
The Security of Polynomial Information
of Diffie-Hellman Key

Yao Wang1,2,3 and Kewei Lv1,2(B)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

{wangyao,lvkewei}@iie.ac.cn
2 Data Assurance Communication Security Research Center,

Chinese Academy of Sciences, Beijing 100093, China
3 University of Chinese Academy Sciences, Beijing 100049, China

Abstract. In this paper, we study the relations between the security
of Diffie-Hellman (DH) key and the leakage of polynomial information
of it again. Given a fixed sparse polynomial F (X) and an oracle, which
returns value of polynomial of DH key i.e., F (gxy) when called by gx and
gy, we obtain a probabilistic algorithm to recover the key. It is an exten-
sion of Shparlinski’s result in 2004. This shows that finding polynomial
information of DH key is as difficult as the whole key again. Furthermore,
we study a variant of DH problem given 2 and gy to compute 2y and the
n-DH problem with this method respectively, and obtain similar results.

Keywords: Diffie-Hellman key · m-sparse polynomial · Polynomial
information · n-DH problem

1 Introduction

In 1976, Diffie and Hellman proposed a practical method to agree on a secret key
over an insecure channel called Diffie-Hellman (DH) key exchange protocol. Let
g ∈ F ∗

p be an element of multiplicative order t. In DH key exchange protocol over
F ∗

p , two parties calculate ga, gb respectively, where a, b ∈ [0, t − 1] and exchange
them to form their common key K = gab. The element K has the same bit
length n as p and n is chosen to make this protocol secure. Since then, many
new cryptosystems have been proposed based on DH protocol.

In general, after the key exchange protocol is finished, both parties need to
switch to a private key cryptosystem. For practicality and speed, they may wish
to use a block cipher and therefore need to derive a much shorter bit string
from K. A natural way would be to use a block of bits from gab. So when we
analyze the security of DH key, bit security is an important aspect. Boneh and
Venkatesan proved that a part (32 bits) of the most significant bits (MSB) is as
secure as the whole (1024 bits) key. They showed that finding n1/2 MSB of K
is as difficult as the whole key in [2,3]. A detailed survey of several other results
of this type of problem has been given in [4].
c© Springer International Publishing Switzerland 2016
S. Qing et al. (Eds.): ICICS 2015, LNCS 9543, pp. 71–81, 2016.
DOI: 10.1007/978-3-319-29814-6 7

72 Y. Wang and K. Lv

Verheul [5] studies another aspect of DH key. Assume q = pt and γ ∈ Fq is a
generator of a group. If g(x) =

∑t
i=0 aix

i is an irreducible polynomial of degree
t in Fp[X], then we can describe the extension field Fq as Fp[x]/g(x), i.e., each
element f in Fq can be uniquely written modulo g(x), as a polynomial of degree
< t. In this setting, for any i less than t, let fi denote the i-th coefficient of
an element f . There exists a function that would be a linear mapping from Fq

onto Fp and its value is the coefficient fi. [5] proves that this function can be
expressed as F (X) = Σm

i=1ciX
ei(ci ∈ Fq) and ci can be easily determined. [5]

also studies the security of polynomial information of DH key and proves that
finding coefficients fi (i.e., polynomial information F (γxy)) of DH key γxy is as
difficult as the whole key.

As an application of [5,6] gives a variant of DH scheme. In this variant,
both parties send each other the minimal polynomials of γx, γy rather than the
element themselves and the exchanged key is some coefficient of non-constant
term of the minimal polynomial of γxy. This coefficient can be expressed as
F (γxy) and the polynomial F must have a very large degree, such that it is
unfeasible to find γxy by solving the equation F (γxy) = A. [5,6] proves that
if we are given an oracle which for each pair (γx, γy) returns F (γxy), then one
can construct a polynomial time algorithm to recover γxy. This shows that the
variant are at least as secure as the original DH scheme over a multiplicative
group of Fq. So the security of polynomial information of DH key is closely
related to the security of DH key.

Shparlinski’s result [1] is a generalization of [5,6]. It studies the security of
polynomial transformations of DH key. Indeed, this polynomial transformation
is a value of given polynomial function of the key. And [1] also extends [5] to the
unreliable oracle case, that is, the oracle returns correct result only for a certain
very small fraction of inputs and an error message for other inputs. Then an
algorithm is given making expected number of calls of the oracle, to return γxy.
It is deterministic when correct answers could be obtained from oracle. But it
requires that the error answers of oracle could be identified. Moreover, in [1],
only one part of the input to oracle is random and the other is fixed.

