
Combining Formal and Informal Methods
in the Design of Spacecrafts

Mengfei Yang1 and Naijun Zhan2(B)

1 Chinese Academy of Space Technology, Beijing, China
2 State Key Laboratory of Computer Science,

Institute of Software, CAS, Beijing, China
znj@ios.ac.cn

Abstract. In this chapter, we summarize our experience on combing
formal and informal methods together in the design of spacecrafts.
With our approach, the designer can either build an executable
model of a spacecraft using the industrial standard environment
Simulink/Stateflow, which facilitates analysis by simulation, or construct
a formal model using Hybrid CSP (HCSP), which is an extension of CSP
for formally modeling hybrid systems. HCSP processes can be specified
and reasoned about by Hybrid Hoare Logic (HHL), which is an exten-
sion of Hoare logic to hybrid systems. The connection between infor-
mal and formal methods is realized via an automatic translator from
Simulink/Stateflow diagrams to HCSP and an inverse translator from
HCSP to Simulink. The advantages of combining formal and informal
methods in the design of spacecrafts include

– It enables formal verification as a complementation of simulation. As
the inherent incompleteness of simulation, it has become an agree-
ment in industry and academia to complement simulation with for-
mal verification, but this issue still remains challenging although lots
of attempts have been done (see the related work section);

– It provides an option to start the design of a hybrid system with
an HCSP formal model, and simulate and/or test it using Matlab
platform economically, without expensive formal verification if not
necessary;

– The semantic preservation in shifting between formal and infor-
mal models is justified by co-simulation. Therefore, it provides the
designer the flexibility using formal and informal methods accord-
ing to the trade-off between efficiency and cost, and correctness and
reliability.

We will demonstrate the above approach by analysis and verification
of the descent guidance control program of a lunar lander, which is a
real-world industry example.

Keywords: Spacecraft · Lunar lander · Simulink/Stateflow · formal
methods · hybrid systems

This work is supported partly by “973 Program” under grant No. 2014CB340701, by
NSFC under grants 91118007 and 91418204, and by the CAS/SAFEA International
Partnership Program for Creative Research Teams.

c© Springer International Publishing Switzerland 2016
Z. Liu and Z. Zhang (Eds.): SETSS 2014, LNCS 9506, pp. 290–323, 2016.
DOI: 10.1007/978-3-319-29628-9 6

Combining Formal and Informal Methods in the Design of Spacecrafts 291

1 Introduction

Spacecraft control systems like most digital controllers are, by definition, hybrid
systems as they interact with and/or try to control some aspects of the physical
world, also typical safety-critical as any fault could result in the failure of the
whole mission. Detailed behavior modeling with rigorous specification, exten-
sive analysis and formal verification, required for reliability prediction, is a great
challenge for hybrid system designers. Spacecraft control systems further inten-
sify this challenge with extensive interaction between computing units and their
physical environment and their mutual dependence on each other. On the other
hand, designing a spacecraft control system is a complex engineering process,
and therefore it is unlikely to demand engineers to apply formal methods in the
whole process of design because of efficiency and cost. So, it is extremely nec-
essary to have a way to combine formal and informal methods in the design so
that the engineers can flexibly shift between formal and informal methods.

In order to efficiently develop reliable safety-critical systems, model-based
design (MBD) has become a major approach in the design of computer controlled
systems. Using this approach at the very beginning, an abstract model of the
system to be developed is defined. Extensive analysis and verification on the
abstract model are then conducted so that errors can be identified and corrected
at the very early stage. Then the higher-level abstract model is refined to a
lower-level abstract model step by step, until it can be composed with existing
components. There have been huge number of MBD approaches proposed and
used in industry and academia, e.g., Simulink/Stateflow [1,2], Modelica [41],
SysML [3], MARTE [40], Metropolis [9], Ptolemy [20], hybrid automata [25],
CHARON [6], HCSP [24,51], Differential Dynamic Logic [36], Hybrid Hoare
Logic [29], etc. These approaches can be classified into two paradigms according
to whether with a solid theoretical foundation, i.e., formal as [6,9,20,24,25,29,
36,51] and informal as [1–3,40,41].

It is commonly known that engineering informal methods for designing hybrid
systems are very efficient and cheap, but cannot guarantee the correctness and
reliability; in contrast, formal methods can guarantee the correctness and reli-
ability of the system to be developed, but pay in low efficiency and high cost.
Therefore it is desirable to provide the designer with the ability to choose between
formal or informal analysis depending on the degree of confidence in the correct-
ness of the design required by the application.

In this chapter, we report our experience on combing informal and formal
methods together in the design of spacecrafts. The framework of our approach
is as follows:

– We first build executable models of hybrid systems using the industrial standard
environment Simulink/Stateflow, which facilitates analysis by simulation.

– Then, to complement simulation, formal verification of Simulink/Stateflow
models is conducted via the following steps:
1. first, we translate Simulink/Stateflow diagrams to Hybrid CSP (HCSP)

processes by an automatic translator Sim2HCSP ;

292 M. Yang and N. Zhan

2. second, to justify the translation, another automatic translator H2S that
translates from HCSP to Simulink is provided, so that the consistency
between the original Simulink/Stateflow model and the translated HCSP
formal model can be checked by co-simulation;

3. then, the obtained HCSP processes in the first step are verified by an
interactive Hybrid Hoare Logic (HHL) prover;

4. during the verification, synthesizing invariants for differential equations
and loops is needed.

– Of course, as an alternative, we can construct an HCSP formal model at the
beginning of the design first, and then simulate and/or test the formal model
economically if formal verification is not necessary.

Simulink [1] is an environment for the model-based analysis and design of
embedded control systems, which offers an intuitive graphical modeling language
reminiscent of circuit diagrams and thus appealing to the practising engineer.
Stateflow [2] is a toolbox adding facilities for modeling and simulating reac-
tive systems by means of hierarchical statecharts, extending Simulink ’s scope
to event-driven and hybrid forms of embedded control. Modeling, analysis, and
design using Simulink/Stateflow (S/S) have become a de-facto standard in the
embedded systems industry.

S/S relies on extensive simulation based on unverified numerical computa-
tion to validate system requirements, which is prone to incomplete coverage
of open systems and possible unsoundness of analysis results due to numeri-
cal errors. As a result, existing errors in the model might not be discovered
through simulation. If such incorrectly developed systems are deployed then any
undetected errors can potentially cause a catastrophic failure. In safety-critical
applications the risk of such failures is regarded as unacceptable. Reducing these
risks by formal verification would be desirable, complementing simulation. Moti-
vated by this, in our previous work [48,53,54], we presented a formal method for
“closed-loop” verification of safety properties of S/S models. This is achieved by
automatically translating S/S diagrams into HCSP [24,51], a formal modelling
language for hybrid discrete-continuous systems. As formal analysis of HCSP
models is supported by an interactive Hybrid Hoare Logic (HHL) prover based
on Isabelle/HOL [29,47,52], this provides a gateway to mechanized verification
of S/S models. To justify the translation from S/S to HCSP, in [14], we inves-
tigated how to translate HCSP formal models into Simulink graphical models,
so that the consistency between the original Simulink/Stateflow model and the
translated HCSP formal model can be checked by co-simulation.

In addition, in practice, people may start to build a formal model as a starting
point of designing a system, based on which formal analysis and verification are
conducted. However, a formal model is not easy to be understood by a domain
expert or engineer, and therefore is not easy to be validated. In particular, the
cost for formal verification of a formal model is quite expensive. In fact, many
errors can be detected by testing and/or simulation in an economical way. Thus,
it deserves to translate a formal model into a Simulink model, so that validation

Combining Formal and Informal Methods in the Design of Spacecrafts 293

can be achieved by simulation; furthermore, detecting errors can be done with
simulation in an economical way.

So, HCSP formal models can be simulated and/or tested using Matlab plat-
form economically, without expensive formal verification when it is not necessary.
Together with the work on translating S/S diagrams into HCSP, it provides the
designer of embedded systems the flexibility using formal and informal meth-
ods according to the trade-off between efficiency and cost, and correctness and
reliability.

We have implemented a toolchain called MARS [13] to support the above
approach. MARS integrates a set of tools, including an automatic translator
from S/S into HCSP, and an automatic translator from HCSP into Simulink, an
HHL theorem prover, an invariant generator for hybrid systems which provides
the options to synthesize an invariant with symbolic computation or numeric
computation, and an abstractor to abstract an elementary hybrid system by a
polynomial hybrid system.

The above approach and tool have been successfully applied in the design of
spacecrafts, and we will demonstrate it by applying the approach to the design
of a descent guidance control program of a lunar lander. A preliminary version
of these results has been reported elsewhere [48].

1.1 Synopsis

This chapter first summarizes our experience on the design of spacecrafts before,
most of which are joint work with other people. Then, we argue that combin-
ing formal and informal methods can provide the flexibility in the design of
spacecrafts, but we do not provide any further technical contribution. The main
results we used are listed as follows:

– HHL is a joint work with Chaochen Zhou, Shuling Wang, Dimitar Guelev,
Jiang Liu, Jidong Lv, Zhao Quan, Hengjun Zhao and Liang Zou in [29,44,46],
which extends classical Hoare logic to hybrid systems;

– Invariant generation of hybrid systems is a joint work with Jiang Liu and
Hengjun Zhao in [30–32];

– The translation from S/S is based on the joint work with Martin Fränzle,
Shengchao Qin, Shuling Wang and Liang Zou published in [53,54];

– The translation from HCSP to Simulink is based on the joint work in [14]
with Anders P. Ravn, Mingshuai Chen, and Liang Zou;

– The tool implementation is based on the joint work [13,45,52] with Mingshuai
Chen, Shuling Wang, Liang Zou, Tao Tang, Xiao Han and Hengjun Zhao;

– The case study part is based on the joint work in [48] with Hengjun Zhao,
Bin Gu and Yao Chen.

