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Abstract. Legacy MPI applications are an important and economically
valuable category of parallel software that rely on the MPI-1, MPI-2
(and, more recently, MPI-3) standards to achieve performance and porta-
bility. Many of these applications have been developed or ported to MPI
over the past two decades, with the implicit (dual) goal of achieving
acceptably high performance and scalability, and a high level of porta-
bility between diverse parallel architectures. However they were often
created implicitly using MPI in ways that exploited how a particular
underlying MPI behaved at the time (such as those with polling progress
and poor implementation of some operations). Thus, they did not nec-
essarily take advantage of the full potential for describing latent concur-
rency or for loosening the coupling of the application thread from the
message scheduling and transfer.

This paper presents a first transformation tool, Petal, that identi-
fies calls to legacy MPI primitives. Petal is implemented on top of the
ROSE source-to-source infrastructure and automates the analysis and
transformation of existing codes to utilize non-blocking MPI and persis-
tent MPI primitives. We use control flow and pointer alias analysis to
overlap communication and computation. The transformed code is capa-
ble of supporting better application bypass, yielding better overlapping
of communication, computation, and I/O. We present the design of the
tool and its evaluation on available benchmarks.

1 Introduction

The Message Passing Interface (MPI) describes a library that enables the devel-
opment of portable parallel software for large-scale systems. The first MPI stan-
dard [12] focused on providing a basic framework for point-to-point and col-
lective communication. MPI-2 [8] introduced one-sided communication, added
support for parallel file access, and dynamic process management, and extended
the usefulness of two-group (inter-communicator) operations. MPI offers a small
set of core functions that are sufficient for the development of many applica-
tions, and also offers functionality that helps experts optimize applications [10].
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MPI bindings exist for C++, Fortran, and many other languages, making MPI
one of the most prevalent programming models for high-performance computing.
MPI is supported on many platforms, which makes applications developed with
MPI portable to many large-scale systems. Building high-performance comput-
ing systems constitutes a large investment in human resources. As the commu-
nication infrastructure advances and the MPI standards and library implemen-
tations follow suite, legacy codes becomes a potential liability. Code that does
not utilize more recent MPI primitives will not scale well on newer architectures.
This effect will become more marked over time.

With Exascale systems on the horizon, the cost of communication is becom-
ing a major concern. Compared to older architectures, communication incurs
relatively more overhead. Legacy software written for older architectures often
utilizes MPI Send and MPI Recv for the communication of point-to-point messages.
These two primitives block until the data exchange completes (or at least till
the send buffer can be reused by the calling thread). While this makes it easy
for programmers to reason about communication, such methods fail to utilize
computing resources efficiently. On next generation hardware, the implied cost
of sending data using a polling and/or blocking mode of communication signif-
icantly rises and it is expected that software relying on blocking communica-
tion will have too much overhead. In order to take advantage of the architec-
tural changes in Exascale, existing code needs to be transformed to use better
primitives, some of which are only available in MPI-3 or higher. Non-blocking
primitives allow overlap of communication with local computation1. A paired,
non-blocking communication uses two MPI routines, one to start (MPI Isend,
MPI Irecv) and one to complete (MPI wait). After a communication has been ini-
tiated, code can compute, and only waits at the MPI wait to synchronize with
the communication operation. In addition to the benefits of non-blocking, appli-
cations that exhibit fixed point-to-point communication patterns can further
utilize persistent operations introduced in MPI-1 and being extended in MPI-
3.x. Persistent MPI primitives reduce communication overhead in applications
that exhibit fixed patterns. Persistent MPI operations minimize the overhead
incurred from redundant message setup.

