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Abstract. “Classical” proofs of secure systems are based on reducing
the hardness of one problem (defined by the protocol) to that of another
(a known difficult computational problem). In standard program devel-
opment [1,3,14] this “comparative approach” features in stepwise refine-
ment: describe a system as simply as possible so that it has exactly the
required properties and then apply sound refinement rules to obtain an
implementation comprising specific algorithms and data-structures.

More recently the stepwise refinement method has been extended
to include “information flow” properties as well as functional proper-
ties, thus supporting proofs about secrecy within a program refinement
method.

In this paper we review the security-by-refinement approach and illus-
trate how it can be used to give an elementary treatment of some well
known security principles.

Keywords: Proofs of security · Program semantics · Compositional
security · Refinement of ignorance

1 Introduction

The challenge of designing secure programs is controlling information in such a
way that program execution achieves something useful without, in the process,
divulging secrets. Provable security means that there is a sound mathemati-
cal argument demonstrating that executing a program incurs no such security
breach. A crucial first step in provable security is to specify what the secrets are
and how they may be accessed. But specifying security properties accurately is
extremely difficult because it requires the specifier to be very precise about often
informally understood but subtle concepts. Such concepts can often seem coun-
terintuitive without a lot of experimentation and a high degree of proficiency in
specialised logics.

More recently researchers have explored an alternative approach to security
verification based on a new notion of “refinement of ignorance” first described in
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Morgan’s Shadow semantics [16]. Instead of proving rigorously that a given pro-
gram “is secure”, the analysis becomes comparative: we say “this program is more
secure than that one”, where the semantics provides the means to prove that such is
the case. The refinement viewpoint focusses the technical scrutiny on information
and access control, important ideas introduced by Denning [4], and later studied by
Landauer [6] who suggested a lattice of information to provide the mathematical
structure for comparing security of some deterministic programs.

The Shadow semantics is a significant generalisation of Landauer’s work. It
allows secret information to be updated, as well as supporting nondeterminism
in the sense of underspecification. Those capabilities mean that protocols can be
described very succinctly in terms of how information must change to achieve
something useful, and what information must necessarily leak (and thus be “down-
graded”) in order to affect that change. In such a description, a security specialist
can reflect on whether the security risk incurred by any unavoidable information
leaks is balanced by the benefits the protocol brings to the particular application.

Although, in some sense, the Shadow semantics is unrealistic because it
adopts an information theoretic approach to security, its clean treatment of infor-
mation control provides a sound and straightforward basis on which to introduce
fundamental principles of security. Teaching security principles to undergradu-
ates in a formal way helps them to think critically and precisely about the con-
trol of information without them having to understand –at the same time– the
complexities of cryptographic primitives used in real systems as an engineering
device to implement those principles.

In this paper we review the Shadow semantics and use it to illustrate some
well-known principles of secure communication. In particular we show how the
refinement of ignorance approach supports straightforward algebraic proofs of
intricate data access problems.

1.1 Notational Conventions

Throughout we use left-associating dot for function application, so that f.x.y
means (f(x))(y) or f(x, y), and we take (un-)Currying for granted where nec-
essary. Comprehensions/quantifications are written uniformly, as (Qx : T |R · E)
for quantifier Q, bound variable(s) x of type(s) T , range-predicate R (proba-
bly) constraining x and element-constructor E in which x (probably) appears
free: for sets the opening “(Q” is “{” and the closing “)” is “}” so that e.g. the
comprehension {x, y:N | y=2x · yz} is the set of numbers z, 2z, 4z, · · · .

2 Principles of Non-interference

2.1 Review of the Shadow Semantics

The shadow model of security extends Goguen’s classical model of non-
interference security [5] by tracking the effect of observed information flows on
correlations between variables. As with established methods for analysing infor-
mation flow, the Shadow semantics is based on a partitioning of the state space
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into high and low security variables: an observer has full read access only of the
low-security variables, and cannot read the high-security variables at all. The
Shadow semantics is sensitive to “run-time” observations, such as the values
of low-security variables and the program counter. This allows the attacker to
infer possible values of the high-security variables even without the benefit of
direct observation. These run-time observations of the low-security variables can
be used in conjunction with a static analysis of the program source, possibly
resulting in very accurate predictions of the values of high-security variables.
We set out, more precisely, the threat model below at Sect. 2.3, but for now
we give an informal description of the underlying principles, noting here that a
fundamental feature of their design is to ensure compositionality of the related
security-refinement order, also explained below.

We use types V and H respectively to distinguish between “visible” (i.e. low-
security) variables and “hidden” (i.e. high-security) variables mentioned above.
In traditional non-interference security, if the attacker cannot infer anything
at all about the hidden variables by observing the visible variables then the
program is deemed “Goguen-secure”. Although an influential idea, this notion
of security is normally not achievable in practical security protocols. This can
be seen clearly in a password checker: if the correct password is entered then the
observer deduces exactly what the password is, but even if he enters the incorrect
password he learns what the password is not. Either outcome necessarily leaks
some information.

The Shadow semantics provides support for analysing the extent to which
an attacker can deduce the value of the hidden state. A program can still be
deemed secure provided that the information revealed does not compromise a
specified level of secrecy. In the password checker, leaking what the password is
not is deemed an acceptable risk associated with the convenience of secure access
control by password.

Consider the two programs set out at Fig. 1. Both have a single hidden vari-
able h which is initialised to a value drawn from the set {0, 1, 2}, and a visible
variable v initialised to a value drawn from {0, 1}. In standard program seman-
tics we would be able to say that ProgA is refined by ProgB, since in ProgB,
v’s value is determined by that of h, whereas in ProgA, v’s value is chosen arbi-
trarily in {0, 1}. However, in terms of non-interference, we will see that ProgB
is actually less secure than ProgA, since it potentially can leak quite a lot of
information about h. Taking that into account would force us to conclude that
ProgA is not refined by ProgB after all.

