
Chapter 18
Accounting for Unknown Unknowns
in Managing Multi-hazard Risks

Robert B. Gilbert, Mahdi Habibi, and Farrokh Nadim

Abstract A significant challenge in managing multi-hazard risks is accounting
for the possibility of events beyond our range of experience. Classical statistical
approaches are of limited value because there are no data to analyze. Judgment
or subjective assessments are also of limited value because they are derived from
within our range of experience. This chapter proposes a new framework, Decision
Entropy Theory, to assess probabilities and manage risks for possibilities in the
face of limited information. The theory postulates a starting point for assessing
probabilities that reflect having no information in making a risk management
decision. From this non-informative starting point, all available information (if any)
can be incorporated through Bayes’ theorem. From a practical perspective, this
theory highlights the importance of considering how possibilities for natural hazards
could impact the preferred alternatives for managing risks. It emphasizes the role for
science and engineering to advance understanding about natural hazards and man-
aging their risk. It ultimately underscores the importance of developing adaptable
approaches to manage multi-hazard risks in the face of limited information.

18.1 Introduction

A significant challenge in managing multi-hazard risks is accounting for the possi-
bility of events beyond our range of experience. A landslide in Oso, Washington,
caused a debris runout that destroyed an entire community, including 43 lives,
dammed a river creating a flood hazard upstream and then downstream when the
dam was breached, and severed a transportation and utility corridor (GEER 2014).
While this slope had failed multiple times in the past century, the debris never ran
out far enough to impact the community until the event in 2014. The storm surge
in Hurricane Katrina breached the levee system protecting neighborhoods below
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Fig. 18.1 Example comparisons of risks for natural hazards related to slopes and floods (AGS
2000; ANCOLD 1996; GEO 1998)

sea level, flooded the neighborhoods by connecting them to the ocean, and caused
nearly 2000 deaths from drowning and exposure days after the storm. While storm
surges had occurred in New Orleans before, the surge in Katrina was several meters
higher than the maximum surge recorded previously in many locations (IPET 2009).

While rare and beyond our range of experience, these extreme hazards and
multi-hazards are significant in terms of the consequences and the need to manage
the associated risks (Fig. 18.1). Managing these risks requires first assessing
probabilities of rare events (e.g., Liu and Nadim 2014; Nadim and Sparrevik 2013;
Nadim 2011 and Lacasse and Nadim 2009). Probability assessments are typically
based on historical data, observations, experience, and engineering judgment.
However, historical data are sparse, and there is little or no experience with these
extreme events because of their nature. In addition, models of combinations of
highly complex events are inevitably simplified and uncertain. The lack of actual
information with which to assess probabilities in these situations could lead to
optimistic assessments that underrepresent risks or pessimistic assessments that
overrepresent risks. It is therefore difficult to defend these assessments and rely
on them to effectively manage the risks.

Taleb (2007) refers to possibilities beyond our experience as “black swan” events:
“Before the discovery of Australia, people in the Old World were convinced that
all swans were white, an unassailable belief as it seemed completely confirmed by
empirical evidence : : : [The sighting of the first black swan] illustrates a severe
limitation to our learning from observations or experience and the fragility of our
knowledge. One single observation can invalidate a general statement derived from
millennia of confirmatory sightings of millions of white swans.” The United States
Secretary of Defense, Donald Rumsfeld, infamously referred to possibilities beyond
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our experience as “unknown unknowns” (DOD 2002): “There are known knowns.
These are things we know that we know. There are known unknowns. That is to say,
there are things that we know we don’t know. But there are also unknown unknowns.
There are things we don’t know we don’t know.” The challenge is to logically and
defensibly account for “black swans” or “unknown unknowns” in managing risk.

This paper proposes a framework, Decision Entropy Theory, to assess probabili-
ties and manage risks for possibilities beyond our experience. First, the challenge of
assessing probabilities with limited data is described. Next, the mathematical basis
for the proposed theory is presented and illustrated. Finally, practical insights for
risk management are drawn from the theory.

18.2 The Challenge with Prior Probabilities

Probability theory is used to represent uncertainty. This theory is based on starting
with a comprehensive set of all possible events, known as the sample space and
denoted S. Probabilities for events are assessed based on available information via
Bayes’ theorem:

P .Event i jInformation \ S / D P .Information jEvent i \ S/ P .Event i jS /
X

all j
P .Information jEvent j \ S/ P .Event i jS /

where P .Event i jInformation \ S / is the probability for Event i given available
information, which is the probability of interest and referred to as the posterior or
updated probability; P .Information jEvent i \ S/ is the probability of obtaining the
available information given that Event i occurs, which is referred to as the likelihood
function; and P(Event ijS) is the probability for Event i in the initial sample space,
which is referred to as the prior or initial probability.

Consider the annual chance of a hazard, F. The available information is that this
hazard has occurred x times in n years of experience. If we assume that occurrences
follow a Bernoulli sequence,1 then the likelihood function is given by the binomial
distribution:

P .x occurrences in n years jF D fi / D
�

nŠ

xŠ .n � xŠ/

�
f x
i .1 � fi/

n�x

If there are no occurrences in the experience, then the likelihood function does
not distinguish between small chances of occurrence that are about an order of
magnitude less than the inverse of the length of experience (Fig. 18.2).

