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Preface

Henri Poincaré is considered to be one of the great minds of mathematics, physics,
and astronomy. Apart from his rigorous mathematical and analytical style, he was
also renowned for his deep insights into science and the philosophy of science. He
developed and contributed to many important scientific achievements, and his works
on the foundations of science, scientific hypothesis, and scientific method were
written with elegance and style. Even more significantly, perhaps, he came to bear
upon recent scientific achievements when he put forward the Poincaré conjecture,
thereby introducing geometry and topology into the analysis of shape and form.
The Poincaré conjecture and his work on the three-body problem are considered to
constitute the foundations of the modern chaos theory.

This book The Foundations of Chaos Revisited: From Poincaré to Recent
Advancements was motivated by the CHAOS 2015 International Conference at
the Henri Poincaré Institute in Paris. This was undoubtedly the best place to gain
insight into chaos theory as inspired by the Poincaré tradition in a place that must
be considered as the home of Poincaré or, better, the home of mathematics in Paris.

In order to explore the foundations of chaos theory in greater depth, the aim
was to approach the main theme with the style and elegance of Henri Poincaré,
as exemplified in his mathematical-analytical formulation. Chaos theory provides
a link between science and the humanities. It is one of the few scientific topics
that tends to unify the different areas of science and to connect them with society
as a whole and with a language, CHAOS, that is generally accepted as providing
a common substrate, even if this substrate can be seen as mathematics, geometry,
graphs, or linguistic material, depending on your viewing point. However, all would
accept that chaos theory brings together a very broad range of fields.

Following a proposal by Christian Caron from Springer, we have asked the
plenary and keynote speakers of the conference to contribute to a book with
an extended version of their presentations, the aim being to connect Poincaré’s
contributions with today’s achievements. We are happy that we have already
received contributions of high caliber that will take the reader on a fascinating tour
of chaos theory. Important applications integrating traditional and modern chaos
theory are included in the final chapters of this book.

v
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Ferdinand Verhulst has already published several contributions on the Henri
Poincaré legacy. With his elegant style and deep understanding of the state of
science, especially in mathematics and physics, both during and prior to the days
when Poincaré was active, he presents a brilliant paper entitled “Henri Poincaré’s
Inventions in Dynamical Systems and Topology.” He explains how Poincaré’s
broad knowledge of the existing literature led to such outstanding contributions to
dynamical systems and topology. The latter achievement was also built upon the
foundations in geometry and geometric representations of mathematical problems
prevalent in the French school. The Poincaré map exemplifies Poincaré’s deep
insight into the way geometric visualization can lead to progress in mathematical
modeling and especially chaotic modeling.

Jean-Mark Ginoux, a biographical expert on Poincaré who has made good use
of the “Archives Henri Poincaré,” has contributed a paper entitled “From Nonlinear
Oscillations to Chaos Theory.” Following on from the first chapter by Ferdinand
Verhulst, he proceeds to explain how Poincaré’s mathematical concept of limit
cycle and the existence of sustained oscillations representing a stable regime of
sustained waves contributed to the advancement of theory and practice in radio
communications. The author provides documentation and an excellent presentation
of the three main devices, the series-dynamo machine, the singing arc, and the
triode, over a period ranging from the end of the nineteenth century till the end
of the Second World War. He shows how Van der Pol’s study of the oscillations
of two coupled triodes and the forced oscillations of a triode led, at the end of the
Second World War, to Mary Cartwright and John Littlewood’s characterization of
the related oscillating behavior as “bizarre.” This behavior would later be identified
as “chaotic.” However, the basis of this achievement was set forty years earlier
by Poincaré in his work La Théorie de Maxwell et les oscillations Hertziennes:
la télegraphie sans fil (Gauthier-Villars, 3e ed. (Paris), 1907).

The early 1940s were a milestone for the characterization of nonlinear and
“bizarre” oscillations, or better “fine structure solutions,” to use the more elegant
terminology for chaotic solutions in wave modeling in telecommunications. Then,
in 1941 the Russian researcher A.N. Kolmogorov began modeling the chaotic
phenomenon in fluid flow known as turbulence. It was an important step to pass from
oscillations to waves in flows and turbulence. However, the limit cycles introduced
by Poincaré in the solution of differential equations were a key achievement under-
pinning progress that would be made some decades later. And even more important
was his paper on rotating fluids: “Sur la stabilité de l’équilibre des figures piriformes
affectées par une masse fluide en rotation,” Poincaré, H. (1901) Philosophical
Transactions A 198, 333–373. David Ruelle contributes to this important topic with
an extended paper from the honorary presentation for his eightieth birthday at the
CHAOS 2015 International Conference at the Henri Poincaré Institute in Paris. This
paper follows up with further comments by Giovanni Gallavotti and Pedro Garrido,
who also discuss related computer applications. From the early 1970s, with their
seminal paper “On the Nature of Turbulence,” Ruelle and Takens helped to bring
forward Kolmogorov’s ideas, while over the last few years (2012, 2014), David
Ruelle has extended his contributions to the nonequilibrium statistical mechanics
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of turbulence. Note that the related work of Kolmogorov was mainly on an ideal
form of homogeneous and isotropic turbulence, whereas Ruelle is working on
the problem of real nonhomogeneous turbulence, where the lack of homogeneity
is called intermittency. According to David Ruelle, his paper integrates ideas of
turbulence and heat flow:

Translating a nonequilibrium problem (turbulence) into another nonequilibrium problem
(heat flow) is in principle an interesting idea, but there are two obvious difficulties:

• Expressing the fluid Hamiltonian as the Hamiltonian of a coupled system of nodes is
likely to give complicated results.

• The rigorous study of heat flow is known to be extremely hard.

What we shall do is to use crude (but physically motivated) approximations, with the hope
that the results obtained are in reasonable agreement with experiments. This is indeed the
conclusion of our study, indicating that turbulence lies naturally within accepted ideas of
nonequilibrium statistical mechanics.

Giovanni Gallavotti and Pedro Garrido follow Ruelle’s paper “Non-equilibrium
Statistical Mechanics of Turbulence” with “Comments on Ruelle’s Intermittency
Theory.” Giovanni Gallavotti has made significant contributions to chaos theory and
applications in the late 1970s and has published a book entitled Foundations of Fluid
Dynamics. Here, in this joint paper with Garrido, they present an intermittency cor-
rection term to the classical Kolmogorov law. Many calculations are presented for
various cases of turbulence and for different Reynold’s numbers, thus strengthening
the related theory.

Following the previous papers, Roger Lewandowski and Benoît Pinier contribute
with a paper “The Kolmogorov Law of Turbulence: What Can Rigorously Be
Proved?” They consider how homogeneity and isotropy are introduced into turbu-
lence and give a mathematical proof of the famous -5/3 Kolmogorov law. Their aim
is to:

1. Carefully express the appropriate similarity assumption that a homogeneous and
isotropic turbulent flow must satisfy in order to derive the -5/3 law

2. Derive the -5/3 law theoretically from the similarity assumption
3. Discuss the numerical validity of such a law from a numerical simulation in a test case,

using the software BENFLOW 1.0, developed at the Institute of Mathematical Research
in Rennes

They use the Navier-Stokes equations and refer to work by Boussinesq: “Essai
sur la théorie des eaux courantes.” Mémoires présentés par divers savants à
l’Académie des Sciences (Paris, 23.1.1877, 1–660). Another approach is given in
“Sur la stabilité de l’équilibre des figures piriformes affectées par une masse fluide
en rotation,” Poincaré, H. (1901), Philosophical Transactions A 198, 333–373.

Pierre Coullet and Yves Pomeau present a very important topic under the
title “History of Chaos from a French Perspective.” This is an exceptional paper,
deserving much attention. Every point is presented with clarity and a deep insight
into the subject. They start with Poincaré and the French tradition in dynamical
systems. As they explain:
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The history of chaos begins with Poincaré. His PhD thesis can be seen as the very beginning
of dynamics as we know it. He invented powerful geometrical methods to understand
“qualitatively” the behavior of solutions of ordinary differential equations. His message
remains alive, because of the power of his methods. As a side remark it is curious to see
his basic concepts rediscovered again and again. The saddle-node bifurcation (noeud-col
in Poincaré thesis) has grown popular in this respect and lately has acquired various fancy
new names. Poincaré not only pioneered qualitative methods for the analysis of differential
equations, but he also began to study dissipative dynamical systems that differed from
the (far more complex) methods of Lagrangian dynamics (a topic where he also brought
fundamental ideas).

In the same style they continue with a fascinating presentation, discussing authors
and researchers, theoreticians and experimentalists, and the interaction between
them, as well as scientific progress in the field of chaos. They conclude:

Clearly, chaos theory and experiment has not suffered from lack of attractiveness. Nowadays
it has morphed into the wider field of nonlinear science, drawing in many bright young
colleagues. We hope this tree will continue to blossom.

Orbits and periodic orbits in a topological environment, maps, and related
presentations all started with Poincaré, to be expanded later in a well-known paper
by V. Arnold entitled: “Small Denominators. I. Mapping of the Circumference
onto Itself” (Amer. Math. Soc. Transl. (2), 46:213–284, 1965). Quasiperiodicity
is explored in the paper by Suddhasattwa Das, Yoshitaka Saiki, Evelyn Sander,
and James A. Yorke. They provided a one-dimensional quasiperiodic map as an
example and showed that their weighted averages converged far faster than the usual
rate of O(1 N), provided f was sufficiently differentiable. They used this method
for efficient numerical computation of rotation numbers, invariant densities, and
conjugacies of quasiperiodic systems and also to provide evidence that the changes
of variables were (real) analytic. James Yorke was an invited plenary speaker at the
CHAOS 2015 International Conference. He is one of the main contributors to chaos
theory with many papers to his name. Two of the best are “Period Three Implies
Chaos,” T.Y. Li, and J.A. Yorke, American Mathematical Monthly 82, 985 (1975),
and “Controlling Chaos,” E. Ott, C. Grebogi, and J.A. Yorke, Phys. Rev. Lett. 64,
1196–1199 (1990).

Alexander Ramm has explored the problem of heat transfer in a complex
medium. He has already investigated the scattering of acoustic and electromagnetic
waves by small bodies of arbitrary shapes and discussed applications to the creation
of new engineered materials. These are very important contributions to a subject that
has many practical applications in the production of modern materials with special
characteristics.

Theory and practice suggests that time delays are connected with chaotic
behavior, and this is explained in the paper by V.J. Law, W.G. Graham, and D.P.
Dowling entitled “Plasma Hysteresis and Instability: A Memory Perspective”. They
start with a historical review of the significance of Duddell’s “singing arc” and its
application to deleterious effects in the control of both hysteresis and spatiotemporal
stability as the two-electrode valve evolved into the three-electrode or triode vacuum
tube. They illustrate the use of oscillograph Lissajous figures in the I-V plane,
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the Q-V plane, and the harmonic plane to investigate these deleterious effects
in modern low-pressure parallel-plate systems and atmospheric pressure plasma
systems and compare the hysteresis and stability within the “singing arc.” They
discuss developments from the original oscillograph measurement to today’s analog,
digital, and software methods. They also ask whether the “singing arc” and other
plasma systems fall in the category of a memory element. The authors explain
Poincaré’s achievements in this area:

A recent reevaluation of the work of Henri Poincaré has revealed that he too played a
significant role in the mathematical understanding of the arc’s stable regime using limit
cycles and their deviation from that regime. Even though Poincaré did not study the triode
vacuum tube, the review claims that the two-electrode “singing arc” is analogous to the
three-electrode or triode vacuum tube. Given the extended triode development time line,
it would seem unlikely that, at Poincaré’s wireless telegraphy conference in 1908 or at the
time close to his death in 1912, he was able to deduce or describe the behavior of early triode
vacuum tubes that operated under soft or hard vacuum conditions. Nevertheless, Poincaré’s
closed limit cycles do predate the work of Van de Pol and J. Van de Mark along with
Andronov self-oscillations.

The Indian scientist Sir Chandrasekhara Venkata Raman earned the 1930 Nobel
Prize in physics for his work in the field of light scattering and the development
of the so-called Raman amplifiers. Following this discovery, several theoretical and
applied studies led to the construction of new scientific fields, including the fiber
Raman amplifiers presented in a paper by Vladimir L. Kalashnikov and Sergey
V. Sergeyev entitled “Stochastic Anti-resonance in Polarization Phenomena.” To
treat this problem, the authors based their work on the classical Poincaré sphere,
an analytic tool first developed in Poincaré’s publication: “Les methodes nouvelles
de la mecanique celeste” (Tome I, Paris, 1892, Gauthier-Villars). The authors put
forward a more general analytic framework, useful in many topics, as discussed in
their paper:

Here we shall demonstrate a cooperation between analytical multi-scale techniques and
direct numerical simulations of SDEs that reveals a quite nontrivial phenomenon, stochastic
antiresonance (SAR). This can be characterized by different signatures, including the Hurst
parameter, the Kramers length, the standard deviation, etc. This phenomenon can be treated
as a noise-driven escape from a metastable state which is intrinsic to diffusion in crystals,
protein-folding, activated chemical reactions, and many other contexts. As a test bed, we
consider a fiber Raman amplifier with random birefringence, a device with a direct practical
impact on the development of high-transmission-rate optical networks.

Many applications of chaos are based on differential equations and systems
of differential equations. Right from the beginning, when methods were first
introduced to solve differential equations, it was evident that exact solutions would
not generally exist in the majority of applications. Still other scientific advancements
relating to second-order differentials had to wait until Ito and Stratonovich came
on the scene in the twentieth century, establishing the stochastic theory already
introduced in another form by Paul Langevin (1908). Poincaré’s great achievement
is illustrated by the fact that, very early in his career, in fact, in his PhD dissertation,
he had suggested a qualitative approach to solving differential equations, including
limit cycles and singular or stationary points, while he had introduced the term
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“bifurcation” in his first paper on mathematics (1885). It is interesting to see
how important these tools have become today. The paper by Irene M. Moroz,
Roger Cropp, and John Norbury entitled “A Simple Plankton Model with Complex
Behaviour” includes all the recipes provided by Poincaré to deal with a coupled
system of four nonlinear differential equations, including phase portraits, critical or
equilibrium points, bifurcation diagrams, and chaotic oscillations. This paper is a
typical example of the importance of Poincaré’s findings across a broad range of
theoretical and applied fields in science.

An interesting application, entitled “Fractal Radar: Towards 1980–2015,” is
included in the paper by Alexander A. Potapov, along with an interesting approach
to the theory of fractional measure and nonintegral dimension. According to the
author:

The main feature of fractals is the nonintegral value of its dimension. The development
of dimension theory began with the work of Poincaré, Lebesgue, Brauer, Urysohn, and
Menger. Sets which are negligibly small and indistinguishable in one way or another in the
sense of Lebesgue measure arise in different fields of mathematics. To distinguish such sets
with a pathologically complicated structure, one should use unconventional characteristics
of smallness, for example, Hausdorff’s capacity, potential, measures, dimension, and so on.
The application of the fractional Hausdorff dimension associated with entropy, fractals, and
strange attractors has turned out to be most fruitful in dynamical systems theory.

Irina N. Pankratova and Pavel A. Inchin explore a “Simulation of Multidimen-
sional Nonlinear Dynamics by One-Dimensional Maps with Many Parameters.”
They propose a class of discrete dynamical systems as nonlinear matrix models
to describe multidimensional multiparameter nonlinear dynamics. In their article,
they simulate the system’s asymptotic behavior by introducing a two-step algorithm
to compute !-limit sets of dynamical systems. They propose a qualitative theory
allocating invariant subspaces of the system matrix that contain cycles of rays on
which the !-limit sets of the dynamical systems are situated, and they introduce
dynamical parameters to describe the system behavior. The !-limit set of the system
trajectory is computed using the analytical form of the one-dimensional nonlinear
Poincaré map determined by the dynamical parameters.

The paper “Sudden Cardiac Death and Turbulence” authored by Guillaume
Attuel, Oriol Pont, Binbin Xu, and Hussein Yahia is another important application
of the theories presented in the first part of this book, including Poincaré’s methods
and Y. Pomeau’s conjecture regarding hydrodynamic intermittency. This is a clear
and concise discussion of one of the main causes of death in our societies. Many
of the theoretical tools of chaos theory are used, including abnormal oscillations,
fluctuations, and limit cycles. A system of four coupled differential equations is
introduced, and Poincaré section plots are presented, along with an analysis of the
onset of turbulence.

The paper by Philippe Beltrame entitled “Absolute Negative Mobility in a
Ratchet Flow” relates to the papers of David Ruelle, Jean-Mark Ginoux, and
Alexander Ramm. The problem is modeled by a simple system and by a system
of four coupled nonlinear differential equations. Bifurcation diagrams, period-
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doubling cascades, critical values, strange attractors, and Poincaré sections are
presented along with a discussion of the chaotic transition.

Given the selection of papers in the book, the aim here is to reach a broad
scientific and general audience. Indeed, it is directed not only at researchers and
scientists in almost every field but also at a wider audience interested in discovering
and exploring the way modern chaos theory was brought into being some 120
years ago by a brilliant scientist who had the intellectual ability and the scientific
knowledge to reach both the heart and the boundaries of this theory.

We are grateful for the valuable support of Christian Caron, who first suggested
this book devoted to the Poincaré legacy, and to Springer for publishing it. Our
deepest thanks go to the authors and to the direction of the Henri Poincaré Institute
in Paris for accepting to host the CHAOS 2015 International Conference, including
the staff of the Institute who ensured the success of the conference in a scientifically
inspiring environment.

Chania, Greece Christos Skiadas
December 2015
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Chapter 1
Henri Poincaré’s Inventions in Dynamical
Systems and Topology

Ferdinand Verhulst

Abstract The purpose of this article is to trace the invention of images and concepts
that became part of Poincaré’s dynamical systems theory and the Analysis Situs.
We will argue that these different topics are intertwined whereas for topology
Riemann surfaces and automorphic functions play an additional part. The intro-
duction explains the term invention in the context of Poincaré’s philosophical ideas.
Poincaré was educated in the school of Chasles and Darboux that emphasized the
combination of analysis and geometry to perform mathematics fruitfully. This will
be illustrated in the second section where we list his new concepts and inventions in
dynamical systems, followed by the descriptions of theory available before Poincaré
started his explorations and the theory he developed. The third section studies in the
same way the development of Poincaré’s topological thinking that took place in the
same period of time as his research in dynamical systems theory.

1.1 Introduction

The purpose of this paper is to trace the inventions of Poincaré regarding dynamical
systems and topology starting with the accepted knowledge of his time. As we will
see, for topology we will have to discuss aspects of the theory of automorphic
functions. The intertwining of analysis and geometry is typical for the scientific
work of Henri Poincaré.

This paper will not be a systematic treatment of his achievements and their
impact on later science. Such systematic descriptions and references can be found
in the biographies [8] and [31].

The use of the word ‘invention’ in the title needs some explanation. One should
note that the first meaning of invention in French, as Poincaré used it, is indeed the
same as in English.

F. Verhulst (�)
Mathematisch Instituut, University of Utrecht, PO Box 80.010, 3508 TA Utrecht,
The Netherlands
e-mail: f.verhulst@uu.nl
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2 F. Verhulst

A famous essay by Henri Poincaré in [16] has the title “L’invention mathéma-
tique”. In [31, p. 84] the essay is described as follows:

In a wonderful piece of introspection, Poincaré describes in the essay how sudden insight
came to him in solutions of mathematical problems. He conjectures that the unconscious
mind, stimulated by intense but seemingly fruitless exploration of a problem by the
conscious mind, considers many mathematical combinations and makes a choice on the
basis of aesthetics and economy. An example that he gives of such an occurrence concerns
the Fuchsian functions.

There has been a lot of confusion about the use of this term. The English translation
of [16] uses “discovery” instead of “invention”, see [18, p. 46]. Even recently in [8,
p. 120] this produced the following mix-up:

In 1908 Poincaré talked to the Société de Psychologie in Paris about the psychology
of discovery of new results in mathematics. The published version in L’enseignement
mathématique, “L’invention mathématique,” became one of his more famous essays.

The mix-up of discovery and invention is repeated on p. 120 of [8].
People argue that, starting with a complete system of axioms, mathematics is not

invented but discovered. Of course discovery applies to a result like:
Assuming Euclides’ axioms in plane geometry, we have that the sum of the

angles within a triangle is 180 degrees.
Such results were discovered by careful analysing and following up the given

assumptions.
When Poincaré uses the term invention he refers to the creation of new concepts

or the identification of deep relations between different mathematical or physical
concepts.

Platonic reasoning would argue for instance that the integers or the prime
numbers exist independently of the human mind. However, long after identifying
three apples or nine trees, the human mind came up with the abstract notion of
number, for instance 3 or 9, as an element of the set of integers. An integer (and
the set of integers) has no relation to a physical phenomenon, it exists only as an
abstraction in the human mind; it is an example of human invention. It became the
inspiration for the concept of operations like multiplication, a subsequent invention.
And this was followed by the concept of multiplication of elements of other sets, for
instance complex numbers, quaternions, matrices, elements of vectorspaces, etc.

Closely related to the idea of invention is the importance Poincaré attributes to
language in [15]. The scientist creates the language to describe phenomena; to find
the most suitable verbal description is an essential element of understanding the
phenomena, both in the natural sciences and in mathematics. The perception of the
relation between concepts and phenomena needs expression in language, which is
an ingredient of the process of scientific invention. An example given by Poincaré
concerns the motion of the celestial bodies. Kepler’s laws contain a description in
terms of the motion of the planets in elliptical orbits; the geometric concept of an
ellipse provided the language. The transition to Newton’s laws produced a richer
formulation resulting in deeper understanding; the analytic concept of differential
equation provided the language.
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A concept introduced in [17] gives another illustration of the language for a
new concept. Poincaré reasons that the classification of scientific facts is a main
part of the activity of scientists. One considers for instance in biology all living
creatures on Earth and tries to classify them in various groups. Or one considers
in mathematics the set of integers and tries to distinguish subsets as even or odd
numbers. A classification makes sense if adding new elements to the set does not
change the old classification. For instance in biology, the discovery of a new type
of living creature in the deep oceans, does not change the ‘definition’ of birds or
mammals. If a classification is not changed by adding new elements, it is called
predicative by Poincaré. This is now an accepted concept in logic. A definition in
mathematics is really a classification, a definition has to be predicative.

Poincaré gives a simple example. Consider the set of integers and as a subset H
the first hundred integers. Classify them in two subsets: A, the numbers one through
ten and B, the numbers larger than ten. Embedding H in a larger set, for instance the
first 200 integers, does not change the classification in A and B, so it is predicative.

When Poincaré (1854–1912) started his career, his educational background was
as follows:

He was a student at the Lycée of Nancy (1871–1875) where classical geometry,
analysis, algebra and the humanities were taught. After this he was a student at
L’École Polytechnique (1873–1875) with courses in analysis, geometry, mechanics
and physics, chemistry, celestial mechanics. Then he attended L’École des Mines
(1875–1878) where technical and geophysical lectures were given.

His dissertation on singularities of solutions of first order nonlinear partial
differential equations was accepted at the Sorbonne in 1879, he became 25 in that
year.

Poincaré was an enthusiastic reader of novels but not of scientific papers. He
read the classics on celestial mechanics and special functions of that time, papers
by Betti, Hermite, Laguerre, Bonnet, Halphen, Darboux, and later the writings of
Riemann and Weierstraß whom he admired.

In the sequel we will start each section with a list of Poincaré’s inventions and
ideas, followed by descriptions of what was known at that time and a sketch of his
ideas.

1.2 Dynamical Systems

New concepts and inventions:

1. Algebroid functions.
2. Index theory for plane dynamical systems i.e. autonomous second-order ordinary

differential equations (ODEs).
3. The Poincaré-Bendixson theorem for plane dynamical systems.
4. Convergence of series solutions of ODEs, the use of the implicit function

theorem, bifurcation theory (the Hopf bifurcation).
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5. Asymptotic, divergent series.
6. Normalization, the Poincaré domain.
7. Fixed point theorems for dynamical systems.
8. The recurrence theorem for dynamical systems characterized by measure-

preserving maps.
9. Homoclinic chaos.

1.2.1 Ordinary Differential Equations in the Nineteenth
Century

Scientific treatises discussing ordinary differential equations in the nineteenth
century are of three different types: books or papers on mathematical physics, on
special functions and separate treatises on differential equations as we know them
nowadays. We will leave aside the books that are completely application oriented.
These books are of great interest but they merit a special study.

Special functions like the elliptic ones pose many difficult analytic problems. A
typical and important example is the monograph by Jacobi [9]. The book is devoted
to the analysis of elliptic functions (generalization of solutions of the mathematical
pendulum equation).

George Boole’s [4] is a text that deals mainly with elementary methods; it can
be compared with introductions as taught at present. It discusses exact first order
equations, integrating factors, special solutions and equations (Riccati equation) and
methods for linear equations (sometimes tricks), variation of constants, geometric
methods (involutes, curvature, tangencies).

A similar elementary treatise was written by Duhamel [7]. Duhamel lectured at
the École Polytechnique, where Poincaré studied. Henri acquainted himself already
with this course while still at the Nancy Lycée (see [31]). Part 4 on the integration
of ODEs contains material as in Boole [4] but with more geometric problems and
elementary Taylor series expansions for solutions.

We will pay special attention to the extensive treatises by Jordan [10] and Laurent
[13]. Although at the year of their publication, Poincaré had been publishing on
differential equations since 1879, his results are still ignored here. The books [10]
and [13] are typical for the knowledge of ordinary differential equations in the
nineteenth century before Poincaré.

Camille Jordan (1838–1922), see Fig. 1.1, was professor at L’École Polytech-
nique where he taught analysis. His three volumes Cours d’Analyse are a rich and
didactical account of the analysis of his time. In vol. 3, pp. 1–296, two chapters
deal with ordinary differential equations. The first chapter introduces again exact
equations and integrating factors with examples from classical equations (Bernoulli,
Clairaut), but interestingly, Jordan extends this to the cases in dynamics where one
knows a number of integrals but not enough to solve the system. The integrals can
be used to reduce the dimension of the system.
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Attention is given to series expansions of solutions near regular and near singular
points. Cases like

dy

dx
D 1

f .x; y/
or x

dy

dx
D f .x; y/

with f .0; 0/ D 0 and series expansions near .0; 0/ are discussed extensively,
based on the theory of Briot and Bouquet [5]. It should be noted that in the
subsequent chapter on partial differential equations, the topic of series expansions
cannot be found (this would be the topic of Poincaré’s doctoral thesis). The second
chapter treats linear equations with variable and constant coefficients. The theory is
illustrated by the discussion of a number of special functions.

Hermann Laurent (1841–1908) published his seven volumes Traité d’Analyse
[13] in the period 1895–1891; he was “examinateur d’admission á l’École Poly-
technique” and from 1889 on professor at the École Agronomique in Paris, see
Fig. 1.1. Volume 5 of [13, pp. 1–320], contains an extensive didactical introduction
to ordinary differential equations. It has also special value because of the many
references and the exercises. The first three chapters follow the same path as present
day introductions: special methods, first order equations, equations of Bernoulli,
Clairaut, etc. The treatment of linear equations becomes more interesting as Laurent
discusses for instance equations with periodic coefficients, Lamé’s equation and
Halphen’s theory of invariants. Chapter 4 summarizes the theory of special functions
but without the difficult questions raised by Riemann, see Sect. 1.3. Chapter 5 is on
nonlinear equations with emphasis on special integrable cases. Interesting is the
method attributed to Jacobi; consider the equation

d2y

dx2
D F.x; y/

Fig. 1.1 Camille Jordan (1838–1922) and Hermann Laurent (1841–1908)
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with first integral

dy

dx
D �.x; y; c/;

c a constant of integration. Jacobi shows that in this case the differential equation
can be solved by quadrature. It can be considered a generalization of the method
of d’Alembert that solves a similar problem for linear equations. The last chapter
considers systems of first order linear equations including Cauchy’s introduction of
characteristic equations.

The exercises give an idea of the level of teaching and the requirements for
students. Many exercises are concerned with geometrical questions for instance
involving the curvature of certain solutions.

1.2.2 Poincaré’s Thesis

Poincaré was educated in geometry and analysis, but he did not restrict himself to
one particular mathematical discipline. His major contributions regarding dynamical
systems, the Mémoire of 1881–82, the prize essay of 1889 and the Méthodes
Nouvelles de la Mécanique Célèste, are clearly characterized by the interaction of
analysis and geometry

The thesis [22] was presented in 1879 and is concerned with an extended study of
the known concepts of critical points and singularities of nonlinear first-order partial
differential equations of the form

F.z; x1; : : : ; xn;
@z

@x1
; : : : ;

@z

@xn
/ D 0:

The method of characteristics reduces the problem to the integration of an n-
dimensional system of nonlinear ODEs. If n D 2 we can write the phase-plane
equation associated with the two characteristic equations as

xm dy

dx
D f .x; y/

with f .x; y/ a holomorphic function. If m D 0, y.x/ is holomorphic near x D 0

and can be described by a corresponding series expansion. If m D 1, we have a
weakly singular case, if m > 1 and integer we have an irregular singularity. Poincaré
introduces algebroid function as follows: The function z of n variables x1; : : : ; xn is
algebroid of degree m near .0; : : : ; 0/ if z satisfies an equation of the form

zm C Am�1zm�1 C : : :C A1z C A0 D 0;
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where the functions A0; : : : ;Am�1 have a convergent power series in x1; : : : ; xn near
.0; : : : ; 0/. If we can prove that the solution of the partial differential equation is
algebroid, we can formulate results on the existence of certain convergent series
expansions near .0; : : : ; 0/.

This is a useful generalization of the results of Briot and Bouquet [5], but the
thesis goes on with the treatment of more complicated cases. In this connection,
Poincaré introduces series expansions that exclude resonances of the form

m2�2 C m3�3 C : : :C mn�n D �1;

where the �i are determined by the differential equation, the m2; : : : ;mn are positive
integers. In addition, the idea of non-resonance in celestial mechanics is generalized
to requiring that the convex hull of the �i in the complex plane does not contain
the origin. This precludes the theory of normal forms, see for instance Arnold [1],
where for the location of the �i we would nowadays say “the spectrum is in the
Poincaré domain”.

1.2.3 The Mémoire of 1881–82

The Mémoire [20] of 1881–82 is mainly concerned with two-dimensional problems
and so is very different from his three volumes Méthodes Nouvelles de la Mécanique
Célèste [14] where the first general theory of dynamical systems is found. The
Mémoire is restricted to autonomous second order equations as many articles on
ODEs are in the nineteenth century, but the research programme sketched by
Poincaré breaks with the traditions of his time; it is very general and at present the
programme still dominates research. In ODE research, it is the first study of global
behaviour of solutions. Poincaré unfolds here the philosophy of studying nonlinear
dynamics as it is still practiced today:

Unfortunately it is evident that in general these equations [ODEs] can not be integrated
using known functions, for instance using functions defined by quadrature. So, if we would
restrict ourselves to the cases that we could study with definite or indefinite integrals, the
extent of our research would be remarkably diminished and the vast majority of questions
that present themselves in applications would remain unsolved.

And a few sentences on:

The complete study of a function [solution of an ODE] consists of two parts:

1. Qualitative part (to call it like this), or geometric study of the curve defined by the
function;

2. Quantitative part, or numerical calculation of the values of the function.

Consider the two-dimensional system

dx

dt
D X.x; y/;

dy

dt
D Y.x; y/
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Fig. 1.2 Gnomonic
projection of a plane onto a
sphere

with orbits in the Euclidean .x; y/-phaseplane. For the analysis of the system,
Poincaré uses gnomonic projection; this is a cartographic projection of a plane onto
a sphere (in cartography of course the other way around), see Fig. 1.2.

The plane is tangent to the sphere and each point of the plane is projected through
the centre of the sphere, producing two points on the spherical surface, one on the
Northern hemisphere, one on the Southern. The equatorial plane separates the two
hemispheres. A point on the great circle in the equatorial plane corresponds with
infinity.

Each straight line in the plane projects onto a great circle. So a tangent to an
orbit in the plane projects onto a great circle that has at least one point in common
with the projection of the orbit on the sphere. Such a point will be called a contact.
The advantage of this projection is that the plane is projected on a compact set
which makes global treatment easier. We have to consider with special attention the
equatorial great circle which corresponds with the points at infinity of the plane.
A bounded set in the plane is projected on two sets, symmetric with respect to the
centre of the sphere and located in the two hemispheres.

If in a point .x0; y0/ we have not simultaneously X D Y D 0, .x0; y0/ is a regular
point of the system and we can obtain a power series expansion of the solution near
.x0; y0/.

If in a point .x0; y0/ we have simultaneously X D Y D 0, .x0; y0/ is a singular
point. Under certain nondegeneracy conditions Poincaré finds four types for which
he introduces the nowadays well-known names saddle, node, focus and centre.
These are called singularities of first type. In the case of certain degeneracies
we have singularities of the second type. Points on the equatorial great circle
may correspond with singularities at infinity and can be investigated by simple
transformations. The next section of the Mémoire is remarkable; it discusses
the distribution and the number of singular points. Assuming that X and Y are
polynomials and of the same degree and if Xm;Ym indicate the terms of the highest
degree, while we have not xYm � yXm D 0, then the number of singular points is
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at least 2 (if the curves described by X D 0 and Y D 0 do not intersect on the
two hemispheres after projection, there must be an intersection on the equatorial
circle). In addition it is shown that a singular point on the equator has to be a node
or a saddle, in the plane one cannot spiral to or from a singularity at infinity. An
important new concept is index. Consider a closed curve, a cycle, located on one of
the hemispheres. Taking one tour of the cycle in the positive sense, the expression
Y=X jumps h times from �1 to C1, it jumps k times from C1 to �1. We call i
with

i D h � k

2

the index of the cycle. It is then relatively easy to see that for cycles consisting of
regular points one has:

• A cycle with no singular point in its interior has index 0.
• A cycle with exactly one singular point in its interior has index C1 if it is a

saddle, index �1 if it is a node or a focus.
• If N is the number of nodes within a cycle, F the number of foci, C the number

of saddles, the index of the cycle is C � N � F.
• If the number of nodes on the equator is 2N0, the number of saddles 2C0, the

index of the equator is N0 � C0 � 1.
• The total number of singular points on the sphere is 2C 4n; n D 0; 1; � � � .
A solution of the ODE may touch a curve or cycle in a point, a contact. In such a
point the orbit and the curve have a common tangent. An algebraic curve or cycle
has only a finite number of contacts with an orbit. Counting the number of contacts
and the number of intersections for a given curve contains information about the
geometry of the orbits.

A useful tool is the ‘théorie des conséquents’, what is now called the theory of
Poincaré maps. We start with an algebraic curve parametrized by t so that .x; y/ D
.�.t/;  .t// with �.t/;  .t/ algebraic functions; the endpoints A and B of the curve
are given by t D ˛ and t D ˇ. Assume that the curve AB has no contacts and so
has only intersections with the orbits. Starting on point M1 with a semi-orbit (the
orbit traced for t � t0), we may end up again on the curve AB in point M1 which
is the ‘conséquent’ of M0. Nowadays we would call M1 the point generated by the
Poincaré-map of M0 under the phaseflow of the ODE. It plays an important part
in understanding high-dimensional ODEs, anticipating the theory of fixed points of
maps of differential topology.

If M0 D M1, the orbit is a cycle and Poincaré argues that returning maps
correspond with either a cycle or a spiralling orbit. It is possible to discuss various
possibilities with regards to the existence of cycles in which the presence or absence
of singular points plays a part.

This analysis has important consequences for the theory of limit cycles. Semi-
orbits will be a cycle, a semi-spiral not ending at a singular point, or a semi-orbit
going to a singular point. Interior and exterior to a limit cycle there has always to be
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at least one focus or one node. Of the various possibilities considered it is natural
to select annular domains, not containing singular points and bounded by cycles
without contact and so transversal to the phase-flow. Such annular domains are often
used to prove the existence of one or more limit cycles (Poincaré-Bendixson theory).

In the Mémoire, the topology of two-dimensional domains, either R
2 or for

instance S2, with the Jordan separation theorem as an ingredient, plays an essential
role.

Poincaré gave a few examples that were reproduced in [31, pp. 116–117],
however with disturbing misprints. We discuss the examples here.

Example 1 Consider the system with Euclidean variables x; y:

(
Px D x.x2 C y2 � 2x � 3/� y;

Py D y.x2 C y2 � 2x � 3/C x:
(1.1)

The origin .0; 0/ is a stable focus corresponding with two foci on the sphere. Using
polar coordinates

x D r cos�; y D r sin �;

we find outside the origin:

Pr D r.r2 � 2r cos� � 3/; P� D 1:

Elimination of time produces the equation:

dr

d�
D r.r2 � 2r cos� � 3/:

As dr=d�.r D 1/ D 2.cos� � 1/ � 0 and r2 � 2r cos� < 3 for r < 1, we
have that within the circle r D 1 the flow is acyclic, the flow is contracting. As
dr=d�.r D 3/ D 18.1 � cos�/ � 0 and r2 � 2r cos� > 3 for r > 3, we have
that the flow outside the circle r D 3 is also acyclic, the flow is expanding. Within
the circle r D 1 and outside the circle r D 3 have opposite signs for dr=d�, so the
annular region 1 < r < 3 is cyclic. As dr=d� changes sign only once in the annular
region, the annular region is monocyclic and contains one (unstable) limit cycle.

The second example shows a different phenomenon.

Example 2 Consider the system with Euclidean variables x; y:

(
Px D 2x.x2 C y2 � 4x C 3/� y;

Py D 2y.x2 C y2 � 4x C 3/C x:
(1.2)
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The origin .0; 0/ is an unstable focus corresponding with two foci on the sphere.
Using again polar coordinates we find outside the origin:

Pr D 2r.r2 � 4r cos� C 3/; P� D 1:

Elimination of time produces the equation:

dr

d�
D 2r.r2 � 4r cos� C 3/:

Rewrite the equation as

dr

d�
D 2rŒ.r � 1/.r � 3/C 4r.1 � cos�/�:

As dr=d�.r D 1/ D 8.1 � cos�/ � 0 and r2 � 4r cos� > �3 within the circle
r D 1, we have that within the circle r D 1 the flow is acyclic, the flow is expanding.

At r D 3 we have again dr=d� � 0; if r > 3, we have dr=d� > 0. The flow
outside the circle r D 3 is acyclic, the flow is also there expanding. The annular
region 1 < r < 3 has to be considered more closely. By analyzing the expression
.r2 � 4r cos� C 3/, we see that dr=d� cannot change sign in the annular region, so
the annular region is also acyclic. There exist no limit cycles in a finite domain of
the system.

We add a note on the behaviour near infinity of the solutions of the two examples.
The systems (1.1) and (1.2) can be written as:

(
Px D xA.x; y/ � y;

Py D yA.x; y/C x:
(1.3)

We add the initial conditions x.0/ D x0 ¤ 0; y.0/ D y0. Putting � D y=x we find:

d�

dt
D 1C �2; �.0/ D y0

x0
;

with solution

�.t/ D y.t/

x.t/
D y0

x0
C tan.t/:

Inside the limit cycle of Example 1, the rotation of the orbits toward the origin causes
the orbits to cross the positive y-axis with period 2� (alternating with crossing the
negative y-axis).

In both examples, the solutions starting at a point r.0/ > 3 tend to infinity. The
equation P� D 1 suggests rotation, but this is not the case as the solutions tend to
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infinity in a finite time. Assuming r.0/ > 3, this can be seen from the following
estimates:

Example 1, Pr � r.r2 � 2r � 3/ � .r � 3/3.
Example 2, Pr � 2r.r2 � 4r C 3/ � 2.r � 3/3.
Integration of the differential inequalities (with r.0/ > 3) gives the desired result.
At the equator of the Poincaré sphere, we find no limit cycles. Transforming

x D 1=u and y D 1=v, we find from the transformed system that the singularities at
the equator are not regular.

1.2.4 The Prize Essay for Oscar II, 1888–89

The famous prize awarded by King Oscar II of Sweden and Norway on the occasion
of his 60th birthday in 1889 has become a well-known story, mainly because
Henri Poincaré, who won the prize (see [23]), had to admit and to correct an error
after the event. For detailed accounts see [2] and [31]. Not so well-known is that
apart from the error to be corrected, the first version of the prize essay contained
already fundamental theorems. Important results from the prize essay involve series
expansions, periodic solutions and bifurcations. Series expansions with respect to
a small parameter were the main tool in celestial mechanics of that time, but these
expansions were formal. Comparison with results of various authors was not easy
as many different transformations of the equations of motion were in use. Poincaré
gave explicit criteria for the convergence and divergence of such series based on
holomorphic expansion theorems of differential equations and the implicit function
theorem. At the same time, his insight in the causes of the break-up of validity
of expansion procedures, inspired him to the first set-up of a very important field:
bifurcation theory. All these topics would be treated more extensively in [14].

Series expansion produce always local information. An important global result
is the recurrence theorem:

Consider a dynamical system defined on a compact set in R
n with the property

that the flow induced by the system is measure-preserving. Poincaré uses the term
volume-preserving as the notion of measure does not exist at this time. Examples
are the motion of an incompressible fluid in a nondeformable vessel or the phase-
flow induced by a time-independent Hamiltonian system without singularities on a
compact domain. Using the invariance of the domain volume, it is proved that most
particles or fluid elements return an infinite number of times arbitrarily close to their
initial position. The recurrence time is not specified but depends in general on the
required closeness to the initial position and of course on the dynamical system at
hand.

The interpretation of the recurrence theorem in the case of a chaotic system is
interesting. In a two degrees-of-freedom Hamiltonian system near stable equilib-
rium, the KAM theorem guarantees in most cases the existence of an infinite number
of two-dimensional invariant tori that separate the energy manifold into small
chaotic regions. In these systems the recurrence phenomena near stable equilibrium
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are quite strong. Moving further away from stable equilibrium, the recurrence times
will be more and more dependent on the initial positions.

In the case of more than two degrees-of-freedom, resonances will produce
more active sets of chaotic orbits near stable equilibrium producing very different
recurrence times.

Another basic result is the non-integrability of conservative systems.
In the corrected version of the prize essay [23], Poincaré overturned the general

philosophy that Lagrangian or Hamiltonian systems are always integrable. The
traditional idea was that if one could not find the integrals of for instance the
gravitational three-body problem, this was caused only by lack of analytic skill. In
fact, in his first submission of the prize essay, Poincaré set out to prove integrability
of the circular, plane, restricted three-body problem. This can be written as a two
degrees of freedom Hamiltonian system which takes the form of four first-order
equations with periodic coefficients. He identified an unstable periodic solution and
approximated its stable and unstable manifolds by series expansions. Poincaré calls
these invariant manifolds “surfaces asymptotiques”. He concluded (incorrectly in
the first version) that the continuations of stable and unstable manifolds could be
glued together to form integral surfaces corresponding with a second first integral
of the system.

After a query of the editor of the Acta Mathematica asking for more details,
Poincaré found out that this gluing was not possible in this particular example.
He found an infinite number of intersections instead of merging of the manifolds.
These results preclude the existence of homoclinic manifolds that would indicate
the presence of a second integral. In the prize essay, the description of the geometry
of the dynamics of the two degrees-of-freedom circular, plane, restricted three-body
problem is tied in with the non-integrability results. In [14], the analysis will grow
to its full generality for n degrees of freedom Hamiltonian systems.

1.2.5 Les Méthodes Nouvelles de la Mécanique Céleste
1892–1899

The three volumes of the Méthodes Nouvelles appeared in the same period (1892–
1899) as the Analysis Situs and its supplements (1892–1905). The reference to
celestial mechanics in the title of the three volumes is misleading, they contain
the first general theory of dynamical systems describing both conservative and
dissipative systems by analytical and geometric methods. Celestial mechanics is
often used in [14] as an illustration of the theory.

To solve ODEs, in particular in problems of celestial mechanics, the use of
series expansions is ubiquitous. Poincaré formulated and proved a basic series
expansion theorem in vol. 1, Chap. 2 of [14]. At the same time he demonstrates
how the convergence of such series can break down. This involves conditions of
the implicit function theorem with consequences for the bifurcation of solutions.
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The use of the implicit function theorem was known at that time for sets of
polynomial equations, but to apply these ideas to ODEs was new. Poincaré
introduces the notion of bifurcation set with modifications for the dissipative and
the conservative case (for more details see [31]). Particularly interesting is that
in Chap. 3 a very general discussion is presented of what is now called the Hopf
bifurcation.

The flexibility of Poincaré’s mind shows again when he introduces divergent
or asymptotic series in Chap. 8 as a legitimate tool. This went against the general
mathematical philosophy of that time that required series to be convergent, but
it agreed with the practice of many scientists working in applications. Divergent
series can be used to obtain approximations of solutions but the difficult ques-
tion of concluding existence of solutions and other qualitative questions from
asymptotic approximations were not touched upon by Poincaré, this came after his
time.

In [14], the fundamental non-integrability theorem is formulated and proved in
the general case of the time-independent 2n dimensional Hamiltonian equations of
motion

Px D @F

@y
; Py D �@F

@x

with small parameter � and the convergent expansion F D F0 C�F1 C�2F2 C� � � ;
F0 depends on x only and its Jacobian is non-singular, j@F0=@xj ¤ 0. Suppose
F D F.x; y/ is analytic and periodic in y in a domain D; the first integral ˆ.x; y/ of
the system is analytic in x; y in D, analytic in � and periodic in y:

ˆ.x; y/ D ˆ0.x; y/C �ˆ1.x; y/C �2ˆ2.x; y/C � � �

The statement is then that with these assumptions,ˆ.x; y/ can not be an independent
first integral of the Hamiltonian equations of motion unless we impose further
conditions.

In the Méthodes Nouvelles [14, Chap. 5 of vol. 1], chapter 5 of volume 1, the
technique is first analytic: a second integral should Poisson-commute with and be
independent of the Hamiltonian; expanding the second integral with respect to a
suitable small parameter and applying these conditions leads to a contradiction
unless additional assumptions are made (see also [31]). It is understandable that
the geometric aspects of non-integrability could not be understood at that time for
more than two degrees of freedom. Very few contemporaries of Poincaré understood
these aspects, even for two degrees of freedom (phase-space dimension 4). It is not
clear whether Elie Cartan [6] understood non-integrability or, if he did, knew what
to make of it. In his book [6] he recalls Poincaré’s definition of integral invariant but
he ignores existence questions.

There are more geometric details given in vol. 3, Chap. 32 of [14]. As in the
prize essay, the analysis is inspired by the actual Hamiltonian dynamics of stable
and unstable manifolds. Here we find the famous description of chaotic dynamical
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behaviour when considering the Poincaré-section of an unstable periodic solution in
a two degrees of freedom Hamiltonian system:

If on tries to represent the figure formed by these two curves with an infinite number
of intersections whereas each one corresponds with a double asymptotic solution, these
intersections are forming a kind of lattice-work, a tissue, a network of infinite closely
packed meshes. Each of the two curves must not cut itself but it must fold onto itself in
a very complex way to be able to cut an infinite number of times through each mesh of the
network.

One will be struck by the complexity of this picture that I do not even dare to sketch.
Nothing is more appropriate to give us an idea of the intricateness of the three-body problem
and in general all problems of dynamics where one has not a uniform integral and where
the Bohlin series are divergent.

In this case of two degrees of freedom, the energy manifold is 3-dimensional in
4-dimensional phase-space.The flow on the energy manifold is visualized by the
corresponding Poincaré-maps (“théorie des conséquents”). The double asymptotic
solutions are the remaining homoclinic solutions that are produced by the inter-
sections. The Bohlin series mentioned in the citation are formal series obtained by
Bohlin for periodic solutions in celestial mechanics.

The picture Poincaré sketches destroys the possibility of a complete foliation
into tori of the energy manifold, topologically S3, induced by a second independent
integral of motion.

1.2.6 The Poincaré-Birkhoff Theorem

This theorem appeared in 1912, a long time after the Analysis Situs and its
supplements. However, it is typical for Poincaré’s interest in the global character of
dynamical systems. It bothered him that so many results in this field are local, series
expansions, normal forms, bifurcations, and he formulated a more global geometric
theorem [24]. The reason to postpone its publication was that he found his reasoning
not satisfactory; the actual proof was given by Birkhoff [3].

The idea is to characterize certain dynamical systems by an area-preserving,
continuous twist-map of an annular region into itself. Such a map has at least
two fixed points corresponding with periodic solutions of the dynamical sys-
tem. The applications Poincaré had in mind were the global characterization of
periodic solutions of time-independent Hamiltonian systems with two degrees
of freedom. The dynamics of such a system restricted to a compact energy
manifold is three-dimensional. The Poincaré maps of the orbits can provide the
twist map described by the theorem. After 1912, fixed point theorems would
play an important part in general and differential topology and in dynamical
systems.



16 F. Verhulst

1.3 Topology

A number of topological concepts were known before Poincaré’s time, but, as in
the case of the theory of dynamical systems, he invented its questions and the
modern form of this field single-handedly. Poincaré used the term Analysis Situs
(‘analysis of place’) for topology in a paper that appeared in 1892. It was followed
up in typical Poincaré ‘second-thoughts’ style by five supplements, the last one in
1905. A translation into English and an introduction can be found in [26]. As stated
before, the three volumes on dynamical systems [14] and the Analysis Situs were
written in the same period of time. Before this period, Poincaré started his work on
automorphic (Fuchsian) functions. We will argue that automorphic functions and
dynamical systems, in particular the step from local to global considerations, were
both instrumental in the creation of the Analysis Situs.

New concepts and inventions:

1. Triangularization of manifolds, the Euler-Poincaré invariant
2. Homology
3. The fundamental group
4. Algebraic topology

1.3.1 Topology Before Poincaré

We will briefly describe topology before Poincaré and we will discuss in subsequent
subsections various topics in Poincaré’s work of the period 1878–1892 that might
have inspired his ideas. We conclude with discussing some of his inventions of the
Analysis Situs, see also [30]. A few aspects of our reasoning can be found in [32].

Leibniz
The term ‘Analysis Situs’ is attributed to Gottfried Wilhelm Leibniz (1648–1716)
whose optimistic view considered our world the optimal one among possible worlds.
The symbolism that he successfully applied in calculus was probably an inspiration
for him to wish for symbolic ‘calculus’ in philosophy, sociology and geometry.
For geometry this would imply an extension to forms and spaces characterized by
algebraic symbols; this extension was called analysis situs, but the idea, although
interesting, got no substance in Leibniz’ subsequent work.

Euler
One of the mathematicians who thought about structures and forms in geometry was
Leonhard Euler (1707–1783), see Fig. 1.3. He considered a convex two-dimensional
polyhedron in Euclidean 3-space with V the number of vertices, E the number of
edges and F the number of faces. The Euler characteristic for polyhedrons � is an
invariant of the form:

� D V � E C F D 2:
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Fig. 1.3 Leonhard Euler
(1707–1783), drawing by
Giovanni Batista Bosio
(1764–1827), engraved by
Francesco Rebagli (courtesy
private collection)

Interestingly, the Euler characteristic was generalized by Poincaré to more general
closed, non-convex surfaces like tori or spheres with handles.

Abel, Möbius and Jordan
A handle, a ‘look-through hole’, in a surface is not so easy to characterize
mathematically. Niels Henrik Abel (1802–1829) called the number of handles g,
the genus of a surface in 3-space; for a sphere g D 0, for a torus g D 1

etc. August Ferdinand Möbius (1790–1868) developed ideas about non-orientable
surfaces in Euclidean 3-space. Both Möbius and Camille Jordan (1838–1922)
thought and formulated ideas about topological maps of surfaces. In their view,
correspondence (“Elementarverwandschaft” in Möbius view) between two surfaces
was not primarily characterized by point mappings but by considering the surfaces
dissected in infinitesimal elements where neighboring elements of one surface
correspond with neighboring elements of the other surface. For more details and
references see [29].
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Betti
Enrico Betti (1823–1892) gave a more precise description of tori and handles by
defining his so-called Betti numbers. Betti uses the idea of connectivity and the
number of closed curves separating a closed surface to characterize handles and
more complicated structures.

The Influence of Riemann
The successes of analysis in dynamics, in particular in celestial mechanics, had its
counterpart in applied mathematics in Germany, but meanwhile geometric thinking
went there its autonomous course. This becomes clear in the mathematics of
Bernhard Riemann (1826–1866), see Fig. 1.4. Poincaré notes in La valeur de la
science [15]:

Among the German mathematicians of this century, two names are particularly famous;
these are the two scientists who have founded the general theory of functions, Weierstrass
and Riemann. Weierstrass reduces everything to the consideration of series and their
analytical transformations. To express it better, he reduces analysis to a kind of continuation
of arithmetic; one can go though all his books without finding a picture. In contrast with this,
Riemann calls immediately for the support of geometry, and each of his concepts presents an
image that nobody can forget once he has understood its meaning. ([15], essay ‘L’intuition
et la logique en mathématiques’)

It is interesting to consider Riemann’s papers in the light of Poincaré’s remarks.
At the occasion of his ‘Habilitation’ in Göttingen (1854), Riemann lectured on

the foundations of geometry [28], see also [27] and for the historical context [29].
Riemann starts with experience and notes that the Euclidean foundations are not
necessary, but that they have an acceptable certainty. He formulates a research plan
for n-dimensional manifolds and spaces without precise descriptions. Weyl [28]
links these considerations with later results in geometry, for instance by Klein, and
with general relativity.

The collected works of Riemann [27] start with a treatise on the foundations
of complex function theory, without figures but, as noted by Poincaré, “each of

Fig. 1.4 Bernhard Riemann (1826–1866) and Henri Poincaré (1854–1912)
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its concepts presenting an image”. The interpretation of a complex function in
the neighbourhood of a singularity plays a prominent part. In Riemann’s articles,
analysis and geometry go hand in hand, producing new insights in both fields.

A long article on Abelian functions in [27] is written in the same style, it contains
four figures. The integration of differential equations leads more often than not to
solutions that are defined implicitly. We are then faced with an inversion problem
to find the explicit solution. Consider for instance a simple implicit relation in
complex variables: w D z2 with inversion, z D p

w; this leads to the well-known
problem that, starting, say on the real axis, and moving on a circle around the
origin (the singularity), will produce a different value when arriving again at the
real axis. An ingenious solution for the problem of many-valuedness to obtain
unique continuation of such a function was proposed by Riemann. Using several
sheets (complex planes) when moving around the singularity and joining them, one
obtains the so-called Riemann surface. In the example of the quadratic equation
above, one needs two sheets to be joined. For more general algebraic implicit
equations, one needs for such an inversion a finite number of sheets and so a
more complicated Riemann surface. A clear and systematic treatment of Riemann
surfaces with historical remarks can be found in [12].

