Chapter 8 Heat Transfer in a Complex Medium

A.G. Ramm

Abstract The heat equation is considered in the complex medium consisting of many small bodies (particles) embedded in a given material. On the surfaces of the small bodies an impedance boundary condition is imposed. An equation for the limiting field is derived when the characteristic size *a* of the small bodies tends to zero, their total number $\mathcal{N}(a)$ tends to infinity at a suitable rate, and the distance d = d(a) between neighboring small bodies tends to zero: a << d, $\lim_{a\to 0} \frac{a}{d(a)} = 0$. No periodicity is assumed about the distribution of the small bodies. These results are basic for a method of creating a medium in which heat signals are transmitted along a given line. The technical part for this method is based on an inverse problem of finding potential with prescribed eigenvalues.

MSC 80M40; 80A20, 35B99; 35K20; 35Q41; 35R30;74A30; 74G75

PACS 65.80.-g

8.1 Introduction and Results

In this paper the problem of heat transfer in a complex medium consisting of many small impedance particles of an arbitrary shape is solved. Equation for the effective limiting temperature is derived when the characteristic size *a* of the particles tends to zero while their number tends to infinity at a suitable rate while the distance *d* between closest neighboring particles is much larger than a, d >> a.

These results are used for developing a method for creating materials in which heat is transmitted along a line. Thus, the information can be transmitted by a heat signals.

A.G. Ramm (🖂)

Department of Mathematics, Kansas State University, Manhattan, KS 66506-2602, USA e-mail: ramm@math.ksu.edu

[©] Springer International Publishing Switzerland 2016

C. Skiadas (ed.), *The Foundations of Chaos Revisited: From Poincaré to Recent Advancements*, Understanding Complex Systems, DOI 10.1007/978-3-319-29701-9_8

The contents of this paper is based on the earlier papers of the author cited in the bibliography, especially [13, 16, 17].

Let many small bodies (particles) D_m , $1 \le m \le M$, of an arbitrary shape be distributed in a bounded domain $D \subset \mathbb{R}^3$, diam $D_m = 2a$, and the boundary of D_m is denoted by S_m and is assumed twice continuously differentiable. The small bodies are distributed according to the law

$$\mathcal{N}(\Delta) = \frac{1}{a^{2-\kappa}} \int_{\Delta} N(x) dx [1+o(1)], \quad a \to 0.$$
(8.1)

Here $\Delta \subset D$ is an arbitrary open subdomain of $D, \kappa \in [0, 1)$ is a constant, $N(x) \ge 0$ is a continuous function, and $\mathcal{N}(\Delta)$ is the number of the small bodies D_m in Δ . The heat equation can be stated as follows:

$$u_t = \nabla^2 u + f(x) \text{ in } \mathbb{R}^3 \setminus \bigcup_{m=1}^M D_m := \Omega, \quad u|_{t=0} = 0,$$
 (8.2)

$$u_N = \zeta_m u \text{ on } \mathcal{S}_m, \quad 1 \le m \le M, \qquad Re\zeta_m \ge 0.$$
 (8.3)

Here N is the outer unit normal to S,

$$\mathcal{S} := \bigcup_{m=1}^{M} \mathcal{S}_m, \quad \zeta_m = \frac{h(x_m)}{a^{\kappa}}, \quad x_m \in D_m, \quad 1 \le m \le M,$$

and h(x) is a continuous function in D, $\operatorname{Re} h \ge 0$.

Denote

$$\mathcal{U} := \mathcal{U}(x, \lambda) = \int_0^\infty e^{-\lambda t} u(x, t) dt$$

Then, taking the Laplace transform of Eqs. (8.2)–(8.3) one gets:

$$-\nabla^2 \mathcal{U} + \lambda \mathcal{U} = \lambda^{-1} f(x) \text{ in } \Omega, \qquad (8.4)$$

$$\mathcal{U}_N = \zeta_m \mathcal{U} \text{ on } \mathcal{S}_m, 1 \le m \le M.$$
(8.5)

Let

$$g(x, y) := g(x, y, \lambda) := \frac{e^{-\sqrt{\lambda}|x-y|}}{4\pi |x-y|},$$
 (8.6)

$$F(x,\lambda) := \frac{1}{\lambda} \int_{\mathbb{R}^3} g(x,y) f(y) dy.$$
(8.7)

Look for the solution to (8.4)–(8.5) of the form

$$\mathcal{U}(x,\lambda) = F(x,\lambda) + \sum_{m=1}^{M} \int_{\mathcal{S}_m} g(x,s)\sigma_m(s)ds,$$
(8.8)

where

$$\mathcal{U}(x,\lambda) := \mathcal{U}(x) := \mathcal{U},\tag{8.9}$$

and $\mathcal{U}(x)$ depends on λ .

