
Concurrent Cilk: Lazy Promotion from Tasks
to Threads in C/C++

Christopher S. Zakian(B), Timothy A.K. Zakian, Abhishek Kulkarni,
Buddhika Chamith, and Ryan R. Newton

Indiana University Bloomington, Bloomington, USA
{czakian,tzakian,adkulkar,budkahaw,rrnewton}@indiana.edu

Abstract. Library and language support for scheduling non-blocking
tasks has greatly improved, as have lightweight (user) threading pack-
ages. However, there is a significant gap between the two developments.
In previous work—and in today’s software packages—lightweight thread
creation incurs much larger overheads than tasking libraries, even on
tasks that end up never blocking. This limitation can be removed. To
that end, we describe an extension to the Intel Cilk Plus runtime system,
Concurrent Cilk, where tasks are lazily promoted to threads. Concurrent
Cilk removes the overhead of thread creation on threads which end up
calling no blocking operations, and is the first system to do so for C/C++

with legacy support (standard calling conventions and stack representa-
tions). We demonstrate that Concurrent Cilk adds negligible overhead
to existing Cilk programs, while its promoted threads remain more effi-
cient than OS threads in terms of context-switch overhead and blocking
communication. Further, it enables development of blocking data struc-
tures that create non-fork-join dependence graphs—which can expose
more parallelism, and better supports data-driven computations waiting
on results from remote devices.

1 Introduction

Both task-parallelism [1,11,13,15] and lightweight threading [20] libraries
have become popular for different kinds of applications. The key difference
between a task and a thread is that threads may block—for example when
performing IO—and then resume again. Lightweight threading libraries usu-
ally require cooperative multitasking but can, in return, support over a million
threads, which is naturally useful for applications such as servers that involve
concurrent IO-driven computations. Tasks, in contrast, are of finite duration and
do not block. Indeed the non-blocking assumption is baked deeply into libraries
such as TBB (Threading Building Blocks [15]) and language extensions such as
Cilk [4]. Tasks are executed on shared worker threads where blocking such a
thread is a violation of the contract between programmer and library, which
can cause subtle deadlocks, as well as a loss of parallel efficiency.

If the no-blocking-guarantee can be met, then task-parallelism libraries
offer an order of magnitude lower overhead for creating parallel tasks (“many
c© Springer International Publishing Switzerland 2016
X. Shen et al. (Eds.): LCPC 2015, LNCS 9519, pp. 73–90, 2016.
DOI: 10.1007/978-3-319-29778-1 5



74 C.S. Zakian et al.

tasking” rather than “multi-threading”). Cilk [4], in particular, is well known
for its low-overhead spawn feature where the overhead of creating a parallel fiber
with cilk_spawn f(x) is as little as 2–5 times the overhead of a regular function
call, f(x). The key to this low-overhead is that Cilk fibers are essentially lazily
parallel: fibers execute sequentially, exposing the continuation of the parallel call
with a minimum of overhead, and lazily promoting the continuation to a parallel
continuation only when work-stealing occurs—and even then only using shared
resources, not fiber-private stacks.

1. 
Sequential

2. Stolen

3. 
Blockable

4. Full 
OS ThreadsHaskell 

Threads

goroutines,

Qthreads
Haskell sparks

Cilk spawns,

Concurrent Cilk

1. latent parallelism 2. actual parallelism 3. concurrency

Automatic 
Promotions

ov
er

he
ad

Fig. 1. State transitions possible for a fiber
in each of several existing systems. At level
(1), the fiber executes entirely within the
stack of its caller. Work stealing transi-
tions to (2) where a pre-existing system
worker stack (allocated at startup) is used
to execute the continuation of f in parallel.
A blocked fiber requires additional storage
for its state (3). Finally, blocking on under-
lying OS calls requires an OS thread (4).

Because a traditional Cilk pro-
gram must run even with sequen-
tial semantics—spawned fibers cannot
serve the role of threads in the sense
that they cannot be used for manag-
ing concurrent IO. That is, even con-
tinuations lazily promoted to parallel
status, are not truly concurrent—they
don’t have their own stacks. It is this
extra lazy promotion we add in Con-
current Cilk.

To the programmer, a cilk_spawn

and a thread spawn look very similar,
but current limitations require know-
ing at the point of the call, which vari-
ant will be required: will the spawned
computation need to suspend, and
thus require its own stack? This deci-
sion point remains even in high-level
languages designed with both paral-
lelism and concurrency in mind, which
support both tasks and threads using separate language mechanisms. For exam-
ple, the Glasgow Haskell Compiler supports “sparks” (tasks) and language-level
“IO threads” with different APIs [13].

Concurrent Cilk, on the other hand, extends the Cilk runtime interface with
new primitives for pausing a fiber and returning a handle1 that will allow other
fibers (or Pthreads) to unpause the computation, and extends the states through
which a fiber is promoted with a third, fully concurrent, state:

1. Executing sequentially, continuation uninstantiated
2. Executing in parallel with continuation, shares stacks
3. Fully concurrent, private stack, able to pause/resume

1 This handle is similar to a [parallel] one-shot continuation. Continuations are well
studied control constructs [9,17] and known to be sufficient to build cooperative
threading (coroutines) [9] as well as blocking data structures that enable, for exam-
ple, stream-processing with back-pressure.



Concurrent Cilk: Lazy Promotion from Tasks to Threads in C/C++ 75

That is, Concurrent Cilk initially executes fibers sequentially, lazily pro-
moting them to “parallel work” during stealing, and lazily promoting them to
“threads” only when necessary (Fig. 1). It then becomes possible to use the
cilk_spawn feature for all parallelism and concurrency, even if it is not known
(or even knowable) at the point of its creation whether the fiber will need to
block—for example, for a computation on a server to wait on further commu-
nications with the client, or for a ray tracer to fetch remote data to compute a
particular pixel.

