the feature space into homogeneous clusters based
on their features, and takes into account the acquired clusters while aggregating indi-
vidual learners’ outputs. The fusion phase includes appointing an aggregation weight to
each individual learner corresponding to each context based on its relative perfor-
mance. Note that the applied fuzzy approach increases the sensitivity of the fusion
component to outliers which decrease the overall classification performance. Some
authors proposed a probabilistic based local approach that adapts the fusion method to
different regions of the feature space. It put the training samples into different clusters
based on the subset of features used by the individual classifiers, and their confidences.
This clustering phase generates probabilistic memberships representing the degree of
typicality of each data sample in order to identify and discard noise points. Addi-
tionally, an expert classifier is associated with each obtained cluster. More specifically,
each classifier learns to aggregate weights simultaneously. Finally, for a given test
sample, the fusion of the individual confidence values is obtained by using the
aggregation weights associated with the closest context/cluster. Although this approach
had promising results, the adopted optimization approach is prone to local minima.

3 Local Fusion Based on Probabilistic Context Extraction

Given T ¼ tjjj ¼ 1; . . .N
� �

as the desired output of N training observations. These
outputs were obtained using K classifiers. Each classifier k uses its own feature set

Xk ¼ xkj jj ¼ 1. . .N
n o

and generates the confidence values Yk ¼ ykj jj ¼ 1. . .N
n o

. The

K feature sets are then concatenated to generate one global descriptor, v ¼ SK
k¼1 v

k ¼
xj ¼ x1j ; . . .; x

K
j jj ¼ 1; . . .;N

h in o
. The probabilistic-based context extraction for local

fusion algorithm in [8] has been formulated as partitioning the data into C clusters
minimizing one objective function. However, this clustering approach needs to esti-
mate various parameters applying complicated optimization and is prone to several
local minima. To overcome this potential drawback, we propose a semi-supervised
version of the algorithm in [8]. The supervision information relies on two sets of
pairwise constraints. The first one is Should-link constraints which specify that two data
instances are expected to belong to the same cluster. The second set of constraint is the

122 S. Saydali et al.



ShouldNot-link which specifies that two data instances are expected to belong to dif-
ferent clusters.

Let SL be the set of Should-link pairs of instances. If the pair ðXi;XjÞ belongs to SL,
then Xi and Xj are expected to be assigned to the same cluster. Similarly, let NL be the
set of ShouldNot-link pairs. If the pair ðXi;XjÞ belongs to NL, then Xi and Xj are
expected to be assigned to different clusters. In this work, we reformulate the problem
of identifying the C components/clusters as a constrained optimization problem. More
specifically, we modify the objective function in [8] as follows

J ¼
XN
j¼1

XC
i¼1

umij
XK
k¼1

vqikd
2
ijk

þ
XN
j¼1

XC
i¼1

biu
m
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xikykj � t3

 !2

þ
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ð1Þ

subject to
PC

i¼1 uij ¼ 18j; uij 2 0; 1½ �8i; j, PK
k¼1 vik ¼ 18i; vik 2 0; 1½ �8i; k, andPK

k¼1 xik ¼ 18i.
In (1), uji represents the probabilistic membership of Xj in cluster i [8]. The C � N

matrix, U ¼ ½uij� is called a probabilistic partition if it satisfies:

uij 2 0; 1½ �; 8j
0\

PC
i¼1 uij\N; 8i; j

�
ð2Þ

On the other hand the C � d matrix of feature subset weight, V ¼ ½vik� satisfies

vik 2 0; 1½ �; 8i; kPK
k¼1 vij ¼ 1; 8i

�
ð3Þ

The first term in (1) corresponds to the objective function of the SCAD algorithm
[8]. It aims to categorize the N points into C clusters centered in ci such that each
sample xj is assigned to all clusters with fuzzy membership degrees. Also, it is intended
to simultaneously optimize the feature relevance weights with respect to each cluster.
SCAD term is minimized when a partition of C compact clusters with minimum sum of
intra-cluster distances is discovered. The second term in (1) intends to learn
cluster-dependent aggregation weights of the K algorithm outputs. xik is the aggre-
gation weight assigned to classifier k within cluster i. This term is minimized when the
aggregated partial output values match the desired output. The third term in (1) yields
the generation of the probabilistic memberships uji which represent the degree of
typicality of each data point within every cluster, and reduce the effect of outliers on the
learning process. In (1), m 2 1;1ð Þ is called the fuzzier parameter, and values gi are
positive constants that control the importance of the third term with respect to the first
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and second ones. This term is minimized when uij are close to 1, thus, avoiding the
trivial solution of the first term (where uij ¼ 0). Note that

PC
i¼1 uij is not constrained to

sum to 1. In fact, points that are not representative of any cluster will have
PC

i¼1 uij
close to zero and will be considered as noise. This constraint relaxation overcomes the
disadvantage of the constrained fuzzy membership approach which is the high sensi-
tivity to noise and outliers. The parameter gi is related to the resolution parameter in the
potential function and the deterministic annealing approaches. It is also related to the
idea of “scale” in robust statistics. In any case, the value of 0.7 determines the distance
at which the membership becomes 0.5. The value of gi determines the “zone of
influence” of a point. A point Xj will have little influence on the estimates of the model

parameters of a cluster if
PK

k¼1 v
2
ik dsijk
� �2

is large when compared with gi. On the other

hand, the “fuzzier” m determines the rate of decay of the membership value. When
m ¼ 1, the memberships are crisp. When m ! 1, the membership function does not
decay to zero at all. In this probabilistic approach, increasing values of m represent
increased possibility of all points in the data set completely belonging to a given
cluster. The last term in (1) represents the cost of violating the pairwise Should-link,
and ShouldNot-link constraints. These penalty terms are weighted by the membership
values of the instances that violate the constraints. Namely, typical instances of the
cluster which have high memberships yield larger penalty term. The value of l controls
the importance of the supervision information compared to the other terms.

This algorithm performance relies on the value of b. Over estimating, it results in
the domination of the multi-algorithm fusion criteria which yields non-compact clus-
ters. Also, sub-estimating b decreases the impact of the multi-algorithm fusion criteria
and increases the effect on the distances in the feature space. When appropriate b is
chosen, the algorithm yields compact and homogeneous clusters and optimal aggre-
gation weights for each algorithm within each cluster.

Minimizing J with respect to U is equivalent to minimizing the following indi-
vidual objective functions with respect to each column of U:

J ið Þ Uið Þ ¼ �
XN
j¼1

umij
XK
k¼1

vqikd
2
ijk

þ
XN
j¼1

biu
m
ij

XK
k¼1

xikykj � tj

 !2

þ gi
XN
j¼1

1� uij
� �m

þ l
X

Xt ;Xk2NLð Þ
umij u

m
kj þ

X
Xt ;Xk2SLð Þ

XC
p¼1;p 6¼i

umij u
m
kj

2
4

3
5

ð4Þ

For i ¼ 1; . . .;C. By setting the gradient of JðiÞ with respect to the probabilistic
memberships uij to zero, we obtain
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This yields the following necessary condition to update uij:
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Dij represents the aggregate cost when considering point Xj in cluster i. As it can be
seen, this cost depends on the distance between point Xj and the cluster’s centroid ci,
the cost of violating the pairwise Should-link, and ShouldNot-link constraints (weighted
by l), and the deviation of the combined algorithms’ decision from the desired output
(weighted by b). More specifically, points to be assigned to the same cluster: ðiÞ are
close to each other in the feature space, and ðiiÞ their confidence values could be
combined linearly with the same coefficients to match the desired output.

Minimizing J with respect to the feature weights

vik ¼
XK
t¼1

D2
ik=Dil

� � 1
q�1

h i
ð8Þ

where Dil ¼
PN
j¼1

umij d
2
ijl.

Minimization of J with respect to the prototype parameters, and the aggregation
weights yields

cik ¼
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j¼1 u
m
ij XikPN
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m
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ð9Þ

and
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where fi is a Lagrange multiplier that assures that the constraint in (2) is satisfied, and is
defined as
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The acquired iterative algorithm starts with an initial partition and alternates
between the update equations of uij; vik; wik and cik as shown in Algorithm 1.

