
Chapter 8
Heat Transfer in a Complex Medium

A.G. Ramm

Abstract The heat equation is considered in the complex medium consisting of
many small bodies (particles) embedded in a given material. On the surfaces of
the small bodies an impedance boundary condition is imposed. An equation for the
limiting field is derived when the characteristic size a of the small bodies tends
to zero, their total number N .a/ tends to infinity at a suitable rate, and the distance
d D d.a/ between neighboring small bodies tends to zero: a << d, lima!0

a
d.a/ D 0.

No periodicity is assumed about the distribution of the small bodies. These results
are basic for a method of creating a medium in which heat signals are transmitted
along a given line. The technical part for this method is based on an inverse problem
of finding potential with prescribed eigenvalues.
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8.1 Introduction and Results

In this paper the problem of heat transfer in a complex medium consisting of many
small impedance particles of an arbitrary shape is solved. Equation for the effective
limiting temperature is derived when the characteristic size a of the particles tends
to zero while their number tends to infinity at a suitable rate while the distance d
between closest neighboring particles is much larger than a, d >> a.

These results are used for developing a method for creating materials in which
heat is transmitted along a line. Thus, the information can be transmitted by a heat
signals.
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The contents of this paper is based on the earlier papers of the author cited in the
bibliography, especially [13, 16, 17].

Let many small bodies (particles) Dm, 1 � m � M, of an arbitrary shape be
distributed in a bounded domain D � R

3, diamDm D 2a, and the boundary of Dm is
denoted by Sm and is assumed twice continuously differentiable. The small bodies
are distributed according to the law

N .�/ D 1

a2��

Z
�

N.x/dxŒ1C o.1/�; a ! 0: (8.1)

Here� � D is an arbitrary open subdomain of D, � 2 Œ0; 1/ is a constant, N.x/ � 0

is a continuous function, and N .�/ is the number of the small bodies Dm in�. The
heat equation can be stated as follows:

ut D r2u C f .x/ in R
3 n

M[
mD1

Dm; WD �; ujtD0 D 0; (8.2)

uN D �mu on Sm; 1 � m � M; Re�m � 0: (8.3)

Here N is the outer unit normal to S,

S WD
M[

mD1
Sm; �m D h.xm/

a�
; xm 2 Dm; 1 � m � M;

and h.x/ is a continuous function in D, Reh � 0.
Denote

U WD U.x; �/ D
Z 1

0

e��tu.x; t/dt:

Then, taking the Laplace transform of Eqs. (8.2)–(8.3) one gets:

�r2U C �U D ��1f .x/ in �; (8.4)

UN D �mU on Sm; 1 � m � M: (8.5)

Let

g.x; y/ WD g.x; y; �/ WD e�p
�jx�yj

4�jx � yj ; (8.6)

F.x; �/ WD 1

�

Z
R3

g.x; y/f .y/dy: (8.7)
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Look for the solution to (8.4)–(8.5) of the form

U.x; �/ D F.x; �/C
MX

mD1

Z
Sm

g.x; s/	m.s/ds; (8.8)

where

U.x; �/ WD U.x/ WD U ; (8.9)

and U.x/ depends on �.
The functions 	m are unknown and should be found from the boundary con-

ditions (8.5). Equation (8.4) is satisfied by U of the form (8.8) with arbitrary
continuous	m. To satisfy the boundary condition (8.5) one has to solve the following
equation obtained from the boundary condition (8.5):

@Ue.x/

@N
C Am	m � 	m

2
� �mUe � �mTm	m D 0 on Sm; 1 � m � M; (8.10)

where the effective field Ue.x/ is defined by the formula:

Ue.x/ WD Ue;m.x/ WD U.x/ �
Z
Sm

g.x; s/	m.s/ds; (8.11)

the operator Tm is defined by the formula:

Tm	m D
Z
Sm

g.s; s0/	m.s
0/ds0; (8.12)

and Am is:

Am	m D 2

Z
Sm

@g.s; s0/
@Ns

	m.s
0/ds0: (8.13)

In deriving Eq. (8.10) we have used the known formula for the outer limiting value
on Sm of the normal derivative of a simple layer potential.

We now apply the ideas and methods for solving many-body scattering problems
developed in [12–15].

