
AUSPICE: Automatic Safety Property
Verification for Unmodified Executables

Jiaqi Tan(B), Hui Jun Tay, Rajeev Gandhi, and Priya Narasimhan

Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, USA

tanjiaqi@cmu.edu, htay@andrew.cmu.edu, rgandhi@ece.cmu.edu,

priya@cs.cmu.edu

Abstract. Verification of machine-code programs using program logic
has focused on functional correctness, and proofs have required manually-
provided program specifications. Fortunately, the verification of shal-
low safety properties such as memory isolation and control-flow safety
can be easier to automate, but past techniques for automatically ver-
ifying machine-code safety have required post-compilation transforma-
tions, which can change program behavior. In this work, we automatically
verify safety properties for unmodified machine-code programs without
requiring user-supplied specifications. Our novel logic framework, AUS-
PICE, for automatic safety property verification for unmodified executa-
bles, extends an existing trustworthy Hoare logic for local reasoning, and
provides a novel proof tactic for selective composition. We demonstrate
our automated proof technique on synthetic and realistic programs. Our
verification completes in 6 h for a realistic 533-instruction string search
algorithm, demonstrating the feasibility of our approach.

1 Introduction

Interactive theorem proving using logic is a promising technique for reasoning
about executable (i.e., machine-code) programs, as it provides a succinct speci-
fication of the program. However, formally reasoning about machine-code is chal-
lenging as accounting for low-level details and writing proofs interactively can be
tedious. Logics have been developed to formally reason about the low-level state
(e.g., registers, main memory) in machine-code programs: Myreen et al. developed
a Hoare logic for realistically modeled machine-code [16]. These logics are designed
to verify the correctness of programs, and hence must capture the complete exe-
cution state of the program, which requires manually supplied specifications e.g.,
loop invariants, and function pre-/post-conditions. Hence, techniques for reason-
ing about program correctness ease the job of the proof author [17], but do not
fully automate proof generation. Fortunately, verifying shallow safety properties
can be easier, as we are only concerned with the parts of program state which
affect our desired safety properties. Thus, there are more opportunities for proof
automation. Zhao et al. [27] proposed a program logic for automatically verifying
safety properties in executables, but programs must be compiled with a modified
c© Springer International Publishing Switzerland 2016
A. Gurfinkel and S.A. Seshia (Eds.): VSTTE 2015, LNCS 9593, pp. 202–222, 2016.
DOI: 10.1007/978-3-319-29613-5 12

AUSPICE 203

compiler and safety checks must be added post-compilation [27], thus developers
cannot observe how the safety checks added to their programs may change them.

In this paper, we present a novel logic framework, AUSPICE, for auto-
matically verifying safety properties for unmodified machine-code programs:
programs generated by an unmodified compiler, without any post-compilation
transformations (e.g., binary rewriting). Thus, any safety checks must be added
as source-code statements. This enables developers to gain assurance of their
program’s behavior and safety from observing the added safety checks. Our con-
tributions are: (i) a novel logic framework, AUSPICE, for automatically verifying
safety properties in unmodified machine-code programs, (ii) a logic, LLR, which
enables local reasoning to ensure that safety properties are asserted and checked
for every instruction in a machine-code program, (iii) a proof tactic for selec-
tive composition which enables the automatic verification of safety properties
without manual inputs, and (iv) an empirical evaluation of AUSPICE on verify-
ing real-world machine-code. To the best of our knowledge, AUSPICE is the first
logic framework which enables the fully automated proving of safety properties for
unmodified ARM machine-code programs, avoiding the post-compilation trans-
formations required by ARMor [27]. We currently target ARM machine-code
programs, although our technique can be applied to other architectures.

Intuition. Our safety property verification uses Hoare logic to reason about
machine-code. Hoare logic was designed to reason about program correctness,
hence, typical Hoare logic proofs must reason about the “global” effects of pro-
grams, i.e., capture all possible values of program state. Our first intuition is
that our safety properties at each instruction are affected only by the program
state immediately before the instruction runs. This enables us to consider only a
subset of program state and perform “local” reasoning (Sect. 3), and avoid requir-
ing manually supplied specifications. Second, previous efforts to automate safety
property verification [27] relied on binary rewriting to insert safety checks. In
unmodified machine-code, safety checks must be implemented entirely in source-
code. Our second intuition is that, when verifying safety properties for unmod-
ified machine-code, safety checks inserted in a program’s source-code can span
a larger part of a program than our “local” scope of reasoning described above.
Hence, we develop a novel proof tactic, selective composition (Sect. 4), which
uses the Hoare logic Compose rule (Sect. 2.4) to help us reason about safety
properties using additional contextual information not available in purely local
reasoning.

