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Chapter 1
Introduction and Project Background

Abstract The project began as part of a PhD dissertation study in South Africa, by
Retha Van Niekerk after she met with Pierre Van Hiele and with researchers within
the Wiskobas project at the Freudenthal Institute in The Netherlands. Her work with
Ton Lecluse, author of the Geocadabra Construction Box, developed for this project,
and her professional association with authors, Sack and Vazquez, formed the basis
for the work done in the US after she returned to South Africa. A brief overview of
the book’s organization will end this chapter.

1.1 The Start of a Task-Design Journey in the Context
of Block Buildings

The journey started in 1993 when researcher Van Niekerk embarked on post-
graduate mathematics education studies in South Africa. In 1994, she visited the
Freudenthal Institute where she studied directly with Van Hiele (1986) and with
researchers involved with the Wiskobas project (Treffers 1993). Van Niekerk was
introduced to the teaching sequence, building blocks (Wijdeveld 1977), also called
“4 Kubers” in the Dutch context. When she returned to South Africa she published
“4 Kubers in Africa,” which she presented at the 1995 Panama Najaars Conference
in The Netherlands (Van Niekerk 1995, 1996a). She designed a framework, the
Spatial Operational Capacity (SOC) model as a result of her PhD (Van Niekerk
1997). The SOC model assists in the design of activities or tasks that deal with the
development of spatial knowledge and addresses the complex interrelated nature of
the teaching and learning of geometry. This framework will be addressed in detail
in Chap. 2.

The SOC model served as a framework to support the design of a preliminary
curriculum (Van Niekerk 1996b) for geometry in South Africa in 1999 and ulti‐
mately served to guide the development of the space and shape curriculum strand
of the South African national curriculum in the early 2000s (Wessels and Van
Niekerk 2001). In 2001, Van Niekerk utilized the SOC model as a framework to
develop an entire teaching and learning trajectory for young children utilizing

© The Author(s) 2016
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block buildings as a context. During this time, she became aware of the work of
Ton Lecluse, designer of the Geocadabra dynamic geometry software (2005). In
2001, Van Niekerk visited Lecluse in The Netherlands and together they began to
collaborate on the possibility of adapting Geocadabra for young learners in the
context of block buildings. Later that year, van Niekerk relocated from South
Africa to the US and joined forces with author, Sack, who, at that time, was a
veteran middle school mathematics teacher, and introduced her to the SOC model
as well as to Lecluse’s Geocadabra software. Together, they co-taught two series
of professional development workshops in geometry for elementary and for
middle-grades teachers. Author, Vazquez, attended these and later became a co-
instructor with Sack for the same series.

Van Niekerk returned to South Africa in 2003 and continued to develop a series
of block building tasks mainly for primary grades. These tasks were incorporated
into an Afrikaans-language booklet, Geocadabra Meetmaatjie, which served as the
first attempt at a teaching trajectory incorporating Geocadabra as a tool for devel‐
oping spatial knowledge. The Geocadabra interface was also translated from Dutch
to Afrikaans for this intervention. This booklet, translated into English by Van
Niekerk and Sack and re-named Geobuddies, was later used as a prototype for Sack’s
work in the US that began in 2007.

In 2004, Lecluse and Sack joined van Niekerk in South Africa to present their
work at the Amesa Conference at North West University. At this stage it was decided
that more work needed to be done. In 2007, Sack started to work with teacher
Vazquez in her Grade 3 dual language (Spanish-English) classroom in Texas. They
utilized the Geocadabra software, the English Geobuddies booklet and the pencil
and paper activities that were initially designed in 2003 by van Niekerk in South
Africa. Spanish was also integrated orally as needed. This intervention resulted in
extended development and refinement by Sack and Vazquez of the tasks that consti‐
tute the teaching trajectory presented in this publication.

As a result of the collaboration among Lecluse, van Niekerk, Sack and Vazquez,
based on the findings in the US classroom, the original SOC framework had now
evolved. The virtual models strand was added to the original SOC design. This rede‐
sign of the SOC model, which was as a direct result of the impact of the task-
sequences, had also culminated with the redesign of the Geocadabra building blocks
interface, by Lecluse. The Geocadabra interface now included the updated simple
interface, the Construction Box, and also a more advanced interface called the
Extended Construction Box. It is important to mention here that the authors
constantly considered the important role of the different media of execution and
presentation and its effects on the entire learning thinking process (See Sack and
Vazquez 2011).

Early progress of this work was published in NCTM’s 71st Yearbook (Sack and
Van Niekerk 2009) as a chapter, “Understanding the Spatial Operational Capacity
of young children using wooden cubes and dynamic simulation software.”

Chapter 2 deals with the theoretical frameworks undergirding the project, the
design research methodology and the school context in which the study was
conducted. In Chap. 3 we share introductory activities that move between loose

2 1 Introduction and Project Background
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cubes, the set of Soma figures and 2D conventional pictures of assemblies of two
Soma figures. Then, in Chap. 4, we show how the children learn to use the Geoca‐
dabra Construction Box. In Chap. 5, abstract top-view plans and top, front, and side
views are integrated with the 2D conventional and 3D model representations of
various block figures. Finally, Chap. 6 shows how visualization activities integrated
with numeracy development, in particular, with multiplication skills that are typi‐
cally developed in 3rd grade.
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Chapter 2
Theoretical Frameworks and School Context

Abstract The rationale and Spatial Operational Capacity theoretical framework
that support the project are described along with the design research methodology
that evolved over the 7 years of research, the school context, and a pre-interview
used to support the researchers’ perspectives on each participant child’s beginning
spatial ability.

2.1 Why Are Visualization Skills Important?

Visual and spatial thinking and reasoning “generally refers to the ability to represent,
transform, generalize, communicate, document, and reflect on visual information”
(Hershkowitz et al. 1989, p. 75). Pittalis and Constantinou (2010) summarize spatial
thinking as “a form of mental activity that enables individuals to create spatial images
and to manipulate them in solving various practical and theoretical problems” (p.
191). This includes finding meaning in the shape, size, orientation, location, direction
or trajectory, of objects, processes or phenomena, or the relative positions in space
of multiple objects, processes or phenomena. The importance of visual thinking and
reasoning has been expressed by researchers and standards organizations across
mathematical and scientific disciplines. Researchers have shown that imagistic
processing, in balance with algebraic thinking, is an essential component in devel‐
oping proficiency with abstract axiomatic mathematics (e.g., Dreyfus 1991; Presmeg
1992; Tall et al. 2001). Outside of mathematics, e.g., in the physical and geosciences,
a pertinent question of interest to researchers is, “How do people combine informa‐
tion gathered from multiple viewpoints into a single integrated mental model of the
three-dimensional object or process, and how can that inherent human ability be
harnessed to help students interpret 1D or 2D data sets in terms of 3D processes?”
(Science Education Research Center 2009). Researchers have shown that spatial
abilities can be learned through appropriate learning experiences (e.g., Clements and
Battista 1992; Ganesh et al. 2009; Yakimanskaya 1991).

