
Chapter 5
Predator–Prey Models

A predator is an organism that eats another organism. A prey is an organism that a
predator eats. In ecology, a predation is a biological interaction where a predator
feeds on a prey. Predation occurs in a wide variety of scenarios, for instance in wild
life interactions (lions hunting zebras, foxes hunting rabbits), in herbivore–plant
interactions (cows grazing), and in parasite–host interactions.

If the predator is to survive over many generations, it must ensure that it con-
sumes sufficient amount of prey, otherwise its population will decrease over time
and will eventually disappear. On the other hand, if the predator over-consumes the
prey, the prey population will decrease and disappear, and then the predator will also
die out, from starvation.

Thus the question arises: what is the best strategy of the predator that will ensure
its survival. This question is very important to ecologists who are concerned with
biodiversity. But it is also an important question in the food industry; for example,
in the context of fishing, with humans as predator and fish as prey, what is the
sustainable amount of fish harvesting?

In this chapter we use mathematics to provide answers to these questions. We
begin with a simple example of predator–prey interaction.

We denote by x the density of a prey, that is, the number of prey animals per unit
area on land (or volume, in sea) and by y the density of predators. We denote by a
the net growth rate in x (birth minus natural death), and by c the net death rate of
predators. The growth of predators is assumed to depend only on its consumption
of the prey as food. Predation occurs when predator comes into close contact with
prey, and we take this encounter to occur at an average rate b. Hence

dx
dt

= ax−bxy. (5.1)

The growth of predators is proportional to bxy (say, by a factor of d/b), so that

Electronic supplementary material The online version of this chapter (doi: 10.1007/
978-3-319-29638-8 5) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2016
C.-S. Chou, A. Friedman, Introduction to Mathematical Biology,
Springer Undergraduate Texts in Mathematics and Technology,
DOI 10.1007/978-3-319-29638-8 5

51

http://10.1007/978-3-319-29638-8_5
http://10.1007/978-3-319-29638-8_5

52 5 Predator–Prey Models

dy
dt

= dxy− cy. (5.2)

In terms of dimensions,

[a] =
1

time
, [b] =

1
density of predator

1
time

,

and

[c] =
1

time
, [d] =

1
density of prey

1
time

.

The system (5.1)–(5.2) has two equilibrium points. The first one is (0,0); this
corresponds to a situation where both species die. This equilibrium point is unstable.
Indeed the Jacobian matrix at (0,0) is

(
a 0
0 −c

)

and one of the eigenvalues, namely a, is positive.
The second equilibrium point is (c

d ,
a
b) and the Jacobian matrix at this point is

(
0 −bc

d
ad
b 0

)
.

The corresponding eigenvalues are λ =±i
√

ac. According to Fig. 3.1(F) the portrait
of all trajectories are circles. We conclude: The predator and prey will both survive
forever, and their population will undergo periodic (seasonal) oscillations.

The system (5.1)–(5.2) is an example of what is known as Lotka-Volterra equa-
tions. One can introduce various variants into these equations. For example, if the
prey population is quite congested, we may want to use the logistic growth for the
prey (recall that logistic growth is introduced in Eq. (2.17)).

More general models of predator–prey are written in the form

dx
dt

= x f (x,y),
dy
dt

= yg(x,y),

where x is the prey and y is the predator, ∂ f/∂y < 0,∂g/∂x > 0, and ∂ f/∂x < 0
for large x, ∂g/∂y < 0 for large y. The first two inequalities mean that the prey
population is depleted by the predator and the predator population is increased by
feeding on the prey. The last two inequalities represent natural death due to the
logistic growth model.

5 Predator–Prey Models 53

Example 5.1. Consider the predator–prey system

dx
dt

= ax(1− x
A
)−bxy, (5.3)

dy
dt

= dxy(1− y
B
)− cy, (5.4)

where A and B are the carrying capacities for the prey x and the predator y, res-
pectively. In order to compute the steady points and determine their stability we
conveniently factor out x in (5.3) and y in (5.4), rewriting these equations in the
form

dx
dt

= x[a(1− x
A
)−by], (5.5)

dy
dt

= y[dx(1− y
B
)− c]. (5.6)

Clearly, (x,y) = (0,0) is a steady point with the Jacobian
(

a 0
0 −c

)
,

so (0,0) is unstable. The point (x̄, ȳ) = (A,0) is another steady point with Jacobian
(−a −Ab

0 dA− c

)
.

