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Abstract. The notion of software engineering implies that software
design and production should be based on the types of theoretical foun-
dations and practical disciplines that are established in the traditional
branches of engineering. The goal is to make development of complex
software systems more predictable and the systems developed more trust-
worthy - safe, secure and dependable. A number of theories have been
well developed in the past half a century, including Abstract Data Types,
Hoare Logic, Process Calculi, and I/O automata, and those alike. Based
on them, techniques and tools have been developed for software specifi-
cation, refinement and verification.

However, the theoretically sound techniques and tools have not been
seamlessly integrated in practical software development, and their impact
upon commonly-used software systems is still far from convincing to soft-
ware engineering practitioners. This is clearly reflected by the challenges
of their applications in engineering large-scale systems, including Cyber-
Physical Systems (CPS), Networks of Things and Cloud-Based Systems,
that have multi-dimensional complexities. Indeed, students are not often
shown how the theories, and their underpinned techniques and tools, can
better inform the software engineering they are traditionally taught. The
purpose of this course to demonstrate such an effort.

We present a model-driven design framework for component-based and
object-oriented software systems. We identify a set of UML notations and
textual descriptions for representing different abstractions of software
artefacts produced in different development stages. These abstractions,
their relations and manipulations all have formalisations in the rCOS for-
mal method of component and object systems. The aim is to allow the
advantage of using precise models for development better appreciated.
We organise the lecture notes into three chapters, each having a title
page but all the references to literature are given at the end of Part III.
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1 Part I: Introduction

1.1 Background and Organisation

This chapter is organised based on the materials that have been taught since
1998 at the University of Leicester, United-Nations University – International
Institute for Software Technology (UNU-IIST1, Macau) and Birmingham City
University. The materials have also been adapted to and taught at training
schools similar to the Summer School on Engineering Trustworthy Software Sys-
tems (SETSS) held in Chongqing in August 2014. Furthermore, these materials
and the feedbacks from students have influenced the development of the rCOS
method, which is a formal model-driven method of object and component sys-
tems. With the insight developed through research in the rCOS method, we
taught the students how to prepare themselves for effective study and applica-
tion of formal techniques and tools in software design and program verification.

Our aim is and has consistently been to show that in order to apply formal
techniques, models and tools to software development projects, the requirements
and the design, together with their models must first be developed. We demon-
strate an informal process of requirements gathering and analysis as well as
design patterns can be used to develop models that are formalisable. Thus they
are a basis for reasoning about and verifying desired properties. We believe this
will contribute to bridging the gap between formal techniques and their appli-
cation in practical software development.

We focus on the requirements gathering and analysis, component-based archi-
tecture design and object-oriented design of components. The theme of the
approach is model-driven development of component-based architectures, their
interface-based decomposition and composition and detailed object-oriented
design. Component-based architectures (or systems of systems architecture) with
techniques and tools of interface-based composition, evolution and integration
are seen as key to dealing with modern complex software systems, including
cloud-based systems, internet of things (IoT), smart cities and cyber-physical
systems (CPS).

Organisation. We divide this chapter into three parts in order for the reader
to select different sections from each parts. Part I contains a brief introduction
to the background and organisation in Sect. 1.1, a historical account of software
engineering in Sect. 2, that is followed by a discussion of the basics of model
driven development in Sect. 3. Though software development process models
are not a focus topic of this chapter, the concepts of modelling, analysis and
design activities and the artefacts they produce are useful for understanding
the technical discussions, and thus they are introduced in Sect. 5. The technical
discussion throughout the chapter is based on a case study described in Sect. 4.

Part II is on use case driven object-oriented requirements gathering, mod-
elling and analysis. Section 6.1 discusses about use cases, their identification,

1 It is now renamed to UNU-CS.
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description and decomposition. Section 7 is about object-oriented modelling of
the domain structure through identification of classes, their attributes and associ-
ations. Section 8 moves into understanding, modelling and analysis of functional
behaviour of the requirements, followed by a summary of this part in Sect. 9.

Part III presents the techniques and models for component-based architec-
ture design in Sect. 10.1, and for object-oriented design of the architecture com-
ponents in Sect. 11. The component-based architecture model emphases on the
contracts of the component interfaces, provides the basis of the object-oriented
design of the components using design patterns for responsibility assignments
to objects. Section 12 gives an overall summary of the chapter and discusses
possible future developments.

At the end of each technical section, we relate the informal techniques to
the rCOS formal method with references to publications. The materials in the
textbook of Larman [42] are a major source of the knowledge and ideas in the
discussion, developed through all the versions of the course notes, from the first
version used at University of Leicester, through the tailored versions taught at
the international schools, to the version used for the Software Design module at
Birmingham City University.

2 Software Engineering

For a long time there was no authoritative account of when “software engineer-
ing” first appeared in the literature, but it is now widely accepted that the
term was first coined by Anthony Oettinger in 1966, ACM President between
1966 and 1968, in his “letter to the ACM membership” [71], and then used by
Hamilton [1,80] while working on the Apollo guidance software. The term was
used in 1968 in the title for the world’s first conference on software engineering,
sponsored and facilitated by NATO [67]. The motivation for the conference was
the so-called “software crisis”, characterised by the symptoms of late delivery,
over budget, product failing to meet specified requirements, and inadequate doc-
umentation [67]. The notion of software engineering was meant to imply that
software design and production should be based on the types of theoretical foun-
dations and practical disciplines that are established in the traditional branches
of engineering. This meaning and aim of the term, though its content was yet
to be defined, was clearly reflected in the discussions on development processes
and cycles at the first conference, and the discussions on the notion of program
correctness appeared as a key issue at a followup conference in 1969 [78].

2.1 Software Complexity

Though there are disputes about if there is a “software crisis”, software develop-
ment is hugely complex, and the source of the so-called crisis is just the inher-
ent complexity of software development. Fundamental understanding of soft-
ware complexity has contributed to the formation of major areas of software
engineering and advances in these areas. In particular, complexity of software
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development is characterised by the following four fundamental attributes of
software [6,8,9]:

1. the complexity of the domain application,
2. the difficulty of managing the development process,
3. the flexibility possible to offer through software, and
4. the problem of characterising the behaviour of software systems.

Complex systems are open to total breakdowns [73], and consequences of sys-
tem breakdowns are sometimes catastrophic and very costly, e.g., the famous
Therac-25 Accident 1985–1987 [44], the Ariane-5 Explosion in 1996 [81], and
the Wenzhou High Speed Train Collision2 in 2011. Also the software complex-
ity attributes are the main source of unpredictability in software development
projects. Software projects fail due to our failure in mastering the complex-
ity [35]. Advances in software engineering have been largely driven by under-
standing of and seeking solutions to handle the different attributes of software
complexity.

The first attribute, the complexity of the domain application, is the main
cause of the difficulty of capturing and specifying the requirements. Imagine
the requirements of the Apollo guidance software in the 1960s [1,80], and the
software systems used nowadays in air traffic control and hospital information
systems. A major challenge comes from the fact that it is not realistic to expect
a software engineer to understand the domain thoroughly, or a domain expert to
come up with a design for the software. Solutions to this problem are in the scope
of the sub-discipline of (Software) Requirement Engineering, which includes spec-
ification/modelling languages (together with their semantic theories), techniques
and tools for requirements specification, validation and verification [69]. The
aim is to master the complexity of requirements capture, definition, validation
and documentation. These constitutes elements of requirements specification and
analysis in a software development process [40].

The second attribute, the difficulty of managing the development process,
concerns the difficulty to define and manage a development process that has
to deal with complex and changing requirements and constraints. A software
project typically involves a large team of software engineers and domain experts,
possibly in different geographical places. The process has to identify the software
technologies and tools that support collaboration of the team in working on
shared software artefacts. Roughly speaking, a development process defines in
the development when, who, does what work or tasks, uses what techniques
and tools, and produces what artefacts. Tasks include work management and
artefacts management, and techniques and tools should also support the ways of
collaboration of the team. Research, education and practice of solutions to this
challenge form the area of Software Project Management [86].

The third attribute, the flexibility possible to offer through software, is about
the problem of making sound design decisions among a wide range of possibilities

2 http://en.wikipedia.org/wiki/Wenzhou train collision.

http://en.wikipedia.org/wiki/Wenzhou_train_collision
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that have conflicting features. This includes the design of the software architec-
ture, and the design and reuse of software components, algorithms and communi-
cation networks. For the same requirements, different decisions lead to different
software products. In particular, the decision making involves the best practice of
the fundamental engineering principles of (a) separation of concerns, (b) divide
and conquer, and (c) use of abstraction through information hiding (in different
design stages). The notions of modularity and interfaces discussed at the 1968
NATO Software Engineering Conference [67], and the later developed structured
design [84], object-oriented design [6], component-based design [25,28,61,88] and
service-oriented architecture [5] all aim to support the practice of these three
engineering principles. These three principles also apply to other software devel-
opment activities including requirements analysis, verification and validation,
and software project management. Model-driven architecture (MDA) [70], that
recently has become a main stream approach, aims at a seamless integration
of the above approaches in a unified development process, such as the Rational
Unified Process (RUP) [40].

The final attribute, the problem of characterising the behaviour of software
systems, pinpoints the difficulty in understanding and modelling the dynamic
behaviour of software, for analysis, validation and verification for correctness,
as well as reliability assurance. The dynamic behaviour of a program is defined
in terms of all possible changes of states of the program. A state is a mapping
from the program variables to their value space, representing the values that the
variables take (stored in the memories allocated to the variables) at a point of
the program execution. The variables include the program variables defined by
the programmer and those which controls the program execution flow, such as
program or process counters. A program is (functionally) correct if its dynamic
behaviour conforms to its specification. For a large program with a big number of
variables, especially a large scale concurrent and distributed software system, the
dynamic behaviour has a great scale of complexity. This poses a great challenge
for (a) writing the right requirements specification that identifies the correct state
changes allowable by the application, and (b) verifying that the behaviour of the
program is correct with respect to the specification. It is well-know that finding
bugs in a program which may cause its behaviour to violate the program require-
ments is hard and costly. Seeking solutions to these challenges is the background
motivation for formal methods of software development, that include mathemat-
ical theories of modelling and programming languages, including their syntaxes
and semantics, techniques and tools for design (such as correctness preserving
refinement), logical reasoning about and verification of program correctness.

2.2 Chronic Complexity of Modern Software

The characteristic attributes of software complexity still hold for modern and
future software, but their extensions are becoming increasingly wider, due to the
increasing power of computers, here we quote
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“The major cause of the software crisis is that the machines have become
several orders of magnitude more powerful. To put it quite bluntly: as long
as there were no machines, programming was no problem at all; when we
had a few weak computers, programming became a mild problem, and now
we have gigantic computers, programming has become an equally gigantic
problem.”

– Edsger Dijkstra
The Humble Programmer, Communications of the ACM [20]

Now computers are everywhere and networked, executing programs anywhere
and any time, which share data and communicate and collaborate with each
other. New buzz-words are introduced for these different kinds of networked
computing systems, Cloud Computing, Internet of Thing (IoT) [48], Smart
Cities [83], and Cyber-Physical Systems (CPS) [43]. Application, control and
monitoring programs [89] are being developed and integrated into these sys-
tems, which we see in our everyday life in transportation, health, banking and
enterprise. These systems provide their users with a large variety of services
and features. They are becoming increasingly distributed, dynamic and mobile.
Their components are deployed over large networks of heterogeneous platforms.
In addition to the complex functional structures and behaviours, modern soft-
ware systems have complex aspects concerning organisational structures (i.e.,
system topology), adaptability, interactions interoperability, safety, security, real-
time and fault-tolerance.

It is even more challenging when a networked system supports collaborative
workflows involving many different kinds of stakeholders and end-users across
different domains. The system is open to ever changing requirements during the
development of the software and when it is in operation. Typical cases are health-
care applications, such as telemedicine, where chronic conditions of patients on
homecare plans are monitored and tracked by different healthcare providers. The
openness makes it much more difficult to do requirements modelling and analy-
sis, software design, system validation and verification, and management of the
development. Furthermore, it imposes challenges to software maintenance.

This chapter focuses on handling software complexity through component-
based modelling, decomposition, refinement and verification. The next section
summarises the state of the art of software engineering and motivate model-
driven and component-based software engineering, and formal methods.

3 Model-Driven Software Engineering

For the discussion in this section and technical discussions in the later sections,
some concepts related to software engineering were clarified.

3.1 Basic Concepts in Software Engineering

Textbooks and websites have numerous definitions for computer software. For
examples
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– a collection of computer programs and related data that provide the instruc-
tions for telling a computer what to do and how to do it.

– a set of computer programs or procedures, and associated documentation con-
cerned with the operation of a data processing system.

– one or more computer programs and data held in the storage of the computer
for some purposes.

For developing a systematic understanding, we first give a rather abstract
description of the related concepts of computation, computer, a data process
system, and programs as follows:

1. a computer carries out a computation by executing a program;
2. a program defines of a number of variables and a sequence of commands;
3. when a computer executes the program, the variables are allocated in mem-

ories (storage) of the computer to hold data values at any moment of time,
called the state of the program execution at that moment of time;

4. at the beginning of the execution, the computer receives input values for the
variables (to set up the initial state of the execution);

5. during the execution, the commands are carried out according to the flow
of control defined by the sequence of commands and the execution of each
command changes the current state to the next state defined by the semantics
of the command; and

6. at the end of the execution (if the execution terminates), an output is produced
that is determined by the final state of the program in the execution.

Note that the same program can be executed repeatedly with different inputs (i.e.,
initial states) to generate different outputs (i.e., final states). The fifth and sixth
statements above imply that the semantics of a program command, thus that of
a whole program can be mathematically defined as a relation between program
states (see later in this Subsection for further clarification). This relational seman-
tic model is the theoretical foundation of the method we study in this chapter.

The above discussion on computation, computers and programs is easy to
comprehend when we think of sequential programs running on uni-processor
computers. For example, given any initial value x0 and y0 to variable x and y,
i.e., from the initial state s0 = {(x, y) �→ (x0, y0)}, the execution of command
(program) x := x+y +1 changes the value of x from x0 to the value x0 +y0 +1,
i.e., the execution changes from the initial state s0 to final state s1 = {(x, y) �→
(x0 + y0 + 1, y0)}.

The semantics of the program, denoted by [[x := x + 1]] is defined to be the
relation {(s0, s1) | x0 ∈ Tx∧y0 ∈ Tx}, where Tx and Ty is the value spaces of x and
y, say the set of integers. The semantics of the composite commands can be defined
using operations on relations, and recursive or iterative commands by fixed points
of recursive equations in relational algebra [32]. The following examples give the
flavour of the calculation of the semantics of composite commands:
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[[x := x + y + 1; y := x]]
= [[x := x + y + 1]]; [[y := x]]
= {((x, y) �→ (x0, y0), (x, y) �→ (x0 + y0 + 1, y0)) | x0 ∈ Tx ∧ y0 ∈ Ty};

{((x, y) �→ (x1, y1), (x, y) �→ (x1, y1)) | x1 ∈ Tx ∧ y1 ∈ Ty}
= {((x, y) �→ (x0, y0), (x, y) �→ (x0 + y0 + 1, x0 + y0 + 1)) | x0 ∈ Tx ∧ y0 ∈ Ty}

where in the above formulas we overloaded “;” for both the sequential compo-
sition of program commands and for the composition of relations in relational
algebra. Another example illustrates the conditional command, where C1�B�C2

denotes the conditional choice if B then C1 else C2:

[[x := x + y + 1 � x < y � y := x + y + 1]]
= [[x := x + y + 1]] ∩ [[x < y]] ∪ [[¬(x < y)]] ∩ [[y := x + y + 1]]
= {((x, y) �→ (x0, y0), (x, y) �→ (x0 + y0 + 1, y0)) | x0 ∈ Tx ∧ y0 ∈ Ty ∧ x0 < y0}

{((x, y) �→ (x0, y0), (x, y) �→ (x0, x0 + y0 + 1)) | x0 ∈ Tx ∧ y0 ∈ Ty ∧ y0 ≤ x0}
where [[B]] = {(s, s′) | B holds in s}, thus x < y hold for state (x, y) �→ (x0, y0)
if x0 < y0. The semantics of an iterative command while B do C, algebraically
denoted as B ∗ C, is defined to be the “smallest” solution [32,68,87] to the
recursive equation [[B ∗ C]] = [[C;B ∗ C]] � B � skip, where skip is the identity
relation that define the semantics of the program whose execution does not
change the state.

The above discussions on computation, computers and programs can be gen-
eralised to models of modern computer systems, including networks of data
processing systems (cf. the second definition of computer software), and other
programming paradigms such as object-oriented programs, concurrent and dis-
tributed programs [32].

An extension of the notion of “computer software” is software systems which
are a “collection of programs” and the associated “data”, which are interrelated in
an architecture and the ‘work’ together when being running on a computer. Here,
“computer” refers to any device or system with the power of processing and trans-
mitting data. We thus define a software system to consist of set of architected
programs and data that tell a set interrelated computers what to do and how to it.
Computers include all devices with programmable processing capacity, all kinds
of “smart devices” as well as “computers”, that now affects all aspects of daily life.

We take the general view that software engineering is about the applica-
tion of a systematic, disciplined, quantifiable approach to the development, oper-
ation, and maintenance of software systems, and the study of these approaches.
This is to say software engineering is about the application of engineering to man-
ufacture of software systems, and software engineering has a significant founda-
tion in mathematics, computer science and has practice that have strong origins
in engineering. In more concrete terms software engineering is about develop-
ment, study and application of theories, techniques and tools for requirements
analysis, design, implementation, correctness validation and verification (includ-
ing testing and simulation), and maintenance of software systems.
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A software engineering method consists of a theory, a set of techniques
developed based on the theory, and a suit of tools that support systematic appli-
cations of the techniques to requirements analysis, software design, implemen-
tation, validation and verification, and maintenance in software systems devel-
opment. The systematic application of a method to software development relies
on well-defined software development processes. Examples of software engineer-
ing methods include structured software development, object-oriented design,
component-based design, and model-driven development (or MDA - model-driven
architecture), that have overlapping theories, techniques and tools support. Soft-
ware engineering has to help in mastering software complexity. Therefore, the
theory, techniques and tools have to support effective handling of software com-
plexity. This means they need to define mechanisms of separation of concerns,
divide and conquer and information hiding for abstraction. A model-driven soft-
ware engineering method represents the state of the art of software engineering
methods with regard to these aspects.

3.2 Model-Driven Development

All well established engineering branches rely on the use of models to repre-
sent different viewpoints and concerns of the artefacts constructed at different
stages of the engineering process. All models are representations of the views with
details that are not relevant to the present concern being excluded. Model-driven
software engineering methods [70,88,89], propose the same approach to engineer-
ing software systems. That is, a software system is manufactured through build-
ing system models in all stages of the development. A particular model-driven
method is called Model-Driven Architecture (MDA), launched as a standard
model-driven software engineering method by Object Management Group3.

Example. Consider an application case in the context of smart cities. One can
imagine a street lightening system has different stakeholders, each having differ-
ent views and concerns. The city council is concerned about the conveniences of
the citizens when walking in the night; the police office on the other hand has an
interest in the relation of the street lightning with crimes; and further the elec-
tricity company is concerned about power consumption as readings on meters
and bills. These different views are represented as models of the requirements,
the interfaces of services to these stakeholders, and the program implementations
of the services. These different models are at different levels of abstraction, but
they are closely related and can all be built based on a common model of the
configurations and dynamic behaviour of the lights.

MDA supports the principles of divide and conquer with its component-
based architectures, in which an architectural component is hierarchical and can
be divided into subcomponents. The architectural components inside a (compos-
ite) component interact and communicate with each other through their inter-
faces, according to explicitly specified contracts, and work together to realise the
interface contract of the whole composite component. For example, a buffer of
3 http://www.omg.org.

http://www.omg.org
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capacity one has an interface for a user to “put” a data item and for another
user to “get” the data item stored in the buffer. Then a two-place buffer can be
composed from two one-place buffers by employing a connector. The user puts
a data item using the ‘put’ of one-place buffer and get a data item out using the
“get” of the other. The connector moves the data item out of the first one-place
buffer using its “get” and puts it into the second one-place buffer using its “put”.
This is shown in Fig. 1.