Paper Organization. The rest of this paper is organized as follows. Section 2
briefly reviews Simulink/Stateflow, HCSP and HHL. Section 3 establishes a con-
nection between S/S informal models and HCSP formal models. Section 4 focuses

294 M. Yang and N. Zhan

on the explanation of the toolchain MARS. In Sect. 5, we demonstrate our app-
roach by analysis and verification of the GNC control program of a lunar lander.
Section 6 introduces the related work. Section 7 draws a conclusion and discusses
the future work.

2 Simulink/Stateflow, HCSP and HHL

In this section, we briefly introduce the industrial de-facto graphical model-
ing language Simulink/Stateflow, the formal modeling language Hybrid CSP
(HCSP), the specification language Hybrid Hoare Logic and its prover. The
reader is referred to [1,2,47] for more details.

2.1 Simulink

A Simulink model contains a set of blocks, subsystems, and wires, where blocks
and subsystems cooperate by message transmission through the wires connecting
them. An elementary block receives input signals and computes the output signals,
and meanwhile, it contains some user-defined parameters to alter its functionality.
One typical parameter is sample time, which defines how frequently the computa-
tion is performed. According to sample time, blocks are classified into two types:
continuous blocks with sample time 0, and discrete blocks with sample time greater
than 0. Blocks and subsystems in a Simulink model receive inputs and compute
outputs in parallel, and wires specify the data flow between them.

Figure 1 gives a Simulink model of train movement, comprising four blocks,
including continuous blocks v and p, that are integrator blocks of the Simulink
library, and discrete blocks c and acc. The block v outputs the velocity of the
train, which is the time integral of the input acceleration from acc; similarly, p
outputs the distance of the train, which is the time integral of the input velocity
from v, and acc outputs the acceleration computed according to the constant
provided by c and the input distance from p.

v

1
s

p

1
s

c

1000

acc

Fig. 1. A simple control system

A

C
du: s=s+1

/h=0;m=0
[s>=59]{m=m+1}

2

[m>=60]/h=h+1;m=0

1

/s=0

Fig. 2. A timer

Combining Formal and Informal Methods in the Design of Spacecrafts 295

2.2 Stateflow

As a toolbox integrated into Simulink, Stateflow offers the modeling capabilities
of statecharts for reactive systems. It can be used to construct Simulink blocks,
which can be fed with Simulink inputs to produce Simulink outputs. A State-
flow diagram has a hierarchical structure, which can be an AND diagram, for
which states are arranged in parallel and all of them become active whenever
the diagram is activated; or an OR diagram, for which states are connected with
transitions and only one of them becomes active when the diagram is activated.
A Stateflow diagram consists of an alphabet of events and variables, a finite set
of states, and transition networks. In the following, we will explain the main
ingredients of Stateflow and their intuitive meaning respectively.

Alphabet: The alphabet of a Stateflow diagram consists of a finite set of events
and variables. An event can be an input or output of a diagram, which may
be local to the diagram. A variable may also be set as input, output, or local,
and moreover, it can be associated with an initial value if necessary.

States: A state describes an operating mode, possibly active or inactive.
A state could be hierarchical, containing another Stateflow diagram inside.
Because of hierarchy, transitions originating from a state are classified into
two types depending on whether or not their target states are inside the
same state: ingoing and outgoing transitions. All transitions are ordered by
a strict priority so that there is no non-determinism in transition selection.
A state may be associated with three types of actions (all are optional): entry
action, that is executed when the state is activated; during action, that is
executed when no valid transition is enabled; and exit action, that is exe-
cuted when a valid transition leaves from the state, and as a consequence the
state becomes inactive. The actions of Stateflow may be either assignments,
or emissions of events, etc.
States in an AND diagram must be specified with different priorities, that
determine the order of their executions. The parallel states are actually exe-
cuted in sequential order according to their priority.

Transitions: A complete transition is a path from source state to target state.
In Stateflow, a complete transition may consists of several transition seg-
ments by joining connective junctions, which form a transition network from
source state to target state. A connective junction is a graphical object to
connect different transition segments, but itself can not be seen as a source
state nor a target state of a complete transition. Each transition segment
is of the form E[C]{cAct}/tAct, where E is an event, C is the guard con-
dition, cAct the condition action, and tAct the transition action. All these
components are optional. cAct will be executed immediately when event E
is triggered and condition C holds, while tAct will be put in a queue first
and be executed after the corresponding transition is taken.
Default transitions with no source states or source junctions are allowed for
OR diagrams, and they are used to choose an active state when an OR
diagram is activated.

296 M. Yang and N. Zhan

Next we explain intuitively how a Stateflow diagram is executed.

Initialization: Initially, the whole system is activated: for an AND diagram,
all the parallel states are activated according to the priority order; and for
an OR diagram, one of the states is activated by performing the default
transition.

Broadcasting and Executing Transition: Each Stateflow diagram is acti-
vated either by sampling time periodically or by triggering events, depending
on the user-settings. For the second case, as soon as one of the triggering
event arrives, called current event, the event will be broadcasted through the
whole diagram. For an AND diagram, the event will be broadcasted sequen-
tially to the parallel states inside the diagram according to the priority order
over states; while for an OR diagram, it will find out the active state of the
diagram (i.e. the one with the default transition) and broadcast the event
to it. It will then check the outgoing transitions of the current active state
according to the priority order, and if there is one valid transition that is able
to reach a state, the transition will be taken; otherwise, check the ingoing
transitions in the same way. If there is neither an outgoing nor an ingoing
valid transition enabled, the during action of the state will be executed, and
then the event is broadcasted recursively to the sub-diagram inside the state.
The transition might connect states at different levels in the hierarchical dia-
gram. When a transition connecting two states is taken, it will first find the
common ancestor of the source and target states, i.e. the nearest state that
contains both of them inside, then perform the following steps: exit from
the source state (including its sub-diagram) step by step and at each step
execute the exit action of the corresponding state and set it to be inactive,
and then enter step by step to the target state (including its sub-diagram),
and at each step, set the corresponding state to be active and execute the
corresponding entry action.

Example 1. Fig. 2 gives an example of Stateflow. The states A and C are acti-
vated initially, so variables h, m, and s are set to 0. A has a transition network to
itself, which becomes enabled when s equals to 59. Once the transition network
is enabled, the outgoing transition is executed, and thus m is increased by 1;
then it will execute transition 1 as it is with a higher priority by increasing h
by 1 and resetting m to 0 if m equals to 60, otherwise, execute transition 2.

Note that s is reset to 0 whenever the transition network becomes enabled,
as the sub-diagram of A is initialized again.

Combination of Simulink and Stateflow. How Simulink and Stateflow work
together is exemplified by using the two examples in Figs. 1 and 2. In order
to implement the block acc in Fig. 1, we revise the Stateflow diagram in Fig. 2 as
follows: We add a condition action [True]{acc = 1000/p + m/100} to transition
2 of the Stateflow diagram, meaning that the acceleration of the train is updated
every minute and the new acceleration is calculated as 1000/p+m/100. We then
replace blocks acc and c by the modified stateflow diagram, which inputs p from

Combining Formal and Informal Methods in the Design of Spacecrafts 297

the simulink diagram and then calculates and outputs the acceleration acc back
to the simulink diagram.

2.3 Hybrid CSP (HCSP)

HCSP is an extension of Hoare’s Communicating Sequential Processes for mod-
eling hybrid systems [24,51]. In HCSP, differential equations are introduced to
model continuous evolution of the physical environment along with interrupts.
The set of variables is denoted by V = {x, y, z, ...} and the set of channels is
denoted by C = {ch1, ch2, ch3, ...}. The processes of HCSP are constructed as
follows:

P ::=skip | x := e || wait d | ch?x | ch!e | P ;Q | B → P | P � Q | X |
μX.P | 〈F(ṡ, s) = 0&B〉 | 〈F(ṡ, s) = 0&B〉 � �i∈I(ioi → Qi) |
〈F(ṡ, s) = 0&B〉 | 〈F(ṡ, s) = 0&B〉 �d Q

S ::=P | S‖S

Here, P, Q, and Qi represent sequential processes, whereas S stands for a
(sub)system; ch, chi ∈ C are communication channels; while chi∗ is a communi-
cation event which can be either an input event ch?x or an output event ch!e;
B and e are the Boolean, and arithmetic expressions, respectively; and d is a
non-negative real constant.

Process skip terminates immediately without updating variables, and process
x := e assigns the value of expression e to variable x and then terminates. Process
wait d keeps idle for d time units without changing the variables. Interaction
between processes is based on two types of communication events: ch!e sends the
value of e along channel ch, and ch?x assigns the value received along channel
ch to variable x. Communication takes place when both the source and the
destination processes are ready.

A sequentially composed process P ;Q behaves as P first, and if it terminates,
as Q afterward. The alternative process B → P behaves as P only if B is true
and terminates otherwise. Internal choice between processes P and Q denoted as
P �Q is resolved by the process itself. Communication controlled external choice
�i∈I(chi∗ → Qi) specifies that as soon as one of the communications chi∗ takes
place, the process starts behaving as process Qi. The repetition P ∗ executes P
for an arbitrary finite number of times, and the choice of the number of times is
non-deterministic.

Continuous evolution is specified as 〈F(ṡ, s) = 0&B〉. The real variable s
evolves continuously according to differential equations F as long as the Boolean
expression B is true. B defines the domain of s. Interruption of the continuous
evolution due to B (as soon as it becomes false) is known as Boundary Interrupt.
The continuous evolution can also be preempted due to the following interrupts:

– Timeout Interrupt : 〈F(ṡ, s) = 0&B〉 �d Q behaves like 〈F(ṡ, s) = 0&B〉, if
the continuous evolution terminates before d time units. Otherwise, after d
time units of evolution according to F , it behaves as Q.