To compare information-flow characteristics of programs we use hid and
vis respectively as visibility declarations: these determine semantically how the
state is divided between V and H (introduced above). Variables with the vis
declaration mean that the observer has full “read access” at runtime, and these
variables are mapped to V. On the other hand variables with the hid declaration
mean that the observer cannot see runtime updates, but can only infer values
based on the program source and the observed state changes of visible variables.
Variables with the hid declaration are mapped to H in the semantics.
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ProgA ProgB

vis v:∈ {0, 1};
hid h:∈ {0, 1, 2}

hid h:∈ {0, 1, 2};
vis v:= (h mod 2)

A vis declaration means that the observer has full “read access” to v. A hid declaration
means that he is not able to read directly the value of h.

Fig. 1. Similar output values but dissimilar information-flow characteristics

Now with these declarations, we can analyse the information about h leaked
at run-time. We write h:∈ {0, 1, 2} to mean that the hidden variable h is set
to any of the three possible values, but the observer’s knowledge of the state
cannot be any more precise than that. For visible variables the observer always
has complete knowledge of the runtime values. When we write v:∈ {0, 1}, it
means that from the source code alone the observer cannot predict which of 0 or
1 will be assigned to v; however he can observe at run-time exactly which value
is selected. In particular ProgA of Fig. 1 is non-interference secure in the sense
of Goguen, because whatever the run-time value of v is observed, the attacker
is unable to use that information to determine the value of h more accurately
than its initialisation set. An attacker observing ProgB on the other hand can
deduce a great deal about the value of h by observing the run-time value of v.
Since v’s final value depends on the parity of h, if v is set to 1 it can only mean
that h is also 1, since it is the only odd value in the set of values that h can
have. If v is observed to be 0, then the attacker can rule out 1 as a possible
value for h. Thus we can deduce that ProgB is not non-interference secure in the
classical sense. However the Shadow semantics has given us a precise relationship
between the visible state and the hidden state, rather than a single judgement of
non-interference. This detailed relationship between the hidden state and visible
behaviour can be used to compare the relative security of programs using a
“security refinement” relation which takes both functional and non-interference
security into account. We review this relationship next.

The basic “Shadow state” for programs is a pair (v,H) where v is the current
state of the visible variables v, and H is a subset of possible values for the
hidden state variable h that the attacker has deduced is consistent with his
observations. Thus (v,H) should be thought of as pairing visible values together
with “equivalence classes” of possible values for h which the attacker is able to
infer from run-time observations and the source code.1

The Shadow semantics of a program is then a mapping from initial paired
states to sets of paired states V × PH → P(V × PH), where the multiplicity
of the result sets accounts for nondeterminism in the observations. In Fig. 2 we
can see the final result sets for our examples at Fig. 1. In the case of ProgA
there are two possible observations, depending on the nondeterministic setting

1 Another way to think of the pairs (v, H) are abstractions of “prior”/“posterior”
distributions in a full probabilistic semantics. See for example [12,13].
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of visible variable v. However for each observation, no information about the
possible value of the hidden variable is leaked, thus each visible state is paired
with the set {0, 1, 2} denoting that the attacker is unable to make any run-time
deductions about the value of the hidden h by comparing what he knows before
with what he knows after executing and observing the program’s behaviour. In
the case of ProgB, significant information about h is leaked at run-time, and this
is taken into account by the different subsets paired with the observations, which
the attacker can take advantage of when the program executes. For example if
the attacker observes that v is 1 at run-time then he can deduce precisely the
value of h, thus the singleton subset {1} is paired with that observed state.

Shadow refinement of programs remains consistent with standard functional
refinement, but prevents refinements which lead to inconsistent security proper-
ties between the specification and the implementation. As mentioned above, a
standard semantics of ProgA and ProgB (i.e. one that ignores the visibility dec-
larations) would imply that ProgA is actually “functionally refined” by ProgB,
because the nondeterminism (in the final values of v) has been reduced in ProgB.
However the security properties of ProgB are worse than those of ProgA, since,
as explained above, information about h is leaked to the attacker. Thus with
respect to Shadow refinement ProgA and ProgB are unrelated.

Two programs are in the Shadow refinement relation if both their func-
tional and security properties are improved. The Shadow semantics incorporates
assumptions in the threat model to ensure that secure refinement is composi-
tional. “Compositionality” means that security (and functional) properties of a
program can be determined by the corresponding properties of its components.
To ensure compositionality in the Shadow semantics the attacker must have the
following two important capabilities.

The first is “perfect recall”, which means that previous information flows are
carried forward, and can be used to make additional deductions when combined
with subsequent run-time information flows. For example consider ProgB; v:= 0
in Fig. 4, where ProgB first leaks information about h, and then resets the value
of v. We see that, in spite of overwriting the visible variable, the effect of the
information flow is sustained in the semantics, so that although the visible vari-
ables have the same value in the end, the control flow of (the original) ProgB,
which leaks information about h, is preserved by the result set.

The second capability relates to the consistency of the observer’s deductive
powers. We say that the observer cannot deduce facts that are inconsistent with
his observations, but can deduce facts that are. In particular if the observations
imply that a value taken by h could be possible, then it must be included in
some output (v,H). Similarly if the observations imply that a value taken by h
could not be possible then it must be excluded by all outputs (v,H). We define
observation consistency as follows.
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Definition 1 (Observation consistency). Given a set of observations Ov associ-
ated with the same visible state v,

Ov := {(v,H1), . . . , (v,Hk)} ,

we say that any observation (v,H ′) is consistent with Ov if there is some subset
U ⊆ Ov such that H ′ =

⋃
(v,H)∈U H. �

For example in ProgB; v:= 0 the observer can deduce that h ∈ {0, 1, 2}, but
can also deduce that h �∈ {3, 4, 5}, thus (0, {0, 1, 2}) is consistent with all the
observations, but (0, {0, 1, 2, 3}) is not. This is why the semantics Definition 2
(below) mandates the inclusion of all consistent observations in the result set.