The functions σ_m are unknown and should be found from the boundary conditions (8.5). Equation (8.4) is satisfied by \mathcal{U} of the form (8.8) with arbitrary continuous σ_m . To satisfy the boundary condition (8.5) one has to solve the following equation obtained from the boundary condition (8.5):

$$\frac{\partial \mathcal{U}_e(x)}{\partial N} + \frac{A_m \sigma_m - \sigma_m}{2} - \zeta_m \mathcal{U}_e - \zeta_m T_m \sigma_m = 0 \text{ on } \mathcal{S}_m, \quad 1 \le m \le M, \quad (8.10)$$

where the effective field $U_e(x)$ is defined by the formula:

$$\mathcal{U}_{e}(x) := \mathcal{U}_{e,m}(x) := \mathcal{U}(x) - \int_{\mathcal{S}_{m}} g(x,s)\sigma_{m}(s)ds, \qquad (8.11)$$

the operator T_m is defined by the formula:

$$T_m \sigma_m = \int_{\mathcal{S}_m} g(s, s') \sigma_m(s') ds', \qquad (8.12)$$

and A_m is:

$$A_m \sigma_m = 2 \int_{\mathcal{S}_m} \frac{\partial g(s, s')}{\partial N_s} \sigma_m(s') ds'.$$
(8.13)

In deriving Eq. (8.10) we have used the known formula for the outer limiting value on S_m of the normal derivative of a simple layer potential.

We now apply the ideas and methods for solving many-body scattering problems developed in [12-15].

Let us call $\mathcal{U}_{e,m}$ the effective (self-consistent) value of \mathcal{U} , acting on the *m*-th body. As $a \to 0$, the dependence on *m* disappears, since

$$\int_{\mathcal{S}_m} g(x,s)\sigma_m(s)ds \to 0 \text{ as } a \to 0.$$

One has

$$\mathcal{U}(x,\lambda) = F(x,\lambda) + \sum_{m=1}^{M} g(x,x_m)Q_m + \mathcal{J}_2, \quad x_m \in D_m,$$
(8.14)

where

$$Q_m := \int_{\mathcal{S}_m} \sigma_m(s) ds,$$
$$\mathcal{J}_2 := \sum_{m=1}^M \int_{\mathcal{S}_m} [g(x, s') - g(x, x_m)] \sigma_m(s') ds'.$$
(8.15)

Define

$$\mathcal{J}_1 := \sum_{m=1}^M g(x, x_m) Q_m.$$
(8.16)

We prove in Lemma 3, Sect. 8.4 (see also [13, 16]) that

$$|\mathcal{J}_2| \ll |\mathcal{J}_1| \text{ as } a \to 0 \tag{8.17}$$

provided that

$$\lim_{a \to 0} \frac{a}{d(a)} = 0,$$
(8.18)

where d(a) = d is the minimal distance between neighboring particles.

If (8.17) holds, then problem (8.4)–(8.5) is solved asymptotically by the formula

$$\mathcal{U}(x,\lambda) = F(x,\lambda) + \sum_{m=1}^{M} g(x,x_m)Q_m, \quad a \to 0,$$
(8.19)

provided that asymptotic formulas for Q_m , as $a \to 0$, are found.

To find formulas for Q_m , let us integrate (8.10) over S_m , estimate the order of the terms in the resulting equation as $a \to 0$, and keep the main terms, that is, neglect the terms of higher order of smallness as $a \to 0$.

We get

$$\int_{\mathcal{S}_m} \frac{\partial \mathcal{U}_e}{\partial N} ds = \int_{D_m} \nabla^2 \mathcal{U}_e dx = O(a^3).$$
(8.20)

Here we assumed that $|\nabla^2 \mathcal{U}_e| = O(1), a \to 0$. This assumption is valid since $\mathcal{U} =$ $\lim_{a\to 0} \mathcal{U}_e$ is smooth as a solution to an elliptic equation. One has

$$\int_{\mathcal{S}_m} \frac{A_m \sigma_m - \sigma_m}{2} ds = -Q_m [1 + o(1)], \ a \to 0.$$
(8.21)

This relation is proved in Lemma 2, Sect. 8.4, see also [13]. Furthermore,

$$-\zeta_m \int_{\mathcal{S}_m} \mathcal{U}_e ds = -\zeta_m |\mathcal{S}_m| \mathcal{U}_e(x_m) = O(a^{2-\kappa}), \quad a \to 0,$$
(8.22)

where $|S_m| = O(a^2)$ is the surface area of S_m . Finally,

$$-\zeta_m \int_{\mathcal{S}_m} ds \int_{\mathcal{S}_m} g(s, s') \sigma_m(s') ds' = -\zeta_m \int_{\mathcal{S}_m} ds' \sigma_m(s') \int_{\mathcal{S}_m} ds g(s, s')$$
$$= Q_m O(a^{1-\kappa}), \qquad a \to 0.$$
(8.23)

Thus, the main term of the asymptotic of Q_m , as $a \to 0$, is

$$Q_m = -\zeta_m |\mathcal{S}_m| \mathcal{U}_e(x_m). \tag{8.24}$$

Formulas (8.24) and (8.19) yield

$$\mathcal{U}(x,\lambda) = F(x,\lambda) - \sum_{m=1}^{M} g(x,x_m)\zeta_m |\mathcal{S}_m| \mathcal{U}_e(x_m,\lambda), \qquad (8.25)$$

and

$$\mathcal{U}_{e}(x_{m},\lambda) = F(x_{m},\lambda) - \sum_{m' \neq m,m'=1}^{M} g(x_{m},x_{m'})\zeta_{m'} |\mathcal{S}_{m'}| \mathcal{U}_{e}(x_{m'},\lambda).$$
(8.26)

