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Abstract The Internet of Things (IoT) refers to the networked interconnection of
objects equipped with ubiquitous intelligence, or simply “smart objects”. The
“smart” part is often followed by words like grid, home, parking, etc., to identify
the application domain, and it is provided by software applications and/or services
running on top of these large-scale distributed communication infrastructures.
Heterogeneity and distribution scale speak for the complexity of such systems and
call for a careful analysis prior to any deployment on target environments. In this
paper we introduce a model-driven approach for the analysis of IoT applications via
simulation. Standard modeling languages, code generation, and network simulation
and visualization are combined into an integrated development environment for
rapid and automated analysis.
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1 Introduction

The Internet of Things (IoT) refers to the networked interconnection of billions of
“smart objects”, i.e., autonomous networked devices equipped with sensors, actu-
ators, computational and storage facilities, that cooperate with each-other and the
environment. In recent years IoT has gained much attention from industry and
researchers with a variety of applications, e.g., smart-grid [28], smart-home [32],
smart-parking [13], earthquake early warning [10], etc. This trend is sure to
continue in the immediate future [11], as it continues to be supported by the
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standardization efforts of well known organizations like ITU-T [20], ETSI [9],
IEEE and IETF [16, 17].

Heterogeneity and distribution scale speak for the complexity of IoT applications
and call for a careful analysis prior to any deployment on target environments.
However, a thorough analysis is possible if the application is already deployed,
which contradicts the purpose of the analysis in the first place. A controlled
environment (e.g., experimentation test-bed [14]) can be a solution, with the
advantage of having the application itself (i.e., the application intended for
deployment) under analysis. Nevertheless, scalability of such environments maybe
unfeasible, thus hindering the analysis of properties that can be inferred from the
interaction of devices deployed in a large-scale. Simulation can address this issue,
but the development of an accurate simulation model is not a trivial task. Indeed, a
simulation model is an abstraction of the application (i.e., a selection of properties
that are relevant to the analysis) and not the application itself. Derivation of this
abstraction may become a development process in its own based on the complexity
of the system, and validation is a must to ensure that it correctly represents the
application intended for deployment.

In Sect. 2 we give an overview of related work on simulation of IoT applications
and position our approach in respect to existing state of the art. We introduce our
modeling approach by means of a typical application example in Sect. 3. The
automatic transformation from model to simulation executable is described in
Sect. 4. Finally, we present some conclusions in Sect. 5.

2 Related Work

We identify two types of simulators for IoT applications: specialized and generic.
Specialized simulators are provided by IoT operating systems as part of their
development environment, e.g., Cooja [27] for Contiki OS [8] and TOSSIM [25]
for TinyOS [24]. They simulate the entire device, i.e., hardware, communication,
operating system, and application. A major advantage of these simulators is that
they do not require a simulation model of the application, i.e., the same description
(usually code) can be used for simulation and deployment. However, the number of
device models is limited to those supported by the operating system, and scalability
is a possible issue as entire devices are simulated. On the other hand, generic
simulators (e.g., ns-2 [2], ns-3 [15], and OMNeT++ [34]) can be used to analyze
large-scale application-specific properties without the additional overhead of
low-level models (e.g., hardware and operating systems), but they require a sim-
ulation model of the application.

Weingärtner et al. in [35] discuss possible solutions to the limitations of avail-
able simulators. They identify the extension of generic simulators with capabilities
of executing real applications or hybrid frameworks as smarter choices.

Although extending generic simulators is quite common, it focuses on models of
the underlying communication protocols and not on applications. Tazaki et al. in

18 M. Brumbulli and E. Gaudin



[33] describe how to execute nearly unmodified applications in the context of ns-3
simulations. The aim is to increase the number of available protocol models and
realism of simulations. The framework is not specifically targeted to IoT applica-
tions, however it is an important extension to generic simulation.

