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Preface

Nonlinear Dynamics represents one of ten volumes of technical papers presented at the 34th IMAC, A Conference and
Exposition on Structural Dynamics, organized by the Society for Experimental Mechanics and held in Orlando, Florida,
on January 25–28, 2016. The full proceedings also include volumes on Dynamics of Civil Structures; Model Validation
and Uncertainty Quantification; Dynamics of Coupled Structures; Sensors and Instrumentation; Special Topics in Structural
Dynamics; Structural Health Monitoring, Damage Detection & Mechatronics; Rotating Machinery, Hybrid Test Methods,
Vibro-Acoustics and Laser Vibrometry; Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Acoustics & Optics; and
Topics in Modal Analysis &Testing.

Each collection presents early findings from experimental and computational investigations on an important area within
structural dynamics. Nonlinearity is one of these areas.

The vast majority of real engineering structures behave nonlinearly. Therefore, it is necessary to include nonlinear effects
in all the steps of the engineering design: in the experimental analysis tools (so that the nonlinear parameters can be correctly
identified) and in the mathematical and numerical models of the structure (in order to run accurate simulations). In so doing,
it will be possible to create a model representative of the reality which, once validated, can be used for better predictions.

Several nonlinear papers address theoretical and numerical aspects of nonlinear dynamics (covering rigorous theoretical
formulations and robust computational algorithms) as well as experimental techniques and analysis methods. There are also
papers dedicated to nonlinearity in practice where real-life examples of nonlinear structures will be discussed.

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in
this track.

Liege, Belgium Gaetan Kerschen
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Chapter 1
Nonlinear Vibrations of a Beam with a Breathing Edge Crack
Using Multiple Trial Functions

Ali C. Batihan and Ender Cigeroglu

Abstract In this paper, a beam like structure with a single edge crack is modeled and analyzed in order to study the nonlinear
effects of breathing crack on transverse vibrations of a beam. In literature, edge cracks are generally modeled as open cracks,
in which the beam is separated into two pieces at the crack location and these pieces are connected to each other with
a rotational spring to represent the effect of crack. The open edge crack model is a widely used assumption; however, it
does not consider the nonlinear behavior due to opening and closing of the crack region. In this paper, partial differential
equation of motion obtained by Euler-Bernoulli beam theory is converted into nonlinear ordinary differential equations by
using Galerkin’s method with multiple trial functions. The nonlinear behavior of the crack region is represented as a bilinear
stiffness matrix. The nonlinear ordinary differential equations are converted into a set of nonlinear algebraic equations by
using harmonic balance method (HBM) with multi harmonics. Under the action of a harmonic forcing, the effect of crack
parameters on the vibrational behavior of the cracked beam is studied.

Keywords Breathing crack • Euler-Bernoulli beam • Galerkin’s method • Harmonic balance method • Nonlinear
vibrations

1.1 Introduction

Identification of cracks and determination of their location is an important consideration, since crack propagation may cause
unexpected failure. Therefore, beams with edge cracks has been an interesting area of research. Dimarogonas [1] provides a
review paper in which studies on open breathing crack, continuous crack beam theories and vibration of cracked plates are
covered. Aydin [2], carried out a study considering arbitrary number of cracks and axial loads applied on a beam. Khiem
and Lien [3], used a transfer matrix method in order to calculate natural frequencies of a beam with an arbitrary number
of cracks. In order to see the effect of crack clearly, beam models with mass attachments are used by Mermertaş and Erol
[4] and Zhong and Oyadiji [5]. Mazanoğlu et al. [6] applied Rayleigh-Ritz and finite element methods in order to study
vibrations of non-uniform cracked beams. In a study of Chondros et al. [7], flexibility due to crack region is distributed along
the whole beam by developing a continuous theory of cracked beams. In another study of Chondros et al. [8], breathing edge
crack was studied by combining vibration characteristics of open and closed period as a bi-linear model. Cheng et al. [9]
represented the breathing crack with time dependent stiffness. Finite element method was used by Chati et al. [10] in order to
study modal analysis of a beam with a breathing edge crack. Giannini et al. [11] also used finite element method to identify
sub and super harmonics of a beam with a breathing edge crack. Baeza and Ouyang [12], developed an analytical approach
by using beam modes to calculate a scale factor matrix which indicates crack location.

In most of the studies available in literature, the beam is modeled by Euler-Bernoulli beam theory and the crack region is
represented by a rotational spring whose stiffness is obtained by fracture mechanics methods. A significant number of studies
are investigated the effect of crack parameters on natural frequencies. In addition, application of finite element methods for
beams with breathing edge cracks is a common modeling approach.

In this paper, based on the previous study of authors [13], beam is modeled using Euler-Bernoulli beam theory and
breathing edge crack is modeled as a piecewise linear stiffness. In the analytical model, the state of the crack is determined
by checking the slope difference at the crack location. The governing equations are obtained by Galerkin’s method utilizing
multiple trial functions and the resulting set of nonlinear equations are solved by application of harmonic balance method
with multi harmonics.

A.C. Batihan • E. Cigeroglu (�)
Department of Mechanical Engineering, Middle East Technical University, Ankara 06800, Turkey
e-mail: ender@metu.edu.tr

© The Society for Experimental Mechanics, Inc. 2016
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2 A.C. Batihan and E. Cigeroglu

1.2 Formulation of the Breathing Edge Crack Problem

Equation of motion of a uniform beam vibrating in transverse direction under the action of an external point force f (t) located
at Lf can expressed by utilizing Euler-Bernoulli beam theory as follows

EI
@4w .x; t/

@x4
C c

@w .x; t/

@t
C m

@2w .x; t/

@t2
D f .t/ı

�
x � Lf

�
; (1.1)

where w(x, t) is transverse displacement, EI is flexural rigidity, c is viscous damping coefficient and m is mass per unit length
of the beam. Using expansion theorem, transverse displacement can be expressed as follows

w .x; t/ D
X

j

aj.t/�j.x/; (1.2)

where � j(x) is the jth mass normalized eigenfunction of a beam with an open edge crack and aj(t) is the corresponding modal
coefficient. Substituting Eq. (1.2) into Eq. (1.1), the following expression is obtained

X

j

�
EIaj.t/

d4�j.x/

dx4

�
C
X

j

�
c
:
aj.t/�j.x/

�C
X

j

�
mRaj.t/�j.x/

� D f .t/ı
�
x � Lf

�
: (1.3)

Multiplying Eq. (1.3) by � i(x) and integrating over the spatial domain of the beam result in the following equation

X

j

�
kij
�

aj.t/C
X

j

�
cij
� :
aj.t/C

X

j

�
mij
� Raj.t/ D Fi.t/; (1.4)

where

kij D
LZ

0

EI�i.x/
d4�j.x/

dx4
dx; (1.5)

cij D
LZ

0

c�i.x/�j.x/dx; (1.6)

mij D
LZ

0

m�i.x/�j.x/dx; (1.7)

Fi.t/ D �i
�
Lf
�

f .t/: (1.8)

Equation (1.4) can be rearranged as a matrix equation as follows

ŒM� fRag C ŒC�
˚ :
a
�C ŒK� fag D fFg ; (1.9)

where [M], [C] and [K] are the corresponding mass, damping and stiffness matrices of a beam with an open edge crack.
Figure 1.1 shows the deformed shape of a cantilever crack beam at two different time instants. During vibration, due to

breathing effect of the edge crack, the beam behaves as if it is an undamaged beam for some period of cycle; whereas, in
the rest of the cycle it behaves as a beam with an open edge crack. Therefore, beam with a breathing edge crack can be
represented as a combination of two linear systems as shown in Fig. 1.1.

In order to consider the breathing effect, two different sets of mass normalized eigenfunctions are utilized as trial functions.
For the time instant when the crack is closed, mass, damping and stiffness matrices are calculated by utilizing first few mass
normalized eigenfunctions of the undamaged beam; whereas mass normalized eigenfunctions of a beam with an open crack
are used in case the crack is in open state. The details and derivation of these eigenfunctions can be found in [14]. As the
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Fig. 1.1 Cantilever beam with a breathing edge crack

crack switches from open state to closed state, mass and damping matrices remain unchanged; however, the stiffness matrix
increases when the crack closes. The increase in the stiffness matrix is given by the following relation

ŒB� D ŒKc� � ŒK� ; (1.10)

where [Kc] is the stiffness matrix of the beam when the crack is at the closed state.
In this study, in order to identify whether the crack is open or not, the slope difference at the crack location is checked.

Negative slope difference states that the crack is open and the nonlinear forcing term is zero; whereas positive slope difference
indicates that the crack is closed and the nonlinear forcing term is nonzero. The periodic change in the stiffness of the beam
which results from the breathing effect of the crack, leads to the following nonlinear forcing term

fR .fag/g D
8
<

:

ŒB� fag if @w.x;t/
@x

ˇ
ˇ
ˇ
xDLc

� 0

f0g if @w.x;t/
@x

ˇ
ˇ
ˇ
xDLc

< 0
: (1.11)

Adding the nonlinear forcing term fR(fag)g, into Eq. (1.9) leads to the following equation in which the breathing effect of
the crack is taken into consideration

ŒM� fRag C ŒC�
˚ :
a
�C ŒK� fag C fR .fag/g D fFg : (1.12)

1.3 Harmonic Balance Method

In order to utilize harmonic balance method with multi harmonics, modal coefficient of each trial function is expressed as
follows

aj.t/ D aj0 C
X

p

ajcp cos .p!t/C
X

p

ajsp sin .p!t/; (1.13)
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where aj0 is the bias term of the jth modal coefficient, ajcp and ajsp are the coefficients of cosine and sine components of the
pth harmonic of the jth modal coefficient. Letting � D !t and rearranging Eq. (1.13), the modal coefficients can be written in
vector form as

fag D fa0g C Œac� fhc .�/g C Œas� fhc .�/g ; (1.14)

where

Œac� D � fac1g � � � ˚acp
� �
; (1.15)

Œas� D � fas1g � � � ˚asp
� �
; (1.16)

and fhc(�)g & fhs(�)g are the following vectors whose lengths are equal to the number harmonics (p) used

fhc .�/g D

8
<̂

:̂

cos .�/
:::

cos .p�/

9
>=

>;
; (1.17)

fhs .�/g D

8
<̂

:̂

sin .�/
:::

sin .p�/

9
>=

>;
: (1.18)

The periodic nonlinear forcing term fR(fag)g can be expressed by Fourier series as

fRg D 1

2
fR0g C ŒRc� fhc .�/g C ŒRs� fhs .�/g : (1.19)

where

ŒRc� D � fRc1g � � � ˚Rcp
� �
; (1.20)

ŒRs� D � fRs1g � � � ˚Rsp
� �
; (1.21)

and

Rj0 D 1

�

2�Z

0

Rj .�/ d�; (1.22)

Rjcp D 1

�

2�Z

0

Rj .�/ cos .p�/ d�; (1.23)

Rjsp D 1

2�

2�Z

0

Rj .�/ sin .p�/ d�: (1.24)

Similarly external forcing, f (t) can be represented by Fourier series as follows

f .t/ D ˚
fcp
�0 fhc .�/g C ˚

fsp
�0 fhs .�/g : (1.25)

Substituting Eqs. (1.14), (1.19) and (1.25) into Eq. (1.12) and collecting sine and cosine terms leads to the following set
of nonlinear equations



1 Nonlinear Vibrations of a Beam with a Breathing Edge Crack Using Multiple Trial Functions 5

0

B
@

2

6
4

ŒK� 0
: : :

0 ŒK�

3

7
5 � !2

2

6
4

ŒM� 0
: : :

0 ŒM�

3

7
5

2

6
4

ŒI�
: : :

p2 ŒI�

3

7
5

1

C
A

8
<̂

:̂

fac1g
:::˚

acp
�

9
>=

>;
C

8
<̂

:̂

fRc1g
:::˚

Rcp
�

9
>=

>;

C !

2

6
4

ŒC� 0
: : :

0 ŒC�

3

7
5

2

6
4

ŒI�
: : :

p ŒI�

3

7
5

8
<̂

:̂

fas1g
:::˚

asp
�

9
>=

>;
�

2

6
4

�
�Lf

�
0

: : :

0
�
�Lf

�

3

7
5

8
<̂

:̂

fc1 fIg
:::

fcp fIg

9
>=

>;
D

8
<̂

:̂

f0g
:::

f0g

9
>=

>;
;

(1.26)

0

B
@

2

6
4

ŒK� 0

: : :

0 ŒK�

3

7
5 � !2

2

6
4

ŒM� 0

: : :

0 ŒM�

3

7
5

2

6
4

ŒI�
: : :

p2 ŒI�

3

7
5

1

C
A

8
<̂

:̂

fas1g
:::˚

asp
�

9
>=

>;
C

8
<̂

:̂

fRs1g
:::˚

Rsp
�

9
>=

>;

C !

2

6
4

ŒC� 0
: : :

0 ŒC�

3

7
5

2

6
4

ŒI�
: : :

p ŒI�

3

7
5

8
<̂

:̂

fac1g
:::˚

acp
�

9
>=

>;
�

2

6
4

�
�Lf

�
0

: : :

0
�
�Lf

�

3

7
5

8
<̂

:̂

fs1 fIg
:::

fsp fIg

9
>=

>;
D

8
<̂

:̂

f0g
:::

f0g

9
>=

>;
;

(1.27)

ŒK� fa0g C 1

2
fR0g D f0g ; (1.28)

where [I] is the identity matrix, fIg is a vector elements of which are all 1, and
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�
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: : :

0 �j
�
Lf
�
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7
5 : (1.29)

1.4 Case Study and Discussion

Effect of breathing edge crack for different crack parameters is studied by using a cantilever beam model with the following
properties: L D 1 m, I D 2:667 � 10�8 m4, � D 7850 kg/m3, A D 8 � 10�4 m2, E D 206 GPa, � D 0:07, Lf D 0:1 m
and f .t/ D 100 cos .!t/ N. Galerkin’s method is applied by utilizing first three modes of the beam and the resulting set of
nonlinear ordinary differential equations are converted into a set of nonlinear algebraic equations by using harmonic balance
method with multi harmonics. According to [13], as crack ratio increases fundamental frequency decreases. Similarly, crack
location also affects the fundamental frequency depending on the boundary conditions of the beam. The effect of different
crack ratio and crack location on natural frequencies is given in Fig. 1.2. It is observed from the results that the effect of crack
parameters on natural frequencies are not significant. Therefore, alternative features should be considered in crack detection
problems.

In Fig. 1.3, absolute value of bias term of each modal coefficient as function of frequency is given. It is observed that bias
term of each modal coefficient is influenced by both crack location and crack ratio. In Fig. 1.3a, bias term of each modal
coefficient is plotted for different crack locations and it is observed that depending on the crack location bias term of different
modal coefficient becomes dominant. Bias terms are also affected by the crack ratio, however the effect of crack ratio is not
similar to the effect of crack location. For instance, from Fig. 1.3b it is observed that, an increase in crack depth shifts all the
plots upward and the order of dominancy is conserved.

The amplitude of pth harmonic of jth modal coefficient is expressed by the following equation

ajp D
q

ajcp
2 C asjp

2: (1.30)

In Fig. 1.4, amplitudes of the first harmonic of modal coefficients with respect to frequency are given for different crack
location and ratio. From the plots, it is observed that first harmonics are slightly influenced by crack parameters. However,
the first harmonic is the most dominant harmonic on the total response among the higher harmonics. This fact also explains
why crack parameters have negligible effect on the total response.
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Fig. 1.3 Bias term of each modal coefficient vs. frequency. (a) For ˛ D 0:5 and different crack location. (b) For Lc D 0:2 m and different crack
ratio

Higher harmonics of different trial functions for different crack parameters are shown in Figs. 1.5, 1.6, 1.7, and 1.8.
Studying these figures, it is observed that higher harmonics can be grouped as even and odd harmonics depending on the
similarities of the plots. Observing Figs. 1.5 and 1.6, it is seen that effect of crack parameters on even harmonics is similar to
the effect of crack parameters on bias terms. As crack location changes, even harmonic of a different trial function becomes
more dominant; whereas increase in crack depth causes an increase in the overall amplitude of the even harmonics.

Effect of crack parameters can also be observed in the odd harmonics. As depicted in Figs. 1.7 and 1.8, effect of crack
location on odd harmonics is similar to the effect of crack location on bias terms and even harmonics. Studying the same
figures, it is also observed that, odd harmonics of the first modal coefficient are significantly affected by crack depth.
However, getting information from the odd harmonics of the second and the third modal coefficient is a more challenging due
to scattered pattern. Therefore, analyzing the even harmonics can be used as means for crack detection problems. In Table 1.1,
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Fig. 1.4 First harmonic of each modal coefficient vs. frequency. (a) For ˛ D 0:5 and different crack location. (b) For Lc D 0:2 m and different
crack ratio
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Fig. 1.5 Second harmonic of each modal coefficient vs. frequency. (a) For ˛ D 0:5 and different crack location. (b) For Lc D 0:2 m and different
crack ratio

ratio of maximum amplitudes of the even harmonics are provided. The ratio is obtained by dividing maximum amplitude of
pth harmonic of each modal coefficient to the maximum amplitude of pth harmonic of the first modal coefficient. Studying
Table 1.1, significant effect of crack location on other trial functions can be observed.

In order to study the effect of crack depth on harmonics of different modal coefficients Table 1.2 is prepared in a similar
way. In Figs. 1.5b and 1.6b it is observed that the increase in crack depth also increases all the plots with a similar magnitude.
As a result of this fact, order of magnitude of the harmonics do not change. Therefore, in Table 1.2, it is observed that the
maximum amplitude ratio is not influenced by the crack ratio.
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Fig. 1.6 Fourth harmonic of each modal coefficient vs. frequency. (a) For ˛ D 0:5 and different crack location. (b) For Lc D 0:2 m and different
crack ratio

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

Frequency, w, [rad/s] Frequency, w, [rad/s]

T
hi

rd
 H

ar
m

on
ic

, a
j3

 [m
]

a
13

, L
c
=0.2

a
13

, L
c
=0.4

a
23

, L
c
=0.2

a
23

, L
c
=0.4

a
33

, L
c
=0.2

a
33

, L
c
=0.4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

T
hi

rd
 H

ar
m

on
ic

, a
j3

 [m
]

a
13

, a=0.2

a
13

, a=0.5

a
23

, a=0.2

a
23

, a=0.5

a
33

, a=0.2

a
33

, a=0.5

a b

Fig. 1.7 Third harmonic of each modal coefficient vs. frequency. (a) For ˛ D 0:5 and different crack location. (b) For Lc D 0:2 m and different
crack ratio

1.5 Conclusion

In this study, beam with breathing edge crack is modelled by using Euler-Bernoulli beam theory and nonlinear piecewise
linear stiffness. Multiple trial functions are used to represent the response in Galerkin’s method where a piecewise linear
stiffness matrix based on the slope difference at the crack location is introduced. Harmonic Balance Method with multiple
harmonics is used to convert nonlinear ordinary differential equation into a set of nonlinear algebraic equations. It is observed
from the results that effect of crack parameters on the natural (resonance) frequency of the cracked beam is insignificant.
However, it is observed that harmonics of the response are affected from the crack parameters significantly; hence, this
information can be used for the crack detection. Both crack depth and crack location affects the amplitudes of the harmonics
of each modal coefficient. As crack ratio increases the amplitudes of the harmonics also increase, however the order of
magnitudes of the harmonics are not affected by the crack ratio. The crack location affects amplitudes of the harmonics
as well as the order of magnitudes of the harmonics. Depending on the crack location, a harmonic of a different modal
coefficient becomes dominant. This fact explains the necessity of using multiple trial functions.
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Fig. 1.8 Fifth harmonic of each modal coefficient vs. frequency. (a) For ˛ D 0:5 and different crack location. (b) For Lc D 0:2 m and different
crack ratio

Table 1.1 Ratio of maximum amplitudes of even harmonics of each
modal coefficient for different crack location

˛ D 0:5

Lc a12/a12 a22/a12 a32/a12 a14/a14 a24/a14 a34/a14

0.2 1 0.00128 0.01438 1 0.00141 0.0151
0.4 1 0.18786 0.05545 1 0.22663 0.04163

Table 1.2 Ratio of maximum amplitudes of even harmonics of each
modal coefficient for different crack depth

Lc D 0:2

˛ a12/a12 a22/a12 a32/a12 a14/a14 a24/a14 a34/a14

0.2 1 0.00132 0.01327 1 0.00147 0.01385
0.5 1 0.00128 0.01437 1 0.00141 0.01507
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Chapter 2
Enforcing Linear Dynamics Through the Addition of Nonlinearity

G. Habib, C. Grappasonni, and G. Kerschen

Abstract The current trend of developing more slender structures is increasing the importance of nonlinearities in
engineering design, which, in turn, gives rise to complicated dynamical phenomena. In this study, we evidence the somewhat
paradoxical result that adding purposefully nonlinearity to an already nonlinear structure renders the behavior more linear.

Isochronicity, i.e., the invariance of natural frequencies with respect to oscillation amplitude, and the force-displacement
proportionality are two key properties of linear systems that are lost for nonlinear systems. The objective of this research is to
investigate how these properties can be enforced in a nonlinear system through the addition of nonlinearity. To this end, we
exploit the nonlinear normal modes theory to derive simple rules, yet applicable to real structures, for the compensation
of nonlinear effects. The developments are illustrated using numerical experiments on a cantilever beam possessing a
geometrically nonlinear boundary condition.

Keywords Nonlinear normal modes • Linearization • Compensation of nonlinearity • Isochronicity • Perturbation

2.1 Introduction

Many engineering applications, as for instance tuned vibration absorbers [1], ultrasensitive mass and force sensing devices
[2], time keeping devices [3], nanoscale imaging systems [4] and many others, rely on linear properties of mechanical
systems, such as force-displacement proportionality and invariance of the resonant frequency. However, if high excitation
amplitudes are considered, nonlinearities are activated, invalidating linear properties. This situation is particularly relevant
for nano- and micro-electromechanical systems, where nonlinearities are activated already at moderate forcing amplitudes
[5]. Furthermore, the current trend of developing more slender structures increases the importance of nonlinearities also in
macro systems.

The loss of force-displacement proportionality, the dependence of the resonant frequency on the amplitude, the appearance
of quasiperiodic or chaotic solutions, variations in stability properties, coexistence of different solutions, boundedness of
basins of attraction, appearance of bifurcations are some of the effects typically generated by nonlinearities [6] that have
no linear counterpart. Most of these phenomena have been studied in depth during the last decades, and it is now possible
to predict the consequences of many different types of nonlinearities, although unexpected behaviors are always possible.
Nevertheless, there are few studies that attempt to eliminate these usually unwanted phenomena. Most existing studies deal
with the implementation of active controllers [7, 8], which is referred to as feedback linearization.

The objective of this paper is to enforce linear properties in a nonlinear system through the addition of passive nonlinear
elements. The two target properties are the force-displacement proportionality and the invariance of the resonant frequency
with respect to the amplitude, which are generally lost even at low level of excitation.

The developed procedure exploits the nonlinear normal modes (NNMs) [9] of undamped, unforced systems, because
they give a good approximation of the system’s backbone curves. Thanks to the energy balance criterion, the undamped,
unforced dynamics can be related to the forced damped dynamics, thus giving complete (but approximate) information about
the location of the resonant peaks in the force-frequency space. The resulting equations are solved through reduction to
a single harmonics and a standard perturbation technique, which allows to derive equations that can be solved explicitly.
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This procedure prepares the ground for the definition of linear equations, whose solution is directly related to the target
linear property. The analytical developments are validated using a two-degree-of-freedom (DoF) reduced-order model of a
cantilever beam possessing a geometrically nonlinear boundary condition and a nonlinear attachment.

2.2 Model

We consider a general n-DoF mechanical system with concentrated polynomial nonlinearities of odd orders, subject to
harmonic excitation. The system has the form

MRx C DPx C Kx C Qb.x/ D p
"Qvf cos .!t/ (2.1)

where M, D and K are the mass, damping and stiffness matrices, x is the position vector, Qb contains the nonlinear terms, Qv
indicates which DoFs are excited, f is the forcing amplitude, ! is the excitation frequency and " is a small parameter, while
t is time. M, D and K are assumed to be symmetric, real and positive-definite, while Qb has the generic form

Qb D

2

6
6
4

:::P
mD3;5;:::

P
h1C:::ChnDm

Qbjh1:::hn

Qn
iD1 xhi

i
:::

3

7
7
5 ; (2.2)

where j D 1; n, such that, for example, for a 2-DoF system the cubic terms of the first raw of Qb are Qb130x31 C Qb121x21x2 C
Qb112x1x22 C Qb103x32.

In order to decouple the linear part of the system, we apply classical modal analysis, i.e., denoting U the matrix containing
the eigenvectors of M�1K, we apply the transformation x D Uy to Eq. (2.1) and we pre-multiply it by UT. The resulting
system has the form

UTMURy C UTDUPy C UTKUy C UT Qb D p
"UT Qvf cos .!t/ ; (2.3)

where UTMU and UTKU are diagonal. Pre-multiplying then the system by the inverse of UTMU and applying the
transformation y D p

"f q, we have

Rq C C Pq C �q C b D v cos .!t/ ; (2.4)

where C is not symmetric (differently from D), and � is diagonal and contains the squares of the natural frequencies of the
different modes of vibration. �, C and b have the general form
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: : : 0

�2
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0
: : :

3

77
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4

c11 : : : c1n
:::
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cn1 : : : cnn
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7
5 ;

b D
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4

:::
P

mD3;5;::: "
m�1
2 f m�1P

h1C:::ChnDm bjh1:::hn

Qn
iD1 qhi

i
:::

3

7
7
5 : (2.5)

The forcing amplitude f is contained uniquely in b, i.e. the system depends on the forcing amplitude only through the
coefficients of the nonlinear terms. This clearly illustrates that considering small nonlinearities or small forcing amplitudes
is equivalent, in many cases. Furthermore, terms of order m are proportional to "

m�1
2 (see b), which prepares the ground for

the perturbation procedure implemented in the following sections.
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For the sake of simplicity, we consider only cubic nonlinearities in this analytical development. Neglecting terms higher
than the third order allows us to develop the equations up to order "1. Nevertheless, the procedure can be extended to higher-
order nonlinear terms.

2.3 Calculation of Unforced, Undamped Response Using Nonlinear Normal Modes

NNMs give a good approximation of the system backbone curves. In order to calculate them, we consider the undamped
unforced equations of motion

Rq C �q C b D 0: (2.6)

Adopting a standard perturbation procedure, the solution of Eq. (2.6) can be approximated to a single harmonic by

q D �
q0 C "q1 C O

�
"2
��

sin .!t/ ; (2.7)

where

q0 D

2

6
6
4

:::

qj0
:::

3

7
7
5 ; q1 D

2

6
6
4

:::

qj1
:::

3

7
7
5 and ! D !0 C "!1 C O

�
"2
�
; (2.8)

which is valid for small values of ".
Substituting Eq. (2.7) into Eq. (2.6) and adopting the standard single harmonic approximation sin3 .!t/ � 3=4 sin .!t/,

we obtain n equations of the form

� �
!20 C 2"!1!0

� �
qj0 C "qj1

� C �2
j

�
qj0 C "qj1

�C 3

4
"

0

@
X

h1C:::ChnD3
bjh1:::hn

nY

iD1
qhi

i

1

A

C O
�
"2
� D 0: (2.9)

Considering the terms of order "0, related to the underlying linear system, we have

�!20qj0 C�2
j qj0 D 0: (2.10)

In order to obtain the NNM associated with the lth mode of vibration, we impose that the linear part of all other modes have
zero amplitude, i.e.

for j ¤ l ) qj0 D 0; (2.11)

while ql0 ¤ 0, such that the we refer to the lth mode of vibration and !0 D �l.
Considering now the terms of order "1 of Eq. (2.9), we obtain

j ¤ l ��2
l qj1 C�2

j qj1 C 3

4
bj0:::3:::0q

3
l0 D 0 (2.12)

j D l ��2
l ql1 � 2!1�lql0 C�2

l ql1 C 3

4
bl0:::3:::0q

3
l0 D 0: (2.13)

(bj0:::3:::0, for example in a 4-DoF system where l D 2, would be bj0300). Thus, from Eq. (2.12) we have

qj1 D 3

4

bj0:::3:::0q3l0
�2

l ��2
j

; j ¤ l; (2.14)
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that indicates how the modes not directly excited by the force (j ¤ l) are excited by the nonlinear coupling. While from
Eq. (2.13) we have

!1 D 3

4

bl0:::3:::0q2l0
2�l

; (2.15)

where !1 represents the variation of the lth natural frequency with respect to the amplitude of oscillations, in first
approximation.

2.4 Calculation of Forced, Damped Response Using Energy Balance

The energy balance criterion can be used to relate the undamped, unforced dynamics of the NNMs to the forced damped
dynamics [10, 11], thus obtaining complete information of the resonant peaks. Given a general linearly-damped mechanical
system, the balance between the dissipated and input energies is expressed by the equation

Z T

0

Px.t/TDPx.t/dt D
Z T

0

Px.t/Tf.t/dt; (2.16)

where T is the period of vibration and f is the external force. In the case of harmonic excitation f D Qvf cos .!t/, approximating
the solution to a single harmonics x.t/ � x0 sin .!t/ in resonant conditions, Eq. (2.16) has the form

!2xT
0Dx0

Z T

0

cos .!t/2 dt � !xT
0 Qvf

Z T

0

cos .!t/2 dt ) !xT
0Dx0 � xT

0 Qvf : (2.17)

Inserting in Eq. (2.17) the solution of the undamped unforced system, it is possible to estimate the ratio between the forcing
amplitude and the amplitude of oscillation.

Applying the aforementioned procedure, considering the system in Eq. (2.4) and the tentative solution (2.7), we obtain
the energy balance equation
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Collecting terms of order "0 we obtain

�lq
2
l0cll D ql0vl ) ql0 D vl

�lcll
; (2.19)

which yields the relation in the linear range between the forcing amplitude (here normalized) and the oscillation amplitude
at resonance as a function of the modal damping.
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Collecting terms of order "1 of Eq. (2.18) we have

�lql0

0

B
@

nX

jD1
j¤l

cljqj1 C
nX

jD1
j¤l

cjlqj1

1

C
AC 2�lql0cllql1 C !1q

2
l0cll D

nX

jD1
j¤l

qj1vj C q1lvl; (2.20)

thus

ql1 D
�lql0

�
Pn

jD1
j¤l

cljqj1 CPn
jD1
j¤l

cjlqj1

�
C !1q2l0cll �Pn

jD1
j¤l

qj1vj

vl � 2�lql0cll
; (2.21)

which indicates the variation of the modal amplitude of oscillation due to nonlinearity.

2.5 Enforcement of Linear Properties

The set of Eqs. (2.11), (2.14), (2.15), (2.19) and (2.21) characterize the NNMs and forced resonant response of the lth
structural mode. Equations (2.11) and (2.19) refer to the underlying linear system; Eq. (2.11) is due to the imposed resonant
condition, while Eq. (2.19) gives the relationship between the forcing amplitude and the amplitude of oscillation in the linear
case. Equations (2.14), (2.15) and (2.21) refer to the nonlinear properties of the system. qj1 .j D 1n; j ¤ l/ are directly
proportional to bj0:::3:::0, !1 is directly proportional to bl0:::3:::0, while ql1 depends linearly on all the coefficients bj0:::3:::0

(j D 1; n), which are the coefficients of the solely nonlinear terms relevant at order "1, when the lth resonance is excited. If
the system includes higher-order nonlinear terms, other coefficients come into play.

The objective of this section is to show that, through an appropriate tuning of the coefficients bj0:::3:::0, the dynamics of the
nonlinear system can resemble that of a linear system.

2.5.1 Enforcing Force-Displacement Proportionality

We consider the general case for which the objective is to keep the force-displacement proportionality typical of linear
systems for the kth DoF (xk in the physical coordinate system), while the system vibrates at the lth resonant frequency.
Recalling that x D p

"f Uq and considering the lth resonance, it follows that

xk D p
"f

0

@uklql0 C "

0

@
nX

jD1
ukjqj1

1

AC O
�
"2
�
1

A : (2.22)

where uij is an element of matrix U. If we impose that

nX

jD1
ukjqj1 D 0 (2.23)

xk obeys, in first approximation, a force-displacement proportionality. Equation (2.23) depends on the n coefficients bj0:::3:::0

(j D 1n), which, in turn, depend on the parameters characterizing the physical nonlinearities of the system.

2.5.2 Enforcing Straight Line Frequency Backbone

Another property, typical of linear systems and generally not satisfied in nonlinear systems, is the invariance of the resonance
frequencies with respect to forcing amplitude, giving rise to straight backbone curves. Hardening (softening) nonlinearities
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shift resonance frequencies toward greater (lower) values for increasing amplitudes of oscillation. To enforce a straight
backbone curve for the lth resonance, !1 should be set to 0, and, hence, bl0:::3:::0 D 0. An important feature of the proposed
approach is that the final equations are fully explicit. Thus, in spite of their complexity, they can be rapidly implemented.

2.6 Beam Example

To validate the previous theoretical developments, a nonlinear cantilever beam with a nonlinear attachment, similar to that
studied in [12, 13], is considered. The two nonlinearities of the attachment, knl2 and knl3, are designed so as to enforce linear
properties in the coupled system. A 2-DoF reduced-order model of this system is
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: (2.24)

The cantilever beam has a single concentrated nonlinearity, knl1 D 3:3 � 109 N/m3.
Figure 2.1a illustrates the normalized frequency response of the first degree of freedom of the system without the

additional nonlinearities, i.e., knl2 D knl3 D 0, for three forcing amplitudes. A substantial hardening effect is observed,
while the amplitude of the first (second) resonance decreases (increases) when the forcing amplitude increases.

The displacement x1 around the first resonance obeys force-displacement proportionality if

�0:0128C 1:39 � 10�10knl2 C 2:17 � 10�10knl3 D 0: (2.25)

which is verified if knl2 D 9:2 � 107 N/m3 and knl3 D 0. Figure 2.1b that depicts the corresponding normalized frequency
response confirms that the amplitude of the first resonance is almost identical for the three forcing amplitudes. The
linearization of the force-displacement relation can be further improved if a fifth-order spring is added between the two
lumped masses. This is evidenced in Fig. 2.1c, which compares the envelopes of the resonant peaks in the different considered
cases.

Aiming now to enforce isochronicity of the first resonance, i.e., !1 D 0, we obtain

62:6C 7:39 � 10�7knl2 C 2:84 � 10�6knl3 D 0: (2.26)

150 200 250
0

2

4

x 10
−3

ω [rad/s]

x
1/

f
[m

/N
]

x
1/

f
[m

/N
]

x
1/

f
[m

/N
]

a

150 200 250
0

2

4

x 10
−3

ω [rad/s]

b

0 0.1 0.2 0.3 0.4 0.5
0

2

4

x 10
−3

f [N]

c

Fig. 2.1 (a), (b) frequency response of the system in Eq. (2.24) for forcing amplitudes f ! 0, f D 0:3 and f D 0:5N, for knl2 D knl3 D 0

(a) and for knl2 D 9:2 � 107 N/m3 and knl3 D 0 (b); (c) envelope of the first resonant peak with respect to the forcing amplitude. Dashed line:
knl2 D knl3 D 0; solid line: knl2 D 9:2 � 107 N/m3 and knl3 D 0; dash-dotted line: knl2 D 9:2 � 107 N/m3, knl3 D 0 and additional quintic spring
knl4 D 3:9 � 1012 N/m5
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Fig. 2.2 Frequency response of the system in Eq. (2.24) for forcing amplitudes f ! 0, f D 0:3 and f D 0:5N, for knl2 D 2:11 � 107 and
knl3 D �7:7 � 107 (a) and for knl2 D 2:75 � 107 and knl3 D 4:14 � 107 (b); envelope of the two resonant peaks with respect to the forcing
amplitude. Dashed lines: knl2 D knl3 D 0; solid lines: knl2 D 2:11 � 108 and knl3 D �7:7 � 107; the numbers in brackets indicate the first (1) and
the second (2) resonant peak

Equations (2.25) and (2.26) can be simultaneously satisfied if and only if knl2 D 2:11 � 108 and knl3 D �7:7 � 107. Doing
so, the first resonance peak can be made practically unchanged with respect to the linear resonance, as plotted in Fig. 2.2a.

The developed framework can go beyond operating on a single resonance. For instance, force-displacement proportional-
ity of the second peak (with respect to x1) can be imposed through

0:00654� 1:53 � 10�10knl2 � 5:63 � 10�11knl3 D 0: (2.27)

For knl2 D 2:75 � 107 and knl3 D 4:14 � 107, Eqs. (2.25) and (2.27) are simultaneously verified, which means that both
resonances obey approximately force-displacement proportionality. The corresponding normalized frequency response is
illustrated in Fig. 2.2b. Figure 2.2c depicts the envelopes of the two peaks with respect to the forcing amplitude. The dashed
lines, referring to the original system (knl2 D knl3 D 0), either decrease (first peak) or increase (second peak) whereas the
solid lines are almost horizontal for a large range of forcing amplitudes.

2.7 Conclusions

This paper has demonstrated how it is possible to design nonlinearities of a mechanical system so that its dynamics resemble
that of a linear system, which include force-displacement proportionality and isochronocity. The developments exploited a
standard perturbation technique, combined with NNM theory and energy balance of periodic solutions at resonance, and
were validated using a 2-DoF reduced-order model of a nonlinear cantilever beam.
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Chapter 3
Experimental Analysis of a Softening-Hardening Nonlinear Oscillator
Using Control-Based Continuation

L. Renson, D.A.W. Barton, and S.A. Neild

Abstract Control-based continuation is a recently-developed approach for testing nonlinear dynamic systems in a controlled
manner and exploring their dynamic features as system parameters are varied. In this paper, control-based continuation is
used to track directly in the experiment the steady-state periodic solutions of a single-degree-of-freedom oscillator presenting
a softening-hardening restoring force. The oscillator forced response is investigated and fully characterized in forcing
amplitude and frequency. The oscillator’s backbone curve is then extracted directly in the experiment by following a phase
quadrature condition between the oscillator response and the base excitation.

Keywords Experimental nonlinear dynamics • Forced response • Backbone curves • Softening-hardening •
Control-based continuation

3.1 Introduction

Modern aerospace structures are prone to nonlinearity as, for instance, weight reduction has brought an increase of flexibility.
In this context, the development of nonlinear models is gaining interest in the structural dynamics community. However,
developing such models and addressing the associated dynamics is often very challenging because nonlinear systems
generally exhibit a wide range of complicated dynamic phenomena that cannot be understood and predicted using standard
linear methods. Experimental validation has therefore, more than ever, an important role to play.

The theory of nonlinear normal modes (NNMs) has proved useful for uncovering some essential features of nonlinear
systems such as modal interactions [1], mode bifurcations [2], isolated solutions [3] or frequency-energy dependence [4, 5].
The latter can be characterized by the so-called backbone curve which represents the evolution of the resonance frequency
for increasing oscillation amplitudes. In addition to its practical engineering relevance, this nonlinear dynamic feature is
attractive because it can be extracted from the physical system using appropriate testing; thus allowing the subsequent model
validation and updating process to be performed. The experimental identification of backbone curves was first proposed in
[6, 7]. Following the principle of linear phase separation techniques, the method isolates a single NNM using an excitation
in phase quadrature with the system response. The applied force is then stopped and the relation between amplitude and
frequency of oscillation is extracted from the free, damped, response of the system using time-frequency analysis tools such
as the Hilbert or Wavelet transforms. As such, the method is often termed resonant decay or free decay. It was successfully
applied to several academic systems of moderate complexity as, for instance, a single-degree-of-freedom oscillator [8], a
nonlinear beam [7] and a steel frame structure [9]. More recently, a phase separation method where multiple NNMs are
identified simultaneously from broad-band data was introduced and demonstrated on noisy synthetic data in [10].

In [11], a novel approach which traces out the backbone curve directly in the experiment instead of post-processing it from
recorded experimental data was presented. Using the concept of control-based continuation (CBC), the method combines a
stabilizing feedback controller and path following techniques to follow in the experiment the steady-state periodic responses
describing the backbone curve of the system. If the method relies on the same phase quadrature criterion as the resonant
decay method, it nevertheless presents a number of advantages over the latter. For instance, the method is naturally robust
to bifurcation and stability issues because of the presence of the stabilizing control system. Furthermore, the discretization
of the backbone curve is no longer governed by the damping characteristics of the system and the quality of the results
can be verified and controlled (within experimental limits) using user-defined parameters. In [11], this novel method was
demonstrated on a single-degree-of-freedom nonlinear oscillator (SDOF) presenting a hardening characteristic.
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In this paper, the CBC identification of backbone curves is demonstrated on a SDOF oscillator featuring a more
complicated restoring force with softening and hardening characteristics. The CBC approach developed in [11] is briefly
presented in Sect. 3.2. The experimental set-up considered as demonstrator is presented in Sect. 3.3, and experimental results
are discussed in Sect. 3.4. Conclusions are drawn in Sect. 3.5.

3.2 Backbone Curve Identification Using CBC

CBC is a testing method inspired from numerical continuation techniques [12–14] that aims to follow, experimentally, the
evolution of the steady-state response of a system (e.g., equilibrium, periodic solution) as parameters are varied. Contrary to
numerical simulations, the states of a physical system cannot be set arbitrarily and CBC relies therefore on a controller and
its control target x? as a proxy for the states. The dynamical system of interest is however the uncontrolled system, so the
added control system should be non-invasive, i.e. the control input u.t/ should vanish for all time. In that case, the steady-
state solution xasy observed for the controlled system is also a steady-state solution of the uncontrolled system. In practice,
u.t/ is only approximately zero. Though the controller does not change the steady-state solution itself, it does change its
linearisation thus making unstable orbits stable if implemented correctly.

The presence of the controller is advantageous because CBC is thus robust to stability changes and bifurcations. However,
investigating the stability of the underlying uncontrolled response, and hence detecting bifurcations, is more complicated.
In [15], a number of measures are suggested to overcome this problem but all require turning off the control for a period
of time; in many situations this is not desirable as damage could be caused to the experiment or even the experimenter. In
[16], Barton identifies a multi-input multi-output (MIMO) auto-regressive model with exogenous inputs (ARX) from the
experiment response perturbed around a steady-state periodic orbit. The model is then exploited to determine the so-called
Floquet multipliers and conclude the periodic orbit stability.

In the context of finding steady-state behaviour, choosing x? such that u.t/ � 0 plays the role of the equations of motion
of a model. In [15, 17–19], the problem is iteratively solved (to experimental accuracy) using a Newton-like algorithm
where derivatives are evaluated experimentally using finite differences. Starting from a given steady-state, the search for the
next solution is then performed using a pseudo-arclength continuation algorithm (see, for instance, [20]). In this paper, a
simplification of this procedure is used because the studied parameter, the total forcing amplitude, and the control signal
have the same action on the system. This simplified method is approximately 15 times faster than the approach reported in
[17] because no derivative is required. The general aspects of this CBC approach are briefly introduced in Sect. 3.2.1, and
the reader is referred to [21] for a more detailed description. The use of CBC for backbone curve tracking is then discussed
in Sect. 3.2.2.

3.2.1 Steady-State Periodic Solutions of the Forced System

This section shows how CBC can extract a steady-state periodic solution of the uncontrolled system in response to an
excitation f .t/. In our experiment, we consider a single-point, single-harmonic forcing of arbitrary phase of the form f .t/ D
a cos.!t/C b sin.!t/. The forcing amplitude r D p

a2 C b2 is considered as a parameter.
Consider what happens if we pick a specific harmonic forcing f ?.t/ defined by the pair of coefficients .a?; b?/ and an

arbitrary periodic control target signal x?.t/ expanded to m (finite) Fourier modes as

x?.t/ D A?0
2

C
mX

jD1
A?j cos.j!t/C B?j sin.j!t/: (3.1)

A feedback control signal is added to the excitation signal. For simplicity, the particular case of a proportional-plus-derivative
(PD) controller as later used in our experimental investigations is considered. The method works however for more general
control strategies. The total input to the system is given by

ftot.t/ D f .t/C u.t/ D f ?.t/C kp.x
?.t/ � x.t//C kd.Px?.t/ � Px.t//; (3.2)
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where x.t/ is the response of the system. Assuming that the chosen controller is stabilizing, the experiment settles into a
periodic steady-state output defined as

xasy.t/ WD lim
t!C1 x.t/ D A0

2
C

mX

jD1
Aj cos.j!t/C Bj sin.j!t/: (3.3)

We assume that the experiment has periodic input after the transients have settled. The signal u.t/ is generally not equal to
zero and the control system is thus invasive. The general solution to this problem is to use a root-finding algorithm to modify
the control target coefficients .A?0 ;A

?
j ;B

?
j /

m
.jD1/ such that u.t/ � 0. However, realizing that f .t/ and u.t/ have the same action

on the experiment, the applied force and control signals can be lumped together such that f .t/ D ftot and u.t/ � 0 in the
first mode. The steady-state response (3.3) is unchanged as the total input to the system f .t/ C u.t/ remains unchanged,
but (3.3) is now a steady-state solution of the underlying uncontrolled system of interest. The amplitude of this new forcing
at fundamental frequency ! equals r D p

a2 C b2, where

a D a? C kp.A
?
1 � A1/C !kd.B

?
1 � B1/; (3.4)

b D b? C kp.B
?
1 � B1/C !kd.A1 � A?1/: (3.5)

Equations (3.4) and (3.5) are not sufficient because the total input force generally does not have the required single-harmonic
form due to the presence of nonlinearities. Even if the reference signal x?.t/ is harmonic, the output xasy contains higher-
harmonics introduced by the nonlinearities of the experimental system. The control signal u.t/ has therefore higher-harmonic
Fourier coefficients given by

Au
0 D kp.A

?
0 � A0/; (3.6)

Au
j D kp.A

?
j � Aj/C j!kd.B

?
j � Bj/ .j > 1/; (3.7)

Bu
j D kp.B

?
j � Bj/C j!kd.Aj � A?j / .j > 1/: (3.8)

If these coefficients are zero then the forcing f .t/Cu.t/ is harmonic with amplitude r D p
a2 C b2 such that the point .r; xasy/

is a periodic orbit of the uncontrolled system.
The requirement for the coefficients .Au

0;A
u
j ;B

u
j /

m
.jD2/ to be zero is a nonlinear system of 2m � 1 equations in the Fourier

coefficients X? D ŒA?0 ; .A
?
j ;B

?
j /

m
jD2� of the reference signal x?. This problem is very similar to the original one, with the

notable difference that the first mode (j=1) is no longer included in the problem. This first mode usually contains all the
instability present in the periodic solution. Removing this coefficient from the problem allows therefore to use a more
effective fixed-point iteration method where derivatives do not need to be evaluated. The kth iteration of the method reads:

X?kC1 D X.X?k / (3.9)

where X D ŒA0; .Aj;Bj/
m
jD2�. In other words, the new control target coefficients X?kC1 are simply set equal to the Fourier

coefficients X of the asymptotic steady-state response xasy reached under the control input defined with coefficients X?k .
In summary, the overall CBC methodology to trace out the steady-state periodic response of a system in function of the

forcing amplitude r is:

1. Set X? WD Xn C hŒXn � Xn�1� where .Xn;Xn�1/ are the Fourier coefficients of the previous two points along the branch of
periodic solutions.

2. Run the experiment with input (3.2) and x? defined using the Fourier coefficients X?.
3. Measure the Fourier coefficients X of the output x.t/ after the transients have died out. Although not necessary, the control

can be tuned appropriately such that the transients die out quickly.
4. Check if the root-mean-square error

eŒu� D
vuu
t.A?0 � A0/2 C

mX

jD2
.A?j � Aj/2 C .B?j � Bj/2 (3.10)
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is smaller than the desired tolerance. If not, proceed to the fixed-point iteration. Set X? D X for all Fourier modes except
the first (A?1 and B?1 are left unchanged) and go to step (3).

5. After the fixed-point iterations, the higher-harmonic coefficients of u.t/ are below the user-specified tolerance and the
total input to the system can be considered as harmonic. The next point XnC1 on the branch is XnC1 D X and the forcing
is given by Eqs. (3.4)–(3.5).

This method can be regarded as an amplitude sweep carried out at constant forcing frequency.
Note that the methodology described above can be further simplified by omitting f .t/. The total input to the system boils

down to the sole control signal u.t/, which now also plays the role of the excitation. The next point XnC1 on the branch is
then given by XnC1 D X and .anC1; bnC1/ D .Au

1;B
u
1/.

3.2.2 Tracking the Backbone Curve

To track the backbone curve, the oscillation frequency must be updated to maintain the phase quadrature between the
excitation and the response signals. This problem can be formalized as solving the scalar equation

q.!/ D .�out.!/ � �in.!//C �

2
; (3.11)

where �out.!/ and �in.!/ are the phase of the fundamental Fourier modes of the response, x.t/, and total input,f .t/C u.t/,
respectively. The evaluation of q.!/ is performed after the fixed-point iterations and replaces step 5 in the methodology of
Sect. 3.2.1. If q.!/ is below a used-defined tolerance, the point X is recorded as the next point on the backbone curve (with
XnC1 D X and forcing given by Eqs. (3.4)–(3.5)). If q.!/ is above the prescribed tolerance, the frequency is updated and we
go to step 3. Equation (3.11) can be solved using a Newton-Raphson procedure but, in practice, a simple bisection method
suffice.

Equation (3.11) only accounts for the fundamental harmonic component because the excitation signal considered in
the present study is harmonic. If a richer, multi-harmonic, excitation signal was to be considered, the higher-harmonic
coefficients would have to be updated to satisfy the quadrature criterion. These extra unknowns could be balanced by
extending the quadrature condition (3.11) to include the phase between the higher harmonics. As these higher-harmonic
coefficients would now be considered as part of the excitation, they would not be included in the error (3.10) and would no
longer be updated in the fixed point iteration procedure.

3.2.3 Multi-Harmonic Force Feedthrough

The presence of a feedback controller and the nonlinear nature of the tested system introduce harmonics in the applied
excitation. These harmonics are addressed by the method described in Sect. 3.2.1. Despite the success of this process, the
total forcing applied to the system can still possess a multi-harmonic content if, for instance, the amplifier-shaker system is
nonlinear and introduces harmonics into the excitation signal. These harmonics cannot be addressed by solving Eq. (3.9) and
need to be compensated for directly through the excitation signal f .t/. The problem of finding the appropriate forcing signal
leading to a total forcing that is harmonic can be formalized as:

A
Nf
j .A

f
j ;B

f
j / D 0; (3.12)

B
Nf
j .A

f
j ;B

f
j / D 0; (3.13)

where
�

Af
j ;B

f
j

�m

.jD2/ are the Fourier coefficients of the force theoretically applied to the system and
�

A
Nf
j ;B

Nf
j

�m

.jD2/ the Fourier

coefficients of the force actually applied to the system Nf .t/ (and measured in the experiment). Equations (3.12)–(3.13) can
be solved using a Newton-Raphson procedure for which the Jacobian matrix J representing the sensitivity of the Fourier
coefficients of the actual force with respect to the Fourier coefficients of the force theoretically applied can be determined
experimentally using finite differences.
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Remarks:

• Every modification of the applied excitation changes the system response and requires to solve Eq. (3.9) again.
• All the harmonics in Eqs. (3.12)–(3.13) do not need to be considered and the size of the Jacobian J can often be tailored

to the first few most important harmonics.
• The perturbation used to compute J using finite differences might need to be adapted for each harmonic depending on the

amplification or attenuation introduced by the excitation system transfer function.
• Depending on the characteristics of the excitation system, the Jacobian J might not need to be updated at each periodic

solution.

3.3 Description of the Experimental Set-Up

The methods presented in Sect. 3.2 are demonstrated on the system shown in Fig. 3.1a. This system is made of a thin steel
plate clamped at one end on an aluminum armature. At the other end of the plate, two sets of neodymium magnets are
attached. The system acts as a SDOF oscillator and is fixed vertically to avoid gravity-induced deformations transverse to
the plate thickness. Under base excitation, the moving magnets interact with a laminated iron stator and a coil. The magnetic
interactions introduce a complex nonlinear restoring force with hardening, softening-hardening, or bi-stable characteristics
depending on the distance between the magnets and the iron stator. In this study, the distance is such that the system presents
a softening-hardening restoring force. The frequency range of interest is 20.5–21.35Hz and corresponds to oscillation
amplitudes of maximum 2.5 mm. The damping in the system can be adjusted with the load connected to the coil. Here,
the circuit is left open producing the smallest possible damping.

Base and plate tip absolute displacements are measured using two Omron lasers, ZX2-LD50 and ZX2-LD100,
respectively. Their sampling period is set to 60	s. A strain gauge also measures the plate deformation at the clamping
(see Fig. 3.1b).

The nonlinear oscillator is excited at the base by a long-stroke electrodynamic shaker, model APS 113, equipped with
linear bearings and operated in current control mode using a Maxon ADS-50/10-4QDC motor controller. Typical base
displacements are sinusoidal with a frequency ranging from 20.5 to 21.35 Hz and an amplitude ranging from 0 to 0.3 mm. A
PID feedback control system is used to center the position of the shaker’s arm. Proportional, derivative and integral gains are
0.09, 0.0085, and 0.008, respectively. The fine tuning of the control gains was not necessary for CBC to work. A second-order
IIR Butterworth filter with a cutoff frequency at 500 Hz was applied to the error signal. The real-time control of the oscillator
is achieved through a PD control system implemented in parallel with the PID base displacement controller. Proportional
and derivative gains are 0.05 and 0.003, respectively. The error signal is based on the strain gauge signal. The latter presents
a very low noise level such that filtering the error signal was not required.

Fig. 3.1 (a) Picture of the nonlinear oscillator. (b) Picture of the experimental set-up
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The controllers are implemented on a BeagleBone Black fitted with a custom data acquisition board (hardware schematics
and associated software are open source and freely available [22]). All measurements are made at 5 kHz with no filtering.
Estimations of the Fourier coefficients of the response, base displacement, and control action are calculated in real time on
the control board. However, this was for convenience rather than a necessity.

3.4 Experimental Results

3.4.1 Preliminary Tests

The forced response of the nonlinear oscillator is studied using the CBC algorithm detailed in Sect. 3.2.1. Recorded Fourier
coefficients were averaged over ten samples, and each modification of the target coefficients X? was followed by maximum
10 waiting periods of 0.4 s each to let the transients die out. Fourier coefficients were assumed stationary if their absolute and
relative variance was lower than 5�10�4 and 1�10�7, respectively. Starting from rest, the target coefficient A?1 was initially
increased by 0.05 mm to overcome the shaker stiction. The following amplitude increments were 0.02 mm. The tolerance on
Eq.(3.9) was set to 5�10�4 for each Fourier coefficient and a maximum of 25 iterations was allowed to reach convergence.

Figure 3.2a (solid line) shows the response amplitude of the oscillator in function of the base displacement for an excitation
frequency of 20.9 Hz. Despite the good convergence of the fixed-point iteration at all measured points, Fig. 3.2b clearly shows
that the base excitation contains a higher-harmonic content that can represent more than 20 % of the fundamental component
amplitude. The regions with the largest higher-harmonic content were found to coincide with the fold regions where the base
displacement is minimum. The presence of these higher harmonics is therefore attributed to friction forces in the shaker,
which was also found to introduce small-amplitude higher harmonics when it was tested independently.

The harmonic forcing procedure described in Sect. 3.2.3 was used to retrieve the harmonic base excitation of interest.
Equations (3.12)–(3.13) are solved such that the total amplitude of the higher harmonics is limited to 1.5 % of the fundamental
component. The excitation was corrected for the second, third and fourth harmonics only. For the Jacobian matrix calculation,
the Fourier coefficient perturbation was 1.5�10�2 mm, and only two or three Jacobian matrix calculations per forcing
frequency were sufficient to ensure the proper resolution of Eqs. (3.12)–(3.13). The maximum number of iterations was
limited to 3. The oscillator response is significantly modified by applying this procedure as illustrated by the dashed line in
Fig. 3.2a. The major source of error remains now limited to the first few points with very small base displacements.

For the rest of our experimental investigations, the harmonic forcing procedure presented in Sect. 3.2.3 is always applied
between the steps 4 and 5 of the methodology of Sect. 3.2.1. For the backbone identification, the procedure is also applied
after the convergence of the phase quadrature condition. However, its effect on the objective function value was found to be
minor such that it never required any further modification of the forcing frequency.
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Fig. 3.2 Amplitude sweep performed on the nonlinear oscillator at 20.9 Hz. (a) Oscillation amplitude in function of the base displacement
amplitude. (b) Evolution of the higher-harmonic content normalized by the amplitude of the fundamental component. Solid (dashed) line shows
the test performed without (with) the harmonic forcing procedure presented in Sect. 3.2.3
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Fig. 3.3 Forced response of the SDOF shown in Fig. 3.1. (Filled circle) Amplitude of steady-state periodic responses measured during a series of
amplitude sweeps. (Blue surface) The complete forced-response surface obtained using Gaussian process regression. (Red solid line) Backbone
curve measured using CBC

3.4.2 Forced Response and Backbone Curve

Repeated amplitude sweeps for fixed values of the forcing frequency were carried out between 20.5 and 21.35 Hz in steps of
0.05 Hz. CBC parameters are identical to those used in Sect. 3.4.1. At each data point, full time series measurements were
made. These are shown as black dots in Fig. 3.3 where the forcing frequency and forcing amplitude (in mm) are plotted
against the response amplitude. To aid visualisation, a continuous surface constructed from the individual data points is
plotted in blue. This surface was created using Gaussian Process regression on the collected data points where the hyper-
parameters for the Gaussian process are calculated by maximizing the marginal likelihood of the hyper-parameters [23]. Due
to the softening-hardening character of the system, the surface presents four fold regions between 20.55 and 21.15 Hz.

The CBC algorithm was also used to extract the backbone curve of the nonlinear oscillator. The objective function (3.11)
was defined using the phase difference between the base displacement and the strain gauge measurement. The tolerance
on (3.11) was 5 � 10�3 rad, and the minimum frequency step was 10�4 Hz. The backbone curve was then discretized using
a constant amplitude step h D 0:02mm. The frequency was adapted as described in Sect. 3.2.2.

The backbone curve measured using CBC and the phase quadrature condition introduced in Sect. 3.2.2 is superimposed
(in red) to the nonlinear oscillator forced response in Fig. 3.3. The total experimental time required to generate the curve was
71 min for a total of 68 points. The measured backbone curve is also presented in a forcing frequency—response amplitude
plot in Fig. 3.4. The system presents a softening characteristic up to 1.3 mm where the oscillation frequency has dropped
by 3 %. At 1.3 mm the backbone curve presents a turning point, above which the system presents a hardening characteristic
with a resonance frequency increasing from 20.6 to 21.3 Hz in the [1.3–2.5]mm displacement range. At high-amplitude,
the fundamental Fourier coefficients still contribute the most to the response. The second and third harmonics are the largest
higher harmonics in the oscillator response. However, their relative importance compared to the fundamental component does
not exceed 5 and 2 %, respectively, such that, in the present case, a single-harmonic excitation was sufficient to accurately
reach quadrature and isolate the NNM motion.

The variability of our experimental results is also investigated in Fig. 3.4. The results obtained for two different
(consecutive) CBC runs are superimposed to the first one. Overall, the result repeatability is excellent.

The CBC method offers means to verify and validate the quality of the experimental results. Besides the convergence
of the objective function (3.11), the assumption of single-harmonic base excitation and the invasive character of the (PD)
controller can be assessed. This verification is performed in Fig. 3.5 where the root-mean-square (RMS) values of three
different time series are shown in function of the base displacement amplitude. RMS values were normalized by the RMS
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Fig. 3.4 Backbone curve tracing out the amplitude dependence of the resonance frequency of the experimental set-up shown in Fig. 3.1. Three
different, consecutive, runs are shown to illustrate the low variability of the experimental results
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Fig. 3.5 Analysis of the base excitation in function of the base displacement amplitude. (Solid line with filled square) RMS value of the
fundamental component; (blue solid line with diamond) RMS value of the non-harmonic component of the signal; (red solid line with filled
circle) RMS value of the higher-order harmonic components

value of the total base excitation signal. The first time series (-�-) represent the first (fundamental) harmonic component
of the base displacement. The second time series (-�-) is made of the sum of the higher-order harmonics, and the third
one (-Þ-) accounts for the non-harmonic content present in the unfiltered data and that is not decomposed in the seven first
Fourier modes. From Fig. 3.5, we can see that the RMS value of the fundamental component is overall comparable to the
RMS value of the entire time series. For low base displacement, the error introduced by the non-harmonic content appears
to be important. However, this is essentially attributed to noise which represents therefore a non-resonant contribution to
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the excitation and has a small effect on the results. The higher-harmonic content, which can significantly affect the results
(as shown in Fig. 3.2), reaches approximately 10 % for the first few points but decreases below 1.5 % after about the 10 first
points.

3.5 Conclusions

In this paper, the dynamics of a nonlinear oscillator with a softening-hardening restoring force was investigated experimen-
tally. CBC was used to characterize the steady-state periodic responses of the oscillator for different forcing amplitudes and
frequencies. Strong harmonics were observed in the base excitation and successfully cancelled out by changing the harmonic
content of the applied force. Finally, the method developed in [11] for the identification of backbone curves using CBC
was successfully demonstrated on this new system. The softening-hardening characteristic of the oscillator was captured
accurately and matched the forced response.

Acknowledgements L.R. is a Marie-Curie COFUND Postdoctoral Fellow of the University of Liége, co-funded by the European Union, S.A.N.
is funded by EPSRC fellowship EP/K005375/1, D.A.W.B. by EPSRC grant EP/K032738/1, which are gratefully acknowledged.

References

1. Renson, L., Noël, J.P., Kerschen, G.: Complex dynamics of a nonlinear aerospace structure: numerical continuation and normal modes.
Nonlinear Dyn. 79(2), 1293–1309 (2015)

2. Cammarano, A., Hill, T.L., Neild, S.A., Wagg, D.J.: Bifurcations of backbone curves for systems of coupled nonlinear two mass oscillator.
Nonlinear Dyn. 77(1–2), 311–320 (2014)

3. Kuether, R.J., Renson, L., Detroux, T., Grappasonni, C., Kerschen, G., Allen, M.S.: Nonlinear normal modes, modal interactions and isolated
resonance curves. J. Sound Vib. 351, 299–310 (2015)

4. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, part I: a useful framework for the structural dynamicist.
Mech. Syst. Signal Process. 23(1), 170–194 (2009)

5. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, part II: toward a practical computation using
numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)

6. Peeters, M., Kerschen, G., Golinval, J.C.: Dynamic testing of nonlinear vibrating structures using nonlinear normal modes. J. Sound Vib.
330(3), 486–509 (2011)

7. Peeters, M., Kerschen, G., Golinval, J.C.: Modal testing of nonlinear vibrating structures based on nonlinear normal modes: experimental
demonstration. Mech. Syst. Signal Process. 25(4), 1227–1247 (2011)

8. Londono, J.M., Neild, S.A., Cooper, J.E.: Identification of backbone curves of nonlinear systems from resonance decay responses. J. Sound
Vib. 348, 224–238 (2015)

9. Zapico-Valle, J.L., Garcia-Diéguez, M., Alonso-Camblor, R.: Nonlinear modal identification of a steel frame. Eng. Struct. 56, 246–259 (2013)
10. Noël, J.P., Renson, L., Grappasonni, C., Kerschen, G.: Identification of nonlinear normal modes of engineering structures under broadband

forcing. Mech. Syst. Signal Process. (in press). http://dx.doi.org/10.1016/j.ymssp.2015.04.016
11. Renson, L., Gonzalez-Buelga, A., Barton, D.A.W., Neild, S.A.: Robust identification of backbone curves using control-based continuation. J.

Sound Vib. 367, 145–158 (2016)
12. Doedel, E.J., Paffenroth, R.C., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Oldeman, B.E., Sandstede, B., Wang, X.J.: Auto2000:

continuation and bifurcation software for ordinary differential equations, Technical Report, California Institute of Technology (2000). Available
via http://cmvl.cs.concordia.ca/

13. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: Matcont: a matlab package for numerical bifurcation analysis of odes. ACM Trans. Math. Softw.
29(2), 141–164 (2003)

14. Dankowicz, H., Schilder, F.F.: Recipes for Continuation. Computational Science and Engineering, vol. 11. SIAM, Philadelphia (2013)
15. Bureau, E., Schilder, F., Ferreira Santos, I., Thomsen, J.J., Starke, J.: Experimental bifurcation analysis of an impact oscillator - tuning a

non-invasive control scheme. J. Sound Vib. 332(22), 5883–5897 (2013)
16. Barton, D.A.W.: Control-based continuation: bifurcation and stability analysis for physical experiments. Mech. Syst. Signal Process. (in press).

http://dx.doi.org/10.1016/j.ymssp.2015.12.039
17. Sieber, J., Krauskopf, B.: Control based bifurcation analysis for experiments. Nonlinear Dyn. 51(3), 365–377 (2008)
18. Barton, D.A.W., Mann, B.P., Burrow, S.G.: Control-based continuation for investigating nonlinear experiments. J. Vib. Control 18(4), 509–520

(2012)
19. Barton, D.A.W., Burrow, S.G.: Numerical continuation in a physical experiment: investigation of a nonlinear energy harvester. J. Comput.

Nonlinear Dyn. 6(1), 011010-1:6 (2010)
20. Seydel, R.: Practical Bifurcation and Stability Analysis. Interdisciplinary Applied Mathematics, vol. 5. Springer, New York (2010)
21. Barton, D.A.W., Sieber, J.: Systematic experimental exploration of bifurcations with noninvasive control. Phys. Rev. E 87(5), 052916 (2013)
22. Barton, D.A.W.: Real-time control hardware/software based on the BeagleBone Black, (2015) http://github.com/~db9052/rtc
23. Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning. MIT, Cambridge (2006)

http://dx.doi.org/10.1016/j.ymssp.2015.04.016
http://cmvl.cs.concordia.ca/
http://dx.doi.org/10.1016/j.ymssp.2015.12.039
http://github.com/~db9052/rtc


Chapter 4
Experimental Nonlinear Dynamics of Laminated Quasi-Isotropic
Thin Composite Plates

H.G. Kim and R. Wiebe

Abstract Composite panels and plates are increasingly used and continuously developed in diverse industrial domains
such as aerospace, automobile, civil and naval structures. However, nonlinear dynamic behavior and failure mechanisms of
these structures are still obscure in many respects. A representative example of this issue is nonlinear dynamic behavior
of damaged curved composite plates, which is not well represented in the literature although the phenomena could have a
detrimental effect on the safety of the aforementioned structures. In this work, free vibrations of (a) an isotropic flat plate
(ASTM A36 steel) under fully clamped (CCCC) and cantilever (CFFF) boundary conditions, (b) a symmetrically laminated
quasi-isotropic flat composite plate (unidirectional carbon/epoxy) under the same boundary conditions (CCCC and CFFF),
and (c) a post-buckled symmetrically laminated quasi-isotropic flat composite plate (carbon fibers woven fabrics) under a
clamped and free (CCFF) boundary condition are investigated. A single-point laser is used to capture the dynamic responses
of the plates. The von Kármán strain-displacement relations and Rayleigh-Ritz method are employed based on the classical
laminated plate theory (CLPT) to establish a theoretical model. This research will ultimately be extended to the nonlinear
modeling of vibrations and damage of curved laminated composite plates subjected to large deformations.

Keywords Nonlinear dynamics • Free vibration • Experimental mechanics • Quasi-isotropic composite plate
• Post-buckled plate

4.1 Introduction

The industrial application of composite materials has been significantly growing during the last half century due to its well-
known properties, high strength and low density [1]. The Boeing 787 which is the first commercial airliner with a composite
fuselage and wings is a compelling example of the structural application of composite materials. Fifty percent of its primary
structures, including the fuselage and wings, is made up of carbon fiber/epoxy composite materials, or carbon fiber-reinforced
plastics (CFRP) [2]. This design has led to 20 % of weight savings and 30 % lower airframe maintenance cost [3]. Despite the
increasing demand and application of the composite structures, its failure mechanism is still obscure. Considerable efforts
to develop accurate failure theories of composites and to prove their validity have been made as shown in the so-called
World Wide Failure Exercise (WWFE-I: 1996–2004, WWFE-II: 2007–2013, and WWFE-III: 2013–Present); however, no
composite material failure criteria are making precise predictions on damage and failure of composite materials and a global
consensus about the validity of the leading theories has yet to be reached [2, 4].

Quasi-isotropic laminates have been very popular due to their isotropic behavior under in-plane extension (but not
locally), and this fact has motivated engineers to substitute metals with quasi-isotropic laminates simply using the previous
designs for the metals [5]. Similarly, black quasi-isotropic carbon/epoxy laminates are called as black aluminum because
their in-plane effective elastic properties can be remarkably close to those of aluminum alloys [5]. However, this approach
overlooks the crucial properties of quasi-isotropic laminates such as anisotropic out-of-plane behavior, delamination, and
inter-laminar failure [5]. Moreover, although quasi-isotropic laminates exhibit isotropic behavior under in-plane extension at
the laminate level, each ply experiences different magnitude of stresses depending on its material properties and geometry,
which determines the failure of the plies. In this paper, to address these challenges, linear and nonlinear out-of-plane dynamic
responses of both flat and post-buckled laminated quasi-isotropic composite plates are presented.

A robust review and analysis of theories on linear dynamic behaviors of isotropic plates was presented by Leissa in [6]
and [7]. Chia exhaustively discussed nonlinear static and dynamic behaviors of isotropic and anisotropic plates in [8]. Many
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Fig. 4.1 Geometry and coordinate system for a rectangular plate

different types of laminated composite plate theories have been proposed or discussed in the literature such as Classical
laminated plate theory (CLPT), First-order shear deformation theories (FSDT), Higher-order shear deformation theories
(HOSDTs), and Layerwise theory (LT) [1]. Despite the challenges from other theories, CLPT is still preferred to model
behaviors of thin composite plates and shows relatively accurate predictions on balanced symmetric laminates under pure
bending or tension [1]. In this paper, CLPT is used to establish the theoretical model of free vibration of quasi-isotropic plates.
The experiment results on free vibration of isotropic plates under fully clamped (CCCC) and cantilever (CFFF) boundary
conditions are used to prove the validity of the model. In addition, the nonlinear dynamic behaviors of initially flat, and
post-buckled quasi-isotropic plates are analyzed.

4.2 Theoretical Model for Linear Free Vibrations

The derivation of the equation of motion for linear free vibrations of anisotropic plates are well explained many books such
as [9] and [10]. In this section, the derivation of the theoretical model will be presented based on the Reddy’s work in [9].

Based on Hamilton’s principle, the dynamic version of the principle of virtual work is

0 D
Z T

0

.ıU C ıV � ıK/dt (4.1)

where the virtual strain energy ıU, virtual work done by applied force ıV , and the virtual kinetic energy ıK are given by
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where qb and qt are the distributed forces at the bottom and at the top, respectively, and O
nn, O
ns, and O
nz are the specified
stress components on the portion �
 of the boundary � .
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Applying the von Kármán strain-displacement relations, the Euler-Lagrange equations of motion in terms of ıw0 obtained
from Eq. (4.1) is
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where Nxx, Nyy, and Nxy are in-plane force resultants, and Mxx, Myy, and Mxy are moment resultants.
Taking the weak form of Eq. (4.5) and setting Nxx=Nyy=Nxy=0 and q=0 for natural vibration,
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where ! and Dij denote the frequency of free vibrations and bending stiffness, respectively. Applying Rayleigh-Ritz
approximation to (4.6),

0 D
MX

i

NX

j

n Z b

0

Z a

0

h �
D11

d2Xi

dx2
d2Xk

dx2
YjYl C 4D66

dXi

dx

dXk

dx

dYj

dy

dYl

dy

C D12

�
Xi

d2Xk

dx2
d2Yj

dy2
Yl C d2Xi

dx2
XkYj

d2Yl

dy2

�
C D22XiXk

d2Yj

dy2
d2Yl

dy2

C 2D16

�dXi

dx

d2Xk

dx2
dYj

dy
Yl C d2Xi

dx2
dXk

dx
Yj

dYl

dy

�

C 2D26

�dXi

dx
Xk

dYj

dy

d2Yl

dy2
C Xi

dXk

dx

d2Yj

dy2
dYl

dy

� i
dxdy

o
cij

�
MX

i

NX

j

n Z b

0

Z a

0

!2�hXiXkYjYldxdy
o
cij fork D 1; : : : ;M; l D 1; : : : :;N

(4.7)
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(4.8)

where Xi and Yj denote any admissible approximation functions for geometric boundary conditions.
In the matrix form,

�
ŒR� � !2ŒB� � ˚ c

� D 0 (4.9)
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where

R.ij/.kl/ DD11
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0

d2Xi

dx2
d2Xk

dx2
dx
Z b

0
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0

d2Xi

dx2
dXk

dx
dx
Z b

0

Yj
dYl

dy
dy
�

C 2D26

� Z a

0

dXi

dx
Xkdx

Z b

0

dYj

dy

d2Yl

dy2
dy C

Z a

0

Xi
dXk

dx
dx
Z b

0

d2Yj

dy2
dYl
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�
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and

B.ij/.kl/ D �h
Z a

0

XiXkdx
Z b

0

YjYldy (4.11)

Simple beam functions are used for Xi and Yj. For a rectangular plate clamped on all sides (CCCC), Xi.x/ D . x
a /

iC1.1� x
a /
2

and Yj.y/ D .
y
b /

jC1
.1 � y

b /
2 are used while for a cantilever rectangular plate (CFFF), Xi.x/ D . x

a /
iC1 � 2i

iC2.
x
a /

iC2 C
i.iC1/

.iC2/.iC3/ .
x
a /

iC3 and Yj.y/ D .
y
b /

j�1 are used.
The eigenvalue problem in Eqs. (4.9)–(4.11) was solved using MatLab.

4.3 Experiment

In this experiment, three types of plates are analyzed: (a) a square isotropic plate (ASTM A36 Steel, named Plate 1), (b)
a symmetrically laminated square quasi-isotropic composite plate (unidirectional carbon/epoxy, named Plate 2), and (c) a
symmetrically laminated rectangular quasi-isotropic composite plate (carbon fibers woven fabrics, named Plate 3). Their
geometrical and material properties are defined in Table 4.1. The values of Plate 2 is based on the manufacturer’s report. The
technical report of Plate 3 is unavailable and thus could not be included in this table. The dimension of Plate 3 is a=254 mm
(10 in.) and b=127 mm (5 in.).

Table 4.1 Geometrical and material properties

Plate 2
Plate 1 (Manufacturer’s specs)

Material ASTM A36 Steel Pyrofil TR50S 12K, Newport 301

Number of layers N/A 8 ([0/45/90/135]s)

a mm (in.) 254 (10) 254 (10)

b mm (in.) 254 (10) 254 (10)

h mm (in.) 1.524 (0.06) 2.54 (0.1)

E11 GPa (Msi) 200 (29) 131 (19)

E22 GPa (Msi) 200 (29) 8.963 (1.3)

G12 GPa (Msi) 79.3 6.895 (1.0)

12 0.26 0.3

� kg=m3 (lb/in:3) 7750 (0.28) 1533 (0.0556)

Dij GPa-mm3 (ksi-in:3) 63.2 (0.56) D11=124 (1.097), D12=15.2 (0.1345),

D16=D26=11.8 (0.1044),

D22=45.4 (0.4014), D66=20.9 (0.1852)
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Fig. 4.2 Experimental setup: (a) an aluminum square clamp, (b) the plates are embedded into the square clamp and fastened with several C-clamps
and bolts of the clamp, which tightened the clamp to prevent any rotation, (c) post-buckled rectangular plate a=254 mm (10 in.), b=127 mm (5 in.)
under CCFF

A single-point laser, Micro-epsilon optoNCDT 1700-500 is used to capture dynamic responses of the plate. For the fully
clamped condition, an aluminum square clamp is used (Fig. 4.2a) and the plates are embedded 25.4 mm (1 in.) into the clamp
and several C-clamps are placed to ensure fixed boundary conditions at the edges. The C-clamps augmented the bolts used
to tighten the frame, and were needed because the plate stiffness was higher than anticipated (Fig. 4.2b).

The steel plate, Plate 1, was tested to verify the validity of the theoretical model. The cantilever test of the quasi-isotropic
plate, Plate 2, was done in two different directions: 0ı and 90ı. In 0ı, 0ı fiber direction is in the direction of x axis, while
in 90ı, 0ı fiber direction is in the direction on y axis. For both cases, the plate is clamped at x=0. For the free vibrations of
the post-buckled plate, Plate 3 is placed and buckled by the strong-bow effect on the same square clamp with the boundary
conditions: clamped at x=0 and x=a, and free at y=0 and y=b. The free vibration of Plate 3 was investigated first to compare
with the post-buckled behavior.

The plates were subjected to impact loading and the fast Fourier transform (FFT) of the responses was adopted to obtain
the natural frequencies of the plates. Although they are not steady state responses but time varying responses, the FFT
provides a good approximation.

4.3.1 Results

The experiment result of the fully clamped CCCC Plate 1 showed a very good agreement with the theoretical value (0.74 %
error) as shown in Fig. 4.3 and Table 4.2. However, the test results of the cantilever (CFFF) Plate 1 showed a bigger error
(6.37 %) than the did the clamped plate. Compared to the CCCC condition case, the free edges of the cantilever, especially
at x=a, are difficult to control and to make the mode shape we want with impact loading. The free edge at x=a can make
various unpredictable mode shapes when it is excited. Thus, the error could be caused by the difference between the beam
function Yj.y/ used in the theoretical model and the mode shape the tested plate made.

The fully clamped (CCCC) test of Plate 2 shows a considerable error (17.0 %) from the theoretical value (Fig. 4.4). This
error consistently happened to the cantilever (CFFF) test of Plate 2. As shown on Fig. 4.5, it shows 18.52 and 16.90 % errors
from the theoretical model. Although considering the error of the CFFF test can be, to some extent, attributed to what has led
to the error of the CFFF Plate 1, the remaining portion of the error is a relatively large value and that does not explain the error
of the CCCC Plate 2. Moreover, the steel plate tests confirm the method is working well; thus, material uncertainty remains
the only plausible source of the error as composites are notoriously variable. A quality control issue during manufacturing
the plate can cause the uncertainty, which makes the actual stiffness of Plate 2 smaller than the manufacturer suggests. As
shown on Table 4.3, with the 30 % reduction of E11 and E22 of Plate 2, the theoretical model shows a fair agreement with
the experiment result, which substantiate the argument for the source of the error.

While the flat Plate 3 showed 115 Hz as the first natural frequency, due to the nonlinearity, the post-buckled Plate 3 shows
the increase in natural frequency, 140 Hz (21.74 % increase) in the buckled up and 125 Hz (8.70 % increase) in the buckled
down configuration (Fig. 4.6a). This indicates that it was well past buckling, as near buckling, the frequency drops to zero (for
an imperfection free plate). Figure 4.6b presents an interesting phenomenon. With a bigger excitation, the post-buckled plate
showed several snap-through events during the free vibration. This is a representative example of the topic we are extending
from this research, the nonlinear modeling of vibrations and damage of curved laminated composite plates subjected to large
deformations.
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Fig. 4.3 Free vibration of the isotropic plate (ASTM A36 Steel, Plate 1): (a) fully clamped (CCCC) response amplitude vs. time, (b) the FFT
of (a) shows 200.195 Hz against the theoretical result 201.691 Hz, (c) cantilever (CFFF) response amplitude vs. time, (d) the FFT of (c) shows
18.311 Hz against the theoretical result 19.556 Hz

Table 4.2 Theoretical and experimental natural frequency of the first
mode of Plate 1

Boundary condition Theory (Hz) Experiment (Hz) Error (%)

CCCC 201.691 200.195 0.74

CFFF 19.556 18.311 6.37

4.4 Conclusions and Future Work

The free vibrations of the flat isotropic and quasi-isotropic composite plates are investigated. While the experiment results
of the isotropic steel plate showed a good agreement with the theoretical model based on CLPT, the results of the quasi-
isotropic composite plate showed a considerable difference from the same model. The adjusted material properties of the
tested plates helped the model well match with the test results, which suggests that the material properties inconsistent from
indicated by the manufacturer has made a significant contribution to the error. This highlights that the well-known uncertainty
of material properties of composite plates can produce a detrimental effect on the process of validating the plausibility of
theoretical models. Thus, for future works, composite plates fabricated in-house under proper quality control will be used
for experiments.
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Fig. 4.4 Free vibration of the fully clamped (CCCC) quasi-isotropic plate ([0/45/90/135]s carbon fiber-epoxy, Plate 2): (a) response amplitude
vs. time, (b) the FFT of (a) shows 327.148 Hz against the theoretical result 394.157 Hz

Fig. 4.5 Free vibration of the cantilever (CFFF) quasi-isotropic plate ([0/45/90/135]s carbon fiber-epoxy, Plate 2): (a) 0ı response amplitude vs.
time, (b) the FFT of (a) shows 39.368 Hz against the theoretical result 48.314 Hz, (c) 90ı response amplitude vs. time, (d) the FFT of (c) shows
23.651 Hz against the theoretical result 28.462 Hz
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Table 4.3 Theoretical and experimental natural frequency of the first mode of Plate 2

30 % reduction
Boundary condition Experiment (Hz) Theory (Hz) Error (%) of E11 and E22 (Hz) Error (%)

CCCC 327.148 394.157 17.00 334.008 2.05

CFFF (0ı) 39.368 48.314 18.52 40.68 3.23

CFFF (90ı) 23.651 28.462 16.90 24.27 4.61

Fig. 4.6 Free vibration of the clamped and free (CCFF) post-buckled quasi-isotropic plate ([0/45/90/135]s carbon woven fabrics, Plate 3): (a) free
vibration of Plate 3 post-buckled upwards and downwards shows 140 and 125 Hz as the natural frequency, respectively, (b) free vibration shows
nine times snap-through responses

The post-buckled plate experiment demonstrated an interesting nonlinearity. With a certain level of excitation, the plate
showed several dynamic snap-through with a single excitation. This phenomenon is a fascinating topic and will be further
investigated to model the nonlinear behavior of particular interest in delamination and axial load induced by snap-through.

In future work, the model will be extended to capture the snap-through loading. Of interest will be the in plane loading
induced by snap-through and its potential for causing delaminations.
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Chapter 5
Experimental Identification of a Structure with Internal Resonance

Alexander D. Shaw, Tom L. Hill, Simon A. Neild, and Michael I. Friswell

Abstract Engineered structures are becoming increasingly lightweight and flexible, and as such more likely to achieve large
amplitude and nonlinear vibratory responses. This leads to a demand for new methods and experimental test structures to
see how in practice nonlinearity can be handled. In previous work, the authors studied a continuous modal structure with
a local nonlinearity. The structure has been designed to have transparent underlying physics, and easily adjustable natural
frequencies, and this leads to the ability to investigate an approximately 3:1 internal resonance between the 1st and 2nd
modal frequencies. Therefore the structure exhibits complex responses to harmonic excitation, including isolated regions of
the frequency response and quasiperiodic behaviour. In the present work we discuss a rapid means of identifying the structure
with the minimum requirements of test data and time. A particular aim is to characterise the underlying linear system using
data that is strongly influenced by nonlinearity. A harmonic balance procedure is used to identify a nonlinear discrete spring-
mass system, that is modally equivalent to the structure under test. It is found that the inclusion of harmonic components
in the test data and the presence of internal resonance leads to surprising amounts of information about modes that are not
directly excited by the fundamental stepped-sine excitation.

Keywords Internal resonance • Nonlinear vibration • Identification • Harmonic balance • Nonlinear modes

5.1 Introduction

There is significant research interest in the vibrations of structures that exhibit nonlinear responses. This is due to the
ubiquity of such structures; for example numerous fundamental structural forms such as plates, shells and beams will exhibit
nonlinear phenomena when vibrating at sufficient amplitude. Furthermore, flexible materials exhibit nonlinear stress/strain
when at large strains, and mechanisms can introduce nonlinear phenomena due to geometrical effects, as well as non-smooth
nonlinearities due to friction, freeplay, impact and backlash [1–3]. In addition to the academic interest in such systems,
there is strong interest within industry. This is driven by the increasing demand for lightweight and flexible structures such
as large wind turbine blades, or long span bridges [1]. Furthermore, new technologies such as Micro Electromechanical
Systems (MEMS) utilise structures that operate on scales where effects such as static electromagnetic forces generate
significant nonlinear forces [4]. Nonlinearity is also being exploited in applications such as vibration isolation [5] and energy
harvesting [6].

Of particular interest is the requirement to use dynamic testing methods to characterise the vibratory response of structures
in order to make performance predictions, so called system identification. While this practice has the well established
methodology of modal testing in the case of linear systems [7], the presence of nonlinearity greatly complicates this task,
due to the wide range of phenomena that nonlinear systems may exhibit [8, 9].

The interest in nonlinear system identification has led to a demand for experimental demonstrators featuring continuous
structures with nonlinearity; however experimental works on these types of systems are heavily outnumbered by analytical
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and numerical studies. A well known example is the configuration first presented by Thouverez [10], widely known as the
‘Liege beam’, for examples see [11, 12]. This consists of a well understood linear structure—a cantilever beam—with a local
nonlinearity at the tip; this is caused by a smaller beam that achieves geometrically nonlinear amplitudes. Recent numerical
work on this type of structure has shown that it has rich dynamics, exhibiting internal resonance effects including isolated
response regions and torus bifurcations [13, 14].

This paper extends recent experimental work by the authors, which draw on the approach of the Liege beam, but
replaces the nonlinearity at the tip with a spring mechanism [15]. Stepped sine tests on this structure revealed some
fascinating responses, including an experimental demonstration of an isolated region (or isola) of periodic responses, and
also quasiperiodic response regions.

Despite the adjustability of the experimental structure, the results presented in [15] consider just one configuration. A
natural extension of the work is to tune the modal frequencies to explore the effect on the 3:1 internal resonance that the
structure possessed; however the time taken to experimentally characterise such a range of configurations could be excessive
if the data gathering and identification process is not optimized. There are two particular issues that slow the progress of the
experimental study:

1. Characterising the underlying linear system required additional tests at low amplitude—however response at such low
amplitude that the cubic nonlinearity had no effect could be affected by issues such as friction and low sensor readings,
making these readings slow to acquire and potentially unreliable.

2. The internal resonance meant that significant additional harmonic content could appear in the forcing signal due to shaker
interactions. Therefore a numerical algorithm was deployed to condition the input force to a pure sinusoid; it was shown
that failure to address this issue had a significant effect on response. The algorithm could require multiple iterations, each
of which required settling time to achieve a steady state response—the product of which led to long stepped sine sweep
times.

It is believed that these issues will be common to many attempts to experimentally characterise nonlinear structures. This
work discusses means of reducing these two issues.

The approach to issue 1 is to adopt an identification procedure that identifies linear system properties simultaneously
to nonlinear properties, using the same data. This saves the need for additional tests that can be difficult and unreliable. It
means that while underlying linear modes have a crucial effect on the response, they are never observed directly; instead
they are inferred through their effect on nonlinear system response. It also means that underlying linear modal properties can
be assigned even when it is impossible to observe a truly linear response. This is a plausible situation that may occur when
there is no region of response amplitude where large displacement nonlinearities can be avoided at the same time as low level
nonlinearities such as dry friction.

The proposed identification procedure accepts and makes use of harmonics in the response. However it can be readily
extended to allow additional harmonic components in the forcing signal, meaning that there is no need to eliminate these
using experimental control techniques. This relieves issue number 2, and in addition could be exploited by deliberately
adding harmonic components to the forcing to allow a wider set of forcing conditions to be included in the test data.

The present work proceeds as follows; firstly the experimental structure is described and some of the findings of Shaw
et al. [15] are summarised. Secondly, the identification method is described. The following section then presents the results
of identification, comparing the use of different options and data in the procedure. Finally, conclusions are drawn.

5.2 Experimental Structure

The experimental structure is shown in Fig. 5.1. It consists of a steel beam, with an arrangement of springs that achieves
nonlinear force-displacement through the angle change of the springs when the beam oscillates. The structure is excited
by a small shaker connected at position x1 in Fig. 5.1a, and the force that this exerts is measured by a piezoelectric force
transducer. The motion of the beam is measured through accelerometers located at x1, x2 and x3.

The arrangement of springs shown in Fig. 5.1b gives rise to geometric nonlinearity at large amplitudes. The force
displacement curve for this arrangement can be shown to be given by:

P.z/ D 2kz.1� `0p
a2 C z2

/ (5.1)
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Fig. 5.1 (a) Schematic of the experiment. (b) Detail of nonlinear spring mechanism. (c) Photograph of experimental setup. (d) Closer perspective
on the nonlinear spring mechanism

where k is the rate of each spring, `0 is the original length of each spring and a is the half span of the mechanism. This may
be approximated in the form:

P.z/ � k1z C k3z
3 (5.2)

through Maclaurin expansion, and it may be shown that this approximation is highly accurate up to displacements of
approximately a=3. The apparatus allows the static force displacement at the tip to be measured directly, and this confirms
the analytical predictions.

The experiment was designed to have linear modal frequencies of approximately 9 and 31 Hz for the first and second
modes respectively. This gave an approximate 3:1 internal resonance between the second and third modes, and allowed the
examination of the response as the first mode stiffened at higher amplitudes, so that it passed through an exact 3:1 relationship
with the second mode.

A controller was implemented using National Instruments Labview software running on an NI cRIO-9024 [16] chassis
that interfaced with the sensors. The controller numerically corrected the drive voltage so that the forcing signal was a true
sinusoid of the desired amplitude, with no harmonics. It was possible to choose the degree of control that was applied, from
simply controlling the fundamental amplitude, up to controlling the first five harmonics.
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5.3 Identification Method

5.3.1 Overview

The identification method follows three stages:

1. A limited degree-of-freedom system equivalent to the modal system we are seeking is identified using physical insights
into the possible dynamics of the system.

2. Use a least squares method to establish system parameters that resolve harmonic balance equations.
3. Use identified mass and stiffness properties to establish underlying linear modes.

These are described in the following subsections.

5.3.2 Equivalent System

The degrees of freedom of the equivalent discrete system are taken to be displacement at each sensor location xi as
enumerated in Fig. 5.1a, denoted yi. The system is forced at x1, and a cubic nonlinearity is located at x3. Hence the equations
of motions may be taken as:

ŒM�fRyg C ŒC�fPyg C ŒK�fyg C fNyg D ff g (5.3)

where

fNyg D Œ0; 0; k3y
3
3�

T (5.4)

and

ff g D Œp.t/; 0; 0�T (5.5)

and the matrices have their usual meanings. The forcing function has form

p.t/ D Pc1 cos�t C Ps1 sin�t C Pc3 cos 3�t C Ps3 sin 3�t (5.6)

although initially we consider purely cosine forcing, i.e. only the first amplitude is nonzero. Furthermore, ŒM� is assumed to
be diagonal, and ŒC� and ŒK� are fully populated and symmetric. Hence there are 16 terms to identify—three masses mi, six
stiffness kij and six damping coefficients cij plus the cubic term k3.

5.3.3 Parameter Identification

The identification method now follows a procedure first described by Yasuda et al. [17], which uses the harmonic balance
method to form a least squares problem in terms of the required parameters. All responses are taken as truncated Fourier
series coefficients, where the included coefficients are the sin and cos terms at the fundamental frequency and the third
harmonic. This is based on our insight that the only relevant harmonic is the third, due to the 3:1 internal resonance and the
assumed cubic nonlinearity. The equations are formed from 18 values read at each data point—the four Fourier coefficients
read for each of the three displacement sensors, plus four Fourier components taken from the time signal of y33, the forcing
amplitude and the forcing frequency. Note that three further values are introduced if the full form of (5.6) is used. There are
a total of 12 equations to be balanced, four for each DOF:

�m1�
2Yc1;1 C�.c11Ys1;1 C c12Ys1;2 C c13Ys1;3/C k11Yc1;1 C k12Yc1;2

C k13Yc1;3 D Pc1 (5.7)
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�m1�
2Ys1;1 ��.c11Yc1;1 C c12Yc1;2 C c13Yc1;3/C k11Ys1;1 C k12Ys1;2

C k13Ys1;3 D Ps1 (5.8)

�9m1�
2Yc3;1 C 3� .c11Ys3;1 C c12Ys3;2 C c13Ys3;3/C k11Yc3;1 C k12Yc3;2

C k13Yc3;3 D Pc3 (5.9)

�9m1�
2Ys3;1 � 3� .c11Yc3;1 C c12Yc3;2 C c13Yc3;3/C k11Ys3;1 C k12Ys3;2

C k13Ys3;3 D Ps3 (5.10)

�m2�
2Yc1;2 C�.c12Ys1;1 C c22Ys1;2 C c23Ys1;3/C k12Yc1;2 C k22Yc1;2

C k23Yc1;3 D 0 (5.11)

�m2�
2Ys1;2 ��.c12Yc1;1 C c22Yc1;2 C c23Yc1;3/C k12Ys1;1 C k22Ys1;2

C k23Ys1;3 D 0 (5.12)

�9m2�
2Yc3;2 C 3� .c12Ys3;1 C c22Ys3;2 C c23Ys3;3/C k12Yc3;1 C k22Yc3;2

C k23Yc3;3 D 0 (5.13)

�9m2�
2Ys3;2 � 3� .c12Yc3;1 C c22Yc3;2 C c23Yc3;3/C k12Ys3;1 C k22Ys3;2

C k23Ys3;3 D 0 (5.14)

�m3�
2Yc1;3 C�.c13Ys1;1 C c23Ys1;2 C c33Ys1;3/C k13Yc1;2 C k23Yc1;2

C k33Yc1;3 C 3k3 OY3c1;3=4 D 0 (5.15)

�m3�
2Ys1;3 ��.c13Yc1;1 C c23Yc1;2 C c33Yc1;3/C k13Ys1;1 C k23Ys1;2

C k33Ys1;3 C 3k3 OY3s1;3=4 D 0 (5.16)

�9m3�
2Yc3;3 C 3� .c13Ys3;1 C c23Ys3;2 C c33Ys3;3/C k13Yc3;1 C k23Yc3;2

C k33Yc3;3 C k3 OY3c3;3=4 D 0 (5.17)

�9m3�
2Ys3;3 � 3� .c13Yc3;1 C c23Yc3;2 C c33Yc3;3/C k13Ys3;1 C k23Ys3;2

C k33Ys3;3 � k3 OY3s3;3=4 D 0 (5.18)

where Yci;j and Ysi;j are the cosine and sine coefficients respectively of the ith harmonic of the jth DOF. OY3ci;3 and OY3si;3 are
the cosine and sine coefficients respectively of the ith harmonic of the time series of y33—note that this is not the same as
.Yci;j/

3. The terms OY3ci;3 and OY3si;3 are sensitive to truncation error, so ideally should be calculated from the test data in the most
exact way possible, by taking Fourier coefficients from the true time series of y33. However, in the cases that follow they are
inferred from the 5-harmonic Fourier series terms that are returned by the data acquisition system.

Equations (5.7)–(5.18) are solved for all required parameters using a least squares method. The resulting ŒM� and ŒK� may
then be used to resolve the mode shapes of the underlying conservative linear system.