A prominent mathematician after Riemann was Felix Klein (1849–1925). His
papers, books and lectures have a strong intuitive and geometric flavor. His work on
automorphic functions, although considerable, was overshadowed by the results of
Poincaré at the same time; see also [8] and [31]. Both mathematicians elaborated on
the geometric aspects of Riemann surfaces.

1.3.2 Local Versus Global in Poincaré’s Fuchsian Functions

Many results on the local behaviour of functions were known in the 18th and 19th
centuries. A few mathematicians aimed at a more global understanding ; Poincaré
shared this ambition with Felix Klein (1849–1925). In his lecture notes on linear
differential equations [11] Klein notes that we can make series expansions near the
singularities of the coefficients, but this does not help global understanding. A basic
tool for these problems is the geometric theory of automorphic functions developed
both by Klein and Poincaré. Klein, while referring to an earlier lecture, states in the
beginning of [11] (lecture of April 24, 1894):

: : : für hypergeometrische Functionen trat in meiner Vorlesung das Bestreben hervor den
Gesamtverlauf der durch die Differentialgleichung definirten Funktionen zu erfassen.

(: : : for hypergeometric functions, I wished to get a grip on the overall behaviour of the
functions defined by the differential equation.)

The theory of Fuchsian (automorphic) functions is a successful synthesis of
function theory and geometry, at the same time the concepts that were developed
stimulated the emergence of topological concepts. Poincaré started to publish about
Fuchsian functions in 1881, see vol. 2 of [19] and [25]. He was inspired by the
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German mathematician Fuchs (1833–1902) who considered a second order, linear,
ordinary differential equation of the form

y00 C A.z/y0 C B.z/y D 0

with A.z/ and B.z/ holomorphic functions of the complex variable z in a region
S � C. There are two independent solutions y1.z/ and y2.z/ and Fuchs started to
consider the ratio � D y1=y2. He was interested in the behaviour of the solutions near
singular points of A.z/ and B.z/ and performed analytic continuation of y1.z/ and
y2.z/ along a closed curve around such a singularity and inversion of the function
�.z/. This led him to consider a linear transformation of � and, more in general, to
look for functions that are invariant under a substitution of the form

z ! az C b

cz C d
; (1.4)

with coefficients a; b; c; d. So we have

f

�
az C b

cz C d

�
D f .z/:

The substitution (1.4) (or transformation as we call it nowadays) is very rich; it
consists of translations and rotations in the complex plane or, in the language of
dynamical systems, expansions and contractions. The ratio �.z/ of the solutions
should be invariant under these linear substitutions which is a more general property
than periodicity that corresponds with the special case a D c D d D 0; b ¤ 0 and
real.

1.3.3 Fuchsian Groups

Poincaré put the results at a higher level of abstraction. He called the functions
which are invariant under transformation (1.4) Fuchsian, they are now called
automorphic. The group of transformations acts usually on the upper complex half-
plane Im.z/ > 0 or on the disk jzj < 1. It is still removed from our present abstract
concept of a group as a set of elements with certain operations defined on it. For
his analysis, Poincaré had to distinguish between continuous and discontinuous
transformation groups. He understood by a flash of intuition that the continuation
of these complex functions, the use of Riemann surfaces and transformations in the
complex plane correspond with geometric structures that can be understood only in
terms of non-Euclidean geometry. In fact, until Poincaré looked at these problems,
non-Euclidean geometry was considered as an artificial playground without much
relevance to mathematics in general.
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Fig. 1.5 Fundamental parallelogram corresponding with a torus

In the analysis of functions with singularities, fundamental polygons and cover-
ings of Riemann surfaces by polygons play an important part. For some functions
a covering by triangles is suitable. In the case of elliptic functions we have the
inversion of an elliptic integral that produces double periodicity:

�.x C m1!1 C m2!2/ D �.x/

which keeps �.x/ invariant (m1;m2 2 Z). In this case one uses a covering
of parallelograms. Identifying several parts of the boundary of a fundamental
polygon leads for the triangle to genus zero (one can deform to a sphere), for the
parallelogram to g D 1 (identifying the opposite sides two by two leads to a torus,
see Fig. 1.5). Poincaré shows that fundamental polygons bounded by more sides lead
to arbitrary large genus. For an introduction to polygon coverings see [12, Chap. 12].
In [11] Klein discusses the relations between a fundamental parallelogram and a
torus (see Fig. 1.5) and between a fundamental octagonal and a surface with genus
two.

Closely related to this is Poincaré’s theory of uniformization problems. Differ-
ential equations lead to the integration and inversion of algebraic functions; their
analytic continuations produce multi-valued analytic functions. Uniformization
of such functions corresponds to obtaining a parametrization by single-valued
meromorphic functions. The development has led to the relation between complex
function theory and hyperbolic geometry, and also to many results in the study of
quadratic forms and arithmetic surfaces. The theory of uniformization contains still
many fundamental open questions.

1.3.4 Covering an Analytic Curve in 1883

In [21] Poincaré considers a complex vector function y1.x/; y2.x/; : : : ; yn.x/; he lets
the complex variable x describe a closed contour C on a Riemann surface S. When
x traces the contour C, the function is restricted to an analytic curve on S. The
idea is to show that there exists a transformation x ! z such that after applying the
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transformation, the vector field y can be parametrized by single-valued meromorphic
functions of z. There are two types of contours:

1. When x traces C once, at least one of the components of y does not return to its
starting value.

2. All components return to their starting value when tracing the contour C once.
There are two subcases:

1. By slight deformation of C this property persists;
2. Applying slight deformation of C the property does not persist.

The proof that such a transformation exists rests on two ideas. First, one knows that
if C is a closed contour, one can find a holomorphic function u.	; �/ inside C which
takes prescribed values on C. This is based on solving the Dirichlet problem of the
Laplace equation in two dimensions.

The second point concerns us here. Poincaré states in the proof that the analytic
curve on the Riemann surface S is covered by an infinite number of feuillets, the
infinitesimal elements of Möbius and Jordan. This construction of the covering is
later used and extended by Poincaré as a general covering procedure for manifolds.

1.3.5 The Analysis Situs and Its Supplements

On reading the Analysis Situs of 1895 and its later supplements [26], one notes that
the conciseness and abstraction of modern mathematics is missing; reading the text
is relatively easy. This is deceptive as the ideas and new concepts go very deep. Its
readability is misleading.

Introductions to Poincaré’s topological papers are found in [29] and [26]. We
will discuss a number of basic concepts from the papers referring sometimes to
his earlier work. Poincaré was not an avid reader but usually gave carefully credit to
ideas and results of colleagues if he knew about them. There are not many references
in the Analysis Situs as the material was so new.

1. Introduction of the concept of manifold in arbitrary dimension (by construction).
The idea of a manifold has a long history with contributions from many

mathematicians. Poincaré introduced the covering of an analytic curve in [21].
It is generalized to two and higher-dimensional manifolds.

In the first section of the Analysis Situs, manifolds are described by sets of
algebraic equations in R

n. A new approach is given in the third section where
manifolds are defined by continuous parametrizations; they can be replaced
by analytic parametrizations as we can approximate continuous functions by
analytic ones. In this way, manifolds of the same dimension that have a common
part can be considered an analytic continuation of each other.

Thus far, the analysis of Poincaré of the treatment of manifolds was a natural
extension of ideas of older mathematicians and the theory of complex functions
on Riemannian surfaces, see [29].
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2. The use of local parametrizations that become global by overlap like in analytic
continuation was a new idea. Another new element arises in Sect. 10 of the
Analysis Situs [26]: geometric representation by gluing together polyhedra
identifying faces and manifolds. Consider a manifold M and replace the manifold
by approximating simplexes with adjacent boundaries, forming a simplicial
complex. In this way, using polygons like triangles, we obtain a triangulation
of a manifold that makes it easier to apply homology (the next item).

3. Homology.
Suppose a manifold M contains r-dimensional submanifolds, Poincaré calls

them cycles. If M has a .r C1/-dimensional submanifold with as a boundary one
given r-dimensional cycle, the cycle is homologous to zero in M. Consider as an
illustration an annular region in the plane where r D 1, see Fig. 1.6.

4. Homology theory and the fundamental group.
In Sect. 11 of [26], Poincaré considers domains in 4-space with 3-dimensional

surfaces as boundaries that can be subdivided and homeomorphically trans-
formed into polygons. Regarding such transformations, the inspiration from
Fuchsian groups becomes explicit in the Sects. 10–14. In Sect. 11, Poincaré
writes

The analogy with the theory of Fuchsian groups is too evident to need stressing. (transl.
J. Stillwell [26])

One of the results is the emergence of algebraic structures between Betti numbers
and a generalized topological Euler invariant (usually called now Euler-Poincaré
invariant). Consider a group 
 of translations � of the complex plane C (or a
suitable other domain) which is fixed-point free. A typical case is when 
 is
generated by two Euclidean translations in different directions.

Associated with 
 is a fundamental domain D which is a polygon. In the case
of C we can take for the fundamental domain a parallelogram. The translations
of this polygon in two directions fill C, see Fig. 1.5.

Fig. 1.6 Consider the
annular region bounded by C1
and C2. A closed curve with
interior in the annular region
has homology zero, a closed
curve encircling C1 has
nonzero homology

homology nonzero

C 1

C 2
homology zero



24 F. Verhulst

Another aspect brings us to algebraic topology: we can identify opposite sides
of the fundamental parallelogram to obtain a torus which is in this special case
C=
 . Considering other domains and polygons we may find manifolds with
genus higher than one.

5. Associated with homology is also Poincaré duality. It was stated in terms of Betti
numbers: The kth and .n � k/th Betti numbers of a closed, orientable n-manifold
are equal. Criticism of his work by Poul Heegaard led him to discuss (so-called)
torsion in the second supplement.

1.3.6 Conclusions

The Analysis Situs was created as a completely new mathematical theory. Its
inventions are geometrical representation, triangulation of manifolds, homology and
algebraic topology. In particular:

1. To study the connectedness of a manifold Poincaré developed a calculus of
submanifolds. The relations involved were called homologies, they could be
handled as ordinary equations. This started algebraic topology and what Leibniz
would have called “an algebra of surfaces”.

2. Technically, Fuchsian transformations and the fundamental group played an
inspiring and important part in the set-up of the Analysis Situs.

3. Geometrically, the picture is more complex. Riemann surfaces, global consid-
erations from ODEs and Hamiltonian dynamics were another inspiration. In
the dynamical systems theory of Poincaré [20] and [14], an important part of
the considerations are local like series expansions, bifurcation theory etc. The
development of global insight in dynamical systems like the reasoning needed
to describe homoclinic chaos and the use of fixed point results to find periodic
solutions (Sect. 1.2.6) was new, it needed consideration of the dynamics on
3-dimensional compact manifolds embedded in 4-space.
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Chapter 2
From Nonlinear Oscillations to Chaos Theory

Jean-Marc Ginoux

Abstract In this work we propose to reconstruct the historical road leading from
nonlinear oscillations to chaos theory by analyzing the research performed on the
following three devices: the series-dynamo machine, the singing arc and the triode,
over a period ranging from the end of the nineteenth century till the end of the
Second World War.

Thus, it will be shown that the series-dynamo machine, i.e. an electromechanical
device designed in 1880 for experiments, enabled to highlight the existence of
sustained oscillations caused by the presence in the circuit of a component
analogous to a “negative resistance”.

The singing arc, i.e. a spark-gap transmitter used in Wireless Telegraphy to
produce oscillations and so to send messages, allowed to prove that, contrary to
what has been stated by the historiography till recently, Poincaré made application
of his mathematical concept of limit cycle in order to state the existence of sustained
oscillations representing a stable regime of sustained waves necessary for radio
communication.

During the First World War, the singing arc was progressively replaced by the
triode and in 1919, an analogy between series-dynamo machine, singing arc and
triode was highlighted. Then, in the following decade, many scientists such as
André Blondel, Jean-Baptiste Pomey, Élie and Henri Cartan, Balthasar Van der Pol
and Alfred Liénard provided fundamental results concerning these three devices.
However, the study of these research has shown that if they made use of Poincaré’s
methods, they did not make any connection with his works.

In the beginning of the 1920s, Van der Pol started to study the oscillations of
two coupled triodes and then, the forced oscillations of a triode. This led him to
highlight some oscillatory phenomena which have never been observed previously.
It will be then recalled that this new kind of behavior considered as “bizarre” at the
end of the Second World War by Mary Cartwright and John Littlewood was later
identified as “chaotic”.
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2.1 Introduction

The aim of this work is to trace the history of the foundations of Chaos theory
through the analysis of the works performed on the following three devices: the
series-dynamo machine, the singing arc and the triode, over a period ranging from
the end of the nineteenth century till the end of the Second World War.

In 1880, by sending the current produced by a dynamoelectrical into a magne-
toelectrical machine forming thus a series-dynamo machine, the French engineer
Jean-Marie Gérard Anatole Lescuyer highlighted a nonlinear phenomenon that will
be later considered by Paul Janet as sustained oscillations and by Balthasar Van
der Pol as relaxation oscillations.1 If the cause of this phenomenon was rapidly
identified as being the presence in the circuit of a component analogous to a
“negative resistance”, its mathematical modeling was out of reach at that time.

A quarter of a century later, at the time of the emergence of Wireless Telegraphy,
it became of tremendous need to find the condition for which the oscillations
produced by a spark-gap transmitter called singing arc were sustained. Actually,
this condition representing a stable regime of sustained waves necessary for radio
communication was established by Henri Poincaré in 1908 during a series of “for-
gotten lectures” he gave at the École Supérieure des Postes et Télécommunications
(today Telecom ParisTech). Contrary to what was stated by the historiography till
recently, Poincaré made thus the first correspondence between the existence of
sustained oscillations and the concept of limit cycle that he had introduced in his
second memoir “On the curves defined by differential equations”. In other words,
he proved that the periodic solution of the nonlinear ordinary differential equation
characterizing the oscillations of the singing arc corresponds in the phase plane to
an attractive closed curve, i.e. a stable limit cycle.

During the First World War, the singing arc was progressively replaced by the
triode which was also able to sustain oscillations but even more importantly to
amplify the electric signal.

In 1919, the French engineer Paul Janet established an analogy between the
series-dynamo machine, the singing arc and the triode and stated thus that their
sustained oscillations belong to the same nonlinear phenomenon. Then, in the
following decade, many scientists such as André Blondel, Jean-Baptiste Pomey, Élie
and Henri Cartan, Balthasar Van der Pol and Alfred Liénard provided fundamental
results concerning these three devices. However, it appears that if they made use of
Poincaré’s methods, they did not make any connection with his works.

In the beginning of the 1920s, Van der Pol started to study the oscillations of
two coupled triodes and then, the forced oscillations of a triode. This led him to
highlight new oscillatory phenomena that he called oscillation hysteresis, automatic

1A brief history of relaxation oscillations can be found in Ginoux and Letellier [16]. However,
let’s notice that this article has been entirely republished by M. Letellier in the Chap. 2 of his last
book while omitting to make correct reference to this work. For a detailed history of relaxation
oscillations, see Ginoux [14, 19, 20].
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synchronization and frequency demultiplication. Nevertheless, in this case, if the
oscillations are still sustained, the solution is no more periodic but exhibits a new
kind of behavior that will be called “bizarre” at the end of the Second World War by
Mary Cartwright and John Littlewood and that will be later identified as “chaotic”.

2.2 The Series-Dynamo Machine: The Expression
of Nonlinearity

At the end of the nineteenth century, magneto- or dynamo-electric machines
were used in order to turn mechanical work into electrical work and vice versa.
With the former type of machine, the magnetic field is induced by a permanent
magnet, whereas the latter uses an electromagnet. These machines produced either
alternating or direct current indifferently. Thus, in 1880, a French engineer named
Jean-Marie-Anatole Gérard-Lescuyer made an experiment by associating a dynamo-
electric machine used as a generator with a magneto-electric machine, which in this
case can be considered as the motor (Fig. 2.1).

Gérard-Lescuyer [21, 22] reports on the found effects in a note published in
the Comptes rendus de l’Académie des Sciences de Paris and in the Philosophical
Magazine in the following way:

As soon as the circuit is closed the magnetoelectrical machine begins to move; it tends
to take a regulated velocity in accordance with the intensity of the current by which it is
excited; but suddenly it slackens its speed, stops, and start again in the opposite direction,
to stop again and rotate in the same direction as before. In a word, it receives a regular
reciprocating motion which lasts as long as the current that produces it.

While observing the periodical reversal of the magneto-electric machine’s
circular motion, despite the direct current, he wondered about the causes of
this oscillatory phenomenon that he was unfortunately unable to isolate. Gérard-
Lescuyer [21, 22] wrote in his conclusion:

What are we to conclude from this? Nothing, except that we are confronted by a scientific
paradox, the explanation of which will come, but which does not cease to be interesting.

It was actually proven by the count Théodose du Moncel [12] a few weeks later,
then by Aimé Witz [50, 51], and by Paul Janet [24], that the gap situated between the
brushes of the dynamo is the source of an electromotive force (e.m.f.), i.e. a potential

Fig. 2.1 The
Gérard-Lescuyer’s
paradoxical experiment [26]
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difference at its terminals symbolized by a nonlinear function of the intensity that
flows through there. However, the mathematical modeling of this e.m.f. was out
of reach at that time. Therefore the essence of Gérard-Lescuyer’s paradox is the
presence of an e.m.f, which has a nonlinear current-voltage characteristic acting as
a negative resistance and leading to sustained oscillations.

Half a century later, the famous Dutch physicist Balthasar Van der Pol [46] noted:

Relaxation oscillations produced by a motor powered by a D.C. series-dynamo. The fact
that such a system is able to produce relaxation oscillations was already briefly discussed.
In an article written by Mr. Janet (we find a reference to Gérard Lescuyer (CR 91, 226,
1880) where this phenomenon had already been described.

2.3 The Singing Arc: Poincaré’s Forgotten Lectures

At the end of the nineteenth century a forerunner to the incandescent light bulb
called electric arc was used for lighthouses and street lights. Regardless of its weak
glow it had a major drawback: the noise generated by the electrical discharge which
inconvenienced the population. In London, physicist William Du Bois Duddell
(1872–1917) was commissioned in 1899 by the British authorities to solve this
problem. He thought up the association of an oscillating circuit made with an
inductor L and a capacitor C (F on Fig. 2.2) with the electrical arc to stop the noise
(see Fig. 2.2). Duddell [10, 11] created a device that he named singing arc.

Duddell had actually created an oscillating circuit capable of producing not only
sounds (hence its name) but especially electromagnetic waves. This device would
therefore be used as an emitter for wireless telegraphy until the triode replaced it.
The singing arc or Duddell’s arc was indeed a “spark gap” device meaning that it
produced sparks which generated the propagation of electromagnetic waves shown
by Hertz’s experiments as pointed out by Poincaré [36, p. 79]:

If an electric arc is powered by direct current and if we put a self-inductor and a capacitor
in a parallel circuit, the result is comparable to Hertz’s oscillator. . . These oscillations are
sustained exactly like those of the pendulum of a clock. We have genuinely an electrical
escapement.

Fig. 2.2 Diagram of the
singing arc’s circuit, from
Duddell [10, 11]
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On July 4th 1902, Henri Poincaré became Professor of Theoretical Electricity at
the École Supérieure des Postes et Télégraphes (Telecom ParisTech) in Paris where
he taught until 1910. The director of this school, Édouard Éstaunié (1862–1942),
then asked him to give a series of conferences every 2 years in May–June from
1904 to 1912. He told about Poincaré’s first lecture of 1904:

From the first words it became apparent that we were going to attend the research work of
this extraordinary and awesome mathematician. . . Each obstacle encountered, a short break
marked embarrassment, then a blow of shoulder, Poincaré seemed to defy the annoying
function.

In 1908, Poincaré chose as the subject: Wireless Telegraphy. The text of his
lectures was first published weekly in the journal La Lumière Électrique [37]
before being edited as a book the year after [38]. In the fifth and last part of these
lectures entitled: Télégraphie dirigée : oscillations entretenues (Directive telegraphy:
sustained oscillations) Poincaré stated a necessary condition for the establishment
of a stable regime of sustained oscillations in the singing arc. More precisely, he
demonstrated the existence, in the phase plane, of a stable limit cycle.

To this aim Poincaré [37] studied Duddell’s circuit that he represented by the
following diagram (Fig. 2.3) consisting of an electromotive force (e.m.f.) of direct
current E, a resistance R and a self-induction, and in parallel, a singing arc and
another self-induction L and a capacitor.

Then, he called x the capacitor charge, x0 the current intensity in the branch
including the capacitor, �x0 the term corresponding to the internal resistance of
the self and various damping and  .x0/ the term representing the e.m.f. of the
arc the mathematical modeling of which was also out of reach for Poincaré at that
time. Nevertheless, Poincaré was able to establish the singing arc equation, i.e. the
second order nonlinear differential equation (2.1) for the sustained oscillations in
the singing arc:

Lx00 C �x0 C 
�
x0�C Hx D 0 (2.1)
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Fig. 2.3 Circuit diagram of the singing arc, from Poincaré [37, p. 390]



32 J.-M. Ginoux

Fig. 2.4 Closed curve
solution of the sing arc
equation, from Poincaré [37,
p. 390]

Then, by using the qualitative theory of differential equations that he developed
in his famous memoirs [30–34], he stated that:

One can construct curves satisfying this differential equation, provided that function  is
known. Sustained oscillations correspond to closed curves, if there exist any. But every
closed curve is not appropriate, it must fulfill certain conditions of stability that we will
investigate.

Thus, he plotted a representation of the solution of Eq. (2.1) (see Fig. 2.4):
Let’s notice that this closed curve is only a metaphor of the solution since

Poincaré does not use any graphical integration method such as isoclines. This
representation led him to state the following stability condition:

Stability condition. – Let’s consider another non-closed curve satisfying the differential
equation, it will be a kind of spiral curve approaching indefinitely near the closed curve. If
the closed curve represents a stable regime, by following the spiral in the direction of the
arrow one should be brought back to the closed curve, and provided that this condition is
fulfilled the closed curve will represent a stable regime of sustained waves and will give rise
to a solution of this problem.

Then, it clearly appears that the closed curve which represents a stable regime
of sustained oscillations is nothing else but a limit cycle as Poincaré [31, p. 261]
has introduced it in his own famous memoir “On the curves defined by differential
equations” and as Poincaré [32, p. 25] has later defined it in the notice on his own
scientific works [32]. But this, first giant step is not sufficient to prove the stability
of the oscillating regime. Poincaré had to demonstrate now that the periodic solution
of Eq. (2.1) (the closed curve) corresponds to a stable limit cycle. So, in the next part
of his lectures, Poincaré gave what he calls a “condition de possibilité du problème”.
In fact, he established a stability condition of the periodic solution of Eq. (2.1), i.e.
a stability condition of the limit cycle under the form of the following inequality.

Z

�
x0� x0dt < 0 (2.2)

It has been proved by Ginoux [13, 14, 17, 19, 20] that this stability condition (2.2)
flows from a fundamental result introduced by Poincaré in the chapter titled
“Exposants caractéristiques” (“Characteristics exponents”) of his “New Methods
of Celestial Mechanics” [35, vol. I, p. 180].
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Until recently the historiography considered that Poincaré did not make any
connection between sustained oscillations and the concept of limit cycle he had
introduced and credited the Russian mathematician Aleksandr’ Andronov [1, 2] for
having been the “first” to establish this correspondence between periodic solution
and limit cycle.

Concerning the singing arc, Van der Pol [49] also noted in the beginning of the
thirties:

In the electric field we have some very nice examples of relaxation oscillations, some are
very old, such as spark discharge of a plate machine, the oscillation of the electric arc
studied by Mr. Blondel in a famous memoir (1) or the experience of Mr. JANET, and other
more recent. . .
(1) BLONDEL, Eclair. Elec., 44, 41, 81, 1905. See also J. de Phys., 8, 153, 1919.

2.4 The Triode: From Periodic Solution to Limit Cycle

In 1907, the American electrical engineer Lee de Forest (1873–1961) invented
the audion. It was actually the first triode developed as a radio receiver detector.
Curiously, it found little use until its amplifying ability was recognized around 1912
by several researchers. Then, it progressively replaced the singing arc in the wireless
telegraphy devices and underwent a considerable development during the First
World War. Thus, in October 1914, a few months after the beginning of the conflict,
the French General Gustave Ferrié (1868–1932), director of the Radiotélégraphie
Militaire department, gathered a team of specialists whose mission was to develop a
French audion, which should be sturdy, have regular characteristics, and be easy to
produce industrially. Ferrié asked to the French physicist Henri Abraham (1868–
1943) to recreate Lee de Forests’ audions. However, their fragile structure and
lack of stability made them unsuitable for military use. After several unsuccessful
attempts, Abraham created a fourth structure in December 1914, which was put in
operation from February to October 1915 (Fig. 2.5).

The original of this valve called “Abraham lamp” is still in the Arts et Métiers
museum to this day (Fig. 2.5). It has a cylindrical structure, which appears to have
been designed by Abraham. In November 1917, Abraham consequently invented
with his colleague Eugene Bloch (1878–1944) a device able to measure wireless
telegraphy emitter frequencies: the so-called multivibrator (see Ginoux [14, 17, 19,
20]).

Wireless telegraphy development, spurred by war effort, went from craft to full
industrialization. The triode valves were then marketed on a larger scale. More
reliable and stable than the singing arc, the consistency of the various components
used in the triode allowed for exact reproduction of experiments, which facilitated
research on sustained oscillations.
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Fig. 2.5 Picture of the original lamp T.M. made by Abraham (1915)

2.4.1 Janet’s Analogy

In April 1919, the French scientist Paul Janet (1863–1937) published an article
entitled “Sur une analogie électrotechnique des oscillations entretenues” [25]
which was of considerable importance on several levels. Firstly, it underscored
the technology transfer taking place, consisting in replacing an electromechanical
component (singing arc) with what would later be called an electronic tube. This
represented a true revolution since the singing arc, because of its structure it made
experiments complex and tricky, making it almost impossible to recreate. Secondly,
it revealed “technological analogy” between sustained oscillations produced by a
series dynamo machine like the one used by Gérard-Lescuyer [21, 22] and the
oscillations of the singing arc or a three-electrode valve (triode). Janet [25, p. 764]
wrote:

It seemed to me interesting to mention the unexpected analogies of this experiment with
the sustained oscillations so widely used to-day in wireless telegraphy, for example,
those produced in Duddell’s arc or in the lamp with three-electrodes lamps used as
oscillators. . . Producing and sustaining oscillations in these systems mostly depends on the
presence, in the oscillating circuit, of something comparable to a negative resistance. The
dynamo-series acts as a negative resistance, and the engine with separated excitation acts as
a capacity.

Thus, Janet considered that in order to have analogies in the effects, i.e. in order
to see the same type of oscillations in the series-dynamo machine, the triode and the
singing arc, there must be an analogy in the causes. Therefore, since the series-
dynamo machine acts as a negative resistance, responsible for the oscillations,
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there is indeed an analogy. Consequently, only one equation must correspond to
these devices. In this article, Janet provided the nonlinear differential equation
characterizing the oscillations noted during Gérard-Lescuyer’s experiment:

L
d2i

dt2
C �

R � f 0 .i/
� di

dt
C k2

K
i D 0 (2.3)

where R corresponds to the resistance of the series dynamo machine, L is the
self-induction of the circuit and K=k2 is analogous to a capacitor and f .i/ is the
electromotive force of the series-dynamo machine. However, as recalled by Janet
[25, p. 765], its mathematical modeling was also out of reach at that time.

But the phenomenon is limited by the characteristic’s curvature, and regular, non-sinusoidal
equations actually occur. They are governed by the equation (2.3), which could only be
integrated if we knew the explicit for of the function f .i/.

By replacing in Eq. (2.3) i with x, R with �, f 0.i/ with .x/, and k2=K with H, one
find again Poincaré’s singing arc equation (2.2). Thus, both ordinary differential
equations are analogous but are not of the same order. Nevertheless, it appeared that
Janet did make no connection with Poincaré’s works.

2.4.2 Blondel’s Triode Equation

According to the historiography, it is common knowledge the Dutch physicist
Balathasar Van der Pol is credited for having stated the differential equation of the
triode in his famous publication entitled “On relaxation oscillations” published in
1926 [45]. However, it was proved by Ginoux [14, 17, 18] on the one hand that the
triode equation was actually stated by Van der Pol in 1920 in a publication entitled:
“A theory of the amplitude of free and forced triode vibrations,” [40] and on the other
that the French engineer André Blondel sated the triode equation 1 year before him.

As previously pointed out, the main problem of these three devices was the
mathematical modeling of their oscillation characteristics, i.e., the e.m.f. of the
series-dynamo machine, of the singing arc and of the triode.

Thus, in a note published in the Comptes Rendus of the Académie des Sciences
on the 17th of November 1919, Blondel proposed to model the oscillation charac-
teristic of the triode as follows [3]:

i D b1 .u C k�/� b3 .u C k�/3 � b5 .u C k�/5 : : : (2.4)

Then, substituting i by its expression in the triode equation, neglecting the
internal resistors and integrating once with respect to time, he obtained

C
d2u

dt2
� �

b1h � 3b3h
3u2 � : : :

� du

dt
C u

L
D 0 (2.5)
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Let’s notice that this equation is perfectly equivalent to those obtained by
Poincaré and Janet. Nevertheless, if Blondel solved the problem of the mathematical
modeling of the oscillation characteristic of the triode he did make no connection
with Poincaré’s works despite of the fact that he knew him personally.

2.4.3 Pomey’s Contribution

Less than on year later, the French engineer Jean-Baptiste Pomey (1861–1943)
proposed a mathematical modeling of the e.m.f. of the singing arc in his entitled:
“Introduction à la théorie des courants téléphoniques et de la radiotélégraphie”
and published on June 28th 1920 (this detail would be of great importance in the
following). Pomey [39, p. 375] wrote:

For the oscillations to be sustained it is not enough to have a periodic motion, it is necessary
to have a stable motion.

Then, he proposed the following “law” for the e.m.f. of the singing arc:

E D E0 C ai � bi3 (2.6)

and posing i D x0 (like Poincaré) he provided the nonlinear differential equation of
the singing arc:

Lx00 C Rx0 C 1

C
x D E0 C ax0 � bx03 (2.7)

By posing H D 1=C, � D R and  .x0/ D �E0 � ax0 C bx03 it is obvious that
Eqs. (2.1) and (2.7) are completely identical.2 Moreover, it is striking to observe that
Pomey has used exactly the same variable x0 as Poincaré to represent the current
intensity. Here again, there is no reference to Poincaré. This is very surprising since
Pomey was present during the last lecture of Poincaré at the École Supérieure des
Postes et Télégraphes in 1912 whose he had written the introduction. So, one can
imagine that he could have attended the lecture of 1908.

At the same time, Van der Pol [40] proposed the following mathematical
modeling of the oscillation characteristic of the triode in an article published on
July 17, 1920:

i D  .kv/ D ˛v C ˇv2 C �v3 (2.8)

2For more details see Ginoux [17–20].
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Van der Pol [40, p. 704] precised that, by symmetry consideration, one can
choose ˇ D 0 and provided the triode equation:

C
d2v

dt2
� �
˛ � 3�v2

� dv

dt
C 1

L
v D 0 (2.9)

Taking into account that ˇ can be chosen as equal to zero, one finds no difference
between the Eqs. (2.6) and (2.8). Nevertheless, nothing proves that Van der Pol had
read Pomey’s book.

Five years later, on September 28th 1925, Pomey wrote a letter to the mathe-
matician Élie Cartan (1869–1951) in which he asked him to provide a condition for
which the oscillations of an electrotechnics device analogous to the singing arc and
to the triode whose equation is exactly that of Janet (2.3) are sustained. Within ten
days, Élie Cartan and his son Henri sent an article entitled: “Note sur la génération
des oscillations entretenues” [4] in which they proved the existence of a periodic
solution for Janet’s equation (2.3). In fact, their proof was based on a diagram which
corresponds exactly to a “first return map” diagram introduced by Poincaré in his
memoir “Sur les Courbes définies par une équation différentielle” [31, p. 251].

2.4.4 Van der Pol’s Relaxation Oscillations

Van der Pol’s most famous publication is probably that entitled “On relaxation
oscillations” [45]. However, what is least well-known is that he published four
different versions of this paper in 1926 in the following order:

1. Over Relaxatietrillingen [42] (in Dutch);
2. Over Relaxatie-trillingen [43] (in Dutch);
3. Über Relaxationsschwingungen [44] (in German);
4. On relaxation-oscillations [45] (in English).

In these four articles, Van der Pol presents the following generic dimensionless
nonlinear differential equation for relaxation oscillations which is neither attached
to the triode, nor to any other device (series-dynamo machine or singing arc):

Rv � ".1 � v2/ Pv C v D 0: (2.10)

Early on, Van der Pol [40, p. 179] realized that the Eq. (2.10) was not analytically
integrable:

It has been found to be impossible to obtain an approximate analytical solution for (2.10)
with the supplementing condition (" � 1), but a graphical solution may be found in the
following way.

So, he used the isoclynes method to graphically integrate the nonlinear differen-
tial equation (2.10) for the relaxation oscillations (Fig. 2.6).
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Fig. 2.6 Graphical integration of Eq. (2.10)

Obviously, the solution plotted on this figure is nothing else but a limit cycle of
Poincaré. Nevertheless, contrary to a widespread view, Van der Pol didn’t recognize
this signature of a periodic solution and did make no connection with Poincaré’s
works till 1930! On the occasion of a series of lectures that he made at the École
supérieure d’Électricité on March 10th and 11th 1930, Van der Pol wrote [49]:

Note on each of these three figures a closed integral curve, which is an example of what
Poincaré called a limit cycle, because the neighboring integral curves are approaching
asymptotically.

Moreover, let’s notice that he didn’t make any reference to Poincaré’s works but
to Andronov’s article [2].
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2.4.5 Liénard’s Riddle

On May 1928, the French engineer Alfred Liénard (1869–1958) published an article
entitled “Étude des oscillations entretenues” in which he studied the solution of the
following nonlinear differential equation:

d2x

dt2
C !f .x/

dx

dt
C !2x D 0 (2.11)

Such an equation is a generalization of the well-known Van der Pol’s equation
and of course of Janet’s equation (2.4). Under certain assumptions on the function
F .x/ D R x

0
f .x/ dx less restrictive than those chosen by Cartan [4] and Van der Pol

[45], Liénard [27] proved the existence and uniqueness of a periodic solution of
Eq. (2.11). Then, Liénard [27, p. 906] plotted this solution (Fig. 2.7) and wrote:

All integral curves, interior or exterior, traveled in the direction of increasing time, tend
asymptotically to the curve D, we say that the corresponding periodic motion is a stable
motion.

Fig. 2.7 Closed curve
solution of Eq. (2.10),
Liénard [27]
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Then, Liénard [27, p. 906] explained that the condition for which the “periodic
motion” is stable is given by the following inequality:

Z



F .x/ dy > 0 (2.12)

By considering that the trajectory curve describes the closed curve clockwise in
the case of Poincaré and counter clockwise in the case of Liénard, it is easy to show
that both conditions (2.2) and (2.12) are completely identical3 and represents an
analogue of what is now called “orbital stability”. Again, one can find no reference
to Poincaré’s works in Liénard’s paper. Moreover, it is very surprising to observe
that he didn’t used the terminology “limit cycle” to describe its periodic solution.
All these facts constitutes the Liénard’s riddle.

2.4.6 Andronov’s Note at the Comptes Rendus

On Monday 14 October 1929, the French mathematician Jacques Hadamard (1865–
1963) presented to the Académie des Sciences de Paris a note which was sent to
him by Aleksandr Andronov and entitled “Poincaré’s limit cycles and the theory
of self-sustained oscillation”. In this work, Andronov [2] proposed to transform the
second order nonlinear differential equation modeling the sustained oscillations by
the series-dynamo machine, the singing arc or the triode into the following set of
two first order differential equations:

dx

dt
D P .x; y/ ;

dy

dt
D Q .x; y/ (2.13)

Then, he explained that the periodic solution of this system (2.13) is expressed
in terms of Poincaré’s limit cycles:

This results in self-oscillations which emerge in the systems characterized by the equation
of type (2.13) corresponding mathematically to Poincaré’s stable limit cycles.

It is important to notice that due to the imposed format of the Comptes Rendus
(limited to four pages), Andronov did not provide any demonstration. He just
claimed that the periodic solution of a non-linear second order differential equation
defined by (2.13) “corresponds” to Poincaré’s stable limit cycles. Then, Andronov
provided a stability condition for the stability of the limit cycle:

Z 2�

0

�
fx .R cos 	;�R sin 	I 0/ cos 	 C gy .R cos 	;�R sin 	I 0/ sin 	

�
d	 < 0 (2.14)

3For more details see Ginoux [14, 17–20].
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In fact, this condition is based on the use of characteristic exponents introduced
by Poincaré in his so-called New Methods on Celestial Mechanics [35, Vol. I, p.
161] and after by Lyapounov in his famous textbook General Problem of Stability
of the Motion [28]. That’s the reason why Andronov will call later the stability
condition (2.14): stability in the sense of Lyapounov or Lyapounov stability. It
has been stated by Ginoux [13, 14, 17, 19, 20] that both stability condition of
Poincaré (2.2) and of Andronov (2.14) are totally identical. Thus by comparing
Andronov’s previous sentence with that of Poincaré (see above), it clearly appears
that Andronov has stated the same correspondence as Poincaré 20 years after him.
Nevertheless, it seems that Andronov may not have read Poincaré’s article since at
that time even if the first volume of his complete works had been already published
it didn’t contained Poincaré’s lectures on Wireless Telegraphy.

2.4.7 The First “Lost” International Conference on Nonlinear
Oscillations

From 28 to 30 January 1933 the first International Conference of Nonlinear
Oscillations was held at the Institut Henri Poincaré (Paris) organized at the initiative
of the Dutch physicist Balthasar Van der Pol and of the Russian mathematician
Nikolaï Dmitrievich Papaleksi. This event, of which virtually no trace remains, was
reported in an article written in Russian by Papaleksi at his return in USSR. This
document, recently rediscovered by Ginoux [15], has revealed, on the one hand,
the list of participants who included French mathematicians: Alfred Liénard, Élie
and Henri Cartan, Henri Abraham, Eugène Bloch, Léon Brillouin, Yves Rocard
. . . and, on the other hand the content of presentations and discussions. The analysis
of the minutes of this conference highlights the role and involvement of the French
scientific community in the development of the theory of nonlinear oscillations.4

According to Papaleksi [29, p. 211], during his talk, Liénard recalled the main
results of his study on sustained oscillations:

Starting from its graphical method for constructing integral curves of differential equations,
he deduced the conditions that must satisfy the nonlinear characteristic of the system in
order to have periodic oscillations, that is to say for that the integral curve to be a closed
curve, i.e. a limit cycle.

This statement on Liénard must be considered with great caution. Indeed, one
must keep in mind that Papaleksi had an excellent understanding of the work of
Andronov [2] and that his report was also intended for members of the Academy
of the USSR to which he must justified his presence in France at this conference
in order to show the important diffusion of the Soviet work in Europe. Despite the
presence of MM. Cartan, Lienard, Le Corbeiller and Rocard it does not appear that

4For more details see Ginoux [14, 15, 17, 19, 20].
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this conference has generated, for these scientists, a renewed interest in the problem
of sustained oscillations and limit cycles.

2.5 The Triode: From Limit Cycle to “Bizarre” Solutions

At the end of the First World War, the development of wireless telegraphy led the
engineers and scientists to turn to the study of self-sustained oscillations in a three-
electrode lamp subjected to a periodic “forcing” or a “coupling”. According to Mrs.
Mary Lucy Cartwright [9]:

The non-linearity [in the Van der Pol equation] may be said to control the amplitude in
the sense that it allows it to increase when it is small but prevents it becoming too large.
The general solution cannot be obtained by the combination of two linearly independent
solutions and similar difficulties arise when we add a forcing term to this equation. This was
brought out very clearly by the work of Van der Pol and Appleton, partly in collaboration,
and partly independently, in a series of papers on radio oscillations published between 1920
and 1927. To me the work of the radio engineers is much more interesting and suggestive
than that of the mechanical engineers. The radio engineers want their systems to oscillate,
and to oscillate in a very orderly way, and therefore they want to know not only whether
the system has a periodic solution, but whether it is stable, what its period and amplitude
and harmonic content are, and how these vary with the parameters of the equation, and they
sometimes want the period to be determined with a very small error. In the early days they
wanted to explain why the amplitude was limited in a certain way and why in some cases
the period lengthened as the harmonic content increased and not in others. The desire to
know why and the insistence on how the various quantities such as amplitude and frequency
vary with the parameters of the equation over fairly wide ranges meant that numerical and
graphical solutions either failed to provide the answer or were far too cumbersome. Further,
unless one knows something about the general behavior of the solutions, the numerical
work, which is only approximate, may be misleading.

Thus, in the beginning of the 1920s, Van der Pol [40] studied the oscillations of
a forced triode, i.e. a triode powered by a voltage generator with an f.e.m. of type
v .t/ D Esin .!1t/ the equation of which reads then:

Rv � ˛
�
1 � v2� Pv C !20v D !21Esin .n!1t/ with " D ˛

!0
� 1 (2.15)

Four years later, while using the method of “slowly-varying amplitude” that he
had developed, Van der Pol [41] was thus able on the one hand to obtain more
directly the various approximations of the amplitude of this forced system, and on
the other hand, to construct a solution to the equation more easily than by using
the classical Poincaré-Lindstedt or Fourier methods.5 In this paper, Van der Pol [47]
highlights the fact that when the difference in frequency of the two signals is inferior
to this value an automatic synchronization phenomenon occurs and the two circuits

5The English version of this article was published in 1927. See Van der Pol [47].
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oscillate with the same frequency. This led him to evidence the phenomenon of
frequency entrainment, which he defined thus:

Hence the free frequency undergoes a correction in the direction of the forced frequency,
giving the impression as if the free frequency were being attracted by the forced frequency.

In 1927, Van der Pol and his colleague Jan Van der Mark [48] published an
article titled “Frequency Demultiplication,” in which they again studied the forced
oscillations of a triode, but in the field of relaxation oscillations. Then, they
explained that the automatic synchronization phenomenon, observed in the case
of the forced oscillations of a triode, can also occur for a range of the parameter
corresponding to the relaxation oscillations, i.e. for " � 1, but in a much wider
frequency field. They also reported that the resonance phenomenon is almost non-
existent in forced relaxation oscillations, and that consequently, the sinusoidal e.m.f.
inducing the forcing influences the period (or frequency) of the oscillations more
than it does their amplitude, and added:

It is found that the system is only capable of oscillating with discrete frequencies, these
being determined by whole sub-multiples of the applied frequency.

In their article, Van der Pol and Van der Mark [48] proposed, in order to
evidence the frequency demultiplication phenomenon, the following construction
(see Fig. 2.8) on which we can see a “jump” of the period for each increase in the
value of the capacitor’s capacitance.

Fig. 2.8 Representation of the phenomenon of frequency demultiplication, from Van der Pol et
Van der Mark [48, p. 364]
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In order to evidence this frequency demultiplication phenomenon, Van der Pol
and Van der Mark used a phone. They then described the phenomenon what they
heard in the receiver:

Often an irregular noise is heard in the telephone receivers before the frequency jumps to
the next lower value. However, this is a subsidiary phenomenon, the main effect being the
regular frequency multiplication.

This irregular noise they heard was actually the sound manifestation of the
transition which was taking place. Indeed, as the frequency varied, the solution to
the differential equation (2.15), which had been until now represented by a limit
cycle, i.e. by a periodic attractor, would draw a “strange attractor” transcribing the
chaotic behavior of the solution. Van der Pol seemed to have reached the limits
of deterministic physics with how far he went in the exploration of nonlinear and
non-autonomous systems. He “flirted”, as Mary Lucy Cartwright and John Edensor
Littlewood [5–8] did 20 years later with the first signs of chaos, when they called
“bizarre” the behavior of the solution to the differential equation (2.15) for specific
values of the parameters. Indeed, according to Guckenheimer et al. [23]:

Van der Pol’s work on nonlinear oscillations and circuit theory provided motivation for
the seminal work of Cartwright and Littlewood. In 1938, just prior to World War II,
the British Radio Research Board issued a request for mathematicians to consider the
differential equations that arise in radio engineering. Responding to this request, Cartwright
and Littlewood began studying the forced Van der Pol equation and showed that it does
indeed have bistable parameter regimes. In addition, they showed that there does not exist
a smooth boundary between the basins of attraction of the stable periodic orbits. They
discovered what is now called chaotic dynamics by detailed investigation of this system.

2.6 Conclusion

Thus, the analysis of the research performed on the following three devices: the
series-dynamo machine, the singing arc and the triode, over a period ranging
from the end of the nineteenth century till the end of the Second World War, has
enabled to reconstruct the historical road leading from nonlinear oscillations to
chaos theory. The series-dynamo machine has highlighted a new kind of oscillations
generated by the presence of a nonlinear component in the circuit, i.e. a negative
resistance. Poincaré’s work on the singing arc has provided an analytical condition
for the sustaining of these oscillations, i.e. for the existence of a stable limit cycle.
Moreover, this has proved that Poincaré has established 20 years before Andronov
the correspondence between periodic solution and stable limit cycle. In his research
on the triode, Blondel has solved the question of the mathematical modeling of its
oscillation characteristic, i.e. of its negative resistance and stated thus, 1 year before
Van der Pol, the triode’s equation. Then, Janet highlighted an analogy between
the oscillations sustained by the series-dynamo machine, the singing arc and the
triode and Van der Pol deduced that they were belonging to the same oscillatory
phenomenon that he called relaxation oscillations. Though he plotted the solution
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of the equation that now bears his name, he didn’t recognize that it was obviously
a Poincaré’s limit cycle. Thereafter, Cartan and then Liénard proved the existence
and uniqueness of this periodic solution but did not make either a connection with
Poincaré’s works. Immediately after Andronov established this connection, Van
der Pol and Papaleksi organized the first International Conference on Nonlinear
Oscillations in Paris. Nevertheless, this meeting did not lead to any development or
research in this field. At the same time, Van der Pol and Van der Mark highlighted
that the forced triode was the source of a strange phenomenon that they called
frequency demultiplication. At the end of the Second World War, Cartwright and
Littlewood investigated this system and considered its oscillations as “bizarre”.
Many years later, it appeared that they had actually observed the first chaotic
behavior.
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Chapter 3
Hydrodynamic Turbulence as a Nonstandard
Transport Phenomenon

David Ruelle

Abstract The hydrodynamic time evolution is Hamiltonian in the inertial range
(i.e., in the absence of viscosity). From this we obtain that the macroscopic study of
hydrodynamic turbulence is equivalent, at an abstract level, to the microscopic study
of a heat flow in a nonstandard geometry. In the absence of fluctuations this means
that the Kolmogorov theory of turbulence is equivalent to a heat flow for a suitable
mechanical system. Turbulent fluctuations (intermittency) correspond to thermal
fluctuations for the heat flow. A relatively crude estimate of the thermal fluctuations,
based on standard ideas of nonequilibrium statistical mechanics is presented: this
agrees remarkably well with what is observed in several turbulence experiments.
A logical relation with the lognormal theory of Kolmogorov and Obukhov is also
indicated, which shows what fails in this theory, and what can be rescued.

3.1 Introduction

In the present paper we give a relatively informal presentation of some new ideas on
hydrodynamic turbulence which have been introduced in two papers by the author
[1, 2]. Here we insist on the physical ideas; the reader will find calculations and
details in the above references. Furthermore, relevant computer calculations by
Gallavotti and Garrido are presented in a companion paper [3]. Our basic idea is
to consider hydrodynamic turbulence as a physical phenomenon, not a chapter in
the study of nonlinear partial differential equations.

A remarkable experimental fact about turbulence is that it is chaotic (see Ruelle-
Takens [4], Gollub and Swinney [5], Libchaber [6], etc.). This means that the
time evolution . f t/ of a turbulent fluid system belongs to a much studied class of
deterministic dynamics with sensitive dependence on initial conditions (see Lorenz
[7], and the reprint collections by Cvitanović [8] and Hao Bai-Lin [9]). In particular,
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the time dependence of turbulence is not quasi-periodic: the frequency spectrum is
not discrete. There are natural measures used for the description of chaotic physical
systems, these are called SRB measures (Ia.G. Sinai, D. Ruelle, R. Bowen, see
[10, 11] for a discussion of this topic). In fact, a useful idea is to assume that the
physical system behaves as if it had uniformly hyperbolic dynamics (that it is an
Anosov flow: this is the Gallavotti-Cohen [12] chaotic hypothesis).

In view of the above remarks, we obtain a statistical theory of turbulence simply
by determining a SRB measure for a dynamical system describing the time evolution
of a fluid. There are several perfectly decent mathematical definitions of SRB
measures. However, the technical problem of finding SRB measures for the time
evolution defined by the Navier-Stokes equations at moderate or high Reynolds
numbers appears totally beyond reach. For that reason, I shall not bother to discuss
the precise definition of SRB measures. The problem of understanding the statistical
structure of hydrodynamic turbulence has a straight answer, but this answer cannot
in practice be implemented. I have come to this conclusion several decades ago,
and it is only recently that I have seen a way out of that difficulty. Here is the
idea: the turbulent energy cascade is conceptually just a special case of a heat
transport problem. In other words, the macroscopic turbulent energy cascade is
mathematically the same thing as a microscopic heat flow problem in a nonstandard
geometry.

As it turns out, the studying the nonequilibrium statistical mechanics of heat
flows is an extremely hard problem, and it would seem that we have replaced the
intractable problem of turbulent energy cascade by a heat flow problem which is
equally intractable. If we try to gain physical understanding rather than mathemat-
ical proof, the situation is better because we have some physical understanding of
the statistical structure of a heat flow, at least if we are not too far from equilibrium.
Instead of using SRB measures, we shall thus follow more traditional ideas of
nonequilibrium statistical mechanics. Our aim will be to predict certain features
of the turbulent energy cascade from the study of a heat flow. Specifically we shall
be interested in:

• the intermittency exponents �p (large Reynolds number R limit)
• the probability distribution of velocity gradients (moderate R)
• understanding what works (doesn’t work) in the Kolmogorov-Obukhov lognor-

mal turbulence theory.

We shall be led to making rather crude approximations to obtain explicit results.
In spite of this we shall be surprisingly successful in understanding the physics
of turbulence. To the present author this means that hydrodynamic turbulence can
be naturally understood on the basis of generally accepted (or acceptable) ideas on
Hamiltonian dynamics, dimensional analysis (à la Kolmogorov) and nonequilibrium
ergodic theory. No subtle results about nonlinear PDE’s will play a role in our
discussion.
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3.2 Turbulent Fluid as a Physical System: A Problem
in Nonequilibrium Statistical Mechanics

We shall discuss incompressible fluids in three dimensions. We think of a body of
fluid contained in a bounded box. It is known that the incompressible approximation
is reasonable for many problems. The dynamics of our incompressible fluid is
Hamiltonian, modified by dissipation due to viscosity. The viscous dissipation
occurs at small scales, and we shall discuss it separately, as is often done. We shall
act on the fluid by some external forces, which keep the fluid in motion in spite
of energy dissipation. Since dissipation occurs at small scales, it is customary to
assume that the external forces act at large spatial scales.

In the equations describing fluid time evolution, the inviscid (Hamiltonian) part
is naturally and uniquely defined: it is just an analytic expression of the acceleration,
and the adjective inertial is often used to denote this part. The viscous term
describing self-friction is based on response theory: there is a viscous force which
resists deformations of the fluid. In the Navier-Stokes equation linear response
is used to express self-friction, but this is an approximation and the viscous
term doesn’t have the same universal character as the inertial term. The question
of existence and uniqueness of solutions of the Navier-Stokes equation, while
mathematically interesting, is thus of limited interest from the physical viewpoint
which we adopt here. The viscous terms become important only for small spatial
scales (this follows from a dimensional argument), so that energy dissipation occurs
at small spatial scales.

The inviscid time evolution for a D-dimensional fluid has a very different
character if D D 2 and D D 3. In 2 dimensions there are many conserved quantities
because the vorticity (curl of the velocity) is scalar, and the distribution of values of
this scalar vorticity is time-independent. The time evolution of a 2-dimensional fluid
is thus very non-ergodic. In 3 dimensions we may make the opposite assumption of
high ergodicity (the time evolution is ergodic and mixing in a suitable sense). It is
therefore natural (as we shall see) that in three dimension the energy goes from large
to small spatial scales: this is the turbulent energy cascade. The adjective “turbulent”
refers to the manner in which the energy transfer is seen experimentally to proceed:
via complicated irregular velocity fluctuations. That the situation is very different in
2 dimensions is not astonishing in view of the highly non-ergodic nature of the time
evolution (one speaks of an inverse cascade). The natural situation is that observed
in 3 dimensions, and which we shall study.

Let our fluid be contained in a cubic box with side `0. We decompose this box
into sub-boxes of side `n D ��n`0 (these will be called nodes) where the positive
integer � will be specified later. We can use wavelets to associate 	 2�3 modes to
each node. Remember now that our fluid is a Hamiltonian system. We may think
of this Hamiltonian system as formed of interacting sub-systems corresponding to
the nodes, each with 	 �3 degrees of freedom. In this manner, the turbulent energy
cascade starting at the node 0 and ending by dissipation at nodes of high level n, is
equivalent to a heat flow through a Hamiltonian system of coupled nodes, with heat
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flowing from node 0 to (many) nodes of high level. This equivalence of turbulent
cascade to heat flown a non-standard geometry is in principle exact, although not
formulated precisely here.

Translating a nonequilibrium problem (turbulence) into another nonequilibrium
problem (heat flow) is in principle an interesting idea, but there are two obvious
difficulties:

• expressing the fluid Hamiltonian as Hamiltonian of a coupled system of “nodes”
is likely to give complicated results,

• the rigorous study of a heat flow is known to be extremely hard (see for instance
[13, 14]).

What we shall do is to use crude (but physically motivated) approximations, with
the hope that the results obtained are in reasonable agreement with experiments.
This is indeed the conclusion of our study, indicating that turbulence fits naturally
within accepted ideas of nonequilibrium statistical mechanics.

3.3 Statistical Mechanics of Turbulence Without
Fluctuations

A fundamental step forward in the understanding of turbulence has been achieved by
Kolmogorov [15–17]. He noticed that if turbulence is assumed to be spatially homo-
geneous and isotropic, then many features of the energy cascade are determined by
dimensional analysis.1 The experimental study of fluids has shown that turbulence
is in fact not homogeneous: this lack of homogeneity is known as intermittency.