1A Bernoulli sequence assumes that occurrences are independent from year to year and that the
chance of occurrence each year is a constant.
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Fig. 18.2 Example likelihood function for no occurrences of a hazard in a period of experience
versus the annual chance of occurrence

The challenge is the prior probability in Bayes’ theorem, P .F D fi jS /, because
it is not conditioned or based on information. This prior probability represents
“complete ignorance” in the words of Luce and Raiffa (1957) and is commonly
referred to as a “non-informative prior” probability.2 The non-informative prior
sample space is important because it sets the stage for assessing or conditioning
probabilities on any available information (whether subjective or objective). Con-
sider a uniform prior distribution for the annual chance of occurrence between
0 and 1 (Fig. 18.3). The updated probability distribution for the annual chance
of occurrence (Fig. 18.4) is the prior distribution filtered through the likelihood
function; wherever the likelihood function is flat, such as for small chance of
occurrence (Fig. 18.2), the updated distribution is entirely a reflection of the prior
distribution.

The significance of the prior probability distribution is demonstrated using three
different distributions: a uniform distribution on the annual chance of occurrence,
a uniform distribution on the logarithm of the annual chance of occurrence,3 and
a uniform distribution on the return period or the inverse of the annual chance
of occurrence4 (Fig. 18.5). The updated probability distributions for the annual
chance of occurrence are significantly different between the three possible prior

2The prior probability is non-informative because it does not depend on information:
P .S jInformation / D P.S/.
3Note that the logarithm of the annual chance of occurrence approaches negative infinity and the
return period approaches positive infinity. A lower bound of 1 � 10�9 was used for the annual
chance of occurrence (or an upper bound of 1 � 109 on the return period). Since the likelihood
function is flat approaching this lower bound, the choice of a lower bound will affect the results
and underscores the significance of the shape of the prior probability distribution.
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Fig. 18.3 A uniform prior probability distribution for the annual chance of occurrence. (Three
different representations of the probability distribution are shown. Since we will typically be
dealing with order-of-magnitude ranges for the chance of occurrence (Fig. 18.1), the representation
with the cumulative distribution function on a logarithmic scale for the chance of occurrence will
be used throughout this chapter.)
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Fig. 18.4 Prior and updated probability distributions for the annual chance of occurrence

probability distributions (Fig. 18.6 and Table 18.1). The significance of the prior
probability distribution for the annual chance of occurrence is further highlighted
by considering the expected value for the updated probability distribution, which is
the probability of an occurrence in 1 year (Fig. 18.7):

P .Occcurrence in One Year/ D E.F/ D
X

all fi

fipF . fij x occurrences in n years/

where pF(fijx occurrences in n years) is the updated probability distribution for the
annual chance of occurrence based on the experience.

The challenge of establishing a non-informative prior probability distribution has
been the subject of theorists for centuries. Bernoulli (1738) postulated the principle
of insufficient reason, which is paraphrased as: If one is completely ignorant as
to which state will occur, then the states should be treated as if they are equally
probable. Jaynes (1957, 1968) expressed the principle of insufficient reason as
maximizing the entropy of information, H, where

H D
n StatesX

jD1

� ln ŒP .State j jS /� P .State j jS /

The greatest “lack of information” is the set of prior probabilities that lead to the
maximum entropy, which is obtained when these probabilities are equal for all
states. In practice, this approach has been applied to a variety of problems (e.g.,
Tribus 1969; Box and Tiao 1973).
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Fig. 18.5 Alternative prior probability distributions for annual chance of occurrence

While mathematically convenient, the principle of insufficient reason has con-
sistently been criticized. Keynes (1921), who renamed it the principle of indif-
ference, contends that this principle is ambiguous and can lead to paradoxical
or contradictory conclusions. One of his examples was the specific volume of a
substance, where the state of nature is bounded between 1 and 3 L3/M. Based on
the principle of insufficient reason, it would be equally probable for the specific
volume to be between 1 and 2 or between 2 and 3 L3/M. The density, the inverse
of the specific volume, will be bounded between 1/3 and 1 M/L3. In this case,
the principle of insufficient reason suggests it would be equally probable that the
density be between 1/3 and 2/3 M/L3 or 2/3 and 1 M/L3, meaning that it would be
equally probable for the specific volume to be between 1 and 1.5 L3/M or 1.5 and
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Fig. 18.6 Three different updated distributions for annual chance of occurrence

Table 18.1 Descriptors for updated distributions in Fig. 18.6

Descriptor
Uniform prior
distribution for F

Uniform prior
distribution for log(F)

Uniform prior
distribution for 1/F

10th percentile 1 � 10�4 4 � 10�9 1.1 � 10�9

50th percentile 7 � 10�4 8 � 10�7 2 � 10�9

90th percentile 2 � 10�3 2 � 10�4 1 � 10�8

Expected value 1 � 10�3 8 � 10�5 1 � 10�8

3 L3/M. Therefore, these two perspectives give different prior probabilities for the
same states of nature.

This difficulty of consistency is illustrated with the example of assessing the
annual chance of occurrence for a hazard (Figs. 18.5, 18.6, and 18.7). There is no
theoretical basis for defining the states of nature in terms of F, log(F), or 1/F. One
could justify log(F) on the basis that order-of-magnitude ranges are typically of
interest for the chance of hazards (e.g., Fig. 18.1). One could justify 1/F on the
basis that the hazards are typically represented by their return period.

