
Chapter 4
Natural Hazard Probabilistic Risk Assessment
Through Surrogate Modeling

Alexandros A. Taflanidis, Gaofeng Jia, and Ioannis Gidaris

Abstract Assessment of risk under natural hazards is associated with a significant
computational burden when comprehensive numerical models and simulation-based
methodologies are involved. Despite recent advances in computer and computa-
tional science that have contributed in reducing this burden and have undoubtedly
increased the popularity of simulation-based frameworks for quantifying/estimating
risk in such settings, in many instances, such as for real-time risk estimation,
this burden is still considered as prohibitive. This chapter discusses the use
of kriging surrogate modeling for addressing this challenge. Kriging establishes
a computationally inexpensive input/output relationship based on a database of
observations obtained through the initial (expensive) simulation model. The up-
front cost for obtaining this database is of course high, but once the surrogate
model is established, all future evaluations require small computational effort.
For illustration, two different applications are considered, involving two different
hazards: seismic risk assessment utilizing stochastic ground motion modeling and
real-time hurricane risk estimation. Various implementation issues are discussed,
such as (a) advantages of kriging over other surrogate models, (b) approaches for
obtaining high efficiency when the output under consideration is high dimensional
through integration of principal component analysis, and (c) the incorporation of the
prediction error associated with the metamodel into the risk assessment.

4.1 Introduction

Prediction of the performance of civil infrastructure systems exposed to natural
hazards is associated with significant uncertainties, pertaining to the description
of the hazard characteristics as well as to the properties of the system under
consideration (Ellingwood 2001; Vickery et al. 2006; Resio et al. 2012). This
is especially true when life-cycle analysis is considered (Wen and Kang 2001;
Taflanidis and Beck 2009) since the aforementioned description needs to address
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the anticipated exposure (Kumar et al. 2015) and system behavior over a large time
period. A probabilistic approach provides a rational and consistent framework for
addressing such uncertainties (Jaynes 2003) using probability models to describe
the relative likelihood of different properties of the natural hazard and of the system
itself. This then facilitates the description of the performance through the natural
hazard risk, quantified by the probabilistic integral that corresponds to the expected
value of some risk consequence measure over the established probability models for
the system and its excitation (hazard).

Assessment of this risk entails ultimately evaluation of the probabilistic integral
quantifying it. Analytical approximations and specialized approaches (Rackwitz
2001; Der Kiureghian 1996; Taflanidis 2010) can be adopted for this purpose
but include an unknown, unavoidable error and can further impose restrictions
on the complexity of the models adopted to characterize and analyze risk. On
the other hand, approaches relying on stochastic (i.e., Monte Carlo) simulation
offer a high-accuracy solution and more importantly impose no constraints on
the complexity of the assumed numerical and probability models (Au and Beck
2003; Taflanidis and Beck 2009). They involve, however, higher computational
cost, a feature which prohibited for some time their widespread adoption. Advances
over the last decade in computer hardware and simulation algorithms, in particular
the wide use of distributed/parallel computing (Fujimoto 2001), have contributed
in reducing this computational burden traditionally associated with stochastic
simulation approaches, and have facilitated the detailed modeling and solution of
problems that were until recently considered as computationally intractable (Resio
and Westerink 2008; Pellissetti 2008; Hardyniec and Charney 2015), increasing
the popularity of simulation-based frameworks for quantifying/estimating natural
hazard risk. Still in many instances, for example, for real-time risk estimation or in
applications with complex nonlinear dynamical models, the computational burden
associated with simulation-based approaches is still prohibitive.

The use of surrogate models (also frequently referenced as metamodels) is
a popular approach for addressing this challenge and for further alleviating the
computational cost associated with such simulation-based frameworks for natural
hazard risk assessment (Gavin and Yau 2007; Tsompanakis et al. 2009; Gidaris et al.
2014). Surrogate models offer a computationally inexpensive input/output relation-
ship based on a database of observations obtained through the initial (expensive)
simulation model. The up-front cost for obtaining this database is of course high,
but once the surrogate model is established, all future evaluations require small
computational burden. This chapter discusses the adoption of kriging metamodels
within this context. For illustration, two different applications are considered,
involving two different hazards: seismic risk assessment utilizing stochastic ground
motion modeling and real-time hurricane risk estimation. Various implementation
issues are discussed, such as (a) the advantages of kriging metamodeling approach
over other surrogate models, (b) the approaches for obtaining high efficiency
when the output under consideration is high dimensional (over 10,000) through
integration of principal component analysis, and (c) the explicit incorporation of the
prediction error associated with the kriging metamodel into the risk formulation.
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The discussions demonstrate the great benefits that the combination of kriging and
stochastic simulation provides for natural hazard risk assessment. This combination
can foster a comprehensive and detailed characterization of risk, in terms of the
models selected for the system and the natural hazard and for the uncertainty
quantification, and at the same time an efficient estimation for it. Initially, the
general framework for simulation-based risk quantification and assessment is
presented, and then the discussion focuses on kriging implementation and the two
specific applications examined.

4.2 Risk Quantification and Assessment

Risk Quantification Evaluation of response/performance under natural hazards
requires adoption of appropriate numerical models for (1) the natural hazard
(excitation), (2) the system of interest, and (3) the system performance (Fig. 4.1).
The combination of the first two models provides the system response vector,
denoted z 2 R

nz herein with individual response quantities denoted as zk. The
performance evaluation model assesses, then, the favorability of this response, based
on the chosen criteria.

The characteristics of these models are not known with absolute certainty.
Uncertainties may pertain to: (1) the variability of primary characteristics of exci-
tation events, for example, intensity or occurrence rates, or of secondary properties
typically given by predictive relationships based on these primary characteristics
(Holland 1980; Rezaeian and Der Kiureghian 2010; Mavroeidis and Papageorgiou
2003), such as duration of excitation or pressure distribution along domains of
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Fig. 4.1 Model for natural hazard risk description. Illustration example corresponds to seis-
mic risk
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interest; (2) the properties of the system itself, for example, related to parameters
influencing restoring forces or to damping characteristics for structural systems
(Liel et al. 2009); and (3) the parameters related to the performance of the system,
for example, thresholds defining fragility (i.e., acceptable performance) of system
components (Gardoni et al. 2002). Characterizing these uncertainties through a
probabilistic description leads then to a versatile quantification of natural hazard
risk (Taflanidis and Beck 2009; Taflanidis et al. 2013a).

To formalize these ideas, let ™ 2 ‚ � R
n� denote the augmented n™-

dimensional vector of model parameters where ‚ represents the space of possible
model parameter values. As illustrated in Fig. 4.1, vector ™ is composed of all the
model parameters for the individual system, ™s; excitation, ™m (primary) and ™g

(secondary); and performance evaluation, ™p, models. For addressing the uncertainty
in ™, a probability density function (PDF) p(™) is assigned to it that quantifies
our available knowledge in the context of probability logic (knowledge on hazard
characteristics or properties of system under consideration). For given values for the
model parameters ™ the risk consequence measure, representing the utility of the
response from a decision-theoretic point of view, is given by h .™/ W R

n™ ! R
C.