Let us now look at the heat flow interpretation of the turbulent energy cascade.
The macroscopic description of a heat flow, ignoring the microscopic structure of
the heat conductor and the microscopic fluctuations leads to an answer in terms of
heat conductivity. We can give a heat flow equivalent version of the Kolmogorov
turbulent cascade theory: the heat flows from the site 0 towards high level sites,
respecting the nonstandard geometry of the system, and a prescribed amount of
energy (heat) leaving 0 per unit time. We have thus a complete equivalence between
the Kolmogorov turbulent energy cascade and a heat flow in a nonstandard geometry
where microscopic structure and fluctuations are ignored.

The Hamiltonian description than we have obtained in terms of interacting
nodes, each with 	 �3 degrees of freedom has a discrete structure, and must have
fluctuations. If we had a finite temperature equilibrium state, the energy fluctuations
would be given by Boltzmann’s law. Outside of equilibrium the situation is not as

1Dimensional analysis says how various quantities (like velocity or energy) depend on certain
variables (like spatial distance, and time): velocity is spatial distance divided by time, energy
is mass times velocity squared, etc. Dimensional analysis appears somewhat trivial, but for the
turbulent energy cascade it has led to spectacular predictions.
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well understood, but there are fluctuations, which must correspond to intermittency
for the turbulent cascade.

3.4 Statistical Mechanics of Turbulence with Fluctuations

To proceed with the study of fluctuations we shall make crude approximations based
on physical ideas that we have about turbulence and about the nonequilibrium
statistical mechanics of heat flows. We shall assume that a given constant � can
be chosen so that (allowing some approximations) the dynamical structure is
particularly simple. First we shall neglect interactions between nodes except those
between nodes corresponding to a cube of size `n and the cubes of size `nC1 that
it contains. If we consider a graph with nodes as vertices, and interacting nodes as
edges, this graph is thus a tree. A similar approximation has been made in models
of intermittency (see [18, 19]) where one would think of eddies rather than nodes.

We can assume that the flow of energy is overwhelmingly from a node of level
n towards the nodes of level n C 1 with which it interacts: this corresponds to
the differences of temperature at various levels which can be obtained from the
theory without fluctuations, and corresponds to the direction of the turbulent energy
cascade. We now make the strong but natural assumption that the nodes of level nC1
interacting with a given node of level n are in (approximate) thermal equilibrium
with the fluctuating energy of this node. We assume thus the � can be chosen such
that there is a Boltzmannian energy distribution at each node, with a condition
between neighboring nodes which expresses that energy flows overwhelmingly from
level n to level n C 1, and that energy is conserved.

For a node of level n, let vni be the fluctuation velocity at one of the next order
modes (box i of size `nC1) and write

Vn D Vni D jvnij3

The kinetic energy corresponding to the velocity vni is ��3.nC1/:jvnij2=2. The
residence time at the node of level n is 
 `n=jvn�1j by dimensional analysis. Energy
conservation requires that the rate of flow of energy out of the node of level n is
equal to the rate of flow into that node:

��3X
i

jvnij3
`nC1

D jvn�1j3
`n

or ��3X
i

jvnij3 D Vn�1
�

Given Vn�1, this relation may be interpreted as a microcanonical ensemble condition
on the jvnij3. We replace this by a canonical distribution such that each vni has a
distribution


 exp
�

� jvnj3
��1Vn�1

	
d3vn
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Therefore, given Vn�1, we find that Vn has the distribution

� dVn

Vn�1
exp

�
� �Vn

Vn�1

	
:

For a decreasing sequence of boxes of sizes `0; : : : ; `n we obtain that, if V0 is
fixed, we have a probability distribution

� dV1
V0

e��V1=V0 � � � � dVn

Vn�1
e��Vn=Vn�1 (3.1)

for V1; : : : ;Vn. Note that this distribution extends naturally to a probability measure
$ on sequences .Vn/

1
nD1. Physically however, the validity of .1/ is limited by

dissipation due to the viscosity �. We want `n to be larger than the length at which
dissipation due to viscosity takes place (Kolmogorov length); this is expressed by

jvnij `n > � or V1=3
n `n > � (3.2)

3.5 Applications of (3.1)

• (a) The exponents �n.
Let us now discuss the structure functions, i.e., the moments

hjvnjpi D hVp=3
n i

for positive integer p, and the exponents �p such that

hjvnjpi 
 `
�p
n or �p ln `n 
 lnhVp=3

n i D �n � p

3
ln � C lnhWp=3

n i

where we have written Wk D �kVk. We have here

hWp=3
n i D

Z
dW1

e�W1=W0

W0

Z
� � �
Z

dWn�1
e�Wn�1=Wn�2

Wn�2

Z
dWn

e�Wn=Wn�1

Wn�1
� Wp=3

n

and also

Z 1

0

dWn
e�Wn=Wn�1

Wn�1
� Wp=3

n D Wp=3
n�1

Z 1

0

d	 e�	 	p=3 D Wp=3
n�1
.

p

3
C 1/

so that by induction we find

hWp=3
n i D Œ
.

p

3
C1/�nWp=3

0 ; �p 	 �n p
3

ln � C lnhWp=3
n i

�n ln �
	 p

3
� 1

ln �
ln
.

p

3
C1/
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In conclusion we have the (approximate) prediction

�p D p

3
� 1

ln �
ln
.

p

3
C 1/ (3.3)

Using either the heat propagation or the eddy cascade picture, we see that �
should be chosen such that the initial Wn distribution concentrated on one value
for .n; i/ thermalizes to values of WnC1 for the systems .n C 1; j/ distributed
according to

1

Wn
e�WnC1=Wn dWnC1

This requires � sufficiently large. However, if the value of � is too large,
several different temperatures will be present among the systems .n C 1; j/
connected with .n; j/, and the WnC1-distribution will not be Boltzmannian. Of
course a rigorous justification of this picture is well beyond the power of current
mathematical methods. We can only claim this: � should be such that when an
eddy of size r has decayed to eddies of size r=� their energies have a thermal
distribution, after which the process can start again. In the dissipative range the
distribution of Vn should be cut off at large Vn. Numerically, one finds that the
above formula fits the experimental data [20] well with 1= log � D 0:32˙ 0:01,
i.e., � between 20 and 25.

Note also that (3.3) gives �3 D 1 independently of �. This is in agreement
with studies based on the Navier-Stokes equation.

• (b) Radial velocity increment u D �rv D P
k uk.

If r 	 `n we have u 	 un 	 radial component of vn. Therefore, given V0, a
rough estimate of the probability distribution F�.u/ du of u is given by:

F�.u/ D
� nY

kD1

Z 1

0

� dVk

Vk�1
e��Vk=Vk�1

	 1

2V1=3
n

�
Œ�V

1=3
n ;V

1=3
n �
.u/

D 1

2
.
�n

V0
/1=3

Z
� � �
Z

w1���wn>.�n=V0/juj3

nY
kD1

dwk e�wk

w1=3k

(One compares with experimental data for 	 D const.u with j	j normalized by
h	2i D 1, therefore the approximation u 	 radial component of vn is not as
terrible as might seem).

Instead of F�.u/ du we consider the distribution Gn.y/ dy of y D
.�n=V0/1=3juj, so that

Gn.y/ D
Z

� � �
Z

w1���wn>y3

nY
kD1

dwk e�wk

w1=3k

etGn.e
t/ D .��.n�1/ �  /.t/ (3.4)
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where

�.t/ D 3 exp.3t � e3t/ ;  .t/ D et
Z 1

t
e�s�.s/ ds

From this one obtains that Gn.y/ is a decreasing function of y.
Using the formula (3.2) for the dissipation length we obtain n D

.3=4/lnR= ln � 	 0:24 lnR. Gn.y/ gives then a reasonable fit of the numerical
data for small y. However, a comparison with the Navier-Stokes results of
Schumacher [21] shows that the behavior at large y is not as simple. This can be
understood because the dissipation length is not fixed by the Reynolds number
R, but fluctuates. In fact the probability distribution P.	/ d	 of the radial velocity
gradient 	 (normalized by h	2i D 1) which is computed in [2] has contributions
of various values of n (one can show that there are no contribution of n � j if
�2j � 	R). For a study taking into account the fluctuations of the dissipation
length see the paper by Gallavotti and Garrido [3] in this volume.

• (c) Relation with the Kolmogorov-Obukhov lognormal theory.
The above formula (3.5) implies that Gn.et/ as a function of et is a convolution

product of many factors for large n, which suggests an asymptotic Gaussian
distribution, i.e., a lognormal distribution with respect to t. This would be in
agreement with the well-known ideas of Kolmogorov [22] and Oboukhov for
introducing intermittency in Kolmogorov theory. However, the very explicit
forms given above for � and  show that these functions do not tend very
rapidly to zero at infinity (only exponentially). This means that we do not have an
asymptotic lognormal distribution. In particular we need not trust the prediction
for the exponents �n made by the lognormal theory, and it is satisfactory that (3.3)
gives a better fit to the experimental data.
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Chapter 4
Non-equilibrium Statistical Mechanics
of Turbulence

Comments on Ruelle’s Intermittency Theory

Giovanni Gallavotti and Pedro Garrido

Abstract The recent proposal by D. Ruelle for a theory of the corrections to the
OK theory (“intermittency corrections”) is to take into account that the Kolmogorov
scale itsef should be regarded as a fluctuating variable. Some quantitative aspects of
the theory can be quite easily studied also via computer and will be presented.

4.1 A Hierarchical Turbulence Model

The proposal [7, 8] for a theory of the corrections to the OK theory (“intermittency
corrections”) is to take into account that the Kolmogorov scale itself should be
regarded as a fluctuating variable.

The OK theory is implied by the assumption, for n large, of zero average work
due to interactions between wave components with wave length < ��n`0 � `n

and components with wave length > � ��n`0 (`0 being the length scale where the
energy is input in the fluid and � a scale factor to be determined) together with the
assumption of independence of the distribution of the components with inverse wave
length (“momentum”) in the shell Œ�n; ��n�`�1

0 , [5, p. 420].
It is represented by the equalities

v3ni

`n
D v3.nC1/i0

`nC1
; v D jvj; v 2 R3 (4.1)
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interpreted as stating an equality up to fluctuations of the velocity components of
scale ��n`0, i.e. of the part of the velocity field which can be represented by the
Fourier components in a basis of plane waves localized in boxes, labeled by i D
1; : : : �3n, of size ��n`0 into which the fluid (moving in a container of linear size `0)
is imagined decomposed (a wavelet representation) so that .n C 1; i0/ labels a box
contained in the box .n; i/.

The length scales are supposed to be separated by a suitably large scale factor �
(i.e. `n D ��n`0 D ��1`n�1) so that the fluctuations can be considered independent,
however not so large that more than one scalar quantity (namely v3n;i) suffices to
describe the independent components of the velocity (small enough to avoid that
“several different temperatures will be present among the systems .n C 1; j0/”
inside the containing box labeled .n; j/, and the vnC1;j distribution “will not be
Boltzmannian for a constant temperature inside”,[7, p. 2]).

The distribution of v3nC1;j is then simply chosen so that the average of the v3nC1;j
is the value v3n;i� if the v3nC1;j on scale n C 1 gives a finer description of the field in
a box named j contained in the box named i of scale larger by one unit.

Among the distributions with this property is selected the one which maximizes
entropy1 and is:

Wni
defDjvnij3;

nY
mD0

�mY
iD1

dWi;mC1
Wi0m

� e
�� Wi;mC1

Wi0 ;m (4.2)

with W0 a constant that parameterizes the fixed energy input at large scale: the
motion will be supposed to have a 0 average total velocity at each point; hence

W
1
3

0 can be viewed as an imposed average velocity gradient at the largest scale `0.

The vin D W
1
3

in is then interpreted as a velocity variation on a box of scale `0��n

or ��n as `0 will be taken 1. The index i will be often omitted as we shall mostly
be concerned about a chain of boxes, one per each scale ��n; n D 0; 1; : : :, totally
ordered by inclusion (i.e. the box labeled .i; n/ contains the box labeled .i0; n C 1/).

The distribution of the energy dissipation Wn;i
defDv3n;i in the hierarchically arranged

sequence of cells is therefore close in spirit to the hierarchical models that have
been source of ideas and so much impact, at the birth of the renormalization group
approach to multiscale phenomena, in quantum field theory, critical point statistical
mechanics, low temperature physics, Fourier series convergence to name a few,
and to their nonperturbative analysis, either phenomenological or mathematically
rigorous, [1–4, 10–12].

The present turbulent fluctuations model can therefore be called hierarchical
model for turbulence in the inertial scales. It will be supposed to describe the

1If the box � D .n; j/ � �0 D .n � 1; j0/ then the distribution ˘.WjW�0 / of W� � v3� is
conditioned to be such that hW i D ��1W�0 ; therefore the maximum entropy condition is that
� R

˘.WjW 0/ log˘.WjW 0/dW � ��
R

W˘.WjW 0/dW, where �� is a Lagrange multiplier, is
maximal under the constraint that hW i D W 0��1: this gives the expression, called Boltzmannian
in [7], for ˘.WjW 0/.
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velocity fluctuations at scales n at which the Reynolds number is larger than 1, i.e.
as long as vn�

�n`0
�

> 1.
The description will of course be approximate, [8, Sect. 3]: for instance the

correlations of the velocity gradient components are not considered (and skewness
will still rely on the classic OK theory, [6, Sect. 34]).

Given the distribution (and the initial parameter W0) it “only” remains to study its
properties assuming the distribution valid for velocity profiles such that vn�

�n`0 >

� after fixing the value of � in order to match data in the literature (as explained
in [8, Eq. (12)]). As a first remark the scaling corrections proposed in [12] can be
rederived.

The average energy dissipation in a box of scale n can be defined as the average

of "n
defDWn`

�n; `n D `0�
�n: the latter average and its p”th order moments can be

readily computed to be, for p > 0:

log h "p
n i

� log `n
����!n!1 �p D � log� .1C p/

log �
; h "p

n i 
 �n�p ;

h .Wn

`n
/

p
3 i 
 �

n� p
3 ; h vp

n i 
 `
p
3

0 �
�n�p ; �p D p

3
C �p

(4.3)

The W
1
3

n being interpreted as a velocity variation on a box of scale `0��n, the last

formula can also be read as expressing the h . j�rvj
r /p i 
 r�p with �p D 1

3
� log� . p

3C1/
log � .

The �p is the intermittency correction to the value 1
3
: the latter is the standard

value of the OK theory in which there is no fluctuation of the dissipation per unit
time and volume Wn

`n
; this gives us one free parameter, namely �, to fit experimental

data: its value, universal within Ruelle’s theory, turns out to be quite large, � 

22:75, [7], fitting quite well all experimental p-values (p < 18).

Other universal predictions are possible. In [8] a quantity has been studied for
which accurate simulations are available.

If W is a sample .W0;W1; : : :/ of the dissipations at scales 0; 1; : : : for the
distribution in the hierarchical turbulence model, the smallest scale n.W/ at which

W
1
3

n `0�
�n ' � occurs is the scale at which the Kolmogorov scale is attained (i.e. the

Reynolds number W
1
3

n `n
�

becomes< 1).
Taking `0 D 1; � D 1, at such (random) Kolmogorov scale the actual dissipation

is 	 D Wn.W/�
n.W/ with a probability distribution with density P�.	/. If wk D Wk

Wk�1

then Wn D W0w1 � � � wn and the computation of P�.	/ can be seen as a problem on
extreme events about the value of a product of random variables. Hence is natural
that the analysis of P� involves the Gumbel distribution �.t/ (which appears with
parameter 3), [8].

The P� is a distribution (universal once the value of � has been fixed to fit the
mentioned intermittency data) which is interesting because it can be related to a
quantity studied in simulations.

It has been remarked, [8], that, assuming a symmetric distribution of the velocity

increments on scale ��n whose modulus is W
1
3

n;i, the hierarchical turbulence model
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can be applied to study the distribution of the velocity increments: for small velocity
increments the calculation can be performed very explicitly and quantitatively
precise results are derived, that can be conceivably checked at least in simulations.
The data analysis and the (straightforward) numerical evaluation of the distribution
P� is described below, following [8].

4.2 Data Settings

Let `0; � D 1 and let W D .W0;W1; : : :/ be a sample chosen with the distribution

p.dW/ D
1Y

iD1

� dWi

Wi�1
e�� Wi

Wi�1 (4.4)

with W0; � given parameters; and let v D .v0; v1; : : :/ D .W
1
3

0 ;W
1
3

1 ; : : :/.

Define n.W/ D n as the smallest value of i such that W
1
3

i �
�i � vi�

�i < 1: n.W/

will be called the “dissipation scale” of W.
Imagine to have a large number N of p-distributed samples of W’s. Given h > 0

let

P�
n .	/

defD 1

h

1

N
�
.# W with n.W/ D n/\ .	 < .Wn=W0/

1
3 �n < 	 C h/

	
(4.5)

hence hP�
n .	/ is the probability that the dissipation scale n is reached with 	 in

Œ	; 	Ch�. Then P�.	/defDP1
nD0 P�

n .	/ is the probability density that, at the dissipation
scale, the velocity gradient vn

v0
�n is between 	 and 	 C h.

The velocity component in a direction is vn cos# : so that the probability that it is
in d	 with gradient vn

v0
�n and that this happens at dissipation scale D n is d	 times

Z
P�

n .
vn

v0
�n D 	0/d	0ı.	0j cos#j � 	/ sin #d#d'

4�
D
Z 1

	

P�
n .	0/

	0
d	0 (4.6)

Let

P.	/
defD
Z
	0>	

d	0
	0

1X
nD1

P�
n .	0/ (4.7)

that is the probability distribution of the (normalized radial velocity gradient) and

�m D
Z 1

0

d	P.	/	m (4.8)
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its momenta. To compare this distribution to experimental data [9] it is convenient
to define

p.z/ D 1

2
�
1=2
2 P.�1=22 jzj/ (4.9)

We have used the following computational algorithm to P.	/:

1. Build a sample .i/ W.i/ D .W0;W1; : : : ;Wn; : : :/

2. Stop when n D Nni such that W1=3
n�1��.n�1/ > 1 > W1=3

n ��n

3. Evaluate Nmi D int.	i=h/C 1 where 	i D � Nni.WNni=W0/
1=3

4. goto to (1) during N times

Then, the distribution P.	/ is given by

P.mh � h=2/ D h�1 NP.m/ ; NP.m/ D 1

N

NX
iD1

1

Nmi
�. Nmi � m/ (4.10)

where �.A/ D 1 if A is true and 0 otherwise. It is convenient to define the probability
to get a given m value as

Q.m/ D 1

N

NX
iD1

ı. Nmi;m/ (4.11)

where ı.n;m/ is the Kronecker delta. Once obtained Q.m/, we can get recursively
NP.m/:

NP.m C 1/ D NP.m/� 1

m
Q.m/ ; NP.1/ D

1X
mD1

1

m
Q.m/ D 1

N

NX
iD1

1

Nmi
(4.12)

and the momenta distribution is then given by:

�m D hm 1

N

NX
iD1

1

Nmi

NmiX
lD1

lm (4.13)

Finally, the error bars of a probability distribution (for instance NP) are computed by
considering that the probability that in N elements of a sequence there are n in the
box m is given by the binomial distribution:

Dm.n;N/ D
 

N

n

!
NP.m/n �1 � NP.m/�N�n

(4.14)
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From it we find

hnim D N NP.m/ ; h.n � hnim/
2im D NP.m/ �1 � NP.m/� =N (4.15)

where h:i D P
n :Dm.n;N/. Therefore, the error estimation for the NP probability is

given by

NP.m/˙ 3
� NP.m/ �1 � NP.m/� =N

�1=2
(4.16)

We have done 15 simulations with � D 22, N D 1012 realizations (104 cycles of
size 107) and different values of W0: 107, 108, 5108, 109, 2109, 3109, 4109,
5 109, 1010, 2 1010, 5 1010, 7 1010, 1011, 2 1011 and 5 1011. We also use
the Reynold’s number R D W1=3

0 .
The size of � has been chosen to fit the data for the intermittency exponents �p

and it is quite large (� D 22, [7]): this has the consequence that the Kolmogorov
scale is reached at a scale ��n with n D 2; 3 and very seldom for higher scales,
at the considered Reynolds numbers. That can be seen in Fig. 4.1 where we show
the obtained distributions of Nni, i D 1; : : : ;N. In Fig. 4.2 we see the average
value of Nn and its second momenta. We see that for low Reynold’s numbers the
values is almost constant equal to 2 and from R ' 2000 it begins to grow. The
second momenta shows a minimum for R ' 1000 where almost all events are in
Nni D 2.

The measured distribution of Q.	/ (see Fig. 4.3) reflects the superposition of
two distributions: the values of 	 associated to the Nni D 2 and to Nni D 3 events.
Moreover, for small values of R the overall distribution is dominated by the events
Nni D 2 and for large Reynold’s numbers it is dominated by the Nni D 3 events. At
each case the form of the distribution is different: for small R, log10Q.	/ is quadratic
in 	 and for large R is linear in 	.

Fig. 4.1 Distribution of events that reach the Kolmogorov scale ��n for different values of the
Reynold’s numbers R and � D 22. The total number of events is 1012
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Fig. 4.2 Momenta of the Nn-distribution. Left: average value. Right: second momenta

Fig. 4.3 Plot as a function of 	 D mh of the logarithm of the probability, log10 Q.	/, with Q.	/ D
Q. 	h /, that the Kolmogorov scale is reached at scale m D 	

h , for different Reynold’s numbers and
h D 10�3h 	 i

The behavior of Q defines the behavior of p.z/. In Fig. 4.4 we see the p.z/
behavior. We again see clearly how for low R values the distribution is non sensitive
to the values of R and it is Gaussian. For intermediate values of R the exponential of a
quadratic function is a good fit for the measured distribution and large enough values
of z but its parameters depend on R. Finally for R large of 3000 the distribution
changes and its behavior for large z values seems to be fitted very well by a linear
function with a R-depending slope.

It is interesting to show the dependence of the momenta of NP, �n, as a function
of R. In Fig. 4.5 we see their behavior. We can naturally identify three regions:
Region I (R 2 Œ0; 1000�) where the momenta are almost constant, Region II
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Fig. 4.4 log10p.z/ distribution for different Reynold’s numbers. Central figure: a.1259:92/ D
�0:08, a.1442:25/ D �0:12, a.1587:40/ D �0:24 and a.1709:98/ D �0:52. Right figure:
a.3684:03/ D �0:51, a.4121:29/ D �0:55, a.4621:59/ D �0:58, a.5848:04/ D �0:61 and
a.7937:01/ D �0:64

(R 2 Œ1000; 4000�) where the moments grow with R and Region III (R 2 Œ4000;1�)
where relative moments tend to some asymptotic value.

Experimental data can be found in [9] and are illustrated by the two plots
in Fig. 4.6 taken from the cited work which give the function log10 p.z/. I.e. the
probability density for observing a normalized radial gradient z as a function
of z D 	=

ph 	2 i in the case of homogeneous isotropic turbulence (HIT) (i.e.
Navier-Stokes in a cube with periodic boundaries) or in the case of Raleigh-Benard
convection (RBC) (NS+heat transport in a cylinder with hot bottom and cold top).
The results of Fig. 4.6, for z > 0 should be compared with those of Fig. 4.4 at
the corresponding Reynolds numbers. In both cases we see that the distribution
for high Reynold numbers have linear-like behavior for large z-values. In fact for
the HIT case and R D 2243 we can fit a line with slope �0:77 in the interval
z 2 Œ3:3; 5:57�. Also in the RBC case we can do a linear fit with slope �0:42
(z 2 5:14; 9:69�) for R D 4648. The value obtained is similar to the ones we
computed on Fig. 4.4.

In Fig. 4.7, we can compare the measured flatness in our numerical experiment
with the observed by Schumacher et al. [9]. We see that the values are similar for
small and large Reynold’s numbers but there is a peaked structure for intermediate
values due to the relevant discontinuity when passing from Nni D 2 to Nni D 3

events.
All these results shows that the important aspect of the experiments is quite well

captured with the only parameter � available for the fits, i.e. a strong deviation
from Gaussian behavior and the agreement of the location of the abscissae of the
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Fig. 4.5 Measured momenta of the distribution P.	/, �n, vs Reynold’s number

minima of the tails in the second case at the maximal W0; this feature fails in
the first case (HIT) as the abscissa is about 30: is it due to a too small Reynolds
number? This seems certainly a factor to take into account as the curve appears to
become independent of R, hence universal as it should on the basis of the theory, for
R > 4000.

In conclusion the results are compatible with the OK theory but show important
deviations for large fluctuations because the Gumbel distribution does not show a
Gaussian tail.

All this has a strong conceptual connotation: the basic idea (ie the proposed
hierarchical and scaling distribution of the kinetic energy dissipation per unit time)
is fundamental.

The need to assign a value to the scaling parameter � is quite interesting: in
the renormalization group studies the actual value of � is usually not important
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Fig. 4.6 Measured p.z/ by Schumacher et al. [9] for different Reynold’s numbers

as long as it is � > 1. Here the value of � is shown to be relevant (basically it
appears explicitly in the end results and its value 
 20 must, in principle, be fixed
by comparison with simulations on fluid turbulence).
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Fig. 4.7 Measured flatness (�4=�22 ) compared with the results by Schumacher et al. [9] for
different Reynold’s numbers

Acknowledgements The above comments are based on numerical calculations first done by P.
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Chapter 5
The Kolmogorov Law of Turbulence
What Can Rigorously Be Proved? Part II

Roger Lewandowski and Benoît Pinier

Abstract We recall what are the different known solutions for the incompressible
Navier-Stokes Equations, in order to fix a suitable functional setting for the
probabilistic frame that we use to derive turbulence models, in particular to define
the mean velocity and pressure fields, the Reynolds stress and eddy viscosities.
Homogeneity and isotropy are discussed within this framework and we give a
mathematical proof of the famous �5=3 Kolmogorov law, which is discussed in
a numerical simulation performed in a numerical box with a non trivial topography
on the ground.

MCS Classification : 76D05, 76F65, 65M60

5.1 Introduction

We focus in this paper on the law of the �5=3, which attracted a lot of attention
from the fluid mechanics community these last decades, since it is a basis for many
turbulence models, such as Large Eddy Simulation models (see for instance in [20,
21, 44, 50]). Although it is usually known as the Kolmogorov law, it seems that it
appears for the first time in a paper by Onsager [42] in 1949, and not in the serie
of papers published by Kolmogorov in 1941 (see in [56]), where the author focuses
on the 2=3’s law, by introducing the essential scales related to homogeneous and
isotropic turbulent flows (see formula (5.33) below). In this major contribution to
the field, Kolmogorov opened the way for the derivation of laws based on similarity
principles such as the �5=3’s law (see also in [11, 32]).
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Fig. 5.1 Energy spectrum log-log curve

Roughly speaking, the �5=3’s law states that in some inertial range Œk1; k2�, the
energy density of the flow E.k/ behaves like Ctek�5=3, where k denotes the current
wave number [see Fig. 5.1 below and the specific law (5.40)].

This paper is divided in a theoretical part and a numerical part, in which we
aim at:

1. carefully express what is the appropriate similarity assumption that must satisfy
an homogeneous and isotropic turbulent flow in order to derive the �5=3’s law
(Assumptions 5.4.1 and 5.4.2 below),

2. to theoretically derive the �5=3 law from the similarity assumption (see Theo-
rem 5.4.2 below),

3. to discuss the numerical validity of such a law from a numerical simulation
in a test case, using the software BENFLOW 1.0, developed at the Institute of
Mathematical Research of Rennes.

Before processing items (1) and (2), we discuss on different results about the Navier-
Stokes equations (5.1) (NSE in what follows), that are one of the main tools in fluid
mechanics, as well as the Reynolds stress (5.13) derived by taking the expectation
of the NSE, once the appropriate probabilistic frame is specified. We then define the
density energy E.k/, which is the energy of the flow in the sphere fk D jkjg in the
Fourier space. Furthermore, we introduce the concept of dimensional bases in order
to properly set Assumptions 5.4.1 and 5.4.2.

The numerical simulation takes place in a computational box (see Fig. 5.2) with
a non trivial topography (see Fig. 5.3), by using the mean NSE (5.12), the k � E
model (5.20), and appropriate boundary conditions supposed to model the dynamics
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Fig. 5.2 Computational box

Fig. 5.3 View of the ground

of the atmospheric boundary layer. Atmospheric boundary layer modeling is a
modern challenge because of its significance in climate change issues. We find
in the literature many simulations carried out in different configurations, such as
for example the case of a flat ground [1, 5, 13, 45], the case of stable or convec-
tive boundary layers [38, 59], urban simulations where building are modeled by
parallelipipeds [39], wind farms [46], realistic configurations including mountains
[37, 58]. Of course, this flows is not homogeneous nor isotropic. However, the
simulations shows that the curve of log10.E.k// exhibits an inertial range over 4
decades, in which the regression straight line has a slope equal to �2:1424 6D �5=3
(see Fig. 5.6), suggesting that the �5=3’s law is not satisfied in this case.



74 R. Lewandowski and B. Pinier

5.2 About the 3D Navier Stokes Equations

5.2.1 Framework

Let � � R3 be a C1 bounded convex smooth domain, 
 its boundary, T 2 RC
(eventually T D C1), and Q D Œ0;T� �. The velocity of the flow is denoted by
v, its pressure by p. The incompressible Navier Stokes equation satisfied by .v; p/
(NSE in the remainder) are as follows:

8̂̂
<
ˆ̂:
@tv C .v � r/ v � r � .2�Dv/C rp D f in Q; (i)

r � v D 0 in Q; (ii)
v D 0 on 
; (iii)
v D v0 at t D 0; (iv)

(5.1)

where v0 is any divergence free vector fields such that v0 � nj
 D 0, � > 0 denotes
the kinematic viscosity, that we suppose constant for the simplicity, f is any external
force (such as the gravity for example), Dv denotes the deformation tensor, r� the
divergence operator and .v � r/ v is the nonlinear transport term, specifically

Dv D 1

2

�rv C rvt
�
; rv D .@jvi/1	ij	3; v D .v1; v2; v3/; @i D @@xi;

r � v D @ivi;

Œ.v � r/ v�i D vj@jvi;

by using the Einstein summation convention. We recall that it is easily deduced from
the incompressibility condition (see [11]):

.v � r/ v D r � .v ˝ v/; v ˝ v D .vivj/1	i;j	3;
r � .2�Dv/ D ��v:

In the following, we will consider the functional spaces

W D fv 2 H1
0.�/

3;r�v D 0g ,! V D fv 2 L2.�/3; v�nj
 D 0;r�v D 0g; (5.2)

Throughout the paper, we assume v0 2 V.

5.2.2 Strong Solutions to the NSE

Let P be the orthogonal projection L2.�/3 ,! V, A and F the operators

Av D ��P�v; Fv D P..v � r/ v/:
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By applying P to (5.1.i) in noting that P.rp/ D 0, we are led to the following initial
value problem

8<
:

dv
dt

D �Av C Fv C Pf.t/; (i)

v.0/ D v0; (ii)
(5.3)

where t ! v.t/ and t ! f.t/ are considered as functions valued in W and V
respectively.

Definition 5.2.1 We say that v D v.t/ is a strong solution to the NSE in a time
interval Œ0;T?� if dv=dt and Av exist and are continuous in Œ0;T?� and (5.3.i) is
satisfied there.

Remark 5.2.1 In Definition 5.2.1, the pressure is not involved. It can be recon-
structed by the following equation

�p D �r � ..v � r/ v/C r � f; (5.4)

derived from Eq. (5.1.i) by taking its divergence.

The existence of a strong solution is proved in Fujita-Kato [18]. It is subject to
regularity conditions regarding the initial data v0 and the source f. The result is
stated as follows.

Theorem 5.2.1 We assume

(i) v0 2 V \ H1=2.�/3,
(ii) f is Hölder continuous in Œ0;T�.

Then there exists T? D T?.�; jjv0jj1=2;2;�; jjfjjC0;˛.�// such that the NSE admits a
unique strong solution v D v.t/. Moreover, if f D f.t; x/ is Hölder continuous
in Q D Œ0;T?�  �, then v.t; x/, rv.t; x/, �v.t; x/ and @v.t; x/=@t are Hölder
continuous in �0;T?Œ�.

Remark 5.2.2 The strong solution is solution of the equation

v.t/ D e�tAv0 �
Z t

0

e�.t�s/AF.v.s//ds C
Z t

0

e�.t�s/APf.s/ds; (5.5)

which is approached by the sequence .vn/n2N expressed by

vn.t/ D e�tAv0 �
Z t

0

e�.t�s/AF.vn�1.s//ds C
Z t

0

e�.t�s/APf.s/ds; (5.6)

The reader is referred to [9, 12, 28] for more details concerning the question of
strong solutions.
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5.2.3 Turbulent Solutions

Definition 5.2.2 We say that v is a turbulent solution of NSE (5.1) in Œ0;T� if

(i) v 2 L2.Œ0;T�;W/ \ L1.Œ0;T�;L2.�//,
(ii) @tv 2 L4=3.Œ0;T�;W0/ D ŒL4.Œ0;T�;W/�0 (by writing @t D @

@t
for the

simplicity),
(iii) lim

t!0
jjv.�; t/� v0.�/jj0;2;� D 0,

(iv) 8 w 2 L4.Œ0;T�;W/;

Z T

0

< @tv;w > dt C
Z T

0

Z
�

.v ˝ v/ W rw dxdt C
Z T

0

Z
�

rv W rw dxdt

D
Z T

0

< f;w > dt;

where for u 2 W, F 2 W0, < F;u > denotes the duality pairing between F
and u,

(v) v satisfies the energy inequality at each t > 0,

1

2

Z
�

jv.t; x/j2dx C �

Z t

0

Z
�

jrv.t0; x/j2dxdt0 �
Z t

0

< f; v > dt0:

Remark 5.2.3 Once again, the pressure is not involved in this formulation. It this
frame, it is recovered by the De Rham Theorem (see for instance in [55]).

The existence of a turbulent solution was first proved by Leray [29] in the whole
space, then by Hopf [22] in the case of a bounded domain with the no slip boundary
condition, which is the case under consideration here. This existence result can be
stated as follows.

Theorem 5.2.2 Assume that v0 2 V, f 2 L4=3.Œ0;T�;W0/. Then the NSE (5.1) has
a turbulent solution.

Remark 5.2.4 The turbulent solution is global in time, which means that it may be
extended to t 2 Œ0;1Œ depending on a suitable assumption on f. However it is not
known whether it is unique or not. Moreover, it is not known if the energy inequality
is an equality.

The reader is also referred to [14, 16, 36, 55] for further results on turbulent (also
weak) solutions of the NSE.
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5.3 Mean Navier-Stokes Equations

5.3.1 Reynolds Decomposition

Based on strong or turbulent solutions, it is known that it is possible to set a
probabilistic framework in which we can decompose the velocity v and the pressure
as a the sum of the statistical mean and a fluctuation, namely

v D v C v0; p D p C p0: (5.7)

More generally, any tensor field  related to the flow can be decomposed as

 D  C  0: (5.8)

The statistical filter is linear and subject to satisfy the Reynolds rules:

@t D @t ; (5.9)

r D r ; (5.10)

as well as

 D  leading to  0 D 0: (5.11)

We have studied in [11] different examples of such filters. Historically, such
a decomposition was first considered in works by Stokes [53], Boussinesq [6],
Reynolds [49], Prandtl [47], in the case of the « long time average »(see also in
[31]). Later on, Taylor [54], Kolmogorov [25] and Onsager [42] have considered
such decompositions when the fields related to the flow are considered as random
variables, which was one of the starting point for the development of modern
probability theory.

5.3.2 Reynolds Stress and Closure Equations

We take the mean of the NSE (5.1) by using (5.9)–(5.11). We find out the following
system:

8̂̂<
ˆ̂:
@tv C .v � r/ v � ��v C rp D �r � � .r/ C f in Q;

r � v D 0 in Q;
v D 0 on 
;

v D v0 at t D 0;

(5.12)
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where

� .R/ D v0 ˝ v0 (5.13)

is the Reynolds stress. The big deal in turbulence modeling is to express � .R/

in terms of averaged quantities. The most popular model is derived from the
Boussinesq assumption which consists in writing:

� .R/ D ��tDv C 2

3
k Id; (5.14)

where

1. k D 1

2
tr � .R/ D 1

2
jv0j2 is the turbulent kinetic energy (TKE),

2. �t is an eddy viscosity.

In order to close the system, the eddy viscosity remains to be modeled. To do so,
many options are available (see in [4, 10, 11, 24, 26, 30, 40, 50]).

One of the most popular model is the Smagorinsky’s model (see for instance in
[20, 21, 24, 34, 44, 48, 50–52]), in which

�t D Csı
2jDvj; (5.15)

where Cs 	 0:1 or 0:2 is an universal dimensionless constant, and ı a characteristic
scale, ideally the size of the smallest eddies in the flow the model is supposed to
catch. This model is the foundation of the wide class of Large Eddy Simulation mod-
els. The reader will find various mathematical results concerning the Smagorinsky’s
model in [3, 11, 24, 35, 43].

We next mention the so-called TKE model, given by

�t D Ck`
p

k; (5.16)

which gives accurate results for the simulation of realistic flows (see for instance
[33]). In model (5.16), ` denotes the Prandtl mixing length, Ck is a dimensionless
constant that must be fixed according to experimental data. In practice, ` is taken
to be equal to the local mesh size in a numerical simulation, and k is computed by
using the closure equation (see in [11, 40])

@tk C v � rk � r � .�trk/ D �tjDvj2 � k
p

k

`
: (5.17)

The reader will find a bunch of mathematical result concerning the coupling of the
TKE equation to the mean NSE in [7, 8, 11, 19, 27, 30].

Finally, we mention the famous k � E model that is used for the numerical sim-
ulations carried out in Sect. 5.5. In this model, E denotes the turbulent dissipation

E D 2�jDv0j2; (5.18)
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and dimensional analysis leads to write

�t D C�
k2

E
: (5.19)

The coupled system used to compute k and E is the following (see [11, 40] for the
derivation of these equations):

8<
:

@tk C v � rk � r � .�trk/ D �tjDvj2 � E :

@tE C v � rE � r � .�trE / D c�kjDvj2 � cE
E 2

k
;

(5.20)

where C� D 0:09, cE D 1:92 and c� D 1:44 are dimensionless constants.

5.4 Law of the �5=3

The idea behind the law of the �5=3 for homogeneous and isotropic turbulence
is that in the « inertial range », the energy density E D E.k/ at a given point
.t; x/ is driven by the dissipation E . In this section, we properly define the energy
density E for homogeneous and isotropic turbulent flows. We then set the frame of
the dimensional bases and the similarity principle in order to rigorously derive the
law of the �5=3.

Remark 5.4.1 For homogeneous and isotropic turbulence, one can show the identity
E D 2�jDv0j2 D 2�jDvj2 (see in [11]).

5.4.1 Energy Density of the Flow

Roughly speaking, homogeneity and isotropy means that the correlations in the
flows are invariant under translations and isometries (see in [2, 11, 32]), which we
assume throughout this section, as well as the stationarity of the mean flow for
simplicity. Let

E D 1

2
jvj2; (5.21)

be the total mean kinetic energy at a given point x 2 �, which we not specify in
what follows.
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Theorem 5.4.1 There exists a measurable function E D E.k/, defined over RC, the
integral of which over RC is finite, and such that

E D
Z 1

0

E.k/dk: (5.22)

Proof Let B2 be the two order correlation tensor expressed by:

B2 D B2.r/ D .vi.x/vj.x C r//1	i;j	3 D .Bij.r//1	i;j	3; (5.23)

which only depend on r by the homogeneity assumption, nor on t because of the
stationarity assumption. It is worth noting that

E D 1

2
trB2.0/: (5.24)

Let bB2 denotes the Fourier transform of B expressed by

8 k 2 R3; bB2.k/ D 1

.2�/3

Z
R3

B2.r/e�i k�rdr; (5.25)

We deduce from the Plancherel formula,

8 r 2 R3; B2.r/ D 1

.2�/3

Z
R3

bB2.k/ei k�rdk; (5.26)

which makes sense for both types of solutions to the NSE, strong or turbulent (see
the Sect. 5.2). It is easily checked that the isotrpoy of B2 in r yields the isotropy ofbB2 in k. Therefore, according to Theorem 5.1 in [11] we deduce the existence of
two real valued functionseBd andeBn of class C1 such that1

8 k 2 R3; jkj D k; bB2.k/ D .eBd.k/ �eBn.k//
k ˝ k

k2
CeBn.k/I3: (5.27)

Using formula (5.27) yields

bBii.k/ DeBd.k/C 2eBn.k/; (5.28)

which combined with Fubini’s Theorem, (5.24) and (5.26), leads to

Z
R3

bBii.k/ dk D
Z 1

0

�Z
jkjDk

bBii.k/d�

�
dk D

Z 1

0

4�k2.eBd.k/C 2eBn.k// dk;

(5.29)

1k already denotes the TKE, and from now also the wavenumber, k D jkj. This is commonly used
in turbulence modeling, although it might sometimes be confusing.



5 The Kolmogorov Law of Turbulence What Can Rigorously Be Proved? Part II 81

by noting d� the standard measure over the sphere fjkj D kg. This proves the result,
where E.k/ is given by

E.k/ D
�

k

2�

�2
.eBd.k/C 2eBn.k//: (5.30)

ut
Remark 5.4.2 From the physical point of view, E.k/ is the amount of kinetic energy
in the sphere Sk D fjkj D kg. As such, it is expected that E � 0 in R, and we deduce
from (5.22) that E 2 L1.RC/. Unfortunately, we are not able to prove that E � 0

from formula (5.30), which remains an open problem.

5.4.2 Dimensional Bases

Only length and time are involved in this frame, since we do not consider heat
transfers and the fluid is incompressible. Therefore, any field  related to the flow
has a dimension Œ � encoded as:

Œ � D .length/d`. /.time/d� . /; (5.31)

which we express through the couple

D. / D .d`. /; d� . // 2 Q2: (5.32)

Definition 5.4.1 A length-time basis is a couple b D .�; �/, where � is a given
constant length and � a constant time.

Definition 5.4.2 Let  D  .t; x/ (constant, scalar, vector, tensor. . . ) be defined
on Q D Œ0;T� �. Let  b be the dimensionless field defined by:

 b.t
0; x0/ D ��d`. /��d� . / .� t0; �x0/;

where

.t0; x0/ 2 Qb D


0;

T

�

�
 1

�
�;

is dimensionless. We say that  b D  b.t0; x0/ is the b-dimensionless field deduced
from  .
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5.4.3 Kolmogorov Scales

Let us consider the length-time basis b0 D .�0; �0/, given by

�0 D �
3
4 E � 1

4 ; �0 D �
1
2 E � 1

2 ; (5.33)

where E is the dissipation defined by (5.18) (see also Remark 5.4.1). The scale �0
is known as the Kolmogorov scale. The important point here is that

Eb0 D �b0 D 1: (5.34)

Moreover, for all wave number k, and because

D.E/ D .3;�2/; (5.35)

we get

E.k/ D �30�
�2
0 Eb0.�0k/ D �

5
4 E

1
4 Eb0 .�0k/; (5.36)

by using (5.33). We must determine the universal profile Eb0 .

5.4.4 Proof of the �5=3’s Law

The law of the �5=3 is based on two assumptions about the flow:

1. the separation of the scales (Assumption 5.4.1 below),
2. the similarity assumption (Assumption 5.4.2 below).

Assumption 5.4.1 Let ` be the Prandtl mixing length. Then

�0 << `: (5.37)

Assumption 5.4.2 There exists an interval

Œk1; k2� �


2�

`
;
2�

�0

�
s.t. k1 << k2 and on Œ�0k1; �0k2�;

8 b1 D .�1; �1/; b2 D .�2; �2/ s.t. Eb1 D Eb2 ; then Eb1 D Eb2 : (5.38)

Theorem 5.4.2 Scale separation and similarity Assumptions 5.4.1 and 5.4.2 yield
the existence of a constant C such that

8 k0 2 Œ�0k1; �0k2� D Jr; Eb0 .k
0/ D C.k0/�

5
3 : (5.39)
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Corollary 5.4.1 The energy spectrum satisfies the �5=3 law

8 k 2 Œk1; k2�; E.k/ D CE
2
3 k� 5

3 ; (5.40)

where C is a dimensionless constant.

Proof Let

b.˛/ D .˛3�0; ˛
2�0/:

As

Eb.˛/ D 1 D Eb0 ;

the similarity assumption yields

8 k0 2 Jr; 8˛ > 0; Eb.˛/ .k
0/ D Eb0 .k

0/;

which leads to the functional equation,

8 k0 2 Jr; 8˛ > 0; 1

˛5
Eb0 .k

0/ D Eb0.˛
3k0/;

whose unique solution is given by

8 k0 2 Jr; Eb0 .k
0/ D C.k0/�

5
3 ; C D

�
k1
�0

� 5
3

E0

�
k1
�0

�
;

hence the result. Corollary 5.4.1 is a direct consequence of (5.36) combined
with (5.39).

Remark 5.4.3 It can be shown that the law of �5=3 yields the Smagorinsky’s
model (5.15) (see in [11]).

5.5 Numerical Experiments

5.5.1 Simulation Setting

The computational domain � is a box, the size Lx  Ly  Lz of which is equal
to (1024 m, 512 m, 200 m) (see Fig. 5.3). The number of nodes is .256; 128; 64/.
The bottom of the box, plotted in Fig. 5.3, has a non trivial topography modeled
by gaussian smooth domes, the height of which being equal to 50 m. We perform
the simulation with � D 2  10�5 m2 s�1, which yields a Reynolds number equal
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to 9:107. We use the mean NSE with the Boussinesq assumption, coupled to the
k � E model, namely the PDE system (5.12)–(5.14)–(5.19)–(5.20). We specify in
what follows the boundary conditions, by considering the following decomposition
of 
 D @�:


 D 
t [ 
f [ 
b [ 
g [ 
i [ 
o;

where

• 
t is the top of the box,
• 
f is the front face,
• 
b is the back face,
• 
g is the bottom of the box (the ground),
• 
i is the inlet,
• 
o is the outlet.

The condition on 
i is prescribed by the Monin Obukhov similitude law [41]:

v.x; y; z; t/j
i D
�

u?
�

ln

�
z C z0

z0

�
; 0; 0

�t

; (5.41)

where � D 0:4 is the Von Karman constant, z denotes the distance from the ground
level, the aerodynamic roughness length z0 is equal to 0.1 m, the friction velocity is
expressed by:

u? D �Uref



ln

�
Href C z0

z0

���1
; (5.42)

by taking Uref D 36ms�1 and Href D 200m. The turbulent kinetic energy and
turbulent dissipation are setted by

8<
:

kj
i D u1=2? C�1=2
� ;

E j
i D u3?
�.z C z0/

:
(5.43)

On 
b, velocity, TKE and turbulent dissipation are subject to verify the no slip and
homogeneous boundary conditions,

8<
:

vj
g D .0; 0; 0/t;

kj
g D 0;

E j
g D 0:

(5.44)
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On the top and lateral boundaries, we put

8<
:

v � n D 0 on 
t [ 
b [ 
f ;

rk � n D 0 on 
t [ 
b [ 
f ;

rE � n D 0 on 
t [ 
b [ 
f :

(5.45)

Finally a null gradient condition is prescribed at the outlet 
o

8<
:

r.v � n/ D 0 on 
o;

rk � n D 0 on 
o;

rE � n D 0 on 
o:

(5.46)

Remark 5.5.1 The PDE system (5.12)–(5.14)–(5.19)–(5.20) with the boundary
conditions (5.41)–(5.43)–(5.44)–(5.45)–(5.46) yields a very hard mathematical
problem. The existence and the uniqueness of a solution is a difficult issue, whether
for global weak solutions or local time strong solutions.

5.5.2 Results

The numerical scheme we use for the simulation is based on the standard finite
volume method (FVM) in space, and an Implicit Euler for the time discretization.
For the simplicity, we will not write here this technical part of the work. The reader
will find comprehensive presentations of the FVM in [15, 17, 23, 57].

The simulation reaches a statistical equilibrium in about 180 physical seconds,
which is the time at which the results are displayed. In Figs. 5.4 and 5.5, are plotted
the values of the streamwise and spanwise components of the velocity at z D 50m,
which corresponds to the dome height.
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Fig. 5.4 Streamwise direction of the flow at the z D 50m cutplane
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Fig. 5.6 Energy spectrum at the point .x; y; z/ D .500; 200; 50/

In Fig. 5.6, we have plotted the energy spectrum of the flow at .x; y; z/ D
.500; 200; 50/ using a log-log scale, together with a straight line whose slope is
equal to �5=3 D �1; 666 : : : : and the regression straight line of log10.E.k//, whose
slope is about equal to �2:1424. The results call for the following comments.

1. The simulation reveals a certain reliability of the code, which suggests the
convergence of the numerical method. However, the mathematical convergence
of the scheme remains an open question, closely related to the question of the
existence of solutions mentioned in Remark 5.5.1.

2. The curve log10.E.k// is an irregular curve which substantially differs from a
straight line, so that we cannot conclude that numerically E.k/ behaves like
Ctek˛ in some interval Œk1; k2�. Moreover, there is a gap between the slope of
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the regression straight line of the curve and �5=3. However, something that
looks like an inertial range can be identified between k D 10�5 m�1 and k D
10�1 m�1. This departure from the �5=3 law asks for the following comments
and questions.

• The case under consideration yields a turbulence which is not homogeneous
nor isotropic, which may explain the slope equal to �2:1424 we found.

• This simulation does not validate the Kolmogorov law or any law like E.k/ 	
Ctek˛ . We cannot infer that such a law holds or not. Many parameters may
generate the oscillations we observe in the curve log10.E.k//, such as any
eventual numerical dissipation, a wrong choice of the constants in the k � E
model which also may be not accurate, the boundary conditions we used and
which may be questionable.
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Chapter 6
History of Chaos from a French Perspective

Pierre Coullet and Yves Pomeau

Abstract This review tries to explain how Chaos theory developed in France in
the late seventies-early eighties, not as the result of a planned attempt to bolster
a field but, as often in human matters, as a result of an unlikely convergence of
various events, as well as of a long tradition in the study of nonlinear phenomena
that can be traced back to Poincaré. Some general reflexions will be presented on
the connection between the way Science and research are organized and the way
things really work.

6.1 Introduction

Usually the history of Science is written by professional historians, just because it
has to do mostly with Science made by people not present anymore. The case of
Chaos theory is a bit exceptional in this respect because this Science was developed
by people who, for many of them, are still alive and even remain active scientists.
Several articles have been published already [1] on this subject (History of Chaos),
but we hope that our point of view of (formerly) active players in this field could be
of interest. Because it is centered on our own experience, there will be surely some
distortion in our text, but we tried to limit it to a reasonable minimum. We believe
also that there is some value in such a personal perspective as we shall focus on how
and why new ideas concretely came out, something hard to find just by reading the
written documents and/or comparing articles published in the literature. Our choice
of a French perspective is also motivated by an attempt to explain how new ideas
and new fields may find their way in a rigid system like the one of state-supported
French Science, something which could have a broader significance for the way
research is supported elsewhere.
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In contrast perhaps to published articles or books on the history of Chaos, we
shall not focus on particular events like scientific meetings, for instance, which
played, from what we recall, a minor role or no role at all in the production of
new ideas and concepts. Truly informal contacts, discussions and seminars were at
the basis of most developments, together with hard thinking by the players. This
is perhaps a lesson for the future: Chaos theory was innovative in many respects,
using almost for the first time computers to explore mathematical models in an
interactive way. Another important issue is that scientists in the field knew (and
still know) often each other well and did not have to rely on official channels of
scientific communication like grand and costly conferences or various bureaucratic
schemas of concerted/planned action. The French system being formally heavily
centralized cannot be efficient in promoting whatever scientific agenda it could have
had, such an agenda being almost always limited to obvious extensions of existing
things and ideas. Counterintuitively perhaps this French research system, because of
its absurdity, was somehow well adapted to an outburst of new ideas and concepts
because it left actually more freedom to individual scientists than a formally more
efficient system with strong incentives for scientists to stay on well trodden tracks.
In retrospect it could be a bit like the Soviet science (although on a minor mode),
which was the brightest in Stalin’s time where everything was formally planned but
where actually many scientists (but of course not all of them) seemingly had enough
freedom in their research, if not in their everyday life, to produce outstanding results.

6.2 Before Chaos: The French Tradition in Dynamical
Systems

6.2.1 Poincaré

The history of Chaos begins with Poincaré. His PhD thesis [2] can be seen as
the very beginning of dynamics as we know it. He invented powerful geomet-
rical methods to understand “qualitatively” the behavior of solutions of ordinary
differential equations. His message remains alive, because of the power of his
methods. As a side remark it is curious to see his basic concepts rediscovered
again and again. The saddle-node bifurcation (noeud-col in Poincaré thesis) is fairly
popular in this respect and has got lately various fancy new names. Poincaré not
only started qualitative method of analysis of differential equations, but he also
began to study dissipative dynamical systems different of the (far more complex)
Lagrangian dynamics (a topic where he brought also fundamental ideas). One of
the things we shall emphasize is the link between Poincaré and modern theory of
Chaos in France, a link between scientists from one generation to the next. It is also
significant to point out that the notion of bifurcation can be traced back to much
older times. Somehow it appeared first at the eve of modern science: Archimedes
of Syracuse [3] did show that, as the center of gravity of a floating hull gets higher
and higher, there is a bifurcation in the equilibrium position of the body, if it is
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symmetrical with respect to a vertical plane: classically a loss of symmetry of the
equilibrium position takes place and two new equilibrium positions appears, both
stable although the symmetric position becomes unstable. The classical Elastica
problem solved by Euler makes the next important step in the history of the concept
of bifurcation. There the beautiful geometrical method of Archimedes is replaced
by modern analytical methods.

The power of Poincaré approach was to link geometrical intuition with analytical
problems. Of course this link between geometry and analysis did not begin with
him: it can be traced back to Newton’s Principia where the two-body problem is
essentially solved as a consequence of (non trivial) properties of conics. As had
been shown [4] by Jean-Marc Ginoux, Poincaré did more than lay the ground idea
of bifurcation theory (he coined also the word bifurcation) but he also worked it out
concretely for a particular case, relevant for the generation of self-oscillations in an
electrical device. This explicit use of Poincaré method, supported by geometrical
methods was at the basis of the book by Yves Rocard, “Dynamique des vibrations”
[5], a book familiar to many scientists in France going to work on Chaos (Libchaber,
Coullet, Pomeau and others). Having attended the 1933 meeting at IHP on nonlinear
science (devoted mostly to the Van der Pol equation) Rocard made a link between
the old time of Poincaré and modern times of Chaos theory. True, Rocard never
referred to Poincaré in his lectures at Ecole Normale as far as one of us (YP) can
recall, a lack of reference to mathematicians quite common among physicists in
France at this time (think to German science and the role played by Hilbert and
Sommerfeld in the birth of Quantum Mechanics). In his lectures Rocard said a few
things about the response of the Van der Pol oscillator to external periodic forcing.
He said that if more and more frequencies were added, the solutions remains quasi
periodic with the composition of many base frequencies, something that was already
known to be wrong at this time thanks to the deep results by Levinson [6].