Rewriting legacy MPI programs by hand is both tedious and error prone. To
relieve programmers of the task of manually rewriting applications, the authors
have developed tool support to replace uses of MPI primitives that are known to
perform slowly on modern hardware (or may have better alternatives, especially
on next-generation architectures) with better alternatives in the MPI standard.
We have implemented a source code rejuvenation tool [16] called Petal using
the ROSE source-to-source infrastructure [3,17]. We chose ROSE for its sup-
port of many languages relevant for high-performance computing. Petal ana-
lyzes existing source code and finds calls to MPI Send and MPI Recv. It replaces
these primitives with their non-blocking counterparts and uses data-dependency

1 Provided the underlying MPI does not poll excessively to make progress or for mes-
sage completion, the messages are long enough, and there is sufficient memory band-
width for both communication and computation.
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and control-flow information to find code locations where corresponding calls to
MPI Wait need to be inserted. If Petal can determine that the communication
partners, message buffer, and message length do not change, persistent commu-
nication primitives will be used in lieu of non-persistent functions.

Overall, this paper offers the following contributions:

– program analysis and transformation to replace blocking MPI calls with non-
blocking calls;

– program analysis and transformation to introduce persistent MPI calls; and,
– analysis of persistent MPI implementations.

The remainder of this paper is organized as follows. Section 2 presents more
detailed information on MPI and ROSE. Section 3 describes our implementations
and Sect. 4 discusses our evaluation and findings. Section 5 gives an overview
of related work on MPI transformations, and Sect. 6 offers conclusions and an
outlook on possible future work.

2 Background

This section provides background information on MPI and the ROSE compiler
infrastructure.

2.1 MPI Primitives

MPI offers several modes of operation for point-to-point communication. Many
programs employ MPI Send and MPI Recv, two blocking MPI primitives. MPI Send

takes the following arguments: base pointer to message data, the number of
elements to send, a type descriptor, the destination, and a communicator. The
base pointer to data typically points to a send buffer, but it could also point
to data described by a type descriptor. Blocking means that the MPI primitive
waits until the message buffer containing the data being sent/received is safe to
be used again by the calling process. Only then is control returned to the caller.
On send, actual implementations of MPI Send may either block until all data has
been transmitted or copy the data to an intermediate internal buffer. The use of
blocking primitives may be prone to deadlocks, if programmers do not carefully
consider send and receive order [13]

MPI Isend and MPI Irecv are non-blocking versions for point-to-point message
communication. Compared to MPI Send’s arguments, MPI Isend adds an addi-
tional argument for a request handle. The handle is used in calls to MPI Wait

to identify which send to wait for. Non-blocking calls return immediately after
initiating the communication and the user thread can execute more operations,
eventually followed by a completion operation (a wait or test) on the request.
The communication is considered complete after a successful call to MPI Wait (or
MPI Test, etc.). Non-blocking is used to help promote overlap communication
and computation, resulting in communicating cost hiding and yielding overall
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better performance on systems that support it. To avoid tampering with the
data, programmers must ensure that the message data is not modified before
the communication is completed.

Another mode is offered by persistent communication primitives. If a program
exhibits regular communication patterns (static arguments), where the same
communication partners exchange fixed size messages, utilization of persistent
MPI enables exploitation of faster communication paths. Provided MPI imple-
mentations efficiently implement these operations, persistence supports reduced
overhead by eliminating cost associated with repeated operations and stream-
lined processing of derived datatypes. Persistence also can reduce jitter and allow
for preplanned choice of algorithms, such as for MPI collectives. Since persistence
in MPI offers many benefits (potential and long observed), it is likely that future
MPI standards will enhance support for persistent primitives, for example by
supporting variable length messages between the same communication partners.

Note that all three modes can be used interchangeably. It is possible that
one side uses persistent MPI, while the other side does not. That is why the
functions are sometimes referred to as providing half-channels.