Luce and Raiffa (1957) criticized the principle of insufficient reason in the
context of decision making. They illustrated their criticism with an example decision
problem where the consequences of different decision alternatives depend on
uncertain states of nature. They showed they could affect which decision alternative
was preferred by arbitrarily dividing states of nature into substates. Luce and Raiffa
(1957) contended that this result is irrational; if there is “complete ignorance,”
then how the states of nature are labeled should not affect the preferred decision
alternative.
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Journel and Deutsch (1993) also criticized the principle of insufficient reason
for producing irrational results. Their example is an oil reservoir in which the
permeability of the reservoir varies spatially. They showed that maximizing the
entropy of information in the input (the permeability field) generally minimizes
entropy in the output of interest for making decisions (the water breakthrough time).

In summary, the challenge with assessing probabilities in practice is in estab-
lishing a non-informative prior probability distribution as a starting point. This
non-informative prior probability distribution can significantly affect the assessed
probabilities, particularly when there is limited information available. Existing
approaches to establish non-informative prior probabilities based on the principle
of insufficient reason do not provide a rational or consistent basis.

18.3 Decision Entropy Theory

We postulate a theory for establishing a non-informative sample space that charac-
terizes the information in terms of making a decision between two alternatives. The
greatest lack of information for the decision, i.e., the non-informative starting point,
is defined by the following three principles:

1. An alternative compared to another alternative is equally probable to be preferred
or not to be preferred.

2. The possible gains or losses for one alternative compared to another alternative
are equally probable.

3. The possibilities of learning about the preference of one alternative compared to
another with new information are equally probable.

The premise of this theory is that probabilities provide input to decision making
(i.e., managing risk); therefore, non-informative probabilities are probabilities that
do not inform the decision. The mathematical framework for implementing these
principles is presented in Appendix 1.

The intent of this theory is to overcome the shortcomings associated with the
principle of insufficient reason:

1. It is consistent: It always produces the same non-informative distribution of the
possible outcomes of a decision no matter how those outcomes formulated in
terms of states of nature. This non-informative distribution is what will affect the
preferred decision alternative and the value of obtaining additional information
about the decision.

2. It is rational: It follows the premise that the purpose of assessing probabilities
is to support decision making. The non-informative distribution about the
possible outcomes of a decision represents the maximum uncertainty in making
a decision.

To illustrate this theory, consider a basic decision in risk management either
eliminating a risk with mitigation or accepting the risk with an uncertain annual
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Fig. 18.7 Expected annual chance of failure of three different prior probability distributions for
annual chance of occurrence

Fig. 18.8 Basic decision tree for risk management with uncertain chance of failure

chance of failure (Fig. 18.8). The alternative to accept the risk will be preferred
when its expected annual consequence is smaller4 than that for eliminating the risk:

Prefer Accept Risk if cF � F � cM or F � cM

cF
D 1

cF=cM

where cM is the annual cost of eliminating the risk, cF is the cost of a failure due
to the occurrence of the hazard, and F is the annual chance of occurrence for the
hazard. Therefore, the ratio 1

cF=cM
is indicative of the threshold for “tolerable” risk

in Fig. 18.1.

4Consequence will be considered here as a positive cost. The degree of preference for an outcome
increases as the cost of that outcome decreases.
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Fig. 18.9 Expected consequences versus annual chance of hazard for accepting risk and
mitigating risk

Fig. 18.10 Difference in expected consequences between mitigating risk and accepting risk versus
annual chance of hazard
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Fig. 18.11 Non-informative prior probability distribution for annual chance of hazard in decision
between mitigating risk and accepting risk

The expected consequences for each alternative and the difference in expected
consequences between alternatives are linear functions of the uncertain annual
chance of occurrence for the hazard (Figs. 18.9 and 18.10). Subsequently, the
non-informative prior probability distribution for the annual chance of occurrence
based on the principle of Decision Entropy Theory is a bi-uniform distribution
(Fig. 18.11). If a decision were made on the basis entirely of the prior probability
distribution, the expected value for the annual chance of occurrence is 0.32 and
the expected difference in the costs between risk mitigation and risk acceptance
is �2:2cM . Since this expected cost difference is negative, the risk mitigation
alternative would be preferred (i.e., it has the smallest expected cost).

This prior probability distribution for the annual chance of occurrence is updated
with whatever experience is available, such as no occurrences of the hazard in 1000
years of experience (Fig. 18.12). In this case, the update expected value for the
annual chance of occurrence is 1 � 10�3 and the expected cost difference between
risk mitigation and risk acceptance is C0.99, meaning that risk acceptance is now
preferred based on the available experience.

