
Chapter 8
Resonant Analysis of Systems Equipped with Nonlinear
Displacement-Dependent (NDD) Dampers

Javad Jahanpour, Shahab Ilbeigi, and Mojtaba Porghoveh

Abstract Resonant analysis of a vibration system equipped with a nonlinear displacement-dependent (NDD) damper is
investigated. The frequency of the external forcing is chosen to be close to the natural frequency of the system. The system
is modeled and the approximate analytical solution of the governing equation is developed using the multiple scales method
(MSM). Several case studies with various amounts of external force’s frequencies are performed to investigate the resonant
excitation analysis. The proposed analytical solution is also verified by the fourth order Runge-Kutta method. Moreover,
the performance of the used NDD damper is analyzed and compared with the ordinary linear damper through the same
periodic resonant excitation. It is found that the NDD damper has a superior performance in reducing the vibration amplitude,
compared to the traditional linear damper when resonance occurs. In addition, utilizing the NDD damper in the resonant-
excited system provides a smaller force transmitted to the base than the system with the ordinary linear damper.

Keywords Resonant analysis • Nonlinear displacement-dependent (NDD) damper • Periodic excitation • Multiple scales
method (MSM) • Vibration amplitude reduction

8.1 Introduction

In general, to perform the vibration analysis on a system, its response under free and forced vibration is to be investigated.
In free vibration analysis, the system oscillates without being subjected to forcing from the surrounding environment. While,
under the forced vibrations, the system is excited by the continuously applied, time-dependent external forces which act on
the system [1]. Most often these are periodic forces.

In many applications, vibration may cause discomfort, disturbance, and damage. In particular, with the forced vibration,
when the external excitation frequency tends the natural frequency of the system, destruction of the system or the structure
may occur [2, 3]. This phenomenon is named as resonance, which is a well-known concept in forced vibration problems.
In an ideal resonance, when the frequency of an exciting force matches the natural frequency of the system; the amplitude
of vibration is considerably increased. The study of resonance is an important issue in many applications such as: vehicle
design [4], steam-turbine rotor-bearing systems [5], wind turbines [6, 7], bridge design [8], controllers and isolators design
[9], beams [10–17], CNC tool-path planning [18] and tuned liquid damper (TLD) as an absorber [19, 20]. Also, understanding
resonances is essential to ensure an appropriate running condition and a desired behavior of systems. Most studies of
resonance assume that the system is linear. However, most of dynamical systems have nonlinear components, which cannot
be described by a linear model. For example, vibration components with clearances [21, 22], motion limiting stops [23, 24],
vibration analysis of the milling process [25], vibration modes with internal resonance [26], or a nonlinear displacement-
dependent (NDD) damper [27], which cause changes in damping coefficients, represent a significant proportion of these
systems.

In order to avoid the undesired effects of the resonance in both linear and nonlinear systems, different kinds of viscous
dampers are added to the vibratory system. Dampers absorb the energy and do not allow the vibration amplitude to reach
the infinity in resonance phase, while in conservative systems without any damper; the amplitude reaches infinity when
resonance happens. Most of viscous dampers have a constant damping coefficient, however, variable dampers have already
found their way to industrial/commercial applications [28, 29]. The variable dampers can be classified as active, semiactive
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and passive [30–34]. Active dampers are activated by an external source of power which usually is provided by hydraulic
actuators [35–37]. In most cases, the active dampers have high energy consumption, heavy weight, large size and high cost.
Semiactive dampers inherit properties of controllable electromagnetic valves or magneto rheological (MR) fluid to control
the damping characteristics of the system and they are a compromise between the active and passive dampers [29–38].
Passive dampers have generally fixed properties which are determined and preset according to the design goals and intended
application [38]. Even though the active and semiactive dampers have higher performance, passive dampers are still the most
commonly used ones [29].

