Chapter 8 Heat Transfer in a Complex Medium

A.G. Ramm

Abstract The heat equation is considered in the complex medium consisting of many small bodies (particles) embedded in a given material. On the surfaces of the small bodies an impedance boundary condition is imposed. An equation for the limiting field is derived when the characteristic size *a* of the small bodies tends to zero, their total number $\mathcal{N}(a)$ tends to infinity at a suitable rate, and the distance $d = d(a)$ between neighboring small bodies tends to zero: $a \ll d$, $\lim_{a \to 0} \frac{a}{d(a)} = 0$.
No periodicity is assumed about the distribution of the small bodies. These results No periodicity is assumed about the distribution of the small bodies. These results are basic for a method of creating a medium in which heat signals are transmitted along a given line. The technical part for this method is based on an inverse problem of finding potential with prescribed eigenvalues.

MSC 80M40; 80A20, 35B99; 35K20; 35Q41; 35R30;74A30; 74G75

PACS 65.80.-g

8.1 Introduction and Results

In this paper the problem of heat transfer in a complex medium consisting of many small impedance particles of an arbitrary shape is solved. Equation for the effective limiting temperature is derived when the characteristic size *a* of the particles tends to zero while their number tends to infinity at a suitable rate while the distance *d* between closest neighboring particles is much larger than $a, d \ge a$.

These results are used for developing a method for creating materials in which heat is transmitted along a line. Thus, the information can be transmitted by a heat signals.

A.G. Ramm (\boxtimes)

Department of Mathematics, Kansas State University, Manhattan, KS 66506-2602, USA e-mail: ramm@math.ksu.edu

[©] Springer International Publishing Switzerland 2016

C. Skiadas (ed.), *The Foundations of Chaos Revisited: From Poincaré to Recent Advancements*, Understanding Complex Systems, DOI 10.1007/978-3-319-29701-9_8

The contents of this paper is based on the earlier papers of the author cited in the bibliography, especially [\[13,](#page-17-0) [16,](#page-17-1) [17\]](#page-17-2).

Let many small bodies (particles) D_m , $1 \le m \le n$
tributed in a bounded domain $D \subset \mathbb{R}^3$ diam $D_m =$ Let many small bodies (particles) D_m , $1 \le m \le M$, of an arbitrary shape be distributed in a bounded domain $D \subset \mathbb{R}^3$, diam $D_m = 2a$, and the boundary of D_m is denoted by S_n and is assumed twice continuously differentiable. The small bodies denoted by S_m and is assumed twice continuously differentiable. The small bodies are distributed according to the law

$$
\mathcal{N}(\Delta) = \frac{1}{a^{2-\kappa}} \int_{\Delta} N(x) dx [1 + o(1)], \quad a \to 0.
$$
 (8.1)

Here $\Delta \subset D$ is an arbitrary open subdomain of *D*, $\kappa \in [0, 1)$ is a constant, $N(x) \ge 0$
is a continuous function, and $N(\Delta)$ is the number of the small bodies *D*, in Δ . The is a continuous function, and $\mathcal{N}(\Delta)$ is the number of the small bodies D_m in Δ . The heat equation can be stated as follows:

$$
u_t = \nabla^2 u + f(x) \text{ in } \mathbb{R}^3 \setminus \bigcup_{m=1}^M D_m := \Omega, \quad u|_{t=0} = 0,
$$
 (8.2)

$$
u_N = \zeta_m u \text{ on } \mathcal{S}_m, \quad 1 \le m \le M, \qquad Re\zeta_m \ge 0. \tag{8.3}
$$

Here *N* is the outer unit normal to S ,

$$
S := \bigcup_{m=1}^{M} S_m, \quad \zeta_m = \frac{h(x_m)}{a^k}, \quad x_m \in D_m, \quad 1 \leq m \leq M,
$$

and $h(x)$ is a continuous function in *D*, Re $h \geq 0$.

Denote

$$
\mathcal{U} := \mathcal{U}(x,\lambda) = \int_0^\infty e^{-\lambda t} u(x,t) dt.
$$

Then, taking the Laplace transform of Eqs. (8.2) – (8.3) one gets:

$$
-\nabla^2 \mathcal{U} + \lambda \mathcal{U} = \lambda^{-1} f(x) \text{ in } \Omega,
$$
 (8.4)

$$
\mathcal{U}_N = \zeta_m \mathcal{U} \text{ on } \mathcal{S}_m, 1 \le m \le M. \tag{8.5}
$$

Let

$$
g(x, y) := g(x, y, \lambda) := \frac{e^{-\sqrt{\lambda}|x - y|}}{4\pi|x - y|},
$$
\n(8.6)

$$
F(x,\lambda) := \frac{1}{\lambda} \int_{\mathbb{R}^3} g(x,y) f(y) dy.
$$
 (8.7)

Look for the solution to (8.4) – (8.5) of the form

$$
\mathcal{U}(x,\lambda) = F(x,\lambda) + \sum_{m=1}^{M} \int_{\mathcal{S}_m} g(x,s) \sigma_m(s) ds, \tag{8.8}
$$

where

$$
\mathcal{U}(x,\lambda) := \mathcal{U}(x) := \mathcal{U},\tag{8.9}
$$

and $U(x)$ depends on λ .

