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Chapter 1
Introduction

The progress in the biological sciences over the last several decades has been
revolutionary, and it is reasonable to expect that this pace of progress, facilitated
by huge advances in technology, will continue in the following decades. Mathemat-
ics has historically contributed to, as well as benefited from, progress in the natural
sciences, and it can play the same role in the biological sciences. For this reason we
believe that it is important to introduce students very early, already at the freshman
or sophomore level, with just basic knowledge in Calculus, to the interdisciplinary
field of mathematical biology. A typical case study in mathematical biology consists
of several steps. The initial step is a description of a biological process which gives
rise to several biological questions where mathematics could be helpful in provid-
ing answers. The second step is to develop a mathematical model that represents
the relevant biological process. The next step is to use mathematical theories and
computational methods in order to derive mathematical predictions from the model.
The final step is to check that the mathematical predictions provide answers to the
biological question. One can then further explore related biological questions by
using the mathematical model.

This book is based on a one semester course that we have been teaching for
several years. We chose two sets of case studies. The first set includes chemostat
models, predator–prey interaction, competition among species, the spread of infec-
tious diseases, and oscillations arising from bifurcations. In developing these topics
we also introduced the students to the basic theory of ordinary differential equations,
and taught them how to work and program with MATLAB without any prior pro-
gramming experience. The students also learned how to use codes to test biological
hypotheses.

The second set of case studies were cases adapted from recent and current
research papers to the level of the students. We selected topics that are of great
public health interest. These include the risk of atherosclerosis associated with high

© Springer International Publishing Switzerland 2016
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2 1 Introduction

cholesterol level, cancer and immune interactions, cancer therapy, and tuberculosis.
Throughout these case studies the student will experience how mathematical mod-
els and their numerical simulations can provide explanations that may actually guide
biological and biomedical research. Toward this goal we have also included in our
course “projects” for the students. We divided the students into small groups, and
each group was assigned a research paper which they were to present to the entire
class at the end of the course.

Another special feature of this book is that in addition to teach students how
to use MATLAB to solve differential equations, we also introduce some very basic
numerical methods to familiarize the students with some numerical techniques. That
will greatly help their understanding in using different MATLAB functions, and
can further help them when they try to use other computer languages in the future.
Overall, our book is quite different from traditional mathematical biology textbooks
in many aspects.

We believe that the book will help demonstrate to undergraduate students, even
those with little mathematical background and no biological background, that math-
ematics can be a powerful tool in furthering biological understanding, and that there
are both challenge and excitement in the interface between mathematics and biol-
ogy.

This book is the undergraduate companion to the more advanced book “Mathe-
matical Modeling of Biological Process” by A. Friedman and C.-Y. Kao (Springer,
2014), and there is some overlap with Chapters 1, 4–6 of that book. We would like to
thank Chiu-Yen Kao who taught the very first version of this undergraduate course.

The MATLAB codes (in M-files) for the sample codes printed on the book are
available in the Supplementary Material. The supplementary material can be down-
loaded from http://link.springer.com/book/10.1007/978-3-319-29638-8.

http://springerlink.bibliotecabuap.elogim.com/book/10.1007/978-3-319-29638-8


Chapter 2
Bacterial Growth in Chemostat

2.1 What Is a Chemostat

A chemostat, or bioreactor, is a continuous stirred-tank reactor (CSTR) used for
continuous production of microbial biomass. It consists of a fresh water and nut-
rient reservoir connected to a growth chamber (or reactor), with microorganism.
The mixture of fresh water and nutrient is pumped continuously from the reservoir
to the reactor chamber, providing feed to the microorganism, and the mixture of
culture and fluid in the growth chamber is continuously pumped out and collected.
The medium culture is continuously stirred. Stirring ensures that the contents of the
chamber is well mixed so that the culture production is uniform and steady. If the
steering speed is too high, it would damage the cells in culture, but if it is too low
it could prevent the reactor from reaching a steady state operation. Figure 2.1 is a
conceptual diagram of a chemostat.

Chemostats are used to grow, harvest, and maintain desired cells in a controlled
manner. The cells grow and replicate in the presence of suitable environment with
medium supplying the essential nutrient growth. Cells grown in this manner are
collected and used for many different applications.

These applications include:

1. Pharmaceutical: for example in analyzing how bacteria respond to different
antibiotics, or in production of insulin (by the bacteria) for diabetics.

2. Food industry: for production of fermented food such as cheese.
3. Manufacturing: for fermenting sugar to produce ethanol.

A question which arises in operating the chemostat is how to adjust the effluent
rate, that is, the rate of pumping out the mixture. In order to operate the chemostat

Electronic supplementary material The online version of this chapter (doi: 10.1007/
978-3-319-29638-8 2) contains supplementary material, which is available to authorized users.
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4 2 Bacterial Growth in Chemostat

Feed Effluent

Fig. 2.1: Stirred bioreactor operated as a chemostat, with a continuous inflow (the feed) and outflow
(the effluent). The rate of medium flow is controlled to keep the culture volume constant.

efficiently, the effluent rate should not be too small. But if this rate is too large, then
the bacteria in the growth chamber may wash out. In order to determine the optimal
rate of pumping out the mixture we need to use mathematics. In this chapter, we
develop a simple mathematical model in order to determine the optimal effluent
rate. A more comprehensive model will be developed in Chapter 8.

The mathematical model will be described by a differential equation. In this book
we shall encounter many differential equations that model biological processes. We
therefore review here some of the basic theory of differential equations.

2.2 Differential Equations

Differential equations of the first order have the form

dx
dt

= f (x, t), (2.1)

where f (x, t) is a given function. Solving this equation means that we have to find a
function x(t) which satisfies

dx(t)
dt

= f (x(t), t).

There are in fact many such solutions; but the solution will be unique if we prescribe
a condition such as

x(t0) = x0 (2.2)

for some values x0 and t0. The system (2.1)–(2.2) is called an initial value problem;
the initial time t0 may be taken, for instance, to be t0 = 0.
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Example 2.1. The solution of the differential equation

dx
dt

= t2

is x(t) = t3

3 +C, where C is an arbitrary constant. If we prescribe initial condition

x(0) = 5, then C = 5 and the unique solution is x(t) = t3

3 + 5.

Example 2.2. The solution of the initial value problem

dx
dt

= x+ 2, x(0) = 3

is given by

x(t) = 5et − 2.

There are several classes of differential equations that can be solved explicitly,
and they are introduced in the following subsections.

2.2.1 Linear Equations

Linear differential equations have the following form:

dx
dt

+ p(t)x = g(t), (2.3)

where p(t) and g(t) are given functions of t. In order to solve such an equation we
introduce the integral of p(t),

P(t) =
∫ t

0
p(s)ds,

and multiply Eq. (2.3) by eP(t),

eP(t) dx
dt

+ eP(t)p(t)x(t) = eP(t)g(t).

Note that

d
dt
[eP(t)x(t)] = eP(t) dx

dt
+ eP(t)p(t)x(t)

by the definition of P(t). Therefore,

d
dt
[eP(t)x(t)] = eP(t)g(t),

and by integrating both sides from 0 to t, we get

eP(t)x(t)− x(0) =
∫ t

0
eP(s)g(s)ds.
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It follows that

x(t) = e−P(t)x(0)+ e−P(t)
∫ t

0
eP(s)g(s)ds (2.4)

is the solution of (2.3) with prescribed x(0).
Note that in Example 2.2 above p(t) =−1, P(t) =−t, g(t) = 2,

e−P(t)
∫ t

0
eP(s)g(s)ds = 2et

∫ t

0
e−sds = 2et(1− e−t),

and formula (2.4) yields

x(t) = etx(0)+ 2(et − 1) = 5et − 2 if x(0) = 3.

2.2.2 Separation of Variables

Differential equations with separable variables are of the form

dx
dt

= g(x)h(t). (2.5)

Rewriting this equation in the form

1
g(x)

dx
dt

= h(t)

we get, by integration with respect to t,
∫

dx
g(x)

=

∫
h(t)dt,

from which we obtain the solution

G(x) = H(t)+C

where

G(x) =
∫

dx
g(x)

, H(t) =
∫

h(t)dt.

Example 2.3. Consider the equation

dx
dt

=
t

x2 .

Writing it in the form

x2 dx
dt

= t

we get, by integration,

x3

3
=

t2

2
+C.
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2.2.3 Homogeneous Equations

Differential equations that can be written in the form

dx
dt

= g(
x
t
) (2.6)

are called homogeneous equations. Such equations can be solved by introducing a
new variable v = x

t , or v(t) = x(t)
t . Then

dx
dt

=
d
dt
(tv) = v+ t

dv
dt

,

and Eq. (2.6) becomes

t
dv
dt

+ v = g(v),

which is an equation with separable variables, namely,

dv
dt

=
g(v)− v

t
.

Hence ∫
dv

g(v)− v
= ln t +C.

If we denote the integral of 1/(g(v)− v) by K(v), then the solution of Eq. (2.6) is
given implicitly by the formula

K(
x
t
) = ln t +C.

Example 2.4. The equation

dx
dt

=
x2 + t2

xt

can be written in the form

dx
dt

= g(
x
t
), where g(v) = v+

1
v
.

Setting v = x
t , we get ∫

dv
g(v)− v

= ln t +C,

and the integral of the left-hand side is
∫

vdv = v2

2 . Hence

1
2
(

x
t
)2 = ln t +C,

or

x2 = 2t2(ln t +C).
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2.2.4 Exact Equations

Consider a differential equation of the form

g(x, t)
dx
dt

+ h(x, t) = 0. (2.7)

If there is a function F(x, t) such that

∂F
∂x

= g,
∂F
∂ t

= h, (2.8)

then Eq. (2.7) is called an exact equation, and it can be written in the form

∂F
∂x

dx
dt

+
∂F
∂ t

= 0

or
dF(x(t), t)

dt
= 0.

Hence,

F(x(t), t) = constant,

and the solution of Eq. (2.7) is given implicitly by the equation

F(x, t) = c, c is constant.

We note that if there is a function F such that (2.8) holds, then

∂g
∂ t

=
∂ 2F
∂ t∂x

=
∂ 2F
∂x∂ t

=
∂h
∂ t

.

Conversely, if the functions g and h are such that

∂g
∂ t

=
∂h
∂x

then a function F satisfying (2.8) can be constructed by integration.

2.2.5 Integrating Factor

A differential equation can sometimes be made an exact equation by multiplying it
by a function, called integrating factor. If μ = μ(x,y) is to be an integrating factor
for Eq. (2.7), then it has to satisfy the equation

∂
∂ t

(μg) =
∂
∂x

(μh),
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or

μ(
∂g
∂ t

− ∂h
∂x

)+ g
∂ μ
∂ t

− h
∂ μ
∂x

= 0.

If
1
g
(

∂g
∂ t

− ∂h
∂x

) is a function k(t) (of t only),

then we can find an integrating factor μ = μ(t) by solving

1
μ

dμ
dt

=−k(t).

On the other hand if

1
h
(

∂g
∂ t

− ∂h
∂x

) is a function m(x) (of x only),

then we can find an integrating factor μ = μ(x) by solving

1
μ

dμ
dx

= m(x).

Example 2.5. Consider the equation

t(t − x)
dx
dt

+(3xt − x2) = 0.

In this case we have

1
g
(

∂g
∂ t

− ∂h
∂x

) =
1
t

and μ(t) = t.

Multiplying the differential equation by t we obtain an exact differential equation

(t3 − tx)
dx
dt

+(3xt2 − 1
2

x2) = 0

with F(x, t) such that

∂F
∂x

= t3 − tx,
∂F
∂ t

= 3xt2 − 1
2

x2,

namely

F(x, t) = t3x− 1
2

tx2.

Hence the solution of the differential equation is

t3x− 1
2

tx2 = c, c is constant.
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We have actually already encountered an integrating factor for the linear equa-
tion (2.3), namely, eP. Indeed, after multiplying both sides of Eq. (2.3) by eP we
obtain an exact equation with

F(x, t) = eP(t)x(t)−
∫ t

0
eP(s)g(s)ds.

2.2.6 Existence of Solutions

So far we have shown how to solve explicitly some classes of differential equations.
For general functions f (x, t) the initial value problem (2.1)–(2.2) cannot be solved
explicitly, but it can always be solved numerically, as will be shown in the numerical
sections. The following theorem asserts that the initial value problem (2.1)–(2.2) has
a unique solution.

Theorem 2.1. Let f (x, t) be a continuously differentiable function in a domain
which contains a point (x0, t0). Then the initial value problem (2.1)–(2.2) has a
unique solution x = x(t) for t in some interval which contains the point t = t0.

We shall be particularly interested in differential equation (2.1) where f is
independent of t, namely,

dx
dt

= f (x), (2.9)

and f (x) is continuously differentiable for all x. In this case Theorem 2.1 can be
extended as follows:

Theorem 2.2. The solution of the initial value problem (2.9), (2.2) exists for all
positive t as long as x(t) remains bounded.

The proof of Theorems 2.1 and 2.2 can be found, for instance, in Reference [1].

Example 2.6. Consider the system

dx
dt

= xα , x(0) = 1, (2.10)

where 0 < α < ∞. Rewriting the differential equation in the form

x−α dx = dt,

and we integrate it (note that the equation has separable variables) and use the initial
condition to obtain

x1−α

1−α
= t +

1
1−α

,

or

x(t) = [(1−α)t + 1]
1

1−α .
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If 0<α < 1 then the solution exists for all t > 0 and x(t)→∞ as t → ∞. If, however,
α > 1 then as t increases to 1/(α−1) the solution x(t) increases to ∞, so the solution
exists only for t < 1/(α − 1).

The solution of (2.9), (2.2) can also be continued to t < 0, but again only as long
as x(t) remains bounded. One often refers to a solution of (2.9), x(t) for 0 ≤ t < ∞,
as a trajectory.

2.2.7 Differential Inequalities

We shall encounter in this book differential inequalities of the form

dx
dt

+ μx ≤ b for t > 0, (2.11)

or

dx
dt

+ μx ≥ b for t > 0, (2.12)

and we shall need to determine the behavior of x(t) as t → ∞. Consider first the
inequality (2.11). Multiplying both sides by eμt (note that eμt is always positive for
real μ) we get

d
dt
(eμt x(t))≤ beμt

so that, by integration from 0 to t,

eμt x(t)− x(0)<
b
μ
(eμt − 1)

or

x(t)≤ e−μt(x(0)− b
μ
)+

b
μ
.

We conclude that if x(0)≤ b
μ then x(t)≤ b

μ for all t > 0. If however x(0)> b
μ then,

for any small ε > 0,

x(t)<
b
μ
+ ε (2.13)

if t is large enough, so that

e−μt(x(0)− b
μ
)< ε.

Similarly, from the inequality (2.12) we can deduce that for any small ε > 0

x(t)>
b
μ
− ε (2.14)
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if t is large enough. For later references we state:

Theorem 2.3. If a function x(t) satisfies the differential inequality (2.11), then, for
any small ε > 0, (2.13) holds for all t sufficiently large. Similarly, if a function
x(t) satisfies the inequality (2.12), then, for any small ε > 0, (2.14) holds for all t
sufficiently large.

2.3 Equilibrium and Stability

If x0 is a point such that f (x0) = 0, then the unique solution of (2.9), (2.2) is clearly
x(t) ≡ x0. Such a point x0 is called an equilibrium point, a steady state, or a
stationary point. By Taylor’s formula,

f (x) = f (x0)+ f ′(x0)(x− x0)+ (x− x0)ε(x− x0),

where ε(x− x0)→ 0 if x → x0.
Suppose x0 is an equilibrium point such that f ′(x0) < 0. Setting y = x− x0 and

by using Eq. (2.9), we then have

dy
dt

= f ′(x0)y+ yε(y),

where ε(y)→ 0 if y → 0.
If |y| is small enough so that |ε(y)|< 1

2 | f ′(x0)|, then, for y > 0,

dy
dt

< f ′(x0)y+
1
2
| f ′(x0)|y = f ′(x0)y− 1

2
f ′(x0)y =

1
2

f ′(x0)y,

so that
dy
dt

< 0 if y > 0

and y = y(t) is decreasing toward y = 0. Similarly

dy
dt

> 0 if y < 0,

so that y = y(t) is increasing toward y = 0.
Hence when f ′(x0) < 0, the solution x(t), starting near x0, moves toward x0 as t

increases; in fact, x(t)→ x0 as t → ∞. We therefore call x0 a stable equilibrium (or
more precisely asymptotically stable equilibrium). Similarly, if

f ′(x0)> 0

then solutions initiating near x0 move away from x0, as long as they are within a
small distance from x0. We call such a point x0 an unstable equilibrium.

A steady point x0 is called globally (asymptotically) stable if x(t)→ x0 for any
trajectory x(t) whose initial value x(0) is not a steady point.
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2.4 Growth Models

We need to develop a mathematical model describing the growth of bacteria popula-
tion. The density x of bacteria is defined as the number of bacteria per unit volume.
If the bacteria grow at a fixed rate r, then

x(t +Δ t)− x(t) = rx(t)Δ t,

or
x(t +Δ t)− x(t)

Δ t
= rx(t),

and, taking Δ t → 0, we get
dx
dt

= rx. (2.15)

The explicit formula for the growth of x is then

x(t) = x(0) ert .

The doubling time T is defined by x(T ) = 2x(0), that is, the time for the bacteria
to double in number, and it is given by

2 = erT , or T =
ln2
r

.

If a colony of bacteria, or other microorganism, is dying at rate s, then its density x
satisfies

dx
dt

=−sx, (2.16)

and

x(t) = x(0)e−st .

The population density is halved at time T̄ , called the half-life, given by

T̄ =
ln2
s

.

When bacteria are confined within a bounded chamber, they cannot grow expo-
nentially forever, by following (2.15). There is going to be a carrying capacity B
of the medium which the bacterial density cannot exceed. This situation is modeled
by replacing the exponential growth (2.15) by the logistic growth

dx
dt

= rx(1− x
B
). (2.17)

The solution of (2.17) with an initial condition

x(0) = x0
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is given by

x(t) =
B

1+( B
x0
− 1)e−rt

. (2.18)

Indeed, to derive (2.18), we rewrite (2.17) in the form

dx
x(1− x

B )
= rdt,

or

(
1
x
+

1
B

1
1− x

B

)dx = rdt,

and integrate to obtain

lnx− ln(1− x
B
) = rt + const.

Then
x

1− x
B

=Cert ,

and solving for x we get

x(t) =
Cert

1+ C
B ert

=
B

1+ B
C e−rt

. (2.19)

Substituting t = 0, x(0) = x0, we find the value of C:

1+
B
C

=
B
x0
, or C =

x0

1− x0
B

.

Substituting C into Eq. (2.19), we obtain the formula (2.18) for the solution of
Eq. (2.17). In the logistic growth equation (2.17) the point x = B is a stable equi-
librium. From (2.18) we see that x = B is also a globally asymptotically stable equi-
librium, since, for any initial value x(0) = x0, x(t)→ B as t → ∞.

2.5 Modeling the Chemostat

Figure 2.2 shows a schematics of a chemostat with a stock of nutrient C0 pumped
into the chamber of the bacterial culture. We assume that the chemostat chamber
is well stirred so that the nutrient concentration is constant at each time t. We then
model the bacterial growth by the logistic equation (2.17), where r depends on the
constant nutrient concentration C0. If we denote by s the rate of the bacterial outflow
from the chamber, then the balance between growth and outflow is given by

dx
dt

= rx(1− x
B
)− sx. (2.20)
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C0
Flow of nurient 

              and nutrient 
Outflow of bacteriaBacterial 

Culture Chamber 

Fig. 2.2: The chemostat device.

We shall denote by [X ] the dimension of any quantity X . Then,

[x] =
number
volume

, [B] =
number
volume

,

[r] =
1

time
, [s] =

1
time

.

There are two equilibrium points to (2.20), namely, x = 0, and x = (1− s
r )B. Note

that if the outflow rate is less than the growth rate of the bacteria, that is, if s < r,
then x= 0 is an unstable equilibrium, whereas x=(1− s

r )B is a stable equilibrium. If
s > r, then x = 0 is a stable equilibrium, whereas the equilibrium point x = (1− s

r )B
is not biologically relevant since it is negative.

Consider the case s < r and x(0) < (1− s
r )B. Since (1− s

r )B is a stable equilib-
rium, if x(0) is near (1− s

r )B, it will remain smaller than (1− s
r )B and will converge

to it as t → ∞. We can actually solve x(t) explicitly: writing

1
rx(1− x

B )− sx
=

1
r− s

(
1
x
+

r/B
(r− s)− rx/B

)

we have

1
r− s

[
dx
x
+

r/B
(r− s)− rx/B

dx

]
= dt.

By integration
1

r− s
[lnx− ln((r− s)− rx/B)] = t + const,

or
x

(r− s)− rx/B
= ce(r−s)t (c is constant).

Hence

(
1
c

e−(r−s)t +
r
B
)x = r− s,
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or

x(t) =
r− s

r
B + 1

c e−(r−s)t
. (2.21)

We see that x(t) → (1− s
r )B as t → ∞, whenever x(0) < (1− s

r )B. Note that the
formula (2.21) is valid also when x(0)> (1− s

r )B and that c is determined by

x(0) =
r− s
r
B + 1

c

, or
1
c
=

r− s
x(0)

− r
B
.

The chemostat operator would like to adjust the outflow rate s so as to get the
largest output of bacteria. The mathematical model we developed can determine
the optimal rate. Indeed, at steady state the outflow rate s is to be multiplied by
the steady state of the bacteria, which is x = (1− s

r )B. The function s(1− s
r )B takes

its maximum at s = r
2 , and with this output rate the maximum outflow per unit time

is 1
2 rB.

Summary. The chemostat operates most efficiently when s = r
2 , that is, when the

outflow rate is half the inflow rate.

Problem 2.1. Find the general solution of the differential equations

(i) dx
dt + x = 3et ;

(ii) dx
dt =−2tx+ t;

(iii) t dx
dt +αx = t2, α > 0.

Problem 2.2. Find the solution of the initial value problems

(i) dx
dt − tx = t, x(0) = 2;

(ii) dx
dt − 3x = t + 2, x(0) =−1.

Problem 2.3. Find the solution of the initial value problems

(i) dx
dt =

t
x , x(1) = 3;

(ii) dx
dt =

1+x2

xt , x(1) = 2.

Problem 2.4. Solve the equation

dx
dt

=
x+ 4t
x+ t

with x(0) = 3.

Problem 2.5. Find the solution of

(2xt +
1
x
)

dx
dt

= x2, x(3) = 1.

Problem 2.6. Find the solution of

(3x3 + xt2)
dx
dt

+ 2x2t = 0, x(2) = 8.
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Problem 2.7. Consider the equation

dx
dt

= x(x− a)(x− 2), 0 < a < 2.

It has three steady points, x= 0, x= 2, and x= a. Determine which of them is stable.

Problem 2.8. Consider the equation

dx
dt

= (x− a)(2− x), x(0)< a,

where a < 2. Find the solution explicitly in either the forms t = t(x) or x = x(t), and
use it to prove the following:

(i) If x(0)> a then the solution exists for all t > 0 and x(t)→ 2 as t → ∞;

(ii) If x(0) < a then the solution exists for t < T , where T = 1
2−a ln | 2−x(0)

a−x(0) |, and

x(t)→−∞ as t → T .

2.6 Numerical Simulations – Introduction to MATLAB

MATLAB is a software developed by The MathWorks, Inc., and it is widely used
in science and engineering. MATLAB is a high-level language and interactive env-
ironment for numerical computation, symbolic calculation, and visualization. It is
also known for its easy handling of matrices and vectors. To access this software, in
many universities, students can install licensed MATLAB software (you can request
from the IT department in your school), and individual licenses can also be pur-
chased through MathWorks website.

We will refer the readers to MathWorks’ website for details of installation and
launch of the software. In this chapter, we will introduce some basics of MATLAB
and prompt to solving an ODE problem with MATLAB. The codes and explanations
about MATLAB are based on the version of MATLAB R2014b.

The introduction here is elementary and not comprehensive, but it will give the
readers the basic idea of how MATLAB operates and how to use this software to
solve our models. We strongly encourage the readers to practice along when reading
through numerical sections in this book.

2.6.1 Scalar Calculations

Once we launch MATLAB, the default window will have several compartments: a
panel with function buttons, and main columns “Current folder,” “Command Win-
dow,” and “Workspace.” We can change to the directory that we would like to
work in, and the corresponding folders and subfolders will show in the “Current
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Folder” part. The “Command Window” is for us to enter commands and do some
calculations, and the “Workspace” will save the variables that have been used in our
calculations.

MATLAB can do basic calculations as in regular calculators. MATLAB recog-
nizes the usual arithmetic operation: + (addition), − (subtraction), * (multiplica-
tion), / (division), ˆ (power). In the Command Window, we will see the prompt sign
(>>), and we can type after prompt sign and press enter, which will give us the result
of calculation. In the following, we show the MATLAB commands in teletype font.
For example,
>> (5*2+3.5) / 5
ans =
2.7000

If we do not want to see the display of the answer, we can add a semicolon
(;) after the command to suppress the display. We can also store the result into a
variable that the user assigns, for example:
>> x = (5*2+3.5) / 5
x =
2.7000
If now we check the Workspace column, we will see that ‘x’ is stored and the value
is also shown in that column. If we did not specify the name of the variable, the
result will be stored in ‘ans’ in the Workspace. It is worth noting that a valid vari-
able name starts with a letter, followed by letters, digits, or underscores. MATLAB
is case sensitive, so B and b are not the same variable. We should avoid creating vari-
able names that conflict with function names (functions will be introduced later).

MATLAB recognizes different types of numbers: (1) integer (example: 112,
−2185); (2) real number (example: 2.452, −100.448); (3) complex (example:
−0.11+ 4.4i, i =

√−1); (4) Inf (infinity); (5) NaN (not a number).
All the calculations in MATLAB are done in double precision, which means that

the numbers are accurate up to about 15 significant figures. However, we may not see
that many digits on the display window, and this is because the default output format
is to display 4 decimal places. If you type format long in the command window
followed by pressing enter, for all the numbers shown in the command window,
you will see the full display of all the digits. The command format short will
switch back to display of 4 decimal places. To know about more format, type help
format. In general, this help command is very useful when we would like to
know how to use a command or a function; we simply type help xx, in which xx
is the command of interest.

MATLAB has some built-in trigonometric functions and elementary functions.
We choose some commonly used ones to list in Table 2.1.

When we code, it is usually important to make comments in the codes. These
comments explain what the commands are for, so that the codes are easier to
read later. In MATLAB, we use the percentage sign (%) to begin a comment, and
MATLAB will take all the characters after (%) as comments and those will not be
executed. For example:
>> y = (5*2+3.5)/5ˆ2 % store the result in variable y,
and show the result on the screen.
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Table 2.1: Commonly used MATLAB built-in functions. One can substitute ‘x’ in the table by
numbers or other variables.

MATLAB build-in functions descriptions
abs(x) absolute value of x
sqrt(x) square root of x
sin(x) sine of x in radians
sind(x) sine of x in degrees
cos(x) cosine of x in radians

cosd(x) cosine of x in degrees
tan(x) tangent of x in radians
cot(x) cotangent of x in radians
sec(x) secant of x in radians
csc(x) cosecant of x in radians
asin(x) inverse sine of x in radians
acos(x) inverse cosine of x in radians
atan(x) inverse tangent of x in radians
sinh(x) hyperbolic sine of x in radians
cosh(x) hyperbolic cosine of x in radians
exp(x) exponential of x
log(x) natural logarithm of x

log2(x) base 2 logarithm of x
log10(x) base 10 logarithm of x
ceil(x) round x toward infinity
floor(x) round x toward minus infinity
round(x) round x to the nearest integer

If the operation is too long, one can use ‘. . .’ to extend the command to the next line,
for example:
>> z = 10*sin(pi/3)*...
>> sin(piˆ2/4)

A convenient way to record the commands we are typing is to use ‘diary FILE-
NAME’, for example:
>> diary myfile
>> x = sqrt(5);
>> y = exp(x);
>> diary off
In the same directory, if you open the file ‘myfile,’ we will see the records of com-
mands and outputs. We can turn the diary back on by using ‘diary on.’

2.6.2 Vector and Matrix Operations

In previous examples, we have discussed how to use MATLAB to do the usual scalar
calculations. In fact, MATLAB is very powerful when it comes to calculations of
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vectors and matrices, and it is a vector oriented programming language. For this
reason, we should maximize the use of vector and matrix operations in our codes.

In the previous section, variables were used to store scalars. Here we show that
they can also be used to store vectors. The following is an example to assign a vector
to a variable:
>> s = [1 3 5 2]; % note the use of [], and the spaces
between the numbers; one can also use comma (,) to
separate the numbers
>> t = 2*s + 1 % 1 will be added to all the entries of 2*s
t =
3 7 11 5

In the above example, MATLAB uses [] to establish a row vector [1 3 5 2] and
stores it in the variable s, and does an operation on it to make a new row vector
[3 7 11 5] and stores it in the variable t. To extract one element from the vector or
part of the vector to do operations, we type:
>> t(3) % display the third entry of vector t
ans =
11

>> t(3) = 2 % assign another value to the third entry of
vector t
t =
3 7 2 5

>> 2*t - 5*s
ans =
1 -1 -21 0

As we have learned in linear algebra, in order to add or subtract, two vectors need
to have the same length.
>> a = [1 2 3]; b = [5 6];
>> a + b
Error using +
Matrix dimensions must agree.
The above message means we have inconsistent matrix or vector dimensions, so we
need to go back to check the dimensions of our matrices or vectors. Although we
cannot add or subtract a and b, we can combine them to form a new vector, for
example,
>> cd = [-b, 3*a]
cd =
-5 -6 3 6 9

Sometimes, we need vectors whose entries are part of an arithmetic sequence, a
convenient way to define it is to use the colon notation:
>> 1:2:6 % this will generate a row vector, starting
at 1, ending at 6, with increment 2
ans =
1 3 5
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>> 3:10 % without specifying the increment, it will
be set as 1
ans =
3 4 5 6 7 8 9 10

With this trick, we can easily extract a part of a vector, and do operations:
>> t(2:4) - 1 % this will be the same as typing
t([2 3 4])-1
ans =
6 1 4

We have learned how to define and use row vectors. The operations for column
vectors are similar. The only difference is that the entries of a column vector are
separated by semicolon (;) or by making a new line.
>> cv = [-1; pi; exp(2)]
cv =
1.0000
3.1416
7.3891

>> cv2 = [1
2
3]
cv2 =
1
2
3

The row and column vectors can be transposed to become column and row vec-
tors, respectively. The transpose of a vector or matrix is done by putting an apostro-
phe after the variable name.
>> cv’, t’
ans =
1.0000 3.1416 7.3891

ans =
3
7
2
5

Similar to creating vectors, an m×n matrix can be created by adding a semicolon
(;) after the end of each row. As in row and column vectors, entries in a row are
separated by spaces or commas, while rows are separated by using semicolons or
by making a new line. For example:
>> A = [1 2 3 4; 5 6 7 8; 9 10 11 12]
A =
1 2 3 4
5 6 7 8
9 10 11 12
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We can extract or change any single entry in the matrix
>> A(2,3) = 5; % change the (2,3) entry of A to 5
or extract part of the matrix
>> B = A(2,1:3) % take the second row, the first
to third column, store as a new matrix B
>> B =

5 6 7
We can combine matrices, as long as the dimensions are consistent.
>> A =[A B’] % transpose B, make it as the last column
vector and merge with A
A =
1 2 3 4 5
5 6 7 8 6
9 10 11 12 7

We can extract the whole row or column by using semicolon
>> A(:,3) % note here ‘:’ can be replaced by ‘1:end’,
that is, 1 to end
A =
3
7
11

>> A(1,:)
A =
1 2 3 4 5

Then we can redefine, or delete a row or a column from a matrix A:
>> A(:,2) = [] % delete the second column of A
(: represents all the rows, [] is an empty vector)
>> A = [A; 4 3 2 1; 0 -1 -2 -3]; % adding the fourth and
fifth row in the matrix A
To find out the dimension of a matrix, we use the command “size.”
>> size(A’) % the output is [number of rows, number of
columns]
ans =
4 5

To obtain the length of a vector, we use “length.”
>>length(A(1,:))
ans =
4

There are some built-in matrix generating functions,
>> ones(2,3) % this generates a 2x3 matrix with ones
>> zeros(4,4) % this generates a 4x4 matrix with zeros
>> eye(5) % this generates a 5x5 identity matrix
>> diag([1 3 5]) % this generates a matrix with 1 3 5 on
its diagonal
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Next, let us do matrix-matrix or matrix-vector multiplication. When we use * in
the matrix operations, it will operate as the matrix-matrix multiplication in linear
algebra. For example,
>> X = [1 2 3; 0 2 4]; Y = [5 2; 1 1; 10 7]; W = X*Y
W =
37 25
42 30

If we try
>> X*X
then we will see an error message about the matrix dimension, because an m× n
matrix can only be multiplied by an n× k matrix. Sometimes we would like to per-
form component-by-component operations, but not matrix-matrix multiplications;
for that purpose we need to use ‘.*’ instead of ‘*’. The following commands will
give different results:
>> W.* W % component-by-component operation
>> W * W % matrix-matrix multiplication
and we will find that X.*X works because it is a component-by-component op-
eration. Note that the use of ‘.*’ requires the two matrices to have the same size.
This component-wise operation of matrices can also be used for division (‘./’) and
exponents (‘.ˆ’).