298 M. Yang and N. Zhan

– Communication Interrupt : 〈F(ṡ, s) = 0&B〉 � �i∈I(chi∗ → Qi) behaves like
〈F(ṡ, s) = 0&B〉, except that the continuous evolution is preempted whenever
one of the communications chi∗ takes place, which is followed by respective Qi.

Finally, S defines an HCSP system on the top level. A parallel composition
S1‖S2 behaves as if S1 and S2 run independently, except that they need to syn-
chronize along the common communication channels. The concurrent processes
can only interact through communication, and no shared variables are allowed.
A detailed explanation can be found in [47].

2.4 Hybrid Hoare Logic

In [29], classical Hoare Logic was extended to hybrid systems, called Hybrid
Hoare Logic (HHL). In HHL, a hybrid system is modeled by HCSP process. To
capture both discrete and continuous behavior of HCSP, the assertion languages
of HHL include two parts: one is first-order logic (FOL), used for specifying
properties of discrete processes, and the other is a subset of Duration Calculus
(DC) [49,50], called history formulas, for specifying the execution history for
continuous processes. In HHL, a specification for a sequential process P is of the
form {Pre}P {Post;HF}, where Pre,Post represent precondition and postcondi-
tion, respectively, and are expressed by FOL to specify properties of variables
held at starting and termination of the execution of P. HF is a history formula to
record the execution history of P, including its real-time and continuous proper-
ties. The specification for a parallel process is then defined by assigning to each
sequential component the respective precondition, postcondition, and history
formula, that is

{Pre1,Pre2}P1‖P2 {Post1,Post2;HF1,HF2}.

A proof system for HHL was provided in [29]. In particular, the notion of
differential invariant [30,37] is used to characterize the behavior of differential
equations.

HHL Prover. For tool support, we have implemented an interactive theorem
prover for HHL based on Isabelle/HOL, please refer to [45,47,52] for more
details.

3 Connection Between Informal and Formal Models

In this section, we show how to link informal and formal models via a translation
from Simulink/Stateflow to HCSP and an inverse translation from HCSP to
Simulink.

Combining Formal and Informal Methods in the Design of Spacecrafts 299

3.1 From Simulink/Stateflow to HCSP

3.1.1 Translating Simulink

The behavior of any block can be divided into a set of sub-behaviors, each of
which is guarded by a condition. Moreover, these guards are mutually exclusive
and complete, i.e., the conjunction of any two of them is unsatisfiable and the
disjunction of them is valid. Hence, blocks can be interpreted by a transformation
predicate over inputs and outputs as follows:

SemanB(init, ps) =̂ out(0) = init ∧
m
∧

k=1

(Bk(ps, in) ⇒ Pk(ps, in, out)), (1)

where init stands for the initial output value set by user, ps are the user-set
parameters that may change the function of the block, in and out are resp. the
timed traces corresponding to input and output signals, out(0) is the value of
out at time 0. In the definition we assume that the block’s behavior is split into
m cases by Bk and in each case the behavior is specified by the corresponding
predicate Pk. Additionaly,

∨m
k=1 Bk(ps, in) is valid, and Bi(ps, in) ∧ Bj(ps, in)

is unsatisfiable for any i �= j.
So, the semantics of a Simulink diagram is defined by

SemanD =̂
n
∧

j=1

SemanB(initj , psj) , (2)

where n is the number of blocks in the diagram, initj and psj are the initial
output value and parameters of the j-th block.

Notice that different types of blocks, i.e. continuous and discrete blocks, have
different definitions for Bk and Pk because the input signals for discrete blocks
only refer to the value of the closest sample time point, i.e. the value of input
signals at time t should refer to the time (t − (t mod st)) where st represents
the sample time of the block.

Blocks
For a continuous block, its initialization is simply encoded as an assignment.

A continuous block uses its Bks as a partition of the whole state space, and
continuously evolves following some differential equation Fk subject to the cor-
responding formula Bk. During the continuous evolution, the block is always
ready for receiving new signals from in-ports, and sending the respective sig-
nals to out-ports (represented by ioi). Based on the continuous sample time, the
blocks which receive signals from the continuous block via out-ports can always
get the latest values. So, a continuous block can be encoded into the following
process pattern:

PC(init, ps) =̂ out := init;P ∗

P =̂ 〈F1(˙out, out, in, ps) = 0&B1(in, ps)〉 � �i∈I(ioi → skip);
. . . ;
〈Fm(˙out, out, in, ps) = 0&Bm(in, ps)〉 � �i∈I(ioi → skip)

300 M. Yang and N. Zhan

For a discrete block, its initialization is also encoded as an assignment. How-
ever, a discrete block with sample time st only computes output signals at the
time points whose values minus the initial time are divided by st, i.e. once every
st time units. At the beginning of each period, it updates the input signal by
receiving a new one from in-port, and after the computation, sends the new pro-
duced output signal to the out-port. Thus, the blocks which receive signals from
the discrete block can always get the values of the last nearest period. Finally,
a discrete block can be encoded as follows:

PD(init, ps, n) =̂ out := init;P ∗

P =̂ cin?in;Pcomp; cout!out; wait st
Pcomp =̂ B1(in, ps) → Pcomp1

(in, out, ps); ...;
Bm(in, ps) → Pcompm

(in, out, ps)

Diagrams
A diagram is translated into an HCSP process via the following steps:

Step 1: Computing inherited sample times. A Simulink diagram may contain
blocks with unspecified sample time, which is called inherited and is
indicated with value −1. An inherited sample time of a block is deter-
mined when the sample times of all the input signals of the block are
known, and then it is computed as the greatest common divisor (GCD)
of the sample times of these input signals.

Step 2: Translating wires. In general, wires in Simulink diagrams can be con-
sidered as a special form of signals, and thus can be represented as
variables. In addition, when a diagram is partitioned into a set of sub-
diagrams, we will model a wire between any two sub-diagrams as a pair
of input and output channels for transmitting values.

Step 3: Separating a diagram to a set of connected sub-diagrams. We first classify
wires to three categories: from continuous to continuous, from continu-
ous to discrete (from discrete to continuous), and from discrete to dis-
crete; and then partition a diagram to a set of largest connected blocks
with the same type (that is either continuous or discrete) according to
the following strategy:

(1) Wires between continuous blocks are modelled as shared variables, and
hence, the two continuous blocks are put into one partition;

(2) Wires between a continuous block and a discrete block are modelled as
channels, and thus, these two blocks are put into two disjoint partitions,
and will transmit values via the channels;

(3) Wires between discrete blocks are hard to model because the control
represented by the blocks may be centralized or distributed. In our app-
roach, a control is assumed as centralized by default, and in this case,
the wires between the discrete blocks are modelled as shared variables;
and therefore, the two blocks are put in one partition. Please note that
the general case in which the user options for control are allowed will be
discussed later.

Combining Formal and Informal Methods in the Design of Spacecrafts 301

Step 4: Translating each resulting continuous sub-diagram. First, we collect all
initialization parts of these continuous blocks in the continuous sub-
diagram and put them in sequence as the initialization part; second,
collect all communications happening in these continuous blocks and
union them together as the communication part; third, cartesian the
differential equations in these continuous blocks as the continuous evo-
lution part, then construct a communication interruption by setting
that the continuous evolution is interrupted by the communication part;
finally, put the initialization part and the communication interruption
in sequence.

Step 5: Translating each resulting discrete sub-diagram. As in the continuous
case, we treat the sub-diagram as a discrete block. So, we first collect
all initialization parts, inputs and outputs from the HCSP processes
corresponding to these discrete blocks in the discrete sub-diagrams, and
respectively put them in sequence according to the order of these blocks
as the corresponding initialization, input and output in the final HCSP
process for the sub-diagram; then we compute the greatest common
divisor t of the sample times of these blocks as the sample time of the
block; third, we update each computation part of these discrete block by
letting it be computed every t time units, and then put all the updated
computation parts in sequence together with the input and output to
form the computation part of the block; finally, we introduce a timer to
guarantee the computation part is executed periodically with period t.

Subsystems
A subsystem consists of a set of blocks, diagrams, and other subsystems.

So, a system can be modeled hierarchically in Simulink with subsystems. In
Simulink, there are three types of subsystems, i.e., normal subsystems, triggered
subsystems and enabled subsystems. In the following, we show how to translate
them into HCSP.

– A normal subsystem contains neither triggered nor enabled blocks inside. For
this case, we flatten the subsystem directly by connecting the in-ports and
out-ports attached to it to the corresponding in-ports and out-ports attached
to the blocks inside it. The subsystem plus the outside blocks connected to it
will then be reduced to a diagram, which can be translated as above.

– A triggered subsystem contains a triggered block inside it, and meanwhile,
there is a corresponding input triggering signal targeting at the subsystem.
The sample times of all the other input signals of the subsystem are equal
to the one of the triggering signal. All the blocks except for the triggered
block (called as normal blocks hereafter) inside the subsystem have unspecified
sample time -1. They constitute a diagram, and will be activated by the
trigger events. According to the change of the triggering signal, there are
three types of trigger events: the rising, falling and changing of the sign of the
triggering signal. Whenever a trigger event occurs, all the normal blocks inside
the subsystem will be performed once. We flatten the rest of the triggered

302 M. Yang and N. Zhan

subsystem except for the triggering signal and the triggered block, and then
apply the above procedure to translate the resulting diagram. Taking the
triggering signal into account, the computation part procR is revised by

procR ← tri?; cin; procR; cout,

where tri represents the input triggering signal, indicating that the computa-
tion of the subsystem will be activated by signal tri? from outside.
Meanwhile, we revise the translation of the outside block that outputs the
triggering signal depending on its type as follows:

• Discrete. In this case, the computation part Pcomp is replaced by the
following process

osig := outtri;Pcomp;Btri(osig, outtri) → tri!

