
Chapter 5
The Kolmogorov Law of Turbulence
What Can Rigorously Be Proved? Part II

Roger Lewandowski and Benoît Pinier

Abstract We recall what are the different known solutions for the incompressible
Navier-Stokes Equations, in order to fix a suitable functional setting for the
probabilistic frame that we use to derive turbulence models, in particular to define
the mean velocity and pressure fields, the Reynolds stress and eddy viscosities.
Homogeneity and isotropy are discussed within this framework and we give a
mathematical proof of the famous �5=3 Kolmogorov law, which is discussed in
a numerical simulation performed in a numerical box with a non trivial topography
on the ground.

MCS Classification : 76D05, 76F65, 65M60

5.1 Introduction

We focus in this paper on the law of the �5=3, which attracted a lot of attention
from the fluid mechanics community these last decades, since it is a basis for many
turbulence models, such as Large Eddy Simulation models (see for instance in [20,
21, 44, 50]). Although it is usually known as the Kolmogorov law, it seems that it
appears for the first time in a paper by Onsager [42] in 1949, and not in the serie
of papers published by Kolmogorov in 1941 (see in [56]), where the author focuses
on the 2=3’s law, by introducing the essential scales related to homogeneous and
isotropic turbulent flows (see formula (5.33) below). In this major contribution to
the field, Kolmogorov opened the way for the derivation of laws based on similarity
principles such as the �5=3’s law (see also in [11, 32]).
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Fig. 5.1 Energy spectrum log-log curve

Roughly speaking, the �5=3’s law states that in some inertial range Œk1; k2�, the
energy density of the flow E.k/ behaves like Ctek�5=3, where k denotes the current
wave number [see Fig. 5.1 below and the specific law (5.40)].

This paper is divided in a theoretical part and a numerical part, in which we
aim at:

1. carefully express what is the appropriate similarity assumption that must satisfy
an homogeneous and isotropic turbulent flow in order to derive the �5=3’s law
(Assumptions 5.4.1 and 5.4.2 below),

2. to theoretically derive the �5=3 law from the similarity assumption (see Theo-
rem 5.4.2 below),

3. to discuss the numerical validity of such a law from a numerical simulation
in a test case, using the software BENFLOW 1.0, developed at the Institute of
Mathematical Research of Rennes.

Before processing items (1) and (2), we discuss on different results about the Navier-
Stokes equations (5.1) (NSE in what follows), that are one of the main tools in fluid
mechanics, as well as the Reynolds stress (5.13) derived by taking the expectation
of the NSE, once the appropriate probabilistic frame is specified. We then define the
density energy E.k/, which is the energy of the flow in the sphere fk D jkjg in the
Fourier space. Furthermore, we introduce the concept of dimensional bases in order
to properly set Assumptions 5.4.1 and 5.4.2.

The numerical simulation takes place in a computational box (see Fig. 5.2) with
a non trivial topography (see Fig. 5.3), by using the mean NSE (5.12), the k � E
model (5.20), and appropriate boundary conditions supposed to model the dynamics
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Fig. 5.2 Computational box

Fig. 5.3 View of the ground

of the atmospheric boundary layer. Atmospheric boundary layer modeling is a
modern challenge because of its significance in climate change issues. We find
in the literature many simulations carried out in different configurations, such as
for example the case of a flat ground [1, 5, 13, 45], the case of stable or convec-
tive boundary layers [38, 59], urban simulations where building are modeled by
parallelipipeds [39], wind farms [46], realistic configurations including mountains
[37, 58]. Of course, this flows is not homogeneous nor isotropic. However, the
simulations shows that the curve of log10.E.k// exhibits an inertial range over 4
decades, in which the regression straight line has a slope equal to �2:1424 6D �5=3
(see Fig. 5.6), suggesting that the �5=3’s law is not satisfied in this case.
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5.2 About the 3D Navier Stokes Equations

5.2.1 Framework

Let � � R3 be a C1 bounded convex smooth domain, � its boundary, T 2 RC
(eventually T D C1), and Q D Œ0;T� ��. The velocity of the flow is denoted by
v, its pressure by p. The incompressible Navier Stokes equation satisfied by .v; p/
(NSE in the remainder) are as follows:

8
ˆ̂
<

ˆ̂
:

@tv C .v � r/ v � r � .2�Dv/C rp D f in Q; (i)
r � v D 0 in Q; (ii)

v D 0 on �; (iii)
v D v0 at t D 0; (iv)

(5.1)

where v0 is any divergence free vector fields such that v0 � nj� D 0, � > 0 denotes
the kinematic viscosity, that we suppose constant for the simplicity, f is any external
force (such as the gravity for example), Dv denotes the deformation tensor, r� the
divergence operator and .v � r/ v is the nonlinear transport term, specifically

Dv D 1

2

�rv C rvt
�
; rv D .@jvi/1�ij�3; v D .v1; v2; v3/; @i D @@xi;

r � v D @ivi;

Œ.v � r/ v�i D vj@jvi;

by using the Einstein summation convention. We recall that it is easily deduced from
the incompressibility condition (see [11]):

.v � r/ v D r � .v ˝ v/; v ˝ v D .vivj/1�i;j�3;
r � .2�Dv/ D ��v:

In the following, we will consider the functional spaces

W D fv 2 H1
0.�/

3;r�v D 0g ,! V D fv 2 L2.�/3; v�nj� D 0;r�v D 0g; (5.2)

Throughout the paper, we assume v0 2 V.

5.2.2 Strong Solutions to the NSE

Let P be the orthogonal projection L2.�/3 ,! V, A and F the operators

Av D ��P�v; Fv D P..v � r/ v/:
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By applying P to (5.1.i) in noting that P.rp/ D 0, we are led to the following initial
value problem

8
<

:

dv
dt

D �Av C Fv C Pf.t/; (i)

v.0/ D v0; (ii)
(5.3)

where t ! v.t/ and t ! f.t/ are considered as functions valued in W and V
respectively.

Definition 5.2.1 We say that v D v.t/ is a strong solution to the NSE in a time
interval Œ0;T?� if dv=dt and Av exist and are continuous in Œ0;T?� and (5.3.i) is
satisfied there.

Remark 5.2.1 In Definition 5.2.1, the pressure is not involved. It can be recon-
structed by the following equation

�p D �r � ..v � r/ v/C r � f; (5.4)

derived from Eq. (5.1.i) by taking its divergence.

The existence of a strong solution is proved in Fujita-Kato [18]. It is subject to
regularity conditions regarding the initial data v0 and the source f. The result is
stated as follows.

Theorem 5.2.1 We assume

(i) v0 2 V \ H1=2.�/3,
(ii) f is Hölder continuous in Œ0;T�.

Then there exists T? D T?.�; jjv0jj1=2;2;�; jjfjjC0;˛.�// such that the NSE admits a
unique strong solution v D v.t/. Moreover, if f D f.t; x/ is Hölder continuous
in Q D Œ0;T?� � �, then v.t; x/, rv.t; x/, �v.t; x/ and @v.t; x/=@t are Hölder
continuous in �0;T?Œ��.

Remark 5.2.2 The strong solution is solution of the equation

v.t/ D e�tAv0 �
Z t

0

e�.t�s/AF.v.s//ds C
Z t

0

e�.t�s/APf.s/ds; (5.5)

which is approached by the sequence .vn/n2N expressed by

vn.t/ D e�tAv0 �
Z t

0

e�.t�s/AF.vn�1.s//ds C
Z t

0

e�.t�s/APf.s/ds; (5.6)

The reader is referred to [9, 12, 28] for more details concerning the question of
strong solutions.
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5.2.3 Turbulent Solutions

Definition 5.2.2 We say that v is a turbulent solution of NSE (5.1) in Œ0;T� if

(i) v 2 L2.Œ0;T�;W/ \ L1.Œ0;T�;L2.�//,
(ii) @tv 2 L4=3.Œ0;T�;W0/ D ŒL4.Œ0;T�;W/�0 (by writing @t D @

@t
for the

simplicity),
(iii) lim

t!0
jjv.�; t/� v0.�/jj0;2;� D 0,

(iv) 8 w 2 L4.Œ0;T�;W/;

Z T

0

< @tv;w > dt C
Z T

0

Z

�

.v ˝ v/ W rw dxdt C
Z T

0

Z

�

rv W rw dxdt

D
Z T

0

< f;w > dt;

where for u 2 W, F 2 W0, < F;u > denotes the duality pairing between F
and u,

(v) v satisfies the energy inequality at each t > 0,

1

2

Z

�

jv.t; x/j2dx C �

Z t

0

Z

�

jrv.t0; x/j2dxdt0 �
Z t

0

< f; v > dt0:

Remark 5.2.3 Once again, the pressure is not involved in this formulation. It this
frame, it is recovered by the De Rham Theorem (see for instance in [55]).