Hence the steady state (A,0), where only the prey survives, is stable if dA− c < 0.
The nonzero steady point (x̄, ȳ) (where x̄> 0 and ȳ> 0) are determined by solving

the equations

a(1− x̄
A
)−bȳ = 0, (5.7)

dx̄(1− ȳ
B
)− c = 0. (5.8)

But before computing these points let us compute the Jacobian at (x̄, ȳ). In view of
(5.7) we have

∂
∂x

{x[a(1− x
A
)−by]}|(x̄,ȳ) = {x

∂
∂x

[a(1− x
A
)−by]}|(x̄,ȳ) =−x̄

a
A

;

similarly

∂
∂y

{y[dx(1− y
B
)− c]}|(x̄,ȳ) = {y

∂
∂y

[dx(1− y
B
)− c]}|(x̄,ȳ) =−ȳ

dx̄
B
.

54 5 Predator–Prey Models

where we have used (5.8). Hence

J(x̄, ȳ) =

(− x̄a
A −bx̄

ȳd(1− ȳ
B) − ȳdx̄

B

)
. (5.9)

We immediately see that trace(J(x̄, ȳ)) < 0. Hence (x̄, ȳ) is stable if and only if
detJ(x̄,y)> 0, where

detJ(x̄, ȳ) = dx̄ȳ[
ax̄
AB

+b(1− ȳ
B
)]. (5.10)

To search for other steady points we substitute

ȳ =
a
b
(1− x̄

A
) (5.11)

from (5.7) into (5.8) and obtain a quadratic equation for x̄:

α x̄2 +β x̄− c = 0,

where

α =
ad

bAB
, β = d(1− a

bB
).

The only positive solution is

x̄ =
1

2α
[−β +

√
β 2 +4ac]. (5.12)

Since A is the carrying capacity of x, it is biologically natural to assume that
x̄ < A. Actually, if x(0)< A and y(t) is assumed to be positive for all t > 0, then x(t)
will remain less than A for all t > 0. We can show this by contradiction: otherwise
there is a first time, t0, when x(t) becomes equal to A, so that x(t0) = A and dx

dt (t0)≥
0. But, by (5.5)

dx
dt

(t0) =−bx(t0)y(t0)< 0,

which is a contradiction.
Similarly, it is natural to assume that ȳ < B. Hence (x̄, ȳ) is a biologically relevant

steady state with ȳ > 0 if and only if ȳ is given by (5.11), and the inequalities

x̄ < A,
a
b
(1− x̄

A
)< B (5.13)

hold, where x̄ is defined by (5.12). These inequalities hold, for instance, if a
b < B

and c is small.
The above example is instructive in two ways. First, it shows that sometimes it is

better to compute the Jacobian at (x̄, ȳ) before actually computing the steady point
(x̄, ȳ) whose expression could be complicated. Second, it shows that by factoring out

5 Predator–Prey Models 55

x or y in the differential equations we are able to compute the Jacobian more easily.
This last remark will be very useful in future computations, so we shall refer it as
the ‘factorization rule’ and formulate it for general systems of equations.

Factorization Rule

Consider a system (4.1) where the fi can be factored as follows:

f1(x1,x2) = x1g1(x1,x2), f2(x1,x2) = x2g2(x1,x2),

so that
dx1

dt
= x1g1(x1,x2),

dx2

dt
= x2g2(x1,x2)

In this case there are equilibrium points P1 = (0,0),P2 = (0, x̄2) if g2(0, x̄2) = 0,
P3 = (x̄1,0) if g1(x̄1,0) = 0, and P4(x̃1, x̃2) if g1(x̃1, x̃2) = 0, g2(x̃1, x̃2) = 0. We can
then quickly compute the Jacobian matrix J(Pi) at each point Pi. For example, to
compute J(P4) when x̃1 > 0, x̃2 > 0, we notice that since g1 = g2 = 0 at P4,

J(P4) =

(
x1

∂g1
∂x1

x1
∂g1
∂x2

x2
∂g2
∂x1

x2
∂g1
∂x2

)

(x̃1,x̃2)

.