© The Author(s) 2016
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2.2 The Spatial Operational Capacity Framework

The Spatial Operation Capacity (SOC) theoretical framework (see Fig. 2.1), origi‐
nally designed by Van Niekerk (1997), consists of four main categories of variables
that can contribute to the complexity of a visual image as a stimulus in task design
namely:

1. Perception: The stimulus with which visual information is presented to the
learner is grouped among four different categories: (i) full-scale images, (ii)
virtual real images, (iii) conventional graphic images, or (iv) iconic images.
These categories are differentiated by the closeness of the representation to reality
in both a visual and a tactile sense.

2. Dimensionality: The objects, which are presented via the visual information that
the learner perceives, processes or acts on, can be (i) one-dimensional (points
and lines), (ii) two-dimensional (e.g., triangles, quadrilaterals), or (iii) three-
dimensional images (e.g., prisms, pyramids) and may be a part of or the entire
presented stimulus.

3. Transformations: A critically important cognitive process that must be addressed
during visual processing, while acting on the object/s represented by the image,
is the ability to comprehend the nature of the changes that objects and situations
can undergo during perception. In other words, this is the ability of the learner
to keep track of what is fixed and what changes when manipulating objects and

Fig. 2.1 The spatial operational capacity (SOC) model
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situations. The three different kinds of transformations that objects, which are
represented via visual images, can undergo are (i) positional, (ii) structural, or
(iii) combined positional-structural changes.

4. Mobility: The visual images contemporary learners encounter that can be repre‐
sented with respect to mobility are determined by the nature of the visual image
per se. This variable reflects the importance that the authors give to the role of
the body in visual imaging (Hansen 2004). This mobility aspect can be repre‐
sented as a continuum between a static medium (printed/typographic materials)
and a potentially dynamic medium (digital and electronic materials) (Rückriem
2009, pp. 97–99). These different kinds of mobilities are represented in this model
as (i) static (print) (ii) semi dynamic (e.g., PowerPoint slides, photo slides), or
(iii) dynamic (video/film/television) images.

For this particular study, the SOC framework was adapted as shown in Fig. 2.2.
Activities utilize actual 3D models, namely, loose cubes and puzzle figures, made
from unit cubes glued together in different 3- or 4-cube arrangements (see Chap. 3);
conventional 2D pictures of the 3D models that have hidden components since only
up to 3 views can be shown in such pictures; abstract representations of the 3D
models such as top-plan numeric views or front-side-top views that do not obviously
resemble only one 3D figure; and the Geocadabra Construction Box dynamic
computer interface that integrates these representations in real time (see Chap. 4).

Fig. 2.2 Adapted SOC model
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2.3 Research Methodology

Design research principles guided the methodology for the entire project. While
some design researchers focus their analyses on whole-group sense making (e.g.,
Cobb et al. 2001), others (e.g., Simon et al. 2010) focus on fine-grained individual
participant’s conceptualizations. Each lesson was part of a larger design experiment
followed by a retrospective analysis in which the research team determined the actual
outcomes and then planned the next lesson. This may have been an iteration of the
last lesson to improve the outcomes, a rejection of the last lesson if it failed to produce
adequate progress toward the desired outcomes, or a change in direction if unex‐
pected, but interesting, outcomes arose that were deemed worthy of more attention.
The overarching question that guided this research team’s analysis was, how does
the research team attend to individual children’s sense making and to their collective
understandings, in order to move to more complex and deeper challenges for the
entire class? The data corpus included formal and informal interviews, video-
recordings and transcriptions, field notes, student products and lesson notes.

2.4 School and Classroom Context

The study was conducted over a 7 year period beginning Fall 2007 in a dual-language
urban elementary school serving approximately four hundred students within one of
the largest public school districts in the mid-southwestern United States. Approxi‐
mately 70 % of the students are Hispanic, 20 % are African American and the
remaining 10 % are White or Asian. Three-quarters of the students are designated
“At-Risk” and 55 % are English-language learners. The participants in the study
represented a typical cross-section of the larger school community. Mathematics
instruction is conducted in Spanish for students below fourth grade during the
academic day but this project was conducted in English within an established after-
school program at the school.

The research/instructional team initially consisted of university-based researcher,
Sack, who had over 15 years of classroom experience, and two teacher-researchers,
author Vazquez and another teacher, each with at least 8 years of classroom expe‐
rience, who taught full-time at the third-grade and kindergarten levels in the school’s
dual-language program collaborating closely during the school day on matters
related to their academic programs. During Year 2, the second teacher taught third
grade but moved to a different school in Year 3. Sack and Vazquez continued to
collaborate on the research aspects of the project over a total of 7 years. The project
has become institutionalized within the school’s after-school program under the
direction of authors Vazquez and Sack.

For Year 1 of the study, at the beginning of the fall semester, all after-school third-
and fourth-graders were invited to participate. This afforded the research team a
classroom setting without the ongoing curricular and assessment pressures that have

8 2 Theoretical Frameworks and School Context



come to dominate the daily lives of school. Furthermore, the children who partici‐
pated did so by choice. Fourteen fourth-graders and eleven third-graders started out
in the study. However, various conflicting activities resulted in attrition and approx‐
imately eleven fourth-graders and eight third-graders attended the program consis‐
tently throughout the year. Teacher Vazquez had taught mathematics and science to
all fourth-grade participants during their entire third-grade year. In Years 2–7, only
third graders participated. However, during Year 2, some of the children who had
participated as fourth-graders during Year 1 returned to get help with concepts that
were being taught in very abstract ways.

Within this study, students worked independently or in small groups of two to
four and all students were expected to ask each other for help or support before asking
the teacher. Mutual respect was fostered in the classroom environment in which
students felt comfortable expressing their understandings knowing they were safe to
express their confusion or frustration in front of their peers. They were expected to
explain and provide justification for their mathematical conclusions.

2.5 Pre-program Interview

A pre-program interview was designed to informally assess each participating child’s
ability to visualize the number of cubes in various conventional pictures shown in
Fig. 2.3. The children were interviewed one-on-one with the researcher, who showed
only 1 cube and asked how many would be needed to build the structures shown in
each of the pictures. These were presented one at a time in the order shown. On
average, for 10 participants, 9 out of 10 correctly determined the number of cubes

Fig. 2.3 Pre-interview figures
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in the first row, where none of the cubes are invisible, and in the second row, where
the structures are relatively simple. For the structures shown in the third row, only
1 or 2 out of 10 participants were able to correctly determine the number of cubes
in each figure since several are hidden. Battista (1999) showed that for such structures
children revert to counting visible faces or visible cubes since they are aware of but
are unable to accurately count hidden cubes. The interview results aligned perfectly
with Battista’s findings and provided the research team a reference marker for each
child before the program began.

In Chap. 3 we share introductory activities that move between loose cubes, the
set of Soma figures and 2D conventional pictures of assemblies of two Soma figures.
Then, in Chap. 4, we show how the children learn to use the Geocadabra Construction
Box. In Chap. 5, abstract top-view plans and top, front, and side views are integrated
with the 2D conventional and 3D model representations of various block figures.
Chapter 6 shows how visualization activities integrated with numeracy development,
in particular, with multiplication skills that are typically developed in 3rd grade.
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Chapter 3
Introductory Activities

Abstract The trajectory’s introductory activities developed children’s abilities to
coordinate 3D models with 2D conventional pictures as shown in the adapted SOC
model (Fig. 2.2). These included building four block “houses” using appropriate
positional language; the set of Soma figures (made from 3 or 4 cubes) and their
identification and construction; and, coordinating assemblies of two Soma figures in
various combinations with their 2D conventional pictures. The researchers’ attention
to differentiating instructional activities for different ability levels is addressed.