The functions σ_m are unknown and should be found from the boundary con-ditions [\(8.5\)](#page-1-3). Equation [\(8.4\)](#page-1-2) is satisfied by U of the form [\(8.8\)](#page-2-0) with arbitrary continuous σ_m . To satisfy the boundary condition [\(8.5\)](#page-1-3) one has to solve the following equation obtained from the boundary condition (8.5) :

$$
\frac{\partial \mathcal{U}_e(x)}{\partial N} + \frac{A_m \sigma_m - \sigma_m}{2} - \zeta_m \mathcal{U}_e - \zeta_m T_m \sigma_m = 0 \text{ on } \mathcal{S}_m, \quad 1 \le m \le M, \tag{8.10}
$$

where the effective field $\mathcal{U}_e(x)$ is defined by the formula:

$$
\mathcal{U}_e(x) := \mathcal{U}_{e,m}(x) := \mathcal{U}(x) - \int_{\mathcal{S}_m} g(x, s) \sigma_m(s) ds, \tag{8.11}
$$

the operator T_m is defined by the formula:

$$
T_m \sigma_m = \int_{\mathcal{S}_m} g(s, s') \sigma_m(s') ds', \tag{8.12}
$$

and *Am* is:

$$
A_m \sigma_m = 2 \int_{S_m} \frac{\partial g(s, s')}{\partial N_s} \sigma_m(s') ds'.
$$
 (8.13)

In deriving Eq. (8.10) we have used the known formula for the outer limiting value on S_m of the normal derivative of a simple layer potential.

We now apply the ideas and methods for solving many-body scattering problems developed in [\[12–](#page-17-3)[15\]](#page-17-4).

Let us call $\mathcal{U}_{e,m}$ the effective (self-consistent) value of \mathcal{U} , acting on the *m*-th body. As $a \rightarrow 0$, the dependence on *m* disappears, since

$$
\int_{\mathcal{S}_m} g(x, s) \sigma_m(s) ds \to 0 \text{ as } a \to 0.
$$

One has

$$
\mathcal{U}(x,\lambda) = F(x,\lambda) + \sum_{m=1}^{M} g(x,x_m)Q_m + \mathcal{J}_2, \quad x_m \in D_m,
$$
 (8.14)

where

$$
Q_m := \int_{S_m} \sigma_m(s) ds,
$$

\n
$$
\mathcal{J}_2 := \sum_{m=1}^M \int_{S_m} [g(x, s') - g(x, x_m)] \sigma_m(s') ds'.
$$
\n(8.15)

Define

$$
\mathcal{J}_1 := \sum_{m=1}^{M} g(x, x_m) Q_m.
$$
 (8.16)

We prove in Lemma [3,](#page-16-0) Sect. 8.4 (see also $[13, 16]$ $[13, 16]$ $[13, 16]$) that

$$
|\mathcal{J}_2| \ll |\mathcal{J}_1| \text{ as } a \to 0 \tag{8.17}
$$

provided that

$$
\lim_{a \to 0} \frac{a}{d(a)} = 0,\tag{8.18}
$$

where $d(a) = d$ is the minimal distance between neighboring particles.

If (8.17) holds, then problem (8.4) – (8.5) is solved asymptotically by the formula

$$
\mathcal{U}(x,\lambda) = F(x,\lambda) + \sum_{m=1}^{M} g(x,x_m)Q_m, \quad a \to 0,
$$
 (8.19)

provided that asymptotic formulas for Q_m , as $a \to 0$, are found.

To find formulas for Q_m , let us integrate [\(8.10\)](#page-2-1) over S_m , estimate the order of the terms in the resulting equation as $a \rightarrow 0$, and keep the main terms, that is, neglect the terms of higher order of smallness as $a \rightarrow 0$.

We get

$$
\int_{S_m} \frac{\partial \mathcal{U}_e}{\partial N} ds = \int_{D_m} \nabla^2 \mathcal{U}_e dx = O(a^3).
$$
\n(8.20)

Here we assumed that $|\nabla^2 U_e| = O(1)$, $a \to 0$. This assumption is valid since $U =$ $\lim_{a\to 0} U_e$ is smooth as a solution to an elliptic equation. One has

$$
\int_{S_m} \frac{A_m \sigma_m - \sigma_m}{2} ds = -Q_m [1 + o(1)], \ a \to 0. \tag{8.21}
$$

This relation is proved in Lemma [2,](#page-15-0) Sect. [8.4,](#page-14-0) see also [\[13\]](#page-17-0). Furthermore,

$$
-\zeta_m \int_{\mathcal{S}_m} \mathcal{U}_e ds = -\zeta_m |\mathcal{S}_m| \mathcal{U}_e(x_m) = O(a^{2-\kappa}), \quad a \to 0,
$$
 (8.22)

where $|\mathcal{S}_m| = O(a^2)$ is the surface area of \mathcal{S}_m . Finally,

$$
-\zeta_m \int_{S_m} ds \int_{S_m} g(s, s') \sigma_m(s') ds' = -\zeta_m \int_{S_m} ds' \sigma_m(s') \int_{S_m} ds g(s, s')
$$

= $Q_m O(a^{1-\kappa}), \qquad a \to 0.$ (8.23)

Thus, the main term of the asymptotic of Q_m , as $a \to 0$, is

$$
Q_m = -\zeta_m |S_m| \mathcal{U}_e(x_m). \tag{8.24}
$$

Formulas [\(8.24\)](#page-4-0) and [\(8.19\)](#page-3-1) yield

$$
\mathcal{U}(x,\lambda) = F(x,\lambda) - \sum_{m=1}^{M} g(x,x_m)\zeta_m|\mathcal{S}_m|\mathcal{U}_e(x_m,\lambda),
$$
\n(8.25)

and

$$
\mathcal{U}_{e}(x_{m},\lambda) = F(x_{m},\lambda) - \sum_{m' \neq m,m'=1}^{M} g(x_{m},x_{m'})\zeta_{m'}|\mathcal{S}_{m'}|\mathcal{U}_{e}(x_{m'},\lambda).
$$
(8.26)