Fig. 1. Composite component

MDA supports separation of concerns by providing notations for represent-
ing different viewpoints of a component. These include the static component
and class views using UML component and class diagrams, interaction views by
UML sequence diagrams, and dynamic behavioural views by UML state machine
diagrams. The models of different views of architectural models are important
when defining and managing a development process [53]. However, a serious
consistency problem arises in both of its theoretical foundation and its practical
application in software system development, caused by the large number of UML
models that are constructed in different notations possibly by different members
of the project team.

The consistency problem is mainly due to first the lack of clear defined devel-
opment process that defines the models to be sued and their relations, and
secondly the omission of a unified semantics of these models for the project.
Therefore, integration and transformation of models are mostly syntax-based,
having no provable semantic correctness. Hence, the tools developed to support
model integration and transformation cannot immediately be integrated with
tools for verification of semantic correctness and correctness preserving trans-
formations [60]. For MDA to support a seamless development process of model
decomposition, integration, and transformation, there is a need of formal seman-
tic relations between models of different viewpoints at the same level of abstrac-
tion, and between models of the same viewpoint at different levels of abstraction.
The relations for the former are to deal with consistency among models of dif-
ferent views for correct integration [12,51,52], and the relations for the models
at different levels are the refinement/abstraction relations [15,27,52,91]. We do
not promote a single unified semantics for UML, but a unified semantics of the
models used in a project should be defined.
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Most MDA techniques and tools focus on transformations between mod-
els of the same view, such as class models or state-based behaviour, but built
with different notations and tools. Also, there are plenty of techniques and tools
for transformations between PSMs. There is, however, very little support for
transformations between PIMs at different levels of abstraction, except for some
design patterns directed model transformations [63]. This is actually the reason
why MDA has yet to convincingly demonstrate its potential advantages of sep-
aration of concerns, divide and conquer and incremental development. This lack
of semantic relations between models as well as the lack of techniques and tools
for semantics-preserving model transformations is also an essential barrier for
MDA to realise its full potential in improving safety and predictability of soft-
ware systems. The research in rCOS and development of its tool support focus
on filling these gaps [4,47,90,91].

3.3 Formal Methods of Software Development

The development of formal methods is a step towards placing software and hard-
ware development on a sound engineering discipline so that appropriate math-
ematical analysis is possible [7]. A formal method is about the uses of a broad
range of theoretical computer science fundamentals to solve problems in soft-
ware and hardware specification and verification. These fundamentals include
logic calculi, formal languages, automata theory, and program semantics, but
also type systems and algebraic data types. We say a formal method of software
engineering consists of a semantics theory, a body of techniques and a suite of
tools for the specification, development, and verification of software systems of
a certain programming paradigm, such as procedural sequential programming
or object-oriented programming, concurrent and distributed programming and
component (or service) based programming. The semantic theory of a formal
method is developed based on the fundamental theories of denotational seman-
tics [87], operational semantics [75], or axiomatic semantics (including algebraic
semantics) [19,30] of programming. As they are all used to define and reason
about behaviour of programs, they are closely related [68], and indeed, they can
be “unified” [27,32].

A specification is an abstract model of the program or the specification of
desirable properties of the program in a formally defined notation. In the for-
mer case, the specification notation is also called a modelling language though
a modelling language usually includes graphic notations (e.g., Petri Nets [74]).
There are now a large number of well-known formal modelling/specification lan-
guages, including CSP [31], CCS [66], the Z-Notation [85], the B-Method [2,3],
VDM [36], UNITY [10], and TLA+ [41]. In the latter case, desirable proper-
ties are defined on a computational model of the executions of the system and
specified in a formal logic. Well-known examples include the labelled transition
systems and the linear temporal logic (LTL) of Manna and Pnueli [65] and the
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branching temporal logic (or CTL), which are also used in verification tools like
Spin [33] and Uppaal.4

In the past half a century or so, a rich body of formal theories and techniques
have been developed. They have made significant contributions to understanding
the behaviour of programs. Recently there has been a growing effort in develop-
ment of tool support for verification and reasoning. However, these techniques
and tools, each of which each has its own community of researchers, have been
mostly focusing on models of individual viewpoints. For examples, type sys-
tems are used for data structures, Hoare Logic for local and static functionality,
process calculi (e.g., CSP and CSS) and I/O automata [64] for interaction and
synchronisation protocols. While process calculi and I/O automata are similar
from the perspective of describing the interaction behaviour of concurrent and
distributed components. The former is based on the observation of the global
behaviour of interaction sequences, and the latter on the observation of local
state transitions caused by interaction events. Processes calculi emphasise alge-
braic reasoning, and automata are primarily used for algorithmic verification
techniques model checking [18,77].

The impact of these theories, techniques and tools on the improvement of
qualities of the daily used software systems is yet to become convincing to soft-
ware engineering practitioners for their industry adoption. The gap between the
development of formal methods and the advances in software technologies is not
becoming narrower. More precisely, the relation between formal methods and
software technologies is not well understood yet. This is clearly reflected by the
challenges in engineering current large-scale systems, including CPS, IoT and
cloud-based systems, that have multi-dimensional complexities. The experience,
e.g., in [34], and investigation reports on software failures, such as those of the
Therac-25 Accident in 1985–1987 [44] and the Ariane-5 Explosion in 1996 [81],
show that a simple mistake can lead to catastrophic consequences. Ad hoc appli-
cation of the above methods to specification and verification of programs will
not be enough or feasible to detect and remove these causes. Different formal
techniques that deal with different concerns more effectively have to be system-
atically and consistently used in all stages of a development process, along with
safety analysis that identifies the risks, vulnerabilities, and the consequences of
the risk incidents. There are applications that have concerns of extra function-
alities, such as real-time and fault-tolerance constraints [57]. Studies show that
models with these extra functionalities can be obtained and treated by model
transformations of models without these concerns [22,56,57]. But this is yet to
be better understood by software engineering practitioners.

4 Case Study: A Trading System

We will use this example to demonstrate the attributes of software complexity,
motivate the problems in our discussion, as well as to understand the fundamen-
tal concepts and techniques of the model driven method.
4 http://www.uppaal.org.

http://www.uppaal.org
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This case study describes a Trading System. It was used as the Common
Component Modelling Example (CoCoME) in a comparative modelling exercise
using different methods. The problem description and the solutions developed by
the participants were presented at the two GI-Dagstuhl Research Seminars [79].
A team from UNU-IIST led by the first author used the rCOS method in the
exercise [13]. The case study is an extension of the Point of Sale System (POST)
described in the textbook of Larman [42].

This version of the Trading System focuses on the functionalities in terms of
use cases, related to processing sales in a supermarket. This restriction obviously
is related to the limited space. However, it also reflects a fundamental engineering
principle that MDA, object-oriented design and component-based design provide
effective support [6,27,91] for dealing with complexity. That is,

‘start with a small and simple system and get it work; then let the system
evolve by adding new features and/or functionalities’.

The description of this case study plays the role of a client’s requirements doc-
ument as if it were provided to the software development team by a business
company in the reality. Therefore, the description is potentially imprecise, incom-
plete and even inconsistent, as it has to go through the requirements analysis by
the developer. The Trading System is used in handling sales in a supermarket
including the processes at a Cash Desk (or a Point of Sale). For example

1. a Casher scans or types in the Products being purchased using a Bar Code
Scanner or a Keyboard, then the Customer pays for the Sale by a Credit
Card, or

2. by Cash and receive the Change.

Notice the italic verbs and capitalised nouns, which in later stages of analysis and
specification might be formalised as “operations” and “objects” (or “classes”),
respectively. These processes of a business task, e.g., handling sales, will be
defined as use case scenarios, and all the use case scenarios of a task form an
abstract use case. The Trading System is also used for various administrative
tasks, such as reordering various products or generating reports. The following
subsection gives a brief overview of the Trading System and its hardware parts.
The required use cases will be presented in the subsections to follow. The descrip-
tion is based on Chap. 1 [29] and the rCOS solution [13] of the final workshop
proceeding [79].

4.1 The Hardware Components

Software components run on or controls hardware components and their inter-
actions. The Cash Desk is the place where a Sales Assistant/Cashier scans the
product items which a customer wants to purchase and where the payments
(either by credit card or cash) are carried out. Furthermore it is possible to
switch to an express checkout mode which allows only costumers with a few
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Fig. 2. Hardware components of a single Cash Desk.

items and cash payments to speed up the checkout process. To manage the
processes at a Cash Desk a lot of hardware devices are necessary (See Fig. 2).

Using the Cash Box, which is available at each cash desk, a sale can be
processed from the start to the end, through the interactions between the Cashier
(a human actor) and the customer (a human actor), and between the Casher and
the system under design. The cash payment process needs to involve the cash
box. To handle payments by credit card, a Card Reader is used. In order to
identify all product items the Customer are purchasing the Cashier uses the Bar
Code Scanner. At the end of the process a receipt is produced using a Printer.
Each cash desk is also equipped with a Display to let Customer know if this cash
desk is in the express checkout mode or not. The central unit of each cash desk
is the Cash Desk PC which interfaces to all the hardware components. This PC
also runs the software which is responsible for handling the sale process as well
as communication with the Bank for credit payment authorisation.

A single Cash Desk might be enough for the management of a small retail
shop. In general, a larger Store has several cash desks in a Cash Desk Line. The
cash desk line is connected to a Store Server which itself is also connected to a
Store Client as shown in Fig. 3. The store client can be used by the manager of
the store to view reports, order products or to change prices of goods. A Store
Server is also needed to hold the inventory of the corresponding store.

The Trading System can have even more components. Consider an enterprise
with a chain of supermarkets/stores. Then, the cash desk lines of the stores can
be connected to a server, called Enterprise Server. With the assistance of an
Enterprise Client the Enterprise Manager is able to generate several kinds of
reports. The enterprise system of a Store Chain is shown in Fig. 4.
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Fig. 3. An overview of a Cash Desk Line in a store.

Fig. 4. The Enterprise of a Store Chain with an Enterprise Server and an Enterprise
Client.

4.2 Functional Requirements and Use Cases

We describe the functional requirements using the very important notion of use
cases, though their precise definitions and systematic discussions will be left
to Sect. 6.1 in Part II. To show a moderate scale of complexity of the Trading
System, we introduce five use cases5 though we will not present the analysis and
design of all of them. In what follows, we present brief and informal descriptions
of these use cases.

UC 1 - Process Sale

Overview: A customer arrives at the Cash Desk with the product items to pur-
chase. The payment - either by credit card or cash - is performed. Involved
Actors includes Customer, Cashier, and Bank6.
5 CoCoME [29] has eight use cases.
6 In the CoCoME problem description [29], the hardware devices, such as Printer,

Card Reader, Cash Box, Bar Code Scanner, and Light Display, are also modelled as
actors that the software has to interact with. In our approach, they are separated
from the application logic and treated as a separate embedded system.
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Process: The normal courses of interactions between the actors and the system
are described as follows.

1. When a Customer comes to the Cash Desk with her items, the Cashier initi-
ates a new sale.

2. The Cashier enters each item, either by scanning in the bar code or by some
other means; if there is more than one of the same item, the Cashier can enter
the quantity. The system records each item and its quantity and calculates the
subtotal. When the Cash Desk is operating in express mode, only a predefined
maximum number of items can be entered.

3. When there are no more items, the Cashier indicates the end of entry. The
total of the sale is calculated. The Cashier tells the Customer the total and
asks her to pay.

4. The Customer can pay by cash, check, or credit card. If by cash or check, the
amount received is entered. The system records the cash payment amount
or the check and calculates the change; operating the Cash Box to put cash
or the check in and take cash out. If by a credit card, the card information
is entered. The system sends the information to the Bank for authorisation.
The payment succeeds only if a positive validation reply is received. In express
mode, only cash payment is allowed. After the payment is made, the inventory
of the store is updated and the completed sale is logged.

Alternative Courses of Events: There are exceptional or alternative courses of
interactions, e.g., if the entered bar code is not known in the system, the Customer
does not have enough money for a cash payment, or the authorisation reply is neg-
ative. A system needs to provide means of handling these exceptional cases, such
as cancel the sale or change to another way of paying for the sale.

In many books and papers, e.g., the chapter [29], use case descriptions include
preconditions and postconditions. However, no clear definitions are given to pre-
conditions and postconditions, or the definitions are confusing, specially some-
times the preconditions are confused with the notion of “guards”. Guards are
conditions for control flow and synchronisation. In our method, we do not have
preconditions and postconditions for use cases. Instead, we introduce notions
of preconditions, postconditions and guards of use case operations in Sect. 8 of
Part II. Examples of use case operations include “initiate new sale”, “enter item”,
“make cash payment”. We will give details on use case operations in Sect. 8 of
Part II.

UC 2 - Manage Express Checkout Mode

Overview: The Cashier should be able to switch the checkout mode between
“express mode” and “normal mode” by pressing a button at his Cash Desk.
Involved Actors includes Cashier only.
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Process: The normal courses of interactions between the actors and the system
are informally described as follows.

1. Depending on the current mode of the check out, the Cashier switches the
mode to “express” if it is currently “normal”.

Notice this is a one-step process. Unlike the description given in [29] where auto-
matic control of checking model is considered, we leave the decision of changing
mode to the human actor, Cashier. To automatically control this operation, the
human operator would be replaced by a digital operator triggered by a certain
condition. In this chapter, automatic control of hardware devices is not consid-
ered.

UC 3 - Order Products

Overview: For the purpose of inventory control in a store, products should be
ordered when the stock becomes low (determined by a threshold value). There
are two actors involved: Store Manager and Product Suppliers.
Process: The normal process of interactions of Store Manager and the Trading
System is as follows.

1. The Store Manager makes an Order (of Products).
2. The Store Manager enters the identities of the products, their amounts and

the identities of the corresponding suppliers to the system, one product at a
time.

3. The Order is saved in the system and the order is sent to Suppliers.

UC 4 - Receive Delivery of Ordered Products

Overview: When a delivery of ordered products arrives at the Store, the Store
Manager checks the correctness and completeness (compared to the order), and
then the inventory is updated. The Store Manager is the involved actor.

Process: The normal course of interactions is:

1. A Delivery of ordered products arrives at the Store.
2. The Store Manager checks the delivery against the order for correctness and

completeness.
3. The Store Manager updates the inventory of all the received products.

Alternative Courses of Events:

– Step 1: if the delivery is not correct (either the delivery contains products
not ordered, or larger amounts of some products delivered than ordered),
exception handling is needed.

– Step 2: if the delivery is not complete (either there are omissions of products
ordered or not enough amounts of some ordered products have delivered),
exception handling is needed.
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UC 5 - Product Exchange Among Stores. Consider an enterprise of a
chain of stores. If a store runs out of certain products and these products are
not available from their suppliers, it is possible for this store to ask the enterprise
management to check whether those products are available in some other stores.
If there is such a store, called a Providing Store, it will ship the requested
products to the store that asked for them. Notice that this use case involves
interactions among Requesting Server (i.e., the server of the requesting store),
Enterprise Server and Providing Server (i.e., the server of the providing store).

Overview: The Requesting Store Manager makes a query (similar to a Product
Order) at her Store Server. This Store Server sends the query to the Enterprise
Sever. The Enterprise Server then looks for a Providing Store, through inter-
action with the other servers at the stores of the enterprise. Once a Providing
Store is found, the product query is passed on to the Providing Store Server. The
Providing Store Server generates a delivery according to the product query and
send to the Requesting Store Server. The Providing Store ships the products to
the Requesting Store.

Process: The normal course of interactions is described as follows.

1. The Requesting Store Manager makes a query.
2. The Requesting Store Manager enters the identities and amounts, one at a

time, in the query.
3. After entering the last item, the Requesting Store Manager indicates the

Requesting Store Server to save the query and sends it to Enterprise Server.
4. Enterprise Server looks for a Providing Store through interactions with the

other Store Servers.
5. The Providing Store Server generates a delivery according to the query.
6. The Providing Store Server sends the delivery to the Requesting Store Server.

Alternative course of interactions:

– Step 2. If product identity is not known, raise exception handling.
– Step 3. If Enterprise Server is not available (in terms of communication and

system failures), exception handling (keep trying for example), raise exception
handling.

– Step 4. If no providing stores is available, exception handling, including com-
munication failures in finding a providing store, raise exception handling.

– Step 5. The delivery fails to be received by the Requesting Store Server (com-
munication error), raise exception handling.

Remarks

1. The enterprise server needs to realise a distributed algorithm to find a pro-
viding store. The algorithm should be efficient in terms of space and time
complexity, and implements a strategy that this economically optimal.

2. There is a use case for each store server to be designed and implemented
to receive the shipment of the goods against the delivery received from the
providing store server.
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3. The requirements description does not have to start with such a use case
involving interactions between a number of subsystems. We could instead
write use cases Prepare Query, Look for Providing Store, and Prepare for
Delivery. Then we analyse and design them in separation. We can then com-
pose (or integrate) them together with middleware.

In the CoCoME functional requirements description [29], three more use cases
are introduced. They are Show Stock Reports, Show Delivery Reports and Change
Price. These use cases are quite simple by themselves. However, they introduce
significant complexity to system integration. We also notice the descriptions of
the use cases involve hardware devices, such as printers, lights and cash boxes as
actors. However, in our approach we treat these hardware devices as an embed-
ded system separated from the application logic. They can be represented as
variables to be changed by the use case operations, such as “switch light” and
“print sale”.

The discussion of use cases in this section is rather ad hoc. Thus, it is impos-
sible to carry out systematic analysis and design. In the sections to follow, we
will introduce a definition of use cases, their presentations, and compositions for
requirements analysis.

5 Software Engineering Process in Brief

The model-driven approach we present combines object-oriented design and
component-based design. Although its principles and techniques of modelling,
analysis and design can be used in general software processes, this approach
supports especially seamlessly the use case driven Rational Unified Process [40].

5.1 Software Development Processes

Recall the view of software engineering introduced in Sect. 2 as being concerned
with the theories, methods and tools which are needed to develop software sys-
tems. Its aim is the production of dependable software, delivered on time and
within budget, that meets the user’s requirements. For all life cycles of the soft-
ware, that is reliable installation, operation and maintenance as well for the
development cycles, software development not only produces a working software
system, but also documents such as those of the requirements specification, sys-
tem design, user manual, and so on. For the development of a software system
of a certain scale of complexity, there is a need for an engineering process which
allows techniques and tools of software methods to be used effectively and sys-
tematically (See Sect. 2 about the 2nd attribute of software complexity).

All engineering is about how to produce products in a disciplined process.
In general, an engineering process defines who is involved in the process, which
products is being produced, what and when activities of the process happens,
and which and when techniques and tools are being used for the production of
what artefacts. A process to build a software system and its documents or to
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enhance an existing one is called a software development process. A software
development process is thus often described in terms of a set of activities needed
to transform the user’s (or client’s) requirements into a software system. At the
highest level of abstraction, a development process is in general an iterative of
activities that can be depicted in Fig. 5.

Fig. 5. Software development process

The client’s requirements define the goal of the software development. They
are prepared by the client (sometimes with the help from a software engineer) to
set out the services that the system is expected to provide, e.g., the functional
requirements of the Trading System described by the sue cases in Sect. 4. Apart
from functional requirements, a client may also have non-functional constraints
they would like to place on the system, such as the required response time or
the use of a specific language standard. In this chapter, we are mainly concerned
with functional requirements.

We must bear in mind about the following facts, as demonstrated in the
description of the Trading System, which make the requirements capture and
analysis very difficult:

– The client’s requirements are often incomplete.
– The client’s requirements are usually described in terms of concepts, objects

and terminology that may not be directly understandable to software engi-
neers (cf. first attribute of software complexity discussed in Sect. 2).

– The client’s requirements are usually unstructured and they are not supposed
to be rigorous, without redundancy, vagueness, and inconsistency.

– The client’s requirements may not be feasible, as one cannot expect a client
to know as well as software engineers, about theories of computability and
computational complexity, and about state of the art of computer technolo-
gies.