In which, we introduce a variable osig to record the output signal of last
period at the beginning (here outtri is used to represent the triggering
signal); then after the computation part Pcomp is performed, we compare
the old signal osig and the new output signal outtri. If they satisfy the
condition Btri for triggering an event, then a triggering event tri! occurs.
The definition of Btri depends on the triggering type, for instance, if the
triggering signal is rising,

Btri(osig, outtri) =̂ osig < 0 ∧ outtri ≥ 0 ∨ osig ≤ 0 ∧ outtri > 0

• Continuous. In this case, the differential equation part in Pcomp is replaced
by the following process

〈F1(˙out, out) = 0&B1 ∧ ¬Btri〉 � · · · ;
· · ·

〈Fm(˙out, out) = 0&Bm ∧ ¬Btri〉 � · · · ;

Btri → tri!;

〈F1(˙out, out) = 0&B1 ∧ Btri〉 � · · · ;
· · ·

〈Fm(˙out, out) = 0&Bm ∧ Btri〉 � · · ·
whereBtri defines the condition for occurring a triggered event, in particular
for the rising case, it can be defined as outtri = 0 ∧ ˙outtri > 0, i.e. the value
of the output signal is 0 and its first derivative is greater than 0. As soon as
Btri holds, the event tri! occurs, and then the process continuously evolves
according to the differential equations of the block, till next time the trigger
event occurs, when Btri turns from false to true again.

– An Enabled subsystem Pcomp contains an enabled block inside it, and mean-
while, there is a corresponding input enabling signal targeting at the sub-
system. The blocks except for the enabled block (i.e. normal blocks) inside
the enabled subsystem can be continuous or discrete, and whenever the input
signal is greater than 0, they will be activated.

Combining Formal and Informal Methods in the Design of Spacecrafts 303

For both continuous and discrete cases, we model the wire connecting the
block that outputs the enabling signal and the enabled subsystem as a shared
variable en. When both the enabling signal and the enabled subsystem are
continuous, first of all, for each normal block inside the subsystem, we add
en > 0 as a conjunction with the domains of all its differential equations, and
meanwhile, add an extra differential equation 〈 ˙out = 0&en ≤ 0〉 (meaning
that the output is not changed when the signal is not enabled) to the block,
thus the new domains for the block will be complete; then flatten the enabled
subsystem, the resulting diagram plus the outside output block will constitute
a new continuous diagram, which can be translated as above.
When both the enabling signal and the enabled subsystem are discrete and
have the sample time, first of all, for each normal block inside the subsystem,
we add the enabling condition en > 0 as a conjunction with the guards of the
computation of the block; then flatten the enabled subsystem, the resulting
diagram plus the outside output block will constitute a new discrete diagram,
which can be translated as above.

The detail of the translation from Simulink to HCSP can be found in [54].

3.1.2 Translating Stateflow

A Stateflow diagram is translated as a process template D, which is a parallel
composition of the monitor process M and the parallel states S1, · · · ,Sn of the
diagram, with the following form

D =̂ M‖S1‖ · · · ‖Sn.

The monitor process M is an HCSP process, which monitors the broadcasting
of the event among the states Si. Each Si is also an HCSP process, which is the
encoding of the corresponding state in the Stateflow diagram. When the diagram
is an OR diagram, n will be 1, and the only state S1 corresponds to the virtual
state that contains the diagram, which has neither (entry/during/exit) action
nor transition associated to it.

Si is an HCSP process corresponding to the i-th state. Si first initializes the
local variables of the state and activates the state by executing the entry action,
defined by Pinit and Pentry respectively; then it is triggered whenever an event
E is emitted by the monitor M possibly with the shared data, and performs the
following actions: first, initializes done to False indicating that no valid transition
has been executed yet, and searches for a valid transition starting from Si by
calling a depth-first algorithm TTN; if done is still false, then executes the
during action dur and all of its sub-diagrams. Note that for an OR diagram, the
execution of the virtual state is essentially to execute the sub-diagram directly;
finally, notifies the monitor the completion of the broadcasting and outputs the
shared data.

Likewise, each sub-diagram (represented by Pdiag) may be AND or OR sub-
diagram. Different from the AND diagram at the outermost, for simplicity, we
define the AND sub-diagram as a sequential composition of its parallel states.

304 M. Yang and N. Zhan

This is reasonable because there is no true concurrency in Stateflow and the
parallel states are actually executed in sequence according to their priorities.
The OR diagram is encoded as a sequential composition of the connecting states,
guarded by a condition aSi

== 1 indicating that the i-th state is active. In a
word, Si can be represented by the following HCSP process:

Si =̂ Pinit;Pentry; (BCi?E;VOuti?svi;Sdu;BOi!;VIni!svi)∗,
Sdu =̂ done = False;TTN(Si, E, done);¬done → (dur;Pdiag),

Pdiag =̂ Pand | Por,

Pand =̂ S1du ; · · · ;Smdu
,

Por =̂ (aS1 == 1 → S1du); · · · ; (aSk
== 1 → Skdu

).

Note that in the above, TTN returns an HCSP process corresponding to
both outgoing and ingoing transitions from/to Si. In TTN, local events may be
emitted, e.g. during executing actions of transitions or states. For such case, the
current execution of the diagram needs to be interrupted by broadcasting the
local event, and after the broadcasting is completed, the interrupted execution
will be resumed.

The monitor process M in terms of HCSP coordinates the execution of broad-
casted events. When an event is broadcasted, an OR diagram will broadcast the
event to its active state, while an AND diagram will broadcast the event to each
of its sub-diagrams according to the priority order. During the broadcasting,
a new local event may be emitted inside some sub-diagram, and thus current
execution will be interrupted by the local event. After the completion of the
local event, the interrupted execution will be resumed. M can be defined by the
following HCSP process:

M =̂ num := 0; (Mm)∗

Mm =̂ (num == 0) → (Ptri;CHin?iVar;num := 1;EL := [];NL := [];

push(EL, E);push(NL, 1));

(num == 1) → (BC1!E;VOut1!sv[](BR1?E;push(EL, E);push(NL, 1);num := 1)

[](BO1?;VIn1?sv;num := num + 1;pop(NL);push(NL,num));

· · ·
(num == n) → (BCn!E;VOutn!sv[](BRn?E;push(EL, E);push(NL, 1);num := 1)

[](BOn?;VInn?sv;num := num + 1;pop(NL); push(NL,num));

num == n + 1 → (pop(EL);pop(NL); isEmpty(EL) → (num := 0;CHout!oVar);

¬isEmpty(EL) → (E := top(EL);num := top(NL)))),

where Ptri stands for the process corresponding to the triggered event, CHin?iVar
for receiving the input of the triggered event, CHout!oVar for sending out the
update during broadcasting the event, n for the number of parallel states of
current diagram, E for current event, num for the sub-diagram to which cur-
rent event is broadcasted. EL and NL are two stacks respectively to store the
broadcasted events and the corresponding sub-diagrams to which these events
are broadcasted.

Advanced features of Stateflow can also be handled well by HCSP, please see
[53] for the detail.

Combining Formal and Informal Methods in the Design of Spacecrafts 305

3.1.3 Translating Combination of Simulink and Stateflow

Given a Simulink/Stateflow model, its Simulink and Stateflow parts are trans-
lated by using procedures in Sects. 3.1.1 and 3.1.2 respectively, and then put the
resulting HCSP processes in parallel to form the whole model of the system. The
Simulink and Stateflow diagrams in parallel transmit data or events via commu-
nications. The communications between them are categorized into the following
cases:

– The input (and output) variables from (and to) Simulink will be transmitted
through the monitor process to (and from) Stateflow ;

– The input events from Simulink will be passed via the monitor to Stateflow ;
– The output events (i.e. the ones occurring in S1, · · · ,Sn in the Stateflow

diagram) will be sent directly to Simulink ;
– The input/output variables and events inside Simulink part are handled as

in Sect. 3.1.1

Please see [53] for the detail.

3.2 From HCSP to Simulink

In [14], we present a translation from HCSP to Simulink as an inverse procedure
of the translation from Simulink/Stateflow to HCSP. The basic idea is to define
an operational semantics for HCSP using Simulink. This means that everything
in an HSCP model must be represented in Simulink. The latter is constituted
from subsystems and therefore even arithmetic or Boolean expressions which
are incorporated in HSCP must be translated to a Simulink subsystem in a
consistent manner. For example, it is a natural way to define the meaning of any
arithmetic (Bolean) expression as a normal subsystem, for instance, Fig. 3 is a
Simulink subsystem corresponding to x − 1 + y ∗ ((−2)/3.4).

1

Out_1

Divide1
3.4

Constant3

2

Constant2

1

Constant1

Add2

Add1

1

In_x

2

In_y

Fig. 3. x − 1 + y ∗ ((−2)/3.4)

For modeling sequential composition, inspired by UTP [26], we therefore
introduce a pair of Boolean signals ok and ok′ into each subsystem, which is
translated from an HCSP process, to indicate the relevant initiation and termi-
nation. If ok′ is false, the process has not terminated and the final values of the

306 M. Yang and N. Zhan

process variables are unobservable. Similarly, if ok is false, the process has never
started and even the initial values are unobservable. Additionally, ok and ok′ are
local to each subsystem corresponding to an HCSP process, which never occur
in the process text. Furthermore, ok and ok′ in a Simulink subsystem are con-
structed as an in-port signal named In ok and an out-port signal named Out ok
respectively. For example, the semantics of skip is defined by a subsystem given
in Fig. 4.

