
PNNU: Parallel Nearest-Neighbor Units
for Learned Dictionaries

H.T. Kung(B), Bradley McDanel, and Surat Teerapittayanon

Harvard University, Cambridge, MA 02138, USA
kung@harvard.edu, mcdanel@fas.harvard.edu, steerapi@seas.harvard.edu

Abstract. We present a novel parallel approach, parallel nearest neigh-
bor unit (PNNU), for finding the nearest member in a learned dictio-
nary of high-dimensional features. This is a computation fundamental
to machine learning and data analytics algorithms such as sparse cod-
ing for feature extraction. PNNU achieves high performance by using
three techniques: (1) PNNU employs a novel fast table look up scheme
to identify a small number of atoms as candidates from which the nearest
neighbor of a query data vector can be found; (2) PNNU reduces compu-
tation cost by working with candidate atoms of reduced dimensionality;
and (3) PNNU performs computations in parallel over multiple cores
with low inter-core communication overheads. Based on efficient com-
putation via techniques (1) and (2), technique (3) attains further speed
up via parallel processing. We have implemented PNNU on multi-core
machines. We demonstrate its superior performance on three application
tasks in signal processing and computer vision. For an action recogni-
tion task, PNNU achieves 41x overall performance gains on a 16-core
compute server against a conventional serial implementation of nearest
neighbor computation. Our PNNU software is available online as open
source.

Keywords: Nearest neighbor · NNU · PNNU · Data analytics · Sparse
coding · Learned dictionary · Parallel processing · Multi-core program-
ming · Speedup · Matching pursuit · Signal processing · Computer
vision · KTH · CIFAR

1 Introduction

In the era of big data, the need for high-performance solutions to support data-
driven modeling and prediction has never been greater. In this paper, we consider
parallel solutions to the nearest neighbor (NN) problem: given a set of data points
and a query point in a high-dimensional vector space, find the data point that is
nearest to the query point. NN is used in many data applications. For example,
NN (or its extension of finding k nearest neighbors, kNN) is used to identify
best-matched patterns in a set of templates [13]. NN also serves as an inner loop
in popular feature-extraction algorithms such as matching pursuit (MP) [11] and
orthogonal matching pursuit (OMP) [19].
c© Springer International Publishing Switzerland 2016
X. Shen et al. (Eds.): LCPC 2015, LNCS 9519, pp. 223–237, 2016.
DOI: 10.1007/978-3-319-29778-1 14

224 H.T. Kung et al.

A key operation in NN is the vector dot-product computation which com-
putes the “closeness” of two vectors under cosine similarity. Exhaustive search
of data points to find the largest dot-product value with the query point can
quickly become prohibitively expensive as data size and dimensionality increase.

Developing efficient NN solutions for general data sets is known to be a
challenging task. There is a vast amount of literature on this topic, including
k-d trees [21], locality sensitive hashing [3], and nearest-neighbor methods in
machine learning and computer vision [18]. For high-dimensional data, most
methods in the literature usually do not outperform exhaustive NN search [6].
This is due to the fact that, in practical applications, the high-dimensional data
space is commonly only sparsely populated. In our experiments, we find that
this observation often holds for even a moderate dimensionality, such as 30.

In this paper, we consider parallel computing approaches to NN for applica-
tions in machine learning and data analytics. Particularly, we consider the prob-
lem of finding the nearest neighbor in a dictionary of atoms (features) learned
from training data. We present a novel parallel scheme, parallel nearest neigh-
bor unit (PNNU), offering a high-performance NN solution to this problem. By
exploiting data characteristics associated with a learned dictionary, such as the
dominance of a small number of principal components, PNNU realizes its high
performance with three techniques:

T1. reducing the number of required dot-product computations,
T2. reducing the dimensionality in each dot-product computation, and
T3. parallel processing with low inter-core communication overheads.

For T1, we use a fast table look up scheme to identify a small subset of
dictionary atoms as candidates. By carrying out dot-product computations only
with these candidates, the query vector can quickly find its nearest neighbor
or a close approximation. Our look-up tables are based on principal component
analysis (PCA). For accurate candidates identification, we apply PCA to dictio-
nary atoms rather than the original data set from which the dictionary is learned.
The construction and usage of this fast table look up scheme is novel. For T2, we
apply the same PCA technique to reduce dimensionality of the candidate atoms
to lower the cost of computing their dot-products with the query vector. Finally,
for T3, we show that multiple cores can each work on scalar projections of dic-
tionary atoms on their respective dimensions independently without inter-core
communication until the very end of the PNNU computation. At the very end, a
simple and inexpensive reduction operation among multiple cores is carried out.
The parallel processing enabled by T3 results in substantial speed-up gains on
the already efficient computation brought by T1 and T2. Thus, PNNU does not
suffer from a common drawback in parallel processing that good speedups are
obtained only on more parallelizable but less efficient computations. We have
implemented PNNU with these techniques in software for multicore computers,
and our code is available as open source for public research use [10]. PNNU is
written in C++ and contains language bindings and examples for Python and
MATLAB making it simple to integrate into existing codebases.