Denote

$$
\mathcal{U}_e(x_m,\lambda) := \mathcal{U}_m, \quad F(x_m,\lambda) := F_m, \quad g(x_m,x_{m'}) := g_{mm'},
$$

and write (8.26) as a linear algebraic system for U_m :

$$
\mathcal{U}_m = F_m - a^{2-\kappa} \sum_{m' \neq m} g_{mm'} h_{m'} c_{m'} \mathcal{U}_{m'}, \quad 1 \leq m \leq M,
$$
 (8.27)

where $h_{m'} = h(x_{m'})$, $\zeta_{m'} = \frac{h_{m'}}{a^k}$, $c_{m'} := |S_{m'}|a^{-2}$.
Consider a partition of the bounded domain

Consider a partition of the bounded domain *D*, in which the small bodies are distributed, into a union of $P \ll M$ small nonintersecting cubes Δ_p , $1 \le p \le P$, of side *b*,

$$
b \gg d
$$
, $b = b(a) \to 0$ as $a \to 0$ $\lim_{a \to 0} \frac{d(a)}{b(a)} = 0$.

Let $x_p \in \Delta_p$, $|\Delta_p|$ = volume of Δ_p . One has

$$
a^{2-k} \sum_{m'=1,m'\neq m}^{M} g_{mm'} h_{m'} c_{m'} \mathcal{U}_{m'} = a^{2-k} \sum_{p'=1,p'\neq p}^{P} g_{pp'} h_{p'} c_{p'} \mathcal{U}_{p'} \sum_{x_{m'} \in \Delta_{p'}} 1 =
$$

=
$$
\sum_{p'\neq p} g_{pp'} h_{p'} c_{p'} \mathcal{U}_{p'} N(x_{p'}) |\Delta_{p'}| [1+o(1)], \quad a \to 0.
$$
 (8.28)

Thus, (8.27) yields a linear algebraic system (LAS) of order $P \ll M$ for the unknowns \mathcal{U}_p :

$$
\mathcal{U}_p = F_p - \sum_{p' \neq p, p' = 1}^{P} g_{pp'} h_{p'} c_{p'} N_{p'} \mathcal{U}_{p'} |\Delta_{p'}|, \quad 1 \leq p \leq P. \tag{8.29}
$$

Since $P \ll M$, the order of the original LAS [\(8.27\)](#page-4-2) is drastically reduced. This is crucial when the number of particles tends to infinity and their size *a* tends to zero. We have assumed that

$$
h_{m'} = h_{p'}[1 + o(1)], \quad c_{m'} = c_{p'}[1 + o(1)], \quad \mathcal{U}_{m'} = \mathcal{U}_{p'}[1 + o(1)], \ a \to 0,
$$
\n(8.30)

for $x_{m'} \in \Delta_{p'}$. This assumption is justified, for example, if the functions $h(x)$, $2J(x, \lambda)$ $U(x, \lambda)$,

$$
c(x) = \lim_{x_{m'} \in \Delta_{x}, a \to 0} \frac{|S_{m'}|}{a^2},
$$

and $N(x)$ are continuous, but these assumptions can be relaxed.

The continuity of the $U(x, \lambda)$ is a consequence of the fact that this function satisfies elliptic equation, and the continuity of $c(x)$ is assumed. If all the small bodies are identical, then $c(x) = c = const$, so in this case the function $c(x)$ is certainly continuous.

The sum in the right-hand side of (8.29) is the Riemannian sum for the integral

$$
\lim_{a\to 0}\sum_{p'=1,p'\neq p}^{P}g_{pp'}h_{p'}c_{p'}N(x_{p'})\mathcal{U}_{p'}|\Delta'_p|=\int_D g(x,y)h(y)c(y)N(y)\mathcal{U}(y,\lambda)dy
$$

Therefore, linear algebraic system [\(8.29\)](#page-5-0) is a collocation method for solving integral equation

$$
\mathcal{U}(x,\lambda) = F(x,\lambda) - \int_{D} g(x,y)c(y)h(y)N(y)\mathcal{U}(y,\lambda)dy.
$$
 (8.31)

Convergence of this method for solving equations with weakly singular kernels is proved in $[10]$, see also $[11, 20]$ $[11, 20]$ $[11, 20]$.

Applying the operator $-\nabla^2 + \lambda$ to Eq. [\(8.31\)](#page-6-0) one gets an elliptic differential equation:

$$
(-\Delta + \lambda)U(x, \lambda) = \frac{f(x)}{\lambda} - c(x)h(x)N(x)U(x, \lambda).
$$
 (8.32)

Taking the inverse Laplace transform of this equation yields

$$
u_t = \Delta u + f(x) - q(x)u, \quad q(x) := c(x)h(x)N(x).
$$
 (8.33)

Therefore, the limiting equation for the temperature contains the term $q(x)u$. Thus, the embedding of many small particles creates a distribution of source and sink terms in the medium, the distribution of which is described by the term $q(x)u$.

If one solves Eq. [\(8.31\)](#page-6-0) for $U(x, \lambda)$, or linear algebraic system [\(8.29\)](#page-5-0) for $U_p(\lambda)$, then one can Laplace-invert $U(x, \lambda)$ for $U(x, t)$. Numerical methods for Laplace inversion from the real axis are discussed in [\[4,](#page-16-2) [19\]](#page-17-7).