Algorithm 1. The proposed semi-supervised probabilistic clustering, feature
weighting and classifier aggregation.
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The time complexity of one iteration of this first component is OðN � d � K � CÞ,
where N is the number of data points, C is the number of clusters, d is the dimen-
sionality of the feature space, and K is the number of feature subsets. The computa-
tional complexity of one iteration of other typical clustering algorithms (e.g. FCM,
PCM) is OðN � d � CÞ. Since we use small number of feature subsets ðK ¼ 3Þ, one
iteration of our algorithm has a comparable time complexity to other similar algo-
rithms. However, we should note that since we optimize for more parameters, it may
require a larger number of iterations to converge.

After training the algorithm described above, the proposed local fusion approach
adopts the steps below in order to generate the final decision for test samples:

• Run different classifiers on the test sample within the corresponding feature subset
space, and obtain decision values, Y j ¼ ykjjk ¼ 1; . . . k

� �
.

• An unlabeled test sample inherits class label of its nearest training sample.
• Assign the membership degrees uij to the test sample j in each cluster i using

Eq. (7).
• Aggregate the output of the different classifiers within each cluster using

ŷij
PK

k¼1 wikykj.

• The final decision confidence is estimated using ŷ ¼PC
i¼1 uijŷij.

4 Experiments

We depicted the performance of the proposed semi-supervised local fusion algorithm
applying synthetic data sets. Our approach is compared to individual classifiers and the
proposed method in [8] for these datasets, in Table 1.

In this experiment, the need for semi-supervised probabilistic local fusion is
illustrated. We utilize our semi-supervised local fusion approach to classify the syn-
thetic 2-dimensional dataset. Let each sample be processed by two single algorithms
(K-Nearest Neighbors (K-NN) with K ¼ 3). Each algorithm, k, considers one feature
Xk; and assigns one output value yk . Samples from Class 0 are represented using blue
dots and samples from Class 1 are displayed in red. Black samples represent noise
samples. The dataset consists of four clusters. Each one of them is a set of instances
from the two classes [9].

Table 1. Learned weights for each classifier with respect to the different clusters obtained using
the method in [8] and the proposed semi-supervised method.

Method in [8] Cluster number 1 2 3 4
Classifier 1 31.15 73.43 2.89 2.31
Classifier 2 68.88 26.89 97.33 97.74

Proposed method Cluster number 1 2 3 4
Classifier 1 29.49 73.63 2.93 2.41
Classifier 2 69.99 26.49 97.23 97.61
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To construct the set pairwise constraints, the samples being at the boundary of each
cluster are selected randomly. 7 % of the overall numbers of instances are considered to
be Should-link and ShouldNot-link sets. Pairs of instances belonging to the same cluster
(based the ground truth) form the Should-link set. Similarly, pairs that belong to
different clusters form the ShouldNot-link set.

Accuracy as performance measure is used to evaluate the performance of our
semi-supervised method. The overall accuracy of the partition is computed as the
average of the individual class rates weighted by the class cardinality. To take into
consideration the sensitivity of the algorithm to the initial parameters, we ran the
algorithm 10 times using different random initializations. Then, we computed the
average accuracy values for each supervision rate. Based on experimentation, the
accuracy increased at a much lower rate with supervision rate larger than 7 %. Hence,
for the rest of the experiments we set the supervision rate used to guide our clustering
algorithm to 7 %.

In this section, we use our approach to classify standard dataset frequently used by
researchers from the machine learning community. Namely, we consider the SONAR
dataset [10] which consists of 208 instances and 60 attributes. 97 instances were
obtained by bouncing sonar signals off a metal cylinder under various conditions and at
various angles. A variety of different aspect angles, spanning 90 degree for the cylinder
and 180 degrees for the rock were considered to contain the dataset signal. Each
attribute represents the energy within a particular frequency band, integrated over a
given period of time. SOANR dataset is summarized in [10].

In our experiments, for individual learners and local fusion approaches we adopt a
5-fold cross-validation in which each fold is treated as a test set with the rest of the
folds used for training.

We divide the SONAR features into three subsets, and we dedicate one learner for
each one of them. We run simple K-NN learner to generate confidence values for each
instance. We categorize the training samples using 3 K-NN classifiers (K = 3) within
their corresponding feature subspaces. Then, the proposed semi-supervised local fusion
is used to categorize the training instances into 3 homogeneous clusters, and learn the
optimal aggregation weights. Then, test instances are classified using the three indi-
vidual learners, and assigned to the closest cluster. Finally, the fusion decision is
generated by combining the partial confidences with the aggregation weights of the
closest cluster. Notice that Should-link and ShouldNot-link constraints are generated

Table 2. Performance comparison of the individual learners, the method in [8], and the
proposed method for SOANR data set [10].

Accuracy Precision Recall F-measure

KNN 1 82.69 76.80 88.03 82.03
KNN 2 84.16 79.72 88.42 83.84
KNN 3 85.11 81.42 88.08 84.61
Method in [8] 86.04 86.36 84.31 85.32
Proposed method 90.24 90.90 89.47 90.17
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using a clustering algorithm. More specifically, we cluster the training dataset using the
probabilistic-based algorithm in [12], and we include pairs of typical instances (with
high probabilistic membership), belonging to the same cluster, in the Should-link set.
On the other hand, pairs of typical instances (with high probabilistic membership),
belonging to different clusters, are included in the ShouldNot-link set. We limit the
number of pairwise constraints to 7 % of the total number of instances.

We report the mine detection accuracies, precision, recall and F-measure obtained
using K-NN classifier with different values of the parameter K. As it can be concluded
experimentally, K ¼ 5 yields the best overall performance measures. Thus, for the rest
of the experiments, we set this K to 5.

We compare the obtained average accuracy, precision, recall, and F-measure values
obtained using individual K-NN learners, the method in [8], and the proposed method
with the SONAR dataset in Table 2. Our semi-supervised approach outperforms the
other classifiers on this dataset based on the four performance measures. This proves
that the association of supervision information with local fusion technique yields better
clustering results and let individual learners cooperate more efficiently to generate more
accurate final decision. This confirms the results obtained with synthetic datasets in the
previous experiment.

Table 3(a) shows the learners aggregation weights with respect to the various
clusters generated by our algorithm. These weights reflect the impact of each individual
learner within each cluster. For instance, the second individual K-NN is perceived by
our approach as the most accurate classifier for instances from cluster 1. Similarly, the
highest aggregation weight is assigned to the first individual K-NN within cluster 3.

To indicate that the semi-supervised local fusion utilizes the strengths of the
individual learners within local regions of the features space, we report the accuracy of
the three individual learners (K-NN) within the 3 clusters. These performance measures
shown in Table 3(b) are calculated based on the classification of test samples belonging
to each cluster separately (given the membership degrees generated by the proposed
semi-supervised clustering algorithm). As one can notice, the local performances of the

Table 3. (a-above) Learned weights for each classifier in each cluster obtained using the
proposed semi-supervised local fusion with SONAR data set [10]. (b-below) Per-cluster accuracy
of the three K-NN classifers with SONAR data [10].
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individual K-NN depends on the cluster. K-NN classifier 2 performs better than the
other learners for samples from cluster 1. Consequently, K-NN classifier 2 is the most
relevant classifier with respect to cluster 1. Thus, the highest aggregation weight is
assigned to this classifier as reported in Table 3(a). Similarly, in cluster 3, the most
accurate individual classifier is K-NN classifier 2.

In the following experiment, the same feature subsets defined in the previous
experiment is used, but with different classifiers. In the other words, the SONAR
instances in each features subset using K-NN, Naive Bayes and SVM classifiers are
classified. Then, the proposed semi-supervised local fusion algorithm clusters the
training data, generates 3 categories, and learns optimal aggregation weights. This
experiment is to indicate that our approach does not require specific classifiers, and can
deal with various supervised learning algorithms.