Problem 2.9. Try the following command to generate a vector x.
>> x = 0:0.01:2
What is the x you see on MATLAB? Then use the command
>> y = sin(x)
to generate another vector y, what is y?

Problem 2.10. Let x = [2,5,1,6].

(a) Add 15 to each element. [Hint: x+ 15.]
(b) Add 3 to only the odd-indexed elements of x.
(c) Output the vector whose elements are squares of the corresponding elements of

x. [Hint: .* or .ˆ]

Problem 2.11. Let x = [3,1,6,8]′ and y = [2,1,3,5]′ (x and y are column vectors ).

(a) Add x to y.
(b) Raise each element of x to the power specified by the corresponding element

in y.
(c) Divide each element of y by the corresponding element in x. [Hint: ./]
(d) Multiply each element in x by the corresponding element in y, and call the result

‘z’. [Hint: .*]
(e) Add up the elements in z and assign the result to a variable called ‘w’. [Hint:

w=sum(z).]
(f) Compute (sinx)′ ∗ y−w.



24 2 Bacterial Growth in Chemostat

2.6.3 Program Files

MATLAB program (script) files are essentially text files with a file extension ‘.m’.
We can start a new script file simply by clicking an icon on the MATLAB window
called ‘New Script’ (name may vary in different systems or versions). A program
file can contain a series of commands to be executed (scripts), or it can contain a
function that accepts input arguments and produces output. Let’s open a new script
file and type the following in the file:
a = 3.5;
b = 1;
x = sin(a)-b;
Save this file as ‘testscript.m’ in our working directory. In the command window,
type
>> testscript
and press enter, and you will see
x =
-1.3508

We can also execute the script file by directly clicking the ‘Run’ button on the script
file window.

Another way to obtain the result is to make the file a function file. Open another
script file, and name it ‘fun1.m’. In the file, type and save
function x = fun1(a,b)
x = sin(a)-b;
In the command window, type
>> fun1(3.5,1)
and you can see that it produces the same result as before. We can try more sets of
(a,b)
>> a1 = fun1(2,-1)
>> a2 = fun1(-2.4,10)

2.6.4 Numerical Algorithms for Solving Ordinary Differential
Equations

Most of the time, the solution of an ordinary differential equation problem (2.1)
does not have a closed-form solution. In this case, one looks for numerical solutions
that approximate the exact solution. Since numerical solutions are just approxima-
tions, it is also important to understand the accuracy and robustness of the numerical
method.

Suppose the initial value problem is

dx
dt

= f (x, t), t ≥ t0, x(t0) = x0. (2.22)
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Let tn be some time point with tn ≥ t0, then by integrating the equation from tn to t,
one gets

x(t) = x(tn)+
∫ t

tn
f (x,τ)dτ ≈ x(tn)+ (t − tn) f (x(tn), tn). (2.23)

The approximation of the integral in (2.23) is good as long as t is sufficiently close
to tn. Suppose we would like to compute the solution of (2.22) at t = T , T > t0. To
get an approximate solution at time T , we can discretize the interval [t0,T ] into N
uniform subintervals [tn, tn+1],n = 0, ..,N − 1, with tN = T and tn+1 − tn = h = T

N .
We call h the step size. We will use lowercase x to denote the exact solution of (2.22)
and capital X to denote the approximate solution.

Using the approximation in (2.23), we then define a numerical scheme by

Xn+1 = Xn + h f (X(tn), tn). n = 0, · · · ,N − 1, (2.24)

where Xn is the approximation of x(tn). This is called the forward Euler Method,
named after Leonhard Euler (1707–1783). The error of this scheme is O(h), which
can be formally derived from the Taylor expansion. Hence, the smaller the time step
size is, the more accurate the approximate solution will be. Generally, a numerical
scheme is called k-th order accurate if the error is O(hk), where h is the discretization
size. So Euler method is first order accurate. Although nowadays there are many
high order accurate schemes to solve ordinary differential equations, Euler method
is still a classical one when we first learn numerical methods. In MATLAB, we
have some options of using Runge-Kutta methods [2] to solve ordinary differential
equations, which will be introduced as follows.

Using MATLAB to Solve ODE

When solving problem (2.22) with MATLAB, we need to provide three pieces of
information for the program:

1. the right-hand side function f (x, t);
2. the initial condition x(t0) = x0;
3. the integration interval [t0,T ].

The first step is to define functions in MATLAB. Recall that we introduced in
the previous subsection about using a function file to define a single function, which
reads in arguments and produces outputs. Another way is to use ’function handle,’ a
MATLAB value that provides a means of calling a function indirectly. For example,
to define f (x, t) = t − 2x, we can type in the command window
>> f = @(x,t) t-2*x; %The @ operator constructs a
function handle for this function
>> f(3,1)
ans =

-5
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Problem 2.12. Try to use a script file to define the above function.

Now, to solve a simple ODE

dx
dt

= t − 2x, 0 ≤ t ≤ 2, x(0) = 1,

we can type the following in the command window:
>> g = @(t,x)(t-2*x);
>> tspan = [0, 0.2]; % integrate the ODE from 0 to 0.2
>> x0 = 2; % the initial condition x(0) = 2
>> [t,x] = ode45(g,tspan,x0)

Note that the first argument in the function g is ‘t’ and the second is ‘x’; we
have to keep this order (time is first, followed by other variables) when we define
functions for MATLAB ODE solvers. The ODE solver we used is ‘ode45,’ a built-in
Runge-Kutta solver in MATLAB.

Also, when we output variables t and x, we can see that t and x are column
vectors. The vector t records the discrete time points in the MATLAB simulations,
starting at 0 (the initial time) and ending at 0.2 (the final time). The vector x is
of the same length as t, and the elements are the approximate solutions at time
corresponding to elements in vector t (the first element of x is 2, which is the initial
condition).

We can save the above commands in a script file so that we do not have to retype
next time. A slightly different version is to use a function file to define the right-hand
side function f (x, t), see Algorithms 2.1 and 2.2 (run ‘main BacterialGrowth.m’,
and ‘fun BacterialGrowth.m’ is to be called when ‘ode45’ is solving the ODE).
A plot of x versus t will be shown by the ‘plot’ command.

Algorithm 2.1. Main script file to solve dx/dt = t − 2x (main BacterialGrowth.m)

%%% This code solves the ODE dx/dt=t-2x, 0<=t<=0.2 with x(t=0)=2

tspan = [0,0.2]; % integrate the ode from 0 to 0.2
x0 = 2; % the initial condition x(0) = 2
[t,x] = ode45('fun_BacterialGrowth',tspan,x0);
plot(t,x)

Algorithm 2.2. fun BacterialGrowth.m

%%% This function will be called by main_BacteriaGrowth.m
function dx = fun_BacterialGrowth(t,x)
dx = t - 2*x;
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Problem 2.13. Write a code to solve the ODE (refer to Eq. (2.17))

dx
dt

= x
(

1− x
2

)
, 0 ≤ t ≤ 10,

with initial condition x(0) = 0.5.

(a) Run the code and get the two column vectors of discrete time points and the
corresponding approximate solutions.

(b) Use the vector of time points to compute a vector containing the exact solution
at those time points. [Hint: refer to formula (2.18); exponential of x is ’exp(x)’
in MATLAB.]

(c) Compute the absolute value of the difference between the approximate and exact
solutions.

(d) Plot the numerical solution and the exact solution on the same figure with dif-
ferent markers and different colors (refer to the numerical section of Chapter 3
for plotting).

Problem 2.14. Solve the equation in Problem 2.8 with a = 1 numerically in the
form x = x(t) when (i) x(0) = 1

2 , (ii) x(0) = 3
2 . For (i), plot x for the time interval

when finite solution exists (starting from 0); for (ii), plot x for 0 ≤ t ≤ 10.



Chapter 3
System of Two Linear Differential Equations

In Chapter 5 we shall model the interaction between predator y and prey x by a
system of two differential equations: the differential equation for x will involve the
predator y and the differential equation for y will involve the prey x. In order to study
this model, as well as other models that will appear in subsequent chapters, we need
to develop some basic theory for a system of two differential equations of order 1,

dx
dt

= f (x,y),
dy
dt

= g(x,y).

The functions f (x,y) and g(x,y) will generally be nonlinear functions. We shall
develop the theory in two stages: The first stage to be taken up in this chapter deals
with the special case where f and g are linear functions, and the second stage, to be
taken up in Chapter 4, will extend the theory to nonlinear functions f and g. Before
we start, with a linear system of two equations, however, it will be instructive to
consider one linear differential equations of the second order.

3.1 Second Order Linear Differential Equations

Consider a second order differential equation

a
d2x
dt2 + b

dx
dt

+ cx = 0, (3.1)

where a, b, c are real constants and a 
= 0. The general solution is

x(t) = c1eλ1t + c2eλ2t , c1,c2 are constants, (3.2)
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where λ1,λ2 are the solutions of the quadratic equation

aλ 2 + bλ + c = 0,

namely,

λ1,2 =
1
2a

(−b±
√

b2 − 4ac) (3.3)

provided λ1 
= λ2. If λ1 = λ2 = − b
2a , then, as easily seen, teλ1t is another solution

of (3.1), and the general solution of (3.1) is

x(t) = c1eλ1t + c2teλ1t . (3.4)

We can use the general solution to solve Eq. (3.1) subject to initial conditions

x(0) = α, x′(0) = β . (3.5)

Indeed, if λ1 
= λ2 then c1 and c2 are uniquely determined by solving the
equations

c1 + c2 = α, λ1c1 +λ2c2 = β ,

and the solution is

c1 =
αλ2 −β
λ2 −λ1

, c2 =
β −αλ1

λ2 −λ1
.

If λ1 = λ2 then

c1 = α and c2 = β −λ1α.

If b2 − 4ac is negative, then λ1 and λ2 are complex numbers,

λ1,2 =
1

2a
(−b± i

√
4ac− b2) = μ ± iν (3.6)

and

eλ1,2t = eμt(cosνt ± isinνt).

Then the general real-valued solution can be written in the form

x(t) = c1eμt cosνt + c2eμt sinνt. (3.7)

If we set

y =
dx
dt

,

then Eq. (3.1) can be written as a system of linear differential equations,

dx
dt

= y, (3.8)

dy
dt

= − c
a

x− b
a

y.
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From Eq. (3.4) we deduce that if λ1 
= λ2 then the general solution of this system is

(
x(t)
y(t)

)
= c1

(
eλ1t

λ1eλ1t

)
+ c2

(
eλ2t

λ2eλ2t

)
.

If λ1,2 are complex numbers, then, by (3.7) the real-valued general solution is

(
x(t)
y(t)

)
= c1

(
eμt cosνt

eμt(μ cosνt −ν sin νt)

)
+ c2

(
eμt sinνt

eμt(μ sinνt +ν cosνt)

)
.

3.2 Linear Systems

We shall need some basic facts from Linear Algebra. We first recall that, for any
matrix

A =

(
α11 α12

α21 α22

)
,

one defines the determinant of A by

detA =

∣∣∣∣α11 α12

α21 α22

∣∣∣∣= α11α22 −α12α22.

Consider a linear system

α11x1 +α12x2 = b1,

α21x1 +α22x2 = b2,
(3.9)

where A = (αi j) is a given matrix. We wish to have a unique solution (x1,x2) for
any prescribed vector (b1,b2). The following theorems give a complete answer.

Theorem 3.1. If detA 
= 0 then for any vector (b1,b2) there exists a unique solution
of the system (3.9), and it is given by

x1 =

∣∣∣∣b1 α12

b2 α22

∣∣∣∣
detA

, x2 =

∣∣∣∣α11 b1

α21 b2

∣∣∣∣
detA

;

in particular, if b1 = b2 = 0 then the unique solution is x1 = x2 = 0.

Theorem 3.2. If detA = 0 then the homogeneous system

α11x1 +α12x2 = 0

α21x1 +α22x2 = 0

has nonzero solutions; hence, if the only solution of the homogeneous system is
x1 = x2 = 0 then detA 
= 0.
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In this section we consider a general system of differential equations with con-
stant coefficients

dx1

dt
= a11x1 + a12x2,

dx2

dt
= a21x1 + a22x2.

(3.10)

Motivated by the special case of system (3.8) we try to find a solution in the form

x1 = v1eλ t , x2 = v2eλ t ,

where the coefficients v1,v2 are to be determined from the equations

a11v1 + a12v2 = v1λ ,
a21v1 + a22v2 = v2λ .

We can rewrite this system in matrix form
(

a11 −λ a12

a21 a22 −λ

)(
v1

v2

)
=

(
0
0

)
, (3.11)

or (A−λ I)v = 0, where

A =

(
a11 a12

a21 a22

)
, I =

(
1 0
0 1

)
, v =

(
v1

v2

)
.

By Theorems 3.1 and 3.2, a nonzero solution v exists if and only if λ satisfies the
characteristic equation

det(A−λ I) = 0. (3.12)

A solution λ of (3.12) is called an eigenvalue of A and a corresponding vector v is
called eigenvector. Eq. (3.12) can be written explicitly as

λ 2 −λ (a11 + a22)+ (a11a22 − a12a21) = 0. (3.13)

If the two eigenvalues λ1,λ2 are different, then the general solution of the system
(3.9) is

x(t) = c1w1eλ1t + c2w2eλ2t , (3.14)

where w1 and w2 are eigenvectors corresponding to λ1 and λ2, respectively. More
precisely:

Theorem 3.3. If λ1 
= λ2 then, for any initial values

x(0) = b, where b =

(
b1

b2

)
, (3.15)

there is a unique solution of (3.10), (3.15) in the form (3.14).
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Proof. We first claim that w1,w2 are linearly independent, that is,

if α1w1 +α2w2 = 0 then α1 = α2 = 0.

Indeed this relation implies that

α1λ1w1 +α2λ2w2 = α1Aw1 +α2Aw2 = A(α1w1 +α2w2) = 0.

Since also α1w1 +α2w2 = 0, or α1λ1w1 =−λ1α2w2, we get, by subtraction,

α2λ2w2 −λ1α2w2 = 0, or (λ2 −λ1)α2w2 = 0.

If follows that α2 = 0, and then also α1 = 0.
Setting

w1 =

(
v11

v12

)
, w2 =

(
v21

v22

)

we conclude that

if
2

∑
i=1

vi jαi = 0 for j = 1,2, then α1 = α2 = 0.

Hence, by Theorem 3.2, det(vi j) 
= 0. But then, by Theorem 3.1, for any (b1,b2)
there is a unique solution (c1,c2) of the system

2

∑
i=1

vi jci = bi ( j = 1,2),

and the function x(t) in (3.14) is then the solution asserted in the theorem.

Consider next the case where λ1 is a complex number, λ1 = μ + iν . Then the
components of the eigenvector w1 are also complex numbers. But we are interested
only in real-valued solutions. So in order to construct real-valued solutions we write

w1eλ1t =

(
v11 + iv12

v21 + iv22

)
eμt(cosνt + isinνt), (3.16)

where vi j are real numbers. We note that the complex conjugate of w1eλ1t is also a
solution of (3.10) and, hence, so are the real and imaginary parts of (3.16). It follows
that

w1 = eμt
(

v11 cosνt − v12 sin νt
v21 cosνt − v22 sin νt

)
and w2 = eμt

(
v11 sinνt + v12 cosνt
v21 sinνt + v22 cosνt

)

(3.17)

are two solutions.

Theorem 3.4. The two solutions w1 and w2 are linearly independent.
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Proof. Since w1 
= 0, at least one of the numbers vi j in (3.16) is not equal to zero.
Suppose v11 
= 0, the other cases can be treated similarly. If the assertion of the
theorem is not true, then there are numbers γ1,γ2 such that

γ1w1 + γ2w2 = 0 (3.18)

and γ1 
= 0, or γ2 
= 0. We consider the first component in (3.18), and note that the
sum of the coefficients of cosνt and the sum of the coefficients of sinνt must be
equal to zero, so that, by (3.17),

v11γ1 + v12γ2 = 0,

−v12γ1 + v11γ2 = 0.

But since

det

(
v11 v12

−v12 v11

)
= v2

11 + v2
12 > 0,

we conclude, by Theorem 3.1, that γ1 = γ2 = 0, which is a contradiction to the
assumption that γ1 
= 0 or γ2 
= 0.

From Theorem 3.4 it follows, as in the proof of Theorem 3.3, that any solution
of (3.10) is a linear combination of the two solutions in (3.17).

By writing the roots λ1,λ2 of (3.13) in the form (3.3) or (3.6), we see that
Reλ1 < 0 and Reλ2 < 0 if and only if

trace of A ≡ a11 + a22 < 0,
determinant of A≡a11a22 − a12a21 > 0.

(3.19)

If λ1 = λ2, then in addition to a solution w1eλ1t of the system (3.10) where w1

is an eigenvector of (3.11), there is another solution of the form w1teλ1t + ŵ2eλ1t

where ŵ2 is an appropriate vector. Setting w2 = w1 + ŵ2, the general solution of the
system (3.10) is

x(t) = c1w1teλ1t + c2w2eλ1t .

3.3 Equilibrium Points

We denote a variable point in the plane by x = (x1,x2). The point x = 0 is called
an equilibrium point of the system (3.10), since the solution x(t) with x(0) = 0 is
x(t)≡ 0. We define the phase space for the system (3.10) as the (x1,x2)-space, and
we want to draw the portrait of the trajectories (x(t), t > 0) in this space near x = 0,
at least qualitatively. This can be done with the aid of the form (3.14) of the general
solution. The portrait will depend on the eigenvalues λ1,λ2.

Figures 3.1(B) and 3.1(E) show that when both eigenvalues have negative real
parts, all the trajectories converge to x = 0; we say that x = 0 is a stable equilibrium
(or more precisely, asymptotically stable equilibrium). On the other hand, when
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Fig. 3.1: Phase portrait for system (3.9).

at least one of the eigenvalues has positive real part, there are always trajectories
that go away from x = 0 even if they start initially near x = 0; we say that x = 0
is an unstable equilibrium. Figures 3.1(A) and 3.1(D) are unstable, whereby all
trajectories starting from x(0) 
= 0 go away to infinity, while in the case of the saddle
point of Fig. 3.1(C), all but two trajectories go to infinity. In the (rather exceptional)
case where both eigenvalues are pure imaginary numbers, the trajectories are all
periodic, and x = 0 is called a center point; see Fig. 3.1(F).

In order to solve an inhomogeneous linear equation

a
d2x
dt2 + b

dx
dt

+ cx = f (t) (3.20)

with a given function f (t), we first need to find a special solution x̃(t) and, then,
the general solution is a sum of x̃(t) and the general solution of the homogeneous
equation. The same procedure applies to inhomogeneous linear systems.

Problem 3.1. Find the general solution of x′′+ x′ − x = t2.

Problem 3.2. Find the solution of x′′ − 4x′+ 3x = e−t with x(0) = 1
8 ,x

′(0) = 1
4 .
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Example 3.1. To find the general solution of

dx1

dt
= −x1 + 6x2

dx2

dt
= 2x1 + 3x2,

we substitute

x1 = ν1eλ t , x2 = ν2eλ t

into the two differential equations. After canceling out eλ t , we get two equations for
ν1,ν2:

(−1−λ )ν1+ 6ν2 = 0, 2ν1 +(3−λ )ν2 = 0.

A nonzero solution (ν1,ν2) exists if and only if

det

(−1−λ 6
2 3−λ

)
= 0,

that is, if

(λ + 1)(λ − 3)− 12= 0

or

λ 2 − 2λ − 15 = 0,

and the two solutions are λ1 = −3,λ2 = 5. If λ = −3 then the two equations for
ν1,ν2 become identical,

2ν1 + 6ν2 = 0 and 2ν1 + 6ν2 = 0,

and we can take ν1 = 3,ν2 = 1. If λ = 5 then the two equations for ν1,ν2 are

−6ν1 + 6ν2 = 0 and 2ν1 − 2ν2 = 0,

and they are linearly dependent. So again a solution of one equation is also a solution
of the other equation; we can take ν1 = 1,ν2 = 1. We conclude that

e−3t
(

3
−1

)
and e5t

(
1
1

)

are two solutions, and the general solution of the system is

c1e−3t
(

3
−1

)
+ c2e5t

(
1
1

)

where c1,c2 are arbitrary constants.
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Problem 3.3. Find the solution of

dx1

dt
= −2x1 + 7x2

dx2

dt
= 2x1 + 3x2.

Problem 3.4. Find the general solution of

dx1

dt
= x1 − 2x2

dx2

dt
= 2x1 + x2.

Problem 3.5. Find the general solution of

dx1

dt
= 3x1 + 2x2

dx2

dt
= −4x1 − 3x2.

Problem 3.6. Find the general solution of

dx1

dt
= −4x1 + 6x2

dx2

dt
= −3x1 + 2x2.

[Hint: Try to find solution of the form (3.17)].

In order to solve an inhomogeneous system

dx1

dt
= a11x1 + a12x2 + f1(t)

dx2

dt
= a21x1 + a22x2 + f2(t)

(3.21)

we need to find one special solution and add it to the general solution of the hom-
ogenous system (3.9).

Example 3.2. Find a special solution of

dx1

dt
= x1 + 3x2 − 4t2− 5

dx2

dt
= x1 − x2 + 1.

We try a polynomial solution

x1 = a1t2 + b1t + c1, x2 = a2t2 + b2t + c2;
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polynomials of degree higher than 2 are not needed since the equations for x1,x2

have polynomials in t of degree less than 2. Substituting the above polynomials into
the differential equations, we get

2a1t + b1 = (a1t2 + b1t + c1)+ 3(a2t2 + b2t + c2)− 4t2 − 5

2a2t + b2 = (a1t2 + b1t + c1)− (a2t2 + b2t + c2)+ 1.

Equating the coefficients of t2 in each of the two equations, we find that

a1 + 3a2− 4 = 0, a1 − a2 = 0;

hence a1 = a2 = 1. Next we equate the coefficients of t, and, using the fact that
a1 = a2 = 1, we get

2 = b1 + 3b2, 2 = b1 − b2;

hence b1 = 2,b2 = 0. Finally, equating the remaining terms (which do not involve
t2 and t) we find (after using the fact that b1 = 2,b2 = 0) that

2 = c1 + 3c2 − 5, 0 = c1 − c2 + 1;

hence c1 = 1,c2 = 2. Thus a special solution is (1+ 2t+ t2,2+ t2).

Problem 3.7. Find a special solution of

dx1

dt
= −x1 + x2 − 2e−t

dx2

dt
= 2x1 − x2 − e−t .

and solve this system with

x1(0) = 1, x2(0) = 2.

3.4 Numerical Simulations

3.4.1 Solving a Second Order ODE

In Chapter 2, we have simulated scalar first order ODEs with MATLAB. A natural
question is whether we need additional MATLAB functions to simulate higher order
equations. The answer is no. What we need to do is to convert higher order equations
into systems of ODEs, and then we will simulate the ODE systems. Let’s take a
second order ODE as an example:

u
′′
(t)+ 16u

′
(t)+ 192u(t) = 0
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can be converted to {
x
′
1 = x2

x
′
2 = −16x2 − 192x1

by letting x1 = u and x2 = u′. In general, a linear system of two first order ordinary
differential equations has the form of system (3.21) which can also be written as

d
dt

(
x1

x2

)
=

(
a11 a12

a21 a22

)(
x1

x2

)
+

(
f1(t)
f2(t)

)
.

For example, given an ODE system

d
dt

(
x1

x2

)
=

(
1 2
2 3

)(
x1

x2

)
+

(
0
t2

)
, 0 ≤ t ≤ 1,

with initial condition

(
x1(0)
x2(0)

)
=

(
2
3

)
, we can solve it with MATLAB, as shown

in Algorithms 3.1 and 3.2.

Algorithm 3.1. Main file for solving a linear system (main LinearDiffEqns.m)

%%% This code is to solve a linear system defined in
%%% fun_LinearDiffEqns.m

x_ini = [2,3]'; % the initial condition is a vector
[t,z] = ode45('fun_LinearDiffEqns', [0,1], x_ini)
% output t is a column vector,
% and the output z is a matrix containing two columns of same
% lengths as vector t

Algorithm 3.2. fun LinearDiffEqns.m

%%% This function will be called by main_LinearDiffEqns.m
function dx = fun_LinearDiffEqns(t,x)

% the input is t (scalar) and x (a 2-by-1 column vector)
A = [1,2;2,3];
dx = A*x + [0; tˆ2]; % the output dx is a column vector

By running ‘main LinearDiffEqns.m’, we have the output MATLAB variables
t and z. Vector t is a column vector with components as the discrete time points
that MATLAB uses in the simulation. Matrix z has two columns: the first column
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corresponds to the first variable x1 and the second corresponds to the second vari-
able x2. Different rows in z represents the approximate values of x1 and x2 at the
corresponding time points in t.

3.4.2 Plotting Figures

Suppose x = [x1,x2,x3, · · · ,xn] is a vector representing sampling points on x−axis
and y = [y1,y2,y3, · · · ,yn] represents the corresponding function values of compo-
nents of x (note that x and y must be of the same length), then to plot x versus y, one
uses
>> plot(x,y)
To label the axis, we can use
>> xlabel(’x’), ylabel(’y’)
This can also be done by a click on the figure window: ‘Edit’ → ‘Axis properties’
and then edit in the property editor.

One can also specify the color and marker by adding an option in the ‘plot’
function, for example,
>> plot(x,y,’r o’) % this marks those point values by
red circles

If we would like to overlay two curves, x versus y and x versus z, where z =
[z1,z2,z3, · · · ,zn], we can use
>> plot(x,y,’r’,x,z,’b’) % mark the first y(x) function

in red and the second z(x) in blue.
or we can use the following two commands
>> plot(x,y,’r’), hold on
>> plot(x,z,’b’)

The ‘hold on’ command holds the first figure data and the second will be plotted
on top of the first one. Without this command, the previous data in the figure will be
overwritten.

Example 3.3. Let’s type the following commands:
>> x = 0 : pi/100 : pi;
>> y = sin(x);
>> z = cos(x);
>> plot(x,y,’r’,x,z,’g’), hold on
>> legend(’y(x)’,’z(x)’)
We can see the figure in Fig. 3.2. Note that using the command ‘legend’, we can add
the legend to specify different curves; this can also be done by using the ‘Insert’
pull-down menu on the figure window. The font size and other properties of the
figure can also be edited using ‘Edit’ pull-down menu in the figure window.

If we would like to plot y(x) and z(x) in one figure window but two separate
plots, we can use ‘subplot’, for example, continuing the above commands:
>> close all % close all the figure windows
>> subplot(1,2,1), plot(x,y,’r’)
>> subplot(1,2,2), plot(x,z,’b’)
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The figure will look like Fig. 3.3. The command ‘subplot’ defines an array of figures,
with the first argument the number of rows and the second the number of columns.
The third argument is from 1 to the product of the numbers of rows and columns,
and the ordering runs through rows. If we rather separate the two figures into two
figure windows and save them later in two files, we can type
>> close all % close all the figure windows
>> figure(1), plot(x,y,’r’)
>> figure(2), plot(x,z,’b’)

To save the figure, we can click ‘Save as’ in ‘File’ pull-down menu in the figure
window and choose the format to save. We can save it as the usual figure format, or
the Matlab figure file, with the extension ‘.fig’, which we can later open with Matlab
and edit directly.
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Fig. 3.2: Basic one-dimensional figure.

Problem 3.8. (a) Rewrite Problem 3.2 into a first order system. (b) Take the initial
condition given in the problem, and the time interval 0 ≤ t ≤ 3. Use MATLAB to
solve the system you get in (a), and plot the two variables on the same figure.

Problem 3.9. (a) Solve y′′ − 5y′ = 0, y(0) = 1, y′(0) = 2 analytically; (b) solve the
same problem with MATLAB, for 0 ≤ t ≤ 3; (c) plot both the exact solutions ob-
tained in (a) and the numerical solution in (b) with different colors.

Problem 3.10. Consider the system

dx1

dt
= x1 − x2

dx2

dt
= x1 + x2

with x1(0) = 1,x2(0) = 5, 0 ≤ t ≤ 2.
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Fig. 3.3: Figure with subplots.

(a) Solve the system and write down the exact solution.
(b) Use MATLAB to solve the system.
(c) Plot on the same figure the exact solution and the numerical solution of x1(t),

obtained in (a) and (b), respectively.



Chapter 4
Systems of Two Differential Equations

In Chapter 3, we considered linear differential system of the form (3.10). In this
chapter we study general systems of two differential equations of the first order,

dx1

dt
= f1(x1,x2),

dx2

dt
= f2(x1,x2), (4.1)

where f1(x1,x2), f2(x1,x2) are any given functions, not necessarily linear. A point
(a,b) such that

f1(a,b) = 0, f2(a,b) = 0

is called an equilibrium point, a stationary point, or a steady point of the sys-
tem (4.1). The x1-nullcline of (4.1) is the curve consisting of points satisfying the
equation

f1(x1,x2) = 0.

Similarly, the x2-nullcline is the curve defined by

f2(x1,x2) = 0.

The equilibrium points of the system (4.1) are the points where the two nullclines
intersect. To get an idea about how trajectories behave near a stationary point (a,b),
we linearize the system.

We set

X1 = x1 − a, X2 = x2 − b.

Then, by Taylor’s formula, for i = 1,2

fi(x1,x2) = fi(a+X1,b+X2) = fi(a,b)+
∂ fi

∂x1
X1 +

∂ fi

∂x2
X2 + small terms,
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where we abbreviate

∂ fi

∂x1
=

∂ fi

∂x1
(a,b),

∂ fi

∂x2
=

∂ fi

∂x2
(a,b).

If we define

ai j =
∂ fi

∂x j
(a,b)

then the system (4.1) near (a,b) has the form

dXi

dt
= ai1X1 + ai2X2 + small terms (i = 1,2)

when X1,X2 are near 0. Hence the trajectories of (4.1) near (a,b) are expected to
behave approximately like the trajectories of

dXi

dt
= ai1X1 + ai2X2, i = 1,2. (4.2)

Accordingly, the equilibrium point (a,b) of (4.1) is said to be asymptotically
stable (or, briefly, stable) if the equilibrium point x = 0 of (4.2) is asymptotically
stable, that is, if the real parts of eigenvalues of the matrix A = (ai j) are negative.
An equilibrium point which is not stable is called unstable.

We conclude that the equilibrium point (a,b) of the system (4.1) is stable if and
only if the following inequalities hold at (a,b):

∂ f1
∂x1

+ ∂ f2
∂x2

< 0,

∂ f1
∂x1

∂ f2
∂x2

− ∂ f1
∂x2

∂ f2
∂x1

> 0,
(4.3)

i.e., trace of
(

∂ fi
∂x j

)
< 0 and determinant of

(
∂ fi
∂x j

)
> 0. The matrix ( ∂ fi

∂x j
(a,b)) is

called the Jacobian matrix at the equilibrium point (a,b).

Example 4.1. Consider the system

dx
dt

= 2x2 − xy− 1,

dy
dt

= y− x.

We wish to find the equilibrium points and determine their stability. The equilibrium
points (x,y) satisfy the equations

2x2 − xy− 1= 0, y− x = 0.

Substituting y = x into the first equation, we get

x2 − 1 = 0.
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Hence x =±1 and the equilibrium points are (1,1) and (−1,−1). In order to deter-
mine their stability we compute the Jacobian matrix J(x,y) at (x,y):

J(x,y) =

(
4x− y −x
−1 1

)
=

(
3x −x
−1 1

)
.