In fact consistency is related to union closure on the H-component: we say
that a set of observations O is union-closed for v if whenever (v,H1) and (v,H2) ∈
O then (v,H1 ∪ H2) ∈ O as well. If a set of observations is union-closed for
all v then any observation that the attacker can deduce is consistent with all
observations in the set.

Definition 2 (Shadow semantics). The space of Shadow programs is given by
V × PH → P(V × PH), where the result sets are union-closed for all v.2

Given two programs P,Q : V × PH → P(V × PH) we say that P is secure
refined by Q, or P � Q, provided that for all (v,H) ∈ V×PH we have P.(v,H) ⊇
Q.(v,H). �

Definition 2 we can now see that in fact ProgA; v:= 0, with the nondetermin-
ism in v now removed by the final assignment, is a refinement of ProgB; v:= 0, i.e.

ProgB; v:= 0 � ProgA; v:= 0 .

The refinement tells us that any observation that the attacker can deduce about
ProgA; v:= 0 is something that can also be deduced about ProgB; v:= 0. In other
words, the attacker can deduce fewer properties about the secrets of ProgA; v:= 0
than he can about the secrets of ProgB; v:= 0.

2.2 Semantics of a Simple Programming Language

In Fig. 3 we set out the semantics of a small programming language for describing
straight-line programs. The semantic brackets [[·]] take a program text and map
it to a function of type V × PH → P(V × PH) as described in Definition 2.

The general principle for keeping track of the correlations between the
observed behaviour of the program is to form “equivalence classes” of the hidden
state consistent with the observables. The formulae given in Fig. 3 express the
division into equivalence classes of the Shadow variables once the information
flow and the state updates have been carried out. For example when the visible
state is set according to an expression that depends on the hidden state, the

2 For simplicity we do not consider the empty set, i.e. outputs of the form (v, {}).
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[[ProgA]].(v, H) [[ProgB]].(v, H)

{ (0, {0, 1, 2}) ,
(1, {0, 1, 2}) }

{ (0, {0, 2}) ,
(1, {1}) }

We use (v, H) to stand for an arbitrary initial paired state, and the semantic brackets
[[·]] maps program texts to functions V ×PH → P(V ×PH); the subsets denote the final
values of the paired states after executing the programs in Fig. 1.
Full details of the semantic function [[·]] are given at Fig. 3.

Fig. 2. Final result sets

Program P Semantics [[P ]].(v, H)

Assign to visible v:= φ(v, h) {v′ : φ(v, H) · (v′, {h: H | φ(v, h) = v′ · h})}
Assign to hidden h:= φ(v, h) {(v, {h : H · φ(v, h)})}

Choose visible v:∈ S.v.h {v′: S(v, H) · (v′, {h′: H | v′ ∈ S.v.h′ · h′}) }
Choose hidden h:∈ S.v.h {h′: S(v, H) · (v, {h′: H; h′′: S.v.h′ · h′′}) }

Composition P1; P2 lift.[[P2]].([[P1]].v.h.H)
Demonic choice P1 � P2 [[P1]].(v, H) ∪ [[P2]].(v, H)

Conditional if φ(v, h) then Pt else Pf fi
[[Pt]].(v, {h′: H | φ(v, h′) = true · h′})

⋃

[[Pf ]].(v, {h′: H | φ(v, h′) = false · h′})

For an expression φ that formally is evaluated on variables v and h, on the right-hand-
side, we write φ(v, h) for the value that is produced when v has value v and h has value
h. Similarly, we write φ(v, H) for the set of values {h : H · φ(v, h)} that could arise by
varying over H.
The function lift.[[P2]] applies [[P2]] to all paired states in its set-valued argument, un-
Currying each time, and then takes the union of all results.
The extension to many variables v1, v2, · · · and h1, h2, · · · , including local declarations,
is straightforward [15, 16].

Fig. 3. Semantics of non-looping commands

original set H then becomes divided into equivalence classes depending on the
visible value observed. In Figs. 1 and 2, ProgB illustrates this. A similar situation
can occur when the hidden state is set according to the value of the visible state.
For example h:= v implies that after the assignment to h, the Shadow variable
corresponds to a singleton.

The conditional always releases information depending on whether it resolves
to true or not. We note also that non-determinism in the assignments to the
visible variables can arise through information flows whenever the uncertainty in
the hidden state becomes resolved through a definite observation. For example
the statement v:= (h mod 2) can lead to a non-deterministic setting of v when
the incoming uncertainty of H allows the possibilities that h could be both odd
and even.
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[[ProgA; v:= 0]].(v, H) [[ProgB; v:= 0]].(v, H)

{ (0, {0, 1, 2}) } { (0, {0, 2}) , (0, {1}) ,
(0, {0, 1, 2}) }

Setting the final value of v to 0 preserves the prior information leaks — in effect the
attacker has perfect recall. Union-closure allows functionally equivalent programs with
better security properties to be possible refinements.

Fig. 4. Perfect recall and refinement

2.3 Refinement of Ignorance

We can understand the secure refinement in Definition 2 in terms of increasing
ignorance (of the observer) as programs become more refined. The more refined a
program, the less definite is an observer’s knowledge concerning the value of the
hidden variables at run-time. We use a “possibility modality” to express degrees
of observer ignorance. Let φ be an ordinary expression in the program variables.
Given a paired state (v,H) we say that it possibly satisfies φ, or (v,H) |= P (φ)
provided that:

(∃h ∈ H | φ(v, h)), (1)

where we write φ(v, h) for φ with the free occurrences of v and h replaced by the
corresponding values v and h.