1

Out_ok

1

In_ok

Fig. 4. Skip statement

The translation of a continuous evolution of HCSP is very involved, which
is shown in Fig. 5, where the group of differential equations F and the Boolean
condition B are encapsulated into a single subsystem respectively. The enabled
subsystem F contains a set of integrator blocks corresponding to the vector s of
continuous variables, and executes continuously whenever the value of the input
signal, abbreviated as en, on enable-port is positive. Intuitively, subsystem B
guards the evolution of subsystem F by taking the output signals of F as its
inputs, i.e. sB = s′

F , and partially controlling the enable signal of F via its
output Boolean signal, denoted by B. As a consequence, an algebraic loop occurs
between subsystem B and F which is not allowed in Simulink, and a plain solution
is to insert an unit delay block with an initial value 1 insert after subsystem B.

B

2

Out_s

1

Out_ok

z

1

Unit
Delay

 > 0

In_s Out_1

Subsystem B

NOT
AND

AND

In_s Out_s

Enabled Subsystem F

1

In_ok

2

In_s

Fig. 5. Continuous Evolution

The full description and justification of the translation can be found in [14].

4 Tool Implementation

We have implemented all the above theories and integrated them as a tool-
chain named MARS for Modelling, Analyzing and veRifing spacecraft control

Combining Formal and Informal Methods in the Design of Spacecrafts 307

Fig. 6. Verification architecture

systems [13]. As shown in Fig. 6, the architecture of MARS is composed of three
parts: a linking between informal and formal models, consisting of a translator
Sim2HCSP from Simulink/Stateflow to HCSP and a translator from HCSP to
Simulink, an HHL prover, and an invariant generator.

The translator Sim2HCSP is designed to translate Simulink/Stateflow mod-
els to HCSP. By applying Sim2HCSP, the translation from Simulink/Stateflow
to HCSP is fully automatic, and to justify its correctness, another automatic
inverse translator H2S is implemented. We use H2S to translate the HCSP model
resulting from Sim2HCSP back to Simulink, and check the consistency between
the output Simulink/Stateflow model and the original Simulink/Stateflow model
by co-simulation.

The HHL prover is then applied to verify the above HCSP models obtained
from Sim2HCSP. HHL prover is a theorem prover for Hybrid Hoare Logic
(HHL) [29]. As the input of HHL prover, the HCSP models are written in
the form of HHL specifications. Each HHL specification consists of an HCSP
process, a pre-/post-condition to specify the initial and terminating states of
the process, and a history formula to record the whole execution history of
the process, respectively. HHL defines a set of axioms and inference rules to
deduce such specifications. Finally, by applying HHL prover, the specification to
be proved will be transformed into an equivalent set of logical formulas, which
will be proved by applying axioms of corresponding logics in an interactive or
automatic way.

To verify differential equations, we use the concept differential invariants to
characterize their properties without solving them [30]. For computing differen-
tial invariants, we have implemented an independent invariant generator, which

308 M. Yang and N. Zhan

will be called during the verification in HHL prover. The invariant generator
integrates both the quantifier elimination and SOS based methods for com-
puting differential invariants of polynomial equations, and can also deal with
non-polynomial systems by transformation techniques we proposed [32], which
is implemented as EHS2PHS in Fig. 6.

5 A Case Study: Analysis and Verification of a Descent
Guidance Control Program of a Lunar Lander

5.1 Description of the Verification Problem

At the end of 2013, China launched a lunar lander to achieve its first soft-landing
and roving exploration on the moon. After launching, the lander first entered an
Earth-Moon transfer orbit, then a 100 km-high circular lunar orbit, and then a
15 km × 100 km elliptic lunar orbit. At perilune of the elliptic orbit, the lander’s
variable thruster was fired to begin the powered descent process, which can be
divided into 6 phases. As shown in Fig. 7, the terminal phase of powered descent
is the slow descent phase, which should normally end several meters above the
landing site, followed by a free fall to the lunar surface. One of the reasons to
shut down the thruster before touchdown is to reduce the amount of stirred up
dust that can damage onboard instruments.

Fig. 7. The powered descent process of the lunar lander.

Powered descent is the most challenging task of the lunar lander mission
because it is fully autonomous. Due to communication delay, it is impossible
for stations on earth to track the rapidly moving lander, and remote control
commands from earth cannot take effect immediately. The lander must rely on
its own guidance, navigation and control (GNC) system to, in real time, acquire
its current state, calculate control commands, and use the commands to adjust
its attitude and engine thrust. Therefore the reliable functionality of the GNC
system is the key to the success of soft-landing.

Clearly, the powered descent process of the lander gives a specific hybrid
system (HS), i.e. a sampled-data control system composed of the physical plant

Combining Formal and Informal Methods in the Design of Spacecrafts 309

and the embedded control program, which forms a closed-loop with the following
prominent features: (1) the physical dynamics is modelled by ordinary differential
equations (ODEs) with general elementary functions (rational, trigonometric,
exponential functions etc.); (2) the program has complex branching conditions
and numerical computations; (3) the physical process is frequently interrupted
by control inputs from the program; (4) the system suffers from various uncer-
tainties. Due to the high complexity, analysis and verification of such a system
is very hard and beyond the capacity of many existing verification tools.

As a case study, we show how to apply the above approach to analysis and
verification by focusing on one of the 6 phases, i.e. the slow descent phase, of
the powered descent process. Through such verification, trustworthiness of the
lunar lander’s control program is enhanced. According to the framework of our
approach, analysis and verification procedure can be outlined as follows:

(1) we first build a Simulink/Stateflow model of the closed-loop system and
analyze its behaviour by simulation;

(2) then, with the tool Sim2HCSP [53,54], the Simulink/Stateflow graphical
model is automatically translated to a formal model given by HCSP;

(3) subsequently, to justify the above translation, using the translator H2S [14],
the resulted HCSP process is translated to a Simulink diagram inversely, so
that the consistency between the original Simulink/Stateflow model and the
translated HCSP model can be checked by co-simulation;

(4) finally, a formal verification of the system is conducted using HHL
Prover [52]. During the verification, we need to call the tool EHS2PHS [32]
first to abstract the considered elementary hybrid system to a polynomial
hybrid system, and then exploit the tool invariant generator [30] to synthe-
size an invariant of the obtained polynomial HS.

All the above procedure is fully supported by the toolchain MARS [13].

5.1.1 Overview of the Slow Descent Phase
The slow descent phase begins at an altitude (relative to lunar surface) of approx-
imately 30 m and terminates when the engine shutdown signal is received. The
task of this phase is to ensure that the lander descends slowly and smoothly to
the lunar surface, by nulling the horizontal velocity, maintaining a prescribed
uniform vertical velocity, and keeping the lander at an upright position. The
descent trajectory is nearly vertical w.r.t. the lunar surface (see Fig. 8).

The operational principle of the GNC system for the slow descent phase
(and any other phases) can be illustrated by Fig. 9. The closed loop system is
composed of the lander’s dynamics and the guidance program for the present
phase. The guidance program is executed periodically with a fixed sampling
period. At each sampling point, the current state of the lander is measured by
IMU (inertial measurement unit) or various sensors. Processed measurements are
then input into the guidance program, which outputs control commands, e.g. the
magnitude and direction of thrust, to be imposed on the lander’s dynamics in
the following sampling cycle.

310 M. Yang and N. Zhan

Fig. 8. The slow descent phase. Fig. 9. A simplified configuration of
GNC.

We next give a mathematical description of the lander’s dynamics as well
as the guidance program of the slow descent phase. For the purpose of showing
the technical feasibility and effectiveness of formal methods in the verification
of aerospace guidance programs, we neglect the attitude control as well as the
orbit control in the horizontal plane, resulting in a one-dimensional (the vertical
direction) orbit dynamics.

Dynamics. Let the upward direction be the positive direction of the one-
dimensional axis. Then the lander’s dynamics is given by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ṙ = v
v̇ = Fc

m − gM
ṁ = − Fc

Isp1

Ḟc = 0
Fc ∈ [1500, 3000]

and

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ṙ = v
v̇ = Fc

m − gM
ṁ = − Fc

Isp2

Ḟc = 0
Fc ∈ (3000, 5000]

, where (3)

– r, v and m denote the altitude (relative to lunar surface), vertical velocity and
mass of the lunar lander, respectively;

– Fc is the thrust imposed on the lander, which is a constant in each sampling
period;

– gM is the magnitude of the gravitational acceleration on the moon, which
varies with height r but is taken to be the constant 1.622 m/s2 in this paper,
since the change of height (0≤r≤30m) can be neglected compared to the
radius of the moon;

– Isp1 = 2500N· s/kg and Isp2 = 2800N· s/kg are the two possible values that
the specific impulse1 of the lander’s thrust engine can take, depending on
whether the current Fc lies in [1500, 3000] or (3000, 5000], and thus the lander’s
dynamics comprises two different forms as shown in (3);

– note that the terms Fc

m in (3) make the dynamics non-polynomial.

Guidance Program. The guidance program for the slow descent phase is executed
once for every 0.128 s. The control flow of the program, containing 4 main blocks,
is demonstrated by the left part of Fig. 10.
1 Specific impulse is a physical quantity describing the efficiency of rocket engines. It

equals the thrust produced per unit mass of propellant burned per second.

Combining Formal and Informal Methods in the Design of Spacecrafts 311

Fig. 10. The guidance program for the slow descent phase.

The program first reads data given by navigation computation (block 1), and
then decides whether to stay in the slow descent phase or switch to other phases
by testing the following conditions (block 2):

(SW1) shutdown signal 1, which should normally be sent out by sensors at the
height of 6m, is received, and the lander has stayed in slow descent phase
for more than 10s;

(SW2) shutdown signal 2, which should normally be sent out by sensors at the
height of 3m, is received, and the lander has stayed in slow descent phase
for more than 10s;

(SW3) no shutdown signal is received and the lander has stayed in the slow
descent phase for more than 20s.