18.4 Practical Insights for Risk Management from Decision
Entropy Theory

The Decision Entropy Theory provides practical insights into managing risk in
the face of uncertainty. The significance of uncertainty depends on its impact in
risk management decisions. The value of additional information in a decision is
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Fig. 18.12 Updated probability distribution for annual chance of hazard in decision between
mitigating risk and accepting risk with no occurrences of hazard in 1000 years of experience

accentuated when a non-informative prior sample space is established. Finally, the
possibility that available data are not relevant can have a significant impact on a risk
management decision.

18.4.1 Significance of Uncertainty in Natural Hazards
Depends on Risk Management Decisions

For the basic risk management decision (Fig. 18.8), the prior probability distribution
for the annual chance of the hazard depends on the ratio of the cost of failure to the
annual cost of mitigation, cF/cM . The larger the ratio, the smaller the threshold value
for the annual chance of the hazard between preferring to accept versus mitigate the
risk, 1

cF=cM
, and the more pronounced the left hand tail of the probability distribution

for the annual chance of the hazard (Fig. 18.13). This manifestation of a “lack of
information” at the start allows for the possibility that the actual chance of the hazard
could be greater or smaller than the threshold (the decision point); note that the 50th
percentile in the prior probability distribution is at 1

cF=cM
(Fig. 18.13).

The result of starting open to the possibility of the decision going either way
without any information is that subsequent information can be more influential in
changing the decision (Fig. 18.14). To illustrate this point, consider the decision with
cF=cM D 1 � 103, meaning that the threshold value for the chance of the hazard
is 1 � 10�3. With the non-informative prior probability distribution, the preferred
alternative is to mitigate the risk. However, an experience of no hazards occurring
in a period of greater than 50 years is enough to change the preferred alternative to
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Fig. 18.13 Prior probability distributions for annual chance of hazard in decision between
mitigating risk and accepting risk

Fig. 18.14 Difference in expected consequences between mitigating risk and accepting risk versus
length of experience with no hazard occurrences
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accepting the risk (Fig. 18.14). For comparison, here is how other prior probability
distributions would affect this decision:

• With a uniform prior probability distribution for the annual chance of the hazard,
a period of greater than 1000 years with no hazards occurring would be required
to change the preferred alternative to accepting the risk (the updated expected
chance of occurrence is less than 1 � 10�3 for lengths of experience with no
occurrences greater than 1000 years in Fig. 18.7).

• With a uniform prior probability distribution for the logarithm of the annual
chance of the hazard, a period of greater than about years with no hazards
occurring would be required to change the preferred alternative to accepting the
risk (Fig. 18.7).

• With a uniform prior probability distribution for the return period or the inverse
of the annual chance of the hazard, the preferred alternative would be accepting
the risk without any information (Fig. 18.7).

Therefore, the greatest lack of information at the start (the non-informative prior
probability distribution from Decision Entropy Theory) is not conservative or un-
conservative in the context of risk management; it is intended to provide an unbiased
starting point before incorporating any available information. In this particular
example, the “black swan” that decision entropy is accommodating is the possibility
that the annual chance of hazard may actually be “small” as opposed to assuming
that it is “large” in the absence of information. While potentially counterintuitive
(particularly for “conservative” engineers), this concept is of practical significance
and used often implicitly in real-world decisions. We would essentially have never
built a major dam (cF/cM of about 1 � 106 based on Fig. 18.1) if we needed to
wait more than 1,000,000 years to assess the chance of extreme hazard occurrences.
Decision entropy provides a rational and consistent basis to support making risk
management decisions in the face of the inevitable lack of information about
extreme hazard occurrences.

18.4.2 Value of Information Emphasized by a Non-informative
Starting Point

The value of obtaining additional information (beyond the available experience)
about the chance of hazard depends on how probable it is that additional information
will change the risk management approach (Fig. 18.15). Quantitatively, the value
of information is the maximum amount the decision maker would be willing to
spend to pursue additional information. The value of information for the basic risk
management decision is bounded by the cost required to eliminate the risk (cM).

The value of perfect information about the annual chance of occurrence for
the hazard depends both on the decision (i.e., cF/cM) and the available experience
(Fig. 18.16). For relatively limited experience (small lengths of experience with no
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Fig. 18.15 Decision tree to assess value of information in managing risk

Fig. 18.16 Value of perfect information about annual chance of hazard versus length of available
experience with no hazard occurrences
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Fig. 18.17 Value of perfect information about annual chance of hazard relative to that obtained
with a uniform prior probability distribution for the annual chance of hazard versus length of
available experience with no hazard occurrences

hazard occurrences), the value of perfect information is between 25 and 50 % of
the cost of risk mitigation. It is interesting that the value of perfect information
increases initially with small amounts of experience (Fig. 18.16); this result reflects
that potential to change this particular decision (i.e., mitigate the risk) based on
additional information at first increases as length of experience with no occurrences
increases. As the length of experience without an occurrence exceeds the threshold
where the preferred alternative changes from risk mitigation to risk acceptance
(Fig. 18.14), the value of perfect information decreases because it becomes less
probable that new information beyond the available experience will change the risk
management approach (Fig. 18.16). In practice, we will typically have experience
bases less than 100 years, and the value of perfect information will be the greatest.
Also, the value of perfect information is typically orders of magnitude greater than
that obtained using a uniform prior probability distribution for the annual chance of
the hazard (Fig. 18.17).