5.4 Results of Identification

In this section, some initial identifications are performed in the manner described above. The results of the identifications are
compared to natural frequencies that were obtained through very low amplitude stepped sine tests, which were simply voltage
controlled, and also experienced some of the difficulties discussed in the introduction. Hence it is possible that these values
contain some error, and therefore estimates of the identification error should be treated with some caution. Furthermore,
with only one test structure considered, this must be treated as a preliminary study only. A comparison is also made for the
nonlinear parameter k3, which was identified with a quasistatic measurement on the tip of the beam.
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Fig. 5.2 Data used for identification. Cross markers denote data where the control algorithm has suppressed 3rd harmonic content from the forcing
signal. Circle markers denote data where only the fundamental amplitude is controlled, and therefore the force signal contains 3rd harmonics due
to interaction between the nonlinear vibration and the shaker

Table 5.1 Comparison of different ID methods with experimental values

!n1 (rad/s) !n2 (rad/s) !n3 (rad/s) k3 (N/m3)

Experiment 55.92 199.18 552.14 2.516�106
ID1 53.62 (�4.1 %) 199.84 (C0.3 %) 498.52 (�9.7 %) 2.342�106 (�6.9 %)

ID2 55.20 (�1.3 %) 203.02 (C1.9 %) 615.45 (C11.5 %) 1.785�106 (�29.1 %)

ID3 54.14 (�3.2 %) 201.54 (C1.2 %) 796.54 (C44.3 %) 2.354�106 (�6.4 % )

ID4 54.29 (�2.9 %) 195.57 (�1.8 %) 557.57 (C1.0 %) 2.417�106 (�3.9 % )

ID5 57.46 (C2.8 %) 230.26 (C15.6 %) 608.80 (C10.3 %) 4.536�105 (�82.0 % )

Each of the following subheadings describe an identification using the above method, but with variations in terms of the
subset of experimental data used and the method. The identification method uses two variations. The first variation assumes
that all terms except Pc1 in Eq. (5.6) are zero, and that therefore the forcing is a pure cosine signal. This is a reasonable
assumption if harmonics were controlled during testing. The second variation relaxes this assumption and includes all terms
from (5.6) in the test data.

All cases make use of one of the datasets in Fig. 5.2, while cases 2 and 5 introduce some additional data as discussed.
Both sets of data in Fig. 5.2 consist of an up sweep and a down sweep near the first mode. However, in the case denoted ‘3rd
harmonics controlled’, the vibration controller has forced the third harmonic content in the force signal to zero. By contrast,
in the case denoted ‘3rd harmonics free’, the harmonics have been allowed to take the value they naturally form due to the
interaction of the nonlinear vibrations with the shaker. It may be seen that the two datasets have significantly different drop
frequencies. Each sweep has between 90 and 151 datapoints.

The results of all identifications are compared in Table 5.1.
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5.4.1 ID1: Controlled Data, Sweep Near First Mode

This identification uses the ‘3rd harmonics controlled’ data from Fig. 5.2, and assumes that the forcing was a pure cosine.
Interestingly, the identification obtains an accurate value for !n2, despite there being no test data around this mode. This
suggests that the internal resonance effect is transferring significant information about mode 2 into the response. The accuracy
for !n3 is poor; again no test data from this frequency region is included, however in this case there is no coupling to our test
data via the 3:1 internal resonance.

5.4.2 ID2: Additional Low Level Data for Third Mode

This identification uses the same data and assumption as ID1, with the addition of the low amplitude data used to identify
the linear !n3 experimentally. However, it is seen that in this case, this extra data does not improve the accuracy of the !n3

prediction.

5.4.3 ID3: Uncontrolled Harmonics, Only Fundamental Force Considered

This ID uses the ‘3rd harmonic free’ data from Fig. 5.2. However, only the fundamental amplitude of the forcing signal
is used, despite the fact that higher amplitude cases will experience significant distortion to the input force. As the results
in Table 5.1 show, there is little evidence that this problem has significantly reduced the accuracy for the first two modes,
although there is a particularly spurious value for !n3.

5.4.4 ID4: Uncontrolled Harmonics, Harmonics in Force Considered

This ID uses the ‘3rd harmonic free’ data from Fig. 5.2, but this time the harmonics in the forcing signal are used in the
identification. This identification gave the best accuracy for k3, and surprisingly seems to have accurately located !n3,
although chance cannot be ruled out at this stage.

5.4.5 ID5: Isola Data

This ID uses the same method and data as ID4, only this time additional data from the isola region is included. The isola is a
region of stable high amplitude responses that is separate from the initial peak near mode 1, and consists of a combination of
mode 1 and mode 2 responses. This data is shown in Fig. 5.3. Whilst in principle this data should be ok to use in identification,
it can be seen from Table 5.1 that it is detrimental to accuracy, particularly for k3. It is believed that this is due to the isola
region occurring outside the nonlinear spring’s cubic range, and that higher order polynomial approximations are needed to
identify with this data.

5.5 Conclusions

This paper has discussed an identification method for a highly nonlinear structure with internal resonance. The method
identifies both linear and nonlinear properties simultaneously, and therefore this approach has the potential to greatly reduce
the effort required to characterise nonlinear systems. It also naturally handles some harmonic distortion in the input signal,
reducing the requirements for accurate control whilst collecting data.
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Fig. 5.3 Test data from isolated branch

While it is too early to draw firm conclusions about the robustness and general applicability of the approach used, it
captured numerous properties of the system under test with reasonable accuracy. There also appears to be some ability of the
method to gather information beyond the immediate frequency range under test when internal resonance exists. In particular
the second modal frequency was captured with high accuracy in nearly all tests, despite no test data from the vicinity if this
frequency being included.

Some different variations of the method were deployed, and although it is too early to form firm conclusions, it appears
that an ID method that allows harmonic distortion in the force input has the potential to give the highest accuracy whilst
reducing the experimental effort.
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Chapter 6
Shock Response of an Antenna Structure Considering Geometric
Nonlinearity

Yunus Emre Ozcelik, Ender Cigeroglu, and Mehmet Caliskan

Abstract Antenna structures used in electronic warfare, radar, naval, satellite, spacecraft systems encounter mechanical
shock from various sources such as near miss under water explosion, pyrotechnic and ballistic shocks. Since most of the
antenna structure has larger dimension in longitudinal direction and experience high frequency, high amplitude shock energy,
geometric nonlinearity become crucial to predict dynamic behavior in real life. In this study, the antenna structure is modeled
by Euler-Bernoulli beam theory including geometrical nonlinearity. The resulting partial differential equations of motion are
converted into a set of nonlinear ordinary differential equations by using Galerkin’s Method, which are solved by Newmark.
The results for the linear system obtained from time integration and approximate methods such as Absolute Method, Naval
Research Method, and Shock Response Spectrum Method (SRS) are compared to the nonlinear ones. Moreover, these results
are compared with the ones obtained from commercial Finite Element software.

Keywords Antenna structure • Mechanical shock • Nonlinear dynamic analysis • Finite element method

6.1 Introduction

In all around the world, approximately 40 % of the total world population uses internet [1], and cell phones are used by
around 97 people out of every 100 people [2], which can provide a valid evidence for the idea that wireless communication
is used worldwide. These infrastructures communicate with each other via antennas. In other words, the Internet and cell
phones services are not functional without antennas. Thus, it can be said that the antenna structure is an irreplaceable and
vital component of such electronic systems. IEEE defines what antenna does as “transmitting or receiving electromagnetic
waves”. In other words, the antenna structure converts electrical signal into electromagnetic or electrical signal. For military
applications, antenna structures are used in electronic warfare (EW), radar, naval, satellite and spacecraft systems so that
devices and vehicles associated with these systems can communicate with each other. Common antenna types used in
civil and military systems are dipole antennas, monopoles antennas (see Fig. 6.1), loops antennas, helix antennas, etc.
As can be seen from Fig. 6.1, most of these antenna structures have inherently cantilever beam type configuration since
one end is connected to the antenna hub, while the other end is free to receive or transmit electromagnetic wave, known
as radio frequency (RF). Moreover, these antenna structures are generally made up of high conductive materials since the
performance of an antenna structure is proportional to conductivity of the material [4]. Table 6.1 summarizes the most widely
used materials in antenna structures. Copper and aluminum are the most widely used materials because of cost and weight
concerns.

However, antenna structures used in military and civil systems can encounter many mechanical shocks from various
sources such as near miss underwater explosion, ballistic shock due explosion of mine, pyrotechnic shock, dropping of an
antenna structure and so forth. Mechanical shock can be described as “a sudden and violent change in the state of motion of
the component parts or particles of a body or medium resulting from sudden application of a relatively large external force,
such as a blow or impact” according to first Shock and Vibration Symposium in 1947 [5]. Generally mechanical shocks
contain high amplitude and rich spectral energy since the duration of mechanical shock is measured in milliseconds and the
amplitude may be as high as 1000 G (see Fig. 6.2). Therefore, even if only one of the antennas in the electronic warfare and
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Fig. 6.1 Monopole antenna structure [3]

Table 6.1 Conductivity of the some common materials [4]

Material Conductivity (S/m) Material Conductivity (S/m)

Silver 6.30EC07 Zinc 1.70EC07
Copper 5.80EC07 Brass 1.00EC07
Gold 4.10EC07 Phosphor Bronze 1.00EC07
Aluminum 3.50EC07 Tin 9.00EC06
Tungsten 1.80EC07 Lead 5.00EC06
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Fig. 6.2 Time history of mechanical shock [6]

communication systems is broken down due to a mechanical shock, the whole system will be unable to function properly.
For example, a printed circuit board (PCB), printed on the antenna structure, may be damaged due to exposure of a high
level of mechanical shock, and as a result of this, the system becomes dysfunctional. Therefore, antenna structures must be
designed to withstand mechanical shock types, which are explained briefly below, to ensure their reliability.

Transportation and handling shock is received by electronic and mechanical systems used in military and civil applications
as a result of transportation and human errors in handling of materials. For instance, while a military armored vehicle is
running over a bump at unwary speed, all systems including antennas are exposed to mechanical shocks. Furthermore,
ballistic shock is another type of mechanical shock containing high amplitude and high frequency content which is mainly
caused by the impact of non-perforating mine blast, projectiles or ordnances on armored vehicle [7]. In addition to that
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pyroshock which is the response of a system to high-frequency stress waves one example of mechanical shock. Generally,
pyroshock is generated as a result of explosive charges in order to separate two stages of a rocket [8]. Moreover, gunfire
shock is a repetitive wave originated from artillery shooting of military vehicle. Consequently, the antenna structure should
withstand these mechanical shocks originating from various environmental effects.

In literature, studies on the nonlinear dynamic characteristics of antenna structures exposed to mechanical shocks are
limited since most researchers have investigated modal and random vibrations analyses of the antenna structure. Concerning
the linear dynamic analyses of antenna structure, the simulations were performed by commercial finite element programs
such as ABAQUS

®
and NASTRAN

®
. Static and dynamic analyses of dipoloop antenna radome were simulated by a linear

finite element analysis by Reddy and Hussain [9]. Mechanical shock analysis was conducted on ABAQUS
®
. In this study,

only stresses were evaluated on the dipoloop antenna radome. Lopatin and Morozov [10] studied the free vibration of thin-
walled composite spoke of an umbrella-type deployable space antenna. The composite spoke of the deployable space antenna
was modeled as a cantilever beam via including effects of transverse shear. On the other hand, the nonlinear dynamic response
of the antenna structure under dynamic loads is characterized by limited number of researchers. Random and modal analyses
of a gimbaled antenna including gap nonlinearity resulting from small clearances in the joints are studied by Su [11] where
the nonlinearity is linearized and then the resulting linear systems is solved commercial finite element software. Moreover,
Sreekantamurthy et al. [12] investigated static and dynamic loads such as inflation pressure, gravity and pretension loads on a
parabolic reflector antenna by using commercial finite element software. In their work, geometric nonlinearity was included
into the model, since the deformation of parabolic reflector antenna was large.

Inherently, antenna structures have a larger dimension in longitudinal direction. When they receive high mechanical shock
such as ballistic and pyrotechnical shocks, nonlinear effects play an important role on shock response of antenna structures.

Although the nonlinear dynamic characteristics, under mechanical shock are different from the linear ones, there appears
almost no study on this specific topic. However, especially in micro and nanoscale areas, many researchers investigated
the dynamics response of micro electro mechanical systems, micro beams, micro switches and so forth which are under
mechanical shock even by considering the nonlinear effects. As an initial attempt, some authors used single degree of freedom
assumption to get a rough estimation of the dynamic response of micro systems. For example, Younis et al. [13] studied
the performance of capacitive switches modeled as a single degree of freedom (SDOF) system under mechanical shock
through including the effects of squeeze-film damping and electrostatic forces. Moreover, Li and Shemansky [14] treated
the micro-machined structure as a single degree of freedom system as well as a distributed parameter model. For more
accurate analysis, many authors used continuous beam models to simulate the response of micro systems to a mechanical
shock. As an example, Younis et al. [15] investigated the simultaneous effects of mechanical shock and electrostatic forces
on microstructures simulated as cantilever and clamped-clamped beams. In this particular study, reduced order model results
based on Galerkin’s Method were compared with the ones obtained from commercial finite element software. Due to the
large deformation of micro systems resulting from the applied mechanical shock, some researchers included nonlinearity to
the models to predict the dynamic behavior in real life. For instance, Younis and Arafat included both geometric and inertia
nonlinearities into their studies while analyzing the response of the cantilever microbeam activated by mechanical shock
and electrostatic forces [16]. In their work, they analyzed the effects of cubic geometric and inertia nonlinearities on the
cantilever microbeam by using reduced order model which is based upon Galerkin’s Method. In another study of Younis
et al. [17], the response of the clamped-clamped microbeam was investigated through using four modes in the Galerkin
based reduced order model including geometric nonlinearity. Moreover, Younis et al. [17] studied the effects of shape of
shock pulse and package on the response of microbeam and validated the results via commercial finite element software.
Furthermore, some researchers employed approximate solutions to the response of systems under mechanical shock through
frequency domain approaches rather than time domain approach which is computationally expensive. As an example, Liang
et al. [18] estimated shock response of the mast in ships using frequency domain method such as square root of the sum
of squares (SRSS), complete quadratic combination method (CQC), naval research laboratory method (NRL) and absolute
summation method (ABS). Alexander [19] mentioned the frequency domain methods which are applied to the nonlinear
systems as well. Younis and Pitarresi [20] emphasized synthetic methods utilizing the static response and shock spectrum
based on maximum responses of many single degree of freedom systems. In this study [20], linear and nonlinear response
of microbeam found in synthetic method and Galerkin-based reduced order method employing six modes were compared in
terms of different values of shock amplitude.

Mechanical shock excitation is inherently applied to the base of structures. In literature, mechanical shock was simulated
for continuous systems by base excitation which is either applied to the fixed boundary condition [21, 22] or distributed force
applied through the structure [15–17, 20].
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Antenna structures, which are used for military and civil applications, are vital component of the many the electronic
systems. These antenna structures are subjected to mechanical shock from various environments such as transportation,
ballistic, pyrotechnic shocks. Therefore, correct modeling of dynamic characteristic of the antenna structure under
mechanical shock is needed because of the need to accurately predict the performance of the antenna structure. Inherently,
most of the antenna structures have slender shape and larger dimension in longitudinal direction. Moreover, they are subjected
to high frequency, high amplitude mechanical shocks. Thus, mathematical modeling of the antenna structure through linear
theory can yield incorrect results, since antenna structures experience large deformation, where nonlinear effects become
dominant. In other words, nonlinearities due to large deformation must be included in order to predict dynamic behavior
accurately.

6.2 Mathematical Modeling

In this section, antenna structure is modeled by equivalent lumped mass model, Euler-Bernoulli Beam Theory, finite element
method and approximate methods.

6.2.1 Equivalent Lumped Mass Model

In this section, the antenna structure is treated as a single degree of freedom system utilizing an equivalent lumped mass
model. Basically, most of the antenna structures such as monopole antennas (see Fig. 6.3) have a cantilever beam structure
since one end is fixed to the antenna hub while the other end is free to transmit or receive electromagnetic waves.

Equivalent mass and stiffness of the antenna structure described in Fig. 6.3 is given as [23].

meq D 0:2427mL; (6.1)

keq D 3EI

L3
; (6.2)

where m is the mass per unit length of the antenna structure, l is the length of the antenna structure and E is Young’s modulus
of the antenna’s material. Therefore, the antenna structure shown in Fig. 6.3 is reduced to a single degree of freedom system
as shown in Fig. 6.4.

Fig. 6.3 Cantilever beam type the antenna structure

Fig. 6.4 Equivalent lumped mass model of the antenna structure
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Fig. 6.5 Nomenclatures of the antenna structure in bending direction [25]

6.2.2 Linear Continuous Model

In this part, the antenna structure is modeled by Euler-Bernoulli beam theory, which is widely used in literature, in order to
predict dynamic characteristic of slender beam like structure [13, 15–17, 20, 21]. However, due to inherent assumptions of
the theory, accuracy of the results is poor when the thickness to length ratio is larger than 10 %. In such cases Timoshenko
beam model is applied to get accurate results [24]. In this paper, Euler-Bernoulli beam theory is used to model the antenna
structure, since most of the antenna structures naturally have thickness to length ratio much less than 10 %.

Consider the antenna structure, whose length, density, cross sectional area and flexural rigidity are represented as l, �, A
and EI, respectively. As can be seen in Fig. 6.5, the transverse deflection of the antenna structure is defined as w(x, t) , where
x is the axial position, t represents time and F(x, t) is the distributed force that is applied through the length of the antenna
structure. Equation of motion of the antenna structure is given as [25]

@2

@x2

�
EI
@2w .x; t/

@x2

�
C c

@w .x; t/

@t
C �A

@2w .x; t/

@t2
D F .x; t/ : (6.3)

In this paper, mechanical shock is applied as distributed force through the length of the antenna structure (see Fig. 6.5).
Hence, equation of motion of the antenna structure subjected to mechanical shock can be given as

@2

@x2

�
EI
@2w .x; t/

@x2

�
C c

@w .x; t/

@t
C �A

@2w .x; t/

@t2
D � .�Aamax/ apulse.t/; (6.4)

where, amax is the maximum value of mechanical shock and apulse is a unit mechanical shock profile such as half sine, terminal
peak sawtooth and so forth. The equation of motion given by Eq. (6.4) can be nondimensionalized by using following non
dimensional parameters

bx D x

l
; bw D w

l
;bt D t

T
; (6.5)

where T is the time scale parameter. Substituting Eq. (6.5) into Eq. (6.4), the outcome is

@4w .x; t/

@t4
C cnon

@w .x; t/

@t
C @2w .x; t/

@t2
D Fnonapulse.t/; (6.6)

where, nondimensional damping and forcing terms are as follows

cnon D cl4

EIT
; Fnon D ��Aamaxl3

EI
: (6.7)
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The nondimensional force given in Eq. (6.7) implies that effects of the mechanical shock increases sharply with increasing
length and decreasing thickness of the antenna structure. This is in agreement with the experimental findings available in the
literature [26].

The resulting partial differential equation of motion can be converted into a set of ordinary differential equations by using
Galerkin’s method. In this method, the following form of solution is assumed

w .x; t/ D
nX

iD1
ai.t/�i.x/; (6.8)

where, � i(x) is a comparison function which satisfies both geometric and natural boundary conditions as well as differentiable
at least to the order of the partial differential equation. ai(t) is generalized coordinate to be determined, and n is the number
of modes used in the analysis [27]. After substituting Eq. (6.8) into Eq. (6.6), multiplying the resulting equation with � j and
integrating from 0 to 1, the following result is obtained
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(6.9)

If orthogonal comparison functions are used, Eq. (6.9) is reduced to an uncoupled form as follows

Ruj.t/C 2�j!non;j
:
uj.t/C !non;j

2u.t/ D
1Z

0

�j.x/Fnonapulse.t/dx; (6.10)

where, � j is the modal damping ratio of the jth mode and it is given by

�j D cnon

2!non;j
: (6.11)

6.2.3 Nonlinear Continuous Model

In this section, shock response of an antenna structure considering geometric and inertia nonlinearities is analyzed. In real
life, response of almost all systems to any forcing is nonlinear, where superposition property of linear systems does not hold.
For simplicity, many engineering systems are treated as linear which is a valid assumption in most cases. For instance, in
order to obtain linear equation of motion of an antenna structure under mechanical shock, small deformation is assumed.
This assumption gives accurate results if the deformation in the real case is small with respect to the thickness of the
antenna structure. However, if the deformation is large, small deformation assumption results in highly inaccurate results.
Therefore, linear modeling may result in a design which is not optimum and hence, increases weight and cost. In addition
to this, estimated acceleration of a PCB on the antenna structure is not accurate. Since mechanical shocks result in large
deformations, antenna structure needs to be modeled by including nonlinearities.

Nonlinearities common in structures are geometric nonlinearity, damping nonlinearity, inertia nonlinearity, curvature
nonlinearity, material nonlinearity and boundary condition nonlinearity. Since, the antenna structure experiences large
deformation due to its long and slender structure, curvature and inertia nonlinearities are included into the model.

In the light of above mentioned information, equation of motion of the antenna structure, which has uniform density and
constant cross section, under mechanical shock including geometric curvature and inertia nonlinearities is given as [25]
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Equation (6.12) is converted into a set of nonlinear ordinary differential equations by using Galerkin’s method. Similar to
the previous case, substituting Eq. (6.8) into Eq. (6.12) multiplying the result by � j and integrating from 0 to 1 the following
result is obtained
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where nondimensional damping, inertia and forcing parameters are given as

cnon D cl4

EIT
; ˛in D l4�A

2T2EI
; Fnon D ��Aamaxl3

EI
: (6.14)

Equation (6.13) can be represented in matrix form, where in this study MUPAD
®

available in MATLAB
®

is used for the
symbolic calculations.

6.2.4 Finite Element Simulation by ANSYS

In this section, shock response of an antenna structure is obtained by using ANSYS, which is commonly used commercial
finite element software. In this paper, the antenna structure is modeled by 3-D 2 Node beam elements known as BEAM188
(see Fig. 6.6). This element type is used to analyze slender beam like structures. Moreover, this element has six degrees
of freedom which are three translational degrees of freedom in X, Y and Z directions and three rotational degrees of
freedom about X, Y and Z axes. In addition to that, the element is suitable for the consideration of stress stiffening and large
deformation effects. The theory behind this element is Timoshenko beam theory, which includes shear deformation [28].

ANSYS Workbench does not have a tool for mechanical shock simulation, since mechanical shocks are applied to a
structure from its base. In literature, Application Customization Toolkit exists for transient base excitation analysis. However,
this toolkit is applicable for only linear transient analysis. As a result of that, ANSYS Parametric Design Language (APDL)
is used to simulate mechanical shock. The APDL code which is embedded into “Transient Structural” module is written
by “ACCEL” command. This command gives acceleration to the selected nodes. Furthermore, Rayleigh damping is used to
model damping which is defined as

ŒC� D ˛m ŒM�C ˇm ŒK� ; (6.15)
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Fig. 6.6 Geometry of BEAM188 [28]
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where, ˛ and ˇ are mass and stiffness constants, respectively. In this example, the first two modes are used in order to find
these damping coefficient, which is implemented into ANSYS Transient Structural.

6.2.5 Approximate Methods

In this part, approximate methods based on modal combination are introduced. In these methods, the maximum response of
the antenna structure is estimated by combination of mass normalized eigenfunction coefficient, modal participation factor
and dynamic constant obtained from shock response spectrum. Moreover, mass normalized eigenfunction coefficient is
obtained by using a mode shape function of the antenna structure at a desired location. Furthermore, the modal participation
factor shows effectiveness of a particular mode on the response [29]. Thus, the modal participation factor, � n, of the antenna
structure is given as [30]

�n D �A

LZ

0

�n.x/dx; (6.16)

where, � and A are uniform density and cross sectional area of an antenna structure, respectively and �n(x) is the mode shape
of the nth mode.

Absolute sum (ABS), square root of sum of squares (SRSS), naval research (NRL) and complete quadratic combination
methods are examples of approximate methods. These methods are used to get maximum shock response of an antenna
structure. The main advantage of these methods is their computational efficiency compared to transient analysis. Moreover,
these methods are conservative compared to transient analysis, since modal maximum responses are assumed to act
simultaneously and have the same sign.

6.3 Case Studies

In this section, several case studies are conducted in order to analyze shock response of the antenna structure in detail.
Moreover, linear and nonlinear ordinary differential equations are solved by Newmark method, which is also used in finite
element software ANSYS.

Firstly, finite element method is compared with the linear continuous model. Consider the antenna structure given in
Fig. 6.3 with constant cross section and uniform density. The antenna structure has 350 mm length, 40 mm width and
2 mm thickness. Moreover, the antenna structure is made up of aluminum, the density and Young’s modulus of which are
2700 kg/m3 and 70 GPa, respectively. In addition to that, the antenna structure is subjected to 50 G 11 ms half sine mechanical
shock which is the transportation shock for wheeled vehicle and aircraft according to International Standard IEC-60068-2-27
[31]. Acceleration responses of the antenna structure to the given input mechanical shock using reduced order model and
finite element simulation are given in Fig. 6.7. It is observed that the result of ROM is in agreement with the result of the
finite element method.

In nonlinear finite element analysis, there are some drawbacks which affect shock response of an antenna structure. One
of them is Rayleigh damping, which depends on mass and stiffness matrices as seen from Eq. (6.15). Using constant ˇm

leads to undesirable results in the nonlinear analysis, since ANSYS updates stiffness matrix for each iteration. Therefore,
ˇm constant cannot be used in nonlinear analysis. In this case study, damping is assumed to be zero and artificial damping is
introduced as 0.5.In Newmark method, the amount of numerical dissipation is controlled by artificial damping. Furthermore,
this damping leads to reduction of numerical errors. Linear and nonlinear shock responses of the antenna structure are
compared in Fig. 6.8. According to the results obtained, nonlinearity reduces the shock response of the antenna structure
significantly.

Nonlinear mathematical model used in this study is validated by Ref. [16]. Younis et al. [16] studied nonlinear analysis of
the cantilever MEMS under mechanical shock. The maximum nondimensional deflection versus shock amplitude graph given
in [16] is used to validate the nonlinear mathematical model used in this study. Consider the cantilever MEMS, whose length,
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Fig. 6.7 Shock response of the antenna structure
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Fig. 6.8 Linear and nonlinear shock response of the antenna structure

thickness and width are L D 100 	m, h D 0:1 	m and b D 10 	m, respectively. The cantilever MEMS is made up of silicon,
whose density and Young’s modulus are 2332 kg/m3 and 169 GPa, respectively. The results obtained are compared with the
ones given in [16] in Figs. 6.9 and 6.10b. The results obtained are in well agreement with the ones given in [16]; hence, the
nonlinear model and the solution method used are validated.
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The maximum relative displacement and acceleration tip response of an antenna structure is critical for design, since
PCB, which is placed on the tip of an antenna structure, is sensitivity to the amplitude of the mechanical shock. Therefore,
plot of the maximum response of the antenna structure vs. shock amplitude gives a better idea in terms of durability of the
antenna structure. It can be observed from Figs. 6.11 and 6.12, both acceleration and relative displacement responses of the
antenna structure is reduced when geometric nonlinearity is considered. Moreover, approximate methods can be used as a
starting point of shock analysis of an antenna structure. Although approximate methods give conservative results compared
to linear transient counterparts, computation time is significantly reduced. Furthermore, equivalent lumped mass model leads
to enormous error in this case study, since the second, the third and the fourth modes also contribute to the shock response of
the antenna structure in addition to the first mode. In other words, acceleration response of the antenna structure is composed
of the first, the second, the third and the fourth modes of the structure which can be deduced from Fig. 6.13.
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Fig. 6.11 Maximum acceleration response of the antenna structure
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6.4 Conclusion

In this study, shock response of an antenna structure including geometric nonlinearity is investigated. Firstly, lumped mass
model of an antenna structure is studied. Although lumped mass model is a fundamental and computationally efficient
model, this is not applicable for case studies where contribution of the modes higher than the first mode cannot be neglected.
Therefore, modeled continuous beam model by using Euler-Bernoulli beam theory results in highly accurate results due to
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the fact that the effects of higher modes can as well be retained in the solution. Although both linear reduced order model
(ROM) and finite element model are in agreement with each other, ROM is computationally very efficient, since a fine mesh
is required in order to capture the propagation of shock wave properly. However, this leads to increased solution times.
Furthermore, geometric nonlinearity plays an important role on shock response of an antenna structure, since many antenna
structures have larger dimension in longitudinal direction. It is interesting to note that geometric nonlinearity reduces both
relative displacement and acceleration response, especially in the case of high shock acceleration. It is similar to the case
where as if shock isolator is used. In other words, when the antenna structure is modeled properly including geometric
nonlinearity, response is similar to the case where an antenna structure is modeled by linear theory including shock isolator.
Therefore, nonlinear modeling can eliminate the usage of shock isolator. It can be concluded that approximate methods are
inherently conservative methods and may be used as a starting point of shock analysis due to their little computation time.
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Chapter 7
Investigation on Friction-Excited Vibration of Flexibly Supported
Shafting System

Wenyuan Qin, Zhenguo Zhang, Suining Hu, and Zhiyi Zhang

Abstract Self-excited vibration of a flexibly supported shafting system in a gravity water tunnel was investigated by
experiment and numerical simulation. Vibration of the flexibly supported shafting system, such as the acceleration responses
of the shaft and the dynamic reaction forces at the propeller support, were measured at different shaft speeds. Experimental
results demonstrated that the self-excited vibration, characterized by a single-mode vibration modulated by the shaft speed,
emerges as the shaft speed decreases in a speed range. To reveal the mechanism of the self-excited vibration, a fluid-structure
coupling model was established. Simulation results show that the instable modes are associated with the rotational vibration
modes of the flexible support, which can be easily excited by the circumferential friction, and the coupling between the
vibration of the flexible support and the friction of the water-lubricated rubber bearing is the main factor leading to the
vibration instability in the flexibly supported shafting system.

Keywords Flexible support • Coupled vibration • Self-excited vibration • Friction of rubber bearings

7.1 Introduction

Water-lubricated rubber bearings are widely used as the supports in propeller shaft system [1–3] and the unexpected vibration
even squeal induced by the friction in rubber bearings is often encountered [4–6]. Due to the suspension of the propeller, it
is inconceivable for the bearing-shaft contacting surfaces to be fully separated by water especially during the start-up, shut-
down, low-speed and high-load operational conditions. In those cases, bearings may be located in the mixed and boundary
lubrication regimes and even contact directly with the shaft, which may result in the friction-induced vibration and squeal
leading to excessive wear of bearing components and badly work performances in vessels [4–9].

Researches on the mechanism of the friction-induced vibration can be tracked back to about 40 years ago and four
instability mechanisms gradually form [10–16], including the negative slope of the friction-velocity, the kinematic sprag-slip
instability, follower force nature of the friction forces, the mode coupling instability. In the past, most studies [4–6, 10, 11,
17–20] on the friction-induced vibration in shaft systems often were limited to the theoretical and experimental analysis of
the friction pair characteristics of water-lubricated rubber bearings. However, special investigations on the friction-induced
dynamics in the propeller-shaft systems gradually prevail. Krauter [10] emulated the dynamic behavior of a bearing-shaft
interaction system with an analytical model containing three degrees of freedom. The negative slope of the friction-velocity
curve was determined to play a primary role in the instability conditions of the system, while the pattern of manifestation
is the instability of the vibration mode. Simpson and Ibrahim [11] investigated the detailed dynamical behavior of a two-
degree-of-freedom model that emulates the dynamics of water-lubricated bearings. The friction-velocity relationship is also
found to be responsible for the occurrence of squeal and other nonlinear phenomena, while additional system parameters
such as damping ratios and the initial conditions have less influence on the friction-induced vibration. Mihajlović et al.
[13] theoretically and experimentally analyzed the interaction between the friction-induced vibration and the self-sustained
lateral vibration caused by a mass unbalance. Zhang et al. [7, 8, 15, 16] analytically modelled the coupled dynamics of
the bearing-shaft system and analyzed the system vibration responses under the excitation of the water-lubricated bearing
friction. Research [9] experimentally analyzed the influences of rotor speeds, bearing loads, cooling water temperatures and
installation states of bearing on friction-induced noise in shaft system supported by water-lubricated rubber bearings.
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Accordingly, the present study will concentrate on the above-mentioned issues and especially focus on the coupling effect
between bearing friction and dynamic characteristics of the system to obtain an improved understanding of the excitation
mechanism leading to self-excited vibration.

7.2 Experiment

7.2.1 Experimental Set Up

The flexibly supported shafting system in a gravity water tunnel is shown as in Fig. 7.1a, mainly consisted of stern support,
middle support, water-lubricated rubber bearings, propeller, flexible coupling and servo motor. The interface of the stern
support is shown as in Fig. 7.1b. One end of a sword in the support is hinged with the bearing sleeve and the other end,
longitudinally pre-tightened by force FP to improve support stiffness of the sword, is fixed on the mounting base which is
isolated from ground with rubber isolators.

7.2.2 Experimental Results

The vibration characteristics of the flexibly supported shafting system in the gravity water tunnel is measured to obtain the
natural vibration and the dynamic response of the system.

The hammer method is adopted for measuring the statically natural vibration frequency. The modal test under the static
state is carried out without water, driving at single point and picking at multi points shown as in Fig. 7.2, and the result is
shown as in Table 7.1.

Fig. 7.1 (a) Schematic of flexibly supported shafting system in a gravity water tunnel, (b) the interface of the stern support

Fig. 7.2 The arrangement of measurement points under static state

Table 7.1 The measured
frequencies of the system

Order Static (without water) Description

1 21.1 Hz Bending vibration of shaft
2 29.5 Hz Bending vibration of shaft
3 49.4 Hz Bending vibration of shaft
4 72.6 Hz Bending vibration of shaft
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Fig. 7.3 The dynamic response when the shaft speed is 60 rpm: (a) the dynamic reaction force of the horizontal swords in time, (b) the dynamic
reaction in frequency

-27

28

-20

-10

0

10

20

-15

-5

5

15

N

16:Point14

0 101.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.00.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
-31

27

-20

-10

0

10

20

-15

-5

5

15

N

17:Point15
100e-9

100

10e-6

100e-6
1e-3

10e-3

100e-3

1
10

2e-6

N

Spectrum Point14

0 1000100 200 300 400 500 600 700 800 90050 150 250 350 450 550 650 750 850
6e-6

15

100e-6

1e-3

10e-3

100e-3

1
N

Spectrum Point15

a b

Fig. 7.4 The dynamic response when the shaft speed is 120 rpm: (a) the dynamic reaction force of the horizontal swords in time, (b) the dynamic
reaction in frequency

The system in the gravity water tunnel is measured after the tunnel is filled with water, to obtain the dynamically reaction
force of the horizontal swords in the stern support, when it is located at the steady state under every associated shaft speed
which continuously decreases from 600 rpm to 30 rpm and each gap is 30 rpm. Experiment results show that the system
come to instability when the shaft speed come to the 210 rpm, and the self-excited vibration become stronger when the speed
is 180 rpm, then the self-excited vibration grow much stronger as the shaft speed decreases and become very strong when the
shaft speed is located in the range from 180 rpm to 60 rpm, but it comes to the end when the shaft speed comes to 30 rpm.
The dynamically reaction forces of the horizontal swords in the stern support are respectively shown in Figs. 7.3 and 7.4,
characterized with a single mode instability, when the shaft speed are 60 rpm and 120 rpm. Figures 7.3a and 7.4a demonstrate
that the self-excited spectrum is characterized with shaft frequencies superposed with instability frequency which is about
114 Hz. Figure 7.5 clearly demonstrates the process of the instability decreases to end. The maintenance of self-excited
vibration need energy from servo motor. If the shaft work at a relatively low speed, relatively worse friction torque from
water-lubricated rubber bearings will disturbed the drive torque from the servo motor to a large extent. In this case, the shaft
can’t keep state and the self-excited vibration will disappear.

7.3 Numerical Simulation

To analyze the mechanism of self-excited vibration in the flexibly supported shafting system and find the associated instability
mode, the finite element model of flexibly supported shafting system, shown as in Fig. 7.6, is set up and analyzed its natural
vibration features.

The parameters of the shaft: length is 6.16 m, radius is 0.03 m, the distance between propeller and the stern is 0.18 m and
the distance between the stern support and the middle support is 2.6 m. The parameters of a sword in the support: length
is 0.33 m, width is 0.07 m, thickness is 2.36 mm. The radius of the bearing sleeve is 42.7 mm. The density of material is
8034 kg/m3, the modulus is 2.03e11 Pa and the Poisson’s Ration is 0.28.
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Fig. 7.5 The dynamic reaction force of the horizontal swords when the shaft speed is 30 rpm

Fig. 7.6 The finite element model of the flexibly supported shafting system, (a) structure-fluid coupled model, (b) the structure model

Table 7.2 The numerically
simulation frequencies of the
system

Order Without water Description

1 20.1 Hz Bending vibration of shaft
2 29.5 Hz Bending vibration of shaft
3 49.7 Hz Bending vibration of shaft
4 69.8 Hz Bending vibration of shaft

1st 7.09Hz 2nd 37.1Hz 3rd 113.6Hz 4th 265.9Hz

Fig. 7.7 The first four rotational modes of the support

Some numerically simulation frequencies of the system, can reach a good agreement with the measured frequencies shown
in Table 7.1, are shown as in Table 7.2 and the first four rotational modes of the stern support, considering the water coupling
effect, is shown as in Fig. 7.7. The third mode of the stern support in the system is associated with the instable mode.
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7.4 Conclusions

The self-excited vibration easily induced by the friction from water-lubricated rubber bearings when the shaft work at a
specific range, and the associated vibration at the instability frequency is magnified several times and destroy the performance
of the system. Abased on the above analysis, the frequency feature of self-excited is characterized by the support instability
modulated by the shaft speed. The coupling effect of rotational vibration of support and friction in the shaft-support interface
is decisive for instability, and the associated mode shape of support is determinant for self-excited vibration. Especially, the
bearing normal load, friction coefficient and shaft speed are essential factors of the shaft-support interface friction which can
induce shaft and support vibration. The above results presented in this work can provide references for ascertaining abnormal
vibration and squeal in the shafting system.
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Chapter 8
Resonant Analysis of Systems Equipped with Nonlinear
Displacement-Dependent (NDD) Dampers

Javad Jahanpour, Shahab Ilbeigi, and Mojtaba Porghoveh

Abstract Resonant analysis of a vibration system equipped with a nonlinear displacement-dependent (NDD) damper is
investigated. The frequency of the external forcing is chosen to be close to the natural frequency of the system. The system
is modeled and the approximate analytical solution of the governing equation is developed using the multiple scales method
(MSM). Several case studies with various amounts of external force’s frequencies are performed to investigate the resonant
excitation analysis. The proposed analytical solution is also verified by the fourth order Runge-Kutta method. Moreover,
the performance of the used NDD damper is analyzed and compared with the ordinary linear damper through the same
periodic resonant excitation. It is found that the NDD damper has a superior performance in reducing the vibration amplitude,
compared to the traditional linear damper when resonance occurs. In addition, utilizing the NDD damper in the resonant-
excited system provides a smaller force transmitted to the base than the system with the ordinary linear damper.

Keywords Resonant analysis • Nonlinear displacement-dependent (NDD) damper • Periodic excitation • Multiple scales
method (MSM) • Vibration amplitude reduction

8.1 Introduction

In general, to perform the vibration analysis on a system, its response under free and forced vibration is to be investigated.
In free vibration analysis, the system oscillates without being subjected to forcing from the surrounding environment. While,
under the forced vibrations, the system is excited by the continuously applied, time-dependent external forces which act on
the system [1]. Most often these are periodic forces.

In many applications, vibration may cause discomfort, disturbance, and damage. In particular, with the forced vibration,
when the external excitation frequency tends the natural frequency of the system, destruction of the system or the structure
may occur [2, 3]. This phenomenon is named as resonance, which is a well-known concept in forced vibration problems.
In an ideal resonance, when the frequency of an exciting force matches the natural frequency of the system; the amplitude
of vibration is considerably increased. The study of resonance is an important issue in many applications such as: vehicle
design [4], steam-turbine rotor-bearing systems [5], wind turbines [6, 7], bridge design [8], controllers and isolators design
[9], beams [10–17], CNC tool-path planning [18] and tuned liquid damper (TLD) as an absorber [19, 20]. Also, understanding
resonances is essential to ensure an appropriate running condition and a desired behavior of systems. Most studies of
resonance assume that the system is linear. However, most of dynamical systems have nonlinear components, which cannot
be described by a linear model. For example, vibration components with clearances [21, 22], motion limiting stops [23, 24],
vibration analysis of the milling process [25], vibration modes with internal resonance [26], or a nonlinear displacement-
dependent (NDD) damper [27], which cause changes in damping coefficients, represent a significant proportion of these
systems.

In order to avoid the undesired effects of the resonance in both linear and nonlinear systems, different kinds of viscous
dampers are added to the vibratory system. Dampers absorb the energy and do not allow the vibration amplitude to reach
the infinity in resonance phase, while in conservative systems without any damper; the amplitude reaches infinity when
resonance happens. Most of viscous dampers have a constant damping coefficient, however, variable dampers have already
found their way to industrial/commercial applications [28, 29]. The variable dampers can be classified as active, semiactive
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and passive [30–34]. Active dampers are activated by an external source of power which usually is provided by hydraulic
actuators [35–37]. In most cases, the active dampers have high energy consumption, heavy weight, large size and high cost.
Semiactive dampers inherit properties of controllable electromagnetic valves or magneto rheological (MR) fluid to control
the damping characteristics of the system and they are a compromise between the active and passive dampers [29–38].
Passive dampers have generally fixed properties which are determined and preset according to the design goals and intended
application [38]. Even though the active and semiactive dampers have higher performance, passive dampers are still the most
commonly used ones [29].

While there are many types of passive dampers, the passive variable dampers have been recently developed. Among the
passive variable dampers, those with stroke and displacement/position dependent sensitivity have been studied in several
works [39–50]. Fukushima et al. [43] suggested that dampers should have a stroke dependent characteristic; such that for a
given velocity, a longer stroke would give a greater force. However, the force in the stroke sensitivity cannot be identified
directly with the actual position of the piston in the cylinder [28]. The displacement sensitive dampers have been used on
aircraft landing gear, motorcycles, and vehicle suspension applications. The displacement sensitive schemes for landing
gears employ positive recoil control or two and three level position dependent damping [32]. In a motorcycle front fork, a
short and blunt rubber as a needle causes the damper orifice to get closed which allows weaker springing with improved
ride quality pressure [28]. Etman et al. [45] designed a stroke dependent damper for the front axle suspension of a truck.
The displacement sensitive damper suggested for vehicle suspension applications follows the idea of using a long tapered
needle entering an orifice in the piston [16, 34]. This type of damper is merely limited to utilizing a tapered needle and is not
mathematically modeled. Lee and Moon [47, 48] reported on tests of a displacement sensitive damper with a longitudinally
grooved pressure cylinder to relax the damping around the central position.

Some researchers have also investigated thoroughly the nonlinear dampers [27, 34, 49]. For instances, Haque et al. [50]
proposed an integral formulation to obtain the damping force of a displacement sensitive nonlinear damper. This method
was based on the transformation of the displacement sensitivity characteristic of the damper into a velocity sensitivity
characteristic. Farjoud et al. [51] presented a nonlinear model of monotube hydraulic dampers with an emphasis on the
effects of shim stack on damper performance. Guo et al. [52] studied the force and displacement transmissibility of nonlinear
viscous damper based vibration isolation. Peng et al. [53] investigated resonant phenomena for a class of nonlinear systems
using the Nonlinear Output Frequency Response Functions (NOFRFs).

Free and forced vibration analyses of systems equipped with nonlinear damper have also been studied in several researches
[27, 54–57]. For instances, Bugra et al. [55] implemented several experiments to determine the dynamic characterization of
nonlinear oil-free wire mesh dampers. To this end, the free and forced vibrations were investigated using the Hilbert transform
procedure and controlled amplitude single frequency excitation tests, respectively. Main and Jones [56] demonstrated the free
vibration of a taut cable with a nonlinear amplitude dependent damper. Diotallevi et al. [57] proposed a simplified design
method to analyze the forced vibration of single- and Multi-degrees of freedom (SDF and MDF) systems equipped with
nonlinear viscous damper under harmonic external forces. In their work, the responses of the SDF and MDF systems were
also calculated numerically.

Recently, Ilbeigi et al. [27, 58] introduced a novel scheme for NDD dampers, in which the damping coefficient and
damping force were both continuous and smooth functions of displacement. In contrast with a linear damper, where the
damping force only depends on the velocity, the damping force produced by the proposed NDD damper depends on the
position of the system as well as the velocity. In their work, the vibratory mass-spring system equipped with a NDD damper
was also mathematically modeled and free vibration analysis of the system was analyzed. The results presented in [27]
indicate that the advised passive NDD damper scheme is capable to reduce the free vibration amplitude rather than the
existing traditional linear damper.

In this paper, resonant analysis of a mass-spring system utilizing the NDD damper is presented. The nonlinear differential
equation of the system under an external force with the frequency close to the natural frequency of the system is derived.
To study the resonance vibration analysis of the system, the external excitation’s frequency is described using a detuning
parameter presenting the closeness of the external force’s frequency to the natural frequency of the system. The stationary
response of the system is elaborated using the multiple scales method (MSM). The rest of the paper is organized as follows.
Section 8.2 is a review on the NDD damper mechanism. In Sect. 8.3, the mathematical model of the nonlinear mass-
spring system equipped with the NDD damper under an external resonant-force excitation is formulated and the governing
differential equation is derived. The forced-resonant vibration analysis of the system is illustrated in the Sect. 8.4. Several
numerical examples are presented in Sect. 8.5. The results are analyzed and discussed in Sect. 8.6. Finally, Sect. 8.7 concludes
the paper.
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8.2 Review on the NDD Damper Mechanism

An ordinary simple viscous damper consists of a piston having one or more orifices moving inside a cylinder filled with a
viscous fluid (Fig. 8.1). The damping force produced by a damper is linearly related as follows:

F D �c
du

dt
(8.1)

In which c is the damping coefficient.
By taking advantages of Hagen–Poiseuille equation for laminar flows, c can be obtained by the following equation for the

case of piston with one orifice:

clinear D ¯
"�

D

d

�2
� 1

#2
(8.2)

where, D and d are the cylinder diameter and the opening fluid gap diameter, respectively. Also, ¯ D 8��L, in which, �
denotes for dynamic viscosity of the fluid and L is the piston width.

For a set of chosen parameters D, d and L, the damping coefficient has a constant value. The mechanism can be designed
to make the linear damper into nonlinear and displacement-dependent one. To this end, [15] proposed a solid cone shaped
generated by rotating the interior region of the following function in Cartesian r-u coordinates around the u� axis:

u D nrs or r D
�u

n

� 1
s

(8.3)

where, ˇ D 2

d:n.
1
s /

and � D D
d :

The fixed cone shaped part is assembled to the linear damper, so that the origin of coordinates is located on the center of
the piston, the fluid travels through its outer surface and the inner surface of the orifice (Fig. 8.2), while, the opening fluid
gap is changed and the damping coefficient is consequently varied. Therefore, the ordinary linear damper with a constant
damping coefficient is converted to the nonlinear damper with a variable displacement-dependent damping coefficient

Fig. 8.1 Schematic of a simple viscous damper

Fig. 8.2 Schematic of the nonlinear displacement-dependent (NDD) damper [27]
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For the designed displacement-dependent damping mechanism shown in Fig. 8.2, the opening fluid gap diameter is equal
to d � 2r. Substituting r from Eq. (8.3), and d � 2r for d into Eq. (8.2) leads to

c D ¯
2

4�2
 

1

1 � ˇu.
1
s /

!2
� 1

3

5

2

(8.4)

where, ˇ D 2

d:n.
1
s /

and � D D
d :

Using the 2nd-order Taylor series expansion, Eq. (8.4) can be expressed as follows [27].

c D ˛1 C ˛2juj. 1s / C ˛3juj. 2s / C ˛4juj. 3s / C ˛5juj. 4s / (8.5)

For the case of n D 1 and s D 1
2
, Eq. (8.5) will be rewritten as follows:

c D ˛1 C ˛2u
2 C ˛3u

4 C ˛4u
6 C ˛5u

8 (8.6)

The parameters ˛i in Eq. (8.6) are given in Appendix.
It is noticed that the damping coefficient of the traditional damper is constant value, whereas the damping coefficient of

a NDD damper changes as the system moves. More details on mathematical formulation of the NDD damper can be found
in [15].

8.3 Mathematical Formulation of the Forced-Resonant Mass-Spring-NDD Damper System

The governing differential equation of a simple mass-spring-damper system with an external periodic force follows:

Ru C c

m
:
u C !n

2u D F cos .�t/

m
(8.7)

where,!n D
q

ks
m is the natural frequency of the system,˝ is the external force’s frequency and F is the excitation amplitude.

For a linear damper with constant damping coefficient, the forced-resonant response of the system is as follows:

ul.t/ D A1e��!nt sin
�p

1 � �2!nt C  
�

C A2 cos .�t � '/
(8.8)

where, � D c
2
p

mks
. Also, A1 and are evaluated using initial conditions. Moreover, A2 and ® related to the particular solution

of Eq. (8.7), are given in Appendix.
The damping force and the total force transmitted to the base can be calculated by the following equations:

FDamping D c
du.t/

dt
: (8.9)

FTransmitted D c
:
u C ks u: (8.10)

In order to achieve the governing differential equation of a basic mass-spring system equipped with NDD damper with an
external force, c from Eq. (8.6) must be replaced into Eq. (8.7) as follows:

d2u

dbt2
C u D �" �1C ˇ1u2 C ˇ2u4 C ˇ3u6 C ˇ4u8

�
du

dbt
C K cos

�
�bt
� (8.11)

In which,bt D !n t; " D ¯.�4�2�2C1/
m!n

; ˇi D ˛iC1

˛1
; K D F

m!n
2 and � D �

!n
.
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By adding a small term to the mathematical description (" in this paper), a perturbation method can be used to find an
approximate solution to the governing differential Eq. (8.11). The parameter " is directly proportional to ¯ and, accordingly,
to the fluid viscosity. It is also dependent to � . Hence, increasing the viscosity or increasing � , causes increasing ", and
strength of nonlinearity in Eq. (8.11), successively.

The shape parameters, i.e. n and s, effect on ˇ as ˇ D 2

d:n
1
s

and successively on the damping coefficient c as given by

Eq. (8.4). Accordingly, the dimensionless form of the governing equation of the vibration system utilizing the NDD damper
with an external periodic excitation is affected by these shape parameters (see Eq. (8.11)). It should be noted that the values
of the shape parameters n and s do not have any effect on " the one parameter which describes the strength of nonlinearity
of the governing equation. Since the main focus of this paper is to analyze forced-resonant vibration of a system equipped
with NDD damper, the shape parameters have been selected as a fixed set for a general application. However, the couple of
the values of these parameters can be optimized according to the desire goal and intended particular application.

For the forced-resonant analysis of the mass-spring-NDD damper system, the excitation frequency is considered as:

� D !n C ı" (8.12)

where, ı is the detuning parameter to present the deviation of the external force’s frequency from the natural frequency of the
system. Also, the external force amplitude coefficient, i.e. K, can be expressed as K D "k without any loss of the generality
of the mathematical model. Therefore, the term related to the periodic-resonant external force in Eq. (8.11) can be expressed
as following equation:

K cos
�
�bt
� D "k cos

	
bt C "ı

!n
bt



(8.13)

Substituting Eq. (8.13) in Eq. (8.11) leads to:

d2u

dbt2
C u D �" �1C ˇ1u2 C ˇ2u4 C ˇ3u6 C ˇ4u8

�
du

dbt C
"k cos

h
bt
�
1C "ı

!n

�i (8.14)

where, ˇi D ˛iC1

˛1
are given in Appendix.

In the following section, the procedure of employing MSM as a perturbation technique is illustrated to solve Eq. (8.14).

8.4 Forced-Resonant Vibration Analysis of the Mass-Spring-NDD Damper Using MSM

This method is based on the idea of representing multiple independent variables, which are all functions of the time variable,
and express all other time dependent functions including the response, as functions of the represented variables [54, 59–61].
For this aim, the independent variables are introduced as:

Tn D "nbt for n D 0; 1; 2; 3 (8.15)

Thus, the term related to the periodic-resonant external force in Eq. (8.14) can be determined using the terms T0 and T1 as
follows

"k cos

	
bt
�
1C "ı

!n

�

D "k cos

�
T0 C ı

!n
T1

�
(8.16)

Assuming n D 0 and 1, the solution of Eq. (8.14) can be expressed as

u D u0 .T0;T1/C "u1 .T0;T1/C O
�
"2
�

(8.17)
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With regard to the chain rule of derivation, the first and second derivatives with respect tobt can be represented as the following
forms:

d

dbt D D0 C "D1

d2

dbt2
D D2

0 C 2"D0D1 C "2D2
1

(8.18)

where Dn D @
@Tn
:

Substituting Eqs. (8.16), (8.17), and (8.18) into Eq. (8.14) and equating coefficient of each power of " in the two sides of
equation together, leads to

D2
0u0 C u0 D 0 (8.19)

D2
0u1 C u1 D �2D0D1u0 �

�
1C ˇ1u20C

ˇ2u40 C ˇ3u60 C ˇ4u80

�
D0u0 C k cos

�
T0 C ı

!n
T1
�
:

(8.20)

Assuming � D ı
!n

, then, the term k cos
�

T0 C ı
!n

T1
�

in Eq. (8.20) can be rewritten as:

k cos .T0 C �T1/ D k
2

�
ei.T0C�T1/ C e�i.T0C�T1/

�

D k
2
ei�T1 :eiT0 C k

2
e�i�T1 :e�iT0

(8.21)

The general solution of Eq. (8.19) can be expressed as

u0 D A .T1/ eiT0 C A .T1/ e�iT0 (8.22)

Substituting for u0 from Eq. (8.22) and the term related to the external force from Eq. (8.21) into Eq. (8.20) gives

D0
2u1 C u1 D �i

h
�seiT0 C�3e3iT0 C�5e5iT0

C�7e7iT0 C�9e9iT0 C CC
i
:

(8.23)

In which,

�s D 2D1A C A C ˇ1A2A C 2ˇ2A3A
2C

5ˇ3A4A
3 C 14ˇ4A5A

4 � 1
2
ikei�T1

(8.24)

Also, �i ’ s are given in Appendix and CC stands for complex conjugate.
Omitting the terms that produce secular terms leads to solvability for the first-order approximation, therefore, the

coefficients of e˙iT0 must be vanished; that is

�s D 0 (8.25)

Thus

�2D1A D A C ˇ1A2A C 2ˇ2A3A
2C

5ˇ3A4A
3 C 14ˇ4A5A

4 � 1
2
ikei�T1

(8.26)
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In order to solve Eq. (8.26) and for omitting the secular terms one let

A D 1

2
a .T1/ ei�.T1/ (8.27)

Substituting Eq. (8.27) and its conjugate and derivatives into Eq. (8.26) and separating the imaginary and real parts leads to

da
dT1

D �a � 1
4
ˇ1a3 � 1

8
ˇ2a5 � 5

64
ˇ3a7�

7
128
ˇ4a9 C k sin .�� C �T1/

(8.28a)

d�

dT1
D �k cos .�� C �T1/

a
(8.28b)

To eliminate the explicit time dependence of the right-hand sides of (8.28a) and (8.28b) one let

 D �T1 � � (8.29a)

Or

d 

dT1
D � � d�

dT1
(8.29b)

Hence (8.28a) and (8.28b) can be rewritten as follows

da
dT1

D �a � 1
4
ˇ1a3 � 1

8
ˇ2a5 � 5

64
ˇ3a7�

7
128
ˇ4a9 C k sin . /

(8.30)

d 

dT1
D �C k cos . /

a
(8.31)

Periodic solution of the externally excited system correspond to the stationary solutions of Eqs. (8.30) and (8.31), where both
a and  become constant, that is

da

dT1
D 0 (8.32)

d 

dT1
D 0 (8.33)

Suppose ã and Q refer to the stationary solution of a and  , thus Substituting (8.30) and (8.31), respectively in (8.32) and
(8.33), results in

Qa C 1
4
ˇ1 Qa3 C 1

8
ˇ2 Qa5 C 5

64
ˇ3 Qa7 C 7

128
ˇ4 Qa9

� k sin
� Q � D 0

(8.34a)

�C k cos
� Q �

Qa D 0 (8.34b)
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Elimination Q from (8.34a) and (8.34b) leads to the following algebraic equation, which describes the stationary amplitude
response of the resonant excited system.

Qa2 ı
!2n

2 C
�

Qa C 0:25ˇ1 Qa3 C 1
8
ˇ2 Qa5C

5
64
ˇ3 Qa7 C 7

128
ˇ4 Qa9

�
2 D k2

(8.35)

For a given set of excitation amplitude and frequency, the stationary amplitude response of the resonant excited system, i.e.
ã is computed via Eq. (8.35).

Substituting A from Eq. (8.27) into Eq. (8.22), the following first approximation to the response of the excited system is
obtained as

u D a cos
�
bt C �

�
"bt
��C O ."/ (8.36)

The frequency of the above periodic-resonant response of the system is determined as follows.

! D d
dt

�
bt C �

�
"bt
�� D d

dt

�
!nt C �

�
"bt
��

D !n C d�
�
"bt
�

dt

(8.37)

According to Eqs. (8.29b) and (8.33), d�
dT1

is obtained as

d�

dT1
D � D ı

!n
(8.38)

where T1 D "bt D "!nt. Thus:

d�

dt
D "ı (8.39)

Substituting Eq. (8.39) into Eq. (8.37) leads to the frequency of the resonant response of the system, that is

! D !n C "ı D !n� D � (8.40)

According to Eq. (8.40), the frequency of the response matches the external force’s frequency for the periodic resonant
excitation.

8.5 Numerical Examples

The system characteristics such as mass, spring stiffness, viscosity, orifice diameter, etc. affect the values of the parameters
!n, � , ",ˇ1,ˇ2,ˇ3,ˇ4 and consequently the approximate analytical response of the resonant excited system via Eq. (8.36)
and its stationary amplitude via Eq. (8.35), as well. Table 8.1 exhibits the selected values for several numerical case studies
of resonant-excitation with different values of deviation factor ı. According to Table 8.1, the external force’s frequency has
been selected to be close to the natural frequency of the system for the cases of (1)–(4). While, the deviation of the external
force’s frequency from the natural frequency of the system is chosen as a large value for the fifth case.

For all cases, ks D 1000N
m , m D 20 Kg, d D 4 cm, D D 20 cm, n D 1, s D 1

2
, and L D 1 cm have been selected. Using

these values, the parameters !n, � ,ˇ1,ˇ2,ˇ3 and ˇ4 can be calculated for all cases given in Table 8.1. Those are:

!n D 7:071 rad=s�1; � D 5; ˇ1 D 208:3;

ˇ2 D 16059; ˇ3 D 542000; ˇ4 D 6782� 103

For instance, for the fourth case of Table 8.1 with the initial conditions as: u.0/ D 0:002 m;
:
u.0/ D 1:23 ms�1, F D 50N

and � D 0:0493 Pa:s (i.e. ¯ D 0:0123 and " D 0:05) along with ı D 2, the amount of the stationary response amplitude
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Table 8.1 The selected values and the affected parameters for the resonant-excitation analysis

Selected values Affected parameters
Case F (N) 	 (Pa.s) u0 (m)

�

u0 (ms�1) ı " ¯ � clinear (Nsm�1) ˝ (rad/s�1) ã (m)
1 50 0.0493 0.002 1.23 0 0.05 0.0123 0.025 7.08 7.071 0.173
2 50 0.0493 0.002 1.23 1 0.05 0.0123 0.025 7.08 7.121 0.172
3 50 0.49 0.002 0.54 1 0.5 0.59 0.25 71 7.571 0.074
4 50 0.0493 0.002 1.23 2 0.05 0.0123 0.025 7.08 7.170 0.172
5 50 0.0493 0.002 1.35 20 0.05 0.0123 0.025 7.08 8.071 0.168

for the resonant-excited system is computed as Qa D 172.88 mm by solving the algebraic Eq. (8.35). Also, the excitation
frequency is computed as � D !n C "ı D 7:171 rad=s, and the response of the excited system is obtained by Eq. (8.36) as:

u D 172:88 cos .7:171t C 1:56/ mm

The response of the mass-spring system equipped with the traditional linear damper having the same external force and
initial conditions is calculated as follows:

x D �422 cos.7:171t/C 745 sin.7:171t/
C 711e�0:177t sin .7:07t C 2:50/mm

8.6 Results and Discussion

The simulation results for the resonant excitation analysis are shown in Figs. 8.3, 8.4, 8.5, and 8.6. In order to verify the
accuracy of the approximate analytical response of the system equipped with the NDD damper, given by Eq. (8.36), the
numerical integration technique is also applied to solve Eq. (8.14) using the fourth order Runge Kutta method.

The displacements of the excited system using the NDD damper, for the first four cases presented in Table 8.1 are shown in
Fig. 8.3. These results for the system with the linear damper are also depicted in Fig. 8.3. Figure 8.3a shows the comparison
between the approximate analytical solution and the numerical result obtained by the Runge Kutta method for the ideal
resonant case, i.e. the first case given in Table 8.1 with F D 50N; ı D 0; (i.e. � D !n D 7:071 rad=s) and " D 0:05. This
comparison is carried out for the cases (2)–(4) in Fig. 8.3b–d, respectively. As can be seen the proposed analytical solution
is extremely close to the numerical solution for these cases as well as the ideal resonant case, i.e. case (1). As shown in
Fig. 8.3a–d, the response of the system using the linear damper considerably grows in each cycle up to an extremely large
stationary amplitude at a long time for the cases of (1)–(4). But, in the system with the NDD damper, the amplitude of the
vibration tends to its stationary value immediately. Therefore, there is no need to evaluate the second order approximation of
u for the governing equation of the system via Eq. (8.14). Besides, as it is observed in Fig. 8.3a–d, for the system employing
the NDD damper, the amount of the stationary response amplitude is significantly smaller than its value for the system
with linear damper. Hence, utilizing the NDD damper in the excited system under periodic-resonant force has substantial
advantage over the linear damper in terms of decreasing the amplitude response of the system.

In order to investigate the effect of increasing the perturbation parameter ", the results related to the case (2) with " D 0:05

and case (3) with " D 0:5 can be evaluated. According to Fig. 8.3b, c, increasing the value of " causes increasing the error
between the approximate analytical solution and the exact numerical solution. This is due to the properties of the multiple
scales method, whereas the value of " must be small. Moreover, in Fig. 8.3c, where the amount of displacement is not
considerable as the other cases, the displacements of the systems with the NDD and linear damper are close to each other,
because the small amplitude vibration weakens the nonlinearity of Eq. (8.16).

Figure 8.4 exhibits the damping force of the both nonlinear and linear dampers versus displacement for the first four cases
of Table 8.1. That is the work done by the damper, i.e. the amount of energy absorbed by the damper. For instance, as can
be seen in Fig. 8.4b, for the case (2) with ı D 1, the damping force of the linear damper has the maximum value of 42.3N,
whereas, the nonlinear damper provides the larger damping force amount of 114.6N. This explains how the NDD damper
outclasses the traditional linear damper in the terms of amplitude reduction.

Figure 8.5 demonstrates the transmitted force to the base versus time for the cases presented in Table 8.1. According
to Fig. 8.5, in the system with the linear damper, a larger amount of force is being transmitted to the base compared to
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Fig. 8.3 Response of the resonant-excited system with F D 50N for (a) " D 0:05 and ı D 0 (b) " D 0:05 and ı D 1 (c) " D 0:5 and ı D 1 (d)
" D 0:05 and ı D 2: (red line) approximate analytical solution of the system with the NDD damper; (blue line) numerical solution of the system
with the NDD damper; (dark line) analytical solution of the system with the linear damper

the system using the NDD damper. In the system with the linear damper; not only an undesired significant higher force is
transmitted to the base but also the traditional damper is unable to provide the system with the effective amplitude reduction
compared to the NDD damper.

In Fig. 8.6 the damping force versus time is shown for the first four cases given in Table 8.1. It is observed that the
NDD damper provides a higher damping force and keeps the amplitude far more limited than the traditional damper while
the system is excited with a resonant force. In addition, it is worthwhile to note that in Fig. 8.6c, in which the vibration
amplitude is small compared to the other cases, the damping force of the NDD damper gets close to the linear damper. This
is due to the fact that small amplitudes weaken of the higher powers of u in Eq. (8.6). Therefore, the damping coefficient of
the NDD damper gets closer to the linear damper for the small displacements.

To study the effect of increasing the deviation factor ı, the displacement of the excited system for the case (5) where
ı D 20 is presented in Fig. 8.7. Figure 8.7 confirms that as the value of ı rises, the error between the approximate analytical
solution given by Eq. (8.36) and the exact numerical solution increases. This is due to the fact that the scheme is elaborated
for the resonant analysis, in which the value of ı is small.

As expected, when the external force’s frequency gets close to the natural frequency of the system, i.e. ı ! 0, the
resonant excitation is more severe and consequently results in vibration with higher amplitude. On the contrary, increasing
the difference between the external force’s frequency and the natural frequency of the system causes decreasing the stationary
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Fig. 8.4 Damping force versus displacement of the resonant-excited system with F D 50N for (a) " D 0:05 and ı D 0 (b) " D 0:05 and ı D 1

(c) " D 0:5 and ı D 1 (d) " D 0:05 and ı D 2: (red line) damping force of the NDD damper obtained by the MSM; (blue line) damping force of
the NDD damper obtained by the Runge–Kutta method; (dark line) damping force of the linear damper

amplitude response of the excited system. For the case (5) with ı D 20, the response of the system with the NDD damper
reaches its stationary amplitude of 168 mm, which is smaller than the stationary amplitude of the case (1) with ı D 0 and
case (2) with ı D 1.

8.7 Conclusion

The resonant vibration analysis of a mass-spring system equipped with the nonlinear displacement-dependent (NDD)
damper was studied in this paper. The governing equation of the excited system was derived for the external force with
a frequency closed to the natural frequency of the system. To obtain the forced-resonant response of the system, the
approximate analytical solution algorithm was developed by the multiple scales method (MSM). The advised solution
algorithm was performed for several case studies with various amounts of external force’s frequencies and also verified
by the numerical fourth-order Runge–Kutta method. It is found that the proposed analytical solution algorithm is able to
achieve the satisfactory performance for the resonant excitation analysis. In contrast to the system with the linear damper, in
which the response considerably grows in each cycle up to extremely large stationary amplitude at a long time; in the system
employing the NDD damper, the amplitude of the vibration tends to its stationary value immediately. Moreover, the results



78 J. Jahanpour et al.

0 5 10 15 20
-1000

-500

0

500

1000

T
ra

n
sm

itt
ed

 F
o
rc

e 
(N

)

Time (s)

0 2 4 6 8 10
-1000

-500

0

500

1000

T
ra

n
sm

itt
ed

 F
o
rc

e 
(N

)

Time (s)

0 2 4 6 8 10
-100

-50

0

50

100

D
is
p
la

ce
m

en
t 

(m
m

)

Time (s)

0 5 10 15
-1000

-500

0

500

1000

T
ra

n
sm

it
te

d
 F

o
rc

e 
(N

)

Time (s)

a b

c d

Fig. 8.5 Comparison between the transmitted force by the system in a linear system and nonlinear system with NDD damper with resonant
external force as F D 50N for (a) " D 0:05 and ı D 0 (b) " D 0:05 and ı D 1 (c) " D 0:5 and ı D 1 (d) " D 0:05 and ı D 2: (red line)
approximate analytical solution of the system with the NDD damper; (blue line) numerical solution of the system with the NDD damper; (dark
line) analytical solution of the system with the linear damper

confirm that utilizing the NDD damper in the resonant-excited system not only causes more vibration amplitude reduction
rather than the traditional linear damper but also provides the lower force transmitted to the base compared to the linear
damper, where an undesired significant higher transmitted force is produced.

A.1 Appendix
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Fig. 8.6 Damping force of the resonant-excited system versus time with F D 50N for (a) " D 0:05 and ı D 0 (b) " D 0:05 and ı D 1 (c)
" D 0:5 and ı D 1 (d) " D 0:05 and ı D 2: (red line) damping force of the NDD damper obtained by the MSM; (blue line) damping force of the
NDD damper obtained by the Runge–Kutta method; (dark line) damping force of the linear damper
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Chapter 9
Performance Comparison Between a Nonlinear Energy Sink
and a Linear Tuned Vibration Absorber for Broadband Control

Etienne Gourc, Lamberto Dell Elce, Gaetan Kerschen, Guilhem Michon, Gwenaelle Aridon, and Aurelien Hot

Abstract The performance of a linear tuned vibration absorber (LTVA) and a nonlinear energy sink (NES) for the vibration
mitigation of an uncertain linear primary system is investigated. An analytic tuning rule for the LTVA when the primary
system contains uncertainty is derived. The behavior of the linear system coupled to the NES is analyzed theoretically.
A tuning methodology for the NES in the deterministic as well as for the uncertain case is presented.

Keywords NES • LTVA • Broadband • Uncertainties • Equal-peaks

9.1 Introduction

Mitigation of resonant vibrations of a linear system is a widely encountered problem in engineering [8]. In the early 1900,
Frahm proposed the use of linear resonator to reduce the amplitude of the oscillations around the resonance of a primary
system [3]. This problem was later formalized by Den Hartog [2] who developed a tuning procedure based on invariant
points to find appropriate stiffness and damping of the absorber.

A recent trend in the literature is to exploit and take advantage of nonlinear phenomena for vibration mitigation and
energy harvesting [7, 11, 12, 19]. Among them, the nonlinear energy sink (NES), which consists of an absorber with
essential nonlinearity, received particular attention. It was shown that a NES can lead to targeted energy transfer, which
is an irreversible channelling of vibrational energy from the host structure to the absorber [5, 17]. Such an appealing feature
makes the NES a suitable candidate for vibration isolation. However, due to the nonlinearity, it can also exhibit classic
nonlinear behavior such as jumps or sensitivity to motion amplitude and therefore, it must be carefully designed.

Passive control of resonance using a NES was analyzed both theoretically [15, 16] and experimentally [6]. In addition to
periodic response, systems with NES were shown to exhibit relaxation oscillations. The performance comparison between a
linear absorber and a NES for the vibration mitigation of a linear system was addressed in [14]. However, in this study, both
absorbers are constrained to have the same damping and the presence of detached resonance curve was not taken into account.
In [13], a linear flexible beam with an embedded NES/linear absorber was investigated, but no proper design procedure was
proposed, which makes difficult the comparison of both solutions.

The present work aims at giving an objective comparison between a NES and a linear absorber for passively controlling
the resonance of a linear primary system. Two case studies are considered: first, the primary system is assumed to be
deterministic; second, the stiffness of the primary system is assumed to be a random variable. In other words, the first
case corresponds to the nominal case whereas in the second case, the stiffness of the primary system can vary to take into
account model uncertainties or ageing effects.
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Fig. 9.1 Linear oscillator coupled to a nonlinear vibration absorber

The paper is organized as follows. In Sect. 9.2, a general model encompassing both linear and nonlinear absorber is
presented. In Sect. 9.3, a tuning procedure for the linear absorber in the case of an uncertain primary system is presented.
In Sect. 9.4, the theoretical treatment of the system coupled with the NES is presented. In Sect. 9.5, a tuning procedure for
the NES in both the deterministic and uncertain case is discussed. In Sect. 9.6, the performance of the linear absorber and the
NES for vibration mitigation are compared. Finally, conclusions are drawn.

9.2 Description of the Model

A schematic of the studied system is depicted in Fig. 9.1. mj, kj, cj and xj (j D 1; 2) are the mass, stiffness, damping and
absolute displacement of the primary system and the absorber, respectively. F denotes the forcing amplitude and knl2 the
nonlinear stiffness of the absorber. The equations of motion of the corresponding system are

m1 Rx1 C c1 Px1 C k1x1 C c2.Px1 � Px2/C k2.x1 � x2/C knl2.x1 � x2/
3 D F cos�t

m2 Rx2 C c2.Px2 � Px1/C k2.x2 � x1/C knl2.x2 � x1/
3 D 0 (9.1)

where the dots represent the differentiation with respect to the time t and � is the pulsation of harmonic excitation. In order
to take into account an uncertainty of the primary system, the linear stiffness is expressed as k1 D k10 C k11, where k10 is the
nominal stiffness and k11 (jk11j < k10) a random variable.

The configuration of the primary system coupled either to the LTVA or the NES is obtained by setting knl2 or k2 to zero in
Eq. (9.1), respectively. Introducing non-dimensional time Qt D !1t, the equations of motion are recast into

x00
1 C 2�1x

0
1 C .1C ı/x1 C ��.x0

1 � x0
2/C ��2.x1 � x2/C �K.x1 � x2/

3 D G cos Q�Qt
x00
2 C �.x0

1 � x0
2/C �2.x1 � x2/C K.x1 � x2/

3 D 0 (9.2)

here, primes denote differentiation with respect to the non-dimensional time Qt and

� D m2

m1

; !1i D
r

k1i

m1

; �1 D c1
2m1!10

; Q� D �

!10
; � D c2

m2!10
;

� D
s

k2
m2!

2
10

; K D knl2

m2!
2
10

; G D F

m1!
2
10

; ı D k11
k10

9.3 Linear Tuned Vibration Absorber

In this section the linear primary system coupled to a linear tuned vibration absorber (LTVA) is analyzed. The equation of
motion of the primary system coupled to a LTVA is simply obtained by letting K D 0 in Eq. (9.2).
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9.3.1 Deterministic Primary System

First, we deal with the case of deterministic primary system, thus imposing ı D 0 in Eq. (9.2). Den Hartog showed that the
FRF of the primary mass has two invariant fixed points which are independent of the absorber damping � [2]. He proposed
to adjust the stiffness of the absorber so that these two invariant points have equal heights in the FRF. The damping of the
absorber is then determined so that the FRF presents an horizontal tangent through one of the fixed points. An approximate
value of the optimal damping is obtained by taking an average value that leads to the horizontal tangent to both fixed points.
This method is the so-called equal-peak method. Quite surprisingly, it is only recently that an exact closed-form formula for
this classical problem has been found by Asami and Nishihara [1]

�opt D 2

1C �

s
2
�
16C 23� C 9�2 C 2 .2C �/

p
4C 3�

�

3 .64C 80� C 27�2/

�opt D �opt

2

s
8C 9� � 4p4C 3�

1C �

(9.3)

9.3.2 Uncertain Primary System

In this section, the tuning of the LTVA for the case of an uncertain primary system is addressed. The problem is formulated
as follows

Œ�opt; �opt� D arg

	
min
�;�

�
max
ı2Iı

jHj1.�; �; ı; �; �1/
�


(9.4)

By solving numerically problem (9.4), we observed that the solution is such that

jHj1.�opt; �opt; ımin/ D jHj1.�opt; �opt; ımax/ (9.5)

Therefore, in the uncertain case, the optimal tuning of the absorber is obtained when the FRF of the system at the uncertainty
bounds has equal peaks. Based on this observation, we express an analytic tuning rule for the LTVA in the uncertain case.
Neglecting the damping of the primary system to simplify the calculation (i.e. �1 D 0), the normalized steady state amplitude
of the primary mass is given by

H2 D
ˇ
ˇ̌
ˇ
X1

G

ˇ
ˇ̌
ˇ

2

D �2�2 C �
�2 � �2

�2

�2�2 .�2 .1C �/ � ı � 1/
2 C .�4 ��2 .�2 .1C �/C ı C 1/C �2 .ı C 1//

2
(9.6)

Using the optimal values for the tuning of the LTVA in the nominal case given in Eq. (9.3), Fig. 9.2 shows the FRF of the
primary system for different values of �. Black and gray lines correspond to ı D 	0:15, respectively. Solid lines correspond
to � D �opt from Eq. (9.3) and dash-dotted and dashed lines correspond to � D �opt ˙ 50%. Pj;Qj (j D 1; 2) indicates
the invariant fixed points. Using the classical equal-peaks methodology, the FRF of the primary system (9.6) is rewritten as
follows

H2 D A�2 C B

C�2 C D
(9.7)

where A;B;C;D are simply identified from Eq. (9.6). The above expression is independent of damping if A=C D B=D.
Substituting the expressions of A;B;C;D into this relation and solving for� gives

�Pj;Qj D

vuu
t�2 .1C �/C ıj C 1	

q
�4 .1C �/2 � 2�2 �1C ıj

�C �
1C ıj

�2

� C 2
; j D 1; 2 (9.8)
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Fig. 9.2 FRF of the primary system coupled to the LTVA for different value of �

where the subscript j D 1; 2 refer to the lower and upper bound of ı, respectively. Equation (9.8) defines the abscissa of the
invariant fixed points.

The ordinates of points Pj and Qj can be found by letting � ! 1 in Eq. (9.7)

H.�Pj;Qj/ D 1

�2
Pj;Qj .1C �/ � 1 � ıj

(9.9)

The optimum value of � is obtained by requiring H.�P1/ D H.�Q2/. Substituting Eq. (9.8) into Eq. (9.9) and solving
for � yields a complicated expression. This expression can be greatly simplified when considering symmetric bound, i.e.
jı1j D jı2j. In this case, the optimal value of � is expressed by

�opt D

r

1 � jı1j
q

jı1j2 .1C �/2 C � .� C 2/

.1C �/
p
1C jı1j2

(9.10)

Following Den Hartog approach, we impose an horizontal tangent successively at points P1 and Q2. Differentiating
Eq. (9.7) with respect to � gives

dH2

d�
D ˛1�

4 C ˛2�
2 C ˛3 D 0 (9.11)

where

˛1 D �2�4 .� C 1/
�
�2 .� C 1/� ı � 1�

˛2 D �4�2�4 .� C 1/
�
�2 .� C 1/� ı � 1�

C2�4�2
�
2�2

�
�2 C 3� C 2

�� .3� C 4/ .1C ı/
�

��6
�
�2
�
�2 C 2� C 4

� � 4 .1C ı/
�

˛3 D �2 ��2 � �2
� �
�4 C �4 .� C 1/� 2�2�2

� �
�4 ��2

�
�2 .� C 1/C ı C 1

�

C�2 .1C ı/
�
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Fig. 9.3 Comparison of the FRF of the LTVA for the nominal tuning and robust tuning for � D 0:05, ı D ˙0:15

Substituting� D �P1 from Eqs. (9.8) and (9.10) into (9.11) and solving for �2 a first value �1 is obtained. Repeating the
same operation for � D �Q2, the value �2 is obtained. The optimum value of damping parameter is taken as the average
value .�1 C �2/=2. The comparison between the FRF of the uncertain primary system in the case of deterministic tuning
and uncertain tuning is depicted in Fig. 9.3. Black and gray lines are referred to robust and nominal tuning, respectively.
Continuous lines correspond to ı D 0 whereas dash-dotted and dashed lines correspond to ı D 	0:15. The parameters
of the linear absorber are � D 0:25, � D 0:95 in the case of nominal tuning and � D 0:31, � D 0:92 in the case of
robust tuning. Therefore, to increase the bandwidth of the LTVA, the stiffness of the absorber is reduced and the damping is
increased compared to the nominal case.

9.4 Theoretical Analysis of the Nonlinear Energy Sink

In this section, the behavior of the primary system coupled to the NES (i.e. � D 0 in Eq. (9.2)) is analyzed using the mixed
multiple scale/harmonic balance method [10]. First a new coordinate r D x1 � x2 representing the relative displacement of
the NES is introduced in Eq. (9.2).

x00
1 C 2�1x0

1 C .1C ı/x1 C ��r0 C �Kr3 D G cos Q�Qt
r00 � x00

1 C �r0 C Kr3 D 0
(9.12)

Considering small mass ratio � 
 1, according to the multiple scale method, independent time scales t0 D Qt, t1 D �Qt are
introduced and the variables are expanded in series

x1.QtI �/ D x10.t0; t1/C �x11.t0; t1/C : : :

r.QtI �/ D r0.t0; t1/C �r1.t0; t1/C : : :
(9.13)

The variable are rescaled so that �1 D ��1, G D �G. Substituting the previous scaling, Eq. (9.13) into Eq. (9.12) and
equating coefficients of like power of � to zero yields to the following set of equations

O.�0/ W d20x10 C x10.1C ı/ D 0

d20r � d20x10 C �d0r0 C Kr30
(9.14)
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O.�1/ W d20x11 C x11.1C ı/ D �2d0d1x10 � 2�1d0x10 � �d0r0 � Kr30 C G cos Q�t0 (9.15)

where di
j D @i=@ti

j. Note that only the first equation at O.�1/ is given since it is the only one to be used.

9.4.1 Order �0

The solution of the first equation of (9.14) is given by

x10 D A.t1/e
i!t0 C Œc:c�; ! D

p
1C ı (9.16)

where Œc:c� denotes the complex conjugate of the preceding terms. The second equation of (9.14) is now investigated. As
mentioned in [10], this equation does admit solution neither in terms of standard trigonometric function nor in term of Jacobi
function. Therefore, we seek a solution using the method of harmonic balance. Since 1:1 resonance between the primary
system and the NES is expected, it reads

r0 D B.t1/e
i!t0 C Œc:c� (9.17)

here, only a single harmonic expansion is used. The effect of higher harmonics has been discussed in [9]. Substituting
Eqs. (9.16) and (9.17) into the second equation of (9.14) and balancing terms of the fundamental harmonic gives

A D B

�
1 � i�

!
� 3KjBj2

!2

�
(9.18)

Equation (9.18) defines the slow invariant manifold (SIM) of the problem [4]. Substituting polar form A D aei˛, B D beiˇ, a
real valued expression is obtained as

a2 D b2

!2

"

�2 C
�
3Kb2 � !2�2

!2

#

(9.19)

It can be shown that the slow invariant manifold can admit extrema. Vanishing the derivative of the right hand side of
Eq. (9.19) with respect to b and solving for b gives

Zj D !

9K

�
2! 	

p
!2 � 3�2

�
; j D 1; 2; Zj D b2j (9.20)

The corresponding amplitude of the primary system is obtained when substituting Eq. (9.20) into Eq. (9.19) and is given by

a2i D 2

81K!

	
!
�
9�2 C !2

�˙ �
!2 � 3�2� 32



(9.21)

Therefore, if � < �c D !=
p
3, the SIM admit extrema and is composed of two stable and one unstable branches. It is well

known that systems with NES can perform relaxation cycles. In the framework of NES, such a response is often denoted
strongly modulated response (SMR). When the system exhibits SMR, the maximum amplitude of the relaxation cycle, when
� ! 0 is given by Eq. (9.21).

9.4.2 Order �1

In order to analyze SMR regimes, Eq. (9.15) is considered. The proximity of the forcing frequency and the natural frequency
of the primary system is emphasized by defining Q� D ! C �
 . Substituting Eqs. (9.16) and (9.17) into Eq. (9.15) and
eliminating secular terms yields
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2id1A! C 2i�1A! C i�B! � 3KBjBj2 C G

2
ei
 t1 D 0 (9.22)

We are interested in the behavior of the system on the stable branches of the SIM. Substituting Eq. (9.18) into (9.22) gives

�2id1

�
!B � i�B � 3K

!
BjBj2

�
� .2i�1! � i� .1 � !//B C

�
1 � 2i�1

!

�
3KBjBj2 D 0 (9.23)

Expressing B in polar form and splitting into real and imaginary parts yields

d1b D f1.b;  /

g.b/
; d1 D f2.b;  /

g.b/
(9.24)

where  D t1
 � ˇ and

f1.b;  / D 36K2�1b
5 � 24K!2�1b

3 C 3GK!b sin C 2!2
�
2�2�1 C �!2 C 2!2�1

�
b

� G!2 .! sin C � cos /

f2.b;  / D 1

b

��54K2 .! C 2
/ b5 C 6K! .4��1 C ! C 8
/ b3 C 9GK!b2 cos (9.25)

�2!2 ��2! C 2�2
 C 2!2

�

b C G!2 .� sin � ! cos /
�

g.b/ D �4 �27K2b4 � 12Kb2!2 C �2!2 C !4
�

According to [16], Eq. (9.24) admits two types of fixed points. The first type is referred as ordinary fixed points and is
computed by solving for f1 D f2 D 0 and g ¤ 0. The types of fixed points are referred as folded singularities and are found
for f1 D f2 D g D 0.

The ordinary fixed points are obtained by solving f1 D f2 D 0 for cos , sin and using trigonometric identity. A third
order polynomial in Z D b2 is then obtained. The folded singularities are generated by setting f1 D g D 0 or equivalently
f2 D g D 0, giving

 ij D � arctan

�
3Kb2i � !2

�!

�

˙ arccos

2

6
4
2bi

�
2K�1b2i

�
9Kb2i � 6!2

�C 2�2!2�1 C �!4 C 2!4�1
�

G!
q
3Kb2i .3Kb2i � 2!2/C �2!2 C !4

3

7
5 (9.26)

From Eq. (9.26), a condition on the forcing amplitude is obtained as follows

Gifs � 2bi
�
2K�1b2i

�
9Kb2i � 6!2

�C 2�2!2�1 C �!4 C 2!4�1
�

!

q
3Kb2i .3Kb2i � 2!2/C �2!2 C !4

(9.27)

here, the subscript fs stands for folded singularities.

9.4.3 Detached Resonance Curve

An important feature that can affect the performance of the NES is the possible presence of detached resonance curves (DRC).
This can be analyzed by locating the boundary of the saddle-node bifurcation in Eq. (9.24). Introducing perturbations around
the fixed points and linearizing with respect to the perturbation, the so-called variational equation is obtained. By imposing
the roots of the characteristic polynomial to be zero, an equation for Z is obtained as
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27K2
�
!2 C 4!
 C 4
2 C 4�21

�
Z2 � 24K!2

�
!
 C 2
2 C 2�21

�
Z

C!2 ��2!2 C 4�2!
 C 4�2
2 C 4�2�21 C 4�!2�1 C 4!2
2 C 4!2�21
� D 0 (9.28)

Solving for Z and substituting into the fixed points equation, an expression for Gsn is obtained. An example of boundary of
saddle node bifurcation in the space of parameters .
;G/ is displayed in Fig. 9.4. Continuous lines correspond to the boundary
of the saddle-node bifurcations. The creation or merging of detached resonance curves is computed for @Gsn=@
 D 0 and it
is represented by the dotted lines. The lower one corresponds to the appearance of a DRC, while the upper one corresponds
to the merging of the DRC with the principal resonance curve.

9.5 Tuning of the NES

In this section, the theoretical developments are used to define a tuning rule for the NES. Both the deterministic and the
uncertain case are addressed.

9.5.1 Deterministic Primary System

First, the case ı D 0 is analyzed. The theoretical analysis allows us to determine critical forcing amplitudes G that will
determine different response characteristics. Since in our case, the forcing amplitude is considered fixed, the tuning procedure
consists in finding appropriate value of (�;K) for the NES. Critical forcing amplitude can be converted into critical nonlinear
stiffness by using the forcing-nonlinearity equivalence principle [18] which states that if the ratio G2=K D cst, the behavior
of the system, compared to the supplied energy, remains unchanged. By doing so, the sizing chart depicted in Fig. 9.5 is
obtained.

Continuous and dash-dotted lines represent the boundary of folded-singularities and DRC, respectively. Vertical dashed
line represents the maximum value of damping for which the SIM admits extrema (i.e. the maximum value of the damping
for which the system may perform relaxation cycles). In order to highlight the influence of the different boundaries on the
response of the primary system, the frequency response curve corresponding to each zones is presented in Fig. 9.6.

In zone I, the couple .�;K/ is below the boundary of folded singularities and DRC. In this case, the system behaves
quasi-linearly, so that this zone is not interesting from a vibration mitigation point of view. In zone II, the system can exhibit
SMR without detached resonance curve. The amplitude of the oscillations is halved compared to the case in zone I and
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Fig. 9.5 Sizing zones for the primary system coupled to the NES

SMR takes place on the unstable part of the frequency response curve denoted by dotted lines. In zone III, high amplitude
DRC is present, so that this zone must be avoided. In zone IV, the parameters of the NES are above the boundary of folded
singularities but under the boundary of DRC so that fixed points on the right stable branch of the SIM exist. This can be seen
on Fig. 9.6 where stable fixed points exist on the upper part of the frequency response curve. The zone V is located inside
the boundary of DRC and above the boundary of folded singularities. Therefore the frequency response curve presents both
a DRC and fixed points on the right stable branch of the SIM. Finally, in zone VI, the parameters of the NES are higher than
the second boundary of DRC, yielding to the merging of the DRC with the main branch of the frequency response curve.

From the above observation, the parameters of the NES have to be chosen in zone II or IV. This choice can be further
restricted to zone II by making the following observations. In zone IV, we do not have any a priori information about the
amplitude of the fixed points lying on the right stable branch of the SIM. In addition, in zone II, in the absence DRC and
fixed points on the right stable branch of the SIM, the maximum amplitude of the oscillation (when � ! 0) is determined by
the maximum of the SIM in Eq. (9.21). As a conclusion, although potentially conservative, zone II is regarded as the optimal
tuning region.

Optimal values of the parameters of the NES have now to be chosen inside zone II. As mentioned in the previous
paragraph, the maximum amplitude of the primary system is determined by looking at the maximum of the SIM. The
superposition of the amplitude of the extremums on zone II is depicted in Fig. 9.7. It is observed that the optimal value of
the parameters of the NES is located at the intersection of the upper boundary of folded singularities and the boundary of
creation of DRC.

9.5.2 Uncertain Primary System

The case where the stiffness of the primary system is uncertain is now analyzed. This uncertainty is represented by parameter
ı in Eq. (9.2). The sizing curves in the space of parameters .�;K/ for ı 2 Œ�0:15;C0:15� are depicted in Fig. 9.8. Continuous
lines correspond to the nominal case (ı D 0), dash-dotted and dashed lines correspond to ı D �0:15 and ı D C0:15,
respectively.

We note that the upper part of zone II for ı D �0:15 is included in the zone II for ı D 0:15. Therefore, passive control
through SMR exists for the whole range of detuning. So that the system can perform SMR as long as the zone II for ı D ımin

is contained in the zone II corresponding to ı D ımax, which occurs for jıj � 0:3. The tuning rule may be summarized as
follows. The optimum parameters of the NES (�opt;Kopt) are found at the intersection of the folded singularities and DRC.
If the natural frequency of the primary system is uncertain, the tuning of the NES is determined by the lower bound of the
uncertainty, i.e. ı D ımin.
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Fig. 9.6 FRF of the primary system coupled to the NES for the different sizing zones

9.6 Performance Comparison of the NES and LTVA

In this section, the performance of the NES and LTVA from a vibration mitigation point of view are compared. The
deterministic case is first addressed, then the case of uncertain primary system is considered. For both cases, a damping
factor �1 D 0:5% is considered. Also, a single forcing amplitude G D 10�4 is considered whereas the frequency detuning
parameter is assumed to vary in the range ı D 	0:15.

9.6.1 Deterministic Primary System

As shown in Fig. 9.5, given a forcing amplitude, the optimum stiffness and damping of the NES are found at the intersection
between the boundary of creation of DRC and the folded singularities. For � D 5%, this gives � � 0:51, K � 3:03 � 105.
For the LTVA, the optimum parameters are given in Eq. (9.3). Note that these equations are valid in the case of an undamped
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primary system. However, for lightly damped primary system, the performance of the LTVA is not really affected since
almost equal peaks is observed, as depicted in Fig. 9.9. Both the displacements of the primary system and the absorber
are illustrated. Gray correspond to the system coupled to the LTVA. Black solid and dotted lines correspond to stable and
unstable periodic solution of the system coupled to the NES. Black dots correspond to the results of time step integration of
the equation of motion (9.2).

It is clear from Fig. 9.9 that in the case of deterministic, linear primary system, the LTVA is far more efficient than the
NES for vibration mitigation.
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Fig. 9.10 Comparison of the frequency response curve of the robust NES vs robust LTVA

9.6.2 Uncertain Primary System

The frequency response curves of the uncertain primary system coupled to the optimal NES or LTVA are depicted in Fig. 9.10.
Black and gray lines refer to the primary system coupled to the NES and LTVA, respectively. Even if SMR is expected over
the range of detuning ı D 	15%, the LTVA performs better than the NES since the maximum is reduced of about 20%
compared to the NES.

The results for � D 5% and � D 1% are summarized in Table 9.1. It is observed that for a smaller mass ratio (i.e.
� D 1%) the difference between the LTVA and the NES is even larger.
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Table 9.1 jHj
1

of the primary system coupled to the LTVA/NES
for � D 5% and � D 1% in the deterministic and uncertain case

Deterministic Uncertain

� NES LTVA NES LTVA

5% 1:06 � 10�3 0:61 � 10�3 1:32 � 10�3 0:94� 10�3

1% 3:37 � 10�3 1:23 � 10�3 4:42� 10�3 2:72� 10�3

9.7 Conclusion

The paper proposed an objective comparison between a NES with cubic stiffness nonlinearity and a linear absorber for
vibration mitigation of a linear host system. A design procedure for the NES, which minimizes the maximum amplitude
of the linear oscillator while preventing the presence of detached resonance curves has been presented. Surprisingly, the
proposed design procedure yields highly damped NES which is contrary to conventional wisdom. A novel tuning procedure
for the LTVA, when the natural frequency of the primary system contains uncertainty has also been presented.

For both deterministic and uncertain primary system, the LTVA outperforms the NES. The only way to achieve a better
performance of the NES is to allow the presence of DRC, however, this is a risky solution since the system may be attracted
to high amplitude solution under some perturbations.
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Chapter 10
Experimental and Numerical Investigation of the Nonlinear
Bending-Torsion Coupling of a Clamped-Clamped Beam
with Centre Masses

David A. Ehrhardt, Simon A. Neild, and Jonathan E. Cooper

Abstract The vibration characteristics of beams have been extensively studied due to their wide application across multiple
fields (i.e. spacecraft antennae, aircraft wings, turbine blades, skyscrapers). Of particular interest, specific geometries of
beams have been shown to induce coupling between the fundamental bending and torsion modes. This coupled motion can
be observed in a beam’s linear normal modes can be avoided with the correct selection of geometric properties. This work
investigates the coupled bending-torsion behaviour of a clamped-clamped beam that is coupled perpendicularly, mid-span
to mid-span, to a second beam with tip masses within the nonlinear response regime. The first torsion mode of the beam
system is tuned by modifying the mass distribution such that closely spaced bending and torsion linear normal modes can
be realized. The nonlinear behaviour is presented using nonlinear normal mode backbone curves and forced responses in the
vicinity of the modes of interest.

Keywords Nonlinear normal modes • Close nodes • Mode veering

10.1 Introduction

An important feature of continuous structures is the potential occurrence of close natural frequencies. In some cases, close
natural frequencies are a result of a dense number of modes of vibration (natural frequencies and mode shapes) of the
structure. The ‘closeness’ of these natural frequencies is not due to a specific property of the structure, but instead an
accident of the mass and stiffness distribution of the structure. In other cases, the ‘closeness’ of natural frequencies is an
inherent and inevitable property connected to spatial symmetries of the structure resulting in pseudo-repeated roots to the
Eigen decomposition of the underlying equations of motion. A structure that is perfectly symmetric about an axis will contain
certain natural frequencies (eigenvalues) that are repeated, where the mode shapes (eigenvectors) are qualitatively similar,
but rotated around the axis of symmetry. The dynamic motion of structures containing closely spaced modes of this nature
include coupled modal deformations requiring special attention.