Brambilla et al. in [1] present a hybrid framework for the simulation of
large-scale IoT scenarios. The framework is characterized by high modularity and
loose coupling between simulation models to allow reuse of the code. Although it is
possible to deploy the source code on real devices, this can be achieved only by
adopting the required interfaces.

We follow a different approach to application development by exploiting the
model-driven development (MDD) paradigm. With a pragmatic MDD approach it
is possible to construct a model of the application that can be transformed into the
application for deployment and/or a simulation model for analysis [31]. We use the
standard languages SDL [19] or SDL-RT [30]1 in our integrated development
environment2 to capture architectural, behavioral, communication, and deployment
aspects of the application into a single description (model). Automatic code gen-
eration can then transform such description into an executable simulation model for
the ns-3 network simulator.

3 Modeling

Several efforts have been made in the last decade to bring together standard
modeling languages with generic simulation frameworks. The advantages are
obvious: while the former allow description of aspects at a higher level of
abstraction independent from the target platform, the later are used to simulate such
description in large-scale scenarios. Representative examples are the use of SDL
with ns-2 [23] or ns-3 [3], and UML with OMNeT++ [7]. There is however an
important difference between SDL- and UML-based approaches. While SDL
models are used also for deployment (e.g., [10, 22]), this is not the case with UML,
where models are used only for simulation.

3.1 Architecture and Behavior

In SDL the overall design is called the system, and everything outside of it is
defined as the environment. The system can be composed of agents and commu-
nication constructs. There are two kinds of agents: blocks and processes. Blocks
can be composed of other agents and communication constructs. When the system

1A pragmatic combination of the standard languages SDL, UML [26], C/C++.
2Real Time Developer Studio—http://www.pragmadev.com.
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is decomposed down to the simplest block, the way the block fulfills its func-
tionality is described with processes. A process provides this functionality via
extended finite state machines. It has an implicit queue for signals. A signal has a
name and parameters; they go through channels that connect agents and end up in
the processes implicit queues. Figure 1 illustrates these concepts in a typical IoT
sensor-gateway application example for parking lots.

Fig. 1 Architecture and behavior description of a simple sensor-gateway application for parking
lots
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The gateway keeps an updated list of all sensors it is responsible for. This
binding is realized at startup via the signals mRequest and mRequestOk. To
keep track of the state of each individual sensor, the gateway assigns a unique
identifier to it. At start, every registered sensor is in Free state. When a sensor
detects the arrival of a car at its slot (i.e., the mArrive signal), it will change the
state to Occupied and let the gateway know about such change by means of the
mOccupied signal. This signal has the sensor’s unique identifier as parameter, so
that it is possible for the gateway to correctly update its list of available slots. When
the car leaves the parking slot (i.e., the mDepart signal), the sensor will reset its
state to Free and notify the gateway with the mFree signal. Additional signals
may trigger the gateway to report the current status of the parking lot, however for
simplicity these signals are not shown in the figure.

3.2 Communication

The strong point of SDL is that it allows the description of communication systems
in a formal and abstract way (i.e., platform independent). However, this level of
abstraction presents a number of challenges when implementation is concerned
(i.e., platform specific). In this context, an important aspect to be considered is
communication, which puts the internet into the internet-of-things. Communication
in SDL is realized using channels, e.g., cIntern in Fig. 1, and it can be local or
distributed. Not making the difference between these two types of communication is
an important feature of SDL that is needed to abstract from the platform. Indeed,
there is no way to tell whether the pSensor and pGateway processes in Fig. 1 are
running on the same node or device (i.e., local communication) or on different
nodes (i.e., distributed communication). Platform specific implementation for local
communication can be derived in general without much effort. The information
contained in the SDL architecture and behavior description is enough to uniquely
identify the sender and receiver of a signal, because all process instances are part of
the same executable running on a single node. Problems begin to emerge when
processes are distributed and use platform specific inter-process communication. To
uniquely identify a process instance in a distributed IoT infrastructure, information
about the node where the instance has been deployed is required; a typical example
would be the IP address of the IoT node. However, this information is not present in
a SDL model, due also to the missing concept of the node in the language.