Here we improve the oracle and algorithm in [1] to get a probabilistic algo-
rithm to recover DH key. In this improvement, not only the error from oracle
could be not identified, but also both parts of inputs are random. In our algo-
rithm, we use the Chebyshev inequality to identify error answers of the oracle.
And for the two parts random inputs (γx, γy) of the oracle, we use the Markov
inequality to find a good y which makes us have a sufficient advantage in receiv-
ing correct answers from the oracle taking over x only. Thus we can solve a
nonsingular system of linear equations to recover DH key. As corollaries, we
study two special cases. Finally, we use the same method to study variants of
DH problem, i.e., given 2 and gy trying to recover the key 2y and the n-DH
problem.

The Security of Polynomial Information of Diffie-Hellman Key 73

2 Preliminaries

In order to show our algorithms, we need an estimate on the number of zeros of
polynomials from [1] and two important inequalities. Let Fq be a finite field of
q elements and F ∗

p be a multiplicative subgroup of Fq, where p is a prime.

Lemma 1 ([1]). For m ≥ 2, elements a1, a2, . . . , am ∈ F ∗
q and integers

e1, . . . , em, an element θ ∈ Fq of multiplicative order t. We denote by W
the number of solutions of the equation

∑m
i=1 aiθ

eiu = 0, u ∈ [0, t − 1]. Then
W ≤ 3t1−1/(m−1)D1/(m−1), where D = min1≤i≤mmaxj �=igcd(ej − ei, t).

Let E(ξ) be the expected value of a random variable ξ and D(ξ) be the
variance value of ξ. So Eξ[g(ξ)] denotes the expected value of a random variable
g(ξ), where the function g only depends on the distribution of ξ.

Theorem 1 (Markov). For a positive c and a random variable ξ upper bounded
by M , Pr[ξ ≥ E(ξ)/c] ≥ M−1(1 − 1/c)E(ξ).

Theorem 2 (Chebyshev). For an arbitrary positive δ, Pr[|ξ − E(ξ)| ≥ δ] ≤
D(ξ)/δ2.

3 The Security of Polynomial Information of DH Key

Let γ be an element in Fq of multiplicative order t. We consider an m-sparse
polynomial F (X) =

∑m
i=1 ciX

ei ∈ Fq[X], where c1, . . . , cm ∈ F ∗
q and e1, . . . , em

are pairwise distinct modulo t.

3.1 The Polynomial Information from an Imperfect Oracle

Let 0 < ε ≤ 1. Assume there exists an oracle OF,ε satisfying that, given values
of (γx, γy) to the oracle, it returns correct values of F (γxy) for at least εt2

pairs (x, y) ∈ [0, t − 1]2 and returns a random element of F ∗
p for other pairs of

(x, y) ∈ [0, t−1]2. The case ε = 1 is a noise-free oracle which had been considered
in [5]. So the following discussion only involves in the case of ε < 1.

Here we try to construct a nonsingular system of linear equations using poly-
nomial information from the oracle. We firstly study how to select the coefficient
matrix of this equation system.

Given θ ∈ F ∗
p , for a vector −→u = (u1, u2, . . . , um), we say that −→u is good if

det(θeiuj)m
i,j �=1 �= 0. We set U = {−→u |−→u is good}. Here we estimate the possibility

of finding a good −→u .
Assume that for some k(2 ≤ k ≤ m), we have already found k − 1 elements

u1, u2, . . . , uk−1 ∈ [0, t − 1] with

det(θeiuj)k−1
i,j �=1 �= 0 (1)

We select element uk ∈ [0, t − 1] until

det(θeiuj)k
i,j �=1 �= 0 (2)

74 Y. Wang and K. Lv

We know that if the determinant (2) vanishes then uk is a solution of equation

�ekuk
1 + · · · + �e1uk

k = 0 (3)

where, by (1), �1 = det(θeiuj)k−1
i,j �= 0.