Previous attempts to provide blocking, lightweight fibers in C have either
required changing calling conventions and breaking legacy binary support [19],
or create a full [linear] call-stack for each fiber [20]. Concurrent Cilk is the first
system to enable lightweight threads in C, with legacy support, and memory-use
(number of stacks) proportional to blocked fibers, not total spawned fibers.

On the other hand, for parallel languages with specialized compiler support,
and no backwards compatibility concerns (linear stacks), lazy thread spawning
has been explored, namely in the context of Id90 [7]. (Although Id90 used only
states (1) and (3) above, not the full three-state algorithm.) And yet today,
Concurrent Cilk is, to our knowledge, the only threading system that uses this
algorithm, even including languages like Go, Haskell, and Erlang with good
lightweight threading support. Nevertheless, with the prevalence of asynchronous
workflows, especially in the web-services domain, we argue that this is an idea
whose time has come. It provides a better abstraction to the programmer—with
a single logical spawn construct replacing careful reasoning about non-blocking
tasks, shared threads, and user threads—and it is implementable even in mature
systems like Intel Cilk.

In this paper, we make the following contributions:

– We present the first system for unified lightweight tasking and threading that
supports C/C++ code and existing binaries. We describe the changes that are
necessary to add concurrency constructs (pause/resume a parallel fiber) to a
mature, commercial parallelism framework, and we argue that other many-
tasking frameworks could likewise adopt lazy-promotion of tasks to threads.

– We show how to build blocking data structures (e.g. IVars, channels) on top
of the core Concurrent Cilk pause/resume primitives.

– We use Linux’s epoll mechanism to build a Cilk IO library that provides
variants of POSIX routines like read, write, and accept which block only the
current Cilk fiber, and not the OS thread.

– We evaluate Concurrent Cilk in terms of (1) additional runtime-system over-
head across a set of applications (Sect. 6.1); (2) opportunities for improved
performance by sync elision (Sect. 6.3); (3) a study of injecting blocking IO
in parallel applications, or, conversely, injecting parallel computation inside
IO-driven server applications (Sect. 6.4).

2 Background and Motivation

Cilk itself dates from 1996 [4]; it is a simple language extension that adds par-
allel subroutine calls to C/C++. Only two constructs make up the core of Cilk:



76 C.S. Zakian et al.

cilk_spawn for launching parallel subroutine calls, and cilk_sync for waiting on
outstanding calls (with an implicit cilk_sync at the end of each function body).
For example, here is a common scheduler microbenchmark, parallel fibonacci:

long parfib(int n) {

if (n<2) return 1;

long x = cilk_spawn parfib(n-1);

long y = parfib(n-2);

cilk_sync;

return x+y;

}

Logically, each cilk_spawn creates
a virtual thread, i.e. a fiber. Cilk
then multiplexes these fibers on any
number of OS worker threads, deter-
mined at runtime. Cilk only instan-
tiates fibers in parallel when random
work-stealing occurs.2 Thus running
parfib(42) does not create stack
space for half a billion fibers, rather it typically uses one worker thread for
each processor or core.

Cilk is surprisingly successful as a language extension. This appears to be
largely due to (1) Cilk’s extreme simplicity, and (2) the legacy support in Intel
Cilk Plus. That is, Cilk programs can be linked with previously compiled libraries
and legacy code may even call Cilk functions through function pointers.

The work-stealing model supported by Cilk has been adopted by many other
C/C++ libraries (Intel TBB, Microsoft TPL, and others). Unfortunately, so has
its lack of support for blocking operations within parallel tasks. None of these
C/C++ runtime systems can react to a task blocking—whether on a system call
or an in-memory data structure. For example, TBB blocking data structures
(e.g. queues) are not integrated with TBB task scheduling.

2.1 Blocking Deep in a Parallel Application

To illustrate the problem Concurrent Cilk solves, we begin by considering adding
network IO to a plain Cilk application. Take, for example, software that renders
movie frames via ray tracing.3 A rendering process runs on each machine in
a render farm, and may use all the processors/cores within that machine. Let
us suppose the software evolved from a sequential application, but has been
parallelized using Cilk constructs.

Somewhere in our rendering application we might expect to see a parallel
loop that launches a ray for each pixel we are interested in. Contemporary Cilk
implementations provide a cilk_for drop-in replacement for for, which is imple-
mented in terms of cilk_spawn and cilk_sync.

2 Cilk is a work first system, which means that the thread that executes spawn f will
begin executing f immediately; it is the continuation of spawn that is exposed for
stealing.

3 Ray tracing follows an imaginary line from each pixel in the image into the scene to
see what objects are encountered, rather than starting with the objects and drawing
(rasterizing) them onto the screen.



Concurrent Cilk: Lazy Promotion from Tasks to Threads in C/C++ 77

sort(pix_groups);

cilk_for (i < start; i<end; i++){

. . . cast_ray(pix_groups[i]) . . .
}

Suppose now that in this context—
deeply nested inside a series of par-
allel and sequential function calls—we
encounter a situation where the ray has
left the local virtual space, whose tex-
tures and geometry are loaded on the
current machine, and entered an adjacent area stored elsewhere in networked
storage. In this hypothetical rendering application, if every ray rendered had its
own Pthread (which is impractical), then it would be fine to block that thread
by directly making a network request as a system call.

// Deep in the stack,

// in the midst of rendering:

void handle_escaped(ray r, id rsrc){

blob f = webapi.request(rsrc);

// Block a while here,

// waiting on the network . . .
load_into_cache(f);

resume_ray(r);

}

But if Cilk has been used to par-
allelize the application, the above
is very dangerous indeed. First,
because there is generally one Cilk
worker thread per core, blocking a
worker thread often leaves a core
idle. Second, any attempts to hold
locks or block on external events
invalidates the traditional space and
time bounds on Cilk executions [4].
Finally, blocking calls can deadlock the system if there are enough such calls to
stall all Cilk worker threads, starving other computations that might proceed—
including, potentially, the one that would unblock the others!