Similarly, given a set S of paired states, we say P (φ) is satisfied for S provided
that all (proper) paired states in S possibly satisfy φ, that is:

S |= P (φ) iff (∀(v,H) ∈ S | (v,H) |= P (φ)) . (2)

For example if φ is “h is even”, then (0, {0, 1, 2}) |= P (φ), but
[[ProgB]].(v,H) �|= P (φ), since for (1, {1}) ∈ [[ProgB]].(v,H) there is no possi-
bility that the final value of h is even. Thus, if for some property φ, program
Prog and initial state (v,H), if [[Prog]].(v,H) |= P (φ), then the attacker is unable
to distinguish any of the outputs of Prog in respect of φ. This feature is preserved
by refinement.

Lemma 1 (Ignorance refinement [16]). If Prog � Prog′ then for any expression
φ in the program variables, and initial state (v,H),

[[Prog]].(v,H) |= P (φ) ⇒ [[Prog′]].(v,H) |= P (φ).

�

2.4 Summary of the Non-interference Threat Model

We end the review of the Shadow semantics by summarising the operational
principles underlying the threat model.
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An observer:

1. Has complete knowledge of the source code.
This implies that the attacker can perform a static analysis to make informed
predictions about possible correlations between the hidden and visible state.

2. Is able to observe run-time control flow.
By making run-time observations the attacker is able to rule out some of the
static predictions made at step 1, thus significantly improving his current
knowledge of the secret.

3. Has perfect recall.
This means that once information about the value of a hidden variable has
leaked, there is no way to cover it up except by re-setting the value.

4. Is able to make logical deductions.
This means that the attacker can put together all the basic facts from the
analyses mentioned above, including static and run-time analysis, to draw
additional logical facts about the secret data.

5. Is unable to guess or prove the actual value of the hidden state
more precisely than that which is implied by the above forms of information
flow.
This is an important limitation on the accuracy of his knowledge of the
secrecy: it says that if there is no logical evidence to suggest that the value
of the secret is not in some set H, then the attacker cannot improve his
guess further.

6. Can use refinement in context.
If S � I, then any property which the attacker can deduce about S can
also be deduced about I. This last property imposes “compositionality” for
reasoning, and makes secure refinement useful in practice.

3 The Reveal Statement

It is often useful to analyse exactly what the adversary can deduce at various
stages of the program execution; to do this we introduce a program statement,
additional to the language constructs at Fig. 3. The statement reveal φ, where
φ is an expression in the program variables v and h, is an explicit publication of
a value. It does so without changing any variables. Semantically it is equivalent
to publishing the value φ(v, h) in a (local) visible variable.3

3 Equivalently it can be done by publishing the value in any visible variable and then
overwriting that variable with its former value, leaving perfect recall to retain the
information revealed.
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Definition 3 (Reveal Statement). Let φ be an expression involving program
variables v and h. The program reveal φ publishes the value of φ based on the
current actual value of the variables:

[[revealφ]].(v,H) := {G : G · (v, {h: H | φ(v, h) = G · h})} ,

where G is the set of distinct values taken by φ(v, h) as h ranges over possible
values in H. �

We can use the reveal statement in two ways when analysing a program.
The first is as a specification statement because it separates very clearly the
overall effect of a program in terms of how variables are updated, and which
facts about those variables are known to the attacker. For example, the program
ProgB; v:= 0 is equivalent to a more straightforward one that sets the variables
and then publishes a property about the hidden state:

hid h:∈ {0, 1, 2};
vis v:= 0;
reveal (h mod 2).

(3)

Second, we can use the reveal statement to prove information flow proper-
ties. Since the reveal statement is only concerned with information flow and
not state updates, it satisfies a number of simple but powerful algebraic laws,
and these can be used in conjunction with the programming language to deduce
information flows about programs which do include state updates.

Theorem 1 (Reveal properties [9,10]). Let Prog,Prog′ be programs with visible
variable v and hidden variable h, and let φ, ψ be expressions in those program
variables. The following properties hold.

1. reveal φ � skip;

2. reveal φ ; reveal ψ = reveal ψ ; reveal φ;

3. v:= ψ(v, h) ; reveal φ = reveal φ ; v:= ψ(v, h), whenever φ does not depend
on v;

4. v:= φ(v, h) = reveal φ ; v:=φ(v, h);

5. v:= φ(v, h) ; v:= ψ(v, h) = reveal φ ; v:=ψ(φ(v, h), h); �

Theorem 1(1) says that only revealing information, without changing any
variables, is always an anti-refinement of skip. Theorem1(2) says that infor-
mation can be revealed in any order. In fact we define a useful shorthand for
multiple reveals:

reveal (ψ, φ) := reveal φ ; reveal ψ. (4)
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Next, Theorem 1(3) says that revealing information about h that is indepen-
dent of the visible state can occur before or after updates to the visible state.

Theorem 1(4) says that if an assignment to a visible variables already reveals
information then making an explicit reveal of that information before the update
is redundant.

Theorem 1(5) allows two updates to v to be combined provided the informa-
tion flow of the first update is recorded in a reveal statement.

To illustrate reasoning with reveal we consider ProgB; v:= 0:

ProgB; v:= 0
= hid h:∈ {0, 1, 2};vis v:= (h mod 2); v:= 0 “Fig. 1”

= hid h:∈ {0, 1, 2}; reveal (h mod 2) ;vis v:= 0 “Thm. 1(5)”

= hid h:∈ {0, 1, 2};vis v:= 0; reveal (h mod 2), “Thm. 1(3)”

demonstrating the asserted equality between (3) and ProgB; v:= 0.

3.1 Reveal Statements as Tests for Information Leaks

Theorem 1(4) suggests a testing interpretation for reveal statements. If

Prog ; reveal φ = Prog,

then Prog already reveals a relationship between v and h through publication of
φ, since following it by the explicit reveal incurs no further information leak.
When two programs are functionally equivalent, but differ in their Shadow
semantics it is because one reveals different information than the other. We
can capture these differences using reveal statements.