Denote

$$\mathcal{U}_e(x_m,\lambda) := \mathcal{U}_m, \quad F(x_m,\lambda) := F_m, \quad g(x_m,x_{m'}) := g_{mm'}$$

and write (8.26) as a linear algebraic system for \mathcal{U}_m :

$$\mathcal{U}_{m} = F_{m} - a^{2-\kappa} \sum_{m' \neq m} g_{mm'} h_{m'} c_{m'} \mathcal{U}_{m'}, \quad 1 \le m \le M,$$
(8.27)

where $h_{m'} = h(x_{m'}), \zeta_{m'} = \frac{h_{m'}}{a^{\kappa}}, c_{m'} := |S_{m'}|a^{-2}$. Consider a partition of the bounded domain *D*, in which the small bodies are distributed, into a union of $P \ll M$ small nonintersecting cubes Δ_p , $1 \leq p \leq P$, of side *b*,

$$b >> d$$
, $b = b(a) \rightarrow 0$ as $a \rightarrow 0$ $\lim_{a \rightarrow 0} \frac{d(a)}{b(a)} = 0$.

Let $x_p \in \Delta_p$, $|\Delta_p|$ = volume of Δ_p . One has

$$a^{2-\kappa} \sum_{m'=1,m'\neq m}^{M} g_{mm'}h_{m'}c_{m'}\mathcal{U}_{m'} = a^{2-\kappa} \sum_{p'=1,p'\neq p}^{P} g_{pp'}h_{p'}c_{p'}\mathcal{U}_{p'} \sum_{x_{m'}\in\Delta_{p'}} 1 =$$
$$= \sum_{p'\neq p} g_{pp'}h_{p'}c_{p'}\mathcal{U}_{p'}N(x_{p'})|\Delta_{p'}|[1+o(1)], \quad a \to 0.$$
(8.28)

Thus, (8.27) yields a linear algebraic system (LAS) of order $P \ll M$ for the unknowns U_p :

$$\mathcal{U}_{p} = F_{p} - \sum_{p' \neq p, p'=1}^{P} g_{pp'} h_{p'} c_{p'} N_{p'} \mathcal{U}_{p'} |\Delta_{p'}|, \quad 1 \le p \le P.$$
(8.29)

Since $P \ll M$, the order of the original LAS (8.27) is drastically reduced. This is crucial when the number of particles tends to infinity and their size *a* tends to zero. We have assumed that

$$h_{m'} = h_{p'}[1 + o(1)], \quad c_{m'} = c_{p'}[1 + o(1)], \quad \mathcal{U}_{m'} = \mathcal{U}_{p'}[1 + o(1)], \quad a \to 0,$$
(8.30)

for $x_{m'} \in \Delta_{p'}$. This assumption is justified, for example, if the functions h(x), $\mathcal{U}(x, \lambda)$,

$$c(x) = \lim_{x_{m'} \in \Delta_{x}, a \to 0} \frac{|S_{m'}|}{a^2},$$

and N(x) are continuous, but these assumptions can be relaxed.

The continuity of the $U(x, \lambda)$ is a consequence of the fact that this function satisfies elliptic equation, and the continuity of c(x) is assumed. If all the small bodies are identical, then c(x) = c = const, so in this case the function c(x) is certainly continuous.

The sum in the right-hand side of (8.29) is the Riemannian sum for the integral

$$\lim_{a \to 0} \sum_{p'=1, p' \neq p}^{P} g_{pp'} h_{p'} c_{p'} N(x_{p'}) \mathcal{U}_{p'} |\Delta'_{p}| = \int_{D} g(x, y) h(y) c(y) N(y) \mathcal{U}(y, \lambda) dy$$

Therefore, linear algebraic system (8.29) is a collocation method for solving integral equation

$$\mathcal{U}(x,\lambda) = F(x,\lambda) - \int_D g(x,y)c(y)h(y)N(y)\mathcal{U}(y,\lambda)dy.$$
(8.31)

Convergence of this method for solving equations with weakly singular kernels is proved in [10], see also [11, 20].

Applying the operator $-\nabla^2 + \lambda$ to Eq. (8.31) one gets an elliptic differential equation:

$$(-\Delta + \lambda)\mathcal{U}(x,\lambda) = \frac{f(x)}{\lambda} - c(x)h(x)N(x)\mathcal{U}(x,\lambda).$$
(8.32)

Taking the inverse Laplace transform of this equation yields

$$u_t = \Delta u + f(x) - q(x)u, \quad q(x) := c(x)h(x)N(x).$$
 (8.33)

Therefore, the limiting equation for the temperature contains the term q(x)u. Thus, the embedding of many small particles creates a distribution of source and sink terms in the medium, the distribution of which is described by the term q(x)u.

If one solves Eq. (8.31) for $\mathcal{U}(x, \lambda)$, or linear algebraic system (8.29) for $\mathcal{U}_p(\lambda)$, then one can Laplace-invert $\mathcal{U}(x, \lambda)$ for $\mathcal{U}(x, t)$. Numerical methods for Laplace inversion from the real axis are discussed in [4, 19].