The existence of a turbulent solution was first proved by Leray [29] in the whole
space, then by Hopf [22] in the case of a bounded domain with the no slip boundary
condition, which is the case under consideration here. This existence result can be
stated as follows.

Theorem 5.2.2 Assume that v0 2 V, f 2 L4=3.Œ0;T�;W0/. Then the NSE (5.1) has
a turbulent solution.

Remark 5.2.4 The turbulent solution is global in time, which means that it may be
extended to t 2 Œ0;1Œ depending on a suitable assumption on f. However it is not
known whether it is unique or not. Moreover, it is not known if the energy inequality
is an equality.

The reader is also referred to [14, 16, 36, 55] for further results on turbulent (also
weak) solutions of the NSE.
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5.3 Mean Navier-Stokes Equations

5.3.1 Reynolds Decomposition

Based on strong or turbulent solutions, it is known that it is possible to set a
probabilistic framework in which we can decompose the velocity v and the pressure
as a the sum of the statistical mean and a fluctuation, namely

v D v C v0; p D p C p0: (5.7)

More generally, any tensor field  related to the flow can be decomposed as

 D  C  0: (5.8)

The statistical filter is linear and subject to satisfy the Reynolds rules:

@t D @t ; (5.9)

r D r ; (5.10)

as well as

 D  leading to  0 D 0: (5.11)

We have studied in [11] different examples of such filters. Historically, such
a decomposition was first considered in works by Stokes [53], Boussinesq [6],
Reynolds [49], Prandtl [47], in the case of the « long time average »(see also in
[31]). Later on, Taylor [54], Kolmogorov [25] and Onsager [42] have considered
such decompositions when the fields related to the flow are considered as random
variables, which was one of the starting point for the development of modern
probability theory.

5.3.2 Reynolds Stress and Closure Equations

We take the mean of the NSE (5.1) by using (5.9)–(5.11). We find out the following
system:

8
ˆ̂
<

ˆ̂
:

@tv C .v � r/ v � ��v C rp D �r � � .r/ C f in Q;
r � v D 0 in Q;

v D 0 on �;

v D v0 at t D 0;

(5.12)
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where

� .R/ D v0 ˝ v0 (5.13)

is the Reynolds stress. The big deal in turbulence modeling is to express � .R/

in terms of averaged quantities. The most popular model is derived from the
Boussinesq assumption which consists in writing:

� .R/ D ��tDv C 2

3
k Id; (5.14)

where

1. k D 1

2
tr � .R/ D 1

2
jv0j2 is the turbulent kinetic energy (TKE),

2. �t is an eddy viscosity.

In order to close the system, the eddy viscosity remains to be modeled. To do so,
many options are available (see in [4, 10, 11, 24, 26, 30, 40, 50]).

One of the most popular model is the Smagorinsky’s model (see for instance in
[20, 21, 24, 34, 44, 48, 50–52]), in which

�t D Csı
2jDvj; (5.15)

where Cs � 0:1 or 0:2 is an universal dimensionless constant, and ı a characteristic
scale, ideally the size of the smallest eddies in the flow the model is supposed to
catch. This model is the foundation of the wide class of Large Eddy Simulation mod-
els. The reader will find various mathematical results concerning the Smagorinsky’s
model in [3, 11, 24, 35, 43].

We next mention the so-called TKE model, given by

�t D Ck`
p

k; (5.16)

which gives accurate results for the simulation of realistic flows (see for instance
[33]). In model (5.16), ` denotes the Prandtl mixing length, Ck is a dimensionless
constant that must be fixed according to experimental data. In practice, ` is taken
to be equal to the local mesh size in a numerical simulation, and k is computed by
using the closure equation (see in [11, 40])

@tk C v � rk � r � .�trk/ D �tjDvj2 � k
p

k

`
: (5.17)

The reader will find a bunch of mathematical result concerning the coupling of the
TKE equation to the mean NSE in [7, 8, 11, 19, 27, 30].