This was (although Rocard never mentions it) the conception put down by
Landau on the bifurcation to turbulence in flows: at every bifurcation a new
frequency appears as well as its linear combination with integer coefficients with
the already existing frequencies. In this (erroneous) view, turbulence/Chaos, seen as
a continuous noise spectrum appear only after an infinite number of bifurcations,
something requiring to reach infinite Reynolds number in a turbulent flow. This has
been proved, by Ruelle and Takens [7], to be theoretically wrong and experiments
later fully confirmed this point (see below).

6.3 Other Precursors and Foreign Influences

6.3.1 Michel Hénon

Michel Hénon, who passed away in 2013, was a French pioneer in the research
on nonlinear phenomena and Chaos. This modest man was remarkable for many
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reasons, As a student at Ecole Normale Supérieure (early fifties), at a time where no
computer was available, he managed to build one with the purpose of solving the
three-body problem, an item in the list of problems to be solved with computers as
given by Fermi (who had not much time to do it before his early death). Incidentally
Fermi chosen those topics with a very sure taste. Likely the most famous item
there is the Fermi-Pasta-Ulam problem, namely the return to equilibrium of a chain
of nonlinear oscillators. Corning back to Michel Hénon, he inspired a very active
group of scientists in Nice, and has left two important legacies in nonlinear science:
Hénon-Heiles differential equations [8] and Hénon attractor [9]. The second one
is a good example of how things worked early in the science of Chaos: one of us,
YP, gave a talk at the Nice Observatory on recent work he had done with Jose-Luis
Ibanez on an attractor they had discovered in the Lorenz system for parameter values
different of the one chosen originally by Lorenz. In this attractor, by following the
trajectory in phase space one could find two well defined plane transformations
along the trajectory: one of stretching and another one of folding (the so-called
baker’s transform), something impossible with the “classical” Lorenz attractor. The
result was an attractor with a cross section looking like a folded object with infinitely
many folds. In Nice the talk was given before lunch and Michel Hénon managed
to find during lunch time a quadratic invertible map contracting areas and doing
basically the same thing as was done by the continuous flow of the Lorenz system
for the parameter values of Ibanez and YP [10]. Because of its easiness to be put
in a pocket computer, Hénon’s attractor became popular very quickly, although its
mathematical status remains undecided: for instance one does not know yet what
is its true topology, one only knows that it is not the product of a Cantor set and
of a smooth manifold, as it appeared visually to be the case first.The mathematical
difficulty there is that this attractor is not hyperbolic, which makes hard to prove
things in a rigorous way. Later it turned that this kind of quadratic iteration had
already a rather long mathematical history, belonging to the class of Cremona maps,
although they do not seem to have been studied before as dynamical systems, by
looking at long iterations.

Let us briefly mention another legacy of Poincaré on nonlinear dynamics, the
“solution” of the three-body problem. As just said, this motivated Michel Hénon
to begin his studies of Chaos in a model of non integrable Lagrangian system, the
Hénon-Heiles system. It showed an unexpected coexistence of regular orbits and
of a chaotic sea. This problem has been taken over since with far more powerful
numerical methods and in more realistic situations. It has been shown by Laskar [11]
that our solar system is unstable in the long run, contrary to expectations, including
by Newton!

6.3.2 The Toulouse Group on Iterations

For the sake of completeness we mention the work of the research group of Mira
and collaborators in Toulouse [12]. In an engineering school they made over the



6 History of Chaos from a French Perspective 95

years a systematic “experimental” study of rational iterations of non invertible
(mostly 2D) maps, a topic started earlier at Los Alamos National Lab by Ulam and
Metropolis. They focused their research on the geometric properties of the attractors
and their basin of attraction. It is fair to say that this work had little influence on the
developments of the French side of the science of Chaos. The authors developed
their own terminology which remained quite unfamiliar to outside readers and the
level of analysis involved was quite hard to fathom, since the papers seemed to be
mostly descriptive. All those works had little or no influence on developments we
shall mention later. The same can be said of a paper by May [13] in Nature in the
early days of Chaos theory, which included a fairly complete list of references at the
end.

6.3.3 Prigogine

There is also the question of the influence of Prigogine and the Brussels school on
the development of the science of Chaos in France. Prigogine was a flamboyant per-
son and an outstanding speaker. He steadfastly maintained that out-of equilibrium
systems are interesting and should be studied, his ideas having been diffused in a
number of books. His interest in dissipative structures brought somehow people to
the field of non equilibrium systems. The goal was to understand non trivial things
like how Bénard cells are created, how nonlinearity operates above the onset of
stability, etc. The fundamental problem of physics, as seen by Prigogine, namely the
microscopic origin of irreversibility was however not central to the field of research
on Chaos as it unfolded. Most scientists did take for granted the macroscopic
equations with chaotic solutions without worrying too much about their derivation
from basic principles, ultimately from atomic physics. The Brussels school put a
lot of insistence on the effect of thermal fluctuations on macroscopic dynamics, a
very small effect hard to put in evidence. Summarizing Prigogine pointed in the
right direction (study non equilibrium dynamics) but perhaps not with the most
appropriate tools of study, because requiring to start from microscopic physics is
somewhat too demanding. Moreover, we (YP and others) had a chance to spend
some time in Prigogine’s lab in Brussels in the late sixties early seventies, it was
a great place of discussion on scientific subjects between young and bright people
coming from all around the world. It is too bad that such a place does not exist
anymore in Europe.

6.4 The Transition

The study of Chaos got a big jump start with the paper by Ruelle and Takens. There
is no more than one or two papers of this class every 10 years: it introduced a new
mathematical idea, namely that after a finite number of bifurcations to oscillations,
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the generic behavior of a dynamical system is not quasi periodic with more and
more independent frequencies and their combinations with integer coefficients,
but chaotic with a finite correlation time and a continuous frequency spectrum.
The transition to turbulence in flows had been studied by Landau in 1944 [14].
Landau saw the continuous spectrum of a turbulent system as a superposition
of infinitely many frequency lines. The existence of this infinity of independent
frequencies requires an infinity of bifurcations. Accordingly, turbulence can only
set in at infinite Reynolds number, after infinitely many bifurcations. Ruelle and
Takens, quoting explicitly Landau, showed that the implicit extension of the quasi
periodic paradigm to more than three independent frequencies is not correct. If
they are four independent frequencies, the phase space is a 4D torus and so the
Poincaré map is of one 3D torus on itself. Such a map bifurcates generically toward
a chaotic map where the distance along the large circle is multiplied by two at each
iteration although the circular cross section of the torus is mapped in two small
discs inside the disc one starts from. The iteration of this mapping yields a strange
attractor where each trajectory is unstable along the large circle and contracting
in the dimension of the cross section. The result in the cross section is a Cantor
set of discs embedded in discs, etc, see for instance [15] on this structure. Such a
bifurcation of the dynamics with four independent frequencies is structurally stable,
which proves that four independent frequencies can do something which is not a
quasi periodic dynamics but which is completely chaotic.

This deep result met some resistance on the side of the “classical fluid mechan-
ics” community, without, it is true, trying to find a flaw in Ruelle-Takens. On the
side of experimental physics, a few groups took the task of checking Ruelle-Takens
in real experiments This was not such a simple job in the original formulation of
the Ruelle-Takens scenario of transition to turbulence. Actually one must have a
sequence of bifurcations to oscillations and after a finite number of bifurcations a
direct transition to Chaos. This difficult job was taken over in the US by Swinney
and Gollub [16] and in France by Maurer and Libchaber at Ecole Normale [17] and
Bergé and Dubois at CEA-Saclay [18]. This emphasizes a geographical strength
(dating back to many centuries) of the French system of research: almost all the
people involved in the early stage of Chaos theory in France not only knew each
other but also worked either in Paris or nearby (Bures-sur-Yvette and Saclay).

To summarize, the interest of physicists was raised not so much perhaps by the
depth of the mathematics of Ruelle and Takens, but by the fact that it contradicted
a statement in an universally admired set of textbooks, the Course of theoretical
physics by Landau and Lifshitz. Furthermore the connection with experiments was
also very important, experiments being done either in the same lab as the place
where theory was done or in the lab next door.

It is worth pointing out that, there were rather frequent scientific meetings on
“nonlinear science” at the time (seventies and early eighties), culminating with
a Summer school at Les Houches in the French Alps, preceded by a Winter
workshop at the same place. At this time nonlinear meetings had a mixed audience
and lecturing. On one side people did soliton theory, integrability, etc. all purely
mathematical things, motivated by the remarkable feat of Martin Kruskal and
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collaborators who succeeded in solving the Korteweg-deVries (KdV) nonlinear
partial differential equations thanks to a very innovative method of inverse scatter-
ing.The same meetings were also attended by pioneers in Chaos theory, motivated
in part by attempts to continue on the path opened by Ruelle. One can still find a
mixture of articles coming from those two branches of nonlinear science in Journals
like Nonlinearity and Physica D-nonlinear physics. However, there was very little
overlap between the two groups (integrable systems and Chaos), and the mixture
demixed quite soon.

6.5 Why in France at This Time?

This brings to the fore a significant question: why did this field emerged at this
time in France? And particularly why a small group of loosely connected scientists
started doing research on Chaos? At the time, French theoretical physics was
dominated by attempts to prove rigorously results in statistical physics and field
theory by using a formal device called C-star algebra. This very abstract approach
to theoretical physics did not fit the taste of everyone, precisely because it was too
much on the side the farthest of physics (and remains so). Some felt dissatisfied with
this state of affair. Somehow the old Poincaré spirit was almost completely gone,
even though one of the fundamental item in this C-star field was the requirement
of symmetry under the general Poincaré group, namely the Lorentz group with
translations in space and time added. By the way, this requirement of symmetry
is hard to satisfy if one wants also to get rid of the infinities in the field theory of
interacting quantum fields. The last word is yet to be printed in this area of research.

A small subset of physicists continued however to do theory in a far less
mathematized and formal way. The authors of this text shared an interest in
problems, almost forgotten now, of the long time relaxation of time correlation
functions in classical equilibrium systems. This point was raised by Alder and
Wainwright who had discovered the slow power decay of certain time correlations
[19], a result also consistent with a result by YP derived a little before from the so-
called mode-mode coupling theory for the kinetic theory of a dense gas [20]. This
kind of result, although very likely exact, was and still is far away from a formal
proof by using methods of the C-star formalism. For our story however it has an
interest because this slow decay of time-correlation was one of the first example of
a qualitative and significant new result derived in part from computer studies, an
example that inspired the analysis of the bifurcation to Chaos that were going to be
discovered.

This goes beyond the intellectual motivation for studying fundamental questions
with computers, but also because this followed the fast increase in the availability of
powerful computers, all relying of the unbelievably efficient Californian computer
industry.
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6.6 Theoreticians and Experimentalists Talk to Each Other

In France, in contrast with other countries, the role of light experiments was
emphasized, for a reason mainly related to the personal relationship between people
(theoreticians and experimentalists), like Libchaber at ENS, Bergé and Dubois in
Saclay, Coullet and Tresser and Pomeau and collaborators, Paul Manneville and
Bernard Derrida. A (although quite remote) model for such a theory-experiment
cooperation was the way de Gennes group worked. But this was its only influence.
de Gennes stayed out of the Chaos business (but for a quick explanation of what
is a strange attractor in his lectures on fluid mechanics at Collège de France).
This direct connection with experimentalists was against the French tradition in
theoretical physics. Traditionally most French theoreticians in Physics try to equal
their mathematician colleagues, mathematics being the top ladder of the Auguste
Comte scale. Any interest for applications bring them a few steps down on this
ladder, without helping much in their professional trajectory.

Moreover this “light experiment (or corner table) philosophy” goes also against
another ground tendency in French science, the ever-going and costly expansion of
large facilities like Synchrotron radiation, neutron facilities, high energy devices, all
types of fusion machines, etc. much liked by the French bureaucracy and politicians
of all sides: big size means high visibility to outsiders without need to explain what
new, useful and interesting results are obtained, if they ever are.

However things soon got far easier for experimentalists on Chaos because of two
discoveries, one made simultaneously in France and in the US. Both discoveries,
done at about the same time, showed that other scenarios of transition to turbulence
existed than the one of Ruelle and Takens, and far easier to explain and so to find in
experiments.

6.7 What New Results Have Been Obtained ?

After the dust has settled, it is time to see what remains, namely what scientific
results remain as a legacy of all the work of scientists in the field of Chaos, if
anything remains, and particularly what kind of result can be attributed to French
science. Of course our choice is prejudiced by our own interest and our personal
work. It is likely that others would emphasize different contributions as long lasting.

This is the place where we should give some insight on the way two routes to
Chaos were discovered by the present authors with collaborators.

The transition by intermittency was discovered in systematic studies of the
Lorenz set of equations. There was no obvious motivation for that, because, at
the time it was unclear if there was other scenario for the transition to turbulence
besides the one found by Ruelle and Takens, which was fairly complex already.
In this respect the Lorenz system was perhaps not such a good system, because
it was of rather low dimension (3) and so had no chance to show anything like a
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Ruelle-Takens scenario. Nevertheless, Paul Manneville and YP started to run the
Lorenz model on an analog computer. It is time to pause to explain what is (actually
was) an analog computer. The idea, was to simulate a certain set of coupled ODE’s
(ordinary differential equations) by building an electrical network with linear and
nonlinear elements designed in such a way that (for instance) the voltage between
two nodes is precisely given by the solution of the equations one wished to study. At
the time this idea was already a complete dead end, although it had been supported
by the research division of the National French utility for electric power (EDF).
A big analog computer had been built and improved over the years. It did more
or less the job with many circuits. This device had been donated to the French
Atomic Energy commission (CEA) where it was still in use. Its running required
about ten dedicated people, engineers and technicians: because of its many electrical
components, failures were happening all the time and had to be fixed. In this respect
it was closer to the first vacuum-lamp computers in Los Alamos with the same
problem of replacing failed components. The number of people necessary for the
running was a bit large compared to the various (digital) computer centers of the
time, but not by such a huge factor. Compared to the digital computers of the
time, this analog computer had the big advantage to yield an immediate display
(on a small video screen) of change of behaviour following a change of parameter
value. By changing continuously a parameter value of the Lorenz system, it was
possible to discover bifurcations seen as obvious changes in trajectories in phase
space. Of course this had to be distinguished from a mere change of behaviour due
to the failure of an electric element. The transition by intermittency did show itself
by random bursting of the trajectory getting rarer and rarer as the transition was
approached. The next step was to try to find a rational explanation of this remarkable
phenomenon [21]. This was made possible by the familiarity gained by looking at
iterations of one dimensional rational maps. Rather surprisingly such a simple idea
had not been found before, although it could have been done without the help of a
computer, because the final explanation relies a geometrical construction only, not
on detailed analysis.

Another scenario of transition to turbulence was discovered in France, in Nice,
the transition by accumulation of period doubling. Period doubling was discovered
and explained at about the same time (1978–1980) by Mitch Feigenbaum in the US
[22] and by Pierre Coullet, one of the authors of this paper, and Charles Tresser [23]
in France. The history of Coullet-Tresser is almost a novel: Tresser had no position
at the University of Nice and Coullet had just been recruited by CNRS, the French
organisation for scientific research to do theoretical physics. The two (Coullet and
Tresser) had been given a small office in an attic near the gate of the campus with a
small computer.

Pierre Coullet began working on a model of population dynamics, called Lokta-
Volterra. He discovered a rather unusual behaviour of one of those models, where
three unstable states are visited at longer and longer intervals, something quite
non generic for dynamical systems. His advisor, Jean Coste, discussed this curious
dynamics with Michel Hénon at the Observatory of Nice who told him that even
more spectacular behaviours of non linear dynamical systems were reported in
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a review paper by May. This led Pierre to iterations of simple maps, something
referred to in this review as example of non linear dynamics.

Pierre Coullet then discovered the accumulation of period doubling and
explained it, with the help of Charles Tresser, with the non trivial idea of fixed
point of the iteration process and its universal properties. The idea of scaling
and of fixed point was borrowed then from Wilson theory of critical phenomena,
Pierre having a PhD in theoretical physics knew renormalisation. They put together
quickly the note [23] on their discovery and paid a visit to Michel Hénon at the
Nice observatory who had just received a preprint by Feigenbaum reporting results
related to theirs (but without the RNG part which came later) [22].

As a final note on the discovery of the two scenario of transition to turbulence
(period doubling and intermittency), they were both put in evidence rather quickly
in experiments on Rayleigh-Bénard thermal convection in fluids, by Maurer and
Libchaber at Ecole Normale for period doubling and by Bergé and Dubois at
Saclay for intermittency. A slightly later, a beautiful experiment at Bordeaux put
in evidence the scenario of intermittency in non equilibrium chemical dynamics
[24]. This experiment showed very nicely the opening of a channel in the iteration
derived from the experimental data.

Summarizing one can see on those two examples that progress in the field owed a
lot to chance and unlikely meeting of various people on a completely informal basis
and that administrative planning of research did not play any role.

6.8 Lessons for the Future

In France, as in many countries, it is difficult for a new scientific domain like Chaos
to emerge, if not to blossom. This has two obvious explanations: first there is a
finite cake to share, and new customers are never welcome. Next French Science is
(formally) well organized with each field and subfield developing in its own nest.
Therefore there is a priori no nest for a new bird: it should find its place somewhere
in the big tree of organized Science. The obvious drawback of such an organization
is that it leaves little space for freedom and imagination so that it becomes harder
and harder as time goes to attract bright young minds. Said otherwise, it is easy
to attract people who will participate to incremental progress, another word for no
progress, but much more difficult to help the imaginative ones needed to produce
new Science and new results. By the way, this does not apply to pure Science only
but also to applied science. The rigidity, not to say the absurdity, of the French
system was so big that it has actually little power to control everything and so left
enough freedom to young scientists to start their own successful research.

Surely Chaos theory and experiments did not suffer from lack of attractiveness.
Nowadays it has morphed into a wider field, nonlinear science, with many bright
young colleagues. We hope this tree will continue to blossom,
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Chapter 7
Quasiperiodicity: Rotation Numbers

Suddhasattwa Das, Yoshitaka Saiki, Evelyn Sander, and James A. Yorke

Abstract A map on a torus is called “quasiperiodic” if there is a change of
variables which converts it into a pure rotation in each coordinate of the torus.
We develop a numerical method for finding this change of variables, a method
that can be used effectively to determine how smooth (i.e., differentiable) the
change of variables is, even in cases with large nonlinearities. Our method relies
on fast and accurate estimates of limits of ergodic averages. Instead of uniform
averages that assign equal weights to points along the trajectory of N points, we
consider averages with a non-uniform distribution of weights, weighing the early
and late points of the trajectory much less than those near the midpoint N=2. We
provide a one-dimensional quasiperiodic map as an example and show that our
weighted averages converge far faster than the usual rate of O.1=N/, provided f
is sufficiently differentiable. We use this method to efficiently numerically compute
rotation numbers, invariant densities, conjugacies of quasiperiodic systems, and to
provide evidence that the changes of variables are (real) analytic.

7.1 Introduction

Let X a topological space with a probability measure � and T W X ! X be a
measure preserving map. Let f W X ! E be an integrable function, where E is
a finite-dimensional real vector space. Given a point x in X, we will refer to the
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long-time average of the function f along the trajectory at x

1

N

N�1X
nD0

f .Tn.x//; (7.1)

as a Birkhoff average. The Birkhoff Ergodic Theorem (see Theorem 4.5.5. in [1])
states that if f 2 L1.X; �/, then (7.1) converges to the integral

R
X fd� for �-a.e.

point x 2 X. The Birkhoff average (7.1) can be interpreted as an approximation to
an integral, but convergence is very slow, as given below.

ˇ̌̌
ˇ 1N
XN

nD1f .T
n.x//�

Z
X

fd�

ˇ̌̌
ˇ � CN�1;

and even this slow rate will occur only under special circumstances such as when
.Tn.x// is a quasiperiodic trajectory. In general, the rate of convergence of these
sums can be arbitrarily slow, as shown in [2].

The speed of convergence is often important for numerical computations. Instead
of weighing the terms f .Tn.x// in the average equally, we weigh the early and late
terms of the set 1; � � � ;N much less than the terms with n 
 N=2 in the middle.
We insert a weighting function w into the Birkhoff average, which in our case is the
following C1 function that we will call the exponential weighting

w.t/ D
8<
:exp

�
1

t.t�1/
	

for t 2 .0; 1/
0 for t … .0; 1/:

(7.2)

Let Td denote a d-dimensional torus. For X D T
d and a continuous f and for � 2 T

d,
we define what we call a Weighted Birkhoff (WBN) average

WBN. f /.x/ WD 1

AN

N�1X
nD0

w
� n

N

	
f .Tnx/; where AN WD

N�1X
nD0

w
� n

N

	
: (7.3)

Note that the sum of the terms w.n=N/=AN is 1, that w and all of its derivatives are
0 at both 0 and 1, and that

R 1
0

w.x/dx > 0.

Quasiperiodicity Each E� 2 .0; 1/d defines a rotation, i.e. a map TE� on the d-
dimensional torus Td, defined as

TE� W  7!  C E� mod 1 in each coordinate. (7.4)

This map acts on each coordinate j by rotating it by some angle �j. We call the �j

values “rotation numbers.”
A vector E� D .�1; : : : ; �d/ 2 R

d is said to be irrational if there are no integers
kj for which k1�1 C � � � C kn�n 2 Z, except when all kj are zero. In particular, this
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implies that each �j must be irrational. The rotation numbers depend on the choice
of the coordinate system. In any other coordinates in which the system is also a
rotation, the rotation vector E� is AE�, for some matrix A whose entries are integers
such that the determinant of A is ˙1. Conversely, any such matrix corresponds to a
coordinate change which also changes E� to AE�.

A map T W X ! X is said to be d-dimensionally Cm quasiperiodic on a set
X0 � X for some d 2 N iff there is a Cm-diffeomorphism h W Td ! X0, such that,

T.h.// D h.TE�.//: (7.5)

where TE� is an irrational rotation. In this case, h is a conjugacy of T to TE�. In
particular, a (pure) irrational rotation, (a rotation by an irrational vector E�) is a
quasiperiodic map.

Invariant Measure for Quasiperiodic Maps An irrational rotation TE� W T
d !

T
d on the torus has a unique invariant measure, which is the Lebesgue probability

measure. This measure also turns out to be the unique ergodic measure. It follows
that if a dynamical system T W X0 ! X0 is d-dimensionally C1 quasiperiodic, there
is a unique T-invariant measure on X0 which, under change of variables, becomes
the Lebesgue probability measure on T

d.

Diophantine Rotations An irrational vector E� 2 R
d is said to be Diophantine if

for some ˇ > 0 it is Diophantine of class ˇ (see [3], Definition 3.1), which means
there exists C� > 0 such that for every Ek 2 Z

d, Ek ¤ 0 and every p 2 Z,

jEk � E� � pj � C�
kkkdCˇ:

(7.6)

For every ˇ > 0 the set of Diophantine vectors of class ˇ have full Lebesgue
measure in R

d (see [3], 4.1). The Diophantine class is crucial in the study of
quasiperiodic behavior, for example in [4, 5].

Continued Fractions Every irrational number ˛0 2 .0; 1/ has a representation
known as its continued fraction expansion Œn1; n2; n3; : : :�, where n1; n2; n3; : : : are
positive integers. It can be defined inductively as follows

n1 D b 1
˛0

cI˛1 WD 1

˛0
� n1I

nkC1 WD b 1
˛k

cI˛kC1 WD 1

˛k
� nkC1:

Continued Fractions as Approximations The k-th convergent of an irrational
˛0 2 .0; 1/ is the number pk=qk defined as follows.

pk

qk
D Œn1; : : : ; nk� WD 1

n1 C 1

:::C 1
ak

: (7.7)
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Then for every integers q; k � 0, integer p, if q˛ � p is strictly between qk˛ � pk

and qkC1˛ � pkC1, then either q � qk C qkC1 or both p, q must be zero. In other
words, the best approximation of ˛ by a fraction p=q with q not exceeding qk, is
the k-th convergent pk=qk. We rely on the continued fraction expansion of a number
to decide whether it is rational or not. Every rational number has a finite number
of terms in its continued fraction expansion. If ˛ is irrational, then the sequence
continues forever, while if it is rational, it stops when some ˛k is zero.

The Diophantine class ˇ of an irrational number is a measure of how closely it
can be approximated by a rational number. The Diophantine class of an irrational
number can be deduced from its continued fractions. This is because the k-
th convergent pk=qk provides the best rational approximation among all rational
numbers whose denominator is � qk.

We will now state our main theorem about fast convergence of weighted
Birkhoff sums (7.3). We will first define a notion of fast convergence called super-
convergence.

Definition Let .zN/
1
ND0 be a sequence in a normed vector space such that zN ! z as

N ! 1. We say .zN/ has super-polynomial convergence to z or super converges
to z if for each integer m > 0 there is a constant Cm > 0 such that

jzN � zj � CmN�m for all m:

Theorem 7.1.1 Let X be a C1 manifold and T W X ! X be a d-dimensional
C1 quasiperiodic map on X0 � X, with invariant probability measure �. Assume
T has a Diophantine rotation vector. Let f W X ! E be C1, where E is a
finite-dimensional, real vector space. Assume w is the exponential weighting (see
Eq. (7.2)). Then for each x0 2 X0, the weighted Birkhoff average WBNf .x0/ has
super convergence to

R
X0

fd�.

Other Studies on Weighted Averages The convergence of weighted ergodic sums
has been discussed, for example, [6–8]), but without any conclusions on the rate of
convergence. In [9], a convergence rate of O.N�˛/, .0 < ˛ < 1/, was obtained for
functionals in L2C� for a certain choice of weights. A series of our applications of
the method discussed in this paper appear in [10], and the details of the proof of our
theorem appears in [11].

The use of a temporal weight in ergodic averages has been a subject of study for
several decades, usually using more generic weighting sequences in the form of

TN. f / WD
1X

nD0
�N.n/U

n. f /; where �N is a probability distribution on N: (7.8)

In our theorem, the probability measure �N are the values of the weight function
w sampled at the points fn=N W 0 � n < Ng and divided by the normalizing
constant AN , as defined in (7.3). In [6], sufficient conditions were derived for (7.8)
to converge in weighting sequences of a similar kind. Equations (7.3) and (7.8) arise
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from the study of functionals on the Hilbert Space L2. On the other hand, Berkson
and Gillespie [12] considered the convergence of (7.8) for invertible operators on
Banach spaces. It was shown that for a particular choice for .�N/N2N, the operators
converge in the strong operator topology to an idempotent operator.

Remark Our results apply to Cm or smooth functions, which are L2, and carry
the assumption that the underlying dynamics is quasiperiodic. We are interested
in exploring the applicability of the theorem to other dynamical systems, while
keeping in mind that various counter-examples exist in which weighted ergodic
averages do not converge. For example, in [13], the authors derived a property
called strong sweeping property for the operators in (7.8), under the assumption
that each �N is a dissipative probability measure and certain other conditions on
the underlying dynamical system .X;T/. The strong sweeping out property implies
that the limits do not converge but attain values over an interval of numbers. In [14]
similar results are obtained to prove the lack of convergence of (7.8) for a dense set
of L1 characteristic functions, in the context of ergodic rotations of the unit circle.

7.2 Application I of Theorem 7.1.1: Rotation Numbers

To illustrate some applications of Theorem 7.1.1, we will work with the following
dynamical system for the rest of the paper.

A Cylinder-Map Consider the infinitely long cylinder R  S1, where S1 is the
standard topological circle. Consider the following map on this cylinder, first studied
in [15].

xnC1 D3xn C �.xn; yn/

ynC1 Dyn � ı sin.yn/C �.1 � cos.xn// mod 2�:
(7.9)

Here � is a small perturbation term, ı and � are parameters satisfying 0 < 2ı < �.
It turns out that for every such parameter value, if � is sufficiently small, then there
exists an invariant topological circle. Note that if � � 0, then this is the circle
whose points are f.�; y/ W y 2 S1g. Though the map is C1, the invariant circle may
not be smooth. We are however interested in demonstrating that the dynamics on it
is C1-conjugate to a rotation. See Fig. 7.1 for some of these curves.

7.2.1 Rotation Number as a Weighted Birkhoff Sum

Rotation Number Let NF W Rd ! R
d be the lift of a quasiperiodic map F W Td !

T
d. It is well known (see for example, [16]) that the following limit exists and is a
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Fig. 7.1 Invariant circles in the cylinder map (7.9), for values of .�; ı; �/ equal to (a) (0.1, 0.1, 0.1),
(b) (0.2, 0.8, 0.8) and (c) (1.0, 0.1, 0.1). Points in the region on the right of the curves diverge to
x D C1, while points on the left diverge to x D �1. Therefore, these circles are quasiperiodic
repellers and we are interested in the classification of the dynamics on these curves as periodic or
quasiperiodic

constant independent of Ez 2 R
d.

E�.F/ WD lim
n!1

NFn.z/� Ez
n

: (7.10)

This limit is called the rotation number of F. The limit in (7.10) is a means of
approximating �, but its convergence is bounded by the O.1=N/, where N is the
number of iterates taken into account. We propose a better method based on the
weighting factor w.

Note that in the example under discussion, X0 is a one-dimensional quasiperiodic
curve embedded in X D R

2. Let X0 be given the coordinates  of a circle S1 (in this
case,  could be the Y-coordinate of each point on the invariant curve divided by
2�). Given two angles 1; 2 2 Œ0; 1/, 2 � 1 denotes the positive angle difference
between these two angles, i.e., with value in Œ0; 1/. We are interested in the limit

� WD lim
N!1

1
N

N�1P
nD0
ŒnC1 � n�, which can be obtained as the super-convergent limit of

WBN..nC1 � n// WD 1

AN

N�1X
nD0

w
� n

N

	
ŒnC1 � n�:

More generally, let X0 be a quasiperiodic curve embedded in X D R
2. Let C WD

CB [ CU be the complement of X0 in R
2, where CB and CU are the bounded and

unbounded components of C respectively. For p 2 R
2, define �./ D . � p/=k �

pk. Therefore �./ 2 S1. Let N� W R ! R be the lift of �. If p 2 CB, then N� is of the
form

N�. N/ D ˙ N C Ng. N/;
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Fig. 7.2 Rotation number on a quasiperiodic curve. The numbers �n D �.n/ can be used to
calculate the rotation number, as stated in Application 1

where N 2 R is a lift of  2 C. Notice that the real valued function Ng W R ! R is
period one and hence factors into a smooth function g W X0 ! R. Define a limit ��
as follows.

�� WD WBN.g.// D 1

AN

N�1X
nD0

w
� n

N

	
Œ.nC1 � n/C g.n/�:

Then �� is � or 1 � �, depending on the orientation of  , both being legitimate
representations of �. We have illustrated this construction in Fig. 7.2. If p 2 CU ,
then �� D 0.

7.2.2 Error Bound for the Unweighted Method

Given a one-dimensional quasiperiodic trajectory .xn/ on the circle S1 D Œ0; 1/, one
can define a trajectory on the real line Nxn for n D 0; � � � ;N, where Nx0 D x0, Nxn is a
lift of xn and NxnC1 � Nxn 2 .0; 1/. It therefore follows that NxnC1 D NF.Nxn/. Let

kn WD Nxn � xn (7.11)

be the winding number of the n-th iterate. Let the .xn/ iterates be sorted in increasing
order as

xn0 D 0 < xn1 < : : : < xnN < 1:
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If � is the true rotation number, then the iterates n D n� mod 1, for n D
0; : : : ;N have the same cyclic order as the x-orbit. In other words, 0 D n0 < n1 <

: : : < nN . We can determine the interval of � values for which that is true. First note
that

0 < xn1 so � < kn1=n1

xnN < 1 so � > .knN C 1/=nN:

Suppose ni < niC1, then .niC1 � ni/� D kniC1
� kni C �ni , for some �ni 2 Œ0; 1/.

Similarly, if ni > niC1, then .ni � niC1/� D kni � kniC1
� �ni . These two identities

give the following two inequalities respectively.

� >
kniC1

� kni

niC1 � ni
; (7.12)

� <
kni � kniC1

ni � niC1
: (7.13)

For each of the N�1 consecutive pairs .xni ; xniC1
/, we get such an inequality and they

combine to give the possible range of values of �. Note that instead of consecutive
x-s from the sorted list, we could have taken distant x-s, but the following inequality
shows that would not have yielded a sharper bound.

If a1; a2; b1; b2 > 0; then
a1 C a2
b1 C b2

lies in-between
a1
b1

and
a2
b2
: (7.14)

7.2.3 Another Calculation of the Rotation Number Using
Unweighted Birkhoff Sums

Let F W Td ! T
d be a homeomorphism, where T

d is the n-torus, obtained from the
n-cube Œ0; 1/d by taking each coordinate modulo 1. Using the weighting methods,
an initial estimate E�0 of the rotation number E� of F, by analysing a dense trajectory
Ez0; : : : ; EzN�1. This section describes how to obtain a better estimate E�00 of E� from E�0.

Let Ezn1 ;Ezn2 ; : : : ;EzndC1
be d C 1 points on the trajectory which are close to the

origin O and whose convex hull contains O. Then there are constants ˛i 2 .0; 1/, for
i D 1; : : : ; n C 1 such that O is a convex combination of the points Ezni , i.e.,

E0 D †
iD1:::;dC1˛iEzni : (7.15)

Since the map is quasiperiodic, there is a homeomorphism G W Td ! T
d such that

for every k D 0; : : : ; d C 1, Ezk D G.k E� mod 1/. If the points Ezn1 ;Ezn2 ; : : : ;EzndC1

are very close to the origin, G can be considered to be linear in a neighborhood
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containing these points. for every i D 1; : : : ; n C 1. Therefore, Ezni D G.ni E�
mod 1/ 	 dG.0/.ni E� mod 1/. If both sides are multiplied by dG.0/�1 then, (7.15)
becomes

E0 	 †
iD1:::;dC1˛idG.0/.ni E� mod 1/: (7.16)

Now let the integral part of ni E� be Eki, i.e., ni E� D Eki C �i, where Eki is a vector with
integer entries and the entries of �i lie in .�0:5; 0:5/d and are very small. Therefore
ni E� mod .2�/ D �i. Therefore (7.16) becomes

E0 D †
iD1:::;dC1Œ˛i.ni E� � Eki/�: (7.17)

Therefore, the equation can be solved to � as

E� D
†

iD1;:::;dC1˛i Eki

†
iD1;:::;dC1˛ini

: (7.18)

Note that for every i D 1; : : : ; d C 1, Eki=ni is a close approximation to �, so the
sum (7.18) is an optimal combination of these optimizations.

7.2.4 Fine Tuning the Rotation Number

Let .xn/ be a quasiperiodic trajectory on a circle S1 D Œ0; 1/. If we attempt to graph
the conjugacy map h./ from (7.5), we have only N points and they are not equally
spaced. We can compute the slopes between successive points and choose O� so as
to minimize the fluctuations in the derivatives of successive slopes. Define points
n D n O� mod 1. As before, let the .xn/ iterates be sorted in increasing order as

xn0 D 0 < xn1 < : : : < xnN < 1:

This ordering will be the same (cyclically) as that of 0; : : : ; N�1. Therefore, if
consider the graph of h, the successive points of the graph are pj WD .j; xnj/. The
slope from pj to pjC1 is:

Si D �x

�
WD xniC1

� xni

niC1 O� mod 1 � ni O� mod 1
:

From each estimate O� of �, a circle map h W S1 ! S1 be constructed which maps
n O� 7! yn. From h, one can construct the map h W S1 ! S1 defined as g./ D
h./�  . When the function h is lifted to R it becomes a function with period one.



112 S. Das et al.

The closer O� is to the true rotation number �, the smoother h is going to be. The
following is used as a measure of smoothness of the h.

�. O�/ WD †
iD0;:::;N


�
�x

�

�
i

�
�
�x

�

�
i�1

�2
; (7.19)

where the indices �1 refers to the index N. The sequence of quantities .�x=�/i is
defined as, �

�x

�

�
i

WD Œxni C kni � ni O�� � Œxni�1 C kni�1 � ni�1 O��
Œni O� mod 1�� Œni�1 O� mod 1�

; (7.20)

where the sequence .kn/ is as in (7.11). Equation (7.19) is a measure of the
smoothness of h in terms of the sum of the squares of the difference between
successive slopes of the map h. If h is smooth, the slope changes slowly and the
sum is expected to be small. We can change � to minimize the quantity �.�/=�.

7.3 Other Applications of Theorem 7.1.1

We will now describe a computationally efficient method of determining whether
invariant tori show quasiperiodic behavior, and we will numerically estimate the
analyticity of the conjugacy to a pure rotation. There is a large volume of literature
about determining invariant periodic or quasiperiodic sets, these being two of the
three types of typical recurrent behavior. An algorithm was introduced in [17],
which uses the Newton’s method to determine all periodic orbits up to a fixed
period along with their basins of attraction. Variants of the Newton’s method have
been employed to determine quasiperiodic trajectories in various other settings. For
example, Becerra et al. [18] used the monodromy variant of Newton’s method to
locate periodic or quasi-periodic relative satellite motion. In [17], a quantity called
local Lyapunov exponent distribution was defined and used to locate basins of small
period/quasiperiodic trajectories which lie in the vicinity of larger quasiperiodic
trajectories. This step is followed by an application of the Newton method. They
used this method to locate co-existing quasiperiodic and periodic trajectories in the
standard map. In [19], the authors defined an invariance equation involving partial
derivatives. The invariant tori are then computed using finite element methods of
PDE-s. See [19, Chap. 2] for more references on the numerical computation of
invariant tori.

The analysis is based on the use of Theorem 7.1.1 for performing fast integration
of smooth, periodic functions on the torus.

Application II, Computing the Integral of a Periodic C1 Function A C1
periodic map f W Rd ! E can be integrated with respect to the Lebesgue measure
quickly and accurately in the following manner. We first rescale coordinates so that



7 Quasiperiodicity: Rotation Numbers 113

its domain is a d-dimensional torus T
d D Œ0; 1�d mod 1. We next choose any

E� D .�1; � � � ; �d/ 2 .0; 1/d of Diophantine class ˇ � 0. For example, a good choice

for the case d D 1 is � D
p
5�1
2

, the golden ratio, for which ˇ D 0. Let T D TE� be
the rotation by the Diophantine vector � on T

d. Let w be the exponential weighting
function Eq. (7.2). Then by Theorem 7.1.1, for every  2 T

d, WBN. f /./ has super
convergence to

R
Td fd� and convergence is uniform in  .

7.3.1 Application III, Fourier Series of the Embedding

After computing the rotation number � by the method explained in Application 1,
we can construct the parameterization � D h./, where h W S1 ! R, for which
xnC1 D T.xn/ is conjugate to the pure rotation nC1 D n C �. The map h is not
known explicitly, but its values .xn WD h.nE� mod 1//nD0;1;2;::: are known. Let Nh W
R ! R be a lift of the map h. Consider the following function g W R ! R defined
as

g./ WD Nh./ � : (7.21)

The continuity and the degree of differentiability of h is the same as that of g, and the
latter can be non-rigorously estimated by observing the rate of decay of the Fourier
series coefficients of the function g. For every k 2 Z, the k-th Fourier coefficient of
g is described below.

ak.h/ WD
Z

S1
h./e�i2�kd:

For every  2 S1, h has the Fourier series representation

h./ D †
k2Zakei2�k :

To study the decay rate of the coefficients ak with jkj, we need to accurately calculate
each term ak. By Theorem 7.1.1 , ak.h/ can be approximated by a weighted Birkhoff
sum that has super convergence to ak.h/,

ak.h/ D lim
N!1WBN Œh./e

�i2�k � D lim
N!1

N�1X
nD0

w
� n

N

	
xne�i2�nk�:
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Instead of computing the complex-valued Fourier coefficients, we will compute
the Fourier sine and cosine series. Given a periodic map f W S1 ! R, the Fourier
sine and cosine representation of f is the following. For every t 2 S1,

f .t/ D a0
2

C †
nD1;2;:::an cos.2n�t/C †

nD0;1;2;:::bn sin.2n�t/; (7.22)

where the coefficients an and bn are given by the following formulas.

an D 2

Z
2S1

f ./ cos.2n�/d; (7.23)

bn D 2

Z
2S1

f ./ sin.2n�/d: (7.24)

See Fig. 7.4 for the decay of the Fourier sine and cosine coefficients with k.

Role of Length of Trajectory Using a higher number of iterates enables a more
accurate computation of the higher order Fourier terms (up to 400 terms), up to
the accuracy limit which is possible with the precision being used. Figure 7.3
shows that the sine and cosine series decay exponentially, as expected in an analytic
conjugation.

Fig. 7.3 Accuracy of Fourier series, orbit length and computer arithmetic. In all these figures, the
Fourier sine and cosine terms of the map h./�  were calculated up to 400 terms, with � D 0:8,
ı D 0:8, � D 0:2. In (a) and (b), 104 and 2
105 iterates respectively were used along with double
precision. The earlier Fig. 7.4 shows the highest accuracy, as it used 2
 105 iterates and quadruple
precision. From these results, it becomes apparent that increasing the number of iterates leads to
an accurate calculation of higher order Fourier terms. Use of double precision limits the accuracy
of the results to 10�16 while the accuracy limit for quadruple precision is around 10�32, as seen is
Fig. 7.4
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7.3.2 Smoothness of Conjugacies

In [20], Denjoy proved that if a C2, orientation-preserving circle diffeomorphism
has an irrational rotation number ˛, then it is topologically conjugate to the pure
rotation T˛ W z 7! z C ˛, via some continuous map h. We are interested in inferring
more about the smoothness class of h. The question of smoothness of conjugacy
to a pure rotation is an old problem. While we have described here a non-rigorous
method, the papers [3, 21–23] arrive at rigorous conclusions on the differentiability
of f by making various assumptions on the smoothness of the quasiperiodic map T
and the Diophantine class of its rotation number �. We will give a brief summary of
some of the classical results before describing our approach.

The Arnold family is a commonly studied in the context of existence of
quasiperiodic trajectories. In this seminal work [16], Arnold studied the following
2-parameter family of circle diffeomorphisms where � is a T-periodic real analytic
function with period one, meaning �.y C 1/ � �.y/:

A!;� W y 7! y C ! C ��.y/ mod 1 for y 2 Œ0; 1� and � in Œ0; 1/: (7.25)

One of the main theorems about this generic family of maps is that was that for !
belonging to a certain, full-measure set of irrational numbers, for all small values of
the parameter �, the map (7.25) will be analytically conjugate to the pure rotation
T� (7.4). By “small” �, we mean all � which are less in magnitude than a positive
constant �0 which depends on !. Subsequently, several other conjugacy results have
been established. They differ in their claims on the degree of smoothness of the
conjugacy (C0;C1;C2; : : :, or C1 or C!); as well as in their assumptions on f .

Consider the following four assumptions on the circle map F which will serve as
the hypothesis of some of the known results we are going to cite. The subscripted
variables, namely r and � denote parameters which are a part of their respective
assumptions.

(A1) r F is Cr.
(A2) � �.F/ is irrational and there is some � > 0 such that the continued fraction

expansion k1; k2; : : : of the rotation number satisfies : fknn�� W n 2 Ng is
bounded.

(A3) ˇ There is ˇ � 0 and a c > 0 such that for every n 2 Z � f0g, je2��n� � 1j >
cjnj�ˇ�1. Equivalently, � is Diophantine with Diophantine class ˇ.

(A4) lim
B!1lim sup

N!1

2
66664 †
1 � i � N

ai � B

ln.1C ai/= †
1	i	N

ln.1C ai/

3
77775 D 0. A4 is a full-

measure condition.

In [3], Herman proves that F is C1-conjugate to a pure rotation if it satisfies (A1)r

for some r > 2. By Katznelson and Ornstein [21], if F satisfies (A1)r for some r > 2
and (A3)0, then h is absolutely continuous. According to [22] if F satisfies more
generally (A1)r for some r > 2 and (A3)� , then h is Cr�1���� for every � > 0.
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In [24], the following smoothness result is derived for rotation numbers belong-
ing to a full measure subset of R. There exists � > 0 and C > 0 such that for
8ˇ > 0, if F satisfies (A1)5, (A3)ˇ and if k f � R˛kC5 � �� , then h is C3 and
satisfies

kD3hkL2 � C

�
k f � R˛kC5 :

In [23], it is shown that if F satisfies (A3)ˇ for some ˇ � 0 and (A1)r, for r � 3

and r > 2ˇ C 1. Then h is Cr�1�ˇ�� for every � > 0. As a corollary, it follows that
under the same hypothesis, if F is C1, then so is h.

In [25], the following conclusions are made about h:

• If F satisfies (A1)r for some r � 3 and ˛ satisfies (A4), then h is Cr�1�� , for
every � > 0.

• F is conjugate to a rotation if and only if the sequence .Fn/n2N is bounded in the
C1-topology.

In our case, we conclude that h is real analytic if kakk decreases exponentially
fast, i.e.,

log kakk � A C Bjkj (7.26)

for some A and B, to the extent checkable by compute precision (see Fig. 7.4).
In this section, F W S1 ! S1 is a circle diffeomorphism and ˛ WD �.F/ is its rotation
number.

Fig. 7.4 Exponential decay of Fourier coefficients for the cylinder-map (7.9). The figure shows the
magnitude of the Fourier coefficients of the periodic function g in (7.21). The first 400 Fourier sine
and cosine terms were calculated and the magnitude of the n-th sine and cosine terms was plotted
as a function of n, in a log( base 10)-linear scale. All calculations were carried out in quadruple
precision computer arithmetic. The graph shows that the Fourier coefficients decay according to the
law in (7.26), with c D �0:25. The tail of the graph appears flat because the higher order Fourier
coefficients could not be calculated to values with magnitude less than the limits of quadruple
precision
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Chapter 8
Heat Transfer in a Complex Medium

A.G. Ramm

Abstract The heat equation is considered in the complex medium consisting of
many small bodies (particles) embedded in a given material. On the surfaces of
the small bodies an impedance boundary condition is imposed. An equation for the
limiting field is derived when the characteristic size a of the small bodies tends
to zero, their total number N .a/ tends to infinity at a suitable rate, and the distance
d D d.a/ between neighboring small bodies tends to zero: a << d, lima!0

a
d.a/ D 0.

No periodicity is assumed about the distribution of the small bodies. These results
are basic for a method of creating a medium in which heat signals are transmitted
along a given line. The technical part for this method is based on an inverse problem
of finding potential with prescribed eigenvalues.

MSC 80M40; 80A20, 35B99; 35K20; 35Q41; 35R30;74A30; 74G75

PACS 65.80.-g

8.1 Introduction and Results

In this paper the problem of heat transfer in a complex medium consisting of many
small impedance particles of an arbitrary shape is solved. Equation for the effective
limiting temperature is derived when the characteristic size a of the particles tends
to zero while their number tends to infinity at a suitable rate while the distance d
between closest neighboring particles is much larger than a, d >> a.

These results are used for developing a method for creating materials in which
heat is transmitted along a line. Thus, the information can be transmitted by a heat
signals.
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The contents of this paper is based on the earlier papers of the author cited in the
bibliography, especially [13, 16, 17].

Let many small bodies (particles) Dm, 1 � m � M, of an arbitrary shape be
distributed in a bounded domain D � R

3, diamDm D 2a, and the boundary of Dm is
denoted by Sm and is assumed twice continuously differentiable. The small bodies
are distributed according to the law

N .�/ D 1

a2��

Z
�

N.x/dxŒ1C o.1/�; a ! 0: (8.1)

Here� � D is an arbitrary open subdomain of D, � 2 Œ0; 1/ is a constant, N.x/ � 0

is a continuous function, and N .�/ is the number of the small bodies Dm in�. The
heat equation can be stated as follows:

ut D r2u C f .x/ in R
3 n

M[
mD1

Dm; WD �; ujtD0 D 0; (8.2)

uN D �mu on Sm; 1 � m � M; Re�m � 0: (8.3)

Here N is the outer unit normal to S,

S WD
M[

mD1
Sm; �m D h.xm/

a�
; xm 2 Dm; 1 � m � M;

and h.x/ is a continuous function in D, Reh � 0.
Denote

U WD U.x; �/ D
Z 1

0

e��tu.x; t/dt:

Then, taking the Laplace transform of Eqs. (8.2)–(8.3) one gets:

�r2U C �U D ��1f .x/ in �; (8.4)

UN D �mU on Sm; 1 � m � M: (8.5)

Let

g.x; y/ WD g.x; y; �/ WD e�p
�jx�yj

4�jx � yj ; (8.6)

F.x; �/ WD 1

�

Z
R3

g.x; y/f .y/dy: (8.7)
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Look for the solution to (8.4)–(8.5) of the form

U.x; �/ D F.x; �/C
MX

mD1

Z
Sm

g.x; s/�m.s/ds; (8.8)

where

U.x; �/ WD U.x/ WD U ; (8.9)

and U.x/ depends on �.
The functions �m are unknown and should be found from the boundary con-

ditions (8.5). Equation (8.4) is satisfied by U of the form (8.8) with arbitrary
continuous�m. To satisfy the boundary condition (8.5) one has to solve the following
equation obtained from the boundary condition (8.5):

@Ue.x/

@N
C Am�m � �m

2
� �mUe � �mTm�m D 0 on Sm; 1 � m � M; (8.10)

where the effective field Ue.x/ is defined by the formula:

Ue.x/ WD Ue;m.x/ WD U.x/ �
Z
Sm

g.x; s/�m.s/ds; (8.11)

the operator Tm is defined by the formula:

Tm�m D
Z
Sm

g.s; s0/�m.s
0/ds0; (8.12)

and Am is:

Am�m D 2

Z
Sm

@g.s; s0/
@Ns

�m.s
0/ds0: (8.13)

In deriving Eq. (8.10) we have used the known formula for the outer limiting value
on Sm of the normal derivative of a simple layer potential.

We now apply the ideas and methods for solving many-body scattering problems
developed in [12–15].

Let us call Ue;m the effective (self-consistent) value of U , acting on the m-th body.
As a ! 0, the dependence on m disappears, since

Z
Sm

g.x; s/�m.s/ds ! 0 as a ! 0:
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One has

U.x; �/ D F.x; �/C
MX

mD1
g.x; xm/Qm C J2; xm 2 Dm; (8.14)

where

Qm WD
Z
Sm

�m.s/ds;

J2 WD
MX

mD1

Z
Sm

Œg.x; s0/ � g.x; xm/��m.s
0/ds0: (8.15)

Define

J1 WD
MX

mD1
g.x; xm/Qm: (8.16)

We prove in Lemma 3, Sect. 8.4 (see also [13, 16]) that

jJ2j << jJ1j as a ! 0 (8.17)

provided that

lim
a!0

a

d.a/
D 0; (8.18)

where d.a/ D d is the minimal distance between neighboring particles.
If (8.17) holds, then problem (8.4)–(8.5) is solved asymptotically by the formula

U.x; �/ D F.x; �/C
MX

mD1
g.x; xm/Qm; a ! 0; (8.19)

provided that asymptotic formulas for Qm, as a ! 0, are found.
To find formulas for Qm, let us integrate (8.10) over Sm, estimate the order of the

terms in the resulting equation as a ! 0, and keep the main terms, that is, neglect
the terms of higher order of smallness as a ! 0.

We get

Z
Sm

@Ue

@N
ds D

Z
Dm

r2Uedx D O.a3/: (8.20)



8 Heat Transfer in a Complex Medium 123

Here we assumed that jr2Uej D O.1/; a ! 0. This assumption is valid since U D
lima!0 Ue is smooth as a solution to an elliptic equation. One has

Z
Sm

Am�m � �m

2
ds D �QmŒ1C o.1/�; a ! 0: (8.21)

This relation is proved in Lemma 2, Sect. 8.4, see also [13]. Furthermore,

��m

Z
Sm

Ueds D ��mjSmjUe.xm/ D O.a2��/; a ! 0; (8.22)

where jSmj D O.a2/ is the surface area of Sm. Finally,

��m

Z
Sm

ds
Z
Sm

g.s; s0/�m.s
0/ds0 D ��m

Z
Sm

ds0�m.s
0/
Z
Sm

dsg.s; s0/

D QmO.a1��/; a ! 0: (8.23)

Thus, the main term of the asymptotic of Qm, as a ! 0, is

Qm D ��mjSmjUe.xm/: (8.24)

Formulas (8.24) and (8.19) yield

U.x; �/ D F.x; �/�
MX

mD1
g.x; xm/�mjSmjUe.xm; �/; (8.25)

and

Ue.xm; �/ D F.xm; �/�
MX

m0¤m;m0D1
g.xm; xm0/�m0 jSm0 jUe.xm0 ; �/: (8.26)

Denote

Ue.xm; �/ WD Um; F.xm; �/ WD Fm; g.xm; xm0/ WD gmm0 ;

and write (8.26) as a linear algebraic system for Um:

Um D Fm � a2��
X

m0¤m

gmm0hm0cm0Um0 ; 1 � m � M; (8.27)

where hm0 D h.xm0/, �m0 D hm0

a� , cm0 WD jSm0 ja�2.
Consider a partition of the bounded domain D, in which the small bodies are

distributed, into a union of P << M small nonintersecting cubes �p, 1 � p � P,
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of side b,

b >> d; b D b.a/ ! 0 as a ! 0 lim
a!0

d.a/

b.a/
D 0:

Let xp 2 �p, j�pj D volume of �p. One has

a2��
MX

m0D1;m0¤m

gmm0hm0cm0Um0 D a2��
PX

p0D1;p0¤p

gpp0hp0cp0Up0

X
xm0

2�p0

1 D

D
X
p0¤p

gpp0hp0cp0Up0N.xp0/j�p0 jŒ1C o.1/�; a ! 0: (8.28)

Thus, (8.27) yields a linear algebraic system (LAS) of order P << M for the
unknowns Up:

Up D Fp �
PX

p0¤p;p0D1
gpp0hp0cp0Np0Up0 j�p0j; 1 � p � P: (8.29)

Since P << M, the order of the original LAS (8.27) is drastically reduced. This is
crucial when the number of particles tends to infinity and their size a tends to zero.
We have assumed that

hm0 D hp0 Œ1C o.1/�; cm0 D cp0 Œ1C o.1/�; Um0 D Up0 Œ1C o.1/�; a ! 0;

(8.30)

for xm0 2 �p0 . This assumption is justified, for example, if the functions h.x/,
U.x; �/,

c.x/ D lim
xm0

2�x;a!0

jSm0j
a2

;

and N.x/ are continuous, but these assumptions can be relaxed.
The continuity of the U.x; �/ is a consequence of the fact that this function

satisfies elliptic equation, and the continuity of c.x/ is assumed. If all the small
bodies are identical, then c.x/ D c D const, so in this case the function c.x/ is
certainly continuous.