The value of obtaining additional information about the chance of hazard is of
practical significance. The greater the value of information, the more important
the role is of science and engineering to advance our understanding about natural
hazards and managing their risks. For example, greater knowledge about the causes
of long debris runouts from landslides could provide information about the chances
of them occurring beyond simply waiting for a long record of experience. In
addition, the greater the value of information, the greater the value of an adaptable
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approach to managing risk. For example, a means of mitigating the risk from
debris runout that could readily be modified if additional information indicates that
accepting the risk is preferred will be more effective than one that cannot easily be
changed once it is implemented.

18.4.3 Possibility that Available Experience Is Not Relevant
Can Have Significant Impact on Risk Management

In many cases, there is a possibility that the available experience about the annual
chance of hazard occurrence may not be directly relevant to predicting what it will
be in the future for the purpose managing risk. For example, the annual chance that
the storm surge at a location on the Gulf of Mexico coast exceeds a particular height
may be different in the next 100 years compared to what it was in the last 100 years
due to changes in hurricane frequencies and intensities caused by climate changes.
The limiting cases are that the experience is relevant or that it is not relevant.

The relevancy of the data affects the risk management decision because the
relevancy is uncertain in making the decision (Fig. 18.18), where FA is the annual
chance of occurrence in the period of available experience, Data Set A, and FB is the
annual chance of occurrence in the future for purposes of managing risk, Data Set B.

Fig. 18.18 Decision tree to assess impact of relevance of available experience in managing risk
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Fig. 18.19 Example prior probability distribution considering the possibility that the experience
may be relevant to the risk management decision

The third principle of Decision Entropy Theory establishes the prior probability
that the experience (Data Set A) is relevant. If the experience is relevant, then the
greatest possible is learned from the experience. If the experience is not relevant,
then the least possible (nothing) is learned from the experience. Therefore, the third
principle establishes that the non-informative prior probability that the experience
is relevant is equal to one-half (Appendix 2), and the prior probability distribution
for the annual chance of the hazard in the decision (FB) is in the middle of the two
extremes where the experience is or is not relevant (Fig. 18.19)

To illustrate the significance of data relevancy, consider the value of obtaining
additional information about the annual chance of occurrence in the future for
purposes of managing risk, FB (Fig. 18.18); see Appendix 2 for details. If the
new data are not consistent with the experience, then the updated distribution
reflects more weight on the new data versus the experience and the probability that
the experience is relevant decreases (Fig. 18.20). Conversely, if the new data are
consistent with the experience, then the updated distribution reflects the combined
data and the probability that the experience is relevant increases (Fig. 18.20).
Therefore, allowing for the possibility that experience may not be relevant allows
for the preferred risk management decision to change more quickly with additional
information.

The value of perfect information about the annual chance of occurrence for the
purposes of making a risk management decision balances the two extremes where
the experience is or is not relevant (Fig. 18.21). Keeping the possibility open that
the experience may not be relevant can significantly increase the value of new
information when the available experience is seemingly extensive (Fig. 18.21).
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Fig. 18.20 Example prior (top graph) and updated probability distributions (lower graphs)
considering possibility that experience may be relevant to the risk management decision
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Fig. 18.21 Value of example updated probability distributions considering the possibility that the
experience may not be relevant to the risk management decision

18.5 Summary and Conclusions

This chapter proposes a new framework, Decision Entropy Theory, to assess
probabilities and manage risks for natural hazard possibilities that are beyond our
experience. The theory postulates a starting point for assessing probabilities that
reflect having no information in making a risk management decision between two
alternatives:

1. An alternative compared to another alternative is equally probable to be preferred
or not to be preferred.

2. The possible gains or losses for one alternative compared to another alternative
are equally probable.

3. The possibilities of learning about the preference of one alternative compared to
another with new information are equally probable.

From this non-informative starting point, all available information (if any) can be
incorporated through Bayes’ theorem. Decision Entropy Theory attempts to provide
for consistency and rationality that is lacking in available approaches for assessing
probabilities with limited information.

From a practical perspective, Decision Entropy Theory highlights the importance
of considering how possibilities for natural hazards could impact the preferred
alternatives for managing risks. A lack of information at the start means the
greatest uncertainty in the preferred alternative, not the greatest uncertainty in the
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hazard. Limited information does not necessarily justify a conservative approach for
managing risk; additional information could lead to either less expensive or more
expensive means of risk management being preferred. The value of obtaining new
information for managing risk is accentuated when limited information is available;
therefore, the role science and engineering to advance our understanding about
natural hazards and managing their risk is emphasized. Ultimately, this framework
underscores the importance of developing adaptable approaches to manage multi-
hazard risks in the face of limited information.

A.1 Appendix 1: Mathematical Formulation for Principles
of Decision Entropy

The following appendix provides the mathematical formulation characterizing the
entropy of a decision.

Principle Number 1 In a non-informative sample space, a selected alternative is
equally probable to be or not to be preferred compared to another alternative.