It has been shown that in linear systems containing symmetries, the eigenvectors associated with closely spaced
eigenvalues can be highly sensitive to small perturbations of the symmetry of the physical structure as described in [1].
Over large distortions of the symmetry of the physical structure the phenomena of mode veering can be observed [2];
however, care must be taken to assure that the observed veering is not a result of discretization of the system [3]. Veering can
be described as follows: as a structure’s symmetric parameters change enough for closely spaced eigenvalues to cross, the
eigenvalues will reach a limit of ‘closeness’ and the eigenvectors will undergo a rapid change until the modes of vibration
have changed relative location (i.e. eigenvector 2 becomes eigenvector 1). The change in the eigenvectors throughout this
region of veering can be thought of as a rotation in a subspace spanned by the two eigenvectors as they come out of the
Eigen decomposition [4]. Examples of mode veering in linear structures have been shown in a pressure vessel [5], cable
dynamics [6, 7], a pre-stressed frame [8], and imperfect beams [9]. If the geometry of the physical structure is perturbed, but
the symmetry of the physical structure is preserved, the closely spaced modes will cross instead of veer.

It is well known that for nonlinear systems, internal coupling forces lead to an exchange of energy between the linear
modes of vibration termed internal resonances, or auto parametric resonances. For closely spaced natural frequencies,
1-1 internal resonances have been observed in the dynamics of symmetric systems such as stretched strings, beams, plates,
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and rotating disks as discussed by Nayfeh in [10]. Additionally, it has been shown that as physical parameters of stretched
cables and symmetric shallow arches are changed, but symmetry is preserved, a crossing occurs between uncoupled natural
frequencies (i.e. symmetric and antisymmetric modes). At the point of crossing, a 1-1 internal resonance can be realized
if the system of interest contains the proper orthogonality conditions as discussed in [11–13]. Again, if the symmetry is
broken, the natural frequencies will veer instead of cross. Lacarbonara et al. [9] investigated the nonlinear dynamics of an
imperfect beam at veering, finding similar 1-1 internal resonances; however, only coupled motions of the modes of vibration
are physically realized in the vicinity of veering, contrary to the perfect beams investigated in [13] where uncoupled dynamic
motions are also observed.

This investigation seeks to create a structure that contains closely spaced fundamental torsion and bending modes, while
being easily tuneable to permit the perturbation of the ‘closeness’ of these modes. Due to the potential coupled nature
of close natural frequencies, veering is expected in the linear system when spatial asymmetries are introduced. It is of
particular interest to investigate the effects of nonlinear coupling of the modes on different sides of veering. Abaqus

®
is

used to numerically determine the linear eigenvalues and eigenvectors of the physical structure at different levels coupling.
The natural frequencies and modes shapes are experimentally determined using multi-input multi-output testing and the
algorithm of mode isolation [14]. Since the modes are lightly damped, the level of complexity in the response is expected to
be minimal. For ease of computational burden as the structure is forced in the nonlinear response regimes, nonlinear reduced
order models (NLROMs) are determined using the geometric nonlinearity capabilities of Abaqus

®
as described in [15].

The structure’s first two nonlinear normal modes (NNMs) and pertinent forced responses are computed with the resulting
NLROMs. Finally, the resulting NNMs are compared with numerically calculated NNMs using the full order model build
confidence in the NLROM [16].

10.2 Structure and Model Description

The structure under consideration was created to exhibit ‘closeness’ between the first bending and first torsion mode of
vibration. The structure consists of two beams joined in the middle with one beam clamped at both ends and one beam
mounted to concentrated masses at both ends. A schematic of this structure is shown in Fig. 10.1. One of the benefits of a
structure of this type is the ability to change the torsional inertia with limited effect to the bending inertia. For instance, a
change in the distance of each mass from the centre of the structure, i.e. L1 and L2 shown in Fig. 10.1, changes the effective
torsional inertia with minimal effects on bending inertia.

A finite element model was created in Abaqus to establish a high quality linear and nonlinear model as shown in Fig. 10.2a.
A total of 289 B31 beam elements were used to discretise the main sections of each beam where the main beam’s cross
section has dimensions l � w � h of 1000 mm � 12 mm � 6 mm and the cross beam’s cross section has dimensions l � d of
410 mm � 12 mm. B31 beam elements were also used to model the concentrated masses on the ends with dimensions of
d � h of 38 mm � 24 mm. The cross sections were chosen to constrain the three dimensional motion to planar motions and
to provide the desired nonlinear effect within the elastic region of steel. The final experimental setup is shown in Fig. 10.2b.

Fig. 10.1 Schematic of
clamped-clamped cross beam
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Fig. 10.2 Clamped-clamped cross beam, (a) Abaqus model, (b) actual structure

10.3 Linear Results

The perturbation of physical geometries of a structure with closely spaced natural frequencies will cause the natural
frequencies to either veer or cross depending on the coupling observed between the modes [3]. The numerical eigenvectors
and eigenvalues presented in this section were found in Abaqus using a Lanczos eigensolver. The experimental residues
and poles presented in this section were found using the multi-input multi-output extensions to the algorithm for mode
isolation [14].

In the case where L1 D L2, the model predicts the crossing point to be at L1 D 182.4 mm, where the modes remain
uncoupled torsion and bending modes to with a spacing of 0.006 Hz. As illustrated in Fig. 10.3, an increase in L1 of C10 mm
results in a torsion mode at 15.66 Hz and a bending mode at 16.19 Hz. Alternatively, a decrease in L1 of �10 mm results in
a bending mode at 16.22 Hz and a torsion mode at 16.85 Hz. For a better illustration of this instance of eigenvalue crossing,
a plot of the natural frequency versus change in length is shown in Fig. 10.4 in blue. As the change in length is increased
from �10 mm to 0 mm, the mode 1 (bending mode) approached mode 2 (torsion mode). At the point of crossing, mode 1
becomes the torsion mode and mode 2 becomes the bending mode with no coupling observed between the eigenvectors of
these modes as the change in length is increased to 10 mm.

For cases where L1 ¤ L2, the torsion and bending mode become coupled and deviate from a purely bending or torsion
motion and demonstrate veering as the spacing of the eigenvalues is changed as shown in Fig. 10.3. For the cases
L2 D 0.95*L1 and L2 D 0.90*L1, veering is predicted when the L1 D 187.0 mm and L1 D 191.0 mm, respectively. At these
two cases of veering, the eigenvectors shown in Fig. 10.3 appear as rotated versions of the uncoupled bending and uncoupled
torsion modes (i.e. bending and torsion are equally represented in the deformation of the beam). As L1 is increased C10 mm,
the eigenvectors become almost completely uncoupled for both cases where the torsion dominate mode is mode 1 and the
bending dominated mode is mode 2. Alternatively, as L1 is decreased �10 mm, the eigenvectors become almost completely
uncoupled, but the bending dominated mode is mode 1 and the torsion dominated mode is mode 2. For a better illustration
of these instances of eigenvalue veering, a plot of the natural frequency versus change in length is shown in Fig. 10.4 in
green and red. As the change in length is increased from �10 mm to 0 mm, both instances demonstrate a limit of closeness
in the eigenvalues as the eigenvectors rotate and couple. As the change in length is increased from 0 to 10 mm, the opposite
behaviour is demonstrated with the dominate mode shape switched.

Similarly, the experimental results reveal the veering phenomena observed in the numerical model, with minor differences
due to limitations and variations of the experimental setup. For instance, the case when L1 D L2 exhibits veering in the
experimental results as opposed to the crossing observed in the numerical results giving an indication of asymmetries in
the experimental setup. The point of veering for this case is at L1 D 200 mm where coupled mode shapes are observed in
Fig. 10.3. As L1 is increased by 5 mm (the limit in the experimental setup), the torsion mode begins to dominate mode 1 and
the bending mode begins to dominate mode 2. As L1 is decreased by �5 mm, the opposite is observed and the bending mode
begins to dominate mode 1 and the torsion mode begins to dominate mode 2. The limit for the closeness of the identified
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Fig. 10.3 Experimental and numerical mode veering results. Rows 2–4 are the eigenvectors and associated eigenvalues of the numerical model of
the coupled beam system. Rows 5–7 are the eigenvectors and associated eigenvalues of the experimental setup of the coupled beam system

natural frequencies for this case is 0.13 Hz. For the experimental case where L2 D 0.95*L1, the point of veering is observed
at L1 D 205 mm (the limit in the experimental setup). Here the limit for the closeness of the identified natural frequencies
for this case is 0.07 Hz. Again, as L1 is decrease by �5 mm, the bending mode begins to dominate mode 1 and the torsion
mode begins to dominate mode 2 following a similar trend as previously observed. Finally, where L2 D 0.90*L1, the exact
point of veering is not identified; however, coupled natural frequencies are identified in Fig. 10.3, showing the approach
to the veering location. As L1 is decreased by �5 mm, the bending mode again dominates mode 1 and the torsion mode
begins to dominate mode 2. Although the entire region of veering cannot be identified experimentally due to limitations in
the experimental setup, by plotting the available identified natural frequencies and mode shapes, a trend of veering is shown
(Fig. 10.4b) that is qualitatively similar to that identified in the numerical model shown in Fig. 10.4a. If the exact region of
veering and crossing is of interest, additional tests could be used with heavier masses to further identify the veering/crossing
regions.
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Fig. 10.4 Summary of mode veering/crossing results. (a) Numerical results, (b) Experimental results

10.4 Nonlinear Results

Although mode veering in the linear system provides interesting coupled dynamics between the two modes of interest, the
goal of this work is to identify potential areas of nonlinear coupling between the modes of interest. Using the linear system
described in the previous section, nonlinear reduced order models (NLROMs) are created using nonlinear static deformations
and the built in geometric nonlinearity formulation used in Abaqus as discussed in [17]. Using the two modes of interest as
a modal basis, two degree-of-freedom models can be created. A NLROM of this nature permits the exploration of several
variations of the underlying structure so nonlinear coupling can be explored in a reasonable time frame.

Beginning with the symmetric case when L1 D L2, the nonlinear normal modes (NNMs) and selected forced responses
are computed and shown in Fig. 10.5. NNMs contain the periodic solutions to the unforced nonlinear equations of motion
and provide insight into the behaviour of the first two modes of this system as shown in blue in Fig. 10.5. A good summary
of the dynamics of the total system can be observed in the frequency-energy domain (Fig. 10.5a, d, and g). In these plots,
as the input force level is increased, the NNM shows a spring hardening effect for both the torsion and bending mode in all
three cases. This is independent of the order of modes (i.e. bending before torsion or torsion before bending). The uncoupled
nature of these two modes is investigated by projecting the NNMs in the frequency-energy domain into the modal domain
Fig. 10.5b, c, e, f, h, and i. For the three cases of the symmetric system presented, the bending and torsion mode act as
independent oscillations with only linear shifts in the natural frequency due to changes in the physical setup. As the response
is pushed into nonlinear regions, the two modes of interest act as nonlinear continuations of their linear counterparts. It is
interesting to note that for the case near crossing (Fig. 10.5c), the NNMs remain independent throughout increasing energies.
Although not further explored here, it should be noted that as the modes cross as shown in Fig. 10.5g, the response can
exhibit 1-1 internal resonances as previously investigated in [11–13]. The forced response of the system to sinusoidal inputs
at two input locations, one near the clamping root and one on the cross bar near the centre of the beam, are also shown in
Fig. 10.5 at 0.01 N, 0.1 N, 1 N and 10 N. The peak force was limited to 10 N as greater forces approach the elastic limit
of the steel used as the material for this system. As expected, the forced response of the system follows the NNMs at low
and high energies since the forcing locations will excite both modes. Of particular interest, the case where the bending mode
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Fig. 10.5 Nonlinear normal modes (blue line) and forced responses (green line 0.01 N, aqua line 0.1 N, light green line 1 N, and brown line 10 N)
of the symmetric system when L2 D L1 at (a–c) Change in Length D 0 mm. (d–f) Change in length D 10 mm, (g–i) Change in length D �10 mm
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is before the torsion mode (Fig. 10.5c), shows the NNMs cross over and retain their initial eigenvectors as the deformation
of the NNM branch. This behaviour is similar to that observed in the linear crossing case for this structure, and provides a
further insight to the uncoupled nature of these NNMs.

The next case of interest is when L2 D 0.95*L1. As shown in the linear results section, the modes of interest in this case
become coupled and exhibit veering due to the asymmetry introduced by the differences in location of the tip masses. Due
to the coupled nature of the linear modes, the nonlinear response will also be coupled. Again, a good summary of the overall
dynamics of the system can be observed in the frequency energy domain as shown in (Fig. 10.6a, d, and g). In the coupled
system, instead of the bending and torsion mode crossing, as observed in Fig. 10.5g, the NNMs appear to ‘veer’ as they
approach the crossing point as shown in Fig. 10.6g. Similar to linear veering, the deformation of the first NNM experiences
a rapid transformation in this region of ‘veering’ where the bending dominated mode becomes a torsion dominated mode at
higher energies. The reverse is observed for the second NNM. A deeper understanding of this region is obtained by examining
the modal deformations in Fig. 10.6h and i. Again due to the coupled nature of the linear modes, both modes participate in
the both NNMs as opposed to the uncoupled system described in Fig. 10.5. The transition of mode 1 from dominating the
first NNM to dominating the second can be observed in the forced responses in Fig. 10.6h. The lowest two forcing levels
(0.01 N and 0.1 N) shown here primarily follow the first NNM, while the second two forcing levels (1 N and 10 N) begin to
follow the second NNM. The opposite is observed in Fig. 10.6i, where mode 2 transitions from the second NNM to the first.
Similar observations can be made for the case where the modes are exactly at veering in the linear system (Fig. 10.6a–c).
Although not as dramatic a transition as the case in Fig. 10.6g–i, the first and second NNMs experience a small transition
between the mode 1 and mode 2 dominated responses. In the final case (Fig. 10.6d–f), the torsion mode is before the bending
mode in the linear region. As the system is forced to the nonlinear region, there is no transition observed between the modes
and the NNMs. The torsion mode remains dominant in the first NNM and the bending mode remains dominant in the second
NNM.

It is important to remember that the behaviour observed and discussed previously is from a low order representation
of a continuous structure. In this context, the validity of the use of a 2 mode NLROM comes into question. Due to the
cumbersome nature of the full order model, only one of the cases is selected and compared with results obtained with its
subsequent NLROM. To further ease the computational burden, comparisons are made between the NNMs calculated with
the full order model [16] and the reduced order model. Recent work suggests that if the NLROM accurately predicts the
NNMs of the full order model, then the NLROM will be able to predict the nonlinear response of the structure in the regions
of the NNMs [4]. The case where L2 D 0.95*L1, where the bending mode has a lower frequency than the torsion mode, is
used for comparison here and shown in Fig. 10.7. In the energy domain, Fig. 10.7a, the NLROM predicts the second NNM
within 1 % error for the frequency range shown. However, as the first NNM reaches higher energies, the NLROM begins to
diverge from the predicted solution. This divergence is also observed in the modal deformations of the first and second NNM
shown in Fig. 10.7b and c, respectively. The observed divergence begins near the elastic limit of the structure and after the
first NNM transitions from a bending dominant response to a torsion dominant response. Therefore, it is concluded that the
NLROM produces an accurate representation of the system in the dynamic range of interest. Of course further comparison
is needed between the experimental structure and the predicted results.

10.5 Conclusion

The linear and nonlinear results of a clamped-clamped beam attached to a cross beam with tip masses is presented. This
system is unique as it demonstrates eigenvalue crossover and veering when the tip masses are moved. The case of veering
is observed numerically and experimentally, providing confidence in the observed behaviour. Using nonlinear reduced order
models, the nonlinear response of this system is explored as the tip masses are moved resulting in different frequency spacing
of the eigenvalues. For specific configurations of the tip masses modal interactions are observed within the NNMs and an
imperfect bifurcation occurs between the NNMs. In the region of bifurcation, the deformation shapes experience a rapid
change between the two modes describing the system.

Although good agreement is seen between the full order and nonlinear reduced order models, further comparison is needed
with the experimental structure in the nonlinear regime. Using forced responses and free decays, the NNMs will be identified
and compared with the predicted NNMs to further validate the structural models.
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Fig. 10.6 Nonlinear normal modes (blue line) and forced responses (green line 0.01 N, aqua line 0.1 N, light green line 1 N, and brown line
10 N) of the asymmetric system when L2 D 0.95*L1 at (a–c) Change in Length D 0 mm. (b–f) Change in length D 10 mm, (g–i) Change in
length D �10 mm
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Chapter 11
Tracking of Backbone Curves of Nonlinear Systems Using
Phase-Locked-Loops

Simon Peter, Robin Riethmüller, and Remco I. Leine

Abstract In nonlinear systems the resonance frequency depends on the energy in the system. This change in resonance
frequency contains valuable information about the systems behavior and the nonlinear normal modes (NNMs) associated
with each point of the backbone curve. This information can e.g. be used for system identification. However, the accurate
and efficient measurement of the backbone curve in nonlinear systems is still challenging. This contribution proposes a new
method to measure the backbone curve which is based on the control concept of a Phase-Locked-Loop (PLL) which is well
known in electronics applications. A properly designed PLL is capable of finding linear resonances but it can also be used
for the tracking of energy dependent backbone curves. The new method provides very accurate results by using steady state
responses in the nonlinear mode. In contrast to commonly used free decay measurements this approach eliminates transient
effects. Yet, it is also very efficient and user friendly as an automated testing can be performed. The method is experimentally
demonstrated on a beam structure with cubic nonlinearity. Furthermore the capability of tracking through internal resonant
NNMs will be examined and new possibilities for quantitative measurements of these effects will be discussed.

Keywords Phase-locked-loop • Nonlinear normal modes • Nonlinear system identification

11.1 Introduction

For the identification of linear vibrating systems experimental modal analysis (EMA) is the standard procedure, not only
because it provides extensive information about the system in a very condensed form, but also because it is a very fast and
user friendly procedure. In recent years an increasing number of researchers have worked on developing an extension of
modal analysis to nonlinear systems. Starting with the theoretical developments of Rosenberg [1], the concept of Nonlinear
Normal Modes (NNMs) emerged as a promising approach within this development. Rosenberg’s definition of NNMs as
the synchronous periodic motion of a conservative system provides interesting insights into the nonlinear dynamics of
conservative systems and provides a clear relation to linear modes. Extending the concept of nonlinear modes, Shaw and
Pierre [2] proposed the invariant manifold approach showing that a motion of a dynamic system in a nonlinear mode can
be described as a motion on a two dimensional manifold. However, for complex structures and experimental approaches
the invariant manifold approach poses practical difficulties and many systems can be characterized based on the dynamics
of an underlying conservative system. Hence, most research in the area of nonlinear modal analysis relies basically on
Rosenberg’s definition [3]. A slight change of this definition was proposed by Kerschen [4] explicitly including internal
resonances by dropping the requirement of a synchronous motion. Numerous publications have shown the usefulness of this
concept for understanding nonlinear dynamics even of complex structures like for example aerospace engineering [5, 6]. It
also provides a clear relation to linear modes and can also be related to forced response analysis of damped systems [7, 8].
On the one hand reliable numerical algorithms such as shooting [9] and the Harmonic Balance Method (HBM) [10] have
been proposed and on the other hand some effort has been made in experimentally determining NNMs. The first approach
of experimentally determining the nonlinear modes of lightly damped structures was the phase resonance method proposed
by Peeters [11]. For determining the NNMs a system is driven to resonance at a high excitation level, then the excitation is
turned off and a time frequency analysis of the free decay is carried out. This method proved its robustness and accuracy
in experimental applications [12, 13] and can still be regarded as the standard method for nonlinear modal testing. Even
though more recently a phase separation concept has been proposed [14] the phase resonance approach remains an important
basis for nonlinear modal analysis. However, there are some practical issues arising from this procedure. The tuning of the
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excitation is troublesome especially in the case of strong nonlinearity where a jump in the Frequency Response Function
(FRF) occurs. Close to resonance, even for small disturbances, the jump can occur prematurely. Also the tuning, which is
usually done manually, is time consuming and the estimation of an excitation level driving the system in a nonlinear range
requires some a priori knowledge about the system or several trial and error runs. Additionally, by using the time frequency
analysis of a free decay, sophisticated signal processing such as wavelet transforms [15] is required and some inaccuracy
might be induced due to transient effects.

This paper presents a novel method for phase resonance testing to overcome these practical issues by an automated
procedure using a PLL. The PLL is originally an analogue circuit used in radio technology in the 1930s [16] and is nowadays
widely used in electronics applications like radios, TVs or smart phones [17]. The general idea of PLL concepts is to
generate a harmonic signal with a frequency which is tuned based on the phase difference to a reference signal. There are
many different designs of PLLs which are all essentially nonlinear oscillators generating a harmonic output dependent on this
phase difference. The design of the PLL has to be adapted to its application which can be the tuning of digital or analogue
signals originating from linear or nonlinear systems [18, 19]. Yet, only few attempts have been made to use these concepts
for the measurement of mechanical structures. Most of them remain theoretical and the examples are mostly numerical ones
[20]. There have been attempts to use PLLs in nonlinear micro systems modeled with one DOF [21] but the applicability for
testing macro scale mechanical systems or continuous structures is mostly unclear. A publication by Mojrzisch [22] showed
the usefulness of the PLL experimentally for the measurement of nonlinear FRFs of a macro scale single DOF Duffing type
system by phase sweeping. However, to the authors knowledge there have no attempts been made to use the PLL for tracking
of backbone curves of nonlinear continuous structures and exploit its potential for the measurement of NNMs.

The paper is organized as follows. In Sect. 11.2 some basics of phase resonance testing for nonlinear structures are briefly
reviewed. In the subsequent Sect. 11.3 some more specific aspects of phase resonance method using the PLL including some
design aspects of the PLL used within this paper are explained. In Sect. 11.4 a numerical example is used to illustrate the
method and highlight some of its characteristics. The numerical example is followed by an experimental demonstration of
its functionality in Sect. 11.5. The paper closes with a conclusion and some aspects of future work in Sect. 11.6.

11.2 Nonlinear Modal Analysis Using the Phase Resonance Method

A general mechanical system with conservative nonlinearities can be described in a spatially discretized form by the
differential equation

M Rx C DPx C Kx C Fnl.x/ D Fexc.t/; (11.1)

where M denotes the mass matrix, D the viscous damping matrix, K the linear stiffness matrix and Fnl.x/ represents a
vector of nonlinear, conservative forces. The vector of external excitation is represented Fexc. In contrast, the NNMs of an
autonomous conservative system are governed by a differential equation of the form

M Rx C Kx C Fnl.x/ D 0: (11.2)

For numerical systems periodic solutions of this differential equation can be obtained in a straightforward way using shooting
or the HBM. These periodic solutions provide the NNMs of the system and can for example be visualized in Frequency
Energy Plots (FEPs) [4]. Due to its high efficiency and its filtering property, which is particularly interesting in conjunction
with measurements, the numerical NNM calculations throughout this paper are obtained by the HBM. The details of the
numerical method are described in a previous publication [23]. The experimental realization of periodic motions of systems
which motions are governed by differential Eq. (11.2) is more difficult as undamped systems cannot be realized practically as
there are always sources of material damping or damping in interfaces of coupled structures. Hence, the forced and damped
system described by Eq. (11.1) has to be considered as a representation of real systems. For lightly damped structures the
assumption of proportional damping can provide a reasonable approximation. For the realization of a NNM motion of the
underlying conservative system, the non-conservative system is sought to behave like a system described by Eq. (11.2). By
comparing Eqs. (11.2) and (11.1) it can be seen that theoretically the forcing should exactly balance out the damping for all
points of the structure and for all times i.e.

DPx.t/ D Fexc.t/;8t: (11.3)
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Fig. 11.1 Left: Pointer diagram for the n-th harmonic of a steady state NNM motion. Right: Pointer diagram for the n-th harmonic of a steady
state NNM motion in a forced and damped system

For the realization of this state Peeters [11] derived a nonlinear mode indicator function similar to the mode indicator
functions used in linear EMA. The derivation can be done by developing the displacements into an infinite cosine series
and practically regarding the system’s motion in the frequency domain. Similarly, the same mode indicator function can
also be derived graphically using pointer diagrams. The application of pointers as a graphical representation of a signal is
more common in electrical engineering but was also used e.g. in [24] in the context of multi-harmonic excitation of linear
mechanical systems. As the NNMs represent a periodic motion of all DOFs, they can be transformed into the frequency
domain using an infinite Fourier transform. Hence, the motion of the system can be represented by a fundamental frequency
! plus an infinite number of higher harmonics. For every harmonic the dynamic force equilibrium yielding the periodic
motion can then be graphically represented as a family of pointers in the complex plane. To obtain a periodic motion the
dynamic forces have to balance out for every harmonic. In Fig. 11.1 on the left this dynamic force equilibrium for the n-th
harmonic is depicted symbolically for an autonomous conservative system. If this equilibrium condition is fulfilled for every
harmonic, the system moves in a periodic NNM motion. This approach can be also viewed as a graphical representation of
the HBM on a signal processing level. The same condition holds for a forced and damped system executing a steady state
motion, simply adding two more pointers, namely the pointer of the n-th harmonic excitation force and damping force. It can
be clearly seen that the pointer of the damping forces must be fully compensated by the pointer of the excitation forces, to
ensure the NNM motion which is depicted in the left pointer diagram. As in the case of viscous damping, the damping force
has a phase lag of �=2 with respect to the conservative restoring forces, or the displacement respectively. This means that
the phase lag between the excitation force Fexc and the displacement must be �=2 for every harmonic n to generate an NNM
motion.

Practically, the exact phase condition is impossible to maintain as it implies a fully populated forcing vector OFexc with
higher harmonic amplitudes and phases that have to be adjusted dynamically for every point on an NNM branch. This issue
was addressed in several publication [8, 11, 12] and it was shown that a single harmonic forcing mostly provides a sufficient
approximation for the NNM measurement in the case of light damping. This behavior can be explained as in most systems
the majority of the NNM motions are governed by the fundamental harmonic and also the NNM frequency can in most
cases be estimated accurately by a single harmonic approximation. However, especially near internal resonances the higher
harmonics are amplified by higher modes and have significant influence on the systems motion. In this case the appropriate
forcing has to be regarded more closely. In the following, a single harmonic force at a single point of the structure will be
used to realize an approximate appropriate excitation. Some issues related to the accuracy of this approach and the presence
of internal resonances are addressed in the numerical study in Sect. 11.4.

11.3 Phase Resonance Testing Using the Phase-Locked-Loop

Based on the phase criterion, derived in the previous section the NNM motion of a system can be approximately excited by
an appropriate harmonic forcing with a phase lag of �=2 with respect to the response. In previous publications the tuning
of the phase was done manually comparing the phase of the excitation with the phase of the response. This task can be
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automated by the use of a PLL which is a concept for the control of the phase between a reference and a harmonic output
signal. There are different implementations of the PLL for different applications such as digital or analogue PLLs. Both
versions of PLLs can be implemented electronically e.g. using Simulink. In the following, the design of an analogue PLL,
which was implemented for the tuning of the phase in the context of NNM testing, is briefly described.

For this purpose a reference signal r.t/ of the system has to be connected to the PLL. The PLL synchronizes the phase
of its output with this reference signal except for a desired phase difference. The reference signal can for instance be chosen
based on the displacement of a reference point which then means that the phase difference of the output signal should be
�=2. The equations for the PLL controller are derived in the following for this specific case. In an experimental setup it
is reasonable to chose a reference signal based on the quantity that can directly be measured. Since in the experiments in
Sect. 11.5 accelerometers are used, the reference signals in the experiments are based on the system’s acceleration and the
phase difference is set to ��=2. This can be achieved by simply multiplying the reference signal with a factor of �1 compared
to the case of the displacement based measurements. Generally, a PLL used for the excitation of a structure consists of the
blocks displayed schematically in Fig. 11.2.

The first block is the phase detector that extracts the phase of the output of the system with respect to the reference
signal. There are different implementations of phase detectors [18]. In the following a mixing phase detector is used which
is comparing a reference signal r.t/ with the output of the VCO u.t/ by a multiplication yielding

w.t/ D r.t/u.t/: (11.4)

For the nonlinear modal analysis as a reference signal the displacement x.t/, velocity Px.t/ or acceleration Rx.t/ can directly be
used depending on which quantity is measured. However, as was shown by Fan [20] it is advantageous to modify the signal
of for instance the displacement by replacing it with its sign

r.t/ D sign.x.t// D
(

�1 x.t/ < 0

1 x.t/ � 0:
(11.5)

This modification leads to a faster and more robust PLL, as on the one hand the signal is amplified in regions which are far
from resonance. On the other hand the stability criterion for the controller derived in [20] becomes independent of the forcing
amplitude. For the phase detector both signals are expressed in form of Fourier series and their product can be written as

w.t/ D Orsin.!rt C �r/cos.!vt C �v/C higher order terms .HOT/; (11.6)

where !r and !v denote the frequency and �r and �v the phase of the fundamental frequency of the reference signal and the
VCO respectively. It should be noted that the fundamental of the reference signal is generally different to the fundamental
harmonic of the displacement or acceleration, respectively. This hold especially for the amplitude providing previously
mentioned advantages. However, it should also be kept in mind that, if there is a phase shift between the fundamental
harmonic and higher harmonics, there can also be a slight shift in the sign function in Eq. (11.4) and the phase of its
fundamental harmonic. This effect will be illustrated in the numerical example in Sect. 11.4. After some trigonometric
manipulations of Eq. (11.6) and the assumption that the frequency error is small !r � !v � ! the output of the phase
detector can be expressed as a function of the phase error �e D �v � �r and higher frequency terms

w.t/ D 1

2
Or.sin.�e/C sin.2!t C �v C �r//C HOT: (11.7)
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The output of the phase detector is passed to the second part of the PLL, which is the loop filter consisting of a low pass filter
and a PI-controller. The low pass filter that can be described by the differential equation

!l Pe C e D w.t/; (11.8)

with the cutoff frequency !l. This means that the output of the low pass filter is a function of the phase error �e if the
higher frequency terms in Eq. (11.7) are suppressed sufficiently. The output of the low pass filter is the control input of the
PI-controller that can be described by the state space model

Pz D e

y D Kpe C Kp

Ti
z:

(11.9)

The parameters Kp and Ti are the tuning parameters of the proportional and integral part of the controller. The exact tuning
of these parameters is rather uncritical in the PLL as long as the stable low pass property of the PI-controller is retained. The
PI-controller provides the control signal for the third part of the PLL, namely the Voltage-Controlled-Oscillator (VCO), that
generates the excitation signal for the structure. The VCO uses the fact that the frequency is the derivative of the phase, and
hence can be realized as an integrator

�v D
Z t

0

!c C Kvy.�/d�; (11.10)

with the center frequency !c and tuning parameter Kv . The center frequency !c is the frequency with which the VCO
oscillates when no reference signal is attached and the tuning factor Kv adjusts the influence of the control input coming
from the loop filter. Hence, the cosine output of the VCO is generated

u.t/ D cos.�v/: (11.11)

This output signal is then fed back to the phase detector and the phase difference is minimized until the VCO creates a cosine
signal with the same phase as the reference signal. Once this is the case the PLL is said to be in a locked state. The output of
the VCO is multiplied by the excitation amplitude yielding

Fexc.t/ D OFexcu.t/: (11.12)

This force signal is then used for the excitation of the structure i.e. the created cosine shaped force signal is shifted by an
angle of �=2 with respect to the sinusoidal reference signal in Eq. (11.6).

For a more detailed discussion of the design of PLLs there are numerous references [17, 18, 25]. Regarding the stability
properties of the PLL, criteria can be derived using linear analysis methods like the Routh-Hurwitz criterion [20, 26] and
nonlinear analysis methods like Lyapunov functions and La Salle’s theorem [27]. It should be noted at this point that
parameters can be found for this specific design of the PLL that ensure the stability of the PLL controller independent
of the parameters of the attached system [27], which is essential when the PLL is used for the measurement of unknown
structures.

With the PLL the backbone curve of a system can be measured in an automated two step methodology. In the first step
the linear resonance is detected with low level excitation. Once the PLL is in a locked state the forcing level is incrementally
increased such that the energy in the system increases. In nonlinear systems the resonance frequency changes with increasing
energy and the PLL has to adjust the frequency of the VCO output with increasing energy to maintain the phase resonance
criterion. The steady state vibration in resonance can be analyzed e.g. with an FFT or wavelet transform to extract the
frequency amplitude dependence of the system. The use of the PLL for the measurement of NNM branches has several
consequences compared to classical phase resonance testing:

1. There is no need for manual tuning of the phase as the PLL tunes the VCO and therefore the frequency of the excitation
signal automatically.

2. The forcing is increased from a low to a high level in resonance until a desired level of vibration is reached such that the
linear and nonlinear range is covered but the structure is not damaged. No a priori knowledge about nonlinear range or
maximum forcing amplitude is required.
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Fig. 11.3 FRF (left) and phase-amplitude-relation (right) for Duffing type example system (black: stable solutions, red: unstable solutions)

3. All measurements are carried out in steady state. No transient effects are present and signals can be analyzed with a simple
FFT.

4. For low level excitation the linear resonance frequency is found and higher harmonics are negligible during resonance
detection. Depending on the center frequency the VCO will lock to the corresponding mode.

5. In the nonlinear range small changes in excitation result in small changes of resonance frequency. Thus, the PLL reaches
the locked state very fast and safely after increasing the excitation amplitude.

6. The PLL stabilizes unstable branches of the system such that premature jumps during the tuning in highly nonlinear
systems are avoided. Because the control is based on the phase and the phase-amplitude relation is unique in the
neighborhood of a mode as depicted in Fig. 11.3 all points of the phase-amplitude plane can be measured applying phase
control [22].

These features will be illustrated in the following section by numerical examples before the method is applied to an
experimental benchmark.

11.4 Parametric Study of a Numerical Example System

In this section the characteristics of the nonlinear modal test using the PLL are illustrated by a numerical example. Therefore,
a beam structure similar to the ECL benchmark beam [28] is used as an example system. As illustrated in Fig. 11.4 the system
consists of seven linear Eurler-Bernoulli beam elements and has in total 14 DOFs. The beam is clamped on the left-hand
side and is supported by a cubic and linear spring on the right-hand side. The system is excited at the second node and its
parameters are listed in Table 11.1.

In the following mainly the first two NNMs of the system are considered which originate from the linear eigenfrequencies
at 22.4 and 121.1 Hz respectively. Both of these modes are affected by the nonlinearity as it can be seen in the frequency
energy plot (FEP) in Fig. 11.5. The FEP was calculated using the HBM taking into account three harmonics which is sufficient
to represent a 1:3 internal resonance, which is the only internal resonance practically playing a role in the energy range of
interest.

For the tests with the PLL the damped and forced system has to be regarded. The damping in the system is assumed to be
light and the hypothesis of proportional damping of the form

D D ˛1M C ˛2K (11.13)

is chosen. The coefficients are set to ˛1 D 1 and ˛2 D 3� 10�4 which is similar to the damping observed in experiments. In
the first parametric study the functionality of the PLL method for tracking of the backbone curve is illustrated. The structure
is excited at the second node with a harmonic force and the displacement of the same node is also chosen as reference for
the PLL tuning. Generally, the choice of the reference node is arbitrary as the NNM motion is assumed to be a monophase
motion. However, this assumption does not necessarily hold in the damped and forced system as there might be a small phase
difference between different DOFs. Additionally, the phase and amplitude of higher harmonics can have some influence on
the phase of the reference signal in Eq. (11.6). To get started, it seems to be a natural choice to use the node of the excitation
as reference. The system is modeled in Matlab/Simulink and time integration is used to study the closed loop behavior of
the system including the PLL. The amplitude of the excitation force is incrementally increased as shown in Fig. 11.6 starting
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Fig. 11.4 Schematic sketch of the experimental beam

Table 11.1 Parameters of
numerical beam structure

Parameter Value Unit

E 185 GPa

� 7830 kg/m3

ˇ 8� 109 N/m3

kc 1000 N/m

l 700 mm

b 12 mm
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Fig. 11.5 Left: FEP of first two modes of the beam. Right: Mode shapes in linear range of the first two modes
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Fig. 11.6 Left: Amplitude of harmonic forcing. Right: Frequency of maximum wavelet coefficient of the force signal
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Fig. 11.7 Left: Time signal of the acceleration at the reference node. Right: Phase of first harmonic with respect to the forcing
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Fig. 11.8 Amplitude spectrum of response for increasing forcing amplitude OFexc D f0:1; 1; 3; 5; 7g N
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Fig. 11.9 Left: First harmonic FRF for system with harmonic excitation (black: stable; red: unstable). Right: Phase lag of first harmonic with
respect to the forcing (black: stable; red: unstable)

from an initial value of 0.1 N, where the structure behaves almost linearly. The instantaneous frequency of the forcing which
was extracted by the wavelet transform is plotted in Fig. 11.6. It can be observed that the linear eigenfrequency is found
quickly and the PLL reaches the locked state. By increasing the forcing level up to 7 N the resonance frequency is shifted
and the PLL tunes the excitation frequency.

The displacement at the reference node is displayed in Fig. 11.7. For the analysis of the results, this displacement is
transformed into the frequency domain using an FFT such that the amplitudes (Fig. 11.8) and phases (Fig. 11.7) can be
compared to the calculated FRFs of the system (Fig. 11.9). The FRFs are calculated using the HBM taking into account five
harmonics and the stability of the FRF is determined using Hill’s method [29].

In comparison, the amplitude and frequency of the first harmonic of the time signal obtained by the PLL is in very good
agreement with the first harmonic of the FRF. The same also holds for higher harmonics which are not studied in a more
detailed way at this point. However, an interesting aspect of the PLL testing can be observed regarding the phase lag of the



11 Tracking of Backbone Curves of Nonlinear Systems Using Phase-Locked-Loops 115

first harmonic with respect to the force. For low level excitation the phase lag is maintained at exactly 90ı but for increasing
excitation levels there is an increasing deviation. This effect is caused by the increase of the third harmonic, which is not in
phase with the fundamental harmonic if only an imperfect force appropriation is applied. The phase detector basically relies
on the first harmonic of the reference signal. As the sign detection in Eq. (11.4) is used to generate the reference signal, the
phase of its first harmonic is shifted if the displacement signal contains higher harmonics with a shifted phase with respect
to the fundamental. Still, this effect plays a minor role especially as the appropriate excitation is approximated by a single
harmonic single point force, anyway. In the present example this can be observed when the system is driven close to the
1:3 internal resonance, where the third harmonic is amplified by the second mode. Another interesting aspect of the PLL
method can herein be observed regarding the stability calculations of the FRF in Fig. 11.9. The points in which the system
is driven by the PLL controller are marked with the blue star in the FRF and phase response. It can be seen that due to the
small phase deviation induced by higher harmonics the PLL drives the system in a region which is unstable in the FRF. This
illustrates the stabilizing effect of the close loop on the system that also helps to drive the system near jumps without facing
the problem of premature jumping.

11.4.1 Effect of Internal Resonance on PLL Measurements

In the FEP it was observed that the parameters of the beam are chosen in a way that a 1:3 internal resonance can strongly
affect the system’s behavior when the energy exceeds a certain level. Once the system is excited at a certain level the third
harmonic becomes strongly amplified by the second mode. As previously shown the strong third harmonic component may
lead to a small shift in the detected phase, which depends on the amplitude and the phase of the third harmonic component
relative to the fundamental. To study this effect, the forcing amplitude is increased further as it is shown in Fig. 11.10 and the
robustness of the PLL method is investigated. The FRF in Fig. 11.10 shows that due to the internal resonance the amplitude of
the third harmonic can be up to one third of the fundamental harmonic. The tests with the PLL method show that nevertheless
the phase, frequency and amplitude errors remain small. For illustration, the test results for this specific test case are shown
in Figs. 11.11 and 11.12 respectively.

It is also interesting to observe that for the highest forcing the region of the internal resonance is already passed, which
results in a vanishing phase deviation. Generally, it was observed that the method is very robust even in the presence of
strong higher harmonics. Even though there is some inaccuracy in the region of the internal resonance the PLL is capable
of keeping track of the NNM branch. For motions which are dominated by a higher mode due to an internal resonance, first
numerical experiments showed that the PLL can lock to the higher mode and tune the excitation frequency based on this
mode. In this context the choice of the reference node seems to be an interesting factor, as at different points of the structure
different modes can be measured. A more detailed discussion of these cases is beyond the scope of this paper since these
effects were also not observed in the subsequent experimental test.

0 100 200 300 400 500 600
0

10

20

30

Time [s]

F
or

ce
 A

m
pl

it
ud

e 
[N

]

10 20 30 40 50 60
0

2

4

6
x 10

−4

Frequency [Hz]

A
m

pl
it
ud

e 
[m

] 1 harm
3 harm

Fig. 11.10 Left: Amplitude of harmonic forcing. Right: First and third harmonic FRF at reference node
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Fig. 11.11 Left: Phase first harmonic of calculated FRF. Right: Phase of first harmonic of PLL test
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Fig. 11.12 Amplitude spectrum of response for increasing forcing amplitude OFexc D f3; 7; 15; 20; 25g N

11.5 Experimental Demonstration for a Beam with Cubic Nonlinearities

The experimental setup is similar to the numerical example in the previous section with some different parameters. It consists
of a clamped steel beam with a thin beam at the tip which is also clamped. The clamping of the thin beam can be moved by
an adjusting screw and the pretension of the specimen can be measured with a strain gauge located on the thick beam. Due to
the clamped-clamped setup of the beam structure a geometric nonlinearity can be observed in the case of large deflection. A
photo of the setup is displayed in Fig. 11.13 and a schematic sketch where the small beam and its nonlinearity is represented
by a three parameter model is shown in Fig. 11.14.

The parameters for the beam without pretension, that were obtained through a model updating procedure based on the
NNMs of the system which was presented in a previous publication [30], are listed in Table 11.2. The differences compared
to the numerical example mainly have two consequences. Firstly, the 1:3 internal resonance is not observed in the practical
experiment as even for the setup without pretension the first eigenfrequency is higher than one third of the second one.
For this setup the FRF in the linear range is shown in Fig. 11.15. The higher resonance frequencies that appear in the FRF
also do not lead to significant internal resonances. Secondly, the adjustment of the pretension in the beam shifts the linear
eigenfrequencies as it can be seen in Fig. 11.15. It can be observed that the first eigenfrequency is affected most by an
increasing pretension, which means that also for higher pretension no 1:3 internal resonance will play a role.

The PLL is implemented on a DSPACE rapid prototyping system and the force is measured with a load cell at the
point of the shaker excitation. The reference signal for the PLL is obtained based on accelerometer measurements. In the
first experimental test, a parametric study for the detection of the linear resonance frequency using the PLL is carried out.
Therefore, the beam without pretension is excited on the second node with a small excitation amplitude of 0:5N and the
effect of different center frequencies of the VCO is investigated. The second node was also used as reference for the phase
criterion. The wavelet transform was used to extract the instantaneous frequency of the excitation force over time. This
frequency is plotted for the different center frequencies in Fig. 11.16. It can be observed that the VCO starts oscillating
at its center frequency and therefore generates a harmonic force signal with this frequency at the very beginning of the
measurement. Then the frequency changes until the PLL is in a locked state, generating a steady state harmonic signal with a
certain frequency. For the first five center frequencies, the PLL locks to the first eigenfrequency even for starting frequencies
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Fig. 11.13 Experimental setup of the benchmark beam
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Fig. 11.14 Schematic sketch of the experimental beam

Table 11.2 Parameters of beam
without pretension

Parameter Value Unit

E 186 GPa

kc 5525 N/m

kr 217 Nm/rad

ˇ 203 � 106 N/m3

l 700 mm

b 12 mm
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Fig. 11.15 Left: FRF for beam without pretension. Right: Resonance frequencies of the beam dependent on pretension

which are up to 70% off the actual eigenfrequency. It can also be seen that the detection of the eigenfrequency works for an
initial center frequency which is higher or lower than the eigenfrequency. However, if the initial frequency is too high, the
motion is dominated by the second mode and the PLL locks to this mode as can be observed in the last figure. The parametric
study clearly shows that the center frequency of the VCO is uncritical for the detection of the modes such that no a priori
knowledge of the linear eigenfrequencies is required.

After detection of the linear eigenfrequency, the excitation amplitude is incrementally increased and the capability of the
PLL to track the backbone curve in the nonlinear range is investigated. For this test, the pretension is increased to 300 N,
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Fig. 11.16 Frequency with maximum forcing amplitude for different VCO center frequencies fc D f10; 15; 20; 25; 37; 75g Hz
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Fig. 11.17 Left: Wavelet transform of the acceleration signal. Right: Frequency of the maximum wavelet coefficient

leading to a linear eigenfrequency of 40.8 Hz. Especially for longer experiments with high deflection, the temperature in the
small beam increases, which can lead an expansion and therefore to buckling in the small beam resulting in dramatic changes
in the behavior of the setup. The pretension in the beam helps to avoid this phenomenon and enhances the repeatability of the
measurements. For the tracking of the backbone curve in the nonlinear range, the forcing amplitude is increased from 1 to
10 N in steps of 1 N. The forcing is held constant for 60 s during the initial detection of the linear eigenfrequency. When the
PLL is in the locked state in the linear eigenfrequency the forcing is increased after intervals of 10 s. The wavelet transform
of the acceleration signal is shown in Fig. 11.17.



11 Tracking of Backbone Curves of Nonlinear Systems Using Phase-Locked-Loops 119

It can be observed that with each increment of the forcing, the amplitude and therefore the wavelet coefficient increases.
Due to the stiffening behavior of the system the resonance frequency increases with higher amplitude such that the maximum
of the wavelet transform is shifted to higher frequencies. The PLL automatically adjusts the frequency of the forcing to
maintain the resonance criterion to be fulfilled. In laboratory experiments, the testing with the PLL turns out to be very
user-friendly, as during the testing no manual action is necessary. Furthermore, the incremental increase of the forcing from
low level to high level in resonance does not require any a priori knowledge of maximum forcing amplitude. The test can
automatically be stopped once a maximum acceleration is exceeded and all previously recorded points of the backbone curve
are retained.

11.6 Conclusion and Future Work

This paper presents a new method, simplifying phase resonance testing of nonlinear structures. A PLL controller is used
to automatically maintain the phase criterion during the nonlinear modal test. The design of the PLL implemented for this
purpose has briefly been discussed and the differences to classical phase resonance tests have been highlighted. The features
of the proposed method have been studied in an extensive numerical example comparing NNM computations with the
HBM with time integrations results of systems driven by the PLL controlled excitation force. It has been illustrated that the
method is robust even in the presence of strong higher harmonics. The PLL is implemented in a real experimental setup and
has successfully been demonstrated for an experimental benchmark structure with strong geometric nonlinearity. The new
method provides several advantages compared to classical phase resonance testing. With the automated procedure, the energy
dependent modes of nonlinear systems can be tracked in a fast and user-friendly way. No manual action during the testing
is necessary reducing the chance of operator errors and improving the repeatability of the measurements. The testing from
a low level to a high level excitation is beneficial for unknown structures. Additionally, the influence of transient effects can
be eliminated as steady state measurements are used to identify the backbone curve. Due to the stabilizing effect of the PLL
small phase inaccuracies do not affect the robustness of the method and the frequency amplitude relation can be extracted
accurately. The method proved its robustness even in the case of an internal resonance amplifying higher harmonics.

In future research the PLL method will be applied to more complex structure with different nonlinearities. The behavior
of the method in regions of internal resonances will be studied in a more detailed way. Additionally experimental studies
with systems exhibiting internal resonances will be carried out and the effect of inaccuracies in the appropriate excitation is
investigated. In this context, it will also be interesting to take the shaker-structure interaction into account, which naturally
leads to higher harmonics in the forcing function. The extension to non-conservative systems, e.g. using the concept of
complex nonlinear modes will be another future challenge.
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Chapter 12
The Importance of Phase-Locking in Nonlinear Modal Interactions

T.L. Hill, A. Cammarano, S.A. Neild, and D.J. Wagg

Abstract In nonlinear systems the constituent linear modes may interact due to internal resonance. In this paper we classify
two distinct classes of modal interactions: phase-locked interactions, in which there is a specific phase between the interacting
modes; and phase-unlocked interactions, in which the modes may interact regardless of their phase. This discussion is
accompanied by the study of an example structure in which both classes of interaction may be observed. The structure is
used to demonstrate the differences between phase-locked and phase-unlocked interactions, both in terms of their individual
influence on the response, and in terms of their influence on each other when both classes of interactions are present.

Keywords Backbone curves • Second-order normal forms • Modal analysis • Modal interaction • Phase locking

12.1 Introduction

Nonlinear dynamic behaviour poses a significant challenge in the modelling, design and optimisation of engineering
structures. This is due to the complexity of such behaviours, in terms of both the wide variety of phenomena a structure
may exhibit, and the number of degrees-of-freedom than may interact to produce these phenomena. One phenomenon that is
of particular importance is internal resonance, where coupling within the system is achieved at resonance. This phenomenon
is unique to nonlinear interactions, and is seen in a variety of physical structures [1, 2].

Typically, the design of engineering structures requires an understanding of the forced responses. However, when these
responses exhibit nonlinear behaviour they can be highly complex to compute and interpret. As a result, many approaches to
nonlinear analysis begin by modelling the responses of the underlying conservative systems; for example nonlinear normal
modes [3] and backbone curves [4] (note that the study of nonlinear normal modes has also been extended to nonconservative
systems [5, 6], and it has been shown that backbone curves can be used to directly interpret the forced responses [7]). Both
backbone curves and nonlinear normal modes provide a useful tool for understanding the underlying behaviour of forced
responses, and can be used to predict the existence of internal resonances [8, 9]. However, the relative importance of different
backbone curves can vary, as the underlying behaviours they describe may not always manifest themselves in the forced
responses; for example, if the forcing amplitude is insufficient to reach a backbone curve, the influence of that backbone
curve will not be observed [7].

In this paper we investigate the significance of phase-locking in backbone curve models. Phase-locking is defined as a
condition imposed upon the phase relationship between the underlying linear modes of a system. Although the backbone
curves may exhibit a variety of different phase relationships [8], these relationships are typically fixed for all responses
represented by the backbone curves. However, as will be shown here, there also exist phase-unlocked backbone curves,
where the modes may exhibit any phase relationship. To demonstrate this, we consider a pinned-pinned beam that with a
geometric nonlinearity, as considered in [10].

Two separate configurations of this beam are considered: one with an additional rotational stiffness at one end, leading to
an asymmetry in the beam; and one without any additional rotational stiffness, and hence with a symmetric structure. The
backbone curves of this beam are found using the second-order normal form technique [11, 12], and it is shown that the
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asymmetric case has phase-locked backbone curves, whilst the symmetric case only has phase-unlocked backbone curves.
By examining the forced responses of the beam it is shown that the behaviour described by the phase-locked backbone
curves leads to internal resonance in the forced responses, whilst the phase-unlocked backbone curves do not lead to internal
resonance. Finally, it is demonstrated that, whilst the phase-unlocked backbone curves do not predict the existence of internal
resonance, they do still describe fundamental behaviours of the system when the system is subjected to particular forcing
configurations. These observations indicate an important difference between these two classes of behaviour.

12.2 The Second-Order Normal Form Technique

12.2.1 The Example System

In this paper we consider the pinned-pinned beam with an additional rotational stiffness at one end, as shown in Fig. 12.1.
Two specific cases are considered here: one in which the additional rotational stiffness, k, is zero (such that the beam is
symmetric); and one in which k D 10N m rad�1, such that the beam is asymmetric. In both cases, the beam has dimensions
L D 500mm, w D 30mm and h D 1mm. Additionally, the beam has a density and Young’s modulus of � D 7800 kg m�3,
E D 200 � 109 N m�2 respectively. A similar configuration of a beam has previously discussed in [10], where it is shown that
the unforced and undamped behaviour of the beam may be modelled using the first two linear modes, using the equations of
motion, written

Rq1 C !2n1q1 C �2
�
�11q

2
1 C 2�12q1q2 C �22q

2
2

�
.�11q1 C �12q2/ D 0 ; (12.1a)

Rq2 C !2n2q2 C �2
�
�11q

2
1 C 2�12q1q2 C �22q

2
2

�
.�12q1 C �22q2/ D 0 ; (12.1b)

where: qi represents the displacement of the ith linear mode; !ni represents ith linear natural frequency; and �, �11, �12 and
�22 are nonlinear parameters. These expressions may be written in the form

Rq C ƒq C Nq .q/ D 0 ; (12.2)

where: q is a vector of modal displacements, in which the ith element in q is qi; ƒ is a diagonal matrix whose ith leading
diagonal element is the square of the ith linear natural frequency, !2ni; and Nq is a vector of nonlinear terms, written

Nq .q/ D
�
˛1q31 C 3˛2q21q2 C ˛3q1q22 C ˛4q32
˛2q31 C ˛3q21q2 C 3˛4q1q22 C ˛5q32

�
; (12.3)

where

˛1 D �2�211 ; ˛2 D �2�11�12 ; ˛3 D �2
�
�11�22 C 2�212

�
;

˛4 D �2�12�22 ; ˛5 D �2�222 : (12.4)

L

k

w

h

Fig. 12.1 Schematic of a pinned-pinned beam with a rotational constraint at one end
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Table 12.1 The linear natural frequencies and nonlinear parameters for the two different
configurations of the beam

!n1 !n2 ˛1 ˛2 ˛3 ˛4 ˛5

(rad s�1) .�1010/
Symmetric case .k D 0/ 57.71 230.83 2.00 0 8.00 0 31.98

Asymmetric case .k D 10/ 125.91 418.41 8.81 �1.31 34.7 �5.12 133.63

From [10], it is found that, for the two different cases considered here (i.e. when the beam is symmetric, and when the
beam is asymmetric) the linear natural frequencies and nonlinear parameters have the values given in Table 12.1. It can be
seen that, when the beam is symmetric, i.e. when k D 0, then ˛2 D ˛4 D 0.

12.2.2 Applying the Second-Order Normal Form Technique to the Example System

The backbone curves of a system describe the loci of unforced, undamped dynamic responses of a system. In order to find the
backbone curves of the example system considered here, we apply the second-order normal form technique to the unforced,
undamped equations of motion, Eq. (12.2). This technique is detailed in [11], and it was first demonstrated how the technique
may be used to find the backbone curves of nonlinear systems in [4].

The second-order normal form technique typically consists of three steps: the linear modal transform, which transforms
the equations of motion from physical into linear modal coordinates; the forcing transform, which removes any non-resonant
forcing terms from the equations of motion; and the nonlinear near-identity transform, which removes any non-resonant
(i.e. harmonic) terms from the equations of motion. This results in a set of approximate, analytical expressions containing
only the resonant components of the motion, which may then be solved using an assumed solution. For the case considered
here, the equations of motion, Eq. (12.2), are expressed in terms of the linear modal coordinates and therefore the linear
modal transform is not necessary. Additionally, the system is unforced (as we are considering the backbone curves) and
hence the forcing transform is also not needed. Thus, in this case, the second-order normal form technique consists only of
the nonlinear near-identity transform, applied directly to Eq. (12.2).

The nonlinear near-identity transform involves the substitution q D u C h where u and h represent the fundamental and
harmonic components of q respectively. It is assumed that the harmonics are small and, as the nonlinear terms are also
assumed to be small, the approximation Nq .q/ D Nq .u/ is made. Additionally, as non-resonant terms are removed, the
fundamental component of the response, u, is sinusoidal, and therefore the ith element of u may be written

ui D cos .!rit � �i/ ; (12.5a)

D upi C umi D Ui

2
eCj .!rit � �i/ C Ui

2
e�j .!rit � �i/ ; (12.5b)

where Ui, !ri and �i are the amplitude, response frequency and phase respectively. Note that the subscripts “p” and “m” in
Eq. (12.5b), correspond to the positive and negative, i.e. plus and minus, signs in the exponents respectively. Now, substituting
q D u into Eq. (12.3), along with the assumed solutions, Eq. (12.5b), gives

Nq .u/ D
 
˛1
�
up1 C um1

�3 C 3˛2
�
up1 C um1

�2 �
up2 C um2

�C
˛2
�
up1 C um1

�3 C ˛3
�
up1 C um1

�2 �
up2 C um2

�C (12.6)

˛3
�
up1 C um1

� �
up2 C um2

�2 C ˛4
�
up2 C um2

�3

3˛4
�
up1 C um1

� �
up2 C um2

�2 C ˛5
�
up2 C um2

�3

!

:

After expanding the terms in Eq. (12.6), Nq may be written

Nq .u/ D �
Nq
�

u� �up; um
�
; (12.7)
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where: u� is a vector containing all unique combinations of the variables upi and umi (expressed in the vectors up and um);
and

�
Nq
�

is a matrix of the coefficients corresponding to those variables. As the elements in u� are composed only of upi and
umi, the `th element of u� may be written

u�̀ D
NY

nD1
u

sp;`;n
pn u

sm;`;n
mn ; (12.8)

where N is the number of degrees-of-freedom of the system (i.e. N D 2 in the case considered here). Using Eq. (12.8), the
exponents sp;`;n and sm;`;n can be found, allowing the matrix ˇ to be defined, where element fi; `g of ˇ is given by

ˇi;` D
"

NX

nD1

�
sp;`;n � sm;`;n

�
!rn

#2

� !2ri : (12.9)

It is the matrix ˇ which allows us to determine which nonlinear terms are resonant, and thus appear in the resonant equation
of motion. However, it can be seen from Eq. (12.9) that ˇ is dependent on the fundamental response frequencies, !ri, and
therefore the ratios between these frequencies must be known in order to determine which terms are resonant. Typically, as
discussed in [11], the ratios between the response frequencies are chosen based upon the ratios between the linear natural
frequencies, i.e. if !n1 � !n2, then it is assumed that the modes will respond at the same frequency. However, here we wish
to investigate how this ratio influences which terms are resonant, and hence it is assumed that the fundamental component of
q2 responds at r times that of q1, i.e. !r2 D r!r1. Substituting this into Eq. (12.9) allows ˇ to be defined, for this case, as

ˇ1;` D
n�

sp;`;1 � sm;`;1 C r
�
sp;`;2 � sm;`;2

��2 � 1
o
!2r1 ; (12.10a)

ˇ2;` D
n�

sp;`;1 � sm;`;1 C r
�
sp;`;2 � sm;`;2

��2 � r2
o
!2r1 : (12.10b)

Now, Eqs. (12.6)–(12.8) and (12.10) may be used to write
�
Nq
�
, u� and ˇ as

�
Nq
�| D

2

6
6
6
66
6
6
6
6
66
6
6
6
66
6
6
6
66
6
6
6
6
66
6
6
6
66
6
6
6
66
4

˛1 ˛2
3˛1 3˛2

3˛1 3˛2
˛1 ˛2
3˛2 ˛3

6˛2 2˛3
3˛2 ˛3
3˛2 ˛3
6˛2 2˛3

3˛2 ˛3
˛3 3˛4
2˛3 6˛4

˛3 3˛4
˛3 3˛4
2˛3 6˛4

˛3 3˛4
˛4 ˛5
3˛4 3˛5
3˛4 3˛5

˛4 ˛5

3

7
7
7
77
7
7
7
7
77
7
7
7
77
7
7
7
77
7
7
7
7
77
7
7
7
77
7
7
7
77
5

;u� D
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6
6
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6
6
6
66
6
6
6
6
66
6
6
6
66
6
6
6
66
6
6
6
6
66
6
6
6
66
4

u3p1
u2p1um1

up1u2m1
u3m1

u2p1up2

up1um1up2

u2m1up2

u2p1um2

up1um1um2

u2m1um2

up1u2p2
up1up2um2

up1u2m2
um1u2p2

um1up2um2

um1u2m2
u3p2
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7
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7
7
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7
7
7
77
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;
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ˇ| D !2r1

2

6
6
6
6
66
6
6
6
66
6
6
6
6
66
6
6
6
66
6
6
6
6
66
6
6
6
66
6
6
6
6
4

8 9 � r2

0 1 � r2

0 1 � r2

8 9 � r2

.r C 1/.r C 3/ 4.1C r/
r2 � 1 0

.r � 1/.r � 3/ 4.1� r/

.r � 1/.r � 3/ 4.1� r/
r2 � 1 0

.r C 1/.r C 3/ 4.1C r/
4r.r C 1/ .3r C 1/.r C 1/

0 1 � r2

4r.r � 1/ .3r � 1/.r � 1/

4r.r � 1/ .3r � 1/.r � 1/

0 1 � r2

4r.r C 1/ .3r C 1/.r C 1/

9r2 � 1 8r2

r2 � 1 0

r2 � 1 0

9r2 � 1 8r2

3

7
7
7
7
77
7
7
7
77
7
7
7
7
77
7
7
7
77
7
7
7
7
77
7
7
7
77
7
7
7
7
5

: (12.11)

The resonant equation of motion is written

Ru C ƒu C Nu .u/ D 0 ; (12.12)

where Nu is a vector of resonant nonlinear terms, defined using

Nu .u/ D Œnu� u� �up; um
�
; (12.13)

where Œnu� is a matrix of the coefficients of the resonant nonlinear terms. The nonlinear terms represented by
�
Nq
�

are
defined as resonant if they correspond to an element in ˇ that contains a zero; hence such a term is also represented in Œnu�.
Conversely, if a term is non-resonant (i.e. it contributes to a harmonic) then the corresponding element in ˇ is non-zero, and
hence the element in Œnu� must be zero. This is expressed by the relationship defining element fi; `g of Œnu� as

Œnu�i;` D
( �

Nq
�

i;`
if W ˇi;` D 0 ;

0 if W ˇi;` ¤ 0 :
(12.14)

Note that, whilst the harmonics are neglected here, they may be computed using the second-order normal form technique—
see [13] for further details.

It can be seen from Eq. (12.11) that the terms in ˇ may be separated into three categories:

• Non-resonant, which are non-zero, regardless of the value of r,
• Unconditionally-resonant, which are zero for all values of r,
• Conditionally-resonant, which are only zero for specific values of r.

Furthermore, from Eq. (12.11), it can be seen that, for this case, the conditionally-resonant terms become resonant for three
different values of r, namely r D 1=3, r D 1 and r D 3. Therefore, using Eqs. (12.11) and (12.14), the matrix of resonant
coefficients, Œnu�, may be found, from which Eq. (12.13) may be used to write
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Nu D
�
3˛1up1um1u1 C 2˛3up2um2u1
2˛3up1um1u2 C 3˛5up2um2u2

�
C ı


r � 1

3

�  
˛4

�
u3p2 C u3m2

�

3˛4
�
up1u2m2 C up1u2m2

�

!

C (12.15)

ı fr � 1g
0

@
3˛2

�
2up1um1u2 C u2p1um2 C u2m1up2

�
C ˛3

�
um1u2p2 C up1u2m2

�
C 3˛4up2um2u2

3˛4

�
2u1up2um2 C um1u2p2 C up1u2m2

�
C ˛3

�
u2p1um2 C u2m1up2

�
C 3˛2up1um1u1

1

AC

Cı fr � 3g
0

@
3˛2

�
u2m1up2 C u2p1um2

�

˛2

�
u3p1 C u3m1

�

1

A ;

where ı represents the Dirac-delta function.

12.3 The Backbone Curves of the Example System

In order to find the backbone curves, we must solve the time-dependent resonant equations of motion, Eq. (12.12), which
first requires that the time-dependence is removed from these equations. In [8] it is shown that the ith element of the vector
of resonant nonlinear terms, Nu, may be written

Nui D NC
ui eCj!rit C N�

ui e
�j!rit ; (12.16)

therefore, substituting Eqs. (12.5) and (12.16), the resonant equation of motion, Eq. (12.12), for the ith mode may be written

	�
!2ni � !2ri

� Ui

2
e�j�i C NC

ui



eCj!rit C

	�
!2ni � !2ri

� Ui

2
eCj�i C N�

ui



e�j!rit D 0 ; (12.17)

where the contents of the square brackets form a complex conjugates pair. Therefore, the contents of these brackets may each
be equated to zero, i.e.

�
!2ni � !2ri

�
Ui C 2NC

ui eCj�i D 0 ; (12.18)

where it can be seen that Eq. (12.18) is independent of time.
Now, substituting Eq. (12.5) into Eq. (12.15) allows the complex components NC

ui to be identified. These may then be
substituted into Eq. (12.18) to give

4
�
!2n1 � !2r1

�
U1 C 3˛1U

3
1 C 2˛3U1U

2
2 C ı1=3˛4U

3
2e

Cj�d1;3 C ı33˛2U
2
1U2e

Cj�d3;1

Cı1
�
3˛2U

2
1U2

�
2C e�j2�d1;1

�C ˛3U1U
2
2eCj�d1;1 C 3˛4U

3
2

�
eCj�d1;1 D 0 ; (12.19a)

4
�
!2n2 � r2!2r1

�
U2 C 2˛3U

2
1U2 C 3˛5U

3
2 C ı1=33˛4U1U

2
2e

�j�d1;3 C ı3˛2U
3
1e�j�d3;1

Cı1
�
3˛2U

3
1 C ˛3U

2
1U2e�j�d1;1 C 3˛4U1U

2
2

�
2C eCj2�d1;1

��
e�j�d1;1 D 0 ; (12.19b)

where the phase difference, �di;j, is defined as �di;j D i�1 � j�2, and the Dirac-delta function is denoted ık D ı fr � kg. Note
that !r2 D r!r1 has been used.

Equation (12.19) demonstrate that some terms are a function of the phase difference between the two modes (where
the phase difference is dependent on r). As will be shown in the following sections, such terms enforce a specific phase-
relationship for resonant responses described by the backbone curve, known as phase-locking. It therefore follows that
backbone curves that are described by expressions which are not a function of the phase difference do not have a specific
phase-relationship, and the responses they describe may therefore exhibit any phase value between the modes. Furthermore,
it can be seen in Eq. (12.19) that the terms which exhibit a phase-dependence are also those that are dependent on r i.e. are
conditionally resonant terms, suggesting a relationship between conditional resonance and phase-locking.
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12.3.1 The Backbone Curves of the Asymmetric Case

From Table 12.1 it can be seen that, for the asymmetric case, all nonlinear parameters, ˛i, are non-zero. Additionally, the
ratio between the linear natural frequencies, !n1W!n2, is approximately 1:3 . Therefore, it seems likely that a similar ratio
will exist between the response frequencies, and hence the case where r D 3 is considered. From Eq. (12.19) this leads to

4
�
!2n1 � !2r1

�
U1 C 3˛1U

3
1 C 2˛3U1U

2
2 C 3˛2U

2
1U2eCj .3�1 � �2/ D 0 ; (12.20a)

4
�
!2n2 � 9!2r1

�
U2 C 2˛3U

2
1U2 C 3˛5U

3
2 C ˛2U

3
1e

�j .3�1 � �2/ D 0 : (12.20b)

As we are concerned with the phase difference between the modes, we consider the case where both modal amplitudes are
non-zero. Therefore, the imaginary components of Eq. (12.20) both lead to sin .3�1 � �2/ D 0, which may be satisfied by
3�1 � �2 D 0; �; : : :, thus enforcing phase-locking between the modes. The real components of Eq. (12.20) may then be
written

4
�
!2n1 � !2r1

�C 3˛1U
2
1 C 2˛3U

2
2 C p3˛2U1U2 D 0 ; (12.21a)

4
�
!2n2 � 9!2r1

�
U2 C 2˛3U

2
1U2 C 3˛5U

3
2 C p˛2U

3
1 D 0 ; (12.21b)

where

p D
 C1 when W 3�1 � �2 D 0 ;

�1 when W 3�1 � �2 D � :
(12.22)

Here, the backbone curves associated with the solutions to the p D C1 case (i.e. where the linear modes are in-phase) are
denoted S C

1 , and the solutions to the p D �1 case (i.e. where the linear modes are in anti-phase) are denoted S �
1 .

The backbone curves S C
1 and S �

1 , found using Eq. (12.21) are shown in Fig. 12.2, along with the response of the system
when subject to forcing in the first linear mode (i.e. the second mode is unforced). A linear, proportional damping model is
used for this forcing case, i.e. the damping term in the ith linear equation of motion is 2�!ni Pqi, where � is the modal damping
ratio, which is equal for both modes. The forcing applied to the first linear mode is sinusoidal, at amplitude P1. In the case
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Fig. 12.2 The backbone curves and a forced response of the asymmetric beam. This is shown in the projection of the amplitude of the fundamental
component of first linear mode, U1, against that of the second linear mode, U2. The backbone curves S C

1 and S �

1 are represented by a grey line
and a red line respectively, whilst the forced response is represented by a blue line
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shown in Fig. 12.2, the modal damping ratio is � D 0:1%, and the forcing amplitude is P1 D 0:0175. These forced responses
have been computed using the numerical continuation software AUTO-07p [14].

Figure 12.2 shows that, whilst the forcing is applied directly to the first linear mode, the second mode also exhibits
a response, due to internal resonance. Furthermore it can be seen that the forced response branch closely follows the
backbone curves; although some deviation can be seen, due to both the approximate nature of the analytical descriptions
of the backbone curves, and due to the internal energy transfer required to balance the energy lost through damping, as
discussed in [7].

12.3.2 The Backbone Curves of the Symmetric Case

We now consider the symmetric case, where the rotational stiffness at the end of the beam, k, is zero. From Table 12.1, the
nonlinear parameters ˛2 and ˛4 are zero; hence Eq. (12.19) are simplified to

4
�
!2n1 � !2r1

�
U1 C 3˛1U

3
1 C 2˛3U1U

2
2 C ı1˛3U1U

2
2e�j2 .�1 � �2/ D 0 ; (12.23a)

4
�
!2n2 � r2!2r1

�
U2 C 2˛3U

2
1U2 C 3˛5U

3
2 C ı1˛3U

2
1U2e

�j2 .�1 � �2/ D 0 : (12.23b)

Equation (12.23) show that the phase-locking only occurs in the symmetric system when r D 1; however, it is found that
substituting r D 1 into Eq. (12.23) does not lead to any valid solutions. This suggests that phase-locking is not possible in
the symmetric case.

In [10], a similar case is also discussed (although the phase is not considered) and it is assumed that, as the ratio between
the linear natural frequencies is close to 1:3, the response frequencies will also exhibit a 1:3 ratio. Therefore, substituting
r D 3 into Eq. (12.23) gives

�
4
�
!2n1 � !2r1

�C 3˛1U
2
1 C 2˛3U

2
2

�
U1 D 0 ; (12.24a)

�
4
�
!2n2 � 9!2r1

�C 2˛3U
2
1 C 3˛5U

2
2

�
U2 D 0 : (12.24b)

It can be seen from Eq. (12.24) that two single-mode solutions exist: one in which U2 D 0, denoted S1; and another in which
U1 D 0, denoted S2. Additionally a mixed-mode solution exists, in which U1 ¤ 0 and U2 ¤ 0, denoted S3. However, unlike
the mixed-mode solutions in the asymmetric case, this has no phase-locking. Therefore, whilst the S C

1 and S �
1 backbone

curves of the asymmetric case have specific phase relationships, it appears that the mixed-mode backbone curves described
by Eq. (12.24) may exist for any phase difference between the modes.

The backbone curves S1 and S3 are shown in Fig. 12.3, along with the response of the system when forced in the shape
of the first linear mode. As with Fig. 12.2, a linear proportional damping model is used; however the modal damping ratio is
higher, at � D 0:5%. The first linear mode is subjected to a sinusoidal forcing at amplitude P1 D 0:035, whilst the second
mode is unforced. As in the previous example, this forced response has been computed using numerical continuation, whilst
the backbone curves have been calculated using the analytical expressions Eq. (12.24).

Figure 12.3 clearly shows that the forced response follows the backbone curve S1 (which is composed of only the first
mode). The S3 backbone curve does not appear to influence this forced branch and inspection of the U2 component reveals
that there is no response in the second mode. Additionally, stability analysis of the forced branch reveals that there is no
loss of stability in the region surrounding the bifurcation from S1 onto S3. Typically, such bifurcations are associated with
internally resonant behaviour [15] and lead to bifurcations in the forced branches, along with a loss of stability. Therefore,
the backbone curve bifurcation, seen in Fig. 12.3, appears to reveal a special case. This highlights an important difference
between the behaviour of phase-locked backbone curves, such as those shown in Fig. 12.2 which exhibit internal resonance,
and phase-unlocked backbone curves, such as S3 in Fig. 12.3 which does not lead to internal resonance.

Although phase-unlocked backbone curves do not lead to internally-resonant behaviour, they may still be used to represent
fundamental behaviours in the forced responses. This is demonstrated in Fig. 12.4, where the symmetric case shown in
Fig. 12.3 (i.e. with modal damping ratio � D 0:5% and a forcing amplitude P1 D 0:035 applied to first mode) is reconsidered.
However, in this case, a forcing is also applied to the second linear mode, with amplitude P2, and with a frequency that is
three times that of the first. As internal resonance is not exhibited by this system, this forcing configuration enforces a 1:3
response ratio, as assumed in the derivation of the backbone curve expressions.
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Fig. 12.3 The backbone curves S1 and S3, along with a forced response curve of the symmetric beam. This is shown in the projection of the
fundamental response frequency of the first linear mode, !r1, against the fundamental response amplitude of the first linear mode, U1. Note that
it is assumed that !r1 is equal to the forcing frequency. The backbone curves S1 and S3 are represented by grey lines, and a grey dot shows the
bifurcation between these two backbone curves. The forced response curve is represented by a blue line
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Fig. 12.4 The backbone curves and forced response curves of the symmetric beam when subjected to first and second linear modal forcing. The
forcing applied to the second mode is at three times the frequency of the first, and three different forcing amplitudes are used—as shown in the
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by grey lines, and a grey dot shows the bifurcation between these two backbone curves



130 T.L. Hill et al.

Figure 12.4 shows that, when a 1:3 response ratio is enforced via external forcing, the forced response branches follow
the phase-unlocked backbone curve. It has also been confirmed that, as these backbone curves represent responses that
may exhibit any phase between the modes, altering the phase between the external forcing does not lead to any significant
changes in the forced responses. This demonstrates that such backbone curves represent fundamental underlying behaviours;
however, they do not appear to predict internal resonance. As such, it appears that external forcing, or interactions with other
modes, is required for the behaviour represented by phase-unlocked backbone curves to manifest.

12.4 Conclusions

In this paper we have demonstrated the difference between phase-locked and phase-unlocked backbone curves. It has been
seen that a symmetric beam with nonlinear behaviour, does not have any phase-locked backbone curves. Therefore, the
backbone curve of this system describing the 1:3 resonant interaction between the modes, previously discussed in [10], does
not exhibit phase-locking. It has been demonstrated that this backbone curve does not lead to internal resonance when the
system is forced in only one mode. This is compared to the phase-locked backbone curves of the asymmetric case, where
both modes exhibit a response when only one mode is directly forced. This suggests phase-unlocked backbone curves do not
describe internally-resonant behaviour, indicating an important difference between these two classes of backbone curves.

It has also been demonstrated that the presence of phase-locking terms may be predicted if the general form of the
backbone curves is derived, without the need to assume a specific ratio between the response frequencies. This enables
the prediction of those ratios that will lead to phase-locked backbone curves, and those that will not. This feature of the
second-order normal form technique represents a significant advantage when compared to analytical techniques that require
the response frequency ratio to be selected before such information is known.
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Chapter 13
A Study of the Modal Interaction Amongst Three Nonlinear Normal
Modes Using a Backbone Curve Approach

X. Liu, A. Cammarano, D.J. Wagg, and S.A. Neild

Abstract In this paper, a three degree-of-freedom oscillator with cubic elastic nonlinearities is considered. For this system,
the natural frequencies of its underlying linear modes are set to be approximately equal so that !n1W!n2W!n3 � 1W1W1. As a
result, the nonlinear normal modes in the system are able to potentially interact with each other. In this study, the underlying
unforced and undamped system is considered. The second-order normal forms technique is used to estimate the backbone
curves of the system, which give information on the frequency and modal response amplitudes and phases. Then, through
choosing the activate modes and their specific phase differences, the single-, double- and triple-mode backbone curves are
computed. The results show the effect of nonlinear multi-mode interactions on the dynamic response of nonlinear oscillators.
These insights will be beneficial when considering how a structure will respond and for the system identification of nonlinear
multi-degree-of-freedom systems.

Keywords Backbone curve • 3-DoF nonlinear oscillator • Nonlinear modal interaction • Cubic nonlinearity • Second-
order normal form method

13.1 Introduction

The dynamic response of lightly damped and weakly nonlinear multi-degree-of-freedom (M-DoF) systems are of great
interest as a vibration problem in the engineering field. Due to the weak nonlinearities, the fundamental modes of these
M-DoF systems cannot be decoupled and then the internal resonance effects become significant. This significantly increases
the difficulties of the response prediction and system identification. In this paper, the example of a three-degree-of-freedom
(3-DoF) lumped mass system with cubic stiffness nonlinearities is considered. In particular we consider the potential modal
interactions that can occur by analysing the backbone curves, i.e. the response of the equivalent undamped, unforced system.
This is because, in common with the majority of vibration examples that lend themselves to modal analysis, the lightly
damped dynamic behaviour is largely determined by the properties of the underlying Hamiltonian dynamic system. There
are many studies about the dynamic response of nonlinear systems based on backbone curves, see for example [3–5, 10,
11]. Moreover, the response of nonlinear M-DoF systems has been extensively studied because they are often related to
unwanted vibration effects in structures. Most of the literature is for undamped, unforced systems, and includes beams,
cables, membranes, plates and shells—see for example [1, 9, 15, 17]. Several different analytical approaches have been
used to approach this type of problem, such as perturbation methods, [12] nonlinear normal modes (NNMs) [8, 14, 16] or
normal form analysis [2, 6, 13]. Similar 3-DoF systems have been analysed using NNMs in the context of nonlinear vibration
suppression [7].

In this paper we demonstrate different kinds of modal interactions by considering an in-line 3-DoF nonlinear oscillators.
In Sect. 13.2, after generally describing the nonlinear 3-DoF system, we apply the normal form transformation method to
obtain a equation set governing the response frequency and amplitudes. Based on the obtained equation set, in Sect. 13.3,
the potential occurrence of different kinds of backbone curves with the specific number of activated modes is discussed and
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d

Fig. 13.1 In-line, 3-DoF nonlinear oscillator. Three lumped masses are grounded via linear springs and linear viscous damper. Masses are also
coupled with each other via linear and nonlinear springs. All three masses are excited by the single-frequency-sinusoidal forces

their corresponding expressions are obtained. In Sect. 13.4, the certain system physical parameter values for both hardening
and softening cases are chosen for computing the backbone curves results. Based on the results, the modal interactions are
discussed. Conclusions are drawn in Sect. 13.5.

13.2 The Nonlinear 3-DoF Oscillators Considered and Normal Form Method Application

The nonlinear 3-DoF oscillating system considered here is shown in Fig. 13.1. The system consists of three identical lumped
masses which are forced sinusoidally at amplitudes P1, P2 and P3 respectively at the frequency �. Their displacements are
denoted by x1, x2 and x3. For this system, all three masses are linked to the ground via linear viscous dampers, with a damping
constant c, and linear springs, with a stiffness k or k C ı. The middle mass connects the two masses at the sides via linear
viscous dampers, with damping coefficients c0, and nonlinear cubic springs with the linear stiffness k0 and cubic stiffness �.
The two side masses are also coupled via a linear spring, k0, and a viscous damper, c0. Here, the masses are weakly linear
or nonlinear coupled with each other, thus the coupled spring stiffness is very small compared with the grounded one, i.e.
k0 
 k and � 
 k. Meanwhile, a small part ı (ı 
 k) is added to the grounded spring stiffness of the 2nd mass. This leads
to the equivalent linear structure of this system to be mistuned.

The equation of motion (EoM) for the 3-DoF system can be written in the general form,

MRx C CPx C Kx C Nx.x/ D P cos.�t/; (13.1)

where M, C and K are matrices of mass, damping and stiffness respectively; x is a vector of physical displacement; Nx is a
vector of nonlinear and damping terms and P is the external force amplitudes vector.

Here the backbone curves are used to help illustrate the modal interactions of the nonlinear system. So to reach this, the
second-order normal form method [13, 18] is chosen to obtain the backbone curves. Firstly based on the definition of the
backbone curve that it describes the loci of dynamic responses of a system when unforced and undamped, Eq. (13.1) without
damping and forcing terms, as,

MRx C Kx C Nx.x/ D 0; (13.2)

is under consideration. Through the linear modal transformation for decoupling the linear terms, the EoM in terms of the
modal coordinates q is obtained,

Rq Cƒq C Nq.q/ D 0; (13.3)

where q is a vector of modal displacements and ƒ is a diagonal matrix of the squares of the corresponding linearised natural
frequencies !n1, !n2 and !n3, and the Nq is a vector of modal nonlinear terms. Here, expressions of the linear modal natural
frequencies and linear modeshape matrix used are,

!n1 D
r

1C 1

2
.�C 3k0 � p

�/; !n2 D p
1C 3k0;
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!n3 D
r

1C 1

2
.�C 3k0 C p

�/; (13.4)

and,

V D
2

4
1 1 1

a 0 b
1 �1 1

3

5 ; (13.5)

where a; b D �.ıC k0 ˙ p
�/=2k0 and� D .ıC k0/2 C 8k02. Note that for simplifying the symbol manipulation, k D 1 and

m D 1 are used here without sacrifice of the problem generality. Meanwhile, the nonlinear terms vector Nq can be written in
the form,

Nq.q/ D nqq�; (13.6)

where nonlinear element vector q� and its coefficient matrix nq are,

q� D Œq31; q21q2; q1q
2
2; q32; q22q3; q2q

2
3; q33; q1q

2
3; q21q3; q1q2q3�

T ; (13.7)

and,

nT
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Lastly, the nonlinear near-identity transform, q D u C h, is applied, where u and h are the fundamental and harmonic
components of q respectively. As the harmonic components are so small that can be negligible, q D u are used here.
Assuming that the fundamental response of the ith mode is sinusoidal, ui may be written as,

ui D uip C uim D Ui

2

h
ej.!rit��i/ C e�j.!rit��i/

i
; (13.9)

where Ui, !ri and �i is the fundamental response amplitude, frequency and phase of the ith mode respectively. As the linear
natural frequencies of the three underlying modes are close, i.e. !n1W!n2W!n3 � 1W1W1, the fundamental response frequencies
of the three modes are assumed to be same, so we may write � D !n1 D !n2 D !n3. By picking out the resonant nonlinear
terms from Nq to be left in Nu based on the rule discussed in [18], we obtain the resonant EoM as,

Ru C ƒu C Nu.u/ D 0; (13.10)
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where Nu is a vector of resonant nonlinear terms. Substituting Eq. (13.9) into Eq. (13.10) and balancing the coefficients of
ej�t and e�j�t, we get the time-independent equations relating the modal response amplitudes and frequency,

.!2n1 ��2/U1 C 1

4

	
3˛

.1/
1 U3

1 C .2C p12/˛
.1/
3 U1U

2
2 C 3q13˛

.1/
5 U2

2U3

C 3q13˛
.1/
7 U3

3 C .2C p13/˛
.1/
8 U1U

2
3 C 3q13˛

.1/
9 U2

1U3



D 0; (13.11a)
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U2 D 0; (13.11b)
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3 U1U
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8 U1U

2
3 C .2C p13/˛
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1U3



D 0; (13.11c)

where pij D e2jj�i��jj, qij D ejj�i��jj and j�i � �jj denotes the modal phase difference. By solving Eq. (13.11) with choosing
specific presenting modes and their phase differences, i.e. valid values of pij and qij, the backbone curves of this nonlinear
system can be calculated.

13.3 Backbone Curve Calculating

For the nonlinear 3-DoF oscillating system considered here, its three mode can be potentially interacting with each other.
Thus, its backbone curves can be classified into three groups of backbone curves based on the number of present modes:
single-, double- and triple-mode backbone curves labelled S.i/, D.ij/ and T.ijk/ respectively.

Firstly, we consider the single-mode backbone curves where the response of only one mode is present. There may be
potentially three single-mode backbone curves, S1, S2 and S3. When only mode 2 is activated which corresponds to the
backbone branch S2, substituting U1 D U3 D 0 into Eq. (13.11) gives its governing equation as,

S2 W U2 ¤ 0; �2 D !2n2 C 3

4
˛
.2/
4 U2

2: (13.12)

When only mode 1 or mode 3 is activated which corresponds to the backbone curve S1 (and curve S3 respectively),
substituting U2 D U3 D 0 (U1 D U2 D 0) into Eq. (13.11c) (Eq. (13.11a)) leads to,

˛
.3/
1 U3

1 D 0 .˛
.1/
7 U3

3 D 0/: (13.13)

This can be satisfied only when ˛.3/1 D 0 (˛.1/7 D 0) which is not the general case. Therefore, single-mode backbone curves
S1 and S3 do not generally exist here.

Secondly, double-mode backbone curves are considered. Potentially they may include the branches labelled D12i̇ &
D12ȯ , D23i̇ & D23ȯ , and D13i̇ & D13ȯ . The subscripts i and o denote the in-unison and out-of-unison resonant[5]
interaction between the activated two modes and the superscript C and � indicate 0 and � modal phase difference for the
in-unison resonance and C�=2 and ��=2 for the out-of-unison resonance respectively. For backbone curves D12, mode 1
and 2 contribute to the response, thus setting U3 D 0 in Eq. (13.11) gives,

3˛
.1/
1 U2

1 C .2C p12/˛
.1/
3 U2

2 D 4.�2 � !2n1/;
.2C p12/˛

.2/
1 U2

1 C 3˛
.2/
4 U2

2 D 4.�2 � !2n2/;
˛
.3/
1 U2

1 C ˛
.3/
3 U2

2 D 0:

(13.14)
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Equation (13.14) is overdetermined as there are two unknowns, U1 and U2 with three equations (note that � is a constant
when considering the responses at a certain frequency). Thus Eq. (13.14) can have solutions only if ˛.3/1 D ˛

.3/
3 D 0 which

is not the general situation. Similarly, it is also the case for backbone curves D23. Therefore, double-mode backbone curves
D12 and D23 do not exist for the nonlinear system considered for the general situation. When only mode 1 and 3 are present
which corresponds to backbone curves D13, substituting U2 D 0 into Eq. (13.11) leads to,

.!2n1 ��2/U1 C 3

4

h
˛
.1/
1 U3

1 C q13˛
.1/
7 U3

3 C ˛
.1/
8 U1U

2
3 C q13˛

.1/
9 U2

1U3

i
D 0;

.!2n3 ��2/U3 C 3

4

h
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1 U3

1 C ˛
.3/
7 U3

3 C q13˛
.3/
8 U1U

2
3 C ˛

.3/
9 U2

1U3

i
D 0:

(13.15)

Here, due to the existence of q13 D ejj�1��3j, the value of p13 D e2jj�1��3j has to be equal to 1 to ensure valid physical
solutions of Eq. (13.15). Therefore the phase difference between mode 1 and 3 cannot be: ˙�=2, which means the out-of-
unison backbone curves D13ȯ do not exist here. Further rearranging Eq. (13.15), we obtain a quartic equation in U3 which
relates the response amplitudes of modes 1 and 3 as,

D13i̇ W


U1 ¤ 0;

U3 ¤ 0;

�
˛
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7 U4

3 C q13.˛
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3
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(13.16)

Combined with the response frequency equation,
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or
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we can compute the in-unison backbone curves D13i̇ . Note that the existence of the backbone curve branches D13i̇ are
still based on the valid solutions of Eqs. (13.16) and (13.17) which are further decided by the values of the coefficients of
nonlinear terms, ˛.i/l .

Lastly, we analyse the existence of triple-mode backbone curves. For the nonlinear 3-DoF system here, there may be
triple-backbone backbone curves: T123˙;˙

i; i , T123˙;˙
i; o , T123˙;˙

o; i and T123˙;˙
o; o . Again the subscripts denote type of resonance

interaction with mode 1 and superscripts denote their phase differences. By observing Eq. (13.11), the backbone curves
T123i;o and T123o;o do not exist here due to the same reason of the nonexistence of double-mode backbone curves D13o

(i.e. the existence of q13). For backbone curves T123i:i where the phase difference between mode 1, 2 and mode 1, 3 are
j�1 � �2j D 0 or � and j�1 � �3j D 0 or � respectively, substituting p12 D p23 D p13 D 1 into Eq. (13.11) and rearranging
gives,
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(13.18a)
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(13.18b)

By treating U2 as a constant, Eq. (13.18) is a cubic equation set in U1 and U3 which can be solved for the response amplitudes.
Then substitute the valid solutions of U1, U2 and U3 into the rearranged Eq. (13.11b) as,
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(13.19)

to calculate the response frequency. Similarly, substituting p12 D p23 D �1 and p13 D 1 into Eq. (13.11) gives the response
amplitude equation set for backbone curves T123o;i as,
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(13.20b)

and its response frequency equation is,
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Note that the above obtained backbone curve equations relate the response frequency and amplitudes in modal coordinates,
by applying the inverse linear modal transform with the assumption q D u, i.e. assuming the harmonics can be neglected,
we can get the backbone curves in the physical space.

13.4 Backbone Results

Now we choose specific values of the system parameters for the equations obtained in Sect. 13.3 to compute the backbone
curves to help illustrate the modal interactions. Figures 13.2 and 13.3 shows the backbone curves for the hardening and
softening nonlinear cases respectively. All panels show the backbone curves in the projection of response frequency against
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Fig. 13.2 Backbone curves for the hardening nonlinear 3-DoF oscillator with the physical parameters m D 1, k D 1, k0 D 0:01, ı D 0:025 and
� D 0:025, so the modal natural frequencies are !n1 D 1:0025, !n2 D 1:0150 and !n3 D 1:0250. The corresponding backbone curves are labelled
as discussed in Sect. 13.3
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Fig. 13.3 Backbone curves for the softening nonlinear oscillator with the physical parameters m D 1, k D 1, k0 D 0:01, ı D 0:025 and
� D �0:025. Specific backbone curves are labelled as discussed in Sect. 13.3 and bifurcation points are noted by black dots
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a displacement. For both cases, their linear modal natural frequencies are !n1 D 1:0025, !n2 D 1:0150 and !n3 D 1:0250

with linear parameters k D 1, k0 D 0:01 and ı D 0:025 and the cubic stiffness are � D ˙0:025 respectively.
In Fig. 13.2, it can be seen that there are three backbone curves, one single-mode backbone curve S2 and two double-mode

backbone curves D13i̇ , for the hardening situation. The single-mode backbone curve, S2, starts from the point Œ!n2; 0� and
the double-mode backbone curves, D13i̇ , are emanating from the points Œ!n3; 0� and Œ!n1; 0� respectively. There is no
triple-mode backbone curve as there is no valid solution for Eqs. (13.18)–(13.21). Note that due to the symmetry of the
structure the backbone curves of mass 1, x1, and mass 3, x3, are same. For the hardening nonlinear case, although there exist
two-mode interactions in the modal space its backbone curves of the physical displacements of masses are as the same as the
simple nonlinear 3-DoF systems without nonlinear modal interaction.

Figure 13.3 shows the backbone curves for the softening case which are far more complicated than the results in Fig. 13.2.
Here there are ten branches which includes all three kinds of backbone curves. The same as that of the hardening case, single-
and double-mode backbone curves are directly starting from the points at the response frequency axis with the coordinates of
the linear modal natural frequencies. All the triple-mode backbone curves are bifurcating from either single- or double-mode
backbone curves: branches T123˙;C

i; i bifurcate from D13C
i ; T123˙;�

i; i bifurcate from S2 and T123˙;�
o; i bifurcate from D13�

i .

Here backbone curves T123˙;C
o; i do not exist. Note that here the backbone curves of mass 1 and 3 are no longer the same

as the positions of branches T123�;C
i; i & T123C;C

i; i and T123C;�
i; i & T123�;�

i; i are swapping respectively. Furthermore, there
are several unique features about the triple-mode backbone curves here. Firstly, as the frequency reduces, the out-of-phase
backbone curves T123˙;�

i; i initially start from and then finally terminate at the same backbone curve, S2. This means that the
three-mode interaction may not occur out of the interaction frequency band even if the external input energy is enough for
triggering it. The other interesting feature is that the out-of-unison backbone curves T123˙;�

o; i show a hardening nonlinearity
that the response frequency increases with the response amplitude even if the nonlinear stiffness are negative.

13.5 Conclusions

In this paper, a nonlinear modal behaviour of a three-degree-of-freedom coupled oscillator with cubic stiffness nonlinearities
has been considered. In particular, the backbone curves of its corresponding equivalent undamped and unforced system
have been analysed to help illustrate the occurrence of potential modal interactions This is an important topic because the
majority of vibration examples that relate to modal analysis are lightly damped and therefore the dynamic behaviour is
largely determined by the properties of the underlying undamped dynamic system.

First we considered the undamped, unforced case where all the underlying linear modal frequencies are close, i.e.
!n1W!n2W!n3 � 1W1W1. Through the application of the second-order normal form method, we obtained the time-independent
equations relating the modal response frequency and amplitudes based on the assumption that the modal response frequencies
are same, i.e. � D !r1 D !r2 D !r3. Then discussing the number of contributing modes and their corresponding phase
difference, we have obtained the backbone curve expressions for the single-, double- and triple-mode backbone curves. We
have shown the results of the nonlinear system considered with specific physical parameters values for both hardening and
softening cases. For the hardening case, the three-mode interaction does not happen. For the softening case, both two- and
three-mode interactions occur. All triple-mode backbone curves are bifurcating from either single- or double-mode backbone
curves. Besides, there are some unique features about the triple-mode backbone curves: (a) some of the in-unison branches
only have values within a limited frequency range and, (b) the out-of-unison ones show a hardening nonlinearity for the
softening situation. From the backbone curve results of the nonlinear unforced and undamped system, it can be seen that the
occurrence of the three-mode interaction makes dynamic response of the weakly nonlinear multi-degree-of-freedom systems
more complicated.
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Chapter 14
Investigating Nonlinear Modal Energy Transfer in a Random
Load Environment

Joseph D. Schoneman and Matthew S. Allen

Abstract When a structure is subjected to an extreme environment, its linear normal modes, which are uncoupled under
small loads, begin to influence each other and exchange energy. This is easily explained when the nonlinear normal modes
of the structure are computed, since they show internal resonances where the underlying linear modes combine to produce
the NNM solution at each excitation level. This paper examines the degree to which nonlinear modal coupling can serve
as an energy transfer mechanism in order to reduce the vibration levels of a structure subjected to a broadband, random
forcing. The structure in question is a beam with an intermediate support that is adjusted in order to vary the frequency
ratios between modes. To explore the significance of modal coupling, two types of reduced order models are examined:
A customary model including all of the coupling terms between the linear modes, and an uncoupled reduced order model
which contains nonlinear stiffness terms in single modes only. The differences in response between the two models are used
to quantify the effect of nonlinear modal coupling in the structure.

Keywords Nonlinear reduced order modeling • Nonlinear normal modes • Random response

14.1 Introduction

Linear analysis techniques are the foundation of modern structural dynamics. Most structures behave linearly at low levels
of dynamic excitation, but certain high performance applications require a combination of low structural weight and high
environmental loads, causing responses in the nonlinear regime. Specific motivating cases include skin panels of hypersonic
vehicles [1], which undergo severe thermo-acoustic loadings at cruising speeds in excess of Mach 5, as well as the ducted
engine assemblies of stealth aircraft, where jet exhaust impinges directly on the structure. Geometric nonlinearity is also
prevalent in the design of joined-wing concepts [2], and in the behavior of extremely lightweight space structures such as
solar sails [3].

It has long been possible to compute the response of geometrically nonlinear structures in finite element software, but
the computational cost is orders of magnitude higher than that for linear analysis of the same structure. State-of-the-
art finite element software combined with high performance computing clusters allow for multi-physics simulations with
extremely complicated models—millions of degrees of freedom—in a reasonable amount of time: several hours to several
days, depending on the model complexity and physics involved. This capability is extremely powerful, but such analysis
times still limit the amount of design insight which can be obtained from a model. For applications requiring hundreds or
thousands of analyses, such as optimization studies, day-long simulation times are not acceptable. Another application of
interest is the “digital twin” concept under examination by the United States Air Force, which proposes the simulation of
an entire aircraft over its flight history in near-real-time [4]. Full-order coupled simulation of the thermal, aerodynamic, and
nonlinear structural physics of an aircraft is still barely (if at all) feasible, let alone achievable in real-time.