Applying Lemma1, the number of elements uk ∈ [0, t − 1] satisfying (3) is
at most 3t1−1/(k−1). So the probability of finding uk ∈ [0, t − 1] which satisfy
(2) is at least 1 − 3t−1/(k−1). If we select u1, u2, .., um ∈ [0, t − 1] uniformly and
independently at random to get the vector −→u = (u1, u2, . . . , um), then Pr[−→u ∈
U] ≥ ∏m

i=2(1 − 3t−
1

i−1).
Since both parts of inputs to this oracle are random, for input (γx, γy) of

oracle, using idea of [1], we hope that we could choose a set of good y with a
high probability such that, for each good y, we have a sufficient advantage in
receiving correct answers from the oracle taking over x only. Then we can query
oracle by randomizing the γx-component, fixing a good y. Thus, we can obtain
a probabilistic algorithm to recover γxy with a high probability.

Let εy be the average success probability of OF,ε, taken over random x for
a given y. Thus, Ey[εy] = ε. For k = �log 2

ε	, we say that y is j-good if εy ∈
[2−j , 2−j+1), j = 1, 2, . . . , k. Let Sj = {y|y is j-good} (thus we ignore any y
satisfying εy < ε/2). By Theorem 1, for c = 2,M = 1, Pr[εy ≥ ε

2] ≥ ε
2 .

If all j satisfy Pr[(y + v) ∈ Sj] < ε·2j−2

k , then

ε

2
≤

k∑

j=1

2−j+1Pr[(y + v) ∈ Sj] <

k∑

j=1

2−j+1 · ε · 2j−2

k
=

ε

2
,

which is a contradiction. So there must exist j such that Pr[(y+v) ∈ Sj] ≥ ε·2j−2

k .
It means that we could find a suitable v such that y + v is j-good.

Now we present a probabilistic algorithm (Algorithm 1) to look for a suitable v.
Algorithm 1. On input (t, γy, B), given oracle OF,ε, output (v, εy+v).
1: Choose a random v ∈ [0, t − 1] and set count := 0;
2: For a sufficiently large integer B = poly(k), choose r1, r2, . . . , rB randomly.

Using (γri , γy+v) to call the oracle, it returns Ai, i = 1, 2, .., B;
3: For every ri, compute γri(y+v) and if γri(y+v) equals Ai, set count = count+

1;
4: Compute the approximate value of εy+v = count

B . If εy+v ≥ ε
2 , outputs

(v, εy+v), else aborts.
In Algorithm 1, for every ri, we can compute correct values of γri(y+v) to

determine whether the output Ai of the oracle in step 2 is correct. So in step
4, we can get an approximate value of εy+v for some v. Because k = �log 2

ε	,
we know that if y is j-good, that is, εy+v ∈ [2−j , 2−j+1), the value of εy+v must
satisfy εy+v ≥ ε

2 . Thus if Algorithm 1 finds a suitable v satisfying εy+v ≥ ε
2 , we

can get j and y + v ∈ Sj with the probability of at least ε
2 .

Based on Algorithm 1, we get Algorithm 2 which can output DH key by calling
oracle OF,ε.

The Security of Polynomial Information of Diffie-Hellman Key 75

Algorithm 2. On input (t, δ, γ, γx, γy), for 0 < δ < 1, given oracle OF,ε, output
γxy.
1: Run Algorithm 1 to find some v ∈ [0, t − 1] which satisfies y + v ∈ Sj and

compute θ = γy+v;
2: Find some −→u = (u1, u2, . . . , um) satisfying −→u ∈ U ;
3: For every component uj(j = 1, 2, . . . , m) of −→u , using (γx+uj , γy+v) to call

the oracle, it returns Aj ;
4: Solve the system of equations

∑m
i=1 ci(θx+uj)ei = Aj , j = 1, 2, . . . ,m to get

a candidate value of γxy;
5: Choose some n satisfying n ≥ 1−2−jm

2jmδ2(1−ε) . Repeat steps 2,3,4 n times to get
a list L of candidate values of γxy. If some γxy appears z(z ≤ (2−jm + δ)n)
times in the list L and | z

n − 2−jm| ≤ δ, output this γxy. Otherwise, choose
another n to redo this step.

Theorem 3. Let t be a prime, m ≥ 2 and an m-sparse polynomial F (X) =∑m
i=1 ciX

ei ∈ Fq[X], where c1, . . . , cm ∈ F ∗
q and e1, . . . , em are pairwise distinct

modulo t. Given an oracle OF,ε, Algorithm2 can output DH key with a probability
at least ε

2 · (1 − 1
nδ2·2jm) · (1 − 3t−

1
m−1)m−1 in time polynomial in (mn,B) by

making mn + B calls to the oracle. In particular, if t ≥ (3

1−2
− 1

m−1
)m−1 and

δ ≥ (1
n·2jm)

1
2 , DH key could be found with a probability of at least ε

4 .