In Table 4(a), we report the aggregation weights learned by our semi-supervised
local fusion approach for each classifier with respect to the different clusters. The
achievements of the different supervised learning techniques vary drastically depending
on the context/cluster. More specifically, SVM is the most important learner with
respect to cluster 1. This can be explained by the highest weight assigned for SVM
classifier within cluster 1. Similarly, K-NN is the most relevant classifier for cluster 3.

Table 4 (a-above) Learned weights for each classifier in each cluster with SONAR data [10].
(b-below) Per-cluster accuracy obtained using SVM, K-NN and Naive bayes classifiers on
SONAR data [10].

Table 5. Performance measures of the individual learners, the method in [8], and the proposed
method with SONAR dataset.

Accuracy Precision Recall F-measure

KNN 82.59 75.89 87.88 81.44
SVM 85.81 79.95 88.65 84.07
Naïve Bayes 83.37 79.87 86.23 82.92
Method in [8] 86.59 86.41 85.03 85.71
Proposed method 90.87 91.26 90.10 90.67
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Table 4(b) illustrates the per-cluster accuracy values obtained within the different
clusters generated by our semi-supervised algorithm. As it turned out, the reported
values are consistent with the relevance weights in Table 4(a). For instance, SVM
which obtained the highest aggregation weight with respect to cluster 1, yields the
highest accuracy with respect to this cluster. Similarly, NBayes and K-NN are the most
accurate classifiers in cluster 2 and cluster 3, respectively.

Four performance measures obtained by the different individual learners, the
method in [8], and our semi-supervised local fusion approach are shown in Table 5.
Namely, accuracy, precision, recall and F-measure are reported for SONAR data [10].
Our approach outperforms the other methods with respect to all the performance
measures.

5 Conclusion

A new approach of automatic mine detection applying SONAR dataset is proposed in
this paper. This approach consists of a semi-supervised local fusion algorithm catego-
rizing the feature space into homogeneous clusters, learning optimal aggregation
weights for each classifier and optimal fusion parameters for each context in a semi
supervised manner. As the experiments have shown, the semi-supervised fusion
approach yields classification more accurately than the unsupervised one and the indi-
vidual classifiers on synthetic and real datasets as well.

Although the proposed approach yields promising results, there will be a lot of
work to do for improvement. Future works include extending the proposed approach so
it deals with multiple class (more than two classes) categorization problems. Ulti-
mately, in order to meet the need to determine the number of clusters/contexts apriori,
we can study the ability of the probabilistic logic to generate duplicated clusters in
order to find the optimal number of clusters.
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Abstract. While antivirus software is an essential part of nearly every
computer, users often ignore its warnings and they are often unable to
make a safe response when interacting with antivirus software. The aim
of our study was to find working connections to increase a number of
mobile device users who select a premium license with more security
features over a free license with a limited level of security. We cooperated
with the antivirus company ESET and more than fourteen thousand
users participated in first phase of our experiment. We tested two new
types of a user dialog on the Android platform. The first user dialog was
designed with a text change and the other with a new button “Ask later”.
As a result, we found out that the text change increased the number of
premium license purchases by 66 % in the first phase of our experiment,
the version with the “Ask later” button increased this number by 25 %
in the same period.

1 Introduction

User security often depends on user’s ability to comprehend information and
warnings. Since a user is the weakest point of the security chain, it is crucial to
empower him/her to make informed decisions when cooperating with security
software.

Our study aimed to find working connections between user dialog design and
user security behavior when using certain components of antivirus software. We
have been undertaking experiment in cooperation with a company developing
antivirus software, ESET. Cooperation with the company brings us a benefit of
real life experiment participants. Unlike many other studies [1,2] whose results
were based on participants recruited among students or Amazon Mechanical
Turk users, our study is based on real product users.

Our team consists of experts from three faculties of Masaryk University.
People from Faculty of Informatics, Faculty of Social Studies and Faculty of
Law have been involved. This innovative connection brings a multidisciplinary
view into the experiment.

Our challenge is to increase overall user security by empowering the user
to make a qualified decision on the use of antivirus software on the Android
platform. Thus, we designed an experiment where we made changes in the user
c© Springer International Publishing Switzerland 2016
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dialog offering the upgrade to the one-year premium license after a trial version
has expired. The effect is measured by monitoring a conversion rate of the prod-
uct. The conversion rate is defined as a percentage of customers who opted for
the one-year premium license out of all users. Despite all effort provided by the
company so far, the conversion rate on the Android platform is still low. Our
challenge is to increase this number by changes in the user dialog offering the
upgrade to the one-year premium license after a trial version has expired. The
second chapter is focused on related work in visual warning design and persua-
sive approach. The third chapter describes our experiment design. The fourth
chapter concludes with experiment results and observations.

2 Related Work

User dialogs and warnings design has its place in the field of security. Despite an
increasing trend of automatic decisions, there are still many problems that must
be decided by a user himself. Since the user sees dozens of warnings and user
dialogs every day, a general blindness to them is widely observed simply due to
a process of habituation [3].

There is a common term “safe response” used for a choice that brings security
benefits to the user [4]. A user dialog is considered to be successful when the
safe response was selected by the user. There is a question that has been asked
for many times. How to empower the user to select the safe response?

2.1 Best Practises in Visual Warning Design

An effective warning structure consists of a signal word to attract atten-
tion, identification of the hazard, explanation of consequences and directives for
avoiding the hazard [5]. The other approach prefers a different structure. A good
warning should contain a signal word panel with signal words, color coding and
an alert symbol [6]. Since the structure is not enough to increase the power of
warning, use of attractors is recommended.

Attractors are parts of warnings or user dialogs serving to attract user
attention [7]. Wogalter [8] recommended to add a bold type in contrast with a
standard type or to add a color in contrast with a background. Especially red and
yellow are very good in increasing readability [9]. Pictorial symbols in contrast
with rest of background, special effects, frames, personalization and dynamic
elements also work as good attractors.

Some user dialog designs become successful, but with a great loss of usabil-
ity. For example, authors in the study [7] proved that the user dialog with the
greatest influence requires rewriting the most important word of the whole user
dialog by a user himself. Since text rewriting makes the whole process very slow,
this approach is not recommended to be widely used. Other good user dialog
designs highlight important text of the warning and make the user to swipe it
with his mouse or simply add 10 second delay before a decision can be made. All
these features inhibit the user and empower him to comprehend the text better.
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Providing an explanation is a tricky question. The study [7] proved that
a detailed explanation serves as a bad attractor, but other authors [10] pointed
out that a warning with a “purpose string” has a higher impact on a user over
the warning without any purpose. Surprisingly, an effect of different content in
a purpose string is statistically insignificant. When a hazard is communicated
in an explanation, the description should be specific, complete and the most
important risks should come first [8].

Text structure also influences warning effectiveness. Many studies have
shown that warnings in bullets or in an outline form are considered more readable
than a continuous text [11]. A common fact is that people are not reading the
texts, they are scanning them. Rules following from this observation are: putting
most important content first, avoid being vague, get to the point quickly and
structure the text [12]. Eye tracking studies proved that the area where users
really read has the F-shaped pattern [13]. They read first one or two paragraphs
at the top of the text and then briefly scan down in the nearly similar shape
that the letter F has.

2.2 Persuasive Approach

Apart from visual principles, a persuasive approach is also involved in our study.
Persuasion can be defined as a set of influence strategies based on inner human
reactions and needs. Cialdini [14] introduces six basic principles of persuasion.
These principles are: Reciprocity, Commitment, Social Proof, Liking, Scarcity
and Authority.

– Reciprocity says that people tend to reciprocate behavior towards them.
– Commitment speaks about fact that people like being consistent in their

opinions and decisions. People who did a favor for something in past, tend to
do same favor in future because they feel obliged to do so.

– Social proof principle is simply declaring “safety is in numbers”. People in
an ambiguous situation tend to behave similarly as the majority.

– Liking says that we are more influenced by people who are similar to us. For
example, they like same things as we do.

– Scarcity says that rare objects are more desired by people than the widely
available ones.

– Authority emphasizes that we are easily persuaded by people who speak to
us from the position of authority.