One key strategy for addressing these concerns is the use of reduced order modeling (ROM) or, more specifically,
nonlinear reduced order modeling (NLROM) techniques. Over the past three decades, NLROM techniques have emerged
which allow efficient simulation of geometric nonlinearity in beams and plates experiencing large deformations relative to
their thickness. This type of nonlinearity occurs due to the axial “membrane” stretching when thin members deflect on the
order of their thickness; a schematic is given for a clamped-clamped beam in Fig. 14.1.

The earliest known presentation of NLROM techniques is that by Nash [5], with other early work in the field put forward
by Segalman and Dorhmann [6, 7], McEwan [8], and Muravyov and Rizzi [9]. A review of work in the field was performed
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bending deformation

axial stretching

Fig. 14.1 Illustration of axial stretching effects for a clamped-clamped beam. At low deflections, deformation along the neutral axis is negligible;
as the deflection increases towards one beam thickness, the axial deformation increases nonlinearly and must be included in the analysis

by Mignolet et al. [10] in 2013. Nonlinearities are almost always represented as a series of quadratic and cubic terms in the
modal coordinates, which are usually obtained by leveraging the nonlinear analysis capabilities of commercial finite element
(FE) software. A low-order subset (usually below ten) of linear modes is selected for inclusion in the NLROM; a series of
static (FE) analyses then characterizes the nonlinear effects of membrane stretching. Forces (or deflections) are applied in
the shapes of the selected modal basis, and the resulting deflections (or forces) from the finite element analysis are used to
determine suitable coefficients for nonlinear terms in the NLROM. The technique used for this study is given by Gordon and
Hollkamp in [1] and [11], and described in further detail in Sect. 14.3.1.

While quite a few works have discussed how to compute accurate and efficient NLROMs, little has been done to
explore how these techniques can be leveraged to optimize the design of a structure. However, several works have explored
optimization of geometrically nonlinear structures. With energy harvesters as a target application, Dou and Jensen seek
to maximize the response of a nonlinear beam at resonance [12]; focusing on nonlinear tuned vibration absorbers, which
maintain robustness in the presence of base structure nonlinearity, Grappasonni describes an optimization process used to
match the characteristics of a tuned nonlinear vibration absorber to the nonlinearity of the base structure [13]. In these works
the Galerkin method was used to create simple low-order models of the structures of interest; higher fidelity finite element
models were not considered.

Structural loads during hypersonic flight regimes can be represented as broadband, random forcings. Random response
computations are a particularly attractive use of NLROMs due to the long time histories required to obtain response statistics
in a nonlinear model and the ensuing high computational costs of a full-order model. There are two key mechanisms which
may reduce (or increase) the response level of a structure relative to a linear analysis:

• As displacements increase, the structure stiffens as a result of membrane stretching. This is primarily a static effect.
• Coupling between nonlinear normal modes—discussed in Sect. 14.3.3—transfers energy from excited modes to non-

excited modes. Often, lower frequency modes will transfer energy to higher frequency modes acting to increase the
effective damping of some modes; however, this can also cause unexpected response levels at higher frequencies.

The objective of this study is to examine specifically the reduction in response which results from nonlinear modal
coupling. It is difficult to precisely decouple the effects of increased stiffness and the effects of modal energy transfer, but as
a proxy, the response of fully coupled NLROMs is compared with that predicted by uncoupled NLROMs. Using the efficient
analysis capability of these NLROMs, the structural response over a range of parameters is examined in a two-dimensional
design space, in order to better understand the topology of the stress and displacement response surfaces.

A key concept in the analysis of nonlinear structures is that of the nonlinear normal mode, a generalization of the linear
normal mode to nonlinear structures. The NNM concept in use here defines a nonlinear normal mode as a not-necessarily
synchronous periodic response of the conservative nonlinear system [14]; since the system is nonlinear, its periodic response
is a function of the amplitude of its state variables. Both the frequency of the periodic response and its shape evolve based
on the amplitude of these variables.

A common visualization for the NNM is the frequency-energy plot (FEP), which tracks the variation of the resonant
frequency as a function of energy present in the structure—see Fig. 14.5 for an example. FEP’s allow an easy understanding
of the basic characteristics of a nonlinear system and also allow ready identification of any “internal resonances” present in
the system. These resonances typically occur when a lower mode’s frequency reaches an integer multiple of a higher mode’s
frequency, and it is theorized that they may play a significant role in modal energy transfer. In much of the classical literature
(see, e.g. Nayfeh [15]) internal resonances occur only when the linear natural frequencies have certain ratios. In the NNM
framework, they may also occur as the frequency of one NNM backbone becomes a multiple of another NNM backbone. By
adjusting the ratio of linear natural frequencies, the energy level at which an internal resonance appears can be adjusted.

The framework of the paper is as follows: First, the structure and load case of interest are described, and a reference
condition is developed using linear analysis techniques. The NLROM technique in use is then described, and full-order
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simulations of the model are generated and compared to reduced-order results. Finally, a two-dimensional parameter sweep
is performed in order to visually examine the response of the structure as a function of the varied parameters. The accuracy
of fully coupled and uncoupled NLROM’s is compared, and a hypothetical optimum is chosen for the model. A discussion
of the results and their implications follows.

14.2 Example Structure and Linear Analysis

The structure of interest for this study is a clamped-clamped beam with an intermediate support. The intermediate support
is constrained vertically but left free in the horizontal and rotational coordinates; a schematic is shown in Fig. 14.2. The
location of this support can be adjusted to modify the ratios of natural frequencies in the model. These ratios determine the
location in frequency-energy space of any internal resonances in the structure. All of the simulations presented in this study
use a uniform pressure loading applied to the left half of the beam; the pressure amplitude is a broadband, random variable
with a flat power spectral density (PSD) level from 0 to 1000 Hz. The half-beam, rather than a full-beam, loading is used in
order to spatially excite as many modes of the structure as possible and to break the symmetry of the configuration.

In addition to affecting the natural frequency ratios, adjusting the support location also adjusts the bending stiffness of
the beam with respect to a given loading. As such, only beam configurations which are near the maximum-stiffness support
ratio location will be examined. This location can be determined using traditional linear structural dynamics techniques. A
“reference beam” is used for this calculation, with properties given in Table 14.1.

To obtain a structural model of the beam, a MATLAB-based beam finite element tool is used to generate mass and stiffness
matrices; the response of the structure is then calculated in the modal domain. The process is briefly demonstrated below.
The equations of motion for a linear structure with n degrees of freedom are

MRx C CPx C Kx D f (14.1)

with M, C, and K the respective mass, damping, and stiffness matrices (all size n � n), x the displacements of the structure, f
the vector of applied forces, (both size n � 1), and the overdot representing a derivative with respect to time. The structure’s
linear normal modes are obtained by performing a coordinate transformation x D ˆq in which q are “modal coordinates”
representing the response level of the normal modes which are contained in the columns of the modal matrix ˆ. The modes
themselves are found by solving the generalized eigenvalue problem for the undamped structure,

ŒK � !2r M��r D 0 (14.2)

in which each eigenvector �r corresponds to a circular natural frequency !r . The modal matrix is normalized such that it
is orthogonal with respect to the mass matrix, i.e. ˆTMˆ D I; this also requires that ˆTKˆ D ƒ where ƒ is a diagonal
matrix with ƒrr D !2r . Taking all this together, the equation of motion (14.1) becomes

Fig. 14.2 A schematic of the beam under consideration for the present study

Table 14.1 Properties of the beam used for linear support optimization

Thickness (mm) Length (mm) Width (mm) Young’s modulus (MPa) Density (Tonne=mm3)

2 250 25 71;000 2:7 � 10�9
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Rq C NC Pq C ƒq D ˆT f (14.3)

The modal damping matrix is specified using critical damping ratios for each mode such that NCrr D 2�r!r. A ratio of 0.01 %
is used throughout this work for all modes.

It is usually not practical or necessary to retain all n linear normal modes for simulation of a linear response. By
considering only a subset m of dynamically important modes, a linear reduced order model (ROM) is created. Selection
of dynamically important modes is performed by considering the frequency content of the loading; in this case, with no
excitation above 1000 Hz, the first four modes of the structure are included: For the properties given above, the lowest
possible fourth bending mode has a natural frequency of 1507 Hz.

Finally, the linear response to a random excitation is considered. The frequency-domain solution to Eq. (14.3) is

Q D Œ�!2I C i! NC C ƒ��1ˆTF (14.4)

with Q and F the frequency-domain realizations of q and f. Note that the matrix inversion is trivial due to the diagonal nature
of the equations. The frequency-domain solution to x can then be written as X D ˆQ D HF where H is the transfer function
given by

H D ˆŒ�!2I C i! NC C ƒ��1ˆT (14.5)

The frequency response X due to an arbitrary random excitation F cannot be uniquely specified. Instead, the response is
quantified using the (PSD) of X, Sxx

Sxx D XX� D HSff H� (14.6)

where the ./� operator denotes the Hermitian transpose. Integrating the PSD across the frequency axis yields the variance
of the response, and taking the square root of the variance yields the standard deviation. The objective function for the
optimization is the maximum standard deviation of the response at any location on the beam.

The values shown in Table 14.1 along with a random force with a flat PSD ceiling of 1 � 10�7 MPa2=Hz over 0–1000 Hz
were used for linear optimization. MATLAB’s fmincon routine, which finds the minimum of a multivariable function subject
to constraints on the inputs, was used to obtain an optimum support location of r D 35:43%. A plot of displacement standard
deviation against support location is shown in Fig. 14.3. The maximum response standard deviation for this support location
is 0.108 mm; for the given beam thickness of 2 mm, the beam remains in the linear response regime.

Fig. 14.3 A schematic of the beam under consideration for the present study
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14.3 Nonlinear Model Development

Development of the nonlinear model consists of three main steps: Specification of a nonlinear reduced order model,
development of a full-order “truth” solution for comparison, and validation. Each of the steps are described in turn below.

14.3.1 Nonlinear Reduced Order Models

As load levels are increased, beam deflections begin to exceed one beam thickness. At and above this level, significant
nonlinearities are evident in the response. A linear analysis will significantly overestimate both the resulting deflection and
stresses in the beam. It is possible to integrate the full-order finite element model in the FEM software to compute the
response to a random load, however, the computational costs are many orders of magnitude higher than for the frequency
domain analysis used for a linear system. The previously mentioned NLROM technique [11] can be used to reduce the
computational cost while maintaining the accuracy of a nonlinear model. A nonlinear stiffness term, fnl.x/, is added to the
linear model

MRx C CPx C Kx C fnl.x/ D f (14.7)

The structure is transformed to modal space using a subset of m modes

Rq C NC Pq C ƒq C �.q/ D ˆT f (14.8)

with �.q/ the modal counterpart to the physical stiffness nonlinearity. This behavior can be realized using a combination
of quadratic and cubic polynomials in the modal coordinates—an approach justified by use of the Green-Lagrange strain
measure as applied to beams and plates in bending [16]. The rth term in the nonlinear restoring force is written as follows:

�r.q1; q2; : : : ; qm/ D
mX

iD1

mX

jD1
Br.i; j/qiqj C

mX

iD1

mX

jD1

mX

kD1
Ar.i; j; k/qiqjqk (14.9)

The arrays Ar and Br contain quadratic and cubic stiffness coefficients of the nonlinear model; specification of these
coefficients forms the essence of the NLROM. Several approaches exist to perform this task; that used here is the Implicit
Condensation and Expansion (ICE) method [17], in which a series of static loads are applied to the full order model, each
one having the shape

f D crM�r (14.10)

with a separate scaling term cr for each mode in the basis. Were the system linear, this would cause a deformation in the rth
mode only. Due to the nonlinearity, however, the applied force excites a response in other modes of the structure. Kuether,
Brake, and Allen [18] showed that an effective rule of thumb for selecting force amplitudes cr is to scale them such that the
nonlinear static FE solution deflects 15–20 % less (more) than a purely linear static solution due to the hardening (softening)
characteristic of the nonlinearity. Combinations of up to three modal forces are applied to the full-order model, exercising
all of the nonlinear modal couplings. Then, the nonlinear response of the structure is obtained from the FE software. This
response is used to form a least squares problem in terms of the stiffness coefficients, which is solved to find the required
coefficients.

Equation (14.9) features inherent coupling between the normal modes. To isolate the effects of nonlinear stiffening from
those of nonlinear energy transfer, it is possible to approximate the nonlinear force expression �r.q/ as

�r.q1; q2; : : : ; qm/ D Brq
2
r C Arq

3
r (14.11)

This is equivalent to collecting a set of single-mode NLROMs into an uncoupled, nonlinear dynamic system. Note that the
implicit coupling between bending and membrane modes is still present; it is only the coupling between bending modes that
is lost.
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14.3.2 Full-Order Computations

Numerous techniques exist for validating NLROM’s. Since the nonlinearity appears in the static stiffness terms only, a
simple first check can be made by checking the static deflection of the beam to a given load; this allows easy comparison
with the full-order model. A more representative check involves comparing a transient response history of the full-order and
reduced-order models. A more universal (independent of loading and initial conditions) picture of the dynamics is obtained
through the use of nonlinear normal modes (NNMs) [14], which depict the frequency of the structure’s periodic motion as a
function of energy. The NNMs are independent of the loading, and yet they are tightly connected to the transient and forced
response, providing an excellent means of comparing two NLROMs. They also provide insight into the dynamics that each
ROM captures, i.e. to what extent the nonlinearity causes “stiffening” or “softening” of the linear modes [19]. A comparison
of NNM’s is performed in Sect. 14.3.3.

For steady-state random response, however, the ideal comparison is another steady-state random response. While
expensive to compute, it allows simultaneous verification of the structural model and the integration technique used, both
of which will dramatically impact the results obtained. Abaqus® finite element software was used to perform such a full-
order simulation. The model was discretized using 50 3-node quadratic Euler-Bernoulli beam elements (B32 in Abaqus
nomenclature) which include membrane stretching effects for large displacements.

Abaqus features two direct integration methods: “Abaqus/Standard” is the traditional solver, which features an implicit
Hilber-Hughes-Taylor (HHT, also “˛-method”) integrator [20]. The HHT integrator is a generalization of the Newmark
method with the capability of adjustable numerical damping. While the Newmark method allows specification of two
independent numerical parameters �n and ˇn, behavior of the HHT method is specified by a single parameter ˛n with
� 1
3

� ˛n � 0; ˛n D � 1
3

corresponds to maximum numerical damping, while ˛n D 0 corresponds to no numerical damping—
this last case is also referred to as the “average acceleration” method. The Newmark parameters �n and ˇn are related to ˛n

as �n D 1
2
.1� 2˛n/ and ˇn D 1

4
.1 � ˛n/

2.
The HHT method is unconditionally stable with a displacement error of O.�t2/ [21]. The availability of numerical

damping, which applies in addition to any physical damping present in the model, is useful in structural dynamics problems
to reduce high-frequency activity in the model that causes an automatic time-stepping routine to dramatically cut the time
step. In most cases, the high-frequency activity is simply numerical noise due to the adjustment of the time step. The default
setting in the Abaqus/Standard dynamic solver is ˛n D �0:05 for slight numerical damping. It is also possible to manually
specify a value of ˛ = 0 to eliminate numerical damping in the procedure. This results in a significantly longer integration
time, but avoids the numerical damping of higher modes.

Abaqus also features Abaqus/Explicit, an explicit dynamic solver which uses the central difference rule for integration.
Several factors make the explicit integrator attractive for high speed, nonlinear dynamics: It uses a diagonal mass matrix
which allows trivial inversion to compute accelerations, it requires no iterations for accuracy, and it does not require a tangent
stiffness matrix. The key disadvantage of the explicit method is its conditional stability, with a time step requirement of

�t � 2

!max

�p
1C �2 � �

�
(14.12)

where !max is the highest natural frequency in the model and � the damping in that mode. Whereas the implicit integration
technique is characterized by relatively large timesteps that each take a significant amount of time to compute, the explicit
technique is characterized by extremely small timesteps (often below 1 � 10�7 s for models requiring any type of stress
fidelity) which take an insignificant amount of time to compute. Explicit methods are not often applied to problems in
structural dynamics, but can be used for the problem at hand with no re-configuration of the finite element model.

It is not possible to specify modal damping parameters for general full-order problems. In Abaqus, the simplest way to
apply damping to a model is through the use of mass and stiffness-proportional damping matrices, i.e.

C D ˛M C ˇK (14.13)

The modal transformation then causes the modal damping matrix NC to become diagonal. The mass term ˛ contributes to
damping at low frequencies, while the stiffness term ˇ contributes to damping at high frequencies. For the explicit integration
routine, a non-zero ˇ can cause extremely slow integrations due to its effect on the stable time increment. As such, only ˛ is
specified for the full-order integrations. Using a value of ˛ D 19:54 provides a critical damping value of � D 1% at 330 Hz,
near the first mode of the reference beam.

A load level of 5 � 10�6 MPa2=Hz was specified over the frequency band of 0–1000 Hz, for an overall RMS of 70.7 kPa.
This was sufficient to induce nonlinear displacements in the reference beam. The structure was integrated over a 5 s period
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Fig. 14.4 Displacement at x D 44:29mm of the beam using Abaqus/Standard (implicit) and Abaqus/Explicit integration routines

Table 14.2 Simulation times and increment counts for the implicit and explicit
runs, integrated for a random load over a period of 5 s

Implicit; ˛n D �0:05 [default] Implicit; ˛n D 0 Explicit

Time 2 h, 53 min 16 h, 46 min 6 h, 38 min

Increments 80,006 274,285 179,480,825

at a minimum sample rate of 16 kHz (the actual sample rate for each run was, in general, much higher—see Table 14.2) with
three different techniques: Implicit with default settings, implicit with ˛n D 0, and explicit. Using displacement at a single
node (corresponding to x D 44:29mm, approximately midway between the left and intermediate supports), as a metric, the
three integrations are compared in Fig. 14.4.

The response spectra agree well up to roughly 2000 Hz, after which the results diverge. The plots on the right-hand side
of Fig. 14.4 show, however, that the variance differences occur in the first few modes, with the implicit solutions showing
displacement variance roughly 10 % higher than the explicit solution. The higher-frequency peaks are so low that they
contribute negligibly to the overall variance. This does not mean, however, that the high-frequency response is unimportant.
Indeed, this example shows the importance of high-frequency dynamics as a mechanism for nonlinear interactions between
the modes.

In the implicit case with numerical damping, high-frequency dynamics are suppressed, and the lower modes are apparently
unable to transfer energy to teach other by means of high-frequency axial deformations. As a result, the lower mode response
levels are overpredicted. The implicit case without numerical damping does not suppress the high-frequency dynamics, but it
also seems to obtain inaccurate results above roughly 4 kHz: the autospectrum profile resembles a flat noise spectrum rather
than the response of a structure. In contrast, the explicit solver shows well-defined dynamic behavior over the entire observed
spectrum, in addition to lower levels of response variance. For the remaining comparisons in this study, the Abaqus/Explicit
results are used as “truth” data.

These results demonstrate that care must be taken to accurately model high-frequency dynamics and obtain an
accurate response, even in a full-order model. As a consequence, the already-expensive time integration grows even more
computationally intensive. Table 14.2 describes the total integration time for each method. Simulations were performed on
four Intel i7-2600 CPU’s, each with a clock speed of 3.4 GHz; 12 GB of RAM were available and the computations were not
bottlenecked by memory restrictions.
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14.3.3 NLROM Creation and Validation

With a full-order model and its associated random response solutions obtained, NLROM validation can take place. An
NLROM including the first five modes of the structure was used for all of the following computations. In constructing the
NLROM, load levels causing a 50 % thickness displacement in each mode were sufficient to meet the nonlinear activation
criteria mentioned in Sect. 14.3.1. (At a displacement of 50 % the beam thickness, the nonlinear response was approximately
80 % of the linear response for each mode.) Both a fully-coupled NLROM (as per Eq. (14.9)) and a diagonalized NLROM
(Eq. (14.11)) are used in the validation plots below.

The NNMs of the coupled and uncoupled NLROMs were computed in order to examine any immediate differences
between the two nonlinear models. A frequency-energy plot of the comparison is shown in Fig. 14.5. The “backbone” curves
of the two models are very similar, however, there is an internal resonance visible in the NNM of the coupled NLROM,
which corresponds to an interaction between the first and fourth normal modes of the structure.

Next, the direct integration results are compared to further evaluate the NLROMs. Each model was integrated in MATLAB
using a fixed time-step HHT routine with no numerical damping. An integration sample rate of 48 kHz was necessary to
achieve convergence with the Abaqus results. (The average sampling rate that each Abaqus routine used can be inferred
from Table 14.2.) Figure 14.6 compares the NLROMs with Abaqus/Explicit results using the vertical displacement at a
single node of the beam. The coupled NLROM matches Abaqus very well; the diagonal NLROM proves to be surprisingly
accurate, although it does overpredict the response by 15 % relative to the full-order solution. Note that the result for the
linear case with this loading yields an RMS response of 0.76 mm, more than twice the nonlinear solution.

The stresses in the various models were also compared over all of the integration points in the full-order model (the stress
at these locations is available from the ROMs). In Fig. 14.7, contour plots of stress are shown as functions of position vs.
frequency. At right, the standard deviation and mean of the stress fields are compared. The largest differences in the stress
autospectra are seen in the higher frequencies; for example, near 2000 and 3000 Hz, the diagonal NLROM predicts peak
stress near the linear natural frequencies, whereas the other two models predict that these frequencies stiffen due to the large
response of the lower frequency modes. This presumably causes the peak stress, near 1000 Hz, to be too large in the diagonal
NLROM.
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Fig. 14.5 Comparison of the beam’s 1st NNM computed from a coupled 5-mode NLROM and an uncoupled NLROM
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Fig. 14.6 Displacement at x D 44:29mm of the beam using Abaqus/Explicit results, a coupled five mode NLROM, and a diagonal five mode
NLROM. Vertical dash/dot lines correspond to linear natural frequencies of modes included in the NLROM; dotted lines indicate linear natural
frequencies of modes not included in the NLROM. Top left: Log scale response PSD. Right: Cumulative response variance. Bottom left: Linear
scale response PSD zoomed to show three lowest modes

14.4 Parameter Sweep

Once the reduced order models were obtained and validated, a two-dimensional numerical parameter sweep was performed.
This technique is not generally applicable to optimization problems due to its high computational cost, but in this study it
is valuable because it provided a view of how displacement and stress varied over a wide parameter range. The modified
parameters were the uniform thickness of the beam t and the location of the support given by the ratio r, over the range
1:5mm � t � 3:5mm and 25% � r � 40%. Twenty thickness values and 18 support locations were simulated, for a total
of 360 points in the grid. Each point took roughly 2 min to compute between NLROM construction, time integration, and
stress extraction.

Figure 14.8 shows the results for the coupled NLROM. The maximum root mean square (RMS) values of stress and
displacement are shown for each configuration. With full time histories available for each response, condensation into the
RMS value is not necessarily the best choice of objective function. For example, a designer might be more interested in
the estimated lifetime of the component, and substitute the results into a fatigue-life estimation routine; one might also use
the results to estimate the likelihood of exceeding a certain threshold. (The non-Gaussian nature of the nonlinear response
complicates this task). The RMS value is used here purely for its simplicity.

First, examine the coupled contours in Fig. 14.8. At high beam thicknesses, both stress and displacement contours show
that the optimal design tends towards the support location at 34 %, which was the linear optimum. As the thickness of
the beam decreases and the response enters the nonlinear regime, the optimal location for minimum stress shifts markedly
leftward, while the optimal location for minimum displacement remains essentially unchanged. Increases in thickness seem
to lead to monotonic decreases in stress, again as would be expected for a linear optimization. The topology of the response
is, at large scales, smooth and convex, with no observable local minima. This suggests that, for nonlinear stiffening structures
in a random load environment, any number of traditional stochastic optimization techniques could be appropriate, and global
optimization techniques (e.g. a genetic algorithm, particle swarm optimization, etc.) need not be applied. Future work will
explore the applicability of common stochastic optimization techniques, such as the use of response surface methods or
stochastic finite differences.
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Fig. 14.7 Stress autospectra of the beam at all element integration points (left) and the resulting standard deviation (right) levels using
Abaqus/Explicit results, a coupled five mode NLROM, and a diagonal five mode NLROM. Vertical dash/dot lines correspond to linear natural
frequencies of modes included in the NLROM; dotted lines indicate linear natural frequencies of modes not included in the NLROM

Fig. 14.8 Stress and displacement contours for five-mode coupled NLROM. Dashed and dash/dot lines indicate RMS displacement of 0.7 mm
and RMS stress of 65 MPa
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Fig. 14.9 Stress and displacement contours of the five-mode diagonal NLROM in terms of a departure from the five mode coupled NLROM

The parameter sweep results can be used to perform a representative optimization through the use of interpolating
contours. Consider the problem of minimizing thickness with constraints on stress and displacement. Contours of level stress
and displacement can be inscribed on the t � r plane as in Fig. 14.8 for a displacement RMS of ı D 0:7mm and a stress
RMS of 
 D 65MPa, such that the minimum-thickness design which meets the constraints can be found at t D 2:33mm,
r D 34:6%.

Now consider the diagonal contours in Fig. 14.9. For ease of comparison, the results of the diagonal NLROM are
shown in terms of departure from the coupled NLROM, with positive values of stress and displacement standard deviation
corresponding to a higher prediction of the diagonal NLROM. Absolute difference, rather than percentage difference, is used
in order to mitigate further noise in the (already quite noisy) results.

Unfortunately, no clear narrative on the effect of modal energy transfer emerges from these plots. Variations in the stress
and displacement fields are too large to be caused by sampling error from the response statistics, but follow no discernible
pattern based on the configuration of the beam. As the support location is shifted leftward and the thickness lessened, the
overall stiffness of the beam is reduced and energy transfer effects become more apparent. The highest levels of energy
transfer seen in the configuration space occur at the bottom left corner of the plot. Re-simulating this configuration in
Abaqus/Explicit and in MATLAB using each NLROM leads to the displacement autospectrum plot of Fig. 14.10.

This location does not correspond to the maximum displacement point of the beam, but still provides insight into the
dynamics in play: The Abaqus/Explicit and coupled NLROM results have degenerated into a nearly flat response across
the frequency spectrum, with significant activation of modes lying outside the 1000 Hz forcing bandwidth. The uncoupled
NLROM, on the other hand, drops off in response immediately after 1000 Hz, with modes above this level behaving in
a linear manner. This is exactly the large-scale energy transfer behavior that is of interest, however, the response of the
structure at this load level is too high to be of practical use.

14.5 Conclusion

The effect of modal energy transfer normal modes was examined in the context of a flat beam structure with a variable
configuration. While generating truth data through direct integration of the full finite element model, the importance of energy
transfer was indirectly demonstrated by varying the parameters of a full-order finite element integration; different procedures
and settings yielded significantly different displacement statistics due to the suppression of high-frequency membrane effects
through numerical damping, producing response errors on the order of 10 %. Since the power transferred to a mode is a
product of the applied force and the modal velocity, it seems that if the high frequency modes are suppressed by numerical
damping, they cannot absorb as much power from the low frequency modes. As a result, the response amplitude at low
frequencies is over-predicted.
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Fig. 14.10 Displacement at x D 44:29mm of the beam using Abaqus/Explicit results, a coupled five mode NLROM, and a diagonal five mode
NLROM. Vertical dash/dot lines correspond to linear natural frequencies of modes included in the NLROM; dotted lines indicate linear natural
frequency of modes not included in the NLROM

The requirement to include such high-frequency effects also demonstrates the futility of random response and other
long-time-history prediction through full-order simulation: Not only are long time histories required, but extremely small
time increments are necessary to accurately predict nonlinear response. In this case, the explicit integration method, often
considered too expensive for structural dynamics problems, had the best combination of accuracy and efficiency relative to
the Newmark/HHT method with no numerical damping.

To obtain a quantitative understanding of the effects of modal energy transfer across multiple configurations of the beam,
two sets of nonlinear reduced order models were developed: The first featured a full set of modal coupling terms between
the modes, while the second was “diagonalized” and featured quadratic and cubic terms of single modes only. Comparing
the displacement, energy, and stress results of these two NLROMs at a single design point showed that, as expected, the
coupled NLROM closely matched full-order Abaqus results, while the diagonalized ROM overpredicted both stress and
displacement levels. Using the efficient analysis capabilities of the NLROMs, a grid of 360 design points was evaluated for
maximum stress and displacement RMS over a 7.5 s time history. This “parameter sweep,” though not an effective means of
optimization in general, provided a general overview of the topology of this type of design space, showing largely convex
behavior without the prevalence of local minima that would require a global optimization technique.

Finally, the difference in response between the coupled and diagonal NLROMs was investigated. For this structure, no
discernible pattern or preferential behavior was observable in the response contours. Examining a single solution for which
nonlinear energy transfer was a major factor did show the prevalence of modal interaction in that particular example, but was
at too high a response level to be of any practical use. The results here are inconclusive as to the feasibility of leveraging
nonlinear energy transfer within a structure to reduce the response levels. A key difficulty in attempting to maximize the
internal energy transfer within a structure is that the primary mechanism governing the transfer seems to be the ratios between
linear natural frequencies; there is no apparent method to modify these natural frequency ratios without also modifying the
stiffness of the structure with respect to a dynamic forcing. In this case, modifying the natural frequency ratios by shifting
the support also led to a reduction in overall stiffness as the support moved away from the 34 % location corresponding to
maximum bending stiffness.
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Future work on this topic will include a consideration of applicable optimization techniques for the nonlinear random
response problem and evaluation of substructuring and reduced order modeling techniques for more complex, built-up
structures. A similar investigation of energy transfer effects in curved structures, which exhibit stronger coupling between
axial and bending modes, is also of interest. A less computationally-intensive and more exact method of quantifying energy
transfer between a structure’s modes will also be examined.

Overall, the use of nonlinear analysis techniques for design optimization shows great promise in terms of achievable
weight reduction for a given set of constraints on stress and displacement. Modal interactions in nonlinear structures are still
not well understood, but it is clear from this and other studies that they play a key role in nonlinear dynamic response. Even if
it is not possible to target high energy transfer levels as a design goal, they still enable the reduction of a nonlinear response
by sending energy outward from excited modes to those out of the excitation bandwidth; a behavior which can be either
beneficial or detrimental. An understanding of these effects will be invaluable in the pursuit of efficient nonlinear structures.
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Chapter 15
Nonlinear Modal Testing Performed by Pulsed-Air Jet Excitation System

M. Piraccini, D. Di Maio, and R. Di Sante

Abstract This paper presents a novel approach for testing structural component to nonlinear vibrations. Nowadays,
nonlinear testing is mainly carried out by using electromagnetic shakers. These are efficient and powerful excitation systems
which transmit the force by a rigid stinger and can be driven by different excitation signals. The rigid connection contributes
to create mechanical impedance mismatch between the shaker and the test structure thus reducing the efficiency of the driving
force. An alternative solution to shakers is represented by use of a pulsed air jet excitation method, which drives the force
by a pulsed air-jets and therefore contactless. This condition eliminates the mechanical impedance mismatch with the test
structure and the excitation can be more efficient than the one created by shakers. The pulsed air-jet excitation system is used
to study nonlinear vibrations of composites components. These were designed to be mock-ups of fan blades the layup of
which was varied for the three types of components used in this work. Tests were carried out by performing forced response
and free decay measurements. The free decay type of test revealed interesting results and the novelty of using such an exciter
for nonlinear testing. The major novelty consists of interrupting the air flow from a steady state condition and let happen the
free decay, all these without experiencing undesired dynamics as experienced by contact excitation.

Keywords Pulsed air-jet exciter • Nonlinear vibrations • Composites

15.1 Introduction

In recent years, there has been an increasing interest in studying the behaviour of structures presenting nonlinearities [1].
This is primarily due to the increased use of new materials such as composites. For example, over 50 % of the structural
components of the Boeing 787 and Airbus 350 XWB are made of composite materials [2], which are inherently more flexible
and less damped, being therefore more prone to nonlinear behaviour. Hence, the understanding of their performance under
operating conditions, especially when extreme loads are present, has become increasingly important. Different methodologies
have been used to get a deeper insight into the dynamics of nonlinear systems [3]. This paper focuses in particular on the
nonlinear resonant method (NL-RDM) and on the experimental testing apparatus and procedure supporting this identification
method. The NL-RDM was firstly presented in 2001 [4] and refined in subsequent works [5, 6]. The method uses responses
obtained from burst or narrowband excitation of the structure at the natural frequency of the mode of interest. When the
excitation ends, the responses are allowed to decay freely. Only the concerned mode and the modes nonlinearly coupled to
it contribute to the response, allowing the nonlinear identification of the mode itself. Such an approach proves effective to
analyse structures that are linear at low vibration amplitudes, but show increasingly larger active elements of nonlinearity
at higher excitation levels. This is the case of many industrial structures. The nonlinear resonant method has been applied
experimentally to different structures. In [5] Platten et al. characterised successfully the first three modes of a clamped
panel structure, in which they had introduced a distributed nonlinearity by stretching the panel’s middle surface. In [6] the
same authors identified the first five modes of an aircraft like wing/store/pylon structure with discrete hardening stiffness
nonlinearity introduced in the pylon. In these works, electrodynamic shakers were rigidly connected to the test structures
to provide the burst excitation required by the method. More recently, Londono et al. [7] applied a modified version of the
method to a single-degree-of-freedom system represented by a base-excited mass mounted on bearings sliding with low
friction along steel shafts. The mass was also connected to two preloaded transversal springs which produced nonlinear
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stiffness. In all these cases, contact excitation provided by shakers is employed to drive each mode separately. This can be
an issue [5] since the force is not in phase with the driving voltage and tuning is affected by the severe shaker-structure
interaction. Consequently, second harmonics appear in the force signal. Furthermore, when the excitation ends, the stinger
is still attached to the structure thus possibly affecting its dynamic behaviour. In order to overcome the problems related to
the interaction between the test structure and the excitation device, in this paper a different contactless excitation method is
proposed. Compressed air is used to generate a flow which is then chopped by a spinning disc with a series of holes drilled in
it. The excitation frequency is therefore given by the number of holes and the rotation speed. After the sudden interruption of
the airflow, the responses are allowed to decay freely and without constraint to the excitation system. The paper is organised
as follows. Section 16.2 describes the pulsed-air excitation system proposed in this work. Section 16.3 reports the design and
realisation of the composite blades used in the experiments. Forced and free-decay responses obtained during the tests are
presented in Sect. 16.4 together with a description of the procedure used for signal processing.

15.2 Pulsed Air Jet Excitation System

This section will present a contactless excitation system which works by using compressed air. Figure 15.1 shows the
schematic of the excitation system. It is rather simple mechanism based on compressed air flowing into a plenum chamber
throughout an orifice. A spinning disc, designed with several holes, opens and closes the orifice thus generating air-jets. The
dynamic range of the exciter is given by the capacity of electric motor (max velocity) and by the number of holes on the disc.
The actual excitation frequency is given by the following equation:

!n D ˝

60
nDH

where, !n is the excitation frequency,˝ rotational speed of the disc and nDH the number of holes designed for the disc.
Several measurements to experimentally quantify the influence of some design parameters were carried out. For example,

the ducting (comprising of orifice, sampling hole and nozzle) or the addition of a double nozzle were presented in [8]. To
characterize the excitation force with respect of the measured pressure at the nozzle and the excitation frequency, a small
test rig was configured as shown in Fig. 15.2. The nozzle was once addressed over the pressure gauge and once over the load
cell. The test was repeated at different excitation frequencies. The results are plotted in Fig. 15.3.

The excitation system, as presented in here, has got some useful features but also some disadvantages. In fact, the pulsed
excitation generates harmonics at multiple of the fundamental one. This can determine some undesired effects like parasitic
excitation, where some vibration contents can be summed to the one excited by the fundamental tone. However, this is
expected and can be monitored accordingly.

first air jet

second air 
jet

oscillation of the specimen
a b

Fig. 15.1 (a) Mechanical scheme of pulsed air-jet system and (b) the operating principle
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Fig. 15.2 Test rig for force vs. pressure characterization

Fig. 15.3 Relationship between excitation force, pressure and excitation frequency

The goodness is in its contactless feature which can make the system very convenient when a ramp-down test is aimed.
The exciter can generate a steady-state vibration and that is sustained as long as the compressed air flows throughout the
system. A free decay can be therefore obtained by abruptly interrupting the airflow, thus letting the vibration of the component
to decay. This approach was used to characterize the nonlinear response of cantilever composite blades. The free decay is
inherently a challenging type of testing because the excitation source cannot be disconnected so easily from the test structure.
If the exciter, such as a shaker, is left connected then its dynamics can influence the results. This is more plausible when high
amplitude levels are aimed for.

15.3 Design and Manufacturing of the Composite Blades

In this section an outline of the considerations, analyses, constraints, and decisions made about how to design the
composite blades object of this work is presented. Manual envelope bagging technique is explained as applied to the actual
manufacturing of the components. Difficulties encountered in manufacturing the blades are explained and the methods used
to solve them are detailed.

15.3.1 Design Considerations

The objective was to excite geometrically nonlinear vibration and so one side of the blade was thought to be straight, whereas
the other one was designed so as to create an angle of 90ıC “ between the edge and the base. Different twisting angles ™,
thicknesses s, and blade length L were examined in finite element analyses. The following values of the aforementioned
parameters were all modelled, see Table 15.1.
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Table 15.1 Design parameters Parameters Value-1 Value-2 Value-3

Trapezoidal angle (“) 5ı 10ı 15ı

Twisting angle (™) 10ı 20ı –
Thickness (s) 2 mm 3 mm –
Length (L) 100 mm 300 mm 500 mm

Fig. 15.4 Definitive dimensions
for the composite blade
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The mode shapes of interest in the analyses were the 1st flexural, the 1st torsional, and the 2nd flexural. From finite element
analyses it was possible to notice that a blade long 100 mm would be too stiff and have too high natural frequencies as the
frequency range of interest was up to 400–500 Hz because of the difficulties to properly excite the vibration and measure it
with higher natural frequencies. Moreover some combinations of parameters led to natural frequencies that were too close
one another; it would be then difficult to analyse the dynamics of such a structure as it would not be allowed to use the 1DOF
approximation. Since it was subsequently known the composite roll was 300 mm in width it was evident that a blade long
500 mm would not optimise the nesting during the cutting of the composite plies. A flat area long 54 mm was thought to be
adequate to properly clamp the blade during vibration tests. The length of 280 mm optimised the cutting process by reducing
the waste during cutting. Thus, either to reduce the composite waste or to have natural frequencies of the first three mode
shapes in the range of interest, the possible length had to be close to 300 mm. A 10ı-twisting-angle was deemed too small to
be practically realised and the 20ı value for the twisting angle was chosen. The trapezoidal angle was chosen to be 5ı as it
seemed to lead to better mode shapes. Since the blade had to contain 4 ply drops, with a consequently change in thickness of
0.5 mm (being each ply 0.125-thick), a 3 mm-thickness was more adequate to experience such a change; moreover the flat
rectangular specimens with ply drops previously tested during another research project were 3 mm-thick and the thickness
change created no problems so that it was thought to be expedient to use such a previous validation. Final choices for the
parameters of the blade can be seen in Fig. 15.4.

Three different layups were made so as to test the different dynamics with varying fibre directions. Since subsequent
fatigue tests would be carried out by exciting the specimens at the 2nd flexural mode, the ply drops were not located on
the surface of the blade as the bending normal stress is maximum in that area, but two full plies were allowed to be present
in the zone of maximum stress. Since each ply has an after-cured-thickness of 0.125 mm, 24 plies were used for the three
specimens. The chosen stacking sequences were symmetric across their mid-plane in order to exhibit no coupling between
bending and extensional responses; one important practical implication is that such laminates do not have a tendency to bend
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or twist from the inevitable thermally induced contractions that occur during cooling following the curing process. The fibre
orientations were unidirectional 0ı, cross-ply [0/90]s and balanced angle-ply [C45/�45]s. Cross-ply laminates exhibit no
coupling either between shear and extensional response and between bending and twisting response. A symmetric angle-ply
laminates does not have shear-extensional coupling effects.

After making the first blade a problem became evident; the area designed to be flat so as to be properly clamped during
vibration tests was not sufficiently flat. In fact, the bottom surface, which was in contact with the mould, appeared completely
flat whereas the top surface experienced a slight curvature that impeded a correct clamp of the blade. Thus, the first blade
manufactured was not deemed adequate to be experimentally tested. In a second attempt the aforementioned problem was
solved by means of a top plate that was cut and applied on the composite during the curing cycle in order for the blade to
have both surfaces under compression. In this way, a uniform pressure could be exerted on the root of the blade during the
autoclave cycle and both bottom and top surfaces were perfectly flat.

15.4 Experimental Work

In order to carry out forced response analyses it was decided to use only contactless methods for both the excitation and the
measurement systems. The test rig was made as shown in Fig. 15.5 where the exciter is positioned at the top left corner of the
specimen. This way all 3 modes could be excited. As can be seen from Fig. 15.5, the blade was clamped to a specific base
designed in order to provide very accurate clamp, hence reducing the possibilities of the presence of contact nonlinearities
and energy dissipation in the clamp. A guillotine was placed in front of the airflow in order to cut the air in following
decay analyses. A nozzle was used to bring the flow as close as possible to the excitation point so as to create as much a
homogeneous fluid dynamics as possible. The vibration velocity was measured by means of a Polytec PSV400 Laser Doppler
Vibrometer with sensitivity of 2 m/s/V in the single-point mode of use.

The scanning head was set outside the anechoic chamber containing the blade and exciter. Since detection of
superharmonics in nonlinear vibration was one of the goals of the subsequent decay analyses, a low pass filter was set
at a high frequency (20 kHz) to allow the investigation of a wide range of frequency content in the signal.

Fig. 15.5 Text fixture, blade and
exciter’s nozzle
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In order to increase the reflection from the surface of the blade, reflective tape was used at the point of measurement. The
forced response was acquired by using a LabVIEW programme and the frequency of excitation was set by using a control
panel for regulating the speed of the electric motor of the exciter. By regulating the airflow by means of opening or closing
the flow control valve of the chopped air machine, different excitation intensities were adopted in order to characterise
the behaviour of the 1st flexural, 1st torsional, and 2nd flexural mode shapes of the three different layups at increasing
displacements. After localising the resonant frequencies, tests were carried out on each of the first three mode shapes by
exciting each blade in a frequency range around its natural frequencies and repeating the tests at different levels of excitation
(i.e. different airflow intensities).

15.4.1 Experimental Results

The following graphs summarise the global measured forced responses and give the natural frequency change with regard to
the measured amplitude of the displacement.

15.4.1.1 Unidirectional: 1st Flexural Mode

The 1st flexural vibration of the unidirectional 0ı-angled blade has been studied by means of exciting the component around
its linear natural frequency (74 Hz) with six increasing airflow intensities. From forced responses (Fig. 15.6a) it can be seen
that even with the lowest excitation intensities the amplitude of the vibration of the unidirectional blade at the first mode
shape was extremely high. The behaviour of the blade vibrating with the 1st flexural mode shape is evidently linear as there
is no significant frequency variation with varying amplitude even if the displacement becomes very large as can be seen from
backbone curve in Fig. 15.6b.

15.4.1.2 Unidirectional: 1st Torsional Mode

The vibration of the 1st torsional mode of the 0ı blade is extremely singular and markedly nonlinear. Nine increasing airflow
intensities were investigated so as to be able to fully characterise such a varying behaviour. From Fig. 15.7a it can be seen that
jump phenomena start to appear when the peak of the vibration approaches the value of the thickness of the blade (i.e. 3 mm)
and the vibration abruptly changes its intensity. This is coherent with the known consideration that significant nonlinearities

Fig. 15.6 First bending mode. (a) Forced responses of the unidirectional blade during vibration at its first flexural mode with six increasing
intensities of airflow (labelled “int”). (b) Backbone curve of the unidirectional blade undergoing linear vibration at its first flexural mode with six
increasing loading intensities
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Fig. 15.7 First torsional mode. (a) Forced responses of the unidirectional blade during vibration at its first torsional mode with nine increasing
intensities of airflow. (b) Backbone curve of the unidirectional blade undergoing nonlinear vibration at its first torsional mode with nine increasing
loading intensities

Fig. 15.8 Second bending mode. (a) Forced responses of the unidirectional blade during vibration at its second flexural mode with seven increasing
intensities of airflow. (b) Backbone curve of the unidirectional blade undergoing nonlinear vibration at its second flexural mode with seven
increasing loading intensities

most often appear when displacement is comparable to the thickness. From Fig. 15.7b, which represents the backbone curve
of the vibration, it can be noted that vibration changes its behaviour as displacement approaches 1.5 mm from a hardening
nonlinear type of vibration to a softening nonlinearity underlining a change in the laminate stiffness.

15.4.1.3 Unidirectional: 2nd Flexural Mode

Differently from the first flexural mode the 2nd flexural mode exhibits a strong hardening behaviour; in Fig. 15.8a jump
phenomena are also evident starting at around 1.5 mm. Backbone curve in Fig. 15.8b shows natural frequency increasing
with increasing vibration amplitude.

15.4.2 Free Decay Procedure and Signal Processing

The following experimental procedure was used in order to characterise the behaviour of free decay responses. By using
the same experimental equipment as those used for the forced response tests, the airflow was cut by using a guillotine and
the vibration was acquired via LDV system during free decay. The so-acquired velocity signal was integrated to give the
displacement and then analysed by using a spectrogram, also called sliding Discrete Fourier Transform, meaning that the
frequency content was derived by using Fast Fourier Transform algorithm applied to a sliding window over time. Thus, it is
possible to visualise either the frequency content and how different frequencies appear and disappear in the signal during the
decay. Discrete Fourier Transform over the entire decay time was also applied to have an idea of how strong each frequency
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Fig. 15.9 Acquisition of the velocity decay from Laser Doppler Vibrometer
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Fig. 15.10 Sliding DFT computation with Hamming windowing

component in the signal was. After isolating the fundamental frequency of vibration by means of a second-order band-pass
filter to adopt a one-degree-of-freedom model, the logarithmic decrement of the decay was computed and the damping ratio
associated with the excited mode shape was analysed as a function of amplitude for those modes which had a viscous-like
damping. The entire procedure was made up of the following steps and repeated at different levels of excitation.

Acquiring the decay signal of the velocity from Polytec LDV system as shown in Fig. 15.9.
Integration of the velocity in order to obtain the displacement signal. Computing the spectrogram (i.e. sliding Discrete

Fourier Transform with Hamming windowing) of the signal to visualise the frequency content present during the decay, see
Fig. 15.10. Computing DFT over the entire signal to visualise the strength of each frequency component in the signal, see
Fig. 15.11.

Applying a band-pass filter to isolate the fundamental frequency associated with the externally excited mode shape, see
Fig. 15.12.

Dividing the filtered signal in its positive and negative branches and envelope detection by means of peak recognition, see
Fig. 15.13.

Computation of the logarithmic decrement and subsequently the damping ratio as shown in Fig. 15.14.
The proposed procedure was applied to different excitation levels. The following section will present some results obtained

by using this procedure.
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Fig. 15.11 Computation of the Discrete Fourier Transform of the acquired signal to visualise how strong frequency component are
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Fig. 15.12 Application of band-pass filter to isolate the fundamental resonant frequency associated with the excited mode

15.4.3 Free Decay Experimental Results

15.4.3.1 Unidirectional: 1st Flexural Mode

Figures 15.15, 15.16 and 15.17 show the time decay signal for three different excitation forces. The 1st flexural mode
associated with the unidirectional blade is confirmed to be strongly linear as no superharmonics appear in the frequency
spectrum (Fig. 15.18) and damping phenomenon is uniquely viscous-like damping (i.e. exponential decay). The logarithmic
decrement and subsequent damping ratio underline a tendency to an increase in the damping values with increasing amplitude
level (Fig. 15.19).



164 M. Piraccini et al.

Fig. 15.13 The signal is divided in its positive and negative part in order to compute both the decay rates by means of peaks detection
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Fig. 15.17 Displacement decay of the unidirectional blade vibrating at first flexural mode. Decay intensity 3

15.4.3.2 Unidirectional: 1st Torsional Mode

The first torsional mode associated with the unidirectional blade is confirmed to be strongly nonlinear by the presence of at
least four superharmonics in the decay signal at the highest intensity, as shown in Fig. 15.20. The intense presence of the
frequency associated with the first flexural mode in the frequency spectrum of the signal (Fig. 15.21) may indicate a 1:4
internal resonance phenomenon between the torsional (305 Hz) and flexural (74 Hz) modes in which energy is transferred
by means of a nonlinear coupling from external resonance of the torsional motion to internal resonance of the flexural
motion. From Fig. 15.22 it can be seen that as the time elapses and vibration amplitude is successively damped out causing
the displacement to decrease over time, only the first flexural resonance appears. This indicates that even if the forcing
frequency from which the decay starts was set at the torsional resonance, at small displacements energy is transferred to
lower mode shapes.
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Fig. 15.22 Sliding frequency spectrum over time clearly shows vibration damps out the superharmonics during the decay as time elapses and
vibration amplitude decrease. Decay intensity 4

15.4.3.3 Unidirectional: 2nd Flexural Mode

The 2nd flexural mode of the 0ı blade is confirmed highly nonlinear by the presence of four superharmonics in the signal
at the highest excitation intensities (Figs. 15.23 and 15.24). Interestingly, the damping phenomenon changes from viscous
damping at small amplitude vibration (Fig. 15.25) to Coulomb-like damping at high displacement (Fig. 15.26) introducing
further nonlinear behaviour.

15.5 Conclusions

The pulsed air-jet excitation system is used in this work for inducing high vibration amplitudes of composites components.
Despite this system was designed for High Cycle Fatigue testing thanks to its contactless feature, it was understood that
such a feature could be well exploited for nonlinear testing. The major advantage is to allow steady state conditions at
any excitation frequency and from which a free decay can be initiated. The same system can be also used for forced
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Fig. 15.24 Sliding frequency spectrum over time clearly shows vibration damps out the four superharmonics during the decay as time elapses and
vibration amplitude decreases. A wide frequency range is present in the signal indicating extremely strong nonlinear behaviour. Decay intensity 4

response testing. Some staggered composite blades were manufactured and tested in both free-free decay and forced response
measurements. The bladed were manufactured by creating three different layups and results of experiments were presented
in here. Few drawbacks can be pinpointed and these are the excitation type which is pulsed and not harmonic. This can
determine additional excitation components to the fundamental one. The other pitfalls could be seen in the air-jet which is
only push and therefore this system would not be suitable for testing under free-free conditions. Nevertheless, the authors
believe that the dynamic community should be informed of such an excitation so as to encourage further developments.
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Chapter 16
EMA-FEA Correlation and Updating for Nonlinear Behaviour
of an Automotive Heat-Shield

Elvio Bonisoli, Marco Brino, and Giuseppe Credo

Abstract This paper focuses on the correlation between Experimental Modal Analysis (EMA) and Finite Element Analysis
(FEA) of an automotive component where different parameters can affect the simplicity of a linear approach.

The component is a heat-shield that covers the catalytic converter through rigid brackets and fasteners. Thermal refractory,
viscous and vibration absorber material is interposed between two steel sheet layers. This filler material and the wafer-like
structure of the shield are thought of being the main cause of nonlinear behaviour. Shaker tests with force-controlled sine
sweep excitation are performed for obtaining linearised data on different force levels for the updating step on the model. In
particular the system presents complex bending dynamics of the shield coupled to the entire structure. Due to the constraints
and the added masses of instruments to measure it, veering phenomena are evinced.

A One Factor At Time (OFAT) study on the numerical model is performed for tuning unknown parameters and build an
effective and reliable model that could fit the experimental results. Several modelling techniques for the filler are considered
to investigate its effect on the dynamic response and the sensitivity to the factors involved. Modal Assurance Criterion (MAC)
and frequency comparisons are used for evaluating the discrepancies between model and experiment.

Keywords Heat-shield • Updating • Nonlinear system • Experimental modal analysis • Finite element model

16.1 Introduction

Numerical simulations of components and systems are now a common use in automotive fields and very often they are a
powerful tool for improving the design phase.

Experimental Modal Analysis and other tests [1] are used to validate the numerical models and to check the actual
operating conditions.

In most of the cases a Model Updating [2] is necessary, because the wide range of values related to standard table-based
material properties (in particular Young’s modulus and density, which are necessary in modal analysis) do not represent well
the actual properties of the material used during the production process, with the possibility of tuning the model and fitting
it to the experimental results obtained.

The comparison of EMA-FEA is not only performed with a frequency-based fit, but the modeshape is very important in
the correlation, thus the Modal Assurance Criterion (MAC) [3] is now one of the most used standard for this purpose, other
than the method used in this work, with all its interpretations and applications presented in [4].

Another use of MAC is for comparing two experimental models or two numerical models for following mode paths on
structures with modifications, in particular when studying crossing and veering phenomena, firstly investigated by Leissa in
[5] and then analysed on component-to-system behaviour in [6].

In this work the investigated component is a heat-shield that is connected to the catalytic converter in order to protect
neighbour components from its heat during operative conditions.
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The shield is composed of three layers:

• steel upper sheet;
• refractory and sound-absorbent material filler;
• steel lower sheet.

The overall thickness is practically constant for the entire surface, although the refractory material is not present along
the external boundaries, due to the folding process on one of the two metal sheets.

16.2 Experimental Setup

The heat-shield test has been performed considering the component assembled to its neighbour components, the catalytic
converter in particular, with free-free boundary conditions applied and simulated through low stiffness elastic springs and
considering sine sweep shaker excitation with force-controlled input, in order to reduce the nonlinear contribution and
consider a linearisation about a certain force load and being able to perform correlation with numerical linear models.

The actual assembled structure and its test setup are shown in Figs. 16.1 and 16.2.
For the acceleration acquisition two possible accelerometers were available:

• triaxial accelerometer, 14g of weight;
• monoaxial accelerometer, 2g of weight.

The triaxial accelerometer allows the acquisition of more information on the three orthogonal directions, but its mass
contribution to the structure might change too much the dynamic behaviour, while the monoaxial is much lighter but it only
allows the acquisition along the normal direction of the shield surface.

For the choices a parametric analysis on a numerical FE model have been performed, for evaluating the frequencies and
modeshapes contribution of increasing added mass on the structure. Figure 16.3 shows the dependency of the resonant
frequencies with respect to the accelerometers mass, while Fig. 16.4 demonstrates that effect on the modeshapes. The
modeshapes are compared using Modal Assurance Criterion (MAC) index, defined in Eq. (16.1)

MACi;j D
�
ˆT

i ˆj
�2

�
ˆT

i ˆi
� �
ˆT

j ˆj

� D cos2˛i;j (16.1)

where ˚ i, ˚ j are the eigenvectors of mode i, and j respectively.
On both frequency and modeshape contribution, the 14g case shows significant influence. In particular, the frequencies not

only vary in absolute value, with non-constant trend, but crossing/veering and modes switch occur. Moreover, the MAC plot
for modeshapes shows mode mixing, typical of mode veering behaviour, bringing to the conclusion that the mass contribution
of the accelerometers is significant and the 2g sensor must be chosen. Thus, only normal vibration for each acquisition point
will be taken into account.

Fig. 16.1 Constrained heat-shield
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Fig. 16.2 Test setup with springs and shaker
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Fig. 16.3 Dependency of natural frequencies with respect to accelerometers mass

The experimental points considered are shown in Fig. 16.5, and thay are arranged in order to cover the most relevant
points of the structure, based on the requests of the company.

The system has been excited with sine sweep force-controlled load, in the 250–640 Hz range with a speed of 2 Hz/s. For
confirming the nonlinear behaviour of the system, a check on the acceleration variability with respect to the load level has
been performed, and the result is shown in Fig. 16.6.
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Fig. 16.5 Position of the experimental points acquired

The three curves are at different levels, because of the different excitation, and the peaks occur at different frequencies, in
particular they tend to lower frequencies with increasing load. This is a classic softening behaviour in thin shells [7].

Full EMA has been performed on 0.5 N and 1.0 N levels (0.25 N has not been taken into account because of poor
acquisition quality due to too low response of the structure to the excitation), and the results are shown in Fig. 16.7.

The acquisition quality was better on the 1.0 N case, and thus it is the configuration considered as a reference for the
correlation with the numerical FE model.

16.3 Numerical Model

A Finite Element model (named Model 0) was used as a starting model for performing numerical analyses that could fit the
experimental test.

The model included all the components of the experimental structure, as shown in Fig. 16.8, but in all the subsequent
figures only the heat-shield component is visualised.

Some improvements have been carried out on this model before running the modal analysis and comparing the results
with EMA. First, a minimum distance search among the nodes allowed the choice of the nearest nodes with respect to the
actual experimental points, and they were renumbered for quick check. Then, local reference frames have been added in
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Fig. 16.6 Acceleration acquisition at different excitation levels
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Fig. 16.7 Identified frequency comparison between 0.5 N and 1.0 N input force levels

correspondence of those nodes in order of imposing the z-direction collinear with the normal of the surface at the nodes, and
thus collinear with the impact/accelerometer acquisition axis and direction. This improvement allows one-to-one comparison
of eigenvectors with the experimental results.

The mass simulators used for maintaining constant mass during roving accelerometer test have been modelled as non
structural masses (CONM2) and linked to the external surface of the shield with RBE3 elements. The RBE3 have been
chosen with respect to the RBE2 for avoiding stiffening contribution on the shield element involved in the link. This improved
model is named Model 1.

Figure 16.9 shows the visual comparison of the two models, with a detail of the described features of Model 1 in Fig. 16.10.
The modal results of this model have been compared with the experiments using a frequency comparison and a MAC

index for the correlation of numerical and experimental modeshapes.
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Fig. 16.8 Full FEM model of the constrained heat-shield

Fig. 16.9 Model comparison between Model 0 and Model 1

Fig. 16.10 Detail of Model 1
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Fig. 16.11 Comparison of natural frequencies (left) and MAC (right) between Test and Model 1

Table 16.1 Description of
model OFAT evolutions

Model ID Characteristics

2 Larger load cell RBE3 spider
3 Solid viscous filler
4 Solid viscous filler, no external border
5 Solid viscous filler, steel external border

Figure 16.11 shows the comparison results, where large difference between the experimental and numerical resonant
frequencies (in particular, numerical modes are lower) and, moreover, the modeshapes are not in general well correlated,
except some modes which are not in the same mode order.

The possible weaknesses of this model are in the differences with respect to reality, and in particular the viscous filler
which in not modelled (there are only two independent shells connected one another at the boundaries with RBE2 elements),
the influence area of the load cell (much wider). Those improvements can be applied on the model for getting more reliable
solution.

16.4 OFAT on FE Model and Validation

In order of being able to evaluate the possible improvements from the model modifications suggested in the previous section,
a One Factor At Time (OFAT) sensitivity analysis have been performed. This strategy allows a direct evaluation of the effect
of the modifications applied. Several models have been built and their characteristics are summarised in Table 16.1.

16.4.1 Model 2

The first improvement factor to be analysed is the effect of the actual area of influence of the load cell. A better solution is to
take into account a larger RBE3 spider, in order to involve more elements in the connection and simulate the actual width of
the sensor, as shown in Fig. 16.12.

The results of this model are shown in Fig. 16.13.
The improvement is verified on both frequency side, with numerical results closer to the experimental ones, and mode-

shape side, with correlation MAC values that are now arranged showing a weak diagonal. The single values might seem in
general lower, but the improvement is verified.
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Fig. 16.12 Detail of load cell connection in Model 1 (left) and Model 2 (right)
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Fig. 16.13 Comparison of natural frequencies (left) and MAC (right) between Test and Model 2

16.4.2 Model 3

The missing of the actual modelling of the viscous filler, considered not involved in the undamped dynamic behaviour, due
to its very low elastic contribution, is considered another possible cause of the lack of correlation of Model 1.

Thus, a layer of solid elements has been added to the model, generating a direct connection between the two steel layers,
modelled as shells. A material has been associated to that set of solid elements, using the total mass of the shield as a reference
to compute a bulk density to be associated to the viscous filler. The elasticity modulus has been empirically chosen and might
be one of the possible updating parameters. In addition, the RBE2 set of elements that connects the two sheet layers together
is replaced with QUAD4 elements that are considered more physically consistent. A visual effect of the modification on the
model is shown in Fig. 16.14.

Analysing the results in Fig. 16.15, the numerical frequencies are closer to the experimental, while the mode-shapes do
not improve significantly with respect to Model 1.

16.4.3 Model 4

Taking into account the actual shield and the manufacturing step of superimposition of the sheet metals at the border, close
to the external zone the viscous filler is not present.
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Fig. 16.14 Detail with broken-out section, with solid elements for the viscous filler
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Fig. 16.15 Comparison of natural frequencies (left) and MAC (right) between Test and Model 3

Fig. 16.16 Detail with broken-out section, with solid elements without external border

One possibility to model this detail is to remove layers of solid elements at the external borders, as shown in Fig. 16.16.
The external transversal shells are kept, as in the case of Model 3.
The results for Model 4, are shown in Fig. 16.17.
Considering the frequencies, there is no significant improvement, in particular with respect to Model 3, and for some

modes the frequencies are lower. Considering the modeshapes, the results are the same as Model 4.
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Fig. 16.17 Comparison of natural frequencies (left) and MAC (right) between Test and Model 4

Fig. 16.18 Detail with broken-out section, with solid elements with steel external border

16.4.4 Model 5

The lack of improvements of Model 4, in particular considering the lower frequencies, helped to check the possibility that
the stiffness contribution of the two superimposed layers of sheet metal at the component borders were higher than expected.
Thus the choice for another model, Model 5, has been to substitute the first row of solid elements of the filler of Model 3,
with steel material properties. The visual modification can be checked in Fig. 16.18.

The results for Model 5 are shown in Fig. 16.19.
Looking at the frequency bar chart, the impression is that there is an improvement, because the numerical frequencies are

closer to the experimental ones, but the MAC plot shows that the eigenvectors poorly match and, even though the frequencies
are increased, the modeshapes are further with respect to the previous cases.

16.5 Final Model Updating and FRF Validation

The OFAT analysis has shown which parameter brings to an improvement and that a combination of Model 2 with Model 3,
leading to Model 6, could give an increased improvement with respect to the two contributions separately.

The results of this combined model are shown in Fig. 16.20.
The improvements are significant in both frequency (the numerical frequencies are now very close to the experimental)

and MAC (the diagonal trend is clearer and the single correlation values are increased) charts, validating this model with
respect to the previous, and considering it as a master model for preforming updating operations.

For deep model updating the resonant frequencies discrepancies and the modeshapes correlation are not the only
evaluation characteristics, but also FRF superimposition of experimental and numerical is taken into account. The numerical
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Fig. 16.19 Comparison of natural frequencies (left) and MAC (right) between Test and Model 5
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Fig. 16.20 Comparison of natural frequencies (left) and MAC (right) between Test and Model 6

FRF are computed with modal superposition, using the modal basis computed and assuming modal damping ratios, and with
direct integration of frequency response assuming viscous damping to the material properties. The comparison of some FRF
is shown in Fig. 16.21.

The offset between the two numeric techniques confirms that the modal superposition method is enough and reliable,
assuming constant modal damping ratio as � D �

2
for first approximation, which is much faster than a direct numeric

solution, which could take hours to compute.
While some FRF reasonably fit, with frequency difference but with consistent general trend, some functions do not fit

well the same. Model 6 is a very good model to start with, performing updating methods for a closer general fit.

16.6 Conclusions

In this paper the study of nonlinear dynamic behaviour of an automotive heat-shield was carried out, starting from
experimental tests with modal analysis, using shaker testing on different excitation levels, and then building a numerical
model on which several OFAT analysis were performed in order to find the right modelling choices for the best experimental-
numerical correlation.
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Fig. 16.21 FRFs comparisons of output points #106z, #107z, #108z, #113z, #120z, #123z considering raw experimental data, identified data from
test, numeric obtained through modal superposition and numeric directly obtained

The above mentioned Model 6 (which presents, starting from Model 1 and its accelerometers mass modelling, a wider
RBE3 spider for the load cell connection and solid filler material mesh between the two metallic shells, with external borders
of filler removed) is found being the best compromise and with the best correlation with respect to the experiments, even
though some critical points still remain.

A one-to-one EMA-FEA correlation regarding both natural frequencies and mode-shapes is still hard to detect, and a
deeper study and optimisation of the filler material properties is one of the further investigation paths, together with possible
improvements on the experimental side, such as a test on operating conditions or using the full constrained system attached
to a large shaker (then with excitation loads on the connections, as in the operating conditions), with operative loads (thus
with operative load level with its non-linear effect).
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Chapter 17
Tutorial on Nonlinear System Identification

G. Kerschen

Abstract Because nonlinearity is now a frequent occurrence in real-life applications, the practitioner should understand
the resulting dynamical phenomena and account for them in the design process. This tutorial focuses on nonlinear system
identification, which extracts relevant information about nonlinearity directly from experimental measurements. Specifically,
the identification process is a progression through three steps, namely detection, characterization and parameter estimation.
The tutorial presents these steps in detail and illustrates them using real aerospace structures.

Keywords Nonlinear vibrations • System identification • Detection • Characterization • Parameter estimation

17.1 Introduction

Mathematical modeling refers to the use of mathematical language to simulate the behavior of a ‘real world’ (practical)
system. Its role is to provide a better understanding and characterization of the system. Theory is useful for drawing general
conclusions from simple models, and computers are useful for drawing specific conclusions from complicated models. In
the theory of mechanical vibrations, mathematical models—termed structural models—are helpful for the analysis of the
dynamic behavior of the structure being modeled.

The demand for enhanced and reliable performance of vibrating structures in terms of weight, comfort, safety, noise
and durability is ever increasing while, at the same time, there is a demand for shorter design cycles, longer operating life,
minimization of inspection and repair needs, and reduced costs. With the advent of powerful computers, it has become
less expensive both in terms of cost and time to perform numerical simulations, than to run a sophisticated experiment.
The consequence has been a considerable shift toward computer-aided design and numerical experiments, where structural
models are employed to simulate experiments, and to perform accurate and reliable predictions of the structure’s future
behavior.

Even if we are entering the age of virtual prototyping [1], experimental testing and system identification still play a key
role because they help the structural dynamicist to reconcile numerical predictions with experimental investigations. The
term ‘system identification’ is sometimes used in a broader context in the technical literature and may also refer to the
extraction of information about the structural behavior directly from experimental data, i.e., without necessarily requesting
a model (e.g., identification of the number of active modes or the presence of natural frequencies within a certain frequency
range). In this tutorial, system identification refers to the development (or the improvement) of structural models from input
and output measurements performed on the real structure using vibration sensing devices.

Linear system identification is a discipline that has evolved considerably during the last 30 years [2, 3]. Modal parameter
estimation—termed modal analysis—is indubitably the most popular approach to performing linear system identification in
structural dynamics. The model of the system is known to be in the form of modal parameters, namely the natural frequencies,
mode shapes and damping ratios. The popularity of modal analysis stems from its great generality; modal parameters can
describe the behavior of a system for any input type and any range of the input. Numerous approaches have been developed
for this purpose: Ibrahim time domain method [4], eigensystem realization algorithm [5], stochastic subspace identification
method [6], polyreference least-squares complex frequency domain method [7] to name a few. It is, however, important
to note that modal identification of highly damped structures or complex industrial structures with high modal density and
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large modal overlap are now within reach. Unification of the theoretical development of modal identification algorithms was
attempted in [8, 9], which is another sign of the maturity of this research field.

The focus in this tutorial is on structural system identification in the presence of nonlinearity. Nonlinearity is generic in
Nature, and linear behavior is an exception. In structural dynamics, typical sources of nonlinearities are:

– Geometric nonlinearity results when a structure undergoes large displacements and arises from the potential energy. An
illustration is the simple pendulum, the equation of motion of which is R� C !20 sin � D 0; the nonlinear term !20 sin �
represents geometric nonlinearity, since it models large angular motions. Large deformations of flexible elastic continua
such as beams, plates and shells are also responsible for geometric nonlinearities [see, e.g., [10, 11].

– Inertia nonlinearity derives from nonlinear terms containing velocities and/or accelerations in the equations of motion,
and takes its source in the kinetic energy of the system (e.g., convective acceleration terms in a continuum and Coriolis
accelerations in motions of bodies moving relative to rotating frames).

– A nonlinear material behavior may be observed when the constitutive law relating stresses and strains is nonlinear. This
is often the case in foams [12–14] and in resilient mounting systems such as rubber isolators [15].

– Damping dissipation is essentially a nonlinear and still not fully modeled and understood phenomenon. The modal
damping assumption is not necessarily the most appropriate representation of the physical reality, and its widespread
use is to be attributed to its mathematical convenience. Dry friction effects (bodies in contact, sliding with respect to
each other) and hysteretic damping are examples of nonlinear damping, see, e.g., [16–19]. It is important to note that
dry friction affects the dynamics especially for small-amplitude motion, which is contrary to what might be expected by
conventional wisdom.

– Nonlinearity may also result due to boundary conditions (for example, free surfaces in fluids, vibro-impacts due to loose
joints or contacts with rigid constraints, clearances, imperfectly bonded elastic bodies), or certain external nonlinear
body forces (e.g., magnetoelastic, electrodynamic or hydrodynamic forces). Clearance and vibro-impact nonlinearity
possesses nonsmooth force-deflection characteristic and generally requires a special treatment compared with other types
of nonlinearities [20].

Many practical examples of nonlinear dynamic behavior have been reported in the engineering literature. In the automotive
industry, brake squeal which is a self-excited vibration of the brake rotor related to the friction variation between the pads
and the rotor is an irritating but non-life-threatening example of an undesirable effect of nonlinearity [21]. Many automobiles
have viscoelastic engine mounts which show marked nonlinear behavior: dependence on amplitude, frequency and preload.
In an aircraft, besides nonlinear fluid-structure interaction, typical nonlinearities include backlash and friction in control
surfaces and joints, hardening nonlinearities in the engine-to-pylon connection, and saturation effects in hydraulic actuators.
In [22], a commercial airplane is described in which the propellers induced a subharmonic vibration of order 1=2 in the
wings which produced a subharmonic of order 1=4 in the rudder. The oscillations were so violent that the effects on the
airplane were catastrophic [23]. In mechatronic systems, sources of nonlinearities are friction in bearings and guideways, as
well as backlash and clearances in robot joints. In civil engineering, many demountable structures such as grandstands at
concerts and sporting events are prone to substantial structural nonlinearity as a result of looseness of joints. This creates both
clearances and friction and may invalidate any linear model-based simulations of the behavior created by crowd movement.
Nonlinearity may also arise in a damaged structure: fatigue cracks, rivets and bolts that subsequently open and close under
dynamic loading or internal parts impacting upon each other.

With continual interest to expand the performance envelope of structures at ever increasing speeds, there is the need
for designing lighter, more flexible, and consequently, more nonlinear structural elements. It follows that the demand to
utilize nonlinear (or even strongly nonlinear) structural components is increasingly present in engineering applications. It
is, therefore, rather paradoxical to observe that very often linear behavior is taken for granted in structural dynamics. Why
is it so? It should be recognized that at sufficiently small-amplitude motions, linear theory may be accurate for modeling,
although it is not always the case (e.g., dry friction). However, the main reason is that nonlinear dynamical systems theory is
far less established than its linear counterpart. Indeed, the basic principles that apply to a linear system and that form the basis
of modal analysis are no longer valid in the presence of nonlinearity. In addition, even weak nonlinear systems can exhibit
extremely interesting and complex phenomena which linear systems cannot. These phenomena include jumps, bifurcations,
saturation, subharmonic, superharmonic and internal resonances, resonance captures, limit cycles, modal interactions and
chaos. Readers who look for an introduction to nonlinear oscillations may consult [23–26]. More mathematically inclined
readers may refer to [27, 28].

This is not to say that nonlinear systems have not received considerable attention during the last decades. Even if, for years,
one way to study nonlinear systems was the linearization approach [29, 30], many efforts have been spent in order to develop
theories for the investigation of nonlinear systems in structural dynamics. A nonlinear extension of the concept of mode
shapes was proposed in [31, 32] and further investigated in [33–36]. Weakly nonlinear systems were thoroughly analyzed
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using perturbation theory [23, 37–39]. Perturbation methods include for instance the method of averaging, the Lindstedt-
Poincaré technique and the method of multiple scales and aim at obtaining asymptotically uniform approximations of the
solutions. During the last decade or so, one has witnessed a transition from weakly nonlinear structures to strongly nonlinear
structures (by strongly nonlinear systems, a system for which the nonlinear terms are the same order as the linear terms
is meant) thanks to the extension of classical perturbation techniques [40, 41] and the development of new methodologies
[20, 42–44].

Recently, a few studies proposed to take advantage of nonlinearities instead of ignoring or avoiding them, which represents
an interesting shift in paradigm. For example, the concept of parametric resonance is exploited to design microelectrome-
chanical oscillators with filtering capabilities in [45]. In [46–48], it is shown that essential (i.e., nonlinearizable) nonlinearity
leads to irreversible nonlinear energy transfer phenomena between subsystems—termed nonlinear energy pumping. In [49],
chaotic interrogation and phase space reconstruction are used to assess the strength of a bolted connection in a composite
beam. In [50], the geometric shape of dynamic attractors is exploited to enhance small parametric variations in a system.

Focusing now on the development (or the improvement) of structural models from experimental measurements in the
presence of nonlinearity, i.e., nonlinear system identification, one is forced to admit that there is no general analysis method
that can be applied to all systems in all instances [see, e.g, previous overviews [51, 52]], as it is the case for modal analysis in
linear structural dynamics. In addition, many techniques which are capable of dealing with systems with low dimensionality
collapse if they are faced with system with high modal density. Two reasons for this failure are the inapplicability of various
concepts of linear theory and the highly ‘individualistic’ nature of nonlinear systems. A third reason is that the functional
SŒ�� which maps the input x.t/ to the output y.t/, y.t/ D SŒx.t/�, is not known beforehand. For instance, the ubiquitous
Duffing oscillator [53], the equation of motion of which is mRy.t/ C cPy.t/ C ky.t/ C k3y3.t/ D x.t/, represents a typical
example of polynomial form of restoring force nonlinearity, whereas hysteretic damping is an example of nonpolynomial
form of nonlinearity. This represents a major difficulty compared with linear system identification for which the structure of
the functional is well defined.

Even if there is a difference between the way one did nonlinear system identification ‘historically’ and the way one would
do it now, the identification process may be regarded as a progression through three steps, namely detection, characterization
and parameter estimation, as outlined in Fig. 17.1. Once nonlinear behavior has been detected, a nonlinear system is said to be
characterized after the location, type and functional form of all the nonlinearities throughout the system are determined. The
parameters of the selected model are then estimated using linear least-squares fitting or nonlinear optimization algorithms
depending upon the method considered.

Nonlinear system identification is an integral part of the verification and validation (V&V) process. According to
[54], verification refers to solving the equations correctly, i.e., performing the computations in a mathematically correct
manner, whereas validation refers to solving the correct equations, i.e., formulating a mathematical model and selecting the
coefficients such that physical phenomenon of interest is described to an adequate level of fidelity. As stated in [55], one
definition that captures many of the important aspects of model validation is taken from the simulation sciences literature:

The substantiation that a model within its domain of applicability possesses a satisfactory range of accuracy consistent with the intended
application of the model [56]

Scope of the Presentation

The motivation behind this tutorial presentation is threefold. First, it is meant to provide a concise point of departure for
researchers and practitioners alike wishing to assess the current state of the art in the identification of nonlinear structural
models. Second, the tutorial intends to review several methods that have been proposed in the technical literature and to
highlight some of the reasons that prevent these techniques from being applied to complex structures. The last goal is to
identify future research needs which would help to ‘push the envelope’ in nonlinear system identification.
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1. Detection Y es or No ?

Aim: detect whether a nonlinearity is present or not (e.g., Yes)

2. Characterization What ? Where ? How ?

Aim: a. determine the location of the non-linearity (e.g., at the joint)

b. determine the type of the non-linearity (e.g., Coulomb friction)

c. determine the functional form of the non-linearity

[e.g., fNL(y, ẏ) = α sign(ẏ)]

3. Parameter estimation How much ?

Aim: determine the coefficient of the non-linearity (e.g., α = 5.47)

fNL(y, ẏ) = 5.47 sign(ẏ) at the joint

Fig. 17.1 Identification process
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Chapter 18
Higher-Order Frequency Response Functions for Hysteretic Systems

G. Manson and K. Worden

Abstract Volterra analysis for nonlinear systems has long been established as an informative means of investigating
nonlinear system behaviour; in particular, the Volterra kernels can be directly transformed into Higher-order Frequency
Response Functions (HFRFs) which allow direct visualisation of nonlinear frequency interactions in system responses.
Unfortunately, Volterra analysis is restricted to certain (smooth, without memory) classes of systems which exclude many
which are of major interest in structural dynamics. In the current paper, it is demonstrated that, by considering non-smooth
systems as a combination of smooth systems, it is possible to develop a Volterra series representation for such systems. The
paper also presents an approach for rewriting the equation of motion of the Bouc-Wen model of hysteresis so as to remove
the hidden state thereby permitting further analysis using the Volterra series.

Keywords Nonlinear systems • Volterra series • Non-smooth systems • Systems with memory • Bouc-Wen hysteresis
model

18.1 Introduction

In 1887 Vito Volterra [1] developed the functional representation of the Taylor Series which bears his name. The series
extended the standard convolution integral for linear systems to permit characterisation of a range of nonlinear systems.
From that date, there has developed a large body of research, across many diverse areas, into systems whose behaviour can
be accurately represented using the Volterra series. There are limitations associated with the Volterra series and these are well
documented [2, 3]. Alongside the related issues of series convergence and series truncation, there is also the issue regarding
the types of nonlinear system which may be represented using the Volterra series. It is usually stated that the Volterra series
representation is only valid for those systems that are smooth and have finite memory. This clearly precludes representation
of hysteretic systems which are neither smooth nor possess finite memory. The purpose of the current paper is to demonstrate
that it may be possible to develop a Volterra series representation of such systems.

The phenomenon of hysteresis or memory-dependency is observed throughout many areas of engineering and science
such as liquid–solid phase transitions, elasto-plasticity of materials and superconductivity [4]. In the specific case of the
dynamic response of mechanical systems, hysteretic behaviour is often observed due to the dynamic response of elasto-
plastic components. There exist many mathematical models for describing hysteretic behaviour but one which is often used
in the context of dynamical systems, and the one studied in this work, is the Bouc-Wen model [5, 6].

The layout of the paper is as follows: Sect. 19.2 briefly describes the form of the Bouc-Wen model considered in this work.
Section 19.3 demonstrates an approach for removing the hidden, unmeasurable state from the Bouc-Wen model equation
of motion. Section 19.4 briefly introduces the Volterra series, before calculating and plotting the Higher-Order Frequency
Response Functions (HFRFs) for the Bouc-Wen system. Section 19.5 discusses how these HFRFs may be employed in the
calculation of hysteretic system responses and for parameter identification purposes. Section 19.6 rounds off with some
conclusions.

G. Manson (�) • K. Worden
Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
e-mail: graeme.manson@sheffield.ac.uk

© The Society for Experimental Mechanics, Inc. 2016
G. Kerschen (ed.), Nonlinear Dynamics, Volume 1, Conference Proceedings of the Society for Experimental Mechanics Series,
DOI 10.1007/978-3-319-29739-2_18

191

mailto:graeme.manson@sheffield.ac.uk


192 G. Manson and K. Worden

18.2 Bouc-Wen Model of Hysteresis

The response of hysteretic systems lag behind the inputs and these systems are often described as having ‘memory’. One
of the most-commonly used mathematical models for describing hysteretic behaviour is the general Bouc-Wen model
[5, 6]. The model considers a single-degree-of-freedom (SDOF) system with a restoring force model which consists of a
polynomial non-hysteretic component and a hysteretic component based upon the time histories of the system’s velocity and
displacement. Mathematically, this may be written:

mRy C g
�
y;

:
y
�C z

�
y;

:
y
� D x (18.1)

where y;
:
y and ÿ are the displacement, velocity and acceleration responses, respectively, to an excitation force, x. g

�
y;

:
y
�

is
the polynomial non-hysteretic component of the restoring force, z

�
y;

:
y
�

is the hysteretic component of the restoring force
and m is the mass of the system.

In the current work, the non-hysteretic component of the restoring force was assumed to be linear, so that

g
�
y;

:
y
� D c

:
y C ky (18.2)

where c and k are the linear viscous damping and linear stiffness parameters respectively. It is worth stating that this
assumption of linearity of the non-hysteretic component is not required for the work that follows: it would be possible
to construct expressions for HFRFs of the Bouc-Wen model even if the non-hysteretic component was represented by a
polynomial nonlinearity. Wen [6] defined the hysteretic component via a second equation of motion

:
z D A

:
y � ˛ ˇˇ :yˇˇ jzjn�1z � ˇ :yjzjn (18.3)

The parameters ˛, ˇ and n will govern the hysteresis loop parameters. It may be observed that the ky term in Eq. (18.2)
and the A

:
y term in Eq. (18.3) are both linear spring force terms and therefore may be combined (this is not essential for the

following analysis to hold however) to give the following system equations:

mRy C c
:
y C z

�
y;

:
y
� D x (18.4)

where

:
z D A

:
y � ˛ ˇ̌ :yˇ̌ jzjn�1z � ˇ :yjzjn (18.5)

In the next section, the above formulation will be used as the starting point for removal of the unmeasurable, hidden state
z
�
y;

:
y
�

from the system’s equation of motion.

18.3 Removing the Hidden State from the Bouc-Wen Hysteretic Model

The general Bouc-Wen model was introduced in the previous section. Whilst the input force, x, and output displacement,
velocity and acceleration, y;

:
y and ÿ respectively, will generally be measurable, the hidden state, z, will not be measurable.

The presence of this hidden-state in the Bouc-Wen representation can often limit its usefulness. In this section, it will be
demonstrated that it is possible to represent the Bouc-Wen formulation without the explicit presence of the hidden state term.

Equation (18.4) may be rewritten as a first-order equation by substituting
:
y for v to give:

m
:
v C cv C z D x (18.6)

which allows the representation of the hidden state, z, in terms of the measurable forces and states:

z D x � m
:
v � cv (18.7)
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Differentiating Eq. (18.6) with respect to time, substituting in Eq. (18.5) and using the representation of the hidden state
given in Eq. (18.7) gives the following Bouc-Wen representation only in terms of measurable states:

m Rv C c
:
v C Av � ˛ jvj ˇˇx � m

:
v � cv

ˇ
ˇn�1 �

x � m
:
v � cv

� � ˇv
ˇ
ˇx � m

:
v � cv

ˇ
ˇn D :

x (18.8)

The above expression may appear over-complicated, at first glance, but it will be shown in the next section that this process
opens up the possibility of calculating Higher-Order Frequency Response Function (HFRF) expressions for the Bouc-Wen
model.

18.4 Higher-Order Frequency Response Functions for the Bouc-Wen Hysteretic Model

18.4.1 Volterra Series Representation of Nonlinear Systems

It is well-known that many nonlinear systems or input–output processes x.t/ ! y.t/ can be realised as a mapping [1, 7],

y.t/ D y1.t/C y2.t/C y3.t/C � � � C yp.t/C : : : (18.9)

where

yp.t/ D
Z C1

�1
: : :

Z C1

�1
d�1 : : : d�p hp

�
�1; : : : ; �p

�
x .t � �1/ : : : x

�
t � �p

�
(18.10)

This is the Volterra series and the functions hp are the Volterra kernels. The dual frequency-domain representation is based on
the Higher-Order Frequency Response Function (HFRFs) or Volterra kernel transforms, Hp(!1, : : : ,!p), which are defined
as the multi-dimensional Fourier transforms of the kernels. The dual time-frequency relationships are shown below:

Hp
�
!1; : : : ; !p

� D
Z 1

�1
: : :

Z 1

�1
d�1 : : : d�p hn

�
�1; : : : ; �p

�
e�i.!1�1C���C!p�p/ (18.11)

18.4.2 HFRFs for Bouc-Wen Models

The system which will be studied here is the Bouc-Wen representation given in Eq. (18.8). For the time being, it is only
possible to develop expressions for HFRFs for Bouc-Wen systems with integer values of n. For the purposes of the current
work, this will be conducted for values of n D 1 and n D 2. If only integer values of n are being considered, it is possible to
simplify the Bouc-Wen representation given in Eq. (18.8) to give:

m Rv C c
:
v C Av C �v

�
x � m

:
v � cv

�n D :
x (18.12)

where � D ˙˛ ˙ ˇ. The sign before ˛ and ˇ will be dependent upon the value of n and the signs of v and
�
x � m

:
v � cv

�
.

For the case where n D 1, the equation of motion will be

m Rv C c
:
v C Av C �v

�
x � m

:
v � cv

� D :
x (18.13)

where

� D

8
ˆ̂<

ˆ̂
:

�˛ � ˇ if v � 0 and
�
x � m

:
v � cv

� � 0

� ˛ C ˇ if v � 0 and
�
x � m

:
v � cv

�
< 0

˛ � ˇ if v < 0 and
�
x � m

:
v � cv

� � 0

˛ C ˇ if v < 0 and
�
x � m

:
v � cv

�
< 0

(18.14)
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For the case where n D 2, the equation of motion will be

m Rv C c
:
v C Av C �v

�
x � m

:
v � cv

�2 D :
x (18.15)

where

� D

8
ˆ̂
<

ˆ̂
:

�˛ � ˇ if v � 0 and
�
x � m

:
v � cv

� � 0

˛ � ˇ if v � 0 and
�
x � m

:
v � cv

�
< 0

˛ � ˇ if v < 0 and
�
x � m

:
v � cv

� � 0

� ˛ � ˇ if v < 0 and
�
x � m

:
v � cv

�
< 0

(18.16)

The above essentially means that, for the n D 1 case, there can be up to four different forms for each Hp(!1, : : : ,!p),
depending upon the signs of v and

�
x � m

:
v � cv

�
, whilst there can be two different forms for each Hp(!1, : : : ,!p) for the

n D 2 case, depending upon the signs of v and
�
x � m

:
v � cv

�
. This means that, in order to obtain predicted responses from

the Volterra series approximation, it will be necessary to switch between the different HFRF forms depending upon the signs
of v and

�
x � m

:
v � cv

�
. This will be discussed in more detail at the end of the paper.

For now, the HFRF expressions, up to and including H3(!1,!2,!3), for these two values of n will now be calculated.
When the equations of motion are available, the method of harmonic probing [8] is both simple and effective and is the
method applied here. In order to calculate the linear FRF, H1(!), a probing input of a single harmonic is applied:

xp1 D ei!t (18.17)

The expression required for the right-hand side of Eqs. (18.13) and (18.15) is the first derivative which gives a probing
expression of:

:
xp1 D i!ei!t (18.18)

Assuming that v is the output response to the input, x, gives the following first-order probing expressions for v,
:
v and Rv:

vp1 D H1 .!/ ei!t

:
vp1 D i!H1 .!/ ei!t

Rvp1 D �!2H1 .!/ ei!t

(18.19)

Note, the reason that a first-order probing expression is not required for
�
x � m

:
v � cv

�
is because it would always be

multiplied by v in Eqs. (18.13) and (18.15) and would therefore be unable to produce an ei!t term which is required to
contribute to an expression for H1(!).

Substituting the expressions in Eqs. (18.18) and (18.19) into either Eq. (18.13) or (18.15) and equating ei!t terms gives
the same expression for H1(!), namely:

H1 .!/ D i!

�m!2 C i!c C A
(18.20)

which is simply the linear mobility FRF for a SDOF system relating the linear component of the velocity output (v D :
y) to

the input force, x.
The process for obtaining H2(!1,!2) is similar but the probing expressions are a little more involved. A dual harmonic

probing input is applied:

xp2 D ei!1t C ei!2t

:
xp2 D i!1ei!1t C i!2ei!2 t (18.21)

The second-order probing expressions for v,
:
v and Rv are:

vp2 D H1 .!1/ ei!1 t C H1 .!2/ ei!2 t C 2H2 .!1; !2/ ei.!1C!2/t
:
vp2 D i!1H1 .!1/ ei!1 t C i!2H1 .!2/ ei!2t C 2i .!1 C !2/H2 .!1; !2/ ei.!1C!2/t
Rvp2 D �!21H1 .!1/ ei!1t � !22H1 .!2/ ei!2t � 2.!1 C !2/

2H2 .!1; !2/ ei.!1C!2/t
(18.22)
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On this occasion, it will be necessary to produce a second-order probing expression for
�
x � m

:
v � cv

�
. This is given by:

�
xp2 � m

:
vp2 � cvp2

� D .1 � i!1mH1 .!1/� cH1 .!1// ei!1t C .1 � i!2mH1 .!2/� cH1 .!2// ei!2t

C2 .�i .!1 C !2/m � c/H2 .!1; !2/ ei.!1C!2/t (18.23)

Substituting the expressions in Eqs. (18.21), (18.22) and (18.23) into Eq. (18.13) and equating ei.!1C!2/t terms gives the
following expression for H2(!1,!2) for the n D 1 case:

H2 .!1; !2/ D � �fH1.!1/Œ1�i!2mH1.!2/�cH1.!2/�CH1.!2/Œ1�i!1mH1.!1/�cH1.!1/�g
2Œ�m.!1C!2/2Ci.!1C!2/cCA�

D ��H1.!1C!2/fH1.!1/Œ1�i!2mH1.!2/�cH1.!2/�CH1.!2/Œ1�i!1mH1.!1/�cH1.!1/�g
2i.!1C!2/

(18.24)

It is often the case (e.g. when the input force is sinusoidal) that the diagonals of the HFRFs are the components of interest.
For the n D 1 case, H2(!,!) is given by:

H2 .!; !/ D ��H1 .2!/H1 .!/ Œ1 � i!mH1 .!/ � cH1 .!/�

2i!
(18.25)

It may observed however that setting !1 D ! and !2 D �! in Eq. (18.24) results in both the denominator and numerator
being zero. In the current case, the HFRFs relate the velocity output, which cannot contain a D.C. component, to the forcing
input and therefore the diagonal H2 .!;�!/, which is concerned with the zero frequency (D.C.) component, must be zero
for all !:

H2 .!;�!/ D 0 (18.26)

Substituting the expressions in Eqs. (18.21), (18.22) and (18.23) into Eq. (18.15) and equating ei.!1C!2/t terms gives the
following expression for H2(!1,!2) for the n D 2 case:

H2 .!1; !2/ D 0 (18.27)

The above results from the fact the �v
�
x � m

:
v � cv

�2
term is unable to produce any ei.!1C!2/t terms. The first non-zero

HFRF for the n D 2 Bouc-Wen system will be H3(!1,!2,!3).
In order to obtain expressions for H3(!1,!2,!3) for the two Bouc-Wen cases, the harmonic probing is extended to a three

harmonic input:

xp3 D ei!1t C ei!2t C ei!3 t

:
xp3 D i!1ei!1t C i!2ei!2t C i!3ei!3t (18.28)

The third-order probing expression for v is:

vp3 D H1 .!1/ ei!1t C H1 .!2/ ei!2t C H1 .!3/ ei!3t C 2H2 .!1; !2/ ei.!1C!2/t
C2H2 .!1; !3/ ei.!1C!3/t C 2H2 .!2; !3/ ei.!1C!2/t C 6H3 .!1; !2; !3/ ei.!1C!2C!3/t (18.29)

with the third-order probing expressions for
:
v and Rv simply being the first and second derivatives with respect to time of the

above expression. The third-order probing expression for
�
x � m

:
v � cv

�
is given by:

�
xp3 � m

:
vp3 � cvp3

� D .1 � i!1mH1 .!1/ � cH1 .!1// ei!1t C .1 � i!2mH1 .!2/� cH1 .!2// ei!2t

C .1 � i!3mH1 .!3/ � cH1 .!3// ei!3t C 2 .�i .!1 C !2/m � c/H2 .!1; !2/ ei.!1C!2/t
C2 .�i .!1 C !3/m � c/H2 .!1; !3/ ei.!1C!3/t C 2 .�i .!2 C !3/m � c/H2 .!2; !3/ ei.!2C!3/t
C6 .�i .!1 C !2 C !3/m � c/H3 .!1; !2; !3/ ei.!1C!2C!3/t

(18.30)
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Substituting the expressions in Eqs. (18.28), (18.29) and (18.30) Eq. (18.13) and equating ei.!1C!2C!3/t terms gives the
following expression for H3(!1,!2,!3) for the n D 1 case:

H3 .!1; !2; !3/ D ��H1 .!1 C !2 C !3/B

6i .!1 C !2 C !3/
(18.31)

where B is given by:

B D 2H1 .!1/H2 .!2; !3/ Œ�i .!2 C !3/m � c�C 2H1 .!2/H2 .!1; !3/ Œ�i .!1 C !3/m � c�
C2H1 .!3/H2 .!1; !2/ Œ�i .!1 C !2/m � c�C 2H2 .!1; !2/ Œ1 � i!3mH1 .!3/� cH1 .!3/�

C2H2 .!1; !3/ Œ1 � i!2mH1 .!2/ � cH1 .!2/�C 2H2 .!2; !3/ Œ1 � i!1mH1 .!1/ � cH1 .!1/�

(18.32)

Similarly, substituting the expressions in Eqs. (18.28), (18.29) and (18.30) Eq. (18.15) and equating ei.!1C!2C!3/t terms gives
the following expression for H3(!1,!2,!3) for the n D 2 case:

H3 .!1; !2; !3/ D ��H1 .!1 C !2 C !3/C

6i .!1 C !2 C !3/
(18.33)

where C is given by:

C D 2H1 .!1/ Œ1 � i!2mH1 .!2/� cH1 .!2/� Œ1 � i!3mH1 .!3/� cH1 .!3/�

C2H1 .!2/ Œ1 � i!1mH1 .!1/� cH1 .!1/� Œ1 � i!3mH1 .!3/� cH1 .!3/�

C2H1 .!3/ Œ1 � i!1mH1 .!1/� cH1 .!1/� Œ1 � i!2mH1 .!2/� cH1 .!2/�

(18.34)

The diagonals of H3(!1,!2,!3) are a little more concise than the above general expressions. For the n D 1 case, H3(!,!,!)
is given by:

H3 .!; !; !/ D ��H1 .3!/ fH1 .!/H2 .!; !/ Œ�i2!m � c�C H2 .!; !/ Œ1 � i!mH1 .!/� cH1 .!/�g
3i!

(18.35)

which may be rewritten solely in terms of the linear FRF and the nonlinear parameters by substituting Eq. (18.25) for
H2(!,!) in the previous expression to give:

H3 .!; !; !/ D �2H1 .3!/H1 .2!/H1 .!/ Œ1 � i!mH1 .!/ � cH1 .!/� Œ1 � i3!mH1 .!/ � 2cH1 .!/�

�6!2 (18.36)

The H3 .!; !;�!/ diagonal for the n D 1 case is given by:

H3 .!; !;�!/ D ��H1.!/H2.!;!/Œ1�i!mH1.�!/�2cH1.�!/�
3i!