Then

J(1,1) =

(
3 −1
−1 1

)
, J(−1,−1) =

(−3 1
−1 1

)
.

We can get an idea of how the trajectories behave near the equilibrium point (1,1)
by computing the eigenvalues of J(1,1), that is, the solutions λ of the characteristic
equation at the steady point (1,1),

det(J(1,1)−λ I) = 0,

or ∣∣∣∣3−λ −1
−1 1−λ

∣∣∣∣= (3−λ )(1−λ )− 1= λ 2 − 4λ + 2 = 0.

Clearly, λ1,2 = 2±√
2. Since both eigenvalues are positive, the trajectories near

(1,1) behave as in Fig. 3.1(A) of an unstable node.
Similarly, the eigenvalues of J(−1,−1) are given by

det(J(−1,−1)−λ I) = 0,

or ∣∣∣∣−3−λ 1
−1 1−λ

∣∣∣∣= (λ + 3)(λ − 1)+ 1= λ 2 + 2λ − 2 = 0,

so that λ1,2 = 1±√
3. Hence, λ1 > 0, λ2 < 0, and the trajectories near the steady

point (−1,−1) behave as in Fig. 3.1(C) of an unstable saddle point.

Example 4.2. Consider the system

dx
dt

= −2x2 + xy,

dy
dt

= −y+ x− 3.

It is useful to rewrite the first equation by factoring the right-hand side,

dx
dt

= x(−2x+ y).

It is then easily seen that the steady points are

x = 0, y =−3 and x =−3, y =−6.
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We compute

J(x,y) =

(−4x+ y x
1 −1

)
,

so that

J(0,−3) =

(−3 0
1 −1

)
, and J(−3,−6) =

(
6 −3
1 −1

)
.

The stationary point (0,−3) is stable since trace(J(0,−3))
=−4 < 0 and detJ(0,−3) = 3 > 0. The stationary point (−3,−6) is unstable since
trace(J(−3,−6))= 5> 0. The eigenvalues of J(0,−3) are λ1 =−1, λ2 =−3, so the
trajectories near the stationary point (−1,−3) behave as in the stable node shown
in Fig. 3.1(B). The eigenvalues of J(−3,−6) are

λ1,2 =
5
2
±
√

25
4

+ 3

so (−3,−6) is an unstable saddle point as in Fig. 3.1(C).

Example 4.3. Consider the system

dx
dt

= x(4− x)− y+ I, I ≥ 0,

dy
dt

= 2x− y.

The steady points are

x = 1±√
1+ I, y = 2x,

and

J(x,y) =

(
4− 2x −1

2 −1

)
.

A stationary point (x,y) is stable if and only if

traceJ(x,y) = 4− 2x− 1< 0, or x >
3
2
,

and

detJ(x,y) =−(4− 2x)+ 2> 0, or x > 1.

Hence the stationary point (1+
√

1+ I,2(1+
√

1+ I)) is stable and the stationary
point (1−√

1+ I,2(1−√
1+ I)) is unstable. By computing the eigenvalues of the

Jacobians we can determine the behavior of the trajectories about the steady points.
For example, if I = 0, the characteristic equation about the steady point (2,4) is

λ 2 +λ + 2 = 0

and the eigenvalues are λ1,2 = − 1
2 ±

√
1
4 − 2. Hence the trajectories behave as in

Fig. 3.1(E) of a stable spiral.
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Problem 4.1. The system

dx
dt

= x2 − y2,

dy
dt

= x(1− y)

has two nonzero equilibrium points (1,1),(−1,1). Find the eigenvalues of the Jaco-
bian matrix for each of these points, and determine the behavior of the trajectories
in terms of the classification described in the graphs in Fig. 3.1.

Problem 4.2. Do the same for the system

dx
dt

= x− xy2,
dy
dt

= y+ xy2 + 1

with its steady points (0,−1),(−2,1).

Problem 4.3. Find the equilibrium points of the system

dx
dt

= x− xy2,
dy
dt

= 1− x2 + 2xy

and determine their stability

Problem 4.4. Do the same for the system

dx
dt

= x− x2 − xy,
dy
dt

= y− xy− 4y2.

4.1 Numerical Simulations

A general system of two first order ordinary differential equations has the form
{

dx1
dt = F1(x1,x2, t),

dx2
dt = F2(x1,x2, t).

(4.4)

Note that the system (4.4) is slightly different from (4.1) by including t in the right-
hand side functions.

Suppose (4.4) is a linear system, namely, it can be written in the form:
{

dx1
dt = a11(t)x1 + a12(t)x2 + b1(t)

dx2
dt = a21(t)x1 + a22(t)x2 + b2(t),

or equivalently,
x′ = A(t)x+ b(t)
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where

x =

(
x1(t)
x2(t)

)
, b(t) =

(
b1(t)
b2(t)

)
, A(t) =

(
a11(t) a12(t)
a21(t) a22(t)

)
.

We can use Algorithms 3.1 and 3.2 to solve the system numerically (the matrix A in
Algorithm 3.2 may have to be changed to a function of t if A is not constant).

However, if the system (4.4) is nonlinear, then we can no longer use Algo-
rithm 3.2. In the following example, we show how to change the code when the
system is nonlinear.

Example 4.4. Solve the system

dx1

dt
= x2

1 − x1x2 + t,

dx2

dt
= −x1 + x2

2.

with (x1,x2) = (1,1) and 0 ≤ t ≤ 1. Sample codes are in Algorithms 4.1 and 4.2.

Algorithm 4.1. Main file for solving Example 4.4 (main NonlinearDiffEqns.m)

x_ini = [1,1]'; % the initial condition is a vector
tspan = [0,1] ; % time span
[t,z] = ode45('fun_NonlinearDiffEqns', tspan, x_ini);
% output t is a column vector, and the output z is a matrix
% containing two columns of the same lengths as vector t

plot(t,z)
legend('x_1','x_2') % add legend at the corner of the figure to

% distinguish two curves

Algorithm 4.2. fun NonlinearDiffEqns.m

function dx = fun_NonlinearDiffEqns(t,x)
% the input is t (scalar) and x (a 2-by-1 column vector)

dx = zeros(2,1);
% the output dx is preset to be a 2-by-1 zero column vector
dx(1) = x(1)ˆ2 - x(1)*x(2) + t; % the first component of dx
dx(2) = -x(1) + x(2)ˆ2; % the second component of dx
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Problem 4.5. Solve numerically the system

dx
dt

= xy− 2y,

dy
dt

= xy+ x,

with x(0) = 1, y(0) = 1, for 0 ≤ t ≤ 3.

Problem 4.6. Solve numerically the system

dx
dt

= x− xy2 + t,

dy
dt

= y+ xy,

with x(0) = 1, y(0) = 1, for 0 ≤ t ≤ 3.

Problem 4.7. Solve numerically the system

dx
dt

= −xy,

dy
dt

= (1− x)(1+ y),

with x(0) = 2, y(0) = 0, for 0 ≤ t ≤ 4.

In this chapter, we have learned that we can use the eigenvalues of the Jacobian
to determine whether a stationary point is stable or not. In MATLAB, we can easily
evaluate the eigenvalues and eigenvectors.

Example 4.5. Given the matrix

A =

(
1 1
4 1

)

we can use the following commands to obtain the eigenvalues and eigenvectors.
>> A=[1 1;4 1];
>> [V,D]=eig(A)
V =
0.4472 -0.4472
0.8944 0.8944

D =
3.0000 0
0 -1.0000

The output V contains two column vectors, the eigenvectors of A, and their corre-
sponding eigenvalues are in the diagonal of matrix D.

Therefore, if we are given the following system

dx
dt

=

(
1 1
4 1

)
x (4.5)
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we can easily construct the exact solution

x = c1

(
1
2

)
e3t + c2

(
1
−2

)
e−t .

The origin is a saddle point and it is unstable. Figure 4.1 is an illustration of such an
unstable saddle point.

x2

x(1)(t)

x(2)(t)

2

2

1

1

−1

−2

−2 −1 x1

Fig. 4.1: Unstable saddle point for the system (4.5).

Problem 4.8. Consider the system

dx
dt

=

(−3
√

2√
2 −2

)
x.

Obtain the exact solution by hand or by using the commands introduced above. Is
the origin (the stationary point) stable?

Problem 4.9. Solve the system

dx
dt

=

(− 1
2 1

−1 − 1
2

)
x.

Is the origin (the stationary point) stable?

Problem 4.10. Solve the system

dx
dt

=

(
1 −1
1 3

)
x.

Is the origin (the stationary point) stable?



Chapter 5
Predator–Prey Models

A predator is an organism that eats another organism. A prey is an organism that a
predator eats. In ecology, a predation is a biological interaction where a predator
feeds on a prey. Predation occurs in a wide variety of scenarios, for instance in wild
life interactions (lions hunting zebras, foxes hunting rabbits), in herbivore–plant
interactions (cows grazing), and in parasite–host interactions.

If the predator is to survive over many generations, it must ensure that it con-
sumes sufficient amount of prey, otherwise its population will decrease over time
and will eventually disappear. On the other hand, if the predator over-consumes the
prey, the prey population will decrease and disappear, and then the predator will also
die out, from starvation.

Thus the question arises: what is the best strategy of the predator that will ensure
its survival. This question is very important to ecologists who are concerned with
biodiversity. But it is also an important question in the food industry; for example,
in the context of fishing, with humans as predator and fish as prey, what is the
sustainable amount of fish harvesting?

In this chapter we use mathematics to provide answers to these questions. We
begin with a simple example of predator–prey interaction.

We denote by x the density of a prey, that is, the number of prey animals per unit
area on land (or volume, in sea) and by y the density of predators. We denote by a
the net growth rate in x (birth minus natural death), and by c the net death rate of
predators. The growth of predators is assumed to depend only on its consumption
of the prey as food. Predation occurs when predator comes into close contact with
prey, and we take this encounter to occur at an average rate b. Hence

dx
dt

= ax− bxy. (5.1)

The growth of predators is proportional to bxy (say, by a factor of d/b), so that

Electronic supplementary material The online version of this chapter (doi: 10.1007/
978-3-319-29638-8 5) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2016
C.-S. Chou, A. Friedman, Introduction to Mathematical Biology,
Springer Undergraduate Texts in Mathematics and Technology,
DOI 10.1007/978-3-319-29638-8 5

51

http://10.1007/978-3-319-29638-8_5
http://10.1007/978-3-319-29638-8_5


52 5 Predator–Prey Models

dy
dt

= dxy− cy. (5.2)

In terms of dimensions,

[a] =
1

time
, [b] =

1
density of predator

1
time

,

and

[c] =
1

time
, [d] =

1
density of prey

1
time

.

The system (5.1)–(5.2) has two equilibrium points. The first one is (0,0); this
corresponds to a situation where both species die. This equilibrium point is unstable.
Indeed the Jacobian matrix at (0,0) is

(
a 0
0 −c

)

and one of the eigenvalues, namely a, is positive.
The second equilibrium point is ( c

d ,
a
b) and the Jacobian matrix at this point is

(
0 −bc

d
ad
b 0

)
.

The corresponding eigenvalues are λ =±i
√

ac. According to Fig. 3.1(F) the portrait
of all trajectories are circles. We conclude: The predator and prey will both survive
forever, and their population will undergo periodic (seasonal) oscillations.

The system (5.1)–(5.2) is an example of what is known as Lotka-Volterra equa-
tions. One can introduce various variants into these equations. For example, if the
prey population is quite congested, we may want to use the logistic growth for the
prey (recall that logistic growth is introduced in Eq. (2.17)).

More general models of predator–prey are written in the form

dx
dt

= x f (x,y),
dy
dt

= yg(x,y),

where x is the prey and y is the predator, ∂ f/∂y < 0,∂g/∂x > 0, and ∂ f/∂x < 0
for large x, ∂g/∂y < 0 for large y. The first two inequalities mean that the prey
population is depleted by the predator and the predator population is increased by
feeding on the prey. The last two inequalities represent natural death due to the
logistic growth model.



5 Predator–Prey Models 53

Example 5.1. Consider the predator–prey system

dx
dt

= ax(1− x
A
)− bxy, (5.3)

dy
dt

= dxy(1− y
B
)− cy, (5.4)

where A and B are the carrying capacities for the prey x and the predator y, res-
pectively. In order to compute the steady points and determine their stability we
conveniently factor out x in (5.3) and y in (5.4), rewriting these equations in the
form

dx
dt

= x[a(1− x
A
)− by], (5.5)

dy
dt

= y[dx(1− y
B
)− c]. (5.6)

Clearly, (x,y) = (0,0) is a steady point with the Jacobian

(
a 0
0 −c

)
,

so (0,0) is unstable. The point (x̄, ȳ) = (A,0) is another steady point with Jacobian

(−a −Ab
0 dA− c

)
.

Hence the steady state (A,0), where only the prey survives, is stable if dA− c < 0.
The nonzero steady point (x̄, ȳ) (where x̄> 0 and ȳ> 0) are determined by solving

the equations

a(1− x̄
A
)− bȳ = 0, (5.7)

dx̄(1− ȳ
B
)− c = 0. (5.8)

But before computing these points let us compute the Jacobian at (x̄, ȳ). In view of
(5.7) we have

∂
∂x

{x[a(1− x
A
)− by]}|(x̄,ȳ) = {x

∂
∂x

[a(1− x
A
)− by]}|(x̄,ȳ) =−x̄

a
A

;

similarly

∂
∂y

{y[dx(1− y
B
)− c]}|(x̄,ȳ) = {y

∂
∂y

[dx(1− y
B
)− c]}|(x̄,ȳ) =−ȳ

dx̄
B
.
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where we have used (5.8). Hence

J(x̄, ȳ) =

( − x̄a
A −bx̄

ȳd(1− ȳ
B ) − ȳdx̄

B

)
. (5.9)

We immediately see that trace(J(x̄, ȳ)) < 0. Hence (x̄, ȳ) is stable if and only if
detJ(x̄,y)> 0, where

detJ(x̄, ȳ) = dx̄ȳ[
ax̄
AB

+ b(1− ȳ
B
)]. (5.10)

To search for other steady points we substitute

ȳ =
a
b
(1− x̄

A
) (5.11)

from (5.7) into (5.8) and obtain a quadratic equation for x̄:

α x̄2 +β x̄− c = 0,

where

α =
ad

bAB
, β = d(1− a

bB
).

The only positive solution is

x̄ =
1

2α
[−β +

√
β 2 + 4ac]. (5.12)

Since A is the carrying capacity of x, it is biologically natural to assume that
x̄ < A. Actually, if x(0)< A and y(t) is assumed to be positive for all t > 0, then x(t)
will remain less than A for all t > 0. We can show this by contradiction: otherwise
there is a first time, t0, when x(t) becomes equal to A, so that x(t0) = A and dx

dt (t0)≥
0. But, by (5.5)

dx
dt

(t0) =−bx(t0)y(t0)< 0,

which is a contradiction.
Similarly, it is natural to assume that ȳ < B. Hence (x̄, ȳ) is a biologically relevant

steady state with ȳ > 0 if and only if ȳ is given by (5.11), and the inequalities

x̄ < A,
a
b
(1− x̄

A
)< B (5.13)

hold, where x̄ is defined by (5.12). These inequalities hold, for instance, if a
b < B

and c is small.
The above example is instructive in two ways. First, it shows that sometimes it is

better to compute the Jacobian at (x̄, ȳ) before actually computing the steady point
(x̄, ȳ) whose expression could be complicated. Second, it shows that by factoring out
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x or y in the differential equations we are able to compute the Jacobian more easily.
This last remark will be very useful in future computations, so we shall refer it as
the ‘factorization rule’ and formulate it for general systems of equations.

Factorization Rule

Consider a system (4.1) where the fi can be factored as follows:

f1(x1,x2) = x1g1(x1,x2), f2(x1,x2) = x2g2(x1,x2),

so that
dx1

dt
= x1g1(x1,x2),

dx2

dt
= x2g2(x1,x2)

In this case there are equilibrium points P1 = (0,0),P2 = (0, x̄2) if g2(0, x̄2) = 0,
P3 = (x̄1,0) if g1(x̄1,0) = 0, and P4(x̃1, x̃2) if g1(x̃1, x̃2) = 0, g2(x̃1, x̃2) = 0. We can
then quickly compute the Jacobian matrix J(Pi) at each point Pi. For example, to
compute J(P4) when x̃1 > 0, x̃2 > 0, we notice that since g1 = g2 = 0 at P4,

J(P4) =

(
x1

∂g1
∂x1

x1
∂g1
∂x2

x2
∂g2
∂x1

x2
∂g1
∂x2

)

(x̃1,x̃2)

.

Similarly,

J(P1) =

(
g1(0,0) 0

0 g2(0,0)

)
,

J(P2) =

(
g1 0

x2
∂g2
∂x1

x2
∂g1
∂x2

)

(0,x̄2)

when x̄2 > 0,

and

J(P3) =

(
x1

∂g1
∂x1

x1
∂g1
∂x2

0 g2

)

(x̄1,0)

when x̄1 > 0.

Example 5.2. Plant–herbivore model. The herbivore H feeds on plant P, which
grows at rate r. We take the consumption rate of the plant to be

σP
1+P

H;

this means that, at small amount of P, H consumes P at a linear rate σP, but the
rate of consumption by H is limited and, for simplicity, we assume that it cannot
exceed σ . Thus,

dP
dt

= rP−σ
P

1+P
H. (5.14)
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The equation for the herbivore is

dH
dt

= λ σ
P

1+P
H − dH. (5.15)

Here d is the death rate of H, and λ is the yield constant, that is,

λ =
mass of herbivore formed

mass of plant used
;

naturally λ < 1. Note that if λ σ < d, that is, if the growth rate by consumption is
less than the death rate, then dH

dt < 0 and the herbivore will die out. We rewrite the
system (5.14)–(5.15) in the more convenient from

dP
dt

= P(r− σ
1+P

H), (5.16)

dH
dt

= H(λ
σP

1+P
− d), (5.17)

and assume that λ σ > d. Then the steady points are (0,0) and (P̄, H̄), where

P̄ =
d

λ σ − d
, H̄ =

λ r
λ σ − d

.

Since

J(0,0) =

(
r 0
0 −d

)
,

the steady point (0,0) is unstable. Using the factorization rule we find that

J(P̄, H̄) =

(
P̄σ H̄

(1+P̄)2 − σ P̄
1+P̄

λ σ
(1+P̄)2 0

)
.

Since traceJ(P̄, H̄) > 0 and detJ(P̄, H̄) > 0, and both eigenvalues of the character-
istic equation have negative real parts, so (P̄, H̄) is an unstable node. We conclude
that the plant–herbivore model (5.14)–(5.15) has no stable steady states. In order
to understand this situation better we look at the dynamics of system (5.16)–(5.17)
on the P-H phase plane. The solutions of the system form trajectories on the phase
plane, as depicted in Fig. 3.1; here we will analyze the direction of the trajectories,
that is, ( dP

dt ,
dH
dt ) on the phase plane in order to get an idea of how the trajectories

themselves look like. We introduce the nullclines (see definition in Chapter 4)

Γ1 : r− σ
1+P

H = 0, where dP
dt = 0 on Γ1

Γ2 :
λ σP
1+P

− d = 0, where dH
dt = 0 on Γ2.
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The arrows in Figure 5.1 show the direction of the trajectories. Notice that

dH
dt

> 0 if λ σ
P

1+P
− d > 0,

i.e., if (λ σ − d)P− d > 0, or

P >
d

λ σ − d
.

So on Γ1

dP
dt

= 0, and
dH
dt

> 0 if P >
d

λ σ − d
;

consequently the vector

(
dP
dt

,
dH
dt

)

points vertically upward at points of Γ1 where P > d
λ σ−d . Similarly, on Γ1,

dP
dt

= 0, and
dH
dt

< 0 if P <
d

λ σ − d
,

dH

dt
> 0 right of 2

dH

dt
< 0 left of 2

dP

dt
> 0 below of 1

dP

dt
< 0 above of 1

1 :
dP

dt
= 0

2 :
dH

dt
= 0H

P

r

d / ( d)

Fig. 5.1: Phase portrait of trajectories of system (5.16)–(5.17).

so that the vector (dP/dt,dH/dt) points vertically downward. In the same way we
can see that on Γ2, where P = d

λ σ−d and dH
dt = 0, the vector (dP/dt,dH/dt) points
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horizontally, to the right below Γ1 (where dP
dt > 0) and to the left above Γ1 (where

dP
dt < 0). Next, in the region below Γ1 and to the right of Γ2,

dP
dt

> 0,
dH
dt

> 0

so that the vector (dP/dt,dH/dt) points upward and to the right, as shown in
Fig. 5.1. Similarly, the direction of the vector is upward to the left in the region
above Γ1 and to the right of Γ2. On the left of Γ2, the vector (dP/dt,dH/dt) points
downward: either to the left (above Γ1) or to the right (below Γ1). The arrows in
Fig. 5.1 schematically summarize the above considerations.

We see that the phase portrait of the nonlinear system (5.16)–(5.17) is similar to
the phase portrait of an unstable spiral, as in Fig. 3.1(D).

Problem 5.1. Consider a predator–prey model where the carrying capacity of the
predator y depends linearly on the density of the prey:

dx
dt

= ax(1− x
A
)− bxy,

dy
dt

= dy(1− y
1+ x

).

Find the steady points and determine their stability.

The Allee effect refers to the biological fact that increased fitness correlates
positively with higher (but not overcrowded) population, or that ‘undercrowding’
decreases fitness. More specifically, if the size of a population is below a threshold
then it is destined for extinction. Endangered species are often subject to the Allee
effect.

Consider a predator–prey model where the prey is subject to the Allee effect,

dx
dt

= rx(x−α)(1− x)−σxy, (0 < α < 1), (5.18)

that is, if the population x(t) decreases below the threshold x = α , then x(t) will
decrease to zero as t → ∞. The predator y satisfies the equation

dy
dt

= λ σxy− δy, (5.19)

where λ is a constant.

Problem 5.2. The point (0,0) is an equilibrium point of the system (5.18)–(5.19).
Determine whether it is asymptotically stable.

Problem 5.3. Show that if α < δ
λ σ < 1, then the system (5.18)–(5.19) has a second

equilibrium point (x̄, ȳ) = ( δ
λ σ ,

r
σ (

δ
λ σ −α)(1− δ

λ σ )), and it is stable if

δ
λ σ

>
1+α

2
.
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This result shows that for the predator to survive, the prey must be allowed to
survive, and the predator must adjust its maximum eating rate, σ , so that

δ
λ

< σ <
δ
λ

2
1+α

.

If the Allee threshold, α , deteriorates and approaches 1, the predator must then
decrease its rate of consumption of the prey and bring it closer to δ/λ , otherwise it
will become extinct.

5.1 Numerical Simulations

The following algorithms 5.1 and 5.2 simulate (5.1)–(5.2). These codes demonstrate
how to implement nonlinear systems (also see Chapter 4). In these codes, there are
several parameters (a,b,c,d) which may be changed from simulation to simulation.
We here define them as global variables, which can be recognized in files declar-
ing them as global variables. It is convenient to use the global variables to define
parameters that we would like to tune in models: we only have to assign values in
the main file, without changing their numbers in the function files. But we also need
to be careful with the names of these global parameters to prevent changing them
accidentally in the code or using the same names to define other variables.

Algorithm 5.1. Main file for model (5.1)–(5.2) (main predator prey.m)

%%% This code simulates model (5.1)-(5.2).
close all, % close all the figure windows
clear all, % clear all the variables

%% define global variables
global a b c d
%% starting and final time
t0 = 0; tfinal = 5;
%% paramters
a = 5; b = 2; c = 9; d = 1;
%% initial conditions
v0 = [10,5];
[t,v] = ode45('fun_predator_prey',[t0,tfinal],v0);
subplot(2,1,1)
plot(t,v(:,1)) % plot the evolution of x
xlabel t, ylabel x
subplot(2,1,2)
plot(t,v(:,2)) % plot the evolution of y
xlabel t, ylabel y

Problem 5.4. Plot the time evolution of model (5.1)–(5.2) with a = 5,b = 2,
c = 9,d = 1 starting from (10,5), for time from 0 to 5.
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Algorithm 5.2. fun predator prey.m

% This is the function file called by main_predator_prey.m
function dy = fun_predator_prey(t,v)
%% define global variables
global a b c d
dy = zeros(2,1);
dy(1) = a*v(1) - b*v(1)*v(2);
dy(2) = -c*v(2) + d*v(1)*v(2);

Problem 5.5. Hand draw the phase portrait for (5.1)–(5.2) with a = 5,b = 2,
c = 9,d = 1 starting from several points near the nonzero steady point.

Problem 5.6. Change the codes (adding global variables A and B in both files, define
the values in the main file, and change dy(1) and dy(2) in fun predator prey.m)
to implement (5.3)–(5.4). Plot the time evolution with a = 5,b = 2,c = 1,d = 1,
A = 2,B = 3 starting from (10,5), for time from 0 to 10. What is the steady state
you see from the simulation (you can print out the last row of the solution vector to
get x and y). Verify the stability condition using this set of parameters.

5.1.1 Revisiting Euler Method for Solving ODE – Consistency
and Convergence

We introduce some basic concepts in numerical analysis. These concepts will be
important in general for choosing an appropriate scheme to use and assess the error
of the selected algorithm. We will practice to write our own time integrator to solve
ODE instead of using ode45 in MATLAB.

Consider a differential equation

dx
dt

= f (x, t), t ≥ t0, x(t0) = x0, (5.20)

where f is a continuously differentiable function in x and t and x0 is an initial condi-
tion. Note that although here we consider a single equation where x is a real-valued
function, the following discussion can be easily generalized to systems in which
x and f represent vector-valued functions. There are various ways to derive Euler
method; here we give one derivation based on interpolation.

Recall that forward Euler method for solving (5.20) has the formula (see Eq. 2.24)

Xn+1 = Xn + h f (Xn, tn), (5.21)

where Xn denotes the approximate solution at time tn, and t0 < t1 < · · · < tN = T
are equi-distanced grid points with h = tn+1 − tn. These types of schemes are called
explicit schemes because the solution Xn+1 is explicitly defined as a function of
Xn. In other words, knowing Xn, one can explicitly compute Xn+1. Furthermore, it
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is called a single step method because it requires only solution at one time step in
order to compute the solution at the following time step.

In order to understand how good the numerical solution is, we define local trun-
cation error, dn, to measure how closely the difference operator approximates the
differential operator, for forward Euler method:

dn ≡ x(tn+1)− x(tn)
h

− f (x(tn), tn) =
h
2

x′′(t̄n)+O(h2),

where t̄n is some point in the interval [tn, tn+1]. In other words, the truncation error
is the measure of error by plugging in the exact solution into our numerical scheme.
The truncation error analysis can be easily obtained by using Taylor expansion
around t = tn. If a method has the local truncation error O(hp), we say that the
method is p-th order accurate. The forward Euler method is first order accurate
because the leading term of dn is of order h.

However, the real goal is not consistency but convergence. Assume Nh is
bounded independently of N. The method is said to be convergent of order p if
the global error en, where en = Xn − x(tn), e0 = 0, satisfies

en = O(hp), n = 1,2, · · · ,N.

That is, we hope that, after the accumulation of the local errors through all the steps,
the errors can still be controlled and bounded by O(hp).

Example 5.3. Consider the problem

dy
dt

= λ y, y(0) = y0.

We know that the exact solution is y(t) = y0eλ t . If λ < 0, we expect that |y(t)|
exponentially decreases to 0. Let’s apply forward Euler method to this problem,
which we call the ‘test problem.’ We get

Xn+1 = Xn + hλ Xn, n = 0,1, ... (5.22)

with X0 = y0 and h being the time step in our discretization. Simplifying (5.22), we
obtain

Xn+1 = Xn(1+ hλ ), n = 0,1, ...

and therefore

Xn = (1+ hλ )nX0 = (1+ hλ )ny0, n = 0,1, ...

Recall that we expect |y(t)| to decrease exponentially, so we require the approxima-
tion to satisfy |Xn+1|< |Xn|, that is, |1+ hλ |< 1 (−1 < 1+ hλ < 1). So in order to
obtain the desired behavior of the solution, we need to require that

h <
−2
λ

(λ < 0). (5.23)
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The condition (5.23) is a condition imposed on the time step, which we call the
stability condition. If this condition is violated, then our numerical solution blows
up, as can be seen in the numerical experiment in Problem 5.7.

Problem 5.7. Consider the test problem with λ = 20 and y0 = 1. The sample
MATLAB codes can be found in Algorithm 5.3. (a) Derive the stability condition.
(b) Test h = 0.01,0.05,0.1,0.2, with final time T = 1. Describe what you see and
explain it theoretically.

Algorithm 5.3. Forward Euler method for the test problem (forward Euler.m)

% This is a code to solve dy/dt = lambda*(y), 0<t<1, y(t=0)=1
% (lambda=20) using forward Euler

clear all;
lambda = -20;
h = .0005;
t = 0:h:1;
Nt = length(t);
y = zeros(Nt,2); % preset y as a zero matrix with the same length

% as t
y(1) = 1; % initial condition; index starts from 1

for i = 1:(Nt-1)
y(i+1) = y(i)+h*(lambda*(y(i)));

end

error = abs(y(end)-exp(lambda*t(end)))
plot(t,y), hold on
plot(t,exp(lambda*t),'r')

Problem 5.8. Consider the scalar problem

y′ =−5ty2 +
5
t
− 1

t2 , y(1) = 1.

(a) Verify that y(t) = 1
t is a solution to the problem. (b) Use forward Euler method

until t = 10 (modify forward Euler.m). Define the error to be the absolute value of
the difference between the exact solution (in this problem, the exact solution is 1

10 ,
for t = 10) and the numerical solution (in the MATLAB code it will be ‘y(end)’).
Compute the error at t = 10 using h = 0.0025,0.005,0.01,0.02. Verify that this
method is first order accurate based on the errors (the error should decrease by half
when you decrease h by half).

As mentioned above, the method (5.21) can be applied to systems, where x and
f are vectors. Algorithm 5.4 is a sample code using forward Euler method to sim-
ulate (5.1)–(5.2). Note that in the code, we used the function ‘fun predator pray.m’
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that was defined in Algorithm 5.2. Since forward Euler is first order, we can see
that when we increase h, the solution may be less accurate, and the shape is not as
expected. But this inaccuracy will be gone once the time step is small enough.

Algorithm 5.4. Forward Euler method for predator–pray model (5.1)–(5.2) (for-
ward Euler predator prey.m)

% This code simulates model (5.1)-(5.2) using Forward Euler method.
close all, % close all the figure windows
clear all, % clear all the variables
%% define global parameters
global a b c d

%% starting and final time
t0 = 0; tfinal = 5;

%% paramters
a = 5; b = 2; c = 9; d = 1;

%% set up time step and vectors
h = .001; % time step
t = t0 : h : tfinal; % discrete time steps
Nt = length(t); % total number of time steps
v = zeros(Nt,2); % preset v as a zero matrix
% Note that v has two columns, each representing one variable

%% initial conditions
v(1,:) = [10,5];

for i = 1:(Nt-1)
time = t(i); % current time

z = v(i,:); % approximate solution at the current time step
rhs = fun_predator_prey(time,z)';

v(i+1,:) = z + h*rhs;
end

%% plot
subplot(2,1,1)
plot(t,v(:,1)) % plot the evolution of x
xlabel t, ylabel x
subplot(2,1,2)
plot(t,v(:,2)) % plot the evolution of y
xlabel t, ylabel y



Chapter 6
Two Competing Populations

Competition is an interaction between organisms, or species, sharing resources
that are in limited supply. This is an important topic in ecology. The ‘competitive
exclusion principle’ asserts that species less suited to compete will either adapt or
die out. In aggressive competition one species may attempt to kill the other. This sit-
uation occurs, for example, among some species of ants, and some species or yeast.
When enough data is known about the history of a specific competition between two
species, mathematics can then be used to predict whether both species will survive
and coexist or whether one of them will die out.

In this chapter we consider some examples of competing populations and deter-
mine, using mathematics, whether one or both species will survive. We begin with
the following model:

dx
dt

= r1x(1− x
k1
)− b1xy, (6.1)

dy
dt

= r2y(1− y
k2
)− b2xy. (6.2)

In Eq. (6.1), r1 is the growth rate of species x, k1 is the carrying capacity which
limits its growth, and b1 is the rate by which the competitor y kills x. Eq. (6.2) has a
similar interpretation.