If one is interested only in the average temperature, one can use the relation

$$
\lim_{T \to \infty} \frac{1}{T} \int_0^T u(x, t) dt = \lim_{\lambda \to 0} \lambda \mathcal{U}(x, \lambda).
$$
 (8.34)

Relation [\(8.34\)](#page-6-1) is proved in Lemma [1,](#page-14-1) Sect. [8.4.](#page-14-0) It holds if the limit on one of its sides exists. The limit on the right-hand side of (8.34) let us denote by $\psi(x)$. From Eqs. [\(8.7\)](#page-1-4) and [\(8.31\)](#page-6-0) it follows that ψ satisfies the equation

$$
\psi = \varphi - B\varphi,
$$

where

$$
\varphi := \int_{\Omega} g_0(x, y) f(y) dy,
$$

$$
g_0(x, y) := \frac{1}{4\pi |x - y|},
$$

$$
B\psi := \int_{\Omega} g_0(x, y) q(y) \psi(y) dy,
$$

and

$$
q(x) := c(x)h(x)N(x).
$$

The function ψ can be calculated by the formula

$$
\psi(x) = (I + B)^{-1}\varphi.
$$
\n(8.35)

From the physical point of view the function $h(x)$ is non-negative because the flux $-\nabla u$ of the heat flow is proportional to the temperature *u* and is directed along the outer normal *N*: $-u_N = h_1 u$, where $h_1 = -h < 0$. Thus, $q \ge 0$.

It is proved in [\[5,](#page-16-3) [6\]](#page-16-4) that zero is not an eigenvalue of the operator $-\nabla^2 + a(x)$ provided that $q(x) > 0$ and

$$
q = O\left(\frac{1}{|x|^{2+\epsilon}}\right), \quad |x| \to \infty,
$$

and $\epsilon > 0$.

In our case, $q(x) = 0$ outside of the bounded region *D*, so the operator $(I + B)^{-1}$
sts and is bounded in $C(D)$ exists and is bounded in $C(D)$.

Let us formulate our basic result.

Theorem 1 Assume [\(8.1\)](#page-1-5), [\(8.18\)](#page-3-2), and $h > 0$. Then, there exists the limit $U(x, \lambda)$ of $U_e(x, \lambda)$ as $a \to 0$, $U(x, \lambda)$ solves Eq. [\(8.31\)](#page-6-0), and there exists the limit [\(8.34\)](#page-6-1), where $\psi(x)$ *is given by formula* [\(8.35\)](#page-7-0)*.*

Methods of our proof of Theorem 1 are quite different from the proof of homogenization theory results in [\[1,](#page-16-5) [3\]](#page-16-6).

The author's plenary talk at Chaos-2015 Conference was published in [\[18\]](#page-17-8).

8.2 Creating Materials Which Allows One to Transmit Heat Signals Along a Line

In applications it is of interest to have materials in which heat propagates along a line and decays fast in all the directions orthogonal to this line.

In this section a construction of such material is given. We follow [\[17\]](#page-17-2) with some simplifications.

The idea is to create first the medium in which the heat transfer is governed by the equation

$$
u_t = \Delta u - q(x)u
$$
 in D, $u|_S = 0$, $u|_{t=0} = f(x)$, (8.36)

where *D* is a bounded domain with a piece-wise smooth boundary *S*, $D = D_0 \times [0, L]$, $D_0 \subset \mathbb{R}^2$ is a smooth domain orthogonal to the axis x_1 , $x = (x_1, x_2, x_3)$, x_2 , $x_3 \in D_0$, $0 \le x_1 \le L$.

Such a medium is created by embedding many small impedance particles into a given domain *D* filled with a homogeneous material. A detailed argument, given in Sect. [8.1](#page-0-0) (see also [\[13,](#page-17-0) [16\]](#page-17-1)), yields the following result.

Assume that in every open subset Δ of *D* the number of small particles is defined by the formula:

$$
\mathcal{N}(\Delta) = \frac{1}{a^{2-\kappa}} \int_{\Delta} N(x) dx [1 + o(1)], \quad a \to 0,
$$
\n(8.37)

where $a > 0$ is the characteristic size of a small particle, $\kappa \in [0, 1)$ is a given number and $N(x) \geq 0$ is a continuous in *D* function.

Assume also that on the surface S_m of the *m*-th particle D_m the impedance boundary condition holds. Here

$$
1 \le m \le M = \mathcal{N}(D) = O\left(\frac{1}{a^{2-\kappa}}\right), \quad a \to 0,
$$

and the impedance boundary conditions are:

$$
u_N = \zeta_m u \quad \text{on } S_m, \quad \text{Re}\zeta_m \ge 0,
$$
\n(8.38)

where

$$
\zeta_m := \frac{h(x_m)}{a^{\kappa}}
$$

is the boundary impedance, $x_m \in D_m$ is an arbitrary point (since D_m is small the position of x_m in D_m is not important), κ is the same parameter as in [\(8.37\)](#page-8-0) and $h(x)$ is a continuous in *D* function, Re $h \geq 0$, *N* is the unit normal to S_m pointing out of D_m . The functions $h(x)$, $N(x)$ and the number κ can be chosen as the experimenter wishes.

It is proved in Sect. [8.1](#page-0-0) (see also [\[13,](#page-17-0) [16\]](#page-17-1)) that, as $a \rightarrow 0$, the solution of the problem

$$
u_t = \Delta u \quad \text{in} D \setminus \bigcup_{m=1}^M D_m, \ u_N = \zeta_m u \quad \text{on } S_m, \ 1 \le m \le M, \tag{8.39}
$$

$$
u|_{S}=0,\t\t(8.40)
$$

and

$$
u|_{t=0} = f(x),
$$
\n(8.41)

has a limit $u(x, t)$. This limit solves problem (8.36) with

$$
q(x) = c_S N(x)h(x),\tag{8.42}
$$

where

$$
c_S := \frac{|S_m|}{a^2} = const,
$$
\n(8.43)

and $|S_m|$ is the surface area of S_m . By assuming that c_S is a constant, we assume, for simplicity only, that the small particles are identical in shape, see [\[13\]](#page-17-0).