Given that alternative Ai is selected and compared to Aj, the maximum lack of
information for the decision corresponds to maximizing the relative entropy for the
events that an alternative is and is not preferred:

Maximize Hrel

�
Preference Outcome

ˇ̌
ˇAi Selected and Compared to Aj

�

D �P
�
Ai Preference to Aj

�
ln
˚
P
�
Ai Preference to Aj

��

� P
�
Ai Preference to Aj

�
ln
˚
P
�
Ai Preference to Aj

�� � ln.2/

where Hrel(Preference Outcomej Ai Selected and Compared to Aj) is the relative
entropy of the decision preference, P[Ai Preferred to Aj] is the probability that
alternative Ai is preferred compared to alternative Aj, and P

�
Ai Preferred to Aj

�

is the probability that alternative Ai is not preferred compared to alternative Aj or
1 � P

�
Ai Preferred to Aj

�
. If the preference for one alternative versus another is

characterized by the difference in the utility values for each alternative, then the
relative entropy of the decision preference can be expressed as follows:

Maximize Hrel

�
Preference Outcome

ˇ̌
ˇAi Selected and Compared to Aj

�

D �P
h
u .Ai/ � u

	
Aj



> 0
ˇ̌
ˇAi Compared to Aj

i

� ln
n
P
h
u .Ai/ � u

	
Aj



> 0
ˇ̌
ˇAi Compared to Aj

io

�
n
1 � P

h
u .Ai/ � u

	
Aj



> 0
ˇ̌
ˇAi Compared to Aj

io

� ln
n
1 � P

h
u .Ai/ � u

	
Aj



> 0
ˇ̌
ˇAi Compared to Aj

io
� ln.2/

where u(Ai) is the utility for alternative Ai.
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The entropy is a measure of the frequencies or probabilities of possible outcomes
divided between the two states: Ai Preferred to Aj and Ai Preferred to Aj. The
natural logarithm of the entropy is used for mathematical convenience by invoking
Stirling’s approximation for factorials; note that maximizing the logarithm of the
frequencies of possible outcomes is the same as maximizing the frequencies of
possible outcomes since the logarithm is a one-to-one function of the argument.
The relative entropy normalizes the entropy by the number of possible states (in this
case two); the maximum value of the relative entropy is zero.

For two outcomes, Ai Preferred to Aj and Ai Preferred to Aj, the relative
entropy Hrel(Preference Outcomej Ai Selected and Compared to Aj) is maximized
in the ideal case where it is equally probable that one or the other alternative is
preferred, or

P
�

u .Ai/ � u
	
Aj



> 0
ˇ̌
Ai Compared to Aj

�

D 1 � P
�

u .Ai/ � u
	
Aj



> 0
ˇ̌
Ai Compared to Aj

�
:

When i D j (i.e., an alternative is compared to itself), the relative entropy becomes
equal to its minimum possible value, � ln.2/, because there is no uncertainty in the
preference [p ln.p/ ! 0 as p ! 0 or p ! 1].

Principle Number 2 In a non-informative sample space, possible degrees of
preference between a selected alternative and another alternative are equally
probable.

To represent the maximum lack of information for the decision between two
alternatives, maximize the relative entropy for the possible positive and negative
differences in utility values between alternative Ai and Aj, �ui;j D u .Ai/ � u

	
Aj


.

The sample space where Ai is Selected and Compared to Aj is divided into two states,
Ai Preferred to Aj and Ai Preferred to Aj, which are respectively subdivided into
n

�ui;j

ˇ̌
ˇAi�Aj

and n
�ui;j

ˇ̌
ˇAi�Aj

substates for each interval of �ui,j, where the operator

� means “preferred to” and the operator � means “not preferred to” or the
complement of �. Maximizing the relative entropy for degree of preference is then
given by the following:

Maximize Hrel

�
Preference Degrees

ˇ̌
ˇAi Selected and Compared to Aj

�

D Hrel
	
Preference Degrees; Ai Preferred to Aj




C Hrel
	
Preference Degrees; Ai Preferred to Aj
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where

Hrel
	
Preference Degrees; Ai Preferred to Aj




D
X

n
�ui;j

ˇ̌
ˇAi�Aj

�P
�
�ui;j
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�
P
	
Ai Preferred to Aj




� ln
h
P
�
�ui;j

ˇ̌
ˇAi Preferred to Aj

�
P
	
Ai Preferred to Aj


i

� 	
1
2



ln

0

@n�ui;j
ˇ̌
ˇAi�Aj

� 2

1

A

and

Hrel
	
Preference Degrees; Ai Preferred to Aj




D
X

n
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ˇ̌
ˇAi�Aj

�P
�
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ˇ̌
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�
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� ln
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�
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Ai Preferred to Aj
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� 	
1
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ln
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@n
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ˇAi�Aj

� 2
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A

The maximum value for Hrel(Preference Degreesj Ai Selected and Com-
pared to Aj) is equal to zero, and it is achieved when P

	
Ai Preferred to Aj


 D
P
	
Ai Preferred to Aj


 D 1=2, all P
�
�ui;j

ˇ̌
ˇAi Preferred to Aj

�
D 1=n

�ui;j

ˇ̌
ˇAi�Aj

and

all P
�
�ui;j

ˇ̌
ˇAi Preferred to Aj

�
D 1=n

�ui;j

ˇ̌
ˇAi�Aj

. Note that the number of substates

for intervals of �ui,j in Ai Preferred to Aj or in Ai Preferred to Aj is not important
in maximizing the relative entropy; the entropy is maximized when the possible
intervals (however many there are) are as equally probable as possible.