PNNU: Parallel Nearest-Neighbor Units for Learned Dictionaries 225

2 Background: Learned Dictionaries and Spare Coding

A data-driven modeling and prediction task, such as those considered in this
paper, generally involves two phases. The first phase is feature extraction, where
we use clustering methods such as K-means and K-SVD [1] to learn a dictionary
where atoms (features) are cluster centroids. These atoms are the most occurring,
representative features of the data. The second phase is classification/regression,
where we compute a sparse representation, via sparse coding, of an input data
vector in the learned dictionary, and then based on the sparse representation
perform classification/regression.

Mathematically, sparse coding is an optimization problem expressed as

ŷ = arg min
y

‖x − Dy‖22 + λ · ψ(y), (1)

where x is an input data vector, D is a learned dictionary, ŷ is an sparse repre-
sentation of x, λ is certain constant and ψ(y) is a sparsity constraint function.
The choices of ψ(y) are usually either the L0-norm ‖y‖0 or the L1-norm ‖y‖1.

Algorithms for sparse coding include those such as MP and OMP which
greedily perform minimization under a L0-norm constraint, and those such as
Basis Pursuit [2] and LARS [4] which perform minimization under a L1-norm
constraint.

The inner loop in these algorithms is the NN problem for a learned dictio-
nary: for a given input vector x ∈ R

m, find its nearest feature (atom) dj in a
m × n dictionary D =

[
d1 d2 . . . dn

]
. In machine learning and data analytics

applications, D is generally overcomplete with m � n, and that m and n can
be large, e.g., m = 100 and n = 4000. In these cases, sparse coding is computa-
tionally demanding. The PNNU approach of this paper aims at alleviating this
computational problem.

Convolutional neural networks (CNN) and convolutional sparse coding (CSC)
have become popular due to their success in many machine learning tasks [9,12].
Interestingly, PNNU can help accelerate CSC. Convolution in CNN with Fast
Fourier Transform has a complexity of O(nm log(m)) as compared to O(nm2)
for CSC. With PNNU, CSC’s complexity cost is reduced to O(αβm2) with a
penalty to accuracy, for small α and β, which is discussed in detail in Sect. 5.

3 Parallel Nearest Neighbor Unit (PNNU)

In this section, we describe parallel nearest neighbor unit (PNNU) for a learned
dictionary D. The three subsections describe three techniques that make up the
PNNU algorithm. The first technique T1 uses the Nearest Neighbor Unit (NNU)
to reduce the number of dot-product computations. The second technique T2
reduces the cost of each dot-product computation via dimensionality reduction.
The third technique T3 parallelizes NNU. These three techniques work in con-
junction for high-performance nearest neighbor computation. That is, the first
two techniques improves computation efficiency by reducing total cost of dot-
product computations while the last technique further reduces the processing
time via parallel processing.

226 H.T. Kung et al.

3.1 Technique T1 (NNU): Identification of Candidates for Reducing
Dot-Product Computations

Technique T1 concerns a novel table look-up method for identifying a small
number of candidate atoms in D from which the nearest neighbor of a query
data vector or a close approximation can be found. We call this the nearest
neighbor unit or NNU. As Fig. 1 depicts, the naive exhaustive search involves
O(n) dot-product computations while NNU’s candidate approach reduces this
number to O(m). This saving is significant for overcomplete dictionaries with
m � n. As described below, the technique is divided into two steps: offline table
preparation and online candidates identification.

Fig. 1. A contrast between the naive
exhaustive search and the NNU’s can-
didates approach in the number of
dot-product computations. The k can-
didates are a subset of D which are
selected by NNU. Increasing the α
and β parameters in NNU increases k,
where k ≤ α · β.

Fig. 2. Offline table preparation of
content for TABLE-i associated with
the top principal component vi of D
for i = 1, 2, . . . , α. For each possible
w-bit value W for vT

i x the dictionary
positions of the β atoms for which their
scalar projections on vi are nearest to
W are stored at table location W .

NNULookup Table Preparation. We first compute principal components V
for D by performing PCA [7] on D, that is, DDT = VΣVT for a diagonal Σ.
We then form a sub-matrix Vα of V by including the top α principal components
for some α = O(m), which together explain the majority of data variations in
D, that is, VT

α =
[
vT
1 ,vT

2 , . . . ,vT
m

]T .
Based on D and Vα, we prepare content for α tables using VT

αD. As depicted
in Fig. 2, for TABLE-i corresponding to vi, i = 1, . . . , α, we map each possible
w-bit value of vT

i x to the dictionary positions of the β atoms dj , for which vT
i dj

are nearest to the vT
i x value.

To contain the table size, we aim for a small bit width w in representing
vT

i x. Specifically, we use the 16-bit IEEE 754 half-precision floating-point data
type for all of our experimental results. Empirically, we have found that for many

PNNU: Parallel Nearest-Neighbor Units for Learned Dictionaries 227

practical applications such as object classification for tens or hundreds of classes,
w = 16 is sufficient. In this case, the tables can be easily fit in the main memory
or even the L3 cache (4–8 MB) of today’s laptops. However, this is no inherent
restriction on the data type stored in the table and w can be increased when
higher precision is required.