1.1 Problem Statement

Goals. The main objective of our logic framework is to automatically prove
safety properties for machine-code programs which have been compiled using
an unmodified compiler, with no post-compilation modifications (e.g., binary
rewriting). The goals of our logic framework are: (i) to use an independently
developed, trustworthy logic so that our approach is trustworthy; (ii) to fully
automate our proof by not requiring manual inputs from the user, and (iii) to
formalize the notion of safety for the execution of a machine-code program.

204 J. Tan et al.

Non-goals. We do not intend to prove the correctness of machine-code pro-
grams, and we are not concerned with the security and privacy of applications
implemented by the machine-code.

Scope. We choose to verify safety properties for the machine-code of programs
rather than their source-code so that (i) we do not need to trust the compiler
used, thus minimizing our Trusted Computing Base (TCB), and (ii) our verifi-
cation does not need access to the source-code of the program. We require no
modifications to the compiler used to generate the executables which we verify.
Our logic framework currently targets ARM machine-code programs, although
our technique can be applied to machine-code for other architectures by (i) para-
meterizing the Hoare logic [16] with a different instruction semantics, and (ii)
defining execution safety for the target architecture. We verify safety properties
for user programs running on a commodity operating system (currently Linux).

Assumptions. Our logic framework uses the trustworthy formalization of the
ARM Instruction Set Architecture (ISA) developed by Myreen et al. [15] at
Cambridge University (the “Cambridge ARM model”). Thus, our verification
inherits the assumptions and limitations of this model. We assume that the
behavior of the program being verified is not affected by exceptions, interrupts,
and page table operations, as these are not modeled in the model. We are also
unable to verify safety properties in the presence of system calls, as the model
does not capture the effects of specific system calls on user programs. We are also
unable to verify programs with concurrent behavior, nor unstructured control-
flow jumps (e.g., longjmp and switch statements). We assume that the compiler
and program obey the ARM-THUMB Procedure Call Standard (ATPCS) [1],
which specifies the behavior for function calls/returns, and that the OS correctly
isolates concurrently executing user programs. We also assume that the target
program being verified was compiled with a well-known, unmodified compiler
with well-known function prologues and epilogues, and that the machine-code
contains function boundaries. We also require programs to be statically compiled
so that all code to be executed is present, and that programs are not recursive.

2 Background

2.1 ARM Architecture

First, we review aspects of the ARM architecture pertinent to defining execution
safety for ARM machine-code programs. ARM is a RISC, load/store architec-
ture, and data instructions operate only on register contents but not memory [2].
There are 6 processor modes, and we focus on the user mode, which an operating
system (OS) runs applications in. The remaining modes handle various types of
exceptions, including system calls. Each ARM processor mode has a different
set of visible registers, and we focus on only the registers visible in user mode:
registers r0 through r15, and the status register (CPSR). We also consider the
ATPCS [1], which specifies conventions for procedure calls and returns. By the
convention in the ATPCS, registers r13, r14, r15 store the stack pointer (SP),

AUSPICE 205

link register (LR) for return addresses and program counter (PC). We highlight
these registers for their impact on control-flow safety. The state of an ARM
processor comprises the registers r0 to r15, the processor status register CPSR,
and the processor’s main memory (modeled as an array of 232 byte-addressed
bytes).

2.2 Safety Properties for ARM Machine-Code Programs

Kernel space
(reserved)

Typical addresses
(may vary slightly

across kernels)

0xC0000000

0xBF000000
Stack

Heap

BSS segment

Data segment

Text segment
0x08048000

A
ll m

e
m

o
ry

w

rite
s
 m

u
s
t b

e

c
o

n
fin

e
d

 to
 h

e
re

A

B

C

(a) Stack-based Memory
safety: Linux Process
Memory Layout

Previous Link Register
(Saved R14)

Previous Stack Pointer
(Saved R13)

Previous Frame
Pointer (Saved R11)

Caller-save register

Must not be
overwritten

Stack (called function)
Stack of callee

function
(address in

t33)

Stack of
caller

function

Stack grows
to smaller

addresses

(b) Stack-based Control-
flow safety: Function Ac-
tivation Record

Fig. 1. Safety properties

Next, we discuss the safety properties we wish to
prove for ARM machine-code programs. At a high-
level, we wish to prove that the execution of a
machine-code program is isolated from any harm-
ful effects of potentially malicious user input. Specif-
ically, we wish to prove that the control-flow of
a machine-code program cannot be hijacked and
changed at runtime due to user input, and that new
behaviors cannot be introduced through code injec-
tion or modification. We do this by proving that
(i) machine-code loaded to memory cannot be over-
written; that (ii) function-return addresses saved to
the program’s stack cannot be changed; and that
(iii) only machine-code initially loaded to memory
is executed. Concretely, at the machine-code level,
we prove two safety policies, memory isolation, and
control-flow isolation, which together provide the
machine-code safety properties sufficient to show that
our desired high-level safety property holds. This is
similar to Control-Flow Integrity [3], except that we
disallow the use of arbitrary function pointers on a
program’s heap. We instantiate these safety proper-
ties in the context of user programs running in an OS
(currently Linux), as our goal is to provide isolation
for user programs running in an OS.