Definition 4 (Test for information leaks). A test for an information leak is any
program T such that T � skip. We say that it is possible that a program Prog
can leak information expressed by T provided Prog;T = Prog. �

The program skip is a very weak test because all programs satisfy
Prog; skip = Prog, and indeed skip expresses no relationship between
observations and the hidden state. More demanding is the test given by
reveal (h mod 2) — programs whose results remain unchanged after this explicit
reveal already leak the parity of h.

For example ProgB; reveal (h mod 2) = ProgB, but ProgA; reveal
(h mod 2) �= ProgA.

4 The Shadow Semantics and Information-Theoretic
Security

In 1949 Claude Shannon [20] set out the principles and properties of encryption
schemes which guarantee perfect secrecy. In this section we review those defin-
itions in terms of the Shadow semantics, illustrating some of those principle’s
consequences using algebraic reasoning set out above.
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Let E represent an “encryption mechanism” described by Shannon consisting
of a mapping from M×K → E , where M is the set of possible messages, K is the
set of possible keys and E is the set of possible encryptions. For any key k ∈ K
the mapping m �→ E.m.k must be injective, so that any given encryption E.m.k
can be decrypted with key k. Shannon studied information theoretic security in
which an attacker is accorded unlimited computational power; in such a model
the notion of perfect secrecy means that if a secret is chosen uniformly at random
from M, and the key is chosen uniformly at random from K, then the encryption
E.m.k is perfectly secure provided that whatever the value E.m.k observed by
the attacker, he cannot guess the message m with probability greater than 1/|M|.

Shannon proved an important limitation of perfect security: that the set of
keys must be the same size as the set of messages.

Theorem 2 (Perfect security [20]). Let E : M×K → E be a perfectly secure
encryption mechanism. Then the set of possible keys K must be at least as big
as the set of possible messages M. �

Theorem 2 suggests a definition of a “generic perfectly secure” encryption
mechanism using the Shadow semantics: revealing E.m.k leaks nothing about
the precise value of m or k, if neither are known initially.

Definition 5 (Perfect encryption). Let E : M×K → E be an encryption mech-
anism, where M is set of possible messages, K is a set of encryption keys and E
the set of possible encryptions. We say that E corresponds to a perfect encryption
mechanism if:

hid m:∈ M;
hid k:∈ K;
reveal E.m.k

=
hid m:∈ M;
hid k:∈ K

�
As an example, consider a “one time pad” implemented with the “exclusive-

or” operator denoted ⊕. If we define E : Bool × Bool → Bool as E.b.b′ := b ⊕ b′

then it can be shown directly [11] that E satisfies Definition 5, validating the
method of “masking” key bits with randomly chosen values.

4.1 The Encryption Lemma

We state Morgan’s encryption lemma for perfectly secure encryption schemes.

Lemma 2 (Encryption Lemma [16]). Let E : M×K → E correspond to a
perfectly secure encryption mechanism as set out at Definition 5. If m is a hidden
variable, and k is a fresh, hidden variable, then:

hid k:∈ K; = skip,
reveal E.m.k;
skipM

where [[skipM]].(v,H) := {(v,HM)} and HM is the projection of H ⊆ M × K
onto M. �
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Although Lemma 2 is equivalent to Definition 5, stated in this way, it is a
concise representation of how much information about h is released by publishing
the result of the encryption. When E is a perfectly secure mechanism then it
reveals no more information about h than was known before.

4.2 The Decryption Lemma

Shannon’s analysis says that, even when the key and message sets are the same
size, then for the mechanism to be perfectly secure it must be very like a one-time
pad. The next theorem summarises this idea.

Theorem 3 (Perfect secrecy [20]). Let E : M×K → E be a perfectly secure
encryption mechanism such that |M| = |K| = |E|. Then the following must hold:

1. Each key must be chosen with probability 1/|K|;
2. For every message m ∈ M and cipher text E ∈ E there is a unique k such

that E.m.k = E. �
Given Theorem 3 we can now prove a property similar to Shannon’s Theo-

rem 3(2), saying that if the attacker has knowledge of both the secret and the
cipher text, then he can deduce the key.

Lemma 3 (Decryption Lemma). Let E : M×K → E be a perfectly secure
mechanism known to the observer such that |M| = |K| = |E|. Then

reveal (m,E.m.k) = reveal (m, k). (5)

Proof: Theorem 3(2) states that for every m ∈ M, if E.m.k = E.m.k′ then
k = k′. Hence if the observer knows both m and E.m.k for some k then he must
be able to infer the value of k exactly. �

Lemma 3 expresses a second limitation of perfectly secure encryption systems,
that both the cipher text and the message must be kept secret for the encryption
not to leak anything.4

5 Modelling Protocols Between Multiple Agents

Most security protocols involve several participants, each with different secu-
rity concerns, and each with different accessibilities to the information content
within the system. The security proofs of such systems must ensure that each
participant’s (individual) specified security objectives are met. Thus far we have
described a semantics which can handle a simple scenario of a single attacker;
in this section we review how to adapt it so that we can describe security pro-
tocols with multiple participants, where we treat each participant as a potential
observer of all the others.
4 This abstract algebraic property also captures the capability of a “known plain text

attack”. An encryption mechanism is susceptible to a known plain-text attack if,
given the message m and the encryption E.m.k is able to work out the key k. If
such an attack succeeds against an encryption method then we would say that the
encryption mechanism satisfies (5).
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5.1 Multiple Agents and Their Potential Attackers

A typical security protocol involves a communication between at least two
“agents”. Typically both agents have their own secret information which is pri-
vate to them individually. The objective of a security protocol between the agents
might be to share some secret information without leaking it to a third party, or
to convince each other that they really are who they claim to be. To implement
the protocol means sharing some part of their private data, but in a constrained
manner so that they do not reveal too much.