The decoy effect is also involved in persuasive approach. It describes a
change in user preferences after an introduction of a decoy option. When a user
decides between two equally selected options (if presented on their own) and the
decoy option is introduced, consequently one option looks more favorable and
the user tends to prefer it over the other. Dan Ariely in his book [15] describes
an experiment to illustrate the decoy effect. The study was conducted on MIT
students. They should have selected the most favorable offer of a newspaper
subscription. The first offer was to buy the online newspaper subscription for $59.
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The second offer was to buy the newspaper subscription in a paper version for
$125. The third offer was to buy both paper and online newspaper subscription
for $125. The middle offer ($125 for the paper version) then seems without sense,
because it is very unfavorable for a customer, but it has large impact on a user
decision strategy. It serves as a decoy offer.

When respondents were selecting from the first and third offer only, they
preferred the first offer (68 picked the first offer and only 32 the third offer)
mostly. When the experiment settings changed, the decoy offer was introduced,
and respondents were selecting from first, second and third offer, they preferred
mostly the third one (more than 80 out of 100 picked that offer). We can observe
that adding the decoy option changed the user’s decision and influence him to
pick a different offer.

The book [15] also mentions the power of the word “free”. When something
can be obtained without money, it is far more attractive than when it costs $1
or any similar small price. Word “free” works as a very powerful attractor.

People do not like making decisions and also prefer to make changeable deci-
sions over the unchangeable ones. They do not want to lose any possibility [16].

3 Experiment Design Decisions

Our experiment was divided into two phases. First, initial phase started in
December 2014, and was stopped on the first of April, and the inflow of results
slowly came to an end by early May. A zero variant together with first and sec-
ond variants were tested. The follow-up phase started in May 2015. Based on
results from the first phase, where the most successful variant was that with a
text change, we applied this text change to all variants tested in the follow-up
phase. Moreover, a questionnaire about a smart phone use was included. Initial
phase participants were English-speaking antivirus users mostly from USA and
UK. The follow-up phase was designed in four language versions – English, Ger-
man, Czech and Slovak. Results of the follow-up phase will be available at the
end of 2015. We focused on the product’s user dialog that appears after a trial
license expired. Unfortunately, we can not influence several other factors, for
example marketing campaigns running in different countries differently or users’
satisfaction with the product. Similarly, we can not influence the overall product
workflow – there are several ways to buy the premium license and several ways
to reach this user dialog.

Experiment Limitations

Unfortunately, we could not follow several good principles that have been already
introduced due to several limitations that follow from cooperation with the
company.

Limitations reflecting company specific requirements must be taken into
account. Only minor changes could be done in a GUI because a complete redesign
was ruled out by the company. We also can not influence the whole workflow or
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anything out of the scope of the user dialog. Several variants can not be tested
due to system limitation because implementation in the system would be costly
or impossible. Some variants were canceled due to unexpected turn of events. For
example, to increase attractiveness of buying the premium license, we used the
principle of Reciprocity and designed a user dialog offering “something more” in
addition to the user who bought the premium license, in our case it was a charity
donation. Due to excessive bureaucracy connected with the donation, company
ruled out this variant.

Principles Used in Design

We also made a descriptive text redesign to increase its readability and compre-
hension. We have used several mentioned visual design principles. As attractors
we used only those that do not influence overall usability of the system. Large
attractors were ruled out by the company because flashing, framing or aggres-
sive colors do not fit the company visual style. So as an attractor we used the
bold type that stresses important information which should not be overlooked
by user.

As for the persuasion principle use, we added a decoy option that should
give special preference to buying the premium license over using free version.
The decoy option pricing was set after a negotiation with the company. We also
have used principle of postponing the decision by implementing the button “Ask
later”. Principle of reciprocity to invoke a feeling of an obligation was used in a
last variant.

Variants in Consideration

The initial screen (Fig. 1) contains a descriptive text, an offer to buy an one-
year license, description of the one-year license features and action buttons.
The descriptive text was: “You can continue using the app for free. To enjoy
an added level of security, purchase a license and get access to these premium
features:” The redesigned text is: “To continue with highest level of security,
purchase your license and get access to these premium features:” We redesigned
the text to make it shorter and better understandable for a user. The word “free”
was removed because it stresses an undesired option of not buying the premium
license.

The features description was also redesigned to be more concrete, because
users with lack of technical skills may have difficulties to understand what general
features description represents. Thus we pinpoint illustrative subset of function-
ality for each feature. For example, instead of Take advantage of the proactive
Anti-Theft at my eset.com we recommended Locate your missing device at my
eset.com.



138 V. Stavova et al.

Fig. 1. The initial user dialog encouraging a user to buy the one-year license.

Initial Experiment Variants

– Var. 0 is an initial variant with no change.
– Var. 1 uses the new redesigned text instead of the old one.
– Var. 2 implements a button “Ask later” due to an assumption that some

people do not like quick decisions and may want to make an installation later.
The text remained the same. There are three buttons on the screen – “Buy”,
“No, thanks” and “Ask later”. When a user presses “Ask later”, the screen
appears again after a couple of days. Button “Ask later” can be pressed 3
times at most. After the third “Ask later” pressing, the screen never appears
again.

Following variants are currently involved in the follow-up phase. All
variants contain also the text change taken from the first variant.

– Var. 3 uses a principle of adding the decoy option next to the standard one. In
this option a basic version is for free, a three-month license for $4.99 (the decoy
option) and a one-year license for $9.99.

– Var. 4 uses the same principle as in the first variant. In this option a basic
version is for free, a one-year license for $9.99 (the decoy option) and a two-
year license for $14.99.
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– Var. 5 introduces a principle of reciprocity and experiments with a business
model “Pay what you can” where the user can select among three prices for
the same antivirus product. Users have used an antivirus trial version for free
and we assume that they may feel “obliged” to the company and buy a license.
The user is asked to value his/her security and user can select a price he/she
wants to pay for the product out of the three offers ($6.99, $9.99, $12.99).

Technical Solution of Initial Experiment: Only English speaking customers were
involved in the study, an estimated number of respondents was 500 users per the
variant. Finally, we got 14,142 participants in total after three months. Following
attributes were logged in company’s systems. Unfortunately, we had no other
information source (for example user questionnaire) to gain more information
about product users in this phase.

– Variant of the screen displayed.
– User’s country.
– Summed time spent on “Premium expired screen”.
– User tapped “Buy” button (yes/no).
– User actually bought the license (yes/no).
– Final decision (yes/no).
– Number of “Ask later” decisions (if applicable).
– Date – screen displayed for the first time.
– Date – user bought the license.
– Date – user tapped “No, thanks”.
– Device manufacturer.
– Device resolution.
– Device model.
– Android version.

4 Results and Observations

The initial experiment ran from December 2014 to early May 2015. However,
there was a marketing campaign in early March 2015. Our analyses of the data
showed that this campaign had a significant impact, the trends observed from
the data from first three months of experiment (December 2014 to early March
2015) are completely different from trends observed afterwards. We are currently
(September 2015) investigating details of this marketing campaign, but we did
not come to a rational explanation and conclusion of the causes and consequences
in detail. The zero variant together with the first and the second variant were
tested in the first phase. Results are described in Table 2. Participants were
English speaking users of trial antivirus software running on the Android plat-
form. All variants were randomly distributed among countries, manufacturers
and device users to gain an equal representation. There were 14,142 partici-
pants in total. Half of them came from USA (49.1 %). Others came mostly from
UK (33.1 %) or India (5.9 %). Nearly 90 % of them use antivirus in their mobile
phones, only 10 % in tablets. As for device manufacturers, nearly half of them use
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Table 1. Crosstable of results at the end of December 2014.

Purchased Not purchased Total

Var. 0 34 1,099 1,133

Var. 1 52 1,114 1,166

Var. 2 36 960 996

Total 122 3,173 3,295

Purchased Not purchased

Var. 0 1.96% 98.04%

Var. 1 3.18% 96.82%

Var. 2 2.65% 97.35%

Table 2. Crosstable of results in early March 2015.

Purchased Not purchased Total

Var. 0 77 4,780 4,857

Var. 1 125 4,731 4,856

Var. 2 87 4,342 4,429

Total 289 13,853 14,142

Purchased Not purchased

Var. 0 1.59% 98.41%

Var. 1 2.64% 97.36%

Var. 2 2% 98%

Samsung (48.8 %). The other half is split among many producers, for example
Sony (7.4 %) or HTC (5.3 %).