If any of the above conditions is satisfied, then the GNC system switches
from slow descent phase to no-control phase and a shutdown command is sent
out to the thrust engine; otherwise the program will stay in the slow descent
phase and do the guidance computation (block 3) as shown in the right part of
Fig. 10, where

– v and gM are the vertical velocity and gravitational acceleration from navi-
gation measurements or computation; note that we have assumed gM to be
a constant;

– Fc and m are the computed thrust and mass estimation at last sampling
point; they can be read from memory;

– DeltaT = 0.128 s is the sampling period;
– Isp is the specific impulse which can take two different values, i.e. 2500 or

2800, depending on the current value of Fc;

312 M. Yang and N. Zhan

– mMin = 1100 kg and mMax =3000 kg are two constants used as the lower
and upper bounds of mass estimation;

– c1 = 0.01 and c2 = 0.6 are two control coefficients in the guidance law;
– vslw = −2 m/s is the target descent velocity of the slow descent phase;
– the output Fc (block 4) will be used to adjust engine thrust for the following

sampling cycle; it can be deduced from the program that the commanded
thrust Fc always lies in the range [1500, 5000].

5.1.2 Verification Objectives
Together with the engineers participating in the lunar lander project, we propose
the following properties to be verified regarding the closed-loop system of the
slow descent phase and the subsequent free fall phase.

Firstly, suppose the lunar lander enters the slow descent phase at r = 30 m
with v = −2 m/s, m = 1250 kg and Fc = 2027.5N. Then

(P1) Safety 1: |v − vslw | ≤ ε during the slow descent phase and before touch-
down2, where ε = 0.05 m/s is the tolerance of fluctuation of v around the
target vslw = −2m/s;

(P2) Safety 2: |v| < vMax at the time of touchdown, where vMax = 5 m/s is
the upper bound of |v| to avoid the lander’s crash when contacting the
lunar surface;

(P3) Reachability: one of the switching conditions (SW1)-(SW3) will finally
be satisfied so that the system will exit the slow descent phase.

Furthermore, by taking into account such factors as uncertainty of initial
state, disturbance of dynamics, sensor errors, floating-point calculation errors
etc., we give

(P4) Stability and Robustness: (P2) and (P3) still holds, and an analogous
of (P1) is that v will be steered towards vslw = −2 m/s after some time.

5.2 Analysis by Simulation

We first build a Simulink/Stateflow model of the closed-loop system for the slow
descent phase. Then based on the model we analyze the system’s behaviour by
simulation.

The physical dynamics specified by (3) is modelled by the Simulink diagram
shown in Fig. 11.

In Fig. 11, several blocks contain parameters that are not displayed:

2 Note that if no shutdown signal is received, there exists possibility that the lander
stays in the slow descent phase after landing.

Combining Formal and Informal Methods in the Design of Spacecrafts 313

Fig. 11. The Simulink diagram of the dynamics for the slow descent phase.

– the threshold of Isp is 3000, which means Isp outputs 2800 when Fc is greater
than 3000, and 2500 otherwise;

– the initial values of m, v and r (m = 1250 kg, r = 30 m, v = −2 m/s) are
specified as initial values of blocks m1, v1 and r respectively.

Fig. 12. The Simulink diagram of the guidance program for the slow descent phase.

As specified in Fig. 10, The guidance program includes three parts: updating
mass m, calculating acceleration aIC, and calculating thrust Fc. The Simulink
diagram for the guidance program is shown in Fig. 12, in which the sample time
of all blocks are fixed as 0.128 s, i.e. the period of the guidance program. In
Fig. 12, blocks m and mSat are used to update mass m, blocks Fc1 and FcSat are
used to calculate thrust Fc, and the rest are used to calculate acceleration aIC.
Blocks mSat and FcSat are saturation blocks from Simulink library which limit
input signals to the upper and lower bounds of m and Fc respectively.

The simulation result is shown in Fig. 13. The left part shows that the velocity
of the lander is between -2 and -1.9999, which corresponds to (P1); the right part
shows that if shutdown signal 1 is sent out at 6 m and is successfully received
by the lander, then (SW1) will be satisfied at time 12.032s, which corresponds
to (P3).

5.3 From Simulink/Stateflow Model to HCSP Model

Given a Simulink/Stateflow model, Sim2HCSP translates its Simulink and
Stateflow parts separately. With the approach in [54], the Simulink part is trans-
lated into HCSP processes, while using the approach in [53], the Stateflow part

314 M. Yang and N. Zhan

Fig. 13. The simulation result.

is translated into another HCSP processes. Then, these HCSP processes are
put together in parallel to form the whole model of the system. The Simulink
and Stateflow diagrams in parallel transmit data or events via communications.
Please refer to [53,54] for details. Sim2HCSP takes Simulink/Stateflow models
(in xml format, which is generated by a Matlab script) as input, and outputs
several files as the definitions for the corresponding HCSP processes, which con-
tain three files for defining variables, processes, and assertions for the Simulink
part, and the same three files for each Stateflow diagram within the Stateflow
part.

Then the manually constructed Simulink model is translated into annotated
HCSP using the tool Sim2HCSP, which is basically as

definition P :: proc where

‘‘P == PC_Init; PD_Init; t:=0; (PC_Diff; t:=0; PD_Rep)*’’

In process P, PC Init and PD Init are initialization procedures for the con-
tinuous dynamics and the guidance program respectively; PC Diff models the
continuous dynamics given by (3) within a period of 0.128 s; PD Rep calculates
thrust Fc according to

F ′
c := −0.01 · (Fc − m · gM) − 0.6 · (v − vslw) · m + m · gM (4)

for the next sampling cycle; variable t denotes the elapsed time in each sampling
cycle. Hence, process P is initialized at the beginning by PC Init and PD Init,
and behaves as a repetition of dynamics PC Diff and computation PD Rep after-
wards.

5.4 Consistency Checking by Co-Simulation

To validate the above translated HCSP model, we translate it into a Simulink
model using the tool H2S inversely, which consists of 63 nested subsystems. The
top-level overview of the translated Simulink model is shown in Fig. 14, where a
parallel pattern interprets the physical plant PC and the control program PD.

To validate the formal model, the translated Simulink model is simulated
with a fixed simulation step of 0.0001 s, and the evolution of the lander is shown

Combining Formal and Informal Methods in the Design of Spacecrafts 315

Fig. 14. The top-level overview of the translated Simulink model

as the solid curve in Fig. 15. For velocity, we also illustrate the corresponding
results of the original Simulink model in the dash curve, showing that the trans-
lation loop well keeps the system behaviours consistently. Moreover, the left part
shows that the velocity of the lander is between −2 and −1.9999 m/s, which cor-
responds to (R1); the right part shows that if shut-down signal is sent out at 6 m
and is successfully received by the lander, then (R3) is satisfied at time 12.0569 s;
and then with a subsequent free fall, (R2) is guaranteed.

Fig. 15. The evolution in physical plant PC

By combining formal and informal approaches in validation and verification
of the lunar lander, the reliability was indeed improved, and the domain experts
and engineers were also convinced.

5.5 Verification

In this section, we formally verify the property (P1), and the proof for the other
properties (P2)-(P4) can be found in [48].

In order to verify property (P1), we give the following proof goal in HHL
Prover:

lemma goal : ‘‘{True} P {safeProp; (l=0 | (high safeProp))}’’

316 M. Yang and N. Zhan

where safeProp stands for |v − vslw | ≤ ε. The parts True and safeProp specify the
pre- and post-conditions of P respectively. The part (l=0 — (high safeProp)) speci-
fies a duration property, where l=0 means the duration is 0, and high means that
the following state expression should hold everywhere on a considered interval.

After applying proof rules in HHL Prover with the above proof goal, the
following three lemmas remain unresolved:

lemma constraint1: "(t <=0.128) & Inv |- safeProp"

lemma constraint2: "(v=-2) & (m=1250) & (Fc =2027.5)

& (t=0) |- Inv"

lemma constraint3: "(t= 0.128) & Inv

|- substF ([(t,0)], substF ([(Fc,

-0.01*(Fc -1.622*m) - 0.6*(v+2)*m + 1.622*m)],Inv))"

In a more readable way, the three lemmas impose the following constraints:

(C1) 0 ≤ t ≤ 0.218 ∧ Inv −→ |v − vslw | ≤ ε;
(C2) v = −2 ∧ m = 1250 ∧ Fc = 2027.5 ∧ t = 0 −→ Inv ;
(C3) t = 0.128 ∧ Inv −→ Inv(0 ← t;F ′

c ← Fc), with F ′
c defined in (4);

(C4) Inv is the invariant of both constrained dynamical systems

〈ODE 1; 0 ≤ t ≤ 0.128∧Fc ≤ 3000〉 and 〈ODE 2; 0 ≤ t ≤ 0.128∧Fc > 3000〉 ,

where ODE1 and ODE 2 are the two dynamics defined in (3).

Invariant Generation. Invariant generation for polynomial continuous/hybrid
systems has been studied a lot [30]. To deal with systems with non-polynomial
dynamics, we propose a method based on variable transformation. For this case
study, we replace the non-polynomial terms Fc

m in ODE 1 and ODE2 by a new
variable a. Then by simple computation of derivatives we get two transformed
polynomial dynamics:

ODE ′
1 =̂

⎧

⎨

⎩

ṙ = v
v̇ = a − 1.622
ȧ = a2

2500

and ODE ′
2 =̂

⎧

⎨

⎩

ṙ = v
v̇ = a − 1.622
ȧ = a2

2800

. (5)

Furthermore, it is not difficult to see that the update of Fc as in (4) can be
accordingly transformed to the update of a given by

a′ =̂ − c1 · (a − gM) − c2 · (v − vslw) + gM . (6)

As a result, if we assume Inv to be a formula over variables v, a, t, then (C2)-(C4)
can be transformed to:

(C2’) v = −2 ∧ a = 1.622 ∧ t = 0 −→ Inv ;
(C3’) t = 0.128 ∧ Inv −→ Inv(0 ← t; a′ ← a), with a′ defined in (6);
(C4’) Inv is the invariant of both constrained dynamical systems 〈ODE ′

1; 0 ≤
t ≤ 0.128〉 and 〈ODE ′

2; 0 ≤ t ≤ 0.128〉3 with ODE ′
1 and ODE ′

2 defined
in (5).