Let us call Ue;m the effective (self-consistent) value of U , acting on the m-th body.
As a ! 0, the dependence on m disappears, since

Z
Sm

g.x; s/	m.s/ds ! 0 as a ! 0:
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One has

U.x; �/ D F.x; �/C
MX

mD1
g.x; xm/Qm C J2; xm 2 Dm; (8.14)

where

Qm WD
Z
Sm

	m.s/ds;

J2 WD
MX

mD1

Z
Sm

Œg.x; s0/ � g.x; xm/�	m.s
0/ds0: (8.15)

Define

J1 WD
MX

mD1
g.x; xm/Qm: (8.16)

We prove in Lemma 3, Sect. 8.4 (see also [13, 16]) that

jJ2j << jJ1j as a ! 0 (8.17)

provided that

lim
a!0

a

d.a/
D 0; (8.18)

where d.a/ D d is the minimal distance between neighboring particles.
If (8.17) holds, then problem (8.4)–(8.5) is solved asymptotically by the formula

U.x; �/ D F.x; �/C
MX

mD1
g.x; xm/Qm; a ! 0; (8.19)

provided that asymptotic formulas for Qm, as a ! 0, are found.
To find formulas for Qm, let us integrate (8.10) over Sm, estimate the order of the

terms in the resulting equation as a ! 0, and keep the main terms, that is, neglect
the terms of higher order of smallness as a ! 0.

We get

Z
Sm

@Ue

@N
ds D

Z
Dm

r2Uedx D O.a3/: (8.20)
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Here we assumed that jr2Uej D O.1/; a ! 0. This assumption is valid since U D
lima!0 Ue is smooth as a solution to an elliptic equation. One has

Z
Sm

Am	m � 	m

2
ds D �QmŒ1C o.1/�; a ! 0: (8.21)

This relation is proved in Lemma 2, Sect. 8.4, see also [13]. Furthermore,

��m

Z
Sm

Ueds D ��mjSmjUe.xm/ D O.a2��/; a ! 0; (8.22)

where jSmj D O.a2/ is the surface area of Sm. Finally,

��m

Z
Sm

ds
Z
Sm

g.s; s0/	m.s
0/ds0 D ��m

Z
Sm

ds0	m.s
0/

Z
Sm

dsg.s; s0/

D QmO.a1��/; a ! 0: (8.23)

Thus, the main term of the asymptotic of Qm, as a ! 0, is

Qm D ��mjSmjUe.xm/: (8.24)

Formulas (8.24) and (8.19) yield

U.x; �/ D F.x; �/�
MX

mD1
g.x; xm/�mjSmjUe.xm; �/; (8.25)

and

Ue.xm; �/ D F.xm; �/�
MX

m0¤m;m0D1
g.xm; xm0/�m0 jSm0 jUe.xm0 ; �/: (8.26)

Denote

Ue.xm; �/ WD Um; F.xm; �/ WD Fm; g.xm; xm0/ WD gmm0 ;

and write (8.26) as a linear algebraic system for Um:

Um D Fm � a2��
X

m0¤m

gmm0hm0cm0Um0 ; 1 � m � M; (8.27)

where hm0 D h.xm0/, �m0 D hm0

a� , cm0 WD jSm0 ja�2.
Consider a partition of the bounded domain D, in which the small bodies are

distributed, into a union of P << M small nonintersecting cubes �p, 1 � p � P,
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of side b,

b >> d; b D b.a/ ! 0 as a ! 0 lim
a!0

d.a/

b.a/
D 0:

Let xp 2 �p, j�pj D volume of �p. One has

a2��
MX

m0D1;m0¤m

gmm0hm0cm0Um0 D a2��
PX

p0D1;p0¤p

gpp0hp0cp0Up0
X

xm02�p0

1 D

D
X
p0¤p

gpp0hp0cp0Up0N.xp0/j�p0 jŒ1C o.1/�; a ! 0: (8.28)

Thus, (8.27) yields a linear algebraic system (LAS) of order P << M for the
unknowns Up:

Up D Fp �
PX

p0¤p;p0D1
gpp0hp0cp0Np0Up0 j�p0j; 1 � p � P: (8.29)

Since P << M, the order of the original LAS (8.27) is drastically reduced. This is
crucial when the number of particles tends to infinity and their size a tends to zero.
We have assumed that

hm0 D hp0 Œ1C o.1/�; cm0 D cp0 Œ1C o.1/�; Um0 D Up0 Œ1C o.1/�; a ! 0;

(8.30)

for xm0 2 �p0 . This assumption is justified, for example, if the functions h.x/,
U.x; �/,

c.x/ D lim
xm02�x;a!0

jSm0j
a2

;

and N.x/ are continuous, but these assumptions can be relaxed.
The continuity of the U.x; �/ is a consequence of the fact that this function

satisfies elliptic equation, and the continuity of c.x/ is assumed. If all the small
bodies are identical, then c.x/ D c D const, so in this case the function c.x/ is
certainly continuous.