Memory Isolation. The goal of our memory safety
policy, memory isolation, is to prevent a program
from modifying its own instructions to prevent
the introduction of new behaviors through self-
modification. In a multiprogramming OS such as

Linux, each user program runs as a separate process with its own virtual mem-
ory with a common layout. In processors with 32-bits of addressable memory,
each process has a 4 GB memory space, with the upper 1 GB reserved for the
OS. Figure 1(a) illustrates this layout. Our memory safety policy requires that
all memory writes be restricted to the area between the start of the process’s
stack space (marked 0xBF000000) and the start of the text segment of the code.

206 J. Tan et al.

Control-Flow Isolation. The goal of our control-flow safety policy, control-
flow isolation, is to ensure that there are no unexpected control-flow transfers,
that only instructions in the text section of the program are executed. We also
require that there can be no control-flow hijacks via modified function-return
addresses. Our memory safety policy partially ensures control-flow isolation by
preventing the modification of the text section. Our control-flow isolation is
also enforced by protecting the return addresses for function calls saved on the
program stack. First, we consider the ATPCS [1] convention. Registers r11 and
r13 store the frame pointer (stack base address) and stack pointer (stack top
address) respectively, while r14 stores the return address of the current function.
When a function call is made, the caller function first saves its current values of
r11, r13, and r14 on the stack, before loading the return address to r14. Also,
the ATPCS specifies that the stack grows downwards to lower addresses. Thus,
to prevent control-flow hijacks, we must ensure that all memory writes are to
addresses smaller than the current function’s frame pointer (r11) (Fig. 1(b)).

2.3 Hoare Logic for ARM Machine-Code Programs

We use the HOL4 theorem prover [20], and the Hoare logic [16] for ARM
machine-code programs [15] developed at Cambridge, to prove safety theorems.
The Cambridge ARM model has been extensively tested and validated [9], pro-
viding us with a strong, trustworthy foundation for our logic. The Cambridge
ARM model uses Hoare triple theorems and separation logic [19] to describe
the behavior of each instruction, and the model captures realistic details of
ARM instructions, which we illustrate briefly. The model decompiles each ARM
instruction to a Hoare triple theorem of the form (p) c (q), where p and q
are predicates describing the state of the processor before (pre-state) and after
(post-state) executing code c respectively1. Then, the theorem (p) c (q) infor-
mally means that for a processor in a state satisfying p before running c, after
running c, the processor will have state satisfying q. The predicates p and q are
pre- and post-state assertions about the values of machine resources e.g., regis-
ters, status flags and the program counter. They can also contain pure boolean
assertions which describe relationships among the values of machine resources
which are true before or after an instruction executes. The theorem for the ARM
instruction 0xE5832000 (mnemonic “str r2 [r3]”) is:

� SPEC ARM MODEL (aR 3w r3 ∗ aR 2w r2 ∗ aPC p ∗ aMEMORY df f

∗ cond((r3 && 3w = 0w) ∧ (r3 ∈ df))) {(p, 0xE5832000w)}
(aR 3w r3 ∗ aR 2w r2 ∗ aPC (p+4w) ∗ aMEMORY df ((r3 = +r2) f))

SPEC indicates that the theorem is a Hoare triple, while ARM MODEL is the ARM-
specific instruction semantics [15]. aR 2w and aR 3w are expressions which assert
that a given register stores the specified value, where 2w and 3w indicate the reg-
ister number whose value is being asserted, and the suffix w indicates the register
number is a fixed-width word. Then, the pre-state shows that the registers r2

1 In Hoare logic, p, q are named pre-, post-condition, but we use the terms pre-,
post-state as we call the boolean conditions imposed by a branch the pre-condition.

AUSPICE 207

and r3 contain the (symbolic) values r2 and r3 respectively, the main memory
contains the map f with domain df, and the program counter has some address
p before running the instruction. After running the instruction, the values of reg-
isters r2, r3 remain unchanged, and the program counter advances to p+4 . Also,
=+ is the map-update operator, hence r3 =+ r2 indicates that the memory has
been updated to store the value that was in register r2 at the address given by the
value that was in register r3. The expression cond((r3 && 3w = 0w)∧(r3 ∈ df))
is an assertion which specifies our memory alignment requirement for writes to
the address r3, and that r3 is in the domain of the memory map f. * is the
separating conjunction [19] which asserts all other resources are unchanged.