Figure 1 shows the use of blocking, non-blocking, and persistent operations
for a simple 1D heat transfer code. The basic design of the heat-transfer code
is depicted in Fig. 1d. The code uses two arrays, containing cells with temper-
ature information. The initial temperatures are located in the even array. In
odd numbered timesteps the odd array is computed from the even array and
in even numbered timesteps vice versa. Red cells are computed by neighbors
and dark blue cells are needed by neighbors for the next iteration. Figure 1a
shows a blocking implementation. The order of sends and receives is impor-
tant to avoid deadlock. Even-numbered MPI processes send first, odd numbered
processes receive first. D stands for MPI DOUBLE, and n is the rank of this node.
For simplicity, the codes assume that each process has two neighbors and ignores
send and receive status. Figure 1b demonstrates the overlap of communication
and computation in non-blocking mode. The key idea is that the inner (light
blue) cells can be computed before the data from neighbors are received. The
code starts two receive operations to receive both neighbor’s data from the last
iteration. Then it starts two send operations to communicate its values from
the previous iteration to its neighbors. While the communication is ongoing,
the inner cells are computed. Before cells depending on neighbors’ data can be
computed, the code waits until the data have been received (Line 10). After
computing the outer cells, the wait in Line 13 blocks until the data have been
sent. This is necessary in order not to overwrite the data in the next iteration.
Figure 1c shows the persistent version of the code. Since the communication pat-
terns, buffer, and buffer size do not change, we can set up the communication
for sends and receives at the beginning of the program, and reuse this pattern
in every iteration.
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1 double b[4]; // send/receive buffer

3 for (int i = 0; i<MAX; ++i) {
data to buf(prev, b+2);

5 if (n%2 == 0) {
7 MPI Recv(b+0, 1, D, n−1, 0, com);

MPI Recv(b+1, 1, D, n+1, 0, com);
9 }

MPI Send(b+2, 1, D, n−1, 0, com);
11 MPI Send(b+3, 1, D, n+1, 0, com);

if (n%2 == 1) {
13 MPI Recv(b+0, 1, D, n−1, 0, com);

MPI Recv(b+1, 1, D, n+1, 0, com);
15 }
17 buf to data(b, prev);

compute all(prev, curr);
19 swap(curr, prev);

}

(a) Blocking operations

MPI request r[4]; // request handler
2 double b[4]; // send/receive buffer

4 for (int i = 0; i<MAX; ++i) {
data to buf(prev, b+2);

6 MPI Irecv(b+0, 1, D, n−1, 0, com, r+0);
MPI Irecv(b+1, 1, D, n+1, 0, com, r+1);

8 MPI Isend(b+2, 1, D, n−1, 0, com, r+2);
MPI Isend(b+3, 1, D, n+1, 0, com, r+3);

10 compute inner(prev, curr);
MPI Wait(2, req+0, IGNORE);

12 buf to data(b, prev);
compute outer(prev, curr);

14 MPI Wait(2, req+2, IGNORE);
swap(curr, prev);

16 }

(b) Non-blocking operations

MPI request r[4]; // request handler
2 double b[4]; // send/receive buffer

4 MPI Recv init(b+0, 1, D, n−1, 0, com, r+0);
MPI Recv init(b+1, 1, D, n+1, 0, com, r+1);

6 MPI Send init(b+2, 1, D, n−1, 0, com, r+2);
MPI Send init(b+3, 1, D, n+1, 0, com, r+3);

8 for (int i = 0; i<MAX; ++i) {
data to buf(prev, b+2);

10 for (int j = 0; j < 4; ++j)
MPI Start(r+j);

12 compute inner(prev, curr);
14 MPI Wait(2, r+0, IGNORE);

buf to data(b, prev);
16 compute outer(prev, curr);

MPI Wait(2, r+2, IGNORE);
18 swap(curr, prev);