If one is interested only in the average temperature, one can use the relation

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T u(x, t) dt = \lim_{\lambda \to 0} \lambda \mathcal{U}(x, \lambda).$$
(8.34)

Relation (8.34) is proved in Lemma 1, Sect. 8.4. It holds if the limit on one of its sides exists. The limit on the right-hand side of (8.34) let us denote by $\psi(x)$. From Eqs. (8.7) and (8.31) it follows that ψ satisfies the equation

$$\psi = \varphi - B\varphi,$$

where

$$\varphi := \int_{\Omega} g_0(x, y) f(y) dy,$$
$$g_0(x, y) := \frac{1}{4\pi |x - y|},$$
$$B\psi := \int_{\Omega} g_0(x, y) q(y) \psi(y) dy$$

and

$$q(x) := c(x)h(x)N(x).$$

The function ψ can be calculated by the formula

$$\psi(x) = (I+B)^{-1}\varphi.$$
(8.35)

From the physical point of view the function h(x) is non-negative because the flux $-\nabla u$ of the heat flow is proportional to the temperature u and is directed along the outer normal N: $-u_N = h_1 u$, where $h_1 = -h < 0$. Thus, $q \ge 0$.

It is proved in [5, 6] that zero is not an eigenvalue of the operator $-\nabla^2 + q(x)$ provided that $q(x) \ge 0$ and

$$q = O(\frac{1}{|x|^{2+\epsilon}}), \quad |x| \to \infty,$$

and $\epsilon > 0$.

In our case, q(x) = 0 outside of the bounded region *D*, so the operator $(I + B)^{-1}$ exists and is bounded in *C*(*D*).

Let us formulate our basic result.

Theorem 1 Assume (8.1), (8.18), and $h \ge 0$. Then, there exists the limit $\mathcal{U}(x, \lambda)$ of $\mathcal{U}_e(x, \lambda)$ as $a \to 0$, $\mathcal{U}(x, \lambda)$ solves Eq. (8.31), and there exists the limit (8.34), where $\psi(x)$ is given by formula (8.35).

Methods of our proof of Theorem 1 are quite different from the proof of homogenization theory results in [1, 3].

The author's plenary talk at Chaos-2015 Conference was published in [18].

8.2 Creating Materials Which Allows One to Transmit Heat Signals Along a Line

In applications it is of interest to have materials in which heat propagates along a line and decays fast in all the directions orthogonal to this line.

In this section a construction of such material is given. We follow [17] with some simplifications.

The idea is to create first the medium in which the heat transfer is governed by the equation

$$u_t = \Delta u - q(x)u$$
 in D , $u|_S = 0$, $u|_{t=0} = f(x)$, (8.36)

where *D* is a bounded domain with a piece-wise smooth boundary $S, D = D_0 \times [0, L]$, $D_0 \subset \mathbb{R}^2$ is a smooth domain orthogonal to the axis $x_1, x = (x_1, x_2, x_3), x_2, x_3 \in D_0$, $0 \le x_1 \le L$.

Such a medium is created by embedding many small impedance particles into a given domain D filled with a homogeneous material. A detailed argument, given in Sect. 8.1 (see also [13, 16]), yields the following result.

Assume that in every open subset Δ of *D* the number of small particles is defined by the formula:

$$\mathcal{N}(\Delta) = \frac{1}{a^{2-\kappa}} \int_{\Delta} N(x) dx [1+o(1)], \quad a \to 0,$$
(8.37)

where a > 0 is the characteristic size of a small particle, $\kappa \in [0, 1)$ is a given number and $N(x) \ge 0$ is a continuous in D function.

Assume also that on the surface S_m of the *m*-th particle D_m the impedance boundary condition holds. Here

$$1 \le m \le M = \mathcal{N}(D) = O\left(\frac{1}{a^{2-\kappa}}\right), \quad a \to 0,$$

and the impedance boundary conditions are:

$$u_N = \zeta_m u \quad \text{on } S_m, \quad \text{Re}\zeta_m \ge 0, \tag{8.38}$$

where

$$\zeta_m := \frac{h(x_m)}{a^{\kappa}}$$

is the boundary impedance, $x_m \in D_m$ is an arbitrary point (since D_m is small the position of x_m in D_m is not important), κ is the same parameter as in (8.37) and h(x) is a continuous in D function, $\operatorname{Re}h \ge 0$, N is the unit normal to S_m pointing out of D_m . The functions h(x), N(x) and the number κ can be chosen as the experimenter wishes.

It is proved in Sect. 8.1 (see also [13, 16]) that, as $a \rightarrow 0$, the solution of the problem

$$u_t = \Delta u \quad \text{in} D \setminus \bigcup_{m=1}^M D_m, \, u_N = \zeta_m u \quad \text{on } S_m, \, 1 \le m \le M, \tag{8.39}$$

$$u|_{S} = 0,$$
 (8.40)

and

$$u|_{t=0} = f(x), \tag{8.41}$$

has a limit u(x, t). This limit solves problem (8.36) with

$$q(x) = c_s N(x)h(x), \qquad (8.42)$$

where

$$c_S := \frac{|S_m|}{a^2} = const, \tag{8.43}$$

and $|S_m|$ is the surface area of S_m . By assuming that c_s is a constant, we assume, for simplicity only, that the small particles are identical in shape, see [13].