3.1 Four Block Houses

The project ran for seven consecutive years from 2007 to 2014. During Year 1 (2007–
2008), we started with activities to familiarize the children with the Soma figures
that would later be used extensively among the SOC representations as shown in the
adapted SOC model in Fig. 2.2. We designed all activities around these representa‐
tions and will refer to these to ensure that readers are able to make sense of our
program design choices.

Using a contextual story about building a new community in outer space whose
houses would consist of rooms made by connecting four cubes face-to-face without
overlaps or gaps, in any orientation that can stand freely, the teacher challenged the
children to see how many different houses could be built using loose cubes (SOC
3D and verbal stimuli to 3D product). See Fig. 3.2 for an example of a student’s
structures.

The solutions to this activity include six of the seven Soma figures (#2 through
#7 in Fig. 3.1). The children engaged in rich discussion about whether Soma #2,
when placed flat as a 1-story house, can be reflected to make two different houses or
not and whether figures like Soma #6 and #7 are different or not. In the context of
houses, the two flat orientations of Soma #2 are different, since if one imagines
entering the house through a door and walking straight through the three in-line
rooms, one requires a left turn and the other a right turn to enter the fourth room
as shown in Fig. 3.3a. In addition, language conventions, such as “vertical” and
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“horizontal” when used in 3D space or when used in 2D space, are discussed. Some
interesting findings about the use of conventional directional language have emerged
from our work. One child stated that a single row of four cubes lying flat but from
front-to-back was “vertical down,” while a 4-cube stack was “vertical up” as shown
in Fig. 3.3b (Sack and Vazquez 2008).

The children engaged in justifying how their 4-cube houses were alike and
different, and how transformations produced figures that were alike or different
from their pre-images. Each child who shared his or her understandings impacted
the class’ collective knowledge about what constituted unique figures in the
context of the 4-cube houses problem.

Fig. 3.1 The seven Soma figures made from unit cubes

Fig. 3.2 Four-block houses

Fig. 3.3 a Soma #2 house turns left or right. b Horizontal and vertical houses
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Following this activity, in Year 1, we decided to see whether children could follow
written or oral verbal directions for building 4-block houses (SOC verbal stimulus to
3D product). We provided task cards with written directions (see examples in Fig. 3.4).

One child read the directions while a peer tried to build the figure. The 2D picture
solution was not shown to the peer builder until she or he had finished building. If
the 3D figure matched the 2D picture then they switched roles and the reader selected
a new card. We found that almost all of the readers did not pay close attention to the
orientations of the peers’ 3D figures and so this activity was not repeated for future
cohorts. However, as we moved about and helped to facilitate we noticed significant
numbers of children placing blocks in the wrong position when told to place them
“in front” or “behind” a given block as in Fig. 3.4’s Example and III cards (see Sack
and Vazquez 2008 for detailed analysis). Van Niekerk (1997) noted similar termi‐
nology issues in her earlier work. She refers to children’s “use of different deictic
terms for the same position in space.” The child who sees himself in the referent
position will refer to the face corresponding to his own front as the front (as in a
translation of position). The child who uses common convention places himself
facing the figure and claims its nearest face to be the front (as in a reflection across
a plane between the child and the figure).

To develop conventional positional language we now explicitly work with the
whole group rather than individuals or small groups. We have also tried similar
activities with adult learners (in-service and pre-service school teachers at various
grade levels and content areas) using oral directions (as in the Example and Item III
above) and found several instances of non-conventional use of these terms. The
following whole class activities have replaced the small group/pair activities to
ensure appropriate directional language understanding. By modeling a line of three
children standing one in front of each other, first facing away from the whole group
and then turning to face the group, the class understood the need for a convention
when the child in the front then became the child at the back. By replacing the line
with inanimate blocks, indicated only by different colored discs on their top faces,

Fig. 3.4 Sample oral direction task cards
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the class used the new convention to name the closest and most visible block to be
the front and the one in the back as partially hidden from view. Another analogy we
have used is that of facing a house or the school from the street. Can we see the front
of the house/school? (Yes) Can we see the back of the house/school? (No) Where is
the school playground (At the back)? Can we see the school playground from the
street (No)?

3.2 The Soma Puzzle Pieces

Following the four-block house activity, typically by the second session, we provided
each child a bag containing the Soma figures and a laminated figure strip, as in
Fig. 3.1. They matched each 3D Soma figure with its 2D picture by laying the 3D
figures out alongside the strip (2D conventional stimulus to 3D model). This became
a required first task for many subsequent activities that used the 3D Soma figures,
to ensure that each child had the correct collection of Soma figures. They quickly
began to associate each figure with its number name. Over the 7 year duration of the
project, we became quite efficient about developing naming conventions within the
project. We began by asking them how many individual cubes were associated with
the entire set. Since their multiplication skills are developing at this grade level, this
was a good initial activity to integrate analytical, symbolic skills with visual skills.
They quickly noticed that the six Soma figures #2 through #7 all have four cubes
(for a total of 24 unit cubes), like many of the four-cube houses they had built in the
earlier activity. Only Soma figure #1 has 3 cubes, in an L-shape (for a total of 27
cubes). Holding Soma figure #1 in one hand and a loose cube in the other hand, they
went through the process of creating Somas figures #2 through #7 by moving the
loose cube to different positions on Soma #1. They also had to find a way to distin‐
guish Soma figure #7 from Soma figure #6, being mirror images of each other.
Usually, someone in the class would hold up her/his left hand with thumb pointing
up and fingers curled. This looks like Soma figure #6. Soma figure #7 corresponds
with the right hand in this position.

Once the children had correctly matched the individual Soma figures to their 2D
counterparts on the identification strip, we provided them with task cards repre‐
senting assembly figures of two of the Soma figures. The goal was to identify which
two Soma figures formed the assembly figure shown in each card (SOC 2D conven‐
tional picture stimulus to 3D model product). This activity is described in the next
section.
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3.3 The Coordinate Grid

The research team had created a set of over 400 two-Soma assembly task cards.
These task cards also provided the children a wide range of choices in levels of
challenge, abstraction and preference. Cards with one Soma figure shaded and the
other unshaded helped some children discriminate among the possible Soma figures.
Examples are shown in Fig. 3.5. Many of the cards with or without shading could
often be solved with more than one combination of two Soma figures. Some of these
cards were also color-coded. For example, purple cards had assembly figures that all
included Soma figure #2; yellow cards had assembly figures that all included Soma
figure #5. Initially, the children in small groups also used a laminated 7 × 7 coordinate
grid with the seven Soma figures along the top and down the left side. They placed
their task cards in the appropriate cells relative to the two Soma figures identified
from each card. The research team challenged the children to discover the “rule”
behind the color-coding. The purple cards all lay along the row or column aligned
with Soma figure #2; yellow cards along the row or column aligned with Soma figure
#5. The color code discovery helped less visually inclined learners to solve more
cards of that color knowing which Soma figure had to be used. This coordinate grid
provided an early experience in using two-dimensional coordinate system, a concept
typically introduced in fifth grade.