}

(c) Persistent operations

(d) Design Overview

Fig. 1. 1D heat transfer

2.2 The ROSE Compiler Infrastructure

The ROSE source-to-source translation infrastructure is under active develop-
ment currently at the Lawrence Livermore National Laboratory (LLNL). ROSE
provides front ends for many languages, including C/C++, Fortran 77/95/2003,
Java, and UPC. ROSE also supports several parallel extensions, such as OpenMP
and CUDA. ROSE generates an Abstract Syntax Tree (AST) for the source code.
The ASTs are uniformly built for all input languages. ROSE offers many specific
analyses (e.g., pointer alias analysis) and makes these available through an API.
Users can write their own analyses by utilizing frameworks that ROSE provides.
These include attribute evaluation traversals, call graph analysis, control flow
graphs, class hierarchies, SSA representation, and dataflow analysis. The Fuse
framework [4], is an object-oriented dataflow analysis framework that affords
users with the ability to create their own inter- and intra-procedural dataflow
analyses by implementing standard dataflow components. ROSE has been used
for building custom tools for static analysis, program optimization, arbitrary
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program transformation, domain-specific optimizations, performance analysis,
and cyber-security. With the representation of the code as an AST and using
the static analysis provided from the ROSE libraries, one can explore the code
and determine how to improve it by looking for certain code style, inserting new
code, changing and/or removing old code, hence generating modified source code
while preserving the semantics of the original code.

3 Implementation

In this section, we describe Petal’s implementation of a mechanism to trans-
form applications from using blocking MPI point-to-point routines to using non-
blocking versions. We also describe the analysis and transformations to introduce
persistent routines.

3.1 Design

Petal transforms code to use non-blocking MPI operations to reveal a better
potential overlap of computation and communication and adds persistent oper-
ations, whenever possible, to eliminate much of the overhead of repeatedly com-
municating with a partner node.

Figure 2 shows an overview of our transformation framework. The tool takes
MPI source files, for which ROSE compiles and generates the Abstract Syntax
Tree (AST), then function calls are inlined if the function implementation should
be available. Once inlined, ROSE’s query and builder libraries are used to find
and replace blocking with non-blocking calls and to identify where to insert
corresponding calls to MPI Wait. If some or all of these non-blocking calls are
used repeatedly with the same arguments, they are replaced with persistent
communication operations. At the end, Petal generates a new transformed source
file as its output, using either non-blocking or persistent communications (which
are always non-blocking).

The idea of following this approach is based on trying to maximize the overlap
between communication and computation without compromising the semantics
of the original application. Inlining eliminates the need to use inter-procedural
analysis and simplifies moving MPI Wait downward, crossing its original function
boundaries if no unsafe access to the message buffer is found across the function
calls. MPI uses pointers to the message buffers that they use in their communi-
cation. This fact allowed us to simplify the analysis used by the tool and focus
only on using pointer alias analysis. ROSE’s pointer alias analysis implements
Steensgaard’s algorithm, which has linear time complexity [19]. This allows our
tool to scale well with large applications.

3.2 Blocking to Non-blocking Transformation

Petal allows changing the blocking function call MPI Send/MPI Recv to the cor-
responding MPI Isend/MPI Irecv while ensuring proper access to the message
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Input:Source files MPI+C/C++

Inline function calls

Find and replace all MPI Send/

MPI Recv with MPI Isend/MPI Irecv

Find MPI Wait position

Is there
a loop

surrounding
MPI Isend/

MPI Irecv

calls?

Check for consistent arguments
Add persistent communication

Output: source file
with persistent communication

Output: source file
with non-blocking calls

Interprocedural Pointer Analysis
ROSE

No

Yes

Fig. 2. Transformation framework

buffers, and once an operation that access the message buffer is encountered,
MPI Wait is inserted before it to ensure the safety of the data.

Calling MPI Send/MPI Recv is in effect the same as calling MPI Isend/MPI Irecv

immediately followed by MPI Wait. Our tool moves calls to MPI Wait downward
along forward control flow edges as long as the operations are safe with respect
to the MPI operation and buffer access. Any write to a message buffer that is
used in a send operation, and any access to a message buffer that is used in
a receive operation is considered an unsafe access and MPI Wait must be called
before that to maintain the correctness of the code.