Note that our use of PCA here departs from the conventional application of
PCA where principal components are computed from the raw data set, rather
than the dictionary learned from this data set. Since dictionary atoms are cluster
centroids learned by clustering methods such as K-means, they are denoised
representation of the data. As a result, when PCA is applied to dictionary atoms,
a smaller percentage of principal components can capture most of variations in
the data, as compared to PCA applied to the raw data directly. This is illustrated
by Fig. 3. The top 10 eigenvalues of the learned dictionary explain over 80.7 % of
the variance, compared to 49.3 % for the raw data. Moreover, as shown in Table 1,
NNU with applying PCA on a learned dictionary rather than the raw data gives
results of substantially higher accuracy for an action recognition task. The use
of PCA in this way, using the projection between Vα and an input vector x to
build a fast look up table, is novel and one of the largest contributions of this
paper. (We note a similar use of PCA in [5] for a different purpose of preserving
pairwise dot products of sparse code under dimensionality reduction).

NNULookup Algorithm. Given an input vector x we are interested in find-
ing its nearest atom in D. We first prepare search keys for x, that is, VT

αx =
[
vT
1 x,vT

2 x, . . .vT
mx

]T
. Next, for i = 1, 2, . . . , α, we use a w-bit representation of

vT
i x as a key into TABLE-i, as depicted in Fig. 4. Note that these α table look

Fig. 3. Cumulative variance explained by
PCA applied to the learned dictionary
and raw input data for the action recog-
nition task described in Sect. 5.1. The
eigenvalues are sorted by magnitude and
cumulatively summed to show total
explained variance.

Table 1. Accuracy results of PNNU(α,β),
for different α and β configurations, for
the action recognition task described in
Sect. 5.1 when applying PCA on a learned
dictionary (PCA-D) versus applying PCA
on the raw data (PCA-X).

PCA-X PCA-D

PNNU(1,1) 64.20 % 82.70 %

PNNU(1,5) 79.20 % 87.30 %

PNNU(1,10) 80.30 % 89.60 %

PNNU(5,1) 78.60 % 87.90 %

PNNU(5,5) 83.20 % 92.50 %

PNNU(5,10) 86.70 % 90.80 %

PNNU(10,1) 79.80 % 86.70 %

PNNU(10,5) 87.30 % 90.20 %

PNNU(10,10) 89.00 % 90.80 %

228 H.T. Kung et al.

ups can be done independently in parallel, enabling straightforward paralleliza-
tion (see Sect. 3.3). Finally, we identify candidates for the nearest neighbor of x
by taking the union of the results from all α tables as illustrated in Fig. 5 for
α = 3. Note that taking a union with the “OR” operator is amenable to efficient
hardware and software implementations.

For a given α and β, our table-lookup method will yield at most αβ can-
didates. Increasing α and β will raise the probability that identified candidate
atoms will include the nearest neighbor. In Sect. 4 we show that this probabil-
ity approaches 1 as α and β increase. Since tables can be accessed in parallel
(see Sect. 3.3 for PNNU), increasing α does not incur additional look up time
beyond the final low-cost reduction step. Additionally, since each look up pro-
duces β neighbors at the same time from each table, increasing β does not incur
additional look up time beyond the cost of outputting β values for the union
operation of Fig. 5.

Fig. 4. Online retrieval of content from
tables.

Fig. 5. The union operation: pooling
results from 3 tables with the “OR”
operator.

3.2 Technique T2: Dimension Reduction for Minimizing the Cost
of Each Dot-Product Computation

By technique T1, we can identify a set of candidate atoms that have a high
likelihood of containing the nearest neighbor of an input vector x. Among these
candidate atoms, we will find the closest one to x. The straightforward approach
is to compute the dot product between x and each candidate atom. In this
subsection, we describe technique T2 based on dimension reduction using the
same PCA on D as in technique T1, now for the purpose of lowering the cost
of each dot-product computation. For example, suppose that the original atoms
are of dimensionality 500, and after PCA we keep only their scalar projections
onto the top 10 principal components. Then a dot-product computation would
now incur only 10 multiplications and 9 additions, rather than the original 500
multiplications and 499 additions. Note that it is also possible to apply PCA
on raw data X, but applying PCA on D is more natural to our approach, and
produces superior results on application accuracy as we demonstrate in Sect. 5.

Since PCA dimensionality reduction is a lossy operation, it is inevitable that
dot-products over reduced-dimension vectors will lower the accuracy of the

PNNU: Parallel Nearest-Neighbor Units for Learned Dictionaries 229

application result. In practice, we keep the top principal components whose
eigenvalues can contribute to over 80 % of the total for all eigenvalues. In this
case, as results in Sect. 5 demonstrate, the impact on accuracy loss is expected
to be acceptable for typical applications we are interested in.

Note that in the preceding subsection, we use PCA to identify candidates. In
this subsection, we use the same PCA to reduce dimensionality. These are two
different usages of PCA. The former usage is novel in its role of supporting fast
table look up for NNU, while the latter usage is conventional.

3.3 Technique T3: Parallel Processing with Low Inter-core
Communication Overheads

This subsection describes the third technique making up PNNU. The NNU algo-
rithm of technique T1 leads naturally to parallel processing. We can perform
table-lookup operations for α dimensions in parallel on a multi-core machine.
That is, for i = 1, 2, . . . , α, core i performs the following operations for an input
data vector x: (1) compute vT

i x, (2) look up β values from table i based on
vT

i x, (3) compute β dot-product computations or reduced-dimension dot-
product computations between the candidate dictionary atoms and x, and
(4) output the candidate atom which yields the maximum dot-product value
on the ith dimension.