Attempted Fix 1: Avoid Blocking. To avoid blocking within a parallel task,
how can the application be refactored? If the need for IO operations is discovered
dynamically (as in ray tracing), there are two options: (1) fork a Pthread at the
point where IO needs to occur, passing an object bundling up the rest of the
computation that needs to occur, after the IO completes;4 or (2) return failure
for the parallel task, wait until the parallel region is finished, then perform IO
and try again (a trampoline). Because Cilk allows (strictly) nested parallelism,
deferring actions until the end of a parallel region potentially requires restructur-
ing the control-flow of the entire application—pulling all potential-IO in deeply
nested contexts to the application’s “outer loop”.

Attempted Fix 2: Overprovision to Tolerate Blocked Workers. Of
course, it is possible to provision additional Cilk workers, say, 2P or 4P (where
P is the number of processors or cores). This would indeed hide some number of
blocking operations, keeping processors from going idle, at the cost of additional
memory usage and some inefficiency from over-subscription. Unfortunately, this
puts the requirements on the user to understand the global pattern of blocking
operations at a given point in program execution, which is especially difficult
within a parallel region. Moreover, if blocked threads are interdependent on one
another—for example using in-memory blocking data-structures for inter-fiber

4 In other words, manually converting the application to continuation passing style
(CPS).



78 C.S. Zakian et al.

communication—then the maximum possible simultaneously blocked computa-
tions is key to deadlock avoidance. In general, violating the Cilk scheduler’s
contract (by blocking its workers) is a dangerous action that cannot be used
composably or abstracted inside libraries.

Thus we argue that, if Cilk fibers must block their host threads, then it is
better to create replacement worker threads on demand (as Cilk instantiates
fibers on demand, upon stealing) as an integral part of the runtime system.
Hence Concurrent Cilk.

3 Programming Model

Concurrent Cilk follows the Cilk tradition of using a small set of powerful, com-
posable primitives, which can then form the basis for higher-level abstractions or
syntactic sugar. The core primitives for Concurrent Cilk are pause and resume
on fibers, and while library implementers directly use these primitives, most end
users will prefer to use higher-level data structures. Thus we begin our exposition
of the programming model using one such high-level structure—the IVar—as an
example, and then we return to the lower level API later on in this section.

An IVar is a single-assignment data structure that exists in either an empty
or full state. The basic interface is:

void ivar_clear(ivar*);

ivar_payload_t ivar_get(ivar*);

void ivar_put(ivar*, ivar_payload_t);

New IVars are stack- or heap-allocated and then set to the empty state with
ivar_clear.5 Get operations on an empty IVar are blocking—they pause the
current fiber until the IVar becomes full. Once an IVar has transitioned to a full
state, readers are woken so they can read and return the IVar’s contents. IVars
do not allow emptying an already full IVar.

Further, IVars are only one representative example of a synchronization
structure built with pausable fibers—MVars would allow synchronized empty-
ing and refilling of the location, or a bounded queue with blocking enqueues and
dequeues.

Pausing the Fiber. In fact, all these data structures make use of the underlying
Concurrent Cilk API in the same way. Here we show a simplified API, which
will be optimized shortly, but which demonstrates two phase pausing, as follows.

1. pause_fiber() – capture the current context (setjmp), and begin the process
of shelving the current fiber.

2. commit_pause() – jump to the scheduler to find other work.

5 Here, and in the rest of this paper, we omit the prefix __cilkrts_ which is found
in most of the symbols in CilkPlus, and our fork, Concurrent Cilk https://github.
com/iu-parfunc/concurrent cilk.

https://github.com/iu-parfunc/concurrent_cilk
https://github.com/iu-parfunc/concurrent_cilk


Concurrent Cilk: Lazy Promotion from Tasks to Threads in C/C++ 79

In between these two operations, the fiber that is about to go to sleep has
time to store a reference to itself inside a data structure. Without this step, it
would not be possible for other computations to know that the fiber is asleep,
and wake it. In the case of IVars, each empty IVar with blocked readers stores a
pointer to a waitlist, which will be discussed in the next section. Further, as an
implementation note, the pause_fiber routine must be implemented as an inline
function or preprocessor macro—so that it calls setjmp from within the correct
stack frame.

Waking the Fiber. The job for the ivar_put operation is simpler: attempt a
compare and swap to fill the IVar, and retrieve the waitlist at the same time. If
it finds the IVar already full, it errors. When put processes the waitlist, it uses
a third Concurrent Cilk API call, which we introduce here, that has the effect
of enqueuing the paused fiber in a ready-queue local to the core on which it was
paused.

3. wakeup_fiber(w) – take the worker structure, and enqueue it in the readylist.

Naturally, thread wakeup and migration policies are a trade-off: depending
on the size and reuse distance of the working set for the blocked computation,
relative to the amount data communicated to it through the IVar. It could be
best to wake the fiber either where it paused or where it was woken, respectively.
We chose the former as our default.

4 Another High-Level Interface: I/O Library

Before delving deeper into the low-level Concurrent Cilk API and scheduler
implementation, we first describe another abstraction layered on top of Concur-
rent Cilk, one which provides a programmer-facing abstraction that is key to the
goal of Concurrent Cilk: blocking I/O calls intermingled with parallel tasks.

The Cilk I/O library we implemented provides a way for fibers to block—not
just on application-internal events like another fiber writing an IVar—but on
external events such as network communication. The programmer-visible API
matches the normal POSIX API with functions prefixed with cilk_. Except, of
course, blocking semantics are achieved, not by blocking the entire OS thread,
but rather the Concurrent Cilk fiber. Our current implementation uses the
Libevent library, which provides an abstraction over OS mechanisms like Linux’s
epoll. Libevent provides a programming interface for registering events with
associated callbacks. It raises the abstraction level from raw epoll by, for exam-
ple, handling the event loop(s) internally.