Therefore, any development process must start with the activities of capturing
and analysing (part of) the system requirements based on the client’s require-
ments. These activities and the associated results form the first phase (or sub-
process) of the process called requirements gathering and analysis.
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5.2 Requirements Gathering and Analysis

This phase is to develop a good understanding of the application domain and
capture the right requirements for the system to design. It is the first step aim-
ing the development towards an adequate system7. The goal is to produce the
artefact called the requirements specification. The whole scope of requirements
capture and analysis forms requirements engineering. Here, we briefly discuss
the main activities needed and the essential attributes of artefacts produced
by the activities. We study object-oriented and component-based techniques for
requirements capture and analysis in Sects. 6.1–8 in Part II.

First of all, the requirements specification will be used as

1. a fairly full model of the requirements for the system to design;
2. a contract agreed between the client and the system development organisa-

tion, also called the project developer;
3. a basis for requirements validation including prototyping, simulation, reason-

ing (for correctness and completeness), and verification of desired properties
of the specification;

4. a basis for design and system verification:
– test cases should be made against the specification, and
– test cases should be designed to cover all the crucial services required;

5. a basis for system evolution.

To produce a requirements specification with the above attributes, requirements
analysts need notations, techniques and tool support to carry out the following
highly iterative interrelated activities, involving discussions and collaborations
with the client, the application domain experts, and the potential system users.

– Domain understanding. The analysts must develop their understanding of
the application domain. Therefore, the concepts are explored and the clients’
requirements are elicited.

– Requirements capturing. The analyst must have a way of capturing the
clients’ needs so that they can be clearly communicated to everyone involved
in the project. Skills of abstraction are important to capture the essence and
ignore the accidental details.

– Classification. This activity takes the unstructured collection of require-
ments captured in the earlier phases and organises them into coherent clus-
ters, and then prioritises the requirements according to their importance to
the client and the users.

– Validation. This is to check if the requirements are consistent and complete,
and to resolve conflicts between requirements.

– Feasibility study. This is to estimate whether the identified requirements
may be satisfied using the software and hardware technologies, and to decide
if the proposed system will be cost effective.

7 There can be a number of adequate systems, as discussed in Sect. 2 about the 3rd
attribute of software complexity.
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There are no rigid rules on when requirements analysis is completed and the
development process proceeds into the next phase. It is helpful, however, to ask
the following questions before the development progresses moving into the next
phase:

– Has the system requirements been understood by the clients, end-users, and
the developers?

– Has a fairly complete model of the requirements been built? This model
specifies what the system must do in terms of

• available functions (or services),
• inputs and outputs, and
• necessary data.

– Are the functions and data correct and complete, and how are they related?
To check this, fast prototyping for validation is often used.

Precise and systematic statements of these questions and development of their
answers require notations for requirements description and techniques and tools
for their analysis. In Sects. 6.1–8 of Part II, we will introduce these notations and
techniques, and demonstrate how they are used in the requirements analysis of
the Trading Systems. They are largely based on the notion of use cases and
structures of conceptual classes, the UML notations and tool support. Rigorous
requirements specification and analysis (i.e., mathematical based analysis) fall
into the scope of formal requirements specification and analysis. In summary, we
make two remarks on requirements analysis:

– The requirements specification is the official statement of what is required
of the system to be developed. It is not a design document and it must
state what to be done rather than how it is done. It must be in a form
which can be taken as the starting point for the software development. For
this, specification languages, including graphic notations, are often used to
describe the requirements specification.

– The requirements capture and analysis phase is important, as an error which
is not discovered at the requirements analysis phase is likely to remain undis-
covered, and the later it is discovered, the more difficult and more expensive
is it to fix.

5.3 System Design

After the requirements specification is produced through requirements analy-
sis8, it undergoes iterative cycles of architectural design and detailed design. In
the architecture design of a cycle, part of the requirements are partitioned into
interconnected components which are specified in terms of their interfaces and
the contracts of the interfaces. This results in an architectural design document.
Then each component undergoes its detailed design, to decide how each com-
ponent does what it is required to do by the contracts of its interfaces. The
8 It is not necessarily for the overall requirements analysis to be completed before

design activities can start.
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architectural design is in general an abstract and implementation independent
high level platform independent (PIM), defining the functionality and interface
of each component. The detailed design is a low level PIM and it is desirable
that an implementation can be generated once the programming language and
system platform are given.

In Sect. 10.1 of Part III, we show how the architecture design is derived from
the use case analysis and decomposition. The artefact produced there is the
architectural design document called an architectural model, consisting of some
component-based diagrams and the models of component interface contracts. In
Sect. 11 of Part III, each component is designed using five design principles of
responsibility assignments to objects [42], resulting in a detailed design model.
The model of the system at this level is a low level PIM and it can be seen as a
template program modules.

Correctness of Detailed Design. Verification of the design of the architec-
tural components should be in general done against the specification of the com-
ponents in the system architectural model. There are few effective techniques
and tools for this correctness assurance if the model of the architecture and
the models of the detailed designed components are informal. In formal meth-
ods, the verification of a low level design model can to some extend be done by
logic reasoning, and automatically checking the low level model satisfies specified
properties of the high level model using model checking techniques and tools.

Implementation and Unit Testing. After the design of the system archi-
tecture and the (detailed) design of the architectural components, each of the
designed components is realised as a program unit. Each unit then must be either
tested against its specification obtained in the design stage - unit testing, or for-
mally verified using techniques and tools of automatic static analysis, dynamic
analysis, and model checking.

System Integration and System Testing. The individual program units
representing the components of the system are combined and tested as a whole
to ensure that the software requirements have been met. When the developers are
satisfied with the product, it is then go through acceptance testing. This phase
ends when the product is accepted by the client. System testing plan must be
made and test cases must be designed according to the system requirements
specification.

Operation and Maintenance. This phase starts with the system being
installed for practical use, after the product is delivered to the client. It lasts
till the beginning of system’s retirement phase, which we are not concerned in
this chapter. Maintenance includes all changes to the product once the client
has agreed that it satisfied the specification document. Traditionally, corrective
maintenance (or software repair) and enhancement (or software update) are the
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main concerns. Corrective maintenance involves correcting errors which were
not discovered in earlier stages of the development process while leaving the
specification unchanged.

Modern software systems, however, are ever evolving, as their operation envi-
ronments are constantly changing. Evolutionary changes include legacy com-
ponents being upgraded or removed, and new components being integrated.
These different components are often implemented and deployed on different
platforms, and are interacting via different communication technologies and net-
works. Therefore, the maintenance process of modern systems now become dif-
ferent cycles of requirements analysis, design, implementation and integration.
The method that we will introduce in later sections is characterised as use case
driven and component-based design, with interfaces as a first concepts. This
method provides effective support to the development of modern evolutionary
software systems.

Fig. 6. Software development process

Waterfall Model of Development Process. According to the software devel-
opment activities discussed in the earlier subsections, a development process is
often organised into the so-called “waterfall model” depicted in Fig. 6. However,
variants and extensions of the waterfall model are used in practical software
system development, such that

– The stages in the waterfall model overlap and feed information to each other:
during design, problems in requirements are identified; during coding, design
problems are found and so on. Therefore, the development process is not a
simple linear model but involves a sequence of iterations of the development
activities.
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– Sometimes it is quite difficult to partition the development activities in a
project into these distinct stages.

– The waterfall model is often extended with validation and/verification activ-
ities/phases which are often inserted between two consecutive steps of the
water fall model, and this extension model is called the V-model of develop-
ment process [76].

The waterfall model can be used for some statistic studies about the software
development. It mainly serves us for organisation and terminology of the discus-
sions of the development activities and models of artefacts.

Our approach, being as the background motivation for and the informed
practical approach by the development of the rCOS formal methods, supports
the principle of correct by construction and improved assurance by validation
and verification. Also, the construction identifies the obligations of validation
and verification. In this chapter, we focus on model construction without the
space for enough model validation and verification.

6 Part II: Requirements Modelling

6.1 Requirements Gathering and Analysis - Use Cases

From the perspective of model-driven development, software engineering trans-
forms a real world application model to a model in the digital world that satisfies
the application requirements. The first step is thus to build and analyse an ade-
quate abstract model of the real world of the application. The application domain
is usually described in terms of domain processes, also called business processes.
These processes carry out operations on and involve interactions among objects
so that objects are created, recorded, destroyed, changed and transmitted.

The operations and processes are carried out in an organisation or a structure.
We will consider the structure at two levels of abstraction. The structure at the
higher level of abstraction is formed by the processes and their relations, and this
structure supports the interactions among the processes. The structure at the
lower level supports the interaction among the objects involved in the execution
of operations. The structures for processes interactions are component-based;
and the structures for object interactions are object-oriented, are formed by
objects and their relations.

We study an approach to build models for analysis, design and verification
with these two kinds of structures and their relations. Thus, our approach is
a combination of object-oriented and component-based modelling and analysis,
driven by the domain processes. The main ideas are to model domain processes
by use cases, and real world concepts and objects by classes and with relations
between classes as associations. The classes and their associations will form a
conceptual class model of the domain. The structure of the domain processes is
represented by a component-based model of the architecture. The main points
discussed in this section are: use case descriptions of domain processes, and use
case diagrams for representing relations between use cases as well as actors and
between use cases.
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6.2 Use Cases

A key point in object-oriented analysis is decomposition by classification of the
domain objects and their relations. An important technique to help in identi-
fying and understanding domain concepts and objects and their relations is to
inspect the domain processes. We use a use case for a narrative description of
a domain process in terms of interactions between the users and the system.
Domain processes that are required to be automated by the software must be
done no matter which software requirements engineering approach is used in a
software project. For example, the concept of use cases is similar to viewpoints
in structured software requirements analysis.

Roughly speaking, a use case is a story board that tells how users carry
out a business process (or a task). Here a ‘system’ does not have to be a digital
system. It can be, for example, a paper based manual system. A ‘user’ does not
have to be a human actor either. It can be, for example, a device or a digital
system. More precisely, a use case describes possible sequences of interactions
by some types of users using some of the system functionality to complete a
process. Such a type of user is called an actor. An interaction is an happening
of an operation by a user on the system or a message from the system to an
actor.

A given user may have several roles and thus be different actors when inter-
acting with the system. For example, a Store Server can act as a Requesting
Store Server or as a Providing Store Server. On the other hand, several individ-
ual users may act as different instances of the same actor. For example, there
can be many individual Cashiers. Therefore an actor represents a coherent role
in using the system, rather than representing a particular individual or entity.
In other words, an actor represents a type of users of the system. Actors are
external to but interacting with the system. A use case is always initiated by
some possible initiator actor. The actors that directly interact with the system
are direct actors.

An actor interacts with the system by sending messages to and receiving
messages from the system. For examples, a Cashier sends a message to record
an item, and the system sends a request to actor Bank for authorising a credit
payment. We make the following remarks on use cases.

– Use cases describe functional requirements of the system from the actors’ per-
spective, stating what the actors do to use the system for realising application
tasks.

– Each use case uses part of the functionalities of the system, providing a nat-
ural divide and conquer strategy and helping to identify system components.

– Actors form the external environment of the application; they define the
boundary of the system under design. This offers a basis for interfaced-
oriented design of ever evolving systems, such as cloud-based systems, IoT,
and CPS [39,43].
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These features show that the use case driven approach is consistent with David
Parnas’ Four Value Model9, and share the similar philosophical thinking to
Michael Jackson’s Problem Frames10.

Identifying Use Cases. It is not in general easy to capture the use cases for an
application. This obviously needs close collaboration between the requirements
analyst and the domain expert. There are two approaches to find use cases, and
they are often used together in practice.

1. Actor-based
(a) identify the actors related to the system in the organisation, i.e., look at

which users in the organisation will use the application and which other
systems must interact with it; and

(b) for each actor, identify the processes they initiate or participate in by
reviewing how the actor communicates/interacts with the application.

2. Event-based
(a) identify the external events that a system must respond to, and
(b) relate the events to actors and use cases.

For example, in the Trading Systems the five uses case are easily identified
through the actors Customer, Cashier and Store Manager. On the other hand, a
use case for automatic checking the inventory of products and generating an alert
to Store Manager can be identified by the alert and then this event is related to
a “timer” as the initiating actor.

To identify use cases, we need to read the existing requirements from an
actor’s perspective and interact with those who will act as actors. It is necessary
to think and discuss questions like:

– what are the main tasks of the actor?
– which of these tasks can be automated, and with what added values?
– will the actor have to read/write/change any of the system information?
– will the actor have to inform the system about outside changes?
– does the actor wish to be informed about changes?

6.3 Incremental Use Case Analysis

Capturing, understanding and describing use cases go hand in hand, and in an
incremental manner. Taking the example of the Trading System introduced in
Sect. 4 in Part I. Customer and Cashier are obviously associated with an use
case Process Sale. After the identification of these actors and this use case, we
can write down our initial understanding of this process as an overview below.

Use Case: Process Sale
Actors: Customer, Cashier
9 http://en.wikipedia.org/wiki/DavidParnas.

10 https://en.wikipedia.org/wiki/Problem frames approach.

http://en.wikipedia.org/wiki/DavidParnas
https://en.wikipedia.org/wiki/Problem_frames_approach
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Process of Interactions:
1. Customer arrives at the Cash Desk with items to purchase.
2. Cashier records the purchase items and collects payment.
3. On completion, Customer leaves with the items.

This overview is a rather abstract description, but it contains significant infor-
mation about what this use case does as well as the what actors are involved.

Consider, as another example, a software system used in a university library.
An actor Librarian is easily identified in the application, and then another actor,
Member (of the library) that defines the people who use the library. A possible
use cease is to register a member. We write the following overview of the use
case.

Use Case: Register Member
Actors: Member, Librarian
Process of Interactions:

1. Member arrives at the reception desk with identification.
2. Librarian records the personal details and issues a card.
3. On completion, the Customer leaves with the card.

In the same way, we can identify more use cases and their actors for both the
Trading System. A use case is a complete course of interaction events described
from the users’ perspective. This is a very important property of use cases, avoid-
ing writing partial business processes as use cases or arbitrarily combining use
case.

To support incremental development of use case documentation, we use the
following structured format proposed in Larman’s textbook [42] for writing
overviews of use cases.

Use case: Name of use case (use a phrase starting with a verb)
Actors: List of actors
Purpose: Intention of the use case
Overview: A brief description of sequence of events in the process
Cross References: Relations to other use cases and artefacts for traceabil-

ity

Example. As an example of incremental use case analysis, we first consider a
simpler version of Process Sale of the Trading System, which handles sales with
cash payment.

Use case: Process Sale with Cash Payment
Actors: Customer (initiator), Cashier (direct actor)
Purpose: Capture a sale and its cash payment
Overview: A customer arrives at the cash desk with items to

purchase. The cashier records the purchase items and
collects the cash payment. On completion, the Cus-
tomer leaves with the items

Cross References: Restricted case of use case Process Sale
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Notice in the above representation, the nouns that represent important concepts
and objects in the domain are written in bold so that they will be identified as
classes later when we develop the class model of the domain. This approach is
suggested to adopt in practical project development. Also, some important verbs
are emphasised, such as records and collects. They indicate possible interaction
events.

The above high level overview use case, with only a couple of significant
concepts (nouns) and interactions (verbs), does not contain sufficient information
for identifying enough interaction events, concepts and objects. Further analysis
of a high level use case through meeting with domain experts and end users
are needed to refine it to a detailed use case, called an expanded use case in
[42]. The refinement focuses on details about the interaction actions between the
actors and the system and information about:

– input data an actor provides to the system when performing an interaction,
– data that an actor receives after an interaction,
– what the system does when an actor performs an interaction action, e.g.,

what objects are created, data updated, checked or read11,
– the main course of actions and the time when exceptions may occur and how

to handle them, and
– invariant properties that are preserved by the actions, including specific safety

properties of the business process.

For expanded use cases, we also follow the structured format for their documen-
tation proposed in Larman’s textbook [42], which extends a high-level use case
with a section of typical course of events and a section of alternative courses of
events (or exceptions), respectively. The typical course of events is presented in
an style of a conversation between the (direct) actors and the system.

Expanded Use Case Process Sale with Cash Payment

Use case: Process Sale with Cash Payment
Actors: Customer, Cashier
Purpose: Capture a sale and its cash payment
Overview: A customer arrives at the cash desk with items to pur-

chase. The cashier records the purchase items and collects
the cash payment. On completion, the Customer leaves
with the items

References: Restricted case of use case Process Sale

11 This is the basis for identification of postconditions of an operation in Sect. 8.
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Typical Course of Events

Actor Action System Response

1. This use case begins when the
Customer arrives at Cash
Desk with items to purchase.

2. Cashier starts a new sale. 3. Creates a new sale.
4. Cashier records the identifier

for each item.
5. Determines the item price and

adds the item information
to the running sale transac-
tion.

If there is more than one
item, the Cashier may enter the
quantity as well.

The description and price of
the current item are presented.

6. On completion of item entry,
the Cashier ends item entry is
completed

7. Calculates and presents the sale
total.

8. Cashier tells the Customer the
total.

9. Customer gives a cash
amount, possibly greater
than the sale total.

10. Cashier records the cash
amount received amount.

11. Shows the balance due back
to the Customer. Generates a
receipt.

12. Cashier deposits the cash
received and extracts the
amount back.

13. Logs the completed sale.

Cashier gives the balance owing
and the printed receipt to the
Customer.

14. Customer leaves with the items
purchased.
Alternative Courses

– Line 4: Invalid identifier
entered. Indicate error.

– Line 9: Customer didn’t have
enough cash. Cancel sales
transaction.

This is slightly different from the use case “Buy Items with Cash” in Larman’s
book [42]. There, there are no steps 2 and 3 to start a new sale. Instead, these
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two steps and the following steps 4 and 5 are combined into the following step
of interaction.

2. Cashier records the identifier
for each item.

3. If it is a new sale creates a sale.
Determines the item price and
adds the item information
to the running sale transac-
tion.

This shows that a business process can be represented by use cases with differ-
ent sequences of interactions. The decision on which one should be selected in
the requirements specification needs to be made by the client and the project
enveloper together. For complex cases, validation, say by prototyping or scenario
plays, should be conducted to help the decision making. Experience from teach-
ing shows that our slightly longer use case description is easier to formulate, and
there is a general pattern that a use case often has a ‘start’ operation by a direct
actor. For example, ‘start to register a new customer’, and ‘start to make a new
order’. On the other hand, after one use case is described and understood, it
may be changed into another acceptable by further decomposing interactions or
combining interactions12.

Remarks. A use case description always implies, explicitly or implicitly, assump-
tions on the functionalities of the use case. Significant assumptions are better
to be stated clearly for the sake of further refinement. The above stated Process
Sale with Cash Payment makes the following assumptions:

– there is only one cash desk;
– there is no inventory management;
– no tax calculations (that is needed in the U.S.) or coupons;
– no record maintained of customers (some important business analysis or

analysis of customer’s buying habits (related to big data);
– no control of the cashbox;
– name and address of store are not shown on the receipt; and
– Cashier ID and CashDesk ID are not shown on receipts.

The given simplified Process Sale with Cash Payment can be refined step by
step by adding more details to remove these restrictions. This can either be
done at the requirements gathering and analysis phase, or in another cycle after
the design, or even after the implementation, of this simplified use case.

Writing a good use case description requires experience, but we do not
have the luxury of space for more examples. Readers can practise on the other
use cases of the Trading Systems, use cases of a Library System, or an ATM
system. For example, one can identify and describe the use cases of Check
Balance, Deposit Money, Withdraw Money, and Transfer Money. More exam-
ples of us ceases can be founded in textbooks on use-case driven development
processes [40].
12 Though the use case of Process Sale with Cash Payment and the use case of Buy

Items with Cash [42] are both adequate, one is not a refinement of another by formal
theory of refinement or process simulations.
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6.4 Use Case Diagrams

A use-case diagram represents a set of use cases, actors, and their relationships.
In a use case diagram, as the one shown in Fig. 7, an oval represents a use case, a
stick figure represents an actor, a line between an actor and a use case represents
that the actor initiates and/or participates in the process13. The diagram shows
three simple use cases of the Trading System.