This measure is related to the performance/consequences that can be calculated
based on the estimated response z (performance given that an excitation event has
occurred), whereas it can be additionally dependent, for example within life-cycle
analysis studies, to assumptions made about the rate of occurrence of excitation
events (incorporation of the probability of such events occurring). Natural hazard
risk, R, is finally described by the probabilistic integral that corresponds to the
expected value of h(™) over the probability models:

R D
Z

‚

h .™/ p .™/ d™: (4.1)

Through different selections of the risk consequence measure, different risk
quantifications can be addressed, ranging from life-cycle cost to reliability (Taflani-
dis and Beck 2009; Jia et al. 2014). A specific consequence measure utilized in a
variety of different risk applications, for example, within system reliability analysis
or life-cycle cost estimation (Ellingwood 2001; Goulet et al. 2007; Jia and Taflanidis
2013), is the probability that some response quantity zk (e.g., peak interstory
drift for a structure) will exceed some threshold ˇk that determines acceptable
performance. For certain applications, for example, within seismic risk assessment,
where this concept can be used to represent the fragility of system components, it
is common to incorporate a prediction error in this definition (Porter et al. 2006;
Taflanidis et al. 2013b); this can be equivalently considered as the aforementioned
threshold corresponding to an uncertain quantity with some chosen distribution
(this distribution ultimately determines the cumulative distribution function for
the component fragilities). A common choice for the latter (Porter et al. 2006) is
lognormal distribution. The equivalent representation is then that the threshold that
determines acceptable performance is given by (ˇk•"“k) with "“k having a lognormal
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distribution with median equal to one and logarithmic standard deviation �“k. This
then leads to the following risk consequence measure

h .™/ D P
�
zk .™/ � ˇk"“k

ˇ̌
™
� D P

�
ln
�
"“k
� � ln .zk .™// � ln .ˇk/

ˇ̌
™
�

D ˆ

�
ln .zk .™// � ln .ˇk/

�“k

�
; (4.2)

where ˆ(.) denotes the standard normal cumulative distribution (CDF). For �“k D 0,
representing the case that no uncertainty is considered in the description of ˇk, this
measure simplifies to an indicator function, being one if zk>ˇk and zero if not.

Coupled with stochastic simulation (i.e., Monte Carlo) approaches for estimating
the probabilistic integral in Eq. (4.1), as will be discussed next, the framework illus-
trated in Fig. 4.1 for risk quantification imposes no restriction on the complexity of
the adopted numerical or probability modes and ultimately facilitates a generalized,
versatile description of natural hazard risk and has been implemented successfully
for studies considering a variety of hazards (wind, surge, waves, earthquakes) and
structural systems (Taflanidis et al. 2011, 2013a, b; Gidaris and Taflanidis 2015).

Risk Assessment The estimation of risk given by Eq. (4.1) requires calculation
of a multidimensional probabilistic integral. To support adoption of probability
and numerical models with higher complexity, this calculation can be established
through a stochastic (i.e., Monte Carlo) simulation. Using a finite number, N, of
samples of ™ drawn from proposal density q(™), an estimate for R and the coefficient
of variation for that estimate (quantifying its accuracy), ı, are given by

bR D 1

N

XN

jD1
h
�
™j
� p
�
™j
�

q
�
™j
� and ı � 1p

N

vuut1=N
XN

jD1

�
h
�
™j
�

p
�
™j
�

=q
�
™j
��2

bR2
� 1;

(4.3)

where ™j denotes the jth sample. The proposal densities may be used to improve the
accuracy of this estimation, i.e., reduce the coefficient of variation, by focusing
the computational effort on regions of the ‚ space that contribute more to
the integrand of the probabilistic integral of Eq. (4.1)—this corresponds to the
concept of importance sampling (IS). For problems with a large number of model
parameters, choosing efficient importance sampling densities for all components of
™ is challenging (Taflanidis and Beck 2008) and can lead to convergence problems
for the estimator in Eq. (4.3); thus, it is preferable to formulate IS densities only
for the important components of ™, i.e., the ones that have the biggest influence on
the seismic risk, and use q(™) D p(™) for the rest (Taflanidis and Beck 2008). For
natural hazard risk applications, the primary parameters related to the hazard (™m in
Fig. 4.1) are generally expected to have the strongest impact on the calculated risk
(Taflanidis and Beck 2009), so selection of IS densities may focus only on them.
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Evaluating, now, the computational efficiency of this simulation-based estima-
tion, the most demanding task in most practical applications is the calculation
of the model response z. The computational burden for generating the required
samples, for estimating performance/consequences given that response, or for
calculating the sample average is typically very small. Thus, the formulation
allows to seamlessly integrate recent advances in high-performance computing
(parallel/distributed computing) to perform the required N evaluations of the
system performance independently, in parallel mode. This significantly reduces the
computational barriers that have been traditionally associated with approaches based
on stochastic simulation. It also forms the foundation of an efficient assessment
of risk for different seismic risk quantifications as well as the efficient estimation
of risk under different design scenarios corresponding to different assumptions
for p(™) through some appropriate selection of the proposal densities q(™) [more
details may be found in (Gidaris and Taflanidis 2015)]. For applications, though,
involving computationally intensive, high-fidelity numerical models, the burden for
this analysis can be still prohibitive, especially for real-time applications. Surrogate
modeling can be adopted in these cases to improve efficiency.

4.3 Kriging Metamodeling for Natural Hazard
Risk Assessment

Surrogate models (metamodels) provide a simplified representation of the
input/output relationship of complex processes, requiring large computational cost
for their evaluation. Various such models have been proposed in the literature,
such as neural networks (NNs) (Hajela and Berke 1992), response surface
approximations (RSAs) (Gavin and Yau 2007), moving least squares RSA (MLS
RSA) (Breitkopf et al. 2005), or kriging (Sacks et al. 1989), sharing the same
principle; they generate the approximate, surrogate model based on information
from a sufficient (typically small) number of intelligently selected evaluations of
the exact model (typically referenced as support points or training set) or even
a combination of model evaluations and experimental data (Gardoni et al. 2002,
2003). That surrogate model is then adopted as an approximation to the input/output
relationship for the exact, complex model.

Preliminary Considerations for Surrogate Modeling Within Risk Assessment
Within natural hazard risk assessment, metamodels can be implemented to approx-
imate high-fidelity numerical models utilized for providing the response vector z.
The underlying assumption for this selection is that the performance evaluation
model in Fig. 4.1 is for most applications numerically simple, so establishing the
surrogate model for the response z, rather than directly for the risk consequence
measure h(™), is necessary and also more advantageous since it additionally removes
one level of approximation which provides a higher accuracy in the surrogate
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modeling approach (Jin et al. 2001). This also means that the input vector x 2 R
nx

that needs to be considered for the surrogate model is composed of only ™m, ™g, and
™s in the context of Fig. 4.1 representation, that is, excluding any parameters related
to the performance evaluation model ™p. Furthermore, the metamodel can be built to
approximate a function of the response and not the response directly, for example,
if risk consequence measure of Eq. (4.2) is utilized then the surrogate model should
be built for approximating the logarithm of each response quantity ln(zk) rather than
the response quantity itself zk.