D �2H1.!/
2H1 .2!/ Œ1 � i!mH1 .!/� cH1 .!/� Œ1 � i!mH1 .�!/ � 2cH1 .�!/�

�6!2
(18.37)

The occurrence of the �2 term in Eqs. (18.36) and (18.37) means that, for the n D 1 case, only two forms of H3(!,!,!) and
H3 .!; !;�!/ exist, unlike the four forms of H2(!,!) which existed for the n D 1 case.

For the n D 2 case, H3(!,!,!) is given by:

H3 .!; !; !/ D ��H1 .3!/H1 .!/ Œ1 � i!mH1 .!/� cH1 .!/�
2

i3!
(18.38)

and the H3 .!; !;�!/ diagonal for the n D 2 case is given by:

H3 .!; !;�!/
D ��H1 .!/ Œ1 � i!mH1 .!/ � cH1 .!/� f2H1 .!/C H1 .�!/C H1 .!/H1 .�!/ Œi!m � 3c�g

3i!

(18.39)
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18.4.3 Example Bouc-Wen HFRFs

In order to visualise some of the HFRF surfaces and diagonals whose expressions were developed in the previous sub-section,
an example will be considered. The Bouc-Wen expression under consideration is given by Eqs. (18.4) and (18.5) and the
following parameters were chosen for both cases i.e. when n D 1 or n D 2:

m D 1 kg; c D 20 N= .m=s/ ; A D 1 � 104 N=m; ˛ D 20; ˇ D 5

Inserting these parameters into Eq. (18.20) gives the mobility FRF for the underlying linear system which is shown in
Fig. 18.1. As H1(!) only depends upon the linear parameters, it will be the same for both the n D 1 and n D 2 cases.

As stated above, the H2(!1,!2) FRF is zero for the n D 2 case but will be non-zero for the n D 1 case. Figure 18.2
shows contour representations, calculated using Eq. (18.24), of the amplitude and phase of the H2(!1,!2) surface for the
situation where � D .�˛ � ˇ/. This was the required form of the HFRF when v � 0 and

�
x � m

:
v � cv

� � 0. The three
other H2(!1,!2) forms (given using the three other � values given in Eq. (18.14)) would be required but these would simply
be scaled versions of that shown in Fig. 18.2.

Fig. 18.1 Amplitude (left) and phase (right) of H1(!) for both the n D 1 and n D 2 cases

Fig. 18.2 Amplitude (left) and phase (right) of one of the four H2(!1,!2) HFRFs for the n D 1 case. The example shown is for � D
.�˛ � ˇ/ i:e: when v � 0 and

�
x � m

:
v � cv

� � 0
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Fig. 18.3 Amplitude (left) and phase (right) of the H2(!,!) diagonals for the n D 1 case

Fig. 18.4 Amplitude (left) and phase (right) of the H3(!,!,!) diagonals for the n D 1 case

The principal diagonals of all four of the H2(!,!) forms are plotted together in Fig. 18.3. Whilst it may initially appear
that only two plots are depicted, there are four cases shown but there are simply two different amplitude plots (the � D
.�˛ � ˇ/ diagonal will overlay the � D .˛ C ˇ/ diagonal and the � D .�˛ C ˇ/ diagonal will overlay the � D .˛ � ˇ/

diagonal). Similarly there are only two different phase plots (the � D .�˛ � ˇ/ diagonal will overlay the � D .�˛ C ˇ/

diagonal and the � D .˛ C ˇ/ diagonal will overlay the � D .˛ � ˇ/ diagonal). Examination of these plots shows that there
are peaks at the undamped natural frequency of the underlying linear system and one-half of this value. This is typical of the
behaviour observed in systems with a quadratic nonlinearity component. Note that phase plot was plotted using MATLAB’s
unwrap function to highlight the constant difference of � radians between the two lines.

As demonstrated in the previous sub-section, for both the n D 1 and n D 2 cases, the H3(!1,!2,!3) FRF will be non-
zero. It is not possible to plot the full amplitude and phase H3(!1,!2,!3) surfaces, due to them being four-dimensional and
so only the diagonals of the surfaces will be considered here. Figures 18.4 and 18.5 show the H3(!,!,!) and H3 .!; !;�!/
diagonals for the n D 1 case. As stated above (after Eq. (18.37)) the occurrence of �2 in the expression means that only
two different forms of the H3(!1,!2,!3) FRF exists for the n D 1 case. Examination of Figs. 18.4 and 18.5 show that this
difference only occurs in the relative amplitudes in the amplitude plot. Figure 18.4 shows that there are peaks at the undamped
natural frequency of the underlying linear system and one-half and one-third of this value. Figure 18.5 only shows peaks at
the undamped natural frequency of the underlying linear system and one-half of this value. Both of these observations are in
keeping with expected third-order FRF behaviour observed in systems with a quadratic nonlinearity component.
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Fig. 18.5 Amplitude (left) and phase (right) of the H3 .!; !;�!/ diagonals for the n D 1 case

Fig. 18.6 Amplitude (left) and phase (right) of the H3(!,!,!) diagonals for the n D 2 case

Figures 18.6 and 18.7 show the H3(!,!,!) and H3 .!; !;�!/ diagonals for the n D 2 case. For both diagonals, two
distinct HFRF forms may be seen (in both amplitude and phase). Figure 18.6 shows that there are peaks at the undamped
natural frequency of the underlying linear system and one-third of this value whilst Fig. 18.7 only shows a single peak at the
undamped natural frequency of the underlying linear system. This is in keeping with the H3(!1,!2,!3) behaviour which is
observed in systems with a cubic nonlinearity but no quadratic component.

18.5 Switching Between Higher-Order Frequency Response Functions for Non-Smooth
Systems or Systems with Memory

In the previous section, expressions were developed for the first three HFRFs for two Bouc-Wen models along with figures
displaying the nature of these HFRFs for a numerical example. Whilst it is novel to show that it is possible to develop HFRF
expressions for non-smooth systems (especially those with hidden states), it is reasonable to ask how these different forms
of the HFRFs may be used in the prediction of the response of such systems.
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Fig. 18.7 Amplitude (left) and phase (right) of the H3 .!; !;�!/ diagonals for the n D 2 case

Consider the case where a cosinusoidal forcing input is being applied to a smooth system with finite memory. The forcing
input will be given by:

x.t/ D X cos .�t/ (18.40)

and the Volterra series representation of the steady-state displacement response of the system would be given by:

y.t/ D y1.t/C y2.t/C y3.t/C : : :

D X jH1 .�/j cos .�t C †H1 .�//

C X2

2
fjH2 .�;�/j cos .2�t C †H2 .�;�//C H2 .�;��/g

C X3

4
fjH3 .�;�;�/j cos .3�t C †H3 .�;�;�//

C 3 jH3 .�;�;��/j cos .�t C †H3 .�;�;��//g C : : :

(18.41)

If, however, the system of interest were one of the two Bouc-Wen models discussed in the previous section, the calculation
of the system response would not be quite so straightforward. As discussed previously, with the non-smooth system there is
no longer only a single form of each of the HFRFs but rather multiple forms which depend upon the signs of the measured
forces and states. One cannot simply calculate a steady-state response of the type given in Eq. (18.41) for each of the different
sign combinations and switch between the different responses depending upon the signs of the measured forces and states.
Each switch will introduce a transient response which will also have to be calculated: this will be the next stage of this work.

It is anticipated that, if it is possible to estimate these different HFRF forms from simulated or experimental data, it may
also be possible to identify the linear and nonlinear system parameters.

18.6 Discussion and Conclusions

There were two new findings presented in the current paper. The first was that it is possible to re-formulate the equation of
motion of a well-studied system with a hidden, unmeasurable state so that it was only written in terms of its measurable
forces and states. It is expected that there are many other systems with hidden states which may be amenable to a similar
treatment. The second finding directly followed from the first and demonstrated that it is possible to calculate HFRFs for
non-smooth systems with memory. The first three HFRFs for a pair of Bouc-Wen models were calculated and plotted for
a numerical example. As mentioned above, the next phase of this work will be to ascertain whether “switching” between
the different forms of the HFRFs, in combination with a transient response calculation, is capable of representing the actual
response behaviour of the Bouc-Wen model. To the authors’ knowledge, this would be the first Volterra series representation
of a non-smooth system with memory.
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Chapter 19
Model Upgrading T0 Augment Linear Model Capabilities
into Nonlinear Regions

S.B. Cooper, A. delli Carri, and D. Di Maio

Abstract Identification of nonlinear dynamical systems have enjoyed significant progression over the past few years with
the outcome of various developed identification methods, however there is still no generalised method applicable to structures
with arbitrary nonlinearity. In the analysis of nonlinear dynamical system, it is essential to establish accurate and reliable
tools that are capable of estimating the parameters from measured data for both the linear and nonlinear system. This paper
presents a modular framework approach for upgrading a valid linear finite element structural model to accommodate any
nonlinearities present in a system. To validate the efficiency of the proposed method, numerical and experimental studies are
conducted on a “Multiple Beam Test Structure”, the method uses an iterative process to upgrade the nonlinear terms in the
system. The results are verified by comparing predicted new response with measured data.

Keywords Nonlinearities • Model upgrading • Finite element • Structural models and framework

19.1 Introduction

Nonlinear system identification has received a lot of attention over the last few years up till date with examples such as
continuous structures with localised geometrical nonlinearity [1, 2], a compressive review on the types of nonlinearity and
methods of nonlinear system identification can be found in [3]. Identification of nonlinear multi-degree-of-freedom (MDOF)
lumped parameters was also presented in [4, 5]. The identification of weak nonlinearities was also studied on more complex
structures, example of this can be found [6] where a strategy for non-linear modal identification of weak nonlinear effects on
large aircraft structures was presented. An aluminium plate attached with two stores used to illustrate the behaviour of a wing
and an engine suspended by a means of nonlinear pylon also displayed a presence of weak nonlinearities during a vibration
test, the results obtained illustrated some hardening characteristics as show in [7]. Similar study was also carried out on a
large helicopter with the identification of a weak nonlinear softening behaviour on one of the vibration modes as shown
in [8]. The current process of modelling nonlinearity in engineering structures is by including some corresponding nonlinear
elements in the mathematical models which describes the nonlinear system. For this type of case study, the parameters of
these nonlinear elements are usually specific and can only be obtained from an experimental test or through an updating
process.

However, engineers today are frequently being challenged and confronted with the presence of nonlinear behaviour in
large structures where they are not easy to locate. Examples of case studies where nonlinearity have been noticed in aerospace
structures can be found in [9] where nonlinearity was detected and reported at the elastomeric mounts supporting the four
turboprop engines of the aircraft during the Ground Vibration Test (GVT) of the Airbus A400M aircraft designed for military
purpose. The F-16 fighter aircraft also showed some nonlinearity behaviour at wing-to-payload mounting interface of the
aircraft when a similar GVT was conducted [10]. Nonlinearities were also detected on the Cassini spacecraft due to the
presence of gaps in the support of the Huygens probe [11]. More case studies on the presences of nonlinearities in engineering
structures can be found in the literature, this shows that there is a requirement in designing appropriate tools, or framework,
which are capable of dealing with cases where nonlinearities are present in today’s engineering structures.

In this paper authors seek to propose a modular framework for upgrading a linear system to capture any nonlinearities
present in a structure, the framework is based on establishing an underlying linear model or properties of the structure through
an optimisation process. The nonlinear identification is conducted by using a process which entails detection, localisation,
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characterisation and quantification of the nonlinearity in the system. The upgrading process regards the inclusion of missing
physical terms which enable a finite element model to predict responses for any loading conditions.

19.1.1 Review on Nonlinear Identification Methods

In a comprehensive review presented by Kerschen et al. in [3], seven methods have been identified as the most popular
methods used in the analysis of nonlinear system. These methods are:

• Time domain methods
• Frequency domain methods,
• Modal methods,
• Linearization methods,
• Time-frequency analysis,
• Black-box modelling
• Structural modelling updating

A survey of these seven identification methods are discussed fully in [3], in addition the authors of this paper have
undertaken a statistical analysis on the practical application of these methods most especially in the field of structural
dynamics. In the analysis small structures are categorised as examples of simulation or experimental work which has been
carried out on beams, plates, lap joints and small masses connected together with a nonlinear device using the associated
technique. Large structures are categorised as automotive shock absorbers, full scales shear wall structures, helicopter blades,
aircraft wings, ailerons, SmallSat Spacecraft, and a full-scaled small aircraft.

Despite the level of development in nonlinear identification methods, the chart presented in Fig. 19.1 indicates that only a
small percentage of these methods are practically suitable for structures modelled with large degrees of freedom (DOF) and
localised nonlinearity. For clarity, the above chart is intended to show a comparison of how each method has been applied
in the identification of nonlinearity in different industrial application. An important criterion in the industrial environment is
that a method is acknowledged as a good method if it can be applied to a real life structure or system. In most cases the direct
application of these methods are not always straightforward due to the level of mathematical algorithms that these methods
are founded upon.

Fig. 19.1 Practical application of current identification methods, subcategorised by small and large structures
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In the field of structural dynamics, the basic concept behind nonlinear identification is that every structure is considered
to have an underlying linear model (ULM) where the response of a structure obeys the homogeneity principle up to a
certain level before shifting into nonlinear region where superposition is no longer valid. Regardless of the extensive
literature on linear and nonlinear identification, there is little or no work on developing methodologies that are capable of
enhancing validated linear structural models to accommodate discrete and localised nonlinearities. Hence this paper is aimed
at presenting a practical application of a modular framework where an optimised linear FE structural model is upgraded to
operate normally in the presence of discretized and localised nonlinearities.

19.2 Identification Process of Nonlinear System

Another way to classify the current literature on nonlinear identification is based on the processes involved in the
identification of a nonlinear system. In this context, Identification process is defined as the number of steps or procedures
required for the complete identification of a nonlinear system. Arguably, in structural dynamics, the identification process is
often developed based on the type and source of nonlinearity associated with the structure or system. This aspect of nonlinear
identification has also received the development of several procedures and strategies that is capable of providing a successful
nonlinear identification. A more generic identification process which seeks to provide answers to some typical questions
concerning nonlinear structures is presented in [3], with the aim to tackle some of these challenges.

(a) Does the structure exhibit a nonlinear behaviour?
(b) What is the type and source of nonlinearity?
(c) What is the strength of the nonlinearity?

However an updated version of this process which incorporates modal testing into each step definition is presented in an
opinion paper in [12]. This new updated process is tailored to answer industrial practical problems where structural integrity
is of great concern. More often industries are being challenged with cases where their proposed structural linear FE model
fails to produce reliable predicted response due to the presence of some nonlinear features in the structure. The underlying
principle for this new updated process is that an improved modal testing and analysis identification process might be an
appropriate way of solving some of the challenges that industries are currently facing in this area. The major definition of
these processes are:

1. Modal Testing C Detection: to determine the strength of nonlinearity from measured response.
2. Modal Testing C Characterisation: to determine the type of nonlinearity.
3. Modal Testing C Location: to locate regions containing nonlinear features.
4. Modal Testing C Quantification: to quantify the nonlinear features.

In this context detection, characterisation, location and quantification are defined as:
Detection is used as a form of indicator based on the measured response to ascertain that there is some effect of

nonlinearity which cannot be neglected and at that stage the structural model is no longer classified as a linear model.
Location is mainly to determine where the nonlinear features are located in the structural model and also which are the

corresponding degrees of freedom (DOF) in the FE model.
Characterisation is referred to the physical origins of the nonlinear features in the structure and most importantly the

source of the nonlinear effect i.e. stiffness or damping of the structural model.
Quantification involves searching for the coefficient of the characterised nonlinear term.

19.3 Modular Framework and Upgrading Approach

In this era of structural modelling where finite element method is widely used, there is still a great concern with incorporating
valid linear FE models with identified nonlinearities in a structure. This modular framework is structured mainly to enhance
an optimised linear structural model to accommodate any form of nonlinearities. A large majority of the procedure in this
framework is based on the physical modelling approach while some subsection like the damping ratio estimation is based on
the traditional modal space approach. The physical modelling approach has the abilities to identify nonlinearities in a modular
form by using different developed toolbox to answer the three main questions, as presented in Sect. 19.2. The framework is
intended to integrate the classic finite element modelling and experimental modal testing used in most industrial application
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Fig. 19.2 Modular framework for model upgrading

to obtain a successful nonlinear identification. The last phase of the framework seeks to validate the identified nonlinearity
through an upgrading approach, where upgrading involves adding valid linear FE models to the nonlinear term to make it
complete before updating the coefficients of the parameters. Since there is a need for a comprehensive validation of the
nonlinear identification, the upgrading process helps to generate nonlinear models which can be validated by using forced
controlled simulation and experimental tests. A schematic of the process is presented in Fig. 19.2.

19.4 The Multiple Beam Structure

The test structure used for this analysis is represented in Fig. 19.3, it is made up of five rectangular steel beams bolted on a
large steel frame with M6 bolts. Each beam is connected to each other with the aid of a flexible spring bolted with M4 bolts,
the structure is instrumented with an accelerometer close to the tip of each beam and a force gauge attached to beam 3. The
structure is designed to display some nonlinear behaviour by tuning the springs with different heights, extra block masses
of different weight are added to beam 2–5 to introduce different dynamics into the system. The double spring connection,
between beam 1 and 2, and the flattened spring, between beam 3 and 4, act as sources of nonlinearity.

19.4.1 Experimental Testing

Two different tests were performed on the structure, the first test was a broadband test. The aim of the broadband test is
to identify the number of modes present inside a selected frequency range. The second test performed on the structure is
a forced control test, the results obtained from this test are used to validate the nonlinear forced simulated model. Low
and high level broadband test, using random excitation, were performed on the structure the results of which were able to
provide an initial assessment of the structure. Figures 19.4 and 19.5 present both the FRF and the coherence for low level
of excitation. Figures 19.6 and 19.7 present both FRF and coherence for high level of excitation. In this high vibratory state
both coherences show clear signs that nonlinearities are being activated.

In total 19 modes were identified within the first 1000 [Hz] of the structure. It is also worth mentioning that there other
broadband test results for beam 1, 4 and 5 but these results are not included in this paper, in addition as we move further away
from the excited beam the energy drops so there the energy that reaches beam 1 and 5 are not as high as the other beams.
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Fig. 19.3 Multiple beam test structure

Fig. 19.4 FRF and coherence at low level of excitation beam 2

19.4.2 Linear FE Model Validation

The first phase in the modular frame presented in Fig. 19.2 is to obtain some properties that can represent a valid linear
model of the structure, an FE model of the structure was created using the standard ABAQUS software package. The beams
were modelled using beam elements in ABAQUS, the flexible springs connecting the beams are modelled using the standard
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Fig. 19.5 FRF and coherence at low level of excitation beam 3

Fig. 19.6 FRF and coherence at high level of excitation beam 2

spring and dashpots in ABAQUS toolbox. Initial values of Young’s modulus and spring stiffness were assigned to get an
initial finite element model before the optimisation process, standard modal analysis was conducted to get the FE frequency
values and mode shapes.

Figures 19.8, 19.9 and 19.10 shows the first three FE modes of the structure with their corresponding natural frequencies
(see Table 19.1), although the real springs are modelled as springs and dashpot in the FE model the discrepancy between
the FE and experimental natural frequencies are within 3 %. The first three modes are mainly considered due to their high
resonant peak as shown in Figs. 19.4, 19.5, 19.6 and 19.7.
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Fig. 19.7 FRF and coherence at high level of excitation beam 3

Fig. 19.8 FE mode 1 at 79.07 [Hz]

Fig. 19.9 FE mode 2 at 83.02 [Hz]
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Fig. 19.10 FE mode 3 at 92.3 [Hz]

Table 19.1 Natural frequencies Modes Frequency value

Mode 1 79.07 Hz
Mode 2 83.02 Hz
Mode 3 92.30 Hz

Table 19.2 Updated natural frequencies and MAC percentage
values

Pair FE Freq. (Hz) EMA Freq. (Hz) Diff (%) MAC (%)

1 78.52 78.59 � 0.07 64.5
2 83.03 82.95 0.10 52.1
3 92.66 92.55 0.13 74.8
4 103.73 103.74 � 0.01 94.8
5 307.98 307.98 0.00 50.5
6 573.61 570.66 0.52 95.9
7 590.90 590.89 0.00 99.5
8 625.82 625.09 0.12 97.0
9 646.03 646.07 � 0.01 96.3

19.5 FE and EMA Correlation

To update the mode shapes and natural frequencies of the FE model, standard optimisation software (FEMtools) was used to
pair the FE and experimental natural frequencies of the first few modes. The modal assurance criterion (MAC) was used to
measure the accuracy of the updated modes with the experimental modes. Table 19.2 shows the FEA and EMA paired values
with their corresponding MAC percentage values.

The nature of the joints between the beams (bent steel rulers) makes the system prone to exhibit complex mode shapes
which, in turn, make the match of MAC values a much more difficult task to handle, and will lead to bigger MAC errors.
These errors, while relatively harmless in a linear environment, will become important when the nonlinear terms are included.
As an example, one can think about a nonlinear spring that sits between two degrees of freedom: in a real mode shape there
is always a point in which the two degrees of freedom are in their un-deformed position, with the nonlinear spring at rest. In
a complex mode shape there is no such point, and the nonlinear spring is always excited in some way. An error on the MAC
values means that the mode shapes of the model are not matching the ones of the system, thus the FRF residuals will be off.
One can likely find a nonlinear coefficient that accounts for these discrepancies, but in this case its value will not account
solely for the nonlinear stiffness of the real joint.

19.6 Nonlinear Identification

Referring back to the modular framework in Fig. 19.2, the second phase involves the identification of nonlinearities present
in the system using the results obtained from the broadband test.
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Fig. 19.11 Stepped sine FRF at 2 force levels for mode 2-beam 3

19.6.1 Detection

The first step in the identification process is the detection of nonlinearity, several methods and toolbox have been developed
for the detection of nonlinearity but the homogeneity method is by far the most instinctive method using experimental
measurement. The method operates by directly comparing 2 FRFs and also relies on the fact that the FRFs of a linear system
is independent of its input amplitude. However for a nonlinear system the FRF is dependent on its input force, in this case the
results from the stepped-sine and broadband test have shown some evidence of nonlinearity in the structure. Figures 19.11
and 19.12 shows FRF of beam 3 at mode 1 and its corresponding cross correlation shift, the homogeneity method must be
applied to a mode at a time to return a reliable result hence mode 1 has been chosen for this example.

While the homogeneity method has some challenges with quantifying the distortion of the FRF and also providing a
physical measure of the nonlinearity in the system, the correlation function in Fig. 19.12 indicates a frequency shift of 1.8
[Hz] in addition to a nonlinearity index.

19.6.2 Location and Characterisation

The reverse path method is arguable the most applicable method for locating and characterising nonlinearities based on
physical modelling approach, it assumes the nonlinearities as a force feedback terms acting on an underlying linear system
[13]. The parameter estimation is performed in the frequency domain using the conventional Multiple-Input-Single-Output
(MISO) techniques. Since the overall aim of the modular framework is to conduct all the steps using a physical modelling
the reverse path was adopted for this stage of the paper, collecting the broadband time histories responses at high level and
treating the nonlinearities as feedback terms the location method is to run a sensitivity analysis about the locations that have
the most influence on the coherence of the under-lying linear system. The reverse path relies on the multiple coherence
function as an indication for the goodness estimation, Fig. 19.13 shows the coherence sensitivity associated with all the
potential nonlinear locations.

From the chart one can conclude that the most affected DOF is #3, #1 and #2 hence the nonlinearity is located between
beams 1 2 and 3. Once an idea of the nonlinear element has been located the reverse path is also used to determine the
functional form of nonlinearity in the system, Fig. 19.14 shows the plot for the best iteration of the reverse path where the
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Fig. 19.12 Cross correlation plot for mode 2 at beam 3

Fig. 19.13 Location plot with all potential nonlinear location

nonlinear term is characterised to have a forth order function of FNL1 D sign.x/:jxj2 and FNL2 D X2 between DOF#1 and
DOF#2. It is important to note that more iteration can be carried out to improve the coherence but at a cost to an increase in
the order functional form at the characterisation stage.

19.6.3 Quantification

After a number of iterations it is possible to plot the final coherence improvement archived during the simulation, Fig. 19.15
shows the coherence indices for each degree of freedom, i.e. the indices of each beam and the driving point before and after
the identification. The coherence function before and after the identification can also be obtained in the bandwidth of interest
80–280 [Hz] for DOF #3 which is the worst coherent point as shown in Fig. 19.16.
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Fig. 19.14 Iteration of characterisation-localisation step using the reverse path

Fig. 19.15 Coherence improvement after identification

The first initial coefficients of the nonlinearities are also obtainable using the reverse path method as a starting point before
going through the process of manual updating. The nonlinear coefficients are expected to be constant and real valued however
the reverse path operates in the frequency dependent complex values, therefore the retrieved coefficients are averaged real
values. It is worth noting that the retrieved values is obtained based on the information of the underlying linear model and its
corresponding averages.

19.7 Model Upgrading

This section of the modular framework is what brings together all the previous work that has been conducted on the structure,
it is often disregarded but it is arguable one of the most important process which helps to complete the structural model in the
simulation aspect. The upgrading process entails adding the identified parameters that describe the nonlinear stiffness and
damping in the structure to the original validated linear FE model, this is essential to make up a complete model that would
describe the nonlinear behaviour within a set range of simulated force values.
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Fig. 19.16 Coherence function at the worst DOF #3

Fig. 19.17 Forced response simulation FRF beam 1 @node 8

The model upgrading was performed on the multiple beam test structure by extracting the optimised mass and stiffness
matrices of the linear model and manually added the identified nonlinear terms into the equations of motion used for the
numerical simulation. A range of forced controlled simulation was carried out at 0.5N, 3N, 5N, and 8N with the full DOF of
the FE model, the simulation was conducted in MATLAB using AUTO continuation code. The responses of the model are
plotted in units of acceleration and frequency to obtain better curves and continuation path. Figures 19.17 and 19.18 shows
some example of the response plot of selected nodes from the FE and numerical simulation.

19.8 Model Updating

Now that the model has been upgraded, it is still not possible to refer to the model as an exact model but has it now has
integrated parameters which can describe the nonlinear behaviour of the real structure. This stage involves matching the
initial nonlinear simulated response with the measured response. It is worthing noting that at this stage the functional form
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Fig. 19.18 Forced response simulation FRF beam 2 @node 27

Fig. 19.19 FRF beam 3 measured response and updates simulated response

of nonlinearity is kept constant and only the coefficients of the nonlinear terms are updated iteratively to match the measured
response. To conduct the updating on the structure, forced response simulation was conducted with a frequency range of the
first mode using the harmonic balance method at a force level of 8 N. A corresponding force control test was conducted on
the structure to correlate and update the simulated response. Figure 19.19 shows the result of the updated response.
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Fig. 19.20 FRF of beam 3 at several forcing levels for model validation

19.9 Nonlinear Model Validation

The final step in the modular framework is to validate the identified nonlinear model, this done by generating new forced
response simulations using the new coefficients obtained from the updating process. Several forcing levels of [0.5 N, 1 N,
3 N, 5 N and 8 N] were simulated, the corresponding force control experiment was conducted to obtain measured data. The
comparison of these results are shown in Fig. 19.20.

In Fig. 19.20 one can observe that there is a frequency shift and the dotted lines which are the measured response are
not matching exactly with the continuous line which are the simulated response. This small error can be narrowed back to
the underlying linear FE model of the structure, referring back to Table 19.1 which shows the underlying linear frequency
and MAC updated values. Although the frequency values have almost zero percent error the MAC values which relates to
the mode shapes of the structure are not properly paired during the model updating of linear FE model. Hence this suggests
that it is important to have well updated linear model where the mode shapes and frequencies are paired to high degree of
accuracy to obtain a well predicted nonlinear model.

19.10 Conclusion

This paper presents the application of a modular framework for upgrading a valid linear FE model and to accommodate a form
of nonlinearity present in the structure. The approach used in the framework were highlighted in three different phases which
entails FE/EMA correlation to obtain an underlying linear FE model, nonlinear identification process and model upgrading.
The final stage of the application was to validate the identified nonlinear model through simulation and new experimental
data. Only a selected number of methods were chosen for the nonlinear identification phase due to the physical modelling
approach as adopted for the proposed framework. The error between the simulated and experimental forced responses can be
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associated to the goodness of the underlying linear FE model and the accuracy of the characterised nonlinear elements. The
nonlinear identification and validation phase still remain an area that could benefit from further development most especially
using the physical modelling approach.
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Chapter 20
Obtaining Nonlinear Frequency Responses from Broadband Testing

Etienne Gourc, Chiara Grappasonni, Jean-Philippe Noël, Thibaut Detroux, and Gaëtan Kerschen

Abstract The objective of the paper is to obtain the frequency response curves of nonlinear mechanical systems from
broadband testing. The proposed approach consists in coupling an identification method with a continuation method.
Specifically, the frequency-domain nonlinear subspace identification (FNSI) method is first used to derive an experimental
model of the structure in state space from broadband measurements. The harmonic balance method coupled with arclength
continuation then utilizes this experimental model to compute the frequency response curves of the system. The method is
demonstrated using a numerical example.

Keywords Subspace identification • Continuation • Harmonic balance • Nonlinear • Random excitation

20.1 Introduction

Nonlinear dynamical systems may exhibit complex behavior such as bifurcations, jump phenomenon or sensitivity to motion
amplitude. When investigated using linear system identification method, these dynamical phenomena can be erroneously
interpreted and lead to an inaccurate model.

Because nonlinearity is a frequent occurrence in engineering structures, there is a need for embedded methods that can be
used to characterize the nonlinear behavior of a structure from experimental data [8].

Among existing identification methods, subspace methods, developed for linear system identification [10, 13], are able
to deal with multiple-input, multiple-output systems, were successfully applied for real-life applications [7]. Thanks to
the feedback interpretation of the nonlinear structural dynamics [1], Marchesiello and Garibaldi proposed a time domain
nonlinear subspace identification (TNSI) method able to estimate the frequency response function (FRF) of the underlying
linear system as well as the nonlinear coefficients [9]. It has been shown that the method is sufficiently robust to identify
appropriate nonlinear behavior from a set of basis functions. Later a frequency-domain version of the method, termed FNSI,
was introduced [11]. Frequency-domain approaches are useful to reduce computational burden by selecting appropriate
frequency bandwidth in the response spectrum for the identification. For greater flexibility allowing identification of complex
nonlinearity, nonlinear basis function were replaced by cubic splines and the method was applied to the identification of
bolted connections of a solar array panel [12].

The previous mentioned references aim at characterizing nonlinear systems using input-output data. The identified model
is in the state-space form and the estimated matrices cannot be directly related to the system physical mass, damping and
stiffness matrices. Therefore, as pointed out by Ewins et al., there is a need for a simulation tool to simulate directly the
estimated model in the state-space frequency domain [6].

Different algorithms for the computation of periodic solutions and bifurcations of nonlinear structure can be found in the
literature. Most of them rely on a continuation procedure to track periodic solutions along branches with respect to a control
parameter (frequency of excitation or a system parameter) [2]. Among all the methods for computing periodic solutions in
frequency domain, the harmonic balance (HB) is arguably the most used. The periodic signals are approximated by their
Fourier coefficients, which become the new unknowns of the problem.

This method was applied to several industrial cases such as rotor-stator contact problems in turbo-machinery [14], or
to large-scale structures such as the nonlinear behavior of a full-scale vehicle [3]. Recently, the harmonic balance method
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Fig. 20.1 Diagram of the system identification methodology as addressed in the present paper

has been used for the detection and tracking of codimension-1 bifurcations and applied to the analysis of the SmallSat
spacecraft [5].

In this paper, an embedded approach coupling the FNSI method with a state-space harmonic-balance based continuation
method is proposed and summarized in Fig. 20.1.

20.2 Frequency-Domain Nonlinear Subspace Identification

In this section, the frequency nonlinear subspace identification method (FNSI) is briefly recalled [11].

20.2.1 Identification Problem Formulation

The behavior of a mechanical system with discrete nonlinearities may be described by the following equation of motion

M Rq.t/C C Pq.t/C Kq.t/C f .q.t/; Pq.t// D p.t/ (20.1)

where M;C;K 2 R
r�r are the linear mass, viscous damping and stiffness matrices, q.t/; p.t/ 2 R

r are the generalized
displacement and external force vector. f .t/ 2 R

r is the nonlinear restoring force vector. The effect of the s lumped
nonlinearities is expressed as

f .q.t/; Pq.t// D
sX

jD1
�jbjgj.q.t/; Pq.t// (20.2)

where �j are the nonlinear coefficients, bj 2 R
r is a Boolean vector indicating the location of the nonlinearity and

gj.q.t/; Pq.t// is the nonlinear functional form. Defining the state vector x D ŒqT ; PqT �T 2 R
n (n D 2r), system (20.1) is

rewritten in state space form as

Px.t/ D Acx.t/C Bce.p.t/; q.t/; Pq.t//
q.t/ D Cx.t/C De.p.t/; q.t/; Pq.t// (20.3)

here, the subscript c stands for continuous space. e.t/ D Œp.t/T ; g1.t/; : : : ; gs.t/�T 2 R
rCs is the extended input vector which

comes from the feedback interpretation of the nonlinear terms [11]. State space matrices Ac 2 R
n�n, Bc 2 R

n�.rCs/, C 2 R
r�n,

D 2 R
r�.rCs/ are related to physical matrices as

Ac D
	
0r�r Ir�r

�M�1K �M�1C



; Bc D

	
0r�r 0r�1 : : : 0r�1
M�1 ��1M�1b1 : : : ��sM�1bs



(20.4)

C D �
Ir�r 0r�r

�
; D D 0r�.rCs/

In order to reduce computational burden, the identification is performed in frequency domain. For improved numerical
conditioning, a discrete-time translation is considered [9] before applying the discrete Fourier transform to system (20.3)

zkX.k/ D AdX.k/C BdE.k/
Q.k/ D CX.k/C DE.k/

(20.5)
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where zk D e2j�k=Ns , Ns is the number of recorded samples in the time series. Knowing the extended input E and output Q,
we want to determine the order of the system n and the system matrices Ad, Bd, C end D.

20.2.2 The Output-State-Input Equation

In practical applications, only a limited set of degree of freedom (DOF) in p.t/ and q.t/ are excited and observed, respectively.
Therefore, the problem is preferably stated in terms of measured applied force u.t/ 2 R

m�r and displacement y.t/ 2 R
l�r, so

that e.t/ 2 R
sCm. Equation (20.5) is rewritten as

zkX.k/ D AdX.k/C Be
dE.k/

Y.k/ D CdX.k/C De
dE.k/

(20.6)

where Y.k/ is the discrete Fourier transform of y.t/ and the state space matrices are now a projection of the original matrices
onto the observed and controlled DOFs. In what follows, the subscript d is dropped for brevity. The measured input and
output spectra are rearranged in block Hankel matrices

Yi D

2

6
6
6
6
6
4

Y.1/ Y.2/ : : : Y.N/
z1Y.1/ z2Y.2/ : : : zNY.N/
z21Y.1/ z22Y.2/ : : : z2NY.N/
:::

:::
: : :

:::

zi�1
1 Y.1/ zi�1

2 Y.2/ : : : zi�1
N Y.N/

3

7
7
7
7
7
5

2 R
li�N (20.7)

where i is a user-defined index which must be chosen to encompass sufficient information to identify the system. N is
the number of non-necessary equidistant frequency lines taken for the identification procedure. The extended observability
matrix �i and the lower block Toeplitz matrix Hi are defined as

�i D
h
CT CAT CA2

T
: : : CAi�1T

iT 2 R
li�n

Hi D

2

66
6
6
6
4

De 0 0 : : : 0

CBe De 0 : : : 0

CABe CBe De : : : 0
:::

:::
:::

: : :
:::

CAi�2Be CAi�3Be CAi�4Be : : : De

3

77
7
7
7
5

2 R
li�.sCm/i

(20.8)

By making recursive use of Eq. (20.6), the output-state-input matrix equation is obtained

Yi D �iX C HiEi (20.9)

here X 2 R
n�N is the unknown state spectrum.

20.2.3 Estimation of the State Matrices and the Order of the System

The subspace identification method can now be applied to (20.9) to determine the order of the system and the matrices of the
state space system (20.6). The algorithm consists of two main steps.

• First, the term depending on the input and the nonlinearities, namely HiEi is eliminated. This task is achieved through an
orthogonal projection onto the orthogonal complement of Ei. Then a singular value decomposition (SVD) of the result of
the projection is performed. The order of the system and the estimated extended observability matrix are determined from
the result of the SVD.
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• The next step consist in computing the matrices of the state space system. Matrices A and C are easily computed by
making use of the shift property of �i. The procedure for computing matrices B and D is discussed in [11] (or in [13] for
a general presentation of subspace-based identification methods).

Note that the state space matrices are obtained only within a similarity transformation matrix T, so that

Ac D T OAcT�1; Bc D T OBc; C D OCT�1; D D OD (20.10)

It is possible to define a similarity transformation matrix to express the identified matrices in the physical state-space domain
(i.e. x D ŒqT ; PqT �T ). Using Eq. (20.10), the problem is formulated as follows

T OAc D
	

T1 T2
T3 T4


 	
A1 A2
A3 A4



D
	

0r�r Ir�r

�M�1K �M�1C


 	
T1 T2
T3 T4




OC D �
C1 C2

� D �
Ir�r 0r�r

� 	T1 T2
T3 T4


 (20.11)

which gives

T1A1 C T2A3 D T3
T1A2 C T2A4 D T4
C1 D T1
C2 D T2

(20.12)

Therefore the obtained similarity transformation matrix reads

T D
	 OC

OC OAc



(20.13)

Usually, a last procedure to compute the nonlinear coefficients �j from the estimated matrices is performed. However, this
step is not necessary for the continuation procedure.

20.3 Harmonic Balance-Based Continuation Method

In this section, the computation of the periodic solution using the harmonic balance method is presented.

20.3.1 Harmonic Balance Formulation

The harmonic balance method is applied directly to the state-space system (20.3), where the state space matrices are those
obtained using the FNSI method ( OAc; OBc; OC and OD). In what follows, the hats are dropped for simplicity of notation. The state,
output and input variables are approximated by Fourier series truncated to the N-th harmonic

x.t/ D X0p
2

CPN
jD1 Xcj cos.kj�/C Xsj sin.kj�/

q.t/ D Q0p
2

CPN
jD1 Qcj cos.kj�/C Qsj sin.kj�/

e.t/ D E0p
2

CPN
jD1 Ecj cos.kj�/C Esj sin.kj�/

(20.14)

where � D !t, ! is the pulsation of excitation. Qcj and Qsj are the unknown Fourier coefficients related to the cosine and sine
terms, respectively. Note that the Fourier coefficients of e.t/, depends on the Fourier coefficients of q.t/ due to the nonlinear
basis functions gj. k 2 R

N is the vector containing the different harmonics. The Fourier coefficients are gathered into vectors
as follow
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Q D �
Q0 Qc1 Qs1 : : : QcN QsN

� 2 R
.2NC1/l

X D �
X0 Xc1 Xs1 : : : XcN XsN

� 2 R
.2NC1/n

E D �
E0 Ec1 Es1 : : : EcN EsN

� 2 R
.2NC1/.sCm/

(20.15)

Using (20.15), the variables are rewritten in compact form as follow

x.t/ D .T.�/˝ In/X
q.t/ D .T.�/˝ Il/Q
e.t/ D .T.�/˝ IsCm/E

(20.16)

where T.�/ is a vector gathering the trigonometric functions as

T.�/ D
	
1p
2

cos.k1�/ sin.k1�/ : : : cos.kN�/ sin.kN�/



2 R

.2NC1/ (20.17)

The time derivative of x.t/ can be written using a linear operator as

dx

dt
D !

d

d�
D !

�
dT.�/

d�
˝ In

�
X D !Œ.T.�/r/˝ In�X (20.18)

with

r D

2

6
6
6
4

0

r1

: : :

rN

3

7
7
7
5

with rj D
	
0 kj

�kj 0



(20.19)

Substituting Eqs. (20.16), (20.18) into (20.3) and applying Galerkin procedure gives

!.r ˝ In/X D .I.2NC1/ ˝ Ac/X C .I.2NC1/ ˝ Bc/E
Q D .I.2NC1/ ˝ C/X C .I.2NC1/ ˝ D/E

(20.20)

Rearranging, the following residue equation is obtained

h.Q; !/ � Q � G.!/E.Q/ D 0 (20.21)

with

G.!/ D .I.2NC1/ ˝ C/ƒ�1.I.2NC1/ ˝ Bc/C .I.2NC1/ ˝ D/
ƒ D !.r ˝ In/ � .I.2NC1/ ˝ Ac/

(20.22)

The Fourier coefficients of the nonlinear terms are computed using alternating-time-frequency method (AFT) [4], that takes
advantage of the fast Fourier transform to compute E

Q
FFT�1

����! q.t/ ! e.p.t/; q.t/; Pq.t// FFT��! E (20.23)

20.3.2 Continuation of Periodic Solutions

In order to track a branch of periodic solutions, a predictor-corrector method based on pseudo-arclength parametrization
is used. Denoting JQ and J! the Jacobian matrices with respect to Q and !, respectively, the tangent vector t.i/ at a point
.Q.i�1/; !.i�1// along the branch reads
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"
JQ J!
tT
.i�1/

#

t.i/ D
	
0

1



(20.24)

The last equation from (20.24) prevents the continuation procedure from turning back. The tangent vector is used to compute
a prediction for the next step .Q.0/

.i/ ; !
.0/

.i/ / using the step length ıs. Generally, the predicted value does not satisfy Eq. (20.21).
Therefore a correction stage based on Newton’s method is performed. In order to be able to deal with turning points, we seek
corrections in a direction orthogonal to the tangent vector

"
JQ J!

tT
.i/

#	
�Q.kC1/
�!.kC1/



D
"

�h.Q.k/
.i/ ; !

.k/

.i/ /

0

#

(20.25)

with Q.kC1/
.i/ D Q.k/

.i/ C �Q.kC1/, !.kC1/
.i/ D !

.k/

.i/ C �!.kC1/. Corrections are performed until the convergence criterion is
satisfied.

20.4 Numerical Example

In this section, a numerical application of the method based on synthetic data is presented. The studied system consists of
two coupled Duffing oscillators. The corresponding equations of motion are given by

Rq1.t/C cPq1.t/C kq1.t/C �1q1.t/3 C d.q1.t/ � q2.t// D p.t/
Rq2.t/C cPq2.t/C kq2.t/C �2q2.t/3 C d.q2.t/ � q1.t// D 0

(20.26)

where �1 D �2 D k D 1; c D 0:1 and d D 5. From Eq. (20.26), the nonlinearities are defined by the nonlinear
coefficients �i, gi D qi.t/3 (i D 1; 2), b1 D Œ1; 0�T and b2 D Œ0; 1�T . Therefore, the extended input vector reads
e.t/ D Œp.t/; 0; q1.t/3; q2.t/3�T . The first mass is excited by a single band-limited (0–80 rad/s) normally distributed random
signal (5000 points) repeated 8 times. Its root-mean-square (r.m.s.) value is equal to 3N. Numerical integration of the
equations of motion was performed using fourth order Runge-Kutta method. The last 5000 points of the result of the
numerical integration, resampled at 200 rad/s, are used as input to generate the extended input vector. Remark that the input
band was chosen to encompass the third harmonic of the highest natural frequency. The model order n D 4 is determined
from the inspection of the singular value plot depicted in Fig. 20.2 with i D 40 block rows. A jump of four orders of
magnitude between model order four and five is observed. Also, as shown in Fig. 20.2, an excellent agreement between the
theoretical and identified FRF of the underlying linear system is observed.

Figure 20.3 displays the complex and frequency-dependent estimation of the nonlinear coefficients determined from the
extended FRF [9]. Note that this step is unnecessary for the continuation procedure and only serves as an indicator of the
quality of the identification. Effectively, a correctly estimated system should lead to an almost constant nonlinear coefficient
over the frequency range of interest and an imaginary part several orders of magnitude below the real part. In this case, a
variation of less than 1% of the real part of the nonlinear coefficients in the frequency range of interest is observed. The
imaginary parts are three and four orders of magnitude lower that the real parts for the first and second nonlinear coefficient,
respectively.

The identified Bc matrix in the physical state-space domain, denoted QBc, computed using Eqs. (20.10), (20.13) yields

QBc D

2

6
6
4

0:016 0 0:016 0

0 0 0 0:016

0:997 0 0:998 0

0 0 0 0:998

3

7
7
5 (20.27)

The values of the nonlinear coefficients are close to the original model in Eq. (20.4). However, the structure of QBc is not
conform with the theoretical expectation, since undesired terms that are approximatively two orders of magnitude smaller
than the nonlinear and the forcing coefficients are present in the first block row of QBc. The effect of these undesired terms can
be apprehended by rewriting the identified physical state-space model into the physical space. The identified system reads



20 Obtaining Nonlinear Frequency Responses from Broadband Testing 225

2

66
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where the tildes denote the coefficients identified using the FNSI method and expressed in the physical state-space domain.
The terms Bi (i D 1::3) denote the undesired terms of the QBc matrix. Using the matrix C [which is the exact due to (20.11)],
the reconstructed model in the physical-domain is written by

Rq1 C QcPq1 C Qkq1 C Q�1q31 C Qd.q1 � q2/ � 3B2q21 Pq1 D Q�f p.t/C B1 Pp.t/
Rq2 C QcPq2 C Qkq2 C Q�2q32 C Qd.q2 � q1/ � 3B3q22 Pq2 D 0

(20.29)

It is seen that the term B1 modify the excitation while the terms B2 and B3 constitute spurious nonlinearities corresponding
to Van der Pol damping added to the identified model. These terms are conform with the assumed nonlinear basis functions
and must be forced to zero in order to recover a coherent identified system.

The result of the numerical continuation is depicted in Fig. 20.4 for a forcing amplitude of 2N. Solid and dotted lines
correspond to stable and unstable periodic responses, respectively. Black and blue lines correspond to the theoretical and
identified frequency response curves of the system, respectively. The circles and the squares represent fold and Neimark-
Sacker bifurcations, respectively. Both responses of the theoretical and identified model were obtained using the continuation
procedure. The frequency response curve of the identified model without and with the undesired terms Bi are depicted in the
left and the right graph, respectively.

The frequency response curve of the identified model when the spurious terms (termed FNSI updated) have been removed
matches almost exactly the theoretical predictions. Both fold and Neimark-Sacker bifurcations are identified in agreement
with the theoretical prediction. On the contrary, as observed on the right plot, even if these spurious terms are small compared
to the identified nonlinear coefficients, they lead to strongly erroneous results and therefore must be removed from QBc.
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Fig. 20.2 Left: plot of the twenty first singular values with i D 30. Right: theoretical (grey dotted line) and identified (black solid line) FRF of the
underlying linear system
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20.5 Conclusion

In this paper, an algorithm coupling the frequency nonlinear subspace identification method and a harmonic balance based
continuation method for the simulation has been presented. The objective of this procedure is to obtain the nonlinear
frequency response curves of a nonlinear system directly from random measurements. Since the identification procedure
is carried out in the state space domain, the simulation is also performed in the state space domain, which prevents from
reconstructing the identified model in physical space. An expression of the similarity transformation matrix which allows
the identification of spurious nonlinearity has been presented. The method has been tested on a numerical application with
a two degree of freedom Duffing oscillator. The theoretical and identified frequency response curves are in good agreement.
The nature and location of the bifurcations is also recovered. The origin of the spurious terms in the identified matrix Bc has
not been yet identified, which will be the object of further work.
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Chapter 21
Experimental Study of Isolated Response Curves
in a Two-Degree-of-Freedom Nonlinear System

T. Detroux, J.P. Noël, G. Kerschen, and L.N. Virgin

Abstract In the present paper, the observation and characterization of isolated response curves (IRCs) are experimentally
reported in the case of a nonlinear system consisting of two masses sliding on an horizontal guide. Transverse springs are
attached to one mass to provide the nonlinear restoring force, and a harmonic motion of the complete system is imposed by
prescribing the displacement of their supports. The existence of an IRC is related to a 3:1 internal resonance between the
two modes of the system. The observed IRC is studied in detached and merged conditions using swept-sine excitations and
system perturbations.

Keywords Isolated response curve • Internal resonance • Experimental observation • Two-degree-of-freedom system •
Sine-sweep excitation • Perturbations

21.1 Introduction

Isolated response curves (IRCs) are an intriguing feature of nonlinear dynamics. They correspond to closed loops of solutions
emerging in nonlinear frequency responses and which are, by definition, detached from the main response branch [1]. IRCs
may thus go easily undetected in the analysis of the forced response of a nonlinear system, whether it be numerically
employing classical continuation techniques, or experimentally applying sine-sweep excitations. However, an increase in
forcing amplitude may cause the merging of the main branch and the IRC, resulting in dramatic frequency and amplitude
shifts of the resonance location. This renders IRCs potentially dangerous in practice for engineers designing systems likely
to operate in nonlinear regimes of motion [2, 3].

In [4], the authors investigated numerically a series of intrinsic features of IRCs, in particular their creation mechanism,
the evolution of their bifurcations according to parameter variations and their basins of attraction. In the present paper, the
observation and characterization of IRCs are experimentally reported in the case of a two-degree-of-freedom, base-excited
mechanical system with nonlinear hardening springs. As it is conjectured that interactions between nonlinear modes underlie
the existence of IRCs [5, 6], potential 3:1 internal resonances between the in-phase and out-of-phase modes of the system
are specifically studied. Section 21.2 details the experimental setup of interest. In Sect. 21.3, the forced response of the setup
to swept-sine excitations of various amplitudes is analyzed. The existence of an IRC is revealed through the sudden shift
undergone by the resonance frequency of the in-phase mode. Perturbations are also applied to the system to observe the IRC
when detached. Conclusions of the paper are summarized in Sect. 21.4.

21.2 An Experimental Two-Degree-of-Freedom System with Hardening Springs

The experimental setup consists of two masses sliding on an horizontal guide, as shown in Fig. 21.1a, b. The masses
are connected together and to the ground through extension springs, whose lengths and stiffnesses determine the static
equilibrium of the system. Motion of the masses is recorded by means of uniaxial accelerometers. Two transverse bungee
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Fig. 21.1 Experimental setup. (a) Top view; (b) Side view

chords are attached to mass 1 (see Fig. 21.1b) to provide a nonlinear restoring force in the direction of motion. The
displacements of the transverse spring supports are prescribed to impart motion to the two masses using a Scotch yoke
flywheel [7]. The Scotch yoke converts rotational motion into an unidirectional harmonic displacement d D D sin.!t/. The
frequency !=2� was limited to 2:7Hz in the present experimental test rig, and the amplitude D was set manually, but could
be accurately estimated.

The restoring force in the system caused by the transverse bungee chords can be theoretically written as [4]

Fnl.x/ D 2k

0

B
@1 � �

q
1C .x=l/2

1

C
A (21.1)

where x D x1 � d is the displacement of mass 1 x1 relative to the displacement of the base d, k, l and l0 denote the stiffness,
length and natural length of the lateral springs, respectively, and � D l=l0 is the pre-stress parameter. The Taylor series
expansion of Eq. (21.1) around 0 reads

Fnl.x/ D .1 � �/x C �

2l2
x3 C R3.x/: (21.2)
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Fig. 21.2 Qualitative restoring force of the lateral spring connection

Equation (21.2) indicates that the third-order term in the restoring force increases with the pre-stress parameter �. In the
present work, transverse bungee chords with no pre-stress, i.e. � D 1, were considered in order to facilitate the creation of
IRCs, as suggested in [4]. Figure 21.2 shows a qualitative estimate of the restoring force in the system calculated using the
restoring force surface (RFS) method [8], confirming the highly nonlinear behavior of the lateral spring connection.

The estimation of the linear resonance frequencies of the setup is central in this study, as the potential existence of
IRCs is conditional upon their ratio [4, 5]. For that purpose, high-amplitude impacts were manually applied to the two
masses, as illustrated in Fig. 21.3a. In this plot, three impacts on mass 2 are followed by three impacts on mass 1. The
resulting free decays can be analyzed to extract resonance frequencies. This is achieved in Fig. 21.3b by plotting the wavelet
transform of the acceleration measured on mass 1. The first three impacts mostly feature the second mode response around
6.45 Hz. No amplitude-dependence is noticed for this mode proving its linearity. Conversely, the in-phase mode of the system,
clearly observed during the three final impacts, exhibits a strong, hardening dependence upon the amplitude of motion. For
sufficiently large response amplitudes, its third harmonic is seen to coincide with the second mode frequency, which is a
necessary condition for the creation of an IRC via a 3:1 modal interaction [4]. Focusing on the tip of the free-decay behavior
of mode 1, its resonance frequency is estimated at 1.75 Hz, yielding a ratio of 3.7 between the two mode linear frequencies.
This favorable ratio was achieved by tuning the masses of the setup, which were eventually fixed to 3.67 (mass 1) and 0.45
(mass 2) kg.

21.3 Experimental Forced Responses

In this section, the forced response of the system to swept-sine base excitations of various amplitudes is studied. Throughout
the section, a sweep rate of 0:13Hz/min is considered. Figure 21.4 depicts the sweep-up (in black) and sweep-down (in blue)
responses of mass 1 for a base amplitude of 5:9mm. Clear jumps down and up occur around 2:55 and 1:8Hz, respectively.
This large bi-stability region is a result of the strong nonlinearity in the system.

In Fig. 21.5, the displacement of mass 1 in response to swept-sine forcing profiles of increasing amplitudes, namely 5,
5:7, 5:9 and 6mm, is represented. A dramatic modification of the first mode resonance frequency from 2:15 to 2:55Hz, that
is a nearly 20 % rise, is observed when increasing the base amplitude from 5.7 to 5.9 mm. This phenomenon, which also
implies an increase of the response amplitude from 0:05 to 0:11m, is to be attributed to the merging of an IRC with the main
response branch. The merging mechanism of an IRC is discussed in detail in [4] through analysis and tracking of limit-point
bifurcations.

It should be emphasized that the IRC merging in Fig. 21.5 occurs near 2:15Hz, that is, in the neighborhood of the 3:1
interaction between the in-phase and out-of-phase modes of the system. This merging frequency region is closely studied
in Fig. 21.6a–f. Figure 21.6a, b display the acceleration of mass 1 recorded for base displacements of 5:7 and 5:9mm,
respectively. In the former case, the IRC is detached, and the system jumps down to a low-amplitude solution around
2:15Hz. In the latter case, the IRC is merged, and a high-amplitude solution is continuously attainable when sweeping
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Fig. 21.3 Free-decay analysis. (a) Displacements measured on mass 1 (in black) and mass 2 (in orange) in response to three impacts applied to
mass 2 followed by three impacts applied to mass 1. (b) Wavelet transform of mass 1 acceleration

up the excitation frequency. The corresponding accelerations of mass 2 plotted in Fig. 21.6c–d show that it undergoes greater
acceleration levels than mass 1. Both mass accelerations also exhibit a strong beating behavior in the merging region in
Fig. 21.6b, d. Finally, the existence of a 3:1 internal resonance in the system is highlighted in Fig. 21.6e and f, where the
wavelet transform of Fig. 21.6c and d is plotted, respectively. A strong third harmonic component is clearly seen to emerge
in the vicinity of the out-of-phase mode frequency.

The possibility the realize a periodic solution on the detached IRC by perturbing the system is eventually investigated. For
that purpose, a base excitation of 5mm and 2:38Hz is considered in Fig. 21.7. Initially, the system vibrates at low amplitude.
A series of perturbations is applied until the IRC is reached and the motion stabilizes at high amplitude. A subsequent sweep
up on the IRC permits to determine its domain of existence. A jump down around 2:47Hz locates the right tip of its stable
part. The excitation is then swept back to 2:38Hz, where new perturbations are applied. A sweep down along the stabilized
IRC finally specifies the left tip of its stable part around 2:16Hz.
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Fig. 21.4 Response of mass 1 to a swept-sine excitation with an amplitude of 5:9mm. Sweep up (black); sweep down (blue)
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Fig. 21.5 Response of mass 1 to swept-sine excitations of increasing amplitude: 5 mm (red); 5.7 mm (yellow); 5.9 mm (black); 6 mm (blue)

21.4 Conclusions

The objective of this paper was to investigate experimentally isolated response curves (IRCs) in a two-degree-of-freedom
nonlinear system. More specifically, the paper intended to relate the existence of an IRC to a 3:1 internal resonance between
the two modes of the system. To this end, swept-sine base excitations of various amplitudes were applied to the system. A
dramatic modification of the first mode resonance frequency was noticed for small excitation amplitude increments. This
frequency jump is the likely manifestation of the presence of an IRC, which expands and merges with the main frequency
response as the excitation amplitude is increased. Nonetheless, the results reported in this paper deserve further investigation.
In particular, a reliable numerical model of the setup should be developed in order to achieve a complete understanding of
the observed phenomena.
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Fig. 21.6 Merging of the IRC. Accelerations of mass 1 (a–b) and mass 2 (c–d) and wavelet transform of mass 2 acceleration (e–f) in response to
swept-sine excitations with amplitudes of 5:7mm (first column) and 5:9mm (second column)
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Fig. 21.7 Realization of periodic solutions on the detached IRC by perturbations. The amplitude and initial frequency of the base excitation are
5mm 2:38Hz, respectively. The black and orange lines depict the displacement of mass 1 and the excitation frequency, respectively
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Chapter 22
Nonlinear Response of a Thin Panel in a Multi-Discipline Environment:
Part I—Experimental Results

T.J. Beberniss, S.M. Spottswood, R.A. Perez, and T.G. Eason

Abstract High-speed aircraft structures are susceptible to the extreme and transient effects of the associated aerodynamic
environment. These structures can experience a myriad of limit states—yield, fatigue, creep, buckling, and the response
is very often path-dependent. Hypersonics, defined as flight speeds greater than Mach 5 (Heppenheimer, NASA Technical
Report, NASA SP-2007-4232, September 2007) where aerodynamic heating drives the analysis and design, often causing
appreciable structural concerns, is a flight regime with very little practical experience. While the NASA Space Shuttle
Orbiter and other space-access vehicles routinely transit the Mach 5 barrier, long-duration air-breathing flights represent but
a scant portion of past flight-test programs. As a result, the aerospace industry accounts for the associated uncertainties in the
structural response through overly-conservative, and often program-deleterious, design assumptions. The USAF Research
Laboratory, Structural Sciences Center (SSC), is investigating and developing analysis methods to predict the changing,
nonlinear response of hypersonic hot-structures; however, there is a lack of relevant flight-test and experimental data
useful for validating these developing structures-centric methods. The SSC recently began a series of thorough wind-tunnel
experiments to provide quality, full-field experimental data for a simple, clamped nominally flat panel exposed to supersonic
flow, shock boundary-layer interactions (SBLI) and heated flow. External heating sufficient to buckle the test article during
supersonic wind tunnel experiments is being explored. Early results are presented in the present study. Additionally, wind
tunnel conditions will be sought that lead to panel snap-through dynamics. The present study documents the evolution of the
experiments, emphasizing the nonlinear response of the panel in preparation for upcoming wind-tunnel experiments. Also
discussed are the characteristics of the experimental conditions leading to the nonlinear structural response, and the full-field
displacement, pressure and thermal results necessary for model validation. Part II of this study will present the results of a
numerical study of the same structure in the supersonic environment.

Keywords Hypersonics • Thermal buckling • Nonlinear • Dynamics • Aeroacoustics • Digital image correlation

22.1 Introduction & Background

High-performance, extreme-environment [2] and hypersonic hot-structures are exposed to severe thermal gradients. When
combined with broadband boundary layer and engine exhaust noise, the results can be severely life-limiting. The structural
response to this combination of loading is often counter-intuitive underlying the nonlinear nature of the problem. In Fig. 22.1,
the aft region of a notional, reusable hypersonic vehicle is highlighted, where this combination of aerodynamic, thermal and
flight-loading leads to challenging structural design problems [3]. The relatively small aircraft region shown in Fig. 22.1
exhibits a thermal gradient of nearly 370 ıC (700ıF). This region has become a point of intense study, and the Panel 1
structure identified in Fig. 22.1 is currently being manufactured for testing. A finite element model (FEM) of that Panel
1 test article is shown in Fig. 22.2, with expected test thermal gradients for one test condition. Of course these are only
single trajectory analysis/test points, while the loading and resulting structural response are largely transient throughout the
trajectory. Capturing the transient and combined loading in a laboratory setting is a major focus of SSC research.

This aircraft region also has the added complication of having a nearby control surface which when deflected can cause
a shock boundary-layer interaction and fuselage impingement. The shock impingement scenario is a troublesome one for
aerospace designers because it amplifies both the aerodynamic loading and heating, and the conditions leading to such
a loading scenario are difficult to identify making a conservative design approach necessary. Additionally, and perhaps
most interesting from a dynamic perspective, the impinging shock will also contain a relatively low frequency oscillatory
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Fig. 22.1 Thermal analysis of Lockheed-Martin hypersonic vehicle extreme-environment tail structure

Fig. 22.2 Representative test article from the aircraft region denoted in Fig. 22.1, (a) Front-side thermal gradients and (b) back-side thermal
gradients through the substructure

component that may even couple with the structural panel dynamics. In Fig. 22.3, Beresh, Clemens and Dolling note the
case of a shock foot oscillation upstream of a 28o compression ramp [4, 5]. The surface pressure time history is obviously
unsteady, with oscillation frequencies between 1 and 10 kHz, and possibly even lower, increasing the likelihood of damaging
fluid-structural coupling.
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Fig. 22.4 SR-71 skin panel buckling

In addition to the extreme aerodynamic loading, the combination of aeroheating and structural boundary conditions
often conspire to induce aircraft panel deformation or even buckling. Aerospace structures are generally thin-gauge with
stiffener/sub-structure spacing determined to best balance weight and strength/stiffness requirements. Understanding what
loading and boundary condition combinations lead to excessive panel deformation is a challenge. In Fig. 22.4, the titanium
underside of the SR-71 is shown, with appreciable waviness. It is not known whether this deformation, and the impact to
local heating, e.g., the state of the boundary layer and vehicle drag for instance, was ever considered in the vehicle design.
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Once an aerospace panel deforms beyond a buckled state, it is susceptible to co-existing or snap-through type response.
In Fig. 22.5, Wiebe and Spottswood investigated this nonlinear behavior using a post-buckled, clamped-clamped beam as
a surrogate for constrained aerospace structures [6]. In the paper, the authors predicted the system embedding dimension
using a novel approach to the method of false nearest neighbors (FNN). The embedding dimension, itself a function of the
system response type, i.e., single-well or cross-well dynamics, provides guidance towards assembling a nonlinear reduced
order model (NLROM). More on the coupling and NLROM modeling aspects are discussed in [7] and will be discussed in
Part II of this study [8].

All of these scenarios describe conditions that aerospace analysts must account for when designing hot-structures for
hypersonic vehicles. Unfortunately, aerothermoelastic analysis methods are largely relegated to research groups, and a quick
review of past hypersonic programs will underscore the often untenable conservative design approach that industry designers
must take without methods that can capture coupled and nonlinear responses. In response, the SSC has embarked on a multi-
year experimental effort to (1) study the response of a simple, compliant panel to turbulent/SBLI, (2) develop and/or modify
full-field experimental techniques to simultaneously measure the unsteady pressure and dynamic response, and (3) refine
and develop an experimental dataset for the validation of aerothermoelastic analysis techniques. In addition to these three
goals, the SSC is also intent on exploring the experimental conditions that would allow for the study of interesting, nonlinear
behavior like the described post-buckled response.

22.2 Experimental History and Overview

The compliant panel, wind tunnel experiments are being conducted in the AFRL Aerospace Systems Directorate large-scale
RC-19 supersonic combustion research cell [9]. The RC-19 facility is a continuous flow wind tunnel designed to study the
mechanisms that govern the mixing and combustion process for supersonic combustor geometries. The facility was modified
starting in 2011 to accommodate the present, and ongoing, series of aerothermoelastic experiments. A sectional view of the
tunnel arrangement in its present form is shown in Fig. 22.6.

All of the testing was conducted at Mach 2.0, free-stream dynamic pressures (q1) of 61.7, 91.4, and 123 kPa, and total
pressures of 172, 255, and 345 kPa. Free-stream and stagnation conditions are referenced to the tunnel nozzle exit. The Mach
2 nozzle is located upstream of the test section, while the test section consists of interchangeable walls that can be configured
to meet a variety of experimental requirements.

In the first year of testing, the tunnel was modified to accommodate the compliant test article and a shock generating
wedge that could be raised continuously from flush with the tunnel bottom surface to an angle of 10o. The test article and
frame were manufactured from AISI 4140 alloy steel. The dimensions of the frame were 305 mm � 152 mm � 12.7 mm.
The 0.635 mm panel specimen was bonded to the frame, leaving 254 mm by 127 mm for the compliant panel specimen.
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Fig. 22.6 RC-19 tunnel test-section [10]

The flexible panel specimen was designed so that an appreciable number of the structural dynamic modes would be below
1000 Hz, just like a traditional aircraft panel. To accommodate this test article arrangement, the RC-19 top tunnel test section
was replaced with three-sections. The first section, containing pressure ports, was located upstream of the test article. The
second section included the compliant panel. The last section connected the modified test section to the tunnel exhaust section
and, importantly, was ported to a cavity with the top window (see Fig. 22.6) behind the compliant panel. These pressure ports
were added to the top section of the tunnel wall downstream of the compliant panel to equalize the pressure between the
panel and the top window. Equalization of the pressure was necessary to prevent yielding of the panel during tunnel start-up.
The top window allowed for the use of 3D Digital Image Correlation (DIC) to obtain the full field displacements of the panel
during testing. The sides of the tunnel also contained large windows to allow for pressure sensitive paint (PSP) illumination
and implementation of a shadowgraph set-up to visualize the flow over the test panel. During testing, and to characterize the
fluctuating pressure on the compliant panel, a fast reacting pressure sensitive paint was applied to the flow side.

The experimental procedure, described in greater detail in [11], began as follows. First the exhaust section was used to
reduce the tunnel pressure to approximately 0.2 atm, and then the tunnel was started by allowing an inflow of air and setting
the inlet total pressure to 2.65 atm. This resulted in a static pressure on the panel of 0.34 atm with the shock generator at 0ı.
The inflowing air was generally unheated thus creating a static temperature of �112 ıC and panel equilibrium temperature
of 0.5 ıC. The frame and panel temperatures were monitored at single locations each on the compliant panel and frame
throughout the test using K-type thermocouples. Test measurements did not begin until the differential temperature between
the frame and test panel, initially at room temperature, reached 6.5 ıC. The temperature difference resulted in a tensile
preload on the panel, slightly altering the dynamic response. Once a stable temperature difference was achieved, the DIC
cameras were triggered and images were recorded for 20.8 s at a sampling frequency of 5 kHz. The PSP was recorded for
5 s at 500 Hz. At the same time, the laser vibrometry data and strain gage data were recorded on a separate data acquisition
system for 60 s at a sampling rate of 10 kHz. The shock generator angle was increased in 2ı increments, and the process was
repeated until the shock generator reached 10ı. The boundary layer thickness without the shock generator is approximately
7.6 mm where the flow first meets the panel and grows to 10.2 mm at the end of the panel.

Some changes were necessary for the second year of testing. First, the frame and panel were machined from a single
block of ANSI 4150 alloy steel. A panel/frame bond-line failure during the first year of test spurred this redesign. This time
the integral frame/test panel was machined from a steel block leaving the same frame/specimen dimensions as in the first
year of testing. At the same time, a rigid 12.7 mm control specimen was also procured. A window was added to the bottom
wall test section to allow for viewing the PSP on the flow-side surface of the compliant panel. One other major change to
the testing set-up was the move from a variable angle shock generator to a fixed, 8ı angled wedge. The shock generator was
placed in the bottom wall of the tunnel turning the flow, resulting in an oblique shock-wave angle of 39ı emanating from the
tunnel bottom wall. The shock generator could translate 170 mm in the flow direction allowing the shock to impinge from
the compliant panel leading edge to near the panel mid-point as shown in Fig. 22.6. Additional lighting was added to the
test so that the high-speed camera dedicated to the PSP measurement could sample at a higher frequency. This improvement
allowed for both longer PSP measurement and a greater sampling frequency. Specifically, the cameras used for the DIC and
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Fig. 22.7 Experimental set-up for second wind tunnel entry in 2012 [10]

PSP (Photron SA5) were triggered simultaneously and images are recorded for approximately 22.5 s at a sampling frequency
of 4 kHz for the DIC and 14.5 s at 4 kHz for the PSP images. The PSP sampling was a significant improvement over the
previous year of testing. Again, laser vibrometry data and strain gage data are recorded for 60 s sampled at 20 kHz. The tunnel
test set-up, with the myriad of cameras, one Litepanel 1 � 1 Bi-Focus LED lights (305 mm � 305 mm, 1152 LED bulbs) for
the DIC measurements, and the dual-beam Polytec OFV-552 laser-Doppler vibrometer (LDV), is shown in Fig. 22.7 [10].

In the upcoming series of RC-19 experiments, planned for the winter of 2016, several important changes will be made to
this already complex arrangement. Great care will be taken to characterize the flow environment, including a boundary-layer
study using a rigid article and moveable rake. The boundary layer height will be measured at two locations along the panel
length and at one position near the tunnel wall to quantify edge/corner effects. New high-speed Photron SA-Z DIC cameras
with increased memory (from 32 to 64 GB) were purchased that allow for an increase in sampling rate, longer time records,
less required lighting, and a 4X reduction in download time. New rigid test articles were also fabricated that will provide
discrete, high speed Kulite and PCB pressure transducer measurements, providing a direct comparison with simultaneous
PSP measurements. It was noted in a companion, computational study [12], that knowledge of the full-field temperature is
necessary, and so temperature sensitive paint (TSP) and PSP will be applied to the flow-side of the test panels. Originally,
full-field temperature was to be measured using a forward looking infrared camera (FLIR), but the quartz window above the
specimen in Fig. 22.6 significantly filters the IR signature (see Fig. 22.8).

Narrower test panels (102 mm versus the original 127 mm wide ones) have also been prepared to allow for greater
understanding of the tunnel corner/wall effects on the panel. Specifically, are there appreciable tunnel corner effects, and
can the mean pressure loading be assumed uniform (two-dimensional) across the panel surface? This level of loading
characterization is important for validation purposes. A fourth camera will be used to record the SBLI and panel interactions
via high-speed shadowgraph. Finally, the cavity back pressure will be manipulated to reduce the tunnel/cavity pressure
differential, and external heating via halogen lamps will be applied, to create interesting post-buckled and snap-through
dynamic conditions. Higher-temperature experiments were conducted during the last series of RC-19 tunnel experiments,
and panel buckling was observed. Unfortunately, the heated flow quickly destroyed the PSP and so the dynamic surface
pressure was not measured.
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To prepare for this last test objective, the exploration of interesting post-buckled nonlinear behavior, an integral
frame/panel test specimen from the second year of testing was used to study panel buckling and post-buckling behavior.
This thermal testing was also used to assess the halogen lamp heating arrangement required for panel buckling during RC-19
experiments. This thermal experimental setup for the heating test is shown in Fig. 22.9. The panel is bolted to a section of
the RC-19 tunnel wall to better represent the upcoming wind tunnel experiments. Two Lowel Pro-light TM halogen lamps
were used to heat the surface of the panel. As shown in Fig. 22.8, the heat from the lamps led to a non-uniform temperature
field on the surface of the panel; however, the panel/frame temperature differential did lead to buckling. The full-field static
deflections were measured using a pair of high-resolution (6 Megapixel) Allied Vision Prosilica GT 2750 DIC cameras.

The full-field temperatures were measured using a high-resolution FLIR Systems SC6000 infrared camera shown in
Fig. 22.9. The accumulated experience from the two previous RC-19 wind tunnel experiments, and the more recent thermal
experiments, are providing the foundation for the upcoming, final RC-19 experiments. A sampling of results, emphasizing
the nonlinear nature of the experiments, will be presented and discussed in the following section.

22.3 Preliminary Results and Discussion

The principal purpose of the experiment was to measure the effects of the turbulent boundary layer and shock impingement
on the response of the panel specimen while simultaneously recording the full-field surface pressure and panel dynamic
displacement. It is the goal of the SSC to provide a relevant experimental data set for the validation of this class of aero-
structural problem. It has also always been the intent to explore interesting nonlinear experimental behavior, and the following
examples elucidate this last objective. In the first year of testing, two experimental configurations demonstrate both the
sensitivity of the panel response to SBLI and the potential for the panel to behave nonlinearly. In Fig. 22.10, two different
experimental cases are examined, where the shock generator is first flush with the tunnel bottom wall, e.g., no SBLI effect, and
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Fig. 22.9 Laboratory testing arrangement for static buckling test [7]

then raised to 10ı. Observe in Fig. 22.10(a) the marked difference in the dynamic displacement due to loading changes caused
by the impinging shock. In Fig. 22.10(b) the displacement power spectral density (PSD) exhibits all the signs of a hardening
geometric nonlinearity—the positive shift in frequency and the broadening of the response peaks in the frequency domain.
The frequency broadening stems from the stochastic (turbulent boundary layer) input to a structural system where stiffness
is a function of displacement. Finally, in Fig. 22.10(c, d), images of the surface pressure (PSP) for the no-shock/shock cases
are included to show the spatially disparate pressure loading. These PSP images were captured by looking through a window
in the tunnel sidewall, thus the skewed perspective. In the second year of testing a window was added to the bottom tunnel
wall and the images were much less skewed.

Next, consider a case (Fig. 22.11) from the second year of testing, where the panel response to SBLI and heated flow
conditions was studied using a fixed 8ı shock generator. In Fig. 22.11(a), the panel center displacement time history is
shown for both heated and unheated flow conditions. The corresponding displacement PSD is displayed in Fig. 22.11(b).
The heated wind tunnel flow quickly overwhelmed the PSP and so the surface pressure image of Fig. 22.11(c) is for the
unheated case only. Interestingly, the panel center displacement PSD of the post-buckled panel does not differ appreciably
from the unheated/non-buckled case. In the heated flow condition, the panel was buckled 2 mm (approximately 3 panel
thicknesses) into the flow; however, the dynamic response is clearly not as great as was exhibited in previous experiments.

One new variable in the upcoming experiments will be the ability to adjust the cavity back pressure to accentuate/tune
the panel dynamic response. Ideally, the conditions leading to dynamic snap-through will also be identified. To that end,
new external sources of heating are being explored to (1) exert greater control over the magnitude of panel buckling, and
(2) continue to use the PSP (and TSP) during the experiments. The results of this early experimentation can be seen in
Fig. 22.12, which displays (a) the full-field temperature field and (b) the state of the panel (displacement) from nearly
80 ıC to room temperature. Full-field DIC images of the panel displacement field correspond to several discrete temperature
points are also denoted in Fig. 22.12(b). These results were obtained by first heating the panel using the halogen lamps
and associated testing arrangement shown in Fig. 22.9, and then taking DIC and FLIR images as the panel cooled to room
temperature. The panel is initially (nominally) flat but the effect of imperfections can be observed by considering the panel
center displacement (black curve), of Fig. 22.12(b). In contrast to a perfectly-flat panel reaching a critical point beyond
which symmetric buckling occurs, the imperfect panel deflects with temperature beyond the critical point until another
stable, asymmetric equilibrium is realized. A good discussion of this very issue for panel buckling/acoustic experiments is
discussed by Murphy [13]. At maximum temperature (approx. 80 ıC) the panel did exhibit multiple (asymmetric) stable
equilibria during the experimentation and so had reached the point where the secondary branch, described by Murphy, had
appeared.
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This behavior was also observed in the numerical results shown in Fig. 22.13. The FE model of the panel displays both
the principal and asymmetric path, along with the full panel displacement at discrete locations. Future work will include
measuring this phenomena experimentally and using that data to calibrate the modal model to predict and define future
RC-19 experimental conditions.
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22.4 Conclusions and Future Work

The present investigations were started by the AFRL Structural Sciences Center to better understand the impact of turbulent
flow/shock boundary layer interaction on the dynamic response of an aircraft-like panel. A number of developing (dynamic
3D DIC and fast reacting PSP) and available (FLIR) full-field experimental techniques were used to measure both the full-
field input (surface pressures and temperatures) and response (displacement). The results demonstrated the sensitivity of thin,
constrained aircraft-like panels to SBLI and to heated flow. In addition, these panels will often behave nonlinearly which can
obfuscate the structural response prediction. Future experiments will further explore post-buckled response including the
identification of conditions necessary to both buckle the panel and induce snap-through response.
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Chapter 23
Nonlinear Dynamic Response Prediction of a Thin Panel
in a Multi-Discipline Environment: Part II—Numerical Predictions

R.A. Perez, S.M. Spottswood, T.J. Beberniss, G.W. Bartram, and T.G. Eason

Abstract Hypersonic aircraft structures must operate in a complex loading environment, where the coupling of the aircraft
structural response with the aerodynamics will lead to conditions involving rich nonlinear dynamics. The modeling of these
fluid-thermal-structural interactions is complex and prohibitively expensive when high fidelity models are used (i.e., CFD
and FEA). This aspect, and the lack of relevant flight-test and experimental data, have resulted in knowledge gaps, which
have led to the design of overly-conservative structures in the past. Work at the Structural Sciences Center (SSC) of the
USAF Research Laboratory has focused on addressing these knowledge gaps from a structures perspective. As discussed in
Part I of this paper, 3 years ago the SSC began a series of wind-tunnel experiments to provide full-field experimental data
for a clamped nominally flat panel exposed to supersonic flow. The present work will focus on numerical predictions of the
panel dynamic response using a reduced order model (ROM) for the structural response and full-field measurement data to
represent the loads on the panel.

Keywords Fluid-structure interaction • Reduced order model • Full-field measurement techniques • Structural
dynamics • Finite element analysis

23.1 Introduction

The design and operation of reusable hypersonic aircraft have presented new challenges in all areas of aerospace engineering.
The Air Force Research Laboratory (AFRL) Structural Sciences Center (SSC) at Wright-Patterson Air Force Base, Ohio,
is focused on the development of a computational framework to simulate the evolution of hypersonic aircraft structures. As
discussed by Blevins and Holehouse [1], the hypersonic environment can include significant aerothermal heating, shock-
boundary-layer interaction (SBLI) resulting in an amplification of the heating and the aeroacoustic loading, flow separation
resulting in amplification of the fluctuating pressures, or a combination of these scenarios. Therefore, the successful
simulation of the structural response requires not only a proper modeling of the structural characteristics, but also a good
characterization of the loading environment. Furthermore, design of a light-weight structure will require the designer to
step outside of the traditional aircraft design perspective of superposing the worst loading conditions to produce the most
conservative design [2, 3].

These challenges motivated a series of discovery experiments by the SSC at the large-scale supersonic combustion
research facility abbreviated herein as the RC-19 wind-tunnel [4, 5]. The purpose of these experiments was to investigate,
through full-field 3D-digital image correlation (DIC) and pressure sensitive paint (PSP), the interaction between a flexible
panel and high-speed flow, including shock-boundary layer interactions. The full-field measurement techniques allowed
Spottswood et al. [4, 5] to study the coherent structures of the flow on the panel as well as the dominant shapes of deformation
of the panel.

Inspired by the results from the RC-19 tests, Gogulapati et al. [6, 7] applied a coupled fluid-structure interaction
computational framework in an effort to model the complex response of the panel and the loading environment in the RC-19
wind tunnel. The authors of this work focused on two cases: Heated and unheated flow with shock impingement on the panel.
Their framework combined a CFD surrogate model to capture the steady surface pressure and approximate models for the
unsteady pressure fluctuations due to panel vibration and boundary layer turbulence. The structural response of the panel
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was modeled using finite element analysis (FEA) and reduced order models (ROM) built from the FEA. In a preliminary
assessment [6], they obtained good agreement between measured and computed mean distributions of the panel pressure,
in particular the location and magnitude of the peak pressure due to the shock impingement. However, the simulations
underpredicted the dynamic response of the panel in both heated and unheated flow cases. Some of the dominant sources
of uncertainty they reported included discrepancies in the natural frequencies between the FEA model and experiment, the
temperature of the panel, and interpolation of the aero-induced loading to the FEA mesh. In the second part of their study [7],
a series of sensitivity analyses were carried out to understand the impact of several sources of uncertainty on the prediction
of the response of the panel. Two main conclusions were that more information was needed to determine the temperature
state of the panel and the existence of shock unsteadiness.

In this work, numerical predictions of the RC-19 panel response will be presented. The models pertaining to the loading
environment will be replaced with the PSP data obtained from the test. This approach will enable to focus the analysis on
the model uncertainties pertaining to the structure alone. The overall objective is to assess the feasibility of replacing the
models of the complex loading environment with the PSP data. The success of this approach relies on the turbulent boundary
layer (TBL) loading being the dominant source of excitation on the panel over any two-way fluid-structure interactions,
which would require the solution of a coupled system of equations. Another potential problem with this approach is that
an uncertainty analysis of the PSP data has not been performed, so the measurement could over or underpredict the actual
pressure on the panel. Work on understanding and quantifying this measurement uncertainty will be performed in the second
round of wind tunnel tests.

The outline of this paper is as follows. Section 24.2 describes the computational models: FEA and ROM. In Sect. 24.3,
the post-processing of the RC-19 PSP and DIC data will be described. Section 24.4 will deal with the simulation of the panel
response.

23.2 Computational Model

The response of the panel was obtained using a structural ROM built from an FEA model in Abaqus
®
. This section will first

describe the finite element model of the panel. Then, a summary of the formulation of the ROM governing equations and the
construction of the ROM will be presented.

23.2.1 Finite Element Model

The RC-19 panel was machined from a 305 mm � 152 mm � 12.7 mm block of AISI 4140 alloy steel, the material properties
are shown in Table 23.1. A pocket was machined into the block leaving 0.635 mm for the compliant panel thickness over
an effective vibration dimension of 254 mm � 127 mm. The panel was modeled using S4R shell elements in Abaqus

®
. The

mesh consisted of 100 elements in the spanwise direction (along the length of the panel) and 50 in the chordwise direction
(along the width of the panel).

The initial configuration of the FEA mesh was set according to the results from [8], where the geometric imperfection
of the panel was measured with DIC. This geometric imperfection included the initial imperfection and the deformation
induced by the installation of the panel in the wind-tunnel wall.

Table 23.1 Panel geometric and
material properties

Property Value

Length 0.254 m
Width 0.127 m
Thickness 6.35 � 10�4 m
Density 7850 kg/m3

Young’s modulus 205 GPa
Poisson’s ratio 0.29
Coefficient of thermal expansion 1.22 � 10�5/K



23 Nonlinear Dynamic Response Prediction of a Thin Panel in a Multi-Discipline Environment: Part II—Numerical Predictions 251

23.2.2 ROM Formulation

The structural ROMs considered in this study are based on a representation of the nonlinear geometric response in terms of
a set of basis functions,

u.t/ D
MX

nD1
�n.t/ § .n/ (23.1)

where u(t) represents the displacement field, § (n) are specified, constant basis functions, and �n(t) are the time dependent
generalized coordinates.

Following the work by Kim et al. [9] the governing equations of the ROM can be obtained from finite deformation
elasticity and a Galerkin approach (i.e. enforcing the condition that the error introduced by the representation of the
displacement field in terms of a set of basis function be orthogonal to the same basis functions). Shown in Eq. (23.2) are the
governing equations of the ROM:

Mij R�j C Dij
:
�j C K.1/

ij �j C K.2/
ijl �j�l C K.3/

ijlp�j�l�p D Fi (23.2)

where a linear damping term Dij
:
�j has been added to collectively represent various dissipation mechanisms. Furthermore,

Mij denotes the elements of the mass matrix, K(1)
ij , K(2)

ijl , K(3)
ijlp are the linear, quadratic, and cubic stiffness coefficients and Fi

are the modal forces. The method for indirect evaluation of the coefficients in Eq. (23.2) by Hollkamp and Gordon [10] using
a finite element model was used here.

The selection of the basis § (n) represents a key step in the formulation of the reduced order modeling strategy. Following
the discussions of Hollkamp and Gordon [10], Kim et al. [9], Muravyov and Rizzi [11] and Mignolet et al. [12], the core of
the basis is formed by the linear modes of the structure, hereafter referred to as out-of-plane or bending modes, which would
appear significantly in the linear response.

23.2.3 ROM of RC-19 Panel

A nonlinear ROM of the RC-19 panel was generated using the FEA model described in Sect. 24.2.1 with the implicit
condensation approach of Hollkamp and Gordon [10]. The modes forming the basis were selected by projecting the measured
DIC displacement field on the first 12 modes of the panel. As described by Spottswood et al. [4, 5], 22 s of the response
were recorded with DIC at a sampling frequency of 4000 Hz. The resulting projection coefficients were used to reconstruct
the response, and the power spectral density (PSD) of the reconstructed response was compared against the PSD of the DIC
data at the center point of the panel. The good matching of the PSD of the DIC data, shown in Fig. 23.1, indicates that the
basis is rich enough to represent the displacement field from the DIC data. Therefore, the nonlinear stiffness coefficients of
the ROM were identified for the first 12 modes of the panel.

The measured first nine natural frequencies of the installed panel are shown in Table 23.2 along with the natural
frequencies computed with the FEA model. Also shown in Table 23.2 are the experimental modal damping ratios of the
panel obtained from a modal test of the uninstalled panel (i.e., free-free boundary conditions). The effect of the prestress
introduced after installing the panel can be clearly seen by the discrepancy in the frequencies between the measured and
predicted results. The ROM stiffness matrix is diagonal with elements equal to (2�fi)2, where fi is the ith natural frequency.
Therefore, the predicted elements of the linear stiffness terms were replaced with the measured ones. The elements of the
ROM damping matrix were set equal to their corresponding measured modal damping ratio. Time integration was performed
using the Newmark-beta method with a time step equal to 2.5 � 10�5 s.

In this work, pressure data measured during the test using PSP will be used instead of a model of the loading environment.
As described by Spottswood et al. [4, 5], the following different flow configurations were explored: no shock impingement,
shock impingement 1/3 of the length of the panel downstream of the leading edge, and shock impingement near the center
of the panel. Only the case with no shock impingement will be discussed in this paper.
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Fig. 23.1 PSD of the panel center response, DIC vs. projection results

Table 23.2 Natural frequencies and damping ratios of the uninstalled panel

Mode # Frequency Abaqus
®

(Hz) Frequency installed panel (Hz) Damping ratio (Free-free panel) (%)

(1.1) 250 227 0.22
(1.2) 313 285 0.21
(1.3) 450 422 0.13
(1.4) 628 454 0.11
(2.1) 624 570 0.11
(2.2) 697 660 0.09
(1.5) 856 791 0.10
(2.3) 816 806 0.11
(2.4) 985 950 0.07

23.3 PSP Data Post-Processing

The PSP measurement space did not cover the entire surface of the panel, but only for the subsection shown in Fig. 23.2.
The center of the PSP data measurement region is approximately equal to the center of the panel. The pressure values in the
areas outside of the measurement region were obtained by performing a nearest neighbor extrapolation.

In order to transfer the load data to the FEA model, the pressure values from the pixels within one finite element were
averaged leading to a constant pressure within every finite element; this is shown in Fig. 23.3 where a finite element contains
81 pixels.

A challenge of working with full-field measurements is the size of the data files. For the PSP grid of the case with no
shock (526 � 654 pixels) 10 GB were required to store 1 s of data. The structural response predictions will be performed
using 1 s of PSP data.

A cavity located on the back side of the panel was used to equalize the front and back side pressure on the panel, thereby
mitigating the possibility of yielding the panel during tunnel start-up. Therefore, the pressure load applied on the panel was
equal to the pressure differential between the front (PSP data) and back (measured with a pressure transducer located in the
cavity).

In the next section the response of the panel due to the pressure loading obtained from the PSP data is discussed.
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Fig. 23.2 Schematic showing PSD measurement space relative to the area of the panel for the case with no shock impingement
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23.4 Simulation of Structural Response

Test results from the DIC measurements are compared against ROM predictions in this section. Updating of the ROM was
necessary in order to improve the matching of the experimental data. These modifications and the results will be discussed
in this section.

Shown in Fig. 23.4 is a comparison of the PSD of the predicted and measured panel response at the center point of the
panel. The ROM in its current state overpredicted the panel response. There is also a discrepancy in the frequencies of the
last two peaks in the PSD.

In order to understand the source of the discrepancy in the ROM prediction, operational modal analysis (OMA) was
applied to the full-field DIC data for the dominant peaks of the PSD. The DIC speckled pattern for this case is shown in
Fig. 23.5. The pattern consists of an array of 45 points. In subsequent cases, the pattern was extended to cover most of the
area of the panel. The coarse grid sets a limit on the modes that can be explored with OMA.

Shown in Fig. 23.6 is the PSD of the panel center point response. The deflected shapes are the singular vectors resulting
from the decomposition of the Hermitian auto and cross-spectral density matrix. The shapes shown in Fig. 23.5 correspond
to the maximum singular vector for a particular frequency. This approach was used by Spottswood et al. [4, 5] in order to
observe the dominant aspects of the response at a given frequency. The ODS of the dominant peak, located at 230 Hz, is a
combination of modes 1 and 2. The response at 470 Hz is dominated by mode 3 and the response at 870 and 1080 Hz is
dominated by modes 8 and 12, respectively.

Based on the observations made from the ODS, the linear stiffness terms corresponding to modes 3, 8, and 12 were
modified with the frequencies from the PSD of the DIC data. Shown in Fig. 23.7 is the response at the center point of the
panel with the updated linear stiffness terms. While the updated ROM still overpredicts the response, the matching of the
location of the peaks improved.
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Fig. 23.4 PSD of panel center point response, DIC vs. ROM

Fig. 23.5 Panel top-surface and frame with DIC speckled pattern for the case with no shock impingement

Spottswood et al. [4] observed that the panel vibration has an effect in the flow near-field. This can be seen in Fig. 23.8,
which shows the PSD of the pressure data at the panel quarter, middle, and three-quarter points. The effect of the panel
vibration can be observed by the peaks in the PSD at frequencies that match the frequencies of the dominant peaks in the
panel response. The exact physical mechanism leading to those peaks has not been determined yet.

Next, pressure data obtained for the same nominal flow conditions, but with a rigid specimen instead of the compliant
panel, was used. Shown in Fig. 23.9 is the updated PSD of the panel center point response. There is a clear decrease in the
response level when compared to the results obtained using the pressure data for the compliant panel. However, the level of
the predicted response is still higher than the test data. As discussed by Hollkamp et al. [13] coupling between the structure
and acoustics can lead to additional damping.

Next, the damping of modes 1, 3, and 8 was increased. Shown in Fig. 23.10 is the PSD of the panel center response
obtained with the updated damping matrix. The resulting damping ratios as well as the original ones are shown in Table 23.3.
Shown in Fig. 23.10 is the PSD of the response at the center point of the panel. The prediction of the ROM with updated
damping agrees well with the test data.

As it was mentioned in the Introduction, quantification of the measurement error in the PSP data will be performed in the
upcoming wind tunnel tests. This will help clarify if extra damping required to improve the ROM predictions is necessary or
if measurement error in the PSP is leading to a higher pressure than the one actually seen by the panel in the test.
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Fig. 23.6 PSD of panel center point response and displacement operational deflected shapes

Fig. 23.7 PSD of panel center point response, DIC vs. ROM

23.5 Summary

The results from a modeling effort of the dynamic response of a compliant panel in a supersonic wind tunnel were presented.
The aero-induced loading was obtained from PSP data measured during the wind tunnel test. The response of the panel
was computed using a ROM that includes geometric nonlinear effects and the ROM predictions were compared against data
measured using DIC.

The case considered consisted of turbulent flow over a compliant panel with no shock impingement. The response for this
case was seen to be in the nonlinear regime, but the shift in the natural frequency of some of the peaks was considered to
be too large to be attributed to the geometric nonlinear stiffening due to the vibration of the panel. Computation of the ODS
revealed that the three peaks in the PSD of the response that shifted to higher frequencies were dominated by modes 3, 8,
and 12, respectively. Modification of the linear stiffness terms corresponding to these modes led to an improvement in the
ROM predicted response. Increasing the modal damping led to an excellent matching of the test data. The effect of the panel
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Fig. 23.8 PSD of PSP data at panel quarter, center, and three-quarter points

Fig. 23.9 PSD of panel center point response, DIC vs. ROM

Table 23.3 Original and updated damping ratios for case with no
shock

Mode # Original damping ratio (%) Updated damping ratio (%)

(1.1) 0.22 3.4
(1.3) 0.13 0.6
(2.3) 0.10 0.5

vibration on the flow was seen in the PSP data. This could be due to coupling between the structure and acoustics that leads
to increased damping in the response. Use of the PSP data obtained from a rigid specimen without the shock impingement
led more reasonable modal damping ratios.
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Fig. 23.10 PSD of panel center point response, DIC vs. ROM
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Chapter 24
Stability Analysis of Curved Panels

Ilinca Stanciulescu, Yang Zhou, and Mihaela Nistor

Abstract Aerospace, mechanical and civil engineering systems extensively use curved panels as structural components.
The curved panels exhibit high risk of loss of stability especially with modern requirements for increasingly lighter designs.
Correct identification of the load-carrying capabilities and thorough understanding of the stability behavior under transient
excitations provide necessary information to safely design such structural components. In this work we use the arclength
and branch-switching methods to correctly identify the buckling load and all equilibria. Compared to other methods, prior
knowledge of the bifurcation modes is not required and the same mesh is used for tracing all secondary equilibrium paths.
This method can identify secondary branches that other procedures failed to retrieve. Finally, the transient behavior of curved
panels is also examined; in particular we seek to identify the dynamic snap-through boundary that separates small amplitude
non-snap from large amplitude post-snap vibrations. Typically, analytical solutions for such highly nonlinear behavior are
not available, and extensive parametric studies are usually required leading to very high computational cost. We examine the
connections between different dynamic snap-through boundaries and seek to correlate them with features of the equilibrium
manifold to identify computationally more efficient ways for their estimation.

Keywords Nonlinear stability analysis • Critical points • Arclength and branch-switching methods • Stability
boundaries • Snap-through

24.1 Introduction

Cylindrical shells are used in engineering applications as structural components in a variety of systems such as aircraft, tanks,
pipelines, and offshore platforms. As structural components, curved panels have efficient load-carrying capabilities but also
exhibit high risk of buckling failures.

Safe design of the structural components requires correct identification of the critical load and thorough understanding of
the stability behavior under transient excitations. In the literature a variety of methods were adopted for the stability analysis.
For example, early studies used the classical buckling theory to approximate buckling loads [1–4]. This approach usually
overestimates the buckling load, ignores bending effects before buckling and does not retrieve postbuckling responses. In
order to conduct postbuckling analysis, the perturbation approach was introduced [5]. However, this method is typically
valid only in the vicinity of critical points. Widely used to perform nonlinear postbuckling analysis are path following
schemes such as Newton-Raphson or arclength methods. The major disadvantage of these approaches is that they are unable
to trace secondary equilibrium paths. The asymmetric meshing technique [6, 7] revealed on a benchmark problem the
existence of a bifurcation buckling in asymmetric mode, which was previously unidentified. Nevertheless, some features
of the postbuckling behavior still remained unnoticed. In [11], using an arclength method combined with a branch-switching
method [8, 9] we found two previously undetected pairs of bifurcation points and consequently two other pairs of secondary
paths for the benchmark problem. One of the secondary paths contains equilibrium configurations that are stable. While these
equilibria cannot be reached through a continuous stable path, they are still important: perturbations in the system may lead
to dynamic jumps to these states. The identification of additional unstable equilibria also reveals that the degree of instability
of the system is higher than what researchers previously found.
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Curved thin panels are also subject to dynamic instabilities, in particular to snap through buckling (jumps between remote
configurations) characterized by sudden curvature reversals and resulting into increased fatigue risk. Identification of stability
boundaries is an important step towards safe design and requires a thorough examination of the parameter space. Two
loading parameters will be considered in this study (the amplitude and frequency of the load) and methods for the efficient
identification of the stability boundaries will be examined.