Schaible and Gotzhein in [29] define a set of SDL patterns for describing dis-
tributed communication. The advantage of these patterns is that they are formalized,
thus they can be used in every SDL description without affecting this important
feature of the language. However, the introduction of patterns implies changes to an
existing SDL description, and what is more important, it does not follow the choice
of SDL to abstract the type of communication.
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Brumbulli and Fischer in [5] apply the same concept but in the context of
SDL-RT. Although not formalized,3 the patterns are very compact, descriptive, easy
to apply, and exploit the pragmatic nature of the language. Nevertheless, the
problems of a pattern-based approach are still present, and it is not possible to use
the patterns in SDL.

To address these issues we decided to not define and/or apply any pattern to SDL
descriptions. The additional information that is required to derive platform specific
implementation can be provided using SDL-RT deployment diagrams [30]. This
approach does not introduce any changes to the SDL model of a system, thus
keeping the desired level of abstraction in the description of communication. Also,
by keeping deployment aspects (e.g., nodes and their IP addresses) separate from
architecture and behavior, it is possible to use the approach for both SDL and
SDL-RT. Furthermore, extending our integrated development environment with the
presented approach is an important step towards a complete model-driven solution
for the development of IoT applications.

3.3 Deployment

The deployment diagram describes the physical configuration of run-time pro-
cessing elements of a distributed system and may contain (Fig. 2):

• nodes are physical objects that represent processing resources,
• components represent distributable pieces of implementation of a system (i.e.,

SDL block or process),
• files provide information about external signals required for simulation.

The node and component are identified by means of the id attribute. The type of
values for this attribute depends on the parameters required for inter-process
communication, e.g., IP address for the node and TCP port for the component.
A comma separated list of values can be assigned to the attribute. This allows the
description of large-scale scenarios while keeping the readability of the diagrams.
The pair of id attributes is used to uniquely identify each component. The semantics
of communication between two process instances are as follows:

• if the sender and receiver instances belong to the same component, then SDL
communication semantics apply;

• if the sender and receiver instances belong to different components, then:

– at first, the pair of identifiers is used to send the signal to the peer component
via inter-process communication;

– afterwards, the signal is delivered to the receiver inside the component using
SDL semantics.

3This does not change anything in the language, because SDL-RT is not formal.
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The use of deployment diagrams was introduced [5]. We improve the approach
in two significant ways:

• introduce deployment information exclusively in the deployment diagram,
without mixing architecture, behavior, and deployment aspects of the system,
thus supporting both SDL-RT and standard SDL;

• provide simple means to describe interaction with the environment.

Interaction with the environment is an important aspect that must be considered
during simulation. An example of such interaction is the detection of arrival and
departure of a car into a parking slot. This is modeled with the mArrive and
mDepart signals in Fig. 1. These signals are addressed to the sensor, and it makes
perfect sense when the system has a single sensor. However, this is not the case in
our example scenario (or every IoT application scenario in general), which is
composed of several sensors. In this context, external signals may be addressed to
one or more distributed process instances, and to add to the complexity, they can
have different parameters, timing, and order of arrival based on the intended
receiver. We define a simple yet complete method for extending the deployment
model with the required information. The set of external signals with parameters,
timing, and receiver is described in a tabular form (i.e., comma separated values

Fig. 2 Deployment scenario for the sensor-gateway application for parking lots
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format) in a file symbol attached to the deployment diagram as shown in Fig. 2.
Each signal is configured with the time it is sent by the environment (row head) and
the receiving component (pair of identifiers in column head).

4 Simulation

The SDL (or SDL-RT) description (architecture and behavior) combined with the
deployment diagram are used as a basis for the generation of an executable sim-
ulation model for ns-3. A generic model for code generation was introduced in [5].
We extend the model as shown in Fig. 3 by introducing the implementation of
deployment and distributed communication concepts, i.e., RTDS_DeplNode,
RTDS_DeplComponent, and RTDS_Proxy.