Since $N(x) \ge 0$ is an arbitrary continuous function and h(x), $Reh \ge 0$, is an arbitrary continuous function, and both functions can be chosen by experimenter as he/she wishes, it is clear that an arbitrary real-valued potential q can be obtained by formula (8.42).

Suppose that

$$(-\Delta + q(x))\phi(x) = \lambda_n \phi_n, \quad \phi_n|_S = 0, \quad ||\phi_n||_{L^2(D)} = ||\phi_n|| = 1, \quad (8.44)$$

where $\{\phi_n\}$ is an orthonormal basis of $L^2(D) := H$. Then the unique solution to (8.36) is

$$u(x,t) = \sum_{n=1}^{\infty} e^{-\lambda_n t} (f, \phi_n) \phi_n(x).$$
(8.45)

If q(x) is such that $\lambda_1 = 0$, $\lambda_2 \gg 1$, and $\lambda_2 \le \lambda_3 \le ...$, then, as $t \to \infty$, the series (8.45) is well approximated by its first term

$$u(x,t) = (f,\phi_1)\phi_1 + O(e^{-10t}), \quad t \to \infty.$$
 (8.46)

If $\lambda_1 > 0$ is very small, then the main term of the solution is

$$u(x,t) = (f,\phi_1)\phi_1 e^{-\lambda_1 t} + O(e^{-10t})$$

as $t \to \infty$. The term $e^{-\lambda_1 t} \sim 1$ if $t << \frac{1}{\lambda_1}$.

Thus, our problem is solved if q(x) has the following property:

$$|\phi_1(x)|$$
 decays as ρ grows, $\rho = (x_2^2 + x_3^2)^{1/2}$. (8.47)

Since the eigenfunction is normalized, $||\phi_1|| = 1$, this function will not tend to zero in a neighborhood of the line $\rho = 0$, so information can be transformed by the heat signals along the line $\rho = 0$, that is, along *s*-axis. Here we use the cylindrical coordinates:

$$x = (x_1, x_2, x_3) = (s, \rho, \theta), \quad s = x_1, \quad \rho = (x_2^2 + x_3^2)^{1/2}.$$

In Sect. 8.3 the domain D_0 is a disc and the potential q(x) does not depend on θ .

128

The technical part of solving our problem consists of the construction of $q(x) = c_s N(x)h(x)$ such that

$$\lambda_1 = 0, \quad \lambda_2 \gg 1; \quad |\phi_1(x)| \text{ decays as } \rho \text{ grows.}$$
 (8.48)

Since the function $N(x) \ge 0$ and h(x), $\operatorname{Re}h \ge 0$, are at our disposal, any desirable q, $\operatorname{Re}q \ge 0$, can be obtained by embedding many small impedance particles in a given domain D. In Sect. 8.3, a potential q with the desired properties is constructed. This construction allows one to transform information along a straight line using heat signals.

8.3 Construction of q(x)

Let

$$q(x) = p(\rho) + Q(s),$$

where $s := x_1$, $\rho := (x_2^2 + x_3^2)^{1/2}$. Then the solution to problem (8.44) is $u = v(\rho)w(s)$, where

$$-v_m'' - \rho^{-1}v_m' + p(\rho)v_m = \mu_m v_m, \quad 0 \le \rho \le R,$$
$$|v_m(0)| < \infty, \quad v_m(R) = 0, \quad (8.49)$$

and

$$-w_l'' + Q(s)w_l = v_l w_l, \quad 0 \le s \le L,$$

$$w_l(0) = 0, \quad w_l(L) = 0.$$
(8.50)

One has

$$\lambda_n = \mu_m + \nu_l, \quad n = n(m, l). \tag{8.51}$$

Our task is to find a potential Q(s) such that $\nu_1 = 0$, $\nu_2 \gg 1$ and a potential $p(\rho)$ such that $\mu_1 = 0$, $\mu_2 \gg 1$ and $|v_m(\rho)|$ decays as ρ grows.

It is known how to construct q(s) with the desired properties: the Gel'fand-Levitan method allows one to do this, see [7]. Let us recall this construction. One has $v_{l0} = l^2$, where we set $L = \pi$ and denote by v_{l0} the eigenvalues of the problem (8.50) with Q(s) = 0. Let the eigenvalues of the operator (8.50) with $Q \neq 0$ be $v_1 = 0$, $v_2 = 11$, $v_3 = 14$, $v_l = v_{l0}$ for $l \ge 4$. The kernel L(x, y) in the Gel'fand-Levitan theory is defined as follows:

$$L(x, y) = \int_{-\infty}^{\infty} \frac{\sin(\sqrt{\lambda}x)}{\sqrt{\lambda}} \frac{\sin(\sqrt{\lambda}y)}{\sqrt{\lambda}} d(\varrho(\lambda) - \varrho_0(\lambda)),$$

where $\rho(\lambda)$ is the spectral function of the operator (8.50) with the potential Q = Q(s), and $\rho_0(\lambda)$ is the spectral function of the operator (8.50) with the potential Q = 0 and the same boundary conditions as for the operator with $Q \neq 0$.