An initialization routine, cilk_io_init, needs to be called before calling any
IO methods. This launches a new daemon thread to run the event loop. The
cilk_accept, cilk_read, cilk_write, and cilk_sleep procedures register corre-
sponding events to the event loop before yielding the control to a different fiber
by blocking on an IVar read. In this, their implementations are all similar to
the ivar_get implementation. Accordingly, ivar_put is performed by the event



80 C.S. Zakian et al.

callback, running on the daemon thread containing the event loop. Note, how-
ever, that we do not need to worry about running computation on the event
loop thread (which would delay it from processing events)—ivar_puts are cheap
and constant time, only calling wakeup_fiber() to resume computation. As we
saw before wakeup_fiber() always resumes the fiber on the worker thread where
it went to sleep, which can never be the event loop thread.

In Sect. 6, we will return to the topic of the IO library as a foundation for
server applications. Finally, note that it would be possible to use LD_PRELOAD or
related methods to patch in Cilk IO calls instead of standard system calls, but
this is beyond the scope of this paper; it could be built separately and on top of
what we provide.

5 Low-Level Implementation and Scheduler

Cilk workers live in a global array which is accessed during the work-stealing
process. When a worker becomes starved for work, another worker is then cho-
sen, at random, from the global array and if there is any work available, the
thief steals from the currently busy worker (victim) and computes on its behalf.
There have been several implementations of Cilk, and other papers describe their
implementation and interfaces in detail, from the early MIT versions of Cilk [6],
to the binary ABI specification of Intel Cilk Plus [2]. Thus we do not go into
detail here.

5.1 Adding the Concurrent Cilk Extensions

Cilk Schedulerspawn
sync

read
write

accept

get
put

clear

commit_pause
rollback_pause

get_replacement

id
work deque
local state

global state
current stack frame
system-dependent 

state
readylist
pauselist
freelist

paused context

Cilk API

Cilk IO

Cilk IVar

Concurrent Cilk

Cilk Worker

Fig. 2. The architecture of the modified Con-
current Cilk runtime system. Also pictured is
the included, but optional, Cilk IO library.
The bold red entries in the worker structure
represent Concurrent Cilk extensions (Color
figure online).

The idea of Concurrent Cilk is sim-
ple; however, the Cilk Plus runtime
system is a complex and compara-
tively difficult to modify artifact, so
implementation must proceed with
care. Our basic approach is that
if a Cilk worker becomes blocked,
detach the worker from its OS
thread6 and substitute a replace-
ment worker that then steals com-
putation from any of the workers
in the global worker array. When
the blocking operation has finished,
the worker is restored to an OS
thread at the next opportunity and
the replacement worker is cached
for future use. In this way, all OS
threads managed by the Cilk runtime are kept active. This strategy is similar

6 A Cilk worker represents a thread local state which sits on top of an OS level thread.



Concurrent Cilk: Lazy Promotion from Tasks to Threads in C/C++ 81

to other lightweight threading systems [8,13,20], except in that Concurrent Cilk
“threads” (fibers) start out without stacks of their own.

As pictured in Fig. 2, most Cilk worker state is thread-local—including a
stack of stealable Cilk stack frames, a linear C stack, and many book-keeping
and synchronization related fields. A cache of stacks is kept both at the global and
thread-local levels, with local caches “filling” and spilling over into the shared
pool. Concurrent Cilk adds three main additional fields:

1. Paused list – workers that cannot currently run
2. Ready list – workers that have unblocked and are ready for execution
3. Free list – an additional cache of workers that previously were paused and

now can be used as replacements for newly paused fibers

Each of the lists above is currently implemented as a lock-free Michael and
Scott queue [14]. This gives a standard round-robin execution order to ready-
threads. When the current fiber pauses, work-stealing only occurs if there are
not already local fibers on the ready list.

5.2 Scheduler Modifications

The additional Concurrent Cilk data structures described above are primarily
touched by the pause, commit pause, and wakeup routines, and so they do not
interfere with traditional Cilk programs that never block. However, there must
be some modification of the core scheduler loop so as to be able to run work in
the ready list.

The core scheduler algorithm picks random victims and attempts to steal in
a loop, eventually going to sleep temporarily if there is no work available. We
inject checks for the extra workers in two places:

– In the stealing routine – if a first steal attempt fails, rather than moving on
from a victim, we attempt to steal work from any blocked workers on the
same core (which may also have exposed stealable continuations before being
blocked).

– At the top of the scheduler loop – we do not engage in work stealing if there
are already threads in the ready list prepared to run. In this way, cooperative
multi-tasking is possible in which no work-stealing is performed, and control
transfers directly from thread to thread as in other lightweight threading
systems. To make this maximally efficient, however, in the next Section we
will have to extend the pause/wakeup API from the simplified form we have
seen. Preferentially handling ready (local) threads over stealable work has
precedent in existing (multi-paradigm) parallel language runtimes [13] that
prioritize user-created, explicit concurrency over exploiting latent parallelism.

The above modifications change how we find victims, while at the same time
we retain the global (static) array of workers as it is in Intel Cilk Plus—as
the starting point for all work-stealing. In Concurrent Cilk the global array



82 C.S. Zakian et al.

represents the active workers, of which there are the same number in Concurrent
Cilk and Cilk. To maintain this invariant, we must necessarily rotate out which
workers reside in the global array. Whenever one worker pauses and activates
another, that replacement becomes “on top”.

In Concurrent Cilk, paused or ready fibers may also have exposed stealable
continuations, that can be executed in parallel by a thief.7 In terms of prioritizing
different work sources, we conjecture that it remains best to steal from active
workers first. Their working sets are more likely to be in a shared level of
cache. For that reason we only check paused fibers when the active one yields
no work.

From a software engineering perspective, leaving the global array of workers
in place and fixed size enables us to avoid breaking a system wide invariant in the
Cilk Plus runtime system, which would require substantial re-engineering. At the
same time, by modifying work-stealing to look deeper inside the list of paused
and ready workers, we retain a liveness guarantee for parallel continuations: If
a physical worker thread is idle, all logically parallel work items are reachable
by stealing. Any violation of this guarantee could greatly reduce the parallel
efficiency of an application in worst-case scenarios.