Fig. 7. An example of a use case diagram

We are not going to give the full definition of the syntax of the UML use case
diagrams, as they can be found in many books and on many websites. We focus
on the use of the modelling notation, thus we introduce the syntactic features
that we need along with our discussion. Use case diagrams offer a means of
organising use cases into groups such that the use cases in a group are logically
related in the application domain. In Sect. 10.1 in Part III, each use case is
modelled as a component that can be further decomposed into subcomponents.
Also the components of the use cases in a use case diagram can be composed
into a composite component.

6.5 Use Case Composition

Composition is essential in incremental development, just as decomposition is
essential for divide and conquer. Now we show how to decompose large use cases
into compositions of smaller ones. As an example, it is not difficult to see that
the sequence of actions from steps 9 to 13 in the use case Process Sale with
Cash Payment can be treated as a (sub-)use case, which we call Pay by Cash. In
the same way as we identify and describe Pay by Cash, we can have two more
use cases Pay by Credit and Pay by Check, both in addition to Cashier and

13 The diagram, as many of the other UML diagrams in this chapter, is pro-
duced by using Visual Diagram www.visual-paradigm.com/features/uml-and-
sysml-modeling.

www.visual-paradigm.com/features/uml-and-sysml-modeling
www.visual-paradigm.com/features/uml-and-sysml-modeling
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Customer involving actor Bank for payment authorisation. We write the typical
course of events and alternative courses of Pay by Credit as follows.

Typical Course of Events

Actor Action System Response

1. Customer tells Cashier she wants
to pay by credit.

2. Cashier request for credit autho-
risation with card information
and the total of the sale.

3. Sends Bank the credit autho-
risation request.

4. Bank sends back credit payment
approval.

5. Logs the complete sale and
generates the receipt.

Alternative Courses

– Line 4. If credit payment authorisation is denied raise exception.

This example also shows tricky decisions on the levels of abstraction. In the above
description, the credit payment is decomposed into two phases of interactions:
Cashier asks the system to enter a state for credit authorisation with the required
input data, the system sends the authorisation request to Bank, Bank sends back
the approval to the system and the system completes the payment and logs the
sale. If PIN is required for the authorisation, Customer should also be a direct
actor, and more interactions are required. One can also decide that the action
of the sending the requests by the system to Bank for the credit authorisation
will return a value that can be seen by Cashier. In this case, step 4 is changed
to Cashier indicates the system to complete the payment. One can also decide to
make the credit payment as one atomic step of interaction as follows.

Typical Course of Events

Actor Action System Response

1. Customer tells Cashier she wants
to pay by credit.

2. Cashier records the credit pay-
ment information.

3. Sends the credit payment to
Bank for authorisation. If the
request is approved, it com-
pletes the payment.
Logs the complete sale, and
generates receipt.

Alternative Courses

– Line 2. If credit payment authorisation is denied, raise exception.
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We will later see these different decisions also lead to different models of use
case sequence diagrams, state machine diagrams, and contracts of the interaction
operations. They also encounter theoretical problems. For example, the contract
of the above ‘big’ operation of “records the credit payment” is hard to define
as its execution involves calling for services, and the precondition relies on the
result of the authorisation request from Bank.

Now we can use the three use cases for handling payments to form the general
Process Sale use case, for which the typical course of actions is as follows.

Typical Course of Events

Actor Action System Response

1. This use case begins with a Cus-
tomer arrives at the Cash Desk
checkout with items to purchase.

2. Cashier indicates the system to
start a new sale.

3. Creates a new sale.

4. Cashier records the identifier
from each item.

5. Determines the item price and
adds the item information to
the running sales transaction.

If there is more than one of the
same item, Cashier can enter the
quantity as well.

The description and price of the
current item are presented.

6. On completion of the item
entry, Cashier indicates to the
CashDesk that item entry is com-
pleted.

7. Calculates and presents the sale
total.

8. Cashier tells Customer the total
9. Customer chooses a payment

method: (a) If cash payment, ini-
tiate Pay by Cash. (b) If credit
payment, initiate Pay by Credit.
(c) If cheque payment, initiate
Pay by Cheque.

10. Logs the completed sale.
And prints a receipt.

11. Cashier gives the printed receipt
to the Customer.

12. Customer leaves with the items
purchased.

A composite use case can be represented in a use-case diagram as shown in Fig. 8.

Remarks. About use case composition and decomposition.

1. In general, a use case may contain decision points. If one of these decision
paths represents the overwhelming typical case, and the others alternatives
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Fig. 8. Use case diagram for composite use cases

are rare and exceptional, then the typical case should be the only one in the
Typical Course of events, and the alternatives should be in the Alternative
Courses section. However, if the decision points represent alternatives which
are all relatively common, then they appear as individual use cases in the
main use case, such as Process Sale.

2. A use case represents a complete business process. It is not right to break a use
case into arbitrary sequences of interactions. Neither is it right to compose
arbitrary use cases to form a bigger one. For example one should not put
Process Sale and Refund Item together to form a use cases.

3. Later, we will represent each use case as a component to provide services
(interfaces) to it actors, and a composite use case corresponds to a component
composed of the components of the sub-use cases. However, use case diagrams
do not model interfaces of components. We introduce component diagrams in
Sect. 10.1 of Part III.

6.6 Use Case Analysis in Development Process

The key steps for capturing and describing use cases are as follows.

1. Identify actors and use cases according to business (or domain) processes.
2. Carry out incremental use case analysis: from abstract high level to expanded

versions with data to input, output, store and update.
3. Decompose and compose use cases.
4. Analyse and document the explicit and implicit assumptions made by each

use case.
5. Rank use cases for project planning.
6. Present use case diagrams to group use cases belonging to business processes.

Write the expanded version most critical, influential and risky use cases to better
understand and estate the nature and size of the problem.
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The Significance of Use Cases Analysis

– Use cases answer the question what the system should do it in terms of
what the system should do for each user/actor. They therefore identify the
functionalities/services that the system provides to its users, and help to
remove functionalities that do not have added values.

– Use cases identify relations among the system services/functionalities, as well
as the required system services/functionalities. Therefore, services and func-
tionalities are related in the processes to which they contribute.

– Use cases also relate functionalities and services to concepts and objects in
the application domain. As illustrated in the next section, these concepts and
objects are essential in modelling the structure of the system, and are later
in the design realised as software classes and objects.

– Use cases are also used as “placeholders” for non-functional requirements
(now widely called extra functionality), such as performance, availability, tim-
ing constraints, accuracy, and security requirements that are specific to a use
case. Consider the use case Pay by Credit: It may be required that the autho-
risation result will be received in 30 s after the cashier makes the authorisation
request. We will not discuss non-functional requirements in this chapter.

Relation to the rCOS Formal Method: The use case descriptions are purely
textual and the use case diagrams are only a static organisation of the use cases.
The analysis and description are not direct related to any formal techniques
for requirements analysis. However, the conversational style presentations of the
expanded use cases form the basis for obtaining the use case sequence diagrams
in Sect. 8, and the use case diagrams will be further refined into component-based
architecture models in Sect. 10.1. Both sequence diagrams and component-based
model of architectures can be formalised in rCOS. However, we refer the reader
to the paper [49,59] on a model of formal and use case-driven requirements
analysis in the UML.

7 Requirements Modelling and Analysis – Conceptual
Class Model

An important activity in object-oriented requirement analysis is to identify the
domain concepts and their relations to create a conceptual class model of the
domain14. The term “domain” covers the application area, e.g., the supermarkets
in the Trading System case study. This section introduces the principles and
techniques for identifying concepts which are meaningful in the problem domain,
and the notation for representing them as a conceptual class model. The main
objectives of this section are to
14 A “conceptual model” is also called a “domain model”. A conceptual model can

also be seen as an ontology model does in information systems, but it is the part of
the ontology model that contains only the concepts and relations relevant for the
requirements of the system under design.
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– understand the concepts of classes, associations and attributes;
– identify classes, their attributes and associations in the problem domain;
– understand the defining properties of objects that are important for distin-

guish objects from attributes of objects;
– define class diagrams and their use;
– understand the relevance and consistency relation between the conceptual

model and the use cases model of a project.

The artefact that domain concept analysis produces is the conceptual class model
mainly formed by packages of conceptual class diagrams.

7.1 Concepts in Conceptual Models

Object-orientation supports divide and conquer by dividing the problem domain
in terms of interrelated individual concepts and their objects. These concepts and
objects are meaningful in the application domain and they are relevant to the
required business process.

A concept is an idea, a thing, or a set of objects. More formally, a con-
cept is considered in terms of three defining elements: symbol, intension and
extension15:

– A symbol, in the form of words (or images) is used to refer to the concept
when communicating and discussing about the concept.

– The intension is the definition of the concepts, this is, what the concept
intents to define.

– The extension consists of the individual examples or instances to which the
definition of concept applies.

From now on, we use instance or object to refer an individual example of a
concept. We also use use cases and business process as synonyms, though the
latter is more often used in the context of the domain discussion.

Considering the realisation of “business processes” involves “objects” in the
application domain and their “interactions”, the above understanding of the
term “concept” is fundamental to object-oriented modelling and analysis. For
example, in the descriptions of Process Sale with Cash Payment, the concepts of
“Store”, “Sale”, “Product Item”, and “Cash Payment” are used. This implies that
some instances of these concepts are involved in the execution of the process
represented by this use case. The concepts which have instances involved in the
realisation of a business process are said to be relevant to the use case. For
another example, in the student management system of a university, the symbol
Module is used to refer to the concept that has

– the intension to “represent a course offered as part of a degree in that uni-
versity” with a code, title, and number of credits;

– the extension of all the individual modules being offered in the university.

15 This is similar to intentional and extensional definitions of sets in mathematics.
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Consider the concepts of “university” and “degree”. Instances of “module” are
parts of instances of “degree”, and instances of “degree” are parts of instances
of “university”. Concepts and objects are defined in terms of other concepts, thus
objects have hierarchical structures. Concepts also have attributes and concrete
values of an attribute define a property of an individual instance. For examples,
“Student” has name and age, and Module has code, title and credit; and a student
with name John Smith and age 19. Actions in a use case may create (say when a
student is enrolled) or destroy (say if a student is expelled from the university)
instances of relevant concepts, as well as changing properties of existing instances.

Also, concepts are related to each other so that their instances can interact with
each other in a use case execution. In the student management of a university, for
example, Student and Module are related by a relation “Student Takes Module”. The
relation between concepts also defines a means for navigating from one object to
the other. For example from a student instance, one can find about the modules
that the student “takes”. The attributes of relevant concepts of a use case are called
relevant attributes to the use case if they are maintained, manipulated and trans-
mitted in the use case, and relations among the relevant concepts that supports
the interactions in the use case execution are the relevant relations.

Concepts can have numerous attributes and relations, abstraction is about to
only include the relevant concepts, attributes and relations, excluding anything
irrelevant. This is a general object-oriented principle of modelling and design
known as “the need to know principle”.

In modelling requirements and designs, it is important to differ attributes of
classes from associations between classes, and properties (values of attributes) of
objects from relations (links of associations) between objects models. Attributes
in general take simple values, instead of relating complex domain objects. It is
common in object-oriented programming languages that associations are repre-
sented as attributes by pointers or references that have object types. However,
associations do not have to be implemented by pointers or references, e.g., in
relational databases.

7.2 Classes and Class Diagrams in the UML

UML proposes a graphic modelling notation for class diagrams that mod-
els concepts as classes, e.g., in Fig. 9a, their conceptual attributes as class
attributes (also called members in object-oriented programming languages),
and relations between concepts as associations, e.g., in Fig. 9b.

Objects. Each instance in the extension of a concept is modelled as an object
of the class that models the concept. The notions of classes and objects are
interwoven as any object belongs to a class. The differences are: an object is a
concrete entity exists in space and time (persistence property of objects); a class
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Fig. 9. UML classes, attributes and associations

is a model or type for a set of objects. In the UML, an object is represent16, as
in Fig. 10.

The UML definition of a class is a description of a set of objects that share
the same attributes, operations, methods, relationships, and semantics. This is
the notion of type correctness of an object with respect to its class, covering
classes used at all stages in an object-oriented development process, including
classes in object-oriented programs. For requirements analysis, we focus on the
classes, their attributes and relations for modelling the conceptual structure of
the domain. The operations of the classes, which are more closely related to the
functionalities of the use cases, are designed latter after further analysis of the
behaviour of the use cases.

Fig. 10. Objects in UML

16 The UML Visual Paradigm tool does not support object-diagrams in the way that
we want to use them. Here we abuse the Visual Paradigm class diagram by prefixing
the class name with (optionally) a name followed a colon ‘:’ to represented the fact
that the instance has type of the class, and giving values to the attributes.
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The following characteristics of objects are important for identifying concepts
and objects, and for distinguishing between concepts and attributes.

– Object identity: Every object is distinguishable from every other object.
This is true even if two objects have exactly the same properties. For exam-
ple, two instances of Student may have the same name, age, doing the same
degree, in the same year, taking the same courses, etc. This means “complete
properties” of an object are not enough to identify an object.

– Object persistence: Every object has a life-time from it is created to it is
destroyed, and this characteristic implies the static nature of the system.

– Object’s behaviour: An object has dynamic behaviour and may act on
other objects and/or may be acted on by other objects. That is, the properties
of an object keep changing during its life-time. For example, a Sale object
can be created, it creates SaleLineItems objects, and it also creates its related
Payment object.

– Object state: An object may be in different state at different time and may
behave differently in different states. For example, the Sale instance can be
paid only when it is in the state “complete”.

An object in the real world can have many kinds of behaviour. For example,
a car can be made, repaired, driven, and stolen; carry passengers and carry
objects. However, only the behaviour that is exhibited in the required use cases
is relevant.

From the defining characteristics of objects we can see that, in the Trading
Systems for example, Product Item is a class but its attribute “price” is not, as
the properties of identity does not apply to prices (e.g., identical prices are not
distinguishable in the conceptual domain). Similar, one can identify the concept
of “Receipt”. It is subtle to decide if it should be modelled as an object or an
attribute. It should not be an object if it is not required in any use case to be
checked and/or changed. It should, however, be modelled as an object if receipts
carry details of information to be checked and changed, for example when they
are used for a Refund Item use case.

Identifying Concepts from the Application Domain: A central difference
between object-oriented analysis and structured analysis is decomposition by
concepts (objects) rather than by functions. Concepts and objects are gathered
from the client requirements documents and most importantly from the use case
descriptions. In concept and object identification, a useful and simple technique
is to identify the nouns and noun phrases in the textual descriptions of a problem
domain, and consider them as candidate concepts or attributes. Larman suggests
in his book [42] to use category lists of concepts to identify classes. This is
quite effective for experienced analysts. However, care must be applied when
these methods are used; mechanical noun-to-concept mapping is not possible.
Different nouns can represent the same concept, and different occurrences of a
noun in different context may on the other hand refer to the same concepts (a
fundamental interoperability issue in information systems). Also, nouns can be
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about attributes, events, or operations, none of which should be modelled as
classes. The defining characteristics of objects are always important in analysis
for deciding on concept candidates, and these should be considered in relation
to the use cases. This is the general principle of “the need to know” to follow in
modelling requirements, so as to identify the relevant concepts.

Concept Candidates in the Trading System: Following the principles of
conceptual modelling discussed above, the table of concept candidates in Fig. 11,
are (very likely) related to Process Sale with Cash Payment.

Fig. 11. Concept candidates for Process Sale with Cash Payment

The initial set of candidates may be incomplete and redundant. In later stages
of analysis and design of use case behaviours, these candidates of concepts and
the conceptual class models obtained need to go through a number of itera-
tion steps of refinement to add and remove classes, attributes and associations.
This relation between conceptual class models and use cases is formalised in
rCOS [27,55]. This relation is in principle the same as the “completeness of pro-
gram variable declarations with respect to the program body”, where omission
of variables could be detected by the compiler.

7.3 Associations

As shown earlier in Fig. 9, concepts are related, and object needs to be related
so as to interact with each other when involving in computations. A conceptual
model with only totally independent classes is useless.

In UML, an association is a relation between two classes that specifies how
instances of the classes can be linked to work together. Associations and classes
are at the type level of abstraction while, like objects being instances of classes,
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links are at the level of instances classes. An instance of an association is a
link between objects of the two associated classes. Therefore, objects in the
same class share the same relationships. For example, in Fig. 9, the association
Takes relates classes Student and Module. An individual student, whose name is
for example John Smith is linked with a particular module, which has the code
MC206 if this student John Smith takes Module MC206. This is represented by
an object diagram as shown in Fig. 12.

Fig. 12. Link between objects

The notion of type correctness of a link for an association can be defined
as for the type correctness of an object with respect to a class.

Multiplicities of Associations. For an association between classes, an impor-
tant information is about how many objects of one class can be associated with
one object of the other. We use multiplicity to represent this information.
Figure 13 shows the most often used multiplicity expressions and their mean-
ings.

Determining multiplicities often exposes hidden constraints built into the
model. For example, whether Works-for association between Person and Company
in Fig. 14 is one-to-many or many-to-many depends on the application. A tax
collection application would model the case when a person works for multiple
companies. On the other hand, a workers’ union maintaining member records
may consider second jobs irrelevant. Therefore, multiplicities represent part of
the business rules of the application. More examples of associations are shown
in Fig. 15.

There can be more than one association between two classes, and there can be
associations on a class itself. Whether an association is useful or not depends on
whether it provides a means for providing the objects with links to interact with
each other in the computations relevant to the use cases, i.e., “the need to know
principle”. In general, a link denotes the specific association through which one
object (the client) calls for the services of another object (the supplier). Figure 16
shows a partial class diagram for Process Sale with Cash Payment.

Roles of Associations. In a class diagram, each association connects two
classes, one at each end. They are called the roles of the association, which may
have role names. Naming a role in a conceptual model is sometimes useful,
especially for an association on a class itself. As shown in Fig. 17 for example,
the role names ‘boss’ and ‘worker’ distinguish two employees who work for a
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Fig. 13. Multiplicities

Fig. 14. Multiplicities depend on applications

company and participate in the Manages association. When we come to the
design and implementation of the system, roles provide a way of viewing an
association as a traversal from one object to the set of associated objects. In
Java, a role name is the reference to the instance of the class, as shown below
for role ‘employer’ of ‘Company’ in the association ‘Works-for’ of Fig. 17:
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Fig. 15. Example of class diagram

Fig. 16. Partial conceptual class diagram for Process Sale with Cash Payment

Fig. 17. Roles of an association

Class Person {
Company employer;
Person boss;
}

Through identification of concepts, associations and their multiplicities, roles
and using the UML notations, we build an initial conceptual class diagram for
the use case Process Sale with Cash Payment shown in Fig. 18. The associations
and multiplicities all represent assumptions on functionalities. For example, the
one-one association Is-Used-by between Catalog and Store rules out the possibility
of a Catalog being shared among stores. The completeness and correctness will
be further analysed along with the behaviour analysis of the use cases. Formal-
isation of the semantics of conceptual class diagrams are important for rigorous
checking [27,55].
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Fig. 18. Initial conceptual diagram for Process Sale with Cash Payment

7.4 Association Classes

A one-one association or a one-to-many association is easily t implemented in a
programming language by a pointer (C++) or a reference (Java) to an object
or a container object, respective. However, it is rather difficult to implement a
many-many association, such as the one in Fig. 19a. One solution is to use an
association class. This is shown in Fig. 19b. But the semantics of association
classes is rather difficult to define in the same way as for the other classes.
We thus propose to decompose a many-many association into a one-to-many
association and a many-to-one association as shown in Fig. 19c. Another example
is that we can decompose the many-many association Student Take Module into a
one-to-many association Student Takes Registration’ and a many-to-one Registration
Is-on Module. This is analogous to normalisation in relational data bases.

7.5 Aggregation Association

A special kind of relation between objects is the “part-of” relation, which share
important common properties. We call a “part-of” relation between two classes
an aggregation. For example, a “finger” is part of a “hand”, thus class Hand
aggregates class Finger. Similarly, a bicycle has as parts a frame, two wheels and
up to two lights. For most aggregations, the multiplicity at the composite end
may be at most one, and in this case the aggregation is called a composition.
In the UML, an aggregation is represented with a “diamond” at the end of the
aggregating class.
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Fig. 19. Many-many association and association class

Fig. 20. Examples of composition

In some textbooks, shared aggregation is also introduced to model an
aggregation where the multiplicity at the composite end may be more than one.
Shared aggregation seldom (if ever) exists in the real world. We suggest to use
general association to represent shared aggression if encountered in a project.