Due to our choice of v_l and the normalizing constants α_j , namely: $\alpha_j = \frac{\pi}{2}$ for $j \ge 2$ and $\alpha_1 = \frac{\pi^3}{3}$, the kernel L(x, y) is given explicitly by the formula:

$$L(x,y) = \frac{3xy}{\pi^3} + \frac{2}{\pi} \left(\frac{\sin(\sqrt{\nu_2 x})}{\sqrt{\nu_2}} \frac{\sin(\sqrt{\nu_2 y})}{\sqrt{\nu_2}} + \frac{\sin(\sqrt{\nu_3 x})}{\sqrt{\nu_3}} \frac{\sin(\sqrt{\nu_3 y})}{\sqrt{\nu_3}} \right) - \frac{2}{\pi} \left(\sin x \sin y + \sin(2x) \sin(2y) + \sin(3x) \sin(3y) \right), \quad (8.52)$$

where $v_1 = 0$, $v_2 = 11$ and $v_3 = 14$. This is a finite rank kernel. The term *xy* is the value of the function $\frac{\sin vx}{v} \frac{\sin vy}{v}$ at v = 0, and the corresponding normalizing constant is $\frac{\pi^3}{3} = ||x||^2 = \int_0^{\pi} x^2 dx$.

Solve the Gel'fand-Levitan equation:

$$K(s,\tau) + \int_0^s K(s,s')L(s',\tau)ds' = -L(s,\tau), \quad 0 \le \tau \le s,$$
(8.53)

which is uniquely solvable (see [7]). Since Eq. (8.53) has finite-rank kernel it can be solved analytically being equivalent to a linear algebraic system.

If the function $K(s, \tau)$ is found, then the potential Q(s) is computed by the formula [2, 7]:

$$Q(s) = 2\frac{dK(s,s)}{ds},$$
(8.54)

and this Q(s) has the required properties: $v_1 = 0, v_2 \gg 1, v_l \leq v_{l+1}$.

Consider now the operator (8.49) for $v(\rho)$. Our problem is to calculate $p(\rho)$ which has the required properties:

$$\mu_1 = 0, \quad \mu_2 \gg 1, \quad \mu_m \le \mu_{m+1},$$

and $|\phi_m(\rho)|$ decays as ρ grows.

We reduce this problem to the previous one that was solved above. To do this, set $v = \frac{\psi}{\sqrt{\rho}}$. Then equation

$$-v'' - \frac{1}{\rho}v' + p(\rho)v = \mu v,$$

is transformed to the equation

$$-\psi'' - \frac{1}{4\rho^2}\psi + p(\rho)\psi = \mu\psi.$$
 (8.55)

Let

$$p(\rho) = \frac{1}{4\rho^2} + Q(\rho), \qquad (8.56)$$

where $Q(\rho)$ is constructed above. Then Eq. (8.55) becomes

$$-\psi'' + Q(\rho)\psi = \mu\psi, \qquad (8.57)$$

and the boundary conditions are:

$$\psi(R) = 0, \quad \psi(0) = 0.$$
 (8.58)

The problem (8.57)–(8.58) has the desired eigenvalues $\mu_1 = 0, \mu_2 \gg 1, \mu_m \le \mu_{m+1}$.

The eigenfunction

$$\phi_1(x) = v_1(\rho)w_1(s),$$

where $v_1(\rho) = \frac{\psi_1(\rho)}{\sqrt{\rho}}$, decays as ρ grows, and the eigenvalues λ_n can be calculated by the formula:

$$\lambda_n = \mu_m + \nu_l, \quad m, l \ge 1, \quad n = n(m, l).$$

Since $\mu_1 = \nu_1 = 0$ one has $\lambda_1 = 0$. Since $\nu_2 = 11$ and $\mu_2 = 11$, one has $\lambda_2 = 11 \gg 1$.

Thus, the desired potential is constructed:

$$q(x) = Q(s) + (\frac{1}{4\rho^2} + Q(\rho)),$$

where Q(s) is given by formula (8.54).

This concludes the description of our procedure for the construction of q. *Remark 1* It is known (see, for example, [2]) that the normalizing constants

$$\alpha_j := \int_0^\pi \varphi_j^2(s) ds$$

and the eigenvalues λ_i , defined by the differential equation

$$-\frac{d^2\varphi_j}{ds^2}+Q(s)\varphi_j=\lambda_j\varphi_j,$$

the boundary conditions

$$\varphi'_{j}(0) = 0, \quad \varphi'_{j}(\pi) = 0,$$

and the normalizing condition $\varphi_i(0) = 1$, have the following asymptotic:

$$\alpha_j = \frac{\pi}{2} + O(\frac{1}{j^2}) \quad \text{as } j \to \infty,$$

and

$$\sqrt{\lambda_j} = j + O(\frac{1}{j}) \quad \text{as } j \to \infty.$$

The differential equation

$$-\Psi_j''+Q(s)\Psi_j=\nu_j\Psi_j,$$

the boundary condition

$$\Psi_j(0) = 0, \quad \Psi_j(\pi) = 0,$$

and the normalizing condition $\Psi'_i(0) = 1$ imply

$$\sqrt{\lambda_j} = j + O(\frac{1}{j})$$
 as $j \to \infty$,
 $\Psi_j(s) \sim \frac{\sin(js)}{j}$ as $j \to \infty$.