24.2 Static Stability Analysis

In this section, we first briefly describe the numerical procedure that combines arclength and branch-switching methods
to find the critical points and corresponding postbuckling equilibrium paths. Then the numerical procedure is applied to a
benchmark cylindrical panel [10] to show its advantages and lastly is used for comparing the differences between a panel with
constant thickness and an orthogrid panel that has the same volume of material and the same length and width dimensions.

24.2.1 Numerical Procedure

Nonlinear buckling and postbuckling analysis requires identification of critical points on the equilibrium path. Critical points
are points where a system has qualitative changes in its response, of which we are primarily interested in the loss of stability.
For an elastic system, at a critical point the tangent stiffness matrix becomes singular. These points can be differentiated into
limit or bifurcation points (Fig. 24.1). After the detection of the critical points, the branch-switching method proposed in
[8, 9] is adopted to switch at a bifurcation point from the primary equilibrium path to the secondary equilibrium path.

The combined numerical procedure used to perform a thorough nonlinear buckling and postbuckling analysis can be
summarized as follows: (1) the primary equilibrium path is traced by an arc-length method while monitoring the lowest
eigenvalues of the tangent stiffness; (2) all critical points on the primary path are found by identifying the configurations for
which eigenvalues change sign; (3) the critical points are classified into limit and bifurcation points; (4) the bifurcation points
are differentiated into simple and multiple bifurcation points by the multiplicity of zero eigenvalues; (5) the branch-switching
method is used to switch from the primary path to a secondary path at a bifurcation point; (6) the remaining solutions on
every secondary path are traced using the arclength method. The process is recursive and each secondary path can be further
examined to identify the presence of other limit points and /or of branching. For a detailed description of the method, the
interested reader is referred to [11].

A limit point A bifurcation point

a b

Fig. 24.1 Critical points on equilibrium path. (a) A limit point; (b) A bifurcation point
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24.2.2 Benchmark Panel

The benchmark example is a circular cylindrical panel (radius R D 2540 mm and thickness t D 6.35 mm) with simply
supported longitudinal edges of length a D 508 mm and free curved circumferential edges of projected length b D 507.15 mm
(Fig. 24.2). The material is isotropic with Young’s modulus E D 3102.75 MPa, and Poisson’s ratio �D 0.3. PC represents the
symmetry plane perpendicular to the circumferential edge and PL is the symmetry plane perpendicular to the longitudinal
edge. A point load is applied in positive z direction at the center of the panel. The numerical simulations are performed with
the Finite Element Analysis Program (FEAP) [12].

Using the numerical procedure described in [11] we find the primary equilibrium path (solutions symmetric with respect
to both PC and PL) and three secondary equilibrium branches containing solutions with different asymmetries (Fig. 24.3a).
The secondary path C was previously identified with the asymmetric meshing technique [6], but the numerical procedure
adopted in [11] also identified path L and path B.

The primary equilibrium path (Fig. 24.3a, solid line) is traced by the arclength method, while monitoring several lowest
eigenvalues of the tangent stiffness matrix K. On this equilibrium path a pair of limit points (points with horizontal tangents)
is detected and the limit point critical load is Pcr D 595.20 N. Figure 24.3b shows the lowest five eigenvalues of the tangent
stiffness matrix on this primary equilibrium path. The critical points are found by identifying all zero eigenvalues. If we
monitor œ1 (dashed line), the lowest eigenvalue of the tangent stiffness matrix, its positive value at zero load decreases as the
load is increased, becomes zero and then negative. The point where it becomes zero indicates the existence of a critical point.
This point is a bifurcation point, because there is no horizontal tangency here. Similarly, if we trace œ2 (solid line), the second

Fig. 24.2 Benchmark cylindrical problem geometry and material properties

a b

Fig. 24.3 Solution of the benchmark example. (a) All connected equilibrium paths; (b) Five lowest eigenvalues
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a b

Central deflection [mm] Eigenvalues of the stiffness

Fig. 24.4 Stability of equilibria on secondary path L. (a) Secondary equilibrium path L; (b) Three lowest eigenvalues

lowest eigenvalue of the tangent stiffness matrix, its positive value decreases as the load increases, becomes zero and then
negative. The point where it becomes zero corresponds to a critical point, which is a limit point in this case. If we continue
on the path, we find that œ3 and œ4 also become zero and they correspond to bifurcation points. The fifth lowest eigenvalue
of the tangent stiffness matrix, œ5, is positive all the time, an indication that all critical points on the primary equilibrium
path were identified. Looking at the four lowest eigenvalues of the tangent stiffness matrix, after they become negative, at
certain load levels they cross once more the zero value, indicating the existence of paired critical points where the bifurcated
branches rejoin the primary path. Figure 24.3a also shows the deformed shapes on each of the equilibrium paths.

The stability for each of the equilibrium paths can be assessed with the aid of the eigenvalues of the tangent stiffness
matrix. If all eigenvalues are positive, then the equilibrium path is stable, while if at least one is negative, then the equilibrium
is unstable. Figure 24.4 reveals an interesting feature of the secondary equilibrium path L. For instance, for loads from
171.6N to 173.8N all eigenvalues on path L are positive (Fig. 24.4b), indicating that within this load interval the secondary
equilibrium path in stable. Note that a detailed examination of paths C, L and B was not performed and further branching
from these paths is still possible but did not make the object of this study.

24.2.3 Orthogrid Panels

The ability to find all critical points on the primary equilibrium path and the secondary equilibrium branches, allows the
assessment of the degree of instability for a structural element subject to static loads. Orthogrid panels (grid stiffened shells)
are known to have superior strength and stiffness to weight ratios. To verify the better performance of orthogrid panels
compared to panels with constant thickness, consider the following example. An orthogrid panel and a constant thickness
panel (Fig. 24.5) having the same material properties, the same length a D 180.3 mm and width b D 152.4 mm, and the
same volume of material. The thickness of the constant thickness panel is tp D 1.8 mm, while the thickness of the membrane
(backing) of the orthogrid is tog D 1.4 mm and of the height of its stiffening ribs is tr D 3.8 mm. The material is isotropic with
Young’s modulus E D 2400 MPa, and Poisson’s ratio �D 0.33.

Unlike the initially curved panel discussed in Sect. 24.2.2, in this section we examine panels that are initially flat, buckle
to a certain buckling level due to axial loads and then are subject to transverse loadings that can induce snap-through. The
sequence of loading is thus applied in two stages (Fig. 24.6). In the first step the panels are axially compressed until a certain
buckling level (rise) is reached and in the second step lateral loading is applied. The response of a structure under this type
of loading will vary with the buckling level, in the same manner in which the behaviour of initially curved panels depends
on the panel rise.

The responses for the orthogrid and the constant thickness panels when buckled to a rise of 3.5 mm are shown in Fig. 24.7.
The constant thickness panel has three secondary equilibrium branches, while the orthogrid panel has only one, indicating
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Fig. 24.5 Orthogrid and constant thickness panel geometry and material properties

Fig. 24.6 Loading sequence for the orthogrid and constant thickness panel
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Fig. 24.7 Equilibrium paths for constant thickness panel and orthogrid panel that were buckled to a rise of 3.5 mm. (a) Constant thickness panel;
(b) Orthogrid panel

that the degree of instability for the constant thickness panel is higher than for the orthogrid. Also, the value at which the loss
of stability occurs is lower for the constant thickness panel. The loss of stability occurs at a bifurcation point for the constant
thickness panel and at a limit point for the orthogrid panel.

For the orthogrid panel, the loss of stability will eventually move from a limit point to a bifurcation point, but this happens
at higher rises than for the constant thickness panel. Figure 24.8 shows with solid line the load values at which loss of
stability occurs for the constant thickness panel, and with dashed line the load values for the orthogrid panel. The figure also
illustrates the rise at which the loss of stability switches from a load corresponding to a limit point to a load corresponding to
a bifurcation point. This switch takes place at lower rises for the constant thickness panel. Although at lower rises both the
orthogrid and the constant thickness panels have similar critical force values, as the rise increases the load at which loss of
stability happens increases significantly faster for the orthogrid panel.
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Fig. 24.8 Load at which loss of stability occurs at various rises for the orthogrid and constant thickness panels

24.3 Dynamic Analysis

To understand the stability behavior under transient loading, it is of interest to identify the dynamic snap-through boundary.
This boundary separates the small amplitude non-snap from large amplitude post-snap vibrations. Obtaining it requires a
high computational cost because of the extensive parametric studies that are involved.

For this section we consider again a simple curved cylindrical panel but shallower than the benchmark example (rise
5.08 mm). All other material and geometrical properties are the same as for the benchmark panel (Fig. 24.2) discussed
in Sect. 24.2.2. Distributed load is applied statically and dynamically. Figure 24.9a shows the primary equilibrium path
obtained, on which, except for the limit points, there are no other critical points. This indicates that no branching takes place
for this system and that snap-through will always be controlled by the limit point. For the transient analysis we investigate
the loading space by performing simulations with different forcing frequency and amplitude. The snap-through boundary
obtained from sweeping the parameter space is shown in Fig. 24.9b.

Pairs of forcing amplitude and frequencies above the snap-boundary (gray) correspond to loading cases that result in
responses exhibiting snap-through, and the ones below the snap-boundary (white) to responses that do not experience snap-
through. Figure 24.10a shows the small amplitude (no snap) response for a forcing amplitude of P D 213.348 Pa and a
frequency of¨D 116.3018 rad/s (blue square in Fig. 24.9b) with a displacement range in the interval [�1.5, 1] mm. Similarly,
Fig. 24.10b shows the large amplitude response for a forcing amplitude of P D 240.0165 Pa and the same frequency of
¨D 116.3018 rad/s (red circle in Fig. 24.9b). The range of the displacement in this case is [�12, 5] mm, or approximately
seven times larger, indicating that the system is visiting the region of remote equilibria (snap-through behavior). Also note
that the snap through events are persistent in this case and the system does not settle into small amplitude oscillations.

Similar parametric investigations of shallow panels with varied geometrical properties and identical material properties
and boundary conditions indicate that the V shape of the boundary in Fig. 24.9b is typical and that the boundary scales
with the change in geometry (and the induced changes in the critical load value and natural frequencies). Work is currently
in progress to identify the regimes for which such scaling is possible, which may offer opportunities for a more efficient
computation of the dynamic stability boundaries.

24.4 Concluding Remarks

Critical points and all postbuckling responses are identified for curved panels using a numerical procedure that requires no
prior knowledge of the bifurcation modes and uses the same mesh to compute all secondary paths. The performance of
orthogrid panels is then compared to that of constant thickness panels, with similar length and width, and the same volume
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Fig. 24.9 Static and dynamic responses for cylindrical panel. (a) Static primary equilibrium path; (b) Snap-through boundary
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Fig. 24.10 Examples of transient responses. (a) Small amplitude (no snap) response (P D 213.348 Pa, ¨D 116.3018 rad/s); (b) Persistent snap-
through response (P D 240.0165 Pa, ¨D 116.3018 rad/s)

of material. The rise is shown to influence the number and location of critical points, and also the postbuckling behavior. The
orthogrid showed better performance with higher stiffness, increased critical forces and fewer critical surfaces.

The transient responses of curved structural components can be classified in small amplitude or large amplitude snap-
through oscillations that correspond to increased fatigue risk. The variation of loading frequencies and loading amplitudes is
thoroughly investigated to obtain the snap through boundary. Numerically, this is a costly process that requires completion
of numerous simulations to sweep the parameter space. Further investigations are necessary to develop techniques that will
allow faster evaluation of the dynamic boundaries.
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Chapter 25
Optimal Representation of a Varying Temperature Field for Coupling
with a Structural Reduced Order Model

Raghavendra Murthy, Andrew K. Matney, X. Q. Wang, and Marc P. Mignolet

Abstract This investigation focuses on determining how to optimally represent the temperature distribution of a structure
to capture at best its effects on the nonlinear geometric response of the structure expressed in a given modal expansion
format. More specifically, with the temperature assumed in an expansion form, it is desired to find thermal basis functions
most adapted for the ensuing structural computations. Under the assumptions that the tensor of elasticity and coefficient of
thermal expansion are independent of temperature, it is justified that these thermal basis functions should be proportional to
linear and nonlinear stress distributions induced by each structural mode and linear combinations of two such modes in the
absence of temperature. The implementation of this finding in the context of structural and thermal finite element models is
described and validated on a hypersonic panel under strong coupling between structural, thermal, and aerodynamic analyses.
It is observed that the effects of the temperature on the structural response are indeed accurately captured without requiring
a full modeling of the temperature field.

Keywords Reduced order modeling • Cracked structure • Generalized finite element modeling • Local enrichment •
Nonlinear geometric response • Structural model • Thermal model • Basis functions

25.1 Introduction

The heating of a structure results in changes in natural frequencies, mode shapes, and modal forces which are quite
straightforward to determine in finite element analyses for a particular temperature distribution. Relying on such “hot” modal
models to predict the structural response is appropriate when the temperature distribution does not change and/or is known
in advance. This distribution could however vary with operating conditions and/or be dependent on the structural response
itself. These situations occur in particular in connection with high speed aircraft/aerospace vehicles in which the temperature
results from convection and is dependent on flight conditions but also may be coupled to the structural response through
changes in the aerodynamics. For such situations, it has been proposed to construct reduced order models (ROMs) of both
structural motions and temperature [1–9].

A key issue in this construction is the selection, preferably a priori/without prior knowledge, of a limited set of basis
functions to represent the structural motions, the temperature, and their coupling. For the structural response, this selection
is reasonably clear at this point (e.g., see [7–9]): use the linear modes to which are added enrichments to capture (1) the
nonlinear geometric effects (such as the dual modes of [10, 11]) if they are present and (2) the thermally induced extension
of the panel (if not already represented by the linear and dual modes).

The selection of an appropriate thermal basis is however less obvious because the heat conduction is a much more local
problem than the structural one; the temperature distribution being strongly dependent on the heat flux. If prior information is
available and snapshots of the temperature distribution in the structure are known, a proper orthogonal decomposition (POD)
strategy is appropriate as well demonstrated in [1, 2]. When no such a priori data is available, one must proceed differently,
e.g. by relying on the eigenvectors of the conductance or conductance/capacitance eigenvalue problem as done in particular
in [3–5, 7]. While mathematically well founded, this approach may require that a large number of eigenvectors be included
to capture the wide range of temperature distributions that arise depending on the applied heat flux.
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In this light, the present investigation focuses on (1) the determination of the temperature distributions which most
significantly affect the structural response along a given set of structural modes, and (2) the use of these distributions as basis
functions for the representation of the temperature field. The application of these concepts is demonstrated on a representative
panel model.

25.2 Structural-Thermal Nonlinear Reduced Order Modeling

The reduced order models considered here are based on a representation of the temperature and displacement fields in the
continuum structure in a “modal expansion” form, i.e. as

T .X; t/ D
�X

nD1
�n.t/ T.n/ .X/ (25.1)

for the temperature, and

ui .X; t/ D
MX

nD1
qn.t/ U.n/

i .X/ (25.2)

for the displacement. Note that U(m)
i and T(m) are specified functions of the position vector X in the undeformed configuration

of the structure, chosen to satisfy the necessary boundary conditions. In the context of finite elements, the analogous
representations of the displacement and temperature vectors, w and T, are

T.t/ D
�X

nD1
�n.t/ T.n/ (25.3)

and

w.t/ D
MX

nD1
qn.t/ ‰

.n/
i : (25.4)

A set of nonlinear ordinary differential equations governing the evolution of the generalized coordinates qn(t) and �n(t) can
be obtained in a Galerkin format from the governing field equations for the displacements ui(X, t) and temperature T(X, t)
in the undeformed configuration, see [3]. Specifically, assuming a Duhamel-Neumann form of the Helmholtz free energy in
terms of the temperature and Green strain tensors with temperature independent elasticity tensor and coefficient of thermal
expansion, it is found that (summation implied over repeated indices)

Mij Rqj C Dij
:
qj C K.1/

ij qj � K.th/
ijl qj �l C F.NL/

i

�
qj
� D Fi C F.th/il �l (25.5)

and

Bij
:
� j C QKij�j C K.st/

ijl
:
qj �l D Pi: (25.6)

In Eq. (25.5), the elements of the mass and linear stiffness matrices are denoted by Mij and K(1)
ij while Fi denote the

modal mechanical forces. Further, the components of the matrices K(th)
ijl and F(th)

il provide the influence of temperature

on the structural response, thereby coupling the structural problem to the thermal one. The vector F(NL)
i (qj) denotes the

nonlinear forces arising from large displacements (geometric nonlinearity) as appropriate. Following [3, 10, 13] these forces
are modeled as

F.NL/
i

�
qj
� D K.2/

ijl qj ql C K.3/
ijlp qj ql qp (25.7)
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where K(2)
ijl and K(3)

ijlp denote quadratic and cubic stiffness coefficients independent of temperature. Equations (25.5) and (25.7)
have also been generalized to account for a linear dependence of the elasticity tensor and coefficient of thermal expansion
with respect to temperature [5], a commonly observed behavior. In that case, K(2)

ijl and K(3)
ijlp depend linearly on the temperature

generalized coordinates �n while the terms K(th)
ijl � l and F(th)

il � l are replaced by cubic polynomials in �n.

Present in the heat conduction equation, Eq. (25.6), are Bij and QKij, the elements of the capacitance and conductance
matrices, which may depend on temperature, and therefore, on time. The source term Pi includes all heat fluxes including, as
appropriate, the heat convection with the fluid, radiation effects, external heating, etc. Finally, the term K.st/

ijl
:
qj �l represents

the latency effect which provides a direct effect of the structural response on the temperature distribution. Note however that
this term is in general very small and is typically neglected.

With the parametric form of the reduced order model governing equations expressed above, it is next necessary to
determine the parameters Mij, K(1)

ij , K(2)
ijl , K(3)

ijlp, K(th)
ijl , F(th)

il , Bij and QKij using the structural and thermal finite element models
of the panel. This procedure will not be described here for brevity, it is detailed in [3], see also [5, 13], when the elasticity
tensor and coefficient of thermal expansion depend on temperature.

25.3 Optimum Thermal Modes

Equation (25.5) demonstrates that the effect of temperature on the structural response arises from two set of coupling terms,
one on its left-hand-side, TE1, (a matrix) and the other one on its right-hand-side, TE2, (a vector) defined as

TE1 D K.th/
ijl �l (25.8a)

and

TE2 D F.th/il �l (25.8b)

For an improved perspective in the nature of these terms, assume that K(th)
ijl and F(th)

il are represented by the expressions
derived in [3], i.e.,

K.th/
ijl D

Z

�0

@U.i/
s

@Xk

@U.j/
s

@Xp
Cpkvr ˛vr T.l/ dX (25.9)

and

F.th/il D
Z

�0

@U.i/
s

@Xk
Cskvr ˛vr T.l/ dX (25.10)

where ’ and C are the thermal expansion and elasticity tensors and�0 denotes the domain of the structure in the undeformed
space. Then,

TE1 D K.th/
ijl �l D

Z

�0

@U.i/
s

@Xk

@U.j/
s

@Xp
Cpkvr ˛vr T.l/ �l dX D

Z

�0

@U.i/
s

@Xk

@U.j/
s

@Xp
Cpkvr ˛vr T dX (25.11)

and

TE2 D F.th/il �l D
Z

�0

@U.i/
s

@Xk
Cskvr ˛vr T.l/ �l dX D

Z

�0

@U.i/
s

@Xk
Cskvr ˛vr T dX (25.12)

which demonstrate that K(th)
ijl and F(th)

il are the projections of the temperature distribution on the two fields

Gij D @U.i/
s

@Xk

@U.j/
s

@Xp
Cpkvr ˛vr (25.13)
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and

Hi D @U.i/
s

@Xk
Cskvr ˛vr: (25.14)

Accordingly, the temperature distribution can be written as

T .X; t/ D
b�X

nD1
b� n.t/bT

.n/
.X/C T? .X; t/ (25.15)

where the basis functions bT
.n/
.X/ span the space of the fields Gij and Hi, b�n.t/ are their corresponding generalized

coordinates, and T? .X; t/ is at all times perpendicular to all functionsbT
.n/
.X/. Furthermore, the effect of the temperature

field on the structure is only dependent on the values of b�n.t/. Thus, the functions bT
.n/
.X/ represent a natural basis to

include in the representation of the temperature field as it captures exactly the thermal-structural coupling. However, it is
clear from Eq. (25.15) that this basis is not complete, it is only one component of a rational representation of the temperature
distribution.

Having demonstrated the interest of the basisbT
.n/
.X/, the next step is to devise its construction. To this end, note that

SL
i .X/ D Cskvr

@U.i/
s

@Xk
(25.16)

is the linear stress induced by structural mode i at point X. Thus, the functions Hi can be obtained by computing the
distribution of the linear stress on the structure induced by mode i displacements multiplied at each point by the local
thermal expansion tensor. This perspective thus provides an approach to determining Hi from a finite element model.

The total Lagrangian formulation of [10] demonstrates that any component of the 2nd Piola-Kirchhoff stress tensor at
each point of the structure is a quadratic function of the generalized coordinates, i.e.,

S .X/ D S0 .X/C qi SL
i .X/C qi qj SNL

ij .X/ (25.17)

with S0(X) the stress component due to the thermal expansion, SL
i (X) defined as above, and

SNL
ij .X/ D Cpkvr

@U.i/
s

@Xk

@U.j/
s

@Xp
: (25.18)

Accordingly, the functions Gij can also be evaluated from a finite element model. Specifically, the terms corresponding to
j D i are first determined by subjecting the nonlinear structure to displacements along mode i alone without temperature,
determining the (2nd Piola-Kirchhoff) stress distribution, and removing the linear part of the stress, Eq. (25.16), leaving
SNL

ii (X). Finally, the structure is displaced according to a linear combination of modes i and j and the stresses are determined.
From them SNL

ij (X) is computed as (no sum on i nor j)

SNL
ij .X/ D 1

qi qj

�
S .X/ � qi SL

i .X/� q2i SNL
ii .X/� qj SL

j .X/ � q2j SNL
jj .X/

�
: (25.19)

Next, the distributions SL
i (X) and SNL

ij (X) are regrouped to form a first approximation, T 0(n)(X), of the basis bT
.n/
.X/ and the

corresponding values of the coefficients K(th)
ijl , denoted as K0(th)

ijl , are determined for all functions T 0(n)(X). The first group of

basis functionsbT
.n/
.X/ is then obtained as the linear combinations of the T 0(n)(X) that give maximum values of the resulting

coefficients K(th)
ijl and F(th)

il , denoted as bK
.th/

ijl and bF
.th/

il , for an ensemble of values of i and j (potentially all structural modes).
This problem in fact reduces to the eigenvalue problem

V ®i D �i ®i (25.20)
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where the vector ®i contains the coordinates of the representation ofbT
.n/
.X/ on T 0(n)(X) and the matrix V is defined by its

elements as

VIl D K0.th/
ijl (25.21)

where the values of the structural index I are reshaped from the mode numbers i and j of interest. An analysis of the sorted
eigenvalues �i is then carried out and the b�1 eigenvectors with largest eigenvalues are retained. Stacking them by columns
in the matrix

ˆ D
h
®1 ®2 : : :®b�1

i
(25.22)

yields the first group of “optimum thermal modes”

bT
.n/
.X/ D ˆ T 0.n/ .X/ : (25.23)

Utilizing these modes will give an accurate and compact representation of the coupling term

TE1 D K.th/
ijl �l � bK

.th/

ijl b� l (25.24)

but may not lead to an equal good match of the other coupling term TE2. To address the issue, a second group of optimum
thermal modes is determined to ensure a good matching of these terms. Its construction proceeds as follows. The residuals

F00.th/
il of the projections of the coefficients F(th)

il on the basis functionsbT
.n/
.X/ are first determined and are assembled in the

matrix W of elements

Wil D F00.th/
il : (25.25)

The eigenvalues and eigenvectors of W are next determined from

W ®i D �i ®i: (25.26)

Keeping again theb�2 eigenvectors with largest eigenvalues �i are retained. Stacking them by columns in the matrix

ˆ D
h
®1 ®2 : : :®b�2

i
(25.27)

yields the second group of “optimum thermal modes”

bT
.n/
.X/ D ˆ T 0.n/ .X/ : (25.28)

25.4 Validation Example

The representative hypersonic panel used by Culler and McNamara [12], and shown in Fig. 25.1 is an excellent test case
to validate the concept and construction of the optimum thermal modes given the complexity of the structural and thermal
interactions through aerodynamics.

The structural finite element model [12] is composed of 2400 CQUAD4 (4 node plate) elements, resulting in 2499 nodes.
In both the structural and thermal problems the dimensions of the element were 0.25 in. by 0.25 in. The panel has the
following structural boundary conditions

1. At the leading edge, x D 0 and z D 0, zero displacements are enforced for all degrees of freedom but the y translations,
which are free.
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Fig. 25.1 Representative hypersonic ramp panel

Table 25.1 Material properties of panel

Young’s moduli (psi) 15 � 106 Density (lbm/in3) 0.065 Coeff. Therm. Exp. (1/ıF) at 30ıF 0.556 � 10�6

Shear modulus12 2.5 � 106 Poisson’s ratio12 0.30 Coeff. Therm. Exp. (1/ıF) at 2500ıF 2.334 � 10�6

Table 25.2 Specific heat (c) and in-plane conductivity (k) vs. temperature (T)

T (ıF) c (BTU/lbm/ıF) k (BTU/h/ft/ıF) T (ıF) c (BTU/lbm/ıF) k (BTU/h/ft/ıF)

0 0.170 17.5 1500 0.330 23.3
200 – 20.9 1750 – 23.1
500 0.242 23.6 2000 0.360 22.5
750 – 24.2 2250 – 21.9
1000 0.295 24.2 2500 0.390 21.4
1250 – 23.9 2750 – 20.9

2. At the trailing edge, x D 12 in and z D 0, zero displacements are enforced for all degrees of freedom except x and y
translations, which are free. Springs also act on the nodes of the trailing edge in the x direction with a spring constant of
2378 lb/in.

3. At the panel center, x D 6 in, y D 5 in, and z D 0, zero displacement is enforced for y translations.

The structural properties of the composite material used in this model, advanced carbon–carbon 4, are provided in
Table 25.1 [15]. These properties, except for the coefficient of thermal expansion will remain constant since there is no
significant change over the range of temperatures experienced in this analysis. Moreover, the coefficient of thermal expansion
was assumed to vary linearly between the data given in Table 25.1.

The thermal finite element model [12] consisted of 8-node brick elements (CHEXA) on the skin and plane elements
(CQUAD4) on the stiffeners for a total to 2400 elements and 4508 nodes. The CHEXA elements allowed for the through
thickness temperature gradient to be calculated while the CQUAD4 elements yielded a constant temperature through
thickness. This choice of elements resulted from the boundary conditions which were adiabatic on the stiffeners and the
bottom of the skin while on its top a flux boundary condition was imposed accounting for both convection and radiation.
With these boundary conditions, a near constant temperature through the thickness of the stiffeners could be expected while
a variation of temperature through the skin thickness would take place. Since the structural elements on the skin permit only
the imposition of a linear temperature profile, a single thermal element through the thickness of the skin was adopted. The
thermal properties of the panel are defined as a function of temperature in Table 25.2 except for the emissivity (D0.8) and
the 33 component of the thermal conductivity (D3.0 BTU/h/ft/ıF).

Finally, the aerodynamic pressure and aerodynamic heating were modeled using piston theory and Eckert’s reference
enthalpy method, respectively. The vehicle was accelerated from Mach 2 to Mach 12 over 300 s, while the dynamic pressure
was held constant at 2000 psf. The structural, thermal and aerodynamic solutions were marched in time in a process described
in detail in [12]. One-way coupling refers to the analysis in which the thermal problem is executed independently of the
structural deformation. The temperature fields are fed to the structural solver and influence its response, but the structural
displacement does not affect the heating on the panel. Two-way coupling refers to analyses in which the heating on the panel
is influenced by the structural displacement. It is this latter format that more closely resembles reality, and is the subject of
the work presented here.
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The development of an accurate ROM of the two-way coupled situation was achieved through a series of steps in [7–9, 14]
which serves as baseline for the present investigation, the 38 structural modes and the thermal modes and the corresponding
generalized coordinates time histories more specifically.

The procedure described above was mostly followed to construct the optimum thermal modes with the linear and nonlinear
stress distributions SL

i (X) and SNL
ij (X) obtained from the Nastran finite element model of the panel. Two variations of the stated

procedure were however implemented. The first relates to the set of tentative modes T 0(n)(X). Specifically, the derivation of
Eq. (25.15) from Eqs. (25.13) and (25.14) assumes that the temperature distribution can be arbitrarily varied on the surface
and through the thickness of the panel to match the stress distributions. While it is true for the former (within the limits of the
finite elements construct), only a linear temperature through thickness can be imposed on the structural plate elements of the
skin and only a constant temperature through thickness results from the choice of plate thermal elements on the stiffeners.
So, one might expect that Eq. (25.15) does not capture correctly the through thickness aspects and thus not only were the
original nonlinear stress modes retained, but the modes obtained by flipping the sign of the stress mode in the bottom of the
panel only were also taken as part of the basis. Combining these two groups of modes allows to obtain any linear through
thickness behavior.

The second modification of the process concerns the matrix V the elements of which were normalized by the linear
stiffness matrix, i.e.,

VIl D K0.th/
ijlq

K.1/
ii K.1/

jj

(25.29)

to better quantify the temperature effects with respect to the natural stiffness of the panel.
To validate the appropriateness of the optimum thermal modes, the temperature distributions obtained in [9] for the two-

way coupled problem were adopted and the present focus was on first demonstrating that the terms TE1 and TE2 obtained
with the optimum thermal modes accurately matched those obtained from the ROM computations of [9]. For this check, the
temperatures of [9] were projected on the optimum thermal modes to obtain the corresponding generalized coordinatesb�n.t/.
Second, it was also of interest to assess how well the temperature distribution could be captured by just the optimum thermal
modes and their generalized coordinates. A close representation is not necessarily expected but it would be desirable that the
optimum thermal modes provide a good start on the representation of the temperature.

Shown in Fig. 25.2 are the sorted eigenvalues of the optimum thermal mode eigenvalue problem, Eq. (25.20). 35 optimum
thermal modes were chosen to be retained based on the eigenvalues dropping to 0.1 % of the maximum eigenvalue. A final
addition to this basis was the uniform temperature.

Fig. 25.2 Eigenvalues vs. eigenvector number, Eq. (25.20)
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Fig. 25.3 Comparisons of the temperature vs. time at several nodes as computed from the reduced order model of [9] (curves “Baseline”) and
using the optimum thermal modes (curves “Optimum”)

Shown in Fig. 25.3 are some representative temperature time histories on selected nodes on the panel. It can be observed
that the optimum modes provide a good first approximation of the temperature distribution obtained from [9] even though
they were not designed to this end.

Next, shown in Fig. 25.4 is the evolution over time of some of the components of the matrix TE1 as computed directly
from the reduced order model of [9] and using the optimum thermal modes. Clearly, the matching is very good for the
dominant components of this matrix demonstrating the optimum thermal modes do accomplish what they were designed for,
i.e., capture the effects of temperature on structural response.

Considering the temperature effect term TE2, it was desired to assess whether this vector can be accurately captured by a
the linear stress mode distribution Hi alone as suggested by Eq. (25.12). To this end, the eigenvalue problem of Eq. (25.26)
was modified to include directly the terms F(th)

il of the projections of the coefficients as opposed to their residues F00(th)
il .

Shown in Fig. 25.5 are the corresponding sorted eigenvalues from which it was decided to select the first 35 eigenvectors
as other optimum thermal modes. As done in connection with TE1, a final addition to this basis was the uniform temperature.
Then, shown in Fig. 25.6 is the evolution over time of some of the components of the vector TE2 as computed directly from
the reduced order model of [9] and using the optimum thermal modes. While the matching is not as close as seen in Fig. 25.4,
it is clear that the overall trends of these components is captured by the basis.
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Fig. 25.4 Comparisons of selected elements of the matrix TE1 vs. time as computed from the reduced order model of [9] (curves “Baseline”) and
using the optimum thermal modes (curves “Optimum”)
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Fig. 25.5 Eigenvalues vs. eigenvector number, Eq. (25.26)

Fig. 25.6 Comparisons of selected elements of the vector TE2 vs. time as computed from the reduced order model of [9] (curves “Baseline”) and
using the optimum thermal modes (curves “Optimum”)



25 Optimal Representation of a Varying Temperature Field for Coupling with a Structural Reduced Order Model 277

25.5 Summary

The context of the present investigation is the construction of coupled structural-thermal ROMs for the analysis of hot
structures. A challenging question has been the a priori selection of thermal basis functions for the representation of the
temperature and its ensuing effects on the structural response. The present effort adopts a structure-centric perspective, i.e.,
addresses the determination of the temperature distributions that affect most strongly the structural response as quantified
by the thermal effects terms TE1 and TE2, see Eq. (25.8a) and (25.8b), under the assumptions that the tensor of elasticity
and coefficient of thermal expansion are independent of temperature. Relying on a Lagrangian finite deformation elasticity
analysis, integral expressions for TE1 and TE2 are first derived which show those terms as projections of the thermal strains,
the product of the temperature by the thermal expansion tensor, on the linear and nonlinear stresses (2nd Piola-Kirchhoff)
induced by structural deformations in its assumed modes. This interpretation then demonstrates that the “optimum thermal
modes” should be proportional to the distributions of those stresses. The transposition of this result to plate/shell finite
element models of the structural and thermal response of the structure is described and a detailed validation is carried out
on a hypersonic panel under strong coupling between structural, thermal, and aerodynamic analyses. It is observed, see
Figs. 25.4 and 25.6, that the effects of the temperature on the structural response, TE1 and TE2, are indeed captured without
requiring a full modeling of the temperature field. Finally, it is seen, Fig. 25.3, that the combination of the optimum thermal
modes and a uniform temperature (in this case, given the adiabatic boundary conditions) leads to a good first approximation of
the temperature distribution. Further efforts will focus on complementing these basis functions for an accurate representation
of the entire temperature distribution as well, not just of its effects on the structural response.
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Chapter 26
Basis Identification for Nonlinear Dynamical Systems
Using Sparse Coding

Rohit Deshmukh, Zongxian Liang, and Jack J. McNamara

Abstract Basis identification is a critical step in the construction of accurate reduced order models using Galerkin
projection. This is particularly challenging in unsteady nonlinear flow fields due to the presence of multi-scale phenomena
that cannot be ignored and are not well captured using the ubiquitous Proper Orthogonal Decomposition. This study focuses
on this issue by exploring an approach known as sparse coding for the basis identification problem. Compared to Proper
Orthogonal Decomposition, which seeks to truncate the basis spanning an observed data set into a small set of dominant
modes, sparse coding is used to select a compact basis that best spans the entire data set. Thus, the resulting bases are
inherently multi-scale, enabling improved reduced order modeling of unsteady flow fields. The approach is demonstrated for
a canonical problem of an incompressible flow inside a 2-D lid-driven cavity. Results indicate that Galerkin reduction of the
governing equations using sparse modes yields significantly improved fluid predictions.

Keywords Post-execution basis identification • Sparse coding • Multi-scale • POD • ROM

26.1 Introduction and Problem Statement

The advancement of computational fluid dynamics (CFD), parallel computing algorithms, and computing hardware, has
enabled unprecedented insight into complex flow physics through numerical analysis. However, the computational expense
associated with such analysis tools has restricted their application to relatively small spatial and temporal scale studies
on simplistic configurations. Thus, the advances in CFD methodologies have not yet enabled the broad consideration of
nonlinear, multi-scale, unsteady flows, in systems level studies—e.g. fluid-structure interaction, flow control, aerodynamic
design, structural design, etc. Yet the critical need for high fidelity flow modeling in such problems motivates the pursuit of
tractable and robust reduced order models (ROMs).

A common ROM approach is to project the governing equations onto a reduced dimensional space comprised of
characteristic bases [1–6]. These can be based on orthogonal (e.g., Galerkin) or non-orthogonal (e.g., Petrov-Galerkin)
projections [1–6]. However, the accuracy of such approaches is intimately bound to the quality of the chosen bases. This is
challenging for nonlinear problems, due to the need to carry out basis identification from post execution data of representative
system dynamics. In the context of highly unsteady nonlinear flows, this is further complicated by the fact that generally:
(1) the gathering of the data is computationally expensive, (2) the data is very large and high dimensional, and (3) the scope
of the data is narrow. Thus, identifying a compact set of prominent and dynamically important flow features to fundamentally
characterize the fluid dynamics is a non-trivial problem.

Proper Orthogonal Decomposition (POD), or Principal Components Analysis (PCA) [1, 7–10], is a widely used and
explored technique aimed at meeting this need. The approach is based on identifying and ordering principal components in
observed data. The POD modes are optimal in terms of capturing the energy of an observed flow response, thus a reduced
dimensional basis of the system is often identified by truncating the modes based on energy contribution to the response
[1, 7–10]. However, there are several issues with this approach. First, the POD modes are only optimal in the sense of
reconstructing the observed flow responses [1, 11, 12]. Thus, they may not generalize well for model predictions that deviate
from observed conditions. From a fluid physics perspective, a truncated set of POD modes is biased towards the high-energy,
large-scale, dominant structures and ignores the small-scale, low-energy structures [1, 11, 13]. The large-scale structures are
formed as a result of disturbances in the flow- obtaining energy from the mean flow, and then subsequently breaking down
into smaller scales [14]. The small-scale structures then cause energy dissipation and result in viscosity in the fluid-flow.
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Thus, POD based Galerkin ROMs do not account for sufficient energy dissipation, resulting in over-prediction of kinetic
energy [1, 11, 13]. Moreover, the energy accumulation over a period of time may also cause the ROM to become unstable
[11, 13, 15]. Related to this, it is now well-established that POD modes are ineffective in capturing the local dynamics (or
transience) of full-order systems [11, 12]. This is because the POD modes are always active, or have nonzero coefficients for
all time windows. For these reasons it is clear that the optimality of POD modes, in terms of energy capture, is non-ideal for
model reduction of highly unsteady, nonlinear flow fields.

Techniques such as Balanced Truncation [16], Balanced POD (BPOD) [2], and Eigensystem Realisation Algorithm (ERA)
[17] have addressed some of the limitations identified earlier. However, balanced truncation is intractable for large data (for
more than 10,000 degrees of freedom) [3], BPOD is only applicable to response data of linear systems as it requires adjoint
system information [2, 17], and modes generated by ERA cannot be used for projection of non-linear dynamics [17]. In a
recent study, a technique is developed to generate a stable Galerkin projection based ROM [11]. However, building the ROM
is an iterative process, and requires multiple time-integrations until an energy-balance is achieved. These issues highlight the
need to explore alternative basis identification techniques that not only generalize well to changing flow conditions, but also
accurately capture essential multi-scale features.

Olshausen and Field [18] argue that most naturally occurring phenomena are conveniently represented using non-Gaussian
distributions, whereas the PCA approach is suitable when the structure of the data can be represented using Gaussian
distributions. In Gaussian distributions, the linear correlation between statistical structures is the most important relation.
Observations from a naturally occurring phenomena, such as natural images, contain higher order statistics. To this end,
a technique based on sparse coding was proposed to extract the higher order features from natural image data [18]. This
approach, which is also referred to as sparse dictionary learning [19], generates a finite dictionary of modes in which only a
subset is active—i.e. has nonzero coefficients—for a given time window. Furthermore, sparse coding describes a nonlinear
system in a locally linear manner by tailoring the modes to local behavior of the system [20]. Thus, compared to the POD
approach—where the principal components of the observed data are identified, ordered and then truncated to a compact
set—sparse coding is formulated as a procedure to identify a compact representation that best spans the entire observed data.
The sparse coding approach has been successfully applied in a number of topics, such as in image processing [21], audio
analysis [22], neuroscience [18, 23, 24], and electrical power disaggregation [25].

In a previous study conducted by the authors, sparse coding approach was examined in the context of reduced order
modeling of dynamical systems [26]. The ROMs generated using sparse bases were compared against the standard POD
ROMs in terms of stability and accuracy. The sparse ROMs were found to perform better than the POD ROMs when the
same number of modes were used. This paper is a continuation of that study, where the performance of the sparse and POD
bases are assessed in the context of different energy components of the dynamical system—in this case turbulent kinetic
energy of a lid driven cavity.

The remainder of this extended abstract is organized as follows. The POD and the sparse coding approaches are presented
in Sect. 26.2. Results describing the application of POD and sparse modes to model the unsteady flow fields are presented in
Sect. 26.3. Concluding remarks are presented in Sect. 26.4.

26.2 Method of Solution

High resolution data are computed by solving the 2-D incompressible Navier Stokes (NS) equations using a Direct Numerical
Simulation (DNS) CFD solver. The POD approach is based on the method of snapshots developed by Sirovich [10]. Sparse
modes are evaluated using the algorithm developed by Friedman et al. [27]. These approaches are detailed next.

26.2.1 Full Order Models

The DNS solution to the non-dimensionalized NS equations given by (26.1) is generated using the PICar3D code [28].

r � u D 0;
@u
@t

C .u:r /u D �rp C 1

Re
r2u (26.1)

where r is the gradient operator, t is non-dimensional time, Re is Reynolds number, p is pressure, and u is velocity.
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The PICar3D code uses a second order central difference spatial scheme and a second-order fractional-step method for
time marching. The equations are discretized on a Cartesian mesh and boundary conditions are imposed using a ghost-cell
procedure [28].

26.2.2 Generation of the Reduced Order Modes

The full order solution is decomposed into mean ( NU.x/) and fluctuating components (q .x; t/) of velocity. The component
NU.x/ is evaluated as time average of velocity field. The component (q .x; t/) is approximated as a linear combination of the
reduced order modes:

q .x; t/ D Qu.x; t/ �
NX

iD1
si.t/ˆi.x/; (26.2)

where ˆi is the ith mode, Qu is the fluctuating component of the velocity field, N is the number of modes, si.t/ is the coefficient
corresponding to the ith mode at time t, and x 2 �, � being the flow domain. The computation of POD and sparse modes
are discussed next.

26.2.2.1 Proper Orthogonal Decomposition

The procedure to extract POD modes from a snapshot matrix Q D Œq1q2 � � � qk � � � qm� has been extensively documented
[8, 10] and therefore is not repeated here. However, for comparative discussion with the sparse coding procedure, it is
convenient to note that the POD modes fundamentally represent the solution to the following minimization problem [29]:

min
;̂S

1

2
kQ � ˆSk2F such that kˆik � 1 for all i; (26.3)

where the columns of ˆ are the POD modes, S is the coefficient matrix, and k�k2F is the square Frobenius norm of ‘�’. The
POD modes are arranged in the descending order of eigenvalues, where the first few modes represent the most energetic
structures in the snapshots data [8]. Note that the complete set of POD modes exactly reproduces the snapshot matrix.

26.2.2.2 Sparse Coding

In its general formulation, sparse coding aims to solve the following minimization problem:

min
S;ˆ

1

2

mX

kD1

�
kqk � ˆskk2F C ˇ kskk0

�
; kˆik � 1 for all i (26.4)

where the columns of ˆ are the sparse modes; S is a matrix of activation coefficients; each column sk is encouraged to be
sparse by a penalty on the L0 “norm” of sk (the count of the non-zero elements of the vector); and ˇ > 0 is the regularization
(or penalty) parameter, denoted here as the sparsity coefficient. Note that if the penalty term is ignored, (26.4) reduces to
the PCA problem (26.3) and yields the POD modes. The L0 penalty forces some of the entries in sk to be zero, thereby
resulting in a sparse coefficient matrix. The level of sparsity is controlled using ˇ, where increasing the value of ˇ increases
the number of zero entries in sk, thus producing a “sparser” coefficient matrix S. Yang et al. [21] recommend that a value of
0 < ˇ < 0:5 is typically adequate for most cases.

In practice, the solution of (26.4) is challenging due to its non-convexity [30], both due to the fact that the objective is
not jointly convex in ˆ and S, and due to the non-convexity of the L0 norm. To address the latter problem, the L0 penalty in
(26.4) is replaced with a L1 penalty, making the problem convex in nature [30]. Optimisation problem is then given as:

min
S;ˆ

1

2

mX

kD1

�
kqk � ˆskk2F C ˇ kskk1

�
; kˆik � 1 for all i (26.5)
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where k:k1 is the L1 norm. Although this problem is still not jointly convex in S and ˆ, it can be approximately optimized
by alternating minimization over these two matrices, which lead to convex problems in both cases. In particular, optimizing
(26.5) over S is known as a least absolute shrinkage and selection operator (LASSO) problem [31], and has been widely
studied by the Statistics and Machine Learning communities, among others [27, 31, 32]. A number of algorithms have
been devised to solve (26.5). In the current study, an algorithm [27] based on the coordinate descent technique is adopted.
Likewise, optimizing (26.5) over ˆ is a constrained least-squares problem, and is solved by using the Method of Optimal
Directions (MOD) approach [33]. The MOD approach is equivalent to post-multiplying Q with the pseudo-inverse of matrix
S to obtain the updated dictionary elements.

It is important to recognize that the use of L1 penalty eliminates the condition of orthogonality of the modes.
Consequently, the sparse modes are not ‘ordered’ in terms of energy content. Therefore, the desired number of sparse
modes are generated by varying ˇ between 0 and 0.5 in a trial and error manner. In the current approach, all the sparse
modes generated from the sparse coding process are used to build a ROM. This approach is only efficient when a small
set of bases can approximate the entire solution manifold. However, sparse coding process has been used to generate large
dictionaries of bases [34, 35]. Adaptive selection of bases from a large dictionary is proposed in order to approximate
nonlinear solution manifolds.

Additionally, sparsity within the computed sparse coefficient matrix is also found to affect the performance of the ROM
generated using the previous approach [26]. Sparsity levels of 50–80 % are found to result in stable and reasonably accurate
sparse ROMs. The sparsity in the coefficient matrix is ensured to fall in this range by varying the ˇ value before building a
ROM. Estimating an exact value for ˇ prior to computing the sparse modes and sparse coefficient matrix, that will satisfy
the sparsity constraints, is not feasible when using the previous sparse coding approach. This issue will also be addressed in
the proposed study.

26.2.2.3 Galerkin Projection

The reduced order solution to the unsteady fluid system is obtained by computing the time histories of the modal weights (also
called prediction coefficients) using a Galerkin projection framework. In Galerkin projection [1–4], the governing partial
differential equations are projected onto the space spanned by a set of basis functions to yield a system of ordinary differential
equations. The implementation of Galerkin projection involves the following steps. First, the fluctuating component of
each snapshot (qk) is expanded as a linear combination of reduced order modes as shown in (26.2). Next, the expansion
is substituted into the governing equations, (26.1). Subsequently, the residual term is minimized by constraining it to be
orthogonal to the space spanned by the modes. This process results in following set of ordinary differential equations:

 

ˆi;
@. Qu C NU/

@t
C �

. Qu C NU/ � r� . Qu C NU/
!

D 1

Re

�
ˆi;r2. Qu C NU/� (26.6)

where i D 1; 2; � � � ;N, and Qu is expressed as a linear combination of the reduced order modes, as shown in (26.2). The dot
product between any vectors f and g is given as:

.f ; g/ D
Z

�

f � gd� (26.7)

where � is the flow domain. Equation (26.6) yields the following set of evolution equations for the mode amplitudes si.t/:

2

6
6
6
66
6
6
4

s1.t/
dt
:::

si.t/
dt
:::

sN .t/
dt

3

7
7
7
77
7
7
5

D �
dij
��1

2

6
6
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66
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4

a1 CPN
jD1 b1jsj.t/CPN

jD1
PN

kD1 c1jksj.t/sk.t/
:::

ai CPN
jD1 bijsj.t/CPN

jD1
PN

kD1 cijksj.t/sk.t/
:::

aN CPN
jD1 bNjsj.t/CPN

jD1
PN
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(26.8)
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where the coefficients are given as:

ai D � �ˆi;
� NU:r � NU�C 1

Re

�
ˆi;r 2 NU� (26.9)

bij D � �ˆi;
�
ˆj:r

� NU� � �
ˆi;

� NU:r�ˆj
�C 1

Re

�
ˆi;r 2ˆj

�
(26.10)

cijk D � �ˆi;
�
ˆj:r

�
ˆk
�

(26.11)

dij D �
ˆi; ˆj

�
(26.12)

The system of ordinary differential equations is then time marched using the fourth order Runge-Kutta scheme to obtain
the prediction coefficients. In the case studies presented in this paper, including the pressure terms in the Galerkin projection
approach is established to have a negligible effect on the computed velocity field [36–38]. Therefore, the projection of
pressure was ignored when computing the solution.

26.2.2.4 Energy Balance Equations

As a metric of comparison for the full and reduced order models, the following energy balance equation[39] is used:

@E
@t

D L C P C T C D C G (26.13)

where E is the turbulent kinetic energy, and L, P , T , D, G are time rates of change of convection, production, transfer,
dissipation, and terms that are linear in fluctuating components, respectively. These terms are given as:

@E
@t

D 1

2

@. Qu; Qu/
@t

(26.14)

L D � � Qu; � NU:r� Qu� (26.15)

P D � � Qu; . Qu:r / NU� (26.16)

T D � . Qu; . Qu:r / Qu/ (26.17)

D D 1

Re

� Qu;r 2 Qu� (26.18)

G D 1

Re

� Qu;r 2 NU� � � Qu; � NU:r� NU� : (26.19)

The time rate of change of TKE (E) account for the changes in TKE at any instant in time, L accounts for variations
in TKE due to convection, P is the rate at which energy is being added to the system from the mean flow, D is the rate
dissipation of energy due to the small scale turbulent structures, and T is the rate of transfer of energy between different
turbulent structures [39, 40]. Integrating (26.13) in time, we get:

Z t0

tD0
@E
@t

dt D
Z t0

tD0
.L C P C T C D C G/ dt (26.20)

where t0 is the length of time window over which the data are collected. Assuming statistically stationary process, the net
rate of change of TKE over time is:

Z t0

tD0
@E
@t

dt � 0 (26.21)

Moreover, because G is linear in fluctuating component, and time integral of fluctuating component is zero,

Z t0

tD0
Gdt D 0 (26.22)
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Thus, for a statistically stationary process, the time integral of energy balance equation (26.13) reduces to:

Z t0

tD0
.L C P C T C D/ dt � 0 (26.23)

Finally, the energy balance equation for a ROM is obtained by substituting the basis expansion (26.2) in (26.13). As a stable
and accurate ROM for a statically stationary system will not add or deduct TKE, it will satisfy (26.23).

26.3 Results

A case study describing the application of POD and sparse approaches to model 2-D incompressible unsteady flow is
presented. Performances of ROMs generated by using POD and sparse modes within a Galerkin projection framework are
compared. The unsteady response of a fluid enclosed in a cavity and actuated using a moving surface (lid) is examined. This
configuration, widely referred to as ‘the lid-driven cavity flow’ has been used in several studies [11, 41, 42] for benchmarking
purposes. The cavity considered in this study is a 2-D square, enclosed region, with three rigid stationary walls and one rigid
lid translating in x direction with constant velocity. The lid velocity is prescribed as

�
1 � .2x � 1/2

�2
, where x varies from 0

to 1. The DNS solutions are obtained using a 512�512 uniform grid at Re of 30,000, where the Re is computed based on the
maximum lid velocity. A total of 50,000 uniformly sampled observations are collected from 500 units of non-dimensional
time once the flow had reached a statistically stationary state. A snapshot matrix spanning first 25 time units is constructed
using 1250 snapshots sampled at a uniform frequency of 50 units. Comparison between extracted POD modes, sparse modes,
and original snapshots is provided next.

26.3.1 Comparison Between POD and Sparse Modes

The velocity components of the POD modes numbered 1, 10, 50 and 100, and four modes taken arbitrarily from a set of
100 sparse modes are shown in Figs. 26.1 and 26.2, respectively. For reference, the velocity components from the full order
solution are displayed in Fig. 26.3. The POD approach produces a set of orthogonal modes, that are ordered from highest to
lowest energy. The spatial variance of the POD modes increases with increasing the mode number, where lower order modes
capture the high energy structures. Thus, a truncated set of POD modes discards the low-energy structures. In contrast, sparse
modes resemble the snapshots of the original flow field and yield physically representative multi-scale features.

The energy content in the modes is computed as the sum of the squares of the projection coefficients corresponding to
the snapshot matrix. The energies of the modes are shown in Fig. 26.4. The energy contained in the POD decreases rapidly
with increase in mode number, with first 17 modes accounting for approximately 90 % of the total energy. In comparison,
the energy distribution in the sparse modes is much more uniform, or “leveled”, and does not exhibit any monotonic trend.
This is because the POD modes are arranged in the order of decreasing energy content; consequentially, the lower order POD
modes contain majority of the dominant, high-energy structures. On the other hand, all the sparse modes contain multi-scale
features, and therefore capture relatively equal amount of flow energy.

The time varying projection coefficients of the sparse and POD modes for first 25 units of time history, are shown in
Fig. 26.5. The POD coefficients are almost always non-zero. However, a subset of the sparse coefficients are zero for a given
snapshot. This indicates that only a subset of sparse modes is active at given time. The active sparse modes within a small
window in time are therefore more tailored to the dynamics of the system in that time window. On the contrary, the POD
approach is not designed to capture the local dynamics; this is because the POD modes are optimal in terms of capturing
energy, and are always active.

The ability of a set of sparse modes to account for the multi-scale features is further studied. Transformation matrix
between 20 sparse modes and 200 POD modes is computed. Next, log10 of the absolute of the transformation matrix is
computed to obtain the ‘modified’ transformation matrix, as shown in Fig. 26.6. A relatively large value of an element of the
transformation matrix represents existence of higher correlation between corresponding POD mode and sparse mode. For
example, a value of 0 in the modified transformation matrix represents 100 % correlation between corresponding pair of POD
and sparse modes, a value of �1 represents zero correlation. It is apparent that the 20 sparse modes contain combinations of
all the 200 POD modes. Thus, a set of sparse modes contain both the large energy (low order POD modes) and small energy
(higher order POD modes) information.
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Fig. 26.1 The u1 and u2 components of the POD modes numbered 1, 10, 50 and 100 of the lid-driven cavity

Fig. 26.2 The u1 and u2 components of four of the sparse modes of the lid-driven cavity

26.3.2 Predicted Instantaneous TKE

Next, ROMs are constructed using different numbers of POD and sparse modes. The flow predictions obtained from the
ROMs are compared to the full order solutions for the 500 time units. The instantaneous TKE predicted by the ROMs
is shown in Fig. 26.7. When the same number of modes are used, the sparse ROMs capture the energy levels with greater
accuracy compared to the POD ROMs. The 10 and 20-mode POD models over-predict the energy by two orders of magnitude,
averaged over first 500 time units, whereas, the 10-mode sparse model over-predicts the energy by a factor of 1.2 over the
same duration. Moreover, as many as 80 POD modes are required to capture the TKE levels with accuracy; whereas, all the
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Fig. 26.3 The u1 and u2 components of four different snapshots of the lid-driven cavity
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Fig. 26.4 Energy content in the first 100 POD modes and the sparse modes of a 100-mode model of the lid-driven cavity, expressed in terms of
the sum of squares of projection coefficients evaluated over 25 time units

sparse models capture the TKE levels with good accuracy. These results are consistent with the previous findings [1, 11, 13]
that ignoring small-scale, low-energy information in a truncated POD set may result in over-prediction of turbulent kinetic
energy, and therefore result in an inaccurate flow prediction. The sparse modes include low energy, dynamically important,
features that may provide the appropriate dissipation to balance the large scale dominant structures.

26.3.3 Energy Balance Analysis

In order to further analyze the stabilizing property of sparse modes, energy balance analyses of DNS, POD ROMs and sparse
ROMs are carried out. The energy balance terms are computed using Eqs. (26.14)–(26.19). The energy balance terms for
DNS are shown in Fig. 26.8. The TKE (E), time rate of change of TKE (@E=@t), production (P), and dissipation (D) are
shown in Fig. 26.8a, b (zoomed-in view). It is observed that there is a positive correlation between (P) and (@E=@t), and a



26 Basis Identification for Nonlinear Dynamical Systems Using Sparse Coding 287

0 5 10 15 20 25
−15

−10

−5

0

5

10

15

Non−dimensional time

P
ro

je
ct

io
n 

co
ef

fic
ie

nt

0 5 10 15 20 25
−15

−10

−5

0

5

10

15

Non−dimensional time

P
ro

je
ct

io
n 

co
ef

fic
ie

nt

0 5 10 15 20 25
−15

−10

−5

0

5

10

15

Non−dimensional time

P
ro

je
ct

io
n 

co
ef

fic
ie

nt

0 5 10 15 20 25
−15

−10

−5

0

5

10

15

Non−dimensional time

P
ro

je
ct

io
n 

co
ef

fic
ie

nt

a b

c d

Fig. 26.5 The time history of projection coefficients corresponding to two of the modes from 100-mode POD and 100-mode sparse model of the
lid-driven cavity. (a) POD mode 1. (b) POD mode 2. (c) Sparse mode 1. (d) Sparse mode 2

50 100 150 200

5

10

15

20

POD basis number

S
pa

rs
e 

ba
si

s 
nu

m
be

r

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Fig. 26.6 Transformation matrix between the 20 sparse modes and 200 POD modes

negative correlation between (D) and (@E=@t). This result is in agreement with the theory that an increase in rate of production
will result in increase in rate of TKE; whereas, increase in magnitude of rate of dissipation will have opposite effect of rate if
TKE. Moreover, positive values of TKE rate result in increase in TKE, and vice versa. Also notice that there is no net gain in
TKE over time for the statistically stationary DNS data. Furthermore, terms L, T , and G are negligible compared to rest of
the energy balance terms. The rate of convection (L) is negligible as there is no net flow in or out of the considered control
volume of a closed lid-driven cavity. The negligible transfer rate term (T ) is consistent with the study carried out by Noack
et al. [40]. The G term is small because of the reasons discussed earlier.

Next, energy balance analysis is carried out for POD and Sparse ROMs. Energy balance terms for 10-mode, 20-mode,
and 200-mode ROMs are shown in Figs. 26.9, 26.10, and 26.11, respectively. The production term is found to be much larger
than the dissipation term for first 70 time-units for 10 and 20-mode POD ROMs. This results in initial increase in TKE,
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Fig. 26.7 Time history of the instantaneous TKE of the lid-driven cavity as predicted by DNS, and the computed POD and sparse ROMs
constructed using (a) 10 modes, (b) 20 modes, (c) 80 modes, and (d) 100 modes. The snapshot matrix used to compute the modes spans first
25 time units, and ROMs are integrated for 500 time units

the TKE values settle down within a band past 70 time-units; however, the TKE levels are much higher as compared to the
DNS. This initial, sharp increase in TKE values is missing in case of sparse ROMs, as the production and dissipation terms
are comparable. Thus, the sparse ROMs seem to maintain energy balance right from t D 0. The energy balance terms for
200-mode POD and sparse ROMs are comparable to that of DNS, which is expected as the 200-mode ROMs predict the
TKE levels with good accuracy.

26.4 Conclusions

The generation of the sparse and POD modes is described with an example of a flow inside a 2-D lid-driven cavity. The
computed POD and sparse modes are compared in terms of the energy content in the modes, time history of the projection
coefficients, and spatial structure of the u1 and u2 components of the modes. Several Galerkin projection based ROMs are
developed for the lid-driven cavity problems. The sparse ROMs are generated following the methodology developed by the
authors in the previous work. Whereas, the POD ROMs are generated using the standard Galerkin-POD approach. It is found
that the sparse ROMs perform better as compared to the POD ROMs when the same number of modes are used.
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Fig. 26.8 Energy balance terms for DNS. (a) Energy balance terms considered in analysis. (b) Zoomed-in time window. (c) Neglected
terms—L, T , and G
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Fig. 26.9 Energy balance terms for 10-mode POD and sparse ROMs. (a) 10-mode POD. (b) 10-mode POD, zoomed-in. (c)10-mode sparse.
(d) 10-mode sparse, zoomed-in
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Fig. 26.10 Energy balance terms for 20-mode POD and sparse ROMs. (a) 20-mode POD. (b) 20-mode POD, zoomed-in. (c) 20-mode sparse.
(d) 20-mode sparse, zoomed-in
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Fig. 26.11 Energy balance terms for 200-mode POD and sparse ROMs. (a) 200-mode POD. (b) 200-mode POD, zoomed-in. (c) 200-mode sparse.
(d) 200-mode sparse, zoomed-in
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Chapter 27
Interaction Between Aerothermally Compliant Structures
and Boundary Layer Transition

Zachary B. Riley and Jack J. McNamara

Abstract The inherent relationship between boundary layer stability, aerodynamic heating, and surface conditions make the
potential for interaction between the structural response and boundary layer transition an important and challenging area of
study in high speed flows. This interdependence implies that accurate structural response prediction of a hypersonic vehicle
necessitates an aerothermoelastic analysis that accounts for boundary layer stability in regions where transition is likely to
occur. This study focuses on this problem by incorporating a time-varying boundary layer state into the aerothermoelastic
response prediction of a structural panel in hypersonic flow. Results demonstrate that rearward movement of the boundary
layer transition front reduces thermal loading to the panel and peak deformation, potentially extending the life of the structure.

Keywords Fluid-thermal-structural-interactions • Boundary layer transition • Hypersonic • Aerothermoelastic • Hot
structure

27.1 Introduction

Load bearing thermal protection systems, in the form of thin-gauge metallic airframes, provide a means to minimize the
weight and improve the serviceability of reusable, long duration cruise hypersonic aircraft [1–5]. However, the compliant
nature of these structures, in combination with the severe aerothermodynamic loading, results in a propensity for nonlinear
fluid-structural interactions. Due to this interaction, the boundary layer state (laminar, transitional, or turbulent) is dependent
on the structural response. Accurate determination of the aerodynamic heat load, which varies significantly with the state of
the boundary layer, is detrimental to structural life prediction and optimal weight design [2–5]. Therefore, the future design
of hypersonic aircraft may necessitate aerothermoelastic analysis which accounts for the state of the boundary layer.

Boundary layer stability is highly dependent on wall temperature [6, 7] and surface geometry [7–17], both of which vary
during flight for hot structure hypersonic vehicles. Previous studies have examined how aerothermoelastic effects, such as
thermally induced deformations, can augment aerothermal loads [18, 19] and impact boundary layer transition [20, 21].
Through wind-tunnel testing of X-33 configurations, Berry et al. [20] concluded that a three-dimensional array of bowed
panels was less effective at forcing transition onset than discrete roughness. In a recent study, Riley et al. [21] numerically
assessed the boundary layer stability of flow past large-scale, two-dimensionally (2-D) varying surface topologies resembling
deformations of surface panels using the linear Parabolized Stability Equations. This study indicated that series of panels,
deformed into the flow, significantly disrupts the unstable growth of disturbances excited in the absence of the deformations.
The potential for 2-D wavy walls to stabilize hypersonic boundary layers has also been observed for roughness scale
deformations [12–17]. As the vehicle response alters the boundary layer state, this in turn affects the aerothermal loads
acting on the structure.

A few studies have examined how transitional fluid loading impacts structural response. Lamorte and Friedmann [22]
assessed how transition location, and its associated uncertainty, impacts the aerothermoelastic stability of a wing structure
subject to transitional aerodynamic heating. Additionally, Riley et al. [23] examined how transition onset location, transition
length, and transitional heat flux and fluctuating pressure that exceed (or overshoot) turbulent values affect the structural
response of surface panels. These studies found that transitional flows can result in aerothermal loads and structural responses
which exceed that predicted assuming turbulent loading conditions.

These previous studies indicate that boundary layer stability is sensitive to changes in surface conditions and that the
structural response is strongly dependent on the boundary layer state (laminar, transitional, turbulent). This interdependence
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implies that accurate structural response prediction of a hypersonic vehicle necessitates an aerothermoelastic analysis that
incorporates boundary layer stability analysis in transitional flow regions. Thus, this paper focuses on examination of the
coupled problem by carrying out an aerothermoelastic analysis of a panel for the case of a time-varying boundary layer
transition location. Completion of this study provides improved insight into the degree of aerothermoelastic coupling required
in the design and analysis of hypersonic vehicles.

27.2 Methodology

An overview of the aerothermoelastic framework used to obtain the panel response is provided in Sect. 27.2.1. The
transitional aerothermodynamic load models are discussed in Sect. 27.2.2. Finally, the specific problem examined in this
paper is described in Sect. 27.2.3.

27.2.1 Aerothermoelastic Model

The aerothermoelastic model, depicted in Fig. 27.1, has three primary components: (1) aerothermodynamic loads, (2)
structural dynamics, and (3) heat transfer. The aerothermodynamics drive the thermo-structural response through the
application of a pressure load (composed as the summation of mean and fluctuating components) and a surface heat flux.
The mean flow pressure is modeled using third-order piston theory [24–26] which accounts for changes in the mean pressure
due to structural deformations. The fluctuating pressure load (FPL) is computed using the model discussed in Sect. 27.2.2.3.
This framework was previously used to assess the impact of transitional heat flux and fluctuating pressure loads on panel
response, where the transition onset and length were prescribed prior to the simulation [23]. The heat flux is modeled using
Eckert’s reference enthalpy method [27]. Note that the FPL and heat flux are dependent on the boundary layer edge properties,
which are obtained from the mean flow pressure in conjunction with isentropic flow relations [24]. The aerothermoelastic
model is currently being modified, as shown by the dashed lines in Fig. 27.1, to incorporate a transition prediction surrogate
such that the transition onset location may vary in time; either with a prescribed variation or as a function of the structural
response. For this study, only the prescribed variation in time is considered.

The structure is modeled as cylindrical bending of an isotropic plate with the assumptions of von Kármán moderate
deflection plate theory [24]. The formulation includes the effects of thermal loading due to non-uniform (in-plane and
through-thickness) temperature distributions, chord-wise variation of the modulus of elasticity and thermal expansion
coefficient, rotary inertia, and Rayleigh damping. The structural equation of motion is discretized using Galerkin’s method.
The transverse displacement is approximated as a series of free-vibration mode shapes of the panel that satisfy pinned
boundary conditions. Note that due to the kinematic constraints, the in-plane thermal effects are primarily driven by the
chord-wise average temperature [28].

Aerothermodynamics

Mean Flow 
Pressure

Fluctuating Pressure Heat Flux

Structural
Dynamics

Heat
Transfer

Boundary Layer Edge Conditions

Overall Pressure

Temperature

Surface Temperature
Deformation Transition

Location
Surrogate
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Fig. 27.1 Enhanced aerothermoelastic model
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As shown in Fig. 27.1, the structural temperature is computed from a heat transfer analysis. This is carried out by solving
a finite element formulation of the transient, 2-D heat transfer equation with temperature-dependent specific heat and thermal
conductivity [28]. The 2-D formulation allows for heat conduction through both the thickness and length of the panel. An
adiabatic wall condition is prescribed for each boundary of the panel, except the upper surface where the aerodynamic heat
flux is applied.

The aerothermal and aeroelastic solvers are linked using a loosely coupled partitioned approach. This scheme is
advantageous in terms of computational efficiency as the individuals solvers can use different time steps and information
is exchanged between the solvers only once per time step [29]. In-depth descriptions of the aerothermoelastic model
formulation are provided in [24, 28]. Further information regarding the coupling procedure and numerical schemes
implemented in the aerothermoelastic model is given in [29, 30].

27.2.2 Transitional Aerothermodynamic Loads

In this study, the aerothermodynamic loads acting on the panel are heat flux and an overall pressure load (comprised of
a mean and fluctuating component). Transitional boundary layer effects are incorporated into the heat flux and fluctuating
pressure through blending laminar and turbulent profiles in proportion to an intermittency function, which represents the
fraction of time any spatial location spends in turbulent flow [31]. A brief description of the intermittency function is given
in Sect. 27.2.2.1. Details on the transitional heat flux and fluctuating pressure models are provided in Sects. 27.2.2.2 and
27.2.2.3.

27.2.2.1 Intermittency

Transition from laminar to turbulent flow is, in general, not an abrupt process. It occurs over a finite length due to the
growth, propagation, and interaction of turbulent spots [32]. As a result, the flow during transition can be characterized as
a laminar boundary layer subject to intermittent patches of turbulence. Thus, the statistical flow properties in the transition
region can be described using an intermittency function which represents the fraction of time any spatial location spends
in turbulent flow. The intermittency throughout the transition region is computed using Eq. (27.1), which is derived from
Emmon’s probabilistic model [32, 33] with the assumption that the burst source-rate density can be described as a Dirac
delta function. This form of the source-rate density function assumes the hypothesis of concentrated breakdown is valid [34],
implying that turbulent spots are formed only at the transition onset location xt. However, at the transition onset location
turbulent spots may form randomly in time and in the spanwise direction. The intermittency distribution in Eq. (27.1) is a
function of the edge velocity Ue (assumed constant over the transition region), the transition onset location xt, the number of
turbulent spots per unit time and spanwise distance n, and a spot propagation parameter 
 . The spot propagation parameter
is defined in Eq. (27.2), where ug D ul � ut, uc D 1=2.ul C ut/, ul and ut are the leading and trailing edge velocities of the
turbulent spot, and ˛ is the half angle.

�.x/ D 1 � exp

	
�
n

Ue
.x � xt/

2



(27.1)


 D ugUe

ucut
tan˛ (27.2)

From the definition of intermittency, the length of the transition region �xt can be expressed as shown in Eq. (27.3).
Introducing �xt into the exponent in Eq. (27.1), results in an expression for the intermittency which is a function of the
transition onset and length alone.

�xt D .x � xt/j�D0:99 � .x � xt/j�D0:01 D 2:0457

r
Ue


n
(27.3)

�.x/ D 1 � exp

	
�4:1850

�x2t
.x � xt/

2



(27.4)
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27.2.2.2 Heat Flux

The transitional heat flux is approximated by using the intermittency to blend the laminar and turbulent values as shown in
Eq. (27.5). If the laminar and turbulent boundary layers originate at the same location, the blending in Eq. (27.5) can not
account for transitional overshoot in heat flux [34]. Overshoot can be incorporated by assuming the turbulent boundary layer
begins at a virtual origin turbVO corresponding to the transition onset location [31]. Applying the linear blending in Eq. (27.5)
and assuming the turbulent boundary layer originates at xt, Dhawan and Narasimha [31] matched experimental skin friction
coefficients and displacement thickness during transition.

Qtran D .1 � �/Qlam C �QturbVO (27.5)

Previous experiments, which have observed transitional overshoot in heat flux [35], demonstrate that heating rates
decrease back to fully turbulent conditions beyond the overshoot region. To model this, the transitional heat flux [computed
using Eq. (27.5)] is blended with the fully turbulent heating rates as shown in Eq. (27.6), where ƒ is a Gaussian function,
defined in Eq. (27.7). The peak of the Gaussian function coincides with the end of transition xte, and the Full Width at Half
Maximum ˇ is specified such that the function decreases to negligible values prior to the end of the geometry xend. This
ensures that fully turbulent heating rates are obtained on the end of the geometry.

Q.x/ D .1 �ƒ/Qturb CƒQtran .xte � x � xend/ (27.6)

ƒ.x/ D exp

	�� x�xte
xend�xte

�2

2ˇ2



(27.7)

ˇ D 0:5

2
p
2 ln 2

(27.8)

An example of the transitional heat flux generated using this model is provided in Fig. 27.2 for transition beginning at
x=L D 0:3 and ending at x=L D 0:5. The “No overshoot” line in Fig. 27.2 corresponds to the transitional heat flux profile
obtained using Eq. (27.5) if the laminar and turbulent boundary layers have the same origin. The “Overshoot” heat flux was
generated assuming the turbulent boundary layer originates at x=L D 0:3 with the Gaussian blending applied in the turbulent
region (x=L � 0:5). The heat flux profiles in Fig. 27.2 demonstrate that, through shifting the turbulent boundary layer origin,
this model can be used to generate heat flux profiles which either account for or neglect the effect of transitional overshoot.
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27.2.2.3 Fluctuating Pressure

The fluctuating pressure load model currently implemented in the aerothermoelastic solver is a modified version of the semi-
empirical model developed by Deshmukh et al. [36]. The unsteady pressure is expressed as shown in Eq. (27.9), where f .x; t/
and ‚.x; t/ represent the magnitude and phase angle of the pressure load.

p D f .x; t/ei‚.x;t/ (27.9)

As denoted in Eq. (27.10), the phase angle is decomposed into separate temporal � and spatial  components where the
spatial variation is assumed relative to the leading edge of the panel. The temporal phase angles account for the phase lag
between disturbances of different frequency at the same spatial location. Conversely, the spatial phase angles account for the
phase lag between disturbances of the same frequency at different spatial locations. In this study, the phase angles (� and  )
are assumed to vary randomly with x and t, respectively. Recent work indicates that the impact of the boundary layer induced
pressure fluctuation on structural response is dependent on the spatial phase angle model [36]. Therefore, the assumption
of a random spatial phase angle, which neglects coherence in the boundary layer, introduces uncertainty into the predicted
structural responses. The amplitude f .x; t/ is described as the combination of a root mean square (RMS) value, corresponding
to the magnitude, and a power spectral density (PSD), corresponding to the frequency content [37–39].

‚.x; t/ D �.t/C  .x/ (27.10)

The transitional boundary layer RMS pressure Qp is modeled using Eq. (27.11), which is a modified version of Laganelli’s
relation for turbulent boundary layer attached flow [37–39]. As shown in Eq. (27.11), the RMS pressure is a function of
the dynamic pressure at the boundary layer edge qe, a compressible flow transformation function Fc, a viscosity/velocity
power law exponent �, and a compressibility exponent b. Laganelli’s relation was modified to increase the incompressible
fluctuating pressure intensity from 0:006 to 0:009, as recommended by Bull [40] and Beresh et al. [41]. The second
modification introduces an Re�0:1

� dependence into the RMS pressure calculation, which Beresh et al. [41] found to exist
for Mach numbers between 2 to 3. Note that, Re�

ˇ
ˇNx�

represents a normalization constant that specifies the spatial location at
which the Re� dependence begins. The final modification incorporates a dependence on the local skin friction coefficients
corresponding to transitional cftran and fully turbulent cfturb boundary layers. The relationship in Eq. (27.11) is similar to
Laganelli’s model for turbulent boundary layer pressure fluctuations on rough surfaces [38], which scales the smooth wall
RMS pressure based off the skin friction ratio to obtain the rough wall RMS pressure. As shown in Eq. (27.12), the transitional
skin friction coefficient is computed in the same manner as the heat flux. To remove leading edge effects, the RMS pressure
in the laminar region is specified as the minimum RMS value prior to transition onset.

Qp
qe

D 0:009F�.1Cb/
c

�
Re�

Re�
ˇ
ˇNx�

��0:1 cftran

cfturb

(27.11)

cftran D .1 � �/cflam C �cfturbVO
(27.12)

The PSD � is computed using Eq. (27.13), where ı1 represents the boundary layer displacement thickness and !

corresponds to angular frequency. The fluctuating pressure load, acting on the panel, is obtained by converting the frequency
domain PSD values and phase angles to a time domain signal using the analytical function provided in Eq. (27.14).
This function is the real component of a one-sided Inverse Fourier Transform, where the upper limit of integration !max

corresponds to the largest frequency expected to impact the structure. As energy is removed due to the frequency truncation,
the pressure signal must be computed using a scaled PSD [Eq. (27.15)] in order to reproduce a fluctuating pressure which
matches the input RMS values.

�.x; !/Ue

q2eı1
D .Qp=qe/

2F�2�
c .2=�/

1C �
F�2�

c !ı1=Ue
�2 (27.13)

p.x; t/ D
Z !max

0

p
2��.x; !/�! cos.!t C‚.x; !// d! (27.14)

��.x; !/ D Qp2
R !max

0
�.x; !/ d!

�.x; !/ (27.15)
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Fig. 27.3 Transitional fluctuating pressure load model. (a) RMS of fluctuating pressure. (b) Fluctuating pressure snapshot envelope

Table 27.1 Freestream
conditions and panel geometry

Mach number 4.0

Altitude 30 km

Unit Reynolds number 1.461e6 m�1

Turn angle 5.0 ı

Length 1.00 m

Thickness 2.50 mm

Material Aluminum 7075

An example of the transitional pressure load is provided in Fig. 27.3 in terms of the RMS pressure (Fig. 27.3a) and a
snapshot of the fluctuating pressure envelope (Fig. 27.3b), for transition beginning at x=L D 0:3 and ending at x=L D 0:5. As
with the heat flux profiles in Fig. 27.2, results are presented for shifted and unshifted turbulent boundary layers to demonstrate
the effect of accounting for or neglecting transitional overshoot. The RMS pressure in Fig. 27.3a demonstrates that the present
formulation results in a smooth spatial variation in the RMS pressure throughout transition, with peak magnitudes occurring
at the end of transition. The fluctuating pressure envelope in Fig. 27.3b represents the minimum and maximum bounds of the
instantaneous pressure load acting on the panel.

27.2.3 Problem Description

The freestream conditions and panel geometry considered in this study are listed in Table 27.1. It is assumed that the panel lies
1m downstream of the leading edge of a wedge with a 5:0 ı half angle. Therefore, the flow the panel experiences corresponds
to the post oblique shock conditions (i.e. M D 3:64). The material properties of the panel are listed in Table 27.2. Note that
the modulus of elasticity, specific heat capacity, thermal conductivity, and thermal expansion coefficient are temperature-
dependent properties where the listed values correspond to a temperature of 300K. The numerical parameters used in this
study, listed in Table 27.3, were determined through a convergence study of the post-instability, limit cycle response of the
panel. This configuration (geometry, material, freestream conditions) is selected for this study as it has been thoroughly
examined in past works [23, 28, 29]. While this configuration does not represent an actual structure intended for use on a
hypersonic vehicle, it provides the means to study a representative coupled response over a relatively short time record [28].
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Table 27.2 Material properties
of Al-7075 at 300 K

Density 2768 kg=m3

Poisson’s ratio 0.325

Modulus of elasticity 71.345 GPa

Specific heat capacity 850.99 J=kg K

Thermal conductivity 132.05 W=m K

Thermal expansion coefficient 22.184	m=m K

Table 27.3 Numerical
parameters of the
aerothermoelastic solution

Structural mode shapes 25

Aeroelastic time step 12.5	s

Aerothermal time step 125	s
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Fig. 27.4 Transition region as a function of time

27.3 Results and Analysis

A preliminary analysis was performed to demonstrate the importance of accounting for time-varying, fluid stability in
aerothermoelastic response prediction. Results are presented for panel responses obtained assuming a constant transition
length (�xt D 0:2m) and an initial transition onset location of xt D 0:1m. The onset location either remains constant or
varies in time as a function of the average wall temperature, according to Eq. (27.16). The relationship in Eq. (27.16) linearly
interpolates between xt D 0:1m;Tw D 300K and xt D 0:7m;Tw D 495K, where the later conditions are specified to
ensure the last 0:1m of the panel is subject to fully turbulent loading and to remain within the temperature range for the
material property data set. Here, Eq. (27.16) is an ad hoc expression meant to approximate the stabilizing effect of elevated
temperature on second mode disturbances [6] as the transition onset moves downstream with increasing wall temperature.

xt.t/ D 0:1m C �
0:7m � 0:1m

� Tw.t/ � 300K

495K � 300K
(27.16)

The transition region definitions for the constant and time-varying cases are provided in Fig. 27.4 in terms of the locations
corresponding to the onset and end of transition. At the start of the simulation (t D 0 s), both cases have the same transition
region (xt D 0:1m; xte D 0:3m). However, as the panel temperature rises, as a result of the applied heat flux, the time-varying
transition region moves rearward along the panel, maintaining a transition length of �xt D 0:2m.

The impact of the time-varying transition region on the panel response is depicted in Fig. 27.5 in terms of the maximum
temperature (Fig. 27.5a) throughout the panel and the three quarter chord displacement envelope (Fig. 27.5b). The results in
Fig. 27.5 indicate that as the transition region moves rearward along the panel, the peak temperature decreases and the time
to flutter increases, as compared to the constant transition region response. This is a product of the reduction in the thermal
load, due to the increased region of the panel subject to laminar heating.
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Fig. 27.5 Constant vs. time varying transition location. (a) Maximum temperature. (b) 3=4 chord displacement

The response of the panel subject to both constant and time-varying transitional loads is provided in Fig. 27.6, in
terms of the average through-thickness temperature rise (Fig. 27.6a), chordwise thermal gradient (Fig. 27.6b), normalized
displacement (Fig. 27.6c), and slope (Fig. 27.6d). Note that, the temperature rise in Fig. 27.6a is relative to the initial
panel temperature of 300K and the displacement in Fig. 27.6c is normalized by the panel thickness h. Comparison of the
temperature profiles in Fig. 27.6a, indicates that the time-varying transition region reduces the peak temperature and shifts
its spatial location further downstream in time, as compared with the constant transition definition. This reduction and shift
in peak temperature greatly reduces the thermal gradient across the panel, as highlighted in Fig. 27.6b. The displacement
and slope profiles in Fig. 27.6c, d illustrate that the prescribed transition region only affects the magnitude of the peak
deformation. This is expected as the panel deformation is driven by the thermal loading which, as Fig. 27.6a, b highlight,
is dependent on the transition region. The asymmetry of the panel is an aeroelastic effect, resulting from the interaction
between the fluid pressure and the thermally induced deformation. As the profiles in Fig. 27.6c, d are similar for either
transition definition, this implies that the location of the peak fluctuating pressure load does not significantly impact the
structural response.

27.4 Conclusions and Future Work

This study examines the effect of time varying boundary layer transition location during aerothermoelastic analysis
of a representative hypersonic vehicle panel. The results indicate that rearward movement of the transition front (i.e.,
relaminarization of the boundary layer) significantly reduces the thermal loading and peak deformation, potentially extending
the life of the structure. These results help to quantify the degree of coupling fidelity required to accurately predict the
response of a structure subject to hypersonic aerodynamic loading.
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Chapter 28
Simultaneous Vibration Isolation and Energy Harvesting:
Simulation and Experiment

R. Benjamin Davis and Matthew D. McDowell

Abstract Passive vibration isolators that use post-buckled beams as spring elements have received considerable research
attention because the buckled beams exhibit low stiffness and less static deflection relative to similarly soft linear springs.
This work considers such a vibration isolation system, but with the additional novelty of using piezoelectric film on the
surface of the buckled beams. While the isolator is in operation, the piezoelectric film flexes along with the beam to produce
an electric current. This electric current can then be used to passively power sensors, wireless networks, or charge batteries.
The entire device operates passively on ambient vibration with no required external power or control system. The structural
system is modeled using the elastica in conjunction with shooting methods. The structural response is then coupled to
the circuit equation to determine the output voltage and corresponding power of the energy harvesting circuit. The simulated
vibration isolation and energy harvesting performance is compared to experimental results. Both theoretical and experimental
data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, over certain
frequency ranges, improved vibration isolation will be accompanied by an increase in the harvested power.

Keywords Vibration isolation • Energy harvesting • Multiphysics modeling • Elastica • Shooting method

28.1 Introduction and Background

Vibration isolation systems are used in a variety of applications to protect sensitive equipment from excessive vibration or
to attenuate the vibration transmitted by machines to their surroundings. Classical vibration isolation systems place linear
springs between the source of the vibration and the mass to be isolated. (For a detailed presentation of classical vibration
isolation systems, see the texts of Inman [1] or Thomson and Dahleh [2].) In classical SDOF vibration isolation systems, the
amplitude ratio of the mass response to the source excitation—known as transmissibility—is less than unity for excitation
frequencies exceeding

p
2 times the natural frequency. It is therefore generally desirable to design isolation systems such

that the fundamental frequency of the system is as low as possible. For a fixed mass, this is achieved by making the spring
elements as soft as practicable.

However, by Hooke’s law, it is clear that soft linear springs will experience large static deflections when loaded with a
large mass. In some applications, these static deflections may be unacceptable and require compromising transmissibility in
favor of stiffer springs. To achieve low stiffness and small static deflections in vibration isolation, researchers have turned to
the use of post-buckled structures as spring elements. The earliest experimental implementations of this concept are due to
Winterflood et al. [3] and Virgin and Davis [4]. Since then, the concept has received considerable research attention, and a
2008 review of research related to passive nonlinear vibration isolators was presented by Ibrahim [5].

In parallel to these advances in vibration isolation, there has been an impressive amount of research directed toward
vibrational energy harvesting. As their name suggests, vibrational energy harvesters convert otherwise wasted vibrational
energy into useful power. The prototypical design consists of a metallic cantilevered beam covered on one side (unimorph)
or both sides (bimorph) with a piezoelectric material. Given a known base excitation, the beams are designed to experience
resonance at a dominant excitation frequency. This resonant response maximizes the voltage developed in the piezoelectric
material, and with an appropriate choice of resistance, the power produced by the energy harvesting circuit can be maximized
as well. While the power generated by these devices is typically low (on the order of micro-watts), the ever decreasing power
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demands of today’s electronics make vibrational energy harvesters practical for charging small batteries as well as powering
remote sensors and wireless networks. See the text of Erturk and Inman for an in-depth treatment of the modeling and testing
of vibrational energy harvesters [6].

In this paper, we describe the theoretical modeling and experimental testing of a new device designed to simultaneously
achieve vibration isolation and energy harvesting. The following sections describe the theoretical modeling and experimental
testing of the device, and demonstrate that effective passive vibration isolation can be achieved while also passively
harvesting useful quantities of electric power. The device employs an experimental isolator very similar to the one constructed
by Virgin and Davis [4]. The key difference here is that piezoelectric film is attached to the beams to harvest some of
the energy associated with beam flexure. Zhu et al. [7, 8] considered energy harvesting (but not vibration isolation) using
magnetically driven buckled beams covered with a similar piezoelectric film.

28.2 Theory

The theoretical modeling of the system can be divided into three steps. In the first step, the post-buckled equilibrium of the
beam is found using the elastica in conjunction with a single parameter shooting method. Next, we assume small amplitude
vibration about the equilibrium position and use a three-parameter shooting method to calculate the beam’s response under
harmonic base excitation. Third, we solve the electric circuit equation to determine the output voltage of the energy harvesting
circuit. To simplify the analysis, we assume that the structure is one-way coupled to the electric circuit. That is, the structural
motion will be coupled to the circuit, but the effect that the electric circuit has on the beam dynamics is assumed to be
negligible. The validity of this assumption will be assessed in Sect. 28.4.1. For the sake of brevity, the model equations
are presented without derivation. For more details on the structural modeling, interested readers may consult the thesis of
Sidbury [9]. Additional details on the modeling of the energy harvesting circuit can be found in the text of Erturk and
Inman [6].

28.2.1 Static Equilibrium

Consider the system shown in Fig. 28.1. Under the weight of the mass, m, a slender beam with pinned ends buckles producing
an end shortening, ı, and a maximum lateral deflection, w. The Euler buckling load for a beam of this type is Pcr D �2EI=L2,
where EI and L are the beam’s flexural rigidity and length. Describing the system in terms of an arc length coordinate, s, and
applying the static equilibrium condition gives the following system of differential equations (see Sidbury [9]):

dNx
ds

D cos.�/; (28.1)

dNy
ds

D sin.�/; (28.2)

d�

ds
D Nm � d0; (28.3)

d Nm
ds

D �Npsin.�/; (28.4)

which is in terms of the following non-dimensional parameters: Nx D x=L, Ny D y=L, Ns D s=L, Np D PL2=EI, Nm D ML=EI,
where P is the axial load (mg) and M is the moment induced in the beam. The parameter d0 describes the amount of initial
curvature in the beam. We have assumed here that the beam is under pure axial load.

The pinned end condition at Ns D 0 requires that Ny D Nx D Nm D 0 while the pinned-rolling connection at Ns D 1 requires that
Ny D Nm D 0. The shooting method is then used to solve this boundary value problem by treating it as an initial value problem.
In this particular case, a guess is supplied as an initial condition at �.0/ then Eqs. (28.1)–(28.4) are integrated numerically
using a fourth-fifth order Runge-Kutta scheme. The resulting moment at Ns D 1 is then compared to its required boundary
value of zero. The guess for �.0/ is then iteratively adjusted until the calculated end moment is sufficiently close to zero.
More information on the use of shooting methods to solve the elastica can be found in the thesis of Santillan [10].
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Fig. 28.1 Diagram of buckled
beam with an attached
piezoelectric film and subject to
base motion
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28.2.2 Dynamic Equations of Motion

After determining the static deflection shape of the beam, we calculate the steady-state dynamic response of the beam under
harmonic base excitation assuming small amplitude vibration superimposed on the static equilibrium configuration. Using
d’Alembert’s Principle to enforce dynamic equilibrium, it can be shown [9] that the following spatial differential equations
are established:

dNxd

ds
D ��dsin.�e/; (28.5)

dNyd

ds
D �dcos.�e/; (28.6)

d�d

ds
D Nmd

.1C i N! N�/ ; (28.7)

d Nmd

ds
D .Nqd � Np�d/cos.�e/� Npdsin.�e/; (28.8)

d Npd

ds
D � N!2 � i N! Nc� Nxd; (28.9)

d Nqd

ds
D � N!2 � i N! Nc� Nyd; (28.10)

where the d subscript indicates the dynamic component of a variable while the e subscript denotes the static equilibrium
component and the additional non-dimensional parameters are given by

N! D !

r
�L4

EI
; (28.11)

Nqd D qdL2

EI
; (28.12)
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Nc D cL2p
�EI

; (28.13)

N� D �
p

I
p
�EL4

: (28.14)

Here, N! is the non-dimensional excitation frequency, where � is the mass per unit length of the beam, and Nqd is the non-
dimensional dynamic component of the transverse force in the beam. The Nc and N� parameters represent non-dimensional
viscous and Kelvin-Voigt damping, respectively.

The solution of Eqs. (28.5)–(28.10) requires a three-parameter shooting method in which guesses are supplied for �d.0/,
pd.0/, and qd.0/ and are iteratively updated until Nyd.1/, Nmd.1/ and Npd.1/Cr Np N!2 Nxd.1/ are all sufficiently close to zero. The last
of these quantities enforces axial dynamic load equilibrium at the end of the beam and includes a non-dimensional stiffness
parameter, r, that is a given by r D EI=�gL3.

Note that with the inclusion of damping, the solutions to Eqs. (28.5)–(28.10) will generally be complex, so the solution
procedure requires that the complex modulus of Nyd.1/, Nmd.1/ and Npd.1/ C r Np N!2 Nxd.1/ all be near zero. To facilitate the
identification of valid solutions, the problem was cast as an optimization problem in which the `2-norm of the three quantities
was to be minimized. However, it was observed that it was quite common for the optimization scheme (Matlab’s fmincon)
to identify local minima as solutions to this objective function. Accepting these local minima as solutions, even if they
are within a low prescribed tolerance, can result in incorrect transmissibility curves. To avoid this issue, a global search
optimization algorithm was implemented. This algorithm conducts an intelligent search of the parameter space to identify
only global minima. Combining this approach with the requirement that the objective function be less than 4 � 10�4 resulted
in transmissibility predictions that were much more well behaved.

Once a solution to Eqs. (28.5)–(28.10) was found, transmissibility, TR, was calculated by comparing the complex modulus
of Nxd to the amplitude of base excitation, i.e.,

TR D
p

Re.Nxd.1//2 C Imag.Nxd.1//2

u0
; (28.15)

where u0 D ub=L with ub defined as the amplitude of the base excitation.

28.2.3 Electrical Modeling

Beginning with the constitutive equations relating stress, strain, electric field, and electric displacement, it can be shown[6]
that the voltage, v, generated by a thin piezoelectric beam in bending is given by

Cp Pv C v

Rl
D d31Epbphpc

Z xpend

xp0

d3yd.s; t/

ds2dt
ds; (28.16)

where Rl is the resistance load of the circuit, d31 is the piezoelectric constant for the film in bending, Ep is the elastic modulus
of the piezoelectric material, and hpc is the distance from the neutral axis of the beam to the outer surface for piezoelectric
film. The integral limits xp0 and xpend are the x locations corresponding to the bottom and top of the piezoelectric film. The
Cp parameter represents the internal capacitance of the piezoelectric material and is given by

Cp D �33bplp
hp

; (28.17)

where �33, bp, and lp are the permittivity, width, and length of the piezoelectric material, respectively.
After solving for yd.s; t/ using Eqs. (28.5)–(28.10), the right hand of Eq. (28.16) is computed and applied. The resulting

steady-state rms voltage is then used to calculate harvested power with

} D v2rms

Rl
: (28.18)
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28.3 Experiment

28.3.1 Description of Experimental Set-Up

The experimental realization of the device is shown in Fig. 28.2. The device consists of a 15.00 cm long by 11.00 cm wide
by 0.95 cm thick aluminum base mounted to an electro-mechanical shaker (model 2075E manufactured by the Modal Shop,
Inc.). A thin vertical aluminum arm is mounted to the base. Attached to the arm is a precision ball slide assembly (DelTron
model N4) with 7.62 cm of travel. The bearing supports a carrier that can support a variable amount of additional payload
mass. Aluminum L-brackets are attached to the top of the base and to the bottom of the carrier. The L-brackets are attached
at their respective corners to create V-grooves that support the beams and simulate simply-supported boundary conditions.
The two beams are made of spring steel and each have a length of 17.15 cm, a width of 2.00 cm, and a thickness of 0.25 mm.
The mass of a single beam was found to be 6.078 g, which corresponds to a density of 7088 kg/m3. The displacements of
the base and the carrier are measured with Linear Voltage Displacement Transducers (LVDTs) that are manufactured by
Schaevitz Sensors, Inc. (model DC-EC-2000). Across all experiments, the base displacement of the shaker was controlled to
be ub D 2:5mm.

The piezoelectric film is manufactured by Measurement Specialties, Inc. and consists of a 3.00 cm long by 1.2 cm wide
by 28	m patch of piezoelectric material that is encapsulated by a self-adhesive plastic. The film is very inexpensive, with
a single patch cost of approximately $8.00, and is nominally positioned such that its center is at the center of the beam
span, though trials were conducted with the patches placed elsewhere. The leads of piezoelectric film are connected to four
potentiometers in series which are capable of adjusting the circuit resistance from zero to 10 M�. Based on the technical data
provided by the manufacturer of the piezoelectric film, the following parameters values were used in its theoretical modeling:
Ep D 3:5GPa, d31 D 23 � 10�12 C/N, and �p D 1:13 � 10�10 F/m.

28.3.2 Empirically-Derived Parameters

Values for the beam’s elastic modulus, initial imperfection, and system damping were determined using experimental results.
Using beam geometry and material properties, the theory described in Sect. 28.2.1 was implemented to determine the axial
load versus end shortening curves for different values of the imperfection parameter, d0. In addition, end shortening data
were collected as mass was added to the carrier in 3.1 g increments. As observed in Fig. 28.3, the experimental data

Fig. 28.2 Image of experimental
system in the nominal
configuration
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Fig. 28.3 Normalized load vs.
normalized end shortening for
different values of initial
imperfection
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Fig. 28.4 Experimental free decay

most closely corresponds to the theoretical curve when d0 D 0:06. This initial imperfection value was then used in all
subsequent simulations. Additionally, the Young’s modulus of the spring steel material was estimated to be 195 GPa using
the experimental force-deflection data, and this value was also assumed in all simulations. This modulus along with the beam
geometry detailed above results in a single beam critical buckling load of Pcr D 1:782N. For the two-beam experimental
system under gravity, this corresponds to an applied mass of 363.4 g.