The final reduction step is performed across all cores (dimensions) to find
the dictionary atom which yields the maximum dot-product value. We note
that the table look-ups from multiple tables are carried out in parallel, so are
the corresponding dot-product computations or reduced-dimension dot-product
computations. We also note that this parallel scheme incurs little to no inter-core
communication overhead, except at the final reduction step where α candidate
atoms are reduced to a single atom that has the maximum dot-product value
with x. In Sect. 5, experiments show that this low communication overhead leads
to large parallel speedups.

4 Probabilistic Analysis of PNNU

In this section, we analyze the probability P that for a given query vector
x, the PNNU algorithm finds the nearest neighbor d in a dictionary D. Let
v1,v2, . . . ,vα be the α top principal components of D. We show that the prob-
ability P approaches 1 as α and β increase, satisfying a certain condition.

For a given ε ∈ (0, 1), let βi be the least number of the nearest neighbors of
vT

i x such that the probability that vT
i d is not any of the βi nearest neighbors

of vT
i x is less than or equal to ε. Given an α, for i = 1, . . . , α, let Yi be an event

that vT
i d is not any of the β nearest neighbors of vT

i x, where β = max1≤i≤α βi.
Therefore, Pr(Yi) ≤ ε. Assume that Yi are mutually independent. Then, we have
P = 1 − Pr

(⋂α
i=1 Yi

)
= 1 − ∏α

i=1 Pr(Yi) ≥ 1 − εα. Thus, as α increases, and
also β increases accordingly, εα decreases toward 0 and P approaches 1.

Consider using the parallel processing T3 technique of PNNU. Since we have
low inter-core communication overheads, increasing α (the number of cores)

230 H.T. Kung et al.

does not impact the processing time significantly. Therefore, for a particular
application, we can pick an ε and keep increasing α, and also β accordingly,
until the probability Pr(A) is high enough.

To simplify the analysis, we have assumed that Yi are mutually independent.
Experimentally, we have found that this assumption holds well. For all exper-
iments reported in this paper, Pr

(⋂α
i=1 Yi

)
and

∏α
i=1 Pr(Yi) are reasonably

close empirically. For example, in one experiment, these two numbers are 0.72
and 0.71 and in another experiment, they are 0.47 and 0.45.

5 Experimental Results of PNNU on Three Applications

In this section, we provide empirical performance results for PNNU on three
applications: action recognition, object classification and image denoising. All
three applications require the nearest neighbor computation. We replace the
nearest neighbor computation with PNNU(α,β), where α, β denote different
parameter configurations of PNNU. All experiments are run on a compute server
using two Intel Xeon E5-2680 CPUs, with a total of 16 physical cores.

Algorithms to Compare. We consider both PNNU and PNNU without tech-
nique T2 (PNNU-no-T2). The latter involves more dot-product computations,
but yields better application accuracy. We compare PNNU and PNNU-no-T2
(both serial and parallel implementations) with three other algorithms:

1. Straightforward method (S). This is the straightforward exhaustive search
algorithm to find the nearest neighbor in terms of the cosine distance. If the
input data vector is x and candidate atoms are the columns of D, we compute
DTx. We call its serial implementation S. This method is the only algorithm
in the comparison that is guaranteed to find the nearest neighbor of x in D.

2. PCA-dimensional-reduction-on-dictionary (PCAonD(α)). For dimensionality
reduction, we first perform PCA on D to get its top α principal components
VT

D, that is, DDT = VDΣVD
T for some diagonal Σ. Then during computa-

tion, instead of computing DTx, we compute dot products (VT
DD)T (VT

Dx) of
reduced dimensionality. Note the parameter α specifies dimensionality of dot-
product computations after PCA dimension reduction. In these experiments,
we use α = 10.

3. PCA-dimensional-reduction-on-data (PCAonX(α)). This is the same as the
previous algorithm, but instead we compute PCA on the input data X. Let
VT

X contain the top α principal components. We compute (VT
XD)T (VT

Xx).
Note the parameter α specifies the dimensionality of dot-product computa-
tions after PCA dimension reduction. We use α = 10.

Performance Measures. We compare algorithms in terms of the following per-
formance related measures, where an algorithm Y can be S, PCAonD, PCAonX,
PNNU or PNNU-no-T2:

PNNU: Parallel Nearest-Neighbor Units for Learned Dictionaries 231

N: The number of arithmetic operations per query vector. This is the number
of addition and multiplication operations each algorithm performs for a sin-
gle query vector. For S, a dot-product between a query vector x ∈ R