The sum in the right-hand side of (8.29) is the Riemannian sum for the integral

lima!0

PX
p0D1;p0¤p

gpp0hp0cp0N.xp0/Up0 j�0
pj D

Z
D

g.x; y/h.y/c.y/N.y/U.y; �/dy
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Therefore, linear algebraic system (8.29) is a collocation method for solving
integral equation

U.x; �/ D F.x; �/�
Z

D
g.x; y/c.y/h.y/N.y/U.y; �/dy: (8.31)

Convergence of this method for solving equations with weakly singular kernels is
proved in [10], see also [11, 20].

Applying the operator �r2 C � to Eq. (8.31) one gets an elliptic differential
equation:

.��C �/U.x; �/ D f .x/

�
� c.x/h.x/N.x/U.x; �/: (8.32)

Taking the inverse Laplace transform of this equation yields

ut D �u C f .x/ � q.x/u; q.x/ WD c.x/h.x/N.x/: (8.33)

Therefore, the limiting equation for the temperature contains the term q.x/u. Thus,
the embedding of many small particles creates a distribution of source and sink
terms in the medium, the distribution of which is described by the term q.x/u.

If one solves Eq. (8.31) for U.x; �/, or linear algebraic system (8.29) for Up.�/,
then one can Laplace-invert U.x; �/ for U.x; t/. Numerical methods for Laplace
inversion from the real axis are discussed in [4, 19].

If one is interested only in the average temperature, one can use the relation

lim
T!1

1

T

Z T

0

u.x; t/dt D lim
�!0

�U.x; �/: (8.34)

Relation (8.34) is proved in Lemma 1, Sect. 8.4. It holds if the limit on one of its
sides exists. The limit on the right-hand side of (8.34) let us denote by  .x/. From
Eqs. (8.7) and (8.31) it follows that  satisfies the equation

 D ' � B';

where

' WD
Z
�

g0.x; y/f .y/dy;

g0.x; y/ WD 1

4�jx � yj ;

B WD
Z
�

g0.x; y/q.y/ .y/dy;
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and

q.x/ WD c.x/h.x/N.x/:

The function  can be calculated by the formula

 .x/ D .I C B/�1': (8.35)

From the physical point of view the function h.x/ is non-negative because the flux
�ru of the heat flow is proportional to the temperature u and is directed along the
outer normal N: �uN D h1u, where h1 D �h < 0. Thus, q � 0.

It is proved in [5, 6] that zero is not an eigenvalue of the operator �r2 C q.x/
provided that q.x/ � 0 and

q D O
� 1

jxj2C

�
; jxj ! 1;

and 
 > 0.
In our case, q.x/ D 0 outside of the bounded region D, so the operator .I C B/�1

exists and is bounded in C.D/.
Let us formulate our basic result.

Theorem 1 Assume (8.1), (8.18), and h � 0. Then, there exists the limit U.x; �/ of
Ue.x; �/ as a ! 0, U.x; �/ solves Eq. (8.31), and there exists the limit (8.34), where
 .x/ is given by formula (8.35).

Methods of our proof of Theorem 1 are quite different from the proof of
homogenization theory results in [1, 3].

The author’s plenary talk at Chaos-2015 Conference was published in [18].

8.2 Creating Materials Which Allows One to Transmit Heat
Signals Along a Line

In applications it is of interest to have materials in which heat propagates along a
line and decays fast in all the directions orthogonal to this line.

In this section a construction of such material is given. We follow [17] with some
simplifications.

The idea is to create first the medium in which the heat transfer is governed by
the equation

ut D �u � q.x/u in D; ujS D 0; ujtD0 D f .x/; (8.36)

where D is a bounded domain with a piece-wise smooth boundary S, D D D0�Œ0;L�,
D0 � R

2 is a smooth domain orthogonal to the axis x1, x D .x1; x2; x3/, x2; x3 2 D0,
0 � x1 � L.
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Such a medium is created by embedding many small impedance particles into a
given domain D filled with a homogeneous material. A detailed argument, given in
Sect. 8.1 (see also [13, 16]), yields the following result.

Assume that in every open subset� of D the number of small particles is defined
by the formula:

N .�/ D 1

a2��

Z
�

N.x/dxŒ1C o.1/�; a ! 0; (8.37)

where a > 0 is the characteristic size of a small particle, � 2 Œ0; 1/ is a given number
and N.x/ � 0 is a continuous in D function.