The system (6.1)–(6.2) has equilibrium points

(0,0), (k1,0), (0,k2). (6.3)

Note that the equilibrium point (k1,0) means that the second population becomes
extinct. Similarly, (0,k2) corresponds to a situation where the first population
becomes extinct.

Electronic supplementary material The online version of this chapter (doi: 10.1007/
978-3-319-29638-8 6) contains supplementary material, which is available to authorized users.

© Springer International Publishing Switzerland 2016
C.-S. Chou, A. Friedman, Introduction to Mathematical Biology,
Springer Undergraduate Texts in Mathematics and Technology,
DOI 10.1007/978-3-319-29638-8 6

65

http://10.1007/978-3-319-29638-8_6
http://10.1007/978-3-319-29638-8_6


66 6 Two Competing Populations

In order to determine whether there exist additional equilibrium points, we must
solve the equations

r1(1− x
k1
)− b1y = 0,

r2(1− y
k2
)− b2x = 0.

We rewrite the system in the form

r1

k1
x+ b1y = r1,

b2x+
r2

k2
y = r2.

The determinant D of the system is

D =

∣∣∣∣
r1
k1

b1

b2
r2
k2

∣∣∣∣= r1r2

k1k2
− b1b2 =

r1r2

k1k2
(1−β1β2),

where β1 =
k1b1

r1
, β2 =

k2b2
r2

, and the solution of the system is given by

x =
1
D

∣∣∣∣r1 b1

r2
r2
k2

∣∣∣∣= 1
D
(

r1r2

k2
− r2b1) =

1
1−β1β2

k1k2

r1r2
(

r1r2

k2
− r2b1) =

k1 − k2β1

1−β1β2
,

and, similarly,

y =
k2 − k1β2

1−β1β2
.

Thus the steady point at which both populations may exist is given by

(
β1k2 − k1

β1β2 − 1
,

β2k1 − k2

β1β2 − 1
), where βi =

kibi

ri
(i = 1,2). (6.4)

This steady point is of biological relevance only if the two components are
positive, which occurs only when either

k1 >
r2

b2
, k2 >

r1

b1

or

k1 <
r2

b2
, k2 <

r1

b1
.

Problem 6.1. Determine whether the equilibrium points in (6.3) are stable.

Problem 6.2. Show that the steady point defined in (6.4) is stable if k1 < r2
b2

and k2 <
r1
b1

.
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This result means that both species will coexist provided that the rate of killing,
b j, is less than ri/k j, the rate of growth divided by the carrying capacity, for j =
1, i = 2 and for j = 2, i = 1.

In the next example two species are competing for space. Consider for example
grass (x) and weed (y) growing in the same field. They share some resources, e.g.,
nutrients from the ground. But they also receive resources independently from each
other, e.g., sunshine and rain. Thus they only partially infringe upon each other in
terms of the medium carrying capacity which supports their growth. We can model
their dynamics as follows:

dx
dt

= r1x(1− x+αy
K

)− μ1x, (6.5)

dy
dt

= r2y(1− β x+ y
K

)− μ2y, (6.6)

where 0 < α < 1,0 < β < 1. Assuming that r1 = r2 = r, μ1 = μ2 = μ , and r > μ ,
there is a steady state, (x̄, ȳ), where the two species coexist:

r(1− x̄+α ȳ
K

)− μ = 0,

r(1− β x̄+ ȳ
K

)− μ = 0.

Problem 6.3. Show that the steady state of coexistence is given by

(
K(1− μ

r )(1−α)

1−αβ
,

K(1− μ
r )(1−β )

1−αβ
).

and that this steady point is stable.

Problem 6.4. The model (6.5)–(6.6) with α > 1,β > 1 represents the growth of
two species under too aggressive competition for resources. In this case, the steady
point of coexistence is given by the same expression as in Problem 6.3. Show that
this steady state is unstable.

The results of Problems 6.3 and 6.4 show that when two species are using the
same resources, they both will stably coexist if they do not infringe significantly
upon each other, that is, if α < 1 and β < 1, but they cannot stably coexist if the
competition is very aggressive, that is, if α > 1 and β > 1.

Cancer Model

Recall that logistic growth for a population with density x was modeled by

dx
dt

= rx(1− x
K
)− μx,
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where r is the growth rate, μ is the death rate, and K is the medium carrying capacity
which is determined by the resources available to support the population. If μ > r
then dx

dt +(μ − r)x ≤ 0 so that

x(t)≤ x(t0)e
−(μ−r)t → 0, as t → ∞.

We are interested in cases where populations persist, so we shall take μ < r.
If two populations x and y coexist in the same medium and follow a logistic

growth, then

dx
dt

= r1x(1− x+ y
K

)− μ1x,

dy
dt

= r2y(1− x+ y
K

)− μ2y,

where r1 and r2 are the growth rates of the populations x and y, respectively, and μ1

and μ2 are their respective death rates. We assume that the two populations share
equally the same medium, hence the term (x+ y)/K represents the load of the total
population x+ y on the medium carrying capacity K. We shall apply this model to
cancer in a human tissue, where x represents the density of normal healthy cells and
y represents the density of cancer cells in the same tissue, and the two populations
of cells are competing for space. Since cancer cells proliferate faster than normal
healthy cells, we take

r2 > r1.

For simplicity we assume that μ1 = μ2 = μ and take r1 > μ . Writing

dx
dt

= x[r1(1− x+ y
K

)− μ ], (6.7)

dy
dt

= y[r2(1− x+ y
K

)− μ ], (6.8)

we observe that there cannot be a steady point (x̄, ȳ) with x̄ > 0, ȳ > 0. Indeed, if
such a point exists then x̄+ȳ

K is equal to both 1− μ
r1

and 1− μ
r2

, which is impossible.
The point (0,0) is a steady point with Jacobian, easily computed by the factorization
principle,

J(0,0) =

(
r1 − μ 0

0 r2 − μ

)
.

Since both eigenvalues are positive, (0,0) is an unstable node with phase portrait as
displayed in Fig 3.1(A). There remains to consider the steady points

((1− μ
r1
)K,0) and (0,(1− μ

r2
)K).

Problem 6.5. Prove that (0,(1− μ
r2
)K) is stable, and ((1− μ

r1
)K,0) is unstable.
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This result means that cancer-free state is unstable whereas the steady state where
all cells are cancer cells is stable.

Fig. 6.1 displays the phase portrait for the cancer model (6.7)–(6.8).
The x-nullcline is

Γ1 : 1− x+ y
K

=
μ
r1

and the y-nullcline is

Γ2 : 1− x+ y
K

=
μ
r2
.

y

x

2
1

(1
µ
r1
)K

(1
µ
r2
)K

Fig. 6.1: Phase portrait for the cancer model (6.7)–(6.8).

Since r2 > r1, Γ2 lies above Γ1. Below Γ1, dx
dt > 0, dy

dt > 0; above Γ2, dx
dt < 0, dy

dt < 0;

and between Γ1 and Γ2, dx
dt < 0 and dy

dt > 0. We see that the steady point (0,(1− μ
r2
)K)

is globally asymptotically stable, that is, for any solution with initial values not equal
to (0,0) and not equal to ((1− μ

r1
)K,0), there holds: (x(t),y(t)) → (0,(1− μ

r2
)K)

as t → ∞.
It is interesting to explore the dynamics of the system (6.7)–(6.8) by analysis.

We have

d
dt

ln
y
x
=

d
dt
(lny− lnx) =

1
y

dy
dt

− 1
x

dx
dt

= (r2 − r1)(1− x+ y
K

). (6.9)
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To make use of this formula we first show that if x(0) + y(0) < K then for any
sufficiently small ε > 0 with x(0)+ y(0)+ ε < K, there holds:

x(t)+ y(t)< K − ε for all t > 0. (6.10)

Indeed, suppose this claim is not true, then there is a smallest t̄ such that (6.10) holds
for all t < t̄, but at t = t̄

x(t̄)+ y(t̄) = K − ε. (6.11)

It follows that
d
dt
(x(t)+ y(t))t=t̄ ≥ 0. (6.12)

However, from Eqs. (6.7), (6.8) and (6.11), we get

d
dt
(x(t)+ y(t))|t=t̄ ≤ (K − ε)r1(1− K − ε

K
)− μx(t̄)

+(K − ε)r2(1− K − ε
K

)− μy(t̄).

Noting that

1− K − ε
K

=
ε
K

and x(t̄)+ y(t̄) = K − ε,

we see that

d
dt
(x(t)+ y(t))|t=t̄ ≤ (K − ε)

r1 + r2

K
ε − μ(K − ε)

= (K − ε)(
r1 + r2

K
ε − μ)< 0

if ε < μK/(r1 + r2), which is a contradiction to (6.12). Hence the assertion (6.10)
is valid.

Substituting (6.10) into (6.9) we get

d
dt

ln
y
x
≥ (r2 − r1)(1− K − ε

K
) =

(r2 − r1)ε
K

≡ δ .

It follows that

ln
y(t)
x(t)

≥ ln
y(0)
x(0)

+ δ t

if y(0)> 0,x(0)> 0, so that, with C = y(0)/x(0),

y(t)
x(t)

≥Ceδ t .

But since, by (6.10), y(t)< K for all t > 0, we conclude that

x(t)≤ K
C

e−δ t → 0 as t → ∞. (6.13)
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From (6.8) and (6.13) we deduce that for any small η > 0 if y(t) > (1− μ
r2
)K +η

and t is large, then dy(t)
dt < 0, whereas if y(t) < (1− μ

r2
)K −η and t is large then

dy(t)
dt > 0. Hence y(t)→ (1− μ

r2
)K as t → ∞.

In the above analysis we assumed that x(0)+y(0)< K−ε for some small ε > 0.
We next wish to eliminate this assumption and prove that for any initial values
(x(0),y(0)) with x(0)> 0, y(0)> 0 it is still true that x(t)→ 0, y(t)→ (1− μ

r2
)K as

t → ∞. To do that all we need to show that there exist a time t = t̄ such that

x(t̄)+ y(t̄)< K − ε, (6.14)

for then we can follow the previous arguments with initial time t = t̄ instead of t = 0.
To prove (6.14) we proceed by contradiction: we assume that

x(t)+ y(t)≥ K − ε for all t > 0 (6.15)

and derive a contradiction.
Using (6.15) in Eq. (6.7) we obtain the differential inequality

dx
dt

≤ x[r1(1− K − ε
K

)− μ ] = x(r1
ε
K
− μ) =−γx,

where

γ = μ − r1
ε
K

> 0 if ε <
μK
r1

.

Hence

x(t)≤ x(0)e−γt ,

so that x(t)→ 0 as t → ∞. Similarly y(t)→ 0 as t → ∞, and this is a contradiction
to (6.15).

We have thus proved:

Theorem 6.1. The steady cancer-only state (0,(1− μ
r2
)K) is globally asymptotically

stable, that is, for any initial values, x(0) > 0, y(0)> 0, x(t)→ 0 and y(t)→ (1−
μ
r2
)K as t → ∞.

Thus, the model (6.7)–(6.8) predicts that, without treatment, the cancer cells will fill
the entire tissue.

6.1 Numerical Simulations

To write MATLAB codes for the following problems, we can refer to Algorithms 5.1
and 5.2 in Chapter 5.

Problem 6.6. Consider the dynamical system (6.7)–(6.8) with μ = 1, r1 = 1,2,
r2 = 1,4, K = 3, and x(0) = 2, y(0) = 1, so that x(t)> y(t) for t small. Simulate the
system for t > 0 until you arrive at time T such that y(T ) = x(T ).
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Problem 6.7. There are anti-cancer drugs that decrease the death rate of cancer cells
but not of normal healthy cells. Under a treatment with such a drug, Eq. (6.8) for
cancer cells becomes

dy
dt

= y[r2(1− x+ y
K

)−σ μ ], σ > 1, (6.16)

where σ represents the effect of the drug. Repeat the calculations of Problem 6.6
for the system (6.7), (6.16) and μ = 1, r1 = 1.2, r2 = 1.4, k(0) = 3 and x(0) = 5,
y(0) = 1 until you arrive at time T = T (σ) such that y(T ) = x(T ); do it for σ =
1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9, and 2.0, and draw the approximate curve
T = T (σ) for 1 < σ < 2.

6.1.1 Revisiting Euler Method for Solving ODE – Backward
Euler Method

In the numerical section of Chapter 5, we have introduced forward Euler method. It
is an explicit method, which is easy to implement, for both scalar and system prob-
lems. We have also seen that it is first order accurate, for which we may have to use a
small time step to reach a reasonable accuracy. Moreover, the method carries a time
step constraint, regardless of accuracy, in order to be stable. If the time step exceeds
the constrained value, the solution will blow up. For some practical problems, this
time step constraint is prohibitive in terms of computational time. Therefore, it is
desirable to get rid of this constraint for these cases.

Recall the differential equation in (5.20),

dx
dt

= f (x, t), t ≥ t0, x(t0) = x0,

and Eq. (2.23),

x(t) = x(tn)+
∫ t

tn
f (x,τ)dτ, tn ≥ t0,

where tn is some time point. If we approximate the integral by h f (x(tn + h), tn + h)
then we end up with the backward Euler method, a different method from the
forward Euler method introduced in Chapter 5. This leads to the following formula

Xn+1 = Xn + h f (Xn+1, tn+1), (6.17)

where the notation is the same as in Section 5.1. Note that the difference between
forward Euler and backward Euler is that we are using unknown Xn+1 in function f
of Eq. (6.17). To solve Eq. (6.17), one needs to solve

Xn+1 − h f (Xn+1, tn+1) = Xn,

which may require a nonlinear solver if f is nonlinear. Recall that in the forward
Euler method, Xn+1 is directly computed from the right-hand side using Xn, which
makes it very simple to implement and calculate.
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Why would we want to use an implicit method which involves possibly time
consuming nonlinear solvers? Let’s consider again the test equation y′ = λ y, λ < 0.
We apply the backward Euler method to the test problem, and get the formula

Xn+1 = Xn + hλ Xn+1,

and therefore

(1− hλ )Xn+1 = Xn.

The linearity of this problem leads to a simple solution of the implicit method,
namely,

Xn+1 =
Xn

1− hλ
.

Because we assumed that λ < 0, we have |Xn+1|< |Xn| regardless of the choice of h.
In other words, the numerical solution decreases in magnitude and will never blow
up, and hence it is stable for any time step h. We call this numerical approximation
‘unconditionally stable.’

In general, problems that require very small time step h with explicit methods due
to rapid variation in the solution, are called stiff problems. When we encounter stiff
problems, implicit methods become very useful since they avoid very small time
steps, which means time consuming simulations. In that case, solving a nonlinear
problem at each time step will pay off by gaining stability.

Problem 6.8. Consider the test problem with λ = 20 and y0 = 1. The sample MAT-
LAB codes are in Algorithm 6.1. Test h = 0.01,0.05,0.1,0.2,0.5. What do you
observe? Compare the result with that of Problem 5.7.

Algorithm 6.1. Backward Euler method for the test problem (backward Euler.m)

% This is a code to solve dy/dt = lambda*y, t in [0,1], y(0)=1
% (lambda=-20) using backward Euler method
lambda = -20;
h = .5;
t = 0:h:1;
Nt = length(t);
y = zeros(1,Nt); % preset y as a zero matrix with the same length

as t
y(1)=1; % initial condition

for i = 1:(Nt-1)
y(i+1) = y(i)/(1-lambda*h);

end

plot(t,y,'-o')
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Problem 6.9. Implement the backward Euler method for

dy
dt

=−y+ t, y(0) = 1, 0 ≤ t ≤ 1.

(a) Derive the exact solution. (b) Compare your numerical solution (h= 0.01,0.005,
0.001) with the exact solution by plotting them together.

Problem 6.10. Implement the backward Euler method for

dy
dt

=−y2 + t, y(0) = 1, 0 ≤ t ≤ 1.

Use h = 0.01,0.005,0.001. [Hint: you have to solve a quadratic equation at each
time step.]

In MATLAB, explicit methods ‘ode45’ or others such as ‘ode23’ are often used
when solving nonstiff problems. There are also implicit methods, such as ‘ode15s,’
that would efficiently and robustly calculate stiff problems. Other choices can be
found by searching the MATLAB library.



Chapter 7
General Systems of Differential Equations

In this chapter, we develop a theory for a system of differential equations that will
be used to study models with many species. We write the system either in the form

dxi

dt
= fi(x1,x2, · · · ,xn), i = 1,2, · · · ,n (7.1)

or, in vector notation,
dx
dt

= f(x), (7.2)

where x = (x1, · · · ,xn), f = ( f1, · · · , fn).
In order to understand the behavior of solutions of system (7.1) with fi that are

general nonlinear functions of x1, · · · ,xn, we begin with a study of linear systems

dxi

dt
=

n

∑
j=1

ai jx j, 1 ≤ i ≤ n. (7.3)

In the sequel we shall need some results from Linear Algebra, which extend Theo-
rems 3.1 and 3.2 to systems

n

∑
j=1

αi jx j = b j, 1 ≤ i ≤ n (7.4)

for unknowns x1, · · · ,xn, where αi j and b j are given numbers, and n ≥ 2.
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We introduce the matrix

A =

⎛
⎜⎜⎜⎜⎝

α11 α12 · · · α1n

α21 α22 · · · α2n

· · ·
· · ·
αn1 αn2 · · · αnn

⎞
⎟⎟⎟⎟⎠ , or A = (αi j),

and its determinant

detA =

∣∣∣∣∣∣∣∣∣∣

α11 α12 · · · α1n

α21 α22 · · · α2n

· · ·
· · ·
αn1 αn2 · · · αnn

∣∣∣∣∣∣∣∣∣∣
.

Theorem 7.1. (i) If detA 
= 0 then the system (7.4) has a unique solution (x1, · · · ,xn)
for any prescribed vector (b1, · · · ,bn), and the solution is given by

xi =
1

detA

∣∣∣∣∣∣∣∣∣∣

α11 · · · α1,i−1 b1 α1,i+1 · · · α1n

α21 · · · α2,i−1 b2 α2,i+1 · · · α2n

· · ·
· · ·
αn1 · · · αn,i−1 bn αn,i+1 · · · αnn

∣∣∣∣∣∣∣∣∣∣
;

in particular, the only solution of the homogeneous system
n

∑
j=1

αi jx j = 0, 1 ≤ i ≤ n (7.5)

is the zero solution (x1, · · · ,xn) = (0, · · · ,0);
(ii) If detA = 0 then there exist nonzero solutions (x1, · · · ,xn) of the homogeneous

system (7.5).

Vectors w1, · · · ,wn are said to be linearly dependent if there exists a nonzero
vector c = (c1, · · · ,cn) such that

n

∑
j=1

c jw j = 0. (7.6)

Conversely, vectors w1, · · · ,wn are linearly independent if a relation of the form
(7.6) can only be satisfied when c1 = · · ·= cn = 0.

It will be useful to express Theorem 7.1 in vector notation, with vectors

ααα j =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 j

α2 j

·
·
·

αn j

⎞
⎟⎟⎟⎟⎟⎟⎠
, b =

⎛
⎜⎜⎜⎜⎜⎜⎝

b1

b2

·
·
·

bn

⎞
⎟⎟⎟⎟⎟⎟⎠
.



7 General Systems of Differential Equations 77

Theorem 7.2. (i) If detA 
= 0 then any vector b can be represented in a unique way
as a linear combination of the vectors ααα j , that is,

b =
n

∑
j=1

x jααα j,

where x1, · · · ,xn are uniquely determined by b (by Theorem 7.1(ii)); in partic-
ular, if b = 0 then x1 = · · · = xn = 0, hence the vectors ααα1, · · · ,αααn are linearly
independent.

(ii) If detA = 0 then there are nonzero vectors (x1, · · · ,xn) such that

n

∑
j=1

x jααα j = 0,

that is, the vectors ααα1, · · · ,αααn are linearly dependent.

The proofs of Theorems 7.1 and 7.2 can be found, for instance, in Reference [3].

Corollary 7.1. If n-vectors w1, · · · ,wn are linearly independent, then any n-vector
x0 can be expressed as a linear combination

x0 =
n

∑
j=1

c jw j

of w1, · · · ,wn and the coefficients c1, · · · ,cn are uniquely determined.

Following the case n = 2 we seek a solution of the system (7.3) in the form

xi = vie
λ t , 1 ≤ i ≤ n.

Then λ and the vi satisfy the equations λ vi = ∑n
j=1 ai jv j, or

n

∑
j=1

(ai j −λ δi j)v j = 0, 1 ≤ i ≤ n, (7.7)

where δi j = 0 if i 
= j, δi j = 1 if i = j. By Theorem 7.1 this system has a nonzero
solution if and only if

det(ai j −λ δi j) = 0, or det(A−λ I) = 0, (7.8)

where I is the unit matrix (with elements δi j). Equation (7.8) is a polynomial
equation of order n,

λ n + a1λ n−1 + · · ·+ an−1λ + an = 0; (7.9)

it is called the characteristic equation of A and its zeros are called eigenvalues of
A. If λ is an eigenvalue then a nonzero solution of (7.7) is called an eigenvector
corresponding to eigenvalue λ .
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It is known that a polynomial equation of order n has n zeros. If all the eigenval-
ues λ1, · · · ,λn of Eq. (7.9) are distinct, then we can associate them with n different
solutions of the system (7.3), namely,

eλ1tw1,e
λ2tw2, · · · ,eλntwn, (7.10)

where wi is an eigenvector associated with λi.

Theorem 7.3. If all the λ j are distinct then w1,w2, ..,wn are linearly independent,
that is, if c1, ..,cn are any numbers such that

c1w1 + c2w2 + · · ·+ cnwn = 0, (7.11)

then c1 = c2 = · · ·= cn = 0.

Proof. Note that A2w j = A(Aw j) = A(λ jw j) = λ jAw j = λ 2
j w j; similarly A3w j =

A(A2w j) = λ 2
j Aw j = λ 3

j w j, and, by induction, Akw j = λ k
j w j for any positive integer

k. Applying the matrix Ak to Eq. (7.11) we get,

n

∑
j=1

λ k
j c jw j = 0, 0 ≤ k ≤ n− 1.

or, if w j = (v j1, · · · ,v jn),

n

∑
j=1

λ k
j (c jv jm) = 0, 0 ≤ k ≤ n− 1

for any m, 1 ≤ m ≤ n. But the matrix (λ k
j ) is the Vandermonde matrix whose deter-

minant is

∏
0≤i≤ j≤n−1

(λ j −λi),

and it is thus not equal to zero since all the λ j are distinct. Hence, by Theorem 7.1,
c jv jm = 0 for all j. Since this is true for any m, c jw j = 0 and hence c j = 0.

From Theorem 7.1 and Corollary 7.1 we conclude that any vector x0 = (x01,
· · · ,x0n) can be written as linear combination

x0 = c1w1 + c2w2 + · · ·+ cnwn

with uniquely determined coefficients c1, · · · ,cn. Hence there exists a unique solu-
tion of (7.3) with initial conditions

xi(0) = xi0, 1 ≤ i ≤ n (7.12)

in the form

x(t) = ∑ciwie
λit . (7.13)
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So far we assumed that the λi are all distinct. Suppose next that some of the
eigenvalues are equal; for example, λ1 = λ2 = λ3. Then in addition to w1eλ1t we
can also find two other solutions w2(t)eλ1t , w3(t)eλ1t where w2(t),w3(t) have the
form

w2(t) = tw1 +w22, w3(t) = t2w1 + tw32 +w33 (7.14)

so that w1,w2(0),w3(0),w4, · · · ,wn are linearly independent, and hence the general
solution of (7.3), (7.12) is still given by (7.13), but with w2,w3 of the form (7.14).

The above considerations extend to the general case where some eigenvalues are
equal to each other. We can then conclude that:

If Re(λ j)< 0 for 1 ≤ j ≤ n, then any solution of (7.3) satisfies: x(t)→ 0 as t → ∞.
(7.15)

We can now proceed with the general system (7.1). As in Theorem 2.1, if the
derivatives ∂ fi/∂x j are continuous functions for all x, then for any initial values
(x10, · · · ,xn0) there exists a unique solution (x1(t), · · · ,xn(t)) of (7.1) satisfying the
initial conditions

x j(0) = x j0, 1 ≤ j ≤ n,

for all t > 0 as long as the solution remains bounded. We refer to the solution as a
trajectory. The solution can also be extended to t < 0.

A point x̄ = (x̄1, · · · , x̄n) such that f(x̄) = 0 is called an equilibrium point, a
stationary point, or a steady point of the system (7.1). If x̄ is a steady point, then
the unique trajectory x(t) with x(0) = x̄ is x(t)≡ x̄, for all t ≥ 0.

Writing

fi(x) = fi(x̄)+
n

∑
j=1

(x j − x̄ j)

[
∂ fi

∂x j
+ ε j(|x− x̄|)

]
,

where ε j(s)→ 0 if s → 0, we see that the linear system of differential equations

dxi

dt
=

n

∑
j=1

ai j(x j − x̄ j), (ai j =
∂ fi(x̄)

∂x j
) (7.16)

is a good approximation to (7.1) near x = x̄. The matrix

J =

⎛
⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

...
∂ fn
∂x1

∂ fn
∂x2

· · · ∂ fn
∂xn

⎞
⎟⎟⎠ ,

where ∂ fi
∂x j

is computed at x̄, is called the Jacobian matrix at x̄; we also write

J = ( ∂ fi
∂x j

). As in the analysis in Chapters 2 and 3, we wish to determine under what

conditions all solutions of (7.1), or (7.2), with initial values near x̄ converge to x̄
as t → ∞, and in this case we call x̄ a stable equilibrium point, or, more precisely,
asymptotically stable equilibrium point.
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Since the linear system (7.16) is a good approximation to the full system (7.1)
near the point x̄, using the representation (7.13) of the general solution of (7.16),
and recalling (7.15), we have the following result:

Theorem 7.4. If Re(λ j)< 0 for each eigenvalue of the Jacobian matrix at x̄, then the
point x̄ is an asymptotically stable (or, briefly, a stable) equilibrium point for (7.1).

This means that any trajectory x(t), with x(0) near x̄, converges to x̄ as t → ∞.
The next question is under what conditions on the coefficients a1,a2, · · · ,an of

the characteristic polynomial (7.9) is it true that Re(λ j) < 0 for all j. The answer
is provided by the well-known criteria of Routh-Hurwitz which actually holds for
any polynomial (7.9). In the sequel we shall need to use the Routh-Hurwitz criterion
only in case n = 3:

Theorem 7.5. All the roots of a polynomial

λ 3 + a1λ 2 + a2λ + a3 = 0 (7.17)

have negative real parts if and only if a1 > 0,a3 > 0, and a1a2 > a3.

The proof of Theorem 7.5 and the general Routh-Hurwitz theorem can be found in
Reference [4]. Theorem 7.5 will be used in the following example.

Example 7.1. Consider the model of one predator x and two prey species y and z:

dx
dt

= β1xy+β2xz− μx,

dy
dt

= r1y− γ1xy,

dz
dt

= r2z(1− z)− γ2xz.

It is easily seen that the only steady point (x̄, ȳ, z̄) with x̄ > 0, ȳ > 0, z̄ > 0 is given by

x̄ =
r1

γ1
, z̄ = 1− γ2

r2
x̄, β1ȳ = μ −β2z̄

provided γ2x̄ < r2 and β2z̄ < μ . To check whether this point is stable we compute
the Jacobian matrix J(x̄, ȳ, z̄) using the factorization rule. We find that

J(x̄, ȳ, z̄) =

⎛
⎝ 0 β1x̄ β2x̄
−γ1ȳ 0 0
−γ2z̄ 0 −r2z̄

⎞
⎠ .

We then compute that the characteristic equation has the form (7.17) with

a1=r2z̄, a2=β1γ1x̄ȳ+β2γ2x̄z̄, a3 = β1γ1r2x̄ȳz̄ and a1a2=a3+β2γ2r2x̄z̄2 > a3.

Hence, by the Routh-Hurwitz criterion the steady point (x̄, ȳ, z̄) is stable.
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Problem 7.1. Consider the model of one predator x and two prey species y and z:

dx
dt

= r1x(1− x
A
)+β1xy+β2xz− μx,

dy
dt

= r1y− γ1xy,

dz
dt

= r2z(1− z)− γ2xz.

Compute the unique steady point (x̄, ȳ, z̄) with x̄ > 0, ȳ > 0, z̄ > 0 and use the Routh-
Hurwitz theorem to prove that (x̄, ȳ, z̄) is stable.

Consider a model of two predators, x and y, and one prey, z:

dx
dt

= r1x(1− x
k1
)+β1xz,

dy
dt

= r2y(1− y
k2
)+β2yz, (7.18)

dz
dt

= αz(1− z
B
)− r1xz− r2yz.

Note that in this model each of the predators, x and y, can actually survive on its
own, even if they do not feed on z.

Problem 7.2. Show that the system (7.18) has a unique steady point (x̄, ȳ, z̄) with
x̄ > 0, ȳ > 0, z̄ > 0, and that this point is stable.

Problem 7.3. Consider a model of one prey (x) and two predators (yi):

dx
dt

= ax(1− x
A
)−

2

∑
j=1

bxy j,

dyi

dt
= −ciyi + dixyi, i = 1,2,

where c1
d1

< c2
d2

< A. There are four equilibrium points:

(0,0,0), (A,0,0), (
c1

d1
,

a
b
(1− c1

Ad1
),0), (

c2

d2
,0,

a
b
(1− c2

Ad2
)).

Determine which of these points are stable.

7.1 Numerical Simulations

7.1.1 Solving for the Steady States

In the previous chapters we discussed how to solve an ordinary differential equation

dx
dt

= f(x)



82 7 General Systems of Differential Equations

by using Euler’s method or the function ode45 in MATLAB. For many problems, we
need to find the steady states of the system and calculate the local stability, as seen
in this and previous chapters. The steady states are not always solvable analytically,
and sometimes we need to rely on computational tools to approximate those steady
states. Here, we introduce a method of how to solve for the stationary solution of an
ODE system, i.e., the solution of the steady state equation

f(x) = 0.

If f(x) is linear or is of a simple function form, this equation may be solved an-
alytically; however, if it is nonlinear or if the system is large, solving by hand is
not feasible, and thus one needs to use root-finding algorithms. Let us start with f
being a real-valued function, and

f (x) = 0. (7.19)

Two of the best known root finding algorithms for (7.19) are the bisection method
and Newton’s method, the latter named after the eminent 17th century mathemati-
cian and scientist Isaac Newton. The bisection method is a ‘gradient free’ approach
and usually takes longer to converge but it is more robust (you can always find a
root if the initial interval is valid, that is, if it contains at least one root). Newton’s
method uses gradient (slope in one dimension) information and is more efficient;
however, it may fail for certain problems or initial guesses.

7.1.2 Bisection Method

The idea of the bisection method comes from the intermediate value theorem: con-
tinuous function f must have at least one root in the interval (a,b) if f (a) and f (b)
have opposite signs. The method repeatedly bisects an interval then selects a subin-
terval in which a root must lie (the function values at the two ends of the subinterval
have opposite signs). Suppose that we have two initial points a0 = a and b0 = b
such that f (a) f (b) < 0. The method divides the interval into two by computing the
midpoint c = a+b

2 of the interval. If c is a root, that is f (c) = 0, then the algorithm
terminates. Otherwise, the algorithm checks f (a) f (c) and f (c) f (b), one of which
must be negative. If f (a) f (c) < 0, the root must lie in the interval (a,c) and the
method sets a as a1 and c as b1. If f (c) f (b) < 0, the root must lie in the inter-
val (c,b) and the method sets c as a1 and b as b1. Repeating this process, we can
construct a sequence of intervals [an,bn] such that

|bn − an|= |b0 − a0|
2n .

Since the root must lie in these subintervals, the best estimate for the location of the
root is the midpoint of the smallest subinterval found. In that case, the absolute error
after n steps is at most
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|b− a|
2n+1 . (7.20)

If either endpoint of the interval is used for estimate of the root, then the maximum
absolute error is

|b− a|
2n . (7.21)

With this method, it is also easy to estimate the number of iterations in order to
reach a certain level of error. For example, if we use the midpoint to estimate the
root and want the error to be around ε . Then the step N such that the error reaches
ε is |b− a|

2N+1 ≈ ε,

and therefore

N ≈ log2
|b− a|

ε
.

A sample code with tolerance 10−5 to solve x3 = 1.5 in the interval [0,2] is shown
in Algorithm 7.1.