Finally, we mention the famous k � E model that is used for the numerical sim-
ulations carried out in Sect. 5.5. In this model, E denotes the turbulent dissipation

E D 2�jDv0j2; (5.18)
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and dimensional analysis leads to write

�t D C�
k2

E
: (5.19)

The coupled system used to compute k and E is the following (see [11, 40] for the
derivation of these equations):

8
<

:

@tk C v � rk � r � .�trk/ D �tjDvj2 � E :

@tE C v � rE � r � .�trE / D c�kjDvj2 � cE
E 2

k
;

(5.20)

where C� D 0:09, cE D 1:92 and c� D 1:44 are dimensionless constants.

5.4 Law of the �5=3

The idea behind the law of the �5=3 for homogeneous and isotropic turbulence
is that in the « inertial range », the energy density E D E.k/ at a given point
.t; x/ is driven by the dissipation E . In this section, we properly define the energy
density E for homogeneous and isotropic turbulent flows. We then set the frame of
the dimensional bases and the similarity principle in order to rigorously derive the
law of the �5=3.

Remark 5.4.1 For homogeneous and isotropic turbulence, one can show the identity
E D 2�jDv0j2 D 2�jDvj2 (see in [11]).

5.4.1 Energy Density of the Flow

Roughly speaking, homogeneity and isotropy means that the correlations in the
flows are invariant under translations and isometries (see in [2, 11, 32]), which we
assume throughout this section, as well as the stationarity of the mean flow for
simplicity. Let

E D 1

2
jvj2; (5.21)

be the total mean kinetic energy at a given point x 2 �, which we not specify in
what follows.
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Theorem 5.4.1 There exists a measurable function E D E.k/, defined over RC, the
integral of which over RC is finite, and such that

E D
Z 1

0

E.k/dk: (5.22)

Proof Let B2 be the two order correlation tensor expressed by:

B2 D B2.r/ D .vi.x/vj.x C r//1�i;j�3 D .Bij.r//1�i;j�3; (5.23)

which only depend on r by the homogeneity assumption, nor on t because of the
stationarity assumption. It is worth noting that

E D 1

2
trB2.0/: (5.24)

Let bB2 denotes the Fourier transform of B expressed by

8 k 2 R3; bB2.k/ D 1

.2	/3

Z

R3

B2.r/e�i k�rdr; (5.25)

We deduce from the Plancherel formula,

8 r 2 R3; B2.r/ D 1

.2	/3

Z

R3

bB2.k/ei k�rdk; (5.26)

which makes sense for both types of solutions to the NSE, strong or turbulent (see
the Sect. 5.2). It is easily checked that the isotrpoy of B2 in r yields the isotropy of
bB2 in k. Therefore, according to Theorem 5.1 in [11] we deduce the existence of
two real valued functions eBd and eBn of class C1 such that1

8 k 2 R3; jkj D k; bB2.k/ D .eBd.k/ � eBn.k//
k ˝ k

k2
C eBn.k/I3: (5.27)

Using formula (5.27) yields

bBii.k/ D eBd.k/C 2eBn.k/; (5.28)

which combined with Fubini’s Theorem, (5.24) and (5.26), leads to

Z

R3

bBii.k/ dk D
Z 1

0

�Z

jkjDk

bBii.k/d�

�

dk D
Z 1

0

4	k2.eBd.k/C 2eBn.k// dk;

(5.29)

1k already denotes the TKE, and from now also the wavenumber, k D jkj. This is commonly used
in turbulence modeling, although it might sometimes be confusing.
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by noting d� the standard measure over the sphere fjkj D kg. This proves the result,
where E.k/ is given by

E.k/ D
�

k

2	

�2

.eBd.k/C 2eBn.k//: (5.30)

ut
Remark 5.4.2 From the physical point of view, E.k/ is the amount of kinetic energy
in the sphere Sk D fjkj D kg. As such, it is expected that E � 0 in R, and we deduce
from (5.22) that E 2 L1.RC/. Unfortunately, we are not able to prove that E � 0

from formula (5.30), which remains an open problem.