Assume also that on the surface Sm of the m-th particle Dm the impedance
boundary condition holds. Here

1 � m � M D N .D/ D O

�
1

a2��

�
; a ! 0;

and the impedance boundary conditions are:

uN D �mu on Sm; Re�m � 0; (8.38)

where

�m WD h.xm/

a�

is the boundary impedance, xm 2 Dm is an arbitrary point (since Dm is small the
position of xm in Dm is not important), � is the same parameter as in (8.37) and h.x/
is a continuous in D function, Reh � 0, N is the unit normal to Sm pointing out of
Dm. The functions h.x/, N.x/ and the number � can be chosen as the experimenter
wishes.

It is proved in Sect. 8.1 (see also [13, 16]) that, as a ! 0, the solution of the
problem

ut D �u inD n
M[

mD1
Dm; uN D �mu on Sm; 1 � m � M; (8.39)

ujS D 0; (8.40)

and

ujtD0 D f .x/; (8.41)

has a limit u.x; t/. This limit solves problem (8.36) with

q.x/ D cSN.x/h.x/; (8.42)
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where

cS WD jSmj
a2

D const; (8.43)

and jSmj is the surface area of Sm. By assuming that cS is a constant, we assume, for
simplicity only, that the small particles are identical in shape, see [13].

Since N.x/ � 0 is an arbitrary continuous function and h.x/, Reh � 0, is an
arbitrary continuous function, and both functions can be chosen by experimenter as
he/she wishes, it is clear that an arbitrary real-valued potential q can be obtained by
formula (8.42).

Suppose that

.��C q.x//�.x/ D �n�n; �njS D 0; jj�njjL2.D/ D jj�njj D 1; (8.44)

where f�ng is an orthonormal basis of L2.D/ WD H. Then the unique solution
to (8.36) is

u.x; t/ D
1X

nD1
e��nt.f ; �n/�n.x/: (8.45)

If q.x/ is such that �1 D 0, �2 � 1, and �2 � �3 � : : : , then, as t ! 1, the
series (8.45) is well approximated by its first term

u.x; t/ D .f ; �1/�1 C O.e�10t/; t ! 1: (8.46)

If �1 > 0 is very small, then the main term of the solution is

u.x; t/ D .f ; �1/�1e
��1t C O.e�10t/

as t ! 1. The term e��1t � 1 if t << 1
�1

.
Thus, our problem is solved if q.x/ has the following property:

j�1.x/jdecays as ¡ grows; � D .x22 C x23/
1=2: (8.47)

Since the eigenfunction is normalized, jj�1jj D 1, this function will not tend to zero
in a neighborhood of the line � D 0, so information can be transformed by the
heat signals along the line � D 0, that is, along s�axis. Here we use the cylindrical
coordinates:

x D .x1; x2; x3/ D .s; �; /; s D x1; � D .x22 C x23/
1=2:

In Sect. 8.3 the domain D0 is a disc and the potential q.x/ does not depend on  .
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The technical part of solving our problem consists of the construction of q.x/ D
cSN.x/h.x/ such that

�1 D 0; �2 � 1I j�1.x/j decays as ¡ grows: (8.48)

Since the function N.x/ � 0 and h.x/;Reh � 0; are at our disposal, any desirable
q;Re q � 0, can be obtained by embedding many small impedance particles in a
given domain D. In Sect. 8.3, a potential q with the desired properties is constructed.
This construction allows one to transform information along a straight line using
heat signals.

8.3 Construction of q.x/

Let

q.x/ D p.�/C Q.s/;

where s WD x1, � WD .x22 C x23/
1=2. Then the solution to problem (8.44) is u D

v.�/w.s/, where

� v00
m � ��1v0

m C p.�/vm D �mvm; 0 � � � R;

jvm.0/j < 1; vm.R/ D 0; (8.49)

and

� w00
l C Q.s/wl D �lwl; 0 � s � L;

wl.0/ D 0; wl.L/ D 0: (8.50)

One has

�n D �m C �l; n D n.m; l/: (8.51)

Our task is to find a potential Q.s/ such that �1 D 0, �2 � 1 and a potential p.�/
such that �1 D 0; �2 � 1 and jvm.�/j decays as � grows.