Within this context, let x 2 R
nx and y 2 R

ny denote, respectively, the input
and output vectors considered for the surrogate model implementation. For forming
the metamodel initially, a database with nm observations is obtained that provides
information for the x-y pair. This process is also known as the design of experiments
(DoE). For this purpose, nm samples for fxj j D 1, : : : ,nmg, also known as support
points, are created within some domain X. Preliminary selection of the samples can
be based on some space-filling approach (Latin hypercube sampling), with adaptive
refinements also an option (Dubourg et al. 2011). The domain X should cover the
expected range of values possible for each xi (informed by the range of possible
values within ‚) that will be needed in the evaluation of the risk integral. It should
be stressed that this does not require a firm definition for p(™), simply knowledge of
the range for which the kriging metamodel will be used so that the support points
extend over this range. Using this dataset the metamodel can be formulated and a
kriging metamodel is considered here for this purpose.

Kriging Formulation A quick overview of kriging implementation is presented
next. More details on the fundamental principles and computational details behind
this implementation may be found in Sacks et al. (1989) and Lophaven et al. (2002).

The kriging predictor for each component yi of y corresponds to a Gaussian
variable N(ŷi(x), �2

i (x)) with mean ŷi(x) and variance �2
i (x) (Sacks et al. 1989). The

response output can be approximated through this predictor, leading to

yi .x/ Dbyi .x/ C "
g
i �i .x/ ; (4.4)

where "
g
i is a standard Gaussian variable. Here, we will present the case that a single

surrogate model is developed for the entire output vector y. This approach signifi-
cantly reduces computational complexity but could potentially reduce accuracy (if
the optimal surrogate models corresponding to different components yi are expected
to be drastically different).

The fundamental building blocks of kriging are the np dimensional basis vector,
f(x), and the correlation function, R(xl,xm), defined through hyper-parameter vec-
tor s. The former provides a “global” model in the X space [and is ultimately similar
to the global prediction provided by RSA], while the latter creates a “localized”
deviation/correction weighting the points in the training set based on their closeness
to the target point x. The general concept is similar to the moving character of
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MLS RSA (Breitkopf et al. 2005). Typical selections for these functions are a full
quadratic basis and a generalized exponential correlation, respectively, leading to

f .x/ D �
1 x1 � � � xnx x2

1 x1x2 � � � x2
nx

�T I np D .nx C 1/ .nx C 2/ =2

R
�
xl; xm

� D
Ynx

iD1
exp

��si

ˇ̌
xl

i � xm
i

ˇ̌
snxC1

�I s D Œs1 � � � snxC1� : (4.5)

Then, for the set of nm observations (training set) with input matrix
X D �

x1 � � � xnm
�T 2 R

nm�nx and corresponding output matrix Y D�
y
�
x1
� � � � y .xnm/

�T 2 R
nm�ny , we define the basis matrix F D �

f
�
x1
�

: : : f .xnm/
�T 2

R
nm�np and the correlation matrix R 2 R

nm�nm with the lm element defined as
R(xl,xm), l, mD1, : : : ,nm. Also for every new input x, we define the correlation
vector r .x/ D �

R
�
x; xl

�
: : : R .x; xnm/

�T
between the input and each of the elements

of X. The mean kriging prediction (given as row vector) is then

by .x/ D f.x/T’� C r.x/T“�; (4.6)

where matrices ’� 2 R
np�ny and “� 2 R

nm�ny are given by

’� D �
FTR�1F

��1
FTR�1YI “� D R�1

�
Y � F’�� : (4.7)

Through the proper tuning of the hyper-parameters s of the correlation function,
kriging can efficiently approximate very complex functions. The optimal selection
of s is typically based on the maximum likelihood estimation (MLE) principle,
where the likelihood is defined as the probability of the nm observations, and
maximizing this likelihood with respect to s ultimately corresponds to optimization

s� D arg min
s

h
jRj 1

nm

Xny

iD1
Q�2

i =�i

i
; (4.8)

where j.j stands for determinant of a matrix; � i is a weight for each output quantity,
typically chosen as the variance over the observations Y; and Q�2

i corresponds to
the process variance (mean square error of the metamodel), given by the diagonal
elements of the matrix .Y � F’�/TR�1 .Y � F’�/ =nm. Standard approaches for
solving this optimization are given in (Lophaven et al. 2002).

An estimate for �2
i (x), which can be equivalently considered as the variance for

the prediction error between the real process yi and the kriging prediction ŷi, is also
provided through the kriging metamodel. This is a local estimate, meaning that it is
a function of the input x and not constant over the entire domain X, and for output
yi is given by

�2
i .x/ D Q�2

i

h
1 C u.x/T�FTR�1F

��1
u .x/ � r.x/TR�1r .x/

i
; (4.9)

where u .x/ D FTR�1r .x/ � f .x/.
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Derivative information can be also easily obtained by noting that vectors ’* and
“* are independent of x. Denoting by Jf and Jr the Jacobian matrices with respect
to x of f and r, respectively, the gradients for the median predictions and the error
variance are

rby .x/ D Jf.x/T’� C Jr.x/T“�

r�2
i .x/ D 2 Q�2

i

h
u.x/T�FTR�1F

��1 �
FTR�1Jr .x/ � Jf .x/

� � r.x/TR�1Jr .x/
i

:

(4.10)

This information can be used, for example, for calculating the design points for
the integrand of Eq. (4.1) for forming IS densities or when the application of
interest corresponds to a design optimization problem and kriging is simultaneously
developed for risk assessment as well as for performing the optimization with
respect to the system design variables (Gidaris et al. 2014).

Validation of Metamodel The performance of the metamodel can be validated
directly by the process variance Q�2

i or by calculating different error statistics for
each one of the components of the output vector y, such as the coefficient of deter-
mination RD2

i or the mean percent error MEi, using a leave-one-out cross-validation
approach (Kohavi 1995). This approach is established by removing sequentially
each of the observations from the database, using the remaining support points to
predict the output for that one and then evaluating the error between the predicted
and real responses. The validation statistics are subsequently obtained by averaging
the errors established over all observations. For the considered implementation for
risk assessment, where one is concerned about providing adequate accuracy over
the ensemble of scenarios considered (rather than for each separate scenario), high
values for the coefficient of determination are of particular importance since they
indicate that the kriging model can describe very well the variability within the
initial database. The performance of the metamodel can be improved primarily by
increasing the number of support points nm or by their proper selection (Picheny
et al. 2010). Other potential strategies for such performance improvement could
be the change of the correlation function or the basis functions (Jia and Taflanidis
2013).

Advantages of Kriging Compared to other surrogate modeling approaches, espe-
cially approaches that entail matrix manipulations only, such as RSA and MLS RSA,
kriging offers some distinct advantages:

• It corresponds to an interpolation metamodel, meaning that the predictions for
any input x that belongs in the initial dataset X will match the exact correspond-
ing output. The same is not necessarily true for many other metamodels (like
RSA) that establish a local averaging (regression metamodels).