Additional sets without color-coding were also provided, one with all figures that
included the shading, and one with no color-coding and no shading. These sets of
task cards were more challenging as there was no color key to determine at least one
of the Soma figures in the assembly picture. Some children needed to build the figures
represented on the cards using loose cubes and then identified the two Soma figures
that could be assembled together to form the figure while others were able to identify
the two Soma figures directly from the pictures. Within two sessions, most of the
children were able to identify the two Soma figures directly from the pictures without
needing to assemble them except to provide evidence to the research team of their
thinking. Occasionally, we would have a child who had very weak visual skills who
needed scaffolding help. We asked the child to select one of the Soma figures and
combine it with Soma figure #1 and then to situate a loose cube against Soma figure
#1 to complete the assembly. By separating the other Soma figure the child was able
to identify which of Soma figures #2–7 could be used.

Fig. 3.5 Examples of two-Soma assembly task cards
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Levels of complexity of these assembly activities varied according to children’s
interest and readiness by using these different types of cards, or by allowing children
to use loose cubes, Soma figures or mental imaging as needed to solve these prob‐
lems. This activity moved among single 2D Soma pictures, assembly 2D Soma
pictures and 3D models. We typically stayed with this activity for 2–3 sessions prior
to introducing them to the Construction Box dynamic digital interface. In Chap. 4,
we describe the activities associated with the Geocadabra Construction Box dynamic
interface. As soon as the children were proficient users of the interface, they had
opportunities to create their own assembly task cards to challenge each other.
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Chapter 4
The Geocadabra Construction Box Dynamic
Geometry Interface

Abstract The children learned to use the Geocadabra Construction Box by
constructing virtual cube structures to match the conventional 2D figures in the printed
Build and Explore with Geocadabra manual. The process builds proficiency with top-
plan numeric views. As they progressed, they were able to digitally reproduce cube
structures like those they constructed with loose cubes on the desktop next to their
computers. Activities integrating top-plan numeric views and top, front and side views
are shared.

4.1 Learning to Use the Construction Box

The Geocadabra Construction Box (Lecluse 2005) module allows learners to
construct, view and manipulate complex, multi-cube structures as 2D conventional
representations, or as top, side and front views, or as top-plan numeric view grid
codings, as shown in Fig. 4.1. By clicking successively on a grid position on the key
pad shown in Fig. 4.1, a corresponding stack of cubes appears. Two clicks results in
a 2-cube high tower. By right-clicking, the stack may be reduced in height or
removed. The number grid is essentially a top-plan numeric view but includes 0 s in
the spaces with no cubes. As the figure is constructed, the front, side and top views
dynamically change. The Show (Hide) Front, Side and Top Views, numeric key pad
or 2D figure options can be pre-selected according to instructional goals. The Control
View Line option allows the user to move the figure dynamically using the mouse or
by clicking on the arrows at the ends of the space’s triaxial system that appears on
the Construction Box control window. Currently, the size of the top-view rectangular
grid can be adjusted from 2 to 8 units in width and depth according to user preference
per authors’ request to program developer Lecluse.

The Build and Explore with Geocadabra manual (formerly named Geobuddies
Manual) has been adapted over the course of the project to align with the researchers’
perceptions of learners needs. Some sections have been removed; others revised. We
share activities from the latest version of the manual. For the first set of activities,
children dynamically reproduce the 2D conventional figures printed in the manual.
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They first predict and record the total number of cubes in each printed figure. A blank
grid is provided for each of the first 3 figures and users copy the numbers from the
Construction Box grid to develop proficiency with top-plan numeric representations.
They also compare the total number of cubes predicted and then evident in each
structure with an explanation of how they determined that number. They quickly
discover that the sum of the numbers in the grid represents the total number of cubes
in the figure. As with the pre-interview, the initial figures are quite simple, with no
hidden cubes. They gradually increase in complexity, including figures with several
hidden cubes. There are 18 figures in all, sequenced alphabetically a through s.
Figures a, e, f, m and r are represented in Fig. 4.2. After figure c, learners must
reproduce the top-plan numeric view freehand in the spaces provided below each
figure. As they develop proficiency, they begin to predict and then verify the top-
plan numeric view. Then, from the seventh figure, learners switch on the Front, Side
and Top Views button and copy these views next to each printed figure. They are
challenged to draw their predictions of these views as they develop proficiency.

Learners generally worked independently, with a partner, or in a small group of
up to 4 children, depending on the activity. We found that they needed to work
independently on anything new, in order to develop some sense of the concepts at
hand. Then, we called them together for whole group debriefing, particularly to
encourage them to share their thinking about difficult tasks. Their independent strug‐
gles helped all of them make sense of others’ ideas and of our guiding questions at
that time.

During Year 1, after the children had spent at least one session learning to use
Geocadabra, we called them together and had one student, Ethan (pseudonym), build
one of the four block houses resembling Soma Figure 3 as shown in Fig. 4.3 using

Fig. 4.1 The Geocadabra construction box
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the projection camera so that all could see his moves. The numbers 1, 2 and 3 have
been added to the figure to clarify the order in which Ethan constructed the figure.

He described each move, using the number grid and also the conventional figure
as he added new cubes. First, he placed one cube in the middle on the left side; then,

Fig. 4.2 Sample tasks from the Build and Explore with Geocadabra manual

Fig. 4.3 Soma figure #3
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he placed a second cube to its immediate right. As he placed the third cube to the front
of the second cube (forming an L-shape), he said, “and on the side of… under that one
there was another one” (meaning the third cube)…. “on top of that one (the second
cube) it had another one.” At this point, teacher Vazquez asked him, “When you say,
‘on top’ are you referring to the [number] grid or your building [the conventional
picture]? Do you mean on top right here [pointing to the Construction Box number
grid on the vertical projected image]; or this block is on top of the other [pointing to
the conventional structure, in particular, to the cube behind the second cube]?” This
interaction, made us aware of positional language and positional coordination that had
become confusing for all of the children. The vertical computer screen (or projection)
shows a 3D figure made from cubes, while the cubes’ positions are shown vertically
on the screen on the Construction Box number grid, which actually corresponds with
the horizontal base plane of the emerging 3D figure. The top row of the number grid
corresponds to the back row of the conventional figure. Ethan also used the term,
“under” for a position on the vertically oriented number grid that was frontward on the
conventional figure. Having a group discussion on conventional vocabulary and corre‐
sponding grid positions after only one or two sessions on Geocadabra became a
consistent and vitally important part of the learning trajectory. This experience also
alerted us to the general problem of coordinating a vertical plane with a horizontal
plane, regardless of the medium of instruction, for example, by projecting a printed
image while learners look at the same image lying horizontally on their desks. When
asked to point to “north,” many people point up to the ceiling or sky, as this is where
north usually is on wall maps. In the next section we describe a more extreme problem
that one child had tracking his eyes from the Geocadabra manual lying horizontally
next to his computer screen on the table to the Construction Box images on the
vertical computer screen.