5.3 Optimized Pause/Resume Interface

Running Disconnected

PausedReady

raw_pause_fiber()

get_replacement
_worker()

wakeup_fiber()

rollback_pause()

switchto_
fiber()

Fig. 3. Transitions in the state of a worker.
Disconnected is a temporary invalid state,
which requires either rollback or switching
to a replacement to restore to a good state.

Before proceeding to evaluation, there
is one more implementation issue
to address that can significantly
improve performance. The two-phase
pausing process described above
(pause_fiber(), commit_pause(w)) does
not specify where the current thread
yields control to upon commit_pause for
the simple reason that it always jumps
to the scheduler. When we round-robin
threads through a given core, it is more
efficient if one thread can long-jump
directly to the next one.

Like other library interfaces (e.g., Boost smart/intrusive pointers) we provide
both a convenient interface, and a more “intrusive” but performant interface,
which requires that the API client assume more of the responsibility. This takes
two forms.

First, as promised, we enable direct longjmp between threads, but at the
expense of replacing commit_pause with a multiple calls in a finer grained
interface.

7 The original proof of Cilk’s space and time bounds relies on the critical path of the
computation remaining always accessible in this way. Non-uniform probabilities in
work-stealing are a concern to some authors of Cilk.



Concurrent Cilk: Lazy Promotion from Tasks to Threads in C/C++ 83

A get_replacement function returns a pointer to the replacement rather than
jumping to the scheduler. This replacement may enter the scheduler but it could
also go directly to another thread. It becomes the client’s responsibility to dis-
patch to the replacement with switchto_fiber:

1. raw_pause_fiber(jmp_buf*)

2. get_replacement(worker*, jmp_buf*)

3. switchto_fiber(worker*, worker*)

OR
rollback_pause(worker*, worker*)

The protocol is that calling (1)
by itself is fine, but after calling
(2), one of the options in (3) must
be called to restore the worker to
a good state (Fig. 3). If the lat-
ter (rollback_pause) is chosen, that
simply rolls back the state of the current thread and current worker to before
the call sequence began at (1).

In this API we can also see the second way in which we place additional
obligations on the client: raw_pause_fiber also takes a jmp_buf* argument. The
principle here is the same as with the IVar’s waitlist—each blocked worker has
a full stack, so it is possible to avoid dynamic memory allocation by making
good use of this stack space, including, in this case, stack-allocating the jmp_buf

that will enable the fiber to later resume. Thus all paused stacks store their
own register context for later reenabling them after wakeup_fiber is called. This
optimized, fine-grained version of the pausing API is what we use to implement
our current IVar and Cilk IO libraries which we evaluate in the next section.

6 Evaluation

Because Concurrent Cilk proposes a new API, it is not sufficient to run an
existing suite of Cilk benchmarks. Thus to evaluate Concurrent Cilk we examine
each of its (potential) pros and cons, and design an experiment to test that
feature.

– Possible Con: overhead on applications that don’t use Concurrent Cilk.
– Possible Pro: lower fork overhead than eager lightweight threading packages.
– Possible Pro: sync elision – express non-fork-join dependence structures
– Possible Pro: better utilization of cores; no idleness on blocking
– Possible Pro: simpler programming model with uniform construct for spawn-

ing tasks and threads.

In this section, we characterize the overhead of Concurrent Cilk’s extensions
to the Cilk runtime through several scheduling microbenchmarks. We further
compare the performance and scalability of Concurrent Cilk’s blocking, context-
switching and unblocking mechanisms through a performance shootout with
other task runtime systems. The plots include min/max error bars with three
trials.

The overhead tests in Sect. 6.1 and the scheduling microbenchmarks in
Sect. 6.2 were run on a Dell PowerEdge R720 node equipped with two 8-core
2.6 GHz Intel Xeon E5-2670 processors (16 cores in total, and hyperthreading
enabled) and 32 GB memory was used. The operating system used was Ubuntu



84 C.S. Zakian et al.

Fig. 4. The overhead of adding Con-
current Cilk to the Cilk scheduler. The
Y axis is the speedup/slowdown fac-
tor (higher better), and the X axis is
the count of benchmarks. Each color
represents one of the benchmarks from
the set of regression tests, and for each
benchmark there is a different bubble
for each thread setting, where larger
bubbles imply more threads (Color
figure online).

0

1

2

3

Strassen.Multiply Knapsack Black.Scholes

Benchmark

T
im

e 
(s

ec
on

ds
)

Unperturbed
Perturbed with sleep
Perturbed with cilk_sleep

Fig. 5. The effect of perturbing exist-
ing computational kernels with simu-
lated network dependencies. We sleep
on a timer (either the OS thread or
using epoll through the Cilk IO library)
to simulate these network dependen-
cies. Perturbations are random, and
calibrated to happen for 50 % of total
CPU time.

Linux 12.04.5 with kernel version 3.2.0. The tests in Sect. 6.3 were run on a quad
socket system with Westmere Intel Xeon (E7-4830, 24M Cache) processors, each
with 8 cores running at 2.13 GHz, hyperthreading disabled. The compiler used
was ICC version 13.0.0 on optimize level 3, on Redhat 4.4.7-3 with kernel version
2.6.32-358.0.1.

6.1 Overhead of Concurrent Cilk Modifications

In modifying the Cilk runtime, the first principle is “do no harm”—have we
incurred overhead for existing Cilk programs that do not pause fibers? In order
to measure this overhead, we ran a series of existing Cilk benchmarks both with
and without the Concurrent Cilk code in the runtime, scheduler loop, and work-
stealing code path.