• It provides a variance for the prediction error which is also a function of the
location x. In other surrogate modeling approaches, this variance is typically
treated as constant over the entire input domain (Taflanidis et al. 2013a).
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• It involves only matrix manipulations for its implementation with matrix inver-
sions that need to be performed only once, in the definition of ’* and “* in
Eq. (4.7). This ultimately should be attributed to the fact that the correlation
matrix R is dependent only on the training set X. In MLS RSA, that can provide
similar accuracy as kriging (Simpson et al. 2001), the equivalent matrix of
weights (establishing the local correction aspects of the methodology and having
a similar role as R) is explicitly dependent on the input x, meaning that the
inversions involved are different for each different input x. The implications of
this property are significant. Kriging implementation requires keeping in memory
only matrices ’* and “* (rather than the high-dimensional matrices Y, F, and
R). Also, evaluations over a large number of different inputs, as required within
stochastic simulation setting, can be efficiently established through proper matrix
manipulations, simply by augmenting vectors f(x) and r(x) over all these inputs.
It should be noted, though, that for evaluation over a single point, the complexity
of kriging is higher than the one for MLS RSA (Simpson et al. 2001).

• The optimization in Eq. (4.8) for the parameters of the correlation function
can be performed highly efficiently (at least for identifying local minima). The
established approaches for optimization of the parameters related to the weight
matrix in RSA are more computationally intensive (Loweth et al. 2010) requiring
some cross-validation approach over the training set.

Risk Assessment Through Kriging Modeling Once the metamodel has been
established, it can be directly used to approximate the response z and subsequently
the consequence measure within the stochastic simulation-based evaluation in
Eq. (4.3). Additionally, the prediction error of the metamodel can be directly
incorporated in this estimation, altering ultimately the consequence measure. For
example, for the measure given by Eq. (4.2) and assuming that the kriging prediction
is developed for ln(zk), giving ln zk D lnbzk .x/ C "

g
k�k .x/, we have

h .™/ D P
�
ln
�
"“k
� � ln .zk .™// � ln .ˇk/

ˇ̌
™
�

D P
�
ln
�
"“k
� � ln .bzk .x// C "

g
k�k .x/ � ln .ˇk/

ˇ̌
™
�

D P
�
ln
�
"“k
� � "

g
k�k .x/ � ln .bzk .x// � ln .ˇk/

ˇ̌
™
� D ˆ

 
ln.bzk.x//�ln.ˇk/q

�2
“kC�2

k .x/

!
;

(4.11)

where the last equality is based on the fact that since ln("“k) and "
g
k� k(x) are zero

mean Gaussian variables, their difference will also be a normal variable with zero
mean and standard deviation the quantity in the denominator within the Gaussian
CDF in Eq. (4.11).

The kriging implementation is demonstrated next in two examples, where
additional characteristics for it are showcased.
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4.4 Seismic Risk Assessment Through Stochastic Ground
Motion Modeling

In the last decades, significant advances have been established in seismic risk
decision management through the development of assessment methodologies based
on detailed socioeconomic metrics quantifying life-cycle performance (Goulet
et al. 2007). Powerful frameworks, widely acknowledged to provide the basis for
these advances, have been the consequence-based engineering (CBE) (Abrams
et al. 2002) of the Mid-America Earthquake (MAE) Center and the performance-
based earthquake engineering (PBEE) (Moehle and Deierlein 2004; Bozorgnia
and Bertero 2004) of the Pacific Earthquake Engineering Research (PEER) center,
which represent two of the most important advances for probabilistic description
of seismic risk. Within this setting, comprehensive risk quantification can be
established by evaluating the structural performance through nonlinear dynamic
response analysis (Goulet et al. 2007), rather than through simplified approaches
such as pushover analysis. This has implications both for the system model and for
the natural hazard model; for the latter, an excitation model needs to be considered
that can provide a description for the entire ground acceleration time history. The
framework in Fig. 4.1 is consistent with the aforementioned approaches though it
is founded upon a system-theoretic formulation for the problem: consideration of
exposure/vulnerability/consequence modules and quantification of the parametric
modeling uncertainty within the description of each of these models. Note that in
this case, each response quantity zk corresponds to a different engineering demand
parameter (EDP) that is utilized to describe the performance of the structural system
(Goulet et al. 2007).

The implementation of surrogate modeling in this setting can greatly enhance
the efficiency of seismic risk assessment (Zhang and Foschi 2004; Buratti et al.
2010), especially for studies examining design optimization (Möller et al. 2009;
Gidaris et al. 2014). This implementation is discussed here considering applications
where stochastic ground motion models are utilized to describe the excitation. The
discussion starts with a quick overview of this hazard modeling approach.

Seismic Risk Modeling Through Stochastic Ground Motion Models Stochastic
ground motion models (Boore 2003; Rezaeian and Der Kiureghian 2010; Vetter
et al. 2016) have been gaining increased attention within the structural engineering
community for description of seismic hazard (Jensen and Kusanovic 2014; Gidaris
et al. 2014). They are based on modulation of a stochastic sequence (typically white
noise), w 2 W, through functions that address the frequency and time-domain
characteristics of the excitation. The parameters of these functions (corresponding
to the secondary parameters ™g in Fig. 4.1) represent characteristics such as the
duration of excitation or average frequency content and can be related to seis-
mological parameters (corresponding to primary parameters ™m in Fig. 4.1), such
as the moment magnitude, M, or rupture distance, rrup, by appropriate predictive
relationships. Description of the uncertainty in the seismological parameters and
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these predictive relationships facilitates then the comprehensive description of the
seismic hazard. For the former, this is established through a probabilistic hazard
analysis (Kramer 1996), whereas for the latter, this is established through the
process of developing the predictive relationships for the ground motion model itself
(Rezaeian and Der Kiureghian 2010).

One additional attractive feature of this ground motion modeling is the fact that
potential near-fault effects can be easily incorporated within it. This is facilitated
through the addition to the broadband component of the excitation, described
through a stochastic ground motion model, of a directivity pulse (Mavroeidis and
Papageorgiou 2003) addressing the longer-period component of the excitation. This
pulse has its own parameters (included in ™g in Fig. 4.1) that are dependent upon
™m. Therefore, the probabilistic foundation for describing the pulse characteristics is
the same as for the broadband component. The fact that not all near-fault excitations
include directivity pulses can be addressed through adoption of a model describing
the probability of occurrence of such pulses (Shahi and Baker 2011), also dependent
upon ™m. When pulses are not included, the ground motion is described only
through its broadband component. This approach ultimately supports a complete
probabilistic description of the seismic hazard in close proximity to active faults
(Gidaris and Taflanidis 2015).