While there are many types of passive dampers, the passive variable dampers have been recently developed. Among the
passive variable dampers, those with stroke and displacement/position dependent sensitivity have been studied in several
works [39–50]. Fukushima et al. [43] suggested that dampers should have a stroke dependent characteristic; such that for a
given velocity, a longer stroke would give a greater force. However, the force in the stroke sensitivity cannot be identified
directly with the actual position of the piston in the cylinder [28]. The displacement sensitive dampers have been used on
aircraft landing gear, motorcycles, and vehicle suspension applications. The displacement sensitive schemes for landing
gears employ positive recoil control or two and three level position dependent damping [32]. In a motorcycle front fork, a
short and blunt rubber as a needle causes the damper orifice to get closed which allows weaker springing with improved
ride quality pressure [28]. Etman et al. [45] designed a stroke dependent damper for the front axle suspension of a truck.
The displacement sensitive damper suggested for vehicle suspension applications follows the idea of using a long tapered
needle entering an orifice in the piston [16, 34]. This type of damper is merely limited to utilizing a tapered needle and is not
mathematically modeled. Lee and Moon [47, 48] reported on tests of a displacement sensitive damper with a longitudinally
grooved pressure cylinder to relax the damping around the central position.

Some researchers have also investigated thoroughly the nonlinear dampers [27, 34, 49]. For instances, Haque et al. [50]
proposed an integral formulation to obtain the damping force of a displacement sensitive nonlinear damper. This method
was based on the transformation of the displacement sensitivity characteristic of the damper into a velocity sensitivity
characteristic. Farjoud et al. [51] presented a nonlinear model of monotube hydraulic dampers with an emphasis on the
effects of shim stack on damper performance. Guo et al. [52] studied the force and displacement transmissibility of nonlinear
viscous damper based vibration isolation. Peng et al. [53] investigated resonant phenomena for a class of nonlinear systems
using the Nonlinear Output Frequency Response Functions (NOFRFs).

Free and forced vibration analyses of systems equipped with nonlinear damper have also been studied in several researches
[27, 54–57]. For instances, Bugra et al. [55] implemented several experiments to determine the dynamic characterization of
nonlinear oil-free wire mesh dampers. To this end, the free and forced vibrations were investigated using the Hilbert transform
procedure and controlled amplitude single frequency excitation tests, respectively. Main and Jones [56] demonstrated the free
vibration of a taut cable with a nonlinear amplitude dependent damper. Diotallevi et al. [57] proposed a simplified design
method to analyze the forced vibration of single- and Multi-degrees of freedom (SDF and MDF) systems equipped with
nonlinear viscous damper under harmonic external forces. In their work, the responses of the SDF and MDF systems were
also calculated numerically.

Recently, Ilbeigi et al. [27, 58] introduced a novel scheme for NDD dampers, in which the damping coefficient and
damping force were both continuous and smooth functions of displacement. In contrast with a linear damper, where the
damping force only depends on the velocity, the damping force produced by the proposed NDD damper depends on the
position of the system as well as the velocity. In their work, the vibratory mass-spring system equipped with a NDD damper
was also mathematically modeled and free vibration analysis of the system was analyzed. The results presented in [27]
indicate that the advised passive NDD damper scheme is capable to reduce the free vibration amplitude rather than the
existing traditional linear damper.

In this paper, resonant analysis of a mass-spring system utilizing the NDD damper is presented. The nonlinear differential
equation of the system under an external force with the frequency close to the natural frequency of the system is derived.
To study the resonance vibration analysis of the system, the external excitation’s frequency is described using a detuning
parameter presenting the closeness of the external force’s frequency to the natural frequency of the system. The stationary
response of the system is elaborated using the multiple scales method (MSM). The rest of the paper is organized as follows.
Section 8.2 is a review on the NDD damper mechanism. In Sect. 8.3, the mathematical model of the nonlinear mass-
spring system equipped with the NDD damper under an external resonant-force excitation is formulated and the governing
differential equation is derived. The forced-resonant vibration analysis of the system is illustrated in the Sect. 8.4. Several
numerical examples are presented in Sect. 8.5. The results are analyzed and discussed in Sect. 8.6. Finally, Sect. 8.7 concludes
the paper.
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8.2 Review on the NDD Damper Mechanism

