
Chapter 1
Nonlinear Vibrations of a Beam with a Breathing Edge Crack
Using Multiple Trial Functions

Ali C. Batihan and Ender Cigeroglu

Abstract In this paper, a beam like structure with a single edge crack is modeled and analyzed in order to study the nonlinear
effects of breathing crack on transverse vibrations of a beam. In literature, edge cracks are generally modeled as open cracks,
in which the beam is separated into two pieces at the crack location and these pieces are connected to each other with
a rotational spring to represent the effect of crack. The open edge crack model is a widely used assumption; however, it
does not consider the nonlinear behavior due to opening and closing of the crack region. In this paper, partial differential
equation of motion obtained by Euler-Bernoulli beam theory is converted into nonlinear ordinary differential equations by
using Galerkin’s method with multiple trial functions. The nonlinear behavior of the crack region is represented as a bilinear
stiffness matrix. The nonlinear ordinary differential equations are converted into a set of nonlinear algebraic equations by
using harmonic balance method (HBM) with multi harmonics. Under the action of a harmonic forcing, the effect of crack
parameters on the vibrational behavior of the cracked beam is studied.

Keywords Breathing crack • Euler-Bernoulli beam • Galerkin’s method • Harmonic balance method • Nonlinear
vibrations

1.1 Introduction

Identification of cracks and determination of their location is an important consideration, since crack propagation may cause
unexpected failure. Therefore, beams with edge cracks has been an interesting area of research. Dimarogonas [1] provides a
review paper in which studies on open breathing crack, continuous crack beam theories and vibration of cracked plates are
covered. Aydin [2], carried out a study considering arbitrary number of cracks and axial loads applied on a beam. Khiem
and Lien [3], used a transfer matrix method in order to calculate natural frequencies of a beam with an arbitrary number
of cracks. In order to see the effect of crack clearly, beam models with mass attachments are used by Mermertaş and Erol
[4] and Zhong and Oyadiji [5]. Mazanoğlu et al. [6] applied Rayleigh-Ritz and finite element methods in order to study
vibrations of non-uniform cracked beams. In a study of Chondros et al. [7], flexibility due to crack region is distributed along
the whole beam by developing a continuous theory of cracked beams. In another study of Chondros et al. [8], breathing edge
crack was studied by combining vibration characteristics of open and closed period as a bi-linear model. Cheng et al. [9]
represented the breathing crack with time dependent stiffness. Finite element method was used by Chati et al. [10] in order to
study modal analysis of a beam with a breathing edge crack. Giannini et al. [11] also used finite element method to identify
sub and super harmonics of a beam with a breathing edge crack. Baeza and Ouyang [12], developed an analytical approach
by using beam modes to calculate a scale factor matrix which indicates crack location.

In most of the studies available in literature, the beam is modeled by Euler-Bernoulli beam theory and the crack region is
represented by a rotational spring whose stiffness is obtained by fracture mechanics methods. A significant number of studies
are investigated the effect of crack parameters on natural frequencies. In addition, application of finite element methods for
beams with breathing edge cracks is a common modeling approach.

In this paper, based on the previous study of authors [13], beam is modeled using Euler-Bernoulli beam theory and
breathing edge crack is modeled as a piecewise linear stiffness. In the analytical model, the state of the crack is determined
by checking the slope difference at the crack location. The governing equations are obtained by Galerkin’s method utilizing
multiple trial functions and the resulting set of nonlinear equations are solved by application of harmonic balance method
with multi harmonics.
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1.2 Formulation of the Breathing Edge Crack Problem

Equation of motion of a uniform beam vibrating in transverse direction under the action of an external point force f (t) located
at Lf can expressed by utilizing Euler-Bernoulli beam theory as follows
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where w(x, t) is transverse displacement, EI is flexural rigidity, c is viscous damping coefficient and m is mass per unit length
of the beam. Using expansion theorem, transverse displacement can be expressed as follows
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j
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where � j(x) is the jth mass normalized eigenfunction of a beam with an open edge crack and aj(t) is the corresponding modal
coefficient. Substituting Eq. (1.2) into Eq. (1.1), the following expression is obtained
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Multiplying Eq. (1.3) by � i(x) and integrating over the spatial domain of the beam result in the following equation
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Equation (1.4) can be rearranged as a matrix equation as follows

ŒM� fRag C ŒC�
˚ :
a
� C ŒK� fag D fFg ; (1.9)

where [M], [C] and [K] are the corresponding mass, damping and stiffness matrices of a beam with an open edge crack.
Figure 1.1 shows the deformed shape of a cantilever crack beam at two different time instants. During vibration, due to

breathing effect of the edge crack, the beam behaves as if it is an undamaged beam for some period of cycle; whereas, in
the rest of the cycle it behaves as a beam with an open edge crack. Therefore, beam with a breathing edge crack can be
represented as a combination of two linear systems as shown in Fig. 1.1.