We set up a null hypothesis claiming that there is no difference in a number
of purchases among variants. An alternative hypothesis was claiming that the
difference exists.

We have conducted a Pearson Chi-Square test (χ2 = 12.062, p < .05, df = 2).
[17] Since the p-value is less than the significance level .05, we rejected the null
hypothesis in favor of the alternative hypothesis and proved a difference in the
number of purchases among variants.

We made a post-hoc analysis among variants based on arcsine transforma-
tion of each variant. At the significance level α = .05 we have proved difference
between the zero variant and the first variant. The difference between the zero
variant and the second variant was not statistically significant.

We proved that a simple text change can provide a clearer presentation of
security benefits to the user and lead to an increased uptake of a more advanced
security solution.

Other Observations

Observing the data, we can see interesting trends in increase and decrease of
obtaining the license. Comparing the first variant with the zero variant, the first
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variant has 62 % increase in getting the license over the zero variant in December
(Table 1) this trend continued to early March when the increase was also about
66 %. Comparing the zero variant with the second variant, the second variant has
35 % increase in December but only 25 % increase in early March 2015. December
increase in obtaining the premium license was quite likely influenced by overall
Christmas shopping spree.

Average time spend on the screen is same for all variants. It is good news
for the company that new variants do not imply any delay for users. We can
observe that customers who bought the license spend more time on the screen
than customers who did not.

We have observed that people who bought the license via the second variant
did not use the button “Ask later” mostly. 96.2 % out of all customers who
obtained the license after being exposed to the second variant did not used
the button “Ask later”. 3.5 % used the “Ask later” button once. Only one user
obtained a license after pressing “Ask later” twice. The current results indicate
(while still not being statistically significant) that postponing the decision does
not lead to purchase in a future.

We made also several observations based on the other attributes of collected
data. All are at the significance level α = 0.05.

– There is a statistically significant difference in a number of purchases in India
and USA (χ2 = 15.86, p < .001, df= 1), and India and UK (χ2 = 11.813,
p < .001, df = 1). Users from USA and UK purchase statistically more than
users from India.

– There is a statistically significant difference between zero and first variant
among USA users (χ2 = 13.98, p < .001, df= 1), whereas UK users do not
prefer any of variants significantly.

– Tablet users buy a license more often (statistically significant) than non-tablet
users (χ2 = 42.586, p < .001, df = 1). Average conversion rate for tablet users
is 4.4 %, whereas for non-tablet users is 1.78 %. There are no statistically
significant preferences in variants among tablet users, but non-tablet users
prefer the first variant significantly more.

– Comparing manufacturers who are represented by at least 500 participants,
the highest conversion rate was observed for users of LG (3.27 %), Samsung
(3.06 %) and Motorola (2.92 %), whereas the lowest rate was observed for
Huawei customers (around 0.2 %). There is also a statistically significant dif-
ference in purchases among Huawei and any of the following manufacturers:
Sony, Samsung, Motorola, LG. We also have observed statistically significant
preferences among zero and first variant in HTC (χ2 = 7.631, p < .005, df= 1)
and Samsung (χ2 = 4.264, p < .05, df = 1).

Conclusion

Our task was to increase user security by empowering him/her to select the safe
choice and obtain the premium license that offers more security features than the
free license. We have cooperated with the antivirus company ESET and 14,142
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real users of their product participated in our experiment. We have rejected
the null hypothesis claiming that there is no difference in a number of purchases
among variants (p < .05). When comparing the number of purchases of the same
version of software with better security features description, a slight difference in
presenting the features implies a 62 % (December) and 66 % (March) increase in
purchases as a result of using the first variant. The difference between the zero
variant and the first variant with the text change was statistically significant at
the significance level α=.05. Increase in the number of purchases by implement-
ing the button “Ask later” was about 35 % in December and 25 % in March, but
not enough to be statistically significant. Based on results and observations, we
decided to use a text change for all variants in the follow-up experiment.

Considering limitations of our experiment, we focused strongly on user
dialogs in our study and we did not take into consideration a lot of other related
issues. For example, the conversion rate on the Android platform is quite likely
influenced not only by the user dialog, but also with overall satisfaction with the
product and with the complex product workflow which offers many ways to buy
a product.

References

1. Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., Cranor, L.F.: Crying wolf: an
empirical study of ssl warning effectiveness. In: USENIX Security Symposium, pp.
399–416 (2009)

2. Sotirakopoulos, A., Hawkey, K., Beznosov, K.: On the challenges in usable security
lab studies: lessons learned from replicating a study on ssl warnings. In: Proceedings
of the Seventh Symposium on Usable Privacy and Security, p. 3. ACM (2011)

3. Amer, T., Maris, J.-M.B.: Signal words and signal icons in application control
and information technology exception messages-hazard matching and habituation
effects”. J. Inf. Syst. 21(2), 1–25 (2007)

4. Bravo-Lillo, C., Cranor, L.F., Downs, J., Komanduri, S., Sleeper, M.: Improv-
ing computer security dialogs. In: Campos, P., Graham, N., Jorge, J., Nunes, N.,
Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part IV. LNCS, vol. 6949,
pp. 18–35. Springer, Heidelberg (2011)

5. Wogalter, M.S., Desaulniers, D.R., Brelsford, J.W.: Consumer products: how are
the hazards perceived? In: Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, vol. 31, no. 5, pp. 615–619 (1987)

6. Wogalter, M.: Handbook of Warnings. Human Factors and Ergonomics. Taylor &
Francis, London (2006)

7. Bravo-Lillo, C., Komanduri, S., Cranor, L.F., Reeder, R.W., Sleeper, M., Downs, J.,
Schechter, S.: Your attention please: designing security-decision uis to make genuine
risks harder to ignore. In: Proceedings of the Ninth Symposium on Usable Privacy
and Security, SOUPS 2013, pp. 6:1–6:12. ACM, New York (2013)

8. Wogalter, M.S., Conzola, V.C., Smith-Jackson, T.L.: Research-based guidelines for
warning design and evaluation. Appl. Ergon. 33, 219–230 (2002)

9. Kline, P.B., Braun, C.C., Peterson, N., Silver, N.C.: The impact of color on warn-
ings research. In: Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, vol. 37, no. 14, pp. 940–944 (1993)



The Challenge of Increasing Safe Response of Antivirus Software Users 143

10. Tan, J., Nguyen, K., Theodorides, M., Negrón-Arroyo, H., Thompson, C.,
Egelman, S., Wagner, D.: The effect of developer-specified explanations for permis-
sion requests on smartphone user behavior. In: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI 2014, pp. 91–100. ACM,
New York (2014)

11. Wiebe, E.N., Shaver, E.F., Wogalter, M.S.: People’s beliefs about the internet:
surveying the positive and negative aspects. In: Proceedings of the Human Factors
and Ergonomics Society Annual Meeting vol. 45, no. 15, pp. 1186–1190 (2001)

12. Nielsen, J.: How users read on the web (1997). http://www.nngroup.com/articles/
how-users-read-on-the-web/. Accessed 1 December 2014

13. Nielsen, J.: F-shaped pattern for reading web content (2006). http://www.nngroup.
com/articles/f-shaped-pattern-reading-web-content/. Accessed 1 December 2014

14. Cialdini, R.: Influence: The Psychology of Persuasion. HarperCollins, New York
(2009)

15. Ariely, D.: Predictably Irrational, Revised and Expanded Edition: The Hidden
Forces That Shape Our Decisions. Harper Perennial/Harper Collins, New York
(2010)

16. Gilbert, D.T., Ebert, J.E.: Decisions and revisions: the affective forecasting of
changeable outcomes. J. Pers. Soc. Psychol. 82(4), 503 (2002)

17. Corder, G., Foreman, D.: Nonparametric Statistics: A Step-by-Step Approach.
Wiley, Hoboken (2014)

http://www.nngroup.com/articles/how-users-read-on-the-web/
http://www.nngroup.com/articles/how-users-read-on-the-web/
http://www.nngroup.com/articles/f-shaped-pattern-reading-web-content/
http://www.nngroup.com/articles/f-shaped-pattern-reading-web-content/


Weak Memory Models as LLVM-to-LLVM
Transformations

Vladimı́r Štill(B), Petr Ročkai(B), and Jǐŕı Barnat(B)
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Abstract. Data races are among the most difficult software bugs to dis-
cover. They arise from multiple threads accessing the same memory loca-
tion, a situation which is often hard to discern from source code alone.
Detection of such bugs is further complicated by individual CPUs’ use
of relaxed memory models. As a matter of fact, proving absence of data
races is a typical task for automated formal verification. In this paper,
we present a new approach for verification of multi-threaded C and C++
programs under weakened memory models (using store buffer emulation),
using an unmodified model checker that assumes Sequential Consistency.
In our workflow, a C or C++ program is translated into LLVM bitcode,
which is then automatically extended with store buffer emulation. After
this transformation, the extended LLVM bitcode is model-checked against
safety and/or liveness properties with our explicit-state model checker
DIVINE.