For each blocking call, to be replaced by the corresponding non-blocking, three
variables are created, two of which are handlers for MPI Request and MPI Status

plus a flag introduced to ensure the execution of MPI Wait if and only if its corre-
sponding non-blocking call is executed. Each blocking call is replaced with the
corresponding MPI Isend/MPI Irecv. After finding and replacing blocking calls,
control flow analysis is used to find subsequent statements, extract the variables
used in these statements and use pointer analysis to test for aliasing between the
message buffer used and the variables in hand. For the send operation, we iden-
tify potential update operations, such as a variable occurring on the left hand side
of an assignment. We use pointer alias analysis to check whether an update could
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modify some data. For the receive operation, all expressions that read values from
a variable are tested. Variable extraction includes subscripts of an array, argu-
ments in non-inlined function calls, variables used in conditions of control state-
ments, initial and increment statements of for loop, and operands of binary and
unary operations. Our tool uses ROSE’s pointer alias analysis to test whether the
extracted variables and the communication buffer could alias. If there could be an
alias, the tool inserts the corresponding MPI Wait before the statement using this
variable.

Because of inlining, Petal is able to bypass the end of the function and keep
searching for potential usage of the message buffer outside the function contain-
ing the original MPI calls. If no alias is found in all the statements following
the block call, the tool identifies where this statement is located. If it is in
main(), that means that no alias is found and the MPI Wait is inserted before the
MPI Finalize. Because of the complexity of loop-carried data dependencies, cur-
rently the tool does not support moving MPI Wait outside the loop body. Hence,
if it is in a loop statement (for, while, do-while) MPI Wait is inserted as the last
statement in the loop. Otherwise the statement following the block that has the
blocking call is examined for alias analysis. To ensure that the MPI Wait in its new
position gets executed only if its corresponding non-blocking call is executed, a
flag is set to true with each non-blocking call and then based on its value, the
corresponding MPI Wait is executed.

Figure 3 shows an example of a snippet of code before and after transfor-
mation. Figure 3a shows the original blocking code and Fig. 3b shows how the
code looks after the transformation. Lines 3–5 shows the declaration of the
MPI Request. MPI Status and the flag variables. Line 10 sets the flag to 1 where
Line 21 tests for the flag’s value before executing the MPI Wait on Line 22. Since
this is a send call, the printf function call is a safe read access and the wait call
is inserted after it.

3.3 Non-persistent to Persistent Transformation

If a program exhibits regular communication patterns, where the same com-
munication partners exchange fixed size messages, utilization of persistent MPI
enables exploitation of faster communication paths2. In Shao et al. [18] work to
identify communication patterns for MPI programs, they discovered that many
programs that are considered dynamic can use persistent communication. This
means that changing these programs to use persistence will result in better per-
formance. The difficulty of persistent communications is that possible uses in real
world codes are hard to determine statically. To overcome this limitation, we use
dynamic analysis. Petal transforms code to persistent mode and inserts guards
that test that the arguments did not change. Persistent communication is a four-
step process. First, a persistent request is created. Then, data transmission is
initiated. After that, wait routines must be called to ensure proper completion.
Lastly, the persistent request handlers must be explicitly deallocated.

2 At least on high quality implementations of MPI.
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1 int ∗buffer;
int x;

3 ... //code for main,initialization,...
5 for(int i=0;i<1000;i++)
7 {
9 if (myid == source) {

∗buffer = 123;
11 MPI Send(buffer,count,MPI INT,

dest,tag,MPI COMM WORLD);
13 x = 0;

}
15 else {
17 ∗buffer = 456;

x = 1;
19 }
21 printf(”%d\n”,∗buffer);

}

(a) Before

int ∗buffer;
2 int x;

MPI Request reqs[1];
4 MPI Status stats[1];

int flags[1];
6 ... //code for main,initialization,...

for(int i=0;i<1000;i++)
8 {

if (myid == source) {
10 flags[0]=1;