The simplest example of such a “multi-party” protocol is publishing the
conjunction of two secret bits, described informally as follows.

Two agents A and B each have a private bit held in variables a and b
respectively. They wish to compute the conjunction a ∧ b without either
one telling the other the actual value of their own bit, and without
releasing any more information than can be deduced from knowing a∧b.

The objective of this protocol is to publish only the value a ∧ b, but without
revealing any more than that, even to each other. This, of course, necessarily
involves some information flow but, depending on the actual value of a∧ b, some
uncertainty can still remain. If the value of a∧b is 1, then indeed publishing this
will reveal exactly that a = b = 1. However if a ∧ b is 0 then there are several
different scenarios which could lead to this result: either both a and b are 0 or
exactly one is 0. By publishing the value of a∧ b in this case, there should be no
distinction between relevant scenarios from the point of view of any participating
agent or third party observer. In particular if a is 0, then agent A should not
know whether b is 0 or 1.

We adapt the simple semantics described above so that it can be used to
take into account each “agent’s viewpoint”, and the individual constraints on
information access required by protocols such as this.

Elsewhere we introduced agent viewpoints [11] into the system by embellish-
ing the declaration of each variable to include a list of agents which treat the
variable as an observable. In detail we use the following declarations to classify
various explicit visibility relationships between agents.

– var means the associated variable’s visibility is unknown or irrelevant.
– vis means the associated variable is visible to all agents.
– hid means the associated variable is hidden from all agents.
– vislist means the associated variable is visible to all agents in the (non-

empty) list, and is hidden from all others (including third parties).

For example in the case of the secure conjunction protocol, we can use the
visibility declarations to include which agents can observe which parts of the
state. The formal protocol is set out at Fig. 5. First A and B each choose (at
random) a secret bit and save it to their respective private variables. Those vari-
ables are declared with a visibility that makes explicit that only A can observe
a, and only B can observe b directly. Of course A and B each have a “copy” of
the source code. Finally the universally visible variable c (visibility declaration
vis) is set to the value a ∧ b.
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visA a:∈ {0, 1}; ← A chooses a secret bit
visB b:∈ {0, 1}; ← B chooses a secret bit
vis c:= a ∧ b ← Their conjunction is published in c.

visA and visB are visibility declarations placing constraints on which part of the state
is visible to which agent.

Fig. 5. Specification of the secret conjunction

5.2 Interpreting Agent Viewpoints

The state of the small program at Fig. 5 is defined by the values of the variables
a, b and c but, given the visibility declarations summarised above, each agent has
a very different perspective when we take into account which variables they can
read at runtime. We adapt the simple semantics of variable classified as either
hidden or visible by treating each agent individually via their viewpoint.

Definition 6 (Viewpoint). Let program Prog with named agents A,B, . . . . We
write ProgW for agent W ’s viewpoint of Prog, where all declarations vislist
become hid, if W does not appear in list and vis otherwise. All hid, var and
vis declarations remain unchanged.

The semantics of agent W ’s viewpoint of Prog is given by [[ProgW ]]. �

Given the visibility declarations at Fig. 5, we define A’s viewpoint to be the
Shadow semantics of the program at Fig. 6, where all declarations in which A is
on the list are set to vis and all declarations where A is not on the list are set
to hid.

Similarly agent B has a viewpoint similar to agent A’s except that b is
declared visible and a is declared hidden. We use a special universal agent called
U to represent a third-party observer who is never included on any visibility list
so that all variables except those with the vis declaration are hidden from U .
Agent U ’s viewpoint of secret conjunction therefore has both a and b declared
hidden, and c declared visible.

In Fig. 7 we summarise the semantics for each agent’s viewpoint for secure
conjunction. Observe that the implications of the visibility declarations are to
set the Shadow sets. In the case of agent A, the observables are derived from
variables a and c, and so in the result sets, the triples are of the form (a, {b, b′}, c),
with the uncertainty in variable b captured as a set of possible values in the
second position of the triple correlated with the observation. For agent U , the
uncertainty is over variables a and b, and so its viewpoint result sets are of the
form ({(a, b), (a′, b′)}, c), since its Shadow sets are drawn from A×B.

We define refinement of multiagent systems as follows.

Definition 7 (Multiagent Refinement). For specification S and implementation
I, involving named agents A,B, . . . , and universal agent U , we say that S � I
provided that SW � IW for all agents W , where SW , IW denote the correspond-
ing viewpoints of agent W with respect to S and I. �
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vis a:∈ {0, 1}; ← A chooses a secret bit
hid b:∈ {0, 1}; ← B chooses a secret bit
vis c:= a ∧ b ← Their conjunction is published in c.

Fig. 6. Agent A’s viewpoint for secret conjunction

Agent A Agent B Agent U

vis a, c b, c c
hid b a a, b

Shadow sets B A A×B
contained in

Result sets
{ (0, {0, 1}, 0) ,

(1, {0}, 0) ,
(1, {1}, 1) }

{ ({0, 1}, 0, 0) ,
({0}, 1, 0) ,
({1}, 1, 1) }

{ ({(0, 1), (1, 0), (0, 0)}, 0) ,
({(1, 1)}, 1) }

The state of each viewpoint is derived from triples of variable values a, b, c. In each case
the shadow sets are determined by the visibility declarations so that the structure of
split states is to group equivalence classes of triples together. For clarity we keep the
order of the triples as A × B × C with the hidden part of the state indicated by braces.
For example elements in agent A’s final result sets are of the form (a, {b, b′}, c) in-
dicating that A can observe the first and last item of the triple but not the middle
item. Similarly B’s final result sets are of the form ({a, a′}, b, c), and agent U ’s result
sets are of the form ({(a, b), (a′, b′)}, c) since U cannot observe either of the first two
components in the triple.