2.4 Composition Rule in Hoare Logic

SPEC x p c1 q SPEC x q c2 r

SPEC x p (c1; c2) r
COMPOSE

SPEC x p c q

SPEC x (p ∗ r) c (q ∗ r)
FRAME

The Compose rule of Hoare logic [11] is shown above, which extends single
instruction Hoare triple theorems to describe multiple instructions. One critical
detail of this rule is that to apply the Compose rule to compose two Hoare triple
theorems, the pre-state of the second theorem must be equal to the post-state
of the first theorem. Conceptually, when instruction i1 executes, followed by
instruction i2, as i2 is executing immediately after i1, so the processor state just
before i2 executes is exactly the processor state after i1 executes.

Pre-composition Tactic. A typical proof tactic for composing Hoare triple
theorems for sequential instructions, i1, i2, with i1 running immediately before
i2, into a single Hoare triple theorem, is given by the following steps: (i) Using
the Frame rule (shown above), add machine state assertions in i1, but not in i2,
to i2’s theorem; (ii) Using the Frame rule, add machine state assertions in i2, but
not in i1, to i1’s theorem; (iii) Instantiate free variables in i2 with the post-state
machine resource values from i1. We call these steps the pre-composition tactic.
This is similar to the “shift” operation described by Myreen et al. [15]. After
carrying out the above theorem manipulation steps, the manipulated theorems
i′1 and i′2 for both instructions will now have the post-state of i′1 matching the
pre-state of i′2, allowing us to directly apply the Compose rule in Hoare logic.

For instance, consider the two instructions, i1 (“mov r3,r4”), followed by
i2 (“sub r2, r3, #16”). We illustrate the use of the Compose rule to obtain a
theorem describing the behavior of a program (or its fragment), i1i2. The Hoare
triple theorems for each of the two instructions are shown respectively:

� SPEC ARM MODEL (aR 3w r3 ∗ aR 4w r4 ∗ aPC p) {(p, 0xE1A03004w)}
(aR 3w r4 ∗ aR 4w r4 ∗ aPC (p+4w))

� SPEC ARM MODEL (aR 2w r2 ∗ aR 3w r3 ∗ aPC p) {(p, 0xE2432010w)}
(aR 2w (r3 − 16w) ∗ aR 3w r3 ∗ aPC (p+4w))

208 J. Tan et al.

Thus, in composing the two theorems i1, i2 in our above example, our pre-
composition tactic will carry out the following steps on the theorems i1, i2: (i)
Use the Frame rule to add aR 2w r2 to i1 to get i′1; (ii) Use the Frame rule to
add aR 4w r4 to i2 to get i′2; (iii) Instantiate the value of p to p + 4w, and r3
to r4 in i′2 to get i′′2 ; (iv) Apply Compose rule to theorems i′1, i

′′
2 to obtain:

� SPEC ARM MODEL (aR 3w r3 ∗ aR 4w r4 ∗ aPC p ∗ aR 2w r2)

{(p, 0xE1A03004w); (p + 4w , 0xE2432010w)}
(aR 2w (r4 − 16w) ∗ aR 3w r4 ∗ aPC (p+8w) ∗ aR 4w r4)

The pre-composition tactic prepares two suitable Hoare triples for reasoning
about the effects of code on the same pre-state (i.e. pre-state of the first Hoare
triple) by placing them in the same context (i.e. describing the effects of the
code in both triples in terms of the pre-state variables of the first Hoare triple).

3 Design: The LLR Program Logic

Next, we describe the design of our logic framework for automatically verifying
safety properties, and discuss the rationale behind our design decisions. Our
logic framework needs to fulfill three tasks: (1) Specify safety assertions for each
instruction. A safety assertion of an instruction specifies the conditions which
must be true before the instruction is executed for our safety properties to hold.
(2) Ensure that the Hoare triple theorems for every instruction are encoded with
their safety assertions. (3) Define, formally, the requirements for a program to
possess our desired safety properties.

SPEC x (cond(ms ∧ cfi1 ∧ cfi2) ∗ p) {(offset , ins)} q

MEMCFISAFE x ((MCSAt offset ms cfi1 cfi2) ∗ p) {(offset , ins)} q
MEM CFI SAFE

MEMCFISAFE x p c1 q MEMCFISAFE x q c2 r

MEMCFISAFE x p (c1; c2) r
MEM CFI SAFE COMPOSE

MEMCFISAFE x p c q

MEMCFISAFE x (p ∗ r) c (q ∗ r)
MEMCFISAFE FRAME

Fig. 2. Logic rules for LLR. ms, cfi1 , cfi2 , cfi3 are safety assertions for memory and
control-flow isolation respectively. MCSAt is a syntactic label to group safety assertions.