Proof. After running steps 1, 2, 3 of Algorithm 2, we can get a nonsingular
system of linear equations

(θeiuj)m
i,j=1 ·

⎛

⎜
⎝

c1θ
xe1

...
cmθxem

⎞

⎟
⎠ =

⎛

⎜
⎝

A1

...
Am

⎞

⎟
⎠

Because the coefficient matrix is non-singular, we can solve the system of equa-
tions to get the values of (c1θxe1 , . . . , cmθxem). Because m ≥ 2 and e1, . . . , em

are pairwise distinct modulo t, at least one of e1, . . . , em is relatively prime to t.
So we can find an integer fi ∈ [0, t − 1] satisfying eifi ≡ 1(mod t) and compute
θx = (θxei)fi , that is, (γ

y+v

)x. Thus we can get a candidate value of γxy from
(γ

y+v

)x = γxy · γxv.
Then we estimate the probability of which step 5 outputs a correct value

of DH key. When we use (γx+ui , γy+v) to call the oracle, it returns the correct
value of F (γ(x+ui)(y+v)) with probability at least 2−j . So after repeating steps
2, 3, 4 one time, we can get the correct γxy with probability at least 2−jm. From
Theorem 2, with the increasing number of repetitions n in step 5, the value of
z
n infinitely close to 2−jm. Thus the value of δ should be chosen as small as
possible, but at this time, the value of n will be very big. In order to keep the
efficiency of the algorithm, one should make a trade-off in choosing the value of
δ ∈ (0, 1). Here by Theorem 2, we know that the output of step 5 is correct with
the probability of Pr[| z

n − 2−jm| ≤ δ] ≥ 1 − 2−jm(1−2−jm)
nδ2 .

76 Y. Wang and K. Lv

The success of the Algorithm 2 means that steps 1, 2, 5 run successfully. So
the successful probability of Algorithm 2 is:

Pr[Algorithm 2 succeeds] ≥ε

2
· (1 − 2−jm(1 − 2−jm)

nδ2
) ·

m∏

i=2

(1 − 3t−
1

i−1)

≥ε

2
· (1 − 1

nδ2 · 2jm
) · (1 − 3t−

1
m−1)m−1

Obviously, Algorithm 1 run in polynomial time poly(B) and steps 2, 3, 4, 5
of Algorithm 2 are done in polynomial time poly(mn). So Algorithm 2 is done in
time polynomial in (mn,B). When Algorithm 2 succeeds, we run the step 1 one
time with B calls to the oracle and repeat step 2, 3, 4 n times with mn calls.
Thus, we make the totally number of mn + B calls to the oracle.

If t ≥ (3

1−2
− 1

m−1
)m−1, we know

∏m
i=2(1 − 3t−

1
i−1) ≥ 1

2 . In order to output

DH key with a probability at least ε
4 , one can choose the value of δ at least

(1
n·2jm)

1
2 . This completes the proof.

3.2 Further Discussions on Another Two Cases

From Sect. 3.1, we can get two special cases. In these cases, we give two algo-
rithms which can recover DH key by calling two special oracles respectively.

Assume that there is a special oracle ÕF,ε satisfying that, for every x ∈
[0, t−1], when we use (γx, γy) to make a call of the oracle, it returns the correct
value of F (γxy) for at least εt values of y ∈ [0, t − 1] and returns a random
element of F ∗

p for other values of y ∈ [0, t−1]. Here the error output from oracle
ÕF,ε could not be identified.

We give Algorithm 3 to recover DH key by calling oracle ÕF,ε.
Algorithm 3. On input (t, δ, γ, ε, γx, γy), for 0 < δ < 1, given oracle ÕF,ε,
output γxy.
1: Set θ = γx. Find some −→u = (u1, u2, . . . , um) satisfying −→u ∈ U ;
2: For every component uj(j = 1, 2, . . . ,m) of −→u , using (γx, γy+uj) to call the

oracle, it returns Aj ;
3: Solve the system of equations

∑m
i=1 ci(θy+uj)ei = Aj , j = 1, 2, . . . , m to get

a candidate value of γxy;
4: Choose some n satisfying n ≥ εm(1−εm)

(1−ε)δ2 . Repeat steps 1, 2, 3 n times to get
a list L of candidate values of γxy. If some γxy appears z(z ≤ (εm + δ)n)
times in the list L and | z

n − εm| ≤ δ, output this γxy. Otherwise, choose
another n to redo this step.