To determine damping, free vibration time histories of the system were obtained and an example time history is shown
in Fig. 28.4. It can be observed that the system is quite heavily damped and exhibits a damped natural frequency of
approximately 1.15 Hz. Applying the log-decrement method on the two positive peaks, the viscous damping ratio was found
to be approximately 0:15. However, it appears that the effective damping increases as the system approaches equilibrium. In
the simulations, two damping parameters were used. A viscous damping parameter of Nc D 0:82 was estimated by treating
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the system as a SDOF oscillator with an undamped natural frequency of 1.16 Hz and a viscous damping ratio of � D 0:15.
A small non-dimensional Kelvin-Voigt damping value of N� D 0:04 was also assumed to produce better agreement between
the theoretical and experimental transmissibility results.

28.4 Results and Discussion

The following subsections present the theoretical and experimental vibration isolation and energy harvesting performance
of the experimental system, and conclude with a discussion of some considerations when designing the system for optimal
performance.

28.4.1 Vibration Isolation

As mentioned in Sect. 28.2, the theoretical model assumes that the presence of the piezoelectric film does not influence the
structural mechanics of the system. To verify that this is a reasonable assumption, transmissibility data were collected with
and without the piezoelectric film attached. A supported mass of 352.72 g (P=Pcr D 0:97) was used for both trials. For the
trial in which the film was attached, a resistance of 3 M� was used in the energy harvesting circuit. The data are shown
in Fig. 28.5 along with the corresponding simulation results. Figure 28.5 shows that the two sets of transmissibility data
demonstrate good agreement with each other and with the simulation results, thus providing confidence in the modeling
approach. It also indicates that the energy harvested from the beam flexure does not seem to manifest in an appreciable
amount of additional system damping. Note that the experimental device is quite effective as a vibration isolator with
transmissibilities below 2 % at 10 Hz.

28.4.2 Energy Harvesting

The resistance at which power is maximized in an energy harvesting circuit will depend on the properties of the piezoelectric
material and was determined experimentally to be approximately 3 M�. Figure 28.6 shows the theoretical and experimental
transmissibility and harvested power when P=Pcr D 0:97 and Rl D 3M�. The experimental power results represent the

0 1 2 3 4 5 6 7 8 9 1010−2

10−1

100

101

Frequency (Hz)

T
ra
ns
m
is
si
bi
lit
y

Theory
Experiment with piezo
Experiment without piezo

Fig. 28.5 Theoretical and experimental transmissibility (P=Pcr D 0:97)
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Fig. 28.6 Theoretical and experimental transmissibility and total power generated by both beams (P=Pcr D 0:97, xp D 0:5L)

total power produced by both beams and are compared to two times the theoretical power predicted for a single beam.
While the theory tends to under-predict the measured power, the overall agreement between theory and experiment is good.
The results show that there is not necessarily a trade-off between transmissibility and harvested power as the excitation
frequency is increased; power increases and transmissibility decreases with frequency, which are two desirable trends from
a performance standpoint.

At 10 Hz, the total power harvested is approximately 0.35	W, which is sufficient to operate some low-power electronic
devices. However, it is noted that piezoelectric films are only covering about 8.75 % of the total (front and back) surface
area of the beams, so there is considerable potential for the device to produce more power by using longer film. In addition,
assuming the beams are sized to buckle under the mass requiring isolation, there is effectively no limit to the number of
beams that can be used in these devices. It would therefore not be impractical to design devices capable of harvesting 10	W
or more.

While the piezoelectric film is nominally placed such that the middle of the patch is at half span (xp D 0:5L), the effects of
piezoelectric film placement were investigated by collecting data at xp D 0:7L and xp D 0:9L. By inspection of Eq. (28.16)
and reasoning that d2 Nyd=d2s is greatest at the center of the beam, it is not surprising that placing the film in the center of the
beam produces the greatest power. Moving the center of the film from xp D 0:5L to xp D 0:7L represents an approximately
20 % decrease in power while the move from xp D 0:5 to xp D 0:9L results in over a seven-fold reduction in power.
(Given the symmetry of the beam, it is reasoned that the power harvested at xp D 0:7L and xp D 0:9L will be identical
to the power harvested at xp D 0:3L and xp D 0:1L, respectively.) The theoretical results in Fig. 28.7 again under-predict
the experimentally determined power; however, the theoretical and experimental trends (with respect to both frequency and
film placement) agree very well, which suggests that the under-prediction may be due to the choice of certain parameters
associated with the piezoelectric film.

To investigate the effects of piezoelectric film coverage, Eq. (28.16) was evaluated at a fixed frequency of 8 Hz while the
end point of the piezoelectric film, xpend , was varied across the span of the beam. Figure 28.8 shows the predicted power
harvested with a piezoelectric patch terminating across varying fractions of span for three different values of axial load. As
may be anticipated from previous results, the greatest incremental power increases occur when the film is lengthened across
the middle 50 % of the beam, while there is relatively little power to be gained by lengthening the film at the beam’s ends.
Figure 28.8 also shows that harvested power tends to decrease with increasing axial load. This effect, combined with the
relationship between axial load and transmissibility are considered presently.

28.4.3 Design Considerations

Figure 28.8 shows that power decreases significantly with increasing axial load. Similarly, Fig. 28.3 shows that the slope
of the load-deflection curves (i.e., stiffness) decreases substantially with increasing axial load when P=Pcr � 1. Since
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Fig. 28.8 Theoretical power harvested by a single beam with a piezoelectric patch terminating across varying fractions of span (f D 8Hz,
d0 D 0:06)

transmissibility at a fixed frequency will decrease with decreasing stiffness, it is expected that transmissibility will tend to
decrease with increasing load, provided the loads are relatively low. As loads increase into the region where the slope of the
load-deflection curve is largely constant, the transmissibility will begin to level out. These effects are shown in Fig. 28.9,
where the theoretical transmissibility and power of the experimental system are plotted across a range of axial loads at a
fixed frequency 8 Hz. The power results are consistent with Fig. 28.8 in that they show a monotonic decrease in power with
increasing axial load. The transmissibility trends do indeed show a steep decrease near P=Pcr D 1, followed by a leveling
out at higher levels of axial load.

Given that it is desirable to design the devices such that harvested power is maximized and transmissibility is minimized,
it is helpful to consider the ratio of power to transmissibility as a simple performance metric to be maximized. Figure 28.10
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plots this metric for the experimental system operating at 8 Hz. The metric is calculated across axial load and for different
values of initial imperfection. The results show that for any given amount of initial imperfection, there exists an optimal load
at which the performance metric is maximized and this optimal load tends to decrease with increasing levels of initial
imperfection. Additionally, the maximum value of the performance metric tends to drop with increasing imperfection.
For the experimental device considered here (d0 D 0:06), the results suggest that the optimal performance will occur at
P=Pcr D 1:00. It is also noted that the performance penalty associated with the use of imperfect beams is not especially
severe with the peak performance in the d0 D 0 case being only 1.12 times higher than it is in the d0 D 0:09 case. Future
work will include consideration of how other parameters (e.g., frequency, damping, piezoelectric placement) affect this
performance metric and may also include the determination of the metric’s theoretical absolute maximum value.
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28.5 Conclusions

Here we describe the theoretical modeling and experimental testing of a novel device that simultaneously performs passive
vibration isolation and energy harvesting. The device uses buckled beams with an inexpensive piezoelectric film attached
to their outer surface. The buckled beams act as nonlinear springs offering low stiffness and less static deflection relative to
similarly soft linear springs, while the piezoelectric film is used to convert the mechanical energy of beam flexure into electric
energy that can potentially be used or stored for other applications. The structural mechanics of the system were modeled
using the elastica in conjunction with shooting methods. The structural results were then used as input to the electric circuit
equation associated with the piezoelectric film. Results indicate strong agreement between the theory and experiment in
terms of both transmissibility and power. The maximum amount of harvested power that was demonstrated experimentally
was about 0.35	W, though similar devices capable of producing an order of magnitude more power seem readily realizable.
One beneficial feature of this entirely passive system is that the decreases in transmissibility that occur with increases
in excitation frequency are accompanied by increases in harvested power. This study also included consideration of the
theoretical performance across varying axial loads. After defining a simple performance metric as the ratio of harvested
power to transmissibility, it was determined that for any given amount of initial beam imperfection, there exists an axial
load at which the performance metric is maximized. Future work will study how other factors such as excitation frequency
and system damping affect this performance metric. This will enable engineers to better optimize the design of these useful
and multi-functional devices.
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Chapter 29
Nonlinear Dynamic Interaction in a Coupled
Electro-Magneto-Mechanical System: Experimental Study

I.T. Georgiou and F. Romeo

Abstract The dynamic experimental response of an electro-magneto-mechanical coupled system excited by a harmonic
voltage is addressed. The system mathematical model involves coupling quadratic nonlinearities due to the dependence of
the inductance on the displacement of the metallic oscillator mass; as a result, a strongly nonlinear behavior characterizes the
system’s dynamic response. In this study we present initial experimental results that confirm the occurrence of interesting
main nonlinear phenomena: The non-linear resonance related to the current quadratic nonlinearity which imposes a natural
linear resonance at half the frequency of the linear oscillator and a jump, after which the mass of the mechanical oscillator
undergoes large amplitude oscillations and coexisting attractors appear.

Keywords Multi-physics dynamics • Experimental nonlinear dynamics • Slow-fast dynamics • Nonlinear resonance •
Coexisting attractors

29.1 Introduction

The experimental dynamic response of a system in which a mechanical linear oscillator consisting of a cantilever beam
is nonlinearly coupled to a linear electric circuit through an electromagnet is presented in this work. This experimental
investigation follows previous analytical and numerical investigations carried out by the authors on this type of multi-physics
system [1, 2]. Based on these studies, when the mechanical oscillator is excited via harmonic voltage applied to the electric
circuit, interesting nonlinear phenomena arise such as the non-linear resonance related to the current quadratic nonlinearity
which imposes a natural linear resonance at half the frequency of the linear oscillator, jump phenomena and transitions
to complex chaotic interaction dynamics. Aiming at verifying these peculiar regimes of the response of this system, an
experimental campaign was started recently in the Nonlinear Dynamics Lab at the Department of Naval Architecture
and Marine Engineering of the National Technical University of Athens. The initial experimental results are presented in
this paper that is organized as follows. After the introductory section, the experimental setup is described in detail. The
coupled system analytical model is then presented as it will be used to obtain numerical solutions to be compared with the
experimental ones. At last, before the concluding remarks, the results of a number of experimental tests are presented.

29.2 Experimental Setup

In Fig. 29.1 the experimental setup of the dynamical system consisting of coupled mechanical and electro-magnetic
subsystems is shown through a sketch and a picture. The experimental setup consists of the following components:
electromagnet, metal steel cantilever beam, two acceleration sensors, sound measurement sensor, electric current recording
sensor, frequency generator, power amplifier and sensor signal amplifier.
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Fig. 29.1 Experimental setup of the mechanical system coupled via a magnetic field to a megneto-electrical system

The electrical circuit connecting the assembly of the electromagnet and the cantilever beam is shown in Fig. 29.2. The
generator is regulated to the desired type of output signal, and then the amplitude of the output voltage and frequency are
the control parameters. Then, the generator output signal is routed to the power amplifier to receive the required power to
operate the electromagnet. Between the amplifier and the electromagnet, the current sensor is inserted allowing us to record
the instantaneous value of the current. The current sensor output signal is then directed to one of the channels of the data
acquisition card located in the computer. For recording vibration data, three sensors were placed: two accelerometers (PCB
piezotronics M353B17) and one microphone (PCB piezotronics 130D21). Their position is shown in Fig. 29.1. The weight
of the steel cantilever beam is 500 g.

The electromagnet consists of soft iron plates that are used as the core and a coil of insulated copper wire as sketched in
Fig. 29.3. The conductor diameter is 1.024 mm, the number of turns of wire is 1030, the inductance L0 D 344mH and the
resistance is R D 9�. A capacitor is also added in the circuit with characteristics C D 207 nF.

29.3 Multi-Physics Coupled Oscillators Model

The mechanical part is modeled as a linear oscillator coupled nonlinearly through an electromagnet to a linear electric
circuit. The system analyzed in this paper is modeled following [3]. Let m; c; k denote respectively the mass, dissipation,
spring parameters of the linear oscillator. Let L;C;R denote the inductance, capacitance, and resistance of the electrical
oscillator. The variables x and q denote the mechanical and electrical displacement (charge), respectively. The velocity of
the mass and the electric current are v � Px; i � Pq, respectively. The variables f and e denote external mechanical forcing
and voltage excitation. In particular, we assume that the inductance is approximated by a linear function of the displacement
of the metallic mass, namely L.x/ D L0 C L1x. Positive-valued parameter L0 denotes the limiting case where the metallic
mass is not in the region of influence of the magnetic field. The linear natural frequencies and linear dissipation factors of

the mechanical and electrical oscillators are given by: !2m � k
m ; !

2
e � 1

L0C ; �m � c
2
p

km
; �e � R

p
C

2
p

L0
. The electro-mechanical

inertia and nonlinear inductance coupling parameters are: � � L0
2m ; ˛ � L1

L0
We also introduce the external force-per-mass

and voltage-per-inductance excitations: Of � f
m ; Oe � e

L0
.

This multi-physics coupled system is a nonlinear dynamical system with its coupling nonlinearity stemming from the
dependence of the inductance on the displacement and possibly velocity of the metallic oscillator mass. Having introduced
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Fig. 29.2 Schematic diagram of the electrical circuit

the parameters entering the coupled electro-magneto-mechanical system, the equations of motion are given by the following
two coupled second order ordinary differential equations:

Rx C 2�m!m Px C !2mx D �˛ Pq2 C Of
.1C ˛x/Rq C .2�e!e C ˛Px/Pq C !2e q D Oe (29.1)

The interest lies in investigating how the mechanical part will respond when it is actuated by the electrical part; the question
being to ascertain whether the steady dynamics of the former is determined by the dynamics of the latter. Over some range
of the forcing parameters the long term response is a slow periodic motion with period-1 for the electromagnetic part and
period-2 for the mechanical part. In the terminology of dynamics systems this is a stable periodic attractor with the peculiarity
that it has a 2:1 ratio of frequencies for the part of the coupled system. Like static equilibrium states, periodic states are
critical elements of the dynamical system. Thus their behavior during quasi-static sweeps of the forcing parameters is of
paramount importance. Being critical states, periodic motions, as it is well known, are prone to various types of bifurcations.
Previous SIM analytic approximations and numerical investigations [1] show that the system has a slow periodic response
over a well-defined region of the forcing parameters. This region starts from low frequencies and includes the frequency
! D 0:5 where the linear system undergoes a resonance due to the presence of the quadratic nonlinear dependence of the
electromagnet inductance on the current. Note that the natural frequency of the oscillator is scaled at 1 for the numerical
simulations. At some critical value the amplitude-frequency response loses its smoothness via bifurcation mechanism that
creates a finite jump.

29.4 Experimental Tests

The experimental tests have been carried out by applying a constant voltage amplitude of 25 V and performing forward and
backward frequency sweeps. The signals received from the sensors is instantaneous voltages and require proper conversion
to the corresponding physical units. Different values of gap between the surface of the electromagnet and the beam were
investigated in order to tune the strength of the nonlinear coupling. The following configurations were tested (gap is expressed
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Fig. 29.3 Schematic diagram of the electromagnet

Table 29.1 Numerical and
experimental systems’ parameters

Parameter Symbol Num. Exp.

Singular parameter � 0:2 0:021

Mechanical dissipation factor �m 0:01 0:01

Electrical dissipation factor �e 0:1 0:0011

Electro-mechanical coupling � 5:0 0:34

Inductance nonlinearity ˛ 10:0 –

in mm): 68.0, 60.0, 55.0, 40.0, 35.0, 32.0. While the two ranges of frequencies studied are: From 5.00 to 7.00 Hz and from
11.00 to 14.00 Hz. The length of the recorded data is 10 s, and measurements were taken in both the steady state of oscillation
of the beam, and the transition from one frequency to another.

In the numerical investigations adopted to qualitatively compare the experimental results the system parameters are set
as reported in Table 29.1. Figure 29.4a shows the frequency-mechanical response amplitude plot computed through a quasi-
static forward and backward frequency sweeps for � D 0:2. For low values of � the system would behave almost linearly,
so that the forward sweep would coincide with the backward one; moreover, a stable period-1 attractor resonating around
� D 0:5 would appear. Note that low linear resonant frequency in the numerical model is at 1. In Fig. 29.4a however, the
different branches corresponding to forward and backward sweeps show how the coupling nonlinearity affects the dynamics;
in particular, the upper branch of the period-1 attractor is obtained from the backward sweep. As shown in [1] this branch
arises from the lower bound of the chaotic region located in the frequency interval 4:0 � � � 4:5 and then, as the frequency
decreases, it grows until the instability is reached around � D 1:55; furthermore, the resonance around � D 0:5 persists.
At the critical frequency� D 0:966 (dashed red line) the period-1 attractor suffers an abrupt downwards finite jump. Before
the jump the amplitude of the period-1 attractor is much higher than the amplitude at the linear resonance � D 0:5 (dashed
blue line). These steady state dynamics evolve at a slow time scale set by the low frequency of the voltage excitation and two
questions arise.
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Fig. 29.4 Mechanical oscillator displacement diagram of the periodic attractor as a function of forcing frequency for a fixed value of forcing
amplitude. Numerical (a) and experimental (b) results over a frequency region that contains the natural linear frequency of the mechanical oscillator
(forward (x) and backward (�) sweep)

Fig. 29.5 Coexisting attractors on the current mechanical displacement plane (I-x). (a) and (b) for � D 12:70Hz; (c) and (d) for � D 12:80Hz

The experimental frequency-mechanical response amplitude plot is shown in Fig. 29.4b. The results reported refer to a
gap value of 35.0 mm and forward (x) and backward (�) frequency sweeps. The qualitative agreement with the numerical
results obtained by direct numerical integration of (29.1) can be seen in terms of both, the non-linear resonance related to the
current quadratic nonlinearity, which imposes a natural linear resonance at half the frequency of the linear oscillator given by
� D 6:4Hz (dashed blue line) and a jump at the cantilever natural frequency occurring at � D 12:86Hz (dashed red line).

Moreover, the coexistence of (at least) two periodic attractors can be seen by the experimental phase portraits reported in
Fig. 29.5. In particular, in the current-mechanical displacement plane reported in Fig. 29.5a, b the two coexisting attractors
shown correspond to � D 12:7Hz, whereas those reported in Fig. 29.5c, d refer to the case � D 12:8Hz.
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29.5 Conclusions

The dynamics of a coupled nonlinear electro-magneto-mechanical system was addressed by means of experimental and
numerical approaches. The slow time scale forced frequency-amplitude response of the full order system was numerically
computed by means of Poincaré mappings. The numerical predictions were qualitatively validated experimentally in a
cantilever steel beam coupled to an electromagnet driven by an harmonic voltage. The predicted nonlinear resonance related
to the current quadratic nonlinearity which imposes a natural linear resonance at half the frequency of the linear oscillator
was observed in the experiment. The predicted jump occurring at the mechanical oscillator natural frequency, after which
the mass of the mechanical oscillator undergoes large amplitude oscillations, was also captured by the experimental test.
After this jump, coexisting attractors have been found as a result of the nonlinear multi-physics interaction. Further on-going
extensive experimental investigations are expected to provide a more comprehensive interpretation of the numerous dynamic
phenomena involved.
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Chapter 30
Hysteresis Identification Using Nonlinear State-Space Models

J.P. Noël, A.F. Esfahani, G. Kerschen, and J. Schoukens

Abstract Most studies tackling hysteresis identification in the technical literature follow white-box approaches, i.e. they
rely on the assumption that measured data obey a specific hysteretic model. Such an assumption may be a hard requirement
to handle in real applications, since hysteresis is a highly individualistic nonlinear behaviour. The present paper adopts
a black-box approach based on nonlinear state-space models to identify hysteresis dynamics. This approach is shown to
provide a general framework to hysteresis identification, featuring flexibility and parsimony of representation. Nonlinear
model terms are constructed as a multivariate polynomial in the state variables, and parameter estimation is performed
by minimising weighted least-squares cost functions. Technical issues, including the selection of the model order and the
polynomial degree, are discussed, and model validation is achieved in both broadband and sine conditions. The study is
carried out numerically by exploiting synthetic data generated via the Bouc-Wen equations.

Keywords Hysteresis • Dynamic nonlinearity • Nonlinear system identification • Black-box method • State-space
models

30.1 Introduction

Hysteresis is a phenomenology commonly encountered in a wide variety of engineering and science disciplines, ranging
from solid mechanics, electromagnetism and aerodynamics [1–3] to biology, ecology and psychology [4–6]. In structural
dynamics, hysteresis is mostly featured in joints, where it results from friction between assembled parts [7]. The defining
property of a hysteretic system is the persistence of an input-output loop as the input frequency approaches zero [8].
Hysteretic systems are inherently nonlinear, as the quasi-static existence of a loop requires an input-output phase shift
different from 0ı to 180ı, which are the only two options offered by linear theory. The root cause of hysteresis is
multistability [9]. A hysteretic system possesses multiple stable equilibria, attracting the output depending on the input
history. In this sense, it is appropriate to refer hysteresis as system nonlinear memory.

The identification of hysteresis is challenging, primarily because it is a dynamic kind of nonlinearity governed by internal
variables, which are not measurable. Most studies tackling hysteresis identification in the technical literature follow white-
box approaches, i.e. they rely on the assumption that measured data obey a specific hysteretic model [10]. The Bouc-Wen
model was identified in numerous works, in particular using optimisation techniques such as evolutionary [11, 12] and
particle swarm [13] algorithms. In [14–16], a Bayesian framework was exploited to quantify uncertainty in Bouc-Wen
identification. Specialised NARX [17], neural network [18] and Hammerstein [19] models were also developed to address
Bouc-Wen systems. The experimental identification of other hysteresis models, like the Preisach equations and a stochastic
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Iwan description of friction, is reported in [20] and [21], respectively. Assuming a specific model structure in a white-box
philosophy may however be a hard requirement to handle in real applications, since hysteresis is a highly individualistic
nonlinear behaviour.

In this paper, a black-box approach based on nonlinear state-space models is adopted to identify hysteresis dynamics.
State-space identification is a powerful way to experimentally model nonlinear systems. A literature survey shows that
systems as diverse as a magneto-rheological damper [22], a wet-clutch device [23], a glucoregulatory system [24], or a Li-Ion
battery [25] were successfully identified using nonlinear state-space models. The approach proposed in the present paper
exploits the great flexibility of a state-space representation to establish a general framework to hysteresis identification, which
makes no use of a priori assumptions. Physical insight into the system behaviour can also be retrieved, ensuring a reasonable
parsimony of the derived model. Nonlinear model terms are constructed as a multivariate polynomial in the state variables,
and parameter estimation is performed by minimising weighted least-squares cost functions in the frequency domain. This
minimisation effort guarantees maximum likelihood dispersion properties for the parameter estimates. Technical issues,
including the selection of the model order and the polynomial degree, are discussed, and model validation is achieved in
both broadband and sine conditions. The present study is carried out numerically by exploiting synthetic data generated
via the Bouc-Wen equations. However, it is emphasised that the Bouc-Wen nature of the data will not be exploited in the
identification process.

The paper is organised as follows. The synthesis of input-output data is described in Sect. 30.2, where noise assumptions
are also stated. A nonparametric study of the nonlinear distortions affecting the generated data is conducted in Sect. 30.3,
and parametric modelling in state space is carried out in Sect. 30.4. Model validation is eventually achieved in Sects. 30.4
and 30.5, and concluding remarks are formulated in Sect. 30.6.

30.2 Synthetic Generation of Hysteretic Data

The synthesis of noisy data exhibiting hysteresis behaviour is carried out in this section by combining the Bouc-Wen
differential equations (Sect. 30.2.1), multisine excitation signals (Sect. 30.2.2) and the Newmark integration rules
(Sect. 30.2.3). Noise assumptions are finally discussed in Sect. 30.2.4.

30.2.1 The Bouc-Wen Model of Hysteresis

The Bouc-Wen model [26, 27] has been intensively exploited during the last decades to represent hysteretic effects in
structural dynamics, especially in the case of random vibrations. Extensive literature reviews about phenomenological and
applied aspects related to Bouc-Wen modelling can be found in [28, 29]. In this work, a Bouc-Wen system with a single
degree of freedom is considered to demonstrate the applicability of state-space models to hysteresis identification. In that
respect, multi-degree-of-freedom systems are out of the scope of the paper.

The vibrations of a single-degree-of-freedom Bouc-Wen system is governed by Newton’s law of dynamics written in the
form [27]

mL Ry.t/C r.y; Py/C z.y; Py/ D u.t/; (30.1)

where mL is the mass constant, y the displacement, u the external force, and where an over-dot indicates a derivative with
respect to the time variable t. The total restoring force in the system is composed of a static nonlinear term r.y; Py/, which
only depends on the instantaneous values of the displacement y.t/ and velocity Py.t/, and of a dynamic, i.e. history-dependent,
nonlinear term z.y; Py/, which encodes the hysteretic memory of the system. In the present study, the static restoring force
contribution is assumed to be linear, that is

r.y; Py/ D kL y C cL Py; (30.2)

where kL and cL are the linear stiffness and viscous damping coefficients, respectively. The hysteretic force z.y; Py/ obeys the
first-order differential equation

Pz.y; Py/ D ˛ Py � ˇ
�
� jPyj jzj�1 z C ı Py jzj

�
; (30.3)
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Table 30.1 Physical parameters of the Bouc-Wen system

Parameter mL cL kL ˛ ˇ � ı 

Value (in SI unit) 2 10 5 104 5 104 1 103 0.8 �1.1 1

Table 30.2 Linear modal parameters of the Bouc-Wen system

Parameter Natural frequency !0 (Hz) Damping ratio � (%)

Value 35.59 1.12
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Fig. 30.1 Hysteresis loop in the system input-output plane for quasi-static forcing conditions. (a) Non-degenerate loop obtained for the parameters
in Table 30.1; (b) linear behaviour retrieved when setting the ˇ parameter to 0

where the five Bouc-Wen parameters ˛, ˇ, � , ı and  are used to tune the shape and the smoothness of the system hysteresis
loop. Note that the variable z is not measurable, which may complicate the formulation of an identification problem. Another
difficulty is that Eq. (30.3) is a nonlinear relation in the parameter . These two issues will be addressed in Sect. 30.4.3
through a black-box state-space modelling approach.

Table 30.1 lists the values of the physical parameters selected in this work. The linear modal parameters deduced from mL,
cL and kL are given in Table 30.2. Figure 30.1a illustrates the existence of a non-degenerate loop in the system input-output
plane for quasi-static forcing conditions. In comparison, by setting the ˇ parameter to 0, a linear behaviour is retrieved in
Fig. 30.1b. The excitation u.t/ in these two figures is a sine wave with a frequency of 1 Hz and an amplitude of 120 N. The
response exhibits no initial condition transients as it is depicted over ten cycles in steady state.

30.2.2 Excitation Signal

Multisine excitations will be considered throughout the identification process. A multisine is a periodic signal with a user-
defined amplitude spectrum and randomly-chosen phases. It is also known as a pseudo-random signal, since it features
a random appearance in the time domain and deterministic amplitudes in the frequency domain. Multisines are attractive
because they are periodic, broadband, and low-crest-factor signals [30]. In particular, periodicity allows leakage to be
eliminated in frequency-domain identification and the covariance matrix of the noise disturbances to be estimated directly
from data.

Formally, a multisine input u.t/ is defined by means of a sum of sine waves with related frequencies as [30]

u.t/ D N�1=2
N=2�1X

kD�N=2C1
Uk ej

�
2� k fs

N tC�k

�

; (30.4)
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where Uk D U�k, U0 D 0, and �k D ���k. N is the number of time samples, N�1=2 a scaling factor, fs the sampling
frequency, and j the imaginary unit. The amplitudes Uk are controlled by the user to meet a desired spectrum (see
Sects. 30.3 and 30.4.3), and the phases �k are drawn from an uniform distribution on Œ0; 2�/. The signal u.t/ in Eq. (30.4) is
asymptotically normally distributed in the time domain as N tends to infinity.

30.2.3 Time Integration

The Bouc-Wen dynamics in Eqs. (30.1) and (30.3) can be effectively integrated in time using a Newmark method. Newmark
integration relies on one-step-ahead approximations of the velocity and displacement fields obtained by applying Taylor
expansion and numerical quadrature techniques [31]. Denoting by h the integration time step, these approximation relations
write

Py.t C h/ D Py.t/C .1 � a/ h Ry.t/C a h Ry.t C h/
y.t C h/ D y.t/C h Py.t/C �

1
2

� b
�

h2 Ry.t/C b h2 Ry.t C h/:
(30.5)

Parameters a and b are typically set to 0.5 and 0.25, respectively. Equation (30.5) is herein enriched with an integration
formula for the variable z.t/, which takes the form

z.t C h/ D z.t/C .1 � c/ h Pz.t/C c h Pz.t C h/; (30.6)

where c, similarly to a, is set to 0.5. Based on Eqs. (30.5) and (30.6), a Newmark scheme proceeds in two steps. First,
predictions of Py.t C h/, y.t C h/ and z.t C h/ are calculated assuming Ry.t C h/ D 0 and Pz.t C h/ D 0. Second, the initial
predictors are corrected via Newton-Raphson iterations so as to satisfy the dynamic equilibria in Eqs. (30.1) and (30.3).

The sampling rate during integration, i.e. 1=h, is set to 15,000 Hz. For identification use, synthesised time histories are
low-pass filtered and downsampled to 750 Hz. Figure 30.2a displays the system output calculated in response to a multisine
input for which all frequencies in the 5–150 Hz band are excited. The root-mean-squared (RMS) amplitude of the input is
50 N and five output periods are simulated. The exponential decay of the system transient response is plotted in Fig. 30.2b
by subtracting the last synthesised period from the entire time record. This graph indicates that transients due to initial
conditions only affect the first period of measurement, and that the applied periodic input results in a periodic output. It
also demonstrates the high accuracy of the Newmark integration, as the transient response reaches the Matlab precision of
�313 dB in steady state.
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Fig. 30.2 System output calculated in response to a multisine input band-limited in 5–150 Hz. (a) Output over five periods, with one specific
period highlighted in grey; (b) output in logarithmic scaling (in black) and decay of the transient response (in blue)
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30.2.4 Noise Assumptions

White Gaussian noise is added to the synthesised output measurements y.t/ considering a signal-to-noise ratio (SNR) of
40 dB. The input time series u.t/ is assumed to be noiseless, i.e. observed without errors and independent of the output noise.
In practice, electromagnetic shakers typically yield a SNR of 60–80 dB, which is coherent with a noise-free assumption. If
the input noise disturbances are otherwise too important, measurements can be averaged over multiple periods.

30.3 Nonparametric Analysis of Nonlinear Distortions

In this section, a simple testing procedure is employed to gain rapid insight into the nonlinear distortions observed in output
data. The procedure requires no user interaction, and no parametric modelling effort. It allows an objective, i.e. a quantitative,
detection of nonlinear behaviour and separates distortions originating from odd and even nonlinearities. The basic idea of
the approach is to design a multisine excitation signal comprising odd frequencies only, called measurement lines, and
to assess nonlinear distortions by measuring the output level at the nonexcited frequencies, called detection lines [32].
More specifically, Fig. 30.3 shows that the adopted input amplitude spectrum possesses no even frequencies, serving as
even detection lines. In addition, odd excited frequencies are grouped into sets of successive lines (for instance, 1–3–5 and
7–9–11), and one frequency is randomly rejected from each group to function as an odd detection line (for instance, 5
and 9) [33]. This specific choice of input spectrum permits the following classification of the output spectrum contributions
in Fig. 30.3, assuming steady-state conditions [34]:

• at the measurement lines, linear dynamics (in black) and odd nonlinear distortions (in orange) appear;
• at the odd detection lines, only odd nonlinear distortions (in orange) are visible;
• at the even detection lines, only even nonlinear distortions (in blue) emerge.

This nonparametric analysis procedure is applied in Fig. 30.4 to the Bouc-Wen system of Sect. 30.2.1. The excitation
signal is a multisine with odd excited frequencies in 5–150 Hz, and a frequency resolution f0 D fs=N Š 0:09Hz,
given N D 8192. Odd detection lines are created by randomly excluding one frequency in each group of three successive
measurement lines. The RMS input amplitude is equal to 1, 10, 25 and 50 N in Fig. 30.4a–d, respectively. The noise level
displayed in black is obtained by averaging the measurements over four periods in steady state. Figure 30.4 proves that the
system features no even nonlinearity. Conversely, substantial odd distortions are detected, including at low forcing level in
Fig. 30.4a, where they lie 20 dB below the output level in the resonance vicinity. At higher forcing levels in Fig. 30.4b–d,
odd distortions affect the system response throughout the input band, in particular in the resonance frequency and the third
harmonic regions.

In summary, this section learns that identifying the Bouc-Wen system of Sect. 30.2.1 solely requires odd nonlinear model
terms, which was retrieved by making exclusive use of output data. This is coherent with Eq. (30.3) which writes, given the
choice  D 1 in Table 30.1,

Pz.y; Py/ D ˛ Py � ˇ � jPyj z � ˇ ı Py jzj ; (30.7)

where the expressions jPyj z and Py jzj are quadratic odd nonlinearities.

Fig. 30.3 Multisine input spectrum with well-selected measurement (in black) and detection (in grey) lines, and corresponding output spectrum
where odd (in orange) and even (in blue) nonlinear distortions are quantified and separated
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Fig. 30.4 Nonparametric analysis of the nonlinear distortions affecting the Bouc-Wen system of Sect. 30.2.1. The RMS input amplitude is equal
to (a) 1, (b) 10, (c) 25 and (d) 50 N. Output level at the measurement lines (in grey); odd distortions (in orange); even distortions (in blue); noise
level (in black)

30.4 Nonlinear State-Space Identification

A nonlinear state-space model can be generally expressed in discrete-time form as


x.t C 1/ D g .x.t/;u.t/;�/

y.t/ D h .x.t/;u.t/;�/ ;
(30.8)

where x 2 R
n is the state vector, u 2 R

q the input vector, y 2 R
l the output vector, g 2 R

n and h 2 R
l two nonlinear

functionals, and n the model order. The vector � 2 R
n� contains the parameters of the model to be estimated. The first

relation in Eq. (30.8) is known as the state equation, and dictates the dynamic evolution of the system. The second relation is
the output equation, which translates the current system state and input into measurable output information.
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30.4.1 The Polynomial Nonlinear State-Space Model Structure

The nonlinear functionals g .x.t/;u.t/;�/ and h .x.t/;u.t/;�/ in Eq. (30.8) can, in principle, be expanded using any basis
functions. In this paper, a polynomial representation is adopted, following the original idea of Paduart et al. [22]. Polynomial
expansions are attractive because they are simple, linear in their parameters, can be easily extended to the multivariate case,
and possess universal approximation properties [35]. Equation (30.8) becomes


x.t C 1/ D A x.t/C B u.t/C E e .x.t/;u.t//

y.t/ D C x.t/C D u.t/C F f .x.t/;u.t// ;
(30.9)

where A 2 R
n�n, B 2 R

n�q, C 2 R
l�n and D 2 R

l�q are the linear state, input, output and feedthrough matrices,
respectively. The vectors e 2 R

ne and f 2 R
nf include all monomial combinations of the state and input variables up to

degree d. The associated coefficients are arranged in the matrices E 2 R
n�ne and F 2 R

l�nf .
The number of parameters in Eq. (30.9) is [22]

s D
�
.n C q C d/Š

dŠ .n C q/Š
� 1

�
� .n C l/ : (30.10)

This number can be reduced by probing the significance of each nonlinear term in the decrease of the model error fit
evaluated on validation data. In this respect, Paduart [36] introduced several parsimonious alternatives to Eq. (30.9). This
includes considering nonlinear terms in the state equation only, disregarding input variables in the monomial combinations, or
selecting non-consecutive polynomial degrees. These modelling strategies will be exploited in Sect. 30.4.3 to avoid overfitting
issues.

30.4.2 Identification Methodology

A two-step methodology was proposed in [22] to identify the parameters of the model structure in Eq. (30.9). First, initial
estimates of the linear system matrices .A;B;C;D/ are calculated by measuring and fitting the best linear approximation
(BLA) of the system under test. Second, assuming zero initial values for the nonlinear coefficients in .E;F/, a full nonlinear
model is built using optimisation.

30.4.2.1 Initial Linear Model

The BLA of a nonlinear system is defined as the linear model GBLA.j!k/ which approximates best the system output in
least-squares sense [30]. In general, it varies with the input frequency content and RMS value. The BLA can be measured
by conducting M experiments, consisting each in applying a multisine excitation and collecting P steady-state periods of
input-output data [33]. In the single-input, single-output case, the frequency response function (FRF) associated with the mth
experiment is obtained as the ratio

Gm.j!k/ D

1

P

PX

pD1
Ym;p.k/

1

P

PX

pD1
Um;p.k/

; (30.11)

where Um;p.k/ and Ym;p.k/ are the discrete Fourier transforms (DFTs) of the input u.t/ and output y.t/ acquired during the
pth period of the mth experiment, respectively. The BLA is calculated as an averaged FRF over experiments, so that

GBLA.j!k/ D 1

M

MX

mD1
Gm.j!k/: (30.12)
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A linear state-space model .A;B;C;D/ is fitted to the nonparametric measurement of GBLA.j!k/ in Eq. (30.12) using
a frequency-domain subspace identification method [37, 38]. The quality of the subspace model is evaluated through the
weighted least-squares cost function

VL D
FX

kD1
�H

L .k/WL.k/ �L.k/; (30.13)

where F is the number of processed frequencies, H denotes the Hermitian transpose, and WL.k/ is a weighting function. Note
that the proper selection of WL is studied in Sect. 30.4.3. The model fitting error �L.k/ is defined as the difference

�L.k/ D GL.j!k/� GBLA.j!k/: (30.14)

The transfer function of the linear subspace model is constructed as

GL.j!k/ D C .zk In � A/�1 B C D; (30.15)

where zk D ej.2� k=N/ is the z-transform variable and In 2 R
n�n an identify matrix.

The subspace method of McKelvey et al. [37] generally yields a reasonably low value of the cost function VL. Minimising
VL with respect to all parameters in .A;B;C;D/ further improves the quality of the obtained linear model. As shown in
Sect. 30.4.3, this also reduces its dependence upon an algorithmic dimensioning parameter i, which sizes the data matrices
processed in the subspace identification [22]. Moreover, the model order n is, in practice, determined by carrying out the cost
function minimisation for multiple n values, and retaining the model with the lowest validation fitting error.

30.4.2.2 Full Nonlinear Model

The second step of the identification methodology involves minimising a second weighted least-squares cost function writing

VNL D
FX

kD1
�H

NL.k/WNL.k/ �NL.k/; (30.16)

where WNL.k/ is a weighting function discussed in Sect. 30.4.3. In Eq. (30.16), the error measure �NL.k/ is defined as

�NL.k/ D YNL.k/ � Y.k/; (30.17)

where YNL.k/ and Y.k/ are the modelled and measured output DFT spectra, respectively. All parameters of the full nonlinear
model .A;B;C;D;E;F/ are estimated by minimising VNL, starting from the linear system matrices obtained in Sect. 30.4.2.1
and zero initial values for the nonlinear coefficients.

Note that the minimisation of the two cost functions in Eqs. (30.13) and (30.16) is performed in this work using a
Levenberg-Marquardt optimisation routine, which combines the large convergence region of the gradient descent method
with the fast convergence of the Gauss-Newton method [39, 40]. In this regard, technicalities related to the calculation of the
Jacobian of Eqs. (30.13) and (30.16) are elaborated in [22].

30.4.3 Identification Results

This section identifies the Bouc-Wen system of Sect. 30.2.1 using a polynomial nonlinear state-space model. A multisine
excitation with all odd and even frequencies excited in the 5–150 Hz band is applied to synthesise four steady-state periods
of measurement. The input amplitude level is fixed to 50 N RMS, which leads to severe nonlinear effects, as visible in
Fig. 30.4d. We stress the deliberate choice to select two different input signals to perform the nonparametric analysis of
output distortions and the parametric modelling of input-output data. In particular, a decimated force spectrum was required
to distinguish odd from even nonlinearities in Sect. 30.3, whereas a full spectrum is utilised herein to capture the system
dynamics over the complete band of interest.
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Fig. 30.5 Cost function VL normalised by the number of processed frequencies F and plotted versus the subspace dimensioning parameter i.
Model order 2 (stars), 3 (rectangles), 4 (circles) and 5 (triangles)

To calculate the BLA of the Bouc-Wen system, four data sets are generated, i.e. M D 4, considering different realisations
of the multisine phases and noise disturbances. The nonparametric estimate GBLA.j!k/ calculated through Eq. (30.12) is
transformed into a linear parametric state-space model .A;B;C;D/ by applying subspace identification and subsequently
minimising the cost function in Eq. (30.13). The weighting function WL.k/ is chosen as the inverse of the total variance
of GBLA.j!k/, hence encompassing the variability caused by nonlinear and noise distortions. This choice comes down to
setting [41]

WL.k/ D 1

M .M � 1/
MX

mD1
jGm.j!k/ � GBLA.j!k/j2 : (30.18)

Figure 30.5 depicts the minimised cost function VL versus the subspace dimensioning parameter i. The cost function is
normalised by the number of processed frequencies F D 1585, and is plotted for model orders 2, 3, 4 and 5 using star,
rectangular, circular and triangular labels, respectively. It is observed that VL is virtually insensitive to i, and that the order
3 corresponds to the best trade-off between model accuracy and parameter parsimony. Note that, for n D 3, the minimum
value of the cost function is obtained for i D 4.

The nonparametric and parametric BLA of the system are presented in Fig. 30.6 in grey and blue, respectively. An accurate
fit based on a model of order 2 is achieved in Fig. 30.6a, except for frequencies lower than 15 Hz. In this region, the modelling
error level displayed in orange becomes substantially larger than the total distortions level plotted in black. By contrast,
selecting n D 3, as in Fig. 30.6b, results in a perfect fitting throughout the input band, confirming the analysis of Fig. 30.5.
The need for a model of order 3 is substantiated by recasting the Bouc-Wen dynamics of Eqs. (30.1) and (30.7) in the form
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Fig. 30.6 Nonparametric (in grey) and parametric (in blue) BLA, modelling error level (in orange) and total distortions level (in black). (a) n D 2;
(b) n D 3

Equation (30.19) shows that translating the Bouc-Wen equations in state space requires the definition of three state variables.
It should also be noted that the state matrix A identified for n D 3 possesses a pair of complex conjugate poles and one
real pole. The appearance in the fitted model of a real pole, i.e. pole with zero frequency, is consistent with the definition of
hysteresis as a quasi-static phenomenon, as explained in Sect. 30.1.

Final estimates of all nonlinear state-space parameters .A;B;C;D;E;F/ are obtained by minimising the cost function VNL.
A unit weighting WNL.k/ is applied in Eq. (30.16), reflecting that unmodelled dynamics, which is assumed to be uniformly
distributed in the frequency domain, dominates noise disturbances. Figure 30.7 plots the decrease of the RMS modelling
error over 150 Levenberg-Marquardt iterations. This error is evaluated on a validation data set generated considering the
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Fig. 30.7 Decrease of the RMS validation error over 150 Levenberg-Marquardt iterations. Polynomial nonlinear state-space models of degree 2
(in orange), 2–3 (in solid black), 2–3–4 (in dashed black), 2–3–4–5 (in solid red), 2–3–4–5–6 (in dashed red), and 2–3–4–5–6–7 (in blue)

Table 30.3 RMS validation error for polynomial nonlinear state-space
models of various degrees together with their respective number of parame-
ters

Polynomial degree RMS validation error (dB) Number of parameters

2 �85:32 34

2–3 �90:35 64

2–3–4 �90:03 109

2–3–4–5 �94:87 172

2–3–4–5–6 �94:85 256

2–3–4–5–6–7 �97:96 364

3–5–7 �98:32 217

same excitation properties as for estimation data. The converged value of the error for different nonlinear models is given in
Table 30.3, together with their respective number of model parameters. As a result of the odd nature of the nonlinearities in
Eqs. (30.7) and (30.19), it is found that introducing in the model even-degree monomials brings no decrease of the validation
error, confirming the physical intuition gained in Sect. 30.3. The most accurate state-space model reported in Table 30.3
comprises odd monomials up to d D 7, for a total of 217 parameters. Note that all the models in Fig. 30.7 and Table 30.3 do
neither incorporate nonlinear terms in the output equation, nor input variables in the monomial combinations, in accordance
with Eq. (30.19).

The frequency-domain behaviour of the validation modelling error is studied in Fig. 30.8, where the output spectrum in
grey is compared with linear and nonlinear fitting error levels in orange and blue, respectively. Using monomials of degree 2
and 3 in the state variables, as is the standard choice [22], reduces the linear error by a factor of 20 dB, as visible in Fig. 30.8a.
A further decrease of 10 dB is achieved by selecting monomials of degree 3, 5 and 7, as in Fig. 30.8b. It should be remarked
that an exact polynomial description of the nonlinearities jPyj z and Py jzj in Eq. (30.7) demands, in principle, an infinite series of
terms, preventing the nonlinear errors in Fig. 30.8 from reaching the noise level depicted in black. Increasing the polynomial
degree d to values higher than 7, though being manifestly possible, was not attempted in this work to limit the computational
burden involved in the cost function minimisation. Finally, the time-domain errors corresponding to Fig. 30.8b are depicted
in Fig. 30.9. The RMS values of the validation output time history and of the linear and nonlinear errors are equal to 0.66,
0.15 and 0.01 mm, respectively. This graph nicely illustrates the important increase of the identification accuracy obtained
by introducing nonlinear black-box terms in the state-space modelling of hysteresis.
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Fig. 30.8 Frequency-domain behaviour of the validation modelling error over the input band, featuring the output spectrum (in grey), the linear
(in orange) and nonlinear (in blue) fitting error levels, and the noise level (in black). (a) Monomials of degree 2 and 3; (b) monomials of degree 3,
5 and 7

30.5 Model Validation Under Sine-Sweep Excitations

This final section investigates the domain of validity of the state-space models fitted in Sect. 30.4.3 under sine excitation
signals. In particular, a comparison is made between the exact and reconstructed responses of the Bouc-Wen system
under various sine-sweep forcing levels. Figure 30.10 presents the relative error in percent between the two responses for
input amplitudes ranging from 5 to 100 N. Four different nonlinear state-space models are analysed in this figure, namely
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Fig. 30.9 Time-domain behaviour of the validation modelling error for monomials of degree 3, 5 and 7, featuring the output time history (in
black) and the linear (in orange) and nonlinear (in blue) fitting error levels
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Fig. 30.10 Relative error (in %) between the exact and reconstructed responses of the Bouc-Wen system for sine-sweep forcing amplitudes
ranging from 5 to 100 N. Nonlinear state-space models with monomials of degree 2 (in orange), 2–3 (in black), 2–3–5 (in red), 2–3–5–7 (in blue)
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Fig. 30.11 Exact output spectrum over 5–200 Hz at 40 N sine-sweep level (in grey) and reconstruction error for the 2 (in orange), 2–3 (in black)
and 2–3–5–7 (in blue) nonlinear state-space models

comprising monomials of degree 2 (in orange), 2–3 (in black), 2–3–5 (in red) and 2–3–5–7 (in blue). The chosen input
signals sweep the interval from 20 to 50 Hz at a linear rate of 10 Hz/min. Reconstructed outputs are simulated in discrete
time by evaluating Eq. (30.9), which are explicit relations in y.t/. It is observed that, as the model complexity increases, the
prediction capabilities improve. The minimum relative error is achieved for all tested models around 40 N, reaching 0.7 %
in the case of the 2–3–5–7 model. However, complex models are likely to become unstable when extrapolated outside their
fitting domain. This is visible for the blue and red models in Fig. 30.10, which do no longer predict bounded outputs for input
levels higher than 65 and 85 N, respectively.

A frequency-domain error analysis is performed at 40 N input level in Fig. 30.11. The exact output spectrum is plotted in
grey, and is compared with the reconstruction error for the 2 (in orange), 2–3 (in black) and 2–3–5–7 (in blue) state-space
models. The error is seen to decrease in the input band for increasing model complexity. In the vicinity of the third harmonic
around 120 Hz, the error similarly drops for higher polynomial degrees. Note that the cut-off frequency of 150 Hz of the
multisine excitation under which the state-space models were fitted is visible in the error plots of Fig. 30.11.

30.6 Conclusions

The purpose of the present paper was to introduce a general framework to identify hysteresis in dynamic systems. State-space
models with polynomial nonlinear terms were selected to support this framework. They are fitted to data using a rigorous two-
step methodology involving weighted least-squares minimisation. A numerical study was conducted to demonstrate the fitting
accuracy of the proposed approach. The identified black-box models were also found to be reasonably parsimonious, given
that they require no a priori knowledge about the observed hysteretic behaviour. This paper paves the way for addressing the
experimental modelling of hysteresis featured in real applications, especially in the dynamics of jointed structures.
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Chapter 31
Nonholonomically Constrained Dynamics of Rolling Isolation Systems

Karah C. Kelly and Henri P. Gavin

Abstract Rolling Isolation Systems provide a simple and effective means for protecting components from horizontal
floor vibrations. In these systems a platform rolls on four steel balls which, in turn, rest within shallow bowls. The
trajectories of the balls is uniquely determined by the horizontal and rotational components of the rolling platform, and
thus provides nonholonomic constraints. In general, the bowls are not parabolic, so the potential energy function of this
system is not quadratic. This paper presents the application of Gauss’s Principle of Least Constraint to the modeling of
rolling isolation platforms. The equations of motion are described in terms of a redundant set of constrained coordinates.
Coordinate accelerations are uniquely determined at any point in time via Gauss’s Principle by solving a linearly-constrained
quadratic minimization. In the absence of any modeled damping, the equations of motion conserve energy. Simulations
and experiments show that responses are highly sensitive to small changes in the initial conditions; peak responses can be
predicted only statistically.

Keywords Vibration isolation • Nonlinear dynamics • Constrained dynamical systems

31.1 Introduction

Rolling isolation systems are widely used to mitigate earthquake hazards by reducing the damage caused to computing
facilities, telecommunication networks, and lifeline systems. Rolling Isolation systems (RIS) have been installed in hundreds
of buildings worldwide to protect such systems. However, the installations of these systems have preceded capabilities to
model their behavior. The behavior of these systems are essentially nonlinear because they have a non quadratic potential
and have nonholonomic constraints. Unfortunately equations of motions have been very difficult to derive and interpret [1].
Gauss’s Principle of Least Constraint provides an alternative systematic method to derive and interpret the equation of
motions for the constrained system.

This paper shows the application of Gauss’s Principle of Least Constraint to rolling isolation systems and interprets the
resulting equation of motions. This model is also the first to include the vertical component of velocity in the kinetic energy.

31.2 The Model

The rolling isolation systems modeled in this study consist of a planar horizontal platform that rolls on four rigid balls, each
resting in a shallow radially-symmetric dish. As the platform rolls, its height changes according to the location of the four
balls within their dishes. The model is determined uniquely from geometry: the dimensions of the platform, the x; y locations
of the dish centers, and the shape of the dish-shaped rolling surfaces. The basic shape for the isolator dishes in this study is
modeled after the ISO-Base Seismic Platform [1]. The motion of the isolation platform depends on the shape of the dish.
The height h.r/ of all dishes in this system will be a variation of the following equation [2]

hr D a1 log

�
cosh

�
r

a0

��
C a2r

2 C a3r
3 ..sign.r// (31.1)
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where r is the radial position of the ball from the center of it’s dish, in meters, and a0 D 0, a1 D 0:1, a2 D 0:01, a3 D 0, .
The geometry of the platform is a rectangle with length size 2a where a D 2m and width 2b and b D 2m. The mass of the
system is m D 20 kg. The four balls are located at the corners. The coordinates of balls 1, 2, 3, and 4 are (in order) .a; b/,
.�a; b/ , .�a;�b/ , .a;�b/. The top platform is flat while the lower platform holds shallow dishes in which the balls roll. The
location of each ball with respect to the center of it’s dish are given by coordinates .xi; yi/ and the radial component of the

ball location is ri D
q

x2i C y2i . In deriving the unconstrained equations of motion we consider xi, yi, and ri to be independent
coordinates. The constraints between xi, yi, and ri, along with the constraint that the platform motion dictates the motion of
the balls will be incorporated using Gauss’s Principle.

31.3 Gauss’s Principle of Least Constraint

In Gauss’s Principle of Least Constraint, [3, 4] the accelerations a.t/ of n unconstrained coordinates of motion, qi, (i D
1; : : : ; n) is expressed as

M.q.t/; t/ a.t/ D F.q.t/; Pq.t/; t/ (31.2)

The constrained system requires additional actions, Fc.t/ in order to enforce the constraints, so the constrained equations of
motion are

M.q.t/; t/ Rq.t/ D F.q.t/; Pq.t/; t/C Fc.q.t/; Pq.t/; t/ (31.3)

Defining a quadratic form of the differences between the (true) constrained accelerations Rq and the unconstrained
accelerations a as

G D 1

2
.Rq � a/TM.Rq � a/ ; (31.4)

Gauss’s Principle of Least Constraint states that the acceleration of the constrained system Rq minimizes G subjected to a
system of constraints

A.q.t/; Pq.t// Rq.t/ D B.q.t/; Pq.t/; t/: (31.5)

This simple minimization of a quadratic objective subject to a set of linear equality constraints is easily accomplished using
Lagrange multipliers. The augmented objective is

GA D 1

2
RqTM Rq � aTM Rq C 1

2
aTMa C �T.ARq � B/ (31.6)

and the necessary and sufficient conditions for optimality are

@GA

@Rq D 0 W M Rq � F C AT� D 0 (31.7)

@GA

@�
D 0 W ARq � B D 0 (31.8)

The constraint forces are obtained from the Lagrange multipliers as Fc D �AT�.

31.4 The Unconstrained Dynamics

Lagrange’s equations are used here to derive the unconstrained equations of motion.

d

dt

�
@T

@Pqj

�
� @T

@qj
C @V

@qj
D 0 (31.9)
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where T is the kinetic energy, V is the potential energy, and qj is a generalized coordinate. We model this system with a set
of 15 independent coordinates

qj 2 fX; Y; �; r1; r2; r3; r4; x1; y1; x2; y2; x3; y3; x4; y4g
where X, Y, and � give the translation of the platform and its rotation about a vertical axis; and xi, yi, and ri give the location
of the ith ball with respect to its dish center. With this definition of independent coordinates, many of the partial derivatives
used in the following derivations simplify to zero:

@ri

@xi
D 0I @ri

@yi
D 0I @Pri

@Pxi
D 0I @Pri

@Pyi
D 0:

Derivatives related to the vertical component of motion of the ith ball are

d

dt
hi D Phi D h0

i PriI @h0
i

@ri
D h00

i I d

dt
.h0

i/ D h00
i PriI Rhi D h0

iRriI d

dt
.h0

iPri/ D h00
i Pr2i C h0

iRriI

@ Phi

@ri
D h00

i PriI @Phi

@xi
D h00

i Pri
@ri

@xi
D 0I @Phi

@yi
D h00

i Pri
@ri

@yi
D 0I @Phi

@Pri
D h0

iI

@Phi

@Pxi
D h0

i

@Pri

@Pxi
D 0I @Phi

@Pyi
D h0

i

@Pri

@Pyi
D 0

The potential energy is found from V D mgNh where Nh is the change in height of the platform at the center of mass. Since
there are four balls at equal distance from the geometric center (the assumed center of mass), Nh D 1

4
.h1 C h2 C h3 C h4/

and the potential energy is

V D mg
1

4
.h1 C h2 C h3 C h4/ (31.10)

The partial derivative of the potential energy with respect to the coordinates qj are

@V

@X
D 0I @V

@Y
D 0I @V

@�
D 0I @V

@ri
D 1

4
mgh0

iI
@V

@xi
D 0I @V

@yi
D 0: (31.11)

The kinetic energy involves components of the platform velocity in the X, Y, Z, and � directions. The vertical velocity of
the center of mass is approximated as the weighted average of the vertical velocity of the four balls. The response velocities
PX, PY, PZ, and P� are relative to the moving floor, which has velocities Pwx; Pwy; Pwz with respect to the inertial reference frame.
So the kinetic energy of all components of the total velocities is

T D 1

2
m

 

. PX C Pwx/
2 C . PY C Pwy/

2 C
�
1

4
.Ph1 C Ph2 C Ph3 C Ph4/C Pwz

�2!

C 1

2
J P�2 (31.12)

The partial derivatives @T=@qj are

@T

@X
D 0I @T

@Y
D 0I @T

@�
D 0I @T

@ri
D 1

4
m

�
1

4
. Ph1 C Ph2 C Ph3 C Ph4/C Pwz

�
h00

i PriI

@T

@xi
D 0I @T

@yi
D 0: (31.13)

The partial derivatives @T=@Pqj are

@T

@ PX D m. PX C Pwx/I @T

@ PY D m. PY C Pwy/I @T

@ P� D J P� I (31.14)

@T

@Pri
D 1

4
m

�
1

4
. Ph1 C Ph2 C Ph3 C Ph4/C Pwz

�
h0

iI (31.15)

@T

@ Pxi
D 0I @T

@ Pyi
D 0: (31.16)
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And the time derivatives are

d

dt

�
@T

@ PX
�

D m. RX C Rwx/I d

dt

�
@T

@ PY
�

D m. RY C Rwy/I d

dt

�
@T

@ P�
�

D J R� I (31.17)

d

dt

�
@T

@Pri

�
D 1

4
m

�
1

4
. Ph1 C Ph2 C Ph3 C Ph4/C Pwz

�
h00

i Pri (31.18)

C 1

4
mh0

i

�
1

4
.h00
1 Pr21 C � � � C h00

4 Pr24 C h0
1Rr1 C � � � C h0

4Rr4/C Rwz

�
(31.19)

d

dt

�
@T

@ Pxi

�
D 0I d

dt

�
@T

@ Pyi

�
D 0: (31.20)

Applying Lagrange’s equation (31.9), the equations of motion for the unconstrained dynamics are found

m. RX C Rwx/ D 0I m. RY C Rwy/ D 0I J R� D 0I (31.21)

1

4
m

�
1

4
. Ph1 C � � � C Ph4/C Pwz

�
h00

i Pri

C1

4
mh0

i

�
1

4
.h00
1 Pr21 C � � � C h00

4 Pr24 C h0
1Rr1 C � � � C h0

4Rr4/C Rwz

�

�1
4

m

�
1

4
. Ph1 C � � � C Ph4/C Pwz

�
h00

i Pri C 1

4
mgh0

i D 0 (31.22)

Note that the first and third terms of Eq. (31.22) exactly negate each other. Factoring out .m=16/ we obtain simplified
unconstrained equations of motion for the four balls

.h0
ih

0
1Rr1 C � � � C h0

ih
0
4Rr4/C .h0

ih
00
1 Pr21 C � � � C h0

ih
00
4 Pr24/C 4gh0

i D �4h0
i Rwz (31.23)

however in the following we retain the .m=16/ factor in order to preserve the relative scaling of the unconstrained equations
of motion and the constraints and to preserve the physical interpretation of the constraint forces Fc. These unconstrained
equations are linear in the accelerations

M a D F (31.24)

where

M D

2

66
6
6
6
66
6
6
6
6
66
6
6
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6
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0 0 J 0 0 0 0

0 0 0
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and

F D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<̂

ˆ̂
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ˆ̂
ˆ̂
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:̂
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� 1
4
m. 1

4
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1 Pr21 C � � � C h0

1h
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4 Pr24/� h0

1 Rwz � gh0
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� 1
4
m. 1

4
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00
1 Pr21 C � � � C h0

2h
00
4 Pr24/� h0
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� 1
4
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1 Pr21 C � � � C h0
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00
4 Pr24/� h0
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� 1
4
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4
.h0
4h

00
1 Pr21 C � � � C h0

4h
00
4 Pr24/� h0

4 Rwz � gh0
4/

08�1

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

(31.26)

The matrix M is non-negative definite and depends on the coordinate positions, but not their velocities. The vector F depends
on positions, velocities, and time. These unconstrained dynamics describe the motions of the four balls and the platform
separately. In this system the platform motion is decoupled from the ball motion (this coupling will enter as a constraint) and
the ball motions are all inter-related, despite the fact that the platform is not yet explicitly coupled to the ball motions. Further,
note that the ball motions are described as rectilinear radial motions only, ri; the xi and yi components of the ball motions can
not be determined by these unconstrained system dynamics. Also note that if the vertical component of the platform velocity,
PNh, were neglected in the expression for the kinetic energy, then @T=@ri D 0, @T=@Pri D 0, and the unconstrained equations
of motion of the (assumed massless) balls would simply be mgh0

i D 0. By including the vertical component of platform’s
velocity as a weighted average of the ball heights, Phi, we obtain a coupling between the radial dynamics of the motions of
all four balls. Without constraints linking the ball velocities and the platform velocities, these unconstrained equations of
motion have little physical significance.

31.5 The Constraints and the True Equations of Constrained Motion

This model involves two types of constraints. The first constraint is the relationship between xi; yi; and ri.

r2i D x2i C y2i (31.27)

The second is the nonholonomic relationship between the platform motion PX; PY : P� and the ball motion Pxi, Pyi. Let
ai D a;�a;�a; a for i D 1; 2; 3; 4 and let bi D b; b;�b;�b for i D 1; 2; 3; 4. Let c D cos.�/ and s D sin.�/. The
two constraint equations for each ball prescribe how the velocity of the platform determines the velocities of each ball

Pxi D 1

2

� PX C P�.�ais � bic/
�

Pyi D 1

2

� PY C P�.aic � bis/
�

(31.28)

The factor of (1/2) indicates that the velocity of the center of the ball is half of the velocity of the top of the ball (the point
on the ball where the rolling horizontal platform rests). This is not precisely correct. Because the lower rolling surface (the
dish) is sloped, the true value of this factor is slightly less than (1/2). By differentiating the constraints, they can be expressed
in a form that is linear in the accelerations:

riPri D xi Pxi C yi Pyi (31.29)

riRri D xi Rxi C Pxi
2 C yiRyi C Py2i � Pr2i (31.30)

Rxi D 1

2

� RX C R�.�ais � bic/
�

C 1

2
P�.�aic P� C bis P�/ (31.31)

Ryi D 1

2

� RY C R�.aic � bis/
�

C 1

2
P�.�ais P� � bic P�/ (31.32)

or

A Rq D B (31.33)
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where

A D

2
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6
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6
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6
6
6
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6
6
6
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7
7
7
7
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7
7
7
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7
7
7
77
7
7
7
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(31.34)

and

B D
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� Px12 � Py12 C Pr21
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9
>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>;

(31.35)

The matrix A depends only upon the coordinate positions and the vector B depends on positions and velocities. Following
Gauss’s Principle of Least Constraint, we minimize G with respect to Rq such that ARq D B to obtain the constrained equations
of motion

	
M AT

A 0


  Rq
�

�
D


F
B

�
(31.36)

Note that the solution to this equation (Rq and �) is defined and unique as long as the range space of A spans the null space of
M. This condition is satisfied whether or not we include the vertical component of the platform velocity in the kinetic energy.

31.6 Simulation

We use numerical transient-response simulation to demonstrate that (in the absence of any modeled damping and any
external forcing) these equations of motion conserve energy. In running any transient response simulation of the equations
of motion described by Gauss’s Principle, the initial conditions must satisfy the constraints. Positions and velocities of the
15 coordinates X D 0:01 Y D 0:01 � D 0 PX D 0:07 PY D 0:05 P� D 0 x1 D 0:04 x2 D 0:05 x3 D 0:01 x4 D 0:04

y1 D 0:01; y2 D 0:01; y3 D 0:03 and y4 D 0:04. ri, Pxi; Pyi and Pri are related by Eqs. (31.27)–(31.29). If the initial conditions
fail to satisfy the constraints, the ensuing responses do not conserve energy. The simulation shows each ball movement,
the platform movement, and the conservation of energy. The simulation was ran using free response ( Rwx; Rwy; Rwz D 0) and
non-zero initial displacements of the platform .X;Y; �/ and the ball locations xi and yi. The platform movement and the
individual ball movements are shown in Figs. 31.1 and 31.2. The kinetic and potential energies, and their sum, are shown in
Fig. 31.3.
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Fig. 31.3 Kinetic, potential and total energies in the system. The total energy is conserved

31.7 Conclusion

This paper illustrates the application of Gauss’s Principle of Least Constraint to the modeling of a rolling isolation system.
This approach to modeling the dynamics of constrained systems requires no distinction between the classification of
constraints (e.g., holonomic or nonholonomic). The equations of motion for the unconstrained system are derived without
regard for the constraints. The constraints are adjoined to a weighted quadratic objective minimizing the difference between
the unconstrained and the constrained accelerations, and the saddle point of the adjoined system determines the equations of
motion. Free response simulations of these equations of motion show that, in the absence of damping and external forcing,
the total energy of this system is conserved.
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Chapter 32
Parameter Estimation on Nonlinear Systems Using Orthogonal
and Algebraic Techniques

L.G. Trujillo-Franco, G. Silva-Navarro, and F. Beltrán-Carbajal

Abstract High displacements, geometrical restrictions and complex behavior are now common in modern mechanical
structures involving new materials with inherent nonlinear phenomena (e.g., stiffness, damping and excitation). In this
work, we propose a novel parameter identification scheme based on signal approximation via orthogonal functions. A
Hilbert transform based nonlinearity index is calculated in order to evaluate possible nonlinearities appearing into the system
dynamics and then we compute the algebraic estimation of the most important parameters into the nonlinear system. We use
algebraic identification techniques based on the Mikusinski’s approach to operational calculus, The proposed approach is
first developed for single degree-of-freedom systems and then this is generalized for some case studies considering multiple
degrees-of-freedom, by using information obtained from variations in the initial conditions (free response) to get the so-called
eigenstructure. The approach is validated by means of numerical simulations and experimental results.

Keywords Nonlinear mechanical systems • System identification • Algebraic identification • Orthogonal functions •
Signals approximation

32.1 Introduction

In the area of system parameters identification is quite common to question about the influence of inherent nonlinearities
into the system on the overall global performance of the methods used during the identification process. Historically the
assumption of linear behavior on mechanical system under analysis has been an object of both, questions about the accuracy
of the identified parameters and, on the other hand, a widespread acceptance specifically because of the relative simplicity
besides the easy and fast application of the numerical methods involved in the process. Finally, when assuming linear
behavior on the system, then it is possible to use basic approaches like least squares and autoregressive models for control
purposes [6]. Despite of the numerous advantages of the linearity assumption on mechanical systems, there exist cases where
the linear methods are ineffective or inoperative [2, 4, 10, 11].

In the last few decades, the interest of the structural and mechanical engineers has focused on the comprehension and
prediction of the dynamic behavior on specific systems and structures, whose dynamics is inherently nonlinear, perhaps due
to new characteristics of the construction materials or, in other cases, the geometry used for the basic entities or elements.
This could be the case in recent engineering applications using modern structures, mechanisms and/or materials. For instance,
large and lighter structures constructed with composite materials like honey comb panels and others [4, 11]. Parallel to this,
the evident developments in computing sciences nowadays open the doors to the possibility of applying novel, sophisticated
and previously unacceptable/complicated identification schemes, for mechanical systems.

In this work, we present a set of mathematical tools like Mikusinski’s operational calculus, orthogonal functions signal
approximation, algebraic identification and Hilbert transforms, working systematically to determine the parameters of a
mechanical system given its free vibration response.
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32.2 Nonlinear Vibrating Mechanical System

Consider the vibrating mechanical system shown in Fig. 32.1, where x is the displacement of the mass over one axis, m, k
and c denote mass, stiffness and viscous damping associated to this single degree-of-freedom (SDOF) and the nonlinearities
like dry friction and polynomial stiffness are concentrated into the function qnl

�
x;

:
x
�
.

We can express the mathematical model of this flexible mechanical system by the ordinary differential equation

mRx C c
:
x C kx C qnl

�
x;

:
x
� D f .t/; x 2 R (32.1)

where qnl .�/ is a nonlinear restoring force function, possibly depending on the displacement and velocity of the mechanical
system. Here the dynamic response of the linear part is determined for the parameters m, c and k whose are mass damping
and stiffness respectively, the nonlinear restoring force qnl

�
x;

:
x
�

take a structure such that it contains the sum of nonlinearities
like dry friction, nonlinear damping and some kind of polynomial stiffness as follows [10, 11]:

qnl
�
x;

:
x
� D kpx3 C fdsign.x/C cdsign

� :
x
�

(32.2)

Here kp is the cubic stiffness constant and fd and cd are Coulomb dry friction and nonlinear damping constants, respectively.
In previous works a time domain scheme for system parameter identification has been proposed, which involves the use

of operational calculus for the algebraic manipulation of the differential equation [5, 9]. The proposed algebraic scheme
allows getting, in a time domain and in an on-line fashion, fast estimations of the unknown system parameters, by using
measurements of the system output and input.

Now, consider the mechanical vibrating system (32.1), where the function qnl
�
x;

:
x
�

is nonlinear. There is not a direct
expression for it in terms of operational calculus, however, we can multiply Eq. (32.1) by .�t/2 D .t � t0/

2 and integrate by
parts two times with respect to the time, without affecting the expression, and then we have that

m

 

2

Z .2/

t0

x � 4
Z

t0

.�t/ xC.�t/2x

!

C c

 

�2
Z .2/

t0

.�t/ x C
Z

t0

.�t/2x

!

C k
Z .2/

t0

.�t/2x

C
Z .2/

t0

.�t/2qnl
�
x;

:
x
� D

Z .2/

t0

.�t/2f .t/ (32.3)

where �t D t � t0 and .n/
t0 �.t/ are iterated integrals of the form t

t0

1
t0

� � � 
n�1
t0

� .
n/ d
n � � � d
1 with .1/
t0 �.t/ D t

t0
� .
/ d
 ,

.0/
t0 �.t/ D �.t/ and n is a positive integer. Note that, this expression does not depend on the system initial conditions of
any involved function. Here, we have an algebraic expression for the system parameters m, c, k, and the coefficients kp,
fd, fc, which appears algebraically in the nonlinear function qnl

�
x;

:
x
�

[5]. Notice also that, the identification of the system
parameters is achieved by the algebraic manipulation of Eq. (32.3), in order to express these parameters by a system of
equations or a similar expression, whose solution is precisely the set of unknown terms [9]. In fact, a set of functions are
called orthogonal in the closed interval [a, b] if they satisfy:

Fig. 32.1 Schematic diagram of
a nonlinear SDOF system
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Z b

a
�i.t/�j.t/ D 0 if i ¤ j

Z b

a
�i.t/�j.t/ D constant ¤ 0 if i D j

(32.4)

It is well known that, in a certain interval, it is possible to approximate a given function by a finite sum of orthogonal
functions. The orthogonal functions approximation of the integrands in Eq. (32.3) by a sum of r orthogonal functions is
given by:

�tpx.t/ Š Xl.1;r/�.t/.1;r/
�t2x.t/ Š F.1;r/�.t/.1;r/
�t2qnl

�
x;

:
x
� Š Q.1;r/�.t/.1;r/

(32.5)

where l D 0; 1; 2. Here, X, Q and F are constant vectors with coefficients of the orthogonal functions approximation of the
integrands. Here, the approximated function Q(1,r)�(t)(1,r) has the following structure:

Q.1;r/�.t/.1;r/ D kpx3.1;r/ C fdssx.1;r/ C cdsdx.1;r/ (32.6)

with the independent approximations x3, sx and sdx given by:

�t2x3 Š x3.1;r/ D X3.1;r/�.t/.1;r/
�t2sign.x/ Š sdx.1;r/ D Sdx.1;r/�.t/.1;r/
�t2sign.x/ Š sx.1;r/ D Sx.1;r/�.t/.1;r/

(32.7)

As reported in [1], the orthogonal functions signal approximation is useful for the solution of integral equations due to the
property which allows to compute the iterated numerical integration, as defined by the following matrix expression:

Z .n/

t0
� .�/d�n Š Pn�.t/ (32.8)

where P 2 Rr�r is the so-called operational matrix of integration with constant elements, whose values depend on the
orthogonal basis used, � 2 Rr is a vector called the basis of the orthogonal series. In [8], a unified method for the operational
matrix of integration computing is reported for the most popular orthogonal functions basis for signal approximation and,
therefore, we can compute numerically the iterated integral using this property. The substitution of Eq. (32.6) in Eq. (32.3)
yields to:

m
�
2X0�.t/P

2 � 4X1�.t/P C X2�.t/
�C c

��2X1�.t/P
2 C X2�.t/P

�C kX2�.t/P
2 C Qnl�.t/P

2 D F�.t/P2 (32.9)

Since we use a given orthogonal basis �(t) we can equate this coefficients, so that, using Eqs. (32.7) and (32.8), we can
obtain the following matrix equation:

�
m; c; k; kp; fc; fd

�

2

6
66
6
6
6
6
4

2X0P � 4X1P C X2
� 2X1P2 C X2P

X2P2

X3P2

SdxP2

SxQP

3

7
77
7
7
7
7
5

D �
FP2

�
(32.10)
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Now, let us define

Œ‚�T D �
m; c; k; kp; fc; fd

�
; ŒA� D

2

6
6
6
6
6
66
4

2X0P � 4X1P C X2
� 2X1P2 C X2P

X2P2

X3P2

SdxP2

SxQP

3

7
7
7
7
7
77
5

; B D �
FP2

�
(32.11)

Thus, in a more compact form, we can also write:

Œ‚�T ŒA� D ŒB� (32.12)

This last expression constitutes the algebraic problem for parameter identification, solved by using singular value
decomposition, which allows introducing the concept of pseudo-inverse matrix, in order to solve the algebraic problem
for the vector, as follows:

Œ‚� D ŒB� ŒA�T
�
ŒA� ŒA�T

��1
(32.13)

Notice that, the extension for multiple degrees of freedom (MDOF) systems is also possible by substituting the signals, x 2 R
and f 2 R, by the corresponding vectors x 2 RNdof �1 and f 2 RNdof �1 with Ndof the number of degrees of freedom. Therefore,
Eq. (32.14) is still valid, in this new case, for the matrices M, C, K and Q for the nonlinear terms.

Remark In case of free vibrations (nonzero initial conditions and f .t/ � 0) this approach allows to determine the
eigen-structure of the system and the combined nonlinear restoring force coefficients, that is, one can define:
c
m D 2�!n;

k
m D !n

2; and qnl D qnl
m . Thus, the algebraic identification expression for the case of free vibration is:

�
2�!n; !n

2; kp; f c; f d

�

2

6
6
6
6
6
4

�2X1P2 C X2P
X2P2

X3P2

SdxP2

SxQP

3

7
7
7
7
7
5

D Œ�2X0P C 4X1P � X2� (32.14)

where kp D kp

m ; f d D fd
m ; and f c D fc

m . For n MDOF mechanical systems, under free vibrations, the unknown parameters
cannot be identified separately but as a combination of them [1], that is,

�
C;K;Kp;Fc;Fd

�

2

66
6
6
6
4

�2X1P2 C X2P
X2P2

X3P2

SdxP2

SxQP

3

77
7
7
7
5

D Œ�2X0P C 4X1P � X2� (32.15)

where C D M�1C; K D M�1K; Kp D M�1Kp; Fd D M�1Fd; and Fc D M�1Fc.

32.3 Nonlinearity Index

From the definition of the Hilbert transform it is derived the Hilbert transform of the frequency response function (FRF) of
a given system as follows [4]:

H fG .!/g D � 1

i�
PV
Z 1

�1
G .!/

! � !c
d! (32.16)
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Notice that, the Hilbert transform maps the functions under its action into the same domain. Here PV denotes the Cauchy
principal value of the integral, which is needed due to the fact that the integrand has a singularity at ! D !c. Furthermore,
when applying the Hilbert transform to a FRF (i.e., G(!)) the imaginary part and the real part of the FRF are related as
follows [10]:

Re fG .!/g D � 1
i� PV

Z 1

�1
Im fG .!/g
! � !c

d!

Im fG .!/g D 1
i�PV

Z 1

�1
Re fG .!/g
! � !c

d!

(32.17)

These relations are referred as the Hilbert transform pairs; nevertheless, for nonlinear systems, this pair is not generally valid
and, consequently, the Hilbert transform will return a distorted version of the FRF, so that, in this order of ideas, we have a
nonlinearity indicator by analyzing the level of distortion on the original FRF. For this comparison, it is useful to calculate
the cross correlation coefficient:

�Hi D kRHG.0/k2 (32.18)

where kRHG(0)k is the normalized cross correlation coefficient. Here G is the FRF of the system and H is the Hilbert
transform of G and RHG is such that:

RHG .�!/ D
Z 1

�1
H .!/G .! C�!/ d! (32.19)

This index is an indicator of the system nonlinearity at a specific input amplitude. In this work, we use this index to study the
presence of nonlinearities in the system under analysis; such that the most �Hi diverges from 1 the most nonlinear behavior
does the system have, that is, for a linear system the expected value of �Hi is precisely 1. Moreover, due to the fact that the
Hilbert transform is a numerical method then, this necessarily leads to numerical errors and, as a consequence, we need to
consider some kind of linearity criteria. For example, as reported in [4], we can consider a value of 1 � �Hi � 0:9 for a
linearity assumption of the system.

32.4 Some Illustrative Cases

The experimental setup is a rectilinear mechanical plant (Model 210a) provided by Educational Control Products
®
.

The mechanical system consists of two mass carriages, interconnected by two nonlinear rubber elastic element springs.
Each mass carriage suspension has anti-friction ball bearing systems. Each mass carriage has a (rotary) high-resolution
optical encoder to measure its actual positions via cable-pulley systems (with effective resolutions of 2266 pulses/cm or
4.413 � 10�3 mm/pulse). This mechanical plant is easily configurable for 1ı of freedom by locking the second mass carriage
and decoupling the second non-linear elastic element. The signal and algebraic identification are obtained through a high-
speed DSP board into a standard PC running under Windows XP

®
and Matlab

®
/Simulink

®
.

It is important to note that, it is quite difficult to have an experimental estimation of the viscous damping by using
conventional techniques like Peak Picking due to the nonlinearities present in this particular system (Table 32.1).

The system response to the sinusoidal swept f .t/ D F sin .!.t/t/ ŒN� ; !.t/ D 1:25t, where the amplitude F is varied
(incremental) in an interval F 2 Œ0:15; 6:15� ŒN�with 13 different measurements in that interval. The corresponding Nyquist
diagrams are shown in Fig. 32.2. Here we can observe a clear distortion on the Hilbert transforms for the original FRF
(in blue), which is evident when the amplitude of the excitation force achieves a level of approximately 3 [N]. We have

Table 32.1 Mechanical system
parameters for a SDOF
configuration

Parameter Value

m 2.35 kg
c –
k 1272 N/m
kp �1.237 � 106 N/m3
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Table 32.2 Mechanical system
parameters estimation for SDOF
configuration

Parameter Actual value Estimated Difference

2�!n – 4.619 –
!n

2 541.276 529.607 2.15 %
kp (N/m3) �5.2638 � 105 �5.0471 � 105 4.2936 %

made the choice of estimating the original FRF using sine swept excitation, because this kind of input to the system allows
observing the system dynamic behavior in a more descriptive way, and then we compute the nonlinearity index based on the
Hilbert transform as defined in (32.17) and (32.18).

The numerical and experimental transient response for the displacement x is shown in Fig. 32.3. Free vibration response
of the first mass carriage x1, where the initial conditions were x1.0/ D 0:0065 m and

:
x1.0/ D 0 m/s. For identification

purposes, we use orthogonal functions signal approximation with the Hartley orthogonal functions basis [8], selected among
the possible orthogonal sets, due to its good behavior for estimation purposes (see also [1]). Here we use r D 100 with a
sampling period of 9 ms. The estimation of the system parameters is summarized in Table 32.2, resulting in reasonable
estimated values.

The corresponding configuration for the case of a 2 DOF is shown in Fig. 32.4, while the system parameters for this
configuration are those reported in Table 32.3. For the estimation of the eigenestructure of this 2 DOF system, we use the
measured displacements x1 and x2 resulting from an initial conditions change on the system, corresponding to x1.0/ D
0:0065 [m], x2.0/ D 0:0063 [m] and

:
x1.0/ D 0 [m/s] and

:
x2.0/ D 0 [m/s]. The nonlinearity index as a function of the

amplitude for the 2-DOF case is reported in Fig. 32.5, where the free vibration response of the system is also shown (right).
By approximating the signals x1 and x2 with 100 terms of the Hartley orthogonal basis, as we did before, we obtain the
combined system matrices of damping M�1 C, stiffness M�1 K and polynomial stiffness M�1 Kp, whose values are reported
in Table 32.4. Only the corresponding FRF’s of the first mass carriage are reported, however, it is quite easy to note that
the amplitude interval in which the system behavior is dominantly linear before the input amplitude reaches approximately
4 [N].

Finally, the nonlinearity index and free vibration response of the 2 DOF mechanical system are described in Fig. 32.6,
where one can confirm that this system certainly exhibits high nonlinearities as far as the force input is increased.
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Fig. 32.4 Configuration of a 2 DOF mechanical system

Table 32.3 Mechanical system
parameters for 2 DOF

Parameter Value

m1 (kg) 2.35
c1 (Ns/m) –
k1 (N/m) 1272.1
kp1 (N/m3 ) �1.237 � 106

m2 (kg) 2.754
c2 (Ns/m) –
k2 (N/m) 1570
kp2 (N/m3) �1.350 � 106
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Table 32.4 Mechanical system
parameters estimation for 2 DOF

Parameter Estimated value

M�1C

"
9:7882 �4:7765
�4:3438 4:3438

#

M�1K 1� 103

"
1:0265 �0:5276
�0:4799 0:4799

#

k1 (N/m) 1� 105

"
�9:8980 5:0471
4:5899 �4:5899

#

32.5 Conclusions

In this work the on-line algebraic identification, based on operational calculus, is combined with orthogonal functions
approximation, thus taking advantage of their specific algebraic and computational properties. Computationally speaking,
the required iterated integrations are formulated and computed by using a compact and clear matrix expression, which is
well-defined and robust, due to the good structure of the operational matrix of integration in an algebraic sense. That means
that the pseudo-inverse is always possible to be computed and the results are finite and bounded. The parameter estimations,
however, are slower for this particular formulation. The nonlinearity indicator tested here is easy to program and compute,
after some considerations reported in the literature. It is necessary to make a good analysis of the numerical methods applied
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to the original data in order to have a good criterion for the final determination of presence of nonlinearities, that is, one has
to be careful about what is going to be an acceptable value for �Hi to consider the system as nonlinear. In particular, we have
assumed a value of �Hi � 0:9 to establish that a given system is dominantly nonlinear.
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Chapter 33
Online State and Parameter Estimation of a Nonlinear Gear
Transmission System

Dimitrios Giagopoulos, Vasilis Dertimanis, Eleni Chatzi, and Minas Spiridonakos

Abstract This study aims at modeling the nonlinear dynamic response of a gear transmission system, based on
substructuring techniques. More specifically, a finite element (FE) model is introduced for the housing of the gearbox,
while the essential effects of the gear-pair, the bearings and the shafts are described by a lumped parameter model. The
latter is characterized by strongly nonlinear characteristics that account for gear backlash, meshing stiffness, transmission
error properties and bearing stiffness nonlinearities. Accordingly, a joint state and parameter estimation (JS&PE) problem
is formulated on the basis of the lumped model. The proposed framework uses vibration acceleration measurements from
sensors attached on the housing and, through their propagation to the lumped nonlinear model via the FE substructure, an
Unscented Kalman Filter (UKF) is activated for the solution of the JS&PE problem. In contrast to other alternatives (e.g.,
the Extended Kalman Filter), the UKF features a number of advantages in treating nonlinear systems, including a derivative
free calculation and a capacity for higher order nonlinearities. The method’s performance is examined using both numerical
simulations and experimental tests.

Keywords Gear vibration • Finite elements • Nonlinear dynamics • Substructuring • Join state and parameter
identification

33.1 Introduction

Geared rotor-bearing system is one of the most important mechanical system used for power and motion transmission in
many engineering applications. The continuously rising technological needs for improved performance, compactness, longer
life and reduced production costs, require new designs with higher operating speeds and lighter components. In order to
satisfy these needs, research in the area of geared systems has been kept active, incorporating new technical advancements
and theoretical developments in other related fields. These efforts are also greatly assisted by current rapid enhancements in
the level of computing power, which in turn extends the range of applicability of involved numerical algorithms. In particular,
dynamics of systems involving gear mechanisms has long been in the epicenter of intensive research efforts.

Previous studies on the subject have focused on developing mechanical models of geared systems, ranging from relatively
low to high complexity levels, depending on the emphasis and the objectives of the investigation. Consequently, a large
variety of important technical topics has already been examined, such as the effect of support and gear box flexibility,
gyroscopics, internal and external damping, shaft shear deformation and coupled torsional-bending vibrations. The great
majority of these studies assume constant average spin speed of the gear shafts. Both response and stability issues have
been investigated by means of analytical, numerical and experimental techniques. Among all the technical parameters, those
related to the gear backlash and the variable gear meshing stiffness were found to affect the system response in a significant
manner. However, gear backlash introduces serious difficulties in the analysis because the equations of motion of such
systems become strongly nonlinear [1, 2]. Moreover, these difficulties are further intensified by the variation in the number
of gear teeth pairs which are in contact at a time, causing a variation of the equivalent gear meshing stiffness. On the other
hand, some of the earlier studies shifted attention to more fundamental issues and have shown that these complications are
responsible for the appearance of complicated and irregular dynamic response [3, 4].
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In this work first the emphasis is given in modeling and investigating the nonlinear dynamic response of a gear
transmission system, based on substructuring techniques. A finite element (FE) model is introduced for the housing of
the gearbox, while the essential effects of the gear-pair, the bearings and the shafts are described by a lumped parameter
model. The system examined is characterized by strongly nonlinear characteristics that account for gear backlash, meshing
stiffness, transmission error properties and bearing stiffness nonlinearities. The gear-pair model employed is presented in a
way that can easily be adapted as a superelement in a general rotordynamic configuration. The goal is to build high fidelity
model of the gear-pair in order to simulate the behaviour of the combined system. Due to a number of factors, the system
may be characterized by uncertainties. To achieve this, the Unscented Kalman Filter (UKF), which comprises a nonlinear
observer, is employed here for the joint state and parameter estimation (JS&PE) of the lumped substructure. The efficient
performance of the UKF algorithm in real-time nonlinear system identification problems has been confirmed in several
studies [10–12]. Due to its structured format, which calls for the utilization of a minimal number of sample points, the UKF
is also preferable to Particle Filters where the required sample size may be significant. In order to identify the values of
the parameters, accelerations time histories are used, obtained during various operating conditions of the gearbox. These
measurements are recorded from a special experimental device, which was designed and set up for this purpose. Finally
the experimental results was compared to those from the numerical model for verification of the numerical procedure and
improvement of the numerical modeling of the gear transmission components.

33.2 Class of Mechanical Systems Examined: Equations of Motion

Many mechanical systems involve several structural components, which are deformable and possess linear characteristics,
together with an appropriate set of interconnecting elements, possessing nonlinear properties. In such a case, the
corresponding equations of motion can be cast in the following system of ordinary differential equations

_

MRx C _

C
:
x C _

Kx C _

h
�
x;

:
x
� D _

f .t/ (33.1)

Vector x includes the set of the generalized coordinates, the terms
_

M,
_

C and
_

K represent the classical mass, damping and

stiffness matrix of the system, respectively, while the vector
_

h
�
x;

:
x
�

includes the nonlinear smooth forces imposed by

the interconnecting elements. Finally, the term
_

f .t/ includes the action of the externally applied forces. Prediction of the
response of dynamical systems represented by Eq. (33.1) is a difficult task, since in most practical cases the number of the
equations of motion is quite large and the nonlinearities are strong. As a result, such systems can only be studied by applying
special numerical methodologies [5]. In many cases, the resulting computations are facilitated by first applying appropriate
methodologies leading to a significant reduction of the original coordinates associated with the system deformability, without
affecting considerably the accuracy of the results. The basic steps of this method are presented in the following paragraphs.
In brief, neglecting temporarily the damping and the nonlinear forces and taking into account the sparsity pattern of the
stiffness matrix, the equations of motion of the original system are first reordered and then split automatically in a number
of mathematical substructures. As a consequence, the equations of motion for the i -th substructure alone appear in the
following linear form

Mi Rxi C Kixi D f
i
.t/ (33.2)

where Mi and Ki are the mass and stiffness matrix, respectively, while f
i
.t/ represents the terms arising from external forcing

on the i -th component. Next, the displacement vector is split in the form xi.t/ D
�

xi
I

xi
B

�
where xi

I and xi
B represent the internal

and the boundary degrees of freedom of the i -th substructure, respectively. Next, through application of a Ritz coordinate
transformation

xi.t/ D Ti q
i
.t/ (33.3)

where the columns of matrix Ti include the fixed interface normal modes of the component up to a prespecified frequency
plus a number of static correction modes. Then, the set of Eq. (33.2) is replaced by a considerably smaller set, which appears
in the form
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_

Mi Rqi
C _

Kiqi
D _

f
i
.t/ (33.4)

with
_

Mi D TT
i MiTi,

_

Ki D TT
i KiTi and

_

f
i
.t/ D TT

i f
i
.t/. After treating and connecting each component together, the linear

undamped terms in the equations of motion of the composite system can eventually be cast in the vectorial form ` �
M Rq C Kq � f .t/, with

q D

0

B
B
B
B
@

�
1

�
2
:::

xB

1

C
C
C
C
A
; M D

2

6
6
6
4

I1 �1;2 � � � �1;B
I2 � � � �2;B

: : :
:::

sym MB;B

3

7
7
7
5

and K D

2

6
6
6
4

ƒ1 0 � � � 0

ƒ2 � � � 0
: : :

:::

sym KB;B

3

7
7
7
5
:

The vector �
i
includes the generalized coordinates corresponding to the modes kept in the i -th component, while the matrix

ƒi is diagonal, with diagonal elements representing the squares of the related natural frequencies. The upper part of the
transformed stiffness matrix, corresponding to the generalized sets of coordinates �

i
, is diagonal. Likewise, the corresponding

diagonal blocks of the mass matrix are occupied with identity matrices, while from the off diagonal blocks only those
involving coupling between the involved substructures are nonzero. Finally, the last part of vector q, represented by xB,
includes all the boundary degrees of freedom of the system. The corresponding parts of the mass and stiffness matrix,
represented by MB,B and KB,B, are full. However, the dimensions of these submatrices are usually much smaller than the
dimensions of matrices M and K, which in turn are much smaller than the dimension of the mass and stiffness matrices of
the original system. The set of the degrees of freedom is selected so that it includes all the points where nonlinear action is
present. In this way, the exact nonlinear characteristics of the system are preserved.

33.3 Review of Unscented Kalman Filter Formulation for State and Parameter Estimation

The Kalman Filter is a Bayesian approximation technique which is widely used for estimating a linear system’s response
using noisy measurements from few of the degrees of freedom of a system with given governing equations, i.e., a given
process mode [13]. In short, the mathematical setup of the time-discrete KF is explained in what follows by extending the
discrete dynamical system of Eq. (33.1) through the addition of additive white Gaussian noise as follows,

xnC1 D Axn C Bun C wn

yn D Cxn C Dun C vn
(33.5)

where A 2 R
n�n is the system matrix, B 2 R

n�1 is the input matrix, C 2 R
m�n is the output matrix, D 2 R

m�1 is the feed-
through matrix, un 2 R is the control vector, xn 2 R

n is the state vector at time step n comprising the system displacements d

and velocities
:

d, i.e., xn D
h
dn;

:

dn

iT
, yn 2 R

m�1 is the observation vector and n D 1; 2; 3; : : : ; T are the time discrete time

steps. Also the stochastic nature of the system, reflected in the terms of wn 2 R
n�1, which is the process noise vector, assumed

to be Gaussian distributed with N(0, Qn), and vn 2 R
m�1, which is the Gaussian measurement noise vector distributed with

N(0, Rn).
The linear KF is a recursive estimator whose optimality depends on (a) how accurately the process model can track

the actual system, (b) the assumption of additive, independent white Gaussian noise and (c) the precision by which the
process and measurement noise covariance matrices are known. Based on this, it becomes evident that for severe modeling
uncertainties, and therefore significant modeling errors, the KF will have difficulties, or will be unable to deliver an accurate
full state estimate based on noisy and incomplete measurements. To this end, the use of an alternate Bayesian filter is
proposed herein, namely, the Unscented Kalman Filter (UKF), which is capable of joint parameter and state identification.

In handling linear systems of the type of Eq. (33.5), where the system properties, i.e., the elements of matrix A, are
considered as unknowns, a joint state and parameter formulation is adopted. This demands an augmentation of the regular
state vector x, in order to include those properties of the system that are considered as unknowns and which can be
summarized in a parameter vector ™. The augmented state vector is defined as x D Œx; ™�T . The resulting system is of
nonlinear nature since it comprises bilinear products of the components x & ™ of the state vector x.
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The Unscented Kalman filter is chosen herein in place of the widely used nonlinear filter alternative, i.e., the Extended
Kalman Filter (EKF) [7, 15], since it is able to overcome some significant shortcomings of the latter when dealing with higher
order nonlinearities and noise contamination. The UKF models the state as a Gaussian random variable whose distribution
can be approximated by a carefully chosen set of deterministic points, namely the sigma points. These points capture the prior
mean and covariance of the state and when propagated through the nonlinear function, provide an improved posterior estimate
of the transformed state. This process is known as the Unscented Transformation (UT) [9]. The process and observation
equations are in this case reformulated for the general case of a nonlinear system as,

xn D f .xn�1;un�1/C wn�1
yn D h .xn/C vn

(33.6)

where f .�/&h .�/ can both be nonlinear functions, and yn, wn�1 and vn are defined as previously. Note however that xn

signifies here the joint state and parameter vector. Given the formulation provided above, the workings of the KF are
summarized in Table 33.1.

Further information about the formulation of the UKF can be found in [6, 8, 9, 11, 15–17].

Table 33.1 The general scheme of the UKF algorithm for joint state and parameter estimation

- Initialization at time t0:
bx0 D E Œx0�

P0 D E

	�
x0 �bx0

� �
x0 �bx0

�T



- At time tk, for nD1, : : : , Nt:
• The Unscented Transform
1. Augment the state vector to include the noise parameters

x˛n�1 D �
xT

n�1 ;w
T
n�1 ; v

T
n�1

�T

2. Formulation of the Sigma Point vector:

Xn�1 D
h
bx
˛

n�1;
bx
˛

n�1 Cp
.L C �/P˛n ; bx

˛

n�1 �p
.L C �/P˛n

i

where ˛,ˇ,� are the UKF parameters; L is the dimension of the augmented state vector.
• Prediction stage:
3. Propagation of the Sigma points through the system model:

X x;i

n

ˇ̌
ˇn�1

D f
�
X x;i

n�1;X
w;i
n�1

�
; i D 0; ::; 2L

4. Calculation of the state and covariance priors:
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• Update stage:
5. Calculation of Kalman gain:
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6. Improve predictions of state (posterior estimates) using the latest observations:
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33.4 Application to Experimental Gearbox Simulator

For the purposes of the proposed work, a special experimental device will be designed and built, consisting of two power
electric motors with adjustable rotational speed. One of them will cause the motion, while the second will resist this motion,
acting as an electric generator. The mechanical system to be tested, including a gear-box with a single gear-pair connection,
ball bearings supporting the rotating axes and couplings for the connection between the parts of the system. The device with
the experimental setup and accelerometer locations is shown in Fig. 33.1a. Also a view of the spur gear pair are is depicted
in Fig. 33.1b.