Principle Number 3 In a non-informative sample space, possible expected degrees
of information value for the preference between a selected alternative and another
alternative are equally probable.

To represent the maximum lack of information for a value of information
assessment for the decision between two alternatives, maximize the relative entropy
for the possible positive and nonpositive expected changes with information in
the differences in expected utility values between alternative Ai and Aj. These
possible expected changes are termed the “information value” and denoted by
�Ek;l :

	
�Ek;l



i;j D E

	
�ui;j

ˇ̌
Ek \ Si;j


 � E
	
�ui;j

ˇ̌
El \ Si;j




D E
�
u .Ai/ � u

	
Al

 ˇ̌

Ek \ Si;j
� � E

�
u .Ai/ � u

	
Ai

 ˇ̌

El \ Si;j
�
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where Ek and El are two sets of possible information about the preference between
Ai and Aj, �ui;j D u .Ai/ � u

	
Aj


. The sample space for Ek,l is divided into two

subsets, an expected positive information value (i.e., �Ek;l > 0) with n�Ek;l >0 states
and an expected nonpositive information value (i.e., �Ek;l � 0) with n�Ek;l �0 states.
Maximizing the relative entropy for possible information values is then given by the
following:

Maximize Hrel

�
Information Value Degrees

ˇ̌
ˇInformation about Ai Selected and

Compared to Aj

 D Hrel .Information Value Degrees; Information has Positive

Value for Ai Compared to Aj

C Hrel .Information Value Degrees; Information

has Non-Positive Value for Ai Compared Aj



where

Hrel .Information Value Degrees; Information has Positive Value for Ai Compared

to Aj

D

X
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�P
�
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�
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Hrel .Information Value Degrees; Information has Non-Positive Value for Ai
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The maximum value for the relative entropy for possible information value is
equal to zero and achieved when P

	
�Ek;l > 0


 D P
	
�Ek;l � 0


 D 1=2, all

P
�
�Ek;l

ˇ̌
ˇ�Ek;l > 0

�
D 1=n�Ek;l >0 and all P

�
�Ek;l

ˇ̌
ˇ�Ek;l � 0

�
D 1=n�Ek;l �0.

This principle is consistent with the first two principles where the alternative
of obtaining information, EEk;l , is compared with the alternative of not obtaining
information for a given preference comparison (i.e., El D E0 D ∅): when the
relative entropy of the information value is maximized, there is an equal probability
that obtaining the information is preferred (i.e., has positive information value or
�Ek;l > 0) and is not preferred (i.e., has nonpositive information value or �Ek;l � 0)
and the possible positive and nonpositive degrees of information value are equally
probable.
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Fig. 18.22 Sample space for
decision with three
alternatives
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A.1.1 Multiple Pairs of Alternatives

The principles of decision entropy establish a sample space for the comparison
of any two decision alternatives, Ai and Aj. The sample space for the set
of all possibilities of comparison for a given decision problem is denoted
the decision sample space. In this sample space, each possible combination
of an alternative that is selected, Ai, and an alternative that could have
been selected, Aj, is equally probable (Fig. 18.22). For nA alternatives, there
are n2

A pairs of i, j and P
	
Ai Selected and Compared to Aj


 D 1=n2
A and

P
	
Ai Compared to Aj jAi Selected


 D 1=nA. The preferred decision alternative
has the maximum expected degree of preference compared to all other alternatives:

E
�
u .Ai/ � u

	
Al

 jAi Selected

� D
X

all j

E
�
�ui;j

ˇ̌
ˇAi Selected and Compared to Aj

�

� P
	
Ai Compared to Aj jAi Selected




where

E
�
�ui;j

ˇ̌
ˇAi Selected and Compared to Aj

�

D
X

all �ui;j

�ui;jP
�
�ui;j

ˇ̌
ˇAi Selected and Compared to Aj

�

The use of the expected degree of preference (or utility difference) as a measure
of preference is consistent with utility theory analysis (e.g., Von Neumann and
Morgenstern 1944; Hurwicz 1951; Savage 1951; Hodges and Lehmann 1952; Luce
and Raiffa 1957; Raiffa and Schlaifer 1961; Benjamin and Cornell 1970; Ang and
Tang 1984, etc.). In a conventional decision analysis, the sample space for utility
values is not conditioned on a particular alternative being selected, Ai, meaning that
the expected utility for a selected alternative can be calculated without considering
the alternatives to which it is being compared. However, the absolute magnitude
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of expected utility is irrelevant1; its relevance depends on comparing it with the
expected utility values for other alternatives. Therefore, it is the differences between
utility values that are of interest.