The sum in the right-hand side of (8.29) is the Riemannian sum for the integral

lima!0

PX
p0D1;p0¤p

gpp0hp0cp0N.xp0/Up0 j�0
pj D

Z
D

g.x; y/h.y/c.y/N.y/U.y; �/dy



8 Heat Transfer in a Complex Medium 125

Therefore, linear algebraic system (8.29) is a collocation method for solving
integral equation

U.x; �/ D F.x; �/�
Z

D
g.x; y/c.y/h.y/N.y/U.y; �/dy: (8.31)

Convergence of this method for solving equations with weakly singular kernels is
proved in [10], see also [11, 20].

Applying the operator �r2 C � to Eq. (8.31) one gets an elliptic differential
equation:

.��C �/U.x; �/ D f .x/

�
� c.x/h.x/N.x/U.x; �/: (8.32)

Taking the inverse Laplace transform of this equation yields

ut D �u C f .x/ � q.x/u; q.x/ WD c.x/h.x/N.x/: (8.33)

Therefore, the limiting equation for the temperature contains the term q.x/u. Thus,
the embedding of many small particles creates a distribution of source and sink
terms in the medium, the distribution of which is described by the term q.x/u.

If one solves Eq. (8.31) for U.x; �/, or linear algebraic system (8.29) for Up.�/,
then one can Laplace-invert U.x; �/ for U.x; t/. Numerical methods for Laplace
inversion from the real axis are discussed in [4, 19].

If one is interested only in the average temperature, one can use the relation

lim
T!1

1

T

Z T

0

u.x; t/dt D lim
�!0

�U.x; �/: (8.34)

Relation (8.34) is proved in Lemma 1, Sect. 8.4. It holds if the limit on one of its
sides exists. The limit on the right-hand side of (8.34) let us denote by  .x/. From
Eqs. (8.7) and (8.31) it follows that  satisfies the equation

 D ' � B';

where

' WD
Z
�

g0.x; y/f .y/dy;

g0.x; y/ WD 1

4�jx � yj ;

B WD
Z
�

g0.x; y/q.y/ .y/dy;
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and

q.x/ WD c.x/h.x/N.x/:

The function  can be calculated by the formula

 .x/ D .I C B/�1': (8.35)

From the physical point of view the function h.x/ is non-negative because the flux
�ru of the heat flow is proportional to the temperature u and is directed along the
outer normal N: �uN D h1u, where h1 D �h < 0. Thus, q � 0.

It is proved in [5, 6] that zero is not an eigenvalue of the operator �r2 C q.x/
provided that q.x/ � 0 and

q D O
� 1

jxj2C�
�
; jxj ! 1;

and � > 0.
In our case, q.x/ D 0 outside of the bounded region D, so the operator .I C B/�1

exists and is bounded in C.D/.
Let us formulate our basic result.

Theorem 1 Assume (8.1), (8.18), and h � 0. Then, there exists the limit U.x; �/ of
Ue.x; �/ as a ! 0, U.x; �/ solves Eq. (8.31), and there exists the limit (8.34), where
 .x/ is given by formula (8.35).

Methods of our proof of Theorem 1 are quite different from the proof of
homogenization theory results in [1, 3].

The author’s plenary talk at Chaos-2015 Conference was published in [18].

8.2 Creating Materials Which Allows One to Transmit Heat
Signals Along a Line

In applications it is of interest to have materials in which heat propagates along a
line and decays fast in all the directions orthogonal to this line.

In this section a construction of such material is given. We follow [17] with some
simplifications.

The idea is to create first the medium in which the heat transfer is governed by
the equation

ut D �u � q.x/u in D; ujS D 0; ujtD0 D f .x/; (8.36)

where D is a bounded domain with a piece-wise smooth boundary S, D D D0Œ0;L�,
D0 � R

2 is a smooth domain orthogonal to the axis x1, x D .x1; x2; x3/, x2; x3 2 D0,
0 � x1 � L.
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Such a medium is created by embedding many small impedance particles into a
given domain D filled with a homogeneous material. A detailed argument, given in
Sect. 8.1 (see also [13, 16]), yields the following result.

Assume that in every open subset� of D the number of small particles is defined
by the formula:

N .�/ D 1

a2��

Z
�

N.x/dxŒ1C o.1/�; a ! 0; (8.37)

where a > 0 is the characteristic size of a small particle, � 2 Œ0; 1/ is a given number
and N.x/ � 0 is a continuous in D function.

Assume also that on the surface Sm of the m-th particle Dm the impedance
boundary condition holds. Here

1 � m � M D N .D/ D O

�
1

a2��

�
; a ! 0;

and the impedance boundary conditions are:

uN D �mu on Sm; Re�m � 0; (8.38)

where

�m WD h.xm/

a�

is the boundary impedance, xm 2 Dm is an arbitrary point (since Dm is small the
position of xm in Dm is not important), � is the same parameter as in (8.37) and h.x/
is a continuous in D function, Reh � 0, N is the unit normal to Sm pointing out of
Dm. The functions h.x/, N.x/ and the number � can be chosen as the experimenter
wishes.

It is proved in Sect. 8.1 (see also [13, 16]) that, as a ! 0, the solution of the
problem

ut D �u inD n
M[

mD1
Dm; uN D �mu on Sm; 1 � m � M; (8.39)

ujS D 0; (8.40)

and

ujtD0 D f .x/; (8.41)

has a limit u.x; t/. This limit solves problem (8.36) with

q.x/ D cSN.x/h.x/; (8.42)
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where

cS WD jSmj
a2

D const; (8.43)

and jSmj is the surface area of Sm. By assuming that cS is a constant, we assume, for
simplicity only, that the small particles are identical in shape, see [13].

Since N.x/ � 0 is an arbitrary continuous function and h.x/, Reh � 0, is an
arbitrary continuous function, and both functions can be chosen by experimenter as
he/she wishes, it is clear that an arbitrary real-valued potential q can be obtained by
formula (8.42).

Suppose that

.��C q.x//�.x/ D �n�n; �njS D 0; jj�njjL2.D/ D jj�njj D 1; (8.44)

where f�ng is an orthonormal basis of L2.D/ WD H. Then the unique solution
to (8.36) is

u.x; t/ D
1X

nD1
e��nt.f ; �n/�n.x/: (8.45)

If q.x/ is such that �1 D 0, �2 � 1, and �2 � �3 � : : : , then, as t ! 1, the
series (8.45) is well approximated by its first term

u.x; t/ D .f ; �1/�1 C O.e�10t/; t ! 1: (8.46)

If �1 > 0 is very small, then the main term of the solution is

u.x; t/ D .f ; �1/�1e
��1t C O.e�10t/

as t ! 1. The term e��1t 
 1 if t << 1
�1

.
Thus, our problem is solved if q.x/ has the following property:

j�1.x/jdecays as ¡ grows; � D .x22 C x23/
1=2: (8.47)

Since the eigenfunction is normalized, jj�1jj D 1, this function will not tend to zero
in a neighborhood of the line � D 0, so information can be transformed by the
heat signals along the line � D 0, that is, along s�axis. Here we use the cylindrical
coordinates:

x D .x1; x2; x3/ D .s; �; /; s D x1; � D .x22 C x23/
1=2:

In Sect. 8.3 the domain D0 is a disc and the potential q.x/ does not depend on  .
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The technical part of solving our problem consists of the construction of q.x/ D
cSN.x/h.x/ such that

�1 D 0; �2 � 1I j�1.x/j decays as ¡ grows: (8.48)

Since the function N.x/ � 0 and h.x/;Reh � 0; are at our disposal, any desirable
q;Re q � 0, can be obtained by embedding many small impedance particles in a
given domain D. In Sect. 8.3, a potential q with the desired properties is constructed.
This construction allows one to transform information along a straight line using
heat signals.

8.3 Construction of q.x/

Let

q.x/ D p.�/C Q.s/;

where s WD x1, � WD .x22 C x23/
1=2. Then the solution to problem (8.44) is u D

v.�/w.s/, where

� v00
m � ��1v0

m C p.�/vm D �mvm; 0 � � � R;

jvm.0/j < 1; vm.R/ D 0; (8.49)

and

� w00
l C Q.s/wl D �lwl; 0 � s � L;

wl.0/ D 0; wl.L/ D 0: (8.50)

One has

�n D �m C �l; n D n.m; l/: (8.51)

Our task is to find a potential Q.s/ such that �1 D 0, �2 � 1 and a potential p.�/
such that �1 D 0; �2 � 1 and jvm.�/j decays as � grows.

It is known how to construct q.s/ with the desired properties: the Gel’fand-
Levitan method allows one to do this, see [7]. Let us recall this construction. One
has �l0 D l2, where we set L D � and denote by �l0 the eigenvalues of the
problem (8.50) with Q.s/ D 0. Let the eigenvalues of the operator (8.50) with Q ¤ 0

be �1 D 0; �2 D 11; �3 D 14; �l D �l0 for l � 4.
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The kernel L.x; y/ in the Gel’fand-Levitan theory is defined as follows:

L.x; y/ D
Z 1

�1
sin.

p
�x/p
�

sin.
p
�y/p
�

d.%.�/ � %0.�//;

where %.�/ is the spectral function of the operator (8.50) with the potential Q D
Q.s/, and %0.�/ is the spectral function of the operator (8.50) with the potential
Q D 0 and the same boundary conditions as for the operator with Q ¤ 0.

Due to our choice of �l and the normalizing constants ˛j, namely: ˛j D �
2

for

j � 2 and ˛1 D �3

3
, the kernel L.x; y/ is given explicitly by the formula:

L.x; y/ D 3xy

�3
C 2

�

� sin.
p
�2x/p
�2

sin.
p
�2y/p
�2

C sin.
p
�3x/p
�3

sin.
p
�3y/p
�3

	
�

� 2

�

�
sin x sin y C sin.2x/ sin.2y/C sin.3x/ sin.3y/

	
; (8.52)

where �1 D 0, �2 D 11 and �3 D 14. This is a finite rank kernel. The term xy is
the value of the function sin �x

�

sin �y
�

at � D 0, and the corresponding normalizing

constant is �3

3
D jjxjj2 D R �

0
x2dx.

Solve the Gel’fand-Levitan equation:

K.s; �/C
Z s

0

K.s; s0/L.s0; �/ds0 D �L.s; �/; 0 � � � s; (8.53)

which is uniquely solvable (see [7]). Since Eq. (8.53) has finite-rank kernel it can be
solved analytically being equivalent to a linear algebraic system.

If the function K.s; �/ is found, then the potential Q.s/ is computed by the
formula [2, 7]:

Q.s/ D 2
dK.s; s/

ds
; (8.54)

and this Q.s/ has the required properties: �1 D 0; �2 � 1; �l � �lC1.
Consider now the operator (8.49) for v.�/. Our problem is to calculate p.�/

which has the required properties:

�1 D 0; �2 � 1; �m � �mC1;

and j�m.�/j decays as � grows.
We reduce this problem to the previous one that was solved above. To do this, set

v D  p
�
. Then equation

�v00 � 1

�
v0 C p.�/v D �v;
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is transformed to the equation

� 00 � 1

4�2
 C p.�/ D � : (8.55)

Let

p.�/ D 1

4�2
C Q.�/; (8.56)

where Q.�/ is constructed above. Then Eq. (8.55) becomes

� 00 C Q.�/ D � ; (8.57)

and the boundary conditions are:

 .R/ D 0;  .0/ D 0: (8.58)

The problem (8.57)–(8.58) has the desired eigenvalues �1 D 0; �2 � 1; �m �
�mC1.

The eigenfunction

�1.x/ D v1.�/w1.s/;

where v1.�/ D  1.�/p
�

, decays as � grows, and the eigenvalues �n can be calculated
by the formula:

�n D �m C �l; m; l � 1; n D n.m; l/:

Since �1 D �1 D 0 one has �1 D 0. Since �2 D 11 and �2 D 11, one has
�2 D 11 � 1.

Thus, the desired potential is constructed:

q.x/ D Q.s/C .
1

4�2
C Q.�//;

where Q.s/ is given by formula (8.54).
This concludes the description of our procedure for the construction of q.

Remark 1 It is known (see, for example, [2]) that the normalizing constants

˛j WD
Z �

0

'2j .s/ds
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and the eigenvalues �j, defined by the differential equation

�d2'j

ds2
C Q.s/'j D �j'j;

the boundary conditions

' 0
j .0/ D 0; ' 0

j .�/ D 0;

and the normalizing condition 'j.0/ D 1, have the following asymptotic:

˛j D �

2
C O.

1

j2
/ as j ! 1;

and

q
�j D j C O.

1

j
/ as j ! 1:

The differential equation

�‰00

j C Q.s/‰j D �j‰j;

the boundary condition

‰j.0/ D 0; ‰j.�/ D 0;

and the normalizing condition‰0
j.0/ D 1 imply

q
�j D j C O.

1

j
/ as j ! 1;

‰j.s/ 
 sin. js/

j
as j ! 1:

The main term of the normalized eigenfunction is:

‰j

jj‰jjj 

p
2=� sin. js/ as j ! 1;

and the main term of the normalizing constant is:

˛j 
 �

2j2
as j ! 1:
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8.4 Auxiliary Results

Lemma 1 If one of the limits limt!1 1
t

R t
0 u.s/ds or lim�!0 �U.�/ exists, then the

other also exists and they are equal to each other:

lim
t!1

1

t

Z t

0

u.s/ds D lim
�!0

�U.�/;

where

U.�/ WD
Z 1

0

e��tu.t/dt WD Nu.�/:

Proof Denote

1

t

Z t

0

u.t/dt WD v.t/; Nu.�/ WD
Z 1

0

e�� tu.t/dt:

Then

Nv.�/ D
Z 1

�

Nu.�/
�

d�

by the properties of the Laplace transform.
Assume that the limit v.1/ WD v1 exists:

lim
t!1 v.t/ D v1: (8.59)

Then,

v1 D lim
�!0

�

Z 1

0

e��tv.t/dt D lim
�!0

� Nv.�/:

Indeed �
Z 1

0

e��tdt D 1, so

lim
�!0

�

Z 1

0

e��t.v.t/ � v1/dt D 0;

and (8.59) is verified.
One has

lim
�!0

� Nv.�/ D lim
�!0

Z 1

�

�

�
Nu.�/d� D lim

�!0
�Nu.�/; (8.60)
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as follows from a simple calculation:

lim
�!0

Z 1

�

�

�
Nu.�/d� D lim

�!0

Z 1

�

�

�2
� Nu.�/d� D lim

�!0
� Nu.�/; (8.61)

where we have used the relation
Z 1

�

�

�2
d� D 1.

Alternatively, let ��1 D � . Then,
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If � ! 0, then ! D ��1 ! 1; and if

 WD ��1 Nu.��1/;

then

lim
!!1

1

!

Z !

0

 d� D  .1/ D lim
�!0

��1 Nu.��1/ D lim
�!1 � Nu.�/: (8.63)

Lemma 1 is proved. ut
Lemma 2 Equation (8.21) holds.

Proof As a ! 0, one has

@

@Ns

e�p
�js�s0j

4�js � s0j D @

@Ns

1

4�js � s0j C @

@Ns

e�p
�js�s0j � 1

4�js � s0j : (8.64)

It is known (see [8]) that
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Sm
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Z
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0/ds0 D �1
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Z
Sm

�m.s
0/ds0 D �1

2
Qm: (8.65)

On the other hand, as a ! 0, one has

ˇ̌̌
ˇ
Z
Sm

ds
Z
Sm

e�p
�js�s0j � 1

4�js � s0j �m.s
0/ds0

ˇ̌̌
ˇ � jQmj

Z
Sm

ds
1 � e�p

�js�s0j

4�js � s0j D o.Qm/:

(8.66)
The relations (8.65) and (8.66) justify (8.21).

Lemma 2 is proved. ut
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Lemma 3 If assumption (8.18) holds, then inequality (8.17) holds.

Proof One has

J1;m WD jg.x; xm/Qj D jQmje�p
�jx�xmj

4�jx � xmj ; (8.67)

and

J2;m � e�p
�jx�xmj

4�jx � xmj max

�p
�a;

a

jx � xmj
�Z

Sm

j�m.s
0/jds0 (8.68)

where jx � xmj � d, and d > 0 is the smallest distance between two neighboring
particles. One may consider only those values of � for which �1=4a < a

d , because for

the large values of �, such that �1=4 � 1
d the value of e�p

�jx�xmj is negligibly small.
The average temperature depends on the behavior of U for small �, see Lemma 1.

One has jQmj D R
Sm

j�m.s0/jds0 > 0 because �m keeps sign on Sm, as follows
from Eq. (8.24) as a ! 0.

It follows from (8.67)–(8.68) thatˇ̌̌
ˇJ2;mJ1;m

ˇ̌̌
ˇ � O

�ˇ̌̌
ˇ a

x � xm

ˇ̌̌
ˇ
�

� O

�
a

d

�
<< 1: (8.69)

From (8.69) by the arguments similar to the given in [9] one obtains (8.17).
Lemma 3 is proved. ut
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Chapter 9
Plasma Hysteresis and Instability: A Memory
Perspective

V.J. Law, W.G. Graham, and D.P. Dowling

Abstract This paper presents a historical review of the significance of Duddell
‘Singing-arc’ in the context of its application of deleterious effects in the control of
both hysteresis and spatial-temporal stability as the two-electrode valve evolved into
the three-electrode triode vacuum tube. The use of oscillograph Lissajous figure in
I-V plane, Q-V plane and harmonic plane in investigating of these deleterious effects
within modern low-pressure parallel-plate systems and atmospheric pressure plasma
system are illustrated and compared the hysteresis and stability within the ‘Singing
arc’. The development from the original oscillograph measurement today’s analog,
digital, and software methods of measurement is considered. The question, whether
the ‘Signing-arc’ and other plasma systems fall in the category of a memory element
is discussed.

9.1 Historical Introduction

The understanding of the electric, optical and acoustic performance of modern
plasma systems has its origins well before Sir Humphry Davy’s direct current
carbon-arc light that replaced the gas street lighting systems in major European
cities. Arguably, the investigative work on complex harmonic motion by Nathaniel
Bowditch (1773–1838) and later by Jules-Antoine Lissajous (1822–1880) provided
the mathematical and the graphical tools [1] for the measurement of periodic
waveforms and harmonics. This viewpoint is supported by considering in the
development of electrical, optical and acoustic measurements of the early carbon
electric arc that had the annoying drawback of generating an audible hissing
sounding and changing luminosity. Over a century later, this hissing sound is
thought to be one of the first chaotic processes to be reported [2].
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The aim of this paper is to reviews the early work on the ‘Singing-arc’ and
is development into the triode vacuum tube. The use of Lissajous figures to
understand instabilities, hysteresis, power dissipation within modern atmospheric
plasma sources is then discussed, leading to the generation of Lissajous figures from
the original ‘Singing-arc’ data.

9.2 Historical Perspective

In 1899 the English scientist William Edward Ayrton asked Hertha Ayrton and
William Du Bois Duddell to solve these problems. Their experimental investigations
used an inductor and capacitor circuit shunted across the arc and a resistor in series
with the arc, they also used a newly invented cinematic film recording oscillograph
and thermo-galvanometer for recording time-vary electrical waveforms and optical
intensities [3]. Duddell found that by applying a shunt circuit to the arc, the audible
sound is transformed from a hissing sound to a hum with musical tones ranging
between 500 and 15,000 Hz [4]. Additionally their oscillograph records revealed
that the time dependent current, voltage and optical intensities changed from a
deterministic signature for the hissing mode to a near-smooth sinusoidal waveform
for the hum mode where a by-product of the hum mode is that it extended working
life of the carbon electrodes. Within this work [4], Duddell also acknowledges
Alexander Pelham Trotter’s study that showed the rotational velocity of the ace
is synchronised to the acoustic emission frequency when the arc is in the humming
mode [5]. Moreover, telephony experiments by Hermann Theodor Simon revealed
that a microphone and a receiver can be coupled to the resonant circuit using a
second inductor coil [6]. Earlier, Duddell used this experimental approach to play
‘God Save the Queen’ at a meeting of the London Institution of Electrical Engineers
in 1899 [7]. In 1902 Paul Jennet (1863–1937) published a mathematical treatment
of the electrical circuit and arrived at a conclusion that agreed with those of Duddell
[8]. André Blondel (1863–1938) made improvement of the Lord Kelvin resonant
frequency formula by introducing an internal resistive loss within the inductor to
account for the observed damped oscillations [9].

Figure 9.1 shows the basic topology of Duddell’s ‘Singing-arc’ circuit with
Simon’s transformer telephony circuit, where L2 is the secondary coil, m is the
mutual inductance and M and R are the microphone, or antenna, resistivity. The
arc may be in an open air or in a glass globe. The carbon rods are approximately
10 mm in diameter with their opposing end gas-gap separation is of the order of 0.2
to 1 mm. Also shown are the components values based on [10] for a fixed resonant
frequency, fo D 15 kHz, where the undamped resonant frequency formula is used

f0 D 1

2�
p

LC
(9.1)
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Fig. 9.1 Circuit topology of Duddell’s ‘Singing-arc’ (left) and Simon’s telephony coupling circuit
(right)

where L1, the inductance, and C the, capacitance and have the values given in
Fig. 9.1.

An important omission from the circuit is the transformation of the dc input into
two components, one flowing through shunt circuit and the other flowing through
the arc [6]. Hence, the arc’s I-V characteristic changes from a static characteristic
(no shunt circuit applied) to a dynamic characteristic (shunt circuit applied).

Using a Lissajous representation of the current and voltage (I-V) waveforms
Simon was also able to demonstrate that the rising voltage curve is different from
the falling voltage curve so inducing ‘Lichtbogenhysteresis’ (arc hysteresis) [6].
The hysteresis effect is thought to be due to the arc’s gas-gap being sufficiently
ionized to allow two parallel currents: one flowing through arc and the other flowing
through the shunt circuit. In the case of the shunt circuit, the capacitor determines the
characteristic charging and discharging time which is much slower than the arc since
the electrons in ionized gas (plasma) follow the instantaneous electric field within
the arc almost instantaneously: so the current waveforms becomes harmonically
distorted. By 1912, the development of the electric oscilloscope allowed J.E. Hoyt
to publish an oscilloscope study of the dynamic acoustic and electrical dynamic
characteristics of the ‘Singing-arc’ [11]. In this work Hoyt reveals that the dynamic
characteristic of the ‘Singing-arc’ has a distorted limit cycle with no double pinched
hysteresis loop in the I-V plane both for the current flowing through the arc and
through the shunt circuit. Thus indicating that the cinematic film recording of
the oscillograph did not compromise the earlier work of Duddell [4] and Simon
[6]. Although, Duddell, Simon, and Hoyt did not report a loop pinching in the
I-V hysteresis loop [2], Ginoux and Rossetto have conjectured that the ‘Singing-
arc’ may be one of the oldest memristor [12]; in Sect. 9.5 this conjecture is
discussed. Modern (1994–2016) experiments and theoretic analysis have shown that
power coupling into plasma is the driving force of the observed hysteresis [13–17].
Nevertheless, the Lissajous figure has become one of the main diagnostic standards
for measuring the electric performance of plasma systems. By 1903 Valdemar
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Poulsen (1869–1942) had isolated the arc’s two electrodes in a glass envelope so
that experiments using different; gases, electrode material and magnetic fields could
be studied. Using a copper anode within the glass envelope containing hydrogen
gas plus the addition of a transverse magnetic field, he found the arc produced an
undamped or continuous wave (CW) frequency up to 200 kHz with considerably
more power (1 MW) developed in the antenna circuit with respect to the arc burning
in air. This configuration became known as the ‘arc-convertor’ and patented as a
CW radio transmitter [18] and was used commercially in high-power long-distance
radiotelegraphy until superseded by the triode vacuum tube in the 1920s.

The triode vacuum tube became a practical device only after a number of
development stages; for example from the Ambrose Fleming’s thermionic valve
(subsequently owned by Guglielmo Marconi) through the Poulsen’s arc-converter,
and then to the Lee De Forest’s partially evacuated (now termed soft valve) Audion.
The (U.S. Patent 841387) version of Audion had a third electrode placed within
the glass envelope between the emitter and plate used to amplitude-modulate the
detected electrical signal: thus making a new receiver for wireless telegraphy. Due
to residual gas within the soft vacuum, of the Audion, the valve however still had
many unpredictable amplitude modulation problems. Harold D Arnold (AT&T’s
Western Electric research branch) saw how these problems could be overcome,
however valve could still be useful as an amplifier in long distance telephony. By
1914 the Audion valve was evacuated to a high vacuum standard of approximately
7.6  10�7 Torr allowing the modulation stage to work properly and was renamed
the ‘Kenotron’ from the Greek word keno (empty, as in a vacuum) and tron (device,
or instrument). Lee De Forest believed the residual gas was essential to its operation
and maybe perhaps that is why he contracted the Latin verb ‘aud’ (derived from the
verb to mean hear) and the Greek noun ‘ion’ to create the word Audion to describe
his valve.

Irving Langmuir was first the person to propose that the mutual repulsion of
electrons (space-charge effect) is the basic mechanism that controls electronic
conduction in a high (hard) vacuum [19]. Moreover, his experimental analysis
revealed that molecular gas impurities (N2, O2, H2O and CO) when ionised or
dissociated caused a reduction in the current flow, thus giving us the understanding
of the root cause of the erratic behaviour of the Audion valve.

Through happenstance at the outbreak of World War 1 (WW1) the Audion and
Kenotron valve fell in to the hands of the Marconi Company in London by Paul
Pichon [20] and from there in 1916 a production line model was produced in France
as the TM triode and in England as the R valve.

In the 1920s B. Van de Pol, J. Van de Mark and V.E. Appleton published a series
of paper on experimental studies on the relaxation oscillations and hysteresis within
the triode vacuum tube. This led to a mathematical model for the production of
harmonics and sub harmonics at the extreme limit of the vacuum tube’s external
circuit [21–23]. Reference [24] provides a good historical review of the relaxation
oscillation model, too.

A recent re-evaluation of the work of Joules Henri Poincaré [25] has revealed that
he too played a significant role in the mathematical understanding of the arc’s stable
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regime using limit cycles and their deviation that regime. Even though Poincaré did
not study the triode vacuum tube, the review claims that the two-electrode ‘Singing-
arc’ is analogous to the three-electrode triode vacuum tube. Given the extended
triode development time-line it would seem unlikely that, at Poincaré’s wireless
telegraphy conference in 1908 or at the time close to his death in 1912, he was
able to deduce or describe the behaviour of early triode vacuum tubes that operated
under soft or hard vacuum conditions. Nevertheless, Poincaré’s closed limit cycles
do predate the work of Van de Pol, and J. Van de Mark [22] along with Andronov
self-oscillations [26].

Beyond this period, the electric arc continues to be used as an intense light
source for searchlights and lighthouses, as a source of UV radiation in gas discharge
lamps [2] and plasma welding of metal components [27]. In bringing the electric
arc in to the twentieth and twenty-first century, a redesign of the discharge electrode
configuration so that the ionized gas is directed onto a target surface has brought new
technological plasma processing importance. From Duddell’s, and Pioncaré’s, point
of view the atmospheric pressure cathode-cavity torch design may be a recognisable
design [28, 29]. However low gas kinetic temperature plasma jets [30–34] and the
parallel-plate dielectric barrier discharge (DBD) may not be so recognisable [13–15,
35–38]. Nevertheless, in each case closed limit cycles and their deviation from the
cycle are employed to visualise the electrical, optical and acoustic and parameters.

9.3 Lissajous Figure as a Plasma Diagnostic

We have mentioned that the Lissajous figure has provided a means of understanding
the electrical performance of electric discharge. It continues to have a role as
modern plasma diagnostic for both atmospheric- and low-pressure plasma systems.
The following paragraphs provide a few examples of how Lissajous figures in
three different planes (current–voltage (I-V), charge–voltage (Q-V) plane and the
harmonic plane) that are currently used in the characterisation of atmospheric
pressure jets, DBD and low-pressure parallel-plate plasma system operating in the
MHz range.

9.3.1 I-V Plane

In this section, the I-V-plane of two pilot scale atmospheric pressure plasma
systems are presented Sect. 9.3.1.1 deals with a helium-based plasma jet (specially
the PlasmaStream [17, 32]) and Sect. 9.3.1.2 looks at the I-V of helium-based
atmospheric pressure parallel-plate reel-to-reel plasma system [16]. These two
plasma systems were developed for low temperature plasma treatment of polymers
and biological materials.
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9.3.1.1 Plasma Jet

The atmospheric pressure plasma jet discussed here uses a high voltage flyback
transformer producing a non-sinusoidal voltage waveform in the 11–20 kHz range
[17, 30]. The jet uses helium gas (99.999 % purity) which when ionised nitrogen,
oxygen species are generated. A typical triplet of Lissajous figures is shown in
Fig. 9.2a–c in the I-V plane as a function of helium gas flow rate (a D 1, b D 4
and c D 10) standard litre per minute (slm) and drive frequency 18, 14 and 11 kHz,
respectively. Shown to the right of each plot is its time average digital image.

Fig. 9.2 An I-V plane plot of discharge current and voltage as a function of the gas flow rate. To
the right of each I-V plane is the associated discharge time average digital image [17]
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In Fig. 9.2a it can be seen that the 1 slm the I-V plane exhibits a chaotic attractor.
For example in the bottom right quadrant the attractor exhibits three positive current
spikes overlaying each other at the maximum negative voltage point. This is due
to the collapse of the magnetic field associated with the flyback transformer and
the resultant release of the stored energy. In the top left quadrant of Fig. 9.2a the
attractor has three sets of two negative voltage spikes of different amplitudes and
time delays. The six current spikes are approximately 1 �s long and falling within
a 15 �s envelope. These current spikes are due to the discharge having irregular
temporal and spatial electrical properties.

With increasing helium flow (Fig. 9.2b, c) the I-V plane attractor becomes
quasi-periodic, or a closed limit cycle, with two spikes of negative current of
approximately 15 �s per period. The time delay of these current spikes is similar to
that at the low helium flow rate. A feature to note in Fig. 9.2b and c is the single
negative going voltage loop in the lower right quadrant. The correct interpretation
of this single loop is a zero-crossing point of the flyback transformer rather than
the behaviour of a memristor that requires a double pinch hysteresis loop in the I-V
plane [2, 12].

9.3.1.2 Parallel-Plate DBD Reel-to-Reel Plasma

One of the simplest nonthermal atmospheric plasma is the DBD. A large system
based on the Dow Corning SE-1100 LabLine™ reel-to-reel system is discussed
[16]. This plasma system uses flowing helium gas to produce an atmospheric
pressure glow discharge (APGD) where there are two plasma current pulses of
opposite polarity per cycle. The APGD is powered by a bipolar variable frequency
(16–25 kHz) matching power supply with, powers of up to 1000 W per chamber,
where each chambers measures 320 mm  320 mm with a 5 mm gas-gap. Within
the gas-gap, a web handling system allows rolls of polymer material to be passed
through the plasma, while 99.999 % pure helium is flowing through the gas-gap.
The current and voltage measurements captured using 1000-to-1 voltage probe and
a current monitor, and acquired using a 100 MS/s National Instrument data logger
and processed using LabVIEW 2010 software.

Figure 9.3 is an I-V plane snapshot of the system operating in pure helium at
18.92 kHz over 20 periods (1 ms). It is shown that each period produces a unique
limit cycle, where the bipolar power supply produces a symmetric characteristic at
each polarity with the breakdown occurring at close to (˙3000 V). Within each
period, specific phase regions have different period-to-period stability profiles. The
regions that show the most marked phase instability are the region of glow discharge.
The onset of each glow region starts at the breakdown voltage (˙3000 V) from
where the glow current rapidly increases. The two highlighted blue lines depict
the first in the sequence of glow periods and the two arrows mark the region of
collapse of the glow. Note how each consecutive glow advances in phase space by
approximately C0.3 �s per period to produces a total phase shift of some C6 �s,
while the glow collapse is compressed to approximately C3 �s.
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Fig. 9.3 A 1-ms snapshot of the I-V plane of a helium glow discharge within the LabLine plasma
system. The highlighted bold blue lines represent the initial two (˙) glow ignition cycles

To illustrate a key electrical behaviour of the uniform APGD. The two dielectric
layers each chamber behaves as capacitances where the charges of the opposite
polarities accumulate on the dielectrics during the previous discharge pulse. Thus,
during the glow mode, the glow voltage (Vg) is equal to the applied voltage (Va)
minus a memory voltage (Vm), see Eq. (9.2).

Vg.t/ D Va.t/ � Vm.t/ (9.2)

If drive frequency (18.9 kHz) and voltage memory (˙1000 V) is sufficiently high
(as in Fig. 9.3) then as the I-V behaviours the proceeding glow discharge pulse
influences the next one.

9.3.1.3 Q-V Plane

In his publication in 1943 Manley [13] demonstrated that Lissajous figures provide
a measurement of the electrical power coupled into plasma, if the integrated charge–
voltage (Q-V) plane for one voltage cycle is used. He showed that area within
this V-Q plot equates to the dissipated power for that cycle. The mean power is
obtained by multiplying this by the frequency of applied voltage. By the year,
1993 Okazaki et al. [35] found that silent electrical discharges in filamentary mode
contain multiple current spikes per each half cycle that causes the characteristic
parallelogram of the V-Q plot to change voltage level within the time constant of
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Fig. 9.4 A typical Lissajous figure for the DBD: Uappl D 2.6 kV (peak–peak)

the individual current spike. More recently, Falkenstein and Coogan (1997) [36]
found that gas impurities (H2O, 3.2 % absolute humidity) injected in to an dry air
discharge causes the V-Q parallelogram morphology to change.

Figure 9.4 shows the result one such measurement where the plasma is created
between two steel mesh metal electrodes in contact with two 4 mm thick, glass-
ceramic plates separated by 5 mm [14]. The helium flow rate is 5 L min�1 at
atmospheric pressure and the drive frequency of 30 kHz applied to one electrode
and the other is grounded. The applied voltage, uappl(t) is measured using a high
voltage probe, the discharge current, id(t), from the voltage drop, uR(t), across a
resistor which is connected in series with the electrodes. The voltage drop, uT(t),
across a capacitor, C, connected in series with the resistor, is used to calculate the
charge, q(t), transferred across the electrode gap using the expression

uT.t/ D 1

C

t�
t0

id .t’/ dt’ D q.t/=C (9.3)

The main characteristics of the discharge such as the total charge and breakdown
voltage are found from the slopes and intersections of these plots The energy
deposited into the discharge during one cycle of the applied voltage is A D 2Qubreak,
where Q is the charge moved through the discharge cell during a half cycle and ubreak

is the breakdown voltage. The mean power density is the order of a 100 mW cm�3.
However, the stray capacitance of the reactor does not influence the area enclosed
by the V-Q plot: therefore detailed linear equivalent electrical model of the system
must be used to derive the stray capacitance value [14, 36–38].
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9.3.2 Harmonic Plane

The Lissajous figure has also be used in the harmonic phase plane by operating an
oscilloscope in the X-Y plot display mode and then displaying two harmonically
related frequency (usually the fundamental drive frequency and its second, or third,
harmonic and where the harmonic ratio determines the number of visual “loops”
per cycle). This approach has the advantage of locating a specific plasma mode of
operation [39] and instability coupling regions between the external drive circuit
and the internal plasma impedance [40, 41].

Figure 9.5a shows an example of an impedance matching-network-induced
bi-stable (on–off) plasma instability within a chlorine inductively coupled low-
pressure parallel-plate system operating at fo D 13.56 MHz. Full details of the
induced plasma instability is reported in reference [41]. In the figure, the analogue
oscilloscope screen display is set as follows: the fundamental radio frequency (RF:
fo D 13.56 MHz) is plotted on X-axis and it second harmonic (27.12 MHz) is plotted
on the Y-axis, and the inputs are set to 50 mV/div and 1 V/div, respectively. The
oscilloscope sampling time is of the order of 5 �s and therefore is able to capture

Fig. 9.5 Lissajous figure (harmonic plane) snapshots of plasma on-off instability. Screen display
settings: fo D 13.56 MHz plotted on the horizontal axis and; second harmonic (27.12 MHz) plotted
on the vertical axis; the major divisions are set to 50 mV/div on the X-axis and 1 V/div on the
Y-axis, respectively
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approximately 20 loops, but is to slow to capture the spiral trajectory (non-stable
state) between each loop.

This type of harmonic image snapshot shown in Fig. 9.5b has been termed a
“butterfly” image due to the time modulation of the loops where the amplitude of
the fundamental is rapidly changing and the harmonic amplitude and its time-delay
are relatively constant. The physical interpretation of the harmonic modulation is
twofold. Firstly, the forward power is reflected back from the plasma to the RF
generator output where the over-power protection circuit shuts down output stage
of the generator thus turning of the plasma (Fig. 9.5b). Secondly, when the reflected
power has reduced to a predetermined safe level where the power is automatically
turned-on so igniting the plasma (Fig. 9.5c).

In terms of real-time monitoring each Poincaré limit cycle or Andronov self-
oscillation [26] represents a stable impedance condition per RF cycle. The large
jump between the grouped loops indicates the point in time of the impedance
transition. As in reference [36], the harmonic plane becomes useful in locating a
mode change and instabilities induced by the external circuit.

9.4 Reconstruction of the ‘Singing-arc’ Lissajous Figure I-V
Plane

This section the “current and voltage waveforms of the Singing-arc” first published
in 1900 [4] is re-examined. In addition, the arc’s optical output synchronised to the
electrical waveforms is studied [5]. The optical output is due to the oscillograph
mirror focused on to the positive carbon electrode and recording the light intensity
onto the photographic film. [N.B. Off cause today the arc’s optical output would
be studied using a photodiode [17, 18]]. Sections 9.4.1, 9.4.2 and 9.4.3 report on
the ‘Singing-arc’ under three different modes: hum, Continuous hissing intermittent
hissing modes, respectively. In each, the electrical drive frequency is 6.4 kHz and
the I-V planes are constructed using a digitation process employing Origin software.
To preserve the current and voltage phase relationship in the digitation process the
same equally spaced x-axis time stamped sequence is used. Finally, the I-V plane
constructions use direct one-to-one mapping, rather to calibrate the current and
voltage amplitudes, therefore the amplitudes are presented in arbitrary units (a.u.),
so preserving the topology of each original waveform.

9.4.1 Hum Mode

Figure 9.6 shows the hum mode current and voltage waveforms for a mean current
of 15.3 A flowing through the arc and an electrical drive frequency of 6.4 kHz.
The selected time region is approximately two periods, or 0.32 ms. In this figure
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Fig. 9.6 Hum mode current and voltage waveforms with arrows pointing towards the distortion
and maximum light intensity regions. The mean voltage D 50.5 V and the mean current D 15.2 A

there are three features of note. Firstly, the current and voltage have smooth periodic
waveform, with their main peaks in anti-phase (180ı) to each other. Secondly, the
light density varies in a similar manner with maximum light output occurring close
to maximum in current. Duddell attributes this motion to the axial rotation of the
arc between the carbon electrodes. Thirdly, electrical distortion is the present (see
arrows) in the falling edge of the voltage waveform and vice versa for the current
waveform. The distortion is also in phase with the maximum light output. Simple
harmonic analysis of the distortion reveals it is due to the presence synchronised
second harmonic with magnitude approximately 50 % of the fundamental.

Figure 9.7 shows the Lissajous figure of the two waveforms v(t) and i(t) from
Fig. 9.6 in the I-V plane. The Lissajous figure reveals the period-to-period phase
noise of the voltage and current signals in the form of two closed limit cycles. The
second harmonic distortion is seen as kink in the I-V loop. Note there is no evidence
of a double pinched hysteresis loop. The vertical dash lines depict the selected time
region (approximately two periods, or 0.32 ms).

9.4.2 Continuous Hissing Mode

Duddell found by keeping the electrical drive frequency through the arc constant
and increasing mean current to 22.3 Amperes where an audible hissing along with
a varying luminosity output occurs. For this reason, we have chosen to present the
original oscillograph that purports the hissing mode [4]. The oscillograph hissing
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Fig. 9.7 Hum mode construed Lissajous I-V plane with arrows pointing towards the distortion
and maximum light intensity region

mode is depicted in Fig. 9.8a is shown. To add the readers eye, we have annotated the
oscillograph to highlight the bright (a-b and c-d) and dull (c-d) luminosity regions.
For the Lissajous I-V plane investigation, we have selected the bright (a-b) and dull
(b-c) time-periods. Directly below Fig. 9.8a is the constructed I-V planes of the
bight and dull regions, combined in to Fig. 9.8b.

Within the current and voltage (PD) waveforms, there is a slow variation with
a more rapid response superimposed and the majority of the small current peaks
follow the voltage peaks. Both Duddell and Ayrton have provided a explanation
which is as follows; The slow variation is due to the continuing axial rotation of
the arc as in the hum mode. However, the unstable mode allows the surrounding air
to access the carbon electrodes where oxygen reacts freely with the carbon surface.
This causes the following sequence of events: a rise in temperature, an increase in
light emission and a drop in voltage followed shortly by a rise in the current. They
also explain this effect is opposite to what happens when deliberately changing the
current in the external circuit, for in the latter case maximum current occurs before
maximum light output.

As for the Lissajous figure I-V plane representation of the bright (open circles)
and dull (closed circles) time-periods, in general it is observed that as the current
falls and the light voltage increase as one would expect. However, for the bright data
points their phase grouping is more compact with respect to the dull data points. This
is because the current and light voltage has in general a lower amplitude and smaller
variation within the bright periods.
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Fig. 9.8 (a) Current and voltage waveforms for continuous hissing mode [4] annotated with our
selected bright and dull regions for Lissajous figures. The mean voltage D 38 V and the mean
current D 22.3 A. (b) Represents the current–voltage plane for the selected bright and dull regions

9.4.3 Intermittent Hissing Modes

Using a short gas-gap a hissing (whistling) mode no light is emitted from the gas-
gap. Figure 9.9 shows a current and voltage oscillograph [4] that has been inverted in
colour (black to white) of this mode. The oscillograph trace reveals that there are two
distinct pulse phases, these are: a short voltages pulse (24 V) where the current falls
to a minimum valve (22.3 A) and an extended voltage pulse, again with the current
reduce to the same minimum value. Duddell [4] has described the production of this
mode being due to a temporary short circuit of the arc (maximum voltage minimum
current) when a loose piece of carbon falls across the gas-gap and air burns until
completely removed. A schematic of this process is also given by Prodromakis et al.
[2]. In this mode, a Lissajous I-V pot produces two main clusters of data points (one
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Fig. 9.9 Current and voltage waveforms for short air gap hissing mode. The voltage peak-to-peak
varies between 9.5 and 24 V and the current peak-to-peak varies between 22.3 and 28 A

at maximum voltage and minimum current, and the other at minimum voltage and
maximum current) similar to that of embedded state-space representation of square
waveform with a phase delay of 180ı [46].

The intermittent (or musical) mode as first discovered by Elihu Thomson in 1892
([4], p. 247) and discussed by Duddell [4], Blondel [9] and Ginoux and Letellier
[24] is of interest. This mode is found by increasing the shunt capacitor value to an
extent that the circuit resonant frequency is too low to sustain a stable arc discharge.
Moreover removing extraneous inductance in series with the capacitor (increasing
circuit resonance) the arc discharge it ignited again. The frequency range of this
mode is in the audible range (5 and 10 kHz). Thomson, Duddell and Blondel have
described the production of this mode as due to the transformation of the direct
current flowing through circuit into two oscillatory currents which have different
time constants, one flowing shunt LC circuit and the other flowing through the
resistance of the arc.

9.5 Memory Element Perspective

In 1971 L.O. Chua proposed a theoretical description of certain nonlinear two-
terminal devices which have the ability to remember the charge that has previously
flowed through them. From this early definition, the term ‘ideal memristor’ became
established; however, by 1977 a more generalised definition was developed that
included subclasses. By 2012 high-pressure and low-pressure mercury-vapour
lamps and fluoresce tubes where included into the generalised definition under the
classification of volatile memory [2]. The term ‘volatile memory’ is used since when
the plasma excitation energy is removed the ionized gas reverts to the neutral state,
i.e., the current and voltage levels move to the origin in the I-V plane. More recently
(2014) two further papers have provided a detailed theoretical and experimental
explanation of mercury and sodium discharge lamps, the T8 Florence tube and
the Davy’s direct-current carbon arc; all of which fall within the volatile memory
memristor classification [42, 43].

For the memristor and its two analogues’ (memcapacitor and meminductor),
there are three generalised graphical fingerprints: two found in the Lissajous
representation and the third in the time-domain. The first two are: (a) a double
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Table 9.1 Physical parameters of modern plasma discharges described in this work

Gas (eV) Pressure Frequency Electrode gap Plasma-discharge Memory Reference

He (24.5) Atmospheric 11–18 kHz 4 mm Corona-filamentary No [17]
He (24.5) Atmospheric 18.92 kHz 5 mm APGD DBD Yes [16]
He (24.5) Atmospheric 3–30 kHz 5 mm Parallel-plate DBD Yes [14]
Cl2 (12.9) 2 mTorr 13.56 MHz 90 mm Parallel-plate No [40, 41]

pinched hysteresis loop in the I-V (Q-V, or L-V plane) and; (b) the shape of the
hysteresis curve tends to a single straight line as the drive frequency increases to
infinity. For example in the mercury and sodium lamps and the T8 fluorescence lamp
the I-V plane collapses to a straight when the frequency degenerates to a straight
line exceeds 30 kHz [42, 43]. The third working definition involves identical zero-
crossing points in the waveform time-domain. As we are concerned with a phase
delay between current and voltage waveforms (damped and undamped) here the
definition it highlighted but not considered further.

To place the plasma discharges considered here into context of the volatile mem-
ory it is useful to compare and contrast the physical parameters (gas type, ionization
potential, pressure, driving frequency, electrode gas-gap, type of discharge). These
parameters are listed in Table 9.1.

We first considered the I-V and Q-V planes measurements for the helium-based
atmospheric plasma systems as described in Sects. 9.3.1.1, 9.3.1.2 and 9.3.1.3, all
of which operate below or near the memristor frequency limit (
30 kHz).

For the PlasmaStream corona/filamentary plasma jet the Lissajous I-V plane
evolves with increasing helium gas flow, from signature that is dominated by
corona/filamentary current spikes to that a distorted limit cycle without a double
pinched loop hysteresis at increased helium flow.

In the case of the helium-based parallel-plate DBD reel-to-reel system (LabLine),
the Lissajous I-V plane reveals distorted limit cycles. Over a 20-cycle period, no
doubled pinched loop hysteresis is observed. However, the limit cycles does provide
reactor dielectric voltage memory information and the procession of each plasma
glow period. Under high current conditions, or when polymer deposition (carbon)
forms on the dielectric, glow-to-arc formation may occur leading to carbon tracking
[44, 45] which can lead to power supply damage. Under these temporary and
deleterious conditions a double pinched hysteresis loop in the I-V plane may occur.
Whether these DBD systems fall under the notion of a volatile memory memristor,
or, more probably a voltage-controlled mem-capacitive system due to the charge on
the dielectric surfaces is uncertain.

The Q-V plane of the for the parallel-plate DBD provides a classical parallelo-
gram limit cycle with no double pinched hysteresis loop, and again the dielectric
provides information on the dielectric voltage memory. The morphology of the
constructed parallelogram also provides information on gas impurities and the
discharge mode of operation.
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Finally, concerning the low-pressure (2 mTorr) chlorine parallel-plate plasma
system operating at 13.56 MHz (some 100 time faster than memristor frequency
limit for mercury). With the knowledge of the second ‘Fingerprint’ of the gener-
alised memristor we would not expected to see hysteresis. Indeed, it is shown that
real-time monitoring of the Lissajous harmonic-plane captures the butterfly time-
dependent instabilities without any observable hysteresis.

Now considering the conjecture that the ‘Singing arc’ could be considered as
the oldest memristor [12]. This viewpoint can now be seen as erroneous on a
number of counts. Firstly, acknowledging Langmuir’s strongly worded warning that
gas impurities is a major source of experimental variability in documented work
published prior to 1913 [19] it is reasonable to state that the hum mode is associated
with frequencies of around tens of Hz and hissing mode within frequency band
of between 300 Hz and 10 kHz. These frequencies arise from acoustic effects and
so involve the movement of gas which is generated by localised gas heating [47].
Given this observation, Lin’s [42] and Chua’s [43] theoretical and experimental
work published in 2014 places the Davy’s carbon arc before the ‘Singing-arc’.
Secondly, Duddell [4] and Hoyt [11] both report a hysteresis effect in Lissajous
I-V plane, but their data does not support a double pinched hysteresis loop in
the V-I plane for the hum mode, continuous hissing mode, or in the intermittent
hissing mode. Thirdly, the lack of the memristor fingerprint Ginoux and Rossetto
[12] ascribe to the ‘imperfection’ of the oscillograph and the wide experimental
conditions used. With regard to the ‘imperfection of instruments’ conjecture, we
have seen that early oscillograph [4] and oscilloscope [11] measurement present no
concern to the measurement.

9.6 Harmonic Reconstruction of the Davy Reactor

Lin’s [42] and Chua’s [43] experimental study used, a 50 % duty-cycle undamped
square waveform voltage source that produced a near sinusoidal current waveform.
In the case of the voltage waveform the time dependent voltage level alternates
(within a finite discontinuity) between two voltages levels around an average voltage
(V/2). Under these conditions the two waveforms (v(t), i(t)) reconstructed in a
Lissajous I-V plane contained pinched loops at the extremities of the voltage and
current amplitudes and not near or through the zero origin of the I-V plane, see
reference Fig. 9.1e of [43].

It is reasonable hypotheses that the Lissajous I-V plane Fingerprint is a result
of harmonic distortion rather than a memory effect. Thus ignoring the Gibbs
phenomenon, which describes the ringing at the rising and falling edges [48], the
Davy’s reactor Lissajous I-V Fingerprint is modelled as follows.

For the voltage square waveform, the periodic amplitude (Av) is synthesised
by adding a limited series of odd harmonic (with every other even harmonic is
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suppressed). Equation (9.4), mathematically expresses this process as a function
of phase.

A� D �o: sin no�
�

180
C �3: sin n3

�

180
C �5: sin n5�

�

180
C : : : : (9.4)

where v0, 3, 5 is the amplitude of each sine wave in which the harmonic amplitude
initially falls by a factor of 2 per octave from the fundamental frequency for
n D 3 and n D 5, n0, 3, 5 : : : is the integer of the fundamental frequency and its odd
harmonic and ¥ is piecewise phase number.

In the case of distorted sinusoidal current waveform the amplitude (AI), the
distortion is synthesis using even harmonics as in Eq. (9.5).
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where i0, 3, 5 is the amplitude of each sine wave in which the even harmonic
amplitude initially falls by a factor of 2 per octave from the fundamental frequency
for n D 2 and n D 4, n0, 2, 4 : : : . is the integer fundamental frequency and its odd
harmonic and ¥ is piecewise phase number.

To illustrate the effect of harmonic distortion within both the voltage and current
waveforms Fig. 9.10a–d represents four Lissajous I-V planes of the harmonic

Fig. 9.10 Quartet of Lissajous I-V plane produced by harmonic synthesis. The fundamental
voltage and current amplitudes are set to 10 V and 10 A, and the harmonic distortion amplitudes
are selected to produces the pinched loops in (d)
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distortion. For comparative purposes Fig. 9.10a shows the fundamental voltage
(10 V) waveform and the current (10 A) waveform. As both sinusoidal waveforms
have the same amplitude a straight line at positive angle of 45ı. Figure 9.10b
illustrates the effect of adding second harmonic (5 A) distortion to the current
waveform. In this case, the Lissajous figure forms two pinched loops with their
origin at the zero voltage and current. In Fig. 9.10c, the addition of third harmonic
distortion (3.3 V) to the fundamental voltage waveform (thereby synthesising a
simple square waveform) is presented. This procedure reveals an additional pinched
loop at each of the voltage maxima. Finally adding n D 5 and n D 7 harmonic
distortion to the voltage waveform (thereby generating a square waveform with a
near finite discontinuity) reveals a further two pinched loops at each of the voltage
maxima.

The I-V plane in Fig. 9.10d mimics the Davy’s reactor results as publisher in
[42, 43]. However to achieve a good match the higher order voltage odd harmonics
(n D 5, 7 and 9) have a amplitude of 1 and therefore do not follow the factor of 2 fall
per octave rule. The outcome of this simple model reflects the difficulty inherent
in approximating a discontinuous function by a finite series of continuous sine
waves. Nevertheless, the model outcome does provide sufficient reason to justify
a harmonic distortion origin within Lin’s and Chua’s results.

9.7 Conclusion

This work has reviewed the ‘Signing-arc’ and its development into a functioning
triode vacuum tube that is suitable for long-distance radiotelegraphy. The review
not only provides a historical perspective, but also the required development, and
understanding, for both material engineering and plasma physics of the discharge:
in particular, the way that gas impurities and harmonic content effect the discharge
current and voltage waveforms. From the early stages, the Lissajous figure represen-
tation of I-V plane played an important role in providing a means of understanding
of plasma stability without prior knowledge of the plasma physics that drives, and
hence defines the electrical characteristic of the device. In later years, the addition
of the Lissajous figure Q-V and Harmonic plane helped the development of plasma
jets, the DBD, and our understanding of plasma mode change. Limit cycles, self-
oscillations and the more recent memory element ‘Fingerprint’ of the Lissajous
figure (in all three planes) provide classification, or description, of the plasma
discharge, and can inform the fundamental plasma physics of the device. Modern
analogue, and digital, oscilloscopes and computer software enable these discharge
mode change to be readily identify and thereby controlled.
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Chapter 10
Stochastic Anti-Resonance in Polarization
Phenomena

Vladimir L. Kalashnikov and Sergey V. Sergeyev

Abstract The phenomenon of resonant stochastization, so-called stochastic anti-
resonance, is considered on an example of Raman fibre amplifier with randomly
varying birefringence. Despite a well-known effect of noise suppression and global
regularization of dynamics due to resonant interaction of noise and regular external
periodic perturbation, as it takes a place in the case of stochastic resonance, here
we report about reverse situation when regular perturbation assists a noise-induced
escape of a system from metastable state. Such an escape reveals itself by different
signatures like growth of dispersion, dropping of Hurst parameter and Kramers
length characterizing behavior of physically relevant parameters (e.g. average gain
and projection of signal state of polarization to pump one). This phenomenon is
analyzed by the means of two techniques: direct numerical simulations of under-
lying stochastic differential equations and multi-scale averaging method reducing a
problem to a set of deterministic ordinary differential equations for average values
characterizing the states of polarization. It is shown, that taking into account a
relevant set of scales characterizing a system results in excellent agreement between
results of direct numerical simulations and average model. It is very challenging
outcome because allows replacing the cumbersome numerical simulations and
revealing the system-relevant signatures for many important real-world systems.