Similarly,

J(P1) =

(
g1(0,0) 0

0 g2(0,0)

)
,

J(P2) =

(
g1 0

x2
∂g2
∂x1

x2
∂g1
∂x2

)
(0,x̄2)

when x̄2 > 0,

and

J(P3) =

(
x1

∂g1
∂x1

x1
∂g1
∂x2

0 g2

)
(x̄1,0)

when x̄1 > 0.

Example 5.2. Plant–herbivore model. The herbivore H feeds on plant P, which
grows at rate r. We take the consumption rate of the plant to be

σP
1+P

H;

this means that, at small amount of P, H consumes P at a linear rate σP, but the
rate of consumption by H is limited and, for simplicity, we assume that it cannot
exceed σ . Thus,

dP
dt

= rP−σ
P

1+P
H. (5.14)

56 5 Predator–Prey Models

The equation for the herbivore is

dH
dt

= λσ
P

1+P
H −dH. (5.15)

Here d is the death rate of H, and λ is the yield constant, that is,

λ =
mass of herbivore formed

mass of plant used
;

naturally λ < 1. Note that if λσ < d, that is, if the growth rate by consumption is
less than the death rate, then dH

dt < 0 and the herbivore will die out. We rewrite the
system (5.14)–(5.15) in the more convenient from

dP
dt

= P(r− σ
1+P

H), (5.16)

dH
dt

= H(λ
σP

1+P
−d), (5.17)

and assume that λσ > d. Then the steady points are (0,0) and (P̄, H̄), where

P̄ =
d

λσ −d
, H̄ =

λ r
λσ −d

.

Since

J(0,0) =

(
r 0
0 −d

)
,

the steady point (0,0) is unstable. Using the factorization rule we find that

J(P̄, H̄) =

(
P̄σH̄

(1+P̄)2 − σ P̄
1+P̄

λσ
(1+P̄)2 0

)
.

Since traceJ(P̄, H̄) > 0 and detJ(P̄, H̄) > 0, and both eigenvalues of the character-
istic equation have negative real parts, so (P̄, H̄) is an unstable node. We conclude
that the plant–herbivore model (5.14)–(5.15) has no stable steady states. In order
to understand this situation better we look at the dynamics of system (5.16)–(5.17)
on the P-H phase plane. The solutions of the system form trajectories on the phase
plane, as depicted in Fig. 3.1; here we will analyze the direction of the trajectories,
that is, (dP

dt ,
dH
dt) on the phase plane in order to get an idea of how the trajectories

themselves look like. We introduce the nullclines (see definition in Chapter 4)

Γ1 : r− σ
1+P

H = 0, where dP
dt = 0 on Γ1

Γ2 :
λσP
1+P

−d = 0, where dH
dt = 0 on Γ2.

5 Predator–Prey Models 57

The arrows in Figure 5.1 show the direction of the trajectories. Notice that

dH
dt

> 0 if λσ
P

1+P
−d > 0,

i.e., if (λσ −d)P−d > 0, or

P >
d

λσ −d
.

So on Γ1

dP
dt

= 0, and
dH
dt

> 0 if P >
d

λσ −d
;

consequently the vector

(
dP
dt

,
dH
dt

)

points vertically upward at points of Γ1 where P > d
λσ−d . Similarly, on Γ1,

dP
dt

= 0, and
dH
dt

< 0 if P <
d

λσ −d
,

dH

dt
> 0 right of 2

dH

dt
< 0 left of 2

dP

dt
> 0 below of 1

dP

dt
< 0 above of 1

1 :
dP

dt
= 0

2 :
dH

dt
= 0H

P

r

d / (d)

Fig. 5.1: Phase portrait of trajectories of system (5.16)–(5.17).