An ordinary simple viscous damper consists of a piston having one or more orifices moving inside a cylinder filled with a
viscous fluid (Fig. 8.1). The damping force produced by a damper is linearly related as follows:

F D �c
du

dt
(8.1)

In which c is the damping coefficient.
By taking advantages of Hagen–Poiseuille equation for laminar flows, c can be obtained by the following equation for the

case of piston with one orifice:

clinear D ¯
"�

D

d

�2
� 1

#2
(8.2)

where, D and d are the cylinder diameter and the opening fluid gap diameter, respectively. Also, ¯ D 8��L, in which, �
denotes for dynamic viscosity of the fluid and L is the piston width.

For a set of chosen parameters D, d and L, the damping coefficient has a constant value. The mechanism can be designed
to make the linear damper into nonlinear and displacement-dependent one. To this end, [15] proposed a solid cone shaped
generated by rotating the interior region of the following function in Cartesian r-u coordinates around the u� axis:

u D nrs or r D
�u

n

� 1
s

(8.3)

where, ˇ D 2

d:n.
1
s /

and � D D
d :

The fixed cone shaped part is assembled to the linear damper, so that the origin of coordinates is located on the center of
the piston, the fluid travels through its outer surface and the inner surface of the orifice (Fig. 8.2), while, the opening fluid
gap is changed and the damping coefficient is consequently varied. Therefore, the ordinary linear damper with a constant
damping coefficient is converted to the nonlinear damper with a variable displacement-dependent damping coefficient

Fig. 8.1 Schematic of a simple viscous damper

Fig. 8.2 Schematic of the nonlinear displacement-dependent (NDD) damper [27]
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For the designed displacement-dependent damping mechanism shown in Fig. 8.2, the opening fluid gap diameter is equal
to d � 2r. Substituting r from Eq. (8.3), and d � 2r for d into Eq. (8.2) leads to

c D ¯
2
4�2

 
1

1 � ˇu.
1
s /

!2
� 1

3
5
2

(8.4)

where, ˇ D 2

d:n.
1
s /

and � D D
d :

Using the 2nd-order Taylor series expansion, Eq. (8.4) can be expressed as follows [27].

c D ˛1 C ˛2juj. 1s / C ˛3juj. 2s / C ˛4juj. 3s / C ˛5juj. 4s / (8.5)

For the case of n D 1 and s D 1
2
, Eq. (8.5) will be rewritten as follows:

c D ˛1 C ˛2u
2 C ˛3u

4 C ˛4u
6 C ˛5u

8 (8.6)

The parameters ˛i in Eq. (8.6) are given in Appendix.
It is noticed that the damping coefficient of the traditional damper is constant value, whereas the damping coefficient of

a NDD damper changes as the system moves. More details on mathematical formulation of the NDD damper can be found
in [15].

8.3 Mathematical Formulation of the Forced-Resonant Mass-Spring-NDD Damper System

The governing differential equation of a simple mass-spring-damper system with an external periodic force follows:

Ru C c

m
:
u C !n

2u D F cos .�t/

m
(8.7)

where, !n D
q

ks
m is the natural frequency of the system,˝ is the external force’s frequency and F is the excitation amplitude.