In order to consider the breathing effect, two different sets of mass normalized eigenfunctions are utilized as trial functions.
For the time instant when the crack is closed, mass, damping and stiffness matrices are calculated by utilizing first few mass
normalized eigenfunctions of the undamaged beam; whereas mass normalized eigenfunctions of a beam with an open crack
are used in case the crack is in open state. The details and derivation of these eigenfunctions can be found in [14]. As the
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Fig. 1.1 Cantilever beam with a breathing edge crack

crack switches from open state to closed state, mass and damping matrices remain unchanged; however, the stiffness matrix
increases when the crack closes. The increase in the stiffness matrix is given by the following relation

ŒB� D ŒKc� � ŒK� ; (1.10)

where [Kc] is the stiffness matrix of the beam when the crack is at the closed state.
In this study, in order to identify whether the crack is open or not, the slope difference at the crack location is checked.

Negative slope difference states that the crack is open and the nonlinear forcing term is zero; whereas positive slope difference
indicates that the crack is closed and the nonlinear forcing term is nonzero. The periodic change in the stiffness of the beam
which results from the breathing effect of the crack, leads to the following nonlinear forcing term
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Adding the nonlinear forcing term fR(fag)g, into Eq. (1.9) leads to the following equation in which the breathing effect of
the crack is taken into consideration

ŒM� fRag C ŒC�
˚ :
a
� C ŒK� fag C fR .fag/g D fFg : (1.12)

1.3 Harmonic Balance Method

In order to utilize harmonic balance method with multi harmonics, modal coefficient of each trial function is expressed as
follows
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X
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where aj0 is the bias term of the jth modal coefficient, ajcp and ajsp are the coefficients of cosine and sine components of the
pth harmonic of the jth modal coefficient. Letting � D !t and rearranging Eq. (1.13), the modal coefficients can be written in
vector form as

fag D fa0g C Œac� fhc .�/g C Œas� fhc .�/g ; (1.14)

where
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; (1.15)
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� �
; (1.16)

and fhc(� )g & fhs(� )g are the following vectors whose lengths are equal to the number harmonics (p) used
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The periodic nonlinear forcing term fR(fag)g can be expressed by Fourier series as
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Similarly external forcing, f (t) can be represented by Fourier series as follows

f .t/ D ˚
fcp

�0 fhc .�/g C ˚
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�0 fhs .�/g : (1.25)

Substituting Eqs. (1.14), (1.19) and (1.25) into Eq. (1.12) and collecting sine and cosine terms leads to the following set
of nonlinear equations
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where [I] is the identity matrix, fIg is a vector elements of which are all 1, and
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1.4 Case Study and Discussion

Effect of breathing edge crack for different crack parameters is studied by using a cantilever beam model with the following
properties: L D 1 m, I D 2:667 � 10�8 m4, � D 7850 kg/m3, A D 8 � 10�4 m2, E D 206 GPa, � D 0:07, Lf D 0:1 m
and f .t/ D 100 cos .!t/ N. Galerkin’s method is applied by utilizing first three modes of the beam and the resulting set of
nonlinear ordinary differential equations are converted into a set of nonlinear algebraic equations by using harmonic balance
method with multi harmonics. According to [13], as crack ratio increases fundamental frequency decreases. Similarly, crack
location also affects the fundamental frequency depending on the boundary conditions of the beam. The effect of different
crack ratio and crack location on natural frequencies is given in Fig. 1.2. It is observed from the results that the effect of crack
parameters on natural frequencies are not significant. Therefore, alternative features should be considered in crack detection
problems.

In Fig. 1.3, absolute value of bias term of each modal coefficient as function of frequency is given. It is observed that bias
term of each modal coefficient is influenced by both crack location and crack ratio. In Fig. 1.3a, bias term of each modal
coefficient is plotted for different crack locations and it is observed that depending on the crack location bias term of different
modal coefficient becomes dominant. Bias terms are also affected by the crack ratio, however the effect of crack ratio is not
similar to the effect of crack location. For instance, from Fig. 1.3b it is observed that, an increase in crack depth shifts all the
plots upward and the order of dominancy is conserved.

The amplitude of pth harmonic of jth modal coefficient is expressed by the following equation

ajp D
q

ajcp
2 C asjp

2: (1.30)

In Fig. 1.4, amplitudes of the first harmonic of modal coefficients with respect to frequency are given for different crack
location and ratio. From the plots, it is observed that first harmonics are slightly influenced by crack parameters. However,
the first harmonic is the most dominant harmonic on the total response among the higher harmonics. This fact also explains
why crack parameters have negligible effect on the total response.
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Fig. 1.2 Transverse displacement of a point at location Lp D 0:1 m vs. frequency. (a) For Lc D 0:2 m and different crack ratio. (b) For ˛ D 0:5

and different crack location
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Fig. 1.3 Bias term of each modal coefficient vs. frequency. (a) For ˛ D 0:5 and different crack location. (b) For Lc D 0:2 m and different crack
ratio

Higher harmonics of different trial functions for different crack parameters are shown in Figs. 1.5, 1.6, 1.7, and 1.8.
Studying these figures, it is observed that higher harmonics can be grouped as even and odd harmonics depending on the
similarities of the plots. Observing Figs. 1.5 and 1.6, it is seen that effect of crack parameters on even harmonics is similar to
the effect of crack parameters on bias terms. As crack location changes, even harmonic of a different trial function becomes
more dominant; whereas increase in crack depth causes an increase in the overall amplitude of the even harmonics.