4.2 Supporting Learners with Relatively Weak Visual Skills

Within the first 2 years of the project we became acutely aware of the different visual
abilities among each group of children. This prompted us to develop the pre-program
interview in later years so that we could quickly identify those who would probably
need more support. As the children worked through the Geocadabra manual, we real‐
ized that the strugglers kept pace with their peers on the more difficult items by simply
writing and drawing whatever came to mind, without using self-checking mecha‐
nisms. They were aware of hidden cubes in the back but were unable to recognize how
many cubes supported the upper visible cubes. While the children worked through the
manual we moved about and stopped to ask individuals probing questions especially
if we noted inconsistencies between printed conventional figures and recorded
numeric grids. Task 1r shown in Fig. 4.2 became our key focal item for these incon‐
sistencies. The total number of unit cubes in the figure is 24. One particular child
had recorded 20 cubes. She explained that at the back there were 1, 2, 3, and 4 for a
total of 10. When she tried to count the other cubes, she was unable to make sense
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of the heights of each visible cube and counted only the visible cubes for a new total
of 22. In order to establish whether she had difficulty constructing the figure on the
Construction Box we asked her to rebuild it. Most children will first build the cubes
that they can see, but she opted to start from the back and build the left side of the
figure, then the back, and finally the cubes toward the front. Figure 4.4 shows the
sequence that she presented.

During Year 2, we worked closely with Gary (pseudonym), who had unusual
visual issues that had not been adequately addressed. During the regular morning
schedule, he had difficulty copying items from the board. His ability to read and
decode numbers was limited and this had impacted his ability to make appropriate
connections in his numeracy reasoning. The following sequence was summarized
from a video recording that demonstrated how we intervened to support him. We
worked with him on Task 1r. First, we asked him to build the figure using the
Construction Box grid. The sequence shown in Fig. 4.5, from left to right and top to
bottom summarizes his initial attempts to reproduce the figure.

The printed manual lay on the table next to the computer keyboard. He appeared
to number the squares toward the right and front of the figure correctly, but the 3-
cube and 4-cube structures to the left and back of the figure confused him. He made
several corrections to the left side of the figure and did not attempt to complete the
back row. Then, teacher Vazquez lifted the printed manual and held it vertically,
next to the computer screen. He immediately corrected the three numbers on left side
of the grid to 1, 2, and 3 and replaced the 0 (shown in Fig. 4.5) with 2. Educators
need to be aware that learners with visual tracking issues have difficulty copying
from the vertical board or projection screen to their notebooks on their desks or

Fig. 4.4 Constructing and enumerating Task 1r
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tables. If they notice errors in copying, they may need to place a copy of the notes
on that learner’s desk to compensate for these tracking problems.

Gary then tried to correct the left side of his figure. He pointed at the cube three
rows back on the computer screen and stated, “I need to put a cube here,” but was
unsure how to change this on his number grid. Vazquez then pointed to the left side
and suggested that he think of a frog jumping from one cube to the next. We also
rotated the digital figure so that he could see the structure of the staircase on the left
side. He said, “I can jump 1, 2, 3,” and then changed the number on the grid accord‐
ingly. By thinking about the step-jumping frog, he was able to number the squares
along the back, 1, 2, 3, 3, from right to left. He stated that the cubes on the 3rd level
resembled a square, and then changed the left back number to a 4, based on the
jumping steps.

In order to affirm Gary’s developing position coordination, we provided him with
a blank four-by-four grid with his completed 3D computer figure of Task 1r. We
asked him to write in the numbers as he had entered them on the Construction Box
grid (Show Buttons Top View was deselected to hide the number grid on the screen).
He correctly placed the 1 s and 2 s on the left column and back row but became
confused with the numbers in the middle of the grid. He needed to be reminded about
the jumping frog and then wrote out the correct number grid. To reinforce his devel‐
oping visualization skills, teacher Vazquez asked him to build the figure with loose
cubes on a blank four-by-four grid. Beginning with the frog’s jumping steps, he built
the left and back of the figure correctly. The middle of the figure still was challenging,

Fig. 4.5 Gary’s attempts to construct Task 1r
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so we pointed at cubes in the digital 3D figure and he built these towers to represent
the figure correctly.

During our one-to-one interviews with children working on Task 1r, we also noted
that some had difficulty with the total number of cubes if they had focused on hidden
cubes “behind” the visible cubes in the picture. By helping them to focus instead on
how many hidden cubes are “below” each visible cube, they usually made better
sense of the number of hidden cubes altogether. We asked them to record the number
of cubes in each “tower” on the visible cube at the top of the tower.

4.3 Front-Side-Top Views

Top, side and front view activities were added to the Geocadabra manual in Year 3
as soon as children showed proficiency in enumerating cubes and drawing correct
top plan views for complex figures such as Task 1r. In this section of the manual

Fig. 4.6 Top, side and front view activities from the Geocadabra manual
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learners must predict what the top-plan numeric view of the figure would be given
its front, side and top views. We introduced this concept by projecting a fairly simple
figure on the board and then showed them the three view figures (selecting this option
on the Construction Box menu). By rotating the figure using the Control view line
arrows, the different views could be discerned. They drew the numeric view and then
checked their predictions using Geocadabra by entering the numbers into the top-
plan grid while selecting to show the front side and top views. The children then
worked through the different views items (see examples in Fig. 4.6). We encouraged
them to use the Hide/Show Top Side Front Views switch, first to turn off the views,
then to build the predicted figure using the numeric grid, and finally to turn the views
option on again to check. About half of the children were able to do this, while the
others needed to keep the views on as they experimented with different structures
using the numeric grid.

We noted that the children tended to defer to the Construction Box views too soon
and this prevented them from having to really think hard about the different structures
associated with given sets of views. Over the next few years, we introduced these
views earlier, integrating them with top plan view activities. We were stunned when
one child with unusually strong visualization skills produced 7 different top plan
view structures for one set of front, side and top views, shown in Fig. 4.7.

In the next chapter we share activities developed to specifically help children
integrate their developing multiplication skills with the concepts undergirding
rectangular prism volume.

Fig. 4.7 Multiple structures for one set of front, side and top views
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Chapter 5
3D to 2D via Top-View Plans

Abstract Having become proficient at correlating 2D pictures with top plan
numeric view representations learners used the Construction Box to create their own
task card puzzles for peers to solve without the aid of the digital interface. These
included 2D pictures of Soma assemblies and later, top plan view diagrams that they
drew by hand. These tasks required adept mental transformation skills moving
among the SOC representations. The Extended Construction Box module was
created to allow users to construct digital cube figures with holes or overhangs within
the first octant of a 3D coordinate space. Learners then developed a top plan view
coding system that allowed for holes or overhangs. They also used their knowledge
of top plan views to represent rectangular prisms made up of unit cubes.

5.1 Self-created Task Card Puzzles

Even though we had created hundreds of Soma figure assembly task cards over time,
the children were motivated to work with task puzzles that their peers created. First
each child selected two Soma figures to form an assembly figure; then, using the
Construction Box number grid, the virtual conventional assembly figure was created
and rotated to the user’s satisfaction. At this point they learned to copy the virtual
figure to the computer’s clipboard and paste into a word processing document. They
saved each day’s work using their secret code names. These were designed for
everyone to be able identify individuals but also to protect each child’s identity in
publication. Researcher Sack then adjusted the size of each child’s figures to approx‐
imately 3 cm by 5 cm, and printed and laminated them for use as peer puzzles the
following week. Examples are shown in Fig. 5.1. Using these puzzle cards, the chil‐
dren were challenged to find more than one pair of Soma figures that replicated the
figure on the printed card even though the card creator most likely used only one
pair of Soma figures.