1 Introduction

Finding concurrency-related errors, such as deadlocks, livelocks and data races
and their various consequences, is extremely hard – the standard testing
approach does not allow the user to control the precise timing of interleaved
operations. As a result, some concurrency bugs that occur under a specific inter-
leaving of threads may remain undetected even after a substantial period of
testing. To remedy this weakness of testing, formal verification methods, explicit-
state model checking in particular, can be of extreme help.

Concurrent access to shared memory locations is subject to the so called
memory model of the specific CPU in use. Generally speaking, in relaxed mem-
ory models, the visibility of an update to a shared memory variable may be
postponed or even reordered with other updates to different memory locations.
Unfortunately, most programming and modelling languages were designed to
merely mimic the principles of the underlying sequential computation machine,
and therefore lack the syntactic and semantic constructs required to express
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low-level details of the concurrent computation and the memory model of the
underlying hardware architecture in particular. Moreover, for obvious reasons,
programmers design parallel algorithms with the Sequential Consistency [14]
memory model in mind, under which any write to or read from a shared variable
is instantaneous and immediately visible to all concurrent threads or processes –
an assumption that is far from the reality of contemporary processors.

To protect from inconsistencies due to the reordered or delayed memory
writes in the relaxed memory model architectures, specific low-level hardware
mechanisms, such as memory barriers, have to be used. A memory barrier makes
sure that all the changes done prior the barrier instruction are visible to all other
processes before any other instruction after the barrier is executed. For more
details on how memory barriers work we kindly refer the reader to technical
literature. Naturally, the implementation details of a specific relaxed memory
model depend on the brand and model of a CPU in use [19].

As a result, programs written in programming languages such as C do not
contain enough information for the compiler to emit the code whose behav-
iour is both correct with respect to the incomplete specification given by the
source code and at the same time as efficient as possible. A widely accepted
compromise is that sequential code is guaranteed to be semantically correct, but
any concurrent data access is the responsibility of the programmer. Such access
needs to be guarded with various programming and modelling language addons
such as builtin compiler functions, operating system calls, atomic variables with
(optional) explicit memory ordering specification, or other non-language mech-
anisms. Since the correctness of behaviour depends on a human decision, often
the resulting binary code does not do exactly what it was intended to do by its
developer.

This is exactly where formal verification by model checking can help. The
model checking procedure [7] systematically explores all configurations (states)
of a program under analysis to discover any erroneous or unwanted behaviour
of the program. The procedure can easily reveal states of the program that
are only reachable under a very specific thread interleaving; clearly, such states
may be very hard to reach with testing alone. Examples of explicit-state model
checkers include SPIN [10], DIVINE [4], or LTSmin [12]. Unfortunately, none of
the mentioned model checkers have direct support for model checking programs
under relaxed memory models. Instead, should a user be interested in verification
of a program under relaxed memory model, the program has to be manually
(or semi-manually) augmented to capture relaxed memory behaviour.

The main contribution of our paper is in a new strategy to automate model
checking of C and C++ programs under relaxed memory model without the
need of modification of the interpreter used by the model checker itself. Note
that interpreting C and C++ alone is a challenging task and any extension of the
interpreter towards relaxed memory models would only make it harder. In fact
model checkers do not typically rely on direct interpretation of C or C++ code,
but use some other, syntactically simpler, representation of the original program.
The model checker DIVINE, for example, interprets LLVM bitcode, which is an
intermediate representation of the program created by an LLVM-based compiler.
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In order to perform verification of C and C++ programs under relaxed mem-
ory model, we suggest to augment the original program and extend it with further
data structures (store buffers and a cleanup thread) to simulate the behaviour
of the original program under relaxed memory model. However, for the same
reasons as above, we avoid direct transformation of C or C++ programs – it
would require to parse the complex syntax of a high-level programming lan-
guage. Instead, we apply the transformation at the level of LLVM bitcode, after
the original program is translated by a C++ compiler, but before the represen-
tation is passed to the model checker for verification. This scenario allows us to
completely separate the weak memory extension from the use of a model checker,
hence, it allows us to use any model checker capable of processing LLVM bitcode
under Sequential Consistency. Our LLVM bitcode to LLVM bitcode transforma-
tion adds store buffer data emulation to under-approximate Total Store Order
(TSO) – a particular theoretical model of a relaxed memory model. The trans-
formation is implemented within the tool called LART (LLVM Abstraction and
Refinement Tool, Sect. 7.1 in [22]) that is distributed as a part of DIVINE model
checker bundle, under the 2-clause BSD licence.

The rest of the paper is organised as follows. Sect. 2 lists the most relevant
related work, Sect. 3 gives all the details of the LLVM transformation, Sect. 4
describes some relevant but rather technical implementation details, Sect. 5 gives
details on an experimental evaluation of our approach, and finally Sect. 6
concludes the paper.

2 Related Work

The idea of using model checkers to verify programs under relaxed memory mod-
els has been discussed first in connection with the explicit-state model checker
Murϕ [8]. The tool was used to generate all possible outcomes of small, assem-
bly language, multiprocessor programs using a given memory model [21]. This
was achieved by encoding the memory model and program under analysis in
the Murϕ description language, which is an idea applied in many later papers,
including this one.

To cope with the rather complex situation around memory models, theoreti-
cal models have been introduced to cover as many instances of different relaxed
memory behaviours as possible. The currently most used theoretical models are
the Total Store Order (TSO) [25], Partial Store Order (PSO) [25] and x86-TSO
which is a Total Store Order enriched with interlocking instructions [16]. In those
theoretical models, an update may be deferred for an infinite amount of time.
Therefore, even a finite state program that is instrumented with a possibly infi-
nite delay of an update may exhibit an infinite state space. It has been proven
that for such an instrumented program, the problem of reachability of a partic-
ular system configuration is decidable, but the problem of repeated reachability
of a given system configuration is not [2].

A particular technique that incorporates TSO-style store buffers into the
model and uses finite automata to represent the possibly infinite set of possi-
ble contents of these buffers has been introduced in [16]. Since the state space
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explosion problem is even worse with TSO buffers incorporated into the model,
authors of [16] extended their approach with a partial-order reduction technique
later on [17].

A different approach has been taken in [11], where the algorithm to be
analysed was transformed into a form where the statements of the algorithm
could be reordered according to a particular weak memory ordering. The trans-
formed algorithm was then analysed using a model-checking tool, SPIN in that
case.

A lot of research has been conducted to actually detect deviation of an execu-
tion of the program on a relaxed memory model architecture from an execution
under Sequential Consistency (SC). An SC deviation run-time monitor using
operational semantics [18] of TSO and PSO was introduced in [6], where authors
considered a concrete, sequentially consistent execution of the program, and sim-
ulated it on the operational model of TSO and PSO by buffering stores, as long
as they generated the same trace as the SC execution. Another approach to
detect discrepancies between a sequential consistency execution and real execu-
tions relied on axiomatic definition of memory models and (SAT-based) bounded
model checking [5].