10.1 Introduction

Existence of different, frequently incommensurate scales is a common phenomenon
in nature. An interactions between processes characterized by different scales can
result in multitude of emergent phenomena when a system cannot be described
as a scale-separated hierarchy of underlying processes but presents a substantially
new entity with qualitatively new properties and behavior (“The emergent is unlike
its components insofar as these are incommensurable, and it cannot be reduced to
their sum or their difference” [1]). Striking examples are life, fractals and chaos
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[2]. No wonder that multi-scaling processes and methods for their investigation are
attracting much attention during last 100 years [3–6].

For instance, in a fibre transmission system there are several substantially
different scales encompassing a light wavelength (
 1�m), a fibre core diameter
(
 10�m), a pulse duration (
 10 � 100mm), fibre beat and correlation lengths
(
 10� 100m), an attenuation length (
 10 km), nonlinear and dispersion lengths
(> 100 km), and, at last, a propagation length (Southern Cross Cable Network,
whose length is about 30 mm), i.e. more than 13 orders [7]. Each scale defines a
quite specific physics: from effects of electronic nonlinearities at the shortest time
edge, through frequency comb formation in the middle to auto- and relaxation
oscillations, long-living pattern formation etc. at the slowest time edge. In fibre
Raman amplifiers [8] (see next Section), the longest scale is associated with
the attenuation length and characteristics lengths of Kerr nonlinearity (Lnl) and
dispersion (LD). It is of approximately several kilometers. On other hand, fibre mode
beat-length (Lb) induced by birefringence varies from several to hundreds of meters.
But a birefringence of commercial telecommunication fibres is inherently stochastic
(see next Section) with typical correlation length (Lc) overlapping with mode beat-
length range. Hence, using the traditional averaging techniques in this case [9, 10]
can be disputed because they describe precisely only asymptotical cases Lnl;LD �
Lb � Lc (Manakov’s limit) or Lnl;LD � Lc � Lb (diffusion limit) [11, 12].
Therefore, development of multi-scale techniques taking into account carefully
contributions and interrelations of processes with different scales is of interest from
both practical and theoretical points of view. As relevant examples concerning
Raman fibre amplifiers, one may point to [13–15]. These multi-scale approaches
allow in principle to cover all range of parameters by using sophisticated averaging
techniques and, thereby to avoid a very cumbersome numerical simulations of
underlying stochastic differential equations (SDEs). Nevertheless, the validity of
such techniques has to be proved just numerically.

Here we shall demonstrate as a cooperation between analytical multi-scale
techniques and direct numerical simulations of SDEs reveals a quite non-trivial
phenomenon, stochastic anti-resonance (SAR), which can be characterized by
different signatures including Hurst parameter, Kramers length, standard deviation,
etc. This phenomenon can be treated as a noise-driven escape from metastable
state which is inherent in diffusion in crystals, protein folding, activated chemical
reactions and many others [16–20]. As a test-bed, we consider a fibre Raman
amplifier with random birefringence that is a device with direct practical impact
on development of the high-transmission-rates optical networks.

10.2 Physical Background

We will consider a Raman fibre amplifier as a test-bed model for analysis of SAR.
Such an amplifier is based on using the stimulated Raman scattering (SRS), that is a
process by which energy is transferred from the pump wavelength to a longer signal
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wavelength (
100 nm shift in silica) through nonlinear inelastic photon scattering
on an optical phonon [8]. The advantage of Raman amplifiers is that they provide a
relatively smooth and high gain over a broad spectral range (Fig. 10.1). The inherent
property of SRS is that it is polarization dependent [21]. Gain is maximum for co-
polarized pump and signal but minimum for their mutually transverse polarizations.
Since the birefringence is inherent in fibres (see Fig. 10.2), such a dependence
cannot be ignored. Birefringence can be illustrated by the birefringence vector
W D b.!/.1; 0; 0/T on the Poincaré sphere (see Fig. 10.3a). Here b D 2�=Lb is
a “rate” of mode beating induced by birefringence (Lb D �=�n is a beat-length).

Besides influence on SRS, this inherent birefringence changes state of polar-
ization (SOP) of arbitrary polarized light due to difference of effective refraction
coefficients �n along the birefringence axes. Pulses with SOPs oriented along
these axes will propagate with different group delays �� . This difference can

Fig. 10.1 Illustration of broadband Raman amplification. Narrowband pumps (arrows) at different
wavelengths produce broadband overlapping Raman gain bands shifted into infra-red spectral
domain. As a result, a relatively smooth effective gain profile covering a broad spectral range
can be created

Noncircular core Mechanical stress

Fig. 10.2 Fibre cross-sections with cylindrical symmetry broken by manufacturing process. As a
result, a fibre becomes birefringent
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Fig. 10.3 (a): Birefringence vector W (red) on the Poincaré sphere. (b): Birefringence vector
walks randomly in equatorial plane (in the chosen reference frame) due to stochastic birefringence
(Color figure online)

L1 L2 L i LN

ne

no

Fig. 10.4 Fixed modulus model of stochastic birefringence: polarization maintaining fibre sectors
with fixed lengths LN differ by random rotation of polarization axes

be characterized by the parameter called polarization mode dispersion (PMD)
��=L D d.�n!=c/=d! [7]. Since it is very hard technologically to provide
identical physical conditions along a fiber, birefringence (i.e. direction of W) will
change stochastically with the length z. There are different ways to emulate the
stochastic birefringence [7]. In particular, one may consider a concatenation of
polarization maintaining fibre sections of fixed lengths with random rotation of
polarization vector from section to section (the fixed modulus model [10], see
Fig. 10.4).

An appropriate transformation of reference frame [14] allows expressing an
evolution of normalized signal (Os) and pump ( Op) Stokes vectors in such a fibre as
their rotation in the plane transverse to the equatorial one on the Poincaré sphere
around the corresponding birefringence vectors Ws;p with the different rates bs (for
a signal) and bp (for a pump) (Fig. 10.5). Due to bs ¤ bp, vector Os rotates around Op
at the rate bp � bs. Simultaneously, the birefringence vectors will wander randomly
in equatorial plane (Figs. 10.3b and 10.5).



10 Stochastic Anti-Resonance in Polarization Phenomena 163

Fig. 10.5 Poincaré sphere
with signal (Os) and pump ( Op)
SOP vectors (˚ is their
mutual angle) rotating around
birefringence vector W (only
one is shown for simplicity)
which wanders randomly in
horizontal plane ( is a
randomly changing angle
defining this wandering and �
is a volatility of
corresponding random
process, see
Eqs. (10.1)–(10.3))
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10.3 Model

Extended vector theory of SRS within the context of fibre Raman amplifiers is
presented in [8, 13]. In terms of unit vectors Os D .s1; s2; s3/ and Op D . p1; p2; p3/
pointing SOPs on the Poincaré sphere and Wp;s D �

2bp;s cos ; 2bp;s sin ; 0
�T

(Fig. 10.5), the system of SDEs describing an evolution of co-propagating pump and
signal SOPs under action of random birefringence can be written in the following
form:

d OS
dz

D gR

2

�ˇ̌̌ OPˇ̌̌ OS C
ˇ̌̌
OS
ˇ̌̌

OP
	

� ˛s
OS C ˇ

0
@ S2

�S1
0

1
AC 2bs

0
@ 0

�S3
S2

1
A ; (10.1)

d OP
dz

D �!p

!s

gR

2

�ˇ̌̌ OPˇ̌̌ OS C
ˇ̌̌
OS
ˇ̌̌

OP
	

� ˛p
OP C ˇ

0
@ P2

�P1
0

1
AC 2bp

0
@ 0

�P3
P2

1
A ; (10.2)

where OS D S0Os and OP D P0 Op (S0 D
ˇ̌̌
OS
ˇ̌̌

and P0 D
ˇ̌̌
OP
ˇ̌̌

are signal and pump

powers, respectively), gR is a Raman gain coefficient,!p and !s are pump and power
optical frequencies, respectively. SDEs (10.1) and (10.2) have to be understood in
the Stratonovich’s sense with a noise source ˇ.z/ defined as the Wiener process with
zero drift and volatility � :

d

dz
D ˇ .z/ ; hˇ .z/i D 0;

˝
ˇ .z/ ; ˇ

�
z0�˛ D �2ı

�
z � z0� ; (10.3)
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where h: : :i means averaging of birefringence fluctuations along a propagation
coordinate z and �2 D 1=Lc.

Equations (10.1) and (10.2) allow some further simplifications. The first one is
neglect of the pump depletion, i.e. the decrease of pump power due to energy transfer
to a signal (first term at r.h.s. of Eq. (10.2)). Due to nonlinear nature of SRS, this
effect is defined by both pump and signal powers (P0 
1 W and S0 
 10 mW,
respectively). As P0 � S0, it is reasonable assumption for propagation lengths of
few kilometers. Then, it is possible to exclude the scalar gain and loss effects by
simple normalization [14]:

OS D OS0
exp

2
4 LZ
0

�gR

2
P0
�
z0� � ˛sz

0
	

dz0
3
5 ; (10.4)

where P0 .z/ D Pin
0 exp

��˛pz
�
, L is a full propagation length and Pin

0 is an input
pump power.

Let’s OS0 D s0Os, s0 D
ˇ̌̌
OS0 ˇ̌̌

, then Eqs. (10.1) and (10.2) can be rewritten in the

following form:

d OS0

dz
D gR

2
P0.z/Op C ˇ

0
@ S0

2

�S0
1

0

1
AC 2bs

0
@ 0

�S0
3

S0
2

1
A ; (10.5)

d Op
dz

D ˇ

0
@ p2

�p1
0

1
AC 2bp

0
@ 0

�p3
p2

1
A : (10.6)

The next step is transition to a reference frame, where eWp;s D .2bp;s; 0; 0/ [14]:

eWp;s D
0
@ cos  sin  0

� sin  cos  0
0 0 1

1
AWp;s: (10.7)

Applying this transformation results in the following system of SDEs:

ds0
dz

D gR

2
P0 .z/ x; (10.8)

dx

dz
D gR

2
P0 .z/ s0 � 2 �bp � bs

�
. Qp3Qs2 � Qp2Qs3/ ; (10.9)

dQOs
dz

D gR

2
P0 .z/ s0 QOp C 2bs

0
@ 0

�Qs3
Qs2

1
AC ˇ

0
@ Qs2

�Qs1
0

1
A ; (10.10)
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d QOp
dz

D 2bp

0
@ 0

�Qp3
Qp2

1
AC ˇ

0
@ Qp2

�Qp1
0

1
A ; (10.11)

d

dz
D ˇ .z/ : (10.12)

Here tildes denote the corresponding vectors and their components in new reference
frame and x D QOp � QOs D Op � Os is scalar product of pump and signal SOPs. Numerical
analysis of Eqs. (10.8)–(10.12) will be presented in the next Section.

Now, let’s apply the averaging technique of [10, 14] to the system of
SDEs (10.8)–(10.12). In agreement with the theorem of theory of SDEs [22], any
continuous and sufficiently smooth function  . Ő / obeys the following equation
(Dynkin’s formula [23]):

@ h i
@z

D h� . /i ; (10.13)

where components of Ő obey SDE:

d˝i

dz
D

mX
kD1

Qikˇk C Ui; (10.14)

which can be treated, in particular, as a matrix representation of Eqs. (10.8)–
(10.12). In Eq. (10.14), ˝i and Ui are n�dimensional vectors and Qik.˝i; z/ is
n  m-dimensional matrix. Noise terms ˇk corresponds to a Wiener process with
hˇk.z/i D0 and hˇk.z/ˇl.z0/i D �2k ıklı.z�z0/. � . / in Eq. (10.13) is a Stratonovich
generator [22, 24]:

� D
nX

jD1
Uj

@

@˝j
C �2l

2

nX
jD1

nX
kD1

nX
lD1

�
QjlQkl

@2

@˝j@˝k
C Qkl

@Qjl

@˝k

@

@˝j

�
: (10.15)

Returning to Eqs. (10.8)–(10.12), the non-zero components of Eq. (10.15) can be
written as [14]:

˝1 D s0; ˝2 D Qs1; ˝3 D Qs2; ˝4 D Qs3;
˝5 D Qp1; ˝6 D Qp2; ˝7 D Qp3; ˝8 D ;

Q21 D ˝3; Q31 D �˝2; Q51 D ˝6; Q61 D �˝5; Q81 D 1;

U1 D gR

2
P0 .z/ . Qp1Qs1 C Qp2Qs2 C Qp3Qs3/ ; U2 D gR

2
P0 .z/ s0 Qp1;



166 V.L. Kalashnikov and S.V. Sergeyev

U3 D gR

2
P0 .z/ s0 Qp2 � 2bsQs3; U4 D gR

2
P0 .z/ s0 Qp3 C 2bsQs2;

U6 D �2bp Qp3; U7 D 2bp Qp2: (10.16)

Applying this procedure leads to the following equations for different momenta
of Eqs. (10.8)–(10.12) [15, 25]:

d hs0i
dz0 D "1 exp

��"2z0� hxi ; d hxi
dz0 D "1 exp

��"2z0� hs0i � "3 hyi ;

d hyi
dz0 D "3 Œhxi � hQp1Qs1i� � L

2Lc
hyi ; d

˝
s20
˛

dz0 D 2"1 exp
��"2z0� hs0xi ;

d hs0yi
dz0 D "1 exp

��"2z0� hxyi C "3
�hs0xi � ˝

y2
˛ � hs0i hQp1Qs1i

� � L

2Lc
hs0yi ;

d hs0xi
dz0 D "1 exp

��"2z0� �˝s20˛C ˝
x20
˛� � "3 hys0i ;

d
˝
x2
˛

dz0 D 2"1 exp
��"2z0� hs0xi � 2"3 hxyi ; d

˝
u2
˛

dz0 D L

Lc

�˝
y2
˛ � ˝

u2
˛�
;

d hxyi
dz0 D "1 exp

��"2z0� hs0yi C "3
�˝

x2
˛ � hxi hQp1Qs1i

� � L

2Lc
hxyi ;

d
˝
y2
˛

dz0 D 2"3 Œhxyi � hyi hQp1Qs1i� � L

Lc

�˝
y2
˛ � ˝

u2
˛�
;

(10.17)

where z0 D z=L, hxi D
DQOs � QOp

E
, hQp1Qs1i D Qp1 .0/ Qs1 .0/ exp .�z0L=Lc/, hyi D

hQp3Qs2 � Qp2Qs3i, �1 D gRPinL=2, �2 D ˛sL, and �3 D 2�L.!p=!s � 1/=Lbp. The
averaging procedure here has to be understood as averaging over an ensemble
of stochastic trajectories at the fixed z, i.e. we do not apply the ergodic theo-
rem.

Thus, we arrived at a reach set of momenta defined by deterministic ordinary dif-
ferential equations. We will analyze the results obtained from numerical simulations
of Eqs. (10.8)–(10.12) and (10.17) in the next section.

Now we will demonstrate that a direct application of procedure described in
[10] to only random birefringence in the coupled Manakov-PMD equations gives
result which is valid in only limit of large PMDs (Manakov’s limit) despite of
Eq. (10.17) which are valid within a whole range of PMDs as it will shown in the
next Section.

It is convenient to use the bra-ket formalism that is the Jones-matrix notations
[13]. The coupled Manakov-PMD equations without taking into account the group-
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delay dispersion and the nonlinear effects (i.e. L � 100 km) have a form
[26, 27]:

i
@ jAsi
@z

C bs .�3 cos ./C �1 sin .// jAsi C i˛s

2
jAsi C (10.18)

ibs .�3 cos ./C �1 sin .//
@ jAsi
@t

� igR

2

ˇ̌
Ap
˛ ˝

ApjAs
˛ D 0;

i
@
ˇ̌
Ap
˛

@z
C bp .�3 cos ./C �1 sin .//

ˇ̌
Ap
˛C i˛p

2

ˇ̌
Ap
˛C (10.19)

ibp .�3 cos ./C �1 sin .//
@
ˇ̌
Ap
˛

@t
C igR

2

!p

!s
jAsi

˝
AsjAp

˛ D 0;

where

�1 D
�
0 1

1 0

�
; �2 D

�
0 �i
i 0

�
; �3 D

�
1 0

0 �1
�
;

ˇ̌
As;p

˛ D �
A.s;p/;x;A.s;p/;y

�T
;
˝
As;p

ˇ̌ D ˇ̌
As;p

˛C D
�

A�
.s;p/;x

;A�
.s;p/;y

	
(10.20)

and transformation to the Stokes representation can be made by transformation:

OS D hAsj O� jAsi ; OP D ˝
Apj O� jAp

˛
; O� D Oi�1 C Oj�2 C Ok�3 (10.21)

(Oi; Oj; Ok are unit vectors; don’t confuse the Pauli matrixes O� with a Wiener process
volatility �!). The time-derivatives in Eqs. (10.18) and (10.19) describe group-
delays of signal and pump.

Rotation:

ˇ̌
As;p

˛ D
0
@ cos

�
=2

	
sin
�
=2

	
� sin

�
=2

	
cos

�
=2

	
1
A ˇ̌as;p

˛
(10.22)

results in:

i
@ jasi
@z

C˙s jasi C i˛s

2
jasi C ibs�3

@ jasi
@t

� igR

2

ˇ̌
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˛ ˝
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˛ D 0;

(10.23)

i
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C˙p

ˇ̌
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˛C i˛p
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ˇ̌
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˛C ibp�3
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ˇ̌
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˛

@t
C igR

2

!p

!s
jasi

˝
asjap

˛ D 0;

(10.24)
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where

˙s;p D
�

bs;p �z

z �bs;p

�
;

z � @

@z
D ˇ .z/ ; hˇ .z/i D 0;

˝
ˇ .z/ ˇ

�
z0�˛ D �2ı

�
z � z0� : (10.25)

An unitary transformation T:

T D
�
�1 �2

���
2 �

�
1

�
; j�1j2 C j�2j2 D 1; �1 .0/ D 1; �2 .0/ D 0;

i
@T

@z
C˙pT D 0;

jUi D T jasi ; jVi D T
ˇ̌
ap
˛

(10.26)

leads to a new set of equations:

i
@ jUi
@z

C �
bs � bp

� Q�3 jUi C i
˛s

2
jUi C ibs Q�3 @ jUi

@t
� i

gR

2
jVi hVjUi D 0;

i
@ jVi
@z

C i
˛p

2
jVi C ibp Q�3 @ jVi

@t
C i

gR

2

!p

!s
jUi hUjVi D 0;

Q�3 D TC�3T D
�
˝1 ˝

�
4

˝4 �˝1

�
:

(10.27)

The six-component vector Ő describes an action of random birefringence and obeys
the following SDE:

d Ő
dz

D OQˇ .z/C O�;

˝1 D j�1j2 � j�2j2; ˝2 D � ��1�2 C ��
1 �

�
2

�
; ˝3 D i

�
�1�2 � ��

1 �
�
2

�
;

˝4 D 2��
1 �

�
2 ; ˝5 D �21 � �

��
2

�2
; ˝6 D �i

h
�21 C �

��
2

�2i
;

Q1 D 2˝2; Q2 D �2˝1; Q3 D 0; Q4 D 2˝5; Q5 D �2˝4; Q6 D 0;

(1 D 0; (2 D �2bp˝3; (3 D 2bp˝2; (4 D 0; (5 D �2bp˝6; (6 D 2bp˝5;

(10.28)
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where the components obey the following constraints and initial conditions:

˝2
1 C˝2

2 C˝2
3 D 1; ˝2

4 C˝2
5 C˝2

6 D 0;

˝1 .0/ D 1; ˝2 .0/ D 0; ˝3 .0/ D 0;

˝4 .0/ D 0; ˝5 .0/ D 0; ˝6 .0/ D �i:

(10.29)

Equations (10.27) and (10.28) can be analyzed numerically, but we average
Eq. (10.27) using a rule (10.13)–(10.15). Applying the Stratonovich’s generator:

d h .˝i/i
dz

D h� Œ .˝i/�i ;

� D
6X

iD1
(i

@

@˝i
C �2

2

6X
iD1

6X
jD1

�
QiQj C Qj

@Qi

@˝j

@

@˝i

�
(10.30)

results in:

d h˝1i
dz

D �2�2 h˝1i ; d h˝2i
dz

D �2bp h˝3i � 2�2 h˝2i ; d h˝3i
dz

D 2bp h˝2i ;
d h˝4i

dz
D �2�2 h˝4i ; d h˝5i

dz
D �2bp h˝6i � 2�2 h˝5i ; d h˝6i

dz
D 2bp h˝5i

(10.31)

with an initial condition h.˝1;˝2;˝3;˝4;˝5;˝6/ijzD0 D .1; 0; 0; 0; 0; 0/. Triv-
ially h˝1 .z/i D exp

��2�2z� ; h˝4 .z/i D exp
��2�2z�.

We have another groups of coupled equations for ˝m�variables, as well (the
argument z is omitted):

d
˝
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˛
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D 4�2
�˝
˝2
2

˛ � ˝
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zD0 D .1; 0; 0; 0/ ;

(10.32)
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(10.34)

d h˝3˝6i
dz

D 2bp .h˝2˝6i C h˝3˝5i/ ;
d h˝2˝5i

dz
D �2bp .h˝2˝6i C h˝3˝5i/

�4�2 .h˝2˝5i � h˝1˝4i/ ;
d h˝1˝4i

dz
D 4�2 .h˝2˝5i � h˝1˝4i/

d

dz
.h˝2˝6i C h˝3˝5i/ D 4bp .h˝2˝5i � h˝3˝6i/

�2�2 .h˝2˝6i C h˝3˝5i/ ;
h.˝3˝6;˝2˝6 C˝3˝5;˝2˝5;˝1˝4/ijzD0 D .0; 0; 0; 0/ ;

(10.35)
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Returning to the Stokes representation, one has:

d OS
dz

D gR

2
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ˇ̌̌
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ˇ̌̌
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ˇ̌̌
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ˇ̌̌

OS
	

� ˛s
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bs � bp
�
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��2�2z�

0
@ 0

�S3
S2

1
A ;
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dz

D �gR!p

2!s

� OP
ˇ̌̌
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ˇ̌̌
C
ˇ̌̌
OP
ˇ̌̌

OS
	

� ˛p OP:

(10.37)

Equation (10.37) demonstrates that polarization effects are exponentially sup-
pressed by the term / exp .�2�2z/ as Lc � L (i.e. �2L � 1). It is the so-called
Manakov’s limit corresponding to asymptotically large PMD [28] and it cannot
describe polarization phenomena within a whole range of parameters.

10.4 Stochastic Anti-Resonance

System (10.17) allows analytical consideration in the framework of linear stability
analysis [15]. Let’s introduce new variables hy0i D hyi=hs0i; hx0i D hxi=hs0i,
where hx0i ! 1 describes a phenomenon of polarization pulling or trapping
[11, 15, 26, 28–40]. The physical sense of this phenomenon is clearly visible from
Eq. (10.1). Since SRS is polarization-dependent, the identical SOPs of pump and
signal produce a maximum Raman gain. It means that the pump SOP will pull
signal so that a Raman gain medium acts as effective polarizer. Inverse situation of
hx0i ! 0 corresponds to escape from a pulling state and can be treated as “escape
from metastable state” [16, 17, 20].

Let’s try to characterize this phenomenon. Figure 10.6 shows evolution of a
“particle” (signal SOP in our case) within a potential well (which is created by
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Fig. 10.6 Noise-induced
escape from a metastable
state (pulling state) controlled
by an external periodic force
with the period of potential
barrier modulation T. �U is a
potential barrier, r D 1=�k is
an escape rate, �k is a
Kramers (residence) time,
and �i is an intra-well
relaxation time

signal-pump SOP pulling) under influence of external periodic perturbation (beat-
ings caused by birefringence) and noise (random birefringence). From Eq. (10.17),
the steady-state (i.e. z�independent) solutions hx0

0i and hy0
0i corresponding to the

pulling state for exp .�"2z0/ � 1 can be found from [15]:

�2
˝
x0

0˛3 C�
˝
x0

0˛2 C �
�2
1 ��2

� ˝
x0

0˛ �� D 0;

˝
y0

0˛ D �1 hx00i
� hx00i C 1

; (10.38)

where� D 2Lc"1 exp .�"2z0/=L and�1 D 2Lc"3=L. Linear stability analysis of the
steady-state (10.38) gives the perturbation eigenvalues:

(1;2 D �3� hx00i C 1

4Lc
˙ 1

4Lc

q
.1 �� hx00i/2 C�1 .� hy00i � 4�1/: (10.39)

Let’s introduce the intra-well relaxation length (“intra-well relaxation time”
�i in Fig. 10.6) as �i D 1=jRe .(1;2/j. Brownian movement of a “particle” (i.e.
SOP) in the vicinity of hx0

0i; hy0i can cause escape from the pulling state [16–
20] if Im .(1;2/ ¤ 0. The corresponding escape rate r D 1=�k is defined by the
Kramers length (“Kramers time” in Fig. 10.6): �k D 1=r D 2�L=jIm .(1;2/j. Since
r / exp .��U=D/ [18], the noise strength D is defined by Im .(1;2/ so that growth
of imaginary part of perturbation increment corresponds to increase of the noise
strength, i.e. to growth of effective “temperature”, initiating an escape from the
potential well.

Figure 10.7, a demonstrates dependencies of Kramers and relaxation lengths as
well as hx0

0i and hy0
0i on the PMD parameter Dp. One can see, that abrupt decrease of

the Kramers length (black solid curve) occur in the vicinity of Dp 	 0:02 ps=
p

km.
This is evidence of growth of escape rate r D 1=�k from a potential well (i.e. from
polarization pulling hx0

0i ! 1). Such an escape is accompanied by threshold-like
decrease of hx0

0i that means decorrelation of pump and signal SOPs. The fact of
�k 	 �i for Dp > 0:02 ps=

p
km can be interpreted as a strong stochastization of
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Fig. 10.7 (a): Dependencies of Kramers (black solid curve) and intra-well relaxation lengths
(black dashed curve) as well as hx0

0i (red solid curve) and hy0

0i (red dashed curve) on the
PMD coefficient Dp. (b): Analogous dependence of the Hurst parameter. The input SOPs are:
QOs D .1; 0; 0/ and QOp D .1; 0; 0/, s0 D 10mW, Pin

0 D 1W, L D 5 km (Color figure online)

SOP evolution. The approximate equality �k 	 �i means that the SOP excitation
probability is characterized by a single rate as it takes a place for excitable systems
[19]. Moreover, an enhancement of stochastization (see below) distinguishes this
phenomenon from the stochastic resonance (SR) when the correlation between input
and output signals increases and the signal-to-noise ratio passes through maximum
[17, 19]. Therefore our phenomenon can be named “stochastic anti-resonance”
(SAR). Also, one has to note that SAR develops in even linear system (10.8)–(10.12)
unlike SR [41].

Another signature of such stochastization is provided by the Hurst parameter
0 < H < 1 (Fig. 10.7b) [5]. This parameter is useful for characterizing of long
memory processes and can be defined from an asymptotic behavior of corresponding
correlation function ± .k/ 
 k2H�2; k ! 1. If 0 < H < 1=2, the process has anti-
persistent correlation. If 1=2 < H < 1, the process has persistent correlation (i.e.
there are long range dependencies). If H D 1=2, the process is like to Brownian
motion, i.e. it is memoryless or short-range-dependent. The Hurst parameter can be
defined by the following method. Let’s fxk; k D 1; 2; : : : ; ng is a sampled set of x.z/
with a mean value hx.n/i and a variance �2x .n/. Then a so-called R=S-statistics [5]
is defined by:

R .n/

S .n/
D 1

�x .n/
Œmax .0;W1;W2; : : : ;Wn/ � min .0;W1;W2; : : : ;Wn/� ;

Wk D
kX

iD1
Œxi � hx.n/i�:

(10.40)
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The Hurst parameter can be found from

�
R .n/

S .n/


/ nH; n ! 1: (10.41)

The dependence of the Hurst parameter on the PMD parameter Dp was obtained
from numerical simulations of Eqs. (10.8)–(10.12) (see below) and is shown in
Fig. 10.7b. One can see, that H ! 1 for small PMDs (polarization pulling) but drops
abruptly in the vicinity of Dp 	 0:02 ps=

p
km when an escape from pulling state is

intensified. The minimum value of H 	 0:7 approaches the Brownian limit and such
a dropping of persistent statistic distinguishes SAR from SR [19]. Nevertheless, H
remains within the persistent statistic range (i.e. turbulence does not appear in our
system). A further growth of PMD increases H. The physical interpretation of these
phenomena will be presented below based on the result of numerical simulations
of (10.8)–(10.12).

To analyze details of SAR phenomenon, we investigated Eqs. (10.8)–(10.12)
numerically on the basis of the Wolfram Mathematica 9/10 computer algebra
system. We have tested different numerical methods provided by both Mathematica
and Matlab. Figure 10.8 demonstrates sets of stochastic trajectories obtained by Mil-
stein, Stochastic Runge-Kutta, Stochastic Runge-Kutta Scalar Noise and Kloeden-
Platen-Schurz algorithms built-in Mathematica. Only two latter methods provide a
long-range convergence for all stochastic trajectories. These two algorithms were
used for numerical simulations. Variation of step-size shown the optimal value of
�z D 10�4 min .Lc;Lb/.

It is interesting to analyze dependencies of the averaged gain hGi

hGi D 10 log

� hs .L/i
s0 .0/

�
; (10.42)

and the normalized variance of gain �G

�G D
s ˝

s20 .L/
˛

hs0 .L/i2
� 1 (10.43)

on PMD (Fig. 10.9a). One can see a kink-like behavior of hGi which maximum
value is defined by polarization pulling (small Dp, nonnormalized gain G 	
exp .gPL � ln 2/ [28]) and minimum value defined by averaging over SOPs caused
by their fast rotation for large Dp (solid black curve in Fig. 10.9). Owing such an
averaging in the latter (scalar) limit, a fibre acts like a medium with effectively scalar
Raman gain so that the nonnormalized gain is G D gR=2 [28] and a correlation
between pump and signal SOPs disappears (i.e. hxi ! 0, black solid curve in
Fig. 10.9b). The opposite case of small PMDs corresponds to almost isotropic
medium with small “birefringence noise”. In this case, the vector nature of Raman
gain prevail so that the pump SOP attracts the signal one.
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Fig. 10.8 Groups of ten stochastic trajectories of the signal power s0 for the different numerical
algorithms. Algorithms corresponding to bottom row congregate for all trajectories. Dashed curves
show hs0i and filled regions correspond to ranges of the s0 standard deviation. The input SOPs are:
QOs D .1; 0; 0/ and QOp D .1; 0; 0/, Pin
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by the direct numerical simulations of SDEs (10.8)–(10.12) (solid curves) and from the averaged
model (10.17) (dashed curves). (b) The analogous dependencies for hxi (solid black curve) and
�x (dashed red curve) obtained from (10.8)–(10.12). The input SOPs are: QOs D .1; 0; 0/ and QOp D
.1; 0; 0/, s0 D 10mW, Pin

0 D 1W, L D 5 km (Color figure online)
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Notable phenomenon is an existence of maximum of the gain variance at Dp 	
.3 � 4/  10�2 (Lb 	 Lc=4, solid red curve in Fig. 10.9a). This demonstrates the
above described SAR when resonant interaction between periodic perturbations
(polarization beatings) and noise (random birefringence) enhances randomness in
a system unlike SR which enhances a regularity. As histogram in Fig. 10.10b
demonstrates, a complete chaotization does not develop in the vicinity of �G

maximum (H 	 0:7, see above). Instead of that, there are two peaks corresponding
to the states with maximum averaged residence times [19]. Further growth of Dp,
although �G decreases due to averaging over SOPs (solid red curve in Fig. 10.9a),
increases �x (dashed curve in Fig. 10.9b) due to decorrelation of pump and signal
SOPs induced by fast polarization beatings. In particular, such a decorrelation
reveals itself as substantial broadening of histogram peak in Fig. 10.10c. Random
birefringence plays a role of rare “kicks” for fast rotating Os and Op so that H tends
to 0.9 with further PMD growth. Despite decorrelation of SOPs, some residual
correlation remains that is demonstrated by hGi ¤ 0 (Fig. 10.9a) and shift of
histogram maximum in hxi ¤ 0 (Fig. 10.10c).

The very interesting and challenging result is a perfect agreement between
the numerical data (Eqs. (10.8)–(10.12); solid curves in Fig. 10.9a) and the data
obtained from the multi-scale averaging procedure (Eq. (10.17); dashed curves
in Fig. 10.9a). It means that the averaging procedure has to take into account
both birefringence beating and random birefringence scales unlike the classical
Manakov’s averaging over only random fluctuations (Eqs. (10.30)–(10.37)). Since
the averaged equations are deterministic ODEs, they are easily solvable as opposed
to SDEs (10.8)–(10.12). It can be very useful for simulations of long communication
lines (L � 1 km). The important steps in this direction are taking into account
pump depletion, group delay and group-delay dispersion, self-phase and cross-phase
modulation.

10.5 Conclusion

Multi-scaling is a widespread property of both inanimate and animate nature.
If multi-scaling is closely interwoven with interaction between deterministic and
random processes, a multitude of interesting phenomena develop. For instance,
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new steady-states can appear (coherent resonance), low-intensity and slow regu-
lar oscillations can be amplified by noise (stochastic resonance) or vise versus
randomness can be resonantly increased by regular oscillations (stochastic anti-
resonance). The last phenomenon was analyzed above on an example of fibre
Raman oscillator. As was demonstrated lately, photonics opens a broad road for
analog modeling of phenomenon ranging from gravity and cosmology [42] to
neuroscience and informatics [41, 43–45]. Here, we used a fibre Raman amplifier
with random birefringence as a test-bed for modeling multi-scale phenomena. Two
main approaches were considered: direct numerical simulations of SDEs describing
the evolution of signal and pump SOPs, and averaging techniques. For the lasts, we
used averaging over only random birefringence or multi-scale averaging technique.
It was demonstrated that the last method agrees perfectly with the results of direct
numerical simulations. This can accelerate substantially simulations of long (�
1 km) communication systems because the underlying deterministic ODEs are fast
solvable in contrast with SDEs. Moreover, such an approach provides with a rich
set of signatures characterizing the statistical properties of system. For instance,
we considered averaged gain and SOP projection, their variances, autocorrelations,
spectra, Kramers length and Hurst parameter, etc.

Our analysis demonstrated that variation of control parameter (PMD) leads
to resonant enhancement of fluctuations in a system: stochastic anti-resonance.
This enhancement can be interpreted as a noise-induced escape from metastable
state. Such a state (potential well) is created by the polarization pulling that is
attraction of signal SOP to pump SOP due to vectorial nature of the Raman
gain. A fibre behaves like isotropic medium and the Raman gain works as an
effective polarizer in this case. When the polarization beat-length defining a period
of potential barrier modulation becomes lesser than the birefringence correlation
length, the rate of escape from meta-stable state (which is inversely proportional
to the Kramers length) grows abruptly that initiates an escape from potential well.
As a result, randomness of dynamics enhances that is demonstrated by growth of
the gain variance and by abrupt decrease of the Hurst parameter. Nevertheless,
dynamics remains partially correlated due to H � 0:7. Further decrease of Lb

(i.e., PMD-growth) results in so fast rotation of SOP that pump and signal become
almost de-correlated. As a result, only polarization-averaged (i.e. scalar) Raman
gain contributes to dynamics. Randomness decreases and plays a role of rare
“kicks” disturbing SOP. The Hurst parameter approaches 0.9 and the gain variance
decreases.

We guess that the described methods and phenomena are of great importance not
only for photonics but also for study of complex coupled systems, nanostructures,
biology and medicine, neuroscience, finance, etc.
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Chapter 11
A Simple Plankton Model with Complex
Behaviour

Irene M. Moroz, Roger Cropp, and John Norbury

Abstract In this paper we extend the P1P2ZN model, introduced by Cropp and
Norbury (J Plankton Res 31:939–963, 2009) to investigate the effects of specialist
(or discriminate) and generalist (or indiscriminate) grazing (as parameterised by �)
on a prey-prey-predator model for plankton, in the presence of a limiting nutrient.
We also examine the influence of facultative and obligate omnivory on the survival
of Z as a generalist predator, as we vary the linear mortality parameter �Z . This
leads to bifurcation transition diagrams, which also include steady state stability
branches for certain critical points. For specialist grazing (� D 0) the bifurcation
transition diagram shows steady states, periodic and chaotic dynamics, with very
small windows of periodic behaviour, as �Z varies, while for generalist grazing
(� D 1), we only find periodic or steady state behaviours. The dynamics is
interpretable in terms of facultative/obligate omnivory of Z. Results suggest that
green ocean plankton code in global climate change modelling might run more
stably with generalist grazing terms and careful control of grazer mortality.

11.1 Introduction

Plankton are organisms that cannot swim faster than ocean currents. They comprise
single-cell microscopic plants called phytoplankton (diatoms and dinoflagellates)
and smaller and larger grazers called zooplankton (e.g. from ciliates and copepods
to krill and jelly fish), found in the upper 50 m sunlit layers of marine ecosystems.
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Using sunlight and dissolved nutrients (e.g. nitrates, phosphates, etc, carried
by rivers into oceans) phytoplankton convert CO2 from the atmosphere during
photosynthesis in the upper mixed ocean surface layer, eventually drawing it down
into the deep ocean. Decomposers (viruses, bacteria and fungi) capture and recycle
waste products, remineralising organic nutrients into inorganic dissolved nutrients,
and thus completing the nutrient recycling loop. Phytoplankton account for about
half of global synthesis of organic compounds and CO2 [7], as well as producing
half of the world’s oxygen in the atmosphere via photosynthesis [3]. They are the
primary food source for zooplankton. Together, these plankton form the base of the
ocean’s food chain, without which sharks, tuna, mackerel and other small fish would
not survive. In turn, fish provide nearly 20% of total protein for humans.

Plankton may be key indicators of climate change as production depends
upon water temperature and acidity, and nutrient availability. Coccolithophore
phytoplankton produce dimethylsulphide and other volatile compounds, affecting
cloud formation over the oceans [4]. Long term climate change could alter the
plankton community structure, affecting seasonal plankton blooms, and so affect
the marine food chain. Collapse or extinction of a plankton population may push
the climate system across a tipping point. Indeed Falkowski [7] writes regarding the
crucial role played by phytoplankton in offsetting the effects of burning fossil fuels:

. . . if the phytoplankton in the upper ocean stopped pumping carbon down to the deep sea
tomorrow, atmospheric levels of carbon dioxide would eventually rise by another 200 p:p:m:
and global warming would accelerate further.

PlankTOM5 [13], PlankTOM10 [12], and MAREMIP (MARine Ecosystem
Model Inter-comparison Project [16]. See also [1]) are examples of global marine
models, representing ecosystems with many different plankton functional types,
developed to quantify the interactions between climate and ocean biogeochemistry,
especially through CO2. The merits of incorporating such complex ecological
models into operational global climate models is questionable in the absence of
a thorough understanding of the behaviours supported by such models in their own
right. Our approach is to gain understanding from a study of much simpler models.

In this paper we consider a simple model of two different prey populations
of phytoplankton P1, P2, being eaten by a population of predator zooplankton
Z, where the interacting plankton populations are connected by a single limiting
nutrient N. We focus on behaviour that is possible in this P1P2ZN model for
plankton population dynamics as we vary the zooplankton mortality parameter,
and as we change the zooplankton grazing function from discriminate (� D 1) to
indiscriminate (� D 0) prey hunting behaviour.
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11.2 The Plankton Model

We study the P1P2ZN model for plankton dynamics:

PP1 D P1Œ
�1N

N C �1
� �1Z

1C �1P1 C ��2P2
� �1�; (11.1)

PP2 D P2Œ
�2N

N C �2
� �2Z

1C ��1P1 C �2P2
� �2�; (11.2)

PZ D ZŒ
�1.1 �  1/P1

1C �1P1 C ��2P2
C �2.1 �  2/P2
1C ��1P1 C �2P2

� �Z �; (11.3)

together with the nutrient N mass conservation condition:

PN D � PP1 � PP2 � PZ; (11.4)

for two phytoplankton prey populations P1 and P2 and one zooplankton predator Z,
where P1 C P2 C Z C N D 1. See [5, 6] for further details.

The various parameters appearing in Eqs. (11.1)–(11.3) (except for �) are
explained in Table 11.1.

Table 11.1 Measured parameter values for Eqs. (11.1)–(11.3) and their physical interpretations

Par. Process Value Reference

�1 Maximum rate of N uptake by P1 1:00 Gabric et al. [9]

�2 Maximum rate of N uptake by P2 1:15 Muller-Niklas and Herndl [15]

�1 Half-saturation constant for N uptake by P1 0:25 Slagstad and Stole-Hansen [17]

�2 Half-saturation constant for N uptake by P2 0:07 Billen and Becquevort [2]

�1 Z grazing rate on P1 6:18 Hansen et al. [11]

�2 Z grazing rate on P2 1:85 Gabric et al. [9]

�1 Half-saturation constant for Z uptake of P1 5:50 Fenchel [8]

�2 Half-saturation constant for Z uptake of P2 5:50 Fenchel [8]

�1 P1 specific mortality rate 0:00 Gabric et al. [10]

�2 P2 specific mortality rate 0:26 Moloney et al. [14]

�Z Z specific mortality rate 0:19 Moloney et al. [14]

 1 Proportion of P1 uptake excreted by Z 0:40 Moloney et al. [14]

 2 Proportion of P2 uptake excreted by Z 0:40 Moloney et al. [14]
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11.2.1 The Four Cases of Interest

There are four combinations of cases that are of interest:

• specialist (or discriminate) vs generalist (or indiscriminate) grazing;
• facultative vs obligate omnivory by Z.

The specialist predator (� D 0) feeds on multiple prey resources, but on each
independently of the other, and in a discriminating manner. The feeding of the
generalist predator (� D 1) on each prey resource is indiscriminate. See Cropp
et al. [6] for a more detailed explanation of these grazing functions, which are used
in the green ocean components of several climate change programs (for example by
Sailley et al. [16]).

We define Z to be a facultative omnivore if it can survive on either P1 or P2
independently:

0 < �Z < min.
�1.1 �  1/
1C �1

;
�2.1 �  2/
1C �2

/ D �Zmin; (11.5)

while Z is an obligate omnivore if it must have P1 present (this choice comes from
the parameter values given in Table 11.1) in order to survive; we order P1 and P2 to
get:

�Zmin < �Z < max.
�1.1 �  1/

1C �1
;
�2.1 �  2/

1C �2
/ D �Zmax: (11.6)

Using the parameter values in Table 11.1,

.
�1.1 �  1/

1C �1
;
�2.1 �  2/

1C �2
/ D .0:5705; 0:1708/; (11.7)

so that Z is a facultative omnivore if

0 < �Z < �Zmin D 0:1708; (11.8)

and an obligate omnivore, (requiring the presence of P1 to survive) if:

0:1708 < �Z < �Zmax D 0:5705: (11.9)

If �Z > 0:5705, Z is no longer a viable population and dies out.
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We shall therefore describe the dynamics in terms of bifurcation transition
diagrams as �Z varies, for both � D 0 and � D 1.

11.2.2 Critical Points

Our analysis of the critical (or equilibrium) points of (11.1)–(11.4) and their linear
stabilities uses the same notation and labelling as [5]. Indeed the analyses for the
origin and prey-only critical points are identical to that in [5]. Also, there is no
predator-only critical point nor a pure prey-prey critical point for �Z > 0.

11.3 Generalist Predation � D 1, Indiscriminate Grazing

When � D 1, we have generalist predation. By evaluating the Jacobian of the rhs of
Eqs. (11.1)–(11.3) at each of the critical points listed in Table 11.2, we determined
the eigenvalues and so the linear stability of each critical point in terms of the
predator mortality �Z . We then combined these results with numerical integrations
of Eqs. (11.1)–(11.3) to produce a bifurcation transition diagram in terms of the
maximum and minimum values of prey P2 as �Z varies.

To produce the transition diagram, we fixed �Z and integrated the system
numerically for 20;000 time units, ignoring transients. We plotted the maximum
and minimum values of prey P2 over each oscillation; for steady states, these reduce
to the steady state value of P2 for the relevant critical point. We then took the final
variable values as the initial conditions for the next value of �Z and repeated the
procedure. The results are summarised in Fig. 11.1.

Table 11.2 Critical points of
Eqs. (11.1)–(11.3), and their
labels as in [5]

Critical point Label .P1;P2; Z;N/

Origin .0; 0; 0; 1/

Prey A .P1A; 0; 0;NA/

Prey C .0;P2C ; 0;NC/

Predator-Prey D .P1D; 0; ZD;ND/

Predator-Prey F .0;P2F; ZF;NF/

Predator-Prey-Prey E .P1E;P2E; ZE;NE/
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Fig. 11.1 Bifurcation transition diagram for generalist grazing (� D 1) for 0 	 �Z 	 0:6. ‘blue
circle’ indicate maximum and ‘red star’ minimum values of the amplitude of P2 over each cycle.
The ‘x’ denotes the stable critical point F steady state, the yellow denotes the stable critical point
D steady state, and the green the stable critical point A state. HBn denotes Hopf bifurcation for
critical point n. There are two branches of stable critical point E steady states, one joining the end
of the steady critical point F steady state to HBE1 , the other joining HBE2 to the stable critical
point D steady state (Color figure online)

For 0 < �Z < 0:11, we obtain stable .P2;Z;N/ limit cycle oscillations. This
predator-prey state then undergoes a supercritical Hopf Bifurcation at �Z D 0:11

(labelled as HBF in Fig. 11.1), following which we have stable critical point
.0;P2F;ZF;NF/ steady states for 0:11 < �Z < 0:17. .0;P2F;ZF;NF/ then loses
stability to stable critical point .P1E;P2E;ZE;NE/ steady states, which exist in the
region 0:17 < �Z < 0:225. Stable .P1;P2;Z;N/ oscillations then appear via a
supercritical Hopf bifurcation (labelled as HBE1 in Fig. 11.1). These oscillations
persist until a second supercritical Hopf bifurcation (HBE2) at �Z D 0:49 gives rise
once more to stable .P1E;P2E;ZE;NE/ steady states for 0:49 < �Z < 0:56, before
P2 ! 0 and this prey-prey-predator state loses stability to a stable .P1D; 0;ZD;ND/



11 Plankton Modelling 187

t
0 200 400

0

0.5

1
Prey P 2

t
0 200 400

0

0.5

1
Predator Z

0 200 400
0

0.5

1
Prey P 2 (blue), Predator Z (red)

P2

0 0.5 1

Z

0

0.5

1

Fig. 11.2 P2 and Z time series, and the .P2; Z/ phase portrait for the facultative omnivore predator-
prey F for � D 1 and �Z D 0:05

steady state at �Z D 0:56. This critical point D steady state has a very small window
of stability: 0:56 < �Z < 0:57. For �Z > 0:57, Z is no longer viable as Z ! 0 and
we are left with only a stable A prey steady state thereafter.

We found no evidence of chaotic states for � D 1.
Figure 11.2 shows the time series and phase portrait for the facultative omnivore

.P2;Z;N/ when �Z D 0:05. The time scale is such that 3650 time units 	 1 year.
Figure 11.3 shows time series and a three-dimensional phase portrait for the obligate
omnivore .P1;P2;Z;N/ for �Z D 0:45.
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Fig. 11.3 P1, P2 and Z time series, and a 3-D phase portrait for the obligate omnivore � D 1 and
�Z D 0:45

11.4 Specialist Predation (� D 0, Discriminate Grazing)

When � D 0, we have specialist predation. Following the procedure outlined in
the previous section, we produced a bifurcation transition diagram in terms of the
maximum and minimum values of prey P2 as �Z varies. The results are summarised
in Fig. 11.4.

For 0 � �Z < 0:11, we again obtain stable .P2;Z;N/ limit cycle oscillations.
This F predator-prey state then undergoes a supercritical Hopf Bifurcation (labelled
as HBF in Fig. 11.4) at �Z D 0:11, following which we have a stable F steady state
for 0:11 < �Z < 0:17. .0;P2F;ZF;NF/ then loses stability to .P1E;P2E;ZE;NE/

oscillations at �Z 	 0:168. In view of (11.8), Z is a facultative omnivore in this
region.

For 0:168 < �Z < 0:533, P1 is no longer zero and we find predominantly chaotic
.P1;P2;Z;N/ oscillations, before P2 ! 0, resulting in this prey-prey-predator state
losing stability to a stable .P1D;ZD;ND/ steady state at �Z D 0:533. This critical
point D steady state is stable in a larger window of 0:533 < �Z < 0:57 than for the
generalist case. From (11.9), Z is now an obligate omnivore, requiring the presence
of P1 to exist.
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Fig. 11.4 Bifurcation transition diagram for specialist grazing (� D 0) for 0 	 �Z 	 0:6. The
maximum (blue ‘circle’) and minimum (red ‘star’) values of the amplitude of P2 over each cycle
as �Z varies. Also shown are regions of stability of critical point F steady states (blue ‘times’),
critical point D steady states (yellow ‘circle’) and critical point A steady states (green ‘circle’).
HBF denotes the supercritical Hopf Bifurcation for critical point F (Color figure online)

The prey-only critical point A is unstable for �Z < 0:57. For �Z > 0:57, Z is no
longer viable as Z ! 0 and we are left with only a stable critical point prey A steady
state thereafter.

We now show plots of time series and phase portraits for selected values of �Z in
the range 0:17 < �Z < 0:53, chosen from Fig. 11.4.

For �Z D 0:2, we are just inside the chaotic regime for the obligate omnivore
.P1;P2;Z;N/. Since Z requires the presence of P1 to exist, Fig. 11.5 shows that
P1 and Z are synchronised, with Z leading P1, but both are out of phase with P2.
The .P1;P2;Z/ phase portrait shows that the system never visits the interior of the
.P1;P2/ plane, in contrast to the example shown in Fig. 11.6.
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Fig. 11.5 Time series for P1, P2 and Z, and a 3-D .P1;P2; Z/ phase portrait for � D 0 and �Z D
0:2

Fig. 11.6 As in Fig. 11.5 but for �Z D 0:3
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Fig. 11.7 Periodic E solutions for � D 0 and �Z D 0:33

When �Z D 0:3, we are in the middle of the chaotic regime for E. Figure 11.6
shows P1 and Z are still synchronised, with min.Z/ 	 8:10�15, but out of phase
with P2. Now the trajectory visits the interior of the .P1;P2/ plane.

Intermingled with the chaotic behaviour, there are small windows of periodicity.
Figure 11.7 shows the behaviour in one such window (which extends from 0:329 <

�Z < 0:331) for �Z D 0:33. Figure 11.8 shows chaotic ‘pinball’ dynamics: P1 and
P2 alternate in dominance; Z is still linked with P1. Rapid oscillations in P1 and
Z are interleaved with long slow oscillations, each irregular. In comparison with
Figs. 11.5 and 11.6, counter-intuitively, an increase in Z mortality �Z , has rendered
Z more robust. Again note the trajectories do not visit the interior of the .P1;P2/
plane.

Just prior to loss of stability of the E state, Fig. 11.9 shows a periodic
.P1;P2;Z;N/ cycle. Here min.P2/ 	 6:10�42. Since 20;000 time units 	 6 years,
the very low values for P2 between sudden growth spurts, could be misconstrued as
possible extinction of P2. This is an example of a ‘breather’: in dynamical systems
language, this is where a solution arises out of exponentially small terms.
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Fig. 11.8 Chaotic ‘pinball’ dynamics: rapid oscillations, with long slow oscillations interspersed
for � D 0 and �Z D 0:45
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Fig. 11.9 Long periodic oscillations of E for � D 0 and �Z D 0:53
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11.5 Discussion

In this paper we reported on our investigations of a system of four coupled non-
linear ordinary differential equations for plankton predator-prey-prey interactions,
comprising two phytoplankton P1, P2 populations, one zooplankton Z population,
and one limiting nutrient N. Because of the constraint P1 C P2 C Z C N D 1, this
system reduces to three coupled nonlinear differential equations for P1;P2;Z.

We considered four different types of grazing using measured parameter val-
ues:

• specialist (or discriminate) and facultative: � D 0, 0 < �Z < 0:1708;
• specialist and obligate (Z requires the presence of P1 to exist): � D 0, 0:1708 <
�Z < 0:5705;

• generalist (or indiscriminate) and facultative: � D 1, 0 < �Z < 0:1708;
• generalist and obligate: � D 1, 0:1708 < �Z < 0:5705.

These different grazing strategies create very different system behaviours. For
specialist grazing, the system exhibits periodic .P2;Z;N/ limit cycle behaviour as
well as stable critical point F steady states for �Z < 0:1708, before losing sta-
bility to chaotic .P1;P2;Z;N/ behaviour, interspersed with thin periodic windows.
Numerical integrations show long periods when P2 takes very small values, but then
recovers. Such behaviour could have significant implications in both climate change
studies and fisheries management.

For generalist grazing, the model exhibits only simple oscillations or stable
steady states, regardless of Z being a facultative or an obligate omnivore.

Less complex than operational models such as PlankTOM5 [13] or PlankTOM10
[12], our model has interesting and complicated limit cycle behaviour for measured
parameter values that correspond to plankton blooms in the Earth’s oceans. For
operational models, obligate generalist grazers appear to provide the most desirable
outcomes of stability and predictability, thereby giving more reproducible results
under changes in environmental forcings.
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Chapter 12
Chaos Theory, Fractals and Scaling
in the Radar: A Look from 2015

Alexander A. Potapov

Abstract Results of application of theory of fractal and chaos, scaling effects and
fractional operators in the fundamental issues of the radio location and radio physic
are presented in this report. The key point is detection and processing of super
weak signals against the background of non-Gaussian intensive noises and strays.
An alternative—the radar range is increased dramatically. The results of researches
of spectrum fractal dimensions of lightning discharge in the middle atmosphere at
attitudes from 20 to 100 km which are above the majority of clouds are presented.
The author has been investigating these issues for exactly 35 years and has obtained
results of the big scientific and practical worth. The reader is invited to look at the
fundamental problems with the synergetic point of view of non-Markovian micro-
and macro systems.