Combining Formal and Informal Methods in the Design of Spacecrafts 317

Fig. 16. The invariant for HHL Prover.

Note that the constraints (C1) and (C2’)-(C4’) are all polynomial. Then
the invariant Inv can be synthesized using the SOS (sum-of-squares) relaxation
approach in the study of polynomial hybrid systems [28]. With the Matlab-
based tool YALMIP and SDPT-3, an invariant p(v, a, t) ≤ 0 as depicted by
Fig. 16 is generated. Furthermore, to avoid the errors of numerical computation
in Matlab, we perform post-verification using the computer algebra tool RAGlib4

to show that the synthesized p(v, a, t) ≤ 0 is indeed an invariant. Thus we have
successfully completed the proof of property (P1) by theorem proving. On the
platform with Intel Q9400 2.66 GHz CPU and 4 GB RAM running Windows XP,
the synthesis costs 2 s and 5 MB memory, while post-verification costs 10 min and
70 MB memory.

6 Related Work

6.1 Related Formalization of Sumulink/Stateflow

There has been a range of work on translating Simulink into modelling for-
malisms supported by analysis and verification tools. Tripakis et al. [43] pre-
sented an algorithm for translating discrete-time Simulink models to Lustre, a
synchronous language featuring a formal semantics and a number of tools for
validation and analysis. Cavalcanti et al. [11] put forth a semantics for discrete-
time Simulink diagrams using Circus, a combination of Z and CSP. Meenakshi et
al. [34] proposed an algorithm that translates a subset of Simulink into the input
language of the finite-state model checker NuSMV. Chen et al. [12] presented an
algorithm that translates Simulink models to the real-time specification language
3 We have abstracted away the domain constraints on Fc.
4 http://www-polsys.lip6.fr/safey/RAGLib/.

http://www-polsys.lip6.fr/safey/RAGLib/

318 M. Yang and N. Zhan

Timed Interval Calculus (TIC), which can accommodate continuous Simulink
diagrams directly, and they validated TIC models using an interactive theorem
prover. Their translation is confined to continuous blocks whose outputs can be
represented explicitly by a closed-form mathematical relation on their inputs.

Beyond the pure Simulink models considered in the above approaches, models
comprising reactive components triggered by and affecting the Simulink dataflow
model have also been studied recently. Hamon et al. [23] proposed an opera-
tional semantics of Stateflow, which serves as a foundation for developing tools
for formal analysis of Stateflow designs. Scaife et al. [39] translated a subset of
Stateflow into Lustre for formal analysis. Tiwari [42] defines a formal semantics
of Simulink/Stateflow using guarded pushdown automata, in which continuous
dynamical systems modeled by Simulink are discretized, and he discussed how
to verify a guarded sequence via type checking, model checking and theorem
proving. Agrawal et al. [5] proposed a method to translate Simulink/Stateflow
models into hybrid automata using graph flattening, and the target models rep-
resented by hybrid automata can then be formally analyzed and verified by
model checkers for hybrid systems. Their approach induces certain limitations,
both for the discrete-continuous interfaces in Simulink/Stateflow models, where
the output signals of Stateflow blocks are required to be Boolean and to imme-
diately connect to the selector input of an analog switch block, and for the forms
of continuous dynamics, as most of current model checkers for hybrid systems
support only very restricted differential equations. Miller et al. [35] proposed a
method to translate discrete Simulink/Stateflow models into Lustre for formal
analysis.

In contrast, the formal semantics for Simulink/Stateflow given here is based
on the work of [53,54], in which the meanings of most of syntactic entities and
features of Simulink/Stateflow are well handled by using HCSP. E.g., the mean-
ing of all continuous blocks can be well defined by using the notions of differ-
ential equations and invariants in the HCSP encodings, advanced features like
early return logic, history junction, nontermination of Stateflow can be easily
handled by using the notion of recursion of HCSP, which are not addressed in
most of the existing work. The payment is that we have to resort to interactive
theorem proving instead of automatic model checking for discharging the proof
obligations.

6.2 Related Verification of Embedded Systems

Verification of full feedback system combining the physical plant with the con-
trol program has been advocated by Cousot [16] and Goubault et al. [22]. There
are some recent work in this trend which resembles our approach in this paper.
In [10], Bouissou et al. presented a static analyzer named HybridFluctuat to
analyze hybrid systems encompassing embedded software and continuous envi-
ronment; subdivision is needed for HybridFluctuat to deal with large initial
sets. In [33], Majumdar et al. also presented a static analyzer CLSE for closed-
loop control systems, using symbolic execution and SMT solving techniques;

Combining Formal and Informal Methods in the Design of Spacecrafts 319

CLSE only handles linear continuous dynamics. In [7], Saha et al. verified sta-
bility of control software implementations; their approach requires expertise on
analysis of mathematical models in control theory using such tools as Lyapunov
functions.

6.3 Related Verification Tools

Some tools are available for formal verification of Simulink/Stateflow based on
numerical simulation or approximation. STRONG [17] performs bounded time
reachability and safety verification for linear hybrid systems based on robust
test generation and coverage. Breach [18] uses sensitivity analysis to compute
approximate reachable sets and analyzes properties in the form of MITL based
on numerical simulation. C2E2 [19] analyzes the discrete-continuous Stateflow
models annotated with discrepancy functions by transforming them to hybrid
automata, and then checks bounded time invariant properties of the models
based on simulation.

There are many tools developed for formal modelling and verification of
hybrid systems. The tool d/dt [8] provides reachability analysis and safety verifi-
cation of hybrid systems with linear continuous dynamics and uncertain bounded
input. iSAT-ODE [4] is a numerical SMT solver based on interval arithmetic that
can conduct bounded model checking for hybrid systems. Flow* [15] computes
over-approximations of the reachable sets of continuous dynamical and hybrid
systems in a bounded time. However, due to the undecidable reachability prob-
lem of hybrid systems, the above tools based on model checking are incomplete.
Based on the alternative deductive approach, the theorem prover KeYmaera [38]
is proposed to verify hybrid systems specified using differential dynamic logic.
Compared to our work, it supports a simple set of hybrid constructs that do not
cover communications and parallel composition.

6.4 Related Industrial Case Studies

There are some recent work on application of formal methods in the aerospace
industry. For example, in [27] Johnson et al. proved satellite rendezvous and con-
junction avoidance by computing the reachable sets of nonlinear hybrid systems;
in [21] Katoen et al. reported on their usage of formal modelling and analysis
techniques in the software development for a European satellite.

7 Conclusions

In this paper, we summarize our experience on combining formal and informal
methods in the design of spacecrafts. The ingredients of our approach include

– A translation from S/S to HCSP, implemented as Sim2HCSP;
– A translation from HCSP to Simulink, implemented as H2S;
– A deductive way to verify a translated S/S model via HHL prover;

320 M. Yang and N. Zhan

– An abstraction of elementary hybrid systems by polynomial hybrid systems,
implemented as EHS2PHS;

– Invariant generation of polynomial hybrid systems, implemented as invariant
generator.

The advantages of our approach include

– It enables formal verification as a complementation of simulation. As the
inherent incompleteness of simulation, it has become an agreement in industry
and academia to complement simulation with formal verification, but this
issue still remains challenging although lots of attempts have been done (see
the related work section);

– It provides an option to start the design of a hybrid system with an HCSP
formal model, and simulate and/or test it using Matlab platform economically,
without expensive formal verification if not necessary.

– The semantic preservation in shifting between formal and informal models
is justified by co-simulation. Therefore, it provides the designer the flexibil-
ity using formal and informal methods according to the trade-off between
efficiency and cost, and correctness and reliability.

The effectiveness of our approach has been demonstrated in the successful
analysis and verification of the descent guidance control program of a lunar
lander.

Acknowledgements. We thank all of our collaborators with whom the joint work are
reported in this chapter, including Prof. Chaochen Zhou, Prof. Martin Fränzle, Prof.
Shengchao Qin, Prof. Anders P. Ravn, Prof. Tao Tang, Prof. Bin Gu, Dr. Jiang Liu,
Dr. Jidong Lv, Dr. Shuling Wang, Dr. Hengjun Zhao, Dr. Liang Zou, Dr. Yao Chen,
Mr. Mingshuai Chen and Mr. Zhao Quan.