For a linear damper with constant damping coefficient, the forced-resonant response of the system is as follows:

ul.t/ D A1e��!nt sin
�p

1 � �2!nt C  
�

C A2 cos .�t � '/
(8.8)

where, � D c
2
p

mks
. Also, A1 and  are evaluated using initial conditions. Moreover, A2 and ® related to the particular solution

of Eq. (8.7), are given in Appendix.
The damping force and the total force transmitted to the base can be calculated by the following equations:

FDamping D c
du.t/

dt
: (8.9)

FTransmitted D c
:
u C ks u: (8.10)

In order to achieve the governing differential equation of a basic mass-spring system equipped with NDD damper with an
external force, c from Eq. (8.6) must be replaced into Eq. (8.7) as follows:

d2u

dbt2 C u D �" �1C ˇ1u2 C ˇ2u4 C ˇ3u6 C ˇ4u8
�

du

dbt
C K cos

�
�bt� (8.11)

In which,bt D !n t; " D ¯.�4�2�2C1/
m!n

; ˇi D ˛iC1

˛1
; K D F

m!n
2 and � D �

!n
.
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By adding a small term to the mathematical description (" in this paper), a perturbation method can be used to find an
approximate solution to the governing differential Eq. (8.11). The parameter " is directly proportional to ¯ and, accordingly,
to the fluid viscosity. It is also dependent to � . Hence, increasing the viscosity or increasing � , causes increasing ", and
strength of nonlinearity in Eq. (8.11), successively.

The shape parameters, i.e. n and s, effect on ˇ as ˇ D 2

d:n
1
s

and successively on the damping coefficient c as given by

Eq. (8.4). Accordingly, the dimensionless form of the governing equation of the vibration system utilizing the NDD damper
with an external periodic excitation is affected by these shape parameters (see Eq. (8.11)). It should be noted that the values
of the shape parameters n and s do not have any effect on " the one parameter which describes the strength of nonlinearity
of the governing equation. Since the main focus of this paper is to analyze forced-resonant vibration of a system equipped
with NDD damper, the shape parameters have been selected as a fixed set for a general application. However, the couple of
the values of these parameters can be optimized according to the desire goal and intended particular application.

For the forced-resonant analysis of the mass-spring-NDD damper system, the excitation frequency is considered as:

� D !n C ı" (8.12)

where, ı is the detuning parameter to present the deviation of the external force’s frequency from the natural frequency of the
system. Also, the external force amplitude coefficient, i.e. K, can be expressed as K D "k without any loss of the generality
of the mathematical model. Therefore, the term related to the periodic-resonant external force in Eq. (8.11) can be expressed
as following equation:

K cos
�
�bt� D "k cos

�bt C "ı

!n
bt	 (8.13)

Substituting Eq. (8.13) in Eq. (8.11) leads to:

d2u

dbt2 C u D �" �1C ˇ1u2 C ˇ2u4 C ˇ3u6 C ˇ4u8
�

du

dbt C
"k cos

hbt �1C "ı
!n

�i (8.14)

where, ˇi D ˛iC1

˛1
are given in Appendix.

In the following section, the procedure of employing MSM as a perturbation technique is illustrated to solve Eq. (8.14).

8.4 Forced-Resonant Vibration Analysis of the Mass-Spring-NDD Damper Using MSM

This method is based on the idea of representing multiple independent variables, which are all functions of the time variable,
and express all other time dependent functions including the response, as functions of the represented variables [54, 59–61].
For this aim, the independent variables are introduced as:

Tn D "nbt for n D 0; 1; 2; 3 (8.15)

Thus, the term related to the periodic-resonant external force in Eq. (8.14) can be determined using the terms T0 and T1 as
follows

"k cos

�bt�1C "ı

!n

�	
D "k cos

�
T0 C ı

!n
T1

�
(8.16)

Assuming n D 0 and 1, the solution of Eq. (8.14) can be expressed as

u D u0 .T0;T1/C "u1 .T0;T1/C O
�
"2
�

(8.17)
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With regard to the chain rule of derivation, the first and second derivatives with respect tobt can be represented as the following
forms:

d

dbt D D0 C "D1

d2

dbt2 D D2
0 C 2"D0D1 C "2D2

1

(8.18)

where Dn D @
@Tn
:

Substituting Eqs. (8.16), (8.17), and (8.18) into Eq. (8.14) and equating coefficient of each power of " in the two sides of
equation together, leads to

D2
0u0 C u0 D 0 (8.19)

D2
0u1 C u1 D �2D0D1u0 �

�
1C ˇ1u20C

ˇ2u40 C ˇ3u60 C ˇ4u80

�
D0u0 C k cos

�
T0 C ı

!n
T1
�
:

(8.20)

Assuming � D ı
!n

, then, the term k cos
�

T0 C ı
!n

T1
�

in Eq. (8.20) can be rewritten as:

k cos .T0 C �T1/ D k
2



ei.T0C�T1/ C e�i.T0C�T1/

�
D k

2
ei�T1 :eiT0 C k

2
e�i�T1 :e�iT0

(8.21)

The general solution of Eq. (8.19) can be expressed as

u0 D A .T1/ eiT0 C A .T1/ e�iT0 (8.22)

Substituting for u0 from Eq. (8.22) and the term related to the external force from Eq. (8.21) into Eq. (8.20) gives

D0
2u1 C u1 D �i

h
	seiT0 C	3e3iT0 C	5e5iT0

C	7e7iT0 C	9e9iT0 C CC
i
:

(8.23)

In which,

	s D 2D1A C A C ˇ1A2A C 2ˇ2A3A
2C

5ˇ3A4A
3 C 14ˇ4A5A

4 � 1
2
ikei�T1

(8.24)

Also, 
i ’ s are given in Appendix and CC stands for complex conjugate.
Omitting the terms that produce secular terms leads to solvability for the first-order approximation, therefore, the

coefficients of e˙iT0 must be vanished; that is

	s D 0 (8.25)

Thus

�2D1A D A C ˇ1A2A C 2ˇ2A3A
2C

5ˇ3A4A
3 C 14ˇ4A5A

4 � 1
2
ikei�T1

(8.26)
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In order to solve Eq. (8.26) and for omitting the secular terms one let

A D 1

2
a .T1/ ei�.T1/ (8.27)

Substituting Eq. (8.27) and its conjugate and derivatives into Eq. (8.26) and separating the imaginary and real parts leads to

da
dT1

D �a � 1
4
ˇ1a3 � 1

8
ˇ2a5 � 5

64
ˇ3a7�

7
128
ˇ4a9 C k sin .�� C �T1/

(8.28a)

d�

dT1
D �k cos .�� C �T1/

a
(8.28b)

To eliminate the explicit time dependence of the right-hand sides of (8.28a) and (8.28b) one let

 D �T1 � � (8.29a)

Or

d 

dT1
D � � d�

dT1
(8.29b)

Hence (8.28a) and (8.28b) can be rewritten as follows

da
dT1

D �a � 1
4
ˇ1a3 � 1

8
ˇ2a5 � 5

64
ˇ3a7�

7
128
ˇ4a9 C k sin . /

(8.30)

d 

dT1
D �C k cos . /

a
(8.31)

Periodic solution of the externally excited system correspond to the stationary solutions of Eqs. (8.30) and (8.31), where both
a and  become constant, that is

da

dT1
D 0 (8.32)

d 

dT1
D 0 (8.33)

Suppose ã and Q refer to the stationary solution of a and  , thus Substituting (8.30) and (8.31), respectively in (8.32) and
(8.33), results in

Qa C 1
4
ˇ1 Qa3 C 1

8
ˇ2 Qa5 C 5

64
ˇ3 Qa7 C 7

128
ˇ4 Qa9

� k sin
� Q � D 0

(8.34a)

�C k cos
� Q �

Qa D 0 (8.34b)
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Elimination Q from (8.34a) and (8.34b) leads to the following algebraic equation, which describes the stationary amplitude
response of the resonant excited system.