3.1 Individual Instructions: Safety Assertion Specification

Figure 2 shows the MEM CFI SAFE rule for augmenting the Hoare triple theorem
of a single instruction with its safety assertion. This rule overcomes the chal-
lenge of reasoning about safety properties at every instruction using Hoare logic.
We add our safety assertions as a pure boolean condition to the pre-state of an
instruction’s Hoare triple. Then, when the Compose rule (Sect. 2.4) is applied to

AUSPICE 209

compose theorems of multiple instructions, the pre-states of successor instruc-
tions (q in the Compose rule) will be hidden, thus hiding our augmented safety
assertions. Also, safety assertions which hold can be simplified to true and elim-
inated from the Hoare triple. Thus, for a Hoare triple describing a sequence of
instructions, we cannot tell if the theorem contains safety assertions for every
instruction.

The MEM CFI SAFE rule overcomes this challenge by ensuring that the Hoare
triple for every instruction has been augmented with its safety assertions. This
rule has two features. First, MEM CFI SAFE can be instantiated only from single
instruction Hoare SPEC theorems, because code c in the SPEC theorem in the rule
antecedent admits only a single instruction with the machine word ins located
at address offset. Also, the second rule which generates safe MEMCFISAFE the-
orems, MEM CFI SAFE COMPOSE, does not admit Hoare triple SPEC theorems, and
only allows the composition of MEMCFISAFE theorems. Second, the MEM CFI SAFE
rule can be instantiated only when the pre-state is augmented with our safety
assertion, the pure boolean conjunction, ms∧ cfi1 ∧ cfi2, in its pre-state. Thus,
the MEMCFISAFE relation indicates the resulting Hoare triple has been augmented
with safety assertions for every instruction described. MCSAt is a syntactic rela-
tion which associates our safety assertion, ms ∧ cfi1 ∧ cfi2, with the address
offset which the assertion applies to. We also add the safety assertions ms, cfi1,
cfi2 to the hypotheses of the theorem, to indicate that they are undischarged.

Safe Instruction Semantics are Sound. Our safe instruction semantics, in
the form of MEMCFISAFE theorems, are a special form of Hoare triple theorems.
They are augmented to ensure that every instruction described in an MEMCFISAFE
theorem has an associated safety assertion, added to it as a pure boolean con-
dition in the pre-state of the instruction’s theorem. We proved the following
theorem: � ∀x p c q · MEMCFISAFE x p c q ⇒ SPEC x p c q. Informally, our
safety-augmented Hoare triple theorems retain a direct correspondence to the
Hoare triple theorems proven by the Cambridge ARM model. Hence, our safe
instruction semantics inherits the soundness of the Cambridge ARM model.

3.2 Sequential Code Blocks

Next, we describe how we obtain safety-augmented Hoare triple theorems for
basic blocks of sequential code (safe basic block theorems). A basic block is
a sequence of instructions which execute sequentially, with a single entry and
single exit instruction. The two rules (Fig. 2) we need for building safe basic block
theorems are MEM CFI SAFE COMPOSE, and MEMCFISAFE FRAME (proved using the
Frame rule in separation logic). These two rules allow us to inductively build
up a safe basic block theorem from safety theorems for individual instructions.
The process of building up a safety theorem for a basic block of sequential code
is the same as that of composing Hoare triple theorems (Sect. 2.4), except that
only safety-augmented Hoare triple theorems can be composed. This process
is repeated recursively for every instruction in a basic block to obtain a single
safe theorem for the basic block. Our safe basic block theorems have the same
semantics as Cambridge ARM Hoare triples, as proved in Sect. 3.1.

210 J. Tan et al.

addr ,NODES ,FUNCS ,CFGpred ,CFGsucc , ICFGcallpred , ICFGcallsucc ,

ICFGretpred , ICFGretsucc , assnsentry , postcondexit , prestate, poststate ·
FUN SAFE(addr ,NODES ,FUNCS ,CFGpred ,CFGsucc , ICFGcallpred , ICFGcallsucc ,

ICFGretpred , ICFGretsucc , assnsentry , postcondexit , prestate, poststate) ⇔
((∀node · node ∈ NODES ⇒ (min(node, addr) = addr))