∗buffer = 123;
12 MPI Isend(buffer,count,MPI INT,

dest,tag,MPI COMM WORLD,&reqs[0]);
14 x = 0;

}
16 else {

∗buffer = 456;
18 x = 1;

}
20 printf(”%d\n”,∗buffer);

if (flags[0] == 1)
22 MPI Wait(&reqs[0],&stats[0]);

}

(b) After

Fig. 3. Non-blocking transformation example

Changing to persistent mode is best suited for non-blocking calls in a loop.
Petal does such transformations from non-blocking non-persistent to persistent
automatically. A structure is created to hold initial values for non-blocking call
arguments as its members. Using ROSE queries, the tool identifies MPI Isend/

MPI Irecv and checks to see which one is enclosed in a loop. If no call is in
a loop, no transformations are performed. If one or more are found inside a
loop, the tool initiates a persistent request with the same arguments as the
corresponding non-blocking call and places this initiation process before the loop
(MPI Send/Recv Init). In addition, it stores the values of the MPI Isend/MPI Irecv

arguments in a struct variable for comparing the values across iterations. Then
inside the loop, it inserts an if statement to check if the current values are the
same as the persistent request argument values, if the outcome is yes, it uses
this persistent request using MPI Start(&request), otherwise it uses the normal
MPI Isend/MPI Irecv call. After the loop, all the created persistent requests are
freed.

Following the output from Figs. 3b and 4 shows the result of applying the
persistence transformation. On the left side, line 6 shows the persistent request
handler and line 7–16 shows the struct definition and its instance declaration.
Line 20 initiates the persistent communication passing it all the non-blocking
arguments and lines 23–29 represents the copying of the arguments values to the
struct instance. On the right side, line 6–11 represents the test against the current
values with the values stored in the persistent request. If they are the same
MPI Start on line 13 is executed, otherwise the original MPI Isend is executed on
line 16–17. Line 29 shows the deallocation of the persistent request.
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1 int ∗buffer;
int x;

3 MPI Request reqs[1];
MPI Status stats[1];

5 int flags[1];
MPI Request preqs[1];

7 struct buf data
{

9 void ∗buf;
int count;

11 MPI Datatype datatype;
int dest;

13 int tag;
MPI Comm comm;

15 }
struct buf data temp data[1];

17 ... //code for main,initialization,...
19 MPI Send init(buffer,count,MPI INT,
21 dest,tag,MPI COMM WORLD,&preqs[0]);

23 temp data[0] . buf = buffer;
temp data[0] . count = count;

25 temp data[0] . datatype = MPI INT;
temp data[0] . dest = dest;

27 temp data[0] . tag = tag;
temp data[0] . comm =

29 MPI COMM WORLD;

(a) Persistent

1 for(int i=0;i<1000;i++)
{

3 if (myid == source) {
flags[0]=1;

5 ∗buffer = 123;
if (temp data[0] . buf == buffer

7 && temp data[0] . count == count
&& temp data[0] . datatype == MPI INT

9 && temp data[0] . dest == dest
&& temp data[0] . tag == tag

11 && temp data[0] . comm == MPI COMM WORLD
{

13 MPI Start(&preqs[0]);
}

15 else {
MPI Isend(buffer,count,MPI INT,

17 dest,tag,MPI COMM WORLD,&reqs[0]);
}

19 x = 0;
}

21 else {
∗buffer = 456;

23 x = 1;
}

25 printf(”%d\n”,∗buffer);
if (flags[0] == 1)

27 MPI Wait(&reqs[0],&stats[0]);
}

29 MPI Request free(&preqs[0]);

(b) contd

Fig. 4. Persistent transformation example

3.4 Discussion

Even though the tool can detect any unsafe access to the message buffers cor-
rectly, the applied analysis has limitations in two cases. First, it treats any access
to a part of the array as an access to the whole array. For example if MPI sends
the first 10 elements of a 100-element array, an assignment to the 20th element
will be considered unsafe even though it is in a different place and can be safely
used. The second case is that Steensgaard algorithm treats a struct member
access as an access to the whole struct [19]. These two cases might lead to plac-
ing the MPI Wait in overly conservative positions in some applications. We plan
to improve our tool to handles these cases better, since identifying these cases
could result into achieving better communication-computation overlap.