The problem of relaxed memory model computation has been addressed also
in the program analysis community. Given a finite-state program, a safety speci-
fication and a description of the memory model, the framework introduced in [20]
computes a set of ordering constraints that guarantee the correctness of the pro-
gram under the memory model. The computed constraints are maximally per-
missive: removing any constraint from the solution would permit an execution
that violates the specification. To address the undecidability of the problem, an
abstraction from precise memory models has been considered by the BLENDER
tool [13]. The tool employs abstract interpretation to deliver an effective verifi-
cation procedure for programs running under relaxed memory models.

Another program analysis tool, called OFFENCE, was introduced to ensure
program stability [1] by inserting a memory barrier instruction where needed –
an approach also used in [17]. The problem of relaxed memory model and cor-
rect placement of synchronisation primitives is also relevant for the compiler
community [9].

The problem of LTL model checking for an under-approximated TSO memory
model using store buffers was also evaluated in [3], where authors proposed
transformation of the DVE modelling language programs to simulate TSO.

3 Emulation of Relaxed Memory in LLVM Bitcode

We have chosen to provide an under-approximation of the TSO memory model,
both for its simplicity and the fact that it closely resembles the memory model
used by x86 computers. In this memory model, all stores are required to become
visible in the same order as they are executed; however, loads can be executed
before independent stores. This situation can be emulated by per-thread store
buffers – stores are performed into store buffers and later flushed into main
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memory. Loads then have to first consult their thread’s respective store buffer,
and if it does not contain the address in question, proceed by consulting the
main memory. Loads do not see changes that are recorded only in store buffers
of other threads. We can see an illustration of the TSO memory model, and its
simulation using store buffers, in Fig. 1. While in the sequentially consistent case,
the result x = 0, y = 0 would not be possible, under TSO it is a valid output
of the program, and indeed it can be proved reachable by running DIVINE on
the transformed code. Note that store buffers are flushed non-deterministically,
using a dedicated thread; in particular, we run a dedicated flushing thread for
each worker thread.

int x = 0, y = 0;

1 void thread0() {

2 y = 1;

3 cout << "x = " << x << endl;

4 }

1 void thread1() {

2 x = 1;

3 cout << "y = " << y << endl;

4 }

main memory

0x04 0x08

x = 0 y = 0

store buffer for thread 0 store buffer for thread 1

0x08 1 32 0x04 1 32

thread 0

store y 1;

load x;

thread 1

store x 1;

load y;

Fig. 1. In this example, each of the threads first writes into a global variable and
later reads the variable written by the other thread. Under sequential consistency, the
possible outcomes would be x = 1, y = 1; x = 1, y = 0; and x = 0, y = 1, since
at least one write must proceed before the first read proceeds. However, under TSO
x = 0, y = 0 is also possible: this corresponds to the reordering of the load on line 3
before the independent store on line 2, and can be simulated by performing the store
on line 2 into a store buffer. The diagram shows (shortened) execution of the listed
code. Dashed lines represent where given value is read from/stored to.

Note that we deliberately avoid precise (unbounded store-buffer) simulation
of the theoretical TSO memory model, as this could easily result in infinite
state space of the program under verification. However, the store buffer size
can be passed as a parameter to the bitcode transformation. This way, we can
make both reachability and LTL verification decidable and connect it seamlessly
to an existing explicit-state framework. Please note that this approach only
under-approximates the set of all TSO behaviours. I.e., when DIVINE finds a
counterexample in the modified model, this counterexample can indeed occur
in some runs of the given program on some real hardware with TSO semantics.
On the other hand, not finding a counterexample does not guarantee error free
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execution on machines with store buffers deeper than specified for verification.
Obviously, setting the size of store buffers is a matter of compromise – larger
buffers will result in more precise verification, but also in a larger state spaces.

3.1 Infinite Delay Problem

For safety properties, such as assertion violation and/or memory safety, delaying
writes indefinitely (never flushing them from a store buffer) is not a problem, as
any violation of safety property is witnessed by finite path and for each run with
infinite delay, there also exists (possibly finite) run where each write is eventually
flushed. In infinite runs, however, such as those constructed as counterexamples
to liveness properties, infinite delays could pose a problem. Imagine, for example,
the following two threads:
bool x = false, y = false;

1 void thread0() {
2 y = true ;
3 while ( !x ) { AP( w0 ) }
4 for ( ; ; ) { /∗ work ∗/ }
5 }

1 void thread1() {
2 x = true ;
3 while ( !y ) { AP( w1 ) }
4 for ( ; ; ) { /∗ work ∗/ }
5 }

and a liveness property written (using LTL) as FG(¬w0 ∧ ¬w1). Assuming a
separate thread to perform store buffer flushes, it is easy to see that this prop-
erty holds only if the buffers are actually flushed on every possible run. However,
since flushing happens non-deterministically, it may actually never happen on
an infinite run. While this can be viewed as theoretically correct, it does not cor-
respond to any real-world behaviour, where delayed writes will eventually finish
and the program eventually proceeds. To counteract this inconsistency, we ask
our model checker to assume weak fairness [15], where it is guaranteed that every
non-blocking thread has performed infinitely many actions in an infinite run.

In [3], authors proposed to handle this problem by extending LTL specifi-
cation to include this store buffer fairness criteria. In our case though, we have
chosen to implement our transformation in a way which does not require any
additional specification and store buffer fairness is implied by the standard weak
fairness.

3.2 Invalidated Variable Store Problem

Another issue to deal with are delayed flushes from a store buffer that come at
the time when the object that should be written into does not exist anymore in
the main memory. As both memory allocation and stack depth can change at
the run-time, it might happen that an entry in the store buffer points to invalid
location (either given memory chunk was deallocated by the user, or it lived
in a stack frame that has already been abandoned). To solve this problem, we
would need to make sure that inaccessible addresses are evicted from the store
buffers. For dynamic memory, this can be done by overriding the function which



150 V. Štill et al.

deallocates objects from memory in such a way that it first iterates over all store
buffers and evict entries into the to-be-freed memory before calling the original
deallocate function.

For stack memory, however, the situation is more complicated – it is not
sufficient to evict all the stack-frame-allocated memory from store buffers before
returning from a function, because an exception can cause stack unwinding,
which can also result in invalid references in store buffers. This means that
cleanup handlers [24] need to be added to each function to deal with the situation.

4 Implementation

First of all, let us briefly explain how LLVM bitcode is used by our target
model checker DIVINE to support for C/C++ verification. There are two levels
below the LLVM bitcode of the program to be verified – an interpreter and an
LLVM userspace. The interpreter is used directly by the model checker to gen-
erate and explore the state space graph by executing LLVM instructions. The
interpreter detects errors such as invalid memory dereference, memory leaks,
assertion violations, etc. The interpreter has to be aware of threads and dynamic
memory management, hence, its role is similar to what the CPU and the core of
the operating system do when executing the code natively. The userspace, on the
other hand, corresponds to the runtime of the programming language, that is,
it provides LLVM bitcode for the basic libraries required by the given program-
ming language and/or threading model. The userpsace and interpreter together
provide the user with a standards-compliant interface for user’s programming
language of choice.

While in general, the separation of work between the interpreter and userspace
could be almost arbitrary (one could, for example, include the entire pthread
library in the interpreter), it is advantageous to keep the interpreter as simple as
possible, pushing most of the required functionality into the userspace. There-
fore, DIVINE provides a fairly small set of intrinsic functions (sixteen in total),
which give access to the necessary functionality provided by the interpreter. The
rest is left to userspace.

The support for relaxed memory verification, such as functions that simulate
store buffers, thus need not come separately for every program to be verified
under relaxed memory model, but may actually become a part of the DIVINE
LLVM userspace. However, it is not possible to implement weak memory simula-
tion through addition of userspace functions alone – we need to change the behav-
iour of memory manipulation instructions (such as loads, stores, and fences).
For this reason, we implemented an LLVM to LLVM bitcode transformation pass,
which translates relevant instructions into calls to the relevant userspace func-
tions. The actual simulation of the memory model is thus implemented within
the userspace and is separate from the original program. As a result of this
design choice, this transformation can be easily modified to work with other
LLVM model checkers and with different weak memory models.
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4.1 Updates to LLVM Userspace

Currently, LLVM userspace provides replacement functions for load, store and
fence. The relevant userspace functions can be identified by their lart weakmem
prefix. Store buffers are represented by a thread-local array with one record for
each store – this record contains the address, the value itself and the bit width
of the value. We have chosen to limit a single store to 64 bits, which is the usual
size atomically written by modern CPUs and also the maximal size of standard
integer types in C. Each store then pushes a record into the local store buffer,
while loads first consult the local store buffer for an up-to-date value, and if it is
not present proceed to load from memory. A fence flushes all the entries from the
local store buffer.