Theorem 4. Let t be a prime, m ≥ 2 and an m-sparse polynomial F (X) =∑m
i=1 ciX

ei ∈ Fq[X], where c1, . . . , cm ∈ F ∗
q and e1, . . . , em are pairwise distinct

modulo t. Given an oracle ÕF,ε, Algorithm3 can output DH key with a probability
of at least (1 − εm

nδ2) · (1 − 3t−
1

m−1)m−1 in time polynomial in mn by making mn
calls to the oracle.

The Security of Polynomial Information of Diffie-Hellman Key 77

Proof. The proof is similar to Theorem 3, except that the probability of success
is different. Using (γx, γy+uj) to call the oracle, it returns the correct value of
F (γx(y+u

j
)) with probability at least ε. So after repeating steps 1, 2, 3 one

time, we can get the correct γxy with probability at least εm. By Theorem 2,
for some 0 < δ < 1, the output of step 4 is correct with the probability of
Pr[| z

n − εm| ≤ δ] ≥ 1 − εm(1−εm)
nδ2 .

The success of Algorithm 3 means that steps 1, 4 run successfully. So the
successful probability of Algorithm 3 is:

Pr[Algorithm 3 succeeds] ≥(1 − εm(1 − εm)
nδ2

) ·
m∏

i=2

(1 − 3t−
1

i−1)

≥(1 − εm

nδ2
) · (1 − 3t−

1
m−1)m−1

Obviously, when the Algorithm 3 succeeds, we repeat step 1, 2, 3 n times.
Thus, we make the totally number of mn calls to the oracle.

Assume that there is another special oracle ÔF,ε satisfying that, given values of
(γx, γy) to the oracle, it returns correct values of F (γxy) for at least εt2 pairs
(x, y) ∈ [0, t−1]2 and returns an error message for other pairs of (x, y) ∈ [0, t−1]2.
The oracle ÔF,ε makes two parts of inputs randomize instead of only one part
in [1].

Here we give Algorithm 4 to recover DH key by calling oracle ÔF,ε.
Algorithm 4. On input (t, γ, γx, γy), given oracle ÔF,ε, output γxy.

1: Run Algorithm 1 with the oracle ÔF,ε to find some v ∈ [0, t − 1] satisfying
y + v ∈ Sj and compute θ = γy+v;

2: Find some −→u = (u1, u2, . . . , um) satisfying −→u ∈ U . For every component
uj(j = 1, 2, . . . ,m) of −→u , computing γx+uj . Use (γx+uj , γy+v) to call the
oracle, it returns value of F (γ(x+uj)(y+v)) = Aj .

3: Solve the system of equations
∑m

i=1 ci(θx+uj)ei = Aj , j = 1, 2, . . . ,m to get
the value of γxy, output this γxy.

Theorem 5. Let t be a prime, m ≥ 2 and an m-sparse polynomial F (X) =∑m
i=1 ciX

ei ∈ Fq[X], where c1, . . . , cm ∈ F ∗
q and e1, . . . , em are pairwise distinct

modulo t. Given an oracle ÔF,ε, Algorithm4 can output DH key with a probability
of at least ε

2jm+1 ·(1−3t−
1

m−1)m−1 in time polynomial in (m,B) by making m+B
calls to the oracle.

Proof. The proof is similar to Theorem 3 except for the probability of success.
The success of Algorithm 4 means that steps 1, 2 run successfully. Step 2 can
find a suitable uj such that oracle returns the correct values of F (γ(x+uj)(y+v))
and det(θeiuj)m

i,j=1 �= 0. So step 2 runs successfully with probability of at least
(2−j)m

∏m
i=2(1 − 3t−

1
i−1).

78 Y. Wang and K. Lv

Thus, the successful probability of Algorithm 4 is:

Pr[Algorithm 4 succeeds] ≥ε

2
· (2−j)m ·

m∏

i=2

(1 − 3t−
1

i−1)

≥ ε

2jm+1
· (1 − 3t−

1
m−1)m−1

When Algorithm 4 succeeds, we run the step 1 one time with B calls to the
oracle and the step 2 one time with m calls. Thus, we make the totally number
of m + B calls to the oracle.