Currently, Petal cannot combine multiple consecutive calls to MPI Wait, if
found together, into a single MPI Waitall call. This is because different calls to
MPI Isend/MPI Irecv may originate in alternative blocks. For example, two calls
are part of the then and else branch of an if statement. We hope to find a better
solution instead of using flags and if-statement, to ensure the semantics of the
code and being able to take advantage of using MPI Waitall.

4 Evaluation

In this section, we present the preliminary evaluation of using Petal and the effect
of its transformations on overall application performance. The experiments were
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performed on the TACC Stampede system. Stampede is a 10 Petaflop (PF) Dell
Linux Cluster with 6400+ Dell PowerEdge server nodes each with 32 GB mem-
ory, 2 Intel Xeon E5 (8-core Sandy Bridge) processors and an additional Intel
Xeon Phi Coprocessor (61-core Knights Corner) (MIC Architecture) [20]. We
used the mvapich2 MPI library. Petal was tested with the 1D heat decomposi-
tion described earlier, 2D heat [7] and DT from the NAS NPB 3.3 benchmark [1].

We tested the performance of the application while varying the number of
MPI processes. For 1D heat, we varied the number of MPI processes in each
case ranging from 6 to 200 tasks. For 2D heat and DT with classes W and A,
the number of MPI processors varied between 16 and 256. Figure 5 shows the
execution time speedup (S = Toriginal/Ttransformed) after applying non-blocking
transformation, and adding persistent communication. Figure 5a shows the effect
when running applications with only 16 MPI processes, while Fig. 5b shows the
effect on applications with 200 and more processes. As shown in the figures,
we experienced good improvement with larger number of processes while flat
to minor slowdown was observed with fewer numbers of processes. However, in
both cases we experienced minor slowdown when adding persistence3.

4.1 Discussion of Results

Petal was able successfully to transform applications from blocking to non-
blocking while pushing MPI Wait as far as possible, while also preserving the
correctness of the code output. The results shows that with smaller programs
and few tasks, the non-blocking improvement is negligible and sometimes hurts
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Fig. 5. Execution time speedup

3 This indicates that mvapich may not optimize the code path for persistent send
and/or receive.
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the application performance. However, with increasing problem size and number
of MPI tasks, non-blocking enhanced the performance by up to 30 %.

Unfortunately, even though Petal was able to transform code to persistent
mode, the results of persistent performance showed a flat improvement and some-
times a slowdown.

To gain more insight into the usage of persistent communications, we
applied the persistent transformation on the LULESH code from LLNL [11] on
Stampede and on a Debian 7.6 amd64 computer with 1 Xeon E5410 @ 2.33 GHz
using the Open MPI 1.6.5 library. LULESH already exploits non-blocking opera-
tions. Since it has some communications that are fixed for most of the program’s
execution time, persistent communication should be beneficial. However, upon
transforming to persistent no gain was seen and with increasing number of tasks
we saw a minor slowdown. Since Open MPI is open source, we investigated how
it implements its non-blocking and persistent communications. We found that
they optimize the code by creating persistent requests and using them whenever
possible. Hence, changing the applications’ code to persistent will not give a
speedup as Open MPI already uses similar optimization techniques internally.
The slowdown might be because of the overhead of checking the arguments on
each iteration.

According to the MPI Forum [2], persistent requests are considered to be
half-channels, which makes the connection faster by reducing the overhead of
communication processing within each of the sender and receiver. Our results
suggest that the performance improvement is dependent not only on the stan-
dard definition of how code should work but it also depends on the actual MPI
implementation and architecture. While the tested systems did not show any per-
formance improvements, the transformation may be beneficial on other systems.