so that the vector (dP/dt,dH/dt) points vertically downward. In the same way we
can see that on Γ2, where P = d

λσ−d and dH
dt = 0, the vector (dP/dt,dH/dt) points

58 5 Predator–Prey Models

horizontally, to the right below Γ1 (where dP
dt > 0) and to the left above Γ1 (where

dP
dt < 0). Next, in the region below Γ1 and to the right of Γ2,

dP
dt

> 0,
dH
dt

> 0

so that the vector (dP/dt,dH/dt) points upward and to the right, as shown in
Fig. 5.1. Similarly, the direction of the vector is upward to the left in the region
above Γ1 and to the right of Γ2. On the left of Γ2, the vector (dP/dt,dH/dt) points
downward: either to the left (above Γ1) or to the right (below Γ1). The arrows in
Fig. 5.1 schematically summarize the above considerations.

We see that the phase portrait of the nonlinear system (5.16)–(5.17) is similar to
the phase portrait of an unstable spiral, as in Fig. 3.1(D).

Problem 5.1. Consider a predator–prey model where the carrying capacity of the
predator y depends linearly on the density of the prey:

dx
dt

= ax(1− x
A
)−bxy,

dy
dt

= dy(1− y
1+ x

).

Find the steady points and determine their stability.

The Allee effect refers to the biological fact that increased fitness correlates
positively with higher (but not overcrowded) population, or that ‘undercrowding’
decreases fitness. More specifically, if the size of a population is below a threshold
then it is destined for extinction. Endangered species are often subject to the Allee
effect.

Consider a predator–prey model where the prey is subject to the Allee effect,

dx
dt

= rx(x−α)(1− x)−σxy, (0 < α < 1), (5.18)

that is, if the population x(t) decreases below the threshold x = α , then x(t) will
decrease to zero as t → ∞. The predator y satisfies the equation

dy
dt

= λσxy−δy, (5.19)

where λ is a constant.

Problem 5.2. The point (0,0) is an equilibrium point of the system (5.18)–(5.19).
Determine whether it is asymptotically stable.

Problem 5.3. Show that if α < δ
λσ < 1, then the system (5.18)–(5.19) has a second

equilibrium point (x̄, ȳ) = (δ
λσ ,

r
σ (

δ
λσ −α)(1− δ

λσ)), and it is stable if

δ
λσ

>
1+α

2
.

5.1 Numerical Simulations 59

This result shows that for the predator to survive, the prey must be allowed to
survive, and the predator must adjust its maximum eating rate, σ , so that

δ
λ

< σ <
δ
λ

2
1+α

.

If the Allee threshold, α , deteriorates and approaches 1, the predator must then
decrease its rate of consumption of the prey and bring it closer to δ/λ , otherwise it
will become extinct.

5.1 Numerical Simulations

The following algorithms 5.1 and 5.2 simulate (5.1)–(5.2). These codes demonstrate
how to implement nonlinear systems (also see Chapter 4). In these codes, there are
several parameters (a,b,c,d) which may be changed from simulation to simulation.
We here define them as global variables, which can be recognized in files declar-
ing them as global variables. It is convenient to use the global variables to define
parameters that we would like to tune in models: we only have to assign values in
the main file, without changing their numbers in the function files. But we also need
to be careful with the names of these global parameters to prevent changing them
accidentally in the code or using the same names to define other variables.

Algorithm 5.1. Main file for model (5.1)–(5.2) (main predator prey.m)

%%% This code simulates model (5.1)-(5.2).
close all, % close all the figure windows
clear all, % clear all the variables

%% define global variables
global a b c d
%% starting and final time
t0 = 0; tfinal = 5;
%% paramters
a = 5; b = 2; c = 9; d = 1;
%% initial conditions
v0 = [10,5];
[t,v] = ode45('fun_predator_prey',[t0,tfinal],v0);
subplot(2,1,1)
plot(t,v(:,1)) % plot the evolution of x
xlabel t, ylabel x
subplot(2,1,2)
plot(t,v(:,2)) % plot the evolution of y
xlabel t, ylabel y

Problem 5.4. Plot the time evolution of model (5.1)–(5.2) with a = 5,b = 2,
c = 9,d = 1 starting from (10,5), for time from 0 to 5.