Qa2 ı
!2n

2 C
�

Qa C 0:25ˇ1 Qa3 C 1
8
ˇ2 Qa5C

5
64
ˇ3 Qa7 C 7

128
ˇ4 Qa9

�
2 D k2

(8.35)

For a given set of excitation amplitude and frequency, the stationary amplitude response of the resonant excited system, i.e.
ã is computed via Eq. (8.35).

Substituting A from Eq. (8.27) into Eq. (8.22), the following first approximation to the response of the excited system is
obtained as

u D a cos
�bt C �

�
"bt��C O ."/ (8.36)

The frequency of the above periodic-resonant response of the system is determined as follows.

! D d
dt

�bt C �
�
"bt�� D d

dt

�
!nt C �

�
"bt��

D !n C d�
�
"bt�

dt

(8.37)

According to Eqs. (8.29b) and (8.33), d�
dT1

is obtained as

d�

dT1
D � D ı

!n
(8.38)

where T1 D "bt D "!nt. Thus:

d�

dt
D "ı (8.39)

Substituting Eq. (8.39) into Eq. (8.37) leads to the frequency of the resonant response of the system, that is

! D !n C "ı D !n� D � (8.40)

According to Eq. (8.40), the frequency of the response matches the external force’s frequency for the periodic resonant
excitation.

8.5 Numerical Examples

The system characteristics such as mass, spring stiffness, viscosity, orifice diameter, etc. affect the values of the parameters
!n, � , ",ˇ1,ˇ2,ˇ3,ˇ4 and consequently the approximate analytical response of the resonant excited system via Eq. (8.36)
and its stationary amplitude via Eq. (8.35), as well. Table 8.1 exhibits the selected values for several numerical case studies
of resonant-excitation with different values of deviation factor ı. According to Table 8.1, the external force’s frequency has
been selected to be close to the natural frequency of the system for the cases of (1)–(4). While, the deviation of the external
force’s frequency from the natural frequency of the system is chosen as a large value for the fifth case.

For all cases, ks D 1000N
m , m D 20 Kg, d D 4 cm, D D 20 cm, n D 1, s D 1

2
, and L D 1 cm have been selected. Using

these values, the parameters !n, � ,ˇ1,ˇ2,ˇ3 and ˇ4 can be calculated for all cases given in Table 8.1. Those are:

!n D 7:071 rad=s�1; � D 5; ˇ1 D 208:3;

ˇ2 D 16059; ˇ3 D 542000; ˇ4 D 6782 � 103

For instance, for the fourth case of Table 8.1 with the initial conditions as: u.0/ D 0:002 m;
:
u.0/ D 1:23 ms�1, F D 50N

and � D 0:0493 Pa:s (i.e. ¯ D 0:0123 and " D 0:05) along with ı D 2, the amount of the stationary response amplitude
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Table 8.1 The selected values and the affected parameters for the resonant-excitation analysis

Selected values Affected parameters
Case F (N) � (Pa.s) u0 (m)

�
u0 (ms�1) ı " ¯ � clinear (Nsm�1) ˝ (rad/s�1) ã (m)

1 50 0.0493 0.002 1.23 0 0.05 0.0123 0.025 7.08 7.071 0.173
2 50 0.0493 0.002 1.23 1 0.05 0.0123 0.025 7.08 7.121 0.172
3 50 0.49 0.002 0.54 1 0.5 0.59 0.25 71 7.571 0.074
4 50 0.0493 0.002 1.23 2 0.05 0.0123 0.025 7.08 7.170 0.172
5 50 0.0493 0.002 1.35 20 0.05 0.0123 0.025 7.08 8.071 0.168

for the resonant-excited system is computed as Qa D 172.88 mm by solving the algebraic Eq. (8.35). Also, the excitation
frequency is computed as � D !n C "ı D 7:171 rad=s, and the response of the excited system is obtained by Eq. (8.36) as:

u D 172:88 cos .7:171t C 1:56/ mm

The response of the mass-spring system equipped with the traditional linear damper having the same external force and
initial conditions is calculated as follows:

x D �422 cos.7:171t/C 745 sin.7:171t/
C 711e�0:177t sin .7:07t C 2:50/mm

8.6 Results and Discussion

The simulation results for the resonant excitation analysis are shown in Figs. 8.3, 8.4, 8.5, and 8.6. In order to verify the
accuracy of the approximate analytical response of the system equipped with the NDD damper, given by Eq. (8.36), the
numerical integration technique is also applied to solve Eq. (8.14) using the fourth order Runge Kutta method.

The displacements of the excited system using the NDD damper, for the first four cases presented in Table 8.1 are shown in
Fig. 8.3. These results for the system with the linear damper are also depicted in Fig. 8.3. Figure 8.3a shows the comparison
between the approximate analytical solution and the numerical result obtained by the Runge Kutta method for the ideal
resonant case, i.e. the first case given in Table 8.1 with F D 50N; ı D 0; (i.e. � D !n D 7:071 rad=s) and " D 0:05. This
comparison is carried out for the cases (2)–(4) in Fig. 8.3b–d, respectively. As can be seen the proposed analytical solution
is extremely close to the numerical solution for these cases as well as the ideal resonant case, i.e. case (1). As shown in
Fig. 8.3a–d, the response of the system using the linear damper considerably grows in each cycle up to an extremely large
stationary amplitude at a long time for the cases of (1)–(4). But, in the system with the NDD damper, the amplitude of the
vibration tends to its stationary value immediately. Therefore, there is no need to evaluate the second order approximation of
u for the governing equation of the system via Eq. (8.14). Besides, as it is observed in Fig. 8.3a–d, for the system employing
the NDD damper, the amount of the stationary response amplitude is significantly smaller than its value for the system
with linear damper. Hence, utilizing the NDD damper in the excited system under periodic-resonant force has substantial
advantage over the linear damper in terms of decreasing the amplitude response of the system.

In order to investigate the effect of increasing the perturbation parameter ", the results related to the case (2) with " D 0:05

and case (3) with " D 0:5 can be evaluated. According to Fig. 8.3b, c, increasing the value of " causes increasing the error
between the approximate analytical solution and the exact numerical solution. This is due to the properties of the multiple
scales method, whereas the value of " must be small. Moreover, in Fig. 8.3c, where the amount of displacement is not
considerable as the other cases, the displacements of the systems with the NDD and linear damper are close to each other,
because the small amplitude vibration weakens the nonlinearity of Eq. (8.16).

Figure 8.4 exhibits the damping force of the both nonlinear and linear dampers versus displacement for the first four cases
of Table 8.1. That is the work done by the damper, i.e. the amount of energy absorbed by the damper. For instance, as can
be seen in Fig. 8.4b, for the case (2) with ı D 1, the damping force of the linear damper has the maximum value of 42.3N,
whereas, the nonlinear damper provides the larger damping force amount of 114.6N. This explains how the NDD damper
outclasses the traditional linear damper in the terms of amplitude reduction.

Figure 8.5 demonstrates the transmitted force to the base versus time for the cases presented in Table 8.1. According
to Fig. 8.5, in the system with the linear damper, a larger amount of force is being transmitted to the base compared to
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Fig. 8.3 Response of the resonant-excited system with F D 50N for (a) " D 0:05 and ı D 0 (b) " D 0:05 and ı D 1 (c) " D 0:5 and ı D 1 (d)
" D 0:05 and ı D 2: (red line) approximate analytical solution of the system with the NDD damper; (blue line) numerical solution of the system
with the NDD damper; (dark line) analytical solution of the system with the linear damper

the system using the NDD damper. In the system with the linear damper; not only an undesired significant higher force is
transmitted to the base but also the traditional damper is unable to provide the system with the effective amplitude reduction
compared to the NDD damper.