12.1 Introduction

The entire current radio engineering is based on the classical theory of an integer
measure and an integer calculation. Thus an extensive area of mathematical analysis
which name is the fractional calculation and which deals with derivatives and
integrals of a random (real or complex) order as well as the fractal theory has been
historically turned out “outboard” (!). At the moment the integer measures (integrals
and derivatives with integer order), Gaussian statistics, Markov processes etc., are
mainly and habitually used everywhere in the radio physics, radio electronics and
processing of multidimensional signals. It is worth noting that the Markov processes
theory has already reached its satiation and researches are conducted at the level of
abrupt complication of synthesized algorithms. Radar systems should be considered
with relation to open dynamical systems. Improvement of classical radar detectors
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of signals and its mathematical support basically reached its saturation and limit. It
forces to look for fundamentally new ways of solving of problem of increasing of
sensitivity or range of coverage for various radio systems.

At the same time I’d like to point out that it often occurs in science that
the mathematical apparatus play a part of “Procrustean bed” for an idea. The
complicated mathematical symbolism and its meanings may conceal an absolutely
simple idea. In particular the author put forward one of such ideas for the first time
in the world in the end of seventies of twentieth century. To be exact he suggested to
introduce fractals, scaling and fractional calculation into the wide practice of radio
physics, radio engineering and radio location. Now after long intellectual battles my
idea has shown its advantages and has been positively perceived by the majority
of the thoughtful scientific community. For the moment the list of the author’s and
pupils works counts more than 750 papers including 20 monographs on the given
fundamental direction. Nowadays it is absolutely clear that the application of ideas
of scale invariance—“scaling” along with the set theory, fractional measure theory,
general topology, measure geometrical theory and dynamical systems theory reveals
big opportunities and new prospects in processing of multidimensional signals
in related scientific and engineering fields. In other words a full description of
processes of modern signal and fields processing is impossible basing on formulas
of the classical mathematics [1–11].

The work objective is to consider the use of the fractal theory and effects of
physical scaling in development of new informational technologies using examples
of solving of up-to-date basic radar problems. The author has been investigating
these issues in V.A. Kotel’nikov IREE RAS for exactly 35 years.

12.2 On the Theory of Fractional Measure and Nonintegral
Dimension

The main feature of fractals is the nonintegral value of its dimension. A development
of the dimension theory began with the Poincare, Lebesgue, Brauer, Urysohn
and Menger works. The sets which are negligibly small and indistinguishable
in one way or another in the sense of Lebesgue measure arise in different
fields of mathematics. To distinguish such sets with a pathologically complicated
structure one should use unconventional characteristics of smallness—for example
Hausdorff’s capacity, potential, measures and dimension and so on. Application of
the fractional Hausdorff’s dimension which is associated with entropy conceptions,
fractals and strange attractors has turned out to be most fruitful in the dynamical
systems theory [1, 3–7, 9–11]. This fractional dimension is determined by the
p—dimensional measure with an arbitrary real positive number p proposed by
Hausdorff in 1919. Generally the measure conception is related neither to metric nor
to topology. However the Hausdorff measure can be built in an arbitrary metric space
basing on its metric and the Hausdorff measure itself is related to the topological
dimension. The Hausdorff–Besicovitch dimension is a metrical conception but
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there is its fundamental association with topological dimension dim E, which was
established by L.S. Pontryagin and L.G. Shnirelman who introduced a conception of
the metrical order in 1932: the greatest lower bound of the Hausdorff–Besicovitch
dimension for all the metrics of compact E is equal to its topological dimension
dim E � ˛.E/. One of much used methods for estimation of sets Hausdorff
dimension known as the mass distribution principle was proposed by Frostman in
1935.

Sets whose Hausdorff–Besicovitch dimension is a fractional number are called
fractal sets or fractals. More strictly, set E is called fractal (a fractal) in the wide
sense (in the B. Mandelbrot sense) if its topological dimension is not equal to the
Hausdorff–Besicovitch dimension, to be exact ˛0.E/ > dim E. For example, set E
of all the surd points [0; 1] is fractal in the wide sense since ˛0.E/ D 1, dim E D 0.
Set E is called fractal (a fractal) in the narrow sense if ˛0.E/ is not integer. A fractal
set in the narrow sense is also fractal in the wide sense.

12.3 Measuring of Fractal Dimension and Fractal Signatures

Fractal methods can function on all signal levels: amplitude, frequency, phase and
polarized. The absolute worth of Hausdorff–Besicovitch dimension is the possibility
of experimental determining [3–10]. Let’s consider some set of points N0 in d—
dimensional space. If there are N(")—dimensional sample bodies (cube, sphere)
needed to cover that set with typical size ", at that

N ."/ 	 1="D; " ! 0 (12.1)

is determined by the self-similarity law.
The practical implementation of the method described above faces the difficulties

related to the big volume of calculations. It is due to the fact that one must measure
not just the ratio but the upper bound of that ratio to calculate the Hausdorff–
Besicovitch dimension. Indeed, by choosing a finite scale which is larger than two
discretes of the temporal series or one image element we make it possible to “miss”
some peculiarities of the fractal. Building of the fractal signature [4–7] or estimates
dependence (1) on the observation scale helps to solve this problem. Also the fractal
signature describes the spatial fractal cestrum of the image. In IREE RAS we
developed various original methods of measuring the fractal dimension including
methods: dispersing, singularities accounting, on functionals, triad, basing on the
Hausdorff metric, samplings subtraction, basing on the operation “Exclusive OR”
and so on [4–7]. During the process of adjustment and algorithms mathematical
modeling our own data were used: air photography (AP) and radar images (RI)
on millimeter waves [9]. Season measurements of scattering characteristics of the
earth coverings were already naturally conducted on wavelength 8.6 mm by the
author in co-operation with representatives of Central Design Bureau “Almaz” from
a helicopter MI-8 in the 1980s of twentieth century.
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A significant advantage of dispersing dimension is its implementation simplicity,
processing speed and calculations efficiency. In 2000 it was proposed to calculate
a fractal dimension using the locally dispersing method (reference for example [4–
7, 9–11]). In the developed algorithms they use two typical windows: scale and
measuring. The scale window defines the necessary scale of measurements which
the scaling is observed in. That is why the scale window serves for selection of the
object to be recognized and its following description in the framework of fractal
theory. An image brightness or image intensity local variance is determined by
the measuring window. The locally dispersing method of the fractal dimension
D measurements is based on measuring a variance of the image fragments inten-
sity/brightness for two spatial scales:

D 	 ln �22 � ln �21
ln ı2 � ln ı1

: (12.2)

In formula (2) �1; �2—root-mean-squares on the first ı1 and second ı2 scales of
image fragment, respectively. Accuracy characteristics of the locally dispersing
method were investigated in [4, 5, 7]. It is proved [7] that in the Gaussian
case the dispersing dimension of a random sequence converges to the Hausdorff
dimension of corresponding stochastic process. The essential problem is that any
numerical method includes a discretization (or a discrete approximation) of the
process or object under analysis and the discretization destroys fractal features.
The development of special theory based on the methods of fractal interpolation
and approximation is needed to fix this contradiction. Various topological and
dimensional effects during the process of fractal and scaling detecting and multi-
dimensional signals processing were studied in [4–11].

12.4 Textural and Fractal Measures in Radio Location

During the process of radio location the useful signal from target is a part of the
general wave field which is created by all reflecting elements of observed fragments
of the target surrounding background, that is why in practice signals from these
elements form the interfering component.

It is worthwhile to use the texture conception to create radio systems for the
landscape real inhomogeneous images automatic detecting [4–6, 9]. A texture
describes spatial properties of earth covering images regions with locally homoge-
nous statistical characteristics. Target detecting and identification occurs in the case
when the target shades the background region at that changing integral parameters
of the texture. Many natural objects such as a soil, flora, clouds and so on reveal
fractal properties in certain scales [4–6].

The fractal dimension D or its signature D(t, f, �!r ) in different regions of the
surface image is a measure of texture, i.e., properties of spatial correlation of
radio waves scattering from the corresponding surface regions. At already far first
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steps the author initiated a detailed research of the texture conception during the
process of radio location of the earth coverings and objects against its background.
Further on a particular attention was paid to development of textural methods
of objects detecting against the earth coverings background with low ratios of
signal/background [4].

12.5 Fractal Signal and Image Processing in the Interference

The author was the first who shows that the fractal processing excellently does for
solving modern problems when processing the low-contrast images and detecting
super weak signals in high-intensity noise while the modern radars does not
practically function [4–7, 9–11]. The author’s developed fractal classification was
approved by B. Mandelbrot during the personal meeting in USA in 2005. It
is presented on Fig. 12.1 where the fractal properties are described, D0—is a
topological dimension of the space of embeddings.

FRACTALS

A Infinite Number 
оf Scales and Self - 
Similarity (Scaling)

The Hausdorf 
Fractal Dimension

D > D0  

The Number of
Iteration
n → ∞ 

Mathematical Physical

The Hausdorf
Fractal Dimension

D ≥ D0  

Finite Number of
Iteration

n

Fractional 
Derivates

and Integrals

A Finite Number of
Scales and Self - 

Similarity (Scaling)

A Piecewise
Differentiable 

Function

Fig. 12.1 The author’s classification of fractal sets and signatures
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Fig. 12.2 Textural and
fractal methods of processing
low-contrast images and
super weak signals in
high-intensity non-Gaussian
noise
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The textural and fractal digital methods under author’s development (Fig. 12.2)
allow to overcome a prior uncertainty in radar problems using the sampling
geometry or topology (one- or multidimensional). At that topological peculiarities
of the sampling and also the scaling hypothesis and stable laws with heavy “tails”
get important as opposed to the average realizations which frequently have different
behavior [4–7, 9–11].

12.6 Development of “Fractal Ideology” in Radio Physics

A critical distinction between the author’s proposed fractal methods and classical
ones is due to fundamentally different approach to the main components of a signal
and a field. It allowed to switch over the new level of informational structure of
the real non-Markov signals and fields. Thus this is the fundamentally new radio
engineering. For 35 years of scientific researches my global fractal scaling method
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Fig. 12.3 A sketch of author’s new informational technologies development basing on fractals,
fractional operators and scaling effects for nonlinear physics and radio electronics

has justified itself in many applications—Fig. 12.3. This is a challenge to time in
a way. Here only the facts say! Slightly exaggerating one can say that the fractals
formed a thin amalgam on the powerful framework of science of the end of twentieth
century. In the modern situation attempts of underestimating its significance and
basing only on the classical knowledge came to grief in an intellectual sense.

In fractal researches I always rest upon my three global theses:

1. Processing of information distorted by non-Gaussian noise in the fractional
measure space using scaling and stable non-Gaussian probabilistic distributions
(1981)—Figs. 12.1, 12.2, and 12.3.

2. Application of continuous nondifferentiable functions (1990)—Fig. 12.1.
3. Fractal radio systems (2005)—Figs. 12.3 and 12.4 [4–7, 9–11].
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Fig. 12.4 The author’s conception of fractal radio systems, devices and radio elements

A logic aggregation of the problems triad described above into the general
“fractal analysis and synthesis” creates a basis of fractal scaling method (2006)
and a unified global idea of the fractal natural science and fractal paradigm (2011)
which were proposed and are investigated by the author now [4–7, 9–11]. Basing
on the matter reviewed above next we will proceed to description of the fractal
radar conception and also issues of its scale-invariant principles application in other
systems of radio monitoring. In fact the question is about a fundamentally new type
of radio location: fractal scale or scale-invariant radio location.

12.7 Principles of Scale-Invariant or Fractal Scaling Radio
Location and Its Applications

At the moment world investigations on fractal radio location are exclusively
conducted in V.A. Kotel’nikov IREE RAS. Almost all the application points
of hypothetic or currently projectable fractal algorithms, elements, nodes and
processes which can be integrated into the classical radar scheme are represented
on Fig. 12.5. The ideology of proceeding to the fractal radar is based on the fractal
radio systems conception—Fig. 12.4.

In particular a multifrequency work mode is typical for the fractal MIMO-system
[11–13] proposed by the author earlier since fractal antennas can radiate several
waves lengths at the same time. Building of a tiny fractal radar with fractal elements
and modern parametrons is possible for unmanned aerial vehicles (UAV).

At the same time the fractal processing at the point of control of UAV transmitted
information will allow to improve sharply and automatize the processes of detecting,
clustering and identification of targets and objects. Moreover UAV fractal coating
will sharply reduce the probability of its detecting in flight.
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Fig. 12.5 The points of application of fractals, scaling and fractional operators for proceeding to
the fractal radar

12.8 Fractal Detection of Objects on Images from SAR
and UAV

The base data for digital fractal processing of radar images were obtained by satellite
radar with the synthetic aperture (SAR) PALSAR of L-range (Japan). PALSAR is
a space SAR at wavelength 23 cm with spatial resolution of about 7 m which is
developed by Japanese agency JAXA and which was successfully working on orbit
from 2006 till 2011.

A radar image of Selenga estuary in Transbaikalia obtained in the FBS high
resolution mode on the coherent horizontal polarization on 7 August 2006 is
presented on Fig. 12.6 as an example.

The shooting zone of about 60  50 km includes the forest covered mountainous
area Hamar-Daban (at the bottom, it is reproduced by a brighter tone with the typical
“crumpled” structure), the flat area of Selenga estuary (in the middle of the top
image part, it is reproduced by darker tones) and the smooth water surface of the
lake Baikal (the black segment in the left upper corner of the image). The banded
structures are seen in the flat part of the image, these are the bounds of agricultural
fields. Also the clusters of bright objects are seen, these are the strongly reflecting
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Fig. 12.6 Selenga estuary on
the P´£ PALSAR photo
from 7 August 2006

Fig. 12.7 The result of
fractal processing of the P´£
PALSAR

elements of buildings and other constructions in the range of settlements. The long
twisting dark lines on the plain are the multiple arms of Selenga.

The fields of local values of dispersing fractal dimension D were measured at the
first stage of radar images fractal processing by a SAR (Fig. 12.7). Next the empiric
distribution of values of the instant fractal dimension D was obtained Fig. 12.8.

Below the examples of fractal clustering over D are presented (Figs. 12.9 and
12.10). The selected image fragment with fractal dimension D 	 2.2 nearby the first
big peak (Fig. 12.8) is presented on Fig. 12.9. The selected image fragment with
fractal dimension D 	 2.5 (	 Brownian surface) nearby the third and fourth big
peak (Fig. 12.8) is shown on Fig. 12.10.
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Fig. 12.8 An empiric distribution of values of the instant fractal dimension D

Fig. 12.9 A fragment with D � 2.2

Previously invisible (hidden) peculiarities (for example earth coverings distant
probing clustering data [4–6]) along with a stable distribution by earth coverings
types are registered after fractal processing of surface images. It allows speaking of
application of fractal recognition methods for the identification of image parts which
are “invisible” when using classical methods of clusterization over the brightness
field.
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Fig. 12.10 A fragment with
D � 2.5

12.9 Fractal Characteristics of the High-Altitude Discharges
in Ionosphere

Four million lightnings draw the sky every 24 h and about 50 lightnings draw
the sky every second. And over the lead thunderheads, a light show of “unreal
lightnings” is developing in the upper atmosphere: azure jets, red-purple sprites,
red rings of highly soaring elves. These are discharges of very high energy which
do strike the ionosphere and not the ground! Thus high-altitude electrical discharges
(20–100 km) subdivide into several basic types: elves, jets, sprites, halo and so on—
Fig. 12.11 (This is the first colour image captured of one by NASA aircraft in 1994).
A history brief: a significant event occurred in the Earth study history in the night of
5 to 6 July 1989. Retired professor and 73 years old NASA veteran John Randolph
Winkler pointed an extremely sensitive camera recorder to thunderstorm clouds and
then he detected two bright blazes during inspecting the record frame by frame. The
blazes go up to the ionosphere in contrast to lightning’s which should go down to
the ground. This way the sprites were discovered. The sprites are the biggest high-
altitude discharges in the Earth atmosphere. After these publications NASA had not
already been able to disregard the potential threat to space vehicles and they started
a comprehensive research of high-altitude discharges.

The most short-lived high-altitude discharges are elves. They arise in the lower
ionosphere at altitudes 80–100 km. The luminescence arise in the center and
expands to 300–400 km for less than a millisecond and then it goes out. The
elves are born in 300 �s after a strong lightning stroke from a thunderstorm
cloud to the ground. It gets altitude 100 km for 300 �s where it “arouse” a red
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Fig. 12.11 Dynamical fractal
structures in the atmosphere
(copyright: Abestrobi
(Wikipedia))

luminescence of nitrogen molecules. The most enigmatic high-altitude discharges
are azure jets. These are also a luminescence of nitrogen molecules in the ultraviolet-
blue band. They look like an azure narrow inverse cone which “starts” from the
upper edge of a thunderstorm cloud. Sometimes jets reach altitude 40 km. Their
propagation speed varies from 10 up to 100 km/s. Their occurrence is not always
due to lightning discharges. Besides azure jets they mark out “azure starters” (they
propagate up to altitudes �25 km) and “giant jets” (they propagate up to altitudes of
the lower ionosphere about 70 km). Sprites are very bright three-dimensional blazes
with duration around milliseconds. They arise at altitude 70–90 km and descend
down 30–40 km. Their width reaches tens of kilometers in the upper part. Sprites
blaze up in the mesosphere in about 100th part of a second after the discharge of
powerful lightnings “cloud–ground.” Sometimes it occurs at a distance of several
tens kilometers horizontally from the lightning channel. The red-purple colour of
sprites as well as elves is due to the atmosphere nitrogen. The frequency of sprites
occurrence is about several 1000 events per 24 h over the entire globe. The fine
structure of the lower sprites part is characterized by dozens of luminous channels
with cross sectional dimensions from tens to hundreds meters. Sprites occurrence is
related with formation of high electrical dipole moment of uncompensated charge
after especially powerful lightning discharges cloud–ground with usually positive
polarity.

Dynamical spatial-temporal singularities and morphology of sprites can be
particularly explained by the discharges fractal geometry and percolation [14]. Here
we have one more example of a self-organized criticality when the system (a high-
altitude discharge in this case) dynamics is determined by reaching the threshold
of the so called directed percolation which characterizes a formation of branchy
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Fig. 12.12 The original sprite image (USA, NASA http://science.compulenta.ru/701264/)

Fig. 12.13 Results of fractal filtering of a sprite image: (a) a pattern of fractal dimension with the
mean value D D 2.3; (b) 2.8; (c) 3.0

(fractal) conductive channels overlapping all the sprite length. A different situation
arises with issues of data statistical processing.

Here the classical methods are used by tradition. It does not allow to extract
all the information about such newest atmospherically structures. Selected exam-
ples of our fractal processing of sprite profiles (Fig. 12.12) are presented on
Fig. 12.13a–c. Examples of fractal processing of a jet (Fig. 12.14a) are presented
on Fig. 12.14b, c.

The fractal-scaling methodology which was used for describing the morphology
of jets, sprites and elves can be successfully used to estimate their parameters
and dynamics of their evolution [14]. Then the mathematical physics problems are
solved.

http://science.compulenta.ru/701264/
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Fig. 12.14 Results of fractal filtering of a giant jet image (the photos were taken in China August
12, 2010) (a) the jet image [15], (b) and (c) profiles of D estimates

12.10 Fractal Signal Detectors in Radiolocation

Classical detectors and their mathematical supply have virtually reached its satu-
ration and limit. It causes searching principally new ways of solving the problem.
Principally, fractals and fractional operators are not possible one without the other.
We showed for the first time that fractal processing is suitable as well as possible for
solving modern problems of the low-contrast images identification and ultra weak
signal detection in the presence of intensive non-Gaussian noises, when modern
radars can not operate. One of our main conclusions is that working on the pointed
evaluation of the fractal dimension D leads to absurd results. At the same time
almost all the authors who begins using the fractal signal processing give absolutely
accurate meanings even with the RMS deviation! In our works we introduced fractal
signatures and fractal kepsters [4–7, 9, 16]. Therefore the accuracy problems in
digital fractal processing in real-time mode are solved.

The series of principally new fractal signal detectors (FSD) not mentioned by
me in press is shown below as an example of effective operation of the global
fractal methodology and the conception of radio systems and devices created by
the author. The main principles of fractal detection were proposed by us for the first
time as early as in 1989 works. At the same time a working model of the fractal
non-parametric radar signals detector (FNRSD—Fig. 12.3) was created. The high
accuracy of fractal detecting was proved. The main kinds of FSD proposed by us
during 2011–2012 are shown at Fig. 12.15.

Figures 12.16, 12.17, and 12.18 show selected results of fractal nonparametric
filtering of low-contrast objects. Aircraft images were masked by an additive
Gaussian noise. In this case, the signal/noise ratio (SNR) q20 D –3 dB. It is seen
in the figures that all desired information is hidden in the noise.

The optimum mode of filtering of necessary contours or objects is chosen by
the operator using the spatial distribution of fractal dimensions D of a scene. This
distribution is determined automatically and is shown in the right panel of the
computer display [4–7, 9].
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Fig. 12.15 The main kinds of new dynamical FSD proposed by author

Fig. 12.16 Real image
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Fig. 12.17 Source image and noise q20–3 dB

Fig. 12.18 Results of fractal filtration Fig. 12.17
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12.11 Wave Scattering by Fractal Surface

In many works it has been shown that diffraction by fractal surfaces fundamentally
differs from diffraction by conventional random surfaces and some of classical
statistical parameters like correlation length and root-mean-square deviation go to
infinity. This fact is result of self-similarity of fractal surface. In our work band-
limited Weierstrass function was used. For the scattered field analysis we use
Kirchhoff approach [17].

The most convenient function which both describes fractals well and is easy for
using in calculations is the modified 2D band-limited Weierstrass function. It has a
view:
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where cw—the constant, that provides unit normalization; q > 1—the fundamental
spatial frequency; D—the fractal dimension (2 < D < 3); K—is the fundamental
wave number; N and M—number of tones; ®nm—an arbitrary phase that has a
uniform distribution over the interval [��; �].

Since the natural surfaces are neither purely random nor periodical and are often
anisotropic [2, 4] then function that was proposed above is a good candidate for
characterizing of natural surfaces. Figure 12.19 shows us examples of band-limited
Weierstrass function for different scales. It is also important that function (12.3)
describes the mathematical fractals only if M and N go to infinity. It is clear from
Fig. 12.19 that the function proposed possesses the self-similarity and multi-scale.

Fig. 12.19 W(x,y) for (a)—N D 2, M D 3, D D 2.01, q D 1.01; (b)—N D 5, M D 5, D D 2.5,
q D 3; (c)—N D 10, M D 10, D D 2.99, q D 7
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Fig. 12.20 Function Q
 dependence on D for various values of q

In this section of our work a statistical parameter is introduced for estimation
of the fractal dimension D influence and other fractal parameters influence on the
surface roughness. Such parameter as the correlation length
 is conventionally used
for numerical characterization of rough surface [4, 18, 19]:

Q
.�/ D h� .�/is D
" �
1 � q2.D�3/��
1 � q2.D�3/N�

#
N�1X
nD0

q2.D�3/nJ0 .Kqn�/ (12.4)

There are Q
 dependences on q and D in Fig. 12.20 and Fig. 12.21 respectively.
It is shown that with increased value of D, Q
 decreases more rapidly for the same
variation of q. It is shown in Fig. 12.20 that value of Q
 reduces steadily with the
increase of D value. However Q
 does not change when q D 1.01.

As mentioned above the Kirchhoff approach has been already used for analysis
of wave scattering by fractal surfaces [18, 19]. Conventional conditions of the
Kirchhoff approach applicability are the following: irregularities are large-scale;
irregularities are smooth and flat. In the following calculations we assume that
observation is carried out from Fraunhofer zone, an incident wave is plane and
monochromatic, there are no points with infinite gradient on the surface, the Fresnel
coefficient V0 is constant for this surface, surface large scales are much greater than
incident wave length. Shading effects will be taken into account in the following our
investigations and studies.
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Fig. 12.21 Function Q
 dependence on q for various values of D

Scattering indicatrix for average field intensity and two-dimensional surface [18,
19]:
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We have got a data base of scattering indicatrixes for various fractal scattering
surfaces [19–21]. Also in terms of Weierstrass function (12.1) for one-dimensional
fractal scattering surface we obtained scattering field absolute value dependences
on incident angle and surface fractal dimension D. In subsequent computer calcula-
tions, we used the above expression for the coherence function

‰k D hEs.k1/Es.k2/i (12.6)

of the fields scattered by the fractal surface [19–21].
We can show that the tail intensity of signals reflected by a fractal surface is

described by power functions:

I.t/ 
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�
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�3�D

(12.7)
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Result (12.7) is very important because, for standard cases, the intensity of a
reflected quasi-monochromatic signal decreases exponentially. Thus, the shape of a
signal scattered by a fractal statistically rough surface substantially differs from the
shape of a scattered signal obtained with allowance for classical effects of diffraction
by smoothed surfaces [20, 22].

The results obtained can be widely applied for designing various modern radio
systems in the microwave, optical, and acoustic bands.

12.12 Personal Meetings with Benois Mandelbrot

As it’s seen from above the author uses the “fractal” term almost everywhere. In
conclusion I’d like to share my impressions about the meeting with B. Mandelbrot
with readers. The meeting occurred in his house near New York in December
2005. At that time I was responsible for the international project. I had to visit
America frequently. My personal meeting with the founder of the fractal geometry
B. Mandelbrot occurred on Friday 16 December 2005. Before this the intensive
correspondence was going on both when I was still in Moscow and when I
flew across USA from south to north with my lectures on the results of 5 years
international project. Mandelbrot himself was in an extensive trip but his secretary
phoned and told that the maitre would come back home ad hoc. He was extremely
interested to meet at home and talk with the Russian physicist who dealt with various
“fractal” experiments and applications of the fractal theory in radio physics and
radio electronics.

I and my translator got to the New York Central railroad terminal by taxi and then
we got to an electric train leaving at 9.30 local time. After a while we went down
on a small station and went to the B. Mandelbrot’s house by taxi. As approaching
to the house we saw a silhouette of a high strong grayish man with glasses on a lace
appeared behind the door. He dressed in home clothing. While we are getting off
the car he’s already opened the front glassed-in door. Mandelbrot’s looking at me,
smiling, holding out a hand first. Then he’s suggesting us to undress and all of us are
going to his room. He’s asking me to seat down in front of him explaining that this
way is better for him to talk and there is a more comfortable arm chair for me. There
is his world-famous fundamental book “Mandelbrot B.B. The Fractal Geometry of
Nature” on the table. I am taking out my monograph on fractals and presenting
to Mandelbrot. At that I am telling about scientific work and my results on fractal
applications in radio physics, answering his questions. Mandelbrot is listening with
a keen interest and very attentively. It is a surprise for him that there is such a
success on fractals’ applications in Russia and there is already the direct approach
to the fractal technologies. He became very interested in my proposed conception
of fractal radio systems and in designing an essentially new fractal elemental base.
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Hi is well familiar with fractal antennas. Suddenly he’s spoken that sometime
the matter would be in producing a fractal capacitor! I reply with enthusiasm that
I am already “caught” with this idea for a lot of years and a big paper about
physical modeling of fractal impedances, fractional operators and production of
fractal capacitors is ready for the press. This is incredibly: we are thinking about
realizing the same idea on the opposite sides of the world! Mathematical questions
are less interesting for Mandelbrot. He is getting more and more interested in
disciplines created in IREE RAS: the fractal radio physics and the fractal radio
electronics, its development.

Human simplicity, openness, interest in the surrounding world and wisdom—
these particular properties are peculiar to B. Mandelbrot. Sometime they tell about
B. Mandelbrot’s arrogance. I can assert only the reverse. He did not make me feel
the difference between our statuses during all the conversation. He first inquired
about all fractal developments.

Forty minutes later Mandelbrot stands up and after apologizing and going out to
other room he comes back with a pile of his books. He asks me if I already have
some of these books. Mandelbrot says that he likes my works. He inquires when
and how my book was written. I reply that I prepared the first version as early as
in the beginning of nineties of XX. Then the search for publishers began and at
the same time improving and significant rework of the monograph text was going
on. Mandelbrot says that now he has two books on the go: the one is in Italy and
the other is in America. With a smile he admits that he writes slowly, thoroughly
using all his old works. Our conversation’s been lasting for almost 2 h. Tempus
fugit. At a certain moment he is called by the phone. He suggests to give us a lift
to the railway station on his car. Mandelbrot drives the car on his own. We are at
the railway terminal already at noon. I tell goodbye to B. Mandelbrot and we are
waving to each other. This is the unforgettable meeting. There are all the minutest
details of the meeting with the great scientist in my memory.
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12.13 Conclusions

The fractal problem in radio location, radio physics and radio engineering is indeed
immense. Here I illustrate only fundamental initial issues. It is always hard and
even impossible to recede from habitual standards : : : But the author has good
reasons to think that the extensive and valuable material he already obtained and
the results of further researches will be used in advanced radio systems. The fractal
radio physics, fractal radio engineering and fractal radio location are peculiar radio
sciences. They are suffused with a spirit and ideas of the classical radio physics
and radio engineering but at the same time they are fundamentally new areas of
focus. The results of conducted researches oriented to enhancing the interference
immunity of work of radio systems on a radio channel with high-intensity noise and
distortion showed opportunities of the approach on the basis of using textural and
fractal-scaling methods of detecting and processing random signals and fields.

The author raised these questions back in 1980, and for 35 years has been
successfully working on their resolution [4–6]. Fractal methods similar to ones
presented in this work can be applied when considering wave and oscillatory
processes in optics, acoustics and mechanics. Results and conclusions obtained by
the author and his pupils have great innovative potential. We think that its realization
will resolve a number of current problems of radio physics, radio engineering,
radio location, communication and operation and also will allow to provide a new
quality for detecting and recognition systems and also development of the new
informational technologies.

Many important stages in fractal directions development including the stage of
this science field formation have been already passed. However many problems are
still to be solved. Results and specific solutions are not of so greatest value like the
solution method and its approach are. The method is created by the author [4–14,
16, 19–21, 23–25]. It is necessary to put it all into practice!
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Chapter 13
Simulation of Multidimensional Nonlinear
Dynamics by One-Dimensional Maps with Many
Parameters

Irina N. Pankratova and Pavel A. Inchin

Abstract We propose a concrete class of discrete dynamical systems as nonlinear
matrix models to describe the multidimensional multiparameter nonlinear dynam-
ics. In this article we simulate the system asymptotic behavior. A two-step algorithm
for the computation of !-limit sets of the dynamical systems is presented. In
accordance with the qualitative theory which we develop for this class of systems,
we allocate invariant subspaces of the system matrix containing cycles of rays
on which !-limit sets of the dynamical systems are situated and introduce the
dynamical parameters by which the system behavior is described in the invariant
subspaces. As the first step of the algorithm, a cycle of rays which contains the
!-limit set of the system trajectory, is allocated using system matrix. As the second
step, the!-limit set of the system trajectory is computed using the analytical form of
one-dimensional nonlinear Poincare map dependent on the dynamical parameters.
The proposed algorithm simplifies calculations of !-limit sets and therefore reduces
computing time. A graphic visualization of !-limit sets of n-dimensional dynamical
systems, n > 3 is shown.

13.1 Introduction

To understand and analyse nonlinear multidimensional dynamics simple one-
dimensional semi-dynamical systems with complicated dynamics and fairly com-
plete qualitative description are used. These are, first of all, one-dimensional discrete
dynamical systems, i.e. iterations of real one-dimensional maps. The first systematic
results on one-dimensional discrete dynamical systems appeared in the early 60s
and are linked to Sharkovskii [1]. Many properties of the dynamical systems are
the direct result of the theories developed by Sharkovskii [2] and Feigenbaum [3].
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A representative of this class of systems is the dynamical system generated by
the one-dimensional logistic map [4]. It was the first example of a complicated,
chaotic behaviour of the system given by a simple nonlinear equation. Even though
the properties of the one-dimensional logistic map are well studied, researchers
continue referring to it as standard to check the many nonlinear phenomena [5–
7]. However, up until now there is no well-developed qualitative theory available,
which could be successfully applied in order to conduct a complete study of the
multidimensional dynamical systems dependent on parameters. Therefore, it is
appropriate to select concrete classes of the dynamical systems and to develop
qualitative theories so as to be able to describe the properties and movements of
the systems within these theories.

We focus our research on a concrete class of dynamical systems which represent
a variant of generalization of one-dimensional discrete dynamical systems to the
multidimensional multiparameter case. The systems are generated by a map in the
form of the product of scalar and vector linear functions on compact sets of the
real vector space. We propose the systems as nonlinear matrix models with limiting
factors to describe the macro system dynamics, for example the dynamics of many
group biological population in the presence of limited resources. In these models
the scalar function plays a role of a limiting factor.

In recent years, the methods of computer simulation have become an essential
tool in the study of the dynamical systems [8, 9]. The modern computer capabilities
make it possible to include in the system complicated nonlinear relationships
between its variables and a large number of parameters. The presence of nonlinear
relationships and multiparameter dependence reproduces in the model the phenom-
ena which can be observed in actual experiments and which cannot be produced by
splitting the system into separate components or reducing the number of parameters
or variables. Thus, the improvement of current methods and the development of
new ones for the dynamical system research are necessary and relevant [10, 11].
In this case the quantitative research provides a theoretical basis for the algorithm
constructions, and hence is particularly important.

We develop a qualitative theory for the class of the dynamical systems considered
(see e.g. [12] and references there in). The systems possess the obvious properties
which are determined by the linear vector function (the system matrix) and which
do not depend on the scalar function. In particular, in vector space we allocate
invariant subspaces containing cycles of rays of the system matrix, on which !-
limit sets of dynamical systems are situated. On the other hand, the complicated
nonlinear dynamics of the systems can occur due to the scalar function. We study
the system dynamics in the invariant subspaces containing cycles of rays using one-
dimensional nonlinear Poincare maps and introduce the dynamical parameters by
which the system behavior is described in the invariant subspaces. In this article we
show the results of the simulation of the system asymptotic behavior and present an
algorithm for the computation of !-limit sets of the class of the dynamical systems
considered. The algorithm consists of two steps of calculations in accordance with
the qualitative theory. As the first step, a cycle of rays which contains the !-limit
set of the system trajectory is allocated using system matrix. The period of the cycle
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of rays, the number and values of the dynamical parameters by which the system
dynamics is described on the cycle of rays, are calculated as well. As the second
step, the !-limit set of the system trajectory is computed using one-dimensional
nonlinear Poincare map dependent on the dynamical parameters. As a rule, these
parameters differ from the system parameters and are unknown or not directly
defined or computable [13]. The novelty of our research lies in the determination of
the dynamical parameters and in the analytical form of one-dimensional nonlinear
Poincare maps dependent on the dynamical parameters. We shall see below that
the number of the dynamical parameters cannot be reduced without the loss of
accuracy of the system behavior description, even when this number is greater than
the number of the system parameters, i.e. entries of the system matrix.

13.2 Class of the Dynamical Systems

Let F be a map of the form [12]

F W Rn ! R
n; Fy D ˚.y/Ay (13.1)

where R
n is n-dimensional real vector-space, ˚.y/ is a scalar function, A is a linear

operator (a matrix of n-th order). Allocate set X � R
n invariant under F i.e., F W

X ! X. Map F in general is non invertible and generates in X a cyclic semi-group
of maps fFmg, m 2 ZC, which is called the dynamical system and is denoted by
fFm;X;ZCg. Set X is called phase space of the dynamical systems and specifies a
set of valid states of the dynamical system, ZC D N

Sf0g is the set of nonnegative
integers. Set fFmyg where y is fixed and m runs over ZC, is called a trajectory of
the point y. The dynamics of the system fFm;X;ZCg is understood as the process of
transition from one state to another.

The dynamics of the system fFm;X;ZCg generally varies for different ˚.y/.
So, the systems fFm;X;ZCg are different too. But the systems possess similar
properties which are determined by the linear operator A and do not depend on the
function ˚.y/. Therefore, the systems fFm;X;ZCg form one class of the dynamical
systems.The elements of this class are, in particular, linear dynamical systems with
˚.y/ D const and the dynamical system f f m;X;ZCg generated by the map f of the
form [14]

f W Rn ! R
n; f y D .1 � kyk/Ay: (13.2)

Here k � k is a vector norm in R
n. If n D 1 then A D � and we arrive at the well-

known logistic map mentioned above

 � W R1 ! R
1;  �x D �.1 � x/x: (13.3)
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13.3 Mathematical Models with Limiting Factors

We propose the class of the dynamical systems fFm;X;ZCg as mathematical models
for describing the dynamics of model and real macro systems in the presence of
limiting factors.

Let

n be a number of macro system’s components,
y 2 X be a vector of components’ characteristics,
A be a matrix of components’ interrelations and
˚.y/ be a limiting function (limiting factor).

Let X be a compact of the form

X D fy 2 R
n j y � 0; kyk � ag; a < 1: (13.4)

Here y D .y1; : : : ; yn/
0 � 0 means yi � 0, i D 1; n and is called a nonnegative

vector. Note that X is invariant under F i.e., F W X ! X if and only if [12]

1) ˚.y/ � 0 is continuous function on X,
2) A D .aij/ � 0 (aij � 0, i; j D 1; n),
3) kAk � aC�1 where C D max

y2X
˚.y/kyk and kAk is a subordinate matrix norm for

a matrix A based on the vector norm in R
n.

Then the dynamical system fFm;X;ZCg describes the macro system’s state
changes over time m. For any nontrivial fFmyg we introduce a unit vector

em.y/ D kFmyk�1Fmy (13.5)

which is called a macro system structure and defines the ratio between components’
characteristics at the time m. The state of macro system governed by the dynamical
system fFm;X;ZCg (at the time m) we characterize by

Sm.y/ D fFmy; em.y/g: (13.6)

The limiting factor concept was first coined in biology by Libig J. and generally,
means a factor that restricts or constrains the dynamics of the system, process or
phenomena. By using limiting factors, the state of the system is regulated.

On one hand, models given by the systems fFm;X;ZCg generalize in n-
dimensional case many nonlinear one- and two-dimensional models widely used in
practice. In particular, for describing the dynamics of n-group biological population
with discrete generations in the presence of limited resources we propose the
dynamical system generated by the map f of the form (13.2). In this representation
y is a vector of densities of population age groups so, kyk � 1. If n D 1

then y is the total population density, A � � is the reproductive coefficient. The
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dynamical system f m
� ; I;ZCg in the interval I D Œ0; 1� describes a mechanism of

self-regulation of one-species biological population with limited resources [2].
On the other hand, models given by the systems fFm;X;ZCg generalize many

matrix models, in particular, Leslie models both linear and nonlinear [15, 16].
The last ones contain matrices A of the special form (Leslie matrix and its
generalizations) and concrete limiting functions ˚.y/.

13.4 Qualitative Theory

We develop a qualitative theory for the class of the dynamical systems fFm;X;ZCg
and apply the results of the theory in computer simulation of their dynamics.

Denote by !Fy !-limit set of the trajectory fFmyg (the set which attracts fFmyg
when m ! C1). A ray passing through y 2 R

n, y ¤ 0 is the set cone.y/ D
f˛y j ˛ � 0g. By a system of p elements we mean a sequence of these elements,
p 2 N. Then the system of distinct rays l1, : : : ; lp is called a cycle of rays of a linear
operator A of period p 2 N and is denoted by Lp D .l1; : : : ; lp/ if

Alk D lkC1; k D 1; : : : ; p � 1; Alp D l1:

As easy to see, that invariant sets of the system fFm;X;ZCg are contained in
invariant subspaces of A. Denote ker A D fy 2 R

n j Ay D 0g and let

P.AI p; �/ D Ap � �pE; � 2 C:

We call the intersection l \ X as a segment of ray l (ray segment). Denote by ��
map F when n D 1,

��x D �˚.x/x (13.7)

where x 2 Ia D Œ0; a�. According to the qualitative theory there exist p, q 2 N,
� 2 �.A/ such that any nontrivial (¤ f0g) !Fy is located in some invariant subspace

kerP.AI p; �/; �p > 0;

on a cycle of rays Lq where �.A/ is a spectrum of A and q is a divisor of p, 1 �
q � p [17]. More precisely, !Fy � Jq D Lq \ X � kerP.AI p; �/ \ X and Jq

consists of q ray segments invariant under Fq. Without losing generality we agree
q D p and !Fy � Jp. Then for the map F with ˚.kyk/ map Fp represents in Jp as a
superposition

Fp D ��p ı ��p�1 ı : : : ı ��1 (13.8)

with some numbers �1 > 0, : : : ; �p > 0.
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If to consider the system fFm; kerP.AI p; �/\X;ZCg, then�1, : : : ; �p turns into
parameters. We call them dynamical parameters in contrast to the system parameters
i.e. entries of the matrix A. Thus, in the whole X, the system dynamics is defined
by the trajectory behavior in the sets kerP.AI p; �/ \ X. So, by the parameters �1,
: : : ; �p the system dynamics is described in the whole X. Every ray segment of Jp

is the one-dimensional Poincare section for the trajectories located in Jp and Fp is
the one-dimensional first return (Poincare) map for the map F in each ray segment
of Jp. For the special form ˚.kyk/ map Fp has analytical representation (13.8).

Denote by e1, : : : ; ep the unit vectors directed along the ray segments of Jp. We
define e1, : : : ; ep and �1, : : : ; �p by the recurrent formulas. Let p D 1. Then e1 � 0

is an eigen vector of the matrix A � 0 and there exists an eigen value � > 0 such as
Ae1 D �e1. So, (13.8) takes the form

F D ��: (13.9)

Let p > 1 then e1 � 0 is not an eigen vector of A, ke1k D 1 and e2, : : : ; ep are
defined by the sequence

ej D kAej�1k�1Aej�1; j D 2; p: (13.10)

Denote

�j D kAejk; j D 1; p: (13.11)

For the map F with different ˚.kyk/, parameters �1, : : : ; �p and vectors e1,
: : : ; ep are the same and their computation by the formulas (13.10) and (13.11) does
not cause difficulties.

It should be noted that the dynamical parameters, their number and values depend
on the location of the sets kerP.AI p; �/ \ X in X and Jp in kerP.AI p; �/\ X and
vary, as a rule, at the fixed entries of the matrix A. So, the dynamical parameters
differ from the system parameters and identify the regions with different dynamics.
Their number is less than or equal to p and may be very large, in particular, when
p > n2 at n � 19 [17]. According to (13.8) all parameters are involved in the
representation of the map Fp so, their number cannot be reduced.

13.5 Computer Simulation

We present computer simulation of multidimensional dynamics by the numerical
realization of the models for the dynamics of biological population governed by the
system f f m;X;ZCg.
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In the population model:

f is a map of the form (13.2): fy D .1 � kyk/Ay,
n is a number of population age groups,
y is a vector of densities of the age groups, y 2 X,
X is of the form (13.4) if a D 1 i.e.,

X D fy 2 R
n j y � 0; kyk � 1g;

A is a matrix of intergroup relations,

˚.kyk/ D 1 � kyk is a population size limiting function corresponding to the
assumption of limited resources or available living space.

Let kyk D
nP
1

yi then the condition 3) for the invariance of X is as follows:

kAk D max
j

nP
iD1

aij � 4. For any nontrivial f f myg a unit vector em.y/ D k f myk�1f my

is an age structure of many-group population and defines the ratio between
densities of age groups in total population density (at the time m). The state of
the population governed by the dynamical system f f m;X;ZCg (at the time m) is
Sm.y/ D f f my; em.y/g.

According to the Sect. 13.4, for any nonzero initial state S0.y/, the structure of
many-group population is asymptotically stabilized as p-periodic and is character-
ized by p vectors e1, : : : ; ep defined by (13.10).

As to the population dynamics, we get that the many-group population model
given by the dynamical system f f m;X;ZCg asymptotically has the same behavior
as a family of one-species population models given by the one-dimensional
systems f. �p ı  �p�1 ı : : : ı  �1/m; I;ZCg where  �p ı  �p�1 ı : : : ı  �1 is a
superposition (13.8) with the map  � of the form (13.3) and �1, : : : ; �p defined
by (13.11).

Therefore, the population governed by the system f f m;X;ZCg, has stabilized p-
periodic structure at its final state, p < 1 and densities of its age groups that change
periodically or not. The same asymptotic behavior has the macro system governed
by the system fFm;X;ZCg i.e., exactly p-periodic structure, p < 1 and periodic or
nonperiodic changes of its components’ characteristics.

13.6 Method of One-Dimensional Superpositions

For correct determining cyclic !-limit sets of large periods or chaotic!-limit sets of
the system fFm;X;ZCg, we propose a computer method which we call as a method
of one-dimensional superpositions. Let F be the map with a function ˚.kyk/. The
method implies calculations in two steps.

As the first step, a stable set Jp is determined for any nonzero y 2 X using n-
dimensional linear dynamical system fAm;Rn;ZCg. At this step, period p is obtained
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and the unit vectors fe1, : : : ; epg along the rays of a cycle of rays Lp in which !Fy
is located, are computed by the matrix A. The number 1 � t � p and values of
the dynamical parameters by which the trajectory dynamics in Jp is described, are
computed as well. Here t is a divisor of p.

As the second step, set !Fy is determined using the one-dimensional dynamical
system f.��p ı ��p�1 ı : : : ı ��1/m; I;ZCg. At this step, the norm x of the projection
of the vector y in the set Jp is obtained and a one-dimensional !-limit set of the
trajectory f.��p ı��p�1 ı: : :ı��1/mxg is computed by the one-dimensional nonlinear
Poincare map Fp with t parameters �1 > 0, : : : ; �t > 0. The points of this !-limit
set are coordinates of vectors which compose the part of !Fy along the vector e1.

The parts of !Fy along the other vectors e2, : : : ; ep are of the same type and
structure and the vectors which compose these parts, are computed as well.

The method proposed simplifies calculations for large n and p for instance, p >
n2, p > n3 and so on. Indeed, at first we detect the stable cyclic set Jp and later
on we describe the trajectory dynamics in it. Using the method we compute any
nontrivial set !Fy, in particular, we obtain the final state of many-group population
for any nonzero initial state S0.y/. The method also provides graphic visualization
of !-limit sets of n-dimensional dynamical systems fFm;X;ZCg at n > 3 and for
large p.

The calculation algorithm for the computation of the set !Fy and the final macro
system state by the method of one-dimensional superpositions is as follows:

1. enter initial vector y � 0 and matrix A � 0 (kyk < 1, kAk � 4);
10. calculate eigen values and eigen vectors of matrix A;
2. calculate period p, vectors e1, : : : ; ep of the set Jp and t distinct parameters �1,
: : : ; �t of the set f�1, : : : ; �pg using (13.10), (13.11);

3. determine projection y0 of vector y in the set Jp and calculate its norm x D ky0k;
4. obtain !-limit set of the trajectory f��p ı��p�1 ı : : :ı��1/mxg as some trajectory

i.e.,

!��p ı��p�1ı:::ı��1 x D fx�
i gi�0

where x�
i D .��p ı ��p�1 ı : : : ı ��1/ix�. After these calculations the iteration

process stops;
5. The set !Fy is a result of calculations done in step 4 and is the following set

!Fy D fx�e1; .��1x
�/e2; .��2 ı ��1x�/e3; .��3 ı ��2 ı ��1x�/e4; : : : ;

.��p�1 ı : : : ı ��1x�/ep; x�
1 e1; : : :g:

So, vectors of !Fy are of the form uei where u 2 !��p ı��p�1ı:::ı��1 x, i D 1; p.
The final macro system state is a pair

S�.y/ D f!f y;Eg where E D fe1; : : : ; epg:
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13.7 Examples

13.7.1 The Dynamics of the Northern Spotted Owl

The algorithm for computing of the population dynamics is implemented in Matlab
as a function with the following input data: n-dimensional initial vector y � 0 and
matrix A � 0 of n order. The final state of the population is given as an output data
in the form of two arrays of vectors.

Let us demonstrate this algorithm by simulating the dynamics of the Northern
Spotted Owl. As an input data we use the real .3  3/-matrix A from article of
Lamberson, McKelvey, et al. [18]. We would like to take into account limited
resources for the population. For this purpose, in contrast to the linear model
considered in [18], we propose nonlinear models given by the dynamical system
f f m;X;ZCg. In the models a proportional coefficient c is introduced as an input
data to make the dynamics nontrivial.

Example 1

1. enter (a) y D .0:1; 0:1; 0:1/0,

(b) A D c �
0
@ 0 0 0:33

0:18 0 0

0 0:71 0:94

1
A :

The elements in the top row of matrix A are fertility rates; the sub-diagonal
elements are survival rates; nonzero diagonal element aii is the probability
that females in stage i remain in the same stage next year;

(c) c D 3:1 (almost maximum available value of c to fulfil kAk � 4);

2. vectors ej of the set E with accuracy � D 10�5 and parameters �j, j D 1; p, are
computed. As a result, after eight iterations, a convergence of the sequence of
vectors ei.y/ to E is obtained. The ultimate result is p D 1, .n  p/-array E D feg
and array U D f�g where e D .0:2402; 0:0440; 0:7159/0, � D 3:0491;

3. given x D 0:8;
4. given accuracy � D 10�5 for the trajectory f m

� xg obtain ! �x as a cycle of
period 2 per 56 iterations,

! �x D fx�;  �x�g D f0:5909; 0:7371gI

5. for the trajectory f f myg

!f y D f0:5909e; 0:7371eg D
D f.0:1419; 0:0260; 0:4230/0; .0:1770; 0:0324; 0:5277/0g:
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The final population state is

S�.y/ D f!f y;Eg where E D feg

and is shown in Fig. 13.1a.

Example 2

1. enter (a) y D .0:1; 0:1; 0:1/0,

(b) A D c �
0
@ 0 0 0:33

0:18 0 0

0 0:71 0

1
A : In this model we suppose that there are no

females remaining in the same stage next year;
(c) c D 5 (almost maximum available value of c to fulfil kAk � 4);

2. vectors ej with accuracy � D 10�5 and parameters �j, j D 1; p, are computed.
As a result, after 3 iterations, a convergence of sequence of vectors ej to set
E is obtained. The ultimate result is p D 3, .n  p/-array E D fe1; e2; e3g
and array U D f�1; �2; �3g where e1 D .0:3333; 0:3333; 0:3333/0, e2 D
.0:2705; 0:1475; 0:5820/0, e3 D .0:5559; 0:1409; 0:3032/0, �1 D 2:0333, �2 D
1:7275, �3 D 1:5009;

3. as A3 D �3I then y, f f myg and !f y are located in the same set J3. Here � D
1:7404 is the maximum eigenvalue of A � 0 and I is identity matrix. So, calculate

x D
3P
1

yi D 0:3;

4. given accuracy � D 10�5 for the trajectory f. �3 ı  �2 ı  �1/mxg obtain
! �3ı �2ı �1 x as a fixed point per 8 iterations,

! �3ı �2ı �1 x D fx�g where x� D 0:368I

5. for the trajectory f f myg

!f y D fx�e1; . �1x
�/e2; . �2 ı  �1x�/e3g D f.0:1227I 0:1227I 0:1227/0;

.0:1279I 0:0698I 0:2752/0; .0:2394I 0:0607I 0:1306/0g:

The final population state is

S�.y/ D f!f y;Eg where E D fe1; e2; e3g

and is shown in Fig. 13.1b.
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Fig. 13.1 Final state of three-group population: stable population structure characterized by unit
vector e and 2-year periodic age-group sizes defined by two vectors 0:5909e and 0:7374e (a);
3-year periodic population structure characterized by unit vectors e1, e2, e3 and 3-year periodic
age-group sizes defined by three vectors x�e1, . �1x

�/e2 , . �2 ı  �1x�/e3 (b)

13.7.2 The Dynamics of Macro System Composed of a Large
Number of Components

In the next two examples we demonstrate the advantages of the method of one-
dimensional superposition in graphic visualization of the final macro system state at
n > 3 and p > n. We briefly summarize the results obtained by the method. Assume
that the macro system dynamics is described by the dynamical system f f m;X;ZCg.

Example 3 Let n D 10 and A be .10  10/-matrix of a quasidiagonal form
fA1;A2;A3g with matrices Aj on the main diagonal,

A1 D
�
0 3:2

3:2 0

�
; A2 D

0
@ 0 2:56 0

0 0 3:2

4 0 0

1
A ; A3 D

0
BBBBB@

0 2:56 0 0 0

0 0 4 0 0

0 0 0 4 0

0 0 0 0 3:2

2:56 0 0 0 0

1
CCCCCA :

(Matrix A is not a real matrix of the subsystems’ relations, just some model matrix).
Matrix A has 10 eigenvalues in modulus 3:2.

Enter y D .0; 0:1; 0:1; 0:1; 0:1; 0:05; 0:05; 0; 0:3; 0:05/0 and A as an input data.
As an ultimate result we get p D 15 and .10  15/-array E consisting of 15

vectors.
Given accuracy � D 10�10 for the trajectory f. �15 ı  �14 ı : : : ı  �1/mxg its

!-limit set is a cycle of period 4.
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For the trajectory f f myg its !-limit set !f y is a cycle of period 60 D 4 � 15.
The final macro system state is S�.y/ D f!f y;Eg.
We present graphic visualization of the part of !f y located in Jp along the vector

e1 i.e., four vectors with coordinates x�, . �p ı : : : ı  �1/x�, . �p ı : : : ı  �1/2x�,
. �p ı: : :ı �1/3x�. In XY coordinate system four vectors with the same coordinates
along the unit vector of the bisector of the first coordinate angle are drawn and their
graphic image is shown in Fig. 13.2a. The parts of !f y located in Jp along the vectors
e2, : : : ; ep, are of the same type i.e., each of them consists of four vectors.

Example 4 Change the initial vector to y D .0:1; 0:1; 0; 0:3; 0:1; 0; 0; 0; 0:3; 0:05/0.
The ultimate result is p D 30 (the maximum possible value at n D 10), .1030/-

array E now consists of 30 vectors.
Given accuracy � D 10�10 for the trajectory f. �30 ı  �29 ı : : : ı  �1/mxg we

get non-stop iterative process when calculating its !-limit set. It means that !-limit
set is irregular or a cycle of a very large period. In this case we agreed to accept the
last 200 iterations when calculating the trajectory . �30 ı  �29 ı : : : ı  �1/mx as its
!-limit set.