Problem 7.4. Modify the sample code in Algorithm 7.1 to solve x4 = 15 in the
interval [0,2], with tolerance 10−5. Set a counter in the while loop in the code to
determine how many iterations needed to reach the tolerance 10−5. Plot the conver-
gence history, that is, iterations versus f (x), with x being the approximate root.

Algorithm 7.1. Bisection method (bisection method.m)

%%% This code is using bisection method to solve the root of
%%% xˆ3 = 1.5 in the interval [0,2].

a = 0;
b = 2;
TOL = 10ˆ-5; % tolerance to stop the iterations
f = @(x)(xˆ3-1.5);

while ( b-a >= TOL )
m = (a+b)/2; % midpoint of the intervals
if ( abs(f(m))<1e-10 ) % when the function value is

break; % close enough to zero
elseif ( f(a)*f(m)<0 )

b = m;
elseif ( f(m)*f(b)<0 )

a = m;
end
m % print out the approximation (using midpoint of

% subintervals)
end
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7.1.3 Newton’s Method

While the bisection method only uses the sign of the function value f (x) in
Eq. (7.19), Newton’s method uses more information of the function, including the
function values and derivatives. Given an initial guess x0, Newton’s method gener-
ates a sequence of approximations of the root, {xn}, by

xn+1 = xn − f (xn)

f ′(xn)
, n = 0,1, . . . ., (7.22)

where x0 stands for an initial guess. This idea originates from the linear approxi-
mation near the root: if we start with an initial guess close enough to the true root,
we can use the linear approximation for the tangent line of the function, and the
x-intercept will typically be a better approximation for the true root. Thus, starting
at a certain guess xn, with function value f (xn), the tangent line passing that point is

y = f ′(xn)(x− xn)+ f (xn),

and the x-intercept of this line, denoted by xn+1, satisfies

0 = f ′(xn)(xn+1 − xn)+ f (xn).

Hence, the next approximation of the root, xn+1, is

xn+1 = xn − f (xn)

f ′(xn)
,

assuming that f ′(xxn) is nonzero. If we do this iteratively, the sequence usually con-
verges pretty quickly to the true root. In Algorithm 7.2, we show how to implement
Newton’s method to solve x2 = 23.

Newton’s method can be easily extended to solve the general nonlinear system

f(x) = 0, x ∈ Rn,

where f is a vector-valued function from Rn to Rn.
The formula (7.22) becomes

xn+1 = xn −
[
f′(xn)

]−1 f(xn). (7.23)

where f′(xn) is the n× n Jacobian matrix of f evaluated at xn.
Comparing (7.22) with (7.23), note that we simply replaced the division of f ′(xn)

in (7.22) by left multiplication by the inverse of the n× n Jacobian matrix. In prac-
tice, it is more common to rewrite (7.23) in the form

f′(xn)(xn+1 − xn) = f(xn),
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which is a linear system. Define e = xn+1 − xn, we can use standard linear solvers
to solve e in

f′(xn)e = f(xn)

and obtain the approximation of the next step by

xn+1 = e+ xn.

Algorithm 7.2. Newton’s method to solve a scalar equation (newtons method.m)

% This is the code of Newton's method for solving
% f(x)=xˆ2-23=0, with x=x0 as initial guess

TOL = 1e-10; % tolerance of the function value
% (ideally a small number)

x0 = 2;
x = x0;
y = xˆ2 - 23;

yvec = []; % preset an empty matrix for later use
iter = 0; % counter of iterations
while abs(y) > TOL,

y = xˆ2 - 23;
x = x - y/(2*xˆ1); % f'(x_n) is derived by hand a priori
iter = iter + 1;
yvec = [yvec, y]; % record the convergence history

end

display(x)
iter
plot(yvec,'-o')

Problem 7.5. Modify Algorithm 7.2 and implement Newton’s method to solve x5 =
213. Use an initial guess x0 = 2. What is the root you find? How many iterations do
you need to reach the tolerance 10−12. Plot the convergence history.



Chapter 8
The Chemostat Model Revisited

In Chapter 2 we considered the chemostat model and used mathematics to answer
the question: How should we choose the outflow rate in order to harvest the maxi-
mum amount of bacteria. Our model however was incomplete because we assumed
that the nutrient concentration in the growth chamber is constant in time, and hence
our answer is questionable. In the present chapter we want to correct the answer, by
basing it on a more complete mathematical model of the chemostat.

We begin by introducing the following notation:

V = volume of the bacterial chamber,
C(t) = concentration of nutrients in the chamber,

C0 = constant concentration of nutrients supply,
r = rate of inflow and outflow,

B(t) = concentration of the bacteria in the chamber.

We assume that

mass of the bacteria formed
mass of the nutrients used

= constant = γ;

γ is the yield constant; γ < 1 since bacteria of mass 1 is formed by consumption of
nutrients of larger mass 1/γ . By conservation of nutrient mass,

rate of change = input−washout− consumption.

Based on experimental evidence we take the rate of bacterial growth in the entire
bacterial chamber to be

m0C
a+C

B,
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978-3-319-29638-8 8) contains supplementary material, which is available to authorized users.
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where m0 and a are constants, and then the rate of nutrient consumption in the entire
chamber is

m0C
a+C

B
γ
,

since mass 1/γ of the bacteria is formed from consumption of mass 1 of nutrients.
By conservation of nutrient mass,

d
dt
(VC) =C0r−Cr− m0C

a+C
B
γ
,

where C =C(t),B = B(t). Dividing both sides by V and setting D = r/V (the dilu-
tion rate), we get

dC
dt

= (C0 −C)D− mC
a+C

B
γ
, (8.1)

where m=m0/V . Similarly, by conservation of bacterial mass in the entire chamber,

d
dt
(VB) =

m0C
a+C

B−Br.

Dividing both sides by V , we get

dB
dt

= B

(
mC

a+C
−D

)
. (8.2)

The units of C0, C, a, and B are mass/volume (e.g., g/cm3), and the units of m and
D are 1/time (e.g., 1/sec); γ is a dimensionless parameter. The parameter m0 is a
consumption rate in the entire chamber with volume V , and m is the consumption
rate in the mass/volume units of C and B.

We can simplify the system (8.1)–(8.2) by scaling, taking

c =
C
C0

, b =
B

γC0
, t̄ = Dt.

Introducing new parameters m̄ = m
D , ā = a

C0
, the system (8.1) and (8.2) takes the

following simplified form:

dc
dt̄

= 1− c− m̄c
ā+ c

b, (8.3)

db
dt̄

= b

(
m̄c

ā+ c
− 1

)
. (8.4)

We see that (c,b) = (1,0) is a steady state. The Jacobian matrix at (1,0) is

J(1,0) =

(−1 − m̄
ā+1

0 m̄
ā+1 − 1

)
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and the eigenvalues are λ1 = −1,λ2 = m̄
ā+1 − 1. Hence (1,0) is stable if λ2 < 0

and unstable if λ2 > 0. Another steady state (c∗,b∗) is obtained by solving (from
Eq. (8.4))

m̄c
ā+ c

= 1, i.e., c =
ā

m̄− 1

and then (from Eq. (8.3))

1− c− b= 0, i.e., b = 1− ā
m̄− 1

.

This steady point is biologically relevant only if

m̄ > 1 and
ā

m̄− 1
< 1. (8.5)

If the steady point (1,0) is unstable, that is, if λ2 > 0, then

m̄
ā+ 1

> 1 (8.6)

and therefore m̄ > 1, so the second inequality in (8.5) is also satisfied. We conclude:
If the equilibrium point (1,0) is unstable then there exists another equilibrium point
(c∗,b∗), where

c∗ =
ā

m̄− 1
, b∗ = 1− ā

m̄− 1
. (8.7)

The stability of the equilibrium point (1,0) means that in steady state the chemostat
does not produce any bacteria; this of course will not occur for chemostats which
function well. Hence we shall now focus on the case where (8.6) holds.

Setting

μ =
ā

m̄− 1
, (8.8)

we can write the steady point (8.7) in the form (μ ,1 − μ). The Jacobian at this
point is

J(μ ,1− μ) =

(−1− māb
(ā+c)2 − m̄c

ā+c
m̄āb

(ā+c)2 0

)

(μ,1−μ)

.

Since trace J(μ ,1− μ) is negative and detJ(μ ,1− μ) is positive, the equilibrium
point (μ ,1− μ) is stable.

We can use the model to determine how to adjust some chemostat parameters
in order to achieve the best throughput of bacteria. For example, suppose all the
parameters of the chemostat are fixed, including C0, but not the dilution rate D. We
then want to determine how to best choose D in order to maximize the bacterial
output.
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But before doing that, let us see what the stability condition (8.6) means in terms
of the dilution rate. We compute μ in terms of D (recall ā = a

C0
and m̄ = m

D = m0
V D ),

μ =
ā

m̄− 1
=

aVD
C0(m0 −VD)

.

Similarly,

m̄
ā+ 1

=
m0

V
1/D

a/C0 + 1
=

D0

D
,

where

D0 =
m0

V
1

a/C0 + 1
. (8.9)

Hence (8.6) holds and (μ ,1− μ) is a stable steady equilibrium only if

D < D0. (8.10)

Thus, in order to avoid washout of the bacteria in the chamber of the chemostat, the
dilution rate D should remain below D0; if D > D0 then there will be a washout.

We next observe that, since t̄ = Dt,

db
dt

=
db
dt̄

dt̄
dt

= D
db
dt̄

, where b =
B

γC0
.

Thus the effluent of b in steady state of the system (8.3)–(8.4) is D times the steady
state component of b, 1− μ ; the corresponding effluent of B is then γC0D times
1− μ . Writing, for D < D0,

D(1− μ) = D(1− ā
m̄− 1

) = D(1− aVD
C0(m0 −VD)

),

we conclude that to maximize the bacterial harvest one should take the dilution
parameter D such that it maximizes the function

f (D) = D(1− aVD
C0(m0 −VD)

), 0 < D < D0. (8.11)

We use standard Calculus to determine where the maximum is achieved. By direct
computation we find that

f ′(D) =
g(D)

(m0 −VD)2 ,

where

g(D) = αD2 +β D+m2
0

and

α =V 2(1+
a

C0
), β =−2m0V (1+

a
C0

).
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The two zeros of the polynomial g(D), also the two zeros of f ′(D), are

D1,2 =
1

2α
(−β ±

√
β 2 − 4αm0),

where 0 < D1 < D2, or in terms of the chemostat parameters,

D1,2 =
1

V 2(1+ a
C0
)

(
m0V (1+

a
C0

)±m0V

√
(1+

a
C0

)
a

C0

)
.

By drawing the parabola y = g(D) as in Fig. 8.1, we see that g(D)< 0 if D1 < D <
D2 and g′(D1)< 0,g′(D2)> 0.

D

y

D1 D2

Fig. 8.1: The parabola y = g(D).

By direct computation we also find that

g(D0) = g(
m0/V
1+ a

C0

) =
m2

0

1+ a
C0

−m2
0 < 0

and therefore

D1 < D0 < D2.

Finally, since g(D1) = 0,

f ′′(D1) =
g′(D1)

(m0 −VD1)2 < 0.

Hence D1 is the unique point where the maximum of f (D) is achieved. We conclude:
In order to maximize the bacterial harvest the dilution rate should be chosen
to be D1.

Instead of attempting to determine the optimal choice of D by trial and error, our
mathematical model provides an immediate and precise answer. Thus this example
demonstrates the effectiveness of mathematical models.
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The steady point (μ ,1−μ) is not only a local stable steady point but also a global
stable point, that is, if

(c(0),b(0)) 
= (1,0),

then

c(t)→ μ , b(t)→ 1− μ as t → ∞.

To prove it we set z = c+ b and add the two equations (8.3) and (8.4); we get

dz
dt

+ z = 1.

Hence z(t)→ 1 as t → ∞. For simplicity we assume that z(0) = 1, and then z(t) = 1
for all t > 0. Substituting c = 1− b into Eq. (8.4) we find that the function x = b(t)
satisfies the equation

dx
dt

= x(
m̄(1− x)

ā+(1− x)
− 1)≡ h(x).

We next check that

h′(x)> 0 if x < 1− μ ,
h′(x)< 0 if x > 1− μ .

Hence if x(0) < 1− μ then x(t) increases to 1− μ , and if x(0) > 1− μ then x(t)
decreases to 1− μ .

If initially x(0)+ z(0) 
= 1 then

dx
dt

= h(x, t), where h(x, t)− h(x)→ 0 as t → ∞

since z(t) → 1 as t → ∞. One can deduce that, for any small ε > 0, if x(0) < 1−
μ − ε (x(0) > 1− μ + ε) then x(t) increases (decreases) for all t large as long as
x(t) remains smaller than 1− μ − ε (> 1− μ + ε). Hence x(t) enters the interval
(1− μ − ε,1− μ + ε) after some time t = t̄, and it will converge to 1− μ as t → ∞
because (μ ,1− μ) is a stable point.

Problem 8.1. Consider a chemostat model given by the equations

dC
dt

= β −CB−C,

dB
dt

= CB−B,

where the inflow-outflow rate is 1. Show that

(i) if β < 1 then (1,0) is a stable steady point;
(ii) if β > 1 then (1,0) is an unstable steady point, and (1,β − 1) is a stable steady

point. This shows that in order to avoid washout, the rate β of nutrients supply
must be larger than the flow rate.
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Problem 8.2. Consider a chemostat with nutrients concentration z, and two types of
bacteria, x and y:

dz
dt

= β − zx− μzy− z, β > 1,

dx
dt

= zx− x,

dy
dt

= μzy− y;

we take μ > 1, which means that y is more efficient than x in consumption and
growth. There are three steady points (z,x,y) where either x or y (or both) are washed
out: (1,β − 1,0), ( 1

μ ,0,β − 1
μ ) and (β ,0,0). Determine which of these points are

stable and give a biological interpretation.

Problem 8.3. Consider a chemostat model with two types of nutrients, x and y, con-
sumed by bacteria z at different rates:

dx
dt

= β − zx− x,

dy
dt

= β − μzy− y,

dz
dt

= zx+ μzy− z.

Determine whether the steady point (x,y,z) given by

x =
β

1+ z
, y =

β
1+ μz

, x+ μy = 1

is stable. [Hint: Use the Routh-Hurwitz criterion.]

8.1 Numerical Simulations

Problem 8.4. Consider the chemostat model of Problem 8.2 with β = 3, μ = 1.1 so
that bacteria y are more efficient than x in consumption and growth. Take z(0) = 4,
x(0) = 2, y(0) = σ < 2 so that x(t)> y(t) for t small. Simulate the model of Prob-
lem 8.2 for t > 0 until you arrive at time t = T = T (σ) such that y(T ) = x(T ); do
it for σ = 1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9, and draw the approximate curve
T = T (σ) for 0 < σ < 2.

Problem 8.5. In Problem 8.4 take β = 3, μ = 1.1 and z(0) = 1, x(0) = 2,
y(0) = ρ < 2. Then nutrient x is consumed faster than nutrient y, but x(t) > y(t)
for t small. Find the fist time t = T = T (ρ) such that y(T ) = x(T ); do it for
ρ = 1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9, and draw the approximate curve T =
T (ρ) for 1 < ρ < 2.
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8.1.1 Finding the Steady States Using MATLAB

In the previous chapter, we have introduced basic schemes to calculate a root of an
equation or a system. Here we explain how this can be done with MATLAB. There
are several built-in functions in MATLAB that can be used to solve f(x) = 0:
>> x = fzero(fun,x0)
which attempts to find a zero of ‘fun’ near x0 if x0 is a scalar, or within an interval
if x0 is a vector, and ‘fun’ is a function handle. For example,
>> x = fzero(@cos,[1 2]) % cos(1) and cos(2) differ in
sign

x = 1.5708
Another MATLAB function is ‘fsolve’:

>> x = fsolve(fun,x0)
It takes the initial guess x0 and tries to solve the equations described in ‘fun.’ For
example, suppose we would like to solve the following system:

F

(
x1

x2

)
=

(
2x1 − x2

−x1 + 2x2

)
=

(
e−x1

e−x2

)

with the initial guess (x1,x2) = (−5,−5). First, let’s write a file that computes the
values of F at a point x = (x1,x2), shown in Algorithm 8.1:

Algorithm 8.1. Function file for fsolve (myfun.m)

function F = myfun(x)
F = [2*x(1) - x(2) - exp(-x(1)); -x(1) + 2*x(2) - exp(-x(2))];

Next, we set up the initial point and options, and call fsolve (you can put the
following commands in a file too):
>>x0 = [-5; -5]; % make an initial guess for the

solution
>>options=optimset(’Display’,’iter’); % option to

display output
>>[x,fval] = fsolve(@myfun,x0,options) % call solver
After several iterations, ‘fsolve’ finds an answer as shown in Fig. 8.2. The itera-
tions terminate because the vector of function values is near zero as measured by
the default value of the function tolerance, and the problem appears regular as mea-
sured by the gradient. On the screen we can see the approximate solution x and its
corresponding function value fval.
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Fig. 8.2: Output for fsolve.

x =
0.5671
0.5671

fval =
1.0e-006 *
-0.4059
-0.4059

Problem 8.6. Use ‘fsolve’ to solve

x3
1 + x2 = 2,

x3
2 − x1 = −1.

Take the initial guess (x1,x2) = (0,−5) and indicate how many steps it requires to
reach the default tolerance for the solution. Write down the approximate solution.

Problem 8.7. Consider the model in (8.3)–(8.4). Take a = 1, m̄ = 3. Use ‘fsolve’
to numerically compute the steady state(s). Start with the initial guesses (0,0) and
(5,5). Are the answers the same as the analytic solutions? Use the numerical so-
lutions and the Jacobian to determine the local stability of the equilibrium points.
[Hint: use ‘eig’ command.]



Chapter 9
Spread of Disease

Epidemiology is the study of patterns, causes, and effects of health and disease
conditions in a population. It provides critical support for public health by iden-
tifying risk factors for disease and targets for preventive medicine. Epidemiology
has helped develop methodology used in clinical research and public health stud-
ies. Major areas of epidemiological study include disease etiology, disease break,
disease surveillance, and comparison of treatment effects such as in clinical trials.

Epidemiologists used gathered data and a broad range of biomedical and psy-
chosocial theories to generate theory, test hypotheses, and make educated, informed
assertions as to which relationships are causal and in which way. For example, many
epidemiological studies are aimed at revealing unbiased relationships between expo-
sure to smoking, biological agents, stress, or chemicals to mortality and morbidity.
In the identification of causal relationship between these exposures and outcome
epidemiologists use statistical and mathematical tools.

In this chapter we focus on epidemiology of infectious diseases. The adjectives
epidemic and endemic are used to distinguish between a disease spread by an infe-
ctive agent (epidemic) and a disease which resides in a population (endemic). For
example, there are occasional spreads of the cholera epidemic in some countries,
while malaria is endemic in Southern Africa. In this chapter we shall use mathe-
matics in order to determine which epidemic will die out and which will become
endemic.

In what follows we shall develop several different mathematical models for inf-
ectious diseases.

We begin with a simple model of a disease in a population of size N. We divide
the population into three classes: susceptible S, infected I, and recovered R. Let
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β = infection rate,
μ = death rate, the same for all individuals,
ν = recovery rate,
γ = rate by which recovered individuals have lost

their immunity and became susceptible to the disease.

Then we have the following diagram:

SA I R

gR

mRmImS

bSI vI

where A is the growth of susceptible. If all newborns are healthy, then not only S
and R, but also I contributes to the growth term A. We view each of the populations
S, I, R, N as representing a number of individuals (or a number density, that is, the
number of individuals per unit area). The dimension of γ , μ , ν is 1/time, the dimen-
sion of β is 1/(individual · time), and the dimension of A is individual/time. Based
on the above diagram, we set up the following system of differential equations:

dS
dt

= A−β SI+ γR− μS,

dI
dt

= β SI−νI− μI, (9.1)

dR
dt

= νI − γR− μR.

To examine more carefully the meaning of A, we introduce a differential equation
for N(t), which is obtained by adding all the equations in (9.1),

dN
dt

= A− μN.

Given an initial population density N0, we find that

N(t) = N0e−μt +
A
μ
(1− e−μt).

Hence N(t) → A/μ as t → ∞. Thus A/μ is equal to the asymptotic density of the
population (as t → ∞).

The system (9.1) is called the SIR model. The SIR model has an equilibrium
point which is disease free, namely

(S0, I0,R0) = (
A
μ
,0,0);
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we call it the disease free equilibrium (DFE). The Jacobian matrix at the DFE is
⎛
⎜⎝
−μ −β A

μ γ
0 β A

μ − (ν + μ) 0
0 ν −μ − γ

⎞
⎟⎠ .

The characteristic polynomial is

(μ +λ )(β
A
μ
− (ν + μ)−λ )(μ + γ +λ ),

and the eigenvalues are λ1 =−μ ,λ2 =−μ − γ,λ3 = β A
μ − (ν +μ). Hence the DFE

is stable if

β
A
μ
< ν + μ . (9.2)

We conclude that in order to stop the spread of infection we need to either decrease
the rate of infection (β ) by decreasing contact between healthy and infected indi-
viduals, or by increasing the rate of recovery (ν) by drugs. When (9.2) holds, any
new small infection will die out with time. On the other hand if

β
A
μ
> ν + μ , (9.3)

the DFE is unstable; there are arbitrarily small infections that will not disappear
in the population. Furthermore, there is an equilibrium point (S̄, Ī, R̄) with Ī > 0,
namely

β S̄ = ν + μ , R̄ =
ν

γ + μ
Ī,

β
μ

Ī =
(β A

μ − (ν + μ))
ν + μ − γν

γ+μ
. (9.4)

Note that ν + μ − γν/(γ + μ)> 0, and hence the inequality (9.3) ensures that Ī is
positive.

It is natural to ask whether the equilibrium point (S̄, Ī, R̄) is stable. The answer is
yes, as asserted by the following theorem.

Theorem 9.1. If (9.3) holds then the equilibrium point (S̄, Ī, R̄) is stable.

Proof. The Jacobian matrix at (S̄, Ī, R̄) is

J =

⎛
⎝−β Ī− μ −β S̄ γ

β Ī β S̄− (ν + μ) 0
0 ν −(γ + μ)

⎞
⎠

and β S̄ = ν + μ . Hence the characteristic polynomial is

det(J −λ I) =

∣∣∣∣∣∣
−β Ī− μ −λ −(ν + μ) γ

β Ī −λ 0
0 ν −(γ + μ)−λ

∣∣∣∣∣∣ .



100 9 Spread of Disease

Expanding the determinant by the first column we derive the characteristic equation

(β Ī+ μ +λ )[λ 2 +(γ + μ)λ ]+β Ī[(ν + μ)(γ + μ +λ )−νγ] = 0,

or

λ 3 +α1λ 2 +α2λ +α3 = 0,

where

α1 = (β Ī + μ)+ (γ + μ),
α2 = (β Ī + μ)(γ + μ)+β Ī(ν + μ),
α3 = β Ī[(ν + μ)(γ + μ)−νγ].

Clearly all the αi are positive, and

α1α2 = β Ī(ν + μ)(γ + μ)+ positive terms > β Ī[(ν + μ)(γ + μ)−νγ] = α3.

Hence, by the Routh-Hurwitz criterion, the equilibrium point (S̄, Ī, R̄) is stable.
A stable equilibrium point with I > 0 is called endemic; it represents a disease

that will never disappear.

An important concept in epidemiology is the basic reproduction number, defined
as follows: In a healthy population we introduce one infection and compute the
expected infection among the susceptibles caused by this single infection. We call
it the expected secondary infection, or basic reproduction number, and denote
it by R0. Then intuitively it is clear that DFE is stable if R0 < 1 (the secondary
infection is smaller than the initial infection) whereas if R0 > 1 then the DFE will
be unstable.

Consider, for example, the SIR model (9.1). The DFE is (A/μ ,0,0). One infec-
tion evolves according to

dI
dt

=−νI− μI, I(0) = 1,

so that I(t) = e−(ν+μ)t at time t, with total life-time infection

∫ ∞

0
I(t)dt =

1
ν + μ

.

The secondary infection in healthy population is then

R0 = β
A
μ

1
ν + μ

.

As already computed in (9.2) and (9.3), the DFE is stable if R0 < 1 and unstable if
R0 > 1.

When a susceptible is exposed to an infected individual, he/she may or may not
become immediately sick. With this in mind, we may extend the SIR model by



9 Spread of Disease 101

introducing a new class E of exposed individuals. The new model, called the SEIR
model, consists of the following equations:

dS
dt

= A−β SI+ γR− μS,

dE
dt

= β SI−κE − μE, (9.5)

dI
dt

= κE −νI− μI,

dR
dt

= νI − γR− μR.

Here κ is the rate by which the exposed become infected, and β is the rate of in-
fection of susceptibles by infected individuals. The DFE for the SEIR model is
( A

μ ,0,0,0).

Problem 9.1. Show that the DFE of the system (9.5) is stable if

β
A
μ
<

(ν + μ)(κ + μ)
κ

.

Problem 9.2. Prove that if the DFE of the system (9.5) is not stable, then there exists
another equilibrium point.

In the SIR model we have taken the infection term to be β SI, that is, it depends
on the density of the infected individuals. Another possibility is to take the infection
term to be β SI

N , where I
N is the relative proportion of the infected individuals, namely,

the frequency or prevalence of the infection.

Problem 9.3. Show that when β SI is replaced by β SI
N in (9.1), where N = S+ I+R,

the DFE ( A
μ ,0,0) is stable if β < ν + μ .

Problem 9.4. If in the previous problem (9.3) is replaced by β > ν + μ , then the
DFE is not stable, and there exists another equilibrium point.

So far we considered infectious diseases that do not cause death. In infectious
diseases which cause death, e.g., Ebola, we need to change the equation for I by
including a death rate ρ caused by the disease. Then the equation for I in the system
(9.1) becomes

dI
dt

= β SI− γI− μI−ρI. (9.6)

Problem 9.5. Show that if the equation for I in the system (9.1) is changed into
(9.6), then the disease-free equilibrium ( A

μ ,0,0) is stable if

β
A
μ
< ν + μ +ρ .
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Problem 9.6. Prove that if in the system (9.1), with the equation for I changed into
(9.6),

β
A
μ
> ν + μ +ρ ,

then there exists an equilibrium point (S̄, Ī, R̄), and it is stable.

9.1 HIV

In humans infected with HIV, the HIV virus enters the CD4+ T cells and hijack the
machinery of the cells in order to multiply within these cells. As an infected T cell
dies, an increased number of virus particles emerge to invade and infect new CD4+

T cells. This process eventually leads to significant depletion of the CD4+ T cells,
from over 700 in mm3 of blood in healthy individuals to 200 in mm3. This state
of the disease is characterized as AIDS; the immune system is too weak to sustain
life for too long. In order to determine whether an initial infection with HIV will
develop into AIDS we introduce a simple model which includes the CD4+ T cells,
denoted by T , the infected CD4+ T cells, denoted by T ∗, and the HIV virus outside
the T cells, denoted by V . Their number densities satisfy the following system of
equations:

dT
dt = A−β TV − μT,

dT ∗
dt = β TV − μ∗T ∗,
dV
dt = γμ∗T ∗ −κV.

(9.7)

Here A is the natural production rate of healthy T cells, β is the infection rate of
healthy T cells by external virus, μ and μ∗are the death rates of T and T ∗, respec-
tively, γ is the number of virus particles that emerge upon death of infected one
CD4+ T cell, and κ is the death rate of the virus.

Problem 9.7. In the model (9.7), the DFE is ( A
μ ,0,0). Prove that the DFE is stable if

β A
μ

<
κ
γ
,

and is unstable if this inequality is reversed.

We can compute the basic reproduction number R0 for the model (9.7) as follows:
One virion has the life time of 1

κ (since dV
dt = −κV , V (t) = e−κt ,

∫ ∞
0 V (t)dt = 1

κ )
and it infects (A/μ) T cells at rate β , whereas each infected T cells gives rise to γ
virus particles. Hence the basic reproduction number is

R0 =
1
κ

β
A
μ

γ =
β Aγ
κμ

.
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From Problem 9.7 we see that the DFE is stable if R0 < 1 and is unstable
if R0 > 1.

More information about how to calculate the basic reproduction number R0 for
infectious diseases is given in article [5].

9.2 Numerical Simulations

Problem 9.8. It seems reasonable to expect that the infected population I(t) in the
SIR model should increase, at each time t, if β is increased. Consider the special
case where A = 2, ν = γ = μ = 1, in which case the DFE (2,0,0) is stable if β < 1
and unstable if β > 1. Take initial values

(S(0), I(0),R(0)) = (1.8,0.2,0)

and simulate the curve I(t) for 0 < t < 20, with β = 0.9,0.95,1,1.05,1.1. Are these
curves Iβ (t)≡ I(t) increasing with β , for each t?

Algorithm 9.1. Main file for SIR model in Problem 9.8 (main SIR.m)

%% SIR model for Problem 9.8
global A nu gamma mu beta

%% parameters
A = 2;
nu = 1;
gamma = 1;
mu = 1;
beta = 0.9;

%% initial conditions
S0 = 1.8; % susceptible
I0 = 0.2; % infected
R0 = 0; % recovered

init = [S0; I0; R0];
tspan = [0,20];

[t,v] = ode45('fun_SIR',tspan,init);

plot(t,v(:,2)), hold on

Problem 9.9. HIV is an incurable disease so that, in the model (9.6),

β A
μ

>
k
γ
, or β γ >

μk
A
.
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Algorithm 9.2. fun SIR.m

function dv = fun_SIR(t,v)
global A nu gamma mu beta

S = v(1); % susceptible
I = v(2); % infected
R = v(3); % recovered
dv = zeros(3,1);

dv(1) = A - beta*S*I + gamma*R - mu*S;
dv(2) = beta*S*I - nu*I - mu*I;
dv(3) = nu*I - gamma*R - mu*R;

Then there is a unique steady state (T̄ , T̄ ∗,V̄ ) with

T̄ =
k

β γ
, βV̄ =

Aβ γ
k

− μ , T̄ ∗ =
β
μ∗ T̄V̄ .

Anti-HIV drug that blocks invasion of extracellular virus into T cells decreases the
parameter β , and anti-HIV drug that reduces the replication of virus within T∗ cells
decreases the parameter γ . By either decreasing β or γ , or both, the steady state T̄
is increased. Suppose initially the parameters β and γ were such that β ≥ 1, γ ≥ 1,
and take A = 500, k = 1000, μ = 0.5, μ∗ = 1. Consider three sets of parameters (but
β γ is still greater than μk

A ): (i) β = 4,γ = 4; (ii) β = 1,γ = 4; (iii) β = 1,γ = 2.
Starting with T (0) = 400, T ∗(0) = 200, V (0) = 10, simulate the system (9.7)

for 0 ≤ t ≤ 60 under these three parameter sets. What do you observe? Explain the
results.



Chapter 10
Enzyme Dynamics

Cells are the basic units of life. A cell consists of a concentrated aqueous solution of
molecules contained in a membrane, called plasma membrane. A cell is capable
of replicating itself by growing and dividing. Cells that have a nucleus are called
eukaryotes, and cells that do not have a nucleus are called prokaryotes. Bacteria
are prokaryotes, while yeast and amoebas, as well as most cells in our body, are
eukaryotes. The Deoxyribonucleic acid (DNA) are very long polymeric molecules,
consisting of two strands of chains, having double helix configuration, with repeated
nucleotide units A, C, G, and T. The DNA is packed in chromosomes, within the
nucleus in eukaryotes. In humans, the number of chromosomes is 46, except in
sperm and egg cells where the number is 23.

The DNA is the genetic code of the cell; it codes for proteins. Proteins lie mostly
in the cytoplasm of the cells, that is, outside the nucleus; some proteins are attached
to the plasma membrane, while some can be found in the nucleus. Proteins are poly-
mers of amino acids whose number typically ranges from hundreds to thousands;
there are 20 different amino acids from which all proteins are made. Each protein
assumes 3-dimensional configuration, called conformation. Proteins perform spe-
cific tasks by changing their conformation.

Two proteins, A and B, may combine to form a new protein C. We express this
process by writing

A+B −→C.