m and a
dictionary D ∈ R

m×n incurs n(2m − 1) arithmetic operations (nm for the mul-
tiplication and n(m−1) for the addition). For PCAonD(α) and PCAonX(α), it
is n(2α − 1). For PNNU(α,β), it is bounded above by αβ(2α − 1). For PNNU-
no-T2(α,β), it is bounded above by αβ(2m − 1).
G: Efficiency gain. For an algorithm Y, its efficiency gain is the number of arith-
metic operations of the straightforward method (NS) over that of the algorithm
Y (NY): NS/NY.
Ts: Serial processing wall clock time in seconds. This is the time it takes for the
serial implementation of the algorithm to run.
Us: Serial speedup of an algorithm Y over the serial straightforward method. It
is the wall clock serial execution time of the straightforward method over that of
algorithm Y: TsS/TsY . This is a run-time realization of the theoretical efficiency
gain G.
Tp: Parallel processing wall clock time in seconds. This is the time it takes for
the parallel implementation of the algorithm to run.
Up: Parallel-over-serial speedup. This is the parallel scaling performance of the
algorithm. It is Ts/Tp.
Ut: Total performance gain of an algorithm Y over the serial implementation
of the straightforward method: TsS/TpY = Us × Up.
Q: Quality metric which is defined per application. For action recognition and
object classification, we report the recognition/classification accuracy on the
test set, i.e., the percentage of times the algorithm predicts the correct class
labels. For image denoising, we report the peak signal-to-noise ratio (PSNR).

Performance Highlights. For each application, we will highlight the following
points in our performance analysis:

1. A comparison of how PNNU performs compared to the simple PCA methods
(PCAonX and PCAonD).

2. The algorithm and setting with the best quality metric (Q) compared to the
straightforward method.

3. The algorithm and setting with the best total performance gain (Ut).

In the following we will explicitly mention these highlighted points for each
application, and mark them with bold faces in the tables which report experiment
results.

5.1 Application A1: Action Recognition

For the action recognition task we use a standard benchmark dataset, the KTH
dataset [17], which is a video dataset consisting of 25 subjects where in each
video a single subject is performing one of six actions (walking, jogging, running,
boxing, hand waving and hand clapping). The dataset is split on subjects into

232 H.T. Kung et al.

a training and testing set. Features are extracted from each video using the
same method as described in [20]. Features from each video consist of a variable
number of columns, where each column is a 150-long feature vector. K-means is
then performed on the training set to learn a dictionary of size 1000. Finally, each
column from every video is then encoded with the learned dictionary using either
conventional dot product or our PNNU approach. Each column is given a single
atom assignment, and for a given video these column assignments are aggregated
using a bag-of-words model. An SVM classifier with chi-squared kernel is then
trained on the bag-of-words representation in order to obtain prediction results.

Table 2. The experiment results for the KTH dataset.

Algorithm N G Ts Us Tp Up Ut Q

S 299,000 1 692.89 1.00 108.48 6.39 6.39 94.20%

PCAonX(10) 19,000 16 129.25 5.36 13.15 9.83 52.69 77.50%

PCAonD(10) 19,000 16 128.40 5.40 13.24 9.70 52.34 77.50%

PNNU-no-T2(1,1) 299 1,000 7.39 93.75 9.80 0.75 70.71 82.70%

PNNU-no-T2(1,10) 2,990 100 28.80 24.06 20.41 1.41 33.94 89.60%

PNNU-no-T2(5,1) 1,495 200 22.91 30.24 12.44 1.84 55.71 87.90%

PNNU-no-T2(5,5) 7,475 40 75.30 9.20 16.73 4.50 41.41 92.50%

PNNU-no-T2(5,10) 14,950 20 140.23 4.94 22.90 6.12 30.26 90.80%

PNNU-no-T2(10,1) 2,990 100 19.24 36.01 10.44 1.84 66.35 86.70%

PNNU-no-T2(10,10) 29,900 10 260.30 2.66 24.99 10.42 27.73 90.80%

PNNU(1,1) 1 299,000 6.36 108.96 5.73 1.11 120.95 82.70%

PNNU(1,10) 10 29,900 15.75 43.99 6.91 2.28 100.29 78.00%

PNNU(5,1) 45 6,644 15.56 44.54 8.05 1.93 86.08 85.50%

PNNU(5,5) 225 1,329 44.64 15.52 8.16 5.47 84.95 83.80%

PNNU(5,10) 450 664 80.87 8.57 8.98 9.01 77.16 84.40%

PNNU(10,1) 190 1,574 27.33 25.35 9.53 2.87 72.69 83.80%

PNNU(10,10) 1,900 157 162.95 4.25 10.69 15.24 64.79 87.30%

Table 2 shows the experiment results for the KTH dataset. The straight-
forward method, denoted as S, achieves the highest accuracy (Q) of 94.20 %.
PCAonX(10) and PCAonD(10) both achieve accuracy (Q) of 77.50 %, which is
in general substantially lower than PNNU configurations. Additionally, many
PNNU configurations are strictly better in terms of both quality (Q) and total
performance gain (Ut).

PNNU-no-T2(5,5) has an accuracy of 92.50 %, the closest to that of S, with
an efficiency gain (G) of 40. This translates into a serial speedup (Us) of 9.20x
(the difference between G and Us is due to both run-time overhead and G only
counting arithmetic operations). The parallel speedup (Up) is 4.50x, for a total
performance gain (Ut) of 41.41x over the serial implementation of S.

Notably, PNNU(1,1) achieves the highest total performance gain (Ut) of
120.95x with accuracy (Q) of 82.70 %. This trade-off is good for applications

PNNU: Parallel Nearest-Neighbor Units for Learned Dictionaries 233

that can accept a small reduction in quality in order to significantly reduce run-
ning time. As expected, PNNU-no-T2 achieves higher accuracy than PNNU at
the expense of increased running time. We note this trend in other applications
as well.