∧ (∀min · min ∈ NODES ⇒ (CFGpred (min) = ∅ ∧ ICFGcallpred (min) = ∅ ∧ ICFGretpred (min) = ∅)
⇒ (∀node · (node ∈ NODES ⇒ node = min) ⇒ (min(node,min) = min))

⇒ ∃pd1 , x , c1 , p1 , q1 · HOARE WITH ASSERT(pd1 , assnsentry ,min,node, x , c1 , p1 , q1) ∧
(prestate = aPC min ∗ p1))

∧ (∀out · out ∈ NODES ⇒ (CFGsucc(out) = ∅)
⇒ (∀funcnode · (funcnode ∈ FUNCS ⇒ out ∈ ICFGcallsucc(funcnode)))

⇒ ∃pd1 , assn1 ,node, x , c1 , p1 , q1 · HOARE WITH ASSERT(pd1 , assn1 , out,node, x , c1 , p1 , q1) ∧
(poststate = q1) ∧ (pd1 ⇒ postcondexit))

∧ (∀node, pred · node ∈ NODES ⇒ pred ∈ CFGpred (node) ⇒ ∃pd1 , assn1 , x , c1 , p, q, pd2 ,

assn2 , c2 , r ,node · HOARE WITH ASSERT(pd1 , assn1 , pred,node, x , c1 , p, q) ∧
HOARE WITH ASSERT(pd2 , assn2 ,node,node , x , c2 , q, r) ∧ (pd1 ⇒ assn2))

∧ (∀node, succ · node ∈ ICFGcallsucc(succ) ⇒ succ ∈ ICFGcallpred (node) ⇒
∃pd1 , assn1 , x , c1 , p, q,nodes, funcs, cfg1 , cfg2 , cfg3 , cfg4 , cfg5 , cfg6 , assn2 , pd2 , r ·

HOARE WITH ASSERT(pd1 , assn1 ,node, succ, x , c1 , p, q) ∧
FUN SAFE(succ,nodes, funcs, cfg1 , cfg2 , cfg3 , cfg4 , cfg5 , cfg6 , assn2 , pd2 , q, r) ∧ (pd1 ⇒ assn2))

∧ (∀node, pred · node ∈ ICFGretsucc(pred) ⇒ pred ∈ ICFGretpred (node) ⇒
∃pd1 , assn1 , x , c2 , p, q, pd2 , assn2 , r ,node ,nodes, funcs, cfg1 , cfg2 , cfg3 , cfg4 , cfg5 , cfg6 ·

FUN SAFE(pred,nodes, funcs, cfg1 , cfg2 , cfg3 , cfg4 , cfg5 , cfg6 , assn1 , pd1 , p, q) ∧
HOARE WITH ASSERT(pd2 , assn2 ,node,node , x , c2 , q, r) ∧ (pd1 ⇒ assn2)))

Fig. 3. FSI rule: judgment for interprocedural function safety

3.3 Function Judgment for Local Reasoning

Global vs. Local Reasoning. In a typical correctness proof for a program using
Hoare logic, we would repeatedly apply the Compose rule to the Hoare triple for
every instruction in the program to obtain a single Hoare triple describing the
entire program. This is a “global reasoning” process which identifies the final
values of all registers, main memory, etc. at the end of the program’s execution.
In the presence of loops and function calls, loop invariants and pre- and post-
conditions for functions will need to be manually provided.

For safety assertions to hold in a program, we only need to ensure that the
safety assertions for each instruction hold locally at that instruction. For the
safety assertions at instruction i2 to hold, we consider every instruction i1 that
can execute immediately before i2. The machine-resource values in the post-state
of each i1 must satisfy the safety assertions at i2. This is analogous to the pre-
composition process (Sect. 2.4). As long as the machine-resource values in the
post-states of predecessor instructions i1 enable the safety assertion at i2 to be
true, the safety assertion holds. Also, any pure boolean condition from the post-
state of predecessor instructions i1 will also apply to the pre-state of instruction
i2. Hence, safety properties hold on a per-instruction basis. To check if a safety
assertion holds for an instruction, we only need to perform “local reasoning” by
considering the post-state and boolean conditions of all predecessor instructions.

AUSPICE 211

Safe Function Judgment. We define the FUN SAFE rule (Fig. 3), which encodes
what it means for a function to be safe. This rule encodes our “local reason-
ing” process for verifying that safety assertions hold. Thus, proving that the
machine-code of a given function is safe involves proving that the FUN SAFE
theorem holds for the function. First, we rearrange MEMCFISAFE theorems to
form HOARE WITH ASSERT theorems, which make explicit the hypotheses (i.e.,
undischarged safety assertions) of the theorems, and rearrange machine resource
expressions into tuples for pattern-matching.