Biological processes within a cell involves many such reactions. Some of these rea-
ctions are very slow, others are very fast, and in some cases the reaction rate may
start slow, then speed up until it reaches a maximal level. In this chapter we consider
the question: How to determine the speed of biochemical reactions among proteins?
In order to address this question we shall develop some mathematical models.
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We begin with a simple case. Suppose we have two proteins, A and B, or more
generally, two molecules A and B. We assume that A and B, when coming in contact,
undergo a reaction, at some rate k1, that makes them form a new molecule C. We
express this reaction by writing

A+B
k1−→C;

k1 is called the rate coefficient. We shall denote the respective concentrations of
three molecules by [A], [B], and [C]. The law of mass action states that the reaction

rate d[C]
dt , or v1, of the above reaction is given by

v1 = k1[A][B],

that is,

d[C]
dt

= k1[A][B].

Note that the above reaction implies that

d[A]
dt

=−k1[A][B],
d[B]
dt

=−k1[A][B].

If the reaction is reversible with rate coefficient k−1, then

A+B
k1
⇀↽
k−1

C

and

d[C]
dt

= k1[A][B]− k−1[C],

d[A]
dt

=
d[B]
dt

=−k1[A][B]+ k−1[C].

The law of mass action can be extended to interaction among three or more
molecules. Consider for example three species X1,X2,X3 that interact to form a
species Y :

X1 +X2 +X3
k−→ Y

where k is the reaction rate. Then the law of mass action states that

d[Xi]

dt
=−k[X1][X2][X3] for i = 1,2,3.

In particular, if X1 = A, X2 = X3 = B, Y =C, then

A+ 2B
k−→C
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and

d[A]
dt

= −k[A][B]2,

d[B]
dt

= −2k[A][B]2,

d[C]
dt

= k[A][B]2.

Example 10.1. Consider the chemical reactions

A+B
1−→C, C

2−→ A+B

with initial concentrations

[A(0)]+ [C(0)] = 2, [B(0)]− [A(0)] = 1.

We wish to determine the behavior of the concentrations as t → ∞. To do that we set

x(t) = [A(t)], y(t) = [B(t)], z(t) = [C(t)].

Then by the law of mass action,

dx
dt

= −xy+ 2z,

dy
dt

= −xy+ 2z,

dz
dt

= xy− 2z.

Hence

d(x+ z)
dt

= 0,
d
dt
(y+ z) = 0,

d
dt
(y− x) = 0

so that

x(t)+ z(t)≡ constant, y(t)+ z(t)≡ constant, y(t)− x(t)≡ constant.

Recalling the initial conditions, we see that

y(t) = x(t)+ 1, z(t) = 2− x(t).

We can then write the differential equation for x(t) in the form

dx
dt

=−x(1+ x)+ 2(2− x)=−x2 − 3x+ 4=−(x+ 4)(x− 1),

or

dx
(x+ 4)(x− 1)

=−dt.
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By integration, using the relation

1
(x+ 4)(x− 1)

=
1
3
(

1
x− 1

− 1
x+ 4

),

we obtain

1
3

ln
|x− 1|
x+ 4

=−t + constant.

It follows that x(t)→ 1 as t → ∞, and then also y(t)→ 2 and z(t)→ 1 as t → ∞.

Example 10.2. Consider the chemical reactions

A+B
k−→C, B+C

k−→ A.

We want to determine how the concentrations of these chemicals will change as
t → ∞. Setting

x(t) = [A(t)], y(t) = [B(t)], z(t) = [C(t)]

we have, by the law of mass action:

dx
dt

= −kxy+ kyz,

dy
dt

= −kxy− kyz,

dz
dt

= kxy− kyz.

We observe that
d
dt
(x+ z) = 0, hence x(t)+ z(t) = α,

where α = x(0)+ z(0). Then the equation for y can be written in the form

dy
dt

=−ky(x+ z) =−kαy.

If y(0) = β then

y(t) = β e−kαt . (10.1)

Hence y(t)→ 0 as t → ∞. Next we write

dx
dt

=−kxy+ ky(α − x) =−2kxy+ kαy,

or, by (10.1),
dx
dt

+ 2kβ e−kαtx = kαβ e−kαt .
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This is a linear differential equation of the type considered in Section 2.2.1. Intro-
ducing the integral

P(t) =
∫ t

0
2kβ e−kαsds =−2β

α
(e−kαt − 1),

we can solve for x(t) using the formula (2.4):

x(t) = e−P(t)x(0)+ kαβ e−P(t)
∫ t

0
eP(s)e−kαsds.

To compute the last integral we substitute

z = e−kαs, dz =−kαe−kαsds

Then the integral becomes

−e
2β
α

kα

∫ z(t)

z(0)
e−

2β
α zdz = e

2β
α

e−
2β
α z

2kβ

∣∣∣∣z(t)z(0) =
1

2kβ

(
e
−2β

α (e−kαt−1)− 1
)

so that

x(t) = e
2β
α (e−kαt−1)x(0)+

α
2

(
1− e

2β
α (e−kαt−1)

)
.

At t → ∞, e−kαt → 0, and hence x(t) → e
−2β

α x(0) + α
2 (1 − e−

2β
α ), and z(t) →

−e
−2β

α x(0)+ α
2 (1+ e−

2β
α ).

Metabolism in a cell is the sum of physical and chemical processes by which
material substances are produced, maintained, or destroyed, and by which energy is
made available. Enzymes are proteins that act as catalysts in speeding up chemical
reactions within a cell. They play critical roles in many metabolic processes within
the cell. An enzyme, say E , can take a molecule S and convert it to a molecule P in
one millionth of a second. The original molecule S is referred to as the substrate,
and P is called the product. The enzyme-catalyzed conversion of a substrate S into
a product P is written in the form

S
E−→ P. (10.2)

Figure 10.1 illustrates how an enzyme can convert substrate S into a product P.
The profile [S] −→ [P] can take different forms, depending on the underlying

biology. Two typical profiles are shown in Figure 10.2.
Figures 10.2(A) and 10.2(B) have been shown to hold in different experiments,

but it would be useful to derive them by mathematical analysis based on known
properties of enzymes. Indeed such a derivation will give us a precise mathematical
formula for the profiles displayed in Figure 10.2. We begin with the derivation of a
formula that yields the profile of Figure 10.2(A).



110 10 Enzyme Dynamics

S S

P

(a) (b) (c) (d) (e)

Fig. 10.1: (a) Enzyme attracts S; (b) S is inside E; (c) Enzymatic process converts S into P; (d) P
is released; (e) Enzyme is ready to attract another S.

[S] [S]

d[
P

]/d
t

d[
P

]/d
t

)B()A(

Fig. 10.2: Two different profiles of the enzymatic conversion of S −→ P. (A) Michaelis-Menten
kinetics; (B) Hill kinetics of order 3.

In the following we show how such a profile can be derived from the law of mass
action. We write, schematically,

S+E
k1−−⇀↽−−
k−1

C,

where C is the complex SE ,

C
k2−→ E +P.

By the law of mass action

d[C]
dt

= k1[S][E]− (k−1+ k2)[C], (10.3)

d[E]
dt

= −k1[S][E]+ (k−1+ k2)[C], (10.4)

d[S]
dt

= −k1[S][E]+ k−1[C], (10.5)

d[P]
dt

= k2[C]. (10.6)
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Notice that
d
dt
([E]+ [C]) = 0

so that [E]+ [C] = constant = e0; e0 is the total concentration of the enzyme in both

E and the complex C. Note that d[C]
dt + d[S]

dt + d[P]
dt = 0, so Eq. (10.5) depends on

Eqs. (10.3) and (10.6) and may therefore be dropped.
We focus on Eq. (10.3) and note that in the enzymatic process the complex C

changes very fast, so that compared to the other equations, (10.4)–(10.6), d[C]/dt is
approximately zero. Hence, we approximate Eq. (10.3) by the steady state equation

k1[S][E]− (k−1+ k2)[C] = 0.

Substituting [E] = e0 − [C] we get

k1[S](e0 − [C]) = (k−1 + k2)[C],

or

[C] =
k1e0[S]

(k−1 + k2)+ k1[S]
=

e0[S]
kM +[S]

,

where KM =
k−1+k2

k1
.

Then
d[P]
dt

= k2[C] =
Vmax[S]

KM +[S]
, (10.7)

where Vmax = k2e0.
We have thus derived the Michaelis-Menten formula

d[P]
dt

=
Vmax[S]

KM +[S]
, (10.8)

where Vmax and KM are constants; note that

d[P]
dt

→Vmax as [S]→ ∞.

The assumption we made in the derivation of (10.8) that d[C]/dt is very small is
quite reasonable and, indeed, the Michaelis-Menten formula is widely used in des-
cribing enzymatic processes.

But what about Figure 10.2(B)? Such a profile is based on a different enzymatic
process, for example when an enzyme E can bind first to one substrate S and then
with another substrate S. Furthermore, in such a case, as is well established exper-
imentally, the speed by which the enzyme binds to the second substrate is much
faster, as illustrated in Figure 10.3.
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S P

(a) (b) (c) (d) (e)

S
P

Fig. 10.3: Enzyme with two sites for absorbing and converting substrate S to product P; the con-
version of the second substrate is faster than the conversion of the first substrate.

We model such processes as follows:

S+E
k1−−⇀↽−−
k−1

C1, (C1 = SE)

C1
k2−→ E +P,

S+C1
k3−−⇀↽−−
k−3

C2, (C2 = SC1 = S2E)

C2
k4−→ C1 +P,

(10.9)

so that

d[P]
dt

= k2[C1]+ k4[C2].

Note that [E]+ [C1]+ [C2] = constant = e0. Assuming the steady state approxi-
mations

d[C1]

dt
=

d[C2]

dt
= 0,

one can show that

d[P]
dt

=
(k2K2 + k4[S])e0[S]
K1K2 +K2[S]+ [S]2

, (10.10)

where

K1 =
k−1 + k2

k1
, K2 =

k−3 + k4

k3
.

Steps 1 and 3 in equations of (10.9) represent sequential binding of two sub-
strate molecules to the enzyme. We assume that previously enzyme-bound substrate
molecule significantly increases the rate of binding of a second substrate molecule,
so that k3 � k1. In the extreme case of k1 → 0, k3 → ∞, with k1k3 a finite positive
constant, we get K1 → ∞, K2 → 0, K1K2 → KH > 0, so that
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d[P]
dt

=
Vmax[S]2

KH +[S]2
, (10.11)

where Vmax and KH are constants. Formula (10.11) is called the Hill kinetics.
Some enzymes can bind to three or more substrates. In this case it is often the

case that when enzyme has already bound to m substrates S, it has a greater affinity
to bind to the next substrate S. Under this biological assumption, one can derive the
Hill kinetics of order n,

d[P]
dt

=
Vmax[S]n

KH +[S]n
. (10.12)

Figure 10.2(B) displays a profile of Hill kinetics of order 3. The Michaelis-
Menten formula is used also in other biological processes. For example, when
macrophages M ingest bacteria B they become infected macrophages Mi. The
resulting growth in Mi is described by the Michaelis-Menten formula

d[Mi]

dt
= λ [M]

[B]
K +[B]

.

Notice that for small [B], this is approximately the law of mass action of

M+B → Mi.

However the capacity of macrophages to ingest bacteria is limited by the following
fact: After receptor proteins on the macrophage membrane have been engaged in the
ingestion process, they need to take time off for recycling. Hence there is a limit, λ ,
on how fast macrophages can ingest the bacteria.

Problem 10.1. Consider the chemical reaction

A+ 2B
k−→C,

where initially 2[A(0)]− [B(0)] = 1. Show that y(t) = [B(t)] satisfies the equation

y′ =−ky2(1+ y),

that the solution of the above equation is given by

−1
y
+ ln

1+ y
y

=−kt +C, C is a constant,

and that y(t)→ 0 as t → ∞

Problem 10.2. Consider the chemical reactions

A+B
k−→C, B+C

2k−→ A
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with initial condition [A(0)] + [C(0)] = 1. Prove that y(t) = [B(t)] satisfies the
equation

dy
dt

= (kx− 2k)y,

and the inequality y(t)≤ e−kt y(0).

Problem 10.3. Derive Eq. (10.10) under the steady state approximations d[C1]/
dt = 0, d[C2]/dt = 0.

10.1 Numerical Simulations

Problem 10.4. Suppose

A+B
k−→C, C

3−→ A+B

Set x = [A], y = [B], z = [C] and take x(0) = y(0) = 1, z(0) = 8. Derive a system of
differential equations for x(t),y(t),z(t), and compute x(10) as a function of k, for
1 ≤ k ≤ 5. Sample codes are shown in Algorithms 10.1 and 10.2.

Problem 10.5. Suppose

A+B
k−→C, C

3−→ A+ 2B

Set x = [A], y = [B], z = [C] and take x(0) = y(0) = 1, z(0) = 8. Derive a system of
differential equations for x(t),y(t),z(t), and compute x(10) as a function of k, for
1 ≤ k ≤ 5.
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Algorithm 10.1. Main file for Problem 10.4 (main EnzymeDynamics.m)

%%% This code is a sample code for Problem 10.4
global k

Tfinal = 10;
tspan = [0,Tfinal];

%% set up initial conditions
A_0 = 1;
B_0 = 1;
C_0 = 8;

z_ini = [A_0; B_0; C_0];

%% discretize k in [1,5]
n = 51; % 51 discretization points including 1 and 5
K = linspace(1,5,n);

x_10 = zeros(n,1); % define a vector to store x(10) for each k

%% for each value in vector K, solve the ODE
for i = 1 : n

k = K(i);
[t,z] = ode45('fun_EnzymeDynamics',tspan,z_ini);
x_10(i) = z(end,1);

end

%% plot
plot(K,x_10)
xlabel('k'); ylabel('x(10)');
title(['T = ' num2str(Tfinal)]);

Algorithm 10.2. fun EnzymeDynamics.m

%%% This code is a function file for the main code for Problem
% 10.4

function dz = fun_EnzymeDynamics(t,z)
global k

dz = zeros(3,1);
A = z(1);
B = z(2);
C = z(3);

dz(1) = - k*A*B + 3*C;
dz(2) = - k*A*B + 3*C;
dz(3) = k*A*B - 3*C;



Chapter 11
Bifurcation Theory

Consider two populations, x and y, that are interacting either by competition, or as
predator and prey. They may end up near a stable steady state, or possibly in sea-
sonally oscillating states; this could depend on their proliferation rates, death rates,
available resources, climate change, etc. In this chapter we wish to explore these
varied possibilities using mathematics. To do that we begin by a short introduction
to the theory of bifurcations. Bifurcation theory is concerned with the question of
how the behavior of a system which depends on a parameter p changes with the par-
ameter. It focuses on any critical value, p = pcr, where the behavior of the system
undergoes radical change; such values are called bifurcation points. The change
that occurs at p = pc typically involves two or more branches of solutions which
depend on the parameter p; the nature of these ‘bifurcation’ branches changes radi-
cally at p = pc.

We shall consider bifurcation phenomena for a system of differential equations
with parameter p,

dx
dt

= f(x, p). (11.1)

Bifurcation points can arise in different ways. For example, suppose a steady state of
Eq. (11.1), which depends on p, is stable for p < pc but loses stability at pc. Then a
qualitative change has occurred in the phase portrait of the system (11.1), and p= pc

is a bifurcation point. It sometimes happens that as p increases from p < pc to p >
pc the differential system will begin to have periodic solutions, a well-recognized
biological phenomena. Thus we would like to determine, mathematically, when such
a situation takes place.

Problems 11.1–11.3 are simple but typical examples of bifurcations that fre-
quently occur in biology.

Electronic supplementary material The online version of this chapter (doi: 10.1007/
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Problem 11.1. Consider the equation

dx
dt

= p+ x2.

It has two steady states x = ±√−p if p < 0 and no steady states if p > 0. Prove
that x = −√−p is stable and x = +

√−p is unstable. The point p = 0 is called a
saddle-point bifurcation.

Problem 11.2. Consider the equation

dx
dt

= px− x2.

It has steady points x = 0 and x = p. Prove that x = 0 is stable if p < 0 and unstable
if p > 0, and x = p is unstable if p < 0 and stable if p > 0. Such a point p = 0,
where there is an exchange of stability in the branches of the steady points, is called
a transcritical bifurcation.

Problem 11.3. Consider the equation

dx
dt

= px− x3.

Show that x = 0 and x =±√
p (for p > 0) are the steady states of this equation, and

determine their stability. The point p = 0 is called a pitchfork bifurcation.

Figure 11.1 illustrates the above three examples.

)c()b()a(

ppp

xxx

x=+(-p)1/2

x=-(-p)1/2

Fig. 11.1: (a) Saddle-point bifurcation diagram. (b) Transcritical bifurcation diagram. (c) Pitchfork
bifurcation. Solid curves represent stable steady states, while dotted curves are unstable steady
states.

Example 11.1. Consider a species x with logistic growth whose death rate is a pa-
rameter p,

dx
dt

= rx(1− x
K
)− px. (11.2)
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It has two steady states: x = 0 and x = K(1− p
r ), but the latter one is biologically

feasible only if x > 0, that is, if p < r. The two branches of steady points intersect
at p = r where exchange of stability occurs: x = 0 is stable if p > r and unstable if
p< r, whereas x=K(1− p

r ) is stable if p< r and unstable if p> r. Thus transcritical
bifurcation occurs at p = r; see Fig. 11.2.

x

p

K

r

Fig. 11.2: Transcritical bifurcation diagram for Eq. (11.2). Solid lines represent stable steady states,
while dotted lines are unstable steady states.

When the density of species x is very small (say 0 < x < 1), mating becomes
difficult: The probability of a male from x to meet and mate with a female from x is
proportional to x× x. Hence instead of growth rates

dx
dt

= rx,

we have growth rate

dx
dt

= rx2

or, under constraints represented by a carrying capacity K,

dx
dt

= rx2(1− x
K
).

Example 11.2. Consider species x with dynamics

dx
dt

= rx2(1− x
K
)− px. (11.3)

It has three branches of steady points given by x = 0 and

rx(1− x
K
)− p = 0, or x =

K
2
±
√

K2

4
− pK

r
.

In this example pitchfork bifurcation occurs at p = r
4 K, as illustrated in Fig. 11.3.
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x

p
rK/4

K/2

K

Fig. 11.3: Pitchfork bifurcation diagram for Eq. (11.3). Solid lines represent stable steady states,
while dotted lines are unstable steady states.

11.1 Hopf Bifurcation

We next consider a different type of bifurcation whereby steady points bifurcate into
periodic solutions; this of course must involve a dynamical system with at least two
equations.

Consider the following system of two equations, with bifurcation parameter p:

dx1

dt
= px1 − μx2 − ax1(x

2
1 + x2

2), (11.4)

dx2

dt
= μx1 + px2 − ax2(x

2
1 + x2

2), (11.5)

where μ , a are positive constants. It is easily seen that the point x1 = x2 = 0 is a
steady point, stable if p < 0 and unstable if p > 0. But for p > 0 there also exists a
periodic solution,

x1(t) =

√
p
a

cos μt, x2(t) =

√
p
a

sin μt,

which traces the circle x2
1 + x2

2 =
p
a as t varies.

This type of bifurcation, which gives rise to periodic solutions, is called Hopf
bifurcation. Fig. 11.4 illustrates the periodic solutions which arise in the Hopf bi-
furcation. Note that the Jacobian matrix J at the (0,0), where the bifurcation occurs,
is given by

J =

(
p −μ
μ p

)
,

and the characteristic equation is

(p−λ )2 + μ2 = 0,



11.1 Hopf Bifurcation 121

so that the eigenvalues are

λ = p± iμ .

As p crosses from p < 0 to p > 0, the two eigenvalues, at p = 0, become pure
imaginary numbers. It is this behavior of the eigenvalues of the Jacobian matrix that
gives rise to the periodic solutions. In fact, the bifurcation behavior in the example
of the system (11.4)–(11.5) is a special case of the following theorem.

p
0

diameter

Fig. 11.4: Hopf bifurcation for Eq. (11.4)–(11.5): periodic solutions with increasing diameter
√

p
a .

Theorem 11.1. (Hopf Bifurcation) Consider the system

dx
dt

= f (x,y, p),
dy
dt

= g(x,y, p). (11.6)

Assume that for all p in some interval there exists a steady state (xs(p),ys(p)), and
that the two eigenvalues of the Jacobian matrix (evaluated at the steady state) are
complex numbers λ1(p) = α(p)+ iβ (p) and λ2(p) = α(p)− iβ (p). Assume also
that

α(p0) = 0, β (p0) 
= 0 and
dα
d p

(p0) 
= 0.

Then one of the three cases must occur:

1. there is an interval p0 < p < c1 such that for any p in this interval there exists
a unique periodic orbit containing (xs(p0),ys(p0)) in its interior and having a
diameter proportional to |p− p0|1/2;

2. there is an interval c2 < p < p0 such that for any p in this interval there exists
a unique periodic orbit as in case (1);

3. for p = p0 there exist infinitely many orbits surrounding (xs(p0),ys(p0)) with
diameters decreasing to zero.

A proof of Theorem 11.1 can be found, for instance, in Reference [6].
For the special system (11.4)–(11.5), p0 = 0, (xs(p0),ys(p0)) = (0,0), α(p) = p,

β (p) = μ , and case 1 occurs with p > 0 if a > 0 as shown above, case 2 occurs with
p < 0 if a < 0, and case 3 occurs if a = 0 as illustrated in Fig. 3.1(F).
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Example 11.3. We consider a model of herbivore–plant interaction. The plant P has
logistic growth with carrying capacity K, and the herbivore H has eating capacity
σ , which we take as the bifurcation parameter. Then

dP
dt

= rP(1− P
K
)−σ

P
1+P

H,

dH
dt

= γσ
PH

1+P
− μH,

where γ is the yield constant and μ is the death rate of the herbivore. Rewriting these
equations in the form

dP
dt

= P[r(1− P
K
)− σH

1+P
],

dH
dt

= H[γσ
P

1+P
− μ ],

we easily compute the nonzero steady state

P =
μ

γσ − μ
, H =

r
σ
(1+P)(1− P

K
) =

rγ
γσ − μ

(1− μ
K(γσ − μ)

),

and, by the factorization rule, the Jacobian is computed to be

J =

(
P(− r

K + σH
(1+P)2 ) −σ P

1+P
γσH

(1+P)2 0

)
.

The characteristic equation is then

λ 2 − aλ + b = 0, (11.7)

where b = detJ(P,H)> 0 and a = trace J(P,H) is given by

a = a(σ) = P(− r
K
+

σH
(1+P)2 ).

We compute

σH =
rγ[K(γσ − μ)− μ ]

K(γσ − μ)2 σ , 1+P =
γσ

γσ − μ
.

Hence
σH

(1+P)2 =
r[K(γσ − μ)− μ ]

Kγσ
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and

a(σ) =
Pr
K
{−1+

1
γσ

[K(γσ − μ)− μ ]}

=
Pr

Kγσ
[(K − 1)γσ − (K + 1)μ ].

It follows that a(σ0) = 0 if

σ0 =
K + 1
K − 1

μ
γ

and

da
dσ

∣∣∣∣σ=σ0 =
Pr

Kγσ0
(K − 1)γ > 0 if K > 1,

so that a(σ)< 0 if σ < σ0.
We now observe that the points P,H are both positive if

σ >
K + 1

K
μ
γ
,

and σ0 satisfies this inequality since

K + 1
K − 1

>
K + 1

K
.

We conclude that

a(σ)< 0 if
K + 1

K
μ
γ
< σ < σ0,

a(σ0) = 0,
d

dσ
a(σ0)> 0.

Since the eigenvalues of (11.7) are λ1,2 = a
2 ±

√
a2

4 − b and b > 0, we see, using
Theorem 11.1, that Hopf bifurcation occurs at σ = σ0. Thus as σ increases to
σ0 the stable equilibrium (P(σ),H(σ)) becomes unstable and, instead, the dynam-
ics of the herbivore–plant model develops periodic solutions with diameters which
increase with |σ −σ0|. Thus both plant and herbivore will coexist, and their popu-
lations will vary ‘seasonally.’

11.2 Neuronal Oscillations

Neuronal oscillations are periodic electrical oscillations along the axon of the neu-
rons, and some simplified models represent them in the form

dv
dt

= f (v)−w+ I,

dw
dt

= ε(γv−w),
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where I is the applied current, arriving from dendrites, which triggers the oscillations.
The function f (v) is a cubic polynomial and ε is a small parameter. The diameter
of the periodic oscillations depends on f but is independent of the parameter I.
Motivated by this model we consider here the case where f is a quadratic poly-
nomial, and show that this case gives rise to Hopf bifurcation, that is, to periodic
oscillations which begin with small diameter as I crosses a bifurcation parameter
I0, and then increase with I, proportionally to (I − I0)

1/2. For simplicity we take
f (v) = v2.

Problem 11.4. Consider a system

dv
dt

= v2 −w+ I,

dw
dt

= 2γv−w,

where γ > 1
4 and 0 < I < γ2. Show that the only steady state (v̄, w̄) is given by

v̄ = γ −
√

γ2 − I, w̄ = 2γ v̄, that it is stable if I < γ − 1
4 , and that Hopf bifurcation

occurs at I = γ − 1
4 .

11.3 Endangered Species

Consider species with very sparse density v, which is endangered as a result of
endemic incurable disease caused by a parasite with density w. Since the population
of v is spread over a large territory, mating between a male from v and female from
v is proportional to v× v = v2. Hence

dv
dt

= rv2 −αvw,

where α is the rate by which the parasite w depletes v. On the other hand, the growth
of the parasite is proportional to v, so that

dw
dt

= γv−β w,

where β is the death rate of w. If rβ −αγ 
= 0 then the only steady point is (v̄, w̄) =
(0,0). In order to save the endangered species v from extinction, new population of
the species are introduced into the territory, at density rate I, so that

dv
dt

= rv2 −αvw+ I.

This results in steady points (v̄, w̄) where v̄ > 0, w̄ > 0, and the question arises: are
these points (v̄(I), w̄(I)) stable for all I?
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To address this question we take, for simplicity, r = α = β = 1, and 1 < γ < 2
and consider I as a bifurcation parameter. Then

dv
dt

= v2 −wv+ I,

dw
dt

= γv−w.

The only steady point is w̄= γ v̄, v̄=( I
γ−1 )

1/2, and the Jacobian matrix about (v̄, w̄) is

J =

(
(2− γ)v̄ −v̄

γ −1

)
.

Hence detJ = 2 v̄(γ − 1)> 0 and

trace J = (2− γ)(
I

γ − 1
)1/2 − 1 ≡ A(I),

where A(I)< 0 if I < I0, A(I)> 0 if I > I0, with

I0 =
γ − 1

(2− γ)2 .

The eigenvalues of J are
λ = σ ± iτ,

where σ = 1
2 A(I), τ = [( 1

2 A(I))2 −2(γ −1)v̄]1/2, and dσ
dI > 0 at I = I0. Hence (v̄, w̄)

is a stable steady point if I < I0, and Hopf bifurcation occurs at I = I0. We conclude
that as I is increased, the population v̄, in the steady state, will increase and remain
stable as long as I < I0; thereafter the steady point will become unstable, and the
populations of v and w will oscillate periodically.

Problem 11.5. Consider the following predator–prey model with sparse prey popu-
lation, x,

dx
dt

= x2(1− x)− xy,

dy
dt

= 4xy− 4αy,

where α > 0. It has an equilibrium point (α,α(1−α)) for any 0<α < 1. Prove that
the equilibrium point is stable if α > 1

2 and that Hopf bifurcation occurs at α = 1
2 .

The biological interpretation is that if the predator death rate is smaller than
2 then both predator and prey coexist in steady state, but if the predator death
rate exceeds 2 then both predator and prey still coexist and their densities vary
periodically.
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11.4 Numerical Simulations

To plot the bifurcation diagram, one needs to scan through the parameter space
and solve the ODEs for those parameters. If we would like to plot the bifurcation
diagram for

dx
dt

= f (x, p),

the first step is to plot the nullcline on the x-p plane ( f (x, p) = 0), which corresponds
to the steady states xs under different p. Next, on the nullcline, we need to determine
which part (branch) is stable and unstable. Let us consider the example

dx
dt

= x2 + p.

First we plot the curve of x2 + p = 0 on p-x plane. In MATLAB, define the right-
hand side function in a script file:
function y = saddlefun(x,p)
y = p + x.ˆ2;

Note that p and x could be matrices in order to accommodate the matrix of dis-
cretized mesh grid on p-x space. To plot the bifurcation diagram, we create another
function file called ‘bifurcation.m’ (see Algorithm 11.1). The input of this function
is the name of the right-hand-side function of the ODE (e.g., ‘saddlefun’) and the
ranges of x and p to plot. That is, to run this code, we should type a command similar
to the following in the command window:
>> bifurcation(‘saddlefun’,[-5,5],[-5,5])

In ‘bifrurcation.m’, we first discretize x-p plane with a 101× 101 mesh grid
(using the command ‘meshgrid’). Then we try to plot the zeros of x2 + p by us-
ing the ‘contour’ command, as shown in Fig. 11.5(A). Next, for each p, we need
to start with an initial condition x0 which is not a steady state and run until we ar-
rive near a steady state. Therefore, we avoid the x0 too close to the nullclines, and
use the rest of the points as initial conditions to do time evolution (green points
in Fig. 11.5(B)). The solution will move away from the unstable branch and be at-
tracted to the stable branch (blue circles in Fig. 11.5(C)). When we run ‘bifurca-
tion.m,’ we will see Fig. 11.5(A)–(C) consecutively.

Problem 11.6. Plot the bifurcation diagram for

dx
dt

= px− x3.

with range −5 ≤ p ≤ 5,−5 ≤ x ≤ 5.



11.4 Numerical Simulations 127

Algorithm 11.1. Plotting bifurcation diagram for dx/dt = p+ x2 (bifurcation.m)

% BIFURCATION(FCN,XRANGE,PRANGE) draws the bifurcation diagram
% for the function FCN over the specified x and p ranges.
% FCN is a handle to a user-defined function that takes as
% arguments a variable x and a parameter p.
% XRANGE is a row vector of the form [XMIN XMAX].
% PRANGE is a row vector of the form [PMIN PMAX].
% Example: % bifur(@saddlefun,[-5 5],[-5 5]);
% where saddlefun is a user-defined function of the form
%
% function y=saddlefun(x,p)
% y=p+x. 2;
%
% BIFURCATION(FCN,XRANGE,PRANGE) draws the bifurcation diagram
% for the function FCN over the specified x and p ranges.
% FCN is a handle to a user-defined function that takes as
% arguments a variable x and a parameter p.
% XRANGE is a row vector of the form [XMIN XMAX].
% PRANGE is a row vector of the form [PMIN PMAX].
% Example: % bifur(@saddlefun,[-5 5],[-5 5]);
% where saddlefun is a user-defined function of the form
%
% function y=saddlefun(x,p)
% y=p+x.ˆ2;
%

function bifurcation(fcn,xrange,prange)
nn = 100; % number of points plotted in each range
p1 = [prange(1):(prange(2)-prange(1))/nn:prange(2)]; % sample points in p
x1 = [xrange(1):(xrange(2)-xrange(1))/nn:xrange(2)]; % sample points in x

[p,x] = meshgrid(p1,x1); % generate grid points in p and x,
% which are matrices

fval = feval(fcn,x,p); % evaluate the points value
figure(1);
[c,h] = contour(p,x,fval,[0,0],'r'); % plot the zero contour
pause(1) % pause then show the next figure
xlabel('p'), ylabel('x')
x = x(:); p = p(:); % reshape the matrices to column vectors

%% find the points whose the function values are not close to zero
% that is, points that are not stationary points
ind = find(abs(fval)>0.05*mean(abs(fval(:))));
x = x(ind); p = p(ind);
if 1

figure(1); hold on; plot(p,x,'go') % draw the initial points
pause(1) % pause then show the next figure

end

%% solve the ODEs until steady states from different initial conditions
for iter = 1:1000

% forward Euler with time step 0.05
x = x + 0.05*feval(fcn,x,p);

end
hold on; plot(p(:),x(:),'bo')
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Fig. 11.5: Bifurcation diagram for saddle point bifurcation. (A) The red curve is the nullcline;
(B) The green area are covered by green circles, which are non-steady-state points; (C) Solutions
marked by blue are all the steady states starting with initial conditions marked by green; that is,
only half of the red curve is stable.