In Fig. 8.6 the damping force versus time is shown for the first four cases given in Table 8.1. It is observed that the
NDD damper provides a higher damping force and keeps the amplitude far more limited than the traditional damper while
the system is excited with a resonant force. In addition, it is worthwhile to note that in Fig. 8.6c, in which the vibration
amplitude is small compared to the other cases, the damping force of the NDD damper gets close to the linear damper. This
is due to the fact that small amplitudes weaken of the higher powers of u in Eq. (8.6). Therefore, the damping coefficient of
the NDD damper gets closer to the linear damper for the small displacements.

To study the effect of increasing the deviation factor ı, the displacement of the excited system for the case (5) where
ı D 20 is presented in Fig. 8.7. Figure 8.7 confirms that as the value of ı rises, the error between the approximate analytical
solution given by Eq. (8.36) and the exact numerical solution increases. This is due to the fact that the scheme is elaborated
for the resonant analysis, in which the value of ı is small.

As expected, when the external force’s frequency gets close to the natural frequency of the system, i.e. ı ! 0, the
resonant excitation is more severe and consequently results in vibration with higher amplitude. On the contrary, increasing
the difference between the external force’s frequency and the natural frequency of the system causes decreasing the stationary
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Fig. 8.4 Damping force versus displacement of the resonant-excited system with F D 50N for (a) " D 0:05 and ı D 0 (b) " D 0:05 and ı D 1

(c) " D 0:5 and ı D 1 (d) " D 0:05 and ı D 2: (red line) damping force of the NDD damper obtained by the MSM; (blue line) damping force of
the NDD damper obtained by the Runge–Kutta method; (dark line) damping force of the linear damper

amplitude response of the excited system. For the case (5) with ı D 20, the response of the system with the NDD damper
reaches its stationary amplitude of 168 mm, which is smaller than the stationary amplitude of the case (1) with ı D 0 and
case (2) with ı D 1.

8.7 Conclusion

The resonant vibration analysis of a mass-spring system equipped with the nonlinear displacement-dependent (NDD)
damper was studied in this paper. The governing equation of the excited system was derived for the external force with
a frequency closed to the natural frequency of the system. To obtain the forced-resonant response of the system, the
approximate analytical solution algorithm was developed by the multiple scales method (MSM). The advised solution
algorithm was performed for several case studies with various amounts of external force’s frequencies and also verified
by the numerical fourth-order Runge–Kutta method. It is found that the proposed analytical solution algorithm is able to
achieve the satisfactory performance for the resonant excitation analysis. In contrast to the system with the linear damper, in
which the response considerably grows in each cycle up to extremely large stationary amplitude at a long time; in the system
employing the NDD damper, the amplitude of the vibration tends to its stationary value immediately. Moreover, the results
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Fig. 8.5 Comparison between the transmitted force by the system in a linear system and nonlinear system with NDD damper with resonant
external force as F D 50N for (a) " D 0:05 and ı D 0 (b) " D 0:05 and ı D 1 (c) " D 0:5 and ı D 1 (d) " D 0:05 and ı D 2: (red line)
approximate analytical solution of the system with the NDD damper; (blue line) numerical solution of the system with the NDD damper; (dark
line) analytical solution of the system with the linear damper

confirm that utilizing the NDD damper in the resonant-excited system not only causes more vibration amplitude reduction
rather than the traditional linear damper but also provides the lower force transmitted to the base compared to the linear
damper, where an undesired significant higher transmitted force is produced.
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Fig. 8.6 Damping force of the resonant-excited system versus time with F D 50N for (a) " D 0:05 and ı D 0 (b) " D 0:05 and ı D 1 (c)
" D 0:5 and ı D 1 (d) " D 0:05 and ı D 2: (red line) damping force of the NDD damper obtained by the MSM; (blue line) damping force of the
NDD damper obtained by the Runge–Kutta method; (dark line) damping force of the linear damper
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