Though in general increasing α and β improves Q, it is not always the case.
For instance, we observe a drop of 1.7 % in Q when going from PNNU-no-T2(5,5)
to PNNU-no-T2(5,10). The reason for this is explained in the following example.
Suppose given an input sample x, the nearest atom to x is d∗. Increasing β from
5 to 10 leads to finding the candidate atom dβ=10 that is nearer to x than the
candidate atom dβ=5. Nonetheless, there is a chance that dβ=10 is further away
from d∗ than dβ=5. This results in the drop in Q. In general, when x is already
close to d∗, this phenomenon is unlikely to happen.

5.2 Matching Pursuit Algorithm with PNNU

The object classification and image denoising tasks rely on computing sparse
codes. Before going into those applications, we introduce MP (Algorithm1), the
sparse coding algorithm that we use to compute sparse representations for these
tasks. We modify the nearest neighbor computation section of MP to use PNNU
and obtain MP-PNNU (Algorithm2). For comparison with other algorithms, we
just replace PNNU routine with other algorithms’ routines of finding the nearest
neighbor.

Algorithm1. MP

1: Input: data vector x, dictionary
D = [di, . . . ,dn], and the number
of iterations L

2: Output: sparse code y
3: r ← x
4: for t = 1 L do
5: i ← arg max |DT r|
6: yi ← dT

i r
7: r ← r − yidi

8: end for

Algorithm2. MP-PNNU

1: Input: data vector x, dictionary
D = [di, . . . ,dn], orthonormal
basis V, the number of iterations
L, and PNNU

2: Output: sparse code y
3: r ← x
4: for t = 1 L do
5: v ← VT r
6: C ← PNNU(v)
7: j ← arg max |CT r|
8: i ← i s.t. di = cj
9: yi ← dT

i r
10: r ← r − yidi

11: end for

The MP algorithm finds the column dj in the dictionary D which is best
aligned with data vector x. Then, the scalar projection yj along this dj direction
is removed from x and the residual r = x−yjdj is obtained. The algorithm pro-
ceeds in each iteration by choosing the next column dj that is best matched with
the residual r until the desired number of iterations is performed. We note that
for each iteration, line 5 is the most costly nearest neighbor step. As we noted

234 H.T. Kung et al.

previously, for a m×n dictionary D, exhaustive search will incur a cost of O(mn)
and thus can become prohibitively expensive when m and n are large. The MP-
PNNU algorithm can mitigate this problem. MP-PNNU has the same overall
structure as MP, except that in finding the best matched column dj , it uses the
PNNU approach as described in Sect. 3.

5.3 Application A2: Object Classification

For the image object classification task we use the CIFAR-10 image dataset [8],
an image dataset of 10 object classes. We randomly select 4,000 images from the
training set and evaluate on 1,000 images from the test set (we ensure that the
same number of samples are selected from each class). For each image, all 6 by
6 3-color-channel (RGB) patches are extracted sliding by one pixel, and there-
fore, each vector is 108 dimension long. We learn a 3,000-atom dictionary using
K-SVD [1], a generalization of K-means, on the training patches. For encoding,
we compare the classic MP (Algorithm 1) with MP-PNNU (Algorithm2), set-
ting k = 5 (number of coefficients) for both algorithms. Finally, we perform a
maximum pooling operation over each image to obtain a feature vector. A linear
SVM classifier is trained on the obtained training set feature vectors and testing
set accuracy results are reported.

Table 3. The experiment results for the CIFAR-10 dataset.

Algorithm N G Ts Us Tp Up Ut Q

S 645,000 1 3,815.89 1.00 890.37 4.29 4.29 51.90%

PCAonX(10) 57,000 11 1,492.36 2.56 187.27 7.97 20.38 30.40%

PCAonD(10) 57,000 11 1,600.88 2.38 185.38 8.64 20.58 33.10%

PNNU-no-T2(1,1) 215 3,000 38.2375 99.79 76.1259 0.50 50.13 33.90%

PNNU-no-T2(1,10) 2,150 300 69.9699 54.54 86.6791 0.81 44.02 41.70%

PNNU-no-T2(5,1) 1,075 600 65.3232 58.42 80.3086 0.81 47.52 40.20%

PNNU-no-T2(5,5) 5,375 120 143.894 26.52 93.466 1.54 40.83 42.30%

PNNU-no-T2(5,10) 10,750 60 241.786 15.78 113.46 2.13 33.63 45.10%

PNNU-no-T2(10,1) 2,150 300 199.547 19.12 153.835 1.30 24.81 39.40%

PNNU-no-T2(10,10) 21,500 30 971.899 3.93 115.558 8.41 33.02 46.60%

PNNU(1,1) 1 645,000 76.8262 49.67 68.934 1.11 55.36 33.10%

PNNU(1,10) 10 64,500 113.847 33.52 72.8819 1.56 52.36 34.10%

PNNU(5,1) 45 14,333 114.627 33.29 65.21 1.76 58.52 37.30%

PNNU(5,5) 225 2,867 227.224 16.79 85.5631 2.66 44.60 37.30%

PNNU(5,10) 450 1,433 367.583 10.38 95.8492 3.84 39.81 36.30%

PNNU(10,1) 190 3,395 165.41 23.07 121.995 1.36 31.28 35.80%

PNNU(10,10) 1,900 5 724.173 5.27 108.528 6.67 35.16 39.10%

Table 3 shows the experiment results for the CIFAR-10 dataset. The straight-
forward method S achieves the highest accuracy (Q) of 51.90 %. (This multi-class
classification task is known to be difficult, so the relatively low 51.90 % achieved
accuracy is expected for a simple algorithm like this [14].) PCAonX(10) and