It is important to note two important properties of aggregation, which are
useful for identifying and designing aggressions:

– Antisymmetry: states that if an object o1 is related to an object o2 by an
aggregation, it is not possible for o2 to be related to o1 by the same aggrega-
tion. That is, if o2 is a part of o1 then o1 cannot be a part of o2;
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– Transitivity: states that if o1 s related to o2 by an aggregation link, and o2 is
related to o3 by the same aggregation, then o1 is also linked to o3.

These properties imply that the composition hierarchies are organised in forms
of trees as shown in Fig. 20. The following requirements analysis patterns are
useful when identifying aggregations in models of requirements.

– The lifetime of the part is within the lifetime of the whole - there is a create-
delete dependency of the part on the whole.

– There is an obvious whole-part physical or logical assembly.
– The whole is a collection of the parts.

Using these patterns, we can polish the conceptual model in Fig. 18 by replacing
the Is-Contained-in association between SalesLineItem and Sale, and the Contains
association between Catalog and Product Specification by aggregations as shown
in Fig. 21. If not sure when to use an aggregation, one can always use a plain
association. Most of the benefits of discovering and showing aggregation relate
to the phases of designing the software solution.

Fig. 21. Compositions in the initial conceptual diagram for Process Sale with Cash
Payment

7.6 Generalisation-Specialisation Between Classes

Associations and aggregations represent relations among classes. The corre-
sponding links are dynamic and changeable during executions of use cases. For
example, a SaleLineItem instance only becomes part of a Sale instance after the
item is entered by the Cashier, and a Sale instance is only linked through Is-Paid-
by a CashPayment instance only after the Sale is completed and the CashPayment
is handled and recorded by the Cashier.

There is another kind of relations between classes. Such a relation is called
a generalisation-specialisation or is-a relation. We say a class A is a gen-
eralisation (or a superclass) of a class B if every object of B is an object of
class A. In this case, class B is also called a specialisation (or a subclass) of
A. A generalisation-specialisation structure gathers the common properties and
behavioural patterns of different classes into a more general class, and speciali-
sations partition a class into subclasses which share some common properties or
behavioural patterns. Therefore, instances in a subclass inherits all the prop-
erties of its super class, but each of them extends the superclass with possi-
ble more properties. A generalisation-specialisation relation is a static relation
between two classes that is not changed by operations of use cases.



Model-Driven Design of Object and Component Systems 199

Generalisation-specialisation provides a mechanism of reuse through inher-
ence, that properties modelled in a supperclass can be reused, and abstraction by
partitioning a general class into a number of subclasses. In Java, a specialisation
(or sub-class) A of a class B is written as

Class A extends B {
T x; U:u; V v;

}

In this, certain attributes and methods, called protected attributes and protected
methods of A are inherited by B, but B declares the addition attributes x, u, v
(similar methods can also be declared).

However, in a programming language, specialisation introduces polymor-
phism when properties and methods of the superclass are redefined in the sub-
classes. Polymorphism provides flexibility of reusing attributes and methods of
the super class, but it can be troublesome for verification of program correct-
ness. A subclass is refinement of a superclass when all the properties and
functionality of the superclass are preserved by the subclasses, and in this case
the specialisation is also called subtyping. Specialisations identified from the
application domain are usually subtyping (or refinement).

Fig. 22. Generalisation-specialisation hierarchy

An example of generalisation-specialisation in the Trading Systems is shown
in the diagram on the left in Fig. 22. When all the instances of the superclass
in a generalisation-specialisation relation is fully partitioned as the union of the
instances of its subclasses, the superclass is called an abstract class and its
identifier is signified in italic in UML. For example Payment will be an abstract
class if only CashPayment, CreditPayment and CheckPayment are allowed in the
Trading System, and in that case we would use “Payment” in the diagram. In
Java, an abstract class is declared, for example, as follows
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public abstract class Payment {
}

Class CashPayment extends Payment {
}

Class CreditPayment extends Payment {
}

Class CheckPayment extends Payment {
}

When a class is a specialisation of two or more different general classes, we
say multiple inheritance occurs. For example, Mammal and Winged Animal are
both specialisations of Animal, and Bat is a specialisation of both Mammal and
Winged Animal. Java does not allow multiple inheritance from classes, but C++
do. Multiple inheritance introduces troubles when defining the semantics of the
models, and programming languages. We do not exclude multiple inheritance in
our models, though we do not have more examples of this.

7.7 Comments in Diagrams for Additional Constraints

We have discussed how multiplicities of associations are used for specification
constraints, representing domain properties and business rules. However, a dia-
grammatic notation always has limited expressive power. UML provides “com-
ments” for describing additional constraints on a model.

For example, Fig. 23 shows a partial conceptual class model. In this model, a
library member who wants to borrow a Publication can make a Reservation on a
Publication if no Copy of the Publication is available. When a Copy of the Publication
is returned, the Copy is then held for a Reservation of the Publication. It is required
that a Copy held for a Reservation is a Copy of the Publication reserved. This
constraint cannot be represented by associations and multiplicities only. Thus,
a comment is made in a comments box.

Constraints made in the UML diagrams are rather scattered and difficult to
understand and manage. They can be formally specified using set theory and
relation algebra, respectively, if an association is defined to be a relation between
two sets, each defining a class [55].

Fig. 23. Comment
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∀c ∈ Copy∀r ∈ Reservation·(c Is-Held-for r⇒∃p·(r Books p∧c Is-Copy-of p))
Is-Held-for ◦ Books ⊆ Is-Copy-of

We thus define a conceptual class model to be a UML class diagram that
may contain textual comments. Comments are part of the UML language defi-
nition, and they can be specified using the Object Constraint Language (OCL)
analogous to the predicate above.

7.8 Relating Conceptual Class Models and the Use Case Models

As what we said earlier, the conceptual class model defines the domain struc-
ture for the use cases. A conceptual model is adequate for a use case if its
classes, attributes and associations, together with the multiplicities and con-
straints imposed by the comments, support the behaviour specified by the use
case. A conceptual class model is adequate for a use case model if it is adequate
for all the use cases in the use case model.

Consider the two class diagrams in Fig. 14, the model on the left in the figure
is adequate for all use cases that the class diagram on right of the figure is
adequate for. Consider the two conceptual models in Fig. 24 for banking appli-
cations, that we call Small Bank and Big Bank, respectively. The only difference in
the two diagrams is the multiplicities of the association “Has”. The small bank
only allows a Customer to have one Account and no Account is shared among
Customers. On the other hand, the big bank allows one Customer to have up to 5
Accounts, and up to 3 Customers can share one Account. The small bank can sup-
port use cases “open an account”, “deposit money”, “check balance”, and “withdraw
money”. The big bank on the other hand can support “transfer money” between
two Accounts of the same customer as well.

Fig. 24. Conceptual class diagrams

We say a conceptual class model C is a structural refinement of C1 if C
is adequate for any use case that C1 is adequate for. Intuitively we have the
proposition that refactoring a conceptual model C1 in each of the following way
generates a refinement of C1:

– adding a class,
– adding an attribute to a class,
– adding an association between two classes,
– increasing the multiplicity of a role of an association (that is equivalent to

adding attributes at the level of program code),
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– promoting an attribute of a subclasses to its superclass, and
– promoting an association of a subclass to its superclass.

Obviously, structural refinement is reflexive and transitive. We say two class
models are equivalent if they refinement each other.

At the current level of informal descriptions of use cases, we are not able to
give rigorous definitions and checks the adequacy of a conceptual class model
with respect to a use case model. We will come back to this topic in the next
section when the specification of the behaviour of use cases is given in terms of
contracts of use case operations. There, the contracts are defined by the change
of the objects states of the class model.

7.9 Relation to the rCOS Formal Method

The conceptual class model focuses on what domain concepts and objects are,
what structure the objects and concepts have, and what attributes the con-
cepts have, for executing the required use cases. The use case description is very
important for the incremental development of a good conceptual class model.
The classes may not be complete for the execution of the use cases, and the
missing classes will be discovered in later stage analysis and design. The class
model may also contain classes that are not needed later, but they are useful for
the domain understanding. For example, class Customer in the Trading System
will not be implemented as a software class if information about customers does
not need to be maintained or transmitted in the system.

Formal semantics of conceptual class models and their relations to use cases,
and the design models (discussed in later sections) are give in our rCOS related
publications, e.g., [27,49,55]. Incrementally adding classes, associations and
attributes to a class model is also formalised in the sound and complete rCOS
object-oriented refinement calculus [27,91]. Therefore, though the process of cre-
ating these models cannot be formalised, the models created are formalisable for
verification.

8 Behaviour Modelling and Analysis

The process of identifying and describing the use cases and the activities of
finding the concepts and building the conceptual class model is not in a linear
order. Instead, they are interleaved, incremental and iterative, feeding back to
each other. The conceptual model can be formalised, but the use case descriptions
and use case diagrams remain informal. It is impossible to check formally the
completeness and consistency of the conceptual class model with respect to the
realisation of the described use cases. To this end, further modelling and analysis
need to transform them, step by step, to models in the programming world. We
will see that the closer to the programming world a model is, the more symbolic
and precise it is. For this, we introduce more precise modelling notations:
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1. the possible interaction sequences between the actors and the system in the
execution of use cases, and

2. the state changes of objects caused by these interactions.

The first are modelled by UML use case sequence diagrams, and the latter by
contracts of use case operations and UML state machine diagrams (a version
automata). From these models, we define the concept of components and their
interfaces in Sect. 10.1 in Part III. There, each use case is modelled as a compo-
nent, and all use cases are combined to form a component-based architecture.

The key concepts of this section include use case operations, use case sequence
diagrams, object diagrams, object states, contracts of operations, and use case
state machine diagrams. The artefacts produced by this phase of analysis include
the use case sequence diagrams, and use case state machine diagrams, use case
operations and their contracts.

8.1 Use Case Operations

Recall that each expanded use case describes the patterns of interactions of its
actors and the system under design, and interactions (communications) among
actors. Each use case involves only a part of the functionalities required for the
whole system, though different use cases may use some common functionalities.
The first modelling decision we make is to treat a use case as a system component.
The interactions among actors in the use case decryption are for requirements
understanding, but they are not part of the functionalities required to design.
Our second modelling is to eliminate the actors that do not directly interact
with the system under design, such as Customer in use case Process Sale17, from
the model of interactions. Looking at the typical and the alternative courses of
interactions, a use case describes the interactions of the direct actors and the
component in the following way.

– Input operations. An actor generates an input event to the component to
request an operation to be carried out. An input event may have input para-
meters to pass values to the component and return parameters for receiv-
ing values from the component. In the Process Sale use case for example,
Casher generates startSale() to start handling a new Sale; enterItem(upc) to
record an Item, where upc is an input parameter for the Universal Product
Code (UPC) of the item; finishSale() to indicate the end of item input; and
makeCashPay(amount) to record the CashPayment.

– Output operations. The component generates an output event to an
actor to require a service from the actor. This is usually the execution of an
operation in response to an input operation, but sometimes a component may
also actively trigger an actor for the purposes of control and coordination. An

17 In a further system evolution, more software components can be developed to auto-
mate these interactions so some of the interactions among actors are not needed
anymore. For example, if online shopping is to be supported a customer would be a
direct actor for the Make Order use case.
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output event may have input parameters carrying values to be passed to an
actor and return parameters to receive values from the actor. For example,
the component for the Process Sale use case generates authoriseCredit() to
the actor Bank for authorising credit card payment. By convention, the return
value, including prompting message and signal, of an input operation or an
output operation is part of the result of the interaction, but not an interaction
event.

– Repetitive interactions. The interaction process may repeat a sequence of
interaction operations, just as iterative statements in programming languages.
Process Sale needs to repeatedly use enterItem() to record all the items that
the customer is purchasing, until the last item is entered.

– Branches. Alternative branches of interactions may happen either controlled
by an actor or by the component. The former is an external choices and the
latter is an internal choices, both studied in communicating process descrip-
tion languages, such as CSP [31,82]. Process Sale may go through Process
Sale with Cash Payment, Credit Payment or Check Payment; and also it can
go into exception handling if the identity of an item, such as its Universal
Product Code (UPC), is not recognised when executing enterItem(upc).

8.2 Use Case Sequence Diagrams

For precise modelling of the interaction patterns of a use case, we first introduce
symbolic names to represent the input and output operations for each use cases.
An input operation is called by actors and an output operation is called by the
component as response to an actor. The patterns of the interactions of the actors
and the use case are modelled as a UML sequence diagram. The diagram defines
all the possible sequences of interaction events of all possible execution instances
of the use case. Each instance execution of the use case is called a use case
scenarios. For example, the sequence of events startSale(), enterItem(01000, 2),
enterItem(01001, 3), endSale(), and makeCashPay(30) is a particular scenario.
The understanding and analysis of a use case can start from the understanding
of its significant scenarios.

We informally explain the syntactic elements of use case sequence diagrams,
leaving the study of the syntax and semantics of use case sequence diagrams out
of this chapter. A sequence diagram is formed with

– the use case components and actors life lines;
– messages that represent (a) input operations sent from actors to the use case

component, and (b) output operations sent from the use case component to
actors;

– the temporal order of messages is defined by the order in which they occur
downwards along the life lines;

– “loop combined fragment” representing repeating sequences of interactions;
and

– “alt. combined fragment” representing branching among sequences of inter-
actions.
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Fig. 25. Sequence diagram of Process Sale use case

Example. To illustrate the expressive power of use case sequence diagrams, we
present the sequence diagram of the full use case of Process Sale in Fig. 25. Notice
the nested choices, and the output operations of Process Sale. The sequence
diagram becomes much simpler if express mode is disregarded, then only the
bottom part starting from message 7:startSale() will be included. If we consider
cash payment only, the component becomes closed and the sequence diagram will
become the part from message 2:startSale() to message 5:makeCashPayment().

The interactions 11:makeCreditPayment() and 11.1:authoriseCredit() starts
the sequence diagram for the Pay by Credit use case, but with the modelling
decision that makeCreditPayment() treated as one atomic action. The use case
sequence diagram for a different decision as discussed in Subsect. 6.5 is different,
as shown in Fig. 26. Use case Pay by Check has the same design options to
consider.



206 Z. Liu and X. Chen

Fig. 26. Sequence diagram of an alternative model of Pay by Credit

Most UML modelling tools offer means of referring to sub-diagrams in
complex diagrams. For formal analysis, the UML sequence diagrams can be
automatically translated into a formal model, such as CSP processes [16,31].
In this chapter, we use two kinds of sequence diagrams. They are compo-
nent sequence diagrams and object sequences diagrams, that are for-
mally defined in rCOS [15,37,50]. A use case sequence diagram is a component
sequence diagram, also called a use case sequence diagram. General com-
ponent sequence diagrams will be introduced in Sect. 10.1 and object sequence
diagrams in Sect. 11 in Part III.

8.3 Use Case State Machine Diagrams

The use case sequence diagram has a corresponding state machine diagram which
is defined by a Statechart [24] and closely related to I/O automata [64]. If we
ignore the express mode of Process Sale, we have the state diagram in Fig. 27 for
Process Sale. The state machine diagram models the behaviour of the use case
for verification (e.g., using model checking) of application dependent properties,
such as safety and liveness properties. It can also be used for automatic gener-
ation of the interface control program. The states of a use case state machine
diagram represents the conditions on the flow of control and synchronisation of
the interaction processes when use case are being executed, thus they are called
control states. A use case state machine diagram has a starting state, iden-
tifiable with a filled in circle. Most use case state machine diagrams also have
final states, denoted by a circle with a black bullet inside, from which operations
may stop. For example, an execution of Process Sale may stop after a sale is
completed and paid, but it can also restart the execution to process a new sale.

The state machine diagram in Fig. 27 is consistent with the use case sequence
diagram in Fig. 25. The transitions from state completeSale to the final state by the
operations of makeCreditPayment(), makeCreditPayment()/authoriseCredit(),
andmakeCheckPayment(),makeCheckPayment()/authoriseCheck(), respectively.
This models the input operations as single atomic operations with a run to com-
pletion semantics of method invocations. If we consider alternative models of these
two input operations, such as the one shown in Fig. 26, the corresponding state
machine diagram would be the one shown in Fig. 28.

However, different state diagrams can also model the same (observable)
interaction behaviours. For example, the state machine diagram in Fig. 28 is
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Fig. 27. State machine diagram of Process Sale

Fig. 28. An alternative state machine diagram of Process Sale

“equivalent” to the state machine diagram in Fig. 29. Consistency between the
use case sequence diagram and the state machine diagram of a use cases can be
formalised and automatically checked in rCOS. Equivalence between use case
sequence diagrams and equivalence between state machine diagrams are studied
in the formal theories of process refinement and simulation, such as CSP and
CCS, and in theories of I/O automata and Statecharts.

8.4 Object Diagrams and Object States

Use case sequence diagrams do not have the concept of states and they only
model interaction protocols. The states in a state machine diagram are symbolic
and their names are insignificant, i.e., changing names of the states resulting in
equivalent state machine diagrams. To design and implement a use case as a
program component, we need to analyse and specify the static functionality of
the interaction operations in terms of which object state changes they perform.

An object state of a component (or a use case or a system) is a snapshot
at a particular time instant of the component execution, and it consists of the
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Fig. 29. Equivalent state machine diagram

existing objects, values of attributes of the objects, and links between the objects.
It is essential to understand the relation between the states of a component and
the conceptual class model of the component. A possible state in the execution
of the component must be type correct with respect to the class model. This
means, the objects and links between objects must be instances of classes and
associations of the class diagram.

We now define an object diagram Γ of a class diagram Θ as an instance
of the class diagram, consisting of

– a set of instances O, called objects, of some classes C in the class diagram,
– a set of instances L of some associations of the classes C, which are links

among the objects O, that satisfy the multiplicity and other (including the
comments) constraints in class diagram Θ.

Example of Object Diagrams. Consider the conceptual class models of the small
bank and big bank in Fig. 24. Figure 30(a) is an object diagram of both the small
bank and big bank, but the object diagram in Fig. 30(b) is valid only for the
conceptual class diagram of the big bank.

We call an object diagram of the class diagram of a component (or use case)
an object state of the component. The behaviour of a component is the set
of all possible sequences of state changes caused by the sequence of interactions
between the actors and the component. We can equivalently define the behaviour
of a component by the sequences of state changes caused by the operations
defined by the state machine diagram. For example, consider a state in which the
accounts related to customer Mrs. Mary Smith are shown in Fig. 30(b). Now Mrs.
Mary Smith requests the big bank system to transfer 2000 GBP from her account
a2 to account a3 that she shares with her son Mr. Bob Smith. After the execution
of the transfer operation, denoted by transfer(), the system changes from the
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Fig. 30. Object diagrams

pre-state shown in Fig. 30(b) to the post-state shown in Fig. 31: the balance
of a2, a.balance, is reduced by 2000 GBP, and the balance of a3, a3.balance, is
increased by 2000 GBP. Notice that an operation, such as transfer(), only changes
part of the state of the component, keeping the other accounts unchanged, for
example.

In general, a use case operation can change a state in the following ways:

– create new objects (object creation), such as opening an account in a bank
application;

– remove (destroy) existing objects in the current state (object deletion), such
as closing an account;

– form new links between both existing and newly created objects (link forma-
tion), such as an operation (in the Big Bank) of registering Mr. John Smith
on account a3 so as to allow him to access that account too;

– remove exiting links from the current state (link removal), such as deregis-
tering Mrs. Mary Smith from account a3;

– modifies values of object attributes (attribute change), such as transfer().



210 Z. Liu and X. Chen

Fig. 31. Post-state of transfer operation

We describe the state change caused by an operation in an abstract way by
stating what changes are made without saying how changes are made. A good
analogy of a state change by an operation is a stage play performance. A snapshot
on the of play on the stage shows the actors and actresses playing different roles,
props, and background scenery, and their relations. Then the curtain is closed,
changes are made behind the curtain (the execution of an operation) to change
actors and actress, props, back ground scenery and their relations, then a new
state is shown when the curtain is opened again.