Chapter 12
Atherosclerosis: The Risk of High Cholesterol

Arteries are blood vessels that carry oxygen-rich blood to the heart, brain, and other
parts of the body. Atherosclerosis is a disease in which a plaque, a thick hard deposit
of fatty material, builds up inside arteries. The plaque contains cholesterol, calcium,
cells from the blood, and cells from the arterial wall. Over time the plaque grows,
hardens, and narrows the artery. This reduces the flow of oxygen-rich blood, and also
make it more likely to cause a blood clot, or thrombus, that will block the blood flow.
A blockage formed in the coronary arteries may trigger a heart attack. A blockage
formed in the carotid artery (located on each side of the neck, feeding oxygen to
the brain) may cause a stroke. Atherosclerosis is the leading cause of death in the
United States and worldwide, with annual deaths of 900,000 in the United States
and 13 millions worldwide.

The exact cause of atherosclerosis is unknown, and in many cases there are no
symptoms until an episode of heart attack or stroke occurs. There are however risk
factors which contribute to the disease, namely, high cholesterol, heavy smoking,
and hypertension. In this chapter we focus on the risk associated with high choles-
terol, and use mathematics to quantify this risk.

Cholesterol is a protein that each cell in our body needs. But cholesterol does
not dissolve in blood and must therefore be transported in the blood stream. It is
transported by carrier called lipoprotein, made of fat (lipid) and protein. There are
two types of lipoproteins that carry the cholesterol to and from cells. They are called:
low-density lipoproteins, LDL, and high-density lipoproteins, HDL. The ratio of
protein to cholesterol is low in the LDL and high in the HDL. The LDL are ‘bad’
cholesterols, and the HDL are ‘good’ cholesterols. The LDL contribute to plaque
growth and the HDL reduce the plaque by removing the LDL from the plaque, and
back to the liver, where it is broken down for recycling or for secretion from the
body.

Electronic supplementary material The online version of this chapter (doi: 10.1007/
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The level of cholesterol in the blood is measured in units of 10−5g/cm3. The
American Heart Association (AHA) established guidelines regarding the atheroscle-
rosis risk associated with the levels of LDL and HDL in the blood. For example,
LDL = 190, HDL = 40 is high risk, and LDL = 110, HDL = 50 is risk free. These
numbers represent concentrations in units of 10−5 g/cm3.

The AHA guidelines are based on epidemiological studies that are periodically
adjusted. But it would be important also to understand the mechanism of the growth
of a plaque, so that we could improve the risk assessment of an artery blockage,
and perhaps even develop drugs that slow or block the growth of a plaque. In this
chapter, we develop a simple mathematical model which explains how the risk of
plaque’s growth is associated with the levels of LDL and HDL

We introduce, as parameters

L0 = concentration of LDL in blood,

H0 = concentration of HDL in blood,

and wish to determine, based on (L0,H0), whether a plaque will grow or shrink. To
do that we need to understand how a plaque is formed.

The artery wall consists of three layers. The inner layer, called intima, is very
thin and is made up of endothelial cells which form a barrier so that blood cannot
leak out of the artery. The middle layer, called media, includes smooth muscle cells
that enable the wall to expand (and then shrink) as blood is pumped out of the
heart, 60 to 70 times per minute. The third layer, called adventitia, provides general
support to the blood vessel. Fig. 12.1 shows an artery wall structure.

Intima

Media

Adventitia

Blood cell

Fig. 12.1: Artery wall structure.

Free radicals are molecules or ions that have unpaired valence electrons, and
are therefore highly reactive in many chemical processes in our body; they play
useful role in metabolic processes. Macrophages are cells of the immune system
that travel around the body and engulf and digest foreign particles, cellular debris,
and invading microorganisms.

As a result of blood pressure, a small damage may occur in the artery wall and
cholesterols from the blood may then leak out. When LDL enter the intima, they
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immediately become oxidized by radicals. Macrophages from the blood then move
into the intima and engulf the oxidized LDL. The fat-laden macrophages saturated
with oxidized LDL are called foam cells.

Blood

Artery wall

Macrophage

Foam cell

Cholesterol
molecules

Fig. 12.2: Cross section of a plaque in an artery.

In our mathematical model we assume that the plaque consists mainly of macr-
ophages and foam cells. This is a simplification, since also other cells are involved,
for instance smooth muscle cells which move from the media into the intima.
Figure 12.2 shows a cross section of a plaque in the artery.

Our model will include the following variables in units of g/cm3:

• Macrophage density, M,
• Foam cell density, F ,
• ‘Bad’ cholesterol concentration, LDL or L,
• ‘Good’ cholesterol concentration, HDL or H.

We shall not distinguish between LDL and oxidized LDL. The equation for LDL is
the following:

dL
dt

= L0 − k1M
L

K1 +L
− r1L. (12.1)

The first term on the right-hand side, L0, is the production rate of LDL concentration
in the blood. The second term represents the ingestion of LDL by macrophages,
which is described by the Michaelis-Menten formula; recall that similar ‘ingestion’
terms were used in the chemostat model (Eq. (8.2)) and in the plant-herbivore model
(Example 11.3 in Chapter 11). The last term in Eq. (12.1) is the degradation of LDL.

In a similar way we write the equation for HDL:

dH
dt

= H0 − k2H
F

K2 +F
− r2H. (12.2)

Here the second term on the right-hand side is interpreted as follows: HDL is being
absorbed by a foam cell (more precisely, it forms a complex with a membrane
protein of a foam cell) and this initiates a process that empties out the oxidized
LDL from the foam cell. The foam cells return to become a macrophage, while the
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emptied-out oxidized LDL are removed from the plaque and are transported back
(by the blood) to the liver for recycling or secretion from the body. We note that
when H forms a complex with a receptor protein on F , it takes some time for the
receptor to again become free. Thus the receptor ‘recycling’ time limits the ability
of F to react to H, and this explains why we used k2HF/(K2 +F) instead of k2HF
in Eq. (12.2): i.e., the factor 1

K2+F accounts for the limited rate of receptor recycling.
The equations for macrophages and foam cells are

dM
dt

= −k1M
L

K1 +L
+ k2H

F
K2 +F

+λ
ML

H − δ
− μ1M, (12.3)

dF
dt

= k1M
L

K1 +L
− k2H

F
K2 +F

− μ2F. (12.4)

The first two terms or the right-hand sides of Eqs. (12.3)–(12.4), account for
the exchanges between macrophages and foam cells, as already explained above. The
terms μ1M, μ2F represent the natural deaths of macrophages and foam cells.
The remaining term that needs explanation is λ ML/(H − δ ). The oxidized LDL in
the plaque triggers infiltration of macrophages from the blood into the plaque, and
this is accounted by a factor λ̃ M̃L, where λ̃ is a constant coefficient and M̃ is the
concentration of macrophages outside but near the plaque; for simplicity we assume
that M̃ is proportional to M, hence the factor λ ML. On the other hand, the HDL are
oxidized by radicals (as are the LDL) and this reduces the amount of radicals avail-
able to oxidize LDL. In this sense H acts as an inhibitor, which restricts the effect of
λ ML by a factor 1/(H−δ ), where δ > 0 but is small relative to H; note that H is an
inhibitor only if H > 1+δ . We wish to solve the system of equations (12.1)–(12.4)
and compute the weight of the plaque

w(t) = M(t)+F(t)

at time t; the weight of the cholesterol is negligible. We take initial values

L = L0, H = H0, F = 0, M = M0 = 5× 10−4g/cm3.

We set

R(t) =
w(t)
w(0)

=
w(t)
M0

so that R(0) = 1.
Given cholesterol level (L0,H0), we wish to determine whether R(t) will inc-

rease, indicating risk of atherosclerosis, or decrease which means risk-free of
atherosclerosis. We shall derive some results from the mathematical model by anal-
ysis and, later on, by simulations.
Auxiliary Result 1. From Eq. (12.1) we deduce the inequality

dL
dt

≤ L0 − r1L;



12 Atherosclerosis: The Risk of High Cholesterol 133

this is the same inequality as in (2.11) with μ = r1,b = L0. Recalling Theorem 2.3
we deduce that for any small ε > 0,

L(t)<
L0

r1
+ ε if t is large, (12.5)

say, if t > Tε .
Auxiliary Result 2. From Eq. (12.2) we deduce that

dH
dt

≥ H0 − k2H − r2H = H0 − 1
γ

H,

where

γ =
1

r2 + k2
. (12.6)

Using Theorem 2.3 we conclude that for any small ε > 0,

H(t)≥ γH0 − ε if t is large, (12.7)

say, if t > Tε with the same Tε as in the previous auxiliary result.
In the sequel we assume that

μ1 = μ2 = μ , γH0 > δ . (12.8)

Theorem 12.1. If (12.8) holds and

(12.9)

then R(t)→ 0 as t → ∞.

Before proving this assertion we note that it has been recognized in recent years
that the risk of atherosclerosis depends on the ratio of L0 to H0, rather than on
the level of each of them separately. Theorem 12.1 shows that although our model
(12.1)–(12.4) is very simple, it can nevertheless demonstrate (if we drop δ ) that low
ratio of L0/H0 ensures risk-free of atherosclerosis.

Proof. (of Theorem 12.1) To prove the theorem we add equations (12.3), (12.4).
Then, using (12.7), (12.8), we get

dw
dt

=
λ ML
H − δ

− μw <
λ ML

γH0 − δ − ε
− μw

if t > Tε , where γH0−δ −ε > 0 if ε is chosen small enough. Since M ≤ M+F = w
and L is bounded as in (12.5), we conclude that

dw
dt

≤ (
λ (L0/r1 + ε)
γH0 − δ − ε

− μ)w. (12.10)

λ L0/r1

γH0 − δ
< μ ,
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One can verify by direct computation that

1
A− ε

<
1
A
+Cε (12.11)

for any positive constant A, if C = 1
A + 1

A2 and ε is small, say Cε < 1. Hence the
right-hand side of (12.10) is less than

[
λ (L0/r1 + ε)

γH0 − δ
(1+Cε)− μ ]w ≤ [(

λ L0/r1

γH0 − δ
+

λ ε
γH0 − δ

)(1+Cε)− μ ]w.

It follows that
dw
dt

≤ [
λ L0/r1

γH0 − δ
− μ +C0ε]w

for some constant C0, provided t > Tε . We now use the assumption (12.9) and choose
ε sufficiently small to conclude that

dw
dt

≤−αw

for some α > 0 and t > Tε . Hence

w(t)≤ w(Tε )e
−α(t−Tε )

and R(t)→ 0 as t → ∞.

Suppose the removal mechanism of LDL from foam cells is failing, which means
that k2 is very small. If also the degradation rate, r1, of LDL is small then we expect
that the plaque will not shrink. The following problem asserts that, indeed, a sta-
tionary plaque does exist but, for simplicity, we take k2 = 0.

The model of atherosclerosis in this chapter is a simplified version of the model
from the article [7].

12.1 Numerical Simulations

We wish to compute R(t) for 0 < t < T , say T = 300 days. We say that (L0,H0)
is in the risk zone if R(T ) > 1, and in the risk-free zone if R(T ) < 1. In the fol-
lowing simulations we use the following parameters: k1 = 1.4/day, k2 = 10/day,
K1 = 10−2g/cm3, K2 = 0.5g/cm3, μ1 = 0.003/day, μ2 = 0.005/day, r1 = 2.4 ×
10−5/day, r2 = 5.5× 10−7/day, λ = 2.57× 10−3/day, δ = 2.54× 10−5g/cm3. The
initial value for M is M0 = 5× 10−4g/cm3.

Problem 12.1. Assume that k2 = 0. Prove that if H0 − δ r2 > 0, r1 is sufficiently
small and λ is sufficiently large then there exists a unique stationary plaque
(L̄, H̄,M̄, F̄) with M̄ > 0, F̄ > 0.

Problem 12.2. Determine whether the steady point (L̄, H̄,M̄, F̄) is asymptotically
stable.
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Problem 12.3. Compute R(300) (300 days) for the initial values (L0,H0) =
(100,60), (150,50), and (200,40). Note that L0 and H0 are in units of 10−5g/cm3.
A sample code can be found in Algorithm 12.1 and 12.2.

Algorithm 12.1. Main file for simulating Problem 12.3 (main atherosclerosis.m)

%%% This code is to simulate Problem 12.3
global L_0 H_0 k_1 k_2 K_1 K_2 r_1 r_2 lambda delta mu_1 mu_2

%% parameters
k_1 = 1.4; % /day
k_2 = 10; % /day
K_1 = 10ˆ(-2); % g/cmˆ3
K_2 = 0.5; % g/cmˆ3
mu_1 = 0.003; % /day
mu_2 = 0.005; % /day
r_1 = 2.4*10ˆ(-5); % /day
r_2 = 5.5*10ˆ(-7); % /day
lambda = 2.57*10ˆ(-3); % day
delta = 2.54*10ˆ(-5); % /day

M_0 = 5*10ˆ(-4); % g/cmˆ3
L_0 = 200*10ˆ(-5); % g/cmˆ3
H_0 = 40*10ˆ(-5); % g/cmˆ3

%% initial conditions
z_ini = [L_0, H_0, M_0, 0];
tspan = [0,300];

%% solve ODEs
[t,z] = ode15s('fun_atherosclerosis',tspan,z_ini);

w = z(:,3) + z(:,4);
R = w./M_0;

%% Plot
% plot 4 subplots for each species
figure(1)
labelvec = {'L','H','M','F'};
for i = 1 : 4

subplot(2,2,i)
plot(t,z(:,i))
xlabel('t'), ylabel(labelvec(i))

end

% plot time versus R
figure(2)
plot(t,R,'g'), hold on
xlabel('t'); ylabel('R')
title(['L0 = ' num2str(L_0), ' H0 =' num2str(H_0)] )
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Algorithm 12.2. fun atherosclerosis.m

function dz = fun_atherosclerosis(t,z)
global L_0 k_1 K_1 r_1 H_0 k_2 K_2 r_2 lambda delta mu_1 mu_2

dz = zeros(4,1);

L = z(1);
H = z(2);
M = z(3);
F = z(4);

dz(1) = L_0 - k_1*M*L/(K_1+L) - r_1*L;
dz(2) = H_0 - k_2*H*F/(K_2+F) - r_2*H;
dz(3) = - k_1*M*L/(K_1+L) + k_2*H*F/(K_2+F) ...

+ lambda*M*L/(H-delta) - mu_1*M;
dz(4) = k_1*M*L/(K_1+L) - k_2*H*F/(K_2+F) - mu_2*F;



Chapter 13
Cancer-Immune Interaction

An abnormally new growth of tissue with cells that grow more rapidly than normal
cells and has no physiological function is called a neoplasm or a tumor. The abn-
ormally rapidly growing cells compete with normal cells for space and nutrients.
When the new growth is localized, it is called a benign tumor. When a tumor in tis-
sue has reached a size of several millimeters it requires a large supply of nutrients,
for otherwise it can no longer grow. Until reaching this stage the tumor is called
avascular. Avascular tumors that reached the stage where they require new supply
of nutrients try to induce the formation of new blood vessels (angiogenesis) and
direct their movement toward them. They do so by secreting vascular endothelial
growth factor (VEGF) and, if successful, the tumors become vascular. As a tumor
continues to grow some of its cells may break away and travel to other parts of the
body through the bloodstream or the lymph system. Metastatic cancer is a tumor
that spread from the original location where it started to other parts of the body.
Metastatic cancer is also called malignant cancer, or, briefly, cancer, although peo-
ple often use the words tumor and cancer interchangeably. Most cancer deaths are
due to metastasized cancer.

Cancer is a disease of tissue growth failure, and it is the result of normal cells
transforming into cancer cells because of mutations in genes that regulate cell
growth and differentiation. In the context of cancer, these genes are classified either
as oncogenes or tumor suppressor genes. Oncogenes are genes that promote cell
growth and reproduction. Tumor suppressor genes are genes that inhibit cell divi-
sion and survival. Malignant transformation occurs when oncogenes become over-
expressed compared to normal oncogenes, or when tumor suppressor genes become
underexpressed, or disabled. Typically a transformation of a normal cell to a tumor
cell occurs after not one but several gene mutations.
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It is commonly believed that most mutations leading to cancer are due to external
conditions, such as smoking, dietary factors, environmental pollutants, exposure to
radiation, and certain infections. But some mutations are hereditary.

There are more than one hundred known types of human cancer, broadly cate-
gorized according to the tissue of origin. Carcinomas begin with epithelial cells;
sarcomas arise from connective tissues, muscles, and vasculature; leukemias and
lymphomas are cancers of the hematopoietic (blood) and immune system, respec-
tively; gliomas are cancers of the central nervous system, including the brain;
retinoblastomas are cancers of the eyes.

The most common causes of cancer-related death in the United States are lung,
colorectal, breast (for women), and prostate (for men), and pancreatic cancers.
Malignancy typically induces moderate cellular immune response. But cancer cells
try to evade the immune response by inducing favorable changes in phenotype of
immune cells. The interaction between cancer cells and the immune system is com-
plex, and it affects the efficacy of chemotherapeutic drugs. In order to determine the
efficacy of anti-cancer drugs, we need to develop a mathematical model of cancer-
immune interaction and then use it to evaluate the efficacy of various drugs; this is
the aim of the present chapter.

We begin with a few facts that are needed in order to build the mathemati-
cal model. An important class of immune cells that confront a tumor are T cells.
Another type of cells are macrophage, which we already met in Chapter 12. Here
we distinguish between two phenotypes: pro-inflammatory macrophages M1 and
anti-inflammatory macrophages M2. M1 macrophages produce an inflammatory cyt-
okine, called interleukin IL-12, and M2 macrophages produce an anti-inflammatory
cytokine, called interleukin IL-10. IL-12 activates T cells, whereas IL-10 inhibits
their activation. Activated T cells kill tumor cells. In order to evade the immune sys-
tem, cancer cells produce transforming growth factor β (TGF-β ) that attaches to the
membrane of M1 macrophages and starts a process that changes their phenotype to
M2 macrophages, resulting in reduced killing of cancer cells by T cells. Figure 13.1
is a schematics of the cancer-immune interaction described above.

Based on Fig. 13.1 we can write down the following equations for the cells:

dC
dt

= λCC(1− C
C0

)− μCTC, (13.1)

dM1

dt
= k1 − γ̃M1

Tβ

K̃1 +Tβ
− μM1, (13.2)

dM2

dt
= γ̃M1

Tβ

K̃1 +Tβ
− μM2, (13.3)

dT
dt

= k̃T
I12

K̃2 + I10
− μT T. (13.4)
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Cancer, C T cells

M1 M2

TGF-β
(Tβ)

IL-10
(I10)

(I12)IL-12

Fig. 13.1: Tumor-immune interaction. Arrow means production or activation; blocked arrow-head
means inhibition or killing.

We also have the following equations for the cytokines:

dI12

dt
= λ12M1 − μ12I12, (13.5)

dI10

dt
= λ10M2 − μ10I10, (13.6)

dTβ

dt
= λβC− μβ Tβ . (13.7)

In Eq. (13.1) we assume a logistic growth for cancer cells, and killing of cancer
cells by T cells at rate μC. In Eq. (13.2) we assume constant production rate k1

and death rate μ of M1 macrophage. Tβ changes the phenotype of M1 to M2, and

this is accounted by the term γ̃M1
Tβ

K̃1+Tβ
, and the death rate of M2 macrophages in

Eq. (13.3) is assumed to be the same as for M1 macrophages. In Eq. (13.4) the first
term represents the activation of T cells by I12, a process inhibited by I10 which
appears in the factor 1/(K̃2 + I10), and the second term accounts for the death of T
cells at rate μT .

In Eqs. (13.5)–(13.7) the first term on the right-hand side is a production term
by the corresponding cells, and the second term accounts for degradation. We sim-
plify the model (13.1)–(13.7) by noting that the cytokines dynamics is much faster
than the cells dynamics. Hence we may assume steady states in the equations of
(13.5)–(13.7). Thus I12 = constant ×M1, I10 = constant ×M2 and Tβ = constant
×C. Substituting these relations in Eqs. (13.2)–(13.4), the system (13.1)–(13.7)
reduces to the following system of four equations:
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dC
dt

= λCC(1− C
C0

)− μCTC, (13.8)

dM1

dt
= k1 − γM1

C
K1 +C

− μM1, (13.9)

dM2

dt
= γM1

C
K1 +C

− μM2, (13.10)

dT
dt

= kT
M1

K2 +M2
− μT T, (13.11)

with constant coefficients γ , kT and K1,K2.
A common chemotherapeutic drug is TGF-β inhibitor. The effect of this drug is

to increase μβ and hence to decrease γ .
In order to determine whether TGF-β inhibitor can eradicate cancer, we shall

first derive some inequalities, or estimates.
Estimate 1. For any small ε > 0 the following inequality holds:

M1(t)>
k1

μ + γ
− ε for all sufficiently large t, (13.12)

say, t > T1ε . Indeed, since
C

K1 +C
< 1,

we deduce from Eq. (13.9) that

dM1

dt
> k1 − (γ + μ)M1.

The assertion (13.12) then follows by using Theorem 2.3.
Estimate 2. For any small ε > 0 there holds:

M2(t)<
γk1

μ2 + ε for all sufficiently large t, (13.13)

say, t > T2ε . Indeed, from Eq. (13.10) we get

dM2

dt
< γM1 − μM2.

Note that from Eq. (13.9) we have

dM1

dt
< k1 − μM1,

which leads to

M1(t)<
k1

μ
+ ε1.
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Substituting this into the differential inequality for M2, we get

dM2

dt
<

γk1

μ
+ γε1 − μM2,

and the inequality (13.13) then follows by using Theorem 2.3.
Estimate 3. For any small ε > 0 the following inequality holds:

T (t)>
kT

α(γ)
− ε for all sufficiently large t, (13.14)

say, t > T3ε , where

α(γ) =
1
k1

μT (μ + γ)(K2 +
γk1

μ2 ). (13.15)

To prove this result we use the inequalities (13.12), (13.13) to deduce that

M1

K2 +M2
> (

k1

μ + γ
− ε)

1

K2 +
γk1
μ2 + ε

(13.16)

if t > T1ε +T2ε . We next set

A = K2 +
γk1

μ2

and note, similarly to the inequality (12.11), that

1
A+ ε

>
1
A
−C1ε

if

C1 =
1
A
+

1
A2

and ε is sufficiently small so that C1ε < 1. Using this in (13.16), we get

M1

K2 +M2
> (

k1

μ + γ
− ε)(

1
A
−C1ε)

>
k1

μ + γ
1
A
−C2ε

for some constant C2. If we substitute this into Eq. (13.11), we obtain the inequality

dT
dt

> [kT
k1

μ + γ
1
A
− kTC2ε]− μT T,

for t > T1ε +T2ε , where 1
μT

k1
μ+γ

1
A = 1

α(γ) , by the definition of α(γ) in (13.15). We
now apply again Theorem 2.3 to deduce that

T (t)>
kT

α(γ)
− 1

μT
kTC2ε − ε (13.17)
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if t − (T1ε + T2ε) is sufficiently large, say if t > T3ε . We next observe that since ε
can be taken to be any small positive number, we could have taken it such that also

1
μT

kTC2ε + ε

is an arbitrarily small number. Hence the inequality (13.14) holds with arbitrarily
small ε provided t is sufficiently large.

Recall that the effect of the anti-cancer drug TGF-β inhibitor is to decrease the
parameter γ which appears in Eq. (13.10) and in (13.15). The maximum efficacy of
the drug (ignoring negative side-effects) is when γ = 0, and

α(0) =
1
k1

μT μK2. (13.18)

The following theorem gives a sufficient condition under which the treatment
with TGF-β inhibitor will cure cancer.

Theorem 13.1. If

kT μC > λCα(γ) (13.19)

then C(t)→ 0 as t → ∞.

Proof. Substituting (13.14) into Eq. (13.8), we get

dC
dt

≤ λCC− μCTC < (λC − μC
kT

α(γ)
− ε)C

if t > T3ε and, by (13.19), the right-hand side is smaller than −βC for some β > 0,
provided ε is chosen sufficiently small. It follows that

C(t)≤C(T3ε)e
−β (t−T3ε ) if t > T3ε ,

so that C(t)→ 0 as t → ∞.

The parameter kT in (13.9) depends on the strength of the immune system: As
seen from Eq. (13.11) this parameter depends on how fast the T cells can be mobi-
lized by macrophages to kill cancer cells. The parameter μC depends on how effec-
tive the T cells are in recognizing and in killing cancer cells. Thus, altogether, the
product kT μC represents the total strength of the immune system in fighting cancer
cells. The function α(γ) depends on the efficacy of the TGF-β inhibitor, with the
maximum efficacy being α(0). Theorem 13.1 says that drug alone may not guaran-
tee cancer eradication: The immune system needs to be strong enough so that

kT μC >
λC

k1
μT μK2; (13.20)
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only then (13.19) could be satisfied under treatment with γ small enough to ensure
that the cancer is eradicated. We note however that the inequality (13.19) provides a
rather crude sufficient condition for cancer eradication; numerically one can derive
more refined sufficient condition.

If the inequality (13.20) is reversed then Theorem 13.1 cannot be applied, that
is, the cancer C(t) may not disappear as t → ∞ even if γ = 0 (i.e., under any drug
treatment with TGF-β inhibitor). Indeed, the following problem asserts that there
exist steady state solutions with C > 0 whenever

Problem 13.1. Assume that (13.21) holds and that γ = 0 so that M2 = 0, Eq. (13.10)
drops out, and Eq. (13.9) becomes

dM1

dt
= k1 − μM1.

Prove that the reduced system (13.8)–(13.11) has a unique steady state (C̄,M̄1, T̄ )
with C̄ > 0, and C̄ → 0 if

μC → λC

kT k1
μT μK2.

Problem 13.2. Show that the steady state (C̄,M̄1, T̄ ) is stable.

If (13.21) holds and γ is not equal to zero, but it is sufficiently small, then there
is a unique steady state solution of the form

(C̄+O(γ),M̄1 +O(γ),M2 = O(γ), T̄ +O(γ))

where the functions O(γ) depends on γ and satisfy: |O(γ)| ≤ const×γ . Furthermore,
writing explicitly the Jacobian matrix at this steady point, one can check that all the
eigenvalues of the characteristic polynomial are negative, thus ensuring the stability
of the steady point.

The model on cancer-immune interaction in this chapter is a simplified version
of the model from article [8].

13.1 Numerical Simulations

We would like to use the model (13.8)–(13.11) to investigate how effective the
anti-cancer drugs are. In the following problems the parameters are given as fol-
lows: λC = 10−2/day, μC = 10−5/cell/day, C0 = 106 cell/cm3, μ = 0.3/day, k1 =
3000 cell/cm3/day, γ = 200/day, kT = 3300/cell/day, K1 = 0.05C0, K2 = 105

cell/cm3, μT = 0.2/day.

kT μC <
λC

k1
μT μK2. (13.21)
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Problem 13.3. Solve the model (13.8)–(13.11) under the initial conditions C(0) =
102cell/cm3, M1(0) = 5× 104cells/cm3, M2(0) = 0, T (0) = 0, for 0 ≤ t ≤ 60 days.
Sample codes are shown in Algorithms 13.1 and 13.2.

Problem 13.4. Repeat the calculation with γ replaces by γ/A, A = 2,5,10,100 and
draw the four profiles of C(t), 0 ≤ t ≤ 60. These profiles illustrate how effective the
drug TGF-β inhibitor is in slowing down the growth of cancer.

The killing of cancer cells in T cells is limited by a protein PD-1 which ‘restrains’
the toxic activity of the T cells. A recently approved drug (anti-PDL1) blocks the
activity of PD-1 and thus increases μC.

Problem 13.5. Repeat Problem 13.4 with

1. μC replaced by μC
10 .

2. μC replaced by 10μC.
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Algorithm 13.1. Main file for Problem 13.3 (main cancer immune.m)

% This code is to simulate Problem 13.3
% It will generate 4 curves corresponding to different gammas

clear all
close all

global lambda_c C_0 mu_c k_1 gamma K_1 K_2 k_T mu mu_T

%% parameters
lambda_c = 10ˆ(-2); % /day
mu_c = 10ˆ(-5); % /cell/day
C_0 = 10ˆ6; % cell/cmˆ3
mu = 0.3; % /day
k_1 = 3000; % cell/cmˆ3/day
gamma = 200; % /day
mu_T = 0.2; % /day
k_T = 3300; % /cell/day
K_1 = 0.05*C_0; % cell/cmˆ3
K_2 = 10ˆ5; % cell/cmˆ3

%% initial conditions
C = 10ˆ2; % cell/cmˆ3
M_1 = 5*10ˆ4; % cell/cmˆ3
M_2 = 0;
T = 0;

z_ini = [C M_1 M_2 T]; % initial conditions
tspan = [0,60];

%% ODE solver
[t,z] = ode15s('fun_cancer_immune',tspan,z_ini);

%% plot
tvec = {'C','M_1','M_2','T'}; % array of strings for ylabels
for i = 1 : 4

subplot(2,2,i)
plot(t,z(:,i)), hold on
xlabel('t'),ylabel(tvec(i))

end
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Algorithm 13.2. fun cancer immune.m

function dz = fun_cancer_immune(t,z)
global lambda_c C_0 mu_c k_1 gamma K_1 K_2 k_T mu mu_T

dz = zeros(4,1);

C = z(1);
M_1 = z(2);
M_2 = z(3);
T = z(4);

dz(1) = lambda_c*C*(1-C/C_0) - mu_c*T*C;
dz(2) = k_1 - gamma*M_1*C/(K_1+C) - mu*M_1;
dz(3) = gamma*M_1*C/(K_1+C) - mu*M_2;
dz(4) = k_T*M_1/(K_2+M_2) - mu_T*T;



Chapter 14
Cancer Therapy

There are many drugs that are used in the treatment of cancer; some drugs kill cancer
cells directly while others change the cancer microenvironment to make it resistant
to cancer cells growth. In Chapter 13, we considered a drug, TGF-β inhibitor, which
changes the macrophage phenotype, thereby enabling the immune system to kill
cancer cells more effectively.

In this chapter we consider two entirely different kinds of anti-cancer drugs. The
first one blocks the activity of vascular endothelial growth factor (VEGF), and the
second one uses virus to kill cancer cells.

14.0.1 VEGF Receptor Inhibitor

In order to continue to grow abnormally, the tumor requires increasing amounts
of oxygen (and other nutrients) from the blood. So the tumor secrets VEGF which
attracts endothelial cells that form the inner lining of the blood vessels’ wall, thereby
leading to the formation of new blood vessels (angiogenesis) which deliver oxygen
(and other nutrients) to the tumor. To model this process we introduce the following
variables:

c = density of tumor cells,

e = density of endothelial cells,

h = concentration of VEGF,

w = concentration of oxygen,

We assume logistic growth

λ̃1c(1− c
K
)
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of the tumor with 0 < c(0)< K initially, where K is the carrying capacity and λ̃1

is the growth rate. We assume that λ̃1 is proportional to w, λ̃ = constant ×w, so
that λ̃1 = 0 if w = 0; if there is no oxygen then there is no growth. We also assume
that w depends linearly on the density of blood vessels, which is proportional to the
density of endothelial cells, so that

w = Be (B a positive constant). (14.1)

Hence,
dc
dt

= λ1ec(1− c
K
)− μ1c, 0 < c(0)< K. (14.2)

Here λ1 is a positive constant and μ1 is the death rate of cancer cells.
Next we model the equation for VEGF by

dh
dt

= λ2c− μ2h, (14.3)

where λ2 is the production rate of VEGF by tumor cells, and μ2 is the degradation
rate.

Oxygen is decreased by consumption by cancer cells (at rate μ3) as well as by
dissipation in the tissue (at rate μ4) so that

dw
dt

=−μ̄3cw− μ̄4w.

and, by the identification of w with Be in Eq. (14.1), we get

de
dt

=−μ3ce− μ4e.

Assuming that endothelial cells proliferation is proportional to h, the complete equa-
tion for e then takes the form

de
dt

= λ3h− μ3ce− μ4e, (14.4)

where all the parameters are positive constants.
Avastin is a drug that inhibits VEGF receptor (VEGFR) and thus blocks the ac-

tivity of VEGF. We can model the effect of Avastin by replacing λ2 in Eq. (14.3)
by λ2/(1+A) where A is proportional to the amount of the delivered drug. Then
Eq. (14.3) becomes

dh
dt

=
λ2c

1+A
− μ2h. (14.5)

We wish to explore to what extent Avastin can slow cancer growth or even elim-
inate cancer. To do that we first derive several estimates on h(t) and e(t).
Estimate 1. For any ε > 0 there holds:

h(t)<
λ2K

μ2(1+A)
+ ε if t is sufficiently large, (14.6)
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say, t > T1ε . To prove it we first note that

c(t)< K for all t > 0. (14.7)

Indeed, since c(t) < K if t = 0, if the assertion (14.7) is not true then there is a
smallest time t = t0 such that c(t)< K if t < t0 and c(t0) = K. Hence dc(t0)/dt ≥ 0.
However, from Eq. (14.2) we get

dc
dt

(t0) =−μ1c(t0)< 0

which is a contradiction.
Substituting (14.7) into Eq. (14.5) we get

dh
dt

≤ λ2K
1+A

− μ2h.