In Fig. 5.2, from left to right: The first figure can be assembled using Soma
figures 7 and 3, or Soma figures 5 and 4. The middle figure can be assembled using
Soma figures 3 and 2, or Soma figures 5 and 7. The third figure can be assembled
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using Soma figures 2 and 7, or Soma figures 3 and 5. Other combinations may be
possible.

During Year 7, one particular child, Rosa (pseudonym) had been retained to repeat
3rd grade due to low reading and numeration ability. She was encouraged to join the
Geocadabra class to develop her visualization skills that would in turn support her
numeration skills. She was a relatively reserved child who liked to engage in the
tasks quietly. She progressed very well demonstrating good visualization skills but
then stunned us by solving one particular task puzzle using all of Soma figures 2
through 7 (those with 4 cubes) in pairs. The puzzle card and her solutions are shown
in Fig. 5.2. Rosa’s superior visualization skills were never put to the test during the
school day. Individuals who serve on committees to define formal curriculum stand‐
ards should balance analytical skills that depend on symbolic decoding (numbers or
variables) with visualization skills. By attaching contextual situations to analytical
skill development one may integrate visualization skills since learners can mentally
make sense of a given situation and imagine the objects of the problem.

In a follow-up activity the children drew the top-plan views of their own task card
figures. The top-plan views became the new puzzles for others to solve. This required
mental imaging of the actual figure while manipulating the seven Soma figures to
create the assembly figure without the aid of the Construction Box interface.
Table 5.1 shows some examples with peer solutions. Only the top plan codes were
provided. Note that some of the children drew 4-by-4 grids like those on the
Construction Box’ default grid even though their figures did not need all of the rows
or columns. However, they did not all coordinate their zeros in their drawings with

Fig. 5.1 Learner-created assembly task puzzles

Fig. 5.2 Rosa’s multiple solutions for one assembly puzzle using Soma figures 2, 3, 4, 5, 6 and 7
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the zero positions on their printed task cards. Two different children solved puzzle
E using three different Soma figure combination.

Table 5.1 Examples of top plan view puzzles of two-Soma assemblies and peer solutions

Puzzle Top plan coding and task card Peer solutions
A Soma #1 and Soma #5

OR
Soma #1 and Soma #6

B Soma #6 and Soma #7

C Soma #5 and Soma #6
OR
Soma #2 and Soma #3

D Soma #4 and Soma #1
OR
Soma #2 and Soma #1

E Soma #7 and Soma #4
Soma #3 and Soma #5
OR
Soma #6 and Soma #2
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During Year 1, we developed activities based on our perceptions of natural exten‐
sions to activities just experienced. We debriefed together after each session, taking
detailed notes of our observations. These were supported by video-recordings and
subsequent transcriptions to help us triangulate observation data. Sometimes the
children posed interesting questions and we allowed them to explore these to see
what would evolve. We did not have a set trajectory in mind other than having the
children develop proficiency moving among 3D models, 2-D conventional pictures
(usually assemblies of Soma figures) and top plan views using the Construction Box.
When they began to construct assembly task puzzles, some became frustrated that
they had used the Soma figures to assemble interesting figures with holes or over‐
hangs that could not be constructed using the bottom-up process on the Construction
Box. We contacted Lecluse, the developer of the Geocadabra platform to ask about
the possibility of constructing such figures. Within three days he sent us a new
module, the Extended Construction box.

5.2 Extended Construction Box

The new module allowed the user to build block figures within a 3D octant space.
When New Block is pressed, a new block appears in the (1, 1, 1) position as shown
in Fig. 5.3. By clicking on the arrows (up, down; left, right; forward, backward) the
block moves one space for each click. If the block lies against one of the walls or on
the floor of the space it will not move through that wall. By selecting Shadowing on
the bottom, back wall and side wall, the exact position of each cube can be seen. If
several blocks are connected, then by selecting the button that looks like Soma figure
#2, one can translate or rotate the entire figure using the arrows. Using the Control
View Line option one can turn the figure using the mouse to show sides that are
hidden.

The children were now able to construct 2D assembly task card puzzles with holes
or overhangs as shown in Fig. 5.4. They set their own levels of challenge according
to their confidence with the new interface and with their ability to move from the 3D
assembly figures to the virtual 2D image on the interface.

As soon as they had begun to construct these task cards, they immediately started
to make coding puzzles as they had for the bottom-up task figures they had previously
created on the regular Construction Box interface. This posed a new problem for the
research team since they were not aware of a coding system for figures with holes
or overhangs that would uniquely determine each 3D figure. They knew that a set
of face views, shown as shadows on the bottom and two walls could be produced
from a variety of 3D figures. The children enthusiastically set out to invent a new
coding system. They created several interesting but very complicated ways of
showing holes or overhangs. However, for each coding puzzle, the coder would write
a key for peers to read and use to make sense of the puzzle. Most of these were very
complicated and the decoder would have to interrupt the coder to clarify. We led
them to the challenge of selecting the “best” coding system that all would use.
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Fig. 5.3 The extended construction box

Fig. 5.4 Two-Soma assembly task card puzzles with holes or overhangs
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For our 3rd grade group, we selected the task card shown in Fig. 5.5,
constructed with Somas #1 and #2, since it was quite simple and would not be
challenging for those who may still be developing proficiency with standard top
plan view coding. We asked the children to code this figure so that we could
compare and contrast the different codings and, as a group, select one that
everyone would then easily use. Some children drew the picture as a front view
with 1s in each square. We showed them how exchanging Soma #1 with Soma
#5 would be very problematic with that coding. We also suggested that they find
ways to adapt the conventional top plan view format from the basic Construction
Box to depict empty spaces within a structure. After some time, four different
coding systems emerged also shown in Fig. 5.5.

During whole class discussion, where the children who had coded the figure as
shown in Fig. 5.5A–D explained their work, the class agreed that codings A and B
were more efficient than codings C or D, especially when you have to consider say,
10 empty spaces. They selected coding A and also decided that instead of placing
the number for empty spaces in a square, they would circle the number, to represent
“zero” cubes.

We provided a slightly more challenging figure, shown in Fig. 5.6, with a gap and
an overhang for the 4th grade class. Again, the children produced very complicated
coding systems that the class felt would be difficult to remember. One child produced
a coding system similar to some of the 3rd graders’ (Fig. 5.6E). We shared two of
the 3rd grade codes, Fig. 5.5A, B, and the 4th grade class also agreed to use a circle

Fig. 5.5 Third graders’ invented coding for figures with holes or overhangs
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to show the number of empty spaces, with the letters S (for spaces) or G (for gaps)
shown in Fig. 5.6F.