– LU Decomp: LU decomposition of a 2048 × 2048 matrix.
– Strassen: Strassen’s algorithm for matrix multiplication on 2048 × 2048

matrices.
– Black-Scholes: Computes the financial, option-pricing algorithm.
– Knapsack: Solve the 0–1 knapsack problem on 30 items using branch and

bound.

The results of these benchmarks, as summarized in Fig. 4, show that the slow-
down to regular Cilk programs due to the added functionality of Concurrent



Concurrent Cilk: Lazy Promotion from Tasks to Threads in C/C++ 85

Cilk is a geometric mean of 1.1%, with all but two benchmark configurations of
knapsack showing no overhead throughout – and even then the overhead only
happening while using hyperthreading. Note that in this plot, each different
thread setting is considered a different benchmark instance.

Further, as a variation on these traditional benchmarks, in Fig. 5, we inject
simulated network IO into the middle of parallel regions in each program. This
models the situation described at the outset of this paper (e.g., a ray-tracer that
has to fetch network data or do RPCs). The version using the Cilk IO library can
hide the latency of “network” operations, keeping cores busy. Here, cilk_sleep
is provided by the Cilk IO library to block only the fiber, while keeping the core
busy, just as with cilk_read.

What is surprising is that, in the Strassen benchmark, the version that per-
turbs Cilk by knocking out a Pthread (true sleep rather than cilk_sleep), slows
down the total runtime by more than would be predicted based on the total vol-
ume of blocked time and compute time. The problem is that with random injec-
tion of these “network” dependencies, sometimes the blocked region increases
the critical path of the program in a way parallelism does not compensate for.

6.2 Scheduling Microbenchmarks

The parallel Fibonacci algorithm (Sect. 1) is a widely used microbenchmark for
testing scheduler overhead, because it does very little work per spawned func-
tion. Cilk is known for its low-overhead spawns, with good constant factors and
speedups on parallel Fibonacci in spite of the spawn density. Here we use this
microbenchmark in two ways, to perform a shootout with or without using first
class synchronization variables.

Shootout with First-Class Sync Variables. More general than Cilk’s
strictly-nested, fork-join model is the class of parallel programming models with
arbitrary task dependence DAGs and first-class synchronization variables (e.g.,
IVars, MVars, channels). After adding IVars, Concurrent Cilk joins that more
general family. In this subsection—before comparing against restricted many-
tasking libraries—we first examine this more expressive class of schedulers by
itself. That is, we compare implementations of parfib in which data is returned
only via first-class synchronization variables, and which every spawned compu-
tation is at least potentially a blockable thread. Figure 6 shows this comparison.

Shootout with Task Runtimes. Again, the best-in-class performance for low-
overhead parallel function calls goes to languages and runtimes like traditional
Cilk. Figure 7 shows common task-parallel libraries compared against two dif-
ferent implementations running on the Concurrent Cilk runtime: the first is
a traditional fork-join parfib running on Concurrent Cilk using cilk_spawn and
return results simply with return/cilk_sync rather than through IVars. The sec-
ond is the same implementation of parfib but using IVars—instead of syncs–to
enforce data-dependencies.

Note that this graph runs a much larger input size (40 rather than 30),
which is due to the fact that the multi-threading rather than multi-tasking run-
times cannot scale to nearly the same size of inputs. (In fact, they can exceed



86 C.S. Zakian et al.

1

100

1 2 4 8 16

Number of cores

T
im

e 
ta

ke
n 

(s
)

ConcCilk (IVars)

Go (goroutines + Channels)

Haskell (IO Threads + MVars)

Qthreads (qthreads + FEB)

parfib(30)

Fig. 6. A comparison of lightweight
threaded runtimes with parallel
fibonacci implemented by blocking
on a first-class synchronization
object. Concurrent Cilk does well,
because of lazy thread creation. Each
synchronization on an IVar could
block, but not all do. Thus, initializa-
tion overhead is only incurred when
needed.

1

10

1 2 4 8 16

Number of cores

T
im

e 
ta

ke
n 

(s
)

ConcCilk (IVars)

ConcCilk (spawn/return)

Open MP (Tasks)

TBB

parfib(40)

Fig. 7. Restricted task-only libraries’
performance on parallel fibonacci, with
Concurrent Cilk (IVars) included for
comparison. The IVar-based version
does quite well here in spite of block-
ing threads on reads—it scales as well
as TBB and raw Cilk (spawn/return),
and outperforms Open MP.

maximum-thread limits and crash!) In this plot we see that while the Concurrent
Cilk/IVar implementation cannot keep up with TBB or traditional Cilk, the gap
is much smaller than it would be with Qthreads, Go, or Haskell threads.

6.3 “Sync elision” and Exposing Parallelism

In this set of benchmarks we examine the potential effects on performance of
enabling unrestricted program schedules not normally possible in a strictly fork-
join model. The most clear-cut example of a place where scheduling is over-
constrained by Cilk is when we have a producer and a consumer separated
by a sync. The producer and consumer may or may not contain enough par-
allelism to fill the machine, but because of the cilk_sync, there is no possi-
bility of pipeline parallelism between producer and consumer.8 We examine a
simple case of this pipeline parallelism opportunity: a sequential producer that
fills and then reads an array of 10, 000 IVars for 1000 iterations. It takes Cilk
0.6356 s, whereas Concurrent Cilk in this case—which allows simply deleting
the cilk_sync statement—takes 0.3981 s making the program 37% faster by

8 However, the specific, narrow case of linear, synchronous dataflow graphs is addressed
by recent work on extending Cilk with pipeline parallelism via a new looping
construct [10].



Concurrent Cilk: Lazy Promotion from Tasks to Threads in C/C++ 87

introducing a benevolent producer/consumer race condition; if the consumer
gets ahead, it blocks on an unavailable IVar, allowing the producer to catch up.