Algorithms 2–4 all show that finding polynomial information of DH key is as
difficult as the whole key.

4 Some Variants of DH Problem and Their Polynomial
Information Security

In this section, we present some variants of DH problem, such as, DHg(2, gy), the
n-DH problem and Multiple DH problem. For these variants, we give algorithms
and theorems with the similar method to Sect. 3 respectively. All theorems show
that finding polynomial information of DH key of these variants is also as difficult
as the whole key.

4.1 DH Problem DHg(2, gy)

In [2], there is a new variant of the DH key exchange protocol. Say Alice and
Bob wish to perform secret key over p. Alice picks a random number x in the
range [1, p − 1] such that gcd(x, p − 1) = 1, computes g = 2x(mod p) and sends
g to Bob. Bob picks a random number y in [1, p − 1] and sends gy to Alice. The
key they agree on is α = 2y(mod p). Clearly Bob can compute this value. Alice

can compute this value since 2y = gyx
−1

(mod p). So this variant of DH can be
described as knowing 2 and gy to recover the key 2y, denoted DHg(2, gy). There
is an oracle OF,ε whose definition is the same as Sect. 3.1.

Corollary 1. Given the oracle OF,ε, 2y can be recovered from (2, gy) running
Algorithm2.

Proof. We use (2, gy) as the inputs of the oracle OF,ε. Then running Algorithm 2
given input (p, δ, g, 2, gy), we can get the value of 2y.

4.2 The n-DH Problem

In [7], Cash, Kiltz and Shoup proposed a new computational problem and named
it the twin Diffie-Hellman (twin DH) problem with the meaning that given a ran-
dom triple of the form (γx1 , γx2 , γy) ∈ F 3

q , compute γx1y and γx2y. [8] presented

The Security of Polynomial Information of Diffie-Hellman Key 79

a modification of the twin DH problem by extending the number of the (ordi-
nary) DH instances from 2 to an arbitrary integer n, and name it the n-DH
problem. The n-DH problem is that given a random n + 1 tuple of the form
(γx1 , . . . , γxn , γy) ∈ Fn+1

q , compute (γx1y, . . . , γxny).
Assume that there is a n-DH oracle On

F,ε satisfying that, for every xi ∈
[0, t−1], i = 1, 2, .., n, given the values of (γxi , γy), it returns correct F (γxiy) for
at least εt values of y ∈ [0, t − 1] and returns an error message for other values
of y ∈ [0, t − 1].

Here we can construct an algorithm using similar method to recover n-DH
key by calling oracle On

F,ε.
Algorithm 5. On input (t, γ, γx1 , . . . , γxn , γy), given oracle On

F,ε, output
(γx1y, . . . , γxny).
1: Set θ = γx1 .Find some −→u = (u1, u2, . . . , um) satisfying −→u ∈ U . For every

component uj of −→u , using (θ, γy+uj) to call the oracle, it returns value of
F (θy+uj) = Aj . Solve the system of equations

∑m
i=1 ci(θy+uj)ei = Aj , j =

1, 2, . . . , m to get the value of γx1y;
2: Replace θ with γx2 and repeat step 1, we can get the value of γx2y;
3: Repeatedly calculate as step 2 until getting all values of γxiy, then output

values of (γx1y, . . . , γxny).

Theorem 6. Let t be a prime, m ≥ 2 and an m-sparse polynomial F (X) =∑m
i=1 ciX

ei ∈ Fq[X], where c1, . . . , cm ∈ F ∗
q and e1, . . . , em are pairwise distinct

modulo t. Given the oracle On
F,ε, Algorithm5 can output n-DH key with a prob-

ability of at least εmn · (1 − 3t−
1

m−1)(m−1)n in time polynomial in mn by making
mn calls to the oracle.

Proof. It can easily imply from Theorem 5 that there exists an algorithm one
can get value of γx1y with a probability of at least εm · (1 − 3t−

1
m−1)(m−1).

Algorithm 5 is n repeats of Algorithm 4, so it can output the value of n-DH key
with a probability of at least εmn · (1 − 3t−

1
m−1)(m−1)n.

4.3 Multiple DH Problem

Based on Sect. 4.2, we define another variant of DH problem. It can be described
as knowing γx1 , γx2 , . . . , γxn to recover the key γ

∏n
i=1 xi .