8.5 Contracts of Operations

For systematic design of use cases, we need a clear and precise specification of
the functionality of each use case operation, where the specification should define
all the possible changes of states of the system. The specification of an operation
m() is called the contract of the m(), and it is formally defined to be a triple
of the form

{Pre-condition} m() {Post-condition}
where

– Pre-condition is the condition that the states are assumed to satisfy before
the execution of operation m(),

– Post-condition is the condition that the states have to satisfy when the exe-
cution of the operation terminates (if it terminates).

These triples are formalised in the well-known Hoare Logic [30] that is the foun-
dation for formal program analysis and verification, and it is extended to object-
oriented programs in rCOS [27,38,92]. Instead of introducing the formal spec-
ification of operation contracts in rCOS, we present a practical approach for
informally stating these contracts. The advantage is that one does not need to
have a background in formal logic, and these informal statements are yet formal-
isable for those who have the background. Also, the informal description of the
contracts is a step that must be taken before further analysis, including formal
analysis. We adopt the following format proposed by Larman [42].
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Contract
Name: Name of operation, and parameters.
Responsibilities: An informal description of the respon-

sibility this operation must fulfil.
Cross References: Such as use cases.
Note: Design notes, algorithms, and so on.
Exceptions: Exceptional cases.
Pre-conditions: As defined.
Post-conditions: As defined.

Examples. We now write the contracts of the operations of Process Sale with
Cash Payment, which are largely from Larman’s book [42].

Contract
Name: startSale().
Responsibilities: Create a new sale and start the process.
Cross References: Use case Process Sale with Cash Payment.
Exceptions: If any of the precondition does not hold, indi-

cate error.
Pre-conditions: The objects Store, CaskDesk, Catalog exist and

linked.
Post-conditions: 1. A new Sale was created.

2. The new Sale was associated with the
CashDesk.

Contract
Name: enterItem(upc:UPC, quantity:Integer).
Responsibilities: Enter an item and add it to the sale. Display

item description and price.
Cross References: Use case Process Sale with Cash Payment.
Note: Use superfast database access.
Exceptions: If upc is invalid, indicate an error.
Pre-conditions: upc is valid, and Sale exists.
Post-conditions: 1. A LineItem was created.

2. The LineItem.quantity was set to quantity.
3. The LineItem was associated the Sale.
4. The LineItem was associated with the
Product Specification.

Contract
Name: finishSale().
Responsibilities: Indicates the end of item entry and get ready

for make payment.
Cross References: Use case Process Sale with CashPayment.
Pre-conditions: The sale exists.
Post-conditions: Attribute isComplete of Sale object was set to

true.
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Contract
Name: makeCashPayment(n : Quantity).
Responsibilities: Record the payment and associate it to the

sale, and log the completed sale.
Cross References: Use case Process Sale with Cash Payment.
Note: Use superfast database access.
Exceptions: If the Sale is not completed.
Pre-conditions: The Sale is complete.
Post-conditions: 1. A CashPayment object was created.

2. The attribute balance of the CashPayment
was set to the input value n.
3. A the CashPayment object was associated to
the Sale.
4. The Sale was associated to the Store to log
the completed Sale.

In informal specification of the contracts, it is hard to make sure the precon-
ditions and postconditions are complete or consistent. The preconditions, in
particular, are hard to assume complete and they also imply implicit assump-
tions. For example, the condition “upc is valid” implies the existence of Catalog,
and “Sale exists” implies the existence of the Store and CashDesk. Some other
conditions implied are even harder to see. For example, the existence of the link
between CashDesk and Store, and link between Store and Catalog, etc. From this
discussion, we see the need for logic formulation and reasoning.

8.6 Guarded Contracts

Another issue is related to the precondition “the Sale is complete” of operation
makeCashPayment(). Preconditions need to be checked when an operation is
executed, and if a precondition does not hold an exception should be thrown.
For this, class Sale should have a boolean attribute, say isComplete. Attributes
of this kind would be very hard to identify in an early stage of requirements
analysis.

In fact this issue relates to more advanced modelling theory. Consider the
above contracts of operations in relation to the state machine diagram Fig. 27,
we notice that

– startSale() can only be carried out in the starting state;
– operation enterItem() can only take place in states newSale and inComplete;
– finishSale() can only take place in state inComplete; and
– makeCasPayment(), makeCreditPayment() and makeCheckPayment() can

only take place in state completeSale.

We introduce a boolean variable for each of the control states in the use
case state machine diagram, for example, @start, @newSale, @inComplete, and
@completeSale, which take the value true when and only when the state machine
diagram is in the corresponding state. We then add to each contract a section of
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conditions called guard conditions. An operation can be executed only when
all the gaud conditions hold. An attempt to execute (or call to) the operation
is refused when the guard condition does not hold. An example of a guarded
contract is given below, where the guard is emphasised.

Guarded Contract
Name: enterItem(upc:UPC, quantity:Integer).
Responsibilities: Enter an item and add it to the sale. Display

item description and price.
Cross References: Use case Process Sale with Cash Payment.
Note: Use superfast database access.
Exceptions: If upc is invalid, indicate an error.
Guarded conditions: The system is in a state such that @newSale

holds or @inComplete holds.
Pre-conditions: upc is valid, and Sale exists.
Post-conditions: 1. A LineItem was created.

2. The LineItem.quantity was set to quantity.
3. The LineItem was associated the Sale.
4. The LineItem was associated with the Prod-
uct Specification.
5. If in state newSale change to state inCom-
plete.

Note that the postconditions of a guarded contract may also change the control
state. An error message (but not an exception) can be given when an operation
is attempted when a guard is false.

8.7 Start Up Use Case

Before carrying any of the business processes of the application, the basic busi-
ness infrastructure needs to be set up. This, for example, including the Store, the
Cash Desk, and the Catalog. This is the operation StartUp(), that most system
have. The contract of StartUp() for the Trading System is with on Store and one
Cash Desk can be specified by the following postconditions:

1. Store, CashDesk, Catalog and ProductSpecification were created (instance cre-
ation).

2. ProductSpecification was associated with Catalog.
3. Catalog was associated with Store.
4. CashDesk was associated with Store.
5. Catalog was associated with CashDesk.

The creation of use case sequence diagrams, state machine diagrams and the
specification of the contracts of the use case operations have been developed
from the use case description and identification of conceptual class diagrams,
and they together form a clear model of what the system under design is required
to do. From these models, the development process is ready to move into the
design phase.
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8.8 Consistency Among the Models

The use case sequence diagrams, state machine diagrams, contracts of operations
and the conceptual class model are models of the same system from different
view-points. Their integration is the whole model of the applications require-
ments. Therefore, they must be consistent. The sequence diagram and state
machine diagram of a use must be consistent so the sequence diagrams defines
the same set of possible interaction sequences as those which are accepted by
the state machine diagram.

The conceptual class model is required to be adequate for the definition
of the contracts of the operations. This means that a conceptual class model is
adequate for the operations of the use case model if it defines all the object states
that are specified in the responsibilities, the preconditions and postconditions of
all the operations. Clearly, this definition of the adequacy of a class model is a
revised version of the adequacy of the conceptual class model for the use cases
defined in Sect. 7. If a conceptual class model is adequate for an operation, so is
its structural refinement.

Now we have a clearer and more precise definition of structural refinement:
a conceptual model C is a structural refinement of C1 if each type correct
object diagram of C1 is also a type correct object diagram of C. For example,
the conceptual class model on the left of Fig. 14 is a structural refinement of the
one on the right; and the conceptual model Big Bank in Fig. 24 is a structural
refinement of the Small Bank.

8.9 Relation to the rCOS Formal Method

The development of rCOS [31,82] shows that both use case sequence diagrams
and state diagrams can be formally defined and analysed. In particular, they can
be both translated to CSP process expressions for checking their consistency and
for formal analysis and verification [14–17]. The informal descriptions of opera-
tion contracts are formalised in the rCOS extension [27] to UTP [32]; guarded
contracts are presented in [11,26]. The development of a complete and sound
refinement calculus and its applications can be found in [15,38,91].

9 Summary of Requirements Modelling and Analysis

Sections 6.1 and 8 focus on notations, activities and models of requirements mod-
elling and analysis. The emphasis of these is on understanding of the require-
ments, concepts, and operations related to the domain business processes for
which automation by software is required. The investigation and analysis are
often characterised as focusing on questions of what - what are the processes,
concepts and objects, associations, attributes, and operations? We have the fol-
lowing models and descriptions for the answers to these questions with different
levels of details and precision.
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1. Use cases: high level and expanded descriptions and use case diagrams. They
are from the application domain and for understanding the functional require-
ments (use cases can also used for non-functional requirements analysis) from
the domain perspectives.

2. Conceptual class model: the concepts, objects and their relations that form
the structure for the realisation of the use cases.

3. Use case sequence diagrams: identification of the interactions between actors
and the system under design for the realisation of the use cases.

4. Use case operations and their contracts: specification the functionality of the
interactions, that is what changes to the domain structure, that are modelled
by changes of object states that interaction smay cause.

We use UML diagrams for the representation of the above models: UML use
case diagrams, class diagrams, and use case sequence diagrams state machine
diagrams, plus textual description of contracts of use case operations. The con-
tracts are described in terms of pre-conditions and postconditions, that can be
formalised in Object Constrain Language - defined as part of the UML. Our for-
mal method of object-oriented and component-based design offers formal spec-
ification of contracts of methods [15,27,37] and formal semantics and relations
of different UML models for requirements models and design [12,25,52,55]. For
the formal techniques and tools to be applied, the pre-formal activities should
be carried out first to create the models with intuitive understanding of their
meanings.

Through the above discussed modelling and analysis activities, and the cre-
ation of the models, the development team and the clients building a thorough
understanding of the requirements. The UML models and the textual descrip-
tions as a whole give a fairly clear model of requirements, including the architec-
ture, the data model, and the static functionality. Further formal techniques and
tools can also be applied for formal validation and verification. Therefore, it is
fairly justifiable that after these activities and with the models built, the devel-
opment can move into the next phase, that is the design phase to be discussed
two sections to follow.

10 Part III: Component-Based and Object-Oriented
Design

10.1 Component-Based Architecture Design

In Sect. 7 of Part II, the structure of the application domain is expressed in terms
of conceptual class models and use case diagrams. It is not easy in these models to
relate the functionalities of use case operations. For example, different use cases
may perform some same operations, but these cannot be clearly represented.
This section introduces the component-based modelling concepts of components,
interfaces and compositions.
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10.2 Components

A component C is a program unit with encapsulated data states and explicitly
specified interfaces. In this presentation, operations are method invocations,
and therefore a component in our framework can have two kinds of interfaces,
provided interfaces for operations on data in the component and required
interfaces for operations on other components. Syntactically an interface
declares a set of method signatures of the form m(in; out) with a method name
m, a list of input parameters in and possibly an output parameter out.

In Java, interface are defined as shown in the following examples.

Interface pInterface_Process_Sale {
startSale();
enterItem(upc: UPC);
finishSale();
makeCashPayment(amount: Quantity);
makeCreditPayment(cardInfo,amount);
makeCheckPayment(cehckInfo,amount)

}

Interface rInterface_Process_Sale {
authoriseCredit(cardInfo, amount);
authoriseCheck(cardInfo, amount)

}

An interface is implemented by a class. For example,

Class CaskDesk implements pInterface_Process_Sale {
startSale() {the contract of the operation to be coded};
enterItem() {the contract of the operation to be coded};
finishSale() {body to be designed};
makeCashPayment(amount: Quantity) {the contract of

the operation to be coded};
makeCreditPayment(cardInfo,amount) {the contract of

the operation to be coded};
makeCheckPayment(cehckInfo,amount){the contract of

the operation to be coded}
}

We use the UML graphic representations of interfaces, as for classes, and relate
interfaces with class by the relation “a class implements an interface”.

A component is closed if it does not have required interfaces, and it is open
otherwise. We use the UML notation to represent classed and open components,
as shown in Fig. 32, respectively. In the figure, C is a closed component that
has a provided interface pIFC and D is an open components with a provided
interface pIFD and a required interface rIFD.

Visual Paradigm does not show the encapsulated state variables and the
declared methods of interfaces (except for those which only have a single method
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Fig. 32. Closed and open components

signature) of a component in the figure, but they can be specified with the textual
editor and generated in the textual version. We define a component abstractly as
a tuple C = 〈X, pIF, rIF〉, where X is the set of state variables, pIF and rIF are
the provided interface and required interface, respectively. Each interface I is a
set of method signatures, and we allow multiple provided interfaces and multiple
required interfaces in diagrams but their unions are the provided interface and
required interface in the abstract definition. The following examples show how
use cases are modelled as components, and these are the initial components
defined in the development.

Example. Consider the use cases Make Cash Payment, Process Sale with Cash
Payment, Make Credit Payment, and Make CheckPayment, that can all be mod-
elled as components in Fig. 33. The first two are closed components and the other
two are open.

Fig. 33. Components of Process Sale

The input operations of a use case are declared in the provided interface
of the component, and the output operations of the use case are declared in
the required interface of the component. Provided interface pIFCashPayment
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only declares one operation makeCashPayment(), while provided interface
pIFProcessSaleCash declares the operations,

{startSale(), enterItem(),finish sale(),makeCashPayment()}.

Provided interface pIFCreditPay() declares the operation makeCreditPayment()
and required interface rIFCreditPay() declares authoriseCredit(); and provided
interface pIFCheckPay() declares makeCheckPayment() and required interface
rIFCheckPay declares authoriseCheck(). The state variables of these components
are the variables containing the Store object, Catalog object, CashDesk object,
Sale objects and Payment objects, etc.

Neither a component diagram nor a tuple C = 〈X, pIF, rIF〉 specifies the
functional behaviour of the component. We divide the specification of the behav-
iour of a component into two parts. First, the static functional contract of
a component C is specified by the contracts of the operations declared in the
provided interface pIF. The preconditions are assertions on the states variables,
the input parameters of the operation; and the postconditions specify how the
object states of the component are changed and what the value of the return
parameter is. The contracts of the operations in pIFProcessSaleCash are the
same as those given in the contracts of the input operations of the use case. For
an example of contracts of operations involving required operations, the contract
of makeCreditPayment() is

Pre-conditions: Sale.isComplete is true
the credit payment is authorised, i.e.,
authoriseCredit() return is positive.

Post-condition: 1. A CreditPayment object was created.
2. The CreditPayment object was associated
with the Sale.
3. The Sale was associated with the Store to
log the completed Sale.

The meaning of a contract of an interface operation is the same as that of a
use case operation. If a precondition does not hold, exception handling needs to
be designed. The static functional contracts of a provided interface are used to
program the bodies of the methods in the class that implements the interface.
The contract of an operation in a required interface of a component C is tricky
in theory. In practice, however, it usually makes little change to the object state
of C, and it usually sets some preconditions for some operations in the provided
interfaces by changing the control state of C. For example, the condition that
“the credit payment is authorised” in the above contract is set by the required
operation authoriseCredit(). We leave further discussion of contracts of required
operations out of this chapter.

In addition to the static functional contracts of the interfaces of the component,
the flow of control for the protocol in which the interface operations can be exe-
cuted should also be specified. This is called the dynamic behaviour contract
of the component of the component, and it is modelled by a state machine dia-
gram. For example, the state machine diagram in Fig. 27 of Part II is the dynamic
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Fig. 34. State machine diagram of a finite component

behaviour contract of the component for Process Sale. Note that, the dynamic
behaviour contract of a component can also be modelled by a sequence diagram,
such as the sequence diagrams in Fig. 25 of Part II. The state machine diagrams,
however, are easier to be associated with the static functional contracts of the com-
ponent interfaces. We can associate assertions about object states to the control
states of the state machine diagrams, for example, by adding comment boxes on
the control states. The combination of the static functional contract and dynamic
behaviour contract of a component are specified by the guarded contract of the
interface operations, as defined in the previous section.

10.3 Composing Components

There is a need of mechanisms for components to be combined to form an
architecture. For this purpose, the combinators known from concurrent and dis-
tributed program constructions, compositions for sequencing, choices, parallel
composition, service hiding and looping (or recursion). Except for “plugging”
to “link” provided operations to required operations, there are little UML tool
support for these compositions. Here these compositions are defined as abstract
operators, discuss their informal semantics, and then represented as special com-
ponents called connectors in UML diagrams. Extending a UML tool to pro-
vide better support of component compositions, both their syntax and semantics
could be an interesting student project.

Sequencing. Sequential composition is defined for “procedural components
only”, that is components that have terminating behaviour. For two components
C1 and C2 whose required interfaces are disjoint with their provided interfaces,
the sequentially composed components C1;C2 is defined if C1 is terminating (or
finite). When C1;C2 is defined, the provided and required interfaces of C1;C2 are
the unions of the provided and required interacts, repetitively. The interaction
behaviour of C2 can start after that of C1 terminates, i.e., the state diagram of C1

enters a final state. Here C1 is finite if its state machine diagram has a final state.
Consider the behaviour from startSale() to finishSale() of the sequence diagram
in Fig. 25 of Part II. We can model this part of Process Sale as a component
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Fig. 35. State machine diagram of PayByCash

denoted by CashDesk (please note this is not a use case). The state machine
diagram of CashDesk is given in Fig. 34.

The state machine diagram of the composite C1;C2 is to combine the final
state of C1 with the initial state of the C2 into a new state so that the two
state machine diagrams are composed. Consider the state machine diagram for
component PayByCash for Pay by Cash use case as shown in Fig. 35. The state
machine diagram of CashDesk; PayByCash is given in Fig. 36.

Fig. 36. Sequential composition of diagrams in Figs. 34 and 36

In a semantic theory, restrictions for C1;C2 to be defined are not needed.
If C1 and C2 do not satisfy these conditions, it just make the behaviour of the
composite component C1;C2 very complicated or even divergent. In practice, we
would like to avoid these complicated cases when building our models. We use
the sequencing connector component to represent the sequential composition.
The sequencing connectors is shown in Fig. 37. It is easy to use the sequencing
connector to realise CashDesk; PayByCash and this is the one iteration of Process
Sale with Cash Payment.

Repeating. Similarly, the repeating composition is also defined for procedural
components only. The repeating operator ∗C is defined if C is finite and its
behaviour is to repeat the behaviour of C as many times as possible (or as many
times as the actors like). The state machine diagram of ∗C is to combine the
final state of the state machine diagram of C with its initial state.

The repeating connector is realised by the repeating connector component
as shown by the diagram on the top of Fig. 38, and the combination use of
the sequencing connector and repeating connector in forming the component
ProcessSaleWithCashPayment, shown in the diagram at the bottom of Fig. 38.
The state machine diagram of the composite component in Fig. 38 is given in
Fig. 39.
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Fig. 37. Sequencing connector

Fig. 38. Repeating connector

Fig. 39. State machine diagram of component ProcessSaleWithCashPayment

Choice. Given two components C1 and C2, the provided and required interfaces
of C1 ⊕ C2 are the unions of the provided interfaces and the required interfaces,
respectively. The behaviour of component C1 ⊕ C2 behaviour depends on the
first move,
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– if the first state transition is a transition of the state machine diagram of C1,
then the behaviour of C1 is selected;

– otherwise the behaviour of C2 is selected.

If C1 and C2 share operations in their provided interfaces which can take place
from their initial states or one of these two components has autonomous transi-
tions from the initial state, C1 ⊕ C2 exhibits non-deterministic behaviour. Deal-
ing with non-deterministic choice is both tricky in practice and theory. Without
proper theoretical understanding of non-determinism, its practical handling is
also hard. We should try to avoid non-deterministic choice in the first place when
building component models.

Note that ⊕ is commutative and associative, thus ⊕ may combine an arbi-
trary number of components. We use the choice connector component to
realise this general abstract choice operator. We consider the composition of
MakePayment = ⊕(MakecashPayment,MakeCreditPayment,MakeCheckPayment) as an
example to show the choice connector in Fig. 40. The state machine diagram of
MakePayment is given in Fig. 41, in which the three final states can be combined
into one state.