It is known how to construct q.s/ with the desired properties: the Gel’fand-
Levitan method allows one to do this, see [7]. Let us recall this construction. One
has �l0 D l2, where we set L D � and denote by �l0 the eigenvalues of the
problem (8.50) with Q.s/ D 0. Let the eigenvalues of the operator (8.50) with Q ¤ 0

be �1 D 0; �2 D 11; �3 D 14; �l D �l0 for l � 4.
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The kernel L.x; y/ in the Gel’fand-Levitan theory is defined as follows:

L.x; y/ D
Z 1

�1
sin.

p
�x/p
�

sin.
p
�y/p
�

d.%.�/ � %0.�//;

where %.�/ is the spectral function of the operator (8.50) with the potential Q D
Q.s/, and %0.�/ is the spectral function of the operator (8.50) with the potential
Q D 0 and the same boundary conditions as for the operator with Q ¤ 0.

Due to our choice of �l and the normalizing constants ˛j, namely: ˛j D �
2

for

j � 2 and ˛1 D �3

3
, the kernel L.x; y/ is given explicitly by the formula:

L.x; y/ D 3xy

�3
C 2

�

� sin.
p
�2x/p
�2

sin.
p
�2y/p
�2

C sin.
p
�3x/p
�3

sin.
p
�3y/p
�3

�
�

� 2

�

�
sin x sin y C sin.2x/ sin.2y/C sin.3x/ sin.3y/

�
; (8.52)

where �1 D 0, �2 D 11 and �3 D 14. This is a finite rank kernel. The term xy is
the value of the function sin �x

�

sin �y
�

at � D 0, and the corresponding normalizing

constant is �3

3
D jjxjj2 D R �

0
x2dx.

Solve the Gel’fand-Levitan equation:

K.s; �/C
Z s

0

K.s; s0/L.s0; �/ds0 D �L.s; �/; 0 � � � s; (8.53)

which is uniquely solvable (see [7]). Since Eq. (8.53) has finite-rank kernel it can be
solved analytically being equivalent to a linear algebraic system.

If the function K.s; �/ is found, then the potential Q.s/ is computed by the
formula [2, 7]:

Q.s/ D 2
dK.s; s/

ds
; (8.54)

and this Q.s/ has the required properties: �1 D 0; �2 � 1; �l � �lC1.
Consider now the operator (8.49) for v.�/. Our problem is to calculate p.�/

which has the required properties:

�1 D 0; �2 � 1; �m � �mC1;

and j�m.�/j decays as � grows.
We reduce this problem to the previous one that was solved above. To do this, set

v D  p
�
. Then equation

�v00 � 1

�
v0 C p.�/v D �v;
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is transformed to the equation

� 00 � 1

4�2
 C p.�/ D � : (8.55)

Let

p.�/ D 1

4�2
C Q.�/; (8.56)

where Q.�/ is constructed above. Then Eq. (8.55) becomes

� 00 C Q.�/ D � ; (8.57)

and the boundary conditions are:

 .R/ D 0;  .0/ D 0: (8.58)

The problem (8.57)–(8.58) has the desired eigenvalues �1 D 0; �2 � 1; �m �
�mC1.

The eigenfunction

�1.x/ D v1.�/w1.s/;

where v1.�/ D  1.�/p
�

, decays as � grows, and the eigenvalues �n can be calculated
by the formula:

�n D �m C �l; m; l � 1; n D n.m; l/:

Since �1 D �1 D 0 one has �1 D 0. Since �2 D 11 and �2 D 11, one has
�2 D 11 � 1.

Thus, the desired potential is constructed:

q.x/ D Q.s/C .
1

4�2
C Q.�//;

where Q.s/ is given by formula (8.54).
This concludes the description of our procedure for the construction of q.

Remark 1 It is known (see, for example, [2]) that the normalizing constants

˛j WD
Z �

0

'2j .s/ds
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and the eigenvalues �j, defined by the differential equation

�d2'j

ds2
C Q.s/'j D �j'j;

the boundary conditions

' 0
j .0/ D 0; ' 0

j .�/ D 0;

and the normalizing condition 'j.0/ D 1, have the following asymptotic:

˛j D �

2
C O.

1

j2
/ as j ! 1;

and

q
�j D j C O.

1

j
/ as j ! 1:

The differential equation

�‰00

j C Q.s/‰j D �j‰j;

the boundary condition

‰j.0/ D 0; ‰j.�/ D 0;

and the normalizing condition‰0
j.0/ D 1 imply

q
�j D j C O.