The main term of the normalized eigenfunction is:

$$\frac{\Psi_j}{||\Psi_j||} \sim \sqrt{2/\pi} \sin(js) \quad \text{as} \quad j \to \infty,$$

and the main term of the normalizing constant is:

$$\alpha_j \sim \frac{\pi}{2j^2}$$
 as $j \to \infty$.

8.4 Auxiliary Results

Lemma 1 If one of the limits $\lim_{t\to\infty} \frac{1}{t} \int_0^t u(s) ds$ or $\lim_{\lambda\to 0} \lambda \mathcal{U}(\lambda)$ exists, then the other also exists and they are equal to each other:

$$\lim_{t\to\infty}\frac{1}{t}\int_0^t u(s)ds = \lim_{\lambda\to 0}\lambda\mathcal{U}(\lambda),$$

where

$$\mathcal{U}(\lambda) := \int_0^\infty e^{-\lambda t} u(t) dt := \bar{u}(\lambda).$$

Proof Denote

$$\frac{1}{t}\int_0^t u(t)dt := v(t), \quad \bar{u}(\sigma) := \int_0^\infty e^{-\sigma t} u(t)dt.$$

Then

$$\bar{v}(\lambda) = \int_{\lambda}^{\infty} \frac{\bar{u}(\sigma)}{\sigma} d\sigma$$

by the properties of the Laplace transform.

Assume that the limit $v(\infty) := v_{\infty}$ exists:

$$\lim_{t \to \infty} v(t) = v_{\infty}.$$
(8.59)

Then,

$$v_{\infty} = \lim_{\lambda \to 0} \lambda \int_0^{\infty} e^{-\lambda t} v(t) dt = \lim_{\lambda \to 0} \lambda \bar{v}(\lambda).$$

Indeed $\lambda \int_0^\infty e^{-\lambda t} dt = 1$, so

$$\lim_{\lambda \to 0} \lambda \int_0^\infty e^{-\lambda t} (v(t) - v_\infty) dt = 0,$$

and (8.59) is verified.

One has

$$\lim_{\lambda \to 0} \lambda \bar{v}(\lambda) = \lim_{\lambda \to 0} \int_{\lambda}^{\infty} \frac{\lambda}{\sigma} \bar{u}(\sigma) d\sigma = \lim_{\lambda \to 0} \lambda \bar{u}(\lambda), \quad (8.60)$$

as follows from a simple calculation:

$$\lim_{\lambda \to 0} \int_{\lambda}^{\infty} \frac{\lambda}{\sigma} \bar{u}(\sigma) d\sigma = \lim_{\lambda \to 0} \int_{\lambda}^{\infty} \frac{\lambda}{\sigma^2} \sigma \bar{u}(\sigma) d\sigma = \lim_{\sigma \to 0} \sigma \bar{u}(\sigma), \quad (8.61)$$

where we have used the relation $\int_{\lambda}^{\infty} \frac{\lambda}{\sigma^2} d\sigma = 1$. Alternatively, let $\sigma^{-1} = \gamma$. Then,

$$\int_{\lambda}^{\infty} \frac{\lambda}{\sigma^2} \sigma \bar{u}(\sigma) d\sigma = \frac{1}{1/\lambda} \int_{0}^{1/\lambda} \frac{1}{\gamma} \bar{u}(\frac{1}{\gamma}) d\gamma = \frac{1}{\omega} \int_{0}^{\omega} \frac{1}{\gamma} \bar{u}(\frac{1}{\gamma}) d\gamma.$$
(8.62)

If $\lambda \to 0$, then $\omega = \lambda^{-1} \to \infty$, and if

$$\psi := \gamma^{-1} \bar{u}(\gamma^{-1}),$$

then

$$\lim_{\omega \to \infty} \frac{1}{\omega} \int_0^\omega \psi d\gamma = \psi(\infty) = \lim_{\gamma \to 0} \gamma^{-1} \bar{u}(\gamma^{-1}) = \lim_{\sigma \to \infty} \sigma \bar{u}(\sigma).$$
(8.63)

Lemma 1 is proved.

Lemma 2 Equation (8.21) holds.

Proof As $a \rightarrow 0$, one has

$$\frac{\partial}{\partial N_s} \frac{e^{-\sqrt{\lambda}|s-s'|}}{4\pi|s-s'|} = \frac{\partial}{\partial N_s} \frac{1}{4\pi|s-s'|} + \frac{\partial}{\partial N_s} \frac{e^{-\sqrt{\lambda}|s-s'|}-1}{4\pi|s-s'|}.$$
(8.64)

It is known (see [8]) that

$$\int_{\mathcal{S}_m} ds \int_{\mathcal{S}_m} \frac{\partial}{\partial N_s} \frac{1}{4\pi |s-s'|} \sigma_m(s') ds' = -\frac{1}{2} \int_{\mathcal{S}_m} \sigma_m(s') ds' = -\frac{1}{2} \mathcal{Q}_m.$$
(8.65)

On the other hand, as $a \rightarrow 0$, one has

$$\left| \int_{\mathcal{S}_m} ds \int_{\mathcal{S}_m} \frac{e^{-\sqrt{\lambda}|s-s'|} - 1}{4\pi |s-s'|} \sigma_m(s') ds' \right| \le |\mathcal{Q}_m| \int_{\mathcal{S}_m} ds \frac{1 - e^{-\sqrt{\lambda}|s-s'|}}{4\pi |s-s'|} = o(\mathcal{Q}_m).$$
(8.66)

The relations (8.65) and (8.66) justify (8.21).