Implications to Kriging Implementation The use of stochastic ground motion
models to describe the hazard leads ultimately to system response that is a function
of not only ™ but w as well. Due to the high dimensionality of w (stemming from
partitioning of the entire duration of the excitation to appropriate time intervals), the
development of a surrogate model for the entire input vector composed of both ™

and w is impractical. To address this challenge, an alternative formulation can be
considered (Zhang and Foschi 2004; Schotanus et al. 2004; Gidaris et al. 2015) by
separating the input space into two vectors: the first corresponding to the stochastic
sequence and the second to the remaining model parameters. The impact of the
first one (stochastic sequence) is addressed by assuming that under its influence,
each response quantity zk follows a lognormal distribution with median zk and
logarithmic standard deviation � zk, which corresponds to a common assumption
within earthquake engineering (Zhang and Foschi 2004; Jalayer and Cornell 2009;
Aslani and Miranda 2005; Shome 1999). This means that

ln .zk/ D "k�zk C ln .zk/ ; (4.12)

with "k corresponding to a standard Gaussian variable. The metamodel needs to be
developed with respect to only the low-dimensional ™ vector, to provide predictions
for these two statistical quantities, corresponding to the statistics for the EDPs
of interest due to the influence of the white noise. Therefore, the output vector
y is in this case composed of both ln .zk/ and � zk for all the EDPs of interest.
Once the metamodel has been established, it can be directly used to estimate the
risk consequence measure, which then needs to be appropriately modified to take
into account the approximation of Eq. (4.12). Assuming that the kriging prediction
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Fig. 4.2 Four-story reinforced benchmark building, (a) elevation and (b) plan views

error for � zk is small, this leads to the following modification for the consequence
measure (Gidaris et al. 2015):

h .™/ D ˆ

0
B@

ln
�bzk .x/

	
� ln .ˇk/q

�2
“k C �2

k .x/ Cb�2
zk .x/

1
CA ; (4.13)

wherebzk .x/ andb�2
zk .x/ correspond to the median kriging predictions for the ln .zk/

and � zk, respectively, and �2
k(x) is the kriging prediction error variance for ln .zk/.

Illustrative Implementation This approach is demonstrated next considering the
structure and hazard description in Gidaris et al. (2015). The structure, shown in
Fig. 4.2, corresponds to design A in the benchmark study presented in Goulet et al.
(2007). The total masses per floor are also shown in the figure. To demonstrate the
versatility of the framework and its ability to assess risk for structures equipped
with seismic protective devices, an additional case study is considered through
incorporation of fluid viscous dampers. The structure without dampers is referenced
as building A, whereas the structure with the dampers, building B.

Structural Model The lateral system consists of two exterior moment-resisting
frames in each direction, with interior intermediate gravity frames. The resultant
structural model corresponds to a two-dimensional four-bay frame modeled in
OpenSees (McKenna 2011). The nonlinear hysteretic behavior of the structure is
taken into account through lumped plasticity beam-column elements, modeled by
using the modified Ibarra-Medina-Krawinkler nonlinear hinge model (Ibarra et al.
2005) with degrading strength and stiffness characteristics. To reduce the number of
random variables, the approach proposed in Liel et al. (2009) is adopted here; perfect
correlation is assumed for strength/stiffness and ductility characteristics for each one
of the ten different potential plastic hinges. Under this assumption, 20 independent
variables need to be considered, namely, column strength/stiffness (cs,nc) and
column ductility (cd,nc) for six different columns and beam strength/stiffness (bs,nb)
and beam ductility (bd,nb) for four different beams. Finally, the structural model
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is assumed to have Rayleigh damping with damping ratio � associated with the
first and third modes. The structural model parameter vector is ultimately ™s D fcs,nc

cd,nc bs,nb bd,nb �; nb D 1, : : : ,4, nc D 1, : : : ,6g. Building B is upgraded with fluid
viscous dampers. A velocity exponent equal to 0.5 is considered for all dampers,
representing a common value for seismic applications, whereas the dampers are
placed in the exterior bays of the moment-resisting frame as indicated in Fig. 4.2.
The damping coefficients are chosen as [9370, 4370, 2620, 2050] (kN(s/m)0.5) for
the dampers within each story following the design process in Gidaris and Taflanidis
(2015). These dampers are modeled in OpenSees utilizing the ViscousDamper
material, corresponding to a Maxwell model implementation (Christopoulos and
Filiatrault 2006), whereas the axial stiffness is taken as 250,000 kN/m for all
dampers.

Seismic Hazard Model For describing the seismic hazard, the same excitation
model as in Jia et al. (2014) is adopted. The broadband component for the excitation
is represented through a point source model (Boore 2003; Taflanidis and Beck 2009)
based on a parametric description of the temporal envelope and radiation spectrum
of the ground motion, both given as function of M and rrup. Near-fault characteristics
are incorporated through the velocity pulse model proposed by Mavroeidis and
Papageorgiou (2003) that has as input parameters the pulse period amplitude Tp,
a parameter that controls its amplitude Ap, the oscillatory character (number of half
cycles) �p, and its phase vp. Ultimately, the excitation model parameter vector is
™g D [M, r, Ap, Tp, �p, vp] when considering excitations with directivity pulses and
™g D [M, r] when considering excitations without such pulses. Metamodels need to
be separately developed for each of the excitation models and will be abbreviated as
P and NP, respectively.

Metamodel Formulation Two different structural models (buildings A and B) and
two different excitation models (P and NP) are considered for the surrogate model
development leading to four different cases. The response quantities approximated
are the peak interstory drifts ık and absolute peak floor accelerations äk for all floors
k D 1,..,4. The model parameter vector x has 23 components for the NP excitation
and 27 components for the P excitation, whereas the domains defining X are chosen
(Gidaris et al. 2015) based on the anticipated value range for each parameter. For
example, for the P excitation, the selection is based on the characteristics of ground
motions exhibiting near-fault components and the observed properties of those
components (Shahi and Baker 2011; Mavroeidis and Papageorgiou 2003).

An adaptive refinement strategy is established to select the number of support
points. Table 4.1 reports the number of support points nm used for each metamodel,
as well as validation metrics such as the average coefficient of determination
and average mean error over ık and äk denoted as ARD2

ı , ARD2
ä, AMEı , and

AMEä, respectively, calculated through a cross-validation approach. It is evident
that challenges are encountered in developing the metamodel for building A and
P excitation, leading to a larger value for the total number of support points. This
stems from resonance conditions created by the directivity pulse which contribute
to significantly higher variability in the response and ultimately to greater difficulty
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Table 4.1 Validation metrics of the different surrogate models developed

Building Excitation Statistic nm ARD2
ı ARD2

ä AMEı(%) AMEä(%)

A P ln .zk/ 10,000 0.96 0.97 15.0 5.10
A P �zk 10,000 0.91 0.79 13.3 7.32
A NP ln .zk/ 2000 1.00 1.00 1.10 1.75
A NP �zk 2000 0.94 0.88 2.50 3.53
B P ln .zk/ 1000 0.96 0.98 13.2 5.65
B P �zk 1000 0.94 0.88 8.45 4.83
B NP ln .zk/ 1000 1.00 1.00 1.20 1.85
B NP �zk 1000 0.95 0.91 2.10 2.75

in the developed model to accurately capture this variability. The results indicate
that the accuracy established is high, with average coefficients of determination
higher than 96 % for ln .zk/ (79 % for � zk) and average mean errors lower than
15 % (lower than 13.3 % for � zk). As discussed previously, the high values for
the coefficient of determination are especially important for the considered risk
assessment implementation. The metamodel performance for the NP excitation is
exceptionally good, showing that adequate accuracy would be possible with even
lower values for the number of support points, but even for the P excitation the
metamodel performance is more than adequate, especially for the acceleration
responses. The lower overall accuracy for the drift responses should be attributed
to the stronger impact from the nonlinear hysteretic structural behavior that results
in larger variability for the drift responses. For the building equipped with dampers,
the protection against such large inelastic responses offered by the dampers results
in reduction of that variability and ultimately in higher accuracy of the established
surrogate model.