The pinion was connected to 0.75 HP electric motor driven through coupling and the gear was connected to a loading
system. The gear and pinion has 24 and 16 teeth respectively. The diameter of the shafts that connects the gears with the
motor and the loading system is 25 mm. The shafts are supported at its ends with SKF 6205 ball bearings. Between the motor
drive and the gearbox placed a torque/tachometer sensor in order to measure the applied input torque and the shaft rotation
speed. Also for the measurement of the shafts speed used and a portable optical tachometer. The vibration signals originating
from the gearbox investigated at different loading conditions and shaft speeds (rotating frequencies).

In order to determine the dynamic response and provide the main effects due to the gear meshing action, an appropriate
model was developed. In this model, the housing of the gearbox and the shafts are modeled by using finite elements, while
the essential effects of the gear-pair and the bearings are taken into account via a lumped nonlinear mathematical model.
A finite element model (FEM) of the specific gear-pair considered is shown in Fig. 33.2a. Moreover, the appropriate lumped
mass model (LMM) of the same gear-pair is shown in Fig. 33.2b.

Upon satisfaction of certain conditions, the lumped mass model of the gear-pair can lead to sufficiently accurate results.
The main reason for employing a LMM rather than a FEM of a gear-pair is that the former leads to a much faster and at
least qualitatively correct picture of the dynamics. In particular, the LMM employs two rotating rigid disks, modeling the

Fig. 33.1 (a) Experimental set up of the device with Acceleration measurement locations and, (b) view of the spur gear-pair

Fig. 33.2 (a) Finite element model (FEM) and, (b) lumped mass model (LMM) of a gear-pair system
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Fig. 33.3 (a) Effective value of the gear meshing stiffness. (b) Backlash modeling of the gear teeth

gear bodies, with masses mn, mass moments of inertia In and base radii Rn (n D 1; 2), while both gears are supported on
deformable bearings. Also the gear meshing force is reproduced by a set of a spring and a damper (kg, cg). The essential
dynamics of the system is described by the coordinates �1, �2, u1 and u2. The action of the gear contact and meshing
was modelled by an equivalent spring, whose stiffness coefficient kg(�) depends on the relative position of the two gears,
where the damping mechanisms assumed to be linear. The form of gear mesh stiffness shown in Fig. 33.3a, and obtained
from the finite element of the gear-pair system. The meshing stiffness creates a periodically varying forcing effect on the
supporting structure, which produces periodic long term dynamics. In addition, the nonlinear backlash phenomenon, caused
by the clearances between the mating gears, was also allowed to occur (Fig. 33.3b). The quantity 2b represent the total gear
backlash. Also the restoring force developed in the n -th rolling element bearing is expressed in this nonlinear form

fn .un/ D

8
ˆ̂
<

ˆ̂:

_

k n

XN

rD1.un cos˛r n � bbn/
 cos˛r n; un � bbn

0; junj < bbn

� _

k n

XN

rD1.junj cos˛r n � bbn/
 cos˛r n; un � �bbn

(33.8)

In this expression, 2bbn represents the diametral clearance, ˛r n is the angular position of the r -th rolling element (of the

total N elements in contact),  is a constant (equal to 3/2 for ball bearings), while the coefficient
_

k n is determined from the
bearing characteristics and loading conditions.

Final the coupling of the LMM gear-pair model with the gear shafts and the gearbox superstructure were performed. In
particular, both the gear shafts and the gearbox were discretized by appropriate finite elements, as shown in Fig. 33.4, while
the effect of the LLM were included in the system with the use of mass, damping, and nonlinear spring elements.

33.5 Results

In this section presented simulated numerical results for the complete gearbox system (gear-pair and housing), in an indicative
input rotation speed at 2100RPM. First in Fig. 33.5a and b presented the “measured” acceleration time histories in the vertical
direction, for the bearings locations 2 and 3 respectively. These accelerations time histories are used as input variables in
the UKF. First, the UKF results are compared with the true system response in the case where all of the system parameters
are considered to be known. These results summarized in Fig. 33.6a and b. In these figures presented the displacement time
histories in the bearing locations for the UKF state estimation results with red dashed line and for the initial system response
with black continuous line.

Next, in order to test the effectiveness of the UKF in state and parameter estimation, consider that the bearing stiffness
parameters are unknown. A graphical representation of the true and identified values over the time provided in Fig. 33.7a
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Fig. 33.4 Lumped mass of the
gear-pair system, coupled with a
finite element model of the
flexible shafts and the gearbox

Bearing Acceleration Time History in Vertical Direction (Location 2)
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Fig. 33.5 “Measured” Acceleration time histories in vertical direction (a) Bearing Location 2 and, (b) Bearing Location 3

and b for the bearings stiffness parameters
_

k n. As is apparent in Fig. 33.7 after a very short initial convergence period, the
parameter estimates remain stable throughout the entire simulation, which verifies the stability of the devised scheme. Also,
the UKF results are compared with the true system response in this case with unknown the bearing stiffness parameters. The
results summarized in Fig. 33.8a and b for the displacement time histories in the bearing locations. From these diagrams
arising the efficiency of the UKF in the state and parameter estimation when applied in a system with highly nonlinear
behavior.
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Bearing Displacement Time History in Vertical Direction (Location 2)

Bearing Displacement Time History in Vertical Direction (Location 3)
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Fig. 33.6 UKF state estimation of displacement time histories in vertical direction (a) Bearing Location 2 and, (b) Bearing Location 3
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Fig. 33.7 Convergence of the bearing stiffness parameters (a) Bearing Location 2 and, (b) Bearing Location 3
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Bearing Displacement Time History in Vertical Direction (Location 2)

Bearing Displacement Time History in Vertical Direction (Location 3)
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Fig. 33.8 UKF state and parameter estimation of displacement time histories in vertical direction (a) Bearing Location 2 and, (b) Bearing
Location 3

33.6 Conclusions

This study includes the dynamic analysis of a nonlinear gear transmission system. The emphasis given in the build of high
fidelity model of the gear-pair in order to simulate the behaviour of the combined system. To achieve this, the Unscented
Kalman Filter (UKF), which comprises a nonlinear observer, is employed here for the joint state and parameter estimation
(JS&PE) of the lumped substructure gear-pair and bearing model parameters. In order to identify the values of the parameters,
accelerations time histories are used, obtained during various operating conditions of the gearbox. From the numerical
analysis arising the efficiency of the UKF in the state and parameter estimation when applied in a system with highly
nonlinear behavior.
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Chapter 34
Model Updating of a Nonlinear System: Gun Barrel of a Battle Tank

Güvenç Canbaloğlu and H. Nevzat Özgüven

Abstract Nonlinearities in a structural system make the use of model updating methods developed for linear systems
difficult to apply nonlinear systems. If the FRFs of the underlying linear systems in a nonlinear system could be
experimentally extracted, then the linear model updating methods could easily be applied to nonlinear systems as well. When
there are complex nonlinearities in a structure together with frictional type of nonlinearity, linear FRFs cannot be accurately
obtained by using low level forcing. In this present work, the model updating method—Pseudo Receptance Difference (PRD)
method—recently developed by the authors for nonlinear systems, is applied to the gun barrel of a battle tank. The linear
FRFs of the nonlinear gun barrel of the battle tank are obtained from measured nonlinear FRFs, and simultaneously the
nonlinearities in the system are identified. Then the inverse eigensensitivity method is employed to update the linear finite
element (FE) model of the gun barrel. Finally, in order to demonstrate the accuracy of the updated nonlinear model, the
calculated and measured FRFs of the gun barrel at several different forcing levels are compared.

Keywords Nonlinear model updating • Nonlinear identification • Nonlinearity • Gun barrel • Nonlinear structures

34.1 Introduction

Integration of engineering systems to various platforms such as helicopters, aircrafts and battle tanks is a challenging problem
in structural dynamics. Since integration of these systems may change the dynamic characteristics of the platforms, it is
very important to understand the dynamic behavior of the platforms in order to increase the overall performance of the
systems integrated to platforms. An example of that is to increase the shooting performance of a battle tank. The common
problem encountered is to model the structural behaviors of the platforms or systems accurately. This modelling is commonly
performed by using FE methods. However in all these types of integration applications there are nonlinear behaviors due to
friction, joints or moving components in the integrated systems or platforms. Therefore the ultimate purpose is to have a
mathematical model that simulates the nonlinear dynamic behavior of the system or the platform accurately. Since there are
always discrepancies between predictions of the dynamic models and experimentally measured values, these models have to
be updated.

Various model updating methods were developed in order to correct the mathematical models. However most of the model
updating methods available in literature are for linear systems. Link and Zhang [1] investigated the effect of using different
residual error vectors on the performance of the updating method. This study was demonstrated on a real test structure.
Ibrahim et al. [2] used direct updating method for the model updating of FE models. For model updating, sensitivity based
methods are used in different studies [3, 4]. A new model updating method is proposed by Lenoir et al. [5] which is based
on the modal synthesis of experimental forced responses. In a later work, a new method was developed for structural model
updating and identification of joint stiffness by Li [6]. In a more recent work Boulkaibet et al. [7] studied the use of the
Shadow Hybrid Monte Carlo technique to determine the selection of updating parameters. Hemez [8] briefly overviewed the
first 30 years of FE model updating development, from the mid-1960s to the mid-1990s and categorized FE model updating
methods into broad categories that each offers their own benefits and limitations.
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In engineering problems there are usually nonlinearities in structures; therefore it is vital to have model updating
techniques for nonlinear structures as well. In literature there are different studies performed to update directly the nonlinear
model of a structure [9–11]. In a more recent work, Isasa et al. [12] presented an approach which is based on multi-harmonic
balance method and extended constitutive relation error for the updating of nonlinear models.

For nonlinear structures, it is possible to employ the model updating techniques developed for the linear systems,
provided that the dynamic characteristics of the linear part of the structure are extracted, which may require identification of
nonlinearity in the system first. Kerschen et al. [13] presented a literature survey which is one of the most detailed nonlinear
system identification literature surveys in which more than 400 papers were cited. Worden et al. [14] applied various time
and frequency based nonlinear identification methods to a damper of an automobile. Eriten et al. [15] presented nonlinear
system identification (NSI) approach in which experimental measurements are combined with slow-flow dynamic analysis
and empirical mode decomposition. Very recently, Doranga and Wu studied [16] the Nonlinear Resonant Decay method
for parameter identification of nonlinear dynamic systems. Canbaloglu and Özgüven, in another recent work, developed a
method to identify nonlinearity and to obtain linear FRFs of nonlinear structures having multiple nonlinearities including
friction type of nonlinearity, by using nonlinear FRF measurements [17], and used this method in the nonlinear model
updating approach proposed [18]. The proposed method is experimentally validated by applying it to a real nonlinear T-beam
test structure [19]. In this study, the method developed by the authors for nonlinear model updating [17, 18] is experimentally
applied to the gun barrel of a battle tank. Dynamic modelling of the gun barrel of a battle tank is studied in different studies
to improve the accuracy of the shooting and stabilization performance [20, 21] and it is shown that the fundamental mode
of the gun barrel plays a key role in the response of the system. In this perspective, detailed model of the gun barrel at the
fundamental mode is studied in this work. An equivalent single degree of freedom nonlinear model of the system is built
for the fundamental mode of system. First, using the PRD method, both linear FRFs and the nonlinearities in the system are
obtained from experimentally measured nonlinear FRFs. Afterwards, linear FE model of the test structure is built in ANSYS
and it is updated by using the linear FRFs obtained through the PRD method. Thus, an updated nonlinear model of the test
structure is constructed by using the identified nonlinearity and updated linear FE model of the system. Finally, predicted
and measured FRFs of the test structure are compared at different forcing levels in order to demonstrate the accuracy of the
updated nonlinear model of the system.

34.2 Theory

The model updating method developed by Canbaloglu and Özgüven [17, 18] is employed in this study for updating the FE
model of a gun barrel. Only a very brief summary of the method is presented here. The theory of the method is given in detail
in Refs. [17] and [18].

For a nonlinear system, it is possible to write the following equation.

Œ�� D �
�f
�C Œ�HF� D �

HNL
��1 � �

HL
��1

(34.1)

where [�], [�f ], [�HF], [HNL], [HL] are the nonlinearity matrix, nonlinearity matrix due to friction, nonlinearity matrix
due to remaining nonlinearities that are dominant at high forcing levels of excitation, response level dependent nonlinear
and linear FRF matrices, respectively. Measuring FRFs experimentally several times at the same frequency but at different
forcing levels the following set of equations can be written:

Œ�HF�iC1 � �
�f
�
1

D �
HNL

�
iC1

�1 � �
HNL

�
1

�1
i D 1; 2; : : : ; .n � 1/ (34.2)

In Eq. (34.2), subscript 1 indicates low forcing case and subscripts 2, 3, : : : n indicate high forcing cases. The nonzero
elements in the nonlinearity matrices at the left hand side which can be written as polynomial functions of response
amplitudes with unknown coefficients are the describing functions of the corresponding nonlinearities. Applying polynomial
fit to (n-1) data points in a least square sense, the equation of the corresponding regression curve can be obtained in order
to find the unknown coefficients. By comparing the terms of the regression equation with the corresponding describing
functions, nonlinearities can be identified and then linear FRFs can easily be calculated as [17]

�
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�
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D
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HNL
�
1
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1

i�1
(34.3)
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In order to avoid full matrix inversions given in Eq. (34.3), the formulation is improved for nonlinear structures where the
nonlinearity is local [18]. For local nonlinearities it possible to partition the nonlinearity matrix as

Œ�� D
	
Œ�aa� Œ0�

Œ0� Œ0�



(34.4)

where subscript a represents coordinates where nonlinear elements are connected (will be referred to as “nonlinear
coordinates” in short). Pre-multiplying all the terms in Eq. (34.1) by [HL], post-multiplying by [HNL] and using Eq. (34.4)
for the nonlinearity matrix, the following equation is obtained:
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(34.5)

Here subscript b corresponds to linear coordinates.
Considering the first submatrix of the resultant matrix and performing some matrix manipulations, the linear FRF matrix

for the nonlinear coordinates can be written as [18]
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(34.6)

It is obvious that for locally nonlinear structures computational effort will be considerably reduced by using the above
equation compared to Eq. (34.3). Once the linear FRFs are calculated by using Eq. (34.6), then they can be used in the model
updating process of a FE model of the linear part of the system. Note that in several model updating methods having FRFs
of limited number of coordinates is sufficient. Therefore, having FRF of even a single coordinate may be enough for model
updating.

In this present work, the inverse eigensensitivity method [22] is used for the model updating. The method is based on the
following equation:

f�rg D ŒS� f�pg (34.7)

Here, frg is the response vector composed of mode shapes and natural frequencies, fpg is the parameter vector composed of
geometrical parameters or material properties used in the FE model, and [S] is the modal sensitivity matrix. Modal sensitivity
matrix [S] can be written as

ŒS� D

2

6
4

Sr1
p1 � � � Sr1

pm

:::
: : :

:::

Srn
p1 � � � Srn

pm

3

7
5 (34.8)

If the structure is complex, it is easier to calculate the sensitivities by numerical differentiation. After obtaining the sensitivity
matrix [S] and f�rg vector, f�pg which gives the changes required to be made in parameter vector, can be obtained from the
following equation:

f�pg D ŒS��1 f�rg (34.9)

34.3 Experimental Study

In this section, PRD method developed recently [17] is applied to the gun barrel of a battle tank. Employing the PRD method,
both linear FRFs and the nonlinearities in the system are obtained from experimentally measured nonlinear FRFs.
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Fig. 34.1 Gun barrel test setup

34.3.1 Experimental Setup

The test set-up, which consists of the gun barrel of a battle tank, is shown in Fig. 34.1.

34.3.2 First Set of Experiments

In the first set of experiments, the structure is excited with a random force. In random excitation tests, 6 different force levels
are used starting from a very low to high forcing levels. Since the accuracy of the PRD method proposed for obtaining linear
FRFs and nonlinear identification depends on the excitation frequency and it is shown that when the structure is excited
at around the linear resonance frequency of the structure the method gives more accurate results [17], in the first random
excitation test low excitation signal level is selected.

In all the random excitation tests, a frequency resolution of 0.0625 Hz is used in measurements. In order to minimize
the noise in measurements, 21 averages are taken. In all the random excitation tests, 6 accelerometers are used, and the gun
barrel is excited with the shaker located at the tip of the gun barrel.

The accelerometer and the shaker locations and geometry constructed in the PULSE software are shown in Fig. 34.2.
The node numbering starts from the tip of gun barrel (node number 1) and continues till the root end of the gun barrel

(node number 6) that is accessible from outside of the tank. The shaker is located at node 1 as shown in Fig. 34.3.
The force levels used in the random excitation tests are shown in Fig. 34.3, and their root mean square (rms) values are

given in Table 34.1.
For the given excitation levels, FRFs are measured by using PULSE software, the FRFs at node 1 (tip of gun barrel) are

shown in Fig. 34.4.
As the first observation from Fig. 34.4, it is seenthat FRFs are slightly different for different random excitation force

levels. Therefore in order to see the differences more clearly, resonance regions are zoomed in and shown in Figs. 34.5, 34.6
and 34.7, respectively.

As can be seen from Figs. 34.5, 34.6 and 34.7, natural frequencies are shifted when the force level changes. Especially
at the fundamental mode of the gun barrel this effect is much more pronounced. These observations give a clear indication
of nonlinearity in the structure. In order to see the dynamical characteristic of the gun barrel in more detail, for each of the
force levels, modal analysis is performed and the corresponding modal parameters are extracted by using ME’scope modal
analysis software. Modal parameters extracted are compared to each other for all the random excitation force level cases. The
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Fig. 34.2 Test geometry constructed in PULSE software
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Fig. 34.3 Force levels used in random excitation tests

Table 34.1 Force levels used in
random excitation tests

Force level Rms (N)

1 0.88
2 1.829
3 2.809
4 3.859
5 7.888
6 21.851
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Fig. 34.5 Measured FRFs at node 1

natural frequencies are scaled such that the fundamental natural frequency of the gun barrel is 1 Hz for the lowest excitation
force level. The natural frequency comparison is given in Table 34.2 and it is shown in Fig. 34.8.

As seen from Fig. 34.8 and Table 34.2, for the first three force levels, the second mode of the structure cannot be extracted
from modal analysis. Also it is clearly seen that as the force level increases the natural frequencies tend to decrease for all
the modes.

Similar comparison can be made for the damping values extracted from the analysis. The comparison of the damping
values for each of the force levels is given in Table 34.3 and shown in Fig. 34.9.

As observed from Fig. 34.9 and Table 34.3, as the force level increases damping values of the modes tend to increase for
all the modes except the third mode. Only in the third mode the damping value drops for force level 6.

From results of the random excitation tests, the existence of nonlinearity in the system is clearly seen. Since the
fundamental mode of the gun barrel is under consideration, we can also conclude that, for the fundamental mode, as the
force level increases in the random excitation tests, damping value of the fundamental mode increases and natural frequency
decreases.

In order to apply the PRD method, the structure is excited at around 1 Hz (scaled frequency) with a pure sine excitation
at different forcing levels. The structure is excited at a low forcing level and then at a number of high forcing levels. The
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advantage of this method is that, there is no need for any vibration controller as in the cases of constant forcing or constant
amplitude testing over a certain frequency range.

In order to see the effect of choosing different frequencies of excitation on the performance of the method, five different
excitation frequencies (1 Hz, 0.933 Hz, 0.95 Hz, 0.966 Hz, and 0.983 Hz) are used, and for each of these excitation
frequencies, describing functions of the nonlinearities are obtained by using PRD method.

34.3.2.1 Application of PRD Method at Scaled Frequency 1 Hz for Identifying Nonlinearity

Real and imaginary parts of the describing function are obtained from experimental measurements at scaled frequency 1 Hz
by applying PRD method. For the real and imaginary parts of the describing function, 3rd order polynomial functions are fit
(Fig. 34.10). Corresponding coefficients of the polynomial functions are given in Table 34.4.
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Table 34.2 Scaled natural frequency comparison for different force levels

Force level 1 Force level 2 Force level 3 Force level 4 Force level 5 Force level 6
Mode number Scaled natural frequency (Hz)

1 1.0000 0.9964 0.9932 0.9888 0.9788 0.9595
2 *** *** *** 1.4807 1.4737 1.4572
3 1.6491 1.6485 1.6305 1.6236 1.6059 1.5673
4 2.9604 2.9559 2.9525 2.9481 2.9357 2.9047
5 6.9588 6.9565 6.9548 6.9533 6.9483 6.9379
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Table 34.3 Modal damping comparison for different force levels

Force level 1 Force level 2 Force level 3 Force level 4 Force level 5 Force level 6
Mode number Modal damping (%)

1 0.955 1.033 1.171 1.345 1.621 2.368
2 *** *** *** 0.769 1.187 2.498
3 1.531 1.837 2.193 2.637 3.093 2.926
4 0.87 0.903 0.941 0.985 1.115 1.483
5 0.499 0.496 0.504 0.513 0.533 0.58
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Fig. 34.10 Calculated describing function (a) Real part (b) Imaginary part

Table 34.4 Coefficients of the polynomials fit to the data for real and imaginary parts of the
describing function

p3 p2 p1 p0

Real part of describing function
p3x3 C p2x2 C p1x C p0 �2:62� 1013 7:62� 1010 �9:64� 107 �565
Imaginary part of describing function
p3x3 C p2x2 C p1x C p0 3:12� 1013 �4:18� 1010 3:77� 107 �518
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Fig. 34.11 Calculated describing function (a) Real part (b) Imaginary part

34.3.2.2 Application of PRD Method at Scaled Frequency 0.933 Hz for Identifying Nonlinearity

Real and imaginary parts of the describing function are obtained from experimental measurements at scaled frequency
0.933 Hz by applying PRD method. For the real and imaginary parts of the describing function, 3rd order polynomial
functions are fit (Fig. 34.11). Corresponding coefficients of the polynomial functions are given in Table 34.5.
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Table 34.5 Coefficients of the polynomials fit to the data for real and imaginary part of the
describing function

p3 p2 p1 p0

Real part of describing function
p3x3 C p2x2 C p1x C p0 �2:52� 1014 2:72� 1011 �1:32� 108 �579
Imaginary part of describing function
p3x3 C p2x2 C p1x C p0 2:03� 1014 �1:79� 1011 6:17� 107 �1260
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Fig. 34.12 Calculated describing function (a) Real part (b) Imaginary part

Table 34.6 Coefficients of the polynomials fit to the data for real and imaginary part of the
describing function

p3 p2 p1 p0

Real part of describing function
p3x3 C p2x2 C p1x C p0 �1:33� 1014 1:88� 1011 �1:21� 108 �608
Imaginary part of describing function
p3x3 C p2x2 C p1x C p0 7:84� 1013 �9:78� 1010 5:21� 107 523

34.3.2.3 Application of PRD Method at Scaled Frequency 0.95 Hz for Identifying Nonlinearity

Real and imaginary parts of the describing function are obtained from experimental measurements at scaled frequency
0.95 Hz by applying PRD method. For the real and imaginary parts of the describing function, 3rd order polynomial functions
are fit (Fig. 34.12). Corresponding coefficients of the polynomial functions are given in Table 34.6.

34.3.2.4 Application of PRD Method at Scaled Frequency 0.966 Hz for Identifying Nonlinearity

Real and imaginary parts of the describing function are obtained from experimental measurements at scaled frequency
0.966 Hz by applying PRD method. For the real and imaginary parts of the describing function, 3rd order polynomial
functions are fit (Fig. 34.13). Corresponding coefficients of the polynomial functions are given in Table 34.7.

34.3.2.5 Application of PRD Method at Scaled Frequency 0.983 Hz for Identifying Nonlinearity

Real and imaginary parts of the describing function are obtained from experimental measurements at scaled frequency
0.983 Hz by applying PRD method. For the real and imaginary parts of the describing function, 3rd order polynomial
functions are fit (Fig. 34.14). Corresponding coefficients of the polynomial functions are given in Table 34.8.
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Table 34.7 Coefficients of the polynomials fit to the data for real and imaginary part of the
describing function

p3 p2 p1 p0

Real part of describing function
p3x3 C p2x2 C p1x C p0 �1:30� 1014 1:85� 1011 �1:24� 108 �618
Imaginary part of describing function
p3x3 C p2x2 C p1x C p0 5:84� 1013 �7:62� 1010 4:75� 107 �483
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Fig. 34.14 Calculated describing function (a) Real part (b) Imaginary part

34.3.2.6 Comparison of Nonlinearities Identified by Using PRD Method at Different Frequencies

In this section, the real and imaginary parts of the describing function obtained from experimental measurements at scaled
frequency 0.933 Hz, 0.95 Hz, 0.966 Hz, 0.983 Hz and 1 Hz by using PRD method are compared with each other. Comparisons
of the real and imaginary parts of the describing functions are shown in Fig. 34.15.

When we compare the real part of describing functions obtained using the measurements at scaled frequency 0.933 Hz,
0.95 Hz, 0.966 Hz, 0.983 Hz and 1 Hz, it can be observed from Fig. 34.15 that identified functions are similar to each other.
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Table 34.8 Coefficients of the polynomials fit to the data for real and imaginary part of the
describing function

p3 p2 p1 p0

Real part of describing function
p3x3 C p2x2 C p1x C p0 �1:51� 1014 2:1� 1011 �1:34� 108 �628
Imaginary part of describing function
p3x3 C p2x2 C p1x C p0 1:05� 1014 �1:27� 1011 6:36� 107 �498
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Fig. 34.15 Comparison of identified (a) real parts of the describing function (b) imaginary parts of the describing function

As seen from Fig. 34.15, the identified imaginary parts of describing functions are also similar to each other. Then we can
conclude that the excitation frequency used in PRD method, does not have significant effect on the identified nonlinearity, if
the excitation frequency is approximately in the 5 % range of the resonance of the underlying linear system.

As a final test in this set of experiments, frequency responses are measured for a constant low forcing level excitation.
Stepped sine test is used as an excitation type by using the given test set-up. Excitation signal is a pure sinusoidal signal.
In order to perform constant force vibration testing over the frequency range, a manual control strategy is used in the
experiments. This control is maintained by checking the forcing level and changing the excitation voltage supplied to the
shaker. In Fig. 34.16, measured FRFs for F D 0.5 N are shown.

It is observed from Fig. 34.16 that the FRF curve obtained for F D 0.5 N seems like a linear FRF curve, as expected.
However, as it will be shown below, the measured FRF and the actual linear FRF curves of the system are different from
each other even though a very low forcing is used in the experiment.

34.3.3 Second Set of Experiments

In the second set of experiments, the main purpose is to perform measurements which will be used to study the performance
of the PRD method and the model updating approach proposed. A set of stepped sine constant force tests is used in the
experiments. Similarly, the constant force excitation is maintained by manually checking the forcing level and changing
the excitation voltage supplied to the shaker at each frequency point. The structure is excited at 3 different forcing levels
(F D 5 N, F D 10.4 N, F D 15 N). The measured FRFs are shown in Fig. 34.17.
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34.3.4 Application of PRD Method for Obtaining Linear FRFs

Using the describing function values obtained by applying PRD method and the FRF values measured at F D 0.5 N in the first
set of experiments, linear FRFs of the structure are predicted. Since, describing functions are obtained at 5 different excitation
frequencies, in order to study the effects of test frequency on the performance of the method; five separate linear FRF curves
are predicted. The linear FRF curves predicted by using the describing functions obtained from experiments made at scaled
frequency 0.933 Hz, 0.95 Hz, 0.966 Hz, 0.983 Hz and 1 Hz are compared with the FRFs measured at F D 0.5 N in Figs. 34.18,
34.19 and 34.20 and with each other in Fig. 34.21.

As can be observed from Figs. 34.18, 34.19 and 34.20, FRFs measured at low forcing level (F D 0.5 N) do not accurately
represent the linear FRFs of the system which can be obtained by using the PRD method proposed. FRFs measured at even
a very low forcing level may not represent the linear FRF accurately. It is also observed from Fig. 34.21 that linear FRFs
obtained using the describing functions identified from the tests made at scaled frequency 0.933 Hz, 0.95 Hz, 0.966 Hz,
0.983 Hz and 1 Hz may deviate from each other only around the resonance (deviation of the peak amplitude from the mean
amplitude value is approximately less than 9 %). Based on these observations, if the excitation frequency used in PRD
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Fig. 34.19 Comparison of measured FRFs at F D 0.5 N with predicted linear FRFs by using PRD method at scaled frequency: (a) 0.95 Hz; (b)
0.966 Hz

method is approximately in the 5 % range of the resonance of the underlying linear system, there are no large discrepancies
in the predicted linear FRFs.

34.4 Model Updating of the Test System and Verification of the Updated Model

In this section firstly linear FE model of the gun barrel is constructed and then it is updated by using the linear FRFs obtained
through the PRD method and by applying inverse eigensensitivity method. The updated nonlinear model of the gun barrel is
constructed by using the identified nonlinearity and updated linear FE model of the system. Then the nonlinear FRFs of the
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Fig. 34.21 Comparison of predicted linear FRFs by using PRD method

system are calculated at different forcing levels by using the updated model. Finally, predicted and measured FRFs of the
system are compared and thus the accuracy of the updated nonlinear model of the system is studied.

34.4.1 FE Modeling of the Gun Barrel

In order to model the gun barrel in FE analysis software, firstly the components and the mechanism of the gun barrel should
be understood. Typical gun barrel of a battle tank is shown in Fig. 34.22.

As seen from Fig. 34.22, gun barrel is mainly composed of gun tube, thermal shrouds, shielding-armor and rear
components of the mechanism. The main part of the rear components is the elevation motor assembly which drives the
gun barrel around the trunnion axis. The simplified model of the gun barrel system is shown in Fig. 34.23.

Simplified model of the gun barrel system is composed of turret, elevation motor assembly and gun tube. Elevation motor
assembly is modelled by a linear stiffness which acts force along the gun tube axis.
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Fig. 34.22 Gun barrel of a battle tank

1
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3

2
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Fig. 34.23 Simplified model of gun barrel system

Table 34.9 Geometrical and
material properties of the gun
tube

Material Carbon steel (0.4 % carbon)

Modulus of elasticity (GPa) 207
Length (m) 6.6
Inner diameter (mm) 120

The geometric and material properties of the gun tube of the gun barrel system are given in Table 34.9.
In the FE model constructed, mass of the thermal shrouds are neglected. The shielding-armor and the rear components of

the system are modelled as lumped masses with mass and inertia properties.
The stiffness of the elevation motor is taken as 140 � 106 N/m which is a typical value for such gun barrel systems.

However, there is an uncertainty in the value of stiffness of the elevation motor, therefore this parameter will be used as the
updating parameter in FE model updating.

34.4.2 Mesh Sensitivity Analysis for the FE Model of Gun Barrel

In this section before the construction of the initial FE model of the gun barrel in ANSYS, mesh sensitivity analysis is
performed in order to see the effect of mesh sizing on the estimation of the fundamental natural frequencies of the structure.
FE model of the gun barrel used in the mesh sensitivity analysis is shown in Fig. 34.24.
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Fig. 34.24 FE model of the gun barrel
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Fig. 34.25 Variation of the fundamental natural frequency of the gun barrel with respect to global mesh sizing

Global mesh size for the FE model is varied between 0.1 and 0.01 m, and for each of the global mesh size, modal analyses
are performed in ANSYS. Fundamental natural frequency of the gun barrel is calculated for each case. In the analysis
SOLID 186 element is used. The variation of the fundamental natural frequency with respect to global mesh sizing and the
fundamental modeshape are shown in Figs. 34.25 and 34.26, respectively.

As seen from Fig. 34.25, scaled fundamental natural frequency is converged approximately to 0.85 Hz after global mesh
size reaches to approximately 0.05 m. From the observations made for the mesh sensitivity analysis, mesh sizing of the initial
FE model is selected as 0.05 m.

34.4.3 Model Updating of the FE Model of Gun Barrel System

In this section, by using the observations made from mesh sensitivity analysis, initial linear FE model of the gun barrel is built
in ANSYS and then the linear FE model is updated by employing the approach proposed. The linear FE model of the gun
barrel is updated by using the extracted linear FRFs employing the PRD method and then applying inverse eigensensitivity
method. Using the identified nonlinearity and updated linear FE model, updated nonlinear mathematical model of the gun
barrel system is built. Finally, in order to demonstrate the accuracy of the updated nonlinear model of the system, predicted
and experimentally measured FRFs of the gun barrel are compared at different forcing levels.

In the initial FE model, the stiffness of the elevation motor is taken as 140 � 106 N/m. The fundamental natural frequency
and the driving point FRF at the tip of gun barrel (node 1 in the experiments) in transverse direction are calculated in ANSYS
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Fig. 34.26 Fundamental modeshape of the gun barrel

Table 34.10 Comparison of the fundamental natural frequency obtained from initial FE model with the one obtained from
experimental FRFs by using PRD method

Mode number Scaled natural frequency (PRD method) (Hz) Scaled natural frequency (initial FE model) (Hz) Error (%)

1 0.99583 0.85 �14.64
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Fig. 34.27 Comparison of the linear FRFs obtained from initial FE model with those obtained from experimental FRFs by using PRD method

by using the FE model. Comparisons of the fundamental natural frequency and the linear FRFs obtained from FE analysis
with those obtained from experiments by using PRD method are given in Table 34.10 and Fig. 34.27, respectively.

As can be seen in Table 34.10 and Fig. 34.27, there are considerable differences between two results; therefore the FE
model of the gun barrel needs to be updated. As mentioned earlier there is a considerable uncertainty in the elevation motor
stiffness, therefore elevation motor stiffness is selected as the updating parameter in the FE model. For the selected parameter,
element of the sensitivity matrix is calculated by using the forward difference approximation with O(h) which is given by
Eq. (34.10) at each iteration step.

r0 .pi/ D r .piC1/ � r .pi/

�h
(34.10)
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Table 34.11 Comparison of the fundamental natural frequency obtained from initial and updated FE models with the value
obtained from measurements by using PRD method

Mode number
Scaled natural frequency
(PRD method) (Hz)

Scaled natural frequency
(initial FE model) (Hz) Error (%)

Scaled natural frequency
(updated FE model) (Hz) Error (%)

1 0.99583 0.85 �14.64 0.99583 0.00

Table 34.12 Comparison of the second and third natural frequency obtained from initial and updated FE models with
experimental values

Mode number
Scaled natural frequency
(experimental) (Hz)

Scaled natural frequency
(initial FE model) (Hz) Error (%)

Scaled natural frequency
(updated FE model) (Hz) Error (%)

2 2.9604 2.37 �19.94 2.9088 �1.74
3 6.9588 5.853 �15.89 6.0925 �12.45

After 9 iterations, stiffness of the elevation motor is converged to 499 � 106 N/m. The convergence graph of the stiffness of
the elevation motor is given in Fig. 34.28.

Using the converged elevation motor stiffness value, the FE model is updated. Then, the fundamental natural frequency
of the updated linear model of the gun barrel is calculated and compared with that of the initial FE model, as well as with the
fundamental natural frequency obtained from experiments by using PRD method, in Table 34.11.

As can be seen in Table 34.11, the fundamental natural frequency of the gun barrel is perfectly estimated by using the
updated FE model.

In order to see the performance of the updated FE model in the prediction of other natural frequencies which are not used
in updating the FE model, the second and third natural frequency of the gun barrel in transverse direction are calculated by
using the updated linear FE model and they are compared with those obtained from the initial FE model, as well as with the
measured ones (Table 34.12).

As can be seen in Table 34.12, there is a considerable improvement in the calculated value of the second natural frequency,
and only a slight improvement in the calculated value of the third natural frequency of the gun barrel.

In Fig. 34.29, the linear FRFs obtained from experimentally measured nonlinear FRFs by using PRD method are compared
with those calculated from the initial and updated FE models of the gun barrel. As can be seen in Fig. 34.29 again a
considerable improvement is obtained for the updated FE model.

Since the ultimate goal is to have accurate nonlinear response predictions from the updated FE model of the gun barrel,
nonlinear FRFs experimentally measured at F D 5 N, F D 10.4 N and F D 15 N are compared with those obtained from the
initial and FE updated models (composed of original and updated FE models, respectively, combined with the identified
nonlinearity). The results are given in Fig. 34.30 for the forcing levels F D 5 N, F D 10.4 N and F D 15 N.

As can be observed in Fig. 34.30, considerable improvements are obtained with the updated FE model of the structure at
all forcing levels. If the peak responses of the nonlinear FRF curves are observed, better match is obtained with the updated
FE model at F D 15 N. From these results it can be concluded that, the developed model updating approach for nonlinear
system is successfully applied to a complicated real engineering problem (gun barrel of a battle tank) and a much better
nonlinear model of the gun barrel system is constructed for the fundamental mode of the system.
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Fig. 34.29 Comparison of the linear FRF obtained by using PRD method from experimentally measured nonlinear FRFs, with those calculated
from, initial and updated FE models

34.5 Summary and Conclusions

In this study, model updating approach proposed previously for a nonlinear system is applied to a real engineering structure,
which is the gun barrel of a battle tank. In the first set of experiments, the structure is excited with random forcing. In
the fundamental mode of the gun barrel, it is clearly shown that as the force level increases in the random excitation tests,
damping value of the fundamental mode increases and natural frequency decreases. From the results of the random excitation
tests, the nonlinearity in the system is clearly detected. In order to study the effect the excitation frequency used in the
experiments on the performance of PRD method, the method is applied several times with different excitation frequencies.
In each application, nonlinearities in the structure are parametrically identified in the form of describing functions, and also
the linear FRFs are obtained. It is observed that FRFs measured at low forcing levels do not match with the linear FRFs of the
system that are obtained by using the PRD method proposed. It is shown that the FRFs measured at even a very low forcing
level may not represent the linear FRFs accurately. It is also observed that linear FRFs obtained through PRD method which
use the describing functions identified from the tests made at different frequencies may deviate from each other only around
the resonance (deviation of peak amplitude from the mean amplitude value is approximately less than 9 %). Based on these
observations, it can be taken as a rule thumb that if the excitation frequency used in PRD method is approximately in the 5 %
range of the resonance of the underlying linear system, there are no significant differences in the predicted linear FRFs.

After obtaining linear FRFs through the PRD method, linear FE model of the gun barrel constructed in ANSYS is updated
by using the inverse eigensensitivity method. It is observed that the fundamental natural frequency of the gun barrel is
perfectly estimated by using the updated FE model. Furthermore there is a considerable improvement in the calculated value
of the second natural frequency, and a slight improvement in the calculated value of the third natural frequency of the gun
barrel although these modes are not used in updating. Then the updated nonlinear model of the test structure is constructed by
using the identified nonlinearity and updated linear FE model of the system. Finally, predicted and experimentally measured
FRFs of the test structure are compared at different forcing levels and it is seen that considerable improvement is obtained
for the updated FE model of the gun barrel at all forcing levels.

In conclusion, the model updating approach developed previously by the authors is successfully applied to a real complex
engineering structure (gun barrel of a battle tank) and thus nonlinear mathematical model of the gun barrel system constructed
initially for the fundamental mode of the system is substantially improved. The main advantage of PRD method is that, in
the application of the method there is no need for any vibration controller as in the cases of constant forcing or constant
amplitude testing over a certain frequency range. Furthermore, the method simultaneously identifies multiple nonlinearities
in the system parametrically, and it has a feature of extracting the FRFs of the underlying linear system simultaneously. It
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Fig. 34.30 Comparison of FRFs obtained from initial and updated models with the experimental ones for (a) F D 5 N, (b) F D 10.4 N, (c) F D 15 N

is thus concluded that the method previously proposed by the authors can successfully be applied to complex engineering
problems for obtaining accurate nonlinear models.
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Chapter 35
Experimental Passive Flutter Mitigation Using a Linear Tuned
Vibrations Absorber

E. Verstraelen, G. Habib, G. Kerschen, and G. Dimitriadis

Abstract The current drive for increased efficiency in aeronautic structures such as aircraft, wind turbine blades and
helicopter blades often leads to weight reduction. A consequence of this tendency can be increased flexibility, which in
turn can lead to unfavourable aeroelastic phenomena involving large amplitude oscillations and nonlinear effects such as
geometric hardening and stall flutter. Vibration mitigation is one of the approaches currently under study for avoiding these
phenomena.

In the present work, passive vibration mitigation is applied to an experimental aeroelastic system by means of a linear
tuned vibration absorber. The aeroelastic apparatus is a pitch and flap wing that features a continuously hardening restoring
torque in pitch and a linear one in flap. Extensive analysis of the system with and without absorber at subcritical and
supercritical airspeeds showed an improvement in flutter speed around 34 %, a suppression of a jump due to stall flutter,
and a reduction in LCO amplitude.

Mathematical modelling of the experimental system showed that optimal flutter delay can be obtained when two of the
system modes flutter simultaneously. However, the absorber quickly loses effectiveness as it is detuned. The wind tunnel
measurements showed that the tested absorbers were much slower to lose effectiveness than those of the mathematical
predictions.

Keywords Wind tunnel testing • Nonlinear aeroelasticity • Stall flutter • Internal resonance • Bifurcations

35.1 Introduction

As aircraft become lighter and are pushed further in their flight envelope for performance reasons, they are more prone
to undergo unfavourable aeroelastic oscillations due to flutter, a very dangerous mechanism occurring because of the
coalescence of two vibration modes subjected to an airflow.

Common methods to avoid these oscillations include reducing the flight envelope, stiffening the structure, active control
and increasing structural damping. The employment of a linear tuned vibration absorber (LTVA), also known as tuned mass
damper (TMD), is an alternative vibration control approach that has not yet been fully explored in the aeroelastic literature.

The LTVA consists of a mass-spring-damper assembly attached to the primary system to be controlled. The natural
frequency of the LTVA is tuned in accordance to the main resonant frequency of the host system, causing an effective transfer
of energy between the two subsystems. The relatively high damping of the absorber reduces significantly the oscillation
amplitude. LTVAs are widely used in civil engineering applications, such as tall buildings [1, 2] and long span bridges [3],
to avoid vortex induced vibrations, galloping oscillations or human-induced vibrations [4]. However, in classical flutter, the
loss of stability is due to two modes whose frequencies vary with the airspeed. The variation of the resonant frequencies
undermines the 1:1 resonance, crucial for the correct operation of the LTVA. The design of an effective LTVA for increasing
the flutter speed in aeroelastic system is thus more challenging. Analytical and numerical works showed that the LTVA can
be successfully implemented for the suppression of flutter vibrations in long span bridges [5–8]. A few pioneering studies
[9, 10] have illustrated that the same concept can be applied to aircraft wings. However, to the authors’ knowledge, there is
a lack of experimental work demonstrating the effectiveness of LTVAs for flutter suppression in the literature.
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In this study we attach a LTVA to a nonlinear pitch and flap wing (NLPFW) in order to delay the flutter onset speed.
The study is conducted in three steps. Firstly, the aeroelastic system’s behaviour is extensively investigated numerically and
experimentally in the wind-tunnel. Secondly, numerical and experimental LTVAs are designed. Finally, the efficiency of
these absorbers is assessed and tuning rules are derived.

35.2 Primary System

35.2.1 Experimental Setup

The experimental apparatus, installed in the large low-speed wind tunnel of the University of Liège, is designed to achieve
very low linear damping (�0:3% at wind-off conditions) and flutter at an airspeed close to 12 m/s. To achieve such low
structural damping, the apparatus does not use any bearings or rotational springs. The pitch and flap restoring torques are
provided by a specially designed leaf spring and a nonlinear clamp assembly. The complete NLPFW is shown in Fig. 35.1.
It is a stiff thin rectangular unswept flat plate with span s = 800 mm, chord c = 200 mm, thickness t = 4 mm and an aspect ratio
of 4. It is hinged at its root at 0:3c from the leading edge. It features two rigid degrees of freedom (DOF): a pitch rotation �
and a flap rotation � , as shown in Fig. 35.2. The pitch axis, es, is parallel to the leading edge and passes by the hinge while
the flap axis, ec is parallel to the root of the wing, at a distance s1 above it.

The stiffness in both pitch and flap is provided by a thin C75S leaf spring. It is 100 mm long, 70 mm large and 0.7 mm
thick. It is clamped linearly to the flat plate and nonlinearly to the roof of the test section of the wind tunnel. Figure 35.3a
draws the geometry of the nonlinear root clamps and Fig. 35.3b plots the nonlinear restoring torque of the pitch DOF. The flap
stiffness is linear in the displacement range considered. Finally, a 500mm � 50mm � 15mm beam is bolted at the junction
between the flat plate and the leaf spring (see Fig. 35.1a, b). It increases the rotational inertia of the system and consequently
decreases its flutter speed to the target speed range: [10–15]m/s. Table 35.1 summarises all the wind-off characteristics of
the system.

Legend:
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Fig. 35.1 Experimental setup showing wing, support and transducers. (a) Photo of the setup in the wind tunnel. (b) Diagram showing transducer
locations and major components of the NLPFW
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Fig. 35.3 Characteristics of the nonlinear clamps. (a) Sketch of the clamps. (b) Experimental restoring torque curve of the pitch DOF

The displacements are measured by means of three Sick OD2-P300W200I0 laser sensors with a sensitivity of 9:6mV/mm,
a range of 100–500 mm and a sampling frequency of 1000 Hz. The positions of all the sensors are shown in Fig. 35.1b and
are denoted by D1, D2 and D3. The measurements from sensors D1 and D2 are used to calculate the flap angle

� D arctanŒ.D1 � D2/.�slas/
�1� (35.1)

while those from sensors D2 and D3 are used to calculate the pitch angle

� D arctanŒ.D2 � D3/.�clas/
�1� (35.2)

Figure 35.4 displays the system’s relevant mode shapes and frequencies identified through a roving hammer test using a
single accelerometer placed at the trailing edge of the wingtip and 24 impact locations. The flap mode features a frequency
of 0:9Hz and a damping of 1% while the pitch mode features a linear frequency of 3.1 Hz and a damping ratio of 0:3%.
Finally the third mode, which could be considered as a superposition of flapping and plunging motion combined with very
little flat plate deformation, was identified to make sure its frequency was high enough to have little impact on the flutter
mechanics. This is in fact the case as it features a frequency of 9.6 Hz and a modal damping ratio of 0:5%.

35.2.2 Reduced Order Model

The nonlinear pitch and flap wing is modelled as a two-DOF system, assuming that the flexible modes of the plate do not
participate significantly in the observed aeroelastic phenomena. The structural nonlinear equations of motion are
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Table 35.1 Wind-off characteristics of the NLPF

Characteristic Symbol Value Unit

Dimensions of the wing

Span s 800 [mm]

Distance (flap axis�wing root) s1 65 [mm]

Distance (flap axis�wing tip) s2 865 [mm]

Chord c 200 [mm]

Half chord b 100 [mm]

Thickness t 4 [mm]

Position of the center of mass xcg 1=2c [mm]

Flap properties

Linear stiffness K� 	 5 [Nm/rad]

Inertia I� 0:42 [kg m2]

Damping �� 	 1 [%]

Frequency f� 0:85 [Hz]

Pitch properties

Inertia I� 0:029 [kg m2]

Flexural axis position xf 0:3c [mm]

Relative position of xf and xcg a
xf �xcg

b [–]

Linear stiffness coefficient K� 10:1 [Nm/rad]

Quadratic stiffness coefficient K�;2 	 0 [Nm/rad2]

Cubic stiffness coefficient K�;3 858 [Nm/rad3]

Damping �� 	 0:3 [%]

Frequency f� 3:1 [Hz]

Position of the sensors

Distance between A1 and A2 �sacc 200 [mm]

Distance between A2 and A3 �cacc 180 [mm]

Distance between D1 and D2 �slas 205:5 [mm]

Distance between D2 and D3 �cacc 168:5 [mm]

Fig. 35.4 Mode shapes of NLPFW
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M�;NL D 0

M�;NL D knl;3�
3

(35.4)

where the inertia stiffness and damping parameters are given in Table 35.1. A nonlinear torque is applied only to the pitch
DOF and it is a cubic function of � .

The flap and pitch aerodynamic moments, M� and M� respectively, are computed using strip theory (see for instance
Bisplinghoff et al. [11]), which calculates the total 3D aerodynamic loads as sums of 2D loads, dL and dM� , acting on small
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spanwise strips of width dy. These infinitesimal forces and moments are computed assuming 2D aerodynamics. The strip
theory assumption leads to the following formulation for the flap and pitch aerodynamic moments

M� D �
Z s2

s1

y dL.t/ (35.5)

M� D
Z s2

s1

dM� .t/ (35.6)

s1 being the distance between the flap axis and the root of the wing and s2 the distance between the flap axis and the tip of the
wing. The lift force dL and pitch moment dM� of a strip can be computed using any 2D unsteady aerodynamic formulation.
Unsteady aerodynamic modelling based on Wagner’s function [12] was chosen here because the reduced frequency of
oscillation k D !b

U � 1:5 >> 0:02 is too large to use quasi-steady aerodynamics while Theodorsen theory is defined
in frequency domain, which makes it difficult to use on a nonlinear system. The growth of circulation around a flat un-
cambered airfoil after a step change of incidence is approximated by Wagner’s function

ˆ.t/ D 1 �  1e
� �1Ut

b �  2e� �2Ut
b (35.7)

Integrating Eqs. (35.5) and (35.6) with Fung’s lift and moment expressions [12] and applying a transformation to replace the
wake integrals by aerodynamic state variables [13] yields the complete equations of motion
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with ƒj D sj
2 � sj

1. The left hand side of Eq. (35.8) includes inertia, damping, stiffness terms and the aerodynamic state
proportionality matrix. The right hand side comprises three terms, the external loads (set to zero since self-excited oscillations
are under investigation), a transient term, which is also set to zero since it quickly decays in time, and a term related to the
structural nonlinearities. The nonlinear equations of motion are solved using a numerical continuation algorithm based on a
finite difference formulation [14].

35.3 Aeroelastic Analysis

The system’s aeroelastic behaviour is first studied at sub-critical airspeeds, where the average damping is positive and leads
to decaying motions, as demonstrated by the pitch response time histories plotted in Fig. 35.5a for airspeeds of 0, 5.5 and
8.7 m/s. At higher airspeeds, the response is a self-excited limit cycle oscillation (LCO). This behaviour is demonstrated in
Fig. 35.5b which plots pitch response time histories at airspeeds of 12.4, 13.3 and 14.8 m/s.

Figure 35.6 displays the variation of the modal parameters of the pitch and flap modes of the NLPFW with airspeed
according to experimental measurements (black dots) and the analytical model (plain lines). The imaginary part of the
response—identified using Fast Fourier Transform—is accurately reproduced by the model and shows the typical features
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Fig. 35.5 Time series of the pitch response of the system at sub-critical and super-critical airspeeds. (a) Sub critical pitch response. (b) Super
critical pitch response
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Fig. 35.6 Variation of the pitch and flap modal parameters with the airspeed. (a) Pulsation. (b) Decay rate

of an aeroelastic system undergoing flutter: the frequency gap between the two modes decreases as the airspeed is increased
until the modes are close enough to interact and cause flutter. The real part—identified using an exponential fitting of the
Hilbert transform of the response—is also typical of aeroelastic systems: the flap damping strongly increases while the pitch
damping increases at first then decreases until it drops to zero and flutter occurs. In this case, the model seems to over-estimate
the damping, however it must be noted that damping is very difficult to identify and even harder to model; considering the
simplicity of the model, the estimate is satisfactory.

Once the flutter speed is reached, the average damping of the system drops to zero and limit cycle oscillations are observed.
Figure 35.7a displays the bifurcation diagrams in pitch and flap angle of the system obtained from wind tunnel observations
(triangles and dots) and from the numerical continuation analysis of Eq. (35.8). The airspeed was increased then decreased
in the wind-tunnel to look for hysteresis effects but none were found. Both experimental and numerical results exhibit a
supercritical Hopf bifurcation at 11.5 m/s, followed by increases in LCO amplitude and frequency, consistent with cubic
hardening stiffness. At 13.5 m/s a discontinuity occurs in the experimental pitch measurements; both the amplitude and
frequency increase sharply. This phenomenon is due to dynamic stall and is overlooked by the reduced order model, which
uses linear aerodynamics. The flap displacement undergoes a gentle increase in amplitude that is predicted with reasonably
accuracy by the model. Because of the coupling between the pitch and the flap modes, at 13.5 m/s a jump is observed also in
the flap response. However, the increase in amplitude is not significant.
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Fig. 35.7 Experimental and numerical bifurcation diagrams of the primary system. (a) Pitch and flap LCO amplitude. (b) LCO frequency

The variation of the LCO frequency with airspeed is shown in Fig. 35.7b. Flutter starts at 2.6 Hz in the wind tunnel, then
the LCO frequency increases almost linearly with the airspeed until 13.5 m/s, where it jumps to 4.2 Hz. The model predicts a
linear increase of the frequency with an absolute error around 0.3 Hz, until the jump where it fails because it cannot represent
nonlinear aerodynamic effects.

Summarising, the NLFPW undergoes classical flutter at 11.5 m/s, followed by a gently increase in pitch amplitude until
13.5 m/s, where a jump is observed. These aeroelastic phenomena are predicted with reasonable accuracy by the model from
0 to 13.5 m/s. This speed range is used to assess the effect of a LTVA on the system.

35.4 LTVA Design

Figure 35.8a displays the experimental absorber configuration and Fig. 35.8b the numerical model. The LTVA consists of a
flexible beam of length rltva D 0:1m, clamped on one end at a distance r� D 0:125m from the pitch axis and r� D 0:05m
from the flap axis, and a mass mltva attached at the free end of the beam. The beam provides both stiffness, kltva, and
damping, cltva.

The LTVA is modelled mathematically as a mass-spring-damper system with a rotational DOF, �, in the plane � around
the LTVA axis, which is parallel to the pitch axis. Assuming small displacements, the mathematical and experimental
configurations are similar. The natural frequency and damping ratio of the LTVA are given by

fltva D 1

2�

p
kltva=Iltva D 1

2�

q
kltva=.mltvar2ltva/

�ltva D cltva=.2
p

kltvaIltva/

(35.9)

35.4.1 LTVA Equations of Motion

Adopting the Euler-Lagrange equation, the equations of motion of the coupled 3-DOFs are derived. The resulting inertia,
damping and stiffness matrices are given by
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Fig. 35.8 Experimental and modelled LTVA configurations. (a) Picture of the experimental LTVA attached to the primary system. (b) Sketch of
the model of the LTVA attached to the primary system
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where the contributions from the NLPFW and LTVA have been separated. The aerodynamic effects are assumed unchanged
after the addition of the LTVA, i.e. the aerodynamic effects on the LTVA are neglected. Consequently, the full aeroelastic
equations of motion, including the absorber, are still given by Eq. (35.8), after substituting the structural inertia, damping and
stiffness matrices from those in Eq. (35.10).

35.4.2 Experimental LTVA Design and Identification

A number of different LTVAs were built. In order to achieve high damping ratios, the LTVA beams were made of a sandwich
of three polymer sheets, with thicknesses varying from 0.3 to 0.5 mm, and 10 or 16 layers of viscoelastic tape wrapped
around the central polymer sheet. The thickness of the polymer sheets and the number of layers of viscoelastic tape affected
both the stiffness and the damping of the absorber.

The LTVAs were characterised by performing free response vibration tests such as the one displayed in Fig. 35.9a for the
LTVA m54-30-50-30-16T. The amount of damping in the system and the shearing between the layers lead to asymmetric
oscillations and drift so a special peak-picking routine was developed to measure the damping and the frequency. Instead
of tracking the changes of sign to identify the successive periods, each cycle’s period is computed from the extrema of the
signal and the logarithmic decrement is computed from the average amplitude of each cycle defined as .Amax � Amin/=2.
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Fig. 35.9 Experimental identification of the LTVAs. (a) Free decay response of the LTVA 30-50-30-16T. (b) Identification results of all the
experimental LTVAs

An exponential fitting of the amplitude at successive cycles was also carried out to identify the damping and the two
methods gave similar damping estimates. To ensure that the drift of the response had little effect on the damping identification
procedure, all the free response tests were repeated with both positive and negative initial displacements.

Figure 35.9b plots the frequencies and dampings obtained from of all the LTVA free response tests. The frequency
varies from 2:3 to 4:5Hz and the damping between 5 and 16%. The names mxx � yy � yy � yy � zzT are related to the
composition of the beam: mxx gives the mass in grams, yy denotes the thicknesses of the polymer sheets and zzT indicates the
amount of viscoelastic tape layers placed in the sandwich. The errorbars indicate the standard deviation of the damping and
frequencies measured from the free response tests. The LTVA with the higher frequency also featured the higher damping.
It was found impossible to build an LTVA with low frequency and high damping, as increasing the number of viscoelastic
tape layers increased both the damping and stiffness of the beams. Increasing the mass was not always possible because a
high enough mass would cause buckling.

35.5 Numerical and Experimental Aeroelastic Analysis of the Primary System
Coupled with the LTVA

35.5.1 Effect of the LTVA on the Flutter Speed

In the wind tunnel the critical flutter speed was defined as the first airspeed at which LCOs were clearly observed. Both
increasing and decreasing airspeed tests were carried out to search for hysteresis effects. No such effects were observed,
suggesting that all bifurcations were supercritical.

The flutter speed was also estimated from the mathematical model, for a very wide range of LTVA frequencies and
damping ratios. The solid surface on Fig. 35.10 plots the results of this calculation; the flutter speed is plotted as a ratio of
flutter speeds with and without LTVA. All the results in the figure were obtained for a LTVA mass of 64 g (�2:3% mass
ratio). The experimental flutter speeds are plotted on the same axes. Figure 35.10b plots the same data seen from above, so
that the effect of both frequency and damping ratio on the flutter speed is displayed.

The mathematical model predicts a maximum increase in flutter speed of 34 %. This optimum is obtained at 1:892Hz and
14.47 % damping and quickly decreases as the LTVA gets detuned. The flutter speed is very sensitive to LTVA frequency;
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Fig. 35.10 Effect of the numerical and experimental LTVA on the flutter speed. (a) 3D plot of the flutter speed of the NLPFW as a function of the
LTVA tuning. (b) 2D plot of the flutter speed of the NLPFW as a function of the LTVA tuning

a frequency change of 0.1 Hz can lead to a decrease in non-dimensional flutter speed from 1.34 to 1.24. The sensitivity to
damping ratio is much lower. The LTVAs tested in the wind tunnel showed similar optimum flutter speeds, however the
results appeared to be far less sensitive to detuning than in the case of the mathematical model. The cyan LTVA, for instance,
was supposed to be completely detuned according to the model yet it yielded a commendable increase in flutter speed of 17 %
in the wind-tunnel. There are several possible reasons for the difference between the detuning behaviour of the experiment
and the mathematical model:

1. The LTVA structural damping may be nonlinear in practice but is modelled as linear.
2. The flow around the LTVA is not modelled but may have an affect on the absorber’s effectiveness.
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3. The difference between the modelled LTVA (rigid body rotation) and the experimental absorber (cantilever beam) may
be too pronounced.

Finally it must be noted that the higher the damping the lower the sensitivity to frequency tuning. For a real life application
it might be better to tune the LTVA to a damping higher than its optimum value.

35.5.2 Effect of the LTVA on the Subcritical Response of the System

The mechanism leading to an optimum tuning was investigated by studying numerically the effect of the LTVA on the
variations of the modal frequencies and damping ratios with airspeed. These are variations are plotted in Fig. 35.11. The
absorbers considered have mass mltva D 64 g, damping �ltva D 14:47% and frequencies 1:892Hz, 1:8Hz and 2:0Hz
respectively from top to bottom.

Figure 35.11a, b display the results with an optimum LTVA. The system with absorber has three modes:

• Mode a: mostly flap motion (red).
• Mode b: in phase pitch and LTVA motion (blue).
• Mode c: out of phase pitch and LTVA motion (orange).

The absorber splits the uncontrolled system’s pitch mode (black squares) into modes b and c (orange and blue) and has
very low effect on the flap mode (black circles and red), because the flap inertia is larger than the pitch inertia and the LTVA
is close to the flap axis and far from the pitch axis. Flutter occurs at 15:58m/s on the system with LTVA. At flutter modes b
and c have the same frequency and are essentially a single mode. The damping figure shows that again, modes b and c nearly
merge at flutter.

Figure 35.11c, d plot the effect of a slightly undertuned LTVA (1:8Hz). In this case mode c leads to flutter alone and does
not merge with mode b at flutter. Figure 35.11e, f finally show the effect of a slightly overtuned LTVA (2:0Hz). In this case,
mode b leads to flutter alone and once again no frequency matching of modes b and c occurs.

The fact that, for optimal LTVA tuning, modes b and c undergo flutter simultaneously, resembles the classical Den Hartog’s
criterion for optimisation of LTVA for forced vibration, where the optimum corresponds to two equally high resonant peaks.
This suggests that equating the flutter speed of the pitch modes could indeed be used to calculate the optimal tuning. Although
up to now this conclusion is supported only by numerical calculations, in [15] a similar result was obtained for a LTVA
applied to a van der Pol-Duffing oscillator.

35.5.3 Effect of the LTVA on the Supercritical Response of the System

Figure 35.12 displays experimental and numerical bifurcation diagrams in pitch LCO amplitude (Fig. 35.12a), flap LCO
amplitude (Fig. 35.12b) and LCO frequency (Fig. 35.12c). The circles correspond to wind tunnel experiments with velocity
sweeps up and down that did not show any hysteretic behaviour in any of the cases investigated. The thick lines show
continuation computations from the model with three different LTVA frequencies, namely 1:8, 1:89 and 2:0Hz, where
1:89Hz corresponds to the optimal tuning.

The pitch bifurcation diagram plotted in Fig. 35.12a already provides most of the information. The model showed that the
1:8Hz LTVA (dark blue) improves the flutter speed and barely changes the shape of the bifurcation. In this case the absorber
is already detuned when flutter occurs. The 1:89Hz LTVA (dark red) is the optimum case for increasing the flutter speed,
however it features a narrow region of bi-stable solutions due to fold bifurcations occurring when the absorber is detuned.
Finally the 2:0Hz absorber (orange) leads to flutter at 14.3 m/s then decreases the amplitude of the ensuing LCOs until it
gets detuned and the response jumps to a large amplitude limit cycle.

The experiments showed similar performance in flutter speed however no detuning was observed in the wind tunnel and
the shape of the bifurcation branches is quite different because of the nonlinear damping, the effect of the airflow on the
absorber and the difference in LTVA geometry. The light blue and orange curves correspond to the same LTVA beam with
masses of 64 and 70 g respectively. They show that an increase in mass of just 10 % leads to a decrease in LCO amplitude of
roughly 25 %. Moreover the heavier case leads to a smoother amplitude variation with airspeed close to the flutter speed. The
purple line corresponds to the LTVA with the lowest frequency we could achieve, which should be the best one according
to the model. In practice however it showed performance similar to the blue one. Furthermore, the maximum airspeed tested
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1:89Hz; �ltva D 14:47%. (b) Modal damping with fltva D 1:89Hz; �ltva D 14:47%. (c) Modal frequency with fltva D 1:8Hz; �ltva D 14:47%.
(d) Modal damping with fltva D 1:8Hz; �ltva D 14:47%. (e) Modal frequency with fltva D 2:0Hz; �ltva D 14:47%. (f) Modal damping with
fltva D 2:0Hz; �ltva D 14:47%



35 Experimental Passive Flutter Mitigation Using a Linear Tuned Vibrations Absorber 401

LC
O

 a
m

pl
itu

de
 [r

ad
]

LC
O

 a
m

pl
itu

de
 [r

ad
]

LC
O

 fr
eq

ue
nc

y 
[H

z]

Airspeed [m/s]

Airspeed [m/s]

Airspeed [m/s]

a

b

C

11 12 13 14 15 16 17 18 19 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 No LTVA baseline
LTVA f=2.2hz z=10%m=64g
LTVA f=2.9hz z=6%  m=70g
LTVA f=3.0hz z=8%  m=64g
LTVA f=3.1hz z=6%  m=64g
No LTVA (model)
LTVA f = 1.8 Hz z = 14.5% (model)
LTVA f = 1.9 Hz z = 14.5% (model)
LTVA f = 2.0 Hz z = 14.5% (model)

11 12 13 14 15 16 17 18 19 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

11 12 13 14 15 16 17 18 19 20
1.5

2

2.5

3

3.5

4

4.5

Fig. 35.12 Effect of the LTVA on the supercritical response of the system. (a) Pitch amplitude bifurcation diagram. (b) Flap amplitude bifurcation
diagram. (c) LCO frequency bifurcation diagram



402 E. Verstraelen et al.

with this LTVA was lower than usual due to impacts phenomena between the absorber and the primary structure. Finally, the
green curve corresponds to another intermediate LTVA that should have performed better than the blue one, according to the
model, but which showed slightly worse performance.

Figure 35.12b displays the bifurcation diagrams of the system in flap amplitude. The model shows that the undertuned
(dark blue) and optimum LTVAs (dark red) rapidly reach the amplitude of the system without absorber, and have a detrimental
effect on the flap response. The overtuned LTVA (orange) leads to oscillations of larger amplitude until it is detuned, then
it jumps down to the amplitude experienced by the system with the other absorbers. The experiments, on the other hand,
featured a smooth increase in amplitude and a better performance than the system without absorber up to 16.5 m/s. Beyond
this airspeed we did not take any measurements without absorber for safety reasons.

The variation of the LCO frequency plotted in Fig. 35.12c features significant differences after the addition of the LTVA.
According to the experimental results, all the absorbers decreased the frequency of the oscillations. Furthermore, the limit
cycle frequency varied very little with airspeed. The mathematical model showed that only the optimum and overtuned
LTVAs decrease the frequency, for as long as they remain tuned (i.e. near the flutter speed and at low LCO amplitudes). The
undertuned absorber has very little effect on the frequency. Once again, it appears that the experimental LTVAs remain tuned
over a much wider airspeed range than the mathematical ones.

Considering the uncertainties in the LTVA identification and the complexity of the phenomena that occur in the wind
tunnel, the predictions of the model are satisfactory. Finally, none of the experimental bifurcation diagrams performed with a
LTVA attached to the system exhibited the jump due to stall-flutter. The increased damping and lower oscillation frequency
is probably the reason.

35.6 Conclusions

The main purpose of this study was to demonstrate experimentally the effectiveness of the LTVA in delaying flutter and the
appearance of limit cycle oscillations. Both the experiments and the mathematical model showed an improvement of about
30% of the flutter speed with a damper mass of around 2:3% of the mass of the full system.

The mathematical model demonstrated that optimal flutter delay occurs when the LTVA is tuned such that two of the
system modes flutter simultaneously at the same airspeed. However, the effectiveness of the LTVA decreases steeply as the
natural frequency of the absorber moves away from an optimum tuned value.

The major difference between the model and the experiments was the sensitivity of the LTVA to its tuning parameters.
Absorbers that were totally detuned according to the model showed very good performance in the wind tunnel, which
is encouraging for future experimental studies and applications. Furthermore, all the LTVAs suppressed the stall flutter
phenomenon that occurs in the uncontrolled system.

Finally, it must be noted that this study considered a single LTVA position. The effects of the position of the LTVA on
optimum tuning rules and effectiveness will be investigated in the future. Furthermore, the effect of the introduction of a
nonlinear restoring force in the LTVA (leading to a nonlinear tuned vibration absorber [15–17]) will be assessed, with the
objective of improving the supercritical response of the system.
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Chapter 36
Adaptive Harmonic Balance Analysis of Dry Friction Damped Systems

Dominik Süß, Martin Jerschl, and Kai Willner

Abstract One of the most challenging tasks in structural dynamics is given by analyzing and predicting the behavior of
jointed structures. In order to perform numerical investigations the Harmonic Balance Method (HBM) is a very mature and
efficient technique for estimating the response behavior of such systems in the frequency domain. A better approximation
can be obtained by accounting for more harmonic parts and introducing the Multiharmonic Balance Method (MHBM). This
leads to a simultaneous reduction of efficiency due to a huge growth of the system dimensions.

The goal of this paper is to present an Adaptive Harmonic Balance Method joining together the advantages of both, HBM
and MHBM. Therefore the number of harmonics accounted for is adaptively chosen as small as possible, in order to get an
efficient procedure and as big as necessary, in order to obtain precise results. The selection is performed by various criteria
estimating the most important harmonic parts from an user defined pool of harmonics.

Keywords Structural dynamics • Jointed structure • Harmonic balance • Adaptive procedure • FEM

36.1 Introduction

In this contribution, the focus is on investigating the behavior of a jointed structure over a broad range of excitation
frequencies within the frequency domain corresponding to the stationary behavior in the time domain. Due to the nonlinear
forces within the contact plane, it is not possible to perform an analytical transformation of the system equations into the
frequency domain directly. Instead, a possible approach to approximate the nonlinear term is the usage of the HBM, e.g.
[18], which was originally proposed by Kryloff and Bogoliuboff [10]. In the framework of the HBM it is assumed that a
harmonic excitation of the system leads to a harmonic response. Dependant on the complexity of the contact law used, it
might be necessary to adapt several further assumptions [6], in order to make it possible to analytically derive the fundamental
harmonic Fourier coefficients of the nonlinear interface forces. The HBM is the most efficient method to calculate oscillations
in the frequency domain. Nevertheless the negligence of higher harmonic parts might not always be a proper assumption for
the underlying system dynamics.

Therefore a generalization or extension to periodic excitation f e.t/ and response functions u.t/ can be achieved using the
MHBM. They are approximated by the ansatz of a truncated Fourier series

f e.t/ Ñ Fe; .0/ C
nhX

kD1

�
eFe; .k/e

i�k!t CeF�
e; .k/e

�i�k!t
�

(36.1)

and

u.t/ � U.0/ C
nhX

kD1

�
eU.k/e

i�k!t C eU�
.k/e

�i�k!t
�
; (36.2)

which resolves nh harmonic parts and neglects all higher harmonics. In these formulae the subscript numbers in brackets
show the respective harmonic part, the  indicates that the corresponding values are complex and � stands for the conjugate
complex. By rearranging the Fourier coefficients,

eU D
h
U T
.0/ ;

eUT
.1/ ;

eUT
.2/ ; : : : ;

eUT
.nh/

iT
; (36.3)
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Fig. 36.1 Drawing of the friction
resonator
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the harmonic component representation of the system can be found as

eS.!/eU.!/CeFnl.eU.!// D eFe.!/ ; (36.4)

whereeS denotes the diagonal block matrix of harmonic dynamic stiffness matrices

eS.!/ D diag.�k2!2M C ik!D C K/ with k 2 f1 ; 2 ; : : : ; nhg : (36.5)

For the implementation of the MHBM there exist several strategies [3–5]. One of the most used techniques is the so called
‘Alternating Frequency Time Domain Method’ (AFT) [1, 2, 15]. Another alternative is used e.g. by [9, 11, 14] as a matrix
transformation procedure with analytical integration of the Fourier integrals (here just abbreviated as SAI). The latter two
algorithms are applied here in order to compute the frequency response of a jointed friction resonator, see Fig. 36.1.

Here the structure is represented by the FE model of Süß et al. [17] in combination with a three dimensional contact law
based on Jenkin elements. Details about the integration of this law into the MHBM/AFT procedure can be found in [16]. The
main advantage of the MHBM is, that it delivers quite precise results. However, the calculation times are much higher than
using the classical HBM.

Figure 36.2 shows FRFs calculated with HBM and MHBM/AFT for a different number of harmonics accounted for.
The contact parameters for this investigation were fitted for the MHBM computation with 11 harmonics with respect to

the measured FRF. This leads to a very good accordance of the calculation with the measurement. It can be seen that the
HBM calculations results nearly do not differ from the MHBM results regarded for one harmonic. Both curves over-estimate
the resonance peak. This is typical for calculations with only one harmonic, where the energy of the complete nonlinear
system is pumped into this single harmonic. Nevertheless these two FRFs show a quite good accordance with the MHBM
for 11 harmonics over a wide frequency range outside a certain region around the resonance.

The above mentioned facts led to the development of an Adaptive Harmonic Balance Method (AHBM) which combines
the advantages of both HBM and MHBM in order to get an algorithm which is as precise and effective as possible. Since the
HBM is the fastest way to calculate the stationary system response, this method should be used as often as possible whereas
the MHBM for an adjustable number of harmonics should only be used if necessary. Therefore a good agreement of HBM
and MHBM for one harmonic, like shown above, is important for the application of the AHBM. This directly depends on the
assumptions made for the HBM.
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Fig. 36.2 Comparison of MHBM/AFT and HBM calculations with respect to a measured FRF of the friction resonator for an excitation force
amplitude of 100 N and a bolting force of 1588 N

36.2 Adaptive Harmonic Balance Analysis

There already exists a variety of different approaches for the implementation of an Adaptive Harmonic Balance Method, see
e.g. [12, 13] or [8]. However, most of these approaches seem not to be intended for an efficient performance. One problem
comes through the repeated evaluation of one single frequency step in order to incrementally add harmonics. Another
problem is the fixed addition of a user set number of harmonics without checking the relevance of these harmonics for
the calculation.

A more convenient way is presented in [7] by utilizing an approximation of the Jacobian of all harmonics in order to
derive a prediction of the harmonics needed for the next frequency increment. The approach presented in this paper has
some similarities but was developed independently from the above citation. As already mentioned, the procedure shall be
implemented as efficient as possible. Therefore the harmonics used for the calculation shall not be bound to an ascending
sequence of natural numbers and shall be flexibly sorted in and out via a transformation procedure, see Sect. 36.2.1.
Furthermore the additional effort for estimating harmonics shall be kept as low as possible and criteria for selecting harmonics
shall be applied only once for each frequency increment, see Sect. 36.2.2.

36.2.1 Transformation of Harmonics

A transformation procedure is applied in order to flexibly put in and sort out harmonics. This transformation is applied each
time the frequency iteration step (i) is incremented, see Fig. 36.3.

Regarding to that diagram this means that no separate iteration is used to stepwise de/activate harmonics since this is too
time-consuming. Instead of that the last converged iteration (i) of the AHBM procedure is analyzed in order to get a guess for
the harmonics needed for the next iteration (i C 1). The set of active harmonics does not have to be a continuous series, the
harmonics can be chosen arbitrarily with only the first harmonic being set fixed. The transformation of the system equations
is executed via a transformation matrix which is a zero matrix occupied with unit sub-matrices like sketched in Fig. 36.4.

Therefore harmonics which shall be neglected for the next iteration are just deleted and new harmonics are initialized
with zeros.
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Fig. 36.3 Flow chart of the algorithm used for the AHBM
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36.2.2 Criteria for Selecting Harmonics

For choosing the active harmonics (p) from the set of all possible harmonics (k) for the AHBM calculation, a proper criterion
has to be found. Two possible approaches shall be presented here. The first one tries to estimate the appearing harmonics via
the Fourier transform of the nonlinear contact forces. The second approach calculates the gradient of the nonlinear forces
with respect to varying response displacements. For reasons of clarity subharmonics are neglected here although they can be
integrated into the algorithm easily.

36.2.2.1 Approach 1: Estimation of Response Displacement Harmonics

During the (M)HBM procedure, only the active set of harmonics

eU.p/ ; with p � k ; (36.6)

is balanced. But for applying the selection criterion all harmonics

eU.k/ ; with k 2 f1 ; 2 ; : : : ; nhg ; (36.7)
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have to be calculated/approximated. This can be achieved by first computing

eFnl; .knp/

�eU.p/
�
; (36.8)

which means the evaluation of the complete set of Fourier coefficients for all given harmonics of the response displacement.
Afterwards the missing harmonics can be estimated by re-using Eq. (36.4),

eU.knp/ D �eS.knp/

��1 �eFe; .knp/ �eFnl; .knp/

�
: (36.9)

For all coefficients now a filtering criterion can be set up. The following one checks if the distortion factor of harmonic .r/
is greater than a user set tolerance:

ccor �
vu
u
uu
u
t

�
�eU.r/

�
�2

nhX

qD1

�
�eU.q/

�
�2
> tol : (36.10)

Since all estimated/inactive harmonics (k n p) tend to be overestimated they are often put into the active set of harmonics
although not really being important. If unimportant harmonics are activated, they are probably deactivated right after
balancing them within the next frequency iteration step. This can lead to ‘rattling’ effects, where single harmonics are put in
and out alternately. This effect can be reduced by firstly applying an adaptive correction coefficient ccor for criterion (36.10),
being a barrier for unimportant harmonics. Secondly, if harmonic (r) shall be rejected from the active set, a simple re-check
is performed by setting it to zero,

eU.p/ D �eU.0/ ; eU.1/ ; : : : ; 0.r/ ; : : :
�T
; (36.11)

and re-calculating

eU.r/
�eFnl; .r/

�eU.pnr/

��
: (36.12)

Applying criterion (36.10) again, it can be evaluated, if harmonic (r) tends to be built up by the other harmonics. If this is
the case, this harmonic should be kept active. Note that the importance of harmonics not only can be seen in high amplitudes
but also in their influence on other harmonics and vice versa.

36.2.2.2 Approach 2: Estimation of Partial Derivatives

The second criterion presented here is not related to the response displacements themselves but to the influence of the
variation of the displacements on the nonlinear forces. These partial derivatives are often already needed in order to apply a
Newton-Raphson type solver and can be calculated analytically during the computation for all methods used here. Building
the norm of the Jacobian

N.k;p/ D
�
��
�
�
@eFnl; .k/

@eU.p/

�
��
�
�

with k 2 f1 ; 2 ; : : : ; nhg and p � k (36.13)

the influence of one harmonic on all the other harmonics can be seen column wise. In order to get an objective result, the
self-influence of the active harmonics is deleted by forcing the diagonal terms to equal zero,

N.p;p/ D 0 : (36.14)

Afterwards again a tolerance check can be set up to test the importance of harmonic (r):

N.r;p/ > tol : (36.15)
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On this way a single harmonic might be selected or deselected by other active harmonics. Therefore a ‘majority decision’
may be applied to un/select harmonics for the next frequency iteration.

The procedures explained above are now applied for calculations with a FEM model of a friction oscillator, see Fig. 36.1,
with the results being limited to the approach 1 results. The chosen FE discretization is analogue to the one used in [17],
which means a rather coarse mesh in order to get low computation times.

36.3 Numerical Results

Reference calculations using classical HBM and MHBM (AFT and SAI) are performed in order to validate the AHBM. In
Fig. 36.5 all response displacement harmonics considered are shown as overlay for the MHBM/AFT calculation.

Besides the main resonance of the system around 313 Hz an interesting peak of the fourth harmonic can be found for an
excitation frequency of 298 Hz. This corresponds to a modal interaction with the sixth eigenform of the system (a bending
mode). The computational times needed for the reference calculations are summarized in Table 36.1.

As expected, the times are increased for MHBM calculations. Since the SAI delivers a much more efficient performance
than the AFT, it shall be used for all following AHBM computations. For an excitation frequency of 311 Hz, friction
hystereses are evaluated. These are plotted in Fig. 36.6 and show the ‘viscous’ elliptic hysteresis of the HBM calculation
in comparison to the MHBM hysteresis, delivering the more likely form of a measurable friction hysteresis. An exact
reproduction of measured hystereses cannot be established with the coarse mesh chosen here, but for a refined discretization
the results are convincing, see [16]. The AHBM hystereses will lie somewhere in between these two reference curves.

In this contribution the AHBM shall be presented for the approach of estimating the response displacement harmonics.
The distortion factor criterion is applied and three calculations for different tolerance values are performed. Figures 36.7, 36.8
and 36.9 show the corresponding spectra.
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Fig. 36.5 Response displacement harmonics for a pure MHBM/AFT calculation considering 11 harmonics

Table 36.1 Comparison of
calculation times for different
(M)HBM methods

Method Time (min)

HBM 1.8

MHBM/SAI 14.2

MHBM/AFT 253.5
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Fig. 36.6 Friction hystereses for a pure HBM and a MHBM/AFT calculation considering 11 harmonics
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Fig. 36.7 Response displacement harmonics for an approach 1 AHBM/SAI calculation with a tolerance of 8 � 10�2

It can be seen that for a decreasing tolerance the number of harmonics accounted for increases. A step-wise reduction of
the first harmonic overestimation can be acknowledged. Although the algorithm was used analogue to Sect. 36.2.2 still some
‘rattling’ effects on the single harmonics can be recognized. Thus for example the fourth harmonic is de/activated alternately
right within the resonance for the computation with a tolerance of 8 � 10�2. In all three calculations the peak of the fourth
harmonic at 298 Hz can be detected. The times of the respective calculations are summed up in Table 36.2.

The times rise parallel to the number of harmonics used for the computation and lie in the range of the reference times of
HBM and MHBM. Having a look at the friction hystereses in Fig. 36.10 it can be seen that all three computations deliver a
good compromise between the two reference calculations. Thus the AHBM with the best precision/efficiency ratio might be
selected by the user.
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Fig. 36.8 Response displacement harmonics for an approach 1 AHBM/SAI calculation with a tolerance of 1 � 10�2
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Fig. 36.9 Response displacement harmonics for an approach 1 AHBM/SAI calculation with a tolerance of 4 � 10�3
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Table 36.2 Comparison of
calculation times for different
approach 1 AHBM/SAI
calculations

Tolerance Time (min)

8 � 10�2 3:2

1 � 10�2 5:0

4 � 10�3 6:8
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Fig. 36.10 Friction hystereses for approach 1 AHBM/SAI calculations with different tolerances

36.4 Conclusions

In this contribution an Adaptive Harmonics Balance Method is presented in order to perform calculations on a jointed
structure in the frequency domain. The AHBM combines the advantages of classical HBM and MHBM. Two different
approaches for the application of the AHBM are shown with both delivering different results. Approach 1 tends to bring out
‘rattling’, nervous behavior of single higher harmonics, but also manages to detect modal interactions for a wide range of
tolerances. Approach 2 has smooth harmonic curves and a very good reproduction of the resonance peak. For both approaches
the calculation times can be decreased compared to a full MHBM. The combination of both, the general modeling approach
via ZT elements and the efficient computation using the AHBM brings out a powerful methodology for the calculation of
the dynamics of jointed structures in the framework of the FEM.
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Chapter 37
Dynamics of an MDOF Rotor Stator Contact System

Alexander D. Shaw, David A.W. Barton, Alan R. Champneys, and Michael I. Friswell

Abstract The vibrations of rotating machinery are an important issue in many engineered systems, from aircraft engines
to drilling platforms. In many cases there is a possibility of rotor stator contact, which leads to non-smooth nonlinearities;
this leads to complex multi period responses in a single rotor system, and poses a challenging problem when more degrees
of freedom are considered. In this work we examine how interaction of the underlying modes of a two disc rotor, can lead
to complex multi-period responses with intermittent contact. These motions can be excited at driving speeds that are well
removed from the linear critical speeds of the rotor. However, it is demonstrated that the driving frequencies can be predicted
and explained by synchronisation between two modal responses and the driving frequency.

Keywords Rotordynamics • Impact • Nonlinearity • Chaos • Whirl

37.1 Introduction

The vibrations of rotating machinery are an important issue in many engineered systems, from aircraft engines to drilling
platforms[1]. Understanding of rotating machinery in linear operating regimes is well established, with classical matrix
methods having been applied to deduce the whirl speeds of rotational systems with any number of degrees of freedom.
However, there are many outstanding problems concerning nonlinearity in rotating systems, and these are leading to new
approaches in a variety of industrial applications.

Patel and Darpe noted that cracks in rotors induce nonlinear effects and explored these effects with bifurcation
analyses [2]. Ehrich has compiled a review of numerous nonlinear phenomena witnessed in tests on turbomachinery,
including bifurcation routes to chaos, subharmonic resonance and other surprising effects such as bearing phenomenon
that lead to a rotor slowly ‘switching’ between two amplitudes of vibration [3]. Contacts are a major source of nonlinearity
in rotor systems; Jacquet-Richardet et al. published a comprehensive review on rotor-stator contact in turbomachinery [4].

Many studies are inspired by the complex needs of the drilling industry; a modern deep hole drilling assembly is a highly
flexible rotor structure (relative to its length), subject to strong nonlinearity through contact forces. The complexity of this
system is such that few studies describe it entirely; the majority of papers consist of far simpler studies on small aspects of the
mechanics present. Richard et al. modelled the drill bit behaviour, demonstrating a stick-slip motion caused by the contact
friction in combination with both axial and torsional modes of the shaft [5]. Germay et al. extended this work to consider
the drill as a continuous structure, instead of as an equivalent discrete model [6]. Many of these phenomena are reported in
on-site measurements reported by Leine et al. [7]. Liu et al. considered a model of the drill bit that allows non-smooth effects
due to both friction and loss of contact when axial vibrations cause the drill bit to separate from the rock surface [8].

In other work, Karpenko et al. considered piecewise smooth models for rotors experiencing frictionless impacts with a
snubber ring [9]. Karpenko et al. went on to compare these predictions with experiment in [10]. Edwards et al. considered
a simple Jeffcott model with contact, and used time simulation to show that the bifurcation pattern changes significantly if
torsional motion occurs.

The majority of studies in this field concern systems with relatively few degrees of freedom—typically they concern
single disc systems, perhaps with the inclusion of torsional and flapping motions. There seems to be little literature aiming to
handle nonlinearity in rotor systems with many more degrees of freedom. One exception to this is the experimental study by
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Chu and Lu on a 2 disc system [11]. They showed some highly complex multi-period and quasiperiodic behaviour, although
the authors comment that they could not directly trace the route into chaos due to experimental control issues. However, an
alternative possible explanation for this is raised in a paper by Zilli et al. [12]. This showed how a synchronisation between
the forward and backward whirl modes and the forcing of a single snubbed rotor system could cause a sudden onset of
complex bouncing behaviour at certain drive speeds that are not near the linear critical speeds.

In this work we generalise the model in [12] to work with any two modes of a multi disk system, with any combination
of forward and backward whirling. After developing the formulae, predictions are shown to compare well with simulations
on a two disk shaft with a single snubber.

37.2 Synchronisation as the Cause of Bouncing Orbits

What follows is a generalisation of the analysis given in [12] to rotating systems with multiple whirling modes.
Consider a rotor consisting of a flexible shaft with N discs, located at the centre of a circular stator at one of the shaft

sections. The shaft is slender, so that friction from impacts imparts negligible torque, hence friction and torsional degrees of
freedom are neglected. The rotor is assumed to be driven at a constant angular speed �, and forced into vibration due to a
small out of balance mass ". This can be approximated as having 2N modes, a forward and a backward whirl for each disc.
When no contact occurs, the system will achieve the largest amplitudes when � is near a forward whirl frequency; the out
of balance forcing does not drive the backward whirl modes so they do not appear [1].

A necessary condition for a periodic motion with stator contacts is that at each contact there is an identical state of the
rotor and the forcing, relative to the local surface angle of the stator. This state can be considered as a superposition of
phasors, representing the whirling modes of the shaft and the forcing. If it is assumed (without loss of generality) that all
phasors are in alignment at the start of a cycle, then it follows that they must be in alignment at the end of the cycle. The
assumption of a perfectly centred circular stator then ensures that the above condition has been met.

In order to develop the reasoning above, we express this state in terms of three phasors; two whirling modes with angular
speeds !n1 and !n2, and the forcing phasor with angular speed�. The whirling speeds may be positive or negative, indicating
forward or backward whirling respectively, whilst the forcing speed is always positive. A convention that j!n2j � j!n1j is
adopted. The two whirling phasors will align periodically, with period given by:

� D 2�

j!n2 � !n1j (37.1)

Note that if the two speeds are opposite, this period will be shorter than either of the whirling periods. If the two speeds have
the same sign, then this period is always greater than that of mode 2, and can be very large if the two speeds are similar.
During this period, the first mode phasor will advance by an angle given by:

� D !n1� (37.2)

At the same time, the forcing phasor will also advance by an angle

˛ D �� (37.3)

A periodic alignment of all three phasors will occur if

˛ D � C 2�m (37.4)

where m is an integer that will be positive if ˛ > � , and negative for ˛ < � . Substitution of Eqs. (37.1)–(37.3) into Eq. (37.4)
gives a relationship for driving speeds that allow periodic contact motion:

� D !n1 C mj!n2 � !n1j (37.5)

This equation shows that m cannot equal zero as this leads Eq. (37.5) to become � D !n1. If !n1 is positive, a critical
speed is present, in which case the resonant mode will dominate instead of the bouncing motion. Otherwise a negative !n1

implies negative� which cannot occur. Finally, the requirement for � > 0 defines a lower bound for m, and the maximum
rotor speed of interest defines the upper bound.



37 Dynamics of an MDOF Rotor Stator Contact System 417

37.3 Test System

The system under test is a simple two disc system shown in Fig. 37.1. The rotor is mounted on pinned bearings at each end
of the shaft, with a stator with 1 mm clearance at the centre. The shaft is a steel tube with 5 mm outer diameter and thickness
1 mm. The discs are also made of steel with radii 0:15 and 0:2m and thicknesses 0:01 and 0:02m respectively. The shaft is
0:60m long, with the smaller disc located 0:15m from the left hand end, and the larger disc located 0:20m from the right
hand end. The stator is modelled as an additional stiffness of 100 kN/m always acting in the radial direction towards the
centre. Forcing is provided by a small eccentricity " on disc 1. The material definition includes a 1 % damping factor.

The system is mostly modelled using the free Matlab [13] scripts that accompany [1]. This was used to implement a simple
finite element model of the structure, calculate critical speeds and provide a reduced order modal model for simulation, which
was carried out in ODE45 with event detection used to locate changes between contacting and non-contacting motion, and
restart the simulation with optimal properties accordingly.

The Campbell diagram for this system is shown in Fig. 37.2. Where forward whirl results cross the rotor speed line, we
can expect to see classical whirling response when in the linear regime. Where the dot-dashed lines cross the rotor speed
line, there is the possibility of bouncing contact oscillation involving the modes and value of m indicated.

37.4 Comparison with Simulation

In the following sections, a series of time simulations are performed in a similar process to that used in [12]. For each
simulation, the rotor has an initial velocity of 750 rpm that is linearly ramped down to the target speed for the data point
concerned in 0.5 s, creating initial transients with contacting motion. Then a period of 30 s is allowed for the response to
settle, and then the system state at the stator is sampled once per forcing period for 250 periods. The radial displacement at
each sample is then plotted on a graph against the forcing frequency. Whilst this is not a true bifurcation diagram, it gives a
good indication of when complex non-periodic orbits have become stable.

37.4.1 Light Forcing

In this section, " D 0:50 � 10�3, which is insufficient to cause significant nonlinearity as shown in Fig. 37.3. There is a
strong peak in the response amplitude at approximately 80 rpm, and this agrees with the first crossing of a forward whirl
frequency with the rotor speed in Fig. 37.2. A second weaker peak coincides with the second linear critical speed predicted
by Fig. 37.2 at approximately 400 Hz. There is a small contact region at the top of the first peak.

Fig. 37.1 Test system
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Fig. 37.2 Campbell diagram. Crossed lines indicate forward whirl modes, circled lines show backward whirl frequencies. The blue dashed line
indicates the rotor speed, and the dot-dashed lines indicate the results of Eq. (37.5)

Fig. 37.3 Bifurcation plot at " D 0:50 � 10�3
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Fig. 37.4 Bifurcation plot at " D 0:75 � 10�3

37.4.2 Moderate Forcing

With forcing increased to " D 0:75 � 10�3, we see the introduction of abrupt transitions to high amplitude non-periodic
response as shown in Fig. 37.4. It is clear however that not all the potential bouncing orbits indicated in Fig. 37.2 are activated
at this forcing level. Furthermore, the onset of high amplitude motion at 280 rpm does not exactly match any of the crossing
points shown in Fig. 37.2.

In order to gain further insight into the response at this region, we examine the response at 280 rpm and try to relate it to the
known linear features of the system. From Fig. 37.5 we can instantly see that the motion is far from chaotic; the reason that
it appears so on Fig. 37.4 must be that the period of motion is not an integer multiple of the forcing period used for sampling.
If we consider the frequency content of this response, as shown in Fig. 37.6, again there is no exact match with the features
shown in this graph and those in Fig. 37.2; the only clearly identifiable feature is the peak at 4.66 Hz, corresponding to the
drive speed. However, it may be noted that the first two peaks (at 1.06 and 1.80 Hz) are just higher than the first forward
and backward whirl modes at 280 rpm given in Fig. 37.2. These frequencies exactly satisfy Eq. (37.5) for n D 1;m D 2,
confirming that this is an interaction between the first backward and forward whirling modes. The difference in frequencies
is explained by the stiffening effect of the stator contact, as reported by Zilli et al. in [12].

A similar trend may be found for all the responses in this region up to 297 rpm. The fact that this region is relative broad,
when the theory predicted isolated frequencies, shows that the amplitude dependence caused by nonlinearity is acting to
broaden the region where this response is possible.

If we consider the second region between 424 and 430 rpm a similar analysis finds that this region is again an interaction
between the first backward and forward modes, this time with m D 3. This motion has a highly complex orbit as shown
in Fig. 37.7. Inspection of the time series of the magnitude of displacement in Fig. 37.8 shows that this motion features two
contacts per cycle.

37.4.3 Harder Forcing

As the out of balance forcing is increased, we see a dramatic increase in the number of self sustaining impacting cycles that
remain stable, as shown in Fig. 37.9. Furthermore, different combinations of whirling modes can become active. For example,
at 387 rpm we see an orbit where the active modes are the first forward whirl and the second backward whirl as shown in
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Fig. 37.5 Steady state orbits for " D 0:75 � 10�3, drive speed 280 rpm. Crosses indicate transitions between contact and non-contact

Fig. 37.6 Spectrum of x displacement response for " D 0:75 � 10�3 , drive speed 280 rpm

Fig. 37.10. In this figure, the first two peaks at 1.95 and 2.25 Hz are the first forward whirl and the second backward whirl
respectively, while the peak at 6.65 Hz is the driving frequency. However, these values only approximately satisfy Eq. (37.5),
an issue that requires further investigation.

At this amplitude, the use of Fig. 37.2 as a predictive tool is extremely limited, due to the distorting effect of nonlinearity
on response frequencies. Furthermore, the majority of responses are now multi-period if not chaotic. For example, see the
time signal of r for drive speed 240 rpm shown in Fig. 37.11.
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Fig. 37.7 Steady state orbits for " D 0:75 � 10�3 , drive speed 424 rpm. Crosses indicate transitions between contact and non-contact

Fig. 37.8 Time series of radial displacement r, " D 0:75 � 10�3 , drive speed 424 rpm. Crosses indicate transitions between contact and non-
contact

37.5 Conclusions and Future Work

A phasor analysis of when contacting oscillations of a snubbed rotor shaft may occur has been extended to shafts with higher
numbers of degrees of freedom. Whilst there is a clear link between the underlying whirl modes and the onset of these
oscillations, predictions are somewhat approximate, and the effect of nonlinearity on the whirling frequencies needs to be
understood to improve accuracy. It has been seen that while these bouncing orbits are not in themselves chaotic, they can
lead to chaotic or multiperiodic behaviour very rapidly.
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Fig. 37.9 Bifurcation plot at " D 1:00 � 10�3

Fig. 37.10 Spectrum of x displacement response for " D 1:00 � 10�3, drive speed 387 rpm
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Fig. 37.11 Time series of radial displacement r, " D 1:00 � 10�3, drive speed 240 rpm. Crosses indicate transitions between contact and
non-contact
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