PNNU: Parallel Nearest-Neighbor Units for Learned Dictionaries 235

PCAonD(10) achieve accuracy of 30.40 % and 33.10 %, respectively. Once again,
we see that many PNNU configurations are strictly better in terms of both qual-
ity (Q) and total performance gain (Ut). PNNU-no-T2(10,10) has an accuracy of
46.60 %, the closest to that of S, with an efficiency gain (G) of 30. This translates
into a serial speedup (Us) of 3.93x, a parallel speedup (Up) of 8.41x, for a total
performance gain (Ut) of 33.02x over the serial implementation of S. PNNU(5,1)
achieves the highest total performance gain (Ut) of 58.52x with accuracy (Q)
of 37.30 %.

Table 4. The experiment results for denoising the Lena image.

Algorithm N G Ts Us Tp Up Ut Q

S 381,000 1 392.92 1.00 39.24 10.01 10.01 32.34

PCAonX(10) 57,000 7 48.27 8.14 13.59 3.55 28.90 31.18

PCAonD(10) 57,000 7 59.23 6.63 16.78 3.53 23.42 31.20

PNNU-no-T2(1,1) 127 3,000 5.98 65.68 5.42 1.10 72.51 25.88

PNNU-no-T2(1,10) 1,270 300 6.79 57.89 8.29 0.82 47.40 27.36

PNNU-no-T2(5,1) 635 600 11.25 34.91 8.66 1.30 45.35 29.05

PNNU-no-T2(5,5) 3,175 120 22.95 17.12 8.06 2.85 48.74 30.95

PNNU-no-T2(5,10) 6,350 60 35.85 10.96 10.47 3.42 37.53 31.58

PNNU-no-T2(10,1) 1,270 300 8.22 47.82 7.55 1.09 52.03 29.84

PNNU-no-T2(10,10) 12,700 30 31.46 12.49 7.53 4.18 52.16 32.19

PNNU(1,1) 1 381,000 4.55 86.33 4.89 0.93 80.34 25.71

PNNU(1,10) 10 38,100 5.64 69.61 5.28 1.07 74.41 25.80

PNNU(5,1) 45 8,467 6.77 58.07 5.42 1.25 72.45 28.71

PNNU(5,5) 225 1,693 11.14 35.28 5.49 2.03 71.60 29.87

PNNU(5,10) 450 847 14.88 26.41 5.68 2.62 69.23 30.17

PNNU(10,1) 190 2,005 6.76 58.11 5.26 1.29 74.75 29.67

PNNU(10,10) 1,900 201 25.96 15.13 5.96 4.36 65.95 31.64

5.4 Application A3: Image Denoising

In the previous subsections, we have shown that PNNU works well for classifica-
tion problems. In this subsection, we showcase its performance at reconstruction,
specifically, removing noise from an image of Lena [15]. First, a noisy version of
the Lena image is generated by adding Gaussian noise with zero mean and stan-
dard deviation 0.1. This noisy image is then patched in the same manner as
described in the previous subsection, using 8 by 8 grayscale patches, creating
64-dimensional vectors. These patches (roughly 250,000) are then used to learn
a dictionary of 3,000 atoms using K-SVD with the number of sparse coefficients
set to 5. The denoising process consists of encoding each patch with either MP
or MP-PNNU. After encoding, each patch is represented as a sparse feature vec-
tor (sparse representation). To recover a denoised version of the input signal,
the dot-product between the sparse vectors and learned dictionary is computed.
Finally, the recovered patches are each averaged over a local area to form the
denoised image. For our quality measure (Q), we report the peak signal-to-noise
ratio (PSNR). A PSNR for a 8-bit per pixel image that is acceptable to human
perception ranges between 20 dB and 40 dB [16].

236 H.T. Kung et al.

Table 4 shows the experiment results for denoising the Lena image. From the
table, we see that S achieves the highest PSNR (Q) of 32.34. PCAonX(10) and
PCAonD(10) achieve similar PSNR of 31.18 and 31.20 respectively. In contrast
with the other two applications, both algorithms perform reasonably well for
this application. PNNU-no-T2(10,10) has PNSR (Q) of 32.19, the closest to
that of S, with a G of 30, translating into a 12.49x speedup (Us). Its parallel
implementation (Up) adds another 4.18x speedup, for a total performance gain
(Ut) of 52.16x. Notably, PNNU(1,1) achieves the highest total performance gain
(Ut) of 80.34x with PSNR (Q) of 25.71. This is good for scenarios where a
rougher denoising result is acceptable for a significant gain in performance.