Since $N(x) \ge 0$ is an arbitrary continuous function and $h(x)$, $Reh \ge 0$, is an arbitrary continuous function, and both functions can be chosen by experimenter as he/she wishes, it is clear that an arbitrary real-valued potential *q* can be obtained by formula (8.42) .

Suppose that

$$
(-\Delta + q(x))\phi(x) = \lambda_n \phi_n, \quad \phi_n|_{S} = 0, \quad ||\phi_n||_{L^2(D)} = ||\phi_n|| = 1, \quad (8.44)
$$

where $\{\phi_n\}$ is an orthonormal basis of $L^2(D) := H$. Then the unique solution to [\(8.36\)](#page-7-1) is

$$
u(x,t) = \sum_{n=1}^{\infty} e^{-\lambda_n t} (f, \phi_n) \phi_n(x).
$$
 (8.45)

If $q(x)$ is such that $\lambda_1 = 0, \lambda_2 \gg 1$, and $\lambda_2 \leq \lambda_3 \leq \ldots$, then, as $t \to \infty$, the series [\(8.45\)](#page-9-0) is well approximated by its first term

$$
u(x,t) = (f, \phi_1)\phi_1 + O(e^{-10t}), \quad t \to \infty.
$$
 (8.46)

If $\lambda_1 > 0$ is very small, then the main term of the solution is

$$
u(x,t) = (f, \phi_1)\phi_1 e^{-\lambda_1 t} + O(e^{-10t})
$$

as $t \to \infty$. The term $e^{-\lambda_1 t} \sim 1$ if $t \ll \frac{1}{\lambda_1}$.
Thus, our problem is solved if $a(x)$ has

Thus, our problem is solved if $q(x)$ has the following property:

$$
|\phi_1(x)|
$$
decays as ρ grows, $\rho = (x_2^2 + x_3^2)^{1/2}$. (8.47)

Since the eigenfunction is normalized, $||\phi_1|| = 1$, this function will not tend to zero in a neighborhood of the line $\rho = 0$, so information can be transformed by the heat signals along the line $\rho = 0$, that is, along *s*-axis. Here we use the cylindrical coordinates:

$$
x = (x_1, x_2, x_3) = (s, \rho, \theta), \quad s = x_1, \quad \rho = (x_2^2 + x_3^2)^{1/2}.
$$

In Sect. [8.3](#page-10-0) the domain D_0 is a disc and the potential $q(x)$ does not depend on θ .

The technical part of solving our problem consists of the construction of $q(x)$ = $c_S N(x)h(x)$ such that

$$
\lambda_1 = 0, \quad \lambda_2 \gg 1; \quad |\phi_1(x)| \text{ decays as } \rho \text{ grows.}
$$
 (8.48)

Since the function $N(x) \ge 0$ and $h(x)$, Re $h \ge 0$, are at our disposal, any desirable $q, \text{Re } q \geq 0$, can be obtained by embedding many small impedance particles in a given domain *D*. In Sect. [8.3,](#page-10-0) a potential *q* with the desired properties is constructed. This construction allows one to transform information along a straight line using heat signals.

8.3 Construction of $q(x)$

Let

$$
q(x) = p(\rho) + Q(s),
$$

where $s := x_1, \rho := (x_2^2 + x_3^2)^{1/2}$. Then the solution to problem [\(8.44\)](#page-9-1) is $u = v(\rho)w(s)$ where $v(\rho)w(s)$, where

$$
-v''_m - \rho^{-1}v'_m + p(\rho)v_m = \mu_m v_m, \quad 0 \le \rho \le R,
$$

$$
|v_m(0)| < \infty, \quad v_m(R) = 0,
$$
 (8.49)

and

$$
-w''_l + Q(s)w_l = v_l w_l, \quad 0 \le s \le L,
$$

$$
w_l(0) = 0, \quad w_l(L) = 0.
$$
 (8.50)

One has

$$
\lambda_n = \mu_m + \nu_l, \quad n = n(m, l). \tag{8.51}
$$

Our task is to find a potential $Q(s)$ such that $v_1 = 0$, $v_2 \gg 1$ and a potential $p(\rho)$ such that $\mu_1 = 0, \mu_2 \gg 1$ and $|v_m(\rho)|$ decays as ρ grows.

It is known how to construct $q(s)$ with the desired properties: the Gel'fand-Levitan method allows one to do this, see [\[7\]](#page-16-7). Let us recall this construction. One has $\nu_{l0} = l^2$, where we set $L = \pi$ and denote by ν_{l0} the eigenvalues of the problem (8.50) with $Q(\epsilon) = 0$ Let the eigenvalues of the operator (8.50) with $Q \neq 0$ problem [\(8.50\)](#page-10-1) with $Q(s) = 0$. Let the eigenvalues of the operator (8.50) with $Q \neq 0$ be $\nu_1 = 0, \nu_2 = 11, \nu_3 = 14, \nu_l = \nu_{l0}$ for $l \geq 4$.

The kernel $L(x, y)$ in the Gel'fand-Levitan theory is defined as follows:

$$
L(x,y) = \int_{-\infty}^{\infty} \frac{\sin(\sqrt{\lambda}x)}{\sqrt{\lambda}} \frac{\sin(\sqrt{\lambda}y)}{\sqrt{\lambda}} d(\varrho(\lambda) - \varrho_0(\lambda)),
$$

where $\varrho(\lambda)$ is the spectral function of the operator [\(8.50\)](#page-10-1) with the potential $\varrho =$ $Q(s)$, and $\varphi_0(\lambda)$ is the spectral function of the operator [\(8.50\)](#page-10-1) with the potential $Q = 0$ and the same boundary conditions as for the operator with $Q \neq 0$.