1

2

3

4

5

1 2 4 8 16

Number of Threads

S
pe

ed
up

 (
re

la
tiv

e 
to

 s
eq

ue
nt

ia
l)

Divide and Conquer

IVars

Fig. 8. A wavefront algorithm ran in two
modes: first, in a divide-and-conquer recur-
sive structure that divides the matrix into
quadrants, executing the NW sequentially,
and the NE and SW in parallel. The second
mode is to simply fork a computation for
each tile, and let IVars track the inter-tile
data dependencies.

It is in this way that the
Concurrent Cilk version of the producer-
consumer allows overlapping pro-
ducing and consuming phases thus
improving performance. This sort
of example could be generalized to
more traditional stream processing by
replacing the array of IVars with a
bounded queue.
Exposing More Parallelism: Wave-
front. The topic of removing syncs
to increase performance has received
some previous attention, and in par-
ticular the Nabbit project [3] built an
explicit task-DAG scheduler on top
of Cilk, demonstrating its benefits on
a wavefront benchmark. Concurrent
Cilk is a different tool than Nabbit in
that it allows true continuation cap-
ture rather than explicit registration
of callbacks (i.e., a manual form of continuation passing style which is a fre-
quent source of complaints in, e.g., JavaScript web programming). In Fig. 8, we
can see the speedup enabled on a relatively coarse grained wavefront compu-
tation (16× 16 matrix of inner data structures of size 512× 512). Because the
granularity is fairly coarse, there is a shortage of parallelism in this example
(which causes us to not speed up at 16 cores). The fork-join model “wastes”
parallelism by adding unnecessary scheduling dependencies via syncs, whereas
the IVar-based version retains all the application-level parallelism.

6.4 Servers with Per-Client Parallel Compute

A server that performs computations on behalf of a client can be an instance
of nested parallelism: (1) Parallelism between clients (“outer loop”), and (2)
Parallelism within the requested work for one client (“inner loop”).

To be robust against both extremes—a single client with a large work item,
and many small client requests—the Cilk approach to nested data parallelism
would seem ideal. However, there’s a drawback. In the server case, the outer
loop includes blocking communication: to accept client connections, and then to
send data to and receive data from each client.

The simplest way to program such a server is to use the same mechanism
for parallelism at both levels: either pthread_create or cilk_spawn. Yet both of
these implementations expose a problem. Forking too many pthreads can slow
down or crash the application, whereas traditional Cilk spawns do not prevent



88 C.S. Zakian et al.

underutilization when blocking calls are made (and blocking calls underneath a
cilk_spawn can even be seen as a semantically incorrect contract violation).

Table 1. Throughput for different numbers of
clients for alternate server implementation strate-
gies at differing server workloads.
variant # conc

clients
work-per
request

throughput
(requests/s)

pthread/seq 1 fib(40) 2.53
4 fib(40) 9
8 fib(40) 18

cilk/cilk 1 fib(40) 33

4 fib(40) 33

8 fib(40) 35

conc cilk/cilk 1 fib(40) 35
4 fib(40) 35
8 fib(40) 35

pthread/seq 8 fib(30) 1891

cilk/cilk 8 fib(30) 1690

conc cilk/cilk 8 fib(30) 1656

pthread/pthread 1 fib(30) 0.48
4 fib(30) 0.12
8 fib(30) died

In this experiment, we use
an arbitrary parallel work-
load as the per-client request:
compute parallel fibonacci of
40 or 30, bottoming out to
a sequential implementation
below fib(10), and taking
about 600 ms and 4 ms, respec-
tively, when executed on one
core. The important thing is
that there is enough work to
keep all cores busy, even with
a single concurrent client.

We consider different strate-
gies corresponding to how the
outer/inner loop is handled.
Thus “Conc cilk/cilk” uses
Concurrent Cilk spawns at
both levels, with cilk_accept,
cilk_recv, and cilk_send in
place of the regular system calls. In contrast, “cilk/cilk” uses spawn at both lev-
els, but regular system calls (i.e. it makes no use of Concurrent Cilk). Likewise
“pthread/seq” spawns one pthread per client, but runs the inner computation
sequentially. As we see in Table 1, pthread/seq is a perfectly reasonable strategy
when there are enough clients. But when there is only a single client at a time,
Cilk variants perform much better because they can utilize all cores even for
one client. Likewise, Concurrent Cilk narrowly beats Cilk (35 vs. 32 requests
per second), based on keeping all cores utilized. Of course, “pthread/pthread”
cannot scale far due to limitations in OS thread scaling.

7 Related Work

In this section we consider Concurrent Cilk in the context of recent languages
designed with concurrency/parallelism in mind: e.g. Go [8], Manticore [5], Con-
current ML [16], and Haskell. Haskell IO threads, for example, share one or more
OS threads unless a blocking foreign function call is encountered [12], in which
case more OS threads are recruited on demand. Likewise, “goroutines” in Go
will share a fixed number of OS threads unless a thread makes a blocking call.
Like the classic Stein and Shaw 1992 system, these systems eagerly create thread
contexts upon spawning.

They specialize the stack representation, however. For example Go uses a
segmented stack representation, heap-allocating a small stack to start and grow-
ing as needed [8]. Thus, Go and Haskell (and Manticore, CML, etc.) can spawn



Concurrent Cilk: Lazy Promotion from Tasks to Threads in C/C++ 89

hundreds of thousands or millions of threads. Specifically, Go or Haskell can exe-
cute parfib(30)—using a forked thread in place of cilk_spawn, and a channel to
communicate results back—in 4.7 s and 3.1 s respectively on a typical desktop.9

This represents 1.3 million forked threads. But the programs also take 2.6 Gb
and 1.43 Gb of memory, respectively! Also, as seen in Fig. 6, Concurrent Cilk
supports the same program with the same semantics (first class sync vars and
suspendable threads) at much higher performance.

MultiMLton—a whole program compiler for a parallel dialect of SML—is a
recent system which employs a lazy thread creation technique called parasitic
threads [18]. These leverage relocatable stack frames to execute forked threads
immediately inside the callers stack, moving them lazily only if necessary. This
technique is effective, but not applicable to C/C++ where stack frames are non-
relocatable.