6 Conclusion

In this paper, we have described how nearest-neighbor (NN) is a key function
for data analytics computations such as sparse coding. To enhance the per-
formance of the NN computation, we have taken three orthogonal techniques:
(T1) reduce the number of required dot-product operations; (T2) lower the cost
of each dot-product computation by reducing dimensionality; and (T3) perform
parallel computations over multiple cores. Noting that the gains from (T1), (T2)
and (T3) complement each other, we have proposed a parallel nearest neighbor
unit (PNNU) algorithm which uses a novel fast table look up, parallelized over
multiple dimensions, to identify a relatively small number of dictionary atoms
as candidates. Only these candidates are used to perform reduced-dimension dot
products. PNNU allows the dot-product computations for these candidates to be
carried out in parallel. As noted in Sect. 3.1, a key to the success of the PNNU
approach is our application of PCA to dictionary atoms, rather than raw data
vectors as in conventional PCA applications. This use of PCA to build a table
lookup for the purpose of identifying the nearest candidate atom is novel.

We have validated the PNNU approach on multi-core computers with sev-
eral application tasks including action recognition, image classification and image
denoising. Substantial total performance gains (e.g., 41x) are achieved by soft-
ware implementations of PNNU without compromising the accuracy required by
the applications.

Other potential applications for PNNU are abundant. For example, large-
scale data-driven deep learning can benefit from reduced dot product require-
ments in its computation. Mobile computing can benefit from speed and energy
efficient implementation of sparse coding resulting from PNNU to allow sophis-
ticated learning on client devices. In the future, we expect to implement PNNU
as a hardware accelerator which can further speed up NN computations. In
addition, we will explore integrated use of PNNU in conjunction with GPU
accelerators.

Acknowledgments. This work is supported in part by gifts from the Intel Corpo-
ration and in part by the Naval Postgraduate School Agreement No. N00244-15-0050
awarded by the Naval Supply Systems Command.

PNNU: Parallel Nearest-Neighbor Units for Learned Dictionaries 237

References

1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing over-
complete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11),
4311–4322 (2006)

2. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit.
SIAM J. Sci. Comput. 20(1), 33–61 (1998)

3. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, pp. 253–262. ACM (2004)

4. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al.: Least angle regression.
Ann. Stat. 32(2), 407–499 (2004)

5. Gkioulekas, I.A., Zickler, T.: Dimensionality reduction using the sparse linear
model. In: Advances in Neural Information Processing Systems, pp. 271–279 (2011)

6. Indyk, P.: Nearest neighbors in high-dimensional spaces (2004)
7. Jolliffe, I.: Principal component analysis. Wiley Online Library (2002)
8. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.

Technical report, Computer Science Department, University of Toronto (2009)
9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-

volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

10. Kung, H., McDanel, B., Teerapittayanon, S.: NNU Source Repository. https://
gitlab.com/steerapi/nnu

11. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE
Trans. Signal Process. 41(12), 3397–3415 (1993)

12. Mathieu, M., Henaff, M., LeCun, Y.: Fast training of convolutional networks
through ffts. arXiv preprint arxiv:1312.5851 (2013)

13. Peterson, L.E.: K-nearest neighbor. Scholarpedia 4(2), 1883 (2009)
14. Rifai, S., Muller, X., Glorot, X., Mesnil, G., Bengio, Y., Vincent, P.: Learning

invariant features through local space contraction. arXiv preprint arxiv:1104.4153
(2011)

15. Roberts, L.: Picture coding using pseudo-random noise. IRE Trans. Inf. Theory
8(2), 145–154 (1962)

16. Saha, S.: Image compression-from DCT to wavelets: a review. Crossroads 6(3),
12–21 (2000)

17. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local svm app-
roach. In: Proceedings of the 17th International Conference on Pattern Recogni-
tion, vol. 3, pp. 32–36 (2004)

18. Shakhnarovich, G., Indyk, P., Darrell, T.: Nearest-Neighbor Methods in Learning
and Vision: Theory and Practice. MIT Press, Cambridge (2006)

19. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthog-
onal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

20. Wang, H., Klaser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajec-
tories. In: IEEE Conference on Computer Vision and Pattern Recognition, pp.
3169–3176 (2011)

21. Wess, S., Althoff, K.-D., Derwand, G.: Using k -d trees to improve the retrieval
step. In: Wess, S., Richter, M., Althoff, K.-D. (eds.) EWCBR 1993. LNCS, vol.
837, pp. 167–181. Springer, Heidelberg (1994)

https://gitlab.com/steerapi/nnu
https://gitlab.com/steerapi/nnu
http://arxiv.org/abs/1312.5851
http://arxiv.org/abs/1104.4153

	PNNU: Parallel Nearest-Neighbor Units for Learned Dictionaries
	1 Introduction
	2 Background: Learned Dictionaries and Spare Coding
	3 Parallel Nearest Neighbor Unit (PNNU)
	3.1 Technique T1 (NNU): Identification of Candidates for Reducing Dot-Product Computations
	3.2 Technique T2: Dimension Reduction for Minimizing the Cost of Each Dot-Product Computation
	3.3 Technique T3: Parallel Processing with Low Inter-core Communication Overheads

	4 Probabilistic Analysis of PNNU
	5 Experimental Results of PNNU on Three Applications
	5.1 Application A1: Action Recognition
	5.2 Matching Pursuit Algorithm with PNNU
	5.3 Application A2: Object Classification
	5.4 Application A3: Image Denoising

	6 Conclusion
	References