Risk Assessment Next, the optimized kriging metamodel is utilized for estimating
seismic risk. For the basic comparisons in this section, the risk is defined as the
probability that the response will exceed acceptable threshold ˇk (i.e., a range will
be considered for ˇk demonstrating the efficiency of the approach for different risk
levels) with �“k taken equal to 0.2. For the seismic hazard, two different cases are
considered. In the first case, denoted as NP hazard, it is assumed that no excitations
include near-fault effects (so only the NP excitation model is utilized). In the
second case, denoted as PP hazard, the possibility of including a near-fault pulse is
considered through the probability model developed by Shahi and Baker (2011) that
quantifies the probability of an excitation to include a pulse dependent upon other
seismicity characteristics (distance to fault rupture, moment magnitude). A detailed
description of the seismic hazard characterization for this case is provided in Jia
et al. (2014) and Gidaris and Taflanidis (2015). This leads to risk quantification as

R D
Z

‚

X
"pDfyes;nog

h.™j"p/P."pjM; r/p.™/d™ (4.14)
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where "p is a binary (outcomes fyes, nog) random variable describing the
probability of pulse existence, P."pjM; r/ is the probability model for it, and the risk
consequence measure h.™j"p/ is estimated based on the P excitation (or surrogate
model) if "p D yes and the NP excitation (or surrogate model) if "p D no.

Details for the chosen probability models p(™) are included in Gidaris et al.
(2015). Stochastic simulation with N D 10,000 samples is utilized for the estimation
of the seismic risk. Importance sampling is established for M with density chosen
[based on prior experience (Taflanidis and Beck 2009)] as truncated Gaussian with
mean 6.8 and standard deviation 1.0. For the PP hazard, importance sampling is
also formulated for "p based on observed sensitivity in Jia et al. (2014), with 80 %
of the excitations taken to include a pulse. The estimates from the surrogate model,
denoted as SE, are compared against the estimates calculated through the high-
fidelity model, denoted as HF. Indicative results are presented in Fig. 4.3, in all cases
as plots of the probability of failure (risk) against the threshold ˇk. The coefficient of
variation (for the stochastic simulation) for the risk estimated through the surrogate
model and all considered cases is not higher than 9.0 and 17.0 % for probabilities
of failure as low as 10�2 and 10�3, respectively, demonstrating the relatively high
accuracy that can be established even for rare-event simulations.

The comparison between the risk estimated from the high-fidelity model and
the kriging metamodel indicates that the accuracy achieved is very high. Even for
building A and the PP hazard, utilizing primarily a surrogate model (excitation
model P) that encountered greater challenges to provide satisfactory accuracy, the
agreement achieved is high. As anticipated from the accuracy characteristics of the
kriging metamodel, the agreement is closer for the NP hazard (compared to the PP
hazard) and for building B (compared to building A). Comparison between buildings
A and B shows that retrofitting with fluid viscous dampers greatly contributes to
mitigating risk for drift responses.

The total CPU time (computational burden) for the seismic risk assessment
utilizing the surrogate model for building A is only 530 s for the PP case and
108 s for the NP case. The larger value for the former stems from the larger number
of support points utilized for the P excitation model. These numbers represent a
significant reduction of computational burden when compared to the high-fidelity
model which requires 210.9 h for the PP case and 187.4 h for the NP case. The
corresponding CPU times for building B are 64 s for the PP case and 39 s for the
NP case when surrogate model is used, whereas the high-fidelity model requires
180.5 h for the PP case and 165.7 h for the NP case (smaller values because the
nonlinear dampers contribute to less severe inelastic structural response).

It is evident, therefore, that the surrogate modeling implementation facilitates
a highly efficient and accurate seismic risk assessment for structures equipped or
not with seismic protective devices; a large number of samples can be used with a
negligible computational effort, whereas the provided risk estimates are close to the
ones obtained from the high-fidelity approach. Of course, some initial computational
effort is required for the development of the database to inform the surrogate model.
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Fig. 4.3 Probability P[zk � ˇ] of exceeding a specific threshold based on high-fidelity model
(OpenSees) and kriging metamodel for peak interstory drift [parts (a), (c), (e)] and peak floor
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bottom row to building B for NP hazard
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Table 4.2 Expected repair cost per seismic event for partition walls and ceiling for buildings A
and B for seismic hazard PP

Building A Building B

Partition cost ($103) Ceiling cost ($103) Partition cost ($103) Ceiling cost ($103)
Floor HF SE HF SE HF SE HF SE

1 16.48 17.10 6.66 6.62 6.23 5.97 10.73 10.19
2 21.84 22.43 5.14 5.22 11.64 11.08 6.02 5.54
3 26.86 27.39 2.64 2.88 14.29 13.82 3.06 2.88
4 24.57 25.01 4.36 4.42 10.04 9.51 4.18 3.62

Once this model is established, it can be used, though, for any risk quantification
desired.

For demonstration, the risk quantified as the expected repair cost per seismic
event for the ceiling or the partition walls is further calculated, utilizing the
subassembly approach to estimate repair cost (Porter et al. 2001). The vulnerability
information from FEMA-P-58 2012 is utilized; three different damage states are
considered for both subassemblies, with the probability of exceeding each damage
described by a fragility function as in Eq. (4.2) and approximated through the
kriging surrogate model through Eq. (4.13). This fragility information is then
coupled with the repair cost for each damage state to provide the total repair cost.
The repair costs per seismic event are reported in Table 4.2 for both buildings for
seismic hazard PP. The high accuracy achieved using the kriging approximation is
again evident by comparing the results obtained from the HF and SE approaches.

4.5 Real-Time Hurricane Risk Assessment

Hurricane risk assessment has received a lot of attention in the past decade, in
response to the 2005 and 2008 devastating hurricane seasons. Of special interest in
this case is the development of real-time tools that can provide efficient assessment
during landfalling events to guide decisions of emergency response managers,
whereas one of the greater advances in this field has been the development and
adoption of high-fidelity numerical simulation models (corresponding to the system
model for the description in Fig. 4.1) for reliable and accurate prediction of
surge/wave responses for a specific hurricane event (Resio and Westerink 2008).
These models permit a detailed representation of the hydrodynamic processes, albeit
at the cost of greatly increased computational effort (more than a few thousand CPU
hours for analyzing each hurricane event). They are based on a high-resolution grid
description of the entire coastal region of interest (including more than a few million
nodes), using detailed bathymetric data, and with the wind pressure time history of
the hurricane (excitation model for Fig. 4.1 description) as input (Vickery et al.
2009) can simulate the surge and wave responses. The adoption of such models
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increases though, significantly, the computational cost for estimating hurricane risk.
This is intensified by the fact that for appropriately assessing the hurricane impact,
the simulation needs to extend a few (4–5) days prior to landfall. This is essential
for both numerical convergence and for capturing all changes in the wave and surge
environment that can be of significant importance (Dietrich et al. 2011).