Now the use case Process Sale can be modelled as ∗(CaskDesk;MakePayment).
The component diagram is then the same as the bottom diagram in Fig. 38 but
with component PayByCash being replaced with the choice composite component
MapkePayment, and its state machine diagram is given in Fig. 27 of Part II. Its
component sequence diagram is given in Fig. 42, as an example of a general
component sequence diagram.

Fig. 40. Choice connector
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Fig. 41. State diagram of choice connector

Fig. 42. General component sequence diagram

Parallel Composition. The parallel composition operator C1‖C2 for general
components C1 and C2 is complicated when the required interface of one compo-
nent, say C1, shares common operations with the provided interface of another.
In this case, C1 can use operations provided by component C2 and the behav-
iour of the parallel composed component may suffer deadlocks and divergences.
To handle this case in general, advanced semantic theory is needed. We restrict
ourselves to the case when the provided interfaces of C1 and C2 do not contain
operations in their required interfaces so that feedback method invocations are
avoided. The provided interface and required interface of C1‖C2 are the union
of the provided interfaces and the union of the required interfaces of C1 and
C2, respectively. The state machine diagram of C1‖C2 is defined from the state
machine diagrams of C1 and C2 as follows
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Fig. 43. Parallel connector and an architecture model of a store business

– a pair (s1, s2) of states of C1 and C2 is a state of C1‖C2;
– if a transition s1 to s′

1 by an action a1 is a transition in the state diagrams
of C1, the transition from (s1, s2) to (s′

1, s2) by action a1 is transition in the
state machine diagram of C1‖C2;

– if a transition s2 to s′
2 by an action a2 is a transition in the state diagrams

of C2, the transition from (s1, s2) to (s1, s′
2) by action a2 is transition in the

state machine diagram of C1‖C2;
– if a transition s1 to s′

1 by an action a is a transition in the state diagrams
of C1 and a transition s2 to s′

2 by an action a is a transition in the state
diagrams of C2 the transition from (s1, s2) to (s′

1, s
′
2) by action a is transition

in the state machine diagram of C1‖C2.

This definition is illustrated in Fig. 44.
Note that ‖ is commutative and associative, thus it can be used to compose an

arbitrary number of components, and C1‖C2‖C3 can be written ‖ (C1, C2, C2).
Consider use cases Process Sale, Refund Item, Make Order, and Check Inven-
tory. The first two use case are about handling sales and the last two are about
inventory management. A component HandleSales = ProcessSale‖RefundItem
and a component InventoryManagement = CheckInventory‖MakeOrder. The
(restricted version) StoreBusinessSsystem = HandleSales‖InventoryManagement
can be defined. We introduce a component called parallel connector to repre-
sent the component diagram of a parallel composite component. The component
diagram of StoreBusinessSsystem is shown in Fig. 43.
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Fig. 44. Parallel composition of state diagrams

Pipeline Connector. Another often used composition of components is “plug-
ging” an operation m() provided by one component, say C1, to a required inter-
face of a component, C2, which requires the operation“m()”. For example, if
Process Sale also causes changes to the stock of products, it can call an pro-
vided operation of the Managing Inventory use case instead of designing an
operation in the component for Process Sale. Notice that Managing Inventory is
mostly likely to operate on the Store database system. The pipeline operator
is defined such that

– C1>>C2 is defined if the provided interface of C2 is disjoint with the required
interface of C1;

– when C1>>C2 is defined, its provided interface is the union of the provided
interfaces of C1 and C2 minus the required interface of C2 (because any
provided operations of C1 that is also required operations of C2 are plugged
together) and its required interface is the union of the required interfaces of C1

and C2 minus the provided interface of C1 (because any required operations
of C2 that are also provided operations of C1 are connected);

– the behaviour C1>>C2 is similar to the parallel composition C1‖C2, but for
a transition from s1 to s′

1 by a provided operation a in C1 and a transition
from s2 to s′

2 by b/a·tr that requires operation a in a required operation of C2,
there is a transition from (s1, s2) to (s′

1, s
′
2) by the action b/tr that does not

require any operation in C1>>C2. Here tr is a sequence of required operations
of C1. This definition is illustrated in Fig. 45.

Fig. 45. Plugging state machine diagrams
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The connectors used to realise abstract composition operators are open com-
ponents and the pipeline operator is used to plug the components being con-
nected to the connector. Also, both the parallel composition and pipeline oper-
ators can be defined by a general parallel composition, but the semantics of the
general parallel composition requires strong theoretical background to compre-
hend.

Renaming and Restriction Operators. To support reuse of (models of)
components, operations of interfaces often need to be renamed. For this, we
define that two signatures m(x; y) and n(u; v) (syntactically) matchable if x
and u are of the same type and y and v are of the same type. In this case
the two signatures also called of the same type. Given a component C and an
operation n() that is of the same type of an operation m(), C[m/n] is component
obtained from C by replacing the interface operation m() of C with n(). We call
is a renaming function [m/n].

In fact, renaming C[m/n] does not required m to be an interface operation of
C and in this case the renaming function has no effect and C[m/n] is the same
as C. The use of renaming includes avoiding conflicts of names when composing
components, and in particular renaming a provided operation of C1 with the
name of a required operation of C2 when plugging C1 to C2. In component
diagrams, renaming connectors are shown in Fig. 46.

Fig. 46. Renaming provided and required operations

Another useful operator on components is to restrict the access to some
of the provided operations. Given a component C and M is a set of operation
signatures, C\M is the component obtained from C after restricting or hiding
the operations in M from being used for interaction with the actors, that is

– The provided interface of C\M is the set operations in the provided interface
of C minus the operations in M ;

– The required interface of C\M is the required interface of C;
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– The state machine diagram of C\M is obtained from that of C by removing
all transitions made by operations in M .

Note that we do not restrict operations in required interfaces of components. We
use a component called the hiding connector to realise the restriction operator,
as shown in Fig. 47.

Fig. 47. Hiding connector

Relation to the rCOS Formal Method. Theoretical frameworks, such as
CSP [31], CCS [66], I/O automata [64] and Statecharts [24] show the importance
of the composition operators in concurrent and distributed computer systems,
sound and complete algebraic theories are also developed, but they do not deal
well with the complex issues in object-oriented, component-based and interface
contract driven development approach. We have spent quite some research effort
in the development of the rCOS semantic theory [11,15,21,37,58,91], but large
gaps still remain.

11 Object-Oriented Design of Components

The models discussed in Part II on requirements analysis focus on abstract,
global and external functionality and behaviour. They are seen from the applica-
tion domain point of view with a users’ perspective. In Sect. 10.1, we transformed
the use cases into components interrelated through their interfaces. The contract
of an interface operation specifies what the operation does in terms of precondi-
tions and postconditions, but it does not transformed how software objects are
going work collectively to fulfil the contract. We need to transform the contracts
into algorithms of object interactions and operations on object states. From
the algorithms, program code can be easily developed or even automatically
generated.



228 Z. Liu and X. Chen

The essential technique is to decompose the functionality of interface oper-
ations into responsibilities of related objects, and design the object interactions
by assigning (or delegating) the responsibilities to appropriate objects. This
section studies the general principles for responsibility assignment which are
called design patterns for object responsibility assignment (GRASP) [42]. Before
we introduce the concept of object responsibility, we first discuss the UML dia-
grams for representing object interactions.

11.1 Object Sequence Diagrams

The UML defines two kinds of interaction diagrams, either of which can be
used to express behaviour of object interactions: object sequence diagrams and
collaboration diagrams. There are CASE tools to automatically translate inter-
action diagrams of one kind to interaction diagrams of another. We use object
sequence diagrams, which are similar to component sequence diagrams (and use
case sequence diagrams).

If we treat each object as a component and other objects as external actors,
an object sequence diagram is a component sequence diagram. However, as show
in [45], objects and components are different in nature and not all objects can
be treated as components. We are not going to introduce the precise syntax
of the UML object sequence diagrams using the UML meta model definition
or the abstract syntactic definition in formal languages. Instead, we will show
how different object-oriented decompositions mechanisms can be represented in
object sequence diagrams.

Decomposition by Sequence of Object Method Invocations. We often
need to decompose the functionality (i.e., the grand responsibility) of an oper-
ation specified by its contract into a sequence of method invocations to meth-
ods number of objects. These methods represent sub-functionalities (or par-
tial responsibilities). We represent this form of decomposition by the object
sequence diagram in Fig. 48. It shows that method m(in; out) is decomposed
into a sequence of operations.

Class B:: m(in;out) {c.m1(in1;out1); c.m2(in2;out2); c.m3(in3;out3)

}

In an object sequencing diagram, as commented in Fig. 48,

– instances of classes are written in boxes,
– a directed link between two objects represents an instance of an association

between their classes and visibility,
– a message represents an invocation of a method of the target object (server)

from the source object (client), and
– the messages are numbed to represent the order in which they are executed.
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Fig. 48. Decomposition by sequence of method invocations

Note that

1. a message can be passed between two objects only when the two objects are
linked in the current state, and

2. two objects can only be linked by an association of the classes of the objects
- type correctness.

We also write a message message(parameter:parameterType; return: returnType)
with a return parameter in a similar style to Java as follows:

return : = message(parameter: parameterType): returnType

Recursive Method Invocation. It is often the case that an operation of a
component or a method of an object is decomposed into recursive or nested
method invocations as shown in Fig. 49, which represents the method decompo-
sition.

Class B:: m() {o2.m1()
}

Class C:: m1(){o3.n1();03.n2()
}

As an example, we decompose makeCashPay(amount : Quantity) in the way
shown in the object sequence diagram in Fig. 50. The message Create() represents
the call for the constructor of the target class. In an object-oriented programming
language, such as Java, makeCashPay(amount : Quantity) is coded as

Class CashDsk::makeCashPay(amount:Quantity){s.makeCaskPay(amount)

}

Class Sale::makeCashPay(amount:Quantity){p: =new CashPayment(amount)

}
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Fig. 49. Decomposition by recursive method invocations

Fig. 50. A design of makeCashPay operation

As in component sequence diagrams, loops and choices are provided in object
sequence diagrams, but only conditional choices are considered (to model case
statements and if-then-else statements). However, here we need to discuss mes-
sages to container objects, which are also called multiobjects. The role of an
association is modelled as a multiobject if its multiplicity in the association is
more than one. For example, Figs. 18 and 21 in Sect. 7 of Part II show that a Sale
instance aggregates a set of SaleLineItem instances. In the design, a Sale instance
is linked to a multiobject of SaleLineItem by the aggregation associations. We
use a stereotype 〈〈Set〉〉 to represent a multiobject.

Messages to Multiobjects. There are two kinds of messages to a multiob-
ject. A message of the first kind is sent to the multiobject as a single object
instead of a broadcast to each of the member objects contained in the multi-
object. For example, if we want to check the size of a Sale instance, i.e.. the
number of SaleLineItem instances in the Sale instance, we need to send the mul-
tiobject 〈〈Set〉〉 Sale a method call, say size(). This is shown in Fig. 51. In Java,
a multiobject is often implemented by a variable of vector type.

When a method needs to be broadcast to each element in an multiobject, an
iteration of a method call to the multiobject to extract links to each individual
object, following by a message sent to each individual object using a temporary
link (or reference/pointer in object-oriented programs). For example, when we
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Fig. 51. Single message to a multiobject

Fig. 52. Message to each element in a multiobject

print out a Sale instance, we need to print each SaleLineItem of the Sale. This is
shown in Fig. 52.

Once the object sequence diagrams are created for all the interface opera-
tions of the architectural components, we actually have obtained a design model
from which program code can be generated. Thus, the question is how we sys-
tematically constructed the object sequence diagrams from the model of the
component-based architecture design. To this end, we introduce the design pat-
terns for general principles in assigning responsibility (GRASP).

11.2 GRASP: Patterns of Assigning Responsibilities to Objects

Experienced object-oriented developers build up both general principles and
idiomatic solutions called patterns that guide them in the creation of software.
Design patterns are most popularly promoted by the Gang of Four in their
book [23]. A pattern is a named problem/solution pair that can be applied to
new context, with advice on how to apply it. We introduce five design patterns
which are well-known as GRASP - General Responsibility Assignment Software
Patterns (or Principles), consisting of guidelines for assigning responsibility to
classes and objects in object-oriented design.

Responsibilities of Classes and Objects. Classes in the conceptual class
models presented in Sect. 7 in Part II do not have methods. They have not been
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assigned responsibilities related to the use cases. In other words, we have not
decided what they need to do to contribute to the realisation of the use cases.
Object-oriented design of a component analyses what a class in the class model
of the component is able to do and decide what it should do to contribute to the
realisation of the contracts of the interface operations.

A responsibility of an object is a contract or obligation of the object.
Responsibilities are related to the obligations of objects in term of their behav-
iour. There are in general two types of responsibilities:

1. Doing responsibilities: these are about the actions that an object can
perform, including

– doing something itself (such as changing its state),
– initiating an action or operation in other objects (such as calling methods

of other objects), and
– controlling and coordinating activities in other objects (receiving method

invocation and passing data to other objects).
2. Knowing responsibilities: these are about the knowledge an object main-

tains including
– knowing about its encapsulated data. E.g., a product specification knows

the prices of the product,
– knowing about related objects, e.g., the Catalog knows all the product

specifications and a student knows the modules he or she takes, and
– knowing about things it can derive or calculate, e.g., if a Student knows

his or her date of birth he or she knows his or her current age.

It is important to note that the knowing responsibilities of a class are clearly
represented in the conceptual class model in terms of attributes of classes and
associations between objects; and the doing responsibilities of a class are deter-
mined by its knowing responsibility, i.e., what an object can do depends on
what it knows. Deciding the doing responsibilities of a class requires analysis
and deduction, and thus is more challenging.

Object orientation supports the principle of information hiding, i.e., data
encapsulation. All information in an object-oriented system is stored in its
objects and can only be manipulated when the objects are asked to perform
some actions. In order to use an object, we only need to know the interface that
consists of the public methods and public attributes of the object.

The general steps to design the object sequence diagrams of a component is
described as follows.

1. Start with the responsibilities which are identified from the use cases and con-
ceptual models (knowing responsibilities), and the contracts of the interface
operations of the component.

2. Assign these responsibilities to objects, then decide what the objects needs
to do to fulfil these responsibilities in order to identify further responsibilities
which are again assigned to objects.

3. Repeat these steps until the identified responsibilities are fulfilled and a object
sequence diagram is completed.
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For example, we may assign the responsibility of knowing the date of a Sale
instance to the instance itself (a knowing responsibility), and the responsibility
for printing a Sale instance to the instance itself (a doing responsibility).

Responsibilities of a class are implemented by programmed methods of the
class which either acts alone or collaborates with other methods and objects. For
example, the class Sale might define a method print() that prints an instance.
To fulfil this responsibility, object Sale has to collaborate with other objects by
sending a message to each of SaleLineItem objects contained in the Sale asking
them to print themselves.

Using the UML, responsibilities are assigned to objects when creating an
object sequence diagram, and the object sequence diagram represents both of the
assignment of responsibilities to objects and the collaboration between objects
for their fulfilment. For example, Fig. 52 in the previous subsection indicates that

1. Sale objects have been given the responsibility to print themselves, which is
invoked with a message print() to Sale.

2. To fulfil this responsibility, Sale needs to collaborate with the SaleLineItem
objects it contains, asking them to print themselves, thus each saleLine having
a method print().

The Five GRASP Patterns: Each of these principles or solutions describes
a problem to be solved and a solution to the problem. We follow the style of
presentations of patterns see in Larman’s textbook [42].

PatternName : The name given to the patterns for easy reference.
Solution : Description of the solution of the problem.
Problem : Description of the problem that the pattern solves.

We now introduce the five patterns Expert Pattern, Creator, Low Coupling,
High Cohesion and Controller. We will use some responsibilities of Process
Sale use case as illustrating examples. Attention should be paid to how the con-
ceptual class model and contracts component interfaces (or use case operations)
are used in identification of responsibilities of classes.

Expert Pattern. We start with Expert Pattern

PatternName: Expert.
Solution: Assign a responsibility to the information expert - the class

which has information necessary to fulfil the responsibility.
Problem: What is the most basic principle by which responsibilities

are assigned in object-oriented design.

The key of Expert pattern is to identify the information expert from the con-
ceptual class model for a given responsibility. Consider ProcessSaleWithCashPay
component for example, it has the responsibility to calculate the total of the Sale.
This responsibility needs to be assigned to a class. When we assign responsibil-
ities, we had better to state the responsibility clearly:
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Fig. 53. Information expert for the total of Sale

Which object should be responsible for knowing the grand total of the Sale
instance?

By pattern Expert, we should look for the class of objects which has the following
information that is needed for calculating the grand total of the Sale:

– all the SaleLineItem instances of the Sale instance, and
– the sum of their subtotal of SaleLineItem instances.

Looking at the conceptual class diagram in Fig. 18 in Sect. 7 of Part II, we
extract the partial class diagram in Fig. 53. This class diagram shows that only
Sale knows the above two pieces of information for calculating the grand total
of the Sale. Thus by Expert, Sale is the correct class for this responsibility.

We assign the responsibility of returning the total, represented by the method
total(), to class Sale. This is shown in Fig. 54a as a message 1 : total() to object
:Sale. Next the functionality is decomposed into responsibilities of knowing the
subtotal of each SaleLineItem of Sale. And each SaleLineItem is the information
expert of its subtotal. This is represented by the responsibility assignment of
1.2 : sub := subtotal() in Fig. 54a. Further, the subtotal functionality is decom-
posed into getting the price of the item and the quantity of item. The information
expert of knowing the price is ProductionSpecification and the information expert
of quantity is the SaleLineItem itself. This leads to a further responsibility assign-
ment 1.2.1 : p := price() to ProductSpecification. The construction of the object
sequence diagram shows that while looking for an information expert, further
decomposition of responsibilities and looking for sub-information experts are
often needed.

Notice the message 1 : t = total() to :Sale is not from the actor Cashier.
This is because it is not an actor to trigger the operation total(). Instead the
information of total() is directly picked up by the GUI object for display. We
do not discuss GUI design and how GUI objects are linked to the application
objects.

Along the creation of object sequence diagrams, methods representing
responsibilities are assigned to the classes. This is represented in the partial
design class diagram in Fig. 54b. A design class diagram is a class diagram
which contains classes and operations of classes, as well as attributes of classes
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Fig. 54. Design of total()

and associations among classes. The design of object sequence diagrams for oper-
ations thus also transforms the conceptual class diagram to a corresponding
design class diagram.

To be precise, a class diagrams also contains information about directions
of navigability (or visibility) of associations and dependencies among classes.
Dependencies represent the directions of messages and flows of parameters of
methods. It seems that Visual Paradigm does not support visual presentation of
navigability, but the object sequence diagrams show the directions of messages
anyway.

The pattern Expert is the most fundamental principle in object-oriented
design. We will see it is used gain and again in the following subsection about the
design of the operations of Process Sale with Cash Payment. Expert “expresses
the common intuition that objects do things related to the information they
have - fundamentally, objects do things related to information they know” [42].
A good analogy is that if a corporation is to produce the annual financial report
of its business, it is obvious that this responsibility should be given to the chief
financial officer, and then the chief financial officer would give the responsibilities
for producing the different parts to different divisions of his or her departments
which has the relevant information and data.

The use of Expert also maintains encapsulation, since objects use their own
information to fulfil responsibilities. This also implies low coupling, which means
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no extra links needed to be formed apart from those which have to be there.
Low coupling implies high independency of objects that leads to more robust
and maintainable systems.

Creator. The creation of objects is one of the most common activities in an
object system. Consequently, it is important to have a general principle for the
assignment of creation responsibilities.

PatternName: Creator.
Solution: Assign class B the responsibility to create an instance of a

class A (B is a creator of A objects) if one of the following
is true:

– B aggregates A objects.
– B contains A objects.
– B records instances of A objects.
– B closely uses A objects.
– B has the initialising data that will be passed to A when

it is created (thus B is an expert with respect to creating
A objects).

Problem: What should be responsible for creating a new instance of
some class?