Lemma 2 is proved.

Lemma 3 If assumption (8.18) holds, then inequality (8.17) holds.

Proof One has

$$\mathcal{J}_{1,m} := |g(x, x_m)Q| = \frac{|Q_m|e^{-\sqrt{\lambda}|x-x_m|}}{4\pi |x-x_m|},$$
(8.67)

and

$$\mathcal{J}_{2,m} \leq \frac{e^{-\sqrt{\lambda}|x-x_m|}}{4\pi|x-x_m|} \max\left(\sqrt{\lambda}a, \frac{a}{|x-x_m|}\right) \int_{\mathcal{S}_m} |\sigma_m(s')| ds'$$
(8.68)

where $|x - x_m| \ge d$, and d > 0 is the smallest distance between two neighboring particles. One may consider only those values of λ for which $\lambda^{1/4}a < \frac{a}{d}$, because for the large values of λ , such that $\lambda^{1/4} \ge \frac{1}{d}$ the value of $e^{-\sqrt{\lambda}|x-x_m|}$ is negligibly small. The average temperature depends on the behavior of \mathcal{U} for small λ , see Lemma 1.

One has $|Q_m| = \int_{\mathcal{S}_m} |\sigma_m(s')| ds' > 0$ because σ_m keeps sign on \mathcal{S}_m , as follows from Eq. (8.24) as $a \to 0$.

It follows from (8.67)–(8.68) that

$$\left|\frac{\mathcal{J}_{2,m}}{\mathcal{J}_{1,m}}\right| \le O\left(\left|\frac{a}{x-x_m}\right|\right) \le O\left(\frac{a}{d}\right) << 1.$$
(8.69)

From (8.69) by the arguments similar to the given in [9] one obtains (8.17).

Lemma 3 is proved.

References

- 1. V. Jikov, S. Kozlov, O. Oleinik, Homogenization of Differential Operators and Integral Functionals (Springer, Berlin, 1994)
- 2. B.M. Levitan, Inverse Sturm-Liouville Problems (VNU Press, Utrecht, 1987)
- 3. V.A. Marchenko, E.Ya. Khruslov, *Homogenization of Partial Differential Equations* (Birkhäuser, Boston, 2006)
- A.G. Ramm, Inversion of the Laplace transform from the real axis. Inverse Prob. 2, L55–L59 (1986)
- A.G. Ramm, Sufficient conditions for zero not to be an eigenvalue of the Schrödinger operator. J. Math. Phys. 28, 1341–1343 (1987)
- A.G. Ramm, Conditions for zero not to be an eigenvalue of the Schrödinger operator. J. Math. Phys. 29, 1431–1432 (1988)
- 7. A.G. Ramm, Inverse Problems (Springer, New York, 2005)
- A.G. Ramm, Wave Scattering by Small Bodies of Arbitrary Shapes (World Scientific Publishers, Singapore, 2005)
- A.G. Ramm, Many-body wave scattering by small bodies and applications. J. Math. Phys. 48(N10), 103511 (2007)
- 10. A.G. Ramm, A collocation method for solving integral equations. Int. J. Comput. Sci. Math. $3(N_2)$, 222–228 (2009)

- A.G. Ramm, Collocation method for solving some integral equations of estimation theory. Int. J. Pure Appl. Math. 62(N1), 57–65 (2010)
- 12. A.G. Ramm, Wave scattering by many small bodies and creating materials with a desired refraction coefficient. Afr. Mat. 22(N1), 33–55 (2011)
- A.G. Ramm, Scattering of Acoustic and Electromagnetic Waves by Small Bodies of Arbitrary Shapes. Applications To Creating New Engineered Materials (Momentum Press, New York, 2013)
- A.G. Ramm, Many-body wave scattering problems in the case of small scatterers. J. Appl. Math. Comput. 41(N1), 473–500 (2013). doi:10.1007/s12190-012-0609-1
- A.G. Ramm, Wave scattering by many small bodies: transmission boundary conditions. Rep. Math. Phys. 71(N3), 279–290 (2013)
- A.G. Ramm, Heat transfer in a medium in which many small particles are embedded. Math. Model. Nat. Phenom. 8(N1), 193–199 (2013)
- A.G. Ramm, Creating materials in which heat propagates along a line. Boll Union. Math. Ital. 8(N3), 165–168 (2015). doi:10.1007/s40574-015-0033-1 (Published 8 Sept. 2015)
- A.G. Ramm, Scattering of EM waves by many small perfectly conducting or impedance bodies. J. Math. Phys. 56(N9), 091901 (2015)
- 19. A.G. Ramm, S. Indratno, Inversion of the Laplace transform from the real axis using an adaptive iterative method. Int. J. Math. Math. Sci. **2009**(Article 898195), 38 (2009)
- A.G. Ramm, S. Indratno, A collocation method for solving some integral equations in distributions. J. Comput. Appl. Math. 236, 1296–1313 (2011)