The RTDS_DeplNode maintains the list of all its attached components in its
attribute named componentsList. The RTDS_DeplComponent keeps a reference
to the scheduler (RTDS_Scheduler), which manages process instances
(RTDS_Proc), communication via signals (RTDS_MessageHeader), and
timers (RTDS_TimerState). Local communication between process instances is
handled via a memory shared mechanism. This is possible because local commu-
nication implies sender and receiver instances managed by the same scheduler.
The information about the sender and receiver of a signal is encapsulated in

Fig. 3 Extended class
diagram for code generation
based on [5]
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RTDS_MessageHeader. If the sender and receiver are not managed by same
scheduler, then distributed communication is implied, and the signal is forwarded to
the RTDS_Proxy instance. Every scheduler manages an implicit proxy instance,
which interfaces to the underlying communication models provided by ns-3.

Our integrated development environment (RTDS) will automatically:

• check the syntax/semantics of the SDL description,
• check the syntax/semantics of the deployment description,
• check the syntax/semantics of the external signals given in tabular form,
• produce an executable by generating the code, compiling it, and linking it to the

ns-3 library, and
• launch the executable in the background, interpret and visualize simulation

events traced during execution.

Visualization of simulation events is realized as described in [4], but extended
with two modes:

• in live mode events are visualized as they are traced from the simulation running
in the background,

• in post-mortem mode the simulation can be replayed entirely after it has suc-
cessfully terminated, which allows stepping through the events without having
to re-run the simulation.

Figure 4 shows the deployment of one gateway and 99 sensors (nGateway and
nSensor in Fig. 2). Nodes, their state, and distributed communication (between
nodes) are visualized in the RTDS Deployment Simulator as shown in Fig. 4a.
Nodes are displayed as colored rectangles, where the color represents the current
state of the node. A sent signal is a directed arrow from the sender to the receiver,
and its color represents the type of the signal. The arrow is removed from the view
when the signal is received. The states and signals can be configured via the
provided interface. It is possible to change their color and choose whether to display
them during simulation. This feature is useful in cases where not all the states
and/or signals are relevant to the analysis.

If an issue is detected in the behavior of the application (e.g., a missed state
change or a signal not sent), it is possible to analyze the cause in detail by visu-
alizing the internals of each node. This can be done on-demand using standard
MSCs [18] as shown in Fig. 4b, c. MSCs are linked to the SDL description, thus
identifying the source of misbehavior in a MSC trace would allow navigation to the
corresponding part in the description where changes can be made.
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5 Conclusions

In recent years IoT has gained much attention from industry and researchers, a trend
that will continue in the immediate future. Heterogeneity and distribution scale
contribute to the complexity of IoT applications, which need a careful analysis prior
to any deployment.

In this paper we introduced a model-driven approach for the analysis of IoT
applications via simulation. The standard language SDL captures architectural,
behavioral, and communication aspects into a model of the application that is
independent from the target platform. Deployment diagrams describe the distri-
bution of the SDL system (blocks and/or processes) in an IoT infrastructure and the
interaction with the environment. The automatic code generation transforms the
description into an executable simulation model for the ns-3 network simulator.

(a)

(b) (c)

Fig. 4 Visualization of simulation events for the sensor-gateway example
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The RTDS Deployment Simulator provides a graphical interface for the visualiza-
tion of simulation traces.

The concepts and tools presented in this paper are important steps towards the
model-driven analysis of IoT applications via simulation. In this context, the use of
standard MSCs for representing traced events can aid the formal verification of
properties [12]. As to how this can be applied for applications deployed in
large-scale is yet to be investigated in future work. Furthermore, we are considering
the possibility to extend the approach with testing support by means of standard
TTCN-3 [21]. A deployment model analysis based on symbolic resolution tools
such as [6] can be the next step towards a complete and fully automated approach.
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