� HOARE WITH ASSERT(pd, assn, pcpre, pcpost, x, c, p, q) ⇔
(assn ⇒ (MEMCFISAFE x (aPC pcpre ∗ p ∗ precond pd) c (aPC pcpost ∗ q)))

A function is comprised of basic blocks of instructions in the function. In a
function’s intra-procedural control-flow graph (CFG), nodes are basic blocks of
the function’s instructions, while edges are control transfers within the function.
In a function’s inter-procedural CFG, the nodes are (i) basic blocks which call
other functions, (ii) basic blocks which are return-sites from callee functions, and
(iii) callee functions, while edges are function calls or returns. To formally specify
the requirements for a function to be safe, we consider the safety assertions which
must be discharged at each edge in both the intra- and inter-procedural CFGs.
We walk through each of the 6 conjunct clauses in the FSI rule in Fig. 3.

Arguments to the FUN SAFE Relation. The FUN SAFE relation is parameter-
ized by the function address addr, a set of addresses of basic blocks in the func-
tion NODES, a set of addresses of callee functions FUNCS, and 6 maps CFG
and ICFG specifying the predecessors and successors of edges in the function’s
intra- and inter-procedural CFGs. FUN SAFE also records, for a function, the
safety assertions assnsentry, the conditions which hold at its exit postcondexit,
and the machine resource pre-state prestate and post-state poststate.

Function Entry and Exit Specifications. The first clause states that the
address of the function is the lowest basic block address for the function. The
second clause states that the safety assertions assnsentry and pre-state prestate
of the function are specified by the entry basic-block of the function. The third
clause states that the function’s guaranteed exit condition postcondexit and post-
state poststate are specified by the exit basic-block of the function.

Intra-procedural Safety Requirements. The fourth clause specifies that
for each intra-procedural CFG edge, the safety assertions of the instruction at
the destination of each edge must be discharged by the post-condition of the
instruction at the source of the edge, i.e., (pd1 ⇒ assn2). Also, in the spirit
of the Hoare Compose rule, we require that the post-state of the predecessor
instruction q, is equal to the pre-state of the successor instruction.

Inter-procedural Safety Requirements. The fifth and sixth clauses specify
the requirements for inter-procedural CFG edges. The fifth clause specifies that
for call edges, the safety assertions of the called function must be discharged by
the post-condition of the calling basic block (pd1 ⇒ assn2). The sixth clause
specifies that for return edges, the safety assertions of the basic block which is
the return site for the function must be discharged by the post-condition of the

212 J. Tan et al.

returning function (pd1 ⇒ assn2). In both clauses, we require that the post-state
of the predecessor node must equal the pre-state of the successor node.

Compositional Reasoning for Functions. Although the FSI rule appears to
be recursively defined without a base case, this rule actually collapses to include
only the first four clauses for functions which do not call any other functions.
This implies that our safety property proving requires the CFG of the program
to have no cycles, i.e. we are unable to analyze recursive programs.

4 Implementation: Proofs Using LLR

We describe the implementation of our automatic safety property verification.
Our framework consists of 128 lines of HOL4 definitions and 11.8 KLOC of
proof scripts in ML. Algorithm1 summarizes the overall workflow of the AUS-
PICE safety property proof process. First, AUSPICE computes basic blocks and
extracts function boundaries from the machine-code of the program (Line 14).
Next, AUSPICE obtains the Hoare triple theorems from the Cambridge ARM
model for each machine-code instruction (Line 15), adds safety assertions to the
Hoare triple theorem for each instruction (Sect. 4.1), and composes the individual
instructions’ theorems into a single Safe Basic Block theorem for each basic block
(Line 16). AUSPICE’s proof process takes place on a per-function basis begin-
ning from the entry-function. For each function, all callee functions called by that
function are analyzed before the function itself is analyzed (Line 3). Next, AUS-
PICE applies the Selective Composition tactic (Sect. 4.2) to the safe basic block
theorems to propagate branch conditions and function prologue information to
the appropriate theorems for the function (Lines 6 and 7). The main process for

Algorithm 1. Overall AUSPICE Workflow
1: function SafeFunctionAnalysis(function name, bb safe thms list)

2: cfg ← Compute Control-Flow Graph for function name

3: for all callee functions, callee do

4: SafeFunctionAnalysis(callee, bb safe thms)

5: end for

6: bb safe thms ← SC-FwdPropagate-BranchConds(bb safe thms, cfg)

7: bb safe thms ← SC-FwdPropagate-FuncPrologue(bb safe thms, cfg)

8: assertion info ← SafetyAssertionAnalysis(bb safe thms, cfg)

9: bb safe thms ← AugmentTheorems(bb safe thms,assertion info)