60 5 Predator–Prey Models

Algorithm 5.2. fun predator prey.m

% This is the function file called by main_predator_prey.m
function dy = fun_predator_prey(t,v)
%% define global variables
global a b c d
dy = zeros(2,1);
dy(1) = a*v(1) - b*v(1)*v(2);
dy(2) = -c*v(2) + d*v(1)*v(2);

Problem 5.5. Hand draw the phase portrait for (5.1)–(5.2) with a = 5,b = 2,
c = 9,d = 1 starting from several points near the nonzero steady point.

Problem 5.6. Change the codes (adding global variables A and B in both files, define
the values in the main file, and change dy(1) and dy(2) in fun predator prey.m)
to implement (5.3)–(5.4). Plot the time evolution with a = 5,b = 2,c = 1,d = 1,
A = 2,B = 3 starting from (10,5), for time from 0 to 10. What is the steady state
you see from the simulation (you can print out the last row of the solution vector to
get x and y). Verify the stability condition using this set of parameters.

5.1.1 Revisiting Euler Method for Solving ODE – Consistency
and Convergence

We introduce some basic concepts in numerical analysis. These concepts will be
important in general for choosing an appropriate scheme to use and assess the error
of the selected algorithm. We will practice to write our own time integrator to solve
ODE instead of using ode45 in MATLAB.

Consider a differential equation

dx
dt

= f (x, t), t ≥ t0, x(t0) = x0, (5.20)

where f is a continuously differentiable function in x and t and x0 is an initial condi-
tion. Note that although here we consider a single equation where x is a real-valued
function, the following discussion can be easily generalized to systems in which
x and f represent vector-valued functions. There are various ways to derive Euler
method; here we give one derivation based on interpolation.

Recall that forward Euler method for solving (5.20) has the formula (see Eq. 2.24)

Xn+1 = Xn +h f (Xn, tn), (5.21)

where Xn denotes the approximate solution at time tn, and t0 < t1 < · · · < tN = T
are equi-distanced grid points with h = tn+1 − tn. These types of schemes are called
explicit schemes because the solution Xn+1 is explicitly defined as a function of
Xn. In other words, knowing Xn, one can explicitly compute Xn+1. Furthermore, it

5.1 Numerical Simulations 61

is called a single step method because it requires only solution at one time step in
order to compute the solution at the following time step.

In order to understand how good the numerical solution is, we define local trun-
cation error, dn, to measure how closely the difference operator approximates the
differential operator, for forward Euler method:

dn ≡ x(tn+1)− x(tn)
h

− f (x(tn), tn) =
h
2

x′′(t̄n)+O(h2),

where t̄n is some point in the interval [tn, tn+1]. In other words, the truncation error
is the measure of error by plugging in the exact solution into our numerical scheme.
The truncation error analysis can be easily obtained by using Taylor expansion
around t = tn. If a method has the local truncation error O(hp), we say that the
method is p-th order accurate. The forward Euler method is first order accurate
because the leading term of dn is of order h.

However, the real goal is not consistency but convergence. Assume Nh is
bounded independently of N. The method is said to be convergent of order p if
the global error en, where en = Xn − x(tn), e0 = 0, satisfies

en = O(hp), n = 1,2, · · · ,N.

That is, we hope that, after the accumulation of the local errors through all the steps,
the errors can still be controlled and bounded by O(hp).

Example 5.3. Consider the problem

dy
dt

= λy, y(0) = y0.

We know that the exact solution is y(t) = y0eλ t . If λ < 0, we expect that |y(t)|
exponentially decreases to 0. Let’s apply forward Euler method to this problem,
which we call the ‘test problem.’ We get

Xn+1 = Xn +hλXn, n = 0,1, ... (5.22)

with X0 = y0 and h being the time step in our discretization. Simplifying (5.22), we
obtain

Xn+1 = Xn(1+hλ), n = 0,1, ...

and therefore

Xn = (1+hλ)nX0 = (1+hλ)ny0, n = 0,1, ...