Graphic visualization of 200 vectors which are the part of !f y located in Jp along
the vector e1, is presented in XY coordinate system by 200 vectors with the same
coordinates, along the unit vector of the bisector of the first coordinate angle. The
graphic image of these vectors is shown in Fig. 13.2b.
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Fig. 13.2 In an XY coordinate system, vectors visualizing the part of the limit set !f y of 10-
component macro system with p-periodic structure, along the unit vector e1 of macro system
structure: four vectors when macro system structure is 15-periodic (a); 200 vectors when macro
system structure is 30-periodic (b)
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13.7.3 Outcomes of Examples

Examples 1 and 2 show that in the first model the population structure is asymp-
totically stabilized and does not vary any more and population size, as well as age
group sizes change periodically every 2 years. In the second model the structure
of the population is stabilized and varies every 3 years along with the population
size and age group sizes. Examining the dynamics of the population, one can
see the mechanism of regulation or harvestable surplus of the population size
without affecting long term stability, or average population size. Indeed, according
to the second model all individuals of the third stage may be taken away after the
childbearing period (a33 D 0) every year. In spite of the structure of the population,
its size and age group sizes vary periodically, in this case the population remains
persistent.

Stabilized periodic structure of macro system is determined by its initial structure
and not its initial size. Indeed, by iterating the map F of the form (13.1) m times, we
write out Fmy D ˚.m/.y/Amy where

˚.m/.y/ D
m�1Y
iD0

˚.Fiy/;

y 2 X. Hence it follows that the directions of Fmy and Amy coincide, m D 1; 2; : : :

i.e., the directions of nonzero vectors of the trajectory fFmyg as m ! 1 are defined
by the linear part of the map F and are independent of the form of ˚.y/.

Let all nonzero entries of the matrix A be equal to 3:2 in the Examples 3 and 4.
Then �1 D : : : D �p D � D 3:2,  �p ı : : : ı  �1 D  

p
� and ! p

�
x is a cycle of

period 2 for any x 2 I [2, p. 26]. According to [19] there are more than one periodic
attractors and therefore more than one different dynamics of the map �p ı : : :ı �1 ,
p � 1 at the fixed parameter values. So, if there is only one asymptotic regime
of the map  �p ı : : : ı  �1 in the interval I at the fixed �1, : : : ; �p, then macro
systems with the same initial structure will have the same final state. If there are
more than one asymptotic regimes of the map  �p ı : : : ı �1 in the interval I at the
fixed �1, : : : ; �p, then macro systems with the same initial structure will have the
same stabilized periodic structure and may have different sizes changed periodically
(or not).

13.8 Conclusion

In this article we describe an approach we have developed to study multiparameter
nonlinear dynamics. The advantages of applying the results of the qualitative theory
and using the method of one-dimensional superpositions in a simulation of the
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dynamics are as follows:

1. The dynamical systems considered are nonlinear and thus very sensitive to the
data entry errors. The proposed method simplifies computations of the!-limit set
of the system trajectory. Firstly, a stable cycle of rays of period p, which contains
the !-limit set, is identified using the system matrix of the n-th order. Secondly,
the !-limit set is obtained using the non-linear one-dimensional map. As a result,
this leads to markedly reduced computing times, especially when the order n and
the periods p are large.

2. In an n-dimensional case, n > 3 it is impossible to obtain a graphic image of
!-limit sets of the dynamical system, e.g. to realize their types. However, we can
get graphic visualization of the part of !-limit sets consisting of vectors along
the first unit vector of the stable invariant set containing the !-limit set. In an
XY coordinate system, vectors along the unit vector of the bisector of the first
coordinate angle which have the same coordinates can be easily plotted.

3. Theoretical results of the qualitative theory help us to correctly interpret the
numerical results as well as to conduct an accurate computer simulation of the
system dynamics. We specify the number of iterations to detect a stable cycle of
rays containing the !-limit set of the system as well as the number of iterations
to compute the !-limit set.

4. The determination of the dynamical parameters and the calculation of their
number and values by the formulas provides the description of the system
dynamics in stable cycles of rays containing !-limit sets of the system and
therefore, the identification of the regions with different dynamics. Their number
may be very large, e.g. greater than the number of the system parameters.
However, one can see that this number cannot be reduced without the loss of
accuracy of the system behavior description.
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Chapter 14
Sudden Cardiac Death and Turbulence

Guillaume Attuel, Oriol Pont, Binbin Xu, and Hussein Yahia

Abstract Data acquired from the electrical activity of human hearts during
episodes of atrial fibrillation, a disordered arrhythmia that is a major cause of
stroke, reveals intriguing features for an excitable media: highly skew symmetric
probability distributions with heavy tails, long range correlations, and broad
singularity spectra. Interestingly, the relevant exponents extracted from these
empirical laws are stable over several minutes but not universal. Their stable
values are distributed among patients and areas of the heart. The question of
central clinical purpose is whether they might characterise locally the myocardium
contingent pathology. To achieve clarification of these peculiar facts, we were led
to devise a phenomenological model that departs from the conventional approach
to fibrillation. Instead of a defect mediated spiral wave “turbulence” induced by
front collisions, fibrillation is pictured here as a highly intermittent modulation of
cardiac pulse trains. It is based on the physiology of inter-cellular ionic exchanges,
which is associated with the natural degree of freedom of the inter-pulse duration.
We infer an experimentally unknown slow dynamics of inter-cellular coupling, that
may induce an inter-pulse effective coupling. This interaction creates a modulation
that may lead to intermittency in various ways. The exchange of charges occurs at
small scales in the model. They are passively advected at each interstitial junction
on fast time scales and on average collectively driving the larger scales. In fact, a
dimensionless number characterising the dynamics is an analogue of the Rayleigh
number. Away from a rapidly beating source, random back scattering and front
splitting make pulses follow random hierarchical “percolating” paths in 1D. We
discuss very briefly the topological origin of these dynamics. In the light of this
model, we don’t omit to mention some important physiological aspects of the
pathology that are still not well understood and more possibilities for the case
which comes to grip with sudden cardiac death.
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14.1 Introduction

Sudden cardiac death accounts for about 10% of all natural deaths in developed
countries and for about 50% of the mortality from cardiovascular diseases. Mean-
while, it is not really a pathology: statistical surveys have found risk factors but
which fail to be individually predictive [1]. In our present understanding, it can be
considered more as an accident. One cause of sudden cardiac death is fibrillation
of the ventricles. Experimental studies are difficult for obvious reasons. The milder
case of atrial fibrillation (AF), which is however one major cause of stroke in Europe
and North America, can be monitored and studied more easily. In this paper, we give
the general scheme of an analysis of AF that we are developing. We will shortly
discuss at the end some possible lessons we may learn from it for sudden cardiac
death.

The heart muscle is an excitable tissue, long believed to be a syncytium of
myocardial cells. Models of excitability for the heart are reaction-diffusion systems
that describe the propagation of electrical pulses, called action potentials. They
result from ionic exchange cycles between the cytoplasm of excitable cells and
their extra-cellular medium. A typical example is an action potential propagating
through a nerve axon [2] or throughout the myocardium [3–6]. In the right atrium
of a human heart, the sinus node (a pacemaker) ensures a periodic stimulation of
the tissue, from where pulses propagate regularly in normal sinus rhythm. In its
abnormal states, called arrhythmias, the myocardium is overwhelmed by rapid and
irregular patterns of activation. In part for the reasons we are exposing in the text,
we consider AF the most irregular arrhythmia, as illustrated in Fig. 14.1.

Chaos has been observed in cultures of automatic cardiac cells, through their
coupling to periodic stimulation, and also in the heart via the occurrence of
parasystoles. This can be traced to phase locking and chaos of relaxation oscillators
with periodic forcing, and could be well modelled by return maps [7–9]. Also,
period doubling, called alternans in this context, arises when the adaptation of the

35 s0

50 mV

0

Fig. 14.1 A radiography of the atrium with two bipolar electrodes is shown. Held by a medical
practitioner, one runs along the coronary sinus, while the other is located on the septum of the right
atrium close to the appendage
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action potential duration to an imposed rate becomes unstable [10]. For this reason,
alternans are thought in one hypothesis as a route to ventricular fibrillation [11].
Moreover, fibrillation in the atria were in some instances clinically found to follow
an inadaptation of the action potential duration [12]. However, an excitable limit
cycle is very robust when it comes down to chaos, because its saddle fixed point
does not give way to a homoclinic tangle. This can be understood by considering
the stable fixed point as an absorbing state, or a phase resetting state. Therefore, even
under periodic forcing, no return map can be drawn. In other words, the regularity
of the triggering sources is transferred to the limit cycle.

In contrast, as propagation becomes further involved in the arrhythmia, the usual
theoretical interpretation is based on a kind of defect mediated turbulence, specific
to excitable oscillators. Basically, spiral waves are often found more stable than
striped or other patterns in excitable media. This stems from the important fact that
an excitable pulse with a free end meets a region in a refractory state and starts
wandering about it [13–15]. It is also more fundamentally related to the topological
charge of the spiral core [16] and to the chiral symmetry breaking that an excitable
pulse carries with itself (a Bloch wall) [17–19]. Low dimensional aperiodicity has
again been observed before the onset of fibrillation for meandering spiral cores [20].
To account for spatio-temporal chaos a mechanism of front collisions is put forward.
If in oscillatory media spirals may break up due to a modulational instability of
the emitted pulse train from its meandering core, in excitable media the breakup
seems to amount to direct fore front and back front collisions within the pulse train
[21–23]. Notice that when a small diffusivity of the inhibitor is added, a curvature
instability may lead to front splitting and spiral turbulence near the Ising-Bloch
transition [24].

As successful as low dimensional chaos, and spatio-temporal chaos, in excitable
media may look in describing these arrhythmias, we show here why this paradigm
is quite inadequate to tackle an essential property of the recorded data, which hasn’t
been noticed so far.

A crucial aspect about the pathology is the intermittency of bursty occurrences
of the arrhythmia. Intermittent alternation of sinus rhythm with fibrillation is what
defines paroxysmal AF. This intermittency can be modulated by the external drive
of the autonomic nervous system, as shown by P. Coumel and co-workers, see
for instance [25]. Moreover, on the myocardium surface, within each episode of
fibrillation, the recorded signal is found to be more or less regular: the so called
“fragmentation” in clinical lingo. In fact, as we demonstrate in Sect. 14.2, the locally
recorded electrical potential exhibits many traits in common with hydrodynamic
intermittency. Another poorly understood fact is a reversible process of deterioration
of the myocardium during AF called remodelling [26]. It appears that the longer the
heart remains in a fibrillatory state, the poorer its conduction properties become, and
the more stable this abnormal state gets. We believe that these features are rooted in
some underlying chemical modulation of the electrical synapses between the cells.
Our model demonstrates this possibility.

We may look for the nucleation of metastable chaotic domains to explain such
observations. This has led us to find out a physiological path to the mechanism
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described by Pomeau [27]. As illustrated in [28], if a limit cycle is able to reach
its homoclinic connection, then bistability with another fixed point, or cycle, may
generate spatio-temporal intermittency. The difficulty is that an excitable limit cycle
is over-damped and very robust. No such saddle fixed point connecting with another
basin of attraction normally exists. Even worse would be to try to find a crisis
bifurcation to some strange attractor. Never mind, if the tissue is in fact capable
of generating another limit cycle, then the route devised by Y. Pomeau might be
reached. For instance a modulation of pulse trains would work. This can be indeed
the case as we show. This originates in the electrical coupling between the cells,
that under some circumstances which we describe, may grow collectively, versus
diffusively. One can thus rephrase the previous findings for oscillatory media in
terms of these collective modes, and find a variety of interesting scenarios. For
simplicity, we adopt a point of view à la Ginzgurg Landau.

We formulate therefore in Sect. 14.3 a derivation from first principles of the yet
unknown dynamics of ionic currents at the gap junctions. This dynamical coupling
between cells is considered as a synaptic plasticity. The point is to question the
importance of intrinsic fluctuations and disorder. We make sure that observing the
Ginzburg region of criticality in excitable reaction-diffusion systems is classically
impossible. Then, we will find out that cardiac pulses can be pinned where cycles of
neighbouring cells become out of phase with one another, because of interstitial
plasticity. This unfortunate plasticity may slowly contaminate the whole tissue,
which is what we will relate to electrical remodelling.

In Sect. 14.4, we very briefly sketch an interpretation. Due to the intrinsic noise,
the critical Ginzburg domain extends widely, leading to self organised criticality
(SOC). This maps to multiplicative noise, describing the singularities in the signal.

We will show throughout the text the high level of agreement between the patients
data and the model data.

14.2 Time Series, Fluctuations and Limitations of Excitable
Models

Surface electrical potentials recorded as time series during AF are called electro-
grams (egm), such as the one shown in Fig. 14.1. Normal frequency f , in beats
per minute, is about f 	 60 bpm, whereas during AF, it is typically in the
range of 200 bpm . f . 600 bpm. At first sight, egms during AF contrast to
normal as they seem to fluctuate randomly. Their amplitude also looks locally
abnormally oscillatory, Fig. 14.2. The auto-correlation function starts decreasing
rapidly, exponentially fast during the first 60ms or so, and goes on oscillating with
a slow decrease of the envelop, asymptotically as a power law, see Fig. 14.2, where
an indicative solid line 
 t�1 is drawn. Peaks appear naturally as multiples of the
average periodicity of the arrhythmia at about 300 bpm there. The identification of
the shorter time scale is expected and indicative of local incoherent oscillations, but
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Fig. 14.2 Left: two instances of one egm amplitude and its envelop at two different moments in
time, where a Hilbert transform was used. Right: two auto-correlation functions of egm envelops,
and of amplitudes in the inset, for two different locations on the heart

-25 25 mV

10

10

-1

-3

10-1 1

10-1

Fig. 14.3 Normalised probability density distributions of egm amplitudes in semilog scale, from
all over the atrium of one patient (left). Shown in loglog scale is the empirical collapse, for positive
values and various exponents � , on a scaling function G of Eq. (14.1) (right). Ac � 3� 5mV

the algebraic correlation law of the envelop is more suggestive of some collective
phenomena with quasi long-range order. Thus, we are led to look for some collective
modulation of the pulses.

We observe that fluctuations are large and their probability density distributions
collapse as is seen in Fig. 14.3. The high skewness and heavy tails are a hint of
underlying mechanisms. They can be cast into the form

P .A;Ac/ D A��G
�

A

Ac

�
(14.1)

where A is the egm varying amplitude in mV , Ac is a cut-off, � is a scaling exponent,
and a scaling function G decreasing rapidly towards zero. Very briefly summarized,
various values of � have been found. They range roughly between 1:2 < � < 3

among patients, and regions of the atria. To our knowledge, similar fluctuations
were not found in excitable systems, but are rather ubiquitous in complex systems.
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To name a few instances, they are found in random field Ising models [29], with
the Barkhausen noise as a magnetic field is applied to a dirty ferromagnet [30], for
magnetic penetration in hard superconductors [31–33], during the firing activity of
some neural networks [34–37], or in the intermittent regimes of strong turbulence
[38, 39].

Turning to continuous excitable media, they are modelled by reaction-diffusion
systems

(
@
@t

Um D R.Um; Jm/ C D�.Um/
@
@t

Jm D G.Um; Jm/
: (14.2)

Here, Um is associated with the membrane potential of a cell, and Jm is a vector
representing (non diffusing) inhibitors, associated with the many ionic currents
going through channels across the otherwise impermeable membrane of a cardiac
cell. In the limit of interest, time scales are well separated, that is Um is a fast
variable, while Jm is a slow variable. One usually denotes by ��1 	 1ms, the
typical fast time scale, which corresponds to the time for the insulating membrane,
of thickness ( 	 100 nm, to depolarise. This is possible at such short time scales
because Nernst-Planck thermal equilibrium is reached indeed thanks to facilitated
diffusion and active pumping of ions [40]. The slow time scale, associated with
repolarisation, is typically of the order of 100ms or greater.

Now, to be endowed with the property of excitability, the system’s null clines,
R D 0 and G D 0, basically intersect in a way as to produce locally a kind of saddle-
node configuration. Nonlinearities and dissipation (or periodic order parameters)
give rise to a limit cycle once an orbit is generated away from the saddle fixed
point. It is insightful to draw a straightforward analogy with a Van der Waals
diagram. Roughly speaking, the analogy goes as: a cycle “nucleates” each time the
“supercooled spinodal branch” is reached by a finite perturbation. The width of
the nucleation region corresponds to the degree of excitability. A Ginzburg-Landau
description of Eq. (14.2) reads as @

@t Um D � ı
ıUm

F0, with a free energy of the form

F0 D 1

2

Z
dxd

�
��U2

m C ˇ

2
U4

m C D .rUm/
2 � IUm

�
(14.3)

where all parameters are positive, I D J0 � Jm is a source term, and J0 is an external
input of current. Dimension d D 2 is appropriate for the atria, since the atrial
myocardium is very thin, typically of order 2mm thick, as it does not contribute
much to the pump function of the heart, while d D 3 is more adequate for the
ventricles. In fact dimension d D 1 is quite appropriate also for the description of
fast conducting fibres in both chambers.

Since the free energy has two local minima, depending on boundary conditions,
domain walls typically form. In source free conditions, their height is U0 D
2
q

�

ˇ
	 100mV and their thickness is the Ginzburg-Landau correlation length
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lc /
q

D
�

	 1mm. They propagate at constant velocity by diffusion, with a velocity

c / p
D� 	 1ms�1. The role of the recovery current Jm is to break the symmetry

between the two minima of the energy manifold, by favouring the return to one
of them, corresponding to the rest potential. In its most basic version, we have the
Fitzhugh-Nagumo model (FhN), with G.Um; Jm/ D �Um��Jm��, where � controls
the repolarisation time scale, and � is a leaking current. It defines a cell cycle.

For the sake of simplicity here, let us take � D 0, the condition of excitability
becomes � >

�

�
. Let us admit that FhN may spontaneously evolve into locally

aperiodic states, for instance with more complicated reactions G and the spiral
breakup mechanism [41]. Then, configuration averaging leads to an effective
reparametrization � ! � � �

�
, since one expects fast modes to be slaved to slow

modes and average as hJmi D �

�
hUmi. The mean field susceptibility may then

increase to very high values � 
 �
�

�
� �

��1 ! 1 on the verge of excitability,
thereby explaining the large fluctuations and long range correlations observed.

The argument above fails firstly because it only tells us locally that cycles will be
triggered almost with no threshold. Secondly, on a global scale, the narrowness of
the critical Ginzburg region in parameter space prevents any wild collective effect
to become observable [42]. Taking the order of magnitude of the diffusive length
of about lc 	 1mm and bringing it next to the microscopic cut-off length, the
maximum between the gap junction wall thickness ( 	 100 nm and the Debye
length, here about �D 	 10 nm , one obtains a very narrow width of the parameter
range, entirely unobservable in practice ı��1 
 (2l�2c . 10�10.

This rules out near equilibrium critical fluctuations in ordinary excitable media.
We have realized however that mean field arguments break down when the ionic
exchange current at the gap junction alters the effective potential energy of the cell,
in such a way as to restore a continuous symmetry, and approach an effective critical
region.

14.3 Incorporation of Cell to Cell Dynamical Coupling

The works in [43–45] show the crucial role played by the gap junctions, since they
are supposed to guarantee good coupling between the cells. However, in excitable
models it is not clear how bad conduction can be modelled. According to near
equilibrium thermodynamics, the exchange current may simply be written down
as Je D �gsrUm, where gs is a stationary conductance. The point is to demonstrate
that the perturbation of the opening and closing of the gap junction channels induce
some time lag in the activation of the cell.

Typical relaxation times of gap junctions are much larger than those of membrane
polarisation, but compare well with membrane repolarisation time scales. On
average they are of order & 100ms [46]. There is thus no alternative but to
consider the full kinetics of the gap junctions, at such high frequencies as found
in arrhythmias. This is a crucial aspect missing in common models for arrhythmias.
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Applying common wisdom on membrane physico-chemistry to the gap junctions,
replacing Um with rUm, yields a kinetic relaxation equation of the form [2]

@

@t
g D a.rUm/ .g0 � g/� b.rUm/g ; (14.4)

where the functions a.rUm/ and b.rUm/ are the respective average rates of opening
and closing of the gap junction channels. The constant g0 is a typical maximum
resting value, essentially gs D g0

a
aCb . The gradient is the one felt at the gap

junctions. So we turn to the question of how the electrical force �rUm can be
strong enough as to perturb a and b in order to make the current deviate from
electro-diffusion. Since a pulse front of typical width lc encompasses many cells,
the voltage difference 
 (rUm at a gap junction cannot be as strong as the one
felt across membranes. Nevertheless, gap junction channels have a very distinctive
role in inter-cellular communication. They are open at rest state, and very long
molecules permeate through. They are therefore inclined to a modulation of their
permeability, depending on the concentration levels of some messenger molecules
[47]. We explore here this possibility, letting some ions act on the gap junction
properties. This will simply arise from their naturally slow linear response to the
presence of high ionic concentration.

In that respect, there exists a point of view that allows us to characterise the ionic
flow by a dimensionless number. For certain values of this dimensionless number, an
instability will occur for the most unstable mode [48], which eventually will develop
dissipative structures [49, 50]. Upon forcing the system to higher values, secondary
instabilities may destabilise the primary structures, leading to a broad spectrum of
modes [51].

To construct our model, we basically use charge conservation and a kinetic
equation for the gap junction channel average opening under proper thermodynamic
forcing. As is depicted in Fig. 14.4, we consider an excess charge sitting at the gap
junction, and its effect on the equilibrium dynamics. The force is simply the electro-
chemical gradient. In 1D, as the sketch suggests, take a finite volume element V
spanning the gap junction, incorporating the excess charge and extending to the
membranes. Noting � the excess density, charge conservation inside this volume
reads @

@t� D �QgrUm, where the gradient is understood as a finite difference over
the closed surface. We used a perturbed conductance Qg, which is the important
assumption in our model. It states that excess charge density variations overrate
the stochastic averaging of the opening and closing of the channels, that would
otherwise set the conductance to its equilibrium value. Therefore, we need to
consider Eq. (14.4), which we will linearise as a.rUm/ D ˛� C a0, with ˛ a
control parameter, and b D b0 for the sake of simplicity of the demonstration. This
linearisation simply stipulates that the excess charge amounts to V� 	 CrUm,
with a gap junction effective capacitance C. Note that the extra cellular medium is
supposed to rest at a constant potential reference.

The combined equations basically say that excess charges are swept along the
small scale gradients (excess charges will tend to average out over large volume
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Fig. 14.4 Excess of positive
charge (black) sitting next to
the gap junction channels.
Arrows indicate inter-cellular
flows, which are generally
supposed to be diffusive
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elements comprising many cells), while variations of the conductance remain local.
Denoting � D a0 C b0, dropping the tilde for clarity, we get the following system of
equations

8̂̂
<
ˆ̂:

@
@t Um D �Um � ˇU3

m � Jm C D�Um � r .g�/
@
@t Jm D �Um � �Jm
@
@t g D ˛� � �g
@
@t� D �grUm � �2�

; (14.5)

where we have let the capacitance and volume C � 1, V � 1 without loss of
generality. The locally perturbed current is g� by construction. The evaporation rate
�2 is a local simplification of charge diffusion, for a fixed length scale, and is meant
to be small. This set is not parity invariant, and by construction one needs to take an
opposite ˛ to change directions of front propagation from the location of a source,
since the potential gradient will reverse sign.

As we described above, some important perturbations of the dynamics may
emerge at slow time scales. Indeed, this simple model is in spirit quite comparable
to a kind of Rayleigh instability, where ˛ plays the role of the gravitational pull.
Because the interface is fixed at the gap junction, no convective term is present.
More precisely, when only two cells are coupled with one free boundary, notice
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indeed how the first, third and fourth equations have the same structure as the Lorenz
system of ODE (where the opposite limit � ! 0 holds though). The analogue
Rayleigh dimensionless number is here Ra � ˛�

L��2
, which controls the effect of

thermodynamic forcing over dissipation, where L is an equilibrium length associated
with the slow time scales. In fact, we force the system at one end with an automatic
cell (a very rapid abnormal pacemaker), or similarly with an abnormal current leak
J0. Now, since on average we will have D

˝
�

L

˛ 	 J0, it is possible to rewrite

Ra � ˛J0
D��2

: (14.6)

So we expect a transition point towards chaos around Ra 
 1, for very small arrays,
of two to a very few cells, and to turbulence in longer arrays. This transition to high
dimensional chaos is illustrated in Fig. 14.5.

It is easy to quickly check the validity of this argument numerically. Starting
with parameters for which we observe regularity of beats and rhythm, decreasing D,
�2 or �, and raising ˛ makes it possible to reach a domain of turbulent dynamics
of � and g, that strongly affect Um and Jm, see Fig. 14.6. Here, we provide an
illustration of the turbulent domain with the same numerical values of the parameters
as in Fig. 14.6. We do find similar properties for the numerical data as for the
experimental data. It seems indeed that long range auto-correlations decrease as

 t�1 power laws. As shown in Fig. 14.7, probability density distributions of the
current divergence scale in the same way. Despite that the effect of the system size
seems negligible at first glance on the onset of turbulence, we find non universal
exponents, which appear to mark the distance from the source. Just as strikingly, the
broad singularity spectra, with a substantial contribution of negative exponents, can
be superposed completely, see Fig. 14.8. This tends to demonstrate the presence of
an identical random cascade process underlying the dynamics.

The transient time that the turbulent state takes to pervade the system could be
related to the electrical remodelling. We observe a typical time scale that reads like

Fig. 14.5 Poincaré section plots .�; g/, from maxima of Um, for 2, 3 and 4 cells coupled linearly,
in the special case � D 0 and � ! 1. The section on the left is from the famous Lorenz attractor.
One notes the spreading of points revealing the increase of the attractor dimension
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Fig. 14.6 Some traces of the gap current divergence, in the model in 1D, from near a source of
abnormal automaticity, cell #0, to further away. Spatio-temporal map of action potentials showing
many back-scattering and some front splitting in a hierarchical structure of propagation, since the
ones that escape collisions rarefy. � D 1, ˇ D 1, � D 0:008, � D 0:02, ˛ D 0:01, � D 0:01,
�2 D 0:0001

Source τ = 2.3
Close = 1.7
Distant = 1.2

More distant = 0.9

+ τ
τ
τ

10
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Fig. 14.7 Loglog plot of the auto-correlation of cell #5, with an indicative t�1 plot (left). Empirical
collapse function G for the model (right), with non universal exponents, decreasing with distance
from the source for arbitrary cells, shown #2, #20, #80, and #400

T 
 Lz, with z 	 1. For typical length of human atrial fibres, it happens to fall
in the physiologically recorded range of about a few minutes [52]. Finally, system
size does affect the onset of turbulence as expected, the distance from the source
affects the scaling exponents we have found, see Fig. 14.7. This basically marks
the hierarchical propagation pattern. In practice, this could be good news for a
quantitative method of finding abnormal sources of activity in the heart, a highly
valued goal pursued by medical practitioners and physiologists.

This phenomenology holds in two dimensions with isotropic coupling as well.
Note also that the propagation of perturbing charges is like some effective dif-
fusion of the inhibitor. Therefore, considering the anatomical organisation of the
myocardium in fibre bundles and the anisotropy of conducting properties, one
expects fronts to split along their direction.
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Fig. 14.8 Strikingly good superposition of the broad histograms (left) and fractal dimension
spectra (right) of the sets of singularity exponents h defined locally, for small � of a few ms, as˝R �

dt @
@tr g�

˛ � � h. They were obtained from the same experimental data as in Fig. 14.2 and the
1D numerical data as in the previous figures for an average over ten cells taken at random spanning
the first 100 cells

By chance, in three dimensions various topological arguments convey the idea
that the ventricles are better equipped to resist such onset of very irregular patterns.
Thus far, one may have in mind natural selection to understand the Aschoff-Tawara
node, which function is somehow to low-pass filter the activity of the atria, before
relaying it to the ventricles.

14.4 Discussion and Conclusion

The large oscillations of pulses and the intermittency are quite intriguing at first,
since � is the dominant parameter, which guarantees the stability of U0 against any
spontaneous fluctuation. In fact, a phase approximation of the dynamics is indeed
relevant in this sector. Then, what is seen might signal the restoration of a continuous
symmetry for the dynamics of the phase, that finds itself effectively at criticality.

Firstly, upon appropriate rescaling, define a complex scalar ) D Um C iJm D
Aei . The phase  .x; t/ is a distribution of ticks recording the passage and shape of
pulses. Since� defines the rapid time scale, it is natural to consider a fixed amplitude
of ) . Let us model the perturbation caused by the ionic gap currents as some local
time delay ' for the onset of depolarisation. The equation for the phase then reads

@t D D� � H sin . C ' .x//C F; (14.7)

where H and F define characteristic scales that can be made to match that from R
and G, such as the domain wall thickness lc 
 p

H�1. Taking a random distribution
of phase in the range ' .x/ 2 Œ0; 2��, random pinning is facilitated. This governs the
behaviour of charged density waves in impure magnetic materials [53–56]. Naively,
an effective critical state could be reached from the average of random phases�eff 

hH cos .'/i, though the model equation does not reduce to critical dynamics, model
A in [57]. Basically, one can find in the literature the anomalous scaling of the
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velocity jumps of the density waves, that reads like ıv / F	 with 	 ¤ 1, near
the forcing threshold of the depinning transition (insulating to conducting). SOC is
typically found in those systems [58]. Counting consecutive phase slips, one finds a
distribution of avalanches that typically scales with system size, a cut-off measuring
a distance to a critical point, in a form like Eq. (14.1), where the exponent � is related
to 	 [29, 59].

Hence, one notes that avalanches of phase slips, within a surrounding closed con-
tour, must be related to large amplitude variations of the bulk average. Heuristically,
the argument is quite suggestive of multi-scaling. From the slowly varying random
aspect of the noise term emerges a random cascade. It is tempting to model this
dynamical effect by a mean field multiplicative noise � 7! Q� .J0; x; t/ acting on
top of diffusion, leading to large deviations as captured by the observed singularity
spectra [39], and percolating paths [60]. In fact, chaotic coupled map lattices (with
a derivative coupling here) are known to show desychronisation patterns, spatio-
temporal intermittency in the universality class of the Kardar Parisi Zhang equation
or in the class of directed percolation [61, 62].

In conclusion, we have presented data, from humans with a very irregular
arrhythmia, that seem to exhibit patterns of hydrodynamic intermittency. We showed
that such fluctuations could not emerge from purely excitable dynamics, and found
out a good alternative candidate, namely intrinsic modulations. We devised a model
of ionic flows through the gap junction channels of a cardiac tissue, that effectively
modulate otherwise independent pulses. The observed abnormal patterns finely
match the ones from the model, when the flow is intermittent. It is the first to
manifest a transient related to the degradation of pulse propagation, called electrical
remodelling, and to suggest a relationship between local exponents in the signal
with the distance to an abnormal source.

In that respect, we would like to believe that our model may further illustrate
Y. Pomeau’s conjecture, relating hydrodynamic intermittency with some directed
percolation of metastable orbits.

At any rate, these results are clear evidence of the role of the dynamical coupling
of the network of cells, which do not form a true syncytium.
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Chapter 15
Absolute Negative Mobility in a Ratchet Flow

Philippe Beltrame

Abstract This paper is motivated by the transport of suspended particles pumped
periodically through a modulated channel filled of water. The resulting flow behaves
as a ratchet potential, called ratchet flow, i.e. the particle may drift to a preferential
direction without bias. We study the deterministic particle dynamics using contin-
uation of periodic orbits and of periodic transport solutions. The transport exists
regardless the parity symmetry of the problem and the bifurcation scenario involve
chaotic transitions. Moreover, the influence of the noise is discussed and points out a
counter-intuitive consequence. The noise triggers a particle transport in the opposite
direction to the bias (Absolute Negative Mobility). We show that this phenomenon
is generic for slightly biased ratchet flow problem.

15.1 Introduction

The transport of micro-particles through pores in a viscous fluid in absence of
mean force gradient finds its motivation in many biological applications as the
molecular motor or molecular pump. In the last decade, the literature shows that
a periodical pore lattice without the symmetry x ! �x can lead to the so-called
ratchet effect allowing an transport in one direction x or �x. A review can be
found in Hänggi and Marchesoni [12]. We focus on the set-up presented in Matthias
and Müller [22] and Mathwig et al.[21] consisting in a macroporous silicon wafer
which is connected at both ends to basins. The basins and the pore are filled with
liquid with suspended particles (1–10�m). The experiment shows the existence
of an effective transport in a certain range of parameter values. By tuning them,
the direction of the effective transport may change and in particular the transport
direction is opposite to the particle weight. These results may be interpreted as a
ratchet effect by Kettner et al.[14] and Hänggi et al.[13] where “ratchet” refers to
the noisy transport of particle without bias (zero-bias). When the transport direction
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is opposite to the bias, then it is called Absolute Negative Mobility (ANM), see e.g.
Du and Mei [9] or Spiechowicz et al.[27]. Recently, we show that inertia may induce
a directed transport Beltrame et al.[4]. In this deterministic approach where thermal
fluctuations are negligible and a small inertia is taken in to account, the transport
results from non-linear phenomena. Because of the existence of transport without
bias, we called the fluid flow in the micro-pump: ratchet flow. Since the results of
the experiment of Mathwig et al.[21] questions the relevance of small fluctuations
in the transport, in this paper, we propose to better understand the role of noise in
this non-linear dynamics. And especially to focus on a possible Absolute Negative
Mobility.

We consider a one-dimensional system where the Stokes force and a small
random force due to fluctuations are the only forces acting on the particle. It
results a ODE system which is similar to inertia ratchet as found in the literature:
Barbi and Salerno [3], Mateos [18], Speer et al.[26] and Alatriste and Mateos[1].
In these latter papers, transport solutions synchronized with the periodic forcing
are found for the deterministic case. They show that this dynamics results from a
synchronization transition as it occurs for periodically forced oscillator Pitkovsky
et al.[24]. This regime can be destroyed via a crisis which appears after a period-
doubling cascade. The synchronized transport regime may exist in the symmetric
case (parity symmetry x ! �x), see Speer et al.[26] or Cubero et al.[6]. Obviously,
it implies the existence of an opposite transport solution and then there is no
transport in statistical sense. Now, if a small bias is applied, the domain of existence
of opposite transport solutions do not match anymore. As consequence by varying
the tuning parameter the transport direction may change and in particular the
transport opposed to the bias may exist (Wickenbrock et al.[30]). The deterministic
dynamics may help to understand ANM too. For instance, in Machura et al.[16],
the nonlinear analysis showed that stable periodic solution and unstable periodic
transport solution coexist. By adding a small noise, the trajectory may escape from
the bounded periodic solution and may follow during few periods the periodic
transport solution. As consequence, a drift opposed to the bias is triggered by the
noise.

Despite a plethora of study in this topic, there is still open issues as the transition
from unbounded dynamics to transport dynamics which seems no to be clearly
identified. Moreover, most studies assumed the inertia large or, in contrary, the limit
case of overdamped dynamics (Kettner et al.[14] and Lee [15]). Here we consider
moderate drag coefficient of the particle. We aim at finding transport transition and
possible ANM. In order to tackle this problem we propose to study the deterministic
case with inertia particle and then apply a small Gaussian noise. In addition to the
time integration, the deterministic case is analyzed with the help of continuation
method (Beltrame et al.[5] and Dijkstra et al.[7]). This method appears seldom in the
literature dealing with ratchet (see e.g. Pototsky et al.[25]). However, we can follow
periodic orbit (or relative periodic orbit for the transport solution) and determine
their stability and bifurcation point. Thus, it is powerful to determine onsets and the
kind of bifurcation.

In the present work, we consider the physical parameters: particle drag (inverse
of the inertia), the mean flow of the fluid, the velocity contrast, the asymmetry of
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the flow and the bias (resulting from the particle weight). We analyze firstly the
bounded periodic solution (symmetric and asymmetric cases), Secondly, the onset
of transport is determined. Finally, we treat the case of the small perturbation due to
a Gaussian noise.

15.2 Modeling

Let us consider a L-periodic varying channel along the line .Ox/ (Fig. 15.1) through
which a viscous fluid containing suspended particles is periodically pumped. We
assume that the period of the pumping period is small enough to consider a creeping
flow. Such an assumption is relevant for periodicity for L ' 10�m and T � 1ms
(Kettner et al.[14]). The particle is centered on the x-axis then the momentum of the
particle is neglected and the particle does not rotate. This creeping flow exerts a Fd

drag force on the particle along the x axis. The set-up is vertical so that the particle
weight, Fw, is oriented to the x negative and the buoyancy force, Fb, to the positive
direction. Thus the particle position x.t/ is governed by the equation

m Rx.t/ D Fd C Fw C Fb (15.1)

To simplify, we assume that Fd is approximatively given by the Stokes drag:
Fd D ��.v.x; t/ � vf .x; t//, where � is the drag coefficient and v and vf are
the particle velocity and the fluid velocity without particle, respectively. This
expression of the drag force requires that the particle is small comparing to the
channel radius. Because, it is quasi-static problem, the fluid velocity distribution
without particle is proportional to the amplitude pumping so that we may write:
v.x; t/ D u0.x/ sin.2�t/ for a sinusoidal pumping, where u0.x/ depends on the pore
profile. We obtain the adimensional governing equation

Rx.t/ D �.u0.x.t// sin.2�t/ � Px.t//C g (15.2)

where the length is scaled by the pore length L, the time by the pumping period T
and the drag by m=T and g D .Fw C Fb/=.mL=T2/. This equation admits an unique
solution C2 for a given position and velocity .xi; vi; ti/ at a time ti. In particular,

Fig. 15.1 Sketch of the problem: the particle translates along the x-axis of a periodic distribution
of pores. It is dragged by a periodic motion of a viscous fluid. The particle weight is oriented to
the negative x direction
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two different solutions cannot have at a given time the same position and velocity.
Another straightforward result shows that particle acceleration Rx and its velocity Px
remain bounded.

The velocity profile u0.x/ gets the periodicity of the geometry. If the pore
geometry is symmetric, we consider a sinusoidal velocity profile:

u0.x/ D um.1C a cos.2�x// (15.3)

where um is the mean velocity and a the velocity contrast. Otherwise for asymmetric
geometry, we consider an additional parameter d related to the asymmetry and then
the pore profile is given by:

u0.x/ D um Caum cos

 
�

Nx
1
2

C d

!
1Œ0I 12Cd�.Nx/

Caum cos

 
�

Nx � 1
1
2

� d

!
1� 12CdI1�.Nx/ (15.4)

d is the algebraic shift which ranges from � 1
2

to 1
2
, Nx D x mod 1 and 1I is the

indicator function of the interval I (1I.Nx/ D 1 if Nx 2 I, otherwise 1I.Nx/ D 0).
Examples of the velocity profiles are shown in Fig. 15.2. Note that, it is possible to

Fig. 15.2 Analytical velocity profiles of the flow u0.x/ for um D 1, a D 0:65 and different values
of d



15 Transport of Inertia Particle 253

find out pore profiles corresponding to such analytical profiles, see Beltrame et al.[4]
and Makhoul et al.[17]. The asymmetry parameter d does not add a bias: if g D 0,
the bias remains zero even if d ¤ 0.

As explained in the introduction, we employ continuation method in order to
track the periodic orbits of Eq. (15.2) in the parameter space. We use the software
AUTO (Doedel et al.[8]). This latter requires an autonomous system. In order to
obtain an autonomous system and still periodic orbits, we added an oscillator which
converges asymptotically to the sinusoidal functions called ' and �:

Px D v (15.5a)

Pv D � .u0.x/� � v/C g (15.5b)

P� D 2�' C �.1 � '2 � �2/ (15.5c)

P' D �2�� C '.1 � '2 � �2/ (15.5d)

where the sinusoidal forcing is the asymptotical stable solution of Eqs. (15.5c)
and (15.5d), i.e. � ! sin 2�t and ' ! cos.2�t/ [2]. The system (15.5) has the
same periodic solutions as Eq. (15.2). This four-dimensional problem can be written

Ps D . Px; Pv; P'; P�/ D F.x; v; '; �/ D F.s/ (15.6)

The deterministic transport is only possible if u0 is not constant, then the velocity
field u0.x/ constitutes the ratchet flow. Considering a symmetric problem, i.e.
u0.�x/ D u0.x/ and g D 0, the function F is equivariant by the central symmetry
F.�s/ D �F.s/. As consequence, s is solution implies �s is solution too. We called
symmetric orbit, solution which are invariant by the central symmetry. There is two
symmetric solutions: one centered the pore middle (x D 1=2), noted sm and at the
second one, centered at the pore inlet (x D 0), noted s0.

For the asymmetric case, it is no longer true. However, for small oscillation
amplitude um, the problem is similar to charged particles in a non-uniform oscillat-
ing electromagnetic force (McNeil and Thompson [23]) and it is possible to prove
that there exists periodic solution centered at the extrema of u0.x/. At the maximum
it is unstable while it is stable at the minimum and it constitutes the only attractor
(Beltrame et al.[4]).

Therefore, the analytical results do not show existence of transport solution. In
the following we propose to track the periodic solutions in the parameter space.

15.3 Transitions to Transport Solutions

We study the periodic branches for the symmetric case, i.e., the velocity profile u0 is
symmetric (d D 0) and there is no bias (g D 0). Besides the solutions s0 and sm, we
find an asymmetric branch (Fig. 15.3a). This branch is not invariant by the central
symmetry and there is two branches sC

a and s�
a copies by the central symmetry.
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Fig. 15.3 (a) Bifurcation diagrams showing the periodic branches as a function of the drag �
for a D 0:65, um D 9 in the symmetric case. The black color indicates the s0 branch, red the sm

branch, green the sa branch and blue the 2-periodic branch. Dots indicate the different bifurcations:
Pitchfork bifurcation (PB), Period-Doubling (PD) and (PD2) for the second period-doubling, fold
bifurcation (LP). (b) Bifurcation diagram for the parameter but in the asymmetric case: d D 0:1

and g D �0:1. Black indicate 1-periodic branch and blue 2-periodic branch. In both diagrams,
plain lines indicate stable orbits while dashed line correspond to unstable orbits

Then, they have the same norm and they do not appear in the bifurcation diagram,
we note them sa to simplify. The sa branch results from a pitchfork bifurcation either
from s0 or sm and thus connect both branches (Fig. 15.3a). This arises in the intervals
Œ2:05; 6:52� and Œ6; 18�. At each end of the intervals, the same scenario, described
below, occurs by varying � away from the pitchfork bifurcation:

1. The sa branch is stable in the vicinity of the pitchfork bifurcation but it is
destabilized in the via a period doubling. We plotted the bifurcated 2-periodic
branch which displays two folds. It becomes unstable via period doubling too.
Note that the period-doubling cannot arise on a symmetric branch according to
Swift and Wiesenfeld [28].

2. A period doubling cascade follows the first period-doubling and leads to a
strange attractor. The present cascade has a behavior similar to one-dimensional
map whose the distance between two consecutive bifurcations is divided by the
universal Feigenbaum constant [10] ı ' 4:669.

3. The strange attractor is bounded till an widening crisis (Grebogi et al.[11]). As
consequence, contiguous attractors (shifted by one spatial period) are connected.
Because of the spatial shift symmetry, the dynamics is no longer bounded. Of
course for the symmetric case no preferential direction of the particle trajectory
is observed. This Dynamics is reminiscent of anomalous diffusion (Mateos and
Alatriste [20]).

For the asymmetric case, similar transitions from 1-periodic orbit to the onset of
the transport are observed. Nevertheless, the pitchfork bifurcations of the 1-periodic
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Fig. 15.4 (a) Poincaré section .xn D x.n/mod1; vn D v.n// where n 2 N near the onset of
transport at (black dots) � D 14:70 and (red dots) � D 14:69, other parameters are: um D 9; a D
0:65; d D 0:1; g D �0:1. The strange attractor in black remains in the interval Œ0; 1� while the red
strange attractor is no longer bounded. Its representation modulo 1 displays a sudden expansion
characteristic of the widening crisis. (b) Discrete dynamics xn D x.tn/ at discrete times tn D n of
the red strange attractor of the panel (a) at � D 14:69. An intermittent drift to positive x appears
(Color figure online)

orbits vanish and instead there is two 1-periodic branches formed, firstly, by the
coalescence of the s0, sC

a and sm and, secondly, by the coalescence of s0, s�
a and

sm. An example for d D 0:1 and g D �0:1 (other parameters being the same
as for the symmetric case) is displayed in the bifurcation diagram (Fig. 15.3b).
From each branch, a period-doubling occurs. Both 2-periodic branches present two
folds. A period-doubling cascade arises as for the symmetric case. We focus on
the period-doubling cascade which starts at the largest drag coefficient � ' 16:48.
Indeed a drag coefficient smaller than 10 is quite unrealistic for small particles. The
period-doubling cascade leads to an asymmetric strange attractor at � ' 15:2. At
� t

c ' 14:698, we observe a widening crisis connecting the contiguous attractors
(Fig. 15.4a). But this time, because of the asymmetry of the system, there is a non-
zero mean drift particle (see Fig. 15.4b). As expected, the dynamics after the crisis
is intermittent: the dynamics spends a long time near the “ghost” bounded strange
attractor and “jumps” to the other “ghost” attractor shifted by one period length.
Note that, it is quite unexpected that we obtain a transport opposite to the bias. Now,
we study the transport solutions.

15.4 Transport Solutions

By decreasing further the drag coefficient, the drift velocity increases. In fact, the
mean duration of the bounded-like dynamics is shorter. For � approaching the
critical value � s

c ' 13:41639, the drift velocity is almost equal to one. The epochs
of bounded-like dynamics are very short comparing to the transport events. The
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Fig. 15.5 (a) Discrete dynamics xn at entire times tn in the co-moving frame c D C1 near the
onset of synchronization at (red) � D 13:4170, (blue) � D 13:4165 and (black) � D 13:4164 >

� s
c . Other parameters are um D 9; a D 0:65; d D 0:1; g D �0:1. The plateaux correspond to a

near synchronized transport with c D C1. (b) Dynamics x.t/ for � D 13:416 < � s
c : after a chaotic

transition, the dynamics is the synchronized transport with c D C1

discrete particle position xn D x.tn/ at entire times tn D n and in the comoving
frame with the speed C1 is displayed in the Fig. 15.5a. Thus, the long plateaux
correspond to the dynamics with drift velocity about one. When � tends to � s

c the
longer of the plateaux diverges and then the velocity tends to one. For � > � s

c the
dynamics is periodic in the comoving frame. In other words, the particle advances
of one spatial length after one period (Fig. 15.5b). It is the so-called synchronized
transport. In point of view of synchronization, it is a synchronization of oscillators
with forcing at moderate amplitude Vincent et al.[29]. Then the transition is a
saddle-node. Moreover, the chaotic transient observed in Fig. 15.5b suggests the
presence of a chaotic repeller as it occurs in this case, see e.g. Pitkovsky et al.[24].

We study the regular transport emerging from the synchronization. Since the
transport xt.t/ is periodic in the comoving frame, we introduce the periodic function
xp such as

xt.t/ D xp.t/C ct (15.7)

where c D ˙1 depending on the direction of the transport. Then if xt is solution of
Eq. (15.2) then it is solution of the equation:

Rxp D �
�
u0.xp C t// sin.2�t/ � Pxp � c

�C g; (15.8)

It is a similar equation as Eq. (15.2) with an added bias ��c. We found a transport
with c D C1 and also the opposite transport c D �1 (Fig. 15.6b). The coexistence
of opposite transport solutions is a consequence of the existence of synchronized
transport in the symmetry case. Indeed, for the symmetric case, a similar scenario
leads to the synchronized transport (Fig. 15.6a). In this case, according to the
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Fig. 15.6 (a) Bifurcation diagram of the synchronized transport solution with c D ˙1 for the
symmetric case. The solution emerges at saddle-node bifurcations. Dashed [plain] line indicate
unstable [stable] solution branch. The stable branch becomes unstable via period-doubling (the
blue branch corresponds to 2-periodic orbit), which is again unstable by period-doubling. Other
parameters are um D 9; a D 0:65. (b) Bifurcation diagrams of the synchronized transport solution
with (red) c D �1 and (black) c D C1 for the asymmetric case: d D 0:1; g D �0:1, the other
parameters being the same as in panel (a). A similar bifurcation diagram as for the symmetric case
occurs for both branches c D C1 and c D �1. However, their domains of existence are slightly
shifted

equivariance of the problem, if the solution c D C1 is found, then a solution c D �1
exists, deduced from the central symmetry (Speer et al.[26] and Beltrame et al.[4]).
Because the transport solutions are not invariant by the central symmetry, a forced
symmetry-breaking of the system do not destroy them, as long as the perturbation
is small. Then, we expect that the transport solutions remain when the asymmetry d
and the bias g are small.

All the bifurcation diagrams of synchronized transport with c D ˙1 have the
same structure (Fig. 15.6). The solution emerges from a saddle-node leading to
the birth of a pair of saddle branches. The unstable branch remains unstable over
its existence domain. The stable branch becomes unstable via a period doubling
bifurcation. As for the bounded periodic solution, a period-doubling cascade occurs
leading to a chaotic dynamics. Note however as long as a widening crisis does
not occur, the drift velocity remains locked to c D ˙1. After the widening crisis,
the strange attractor is no longer bounded in the comoving frame. The resulting
dynamics is no longer locked and it is chaotic. Examples for the symmetric and
asymmetric cases are displayed in Fig. 15.7. For the symmetric case, there is a
competition between opposite transport solutions which are unstable. The trajectory
is unbounded but the mean position remains zero. It is an anomalous diffusion like.
For the asymmetric case, the dynamics is similar but the resulting drift is non-zero.
For the specific example in Fig. 15.7b, we obtain a net transport direction to the
negative direction.
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Fig. 15.7 Discrete time evolutions xn at entire times tn for � D 8:5; um D 9; a D 0:65 and (a)
for the symmetric case and (b) the asymmetric case: d D 0:1; g D �0:1. The dynamics display a
competition between opposite transports. However in the asymmetric case, a net drift to x negative
appears

In the asymmetric case, despite the negative bias, there is range where only
the upward transport exists (� 2 Œ11:8457; 13:41639�). The ‘trick” to obtain this
unnatural dynamics was, firstly, to introduce the small flow asymmetry d which
shifts the existence domains of the transport solutions c D C1 and c D �1 of the
symmetric case (Fig. 15.6a). Then, the region c D C1 persists for a small enough
negative bias g. Note, without the flow asymmetry d, this region does not exist. In
this region, we have a particle motion opposed to the bias like the ANM. To find a
upwards dynamics due to the noise, we have to study its influence.

15.5 Absolute Negative Mobility

We consider an additional random force, then the ODE system (15.2) becomes

Rx.t/ D �.u0.x.t// sin.2�t/ � Px.t//C g C �	.t/ (15.9)

where � is the amplitude of the fluctuating force, and 	 is a Gaussian stochastic
process such as < 	.t/ >D 0 and < 	.t/	.t0/ >D ı.t � t0/ where ı is the
Dirac delta expressing that the noise is purely Markovian. We propose to study
the influence of the noise near the onset of unbounded dynamics at the widening
crisis. Indeed, before the crisis and in its vicinity, contiguous strange attractors are
close together then a small noise may allow to jump from a strange attractor to
another one. The simulation near the strange attractor corroborates this scenario
(Fig. 15.8). We observe a dynamics similar to the one which occurs after the crisis.
Long epochs of bounded dynamics are interrupted by a jump to the upward pore. We
do not observe jump to the downward direction. This is due to the asymmetry of the
strange attractor. Note that the simulation in the symmetric case does not display a
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Fig. 15.8 Discrete stochastic particle dynamics at discrete times n governed by the Eq. (15.9) with
the fluctuation amplitude � D 0:1 for two different values � near � t

c: � D 14:7 and � D 15 (long
plateaux). Other parameters are fixed to um D 9; a D 0:65; d D 0:1; g D �0:1

preferential direction. Away from the crisis by taking larger value of � , the duration
of the bounded dynamics events are statically longer. Indeed it is quite difficult to
distinguish this noisy dynamics from the deterministic dynamics. The noise triggers
the crisis transition leading to the same kind of dynamics. Since the transport is
opposed to the bias and it does not exist without noise, we have found an example
of Absolute Negative Mobility in this framework.

In contrast, once the deterministic crisis occurred, the noise does not notably
modified the dynamics and the drift velocity. It seems to have a negligible influence
on the onset of the synchronized dynamics too. Moreover, the small noise does not
allow to escape from the attraction basin of the periodic transport solution so that it
does not destroy the synchronized transport.

Note that the Absolute Negative Mobility found in Machura et al. [16] results
from a different mechanism. Indeed, in their case the ANM dynamics follows during
a few periods a deterministic unstable synchronized transport opposed to the bias
which allows the drift. Such a behavior can be explained by the coexistence of a
stable periodic solution with an unstable synchronized transport for the deterministic
case. According to our bifurcation diagrams (Figs. 15.3 and 15.6), the synchronized
transport exists only after the widening crisis, thus this kind of ANM cannot occur
in our framework.
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15.6 Conclusion

In this paper we have examined a nonlinear ODE and its perturbation by a small
gaussian noise as a model for inertia particle transport via a micro-pump device.
The equation is similar to ratchet problem where the ratchet flow u0.x/ variations
play the role of the periodical potential in the ratchet literature.

The deterministic analysis showed that synchronized transport solutions exist
for inertia particles with drag coefficient about 10. Their existence is not related to
asymmetry. Indeed for the symmetric case, the symmetric solution s0 or sm becomes
unstable via a pitchfork bifurcation. This latter becomes unstable via period-
doubling cascade leading to a bounded strange attractor. This strange attractor is
destroyed via a widening crisis allowing the emergence of an unbounded dynamics.
Finally, via a synchronization transition the periodic transport appears. In the
symmetric case, the transports with c D C1 and c D �1 emerge at the same onset.
A similar scenario occurs in the asymmetric case, but the onset of downward and
upward transport no longer coincide. When the asymmetry is small, both transport
directions exist but their existence domains are shifted. Thus there is a range of the
drag coefficient where only the upward transport exists even if the bias is negative.

A weak noise does not modify the synchronized dynamics. However it may
trigger the onset of the unbounded dynamics created via an widening crisis. We
show that for subcritical parameters, a net drift may appear due to the noise. Indeed,
it allows jumps between consecutive bounded strange attractors. We obtain an
Absolute Negative Mobility near the onset of the upward transport. This mechanism
differs from Machura et al.[16] and occurs in a very small range. That shows
that the study of the deterministic case and the continuation method is powerful
to understand and to find such dynamics. The found ANM is generic of slightly
biased ratchet problem. In fact, the scenario involves generic non-linear phenomena:
symmetric breaking and crisis in a spatial periodic problem. The existence of an
upwards-transport opposed to the bias can be understood as a perturbation of the
symmetric case where up and down dynamics coexist. Then for a small perturbation
both should exist. Finally, it is quite known that the noise allows to escape from an
attractor as it occurs in our case. So, the ANM scenario presented in this paper has
a quite universal aspect for ratchet problem.
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