Note that block memory manipulation functions have to be replaced too, to
protect them from bypassing the store buffers. Hence, the userspace provides
replacements for block memory manipulation functions such as llvm.memmove,
llvm.memcpy, etc.

Further, atomic LLVM instructions, e.g. cmpxchg, are rewritten within the
transformation to use only functions implemented within the userspace. How-
ever, we currently only support sequentially-consistent ordering of atomics
(which is the default ordering for atomic variables in C++11). Further exten-
sions to support all atomic access orderings supported by LLVM/C++11 are
planned.

Finally, attention had to be paid to initialisation of the store buffers. Due to
the nature of global variable constructors in C++ which can run in arbitrary
order, we cannot use non-trivial constructors for store buffers, as this could
cause the constructor to run after some calls to lart weakmem * functions
have already happened. Therefore, the store buffer array is initialised to a null
pointer and allocated in the first call to one of the lart weakmem * functions.

4.2 LLVM to LLVM Transformation

The transformation is implemented as part of the LART tool. It basically iterates
over all the instructions in the original LLVM bitcode and replaces some of them
with calls to the corresponding replacement functions.

To perform this transformation correctly, we had to introduced special LLVM
function attributes: bypass, tso, and sc, denoting in what mode a particular
function should operate. Functions marked bypass are not subject to the trans-
formation at all, functions marked tso are fully processed by the transforma-
tion as indicated above. In functions marked sc, additional memory barriers are
inserted at the beginning of the function and after a call to any non-SC function.
Note that it is important that the functions which implement the relaxed weak
memory model itself are not transformed; for this reason, all lart weakmem *
functions are annotated as bypass. The default behaviour of the transformation
on functions that are not annotated with any of the attributes can be set by a
parameter passed to the transformation.

Since LLVM allows loads and stores larger than 64 bits (either large scalar
types, such as 128 bit integers, or aggregate values), we first break these large
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loads and stores into chunks of at most 64 bit-wide operations in a separate
transformation pass and only after this is done, we perform the instruction sub-
stitution transformation as outlined above.

Finally, to avoid interference from compiler optimisations, some of the mem-
ory accesses in our functions had to be marked volatile and we had to pre-
vent inlining of some of the functions (since inlining would discard function
attributes). Likewise, all the exposed functions had to be marked noinline.

4.3 State Space Reduction

Store buffers substantially increase the size of the state space, hence it is neces-
sary to counteract this growth. DIVINE provides powerful reduction techniques
out of the box, based on analysis of instruction visibility. Those reductions are,
however, rendered less effective by interactions with the store buffer: in particu-
lar, any TSO load or store is treated as visible by the τ+ reduction due to global
variable access within the TSO load/store implementation.

Fortunately, it is possible to reduce the overhead of store buffers by entirely
bypassing their use for memory locations that are private to a particular thread.
However, since the entire logic of TSO stores is handled in the userspace, it
is necessary to expose an additional intrinsic (builtin) function in the model
checker, which, for a given address, decides whether the address is visible from
any other threads.

As far as correctness is concerned, when we realise that from the point of view
of the model checker, store buffers are part of the global memory, the argument
carries over from the analogical construct (store visibility) used in τ+ reduc-
tion [23]. Any pointers currently residing in store buffers – and hence, capable of
revealing new memory locations to foreign threads – are treated as global; hence,
a delayed write of such a pointer cannot incorrectly hide intervening stores (into
locations that were previously thread-private but revealed by the pointer living
in a store buffer).

5 Evaluation

We evaluated our approach on a few models, all of which can be found in exam-
ples in source distribution of DIVINE1. Descriptions of the models used can be
found in Table 1. All measurements were performed on a laptop with Intel Core
i7-3520M, running at 3.4 GHz, with 8 GB of memory. DIVINE used 4 threads
for verification and never depleted available memory (loss-less state space com-
pression was enabled).

5.1 Results

The results of verification with DIVINE can be seen in Table 2. In all cases,
Context-Switch-Directed Reachability [26] was used, as it performed much faster
1 Online: https://divine.fi.muni.cz/trac/browser/examples/llvm/weakmem/.

https://divine.fi.muni.cz/trac/browser/examples/llvm/weakmem/
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Table 1. Models used for evaluation

simple sc Model based on Fig. 1, SC, asserting that x = 0, y = 0

simple mtso Same model, but manually modified to use TSO for relevant variables

simple stso Same model, workers are auto-transformed to TSO, the rest is SC

simple tso Same model, fully transformed to TSO

peterson sc Peterson’s mutual exclusion algorithm

peterson tso The same, automatically transformed to TSO.

fifo sc First-in, first-out, lockless inter-thread queue, as used in DIVINE

fifo tso Automated TSO transform of fifo sc above

Table 2. Results of divine verify for our examples.

Model Store buffer
size

Assertion
violated

# of states Reduced
# states

Memory
[GB]

Time [s]

simple sc N/A no 205 N/A 0.16 1

simple mtso 1 yes 6.89 k N/A 0.17 3

simple stso 1 yes 10.7 k 10.7 k 0.17 6

simple tso 1 yes 24.7 M 537.2 k 3.18 20318

peterson sc N/A no 1.68 k N/A 0.16 1

peterson tso 0 no 55.9 k N/A 0.17 38

peterson tso 2 yes 2.86 M 95.7 k 0.79 990

peterson tso 3 yes 4.70 M 129.9 k 1.21 1610

fifo sc 0 no 6951 N/A 0.73 20

fifo tso 1 no – 44 M – –

than regular reachability for the TSO simulation case. From the results, we can
see significant increase of state space size when store buffers are enabled. This is
due to two factors – one of them is that the store buffers themselves increase the
state space size, as they can be flushed non-deterministically anywhere between
the given store and the nearest memory barrier. The other issue is the interfer-
ence with τ+ reduction mentioned in Sect. 4.3. As can be seen in the case of
peterson sc and peterson tso with store buffers of size 0 (in this case value
is stored into store buffer and immediately flushed out within one transition in
the state space), this effect is quite strong.

As for the differences between different versions of the simple model, the
state space size is clearly dependent on how many of the loads and stores are
treated as TSO – in case of full TSO transformation all library functions are also
in TSO, therefore state space size is increased far more. The difference between
simple mtso and simple stso is more subtle: in the case of simple stso our
transformation adds memory barriers into SC functions, at their beginning and
after any call to non-SC function. While the second case is rarely present in
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our model, the first case makes any function call observable, as a flush will be
considered observable by τ+ reduction (due to an accesses to the store buffer).

6 Conclusion

We have introduced an LLVM to LLVM transformation that extends a program
with relaxed memory simulation and we have shown that such an extended
program can be passed to a model checker to perform verification of C/C++
programs under a relaxed memory model. A key attribute of our approach is
that no updates to the model checker (which is based on sequential consistency)
are needed. The preliminary experiments show the approach as such is feasible,
even though the growth of the state space is significant. Finally, the verification
of the fifo tso model is, in itself, a valuable result, as the code in question is
sensitive to memory ordering and until now we were only able to verify it under
the assumption of sequential consistency.

As our future work we intend to improve the implementation and also imple-
ment support for weaker memory models, such as Partial Store Order. As a
research goal, we want to extend LART to automatically annotate some func-
tions as SC, whenever it can be statically decided that such an annotation has no
influence on the verification result, counteracting the growth of the state space.
Further improvements of reductions supported by DIVINE and their interaction
with store buffer simulation, and thread-local memory in general, could also
significantly reduce the state space.
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