5 Related Work

The idea of overlapping communication and computation code is of interest to
many researchers because of the promising results in better performance it can
give when applied efficiently. In this section, we describe previous research work
done to produce overlapped communication and computation in MPI.

Several methods were studied and implemented to handle the communication
computation overlap approach. Das et al. [6] represents the closest work to our
tool in which they developed an algorithm for pushing wait downward in a seg-
ment of code. However, they use Static Single Assignment (SSA) use-def analysis
to determine the statements that access the message buffer. Even though they
describe a method for moving a MPI Wait out of its current scope interval possi-
bility of going to the parent, they did not implement their method and currently
their compiler tool only detects MPI calls and finds MPI Wait’s final position;
however, insertion is done by hand. Haque et al. [9] developed a similar tool for
transforming blocking to non-blocking; however, it does not use any compiler
analysis techniques and relies heavily on the programmer annotation to identify
where to move the corresponding non-blocking call and its corresponding wait.
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Another work is presented by Nguyen et al. in [14] in which they developed
Bamboo, a transformation system that transforms MPI C code into a data-driven
application that overlaps computation and communication. It was implemented
with the ROSE compiler framework and runtime support using the Tarragon
runtime library. Their approach is to determine task precedence. It relies on
programmer annotations to mark parallel loops and data packing/unpacking
plus calls to communication routines. Other approaches were developed using
different techniques to achieve the same goal of maximizing communication and
computation overlap. Danalis et al. developed the ASPhALT tool [5] within
Open64. Their idea is based on automatically detecting where data is available
and applying the pre-pushing transformation to send data as soon as possible.
They focused on specific a type of applications that does its communication in
two parts where at first, it computes the data in a loop with minimum depen-
dencies across iterations, and then uses communication call(s) after the loop to
exchange the data generated by the loop. Pellegrini et al. [15] offer a different
approach in which they use the polyhedral model to determine exact dependen-
cies and automatically detect potential overlap on a finer grain. To simplify the
analysis, they normalize the code by changing non-blocking to blocking. Their
work is limited by polyhedral model requirements of using only affine expressions.

Even though MPI included persistent communication since MPI-1 and these
calls emphasize the benefits of using persistent, to our knowledge, no available
work offers a tool that automatically transforms non-persistent to persistent
communication, when such patterns can be identified.

6 Conclusions and Future Work

In this paper, we described our development of Petal, a tool that supports trans-
forming a blocking MPI code to non-blocking version and introduces persistent
communication if possible. We have described the approach used in order to
push MPI Wait as far as possible from the corresponding communication call in
order to improve the potential for overlap of communication and computation
code and also to use persistent communication whenever two points communi-
cate the same type and amount of data over multiple iterations. Petal is based
on the ROSE framework and uses ROSE’s alias analysis to apply transformation
required and to preserve correctness of the code. Preliminary results showed that
we can improve performance by using non-blocking. In some cases we found that
persistent communication does not improve performance even with code that is
proved to have fixed communication for most of the execution time. It does not
only depend on having fixed arguments but the MPI library used has an effect
too. Further detailed analyses of persistent performance on different architec-
tures with different libraries will be explored.

In addition to analyzing data dependency within loop iterations and moving
MPI Wait outside the loop body, if no dependency found, techniques to eliminate
loop-carried dependencies on send and receive buffers and perhaps unrolling
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the loops will also be explored. This will provide another opportunity to move
MPI Wait(s) outside loops boundaries. Another future step is to work on cases
where we have 3-D data models and to explore how they can be safely overlapped
in communication.

We are also extending the Petal tool to do other automatic translation and/or
refactoring that will allow a smooth transition for legacy MPI systems to Exas-
cale systems, such as the use of one-sided communications and changing fur-
ther to use non-blocking and persistent collective operations (being proposed at
present in MPI-3.x).
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