Assume that there is a Multiple DH oracle OM
F,ε satisfying that, for every

x1, x2, . . . , xn ∈ [0, t − 1], given values of (γx1 , γx2 , . . . , γxn), it returns correct
F (γ

∏n
i=1 xi) for at least εt values of xn ∈ [0, t − 1] and returns an error message

for other values of xn ∈ [0, t − 1].
Here we can construct a recursion algorithm using similar method to Sect. 3

to recover Multiple DH key by calling oracle OM
F,ε.

Algorithm 6. On input (t, γ, γx1 , . . . , γxn), given oracle OM
F,ε, output γ

∏n
i=1 xi

1: Find some −→u = (u1, u2, . . . , um) satisfying −→u ∈ U . Set θ1 = γx1 , θ2 =
γx2 . For every component uj of −→u , using (γ, . . . , γ, θ1, θ2 · γuj) to call the
oracle, it returns value of F (θx2+uj

1) = Aj . Solve the system of equations
∑m

i=1 ci(θ
x2+uj

1)ei = Aj , j = 1, 2, . . . ,m to get the value of γx1x2 ;

80 Y. Wang and K. Lv

2: Replace θ1, θ2 with γx1x2 , γx3 and repeat step 1, we can get the value of
γx1x2x3 ;

3: Recursively calculate as step 2 until getting the value of γ
∏n

i=1 xi , then output
this value of γ

∏n
i=1 xi .

Theorem 7. Let t be a prime, m ≥ 2 and an m-sparse polynomial F (X) =∑m
i=1 ciX

ei ∈ Fq[X], where c1, . . . , cm ∈ F ∗
q and e1, . . . , em are pairwise distinct

modulo t. Given the oracle OM
F,ε, Algorithm6 which given (γx1 , γx2 , . . . , γxn)

makes the expected number of at most 2mε−1(n−1) calls of the oracle, it returns
the value of γ

∏n
i=1 xi .

Proof. Theorem 5 has proved that there exists an algorithm one can get value of
γx1x2 . We can easily know it needs the expected number of at most 2mε−1 calls
of the oracle. Algorithm 6 is n−1 recursions of Algorithm 4, so it can output the
value of γ

∏n
i=1 xi by the expected number of at most 2mε−1(n − 1) calls of the

oracle.

5 Conclusion

In this paper, we study the relations between security of DH key and its polyno-
mial information, and give several algorithms to recover DH key γxy for different
DH problems. These algorithms construct systems of equations to recover DH
key by making polynomial number of calls to oracle to find polynomial informa-
tion of DH key with a certain probability. And all these algorithms imply that
finding polynomial information of DH key is as difficult as the whole key.

References

1. Shparlinski, I.E.: Security of polynomial transformations of the Diffie-Hellman key.
Finite Fields Appl. 10(1), 123–131 (2004)

2. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of secret
keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996)

3. Vasco, M.I.G., Shparlinski, I.E.: On the security of Diffie-Hellman bits. In: Proceed-
ings of the Workshop on Cryptography and Computer Number Theory, Singapore,
1999, pp. 257–268. Birkhauser, Basel (2001)

4. Vasco, M.I.G., Naslund, M.: A survey of hard core functions. In: Proceedings of the
Workshop on Cryptography and Computational Number Theory, Singapore, 1999,
pp. 227–256. Birkhauser, Basel (2001)

5. Verheul, E.R.: Certificates of recoverability with scalable recovery agent security.
In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 258–275. Springer,
Heidelberg (2000)

6. Brouwer, A.E., Pellikaan, R., Verheul, E.R.: Doing more with fewer bits. In: Lam,
K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 321–
332. Springer, Heidelberg (1999)

The Security of Polynomial Information of Diffie-Hellman Key 81

7. Cash, D.M., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008)

8. Chen, L., Chen, Y.: The n-Diffie-Hellman problem and its applications. In: Lai, X.,
Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 119–134. Springer, Heidelberg
(2011)

	The Security of Polynomial Information of Diffie-Hellman Key
	1 Introduction
	2 Preliminaries
	3 The Security of Polynomial Information of DH Key
	3.1 The Polynomial Information from an Imperfect Oracle
	3.2 Further Discussions on Another Two Cases

	4 Some Variants of DH Problem and Their Polynomial Information Security
	4.1 DH Problem DHg(2,gy)
	4.2 The n-DH Problem
	4.3 Multiple DH Problem

	5 Conclusion
	References