Fig. 7. Semantics for each agent’s viewpoint for secret conjunction Fig. 5

We note that visibility declarations can be thought of as placing access restric-
tions on variables rather than proscribing that an agent can never deduce the
value of variables not on his visibility list: that depends on the code. For exam-
ple, hidden h is published once the statement v:=h has been executed, and this
knowledge is available to all agents. Visibility declarations do however have an
impact on which refinements will be judged ultimately to be valid.

For example the following refinement fails, because although nothing has
changed with regards agents A,B, for agent U , the program on the left reveals
strictly less information than the program on the right.

visA a:∈ {0, 1};
visB b:∈ {0, 1};
visA,B c:= a ∧ b

��
visA a:∈ {0, 1};
visB b:∈ {0, 1};
vis c:= a ∧ b

(6)

5.3 Agent Viewpoint of Knowledge

Within a multiagent system, it is useful to be able to prove what individ-
ual agents know. We recall a special reveal statement reveallistφ introduced
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elsewhere [9], which behaves like reveal φ from the perspective of any agent
viewpoint if that agent is on the list list, and skip otherwise.

Definition 8. We say that an expression φ is effectively list-visible at a point
in a program just when putting a statement reveal listφ there would not alter the
program’s meaning.

For example in the program on the left at (6), the expression a∧b is effectively
{A,B}-visible, but is not effectively {U}-visible, since the Universal agent cannot
observe the conjunction of a and b, and so following it with revealU a ∧ b will
change its information flow properties and hence its meaning.

6 Elementary Impossibilities Using the Shadow

One of the basic concerns of secure communication is to establish a shared secret
between agents in the system. If the agents are able to communicate already over
a private channel, then they can continue to share secrets between each other
via that private channel. If they do not have a private channel then they must
transmit messages encrypted over a public channel.

Shared secrets are important because they provide the basis for secret
communication using an efficient encryption mechanism known as “symmetric
encryption”. But how do two agents establish any shared secret in the first place
if they don’t already share a secret channel?

There is a well-known “folk theorem” which describes a limitation of sym-
metric encryption mechanisms for establishing a shared secret, namely that they
cannot do so if they are only able to use a symmetric encryption mechanism.
The fact that this general impossibility result exists is the reason why more com-
plicated forms of encryption are used for setting up shared secrets, e.g. Shamir’s
secret sharing protocol [19]. In this section we review the symmetric encryption
folk theorem as an exercise in using algebraic specification and reasoning in the
Shadow semantics.

An encryption mechanism is symmetric if the decryption key is the same as
the encryption key, or can be feasibly calculated from it. In the Shadow semantics
that is the same as saying that knowing both the key and the encrypted message
is the same as knowing both the key and the message in plaintext.

Definition 9 (Symmetric encryption). An encryption mechanism E is symmet-
ric, if for any key k and message m we have

reveal(E.m.k, k) = reveal (k,m).

�
In the context of the Shadow semantics we can also apply the Decryption

Lemma which, when put together with Definition 9, implies we have for any m, k,
and a symmetric encryption mechanism E that:

reveal(E.m.k, k) = reveal(k,m) = reveal (m,E.m.k). (7)
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This says that within the threat model for the Shadow semantics, for any
symmetric encryption mechanism E, if the observer knows any two of k,m or
E.m.k then he can deduce the remaining value. Recall that the Decryption
Lemma is also implied by a “known plain text attack”, thus our reasoning also
applies for symmetric encryption mechanisms known to have this weakness.

With (7) we can demonstrate the folk theorem in an elementary way using
program algebra.

6.1 Symmetric Encryption and the Folk Theorem

A secret sharing protocol consists of two agents A and B who can send messages
to each other over a public channel using a given encryption mechanism E.
Once a message is transmitted via the channel then the contents of the file
are considered to be observable by any agent, even the universal agent U . We
assume that all values are created by either A or B, and respectively stored in
variables private to the creator. Values can be chosen at random, or calculated
from existing values using E. The system is defined by the operations set out at
Fig. 8. The operations model the capacity for each agent to choose a secret value,
and to encrypt or decrypt values using the mechanism E. They communicate
with each other by sending values over a publicly observable channel. One way to
model this is to introduce an explicit channel variable chan, which takes values
from one of the agents and then passes them to the other. For example, if B
sends a value stored in b to A, we could write:

vis chan:= b;visA a:= chan.

However considering only the information flow concerning the variables declared
by agents A and B, this is equivalent to

reveal b;visA a:= b = visA a:= b ; reveal b.

In Fig. 8 we use the latter formulation because we are interested in informa-
tion flow, and using reveal statements directly will simplify our reasoning.

· visA ai:∈ A — Agent A chooses privately a random value drawn from set A.
· visB bj :∈ B — Agent B chooses privately a random value drawn from set B.
· visA al:= E.aj .ak — Agent A encrypts or decrypts a value from known values

stored in variables aj and ak .
· visB bl:= E.bj .bk — Agent B encrypts or decrypts a value from known values

stored in variables bj and bk .
· visA a:= Z; reveal Z — Agent B sends agent A a value Z over the public channel.
· visB b:= Z; reveal Z — Agent A sends agent B a value Z over the public channel.

Fig. 8. Computation steps in a secret sharing protocol
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We model a secret sharing protocol between A and B as any sequence of the
above statements described in Fig. 8. An example of such a protocol is:

visA a:∈ A; ← A chooses a random value
visA a′:∈ A ← A chooses another random value
visB b:= E.a.a′; reveal E.a.a′ ← A sends B variable a encrypted with a′

We say that a value Z is generally known after executing P if

P ; reveal Z = P. (8)

In the above protocol, provided that neither A nor A′ are singleton sets then
neither a nor a′ is generally known; in fact these values are also not known to
agent B.