Recall that we expect |y(t)| to decrease exponentially, so we require the approxima-
tion to satisfy |Xn+1|< |Xn|, that is, |1+hλ |< 1 (−1 < 1+hλ < 1). So in order to
obtain the desired behavior of the solution, we need to require that

h <
−2
λ

(λ < 0). (5.23)

62 5 Predator–Prey Models

The condition (5.23) is a condition imposed on the time step, which we call the
stability condition. If this condition is violated, then our numerical solution blows
up, as can be seen in the numerical experiment in Problem 5.7.

Problem 5.7. Consider the test problem with λ = 20 and y0 = 1. The sample
MATLAB codes can be found in Algorithm 5.3. (a) Derive the stability condition.
(b) Test h = 0.01,0.05,0.1,0.2, with final time T = 1. Describe what you see and
explain it theoretically.

Algorithm 5.3. Forward Euler method for the test problem (forward Euler.m)

% This is a code to solve dy/dt = lambda*(y), 0<t<1, y(t=0)=1
% (lambda=20) using forward Euler

clear all;
lambda = -20;
h = .0005;
t = 0:h:1;
Nt = length(t);
y = zeros(Nt,2); % preset y as a zero matrix with the same length

% as t
y(1) = 1; % initial condition; index starts from 1

for i = 1:(Nt-1)
y(i+1) = y(i)+h*(lambda*(y(i)));

end

error = abs(y(end)-exp(lambda*t(end)))
plot(t,y), hold on
plot(t,exp(lambda*t),'r')

Problem 5.8. Consider the scalar problem

y′ =−5ty2 +
5
t
− 1

t2 , y(1) = 1.

(a) Verify that y(t) = 1
t is a solution to the problem. (b) Use forward Euler method

until t = 10 (modify forward Euler.m). Define the error to be the absolute value of
the difference between the exact solution (in this problem, the exact solution is 1

10 ,
for t = 10) and the numerical solution (in the MATLAB code it will be ‘y(end)’).
Compute the error at t = 10 using h = 0.0025,0.005,0.01,0.02. Verify that this
method is first order accurate based on the errors (the error should decrease by half
when you decrease h by half).

As mentioned above, the method (5.21) can be applied to systems, where x and
f are vectors. Algorithm 5.4 is a sample code using forward Euler method to sim-
ulate (5.1)–(5.2). Note that in the code, we used the function ‘fun predator pray.m’

5.1 Numerical Simulations 63

that was defined in Algorithm 5.2. Since forward Euler is first order, we can see
that when we increase h, the solution may be less accurate, and the shape is not as
expected. But this inaccuracy will be gone once the time step is small enough.

Algorithm 5.4. Forward Euler method for predator–pray model (5.1)–(5.2) (for-
ward Euler predator prey.m)

% This code simulates model (5.1)-(5.2) using Forward Euler method.
close all, % close all the figure windows
clear all, % clear all the variables
%% define global parameters
global a b c d

%% starting and final time
t0 = 0; tfinal = 5;

%% paramters
a = 5; b = 2; c = 9; d = 1;

%% set up time step and vectors
h = .001; % time step
t = t0 : h : tfinal; % discrete time steps
Nt = length(t); % total number of time steps
v = zeros(Nt,2); % preset v as a zero matrix
% Note that v has two columns, each representing one variable

%% initial conditions
v(1,:) = [10,5];

for i = 1:(Nt-1)
time = t(i); % current time

z = v(i,:); % approximate solution at the current time step
rhs = fun_predator_prey(time,z)';

v(i+1,:) = z + h*rhs;
end

%% plot
subplot(2,1,1)
plot(t,v(:,1)) % plot the evolution of x
xlabel t, ylabel x
subplot(2,1,2)
plot(t,v(:,2)) % plot the evolution of y
xlabel t, ylabel y

	5 Predator–Prey Models
	5.1 Numerical Simulations
	5.1.1 Revisiting Euler Method for Solving ODE – Consistency and Convergence