Effect of crack parameters can also be observed in the odd harmonics. As depicted in Figs. 1.7 and 1.8, effect of crack
location on odd harmonics is similar to the effect of crack location on bias terms and even harmonics. Studying the same
figures, it is also observed that, odd harmonics of the first modal coefficient are significantly affected by crack depth.
However, getting information from the odd harmonics of the second and the third modal coefficient is a more challenging due
to scattered pattern. Therefore, analyzing the even harmonics can be used as means for crack detection problems. In Table 1.1,
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Fig. 1.4 First harmonic of each modal coefficient vs. frequency. (a) For ˛ D 0:5 and different crack location. (b) For Lc D 0:2 m and different
crack ratio
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Fig. 1.5 Second harmonic of each modal coefficient vs. frequency. (a) For ˛ D 0:5 and different crack location. (b) For Lc D 0:2 m and different
crack ratio

ratio of maximum amplitudes of the even harmonics are provided. The ratio is obtained by dividing maximum amplitude of
pth harmonic of each modal coefficient to the maximum amplitude of pth harmonic of the first modal coefficient. Studying
Table 1.1, significant effect of crack location on other trial functions can be observed.

In order to study the effect of crack depth on harmonics of different modal coefficients Table 1.2 is prepared in a similar
way. In Figs. 1.5b and 1.6b it is observed that the increase in crack depth also increases all the plots with a similar magnitude.
As a result of this fact, order of magnitude of the harmonics do not change. Therefore, in Table 1.2, it is observed that the
maximum amplitude ratio is not influenced by the crack ratio.
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Fig. 1.6 Fourth harmonic of each modal coefficient vs. frequency. (a) For ˛ D 0:5 and different crack location. (b) For Lc D 0:2 m and different
crack ratio
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Fig. 1.7 Third harmonic of each modal coefficient vs. frequency. (a) For ˛ D 0:5 and different crack location. (b) For Lc D 0:2 m and different
crack ratio

1.5 Conclusion

In this study, beam with breathing edge crack is modelled by using Euler-Bernoulli beam theory and nonlinear piecewise
linear stiffness. Multiple trial functions are used to represent the response in Galerkin’s method where a piecewise linear
stiffness matrix based on the slope difference at the crack location is introduced. Harmonic Balance Method with multiple
harmonics is used to convert nonlinear ordinary differential equation into a set of nonlinear algebraic equations. It is observed
from the results that effect of crack parameters on the natural (resonance) frequency of the cracked beam is insignificant.
However, it is observed that harmonics of the response are affected from the crack parameters significantly; hence, this
information can be used for the crack detection. Both crack depth and crack location affects the amplitudes of the harmonics
of each modal coefficient. As crack ratio increases the amplitudes of the harmonics also increase, however the order of
magnitudes of the harmonics are not affected by the crack ratio. The crack location affects amplitudes of the harmonics
as well as the order of magnitudes of the harmonics. Depending on the crack location, a harmonic of a different modal
coefficient becomes dominant. This fact explains the necessity of using multiple trial functions.



1 Nonlinear Vibrations of a Beam with a Breathing Edge Crack Using Multiple Trial Functions 9

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-15

10
-10

10
-5

Frequency, w, [rad/s] Frequency, w, [rad/s]

F
ift

h 
H

ar
m

on
ic

, a
j5

 [m
]

a
15

, L
c
=0.2

a
15

, L
c
=0.4

a
25

, L
c
=0.2

a
25

, L
c
=0.4

a
35

, L
c
=0.2

a
35

, L
c
=0.4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

F
ift

h 
H

ar
m

on
ic

, a
j 5

 [m
]

a
15

, a=0.2

a
15

, a=0.5

a
25

, a=0.2

a
25

, a=0.5

a
35

, a=0.2

a
35

, a=0.5

a b

Fig. 1.8 Fifth harmonic of each modal coefficient vs. frequency. (a) For ˛ D 0:5 and different crack location. (b) For Lc D 0:2 m and different
crack ratio

Table 1.1 Ratio of maximum amplitudes of even harmonics of each
modal coefficient for different crack location

˛ D 0:5

Lc a12/a12 a22/a12 a32/a12 a14/a14 a24/a14 a34/a14

0.2 1 0.00128 0.01438 1 0.00141 0.0151
0.4 1 0.18786 0.05545 1 0.22663 0.04163

Table 1.2 Ratio of maximum amplitudes of even harmonics of each
modal coefficient for different crack depth

Lc D 0:2

˛ a12/a12 a22/a12 a32/a12 a14/a14 a24/a14 a34/a14

0.2 1 0.00132 0.01327 1 0.00147 0.01385
0.5 1 0.00128 0.01437 1 0.00141 0.01507
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