5.4.2 Dimensional Bases

Only length and time are involved in this frame, since we do not consider heat
transfers and the fluid is incompressible. Therefore, any field  related to the flow
has a dimension Œ � encoded as:

Œ � D .length/d`. /.time/d
 . /; (5.31)

which we express through the couple

D. / D .d`. /; d
 . // 2 Q2: (5.32)

Definition 5.4.1 A length-time basis is a couple b D .�; 
/, where � is a given
constant length and 
 a constant time.

Definition 5.4.2 Let  D  .t; x/ (constant, scalar, vector, tensor. . . ) be defined
on Q D Œ0;T� ��. Let  b be the dimensionless field defined by:

 b.t
0; x0/ D ��d`. /
�d
 . / .
 t0; �x0/;

where

.t0; x0/ 2 Qb D
�

0;
T




�

� 1

�
�;

is dimensionless. We say that  b D  b.t0; x0/ is the b-dimensionless field deduced
from  .



82 R. Lewandowski and B. Pinier

5.4.3 Kolmogorov Scales

Let us consider the length-time basis b0 D .�0; 
0/, given by

�0 D �
3
4 E � 1

4 ; 
0 D �
1
2 E � 1

2 ; (5.33)

where E is the dissipation defined by (5.18) (see also Remark 5.4.1). The scale �0
is known as the Kolmogorov scale. The important point here is that

Eb0 D �b0 D 1: (5.34)

Moreover, for all wave number k, and because

D.E/ D .3;�2/; (5.35)

we get

E.k/ D �30

�2
0 Eb0.�0k/ D �

5
4 E

1
4 Eb0 .�0k/; (5.36)

by using (5.33). We must determine the universal profile Eb0 .

5.4.4 Proof of the �5=3’s Law

The law of the �5=3 is based on two assumptions about the flow:

1. the separation of the scales (Assumption 5.4.1 below),
2. the similarity assumption (Assumption 5.4.2 below).

Assumption 5.4.1 Let ` be the Prandtl mixing length. Then

�0 << `: (5.37)

Assumption 5.4.2 There exists an interval

Œk1; k2� 	
�
2	

`
;
2	

�0

�

s.t. k1 << k2 and on Œ�0k1; �0k2�;

8 b1 D .�1; 
1/; b2 D .�2; 
2/ s.t. Eb1 D Eb2 ; then Eb1 D Eb2 : (5.38)

Theorem 5.4.2 Scale separation and similarity Assumptions 5.4.1 and 5.4.2 yield
the existence of a constant C such that

8 k0 2 Œ�0k1; �0k2� D Jr; Eb0 .k
0/ D C.k0/�

5
3 : (5.39)
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Corollary 5.4.1 The energy spectrum satisfies the �5=3 law

8 k 2 Œk1; k2�; E.k/ D CE
2
3 k� 5

3 ; (5.40)

where C is a dimensionless constant.

Proof Let

b.˛/ D .˛3�0; ˛
2
0/:

As

Eb.˛/ D 1 D Eb0 ;

the similarity assumption yields

8 k0 2 Jr; 8˛ > 0; Eb.˛/ .k
0/ D Eb0 .k

0/;

which leads to the functional equation,

8 k0 2 Jr; 8˛ > 0; 1

˛5
Eb0 .k

0/ D Eb0.˛
3k0/;

whose unique solution is given by

8 k0 2 Jr; Eb0 .k
0/ D C.k0/�

5
3 ; C D

�
k1
�0

� 5
3

E0

�
k1
�0

�

;

hence the result. Corollary 5.4.1 is a direct consequence of (5.36) combined
with (5.39).

Remark 5.4.3 It can be shown that the law of �5=3 yields the Smagorinsky’s
model (5.15) (see in [11]).

5.5 Numerical Experiments

5.5.1 Simulation Setting

The computational domain � is a box, the size Lx � Ly � Lz of which is equal
to (1024 m, 512 m, 200 m) (see Fig. 5.3). The number of nodes is .256; 128; 64/.
The bottom of the box, plotted in Fig. 5.3, has a non trivial topography modeled
by gaussian smooth domes, the height of which being equal to 50 m. We perform
the simulation with � D 2 � 10�5 m2 s�1, which yields a Reynolds number equal
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to 9:107. We use the mean NSE with the Boussinesq assumption, coupled to the
k � E model, namely the PDE system (5.12)–(5.14)–(5.19)–(5.20). We specify in
what follows the boundary conditions, by considering the following decomposition
of � D @�:

� D �t [ �f [ �b [ �g [ �i [ �o;

where

• �t is the top of the box,
• �f is the front face,
• �b is the back face,
• �g is the bottom of the box (the ground),
• �i is the inlet,
• �o is the outlet.