5.3 Rectangular Prisms and Their Volumes

During Year 2, five children who had attended during Year 1 returned to seek help
with making sense of rectangular prisms. During their regular mathematics class
they were expected to understand and use the Volume = length × width × height
formula. They struggled to make sense of these measurements and the notion of
volume being the number of cubic units enclosed by the figure. We provided them
with a bag of loose cubes and asked them to build prisms with 24 cubes, since the
large number of factors could produce a variety of different rectangular prisms. As
soon as we had a nice collection of prisms, standing on different size bases, we asked
them to record the length, width and height dimensions. This appeared to be
confusing to all of them and so we asked how they could represent their buildings.
We were stunned when every single child drew a rectangle, gridded in according to
the number of rows and columns for the base of each figure, and then represented
the prism’s height as a number in each square. They had recalled the top plan view
representation from the previous year and used this with ease. They now had no
difficulty understanding that the number of squares in each row and the number of
rows in their grids represented the length and the width of the figure; and that the
number in each square, which was the same for every square on the base represented
the height, or the number of layers in each figure. We were very careful to show them
how the linear measurements translated into rows and columns on the base.

As a result, we added and retained this activity in our 3rd grade program to ensure
success for every participant as they made sense of geometric measurement
formulas. We provided each group a large bag of loose cubes and asked them to
build as many 24-cube rectangular prisms as they could. Then, we asked them to
sketch all of the top plan view representations for these prisms. When everyone had

Fig. 5.6 Fourth graders’
invented coding for figures
with holes or overhangs
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completed at least one of these, we called them all together to share their drawings.
From these we asked what mathematical expression they could give to a friend as a
puzzle to see if he or she could reproduce the top plan view grid for that particular
prism. Examples of grids and multiplication expressions for total number of cubes
that children drew on the board are shown in Fig. 5.7.

All of the children in the project were able to make strong conceptual connections
between the top plan view and the volume of a rectangular prism. They were able to
mentally picture the figure directly from the top plan view. Furthermore, they now
had the means to represent the 3D figure, albeit abstract, compared to representing
a conventional 2D rectangular prism figure. This was a significant result of the
project, as other researchers have commented about the difficulties in enumerating
hidden cubes (Battista 1999) and also in representing 3D prisms on paper (Outhred
et al. 2003). This activity integrates visualization with numeration, the topic of
Chap. 6, in which we describe additional numeration activities linked to our visual‐
ization program.
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Fig. 5.7 Representing rectangular prism volume
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Chapter 6
Connections to Numeracy

Abstract Volume of rectangular prisms extended into an interesting scaling
problem: One child asked if they could try to build a Soma cube as large as the
teacher’s demonstration Soma cube (made with very large individual cubes) using
the smaller Soma figures. Initially they built four Soma cubes using the small sets
of Soma figures and arranged them to look like a very large Soma figure #2. They
eagerly attacked the problem of how many little individual cubes were in this figure
each showing at least two ways to find the answer. The following week they built a
huge cube using 27 smaller sets of Soma cubes and calculated 27 × 27 to find how
many little individual cubes were in this model. Permutations within cake patterns:
At the end of each year, the children were challenged to create a “cake” with the
seven Soma figures. The cake had to have 24 cubes for a base and three “candles”
on the second level. They created several 3 × 8 and 4 × 6 cakes and drew the top
plan view coding patterns for these to submit to the baker. We share how children
from three different cohorts discovered the permutations of each cake design from
the three or four Soma figures (#1, #5, #6, and #7) that have the same 3-cube footprint.

6.1 Scaling up the Soma Cube

In Chap. 5, we described the connections the children made from the top plan view
to represent rectangular prisms, enumeration of the total number of cubes in rectan‐
gular prisms, and the conceptualization of the volume formula for rectangular prisms.
Here, we describe an interesting numeration problem that arose from the children’s
fascination with the Soma puzzle cube.

We frequently allowed free exploration time during which many of the children
tried to build the Soma cube of 27 unit cubes made from all seven Soma figures.
According to Wikipedia (https://en.wikipedia.org/wiki/Soma_cube) there are 240
distinct solutions, excluding rotations and reflections. On one particular day, one of
the boys, David (pseudonym), posed an interesting problem: If we build a lot of
Soma cubes each with the seven different Soma figures, how many would it take to
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make a cube as big as the one made from the teacher’s much larger Soma figure
demonstration set? This became the problem for that particular session.

First, the children set about trying to build a cube from all seven Soma figures.
We never emphasized this particular problem, since we always wanted that to be a
self-determined problem choice that always remained interesting due to the large
number of possible solutions. This took several minutes until Jason (pseudonym)
was successful. He was charged with building more, using everyone else’s Soma
figure sets. David immediately set about carefully creating a very large Soma figure
#2, using Jason’s four completed Soma cubes (see Fig. 6.1).

Although David initially had wanted to build a very large cube with several of
the small Soma cubes, Sack and Vazquez simultaneously asked, “How many unit
cubes are in this large Soma #2 figure?” The children were excited about this
problem, being a good extension from their developing multiplication skills. Those
who struggled also had difficulty adding double-digit numbers fluently and often
counted on their fingers, which is an indication that they may not have been ready
for formal multiplication (Van Niekerk, personal communication, June, 2009). They
all knew that this large Soma figure comprised 4 sets of 27 cubes. Doing a multipli‐
cation problem with 27 as a factor was totally new to most of them. In class, Vazquez
had deliberately avoided the traditional algorithm, preferring to let the children
“invent” their own algorithms. They shared their different methods to the whole class
so that they all could benefit from different perspectives. She also emphasized the
distributive property of multiplication by decomposing difficult numbers into two
easier numbers using array models to show why this works. For example, 7 × 6 may
be represented as an array of 7 rows with 6 squares in each. By drawing a thick line
below the 5th row, they could see this was equivalent to 5 rows of 6 and then 2 more
rows of 6, or 7 × 6 = 5 × 6 + 2 × 6. Decomposing numbers to facilitate multiplication
through the distributive property is emphasized in the 3rd grade curriculum. During
their daily mathematics instruction, teacher Vazquez, always asked for such explan‐
ations, in order for the presenting child to develop the mathematics process standards,
to improve her or his communication skills and also for the other children to make
sense of others’ conceptualizations.

Fig. 6.1 The large Soma
figure #2 made from four
small sets of Soma figures
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Table 6.1 Samples of children’s calculations and researchers’ comments

Children’s calculations of 27 × 4 Researcher’s interpretations
A Adept at double-digit, multiple number addition

B

C

D

E

F

G David used the grid on the board to draw four 27 s. 
He drew 25-unit squares on the grid andthen added 
2 more squares to each to make 27 s. He decomposed
 27 into 25 + 2 and added the products 25 × 4 and 
2 × 4 When Irma asked how he knew how to multiply
by 25, he said, “It’s like money. A quarter is 25 cents 
and four quarters is $1, or 100 cents.”

Used “double the double”: Added 27 + 27 and
then doubled the sum: 54 + 54

Added 27 + 27 = 54. Then, 54 + 27 = 81. Then,
81 + 27 = 108
Showed each sum on a number line

Decomposed 27 into 7 + 20
Doubled 7 to get 14 (not shown) and doubled 14
to get 28
Doubled 20 to get 40 and doubled 40 to get 80.
Then added 28 + 80

Wrote 27 × 4 as the “Question.” Decomposed
the problem into 20 × 4 + 7 × 4
Followed teacher’s instruction to keep units
(cubes) in the calculation

Represented 27 × 4 using the teacher’s base-10
notation: 2 lines for two 10 s and 7 dots for seven
1 s. Set these up vertically as four sets of 2 lines
and 7 dots Grouped the top 7 ones with 3 ones  
in the next row to make 10. Grouped the bottom  
7 ones with 3 ones in the row above to make 10, 
for a total of 10 tens; and 8 ones grouped in the 
middle of the ones Also calculated using decompo-
sition of 4 × 20 and 4 × 7
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The children set about solving this problem on small dry-erase boards. Vazquez
told them to show the solution in at least two different ways. Afterwards, as during
the instructional day, she asked each child to explain what he or she had written.
Examples are shown in Table 6.1.