1

j
/ as j ! 1;

‰j.s/ � sin. js/

j
as j ! 1:

The main term of the normalized eigenfunction is:

‰j

jj‰jjj �
p
2=� sin. js/ as j ! 1;

and the main term of the normalizing constant is:

˛j � �

2j2
as j ! 1:
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8.4 Auxiliary Results

Lemma 1 If one of the limits limt!1 1
t

R t
0 u.s/ds or lim�!0 �U.�/ exists, then the

other also exists and they are equal to each other:

lim
t!1

1

t

Z t

0

u.s/ds D lim
�!0

�U.�/;

where

U.�/ WD
Z 1

0

e��tu.t/dt WD Nu.�/:

Proof Denote

1

t

Z t

0

u.t/dt WD v.t/; Nu.	/ WD
Z 1

0

e�	 tu.t/dt:

Then

Nv.�/ D
Z 1

�

Nu.	/
	

d	

by the properties of the Laplace transform.
Assume that the limit v.1/ WD v1 exists:

lim
t!1 v.t/ D v1: (8.59)

Then,

v1 D lim
�!0

�

Z 1

0

e��tv.t/dt D lim
�!0

� Nv.�/:

Indeed �
Z 1

0

e��tdt D 1, so

lim
�!0

�

Z 1

0

e��t.v.t/ � v1/dt D 0;

and (8.59) is verified.
One has

lim
�!0

� Nv.�/ D lim
�!0

Z 1

�

�

	
Nu.	/d	 D lim

�!0
�Nu.�/; (8.60)
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as follows from a simple calculation:

lim
�!0

Z 1

�

�

	
Nu.	/d	 D lim

�!0

Z 1

�

�

	2
	 Nu.	/d	 D lim

	!0
	 Nu.	/; (8.61)

where we have used the relation
Z 1

�

�

	2
d	 D 1.

Alternatively, let 	�1 D � . Then,

Z 1

�

�

	2
	 Nu.	/d	 D 1

1=�

Z 1=�

0

1

�
Nu. 1
�
/d� D 1

!

Z !

0

1

�
Nu. 1
�
/d�: (8.62)

If � ! 0, then ! D ��1 ! 1; and if

 WD ��1 Nu.��1/;

then

lim
!!1

1

!

Z !

0

 d� D  .1/ D lim
�!0

��1 Nu.��1/ D lim
	!1 	 Nu.	/: (8.63)

Lemma 1 is proved. ut
Lemma 2 Equation (8.21) holds.

Proof As a ! 0, one has

@

@Ns

e�p
�js�s0j

4�js � s0j D @

@Ns

1

4�js � s0j C @

@Ns

e�p
�js�s0j � 1

4�js � s0j : (8.64)

It is known (see [8]) that

Z
Sm

ds
Z
Sm

@

@Ns

1

4�js � s0j	m.s
0/ds0 D �1

2

Z
Sm

	m.s
0/ds0 D �1

2
Qm: (8.65)

On the other hand, as a ! 0, one has

ˇ̌
ˇ̌
Z
Sm

ds
Z
Sm

e�p
�js�s0j � 1

4�js � s0j 	m.s
0/ds0

ˇ̌
ˇ̌ � jQmj

Z
Sm

ds
1 � e�p

�js�s0j

4�js � s0j D o.Qm/:

(8.66)
The relations (8.65) and (8.66) justify (8.21).

Lemma 2 is proved. ut
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Lemma 3 If assumption (8.18) holds, then inequality (8.17) holds.

Proof One has

J1;m WD jg.x; xm/Qj D jQmje�p
�jx�xmj

4�jx � xmj ; (8.67)

and

J2;m � e�p
�jx�xmj

4�jx � xmj max

�p
�a;

a

jx � xmj
� Z

Sm

j	m.s
0/jds0 (8.68)

where jx � xmj � d, and d > 0 is the smallest distance between two neighboring
particles. One may consider only those values of � for which �1=4a < a

d , because for

the large values of �, such that �1=4 � 1
d the value of e�p

�jx�xmj is negligibly small.
The average temperature depends on the behavior of U for small �, see Lemma 1.

One has jQmj D R
Sm

j	m.s0/jds0 > 0 because 	m keeps sign on Sm, as follows
from Eq. (8.24) as a ! 0.

It follows from (8.67)–(8.68) that

ˇ̌
ˇ̌J2;m
J1;m

ˇ̌
ˇ̌ � O

�ˇ̌
ˇ̌ a

x � xm

ˇ̌
ˇ̌
�

� O

�
a

d

�
<< 1: (8.69)

From (8.69) by the arguments similar to the given in [9] one obtains (8.17).
Lemma 3 is proved. ut
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