We can then apply Theorem 2.3 to derive the assertion (14.6).
Estimate 2. For any ε > 0 there holds:

e(t)≤ λ2λ3K
μ2μ4(1+A)

+ ε if t is sufficiently large, (14.8)

say, t > T1ε . To prove it we first note that by Eq. (14.4),

de
dt

≤ λ3h− μ4e.

Substituting (14.6) into this inequality, we get

de
dt

≤ λ3(
λ2K

μ2(1+A)
+ ε)− μ4e if t > T1ε .

Then, by Theorem 2.3,

e(t)<
λ2λ3K

μ2μ4(1+A)
+ (

λ3ε
μ4

+ ε) (14.9)

if t −T1ε is sufficiently large, say t −T1ε > T2ε . The inequality (14.9) holds for any
small ε > 0, and hence for any small λ3ε/μ4+ε . By viewing λ3ε/μ4+ε as another
small new ‘epsilon,’ the assertion (14.6) follows.

Theorem 14.1. If A is sufficiently large so that

1+A >
λ1λ2λ3K
μ1μ2μ4

(14.10)

then c(t)→ 0 as t → ∞.
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Proof. From Eq. (14.2), we obtain the inequality

dc
dt

< λ1ec− μ1c = (λ1e− μ1)c

and, by (14.8),

λ1e− μ1 <
λ1λ2λ3K

μ2μ4(1+A)
+λ1ε − μ1. (14.11)

The condition (14.10) implies that if ε is small enough then the right-hand side of
(14.11) is smaller than a negative number −α , provided t is large enough. Hence

dc
dt

≤−αc if t is sufficiently large,

and then c(t)→ 0 as t → ∞.

From Theorem 14.1 we conclude that if Avastin can be administered in very
large amount then the tumor will shrink to zero. However, Avastin has negative
side-effects including damage to the liver, and thus can only be administered in
limited amounts. In mouse experiments Avastin has been shown to cure cancer all
by itself. However, in humans Avastin is typically used in combination with other
chemotherapeutic drugs that are cancer specific.

From the model (14.2)–(14.4), it is reasonable to expect that if λ1,λ2,λ3 are
increased then the tumor will increase. In the next problem we provide an example
where the tumor is in a steady state (benign tumor).

Problem 14.1. If
λ1λ2λ3 > μ1μ2μ3,

then there exist two steady states (c1,h1,e1), (c2,h2,e2) of the system (14.2)–(14.4)
provided K is sufficiently large.

A mathematical model of a disease often focuses on one major aspect of the dis-
ease. Hence we may find completely different models describing the same disease.
But even when focusing on the same aspect of a disease, for example on the angio-
genesis factor in cancer growth, one may develop different approaches to modeling
by representing the same phenomenon in different ways. We illustrate this here by
introducing another model to evaluate the effect of Avastin on cancer growth.

We denote the cancer cells density by x and model its growth as in Eq. (14.2), but
with e = 1,K = y:

dx
dt

= λ1x(1− x
y
)− μ1x (λ1 > μ1), (14.12)

where the carrying capacity is taken to be the density y of the blood vessels which
provide oxygen to the tumor. We model the concentration y by the equation

dy
dt

= B− 2μy+ δxy. (14.13)
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Hence B− 2μy represents that natural growth and degradation of capillaries, and
δxy represents the formation of new capillaries from existing capillaries, induced
by growth factors secreted by the tumor cells.

Rewriting (14.12) in the form

dx
dt

= x[λ1(1− x
y
)− μ1]

we find the following equilibrium points (x̄, ȳ): (0, B
2μ ) and x̄ = (1− μ1

λ1
)ȳ, where

B− 2μ ȳ+ δ1ȳ2 = 0, δ1 = δ (1− μ1

λ1
).

Hence the two nonzero equilibrium points are

Z± = ((1− μ1

λ1
)ȳ±, ȳ±), (14.14)

where

ȳ± =
1
δ1

(μ ±
√

μ2 − δ1B). (14.15)

The Jacobian matrix at (0, B
2μ ) is

(
λ1 − μ1 0

δB
2μ −2μ

)
.

Since λ1 − μ1 > 0, the equilibrium point (0, B
2μ ) is unstable. On the other hand the

steady points Z± defined by (14.14) and (14.15) are biologically relevant only if
δ1B < μ2; if δ1B > μ2 then the oxygen supply is sufficiently large and we expect
the tumor to grow, rather than stabilize at an equilibrium and remain benign.

We proceed to consider the case δ1B < μ2. By the factorization rule we find that

J(Z±) =

(
−λ1

x̄
ȳ λ1

x̄2

ȳ2

δ ȳ δ x̄− 2μ

)

Z±

.

For the steady state to be stable we need trace J < 0 and detJ > 0, that is

λ1
x̄
ȳ
+ 2μ > δ x̄,

and

λ1
x̄
ȳ
(2μ − δ x̄)> δ ȳ

λ1x̄2

ȳ2 .
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These two inequalities are satisfied if and only if μ > δ x̄ where x̄ = (1− μ1
λ1
)ȳ±,

that is,

μ > δ (1− μ1

λ1
)ȳ± = δ1ȳ± = μ ±

√
μ2 − δ1B,

by (14.15). Hence Z− is a stable steady point while Z+ is unstable.
We recall that tumors secrete VEGF which increases angiogenesis. A drug that

blocks VEGF produced by the tumor, such as VEGFR-1 (e.g., Avastin), reduces
δx. If δ is such that δ1B < μ2 then the tumor will not grow indefinitely, and it is
expected to stabilize at Z−, where the total tumor load will be

x̄ =
1
δ
(μ −

√
μ2 − δ1B).

Note that δ x̄ is decreasing with δ .
So far we modeled the tumor evolution using a logistic growth. But there are

other models of tumor growth, one of the most notable introduced by Gumpertz.
This model includes cancer cells x and growth factor γ which acts like VEGF in
providing nutrients to the cancer. The system of equations for x and γ is as follows:

dx
dt

= γx, (14.16)

dγ
dt

= −αγ, (14.17)

where α is the depletion rate of γ .
If we substitute

γ =− 1
α

dγ
dt

from Eq. (14.17) into Eq. (14.16), we get

1
x

dx
dt

+
1
α

dγ
dt

= 0

and, by integration,

lnx+
1
α

γ = constant = K0, (14.18)

where K0 = lnx(0)+ 1
α γ(0). Substituting γ from Eq. (14.18) into Eq. (14.16) we get

the Gumpertz equation
dx
dt

=−αx ln
x
K
. (14.19)

We view K as the carrying capacity; it depends on the amount of nutrients available
to the tumor. Hence K is a function of the concentration of blood capillaries which,
as before, we denote by y. For simplicity we take K = y, so that

dx
dt

=−αx ln
x
y

and, as before, y satisfies Eq. (14.13).
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Problem 14.2. The system (14.19), (14.13) has steady states

x = y = Z±, where Z± =
1
δ
(μ ±

√
μ2 − δB),

provided δA < μ2. Prove that the steady state x = y = Z− is stable, and that the
steady state x = y = Z+ is unstable.

The biological interpretation of this result is the same as for the model (14.12)–
(14.13).

14.0.2 Virotherapy

We next consider anti-cancer drug which employs virus particles to kill cancer cells;
such a treatment is called virotherapy. The virus particles are genetically modified
so that they can infect cancer cells but not normal healthy cells. Such viruses are
called oncolytic viruses. The viruses are injected directly into the tumor.

After entering a cancer cell, a virus begins to quickly replicate, and when the
cancer cell dies, a large number of virus particles burst out and proceed to infect
other cancer cells.

To model this process we introduce the following variables:

x = number density of cancer cells,

y = number density of infected cancer cells,

n = number density of dead cells,

v = number density of virus particles which are not contained in cancer cells.

Virotherapy is modeled by the following system of equations:

dx
dt = αx−β xv,
dy
dt = β xv− δy,
dn
dt = δy− μn,
dv
dt = bδy− γv,

(14.20)

where

α = proliferation rate of cancer cells,

β = rate of infection of cancer cells by viruses,

δ = death rate of infected cancer cells,

μ = removal rate of debris of dead cells,
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and, finally, b is the replication number of a virus at the time of death of the infected
cancer cell. Adding the first three equations of Eqs. (14.20), we get

d
dt
(x+ y+n) = αx−μn. (14.21)

We assume that the tumor is spherical with radius R(t) and volume V (t). Then,
by (14.20) the total density of the cells, at each point of the sphere, increases at rate
αx− μn. The total mass of the tumor then increases at rate (α x̃− μ ñ)V (t), where
x̃, ñ are averages of x and n, respectively.

We next assume that this increase in total mass causes the tumor volume to grow
proportionally, that is, by θ0(dV/dt), for some constant θ0. Then,

θ0
dV (t)

dt
= (α x̃−μ ñ)V (t). (14.22)

From V (t) = 4πR(t)3/3, we get

1
V (t)

dV (t)
dt

=
3

R(t)
dR
dt

,

so that, by (14.22),

θ0
3
R

dR
dt

= α x̃−μ ñ = α x̃−μ(θ0 − x̃− ỹ).

if we assume that x̃+ ỹ+ ñ = θ0.
Assuming also that x̃, ỹ satisfy the same equation as x,y, we get

θ0
3
R

dR
dt

= αx−μn. (14.23)

In experiments, viral therapy as described above was not initially successful be-
cause it failed to address the effect of the immune system. Immune cells recognize
the infected cancer cells and destroy them before the virus particles get a chance
to replicate to their full potential. To make virotherapy more effective the immune
system must therefore be suppressed. In Problem 14.5 we extend the model (14.20)–
(14.23) to include the density of the immune cells, z, and the chemotherapy P which
suppresses the immune system.

Problem 14.3. Show that the system (14.20) has a steady point (x̄, ȳ, n̄, v̄) with x̄> 0,
and determine whether it is asymptotically stable.

The mathematical model on cancer virotherapy in this chapter is a simplification
of the model from article [9].
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14.1 Numerical Simulations

To simulate the model (14.20)–(14.23), we provide the sample codes in Algo-
rithms 14.1 and 14.2.

Problem 14.4. Take α = 2 × 10−1/h, δ = (1/18)/h, μ = (1/48)/h, θ0 = 106

cells/mm3, β = 7 × 10−8mm3/h/virus, γ = 2.5 × 10−2/h. Compute R(t) for
0 ≤ t ≤ 20h, with initial conditions x0 = 8 × 105 cells/mm3, x0 + y0 + n0 = θ0,
y0 = 105 cells/mm3, v0 = 106 virus/mm3, R(0) = 2 mm when b = 50,100,200,500.

Problem 14.5. Consider the system

dx
dt

= αx−βxv,

dy
dt

= βxv− kyz−δy,

dz
dt

= syz−ωz2 −P(t)z,

dn
dt

= kyz+δy−μn,

dv
dt

= bδy− k0vz− γv,

where z = number density of immune cells, P(t) = immune suppressor drug,
x + y + z + n = θ0, k = rate of immune cell killing infected cell, k0 = take-up
rate of virus by immune cells, s = stimulation rate of immune cells by infected
cells, ω = clearing rate of immune cells. We take P(t) = 0.5/h, k = 2 × 10−8

mm3/h/immune cell, k0 = 10−8 mm3/h/immune cell, s = 5.6×10−7 mm3/h/infected
cell, ω =2×10−12 mm3/h/immune cell, and all other parameters as in Problem 14.4,
z0 = 6×104 cells/mm3, and all other initial conditions as in Problem 14.4. (i) Com-
pute R(t) for 0 ≤ t ≤ 20h, when b = 50,100,200,500 and compare the results with
those of Problem 14.4. (ii) Do the same when the chemotherapy dose is increased to
P(t) = 1/h.
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Algorithm 14.1. Main file for Problem 14.4 (main cancer.m)

%%% This code simulates model (14.20)-(14.23).

%% define global parameters
global alpha delta mu theta_0 beta gamma b

%% starting and final time
t0 = 0; tfinal = 20;

%% paramters
alpha = 2*10ˆ-1;
delta = 1/18;
mu = 1/48;
theta_0 = 10ˆ6;
beta = 7*10ˆ-8;
gamma = 2.5* 10ˆ-2;
b = 50;

%% initial conditions
x0 = 8*10ˆ5;
y0 = 10ˆ5;
n0 = theta_0 - x0 - y0;
v0 = 10ˆ6;
R0 = 2;
w_ini = [x0, y0, n0, v0, R0];
[t,w] = ode45('fun_cancer',[t0,tfinal],w_ini);
lablevec = ['x','y','n','v','R'];
for i = 1:5,

subplot(2,3,i);
plot(t,w(:,i)); hold on
xlabel('time'), ylabel(lablevec(i))

end

Algorithm 14.2. fun cancer.m

%%% This function is called by main_cancer.m
function dy = fun_cancer(t,w)
global alpha delta mu theta_0 beta gamma b

x = w(1); y = w(2); n = w(3); v = w(4); R = w(5);

dy(1) = alpha*x - beta*x*v;
dy(2) = beta*x*v - delta*y;
dy(3) = delta*y - mu*n;
dy(4) = b*delta*y - gamma*v;
dy(5) = R/(3*theta_0)*((alpha+mu)*x + mu*y - mu*theta_0);

dy = [dy(1);dy(2);dy(3);dy(4);dy(5)];



Chapter 15
Tuberculosis

Tuberculosis (TB) is an infective disease caused by Mycobacterium tuberculosis
(Mtb). The bacteria is spread through the air when people who have active TB in-
fection cough or sneeze. The bacteria attack the lungs, primarily, but can also spread
and attack other parts of the body. The most common symptom of active TB infec-
tion is chronic cough with blood-tinged sputum. It is estimated that one-third of the
world’s population are infected with Mtb, although only 13 million chronic cases
are active, and 1.5 million associated deaths occur. Treatment of TB uses antibiotics
to kill the bacteria, but the treatment is not entirely effective. Vaccination in children
decreases significantly the risk of infection.

TB infection in the lungs begins when inhaled Mycobacteria tuberculosis reach
the pulmonary alveoli and invade into, or are ingested by, alveoli macrophages;
alveoli are tiny air sacs within the lungs where exchange of oxygen and carbon
dioxide takes place. It is important to determine whether infection by inhaled Mtb
will develop into chronic TB. This cannot be done directly by measurements, so
we shall use mathematics to address this question. In what follows we develop a
mathematical model and use it to estimate the threshold of an initial infection that
will develop into active TB.

We introduce the following variables:

M = number of alveolar macrophages in cm3;

Mi = number of infected alveolar macrophages in cm3;

Be = number of extracellular bacteria (residing in tissue, outside macrophages) in

cm3;

Bi = number of intracellular bacteria (residing inside macrophages) in cm3.

M satisfies the differential equation
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dM
dt

= μM −λ1M
Be

K +Be
− dMM. (15.1)

Here μM is the production rate of M and dM is the death rate when there is no infec-
tion; in steady state, μM = dMM0 where M0 is the number of macrophages in cm3 in
healthy lungs. The second term on the right-hand side of Eq. (15.1) represents the
ingestion of bacteria by macrophages, modeled by the Michaelis-Menten formula,
which turns M into Mi.

The infected macrophages satisfy the equation

dMi

dt
= λ1M

Be

K +Be
−λ2Mi

B2
i

B2
i +(NMi)2

− dMiMi. (15.2)

The first term on the right-hand side comes from macrophages ingesting extracellu-
lar bacteria, and dMi is the death rate of Mi macrophages. The second term on the
right-hand side of Eq. (15.2) accounts for the bursting of Mi under bacterial load.
The probability for macrophage to burst increase to 50% when the number of in-
ternal bacteria reaches N, that is, the burst rate is λ2/2 when Bi = NMi. Note that
we have assumed here that the transition from non-bursting state to bursting-state is
sharp, as in Fig. 10.2(B) rather than Fig. 10.2(A), and so we used the Hill kinetics
rather than the Michaelis-Menten law.

We next write a differential equation for the extracellular bacteria:

dBe

dt
= Nλ2Mi

B2
i

B2
i +(NMi)2

−λ1M
Be

K +Be
. (15.3)

The first term on the right-hand side accounts for the number of bacteria released at
burst of infected macrophages, and the second term represents the loss of Be due to
ingestion by macrophages.

The equation for intracellular bacteria Bi is

dBi

dt
= γBi +λ1M

Be

K +Be
−Nλ2Mi

B2
i

B2
i +(NMi)2

. (15.4)

Here γ is the growth rate of the bacteria within macrophages, and the last two terms
in Eq. (15.4) have already been explained above.

We note that the dimension of the parameter λ1 in Eq. (15.1) is 1/time, but its
dimension in Eq. (15.4) is bacteria/(macrophage×time). The same remark applies
to the parameter λ2.

A natural question arises: How can we explain the fact that most infections
with Mtb do not lead to chronic active TB? The answer is that the adaptive im-
mune system (located in the lymph nodes) receives stress signals from the in-
fected macrophages Mi, and then inflammatory macrophages (in contrast to non-
inflammatory alveolar macrophages) and T cells migrate into the lung and kill bac-
teria; for simplicity we shall consider only the T cells. Their number, per cm3, sat-
isfies the equation

dT
dt

= kMiMi − dT T, (15.5)
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where dT is the death rate, and kMi is the rate by which T cells are activated by the
(stress signals sent by the) Mi. In order to take into account the killing of bacteria
by T cells we have to replace Eqs. (15.3)–(15.4) by the following equations:

dBe

dt
= Nλ2Mi

B2
i

B2
i +(NMi)2

−λ1M
Be

K +Be
− δ1TBe, (15.6)

dBi

dt
= γBi +λ1M

Be

K +Be
−Nλ2Mi

B2
i

B2
i +(NMi)2

− δ2T Bi. (15.7)

For simplicity we take δ1 = δ2 = δ . The parameters kMi and δ determine whether
the infection with Mtb will develop into active TB.

The question of susceptibility to TB can be framed as follows: how many in-
gested bacteria it takes in order to cause an initial infection to develop into a chronic
TB? We first address this question with a simple model and later on address it with
numerical computations for the full model. The simple model involves only extra-
cellular bacteria B and uninfected macrophages M:

dM
dt

= M0 − μ1
MB

B+K
−αM, (15.8)

dB
dt

= λ B− μ2
MB

B+K
. (15.9)

Here M0 is a baseline supply of new macrophages, α is the natural death rate
of macrophages, μ1 is the rate by which macrophages ingest bacteria, a process
that depletes the bacteria at rate μ2, and λ is a constant. The ingestion process
(endocytosis) is modeled by the Michaelis-Menten formula. In steady state of
healthy individuals, M0 −αM = 0.

The model (15.8)–(15.9) is very simple since, as we know from the more detailed
model (15.1)–(15.2), (15.5)–(15.7), that λ is a function of Bi, Mi and T . Neverthe-
less, already the simple model (15.8)–(15.9) sheds some light on the consideration
of susceptibility to TB, as we shall see from the following problems.

Problem 15.1. We may view the system (15.8)–(15.9) as a model of an infectious
disease with DFE (disease-free equilibrium)

(M,B) = (
M0

α
,0).

Setting

b =
μ2M0

α
−λ K,

show that the DFE is stable if b > 0 and unstable if b < 0.

We next study the behavior of solutions of Eqs. (15.8) and (15.9) when the initial
values are not necessarily near the DFE.
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Problem 15.2. Show that if M(0) ≤ M0
α then M(t) ≤ M0

α for all t > 0, and deduce
that

dB
dt

≥ B
λ B− b
B+K

.

Problem 15.3. Deduce from Problem 15.1 that if initially M(0) ≤ M0
α and B(0) >

b/λ (B(0) > 0 if b < 0) then B(t) → ∞ as t → ∞, which means that infection
with more than b/λ bacteria will develop into active TB. [Hint: dB

dt (0) > 0, hence
B(t)> B(0) for small t. Show that B(t)> B(0) for all t > 0, B(t) is monotonically
increasing, and

dB(t)
dt

>
B(0)

B(0)+K
(λ B(0)− b)

for all t > 0. ]

If b > 0 then the DFE (M0
α ,0) is stable. Hence if M(0) is near M0/α and B(0) is

sufficiently small then B(t) → 0 as t → ∞. The following theorem shows that this
result remains true also whenever M(0)> M0/α .

Theorem 15.1. If b > 0, M(0)> M0
α and B(0)< ε where ε is sufficiently small, then

B(t)→ 0 as t → ∞.

Thus infection with a small number of Mtb will not develop into TB, whenever
the DFE is stable and the immune system is strong enough in the sense that M(0)>
M0/α .

Proof. We introduce the number

β = α +
μ1ε

ε +K
.

Since M(0)> M0
α and b > 0, if ε is sufficiently small then

M(0)>
M0

β
and λ <

μ2M0

β (ε +K)
. (15.10)

We claim, that if B(0)< ε then

B(t)< ε for all t > 0. (15.11)

We prove this assertion by contradiction. Suppose (15.11) is not true. Then there is
a first time t0 such that

B(t)< ε if t < t0, and B(t0) = ε.

It follow that
dB
dt

(t0)≥ 0 (15.12)
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and
B(t)

B(t)+K
<

ε
ε +K

if t < t0. (15.13)

Hence, by Eq. (15.8),

dM
dt

> M0 − μ1M
ε

ε +K
−αM = M0 −β M. (15.14)

Rewriting this inequality in the form

d
dt
(Meβ t)> M0eβ t (15.15)

we obtain, by integration,

M(t)> M(0)e−β t +
M0

β
− M0

β
e−β t >

M0

β
for 0 < t ≤ t0, (15.16)

where we used the inequality M(0)> M0
β . We now use Eq. (15.9) to deduce that

dB
dt

(t0) = (λ − μ2M
B+K

)B|t=t0 < (λ − μ2

ε +K
M0

β
)ε < 0

by (15.10), which is a contradiction to (15.12), thus proving the assertion (15.11).
We can now repeat the previous arguments and establish the inequalities (15.13)–

(15.16) for any t0 > 0. Hence

M(t)>
M0

β
for all t > 0.

But
1
β

=
1

α + μ1ε/(ε +K)
>

1
α
−Cε

for some constant C. Hence

M(t)>
M0

α
−Cε for all t > 0.

On the other hand we deduce from Eq. (15.8) that

dM
dt

≤ M0 −αM

and then, by Theorem 2.3,

M(t)<
M0

α
+ ε

for any ε > 0 if t is sufficiently large, say t > Tε . Hence

−Cε < M(t)− M0

α
< ε
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if t = t0 for any time t0 > Tε , while B(t0) < ε . It follows that (M(t0),B(t0)) lies in
a small circle about the DFE (M0

α ,0). Since b > 0, the DFE is asymptotically stable
(by Problem 15.1). If follows that B(t)→ 0 as t → ∞, and the proof of Theorem 15.1
is complete.

In summary, the model (15.8)–(15.9) makes the following predictions: (i) If the
immune system is weak (i.e., M(0) < M0/α) and the DFE is unstable (i.e., b < 0)
then any small infection with Mtb could develop into TB. (ii) If the DFE is stable
(i.e., b > 0) but the immune system is weak, then any infection at level above b/λ
will develop into TB. (iii) If the DFE is stable and the immune system is strong (i.e.,
M(0)> M0/α), then any small infection by Mtb will not develop into active TB.

Problem 15.4. Prove that under the assumptions of Theorem 15.1, M(t) → M0
α as

t → ∞.

The mathematical model on tuberculosis in this chapter is a simplification of the
model from article [10].

15.1 Numerical Simulations

In the following problems the parameters for Eqs. (15.1)–(15.7) are given as follows:
λ1 = 2/day, λ2 = 0.05/day, dM = 8× 10−4/day, M0 = 1.5× 106 cell/cm3, so that
μM = dMM0 = 1.2× 104 cell/day, dMi = 5× 10−2/day, K = 107Be/cm3, γ = 0.8
day. At the beginning of infection with Mtb we have: M = M0,Mi = 1,Bi = 25 and
Be is the number of inhaled bacteria per cm3. We also take in (15.5) dT = 0.3 /day,
kMi = 2.5/day and T (0) = 0.

Problem 15.5. Simulate the model (15.1)–(15.4) with Be(0) = 100 for 0 < t < 30
days. Sample codes are shown in Algorithms 15.1 and 15.2.

Problem 15.6. Use the model (15.1), (15.2), (15.5)–(15.7) with δ = 10−7/day and
Be(0) = 100,200,500,1000 to compute Be(30) and Bi(30).

Problem 15.7. Repeat the calculations of Problem 15.6 with Be(0) = 100. Change
δ to 10−6 and 10−5 to see the effect.
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Algorithm 15.1. Main file for simulating Problem 15.5 (main TB.m)

% This code is to simulate Problem 15.5

global lambda_1 lambda_2 dM M0 mu_M dMi K gamma dT k_Mi N

%% parameters
lambda_1 = 2; % /day
lambda_2 = 0.5; % /day
dM = 8 * 10ˆ(-4); % /day

M0 = 1.5 * 10ˆ6; % cell/cmˆ3
mu_M = dM * M0; % cell/day
dMi = 5 * 10ˆ(-2); % /day
K = 10ˆ7; % /cmˆ3
gamma = 0.8; % day

dT = 0.3; % /day
k_Mi = 2.5; % /day
N = 50;

%% initial conditions
M = M0; % alveolar macrophages per cmˆ3
Mi = 1; % infected alveolar macrophages per cmˆ3
Be = 100; % extracellular bacteria per cmˆ3
Bi = 25; % intracellular bacteria per cmˆ3

z_ini = [M; Mi; Be; Bi];
tspan = [0,30];

%% ODE solver
[t,z] = ode45('fun_TB',tspan,z_ini);

%% Plot
tvec = {'M','Mi','Be','Bi'};

for i = 1 : 4
subplot(2,2,i)
plot(t,z(:,i))
xlabel('t'),ylabel(tvec(i))

end
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Algorithm 15.2. fun TB.m

function dz = fun_TB(t,z)
global lambda_1 lambda_2 dM M0 mu_M dMi K gamma dT k_Mi N

dz = zeros(4,1);

M = z(1);
Mi = z(2);
Be = z(3);
Bi = z(4);

dz(1) = mu_M - lambda_1*M*Be/(K+Be) - dM*M;
dz(2) = lambda_1*M*Be/(K+Be) - lambda_2*Mi*Biˆ2/(Biˆ2+(N*Mi)ˆ2) ...

- dMi*Mi;
dz(3) = N*lambda_2*Mi*Biˆ2/(Biˆ2+(N*Mi)ˆ2) - lambda_1*M*Be/(K+Be);
dz(4) = gamma*Bi + lambda_1*M*Be/(K+Be) ...

- N*lambda_2*Mi*Biˆ2/(Biˆ2+(N*Mi)ˆ2);



Solutions

Problems of Chapter 2

2.1 (i) x = ce−t + 3
2 et ; (ii) x = ce−t2

+ 1
2 ; (iii) x = t2

α+2 +
C
tα .

2.2 (i) x = 3e−t2/2 − 1; (ii) − 2
9 e3t − t

3 − 7
9 .

2.3 (i) x2 = t2 + 8; (ii) 1
2 ln(1+ x2) = lnt + 1

2 ln5.

2.4 3ln |x− 2t|+ ln|x+ 2t|= 4ln3.

2.5 x2t + ln |x|= 3.

2.6 x3 + t2x = 8 (using integrating factor 1
x ).

2.7 x = a is stable.

2.8 The solution is

1
2− a

[ln |a− x|− ln|2− x|] = t +C.

Problems of Chapter 3

3.1 Special solution: −t2 + 2t + 4.

3.2 x(t) = c1et + c2e3t + 1
8 e−t , c1 + c2 = 0, c1 + 3c2 =

1
8 .

3.3 c1e5t

(
1
1

)
+ c2e−4t

(
7
−2

)
.
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3.4 Take real and imaginary parts of e(1+2i)t

(
1
−i

)
: real part is

(
et cos2t
et sin2t

)
and

imaginary part is

(
et sin 2t
−et cos2t

)
.

3.5 (et − e−t ,−2et + e−t), (et + e−t ,−2et − e−t).

3.6 (2e−t cos3t,e−t(cos3t − sin3t)), (2e−t sin3t,e−t(cos3t + sin3t)).

3.8 Special solution ( 1
2 e−t ,2e−t).

Problems of Chapter 4

4.1 Eigenvalues 2,−1 at (1,1); 1,−2 at (−1,1).

4.2 Eigenvalues 0,1 at (0,−1); 1,−4 at (−2,1).

4.3 Equilibrium points
(x,y) = (1±√

2,1),(−1±√
2,−1); only (−1−√

2,−1) is stable.

4.4 (0,0),(0, 1
4 ),(1,0) – all unstable.

Problems of Chapter 5

5.1 (0,0) and (A,0) are unstable; (0,1) is stable if a < b, unstable if a > b. x̄ =
(a− b)/(b+ a

A), ȳ = 1+ x̄ is stable if a > b, i.e., if the growth rate of the prey is
larger than the rate b by which the prey is killed by the predator.

5.2 The eigenvalues are −αr and 0.

Problems of Chapter 6

6.1 (0,0) is unstable; (k1,0) is stable if k1 >
r2
b2

; (0,k2) is stable if k2 >
r1
b1

.

Problems of Chapter 7

7.1 Steady point

x̄ =
r1

k1
, z̄ = 1− r1γ2

r2γ1
, ȳ =

1
β
[μ − r1(1− x̄

A
)−β2z̄].

Compute the characteristic polynomial without substituting the specific values of
x̄, ȳ, z̄.
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7.2 Steady point

x̄ = k1(1+
β1

r1
z̄), ȳ = k2(1+

β2

r2
z̄), z̄ =

B
α
(α − r1x̄− r2ȳ).

Compute the characteristic polynomial without substituting the specific values of
x̄, z̄, ȳ.

7.3 (A,0,0) and c1
d1

, a
b (1− c1

Ad1
) are stable, the other two steady points are unstable.

Problems of Chapter 8

8.2 ( 1
μ ,0,β − 1

μ ) is stable; (1,β − 1,0) and (β ,0,0) are unstable.

8.3 Unstable.

Problems of Chapter 9

9.2 Substitute R = ν
γ+μ I, E = ν+μ

k I, S = (k+μ)E
β I = k+μ

β
ν+μ

k into the first equation
in (9.5).

9.6 Use the Routh-Hurwitz criterion.

Problems of Chapter 10

10.3 Dropping the brackets “[ ]” we have:

dE
dt

= (k−1 + k2)C1 − k1SE,

dC2

dt
= k3SC1 − (k−3 + k4)C2,

dC1

dt
= [k1SE − (k−1 + k2)C1]− [k3SC1 − (k−3 + k4)C2],

where the last expression in brackets is dC1/dt. Since

d
dt
(E +C1 +C2) = 0, E = e0 −C1 −C2, e0 = constant.

dC2
dt = 0 gives C2 = SC1

K2
, K2 =

k−3+k4
k3

; dC1
dt = 0 gives k1S(e0 −C1 −C2) = (k−1 +

k2)C1, or
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Se0 − SC1 − SC2 = K1C1, K1 =
k−1 + k2

k1
.

Hence

Se0 = SC1 + S
SC1

K2
+K1C1 =C1[S+

S2

K2
+K1],

so that

C1 =
e0K2S

K1K2 +K2S+ S2 and C2 =
e0S2

K1K2 +K2S+ S2 .

Now use
dP
dt

= k2C1 + k4C2.

Problems of Chapter 12

12.2 Stable if
k1K1

(K1 + L̄)2

λ
(H0/r2)− δ

.

Problems of Chapter 13

13.1

M̄1 =
k1

μ
, T̄ =

kT

μT

k1

μK2
, C̄ =C0(1− kT μCk1

λCμT μK2
).

Problems of Chapter 14

14.1

h̄ =
λ2

μ2
c̄, ē =

λ3h̄
μ3c̄+ μ4

,

c̄ satisfies: 1
K c̄2 −α c̄+β = 0, where α,β are positive constants independent of K.

14.3 The equilibrium point is not asymptotically stable since the coefficient of λ in
the characteristic polynomial is zero.
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