The following week, the children all set about building 27 small Soma cubes in
order to construct a very large 3D array, using all of the 27 sets of small Soma figures.
They immediately set about calculating how many unit cubes were in this 27-by-27
array. Examples are shown in Fig. 6.2.

In the left and top right examples, the large figure contained 3 slices, each with 9
small 27-cubes. In top right example, the child had calculated 9 × 27 by decomposing
27 into 20 + 7. S/he was busy working the next step, 3 × 9 × 27, or 3 × 243. In the
left figure, the child was able to calculate 9 × 27 = 243; then, multiplied 243 × 3, an
extension of 1-digit by 2-digit multiplication that is in the 3rd grade curriculum. In
the lower right example, the child knew that each of six Soma figures contained four
27-cubes or 108 small unit cubes (from the previous week), plus Soma #1, with three
27-cubes.

This learner-generated problem provided the children an opportunity to apply
their developing multiplication skills to a much more difficult problem than they
were expected to compute during their regular mathematics classes. Each child used
at least two different ways to solve the problem (not all illustrated in this chapter) to
check their initial answers. We were surprised at the plethora of solution methods
and particularly excited about David’s enthusiasm with this problem. This supports
Connell’s (2001) view that children are capable of solving difficult problems based
on their past experiences that have now become instantiated in their minds as objects
on which to act. The different approaches to solving this problem show that each
child had found ways to extend their prior knowledge using methods of personal
choice. These episodes also confirm Presmeg’s (1992) view that imagistic or spatial
processing is essential for the development of abstraction and generalization in that
the children abstracted routine skills to tackle their self-generated task of finding the

Fig. 6.2 The 27-by-27 cube and examples of children’s calculations
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total number of cubes (27 × 27) even though they are only expected to calculate 2-
digit by 1-digit products in 3rd grade.

6.2 Permutations Within Cake Patterns

Since Year 1 we celebrated the last day of the program by inviting parents to see
what their children have learned. To prepare, we asked the children to design a “cake”
using all seven unique Soma figures. Since Soma figures #1–4 can lie flat, but Soma
figures #5–7 have at least 1 cube on the second level, we specified that the cake have
exactly 3 “candles”, from Soma figures #5, 6, and 7. Thus, the cake must be a 24-
unit rectangle. We asked what dimensions the cake could have, which was a good
application of their developing multiplication skills. Most said 3-by-8 or 4-by-6. We
asked if they could make a 1-by-24 rectangle, but they said it was not possible since
all of the Soma figures were at least 2-units wide, depending on how you laid them
down. Every year, some children tried to build a 2-by-12 cake. Only by experiment
did they eventually reason why this was not possible with the seven different Soma
figures. We told them one pattern would be selected to be sent to the baker, to bake
a puzzle cake for the party. They also had to represent their different cake designs
on paper, using different colors for the “footprint” of each Soma figure. An example
is shown in Fig. 6.3.

During Year 1, Sophia (pseudonym), noticed that Soma figures #5, 6, and 7 all
had the same 3-cube footprint. Vazquez asked her to try to determine how many
different cake patterns she could make just by moving these three Soma figures.
Generally, Sophia struggled with reading and computation, both requiring adept
decoding skills. She had demonstrated extremely strong visual skills throughout the
year in this after-school program. This activity provided her an opportunity to build
her numeracy using visual cues. She successfully found all six permutations of #5,
6, and 7, and listed them, using the F(ront), M(iddle) and B(ack) format that she
created (see Fig. 6.4). She then transferred the knowledge to ordering the 3 digits.
She had struggled with this concept in her regular class earlier that day.

Also in Year 1, but with the 4th grade group, Dawn made a 3 × 8 cake and showed
how she could interchange Somas #1, 5, 6, and 7 (same footprint) to make additional
cakes. We challenged her with “How many ways?” She, like Sophia, had some

Fig. 6.3 Soma cake patterns
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numeracy gaps. After pointing out the combination sequence on her cake pattern:
7–6–5–1, she started to write another random combination, starting with 1—… We
suggested she keep the 7 and the 6 in place and think about another arrangement.
She immediately wrote 7–6–5–1, and then 7–6–1–5 and continued until she had all
6 arrangements beginning with 7. She then proceeded to write down all six combi‐
nations beginning with 6—and had no trouble suggesting that there would be six
more that began with 5 and six more that began with 1 for a total of 24 different
combinations (See Fig. 6.5). Then, we asked Dawn to look at how we get 24 (four
sets of 6; and three sets of 2 within each set of 6): 4 × 3 × 2 × 1 = 24. By this time,
her friend, Emily, became involved. Emily remembered that the numbers 4, 3, 2, and
1 are all factors of 24. They learned a new word, factorial, and its symbol, 4! There
was much excitement that this might be taught in another 3 years’ time, in middle
school.

Over the 8 years of the project, finding permutations occurred only if a child
noticed the footprint pattern for these Soma figures. In Year 4, one remarkable child,

Fig. 6.4 Sophia’s permutations of Soma figures #5, #6 and #7

Fig. 6.5 Dawn’s permutations of Soma figures #1, 5, 6 and 7
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Henry, organized his thinking using a table, partially shown in Fig. 6.6 alongside his
cake pattern. He showed all 24 permutations in his table. The other children inter‐
preted his pattern, explaining that A, B, C and D represented Soma figures #1, #5,
#6, and #7 shown in the first row of his table. In row 2, the interchange of C and D
meant that Soma figure #6 switched places with Soma figure #7. The children collec‐
tively built this pattern and showed how each solution evolved from the previous
one in the table. While Henry had also multiplicatively reasoned why there are 24
permutations for each cake pattern, the others reasoned through his table patterns.

6.3 Conclusions

It is remarkable that the children were able to move from the abstract top plan
numeric view and front, side and top views representations to the 3D models inde‐
pendently of the computer interface. The research team considered this to be
evidence of the children’s growing ability to visualize, abstract and generalize as
they moved between abstract and 3D assembly models. Actions on objects (Connell
2001) occured concretely with the 3D models, virtually through the Geocadabra
Construction Box interface and ultimately as mental imaging through the powerful
problem-solving approaches developed by the research team. Through their different
configurations the Soma figures provided a high degree of complexity and constraint
to the instructional tasks and forced the children to engage in a variety of mathe‐
matical tasks including mental transformations in ways that would not be possible
using loose cubes.

This research team, through this learning trajectory, attempts to fill the gap in the
development of spatial thinking in the elementary mathematics curriculum as
expressed by others. However, in a regular school classroom the day-to-day curric‐
ulum constraints include pressure from mandated high-stakes testing and rigidly
scripted programs used within many school systems. Thus the research team faces
the challenge of how to impart these visualization experiences to a wide audience of
practitioners given the open-ended nature of the tasks in their learning trajectory.

Fig. 6.6 Henry’s permutations of Soma figures #1, 5, 6, and 7
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