Due to our choice of ν_l and the normalizing constants α_j , namely: $\alpha_j = \frac{\pi}{2}$ for $j \ge 2$ and $\alpha_1 = \frac{\pi^3}{3}$, the kernel *L*(*x*, *y*) is given explicitly by the formula:

$$
L(x,y) = \frac{3xy}{\pi^3} + \frac{2}{\pi} \left(\frac{\sin(\sqrt{\nu_2}x)}{\sqrt{\nu_2}} \frac{\sin(\sqrt{\nu_2}y)}{\sqrt{\nu_2}} + \frac{\sin(\sqrt{\nu_3}x)}{\sqrt{\nu_3}} \frac{\sin(\sqrt{\nu_3}y)}{\sqrt{\nu_3}} \right) -
$$

$$
- \frac{2}{\pi} \left(\sin x \sin y + \sin(2x) \sin(2y) + \sin(3x) \sin(3y) \right), \quad (8.52)
$$

where $v_1 = 0$, $v_2 = 11$ and $v_3 = 14$. This is a finite rank kernel. The term *xy* is the value of the function $\frac{\sin \nu x}{\nu}$ $\frac{\sin vy}{v}$ at $v = 0$, and the corresponding normalizing constant is $\frac{\pi^3}{3} = ||x||^2 = \int_0^{\pi} x^2 dx$.
Solve the Gel'fand-Levitan equ

Solve the Gel'fand-Levitan equation:

$$
K(s,\tau) + \int_0^s K(s,s')L(s',\tau)ds' = -L(s,\tau), \quad 0 \le \tau \le s,
$$
 (8.53)

which is uniquely solvable (see $[7]$). Since Eq. (8.53) has finite-rank kernel it can be solved analytically being equivalent to a linear algebraic system.

If the function $K(s, \tau)$ is found, then the potential $Q(s)$ is computed by the formula $[2, 7]$ $[2, 7]$ $[2, 7]$:

$$
Q(s) = 2\frac{dK(s,s)}{ds},\tag{8.54}
$$

and this $Q(s)$ has the required properties: $v_1 = 0, v_2 \gg 1, v_l \le v_{l+1}$.
Consider now the operator (8.49) for $v(s)$. Our problem is to

Consider now the operator [\(8.49\)](#page-10-2) for $v(\rho)$. Our problem is to calculate $p(\rho)$ which has the required properties:

$$
\mu_1=0, \quad \mu_2\gg 1, \quad \mu_m\leq \mu_{m+1},
$$

and $|\phi_m(\rho)|$ decays as ρ grows.

We reduce this problem to the previous one that was solved above. To do this, set $v = \frac{\psi}{\sqrt{\rho}}$. Then equation

$$
-v'' - \frac{1}{\rho}v' + p(\rho)v = \mu v,
$$

is transformed to the equation

$$
-\psi'' - \frac{1}{4\rho^2}\psi + p(\rho)\psi = \mu\psi.
$$
 (8.55)

Let

$$
p(\rho) = \frac{1}{4\rho^2} + Q(\rho),
$$
\n(8.56)

where $Q(\rho)$ is constructed above. Then Eq. [\(8.55\)](#page-12-0) becomes

$$
-\psi'' + Q(\rho)\psi = \mu\psi,\tag{8.57}
$$

and the boundary conditions are:

$$
\psi(R) = 0, \quad \psi(0) = 0. \tag{8.58}
$$

The problem [\(8.57\)](#page-12-1)–[\(8.58\)](#page-12-2) has the desired eigenvalues $\mu_1 = 0, \mu_2 \gg 1, \mu_m \le$ μ_{m+1} .

The eigenfunction

$$
\phi_1(x)=v_1(\rho)w_1(s),
$$

where $v_1(\rho) = \frac{\psi_1(\rho)}{\sqrt{\rho}}$, decays as ρ grows, and the eigenvalues λ_n can be calculated by the formula:

$$
\lambda_n = \mu_m + \nu_l, \quad m, l \ge 1, \quad n = n(m, l).
$$

Since $\mu_1 = \nu_1 = 0$ one has $\lambda_1 = 0$. Since $\nu_2 = 11$ and $\mu_2 = 11$, one has $\lambda_2 = 11 \gg 1$.

Thus, the desired potential is constructed:

$$
q(x) = Q(s) + (\frac{1}{4\rho^2} + Q(\rho)),
$$

where $Q(s)$ is given by formula [\(8.54\)](#page-11-1).

This concludes the description of our procedure for the construction of *q*. *Remark 1* It is known (see, for example, [\[2\]](#page-16-8)) that the normalizing constants

$$
\alpha_j := \int_0^\pi \varphi_j^2(s) ds
$$

and the eigenvalues λ_j , defined by the differential equation

$$
-\frac{d^2\varphi_j}{ds^2} + Q(s)\varphi_j = \lambda_j\varphi_j,
$$

the boundary conditions

$$
\varphi_j'(0) = 0, \quad \varphi_j'(\pi) = 0,
$$

and the normalizing condition $\varphi_j(0) = 1$, have the following asymptotic:

$$
\alpha_j = \frac{\pi}{2} + O(\frac{1}{j^2}) \quad \text{as } j \to \infty,
$$

and

$$
\sqrt{\lambda_j} = j + O(\frac{1}{j})
$$
 as $j \to \infty$.