References

1. Simulink User’s Guide (2013). http://www.mathworks.com/help/pdf doc/
simulink/sl using.pdf

2. Stateflow User’s Guide (2013). http://www.mathworks.com/help/pdf doc/
stateflow/sf using.pdf

3. SysML V 1.4 Beta Specification (2013). http://www.omg.org/spec/SysML
4. Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: a direct SAT approach to

hybrid systems. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.)
ATVA 2008. LNCS, vol. 5311, pp. 171–185. Springer, Heidelberg (2008)

5. Agrawal, A., Simon, G., Karsai, G.: Semantic translation of simulink/stateflow
models to hybrid automata using graph transformations. Int. Workshop Graph
Transform. Visual Model. Tech. 109, 43–56 (2004)

6. Alur, R., Henzinger, T.A.: Modularity for timed and hybrid systems. In:
Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243. Springer,
Heidelberg (1997)

7. Anta, A., Majumdar, R., Saha, I., Tabuada, P.: Automatic verification of control
system implementations. In: EMSOFT 2010, pp. 9–18 (2010)

http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/pdf_doc/stateflow/sf_using.pdf
http://www.mathworks.com/help/pdf_doc/stateflow/sf_using.pdf
http://www.omg.org/spec/SysML

Combining Formal and Informal Methods in the Design of Spacecrafts 321

8. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370.
Springer, Heidelberg (2002)

9. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-
Vincentelli, A.L.: Metropolis: an integrated electronic system design environment.
IEEE Comput. 36(4), 45–52 (2003)

10. Bouissou, O., Goubault, E., Putot, S., Tekkal, K., Vedrine, F.: HybridFluctuat: a
static analyzer of numerical programs within a continuous environment. In: Boua-
jjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 620–626. Springer,
Heidelberg (2009)

11. Cavalcanti, A., Clayton, P., O’Halloran, C.: Control law diagrams in circus. In:
Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp.
253–268. Springer, Heidelberg (2005)

12. Chen, C., Dong, J.S., Sun, J.: A formal framework for modeling and validating
simulink diagrams. Formal Asp. Comput. 21(5), 451–483 (2009)

13. Chen, M., Han, X., Tang, T., Wang, S., Yang, M., Zhan, N., Zhao, H., Zou, L.:
MARS: A toolchain for modeling, analysis and verification of spacecraft control
systems. Technical Report ISCAS-SKLCS-15-04, State Key Laboratories of Com-
puter Science, Institute of Software, CAS (2015)

14. Chen, M., Ravn, A., Yang, M., Zhan, N., Zou, L.: A two-way path between formal
and informal design of embedded systems. Technical Report ISCAS-SKLCS-15-
06, State Key Laboratories of Computer Science, Institute of Software, Chinese
Academy of Sciences (2015)

15. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 258–263. Springer, Heidelberg (2013)

16. Cousot, P.: Integrating physical systems in the static analysis of embedded control
software. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 135–138. Springer,
Heidelberg (2005)

17. Deng, Y., Rajhans, A., Julius, A.A.: STRONG: a trajectory-based verification
toolbox for hybrid systems. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R.
(eds.) QEST 2013. LNCS, vol. 8054, pp. 165–168. Springer, Heidelberg (2013)

18. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167–170. Springer, Heidelberg (2010)

19. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool
for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 68–82. Springer, Heidelberg (2015)

20. Eker, J., Janneck, J., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs,
S., Xiong, Y.: Taming heterogeneity - the ptolemy approach. Proc. IEEE 91(1),
127–144 (2003)

21. Esteve, M.-A., Katoen, J.-P., Nguyen, V., Postma, B., Yushtein, Y.: Formal cor-
rectness, safety, dependability, and performance analysis of a satellite. In: ICSE
2012, pp. 1022–1031 (2012)

22. Goubault, E., Martel, M., Putot, S.: Some future challenges in the validation of
control systems. In: ERTS 2006 (2006)

23. Hamon, G., Rushby, J.: An operational semantics for stateflow. Int. J. Softw. Tools
Technol. Transf. 9(5), 447–456 (2007)

24. He, J.: From CSP to hybrid systems. In: Roscoe, A.W. (ed.) A Classical Mind,
Essays in Honour of C.A.R. Hoare, pp. 171–189. Prentice Hall International (UK)
Ltd, Hertfordshire (1994)

322 M. Yang and N. Zhan

25. Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292, July
1996

26. Hoare, C.A.R., He, J.: Unifying Theories of Programming, vol. 14. Prentice Hall,
Englewood Cliffs (1998)

27. Johnson, T.T., Green, J., Mitra, S., Dudley, R., Erwin, R.S.: Satellite rendezvous
and conjunction avoidance: case studies in verification of nonlinear hybrid systems.
In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 252–266.
Springer, Heidelberg (2012)

28. Kong, H., He, F., Song, X., Hung, W.N.N., Gu, M.: Exponential-condition-based
barrier certificate generation for safety verification of hybrid systems. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 242–257. Springer,
Heidelberg (2013)

29. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for
hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 1–15. Springer,
Heidelberg (2010)

30. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial
dynamical systems. In: EMSOFT 2011, pp. 97–106 (2011)

31. Liu, J., Zhan, N., Zhao, H.: Automatically discovering relaxed lyapunov functions
for polynomial dynamical systems. Math. Comput. Sci. 6(4), 395–408 (2012)

32. Liu, J., Zhan, N., Zhao, H., Zou, L.: Abstraction of elementary hybrid systems by
variable transformation. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol.
9109, pp. 360–377. Springer, Heidelberg (2015)

33. Majumdar, R., Saha, I., Shashidhar, K.C., Wang, Z.: CLSE: closed-loop symbolic
execution. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp.
356–370. Springer, Heidelberg (2012)

34. Meenakshi, B., Bhatnagar, A., Roy, S.: Tool for translating simulink models into
input language of a model checker. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006.
LNCS, vol. 4260, pp. 606–620. Springer, Heidelberg (2006)

35. Miller, S.P., Whalen, M.W., Cofer, D.D.: Software model checking takes off. Com-
mun. ACM 53(2), 58–64 (2010)

36. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning
41(2), 143–189 (2008)

37. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as
fixedpoints. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 176–
189. Springer, Heidelberg (2008)

38. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)

39. Scaife, N., Sofronis, C., Caspi, P., Tripakis, S., Maraninchi, F.: Defining and trans-
lating a safe subset of simulink/stateflow into lustre. In: EMSOFT 2004, pp. 259–
268. ACM (2004)

40. Selic, B., Gerard, S.: Modeling and Analysis or Real-Time and Embedded Sys-
tems with UML and MARTE: Developing Cyber-Physical Systems. The MK/OMG
Press, Burlington (2013)

41. Tiller, M.: Introduction to Physical Modeling with Modelica, vol. 615. Springer,
New York (2001)

42. Tiwari, A.: Formal semantics and analysis methods for Simulink Stateflow models.
Technical report, SRI International, (2002)

43. Tripakis, S., Sofronis, C., Caspi, P., Curic, A.: Translating discrete-time Simulink
to Lustre. ACM Trans. Embed. Comput. Syst. 4(4), 779–818 (2005)

Combining Formal and Informal Methods in the Design of Spacecrafts 323

44. Wang, S., Zhan, N., Guelev, D.: An assume/guarantee based compositional calculus
for hybrid CSP. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS,
vol. 7287, pp. 72–83. Springer, Heidelberg (2012)

45. Wang, S., Zhan, N., Zou, L.: An improved hhl prover: an interactive theorem prover
for hybrid systems. In: Butler, M., et al. (eds.) ICFEM 2015. LNCS, vol. 9407, pp.
382–399. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25423-4 25

46. Zhan, N., Wang, S., Guelev, D.: Extending Hoare logic to hybrid systems. Technical
report ISCAS-SKLCS-13-02, State Key Laboratory of Computer Science, Institute
of Software, Chinese Academy of Sciences (2013)

47. Zhan, N., Wang, S., Zhao, H.: Formal modelling, analysis and verification of hybrid
systems. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Unifying Theories of Program-
ming and Formal Engineering Methods. LNCS, vol. 8050, pp. 207–281. Springer,
Heidelberg (2013)

48. Zhao, H., Yang, M., Zhan, N., Gu, B., Zou, L., Chen, Y.: Formal verification of a
descent guidance control program of a lunar lander. In: Jones, C., Pihlajasaari, P.,
Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 733–748. Springer, Heidelberg (2014)

49. Zhou, C., Hansen, M.R.: Duration Calculus – A Formal Approach to Real-
Time Systems. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2004)

50. Zhou, C., Hoare, C.A.R., Ravn, A.: A calculus of durations. Inf. Process. Lett.
40(5), 269–276 (1991)

51. Chaochen, Z., Ji, W., Ravn, A.P.: A formal description of hybrid systems. In:
Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066. Springer,
Heidelberg (1996)

52. Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Y.: Verifying chinese
train control system under a combined scenario by theorem proving. In: Cohen,
E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 262–280. Springer,
Heidelberg (2014)

53. Zou, L., Zhan, N., Wang, S., Fränzle, M.: Formal verification of simulink/stateflow
diagrams. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol.
9364, pp. 464–481. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24953-7 33

54. Zou, L., Zhan, N., Wang, S., Fränzle, M., Qin, S.: Verifying Simulink diagrams via
a hybrid hoare logic prover. In: EMSOFT 2013, pp. 1–10 (2013)

http://dx.doi.org/10.1007/978-3-319-25423-4_25
http://dx.doi.org/10.1007/978-3-319-24953-7_33

	Combining Formal and Informal Methods in the Design of Spacecrafts
	1 Introduction
	1.1 Synopsis

	2 Simulink/Stateflow, HCSP and HHL
	2.1 Simulink
	2.2 Stateflow
	2.3 Hybrid CSP (HCSP)
	2.4 Hybrid Hoare Logic

	3 Connection Between Informal and Formal Models
	3.1 From Simulink/Stateflow to HCSP
	3.2 From HCSP to Simulink

	4 Tool Implementation
	5 A Case Study: Analysis and Verification of a Descent Guidance Control Program of a Lunar Lander
	5.1 Description of the Verification Problem
	5.2 Analysis by Simulation
	5.3 From Simulink/Stateflow Model to HCSP Model
	5.4 Consistency Checking by Co-Simulation
	5.5 Verification

	6 Related Work
	6.1 Related Formalization of Sumulink/Stateflow
	6.2 Related Verification of Embedded Systems
	6.3 Related Verification Tools
	6.4 Related Industrial Case Studies

	7 Conclusions
	References