Learning a Value. Given any secret sharing protocol P , the agents only know
the value of a variable if either they created it for themselves, or they were
sent it, or they were able to decrypt it using E with values they already knew.
For example, if agent B knows two values X and Y after executing P , and the
last action was to receive value X from agent A, then either he knew Y before
receiving X from A, or he was able to use X to decrypt E.X.Y , which value he
already knew. We capture this “learning event” with the following property:5

P ; revealB(Y,X) = P ⇒
P ′; revealB Y = P ′ ∨ P ′; revealB E.Y.X = P ′,

(9)

where P = P ′;visB b:=X; reveal X.

6.2 The Folk Theorem

We state the folk theorem as follows:

Theorem 4 (Symmetric Encryption Folk Theorem). Let P be a secret sharing
protocol between agents A and B using symmetric encryption method E. Any
value X that is known by both A and B after executing P is also known generally,
i.e.

P ; revealA X = P ∧ P ; revealB X = P

⇒ P ; reveal X = P.
(10)

Proof. We use structural induction. For simplicity we also assume that all vari-
ables are initialised at most once, to avoid questions of definability.

The base case is when P = skip, and the result follows since we assume
initially that all secrets known to both A and B are generally known.

We next consider P = P ′;Q, where Q is one of the statements in Fig. 8. We
assume by the inductive hypothesis that P ′ satisfies the theorem. We assume
5 We prove in the Appendix Sect. A.1 that this property holds for E implemented with

⊕, exclusive-or.



Program Refinement, Perfect Secrecy and Information Flow 99

also that P ; revealA Y = P ; revealB Y = P for some value Y . We must show,
for each case of Q, that P ; reveal Y = P also.

Suppose Q is the action “Agent A sends value X to Agent B on the public
channel”. i.e. P = P ′;visB b:=X; reveal X. We have the following facts:

(i) Agent A knew value X already after P ′:

P ′; revealA X = P ′

(ii) Agent A knew value Y already after P ′:

P ′; revealA Y = P ′

(iii) Definition 7 for Agent A:

P ′; revealA E.X.Y = P ′

(iv) Assumption:
P ; reveal Y = P

Fact (i) is assumed since Agent A sends value X to Agent B. Fact (ii) follows
from (i) since:

P ′; revealA Y
= P ′; revealA X; revealAY “(i) above”

= P ′; revealAX “Assumption: P ′; revealA (X,Y ) = P ′; revealA X”

= P ′ . “(i) above”

Using the above facts, we can now reason as follows that value Y is also
known generally after P .

We begin with (9) because after Agent B receives value X, then either he
knew Y already, or he learned it. We treat each case separately.
Case 1: Suppose first that P ′; revealB Y = P ′. (Agent B knew Y already.) By
(ii) and structural induction on P ′, we deduce immediately that Y was generally
known after P ′, i.e. P ′; reveal Y = P ′.

Perfect recall then gives us immediately that P ; reveal Y = P .

Case 2: Suppose instead from (9) that P ′; revealB E.X.Y = P ′. But we also
have by (iii) that P ′; revealA E.X.Y = P ′, and so by structural induction we
deduce that P ′; reveal E.X.Y = P ′.

Thus by perfect recall we must have that P ; reveal E.X.Y = P . We put this
together with (4) and (7) to deduce in fact that P ; reveal Y = P , as required.

The other cases for Q, when it represents a local assignment by either A or
B to local variables, does not transfer new knowledge of the other agent, and so
there is nothing to prove.

�
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7 Conclusions and Outlook

This paper reviews refinement of ignorance and how it applies to the analysis
of information flow. The Shadow semantics is based on ideas originally due to
Mantel [8], Leino [7] and Sebelfeld [17]. Mantel’s emphasis is on events and traces,
whilst Leino and Sabelfeld concentrate on information flow with respect to the
(initial) values of the secret. The Shadow semantics is concerned with the final
state, with the shadow variable H in an observation (v,H) acting as a digest of
all information flows relating to the current value of the secret variable h.

Our treatment of the folk theorem is inspired by Schmidt et al. [18] who also
provide some mechanical support to determine whether protocol designs based
on a given equational theory are able to establish a shared secret.

Variations on the Shadow semantics include probability and this line of work
has resulted in connections to the channel model of information flow [2,13],
allowing the amount of information flowing to be quantified thus giving a better
understanding of the degree to which programs leak information.

A Some Proofs

A.1 Learning a Value

We prove (9) for the special case where E is the exclusive-OR, ⊕. We re-state
(9) here for ⊕.

P ; revealB(Y,X) = P ⇒
P ′; revealB Y = P ′ ∨ P ′; revealB X ⊕ Y = P ′,

(11)

where P = P ′;visB b:=X; reveal X.

Assume that B has (private) variables b1, b2, . . . bk, and that A has (private)
variables a1, a2 . . . am. We also assume that each variable is assigned exactly once
and then never changed.

B’s knowledge of the state after executing P ′ can be summarised as follows:

1. B knows the values of all its own variables b1, b2, . . . bk.
2. B knows the values of any encrypted value sent over the public channel.

Each of those values is of the form

ai1 ⊕ ai2 ⊕ · · · ⊕ ain ,

for some selection of variables drawn from a1, a2 . . . am.
3. B can learn new facts by using the facts he already has and computing new

values using ⊕. Let K be the set of facts so-computed using ⊕.

Notice that whenever a value α ∈ K we have that P ′; revealB α = P ′.

Assume that Y �∈ K, but that when B learns X then he can deduce Y . We
will show that X ⊕ Y is contained in K.

Since Y �∈ K, this means that Y = X ⊕ α for some fact α ∈ K. But with this
we reason:
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Y = X ⊕ α
⇒ X ⊕ Y = X ⊕ X ⊕ α
⇒ X ⊕ Y = α, “Property of ⊕”

implying that X ⊕ Y (i.e. E.Y.X as at (9)) is contained in K.
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