The differential equation

$$
-\Psi_j'' + Q(s)\Psi_j = v_j\Psi_j,
$$

the boundary condition

$$
\Psi_j(0)=0, \quad \Psi_j(\pi)=0,
$$

and the normalizing condition $\Psi_j'(0) = 1$ imply

$$
\sqrt{\lambda_j} = j + O(\frac{1}{j})
$$
 as $j \to \infty$,
 $\Psi_j(s) \sim \frac{\sin(js)}{j}$ as $j \to \infty$.

The main term of the normalized eigenfunction is:

$$
\frac{\Psi_j}{\|\Psi_j\|} \sim \sqrt{2/\pi} \sin(js) \quad \text{as} \quad j \to \infty,
$$

and the main term of the normalizing constant is:

$$
\alpha_j \sim \frac{\pi}{2j^2}
$$
 as $j \to \infty$.

8.4 Auxiliary Results

Lemma 1 If one of the limits $\lim_{t\to\infty} \frac{1}{t} \int_0^t u(s) ds$ or $\lim_{\lambda\to 0} \lambda \mathcal{U}(\lambda)$ exists, then the *other also exists and they are equal to each other:*

$$
\lim_{t\to\infty}\frac{1}{t}\int_0^t u(s)ds = \lim_{\lambda\to 0}\lambda\mathcal{U}(\lambda),
$$

where

$$
\mathcal{U}(\lambda) := \int_0^\infty e^{-\lambda t} u(t) dt := \bar{u}(\lambda).
$$

Proof Denote

$$
\frac{1}{t}\int_0^t u(t)dt := v(t), \quad \bar{u}(\sigma) := \int_0^\infty e^{-\sigma t}u(t)dt.
$$

Then

$$
\bar{v}(\lambda) = \int_{\lambda}^{\infty} \frac{\bar{u}(\sigma)}{\sigma} d\sigma
$$

by the properties of the Laplace transform.

Assume that the limit $v(\infty) := v_{\infty}$ exists:

$$
\lim_{t \to \infty} v(t) = v_{\infty}.\tag{8.59}
$$

Then,

$$
v_{\infty} = \lim_{\lambda \to 0} \lambda \int_0^{\infty} e^{-\lambda t} v(t) dt = \lim_{\lambda \to 0} \lambda \bar{v}(\lambda).
$$

Indeed $\lambda \int_{0}^{\infty}$ $\boldsymbol{0}$ $e^{-\lambda t}dt = 1$, so

$$
\lim_{\lambda \to 0} \lambda \int_0^\infty e^{-\lambda t} (v(t) - v_\infty) dt = 0,
$$

and [\(8.59\)](#page-14-2) is verified.

One has

$$
\lim_{\lambda \to 0} \lambda \bar{v}(\lambda) = \lim_{\lambda \to 0} \int_{\lambda}^{\infty} \frac{\lambda}{\sigma} \bar{u}(\sigma) d\sigma = \lim_{\lambda \to 0} \lambda \bar{u}(\lambda),
$$
\n(8.60)

as follows from a simple calculation:

$$
\lim_{\lambda \to 0} \int_{\lambda}^{\infty} \frac{\lambda}{\sigma} \bar{u}(\sigma) d\sigma = \lim_{\lambda \to 0} \int_{\lambda}^{\infty} \frac{\lambda}{\sigma^2} \sigma \bar{u}(\sigma) d\sigma = \lim_{\sigma \to 0} \sigma \bar{u}(\sigma),
$$
 (8.61)

where we have used the relation \int_{0}^{∞} λ $\frac{\lambda}{\sigma^2}d\sigma=1.$ Alternatively, let $\sigma^{-1} = \gamma$. Then,

$$
\int_{\lambda}^{\infty} \frac{\lambda}{\sigma^2} \sigma \bar{u}(\sigma) d\sigma = \frac{1}{1/\lambda} \int_{0}^{1/\lambda} \frac{1}{\gamma} \bar{u}(\frac{1}{\gamma}) d\gamma = \frac{1}{\omega} \int_{0}^{\omega} \frac{1}{\gamma} \bar{u}(\frac{1}{\gamma}) d\gamma.
$$
 (8.62)

If $\lambda \to 0$, then $\omega = \lambda^{-1} \to \infty$, and if

$$
\psi := \gamma^{-1} \bar{u}(\gamma^{-1}),
$$

then

$$
\lim_{\omega \to \infty} \frac{1}{\omega} \int_0^{\omega} \psi d\gamma = \psi(\infty) = \lim_{\gamma \to 0} \gamma^{-1} \bar{u}(\gamma^{-1}) = \lim_{\sigma \to \infty} \sigma \bar{u}(\sigma).
$$
 (8.63)

Lemma [1](#page-14-1) is proved. \Box

Lemma 2 *Equation [\(8.21\)](#page-4-3) holds.*

Proof As $a \rightarrow 0$, one has

$$
\frac{\partial}{\partial N_s} \frac{e^{-\sqrt{\lambda}|s-s'|}}{4\pi|s-s'|} = \frac{\partial}{\partial N_s} \frac{1}{4\pi|s-s'|} + \frac{\partial}{\partial N_s} \frac{e^{-\sqrt{\lambda}|s-s'|}-1}{4\pi|s-s'|}. \tag{8.64}
$$

It is known (see [\[8\]](#page-16-9)) that

$$
\int_{\mathcal{S}_m} ds \int_{\mathcal{S}_m} \frac{\partial}{\partial N_s} \frac{1}{4\pi |s - s'|} \sigma_m(s') ds' = -\frac{1}{2} \int_{\mathcal{S}_m} \sigma_m(s') ds' = -\frac{1}{2} Q_m. \tag{8.65}
$$

On the other hand, as $a \rightarrow 0$, one has

$$
\left| \int_{S_m} ds \int_{S_m} \frac{e^{-\sqrt{\lambda}|s-s'|} - 1}{4\pi|s-s'|} \sigma_m(s')ds' \right| \leq |Q_m| \int_{S_m} ds \frac{1 - e^{-\sqrt{\lambda}|s-s'|}}{4\pi|s-s'|} = o(Q_m). \tag{8.66}
$$

The relations (8.65) and (8.66) justify (8.21) .