To address this challenge, surrogate modeling concepts have been considered by
various researchers in the past decade (Irish et al. 2009; Taflanidis et al. 2012; Das
et al. 2010) with kriging (Jia and Taflanidis 2013) facilitating a computationally
efficient implementation especially for real-time risk assessment. This is discussed
in this section, starting with a review of hurricane modeling to fit within the
description provided in Fig. 4.1.

Hurricane Modeling Among the various methodologies for hurricane risk assess-
ment, a probabilistic approach, frequently referenced as the joint probability method
(JPM), has been gaining popularity within the engineering community (Toro
et al. 2010; Resio et al. 2007). The approach relies on a simplified description
of each hurricane/storm scenarios through a small number of model parameters,
corresponding to the characteristics close to landfall. These primary parameters,
representing vector ™m in Fig. 4.1, are the location of landfall xo, the angle of
approach at landfall ˛, the central pressure cp, the forward speed during final
approach to shore vf, and the radius of maximum winds Rm leading to ™m D [xo ˛ cp

vf Rm]T . The variability of the hurricane track and characteristics prior to landfall is
also important, but directly incorporating this variability in the hurricane description
would increase significantly the number of model parameters and so it is avoided.
Instead, this variability is approximately addressed by appropriate selection of the
hurricane track history prior to landfall, so that important anticipated variations,
based on regional historical data, are described.

This modeling approach leads to characterization of hurricane risk through the
probabilistic integral in Eq. (4.1) with main source of uncertainty ™ D ™m. This
quantification can be adopted for describing the long-term risk in a region (Resio
et al. 2007, 2012) as well as for real-time applications (Smith et al. 2011). In the
former case, p(™) is chosen based on anticipated regional trends and climatological
models, whereas in the latter case, it is provided by the national weather service
prior to landfall in the form of a most probable hurricane track/intensity prediction
along with statistical errors associated with this prediction. Part (b) of Fig. 4.4
demonstrates an example for the latter.

An important challenge in this application is the fact that the number of output
response quantities of interest, representing the impact of the hurricane over a large
coastal region, is typically large. Examples of such responses include (1) the storm
surge (�), i.e., still-water level, defined as the average sea level over a several-minute
period; (2) the significant wave height (Hs) (possibly along with the corresponding
peak period Tp); (3) the wave run-up level, defined as the sea level including
run-up of wind waves on the shore; and (4) the time that normally dry locations
are inundated. Temporal and spatial variation is very important. With respect to
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Fig. 4.4 (a) Typical grid size for ADCIRC high-fidelity model and (b) details of landfalling to
Oahu hurricane considered in the demonstration example (results shown in Fig. 4.5)

the first aspect, the response variables may refer to maximum responses over the
entire hurricane history or to responses at specific time instances prior to landfall.
With respect to the second aspect, the response will be typically estimated in a
large number of locations, expressed in some grid format [either corresponding to
the initial grid for the high-fidelity model or to some lower resolution interpolated
version (Taflanidis et al. 2013a)], which is the main characteristic of the analysis
contributing to the large dimension of the output vector. Each component of z
corresponds ultimately to a specific response variable [e.g., any of the (1)–(4)
described above] for a specific coastal location and specific time. The dimension
of nz can easily exceed 106, depending on the type of application.

Dimension Reduction Through Principal Component Analysis This large
dimension of the response output imposes significant challenges in terms of
both computational speed and, perhaps more importantly, memory requirements
(Jia and Taflanidis 2013). The latter are particularly important for supporting the
development of cyber-enabled platforms (Kijewski-Correa et al. 2014) that can be
deployed in real time, allowing emergency response managers to simultaneously
perform different types of analyses.

To address this challenge, the adoption of principal component analysis (PCA) as
dimensional reduction technique was proposed in Jia and Taflanidis (2013) to reduce
the dimensionality of the output vector by extracting a smaller number of latent
outputs to represent the initial high-dimensional output. Considering the strong
potential correlation between responses at different times or locations in the same
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coastal region (which are the main attributes contributing to the high dimension of
the output vector), this approach can significantly improve computational efficiency
without compromising accuracy.

PCA starts by converting each of the output components into zero mean and unit
variance under the statistics of the observation set (composed of nm observations)
through the linear transformation

zk D zk � �z
k

� z
k

; with �z
k D 1

nm

nmX
hD1

zh
k; � z

k D
vuut 1

nm

nmX
hD1

�
zh

k � �z
k

�2
: (4.15)

The corresponding (normalized) vector for the output is denoted by z 2 R
nz and

the observation matrix by Z 2 R
nm�nz . The idea of PCA is to project the normalized

Z into a lower dimensional space by considering the eigenvalue problem for the
associated covariance matrix ZTZ and retaining only the mc largest eigenvalues.
Then ZT D PYT C£ where P is the nz � mc dimension projection matrix containing
the eigenvectors corresponding to the mc largest eigenvalues, Y is the corresponding
nm � mc observation matrix for the principal components (latent outputs), and £ is
the error introduced by not considering all the eigenvalues (Tipping and Bishop
1999). If �i is the ith largest eigenvalue, mc can be selected so that the ratio

Xmc

jD1
�j=
Xnz

jD1
�j (4.16)

is greater than some chosen threshold r0 [typically chosen as 99 %]. This then means
that the selected latent outputs can account for at least r0 of the total variance
of the data (Tipping and Bishop 1999). It is then mc<min(nm, nz) with mc being
usually a small fraction of min(nm, nz). For nm<<nz, obviously, mc<<nz, leading to
a significant reduction of the dimension of the output.

The latent outputs, denoted by yi, i D 1, : : : ,mc are the outputs with observations
that correspond to the ith column of Y and the outputs for which the kriging
metamodel is ultimately developed (in other words, mc D ny in the terminology
established in Sect. 4.3). The relationship between the initial output vector and the
vector of the latent outputs is z D Py. Kriging is then formulated for the output
vector y. Of particular importance is the fact that in this case the elements of y have
an associated relevance, represented by its variance, which is proportional to �j,
the portion of the variability within the initial database represented from this latent
output. This means that, contrary to common approaches for normalizing vector
y within the surrogate model optimization of Eq. (4.8) through the introduction
of weights � i, in this case, no normalization should be established, i.e., � i D 1.
This equivalently corresponds to latent outputs with larger values of �j being given
higher priority in the surrogate model optimization. The alternative approach is to
develop a separate surrogate model for each output separately (Jia and Taflanidis
2013). This does not increase memory requirements but has an impact though on
the computational time for developing and implementing the surrogate mode.
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The linear relationships between y and z finally allow for a direct transformation
of the probability models for the predictions for these two quantities [a Gaussian
variable under linear transformation still follows a Gaussian distribution]. Consid-
ering additionally the inverse of transformation in Eq. (4.15) to transform these
predictions back to the original space, we have (Jia and Taflanidis 2013) that the
kriging-based predictor for z follows a Gaussian distribution with mean

bz .x/ D †z
�
Pby .x/

�C �z (4.17)

and variance ��zk

2 .x/ for zk(x) corresponding to the diagonal elements of the matrix

†z
�
P† .x/ PT C 	2I

�
†z; (4.18)

where †z is the diagonal matrix with elements � z
k, �z is the vector with elements