8 Conclusions and Future Work

We have shown how, even with the constraint of legacy language support (C/C++
with linear stacks) and the complications of a mature parallel runtime system
(Cilk Plus), lazy thread creation can still be an appealing prospect. Implement-
ing it for Cilk Plus required only a couple points of contact with the existing
scheduler code. Most of the complexity falls in higher level libraries, such as our
IVar and Cilk IO libraries.

In future work, we plan to continue building high-level concurrent data struc-
tures and control constructs on top of the simple pause/resume fiber inter-
face. As we saw in Sect. 6, IVars are already sufficient to speed up some pro-
grams with data-driven control-flow in a non-fork-join topology, and the Cilk IO
library is sufficient to build server applications that mix concurrency and implicit
parallelism.

Acknowledgements. This material is based in part upon work supported by the
Department of Energy under Award Number DE-SC0008809, and by the National
Science Foundation under Grant No. 1337242.

References

1. Intel Cilk Plus. http://software.intel.com/en-us/articles/intel-cilk-plus/
2. Intel Cilk Plus Application Binary Interface Specification. https://www.cilkplus.

org/sites/default/files/open specifications/CilkPlusABI 1.1.pdf
3. Agrawal, K., Leiserson, C., Sukha, J.: Executing task graphs using work-stealing.

In: IPDPS, pp. 1–12, April 2010
4. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,

Y.: Cilk: an efficient multithreaded runtime system. SIGPLAN Not. 30, 207–216
(1995)

9 Using all four cores of an Intel Westmere processor (i5-2400 at 3.10 GHz), 4 Gb
memory, Linux 2.6.32, GHC 7.4.2 and Go 1.0.3.

http://software.intel.com/en-us/articles/intel-cilk-plus/
https://www.cilkplus.org/sites/default/files/open_specifications/CilkPlusABI_1.1.pdf
https://www.cilkplus.org/sites/default/files/open_specifications/CilkPlusABI_1.1.pdf


90 C.S. Zakian et al.

5. Fluet, M., Rainey, M., Reppy, J., Shaw, A., Xiao, Y.: Manticore: a heterogeneous
parallel language. In: 2007 Workshop on Declarative Aspects of Multicore Pro-
gramming, DAMP 2007, pp. 37–44. ACM, New York (2007)

6. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the cilk-5 multi-
threaded language. SIGPLAN Not. 33(5), 212–223 (1998)

7. Goldstein, S.C., Schauser, K.E., Culler, D.E.: Lazy threads: implementing a fast
parallel call. J. Parallel Distrib. Comput. 37(1), 5–20 (1996)

8. Google. The Go Programming Language. https://golang.org
9. Haynes, C.T., Friedman, D.P., Wand, M.: Obtaining coroutines with continuations.

Comput. Lang. 11(3.4), 143–153 (1986)
10. Lee, I., Angelina, T., Leiserson, C.E., Schardl, T.B., Sukha, J., Zhang, Z.: On-the-

fly pipeline parallelism. In: Proceedings of the 25th ACM Symposium on Paral-
lelism in Algorithms and Architectures, pp. 140–151. ACM (2013)

11. Leijen, D., Schulte, W., Burckhardt, S.: The design of a task parallel library. SIG-
PLAN Not. 44, 227–242 (2009)

12. Marlow, S., Jones, S.P., Thaller, W.: Extending the haskell foreign function inter-
face with concurrency. In: Proceedings of the ACM SIGPLAN Workshop on
Haskell, pp. 22–32. ACM (2004)

13. Marlow, S., Peyton Jones, S., Singh, S.: Runtime support for multicore haskell.
In: International Conference on Functional Programming, ICFP 2009, pp. 65–78.
ACM, New York (2009)

14. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the Fifteenth Annual ACM Sym-
posium on Principles of Distributed Computing, PODC 1996, pp. 267–275. ACM,
New York (1996)

15. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core
Processor Parallelism. O’Reilly Media, Sebastopol (2007)

16. Reppy, J.H.: Concurrent ML: design, application and semantics. In: Lauer, P.E.
(ed.) Functional Programming, Concurrency, Simulation and Automated Reason-
ing. LNCS, vol. 693, pp. 165–198. Springer, Heidelberg (1993)

17. Rompf, T., Maier, I., Odersky, M.: Implementing first-class polymorphic delim-
ited continuations by a type-directed selective cps-transform. SIGPLAN Not. 44,
317–328 (2009)

18. Sivaramakrishnan, K., Ziarek, L., Prasad, R., Jagannathan, S.: Lightweight asyn-
chrony using parasitic threads. In: Workshop on Declarative Aspects of Multicore
Programming, DAMP 2010, pp. 63–72. ACM, New York (2010)

19. von Behren, R., Condit, J., Zhou, F., Necula, G.C., Brewer, E.: Capriccio: scalable
threads for internet services. SIGOPS Oper. Syst. Rev. 37(5), 268–281 (2003)

20. Wheeler, K.B., Murphy, R.C., Thain, D.: Qthreads: an api for programming with
millions of lightweight threads. In: IPDPS, pp. 1–8. IEEE (2008)

https://golang.org

	Concurrent Cilk: Lazy Promotion from Tasks to Threads in C/C++
	1 Introduction
	2 Background and Motivation
	2.1 Blocking Deep in a Parallel Application

	3 Programming Model
	4 Another High-Level Interface: I/O Library
	5 Low-Level Implementation and Scheduler
	5.1 Adding the Concurrent Cilk Extensions
	5.2 Scheduler Modifications
	5.3 Optimized Pause/Resume Interface

	6 Evaluation
	6.1 Overhead of Concurrent Cilk Modifications
	6.2 Scheduling Microbenchmarks
	6.3 ``Sync elision'' and Exposing Parallelism
	6.4 Servers with Per-Client Parallel Compute

	7 Related Work
	8 Conclusions and Future Work
	References