Consider the postconditions of enterItem(upc:UPC, qty:Quantity) of component
ProcessSaleWithCashPay. We identify the responsibility “creating a SaleLineItem
instance”. Look into partial class diagrams in Fig. 53 as a part in the concep-
tual model in Fig. 18 in Sect. 7 of Part II. A Sale instance aggregates many
SaleLineItem objects, Creator suggests Sale is a good candidate to be responsi-
ble for creating the SaleLineItem instance. The responsibility is then delegated
to SaleLineItem to create itself. Notice that in all object-oriented programming
languages a class always has “constructor” for creating objects of the class. How-
ever, the creator of an object o is the object which calls the constructor method
of the class of o. This leads to a design of object sequence diagram in Fig. 55. The
assignment of creating a SaleLineItem instance to Sale also identifies a method
makeLineItem(upc:UPC, qty: Quantity) of class Sale, which should be added to
the design class diagram in Fig. 54b.

Consider makeCashPayment(). Its postconditions indicates the responsibil-
ity of “creating a CashPayment instance”. Which object should be the creator of
the CashPayment? Creator suggests both Sale, which is closely related to Cash-
Payment, and CashDesk, which represents the component of the sale handler
handling payments too, can be candidates of the creator. Recall that contract
of makePayment() also has a postcondition for the CashPayment created to be
linked to the Sale. We have two alternative designs in Fig. 56a, b respectively.

Compare the two designs, the one in Fig. 56a is much simpler, and the link
between :Sale and :CashPayment is naturally established through creation. Fur-
thermore, look into the conceptual class diagram in Fig. 18 in Sect. 7 of Part II,
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Fig. 55. Example of Creator pattern

we find that there is no direct association between CashDesk and CashPayment.
The message 1.1 : p=Create() from :CashDesk to :CashPayment cannot be sent
unless we add an association. This also motivates the Low Coupling pattern.

Low Coupling. The design in Fig. 56a is preferable over the one in Fig. 56b
because it does not need an extra link formed between CashDesk and CashPay-
ment. Thus, the former keeps the “coupling” low. In object-oriented programming
languages such as C++, Java, and Smalltalk, common forms of coupling from a
class A to a class B to include:

– A has an attribute which refers to a instance of B, being represented by an
association in a class diagram;

– A has a method which

Fig. 56. Two alternative Creators of CashPayment
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• has a reference (or pointer) to an instance of B,
• calls a method of B itself by any means including a parameter,
• local variable of type B, or
• the object returned from a message being an instance of B;

– A is a direct or an indirect subclass of B, shown as specialisation relation in
a class diagram.

Classes whose objects have too many links to other objects are not easy to be
reused, as to reuse such a class the related class should be used. Components
with classes of high coupling are difficult to maintain too, as changing to such a
class would cause changes to the related classes. For better reusability and main-
tainability of components, the pattern of Low Coupling suggests that coupling
should be kept low.

PatternName : Low Coupling.
Solution : Assign a responsibility so that coupling remains low.
Problem : How to support low dependency an increased reuse?

The design in Fig. 56a conforms to Lower Coupling.

High Cohesion. Cohesion is a measure of how strongly related and focused
the responsibilities of a class are. A class with high cohesion has highly related
functional responsibilities, and it is not overloaded with a large amount of respon-
sibility. A class with low cohesion is undesirable as it suffers from the following
problems: hard to comprehend, hard to reuse, and hard to maintain, and thus it
is prone to errors.

PatternName : High Cohesion.
Solution : Assign a responsibility so that cohesion remains high.
Problem : How to keep complexity manageable?

According to pattern High Cohesion, the design in Fig. 56a is preferable over
the one in Fig. 56b also. This is because CashDesk is the interface object of
ProcessSale. Thus, it is naturally and primarily responsible for handling the
provided operations of the component (see pattern Controller below), and the
responsibility for creating a payment is not logical related to the interface oper-
ations. The benefits from the use of the High Cohesion Pattern include:

– clarity and ease of comprehension of the design is increased,
– maintenance and enhancements are simplified,
– low coupling is often supported,
– supports reuse and easy maintenance.

Controller. To create a design of a component, we need to assign the responsi-
bility of handling the operations of component’s provided interfaces. The ques-
tion is which object should be responsible for receiving the provided interface
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operations from its actors, and then delegates the responsibilities specified by
the contracts of the operations to further objects.

PatternName: Controller.
Solution: Assign the responsibility for handling a system (input)

event to a class representing one of the following choices:

– Represents the “overall system” (facade controller)18.
– Represents the overall business or organisation (facade

controller).
– Represents something in the real-world that is active

(for example, the role of a person) that might be
involved in the task (role controller).

– Represents an artificial handler of all system
(input) events of a use case (or ‘operations of
provided interfaces of a component’), usually named
“〈UseCaseName〉Handler”’ (use-case controller or
‘component interface handler’).

Problem: Who should be responsible for handling a system input
event (or ‘the operations of the provided interface of the
component’)?

Notice that we added some alternative interpretations in the single quotes, such
as ‘component interface handler’ and ‘operations of provided interfaces of a com-
ponent’, in relation to our component-based design. This pattern also suggests
to use the same controller class for all system input events in the same use case.
It also implies that a controller is a non-user interface object responsible for
handling provided operations of the component.

With our component based model of architecture, it is become more obvious
when deciding the controller classes as they are just the classes to implement
the provided interfaces, and we have one controller class for each interface. Con-
sider the use case Process Sale with Cash Payment (also component Process-
SaleByCash), we have given the specification of the contracts of the operations
startSale(), enterItem(), finishSale(), and makeCashPayment() of the use case.
We need to assign these operations to a controller class. According to the pattern
of Controller, we have the following candidates

1. CashDesk: represents a component interface handler19.
2. Store: represents the overall business or organisation.
3. Cashier: represents something in the real-world (such as the role of a person)

that is active and might be involved in the task.
4. ProcessSaleHandler: represents an artificial handler of all the operations of the

use case20.
19 This does not explicitly indicated by Controller pattern, but it is an object that

Cashier actor uses to handle the operations. It also represents the Cash Desk PC.
20 The choice of CashDesk can also be seen as an artificial handler.
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The decision on which of these four is the most appropriate controller is influ-
enced by other factors, such as cohesion and coupling. In the next subsection,
we will use CashDesk as the controller to show the design of the provided opera-
tions of the component ProcessSaleByCash. The reason is that it is already in the
conceptual class diagram with associations naturally identified, and this object
does not have much other functionality to carry out.

The relation between the controller class and the component provided inter-
face is that former implements the latter. Thus, we have class CashDesk imple-
ments pIFProcessSaleCash and in Java this corresponding the class definition
below

Interface pIFProcessSaleCash{
startSale();
enterItem();
finishSale();
makecashPayment()

}

Class CashDesk implements pIFProcessSaleCash {
startSale(){as designed in the next subsection};
enterItem(){as designed in the next subsection};
finishSale() {as designed in the next subsection};
makeCashPayment(){as designed in the next subsection}

11.3 Design Component ProcessSaleWithCashPay

We first discuss the design of Start Up operation that creates the initial object
structure of the system so that all business use processes reply on. Recall the
post conditions of StartUp operation:

1. A Sore, CashDesk, Catalog and ProductSpecification were created (instance cre-
ation).

2. ProductSpecification was associated with Catalog.
3. Catalog was associated with Store.
4. CashDesk was associated with Store.
5. Catalog was associated with CashDesk.

This contract specifies the initialisation of the execution when an application
is launched. The principle is to create an initial domain object first, and then
through which the other objects that need to be created in the StartUp operation
are created. The problem of how to create the initial domain object is depen-
dent upon the object-oriented programming language and operating system. The
following is, for example, how StartUp() is done using Java applet.

public class ProcessSaleApplet extends Applet {
public void init() {
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cashDesk := store.getCashDesk();
}

// Store is the initial domain object.
// The Store constructor creates other domain objects

private Store store := new Store();
private CashDesk cashDesk;
private Sale sale;

}

Fig. 57. Design of StartUp()

The object sequence diagram for the design of StartUp() operation does not
show its controller so as to abstract the platform details away. Instead, the object
sequence diagram will start from the creation of the initial domain object, and
in this case it is Store. The design is shown in Fig. 57. After the StartUp()
operation is executed. Some management use cases can be carried out to add
product specifications to the Catalog instance cat. Notice that the creation of the
Catalog instance cat also creates the (empty) set of ProductSpecification instances;
and the creation of the CashDesk uses cat as a parameter so that the CashDesk
is linked to the Catalog. Therefore the postconditions of StartUp() are all met by
the design. Now we design the operations of Process Sale with Cash Payment.

Design of startSale(). The contract of startSale() assumes the preconditions of
the existence of the objects Store, CashDesk and Catalog that were created by the
StartUp() operation. The postcondition is simply to create a new Sale instance.
By Controller, CashDesk it is also the Creator of the new Sale instance. The
design is given in Fig. 58.

Design of enterItem(). This operation carries most of the complexity, compared
to the other operations of the use case. Its contract assumes the existence of the
CashDesk instance, the Catalog instance and its contained ProductSpecifications.
The operation has input parameters upc:UPC and qty:Quantity of the item to
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Fig. 58. Design of startSale()

create. The contract also assumes the precondition that product identity upc is
valid, i.e., can be found in the Catalog. The responsibilities are specified in the
postconditions of the contract, i.e., to create the new SaleLineItem instance and
associate it to the Sale. Here are the ideas of the design

1. by Controller, enterItem() is assigned to Cashdesk;
2. by Creator, Sale is the creator of SaleLineItem;
3. to create the SaleLineItem instance, however, the product specification of the

item and price need to be obtained and passed to the constructor of Sale-
LineItem; and

4. by Expert, Catalog is the information expert to find the specification for the
given upc.

This analysis leads to the design given in Fig. 59.

Fig. 59. Design of enterItem()

Creating the object sequence diagrams also improves the understanding of the
preconditions of an operation. For example, the precondition that the CashDesk
instance is linked with Catalog instance, establish by StartUp(); and that the
existence of the Sale and the existence of the ProductSpecification, established
by startSale() and some management use cases. On the other hand, an object
sequence diagram can also be checked against the contract of the operation, that
is all preconditions are checked and postconditions are established.
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Design of finishSale(). This is a simple operation and its execution assumes the
preconditions established by startSale() and enterItem(). The postcondition is
simply to set the attribute isComplete attribute of Sale. By Controller CashDesk
is the controller of finishSale(), and Sale is the expert for setting its attribute
isComplete to true. The design is shown in Fig. 60.

Fig. 60. Design of finishSale()

Design of makeCashPayment(). The precondition of this operation is that the
isComplete attribute of the Sale is true. This has been established by finishSale().
The postconditions include creating of CashPayment, associating it to the Sale
and associating the sale with the Store to log the complete sale. The Creator of
cashPayment is designed to Sale in Fig. 56a. The expert for logging the complete
Sale is Store, as it aggregates (complete) Sale instances. This analysis leads to
the design in Fig. 61.

Fig. 61. Design of makeCashPayment()

The design of the object sequence diagrams of the operations also contributes
significantly to the understanding and identification of the preconditions of
the operations that are difficult to identify during the analysis of the use case
sequence diagram and the contracts of their operations. The dependency of the
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preconditions of an operation on the postconditions established by other oper-
ations can be checked using the state machine diagram of the component. For
example, the state machine diagram in Fig. 39 for component ProcessSaleWith-
CashPay is used to guide the above discussion of the preconditions in the design
of the operations.

11.4 Design Patterns and Structural Refinement

We now extend the notion of structural refinement from conceptual class models
to design class models. The difference is that classes in the latter contain meth-
ods. The methods of the classes are invoked by the operations in the provided
interfaces of the components according to the object sequence diagrams of the
interface operations.

A class model (either conceptual or design) C is adequate for an interface
operation if an object sequence for this operation can be constructed using the
methods of in the classes. A class model C is a structural refinement of a class
model C1, denoted by C1 � C, if C1 is adequate for an interface operation, then
C is also adequate for this operation.

The expert pattern is then statement as a refinement rule shown in Fig. 62.
We explain the diagram as follows

– a responsibility S[c.(x)] is assigned to class C that contains a sub-
responsibility c(x),

– class B is the information expert of the responsibility of c(x), here attributes
x can contain role names to refer to associated objects of class B, and

– the responsibility is represented as a method m() and assigned to class B.

Fig. 62. Expert pattern as a structural refinement

A structural refinement rule for class decomposition is given in Fig. 63, that
also reflects High Cohesion. We explained this refinement as follows

– assume class A contains two sets of attributes x and y (including role names
of associations with class C);

– class C are given responsibilities represented by methods m and n, and m
only refers to attributes x;
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– we can decompose A into three classes A, B and D such that B maintains x
only and it is assigned with the responsibility m;

– class A is responsible for coordinating the responsibilities of class B and D.

Fig. 63. Class decomposition

The class model in Fig. 64 also refines the low cohesion class in Fig. 63a, and
clearly this model is of lower coupling than the class model in Fig. 63b.

The refinement in Figs. 62, 63 and 64 can be used in the context of any larger
class models that contain them. The proposition about refinement in Subsect. 7.8
of Part II can now be extended as: a class model C is a structural refinement
of a class model C1, if C can be obtained by one of the following changes made
to C1:

– adding a class,
– adding an attribute to a class,
– adding an association between two classes,
– increasing the multiplicity of a role of an association (that is equivalent to

adding attributes at the level of program code),
– promoting an attribute a subclasses to its superclass,
– promoting an association of a subclass to its superclass,
– adding a method to a class, and
– promoting a method of a subclass to its superclass.

Structural refinement supports incremental modelling and design.

11.5 Summary of Design

We have discussed all the operations of Process Sale with Cash Payment, or
equivalently the operations of the interface of component ProcessSaleByCash.
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Fig. 64. A refinement of low coupling

The messages in the object sequence diagrams of these operations should be
collected and recorded in the classes of the target objects of the messages. After
doing these, the conceptual class diagram is transformed into the design class
diagram, whose methods and directions of navigability (or visibilities) of the
associations of the class are determined by the object sequence diagrams. With
the design class diagram, the object sequence diagrams and the state machine
diagrams of a component, an object-oriented program (skeleton) for the com-
ponent can be generated. The skeleton contains the methods of the classes and
object interactions as method calls (represented by the messages in the object
sequence diagrams) in their bodies, only leaving significant algorithms for manip-
ulation simple attributes of objects need to be coded. The detailed design model
and the program skeleton are analysable and validatable against the require-
ments models.

The GRASP patterns and design are mainly from Larman’s textbook [42].
However, we put the discussion in relation to the component-based architecture
design given in Sect. 10.1. Furthermore, models of component-based architec-
ture can be obtained at the requirements analysis level by decomposing the use
cases. On the other hand, transformations of object sequence diagrams of a com-
ponent can wrap some objects into a components and abstract away the details
of some object interactions inside these wrapped components. These transfor-
mations can be supported by an interactive transformation tool [46]. This will
further decompose the component-based model of architecture obtained in the
component-based architecture design in Sect. 10.1.

Relation to the rCOS Formal Method. The informal object-oriented design
presented in this section is the motivation of the development of the object-
oriented extension [27] to Unifying Theories of Programs [32]. Based on this
semantic theory, a sound and complete calculus of object-oriented structure
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refinement presented in [91], which also characterises the expert pattern (Cre-
ator is treated as a special case of Expert), low coupling and high cohesion as
refinement rules, together with other refactoring rules. The application to the
Trading System is shown in [15]. Formalisation of more design patterns can be
found in [63]. Code generation from design is also presented in [62].

12 Summary and Future Work

We have presented, through informal but yet precise discussions, a model-driven
design method for object-oriented component-based software systems. The the-
oretical underpinning of this method is formal model-driven method of com-
ponent and object systems, knows as rCOS [15,27,37] and component inter-
faces [11,21,26,37,61], and formal semantics and relations of different UML
models for requirements models and design [12,25,52,55].

The rCOS methods clearly reflect the model-driven development that system
design is carried out in a process through building system models to gain confi-
dence in requirements and designs. The process of model constructions emphases
on

– the use of abstraction for information hiding so as to be well-focused and
problem oriented;

– the use of the engineering principles of decomposition and separation of con-
cerns for divide and conquer and incremental development and evolution; and

– the use of formalisation to allow the process repeatable and artefacts (models)
analysable.

Alao, rCOS proposes a multiple diminutional approach to component-based
architecture modelling, as shown in Fig. 65.

– First, it allows models of a component at different levels of abstract, from the
top level models of interface contracts of components developed through use
case analysis and conceptual class modelling, through models of interactions
and dynamic behaviours of components, component-based architecture design
and object-oriented design of individual components, to models of deployment
and implementations.

– At each level of abstraction, a component has models of different viewpoints,
including the class model (or data model), the specification of static data func-
tionality (i.e., changes of data states), the model of interaction protocol with
the environment (i.e., actors) of the components, and the model of reactive
behaviour. These models of different viewpoints support the understanding
of different aspects of the components and support different techniques of
analysis, design and verification of different kinds of properties. Moreover,
they support the separation of design and verification concerns - models of
different viewpoints can be refined separately without affecting models of the
other view viewpoints. For example, in the rCOS theory, we have proven
that contact of the static functionality of an interface can be refined without



248 Z. Liu and X. Chen

changing its contract of dynamic behaviour, and vice versa. Similarly, struc-
ture refinement of the class model preserves the specifications of contracts
and interaction models.

– A model of a component is hierarchical and composed from models of ‘smaller’
components that interact and collaborate with each other through their inter-
faces. Some components can also control, monitor or coordinate other com-
ponents. These compositions are realised by connector components.

Fig. 65. rCOS modelling approach

We briefly summarise the iterative rCOS model of development process,
driven by model constructions and model transformations/refinement, as fol-
lowings

1. Through use case analyse and conceptual class modelling development a
model of component-based architecture (Sects. 5–8).

2. Refine interface operations of components by using design patterns to gen-
erate a model object-oriented design, i.e., the collection of object-sequence
diagrams and the design class diagram (Sect. 9).

3. Transform the model of object-oriented design to a model of component-based
design for integration and maintenance/evolution [46] (this is not discussed
in details in this chapter).

4. Realise the interfaces of components using appropriate middlewares, e.g.,
RMI, CORBA etc. (not covered in the these notes).

5. Code generation performed after Step 3 and Step 4.

An iteration of this process is shown in Fig. 66.
We can see that the rCOS method and development emphasis on the

interface-based requirements analysis and design of components. We believe this
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Design
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Abstract

Fig. 66. rCOS development process

is becoming increasingly essential for the maintenance of and development of
front end applications from modern complex evolving software-intensive sys-
tems [89]. These systems include Internet of Things (IoT) [48], Smart Cities [83]
and Cyber-Physical Systems (CPS) [43]. They are becoming major networks of
infrastructures for development of applications in all economic and social areas
such as health and care health, environment management, transport, enterprises,
manufacturing, agriculture, governance, culture, societies and home automation.
These applications share a common model of architectures and involve different
communication technologies and protocols among the architectural components.
The research and applications thus require collaborations among experts with
expertise in a variety of disciplines and various skills in software systems devel-
opment.

The future development of the rCOS interface theory include its extension
to models of physical interfaces in order to model cyber-physical components and
their composition [54,72]. This will make the notion of interfaces very general.
For example, a piece of wall or a window can be modelled interfaces between the
temperatures outside and inside a room. Even the “air” between two sections
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of a room can modelled as an interface that transforms the temperature of one
section to that of another. However, this general notion of interfaces poses a
number of challenges, for example

1. How to develop a model of contract of such interfaces, as it is often the case
that there is no known physical laws or functions for defining these interfaces?

2. How to define the formal semantics and the refinement relation between inter-
face contracts?

These are the first significant questions to ask when developing a semantic theory
for these CPS components and their compositions. Further challenges including

1. how to develop design techniques and tools,
2. how to combine David Parnas’s Four-Variable Model, Michael Jackson’s Prob-

lem Frames Model, and the Rational Unified Process (RUP) of the use case
driven approach systematically into the continuous evolutionary integration
system development process?

We believe that model-driven approach is again promising, and techniques and
tools of simulation with rich data and machine learning would become increasing
important in building the correct models.
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