�z
k k D 1, : : : ,nz, †(x) is the diagonal matrix with elements �2

k(x), k D 1, : : : ,mc, and
¤2I stems from error �. An estimate for the latter is given by

	2 D
Xnz

jDmcC1
�j= .nz � mc/ (4.19)

corresponding to the average variance of the discarded dimensions when formulat-
ing the latent output space. This Gaussian predictor for z can be then used in risk
assessment with the error, characterized through variance ��zk

2 .x/ used to provide an

appropriate modification of the risk consequence measure (Jia and Taflanidis 2013),
similar to the approach discussed earlier in Eq. (4.11) [ ��zk

2 .x/ needs to replace

�2
k(x) in this case].

Illustrative Implementation This approach has been implemented to develop
efficient tools for real-time hurricane risk assessment for the Hawaiian islands
(Taflanidis et al. 2013a; Kijewski-Correa et al. 2014; Jia and Taflanidis 2013) and
recently for New Orleans (Taflanidis et al. 2014). Results from the former are
discussed briefly here. The database utilized in this case comes from a regional
flood study (Kennedy et al. 2012) consisting of 603 storms with ™ D ™m representing
the only source of uncertainty in the risk characterization. The high-fidelity model
chosen to accurately predict the surge and wave response is a combination of the
ADCIRC and SWAN numerical models (Bunya et al. 2010; Kennedy et al. 2012)
and consists of 1,590,637 nodes and 3,155,738 triangular elements. Each simulation
utilizing this model requires over 1500 CPU hours to complete. Grid characteristics
are also shown in part (a) of Fig. 4.4.

The response output considered here corresponds to the maximum (over the
hurricane duration) significant wave heights Hs in the region extending from
157.392ıW to 158.584ıW and 21.11ıN to 21.90ıN, close to Oahu island, and storm
surge � for near-shore/inland locations around the coast of the island of Oahu with
average distance of 300 m and up to the 4 m contour. The former has dimension
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Fig. 4.5 Risk assessment results for scenario illustrated in Fig. 4.4b. (a) Wave height with 5 %
probability of exceedance close to Oahu and (b) probability of surge exceeding thresholds ˇ at
location with coordinates 21.3769ıN, 157.9666ıW

nz D 12,800 and the latter nz D 77,175 leading to high-dimensional application.
Based on the database, a single kriging metamodel with PCA is implemented with
mc D 40, which account for 99 % of the total variability in the corresponding initial
outputs. This selection reduces the sizes of the matrices that need to be stored in
memory by over 90 %. For the optimized metamodel, the average coefficient of
determination and average mean error over all nodal points in the initial response
space are 0.948 and 4.51 % for significant wave height and 0.930 and 5.33 %
for storm surge, respectively. The probability of misclassification for the surge
(i.e., identifying a location as inundated when it is not and vice versa) is 2.6 %.
These error statistics show that the kriging metamodel provides high-accuracy
approximations to the hurricane response (small errors).

This computational efficiency of the established metamodel can then be utilized
to support the development of stand-alone tools (Taflanidis et al. 2013a) or, perhaps
more importantly, cyber-enabled portals supporting wide online dissemination and
collaborative environments (Kijewski-Correa et al. 2014). As indicated previously,
these tools can be used to estimate the regional long-term risk or provide real-time
predictions during landfalling events. The latter is demonstrated in Figs. 4.4 and 4.5.
Part (b) of Fig. 4.4 shows the hurricane scenario considered; in this case, the risk
assessment is performed 42 h prior to landfall. Details on the quantification of the
uncertainty on ™ based on standard meteorological prediction errors are included in
Taflanidis et al. (2013a). Figure 4.5 then shows results for the wave height contours
with probability of being exceeded 5 % [part (a)] and the probability that surge will
exceed threshold ˇ [part (b)] for location with coordinates 21.3769ıN, 157.9666ıW,
which is near the shoreline of East Loch inside Pearl Harbor. The predictions with
and without considering the kriging prediction error (i.e., taking ��zk

2 .x/ D 0) are
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included in this plot. The comparison indicates that the prediction error can have
a significant impact on the calculated risk, and it will lead to more conservative
estimates for rare events (with small probabilities of occurrence). This demonstrates
that it is important to explicitly incorporate it in the risk estimation framework.

The total evaluation time required for this risk assessment (for N D 2000
samples) is only 25 s on Intel(R) Xeon(R) CPU E5-1620 3.6 GHz with 8 GB
of memory. These results correspond to a huge reduction of computational time
compared to the high-fidelity model, which required a few thousand CPU hours for
analyzing a single hurricane scenario. Thus, the kriging metamodel with PCA makes
it possible to efficiently assess hurricane risk in real time for a large region (high-
dimensional correlated outputs) providing at the same time a high-accuracy estimate
for the calculated risk. Similar efficiency has been reported for implementation to
New Orleans region (Taflanidis et al. 2014). This efficiency has been exploited to
develop cyber portals that offer enhanced visualization capabilities as well as a
versatile online collaborative environment (Kijewski-Correa et al. 2014).

4.6 Conclusions

Simulation-based modeling or risk estimation approaches facilitate a comprehensive
and detailed characterization of natural hazard risk, with advances in computer and
computational science dramatically reducing the computational burden associated
with these approaches. This chapter examined the integration of kriging surrogate
modeling in this context for further reduction of this burden. Kriging establishes
a computationally inexpensive input/output relationship based on a database of
observations obtained through the initial (expensive) simulation model. It enjoys
a straightforward optimization (to improve its accuracy) and relies only on matrix
manipulations (with no matrix inversions needed for its implementation), which
supports a highly efficient calculation of the output for multiple inputs, as required
within a stochastic simulation setting. Additionally, it provides a prediction error
that is also a function of the input (and not constant over the examined domain),
whereas the incorporation of that error in the risk assessment can significantly
impact the risk estimates and improve their accuracy, especially when analyzing
rare events. For applications with high-dimensional output, kriging can be integrated
with principal component analysis to improve computational efficiency and reduce
the memory requirements for the metamodel deployment. These characteristics are
particularly useful for the development of automated risk assessment tools and were
demonstrated in this chapter considering implementation for real-time hurricane
risk estimation. In the other example considered, the seismic risk assessment
when stochastic ground motion modeling is considered for the hazard description,
it was shown that despite the high dimensionality of the input, stemming from
the stochastic sequence involved in the ground motion model, through proper
assumptions, approximately addressing the impact of the stochastic sequence in this
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case, kriging can still facilitate an efficient and accurate risk assessment. Overall,
the chapter demonstrated the potential that kriging offers within a simulation-based
setting for describing natural hazard risk.
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