Mathematically, comparing the expected degrees of preference, E
�
u .Ai/ � u

	
Ai



jAi Selected �, is the same as comparing expected utility values in a conventional
decision analysis. In a conventional analysis where the probabilities for utility
values given that an alternative has been selected do not depend on the alternative
to which it is being compared, the expected degree of preference for an alternative
can be expressed as follows:

E
h
u .Ai/ � u

	
Al

 ˇ̌
ˇAi Selected

i
D
X

all j

E
�
�ui;j

ˇ̌
ˇAi Selected and Compared to Aj

�
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ˇAi Selected

�

D
X

all j

h
E
�
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�
� E

�
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� P
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ˇAi Selected

�

D E
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ˇAi Selected

�
�

X

jD1 to nA

E
�
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ˇ̌
ˇAj Selected

�
�
�

1

nA

�

Therefore, the expected degree of preference for an alternative in a conventional
decision analysis is equal to the expected utility for that alternative minus a
constant (the average expected utility for all alternatives). Therefore, the order of

comparisons is the same whether the expected utility values, E
�

ui

ˇ̌
ˇAi Selected

�
, or

the expected degree of preference values, E
�
u .Ai/ � u

	
Ai

 jAi Selected

�
, are used

in comparisons.

B.1 Appendix 2: Implementation of Bayes’ Theorem
with Bernoulli Sequence for Two Possibly Related Sets
of Data

Define FA as the annual chance of occurrence in the period of available experience,
Data Set A, and FB as the annual chance of occurrence in the future for purposes
of managing risk, Data Set B (Fig. 18.18). If the annual chance of occurrence is the
same in the past and the future, then the likelihood of obtaining the available data
from a Bernoulli sequence (i.e., xA occurrences in nA years) for a particular value of
fBi is given by:

P
�

xA in nA

ˇ̌
ˇfBi D fAi

�
D
�

nAŠ

xAŠ .nA � xAŠ/

�
f xA
Bi .1 � fBi/

nA�xA

�

1Utility values can be scaled arbitrarily with linear transformations.
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Conversely, if the annual chance of occurrence is not the same in the past and the
future, then the likelihood of obtaining the available data (i.e., xA occurrences in nA

years) is given by:

P
�

xA in nA

ˇ̌
ˇfBi ¤ fAi

�
D
X

all fAi

�
nAŠ

xAŠ .nA � xAŠ/

�
f xA
Ai .1 � fAi/

nA�xA

�
P . fAij fBi ¤ fAi/

where P(fAi) is the prior probability for the annual chance of occurrence in the
experience. If the experience is relevant, then the prior probability for FA is the
same as that for FB: P . fAij fBi D fAi/ D P .fBi/. Furthermore, P . fAij fBi ¤ fAi/ D
P . fAij fBi D fAi/ D P .fAi/ D P .fBi/ since the probability for FA does not depend on
whether or not the experience is relevant (i.e., the prior probability of obtaining a
particular set of data from Set A is the same whether or not Sets A and B are the
same, and the probability of obtaining a particular set of data from Set A does not
depend on the chance of occurrence in Set B if the two sets are different). Therefore,

P
�

xA in nA

ˇ̌
ˇfBi ¤ fAi

�
D
X

all fBi

�
nAŠ

xAŠ .nA � xAŠ/

�
f xA
Bi .1 � fBi/

nA�xA

�
P .fBi/

meaning that the likelihood of the information from the experience is a constant
with respect to fBi (i.e., the updated probability distribution will be same as the prior
probability distribution for FBif the data are not relevant). The composite likelihood
function considering the possibility that the data may or may not be relevant is
given by:

P
�

xA innA

ˇ̌
ˇfBi

�
DP

�
xA innA

ˇ̌
ˇfBi D fAi

�
P .fBi D fAi/CP

�
xA innA

ˇ̌
ˇfBi ¤ fAi

�
P .fBi ¤ fAi/

D P
�

xA in nA

ˇ̌
ˇfBi D fAi

�
P .fBi D fAi/ C P

�
xA in nA

ˇ̌
ˇfBi ¤ fAi

�
Œ1 � P .fBi D fAi/�

where P .fBi D fAi/ is the prior probability that the experience is relevant.
If the experience is relevant, then the greatest possible is learned from the

experience. If the experience is not relevant, then the least possible (nothing) is
learned from the experience. Therefore, the third principle of Decision Entropy
Theory establishes that the probability that the experience is relevant is 0.5, or
P .fBi D fAi/ D 0:5.

If information could be obtained about the annual chance of hazard occurrence
in the period of the decision (FB) before making the decision (Fig. 18.18), then the
likelihood of obtaining a particular set of data (i.e., xA occurrences in nA years and
xB occurrences in nB years) is given by the following:

P .xA in nA and xB in nBj fBi/

D P
�

xA in nA and xB in nB

ˇ̌
ˇfBi D fAi

�
P .fBi D fAi/

C P
�

xA in nA and xB in nB

ˇ̌
ˇfBi ¤ fAi

�
Œ1 � P .fBi D fAi/�
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where
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Hence, the updated probability distribution for the annual chance of occurrence for
the hazard in the risk management decision (FB) is obtained from Bayes’ theorem
as follows:

P
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�
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Likewise, the probability that the data from the experience (Data Set A) is relevant
is updated with the data obtained from the period of the decision (Data Set B):

P
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ˇ̌
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�
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