The condition on �i is prescribed by the Monin Obukhov similitude law [41]:

v.x; y; z; t/j�i D
�

u?
�

ln

�
z C z0

z0

�

; 0; 0

�t

; (5.41)

where � D 0:4 is the Von Karman constant, z denotes the distance from the ground
level, the aerodynamic roughness length z0 is equal to 0.1 m, the friction velocity is
expressed by:

u? D �Uref

�

ln

�
Href C z0

z0

���1
; (5.42)

by taking Uref D 36ms�1 and Href D 200m. The turbulent kinetic energy and
turbulent dissipation are setted by

8
<

:

kj�i D u1=2? C�1=2
� ;

E j�i D u3?
�.z C z0/

:
(5.43)

On �b, velocity, TKE and turbulent dissipation are subject to verify the no slip and
homogeneous boundary conditions,

8
<

:

vj�g D .0; 0; 0/t;

kj�g D 0;

E j�g D 0:

(5.44)
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On the top and lateral boundaries, we put

8
<

:

v � n D 0 on �t [ �b [ �f ;

rk � n D 0 on �t [ �b [ �f ;

rE � n D 0 on �t [ �b [ �f :

(5.45)

Finally a null gradient condition is prescribed at the outlet �o

8
<

:

r.v � n/ D 0 on �o;

rk � n D 0 on �o;

rE � n D 0 on �o:

(5.46)

Remark 5.5.1 The PDE system (5.12)–(5.14)–(5.19)–(5.20) with the boundary
conditions (5.41)–(5.43)–(5.44)–(5.45)–(5.46) yields a very hard mathematical
problem. The existence and the uniqueness of a solution is a difficult issue, whether
for global weak solutions or local time strong solutions.

5.5.2 Results

The numerical scheme we use for the simulation is based on the standard finite
volume method (FVM) in space, and an Implicit Euler for the time discretization.
For the simplicity, we will not write here this technical part of the work. The reader
will find comprehensive presentations of the FVM in [15, 17, 23, 57].

The simulation reaches a statistical equilibrium in about 180 physical seconds,
which is the time at which the results are displayed. In Figs. 5.4 and 5.5, are plotted
the values of the streamwise and spanwise components of the velocity at z D 50m,
which corresponds to the dome height.
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Fig. 5.4 Streamwise direction of the flow at the z D 50m cutplane
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Fig. 5.5 Spanwise direction at the z D 50m cutplane

Fig. 5.6 Energy spectrum at the point .x; y; z/ D .500; 200; 50/

In Fig. 5.6, we have plotted the energy spectrum of the flow at .x; y; z/ D
.500; 200; 50/ using a log-log scale, together with a straight line whose slope is
equal to �5=3 D �1; 666 : : : : and the regression straight line of log10.E.k//, whose
slope is about equal to �2:1424. The results call for the following comments.

1. The simulation reveals a certain reliability of the code, which suggests the
convergence of the numerical method. However, the mathematical convergence
of the scheme remains an open question, closely related to the question of the
existence of solutions mentioned in Remark 5.5.1.

2. The curve log10.E.k// is an irregular curve which substantially differs from a
straight line, so that we cannot conclude that numerically E.k/ behaves like
Ctek˛ in some interval Œk1; k2�. Moreover, there is a gap between the slope of
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the regression straight line of the curve and �5=3. However, something that
looks like an inertial range can be identified between k D 10�5 m�1 and k D
10�1 m�1. This departure from the �5=3 law asks for the following comments
and questions.

• The case under consideration yields a turbulence which is not homogeneous
nor isotropic, which may explain the slope equal to �2:1424 we found.

• This simulation does not validate the Kolmogorov law or any law like E.k/ �
Ctek˛ . We cannot infer that such a law holds or not. Many parameters may
generate the oscillations we observe in the curve log10.E.k//, such as any
eventual numerical dissipation, a wrong choice of the constants in the k � E
model which also may be not accurate, the boundary conditions we used and
which may be questionable.
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