Lemma [2](#page-15-0) is proved. \Box

Lemma 3 *If assumption [\(8.18\)](#page-3-2) holds, then inequality [\(8.17\)](#page-3-0) holds.*

Proof One has

$$
\mathcal{J}_{1,m} := |g(x, x_m)Q| = \frac{|Q_m|e^{-\sqrt{\lambda}|x - x_m|}}{4\pi|x - x_m|},\tag{8.67}
$$

and

$$
\mathcal{J}_{2,m} \leq \frac{e^{-\sqrt{\lambda}|x-x_m|}}{4\pi|x-x_m|} \max\left(\sqrt{\lambda}a, \frac{a}{|x-x_m|}\right) \int_{\mathcal{S}_m} |\sigma_m(s')| ds' \tag{8.68}
$$

where $|x - x_m| \ge d$, and $d > 0$ is the smallest distance between two neighboring particles. One may consider only those values of λ for which $\lambda^{1/4}a < \frac{a}{d}$, because for the large values of λ , such that $\lambda^{1/4} \geq \frac{1}{d}$ the value of $e^{-\sqrt{\lambda}|x-x_m|}$ is negligibly small.
The average temperature depends on the behavior of *U* for small λ see Lemma 1. The average temperature depends on the behavior of U for small λ , see Lemma [1.](#page-14-1)

One has $|Q_m| = \int_{S_m} |\sigma_m(s')| ds' > 0$ because σ_m keeps sign on S_m , as follows m Eq. (8.24) as $a \to 0$ from Eq. [\(8.24\)](#page-4-0) as $a \rightarrow 0$.

It follows from (8.67) – (8.68) that

$$
\left|\frac{\mathcal{J}_{2,m}}{\mathcal{J}_{1,m}}\right| \le O\bigg(\left|\frac{a}{x - x_m}\right|\bigg) \le O\bigg(\frac{a}{d}\bigg) << 1. \tag{8.69}
$$

From (8.69) by the arguments similar to the given in [\[9\]](#page-16-13) one obtains (8.17) .

Lemma [3](#page-16-0) is proved. \Box

References

- 1. V. Jikov, S. Kozlov, O. Oleinik, *Homogenization of Differential Operators and Integral Functionals* (Springer, Berlin, 1994)
- 2. B.M. Levitan, *Inverse Sturm-Liouville Problems* (VNU Press, Utrecht, 1987)
- 3. V.A. Marchenko, E.Ya. Khruslov, *Homogenization of Partial Differential Equations* (Birkhäuser, Boston, 2006)
- 4. A.G. Ramm, Inversion of the Laplace transform from the real axis. Inverse Prob. **2**, L55–L59 (1986)
- 5. A.G. Ramm, Sufficient conditions for zero not to be an eigenvalue of the Schrödinger operator. J. Math. Phys. **28**, 1341–1343 (1987)
- 6. A.G. Ramm, Conditions for zero not to be an eigenvalue of the Schrödinger operator. J. Math. Phys. **29**, 1431–1432 (1988)
- 7. A.G. Ramm, *Inverse Problems* (Springer, New York, 2005)
- 8. A.G. Ramm, *Wave Scattering by Small Bodies of Arbitrary Shapes* (World Scientific Publishers, Singapore, 2005)
- 9. A.G. Ramm, Many-body wave scattering by small bodies and applications. J. Math. Phys. **48**(N10), 103511 (2007)
- 10. A.G. Ramm, A collocation method for solving integral equations. Int. J. Comput. Sci. Math. **3**(N2), 222–228 (2009)
- 11. A.G. Ramm, Collocation method for solving some integral equations of estimation theory. Int. J. Pure Appl. Math. **62**(N1), 57–65 (2010)
- 12. A.G. Ramm, Wave scattering by many small bodies and creating materials with a desired refraction coefficient. Afr. Mat. **22**(N1), 33–55 (2011)
- 13. A.G. Ramm, *Scattering of Acoustic and Electromagnetic Waves by Small Bodies of Arbitrary Shapes. Applications To Creating New Engineered Materials* (Momentum Press, New York, 2013)
- 14. A.G. Ramm, Many-body wave scattering problems in the case of small scatterers. J. Appl. Math. Comput. **41**(N1), 473–500 (2013). doi:10.1007/s12190-012-0609-1
- 15. A.G. Ramm, Wave scattering by many small bodies: transmission boundary conditions. Rep. Math. Phys. **71**(N3), 279–290 (2013)
- 16. A.G. Ramm, Heat transfer in a medium in which many small particles are embedded. Math. Model. Nat. Phenom. **8**(N1), 193–199 (2013)
- 17. A.G. Ramm, Creating materials in which heat propagates along a line. Boll Union. Math. Ital. **8**(N3), 165–168 (2015). doi:10.1007/s40574-015-0033-1 (Published 8 Sept. 2015)
- 18. A.G. Ramm, Scattering of EM waves by many small perfectly conducting or impedance bodies. J. Math. Phys. **56**(N9), 091901 (2015)
- 19. A.G. Ramm, S. Indratno, Inversion of the Laplace transform from the real axis using an adaptive iterative method. Int. J. Math. Math. Sci. **2009**(Article 898195), 38 (2009)
- 20. A.G. Ramm, S. Indratno, A collocation method for solving some integral equations in distributions. J. Comput. Appl. Math. **236**, 1296–1313 (2011)