10: safety theorem ← FSI Rule(bb safe thms, cfg)

11: return safety theorem

12: end function

13: function AUSPICE((addr , instr) list) � List of machine-code instructions

14: (bb list) ← Compute basic blocks in program

15: (bb instr thms list) ← Obtain Hoare triple theorem for each instr in each bb

16: (bb safe instr thms list) ← map (λx.AddSafetyAssertions(x)) bb instr thms

17: bb safe thms ← map (λx.ComposeSafeInstrs(x)) bb safe instr thms

18: return SafeFunctionAnalysis(main,bb safe thms)

19: end function

AUSPICE 213

discharging safety proof obligations is the SafetyAssertionAnalysis function
(Line 8), which implements the proof search process using abstract interpreta-
tion (Sect. 4.3). Then, the results of the assertion analysis are applied to each of
the basic blocks’ theorems, and the FSI rule function (Line 10) generates the
FUN SAFE safety theorem for the target function being proved to be safe.

4.1 Automatic Safety Property Specification

To illustrate the safety assertions we augment instructions with, consider the
instruction word 0xE5832000 (str r2 [r3]) located at address 0x81E0. We
first obtain the following Hoare logic theorem from the decompiler:

� SPEC ARM MODEL (aR 3w r3 ∗ aR 2w r2 ∗ aPC (0x81E0) ∗ aMEMORY df f

∗ cond((r3 && 3w = 0w) ∧ (r3 ∈ df))) {(0x81E0 , 0xE5832000w)}
(aR 3w r3 ∗ aR 2w r2 ∗ aPC (0x81E4) ∗ aMEMORY df ((r3 = +r2) f))

Suppose the text section of this program lies in the range [0x80B4, 0x85F4].
This instruction writes to the byte locations r3, r3 + 1, r3 + 2, r3 + 3. Thus, we
set the first conjunct in the safety assertion ms to {r3 + 3; r3 + 2; r3 + 1; r3} ⊆
{addr | 0x85F8 ≤ addr ∧ addr ≤ 0xBF000000} which asserts that the memory
locations written to are in our allowed safe region. Then, the first control-flow
safety conjunct, cfi1 is set to ∃pc.pc = 0x81E4 ∧ pc ∈
{addr | 0x80B4 ≤ addr ∧ addr ≤ 0x85F4}, which asserts that the address of the
next instruction to be executed lies in the text section of the binary. Next, the
second control-flow safety conjunct, cfi2 is set to {r3 + 3; r3 + 2; r3 + 1; r3} ⊆
{addr | addr < r11}, which asserts that the memory locations written to cannot
overwrite the saved link register (lr, stored in register r11) value on the stack.

4.2 Selective Composition Proof Tactic

blk1

blk2

...

str r2, [r3]

...

blk3

blk4

blk5

blk6

blk7

r3 <= MAX_SAFE_MEM

r3 >= MIN_SAFE_MEM

r11 >= 0

r3 < r11

Fig. 4. Possible structure for
program with safe str r2 [r3].

Next, we discuss the steps for automatically
proving that safety properties hold using LLR.
After augmenting single instruction theorems
with safety assertions (Sect. 3.1) and obtaining
safe basic block theorems (Sect. 3.2), we need
to prove that the antecedents in the FSI rule
(Fig. 3) hold. Each of the top-level conjuncts of
FSI requires either a HOARE WITH ASSERT theo-
rem for safe basic blocks or a FUN SAFE theorem
for safe functions. We also need to prove that
the pre-condition pd1 of each predecessor CFG
node discharges the safety assertion assn2 in the
successor CFG node.

From Sect. 4.1, we can see that the safety
assertion at each instruction contains three con-
juncts: one for memory-isolation and two for

214 J. Tan et al.

Algorithm 2. Selective Composition: Branch-condition Forward Propagation
1: function SC-FwdPropagate-BranchConds(bb safe thms list)
2: info map ← ∅ � Conditions to propagate to each CFG node
3: procedure PropagateOneStep(info map, last info map, cfg)
4: for all node ∈ cfg do
5: curr node preds ← FindPreds(cfg ,node)
6: pred preconds ← (map (λx.GetThmPreconds(x)) curr node preds)
7: last info preconds ← (map (λx.last info[x]) curr node preds)
8: if length(curr node preds) == 1 then
9: info[node] = pred preconds

⋃
last info preconds

10: end if
11: end for
12: end procedure
13: repeat
14: last info ← info
15: info ← PropagateOneStep(info, last info, cfg)
16: until last info == info
17: return info
18: end function

control-flow isolation. In a safe program, for the theorem of a given instruc-
tion i2, its predecessor (safe basic block or function) theorem i1 should have a
pre-condition which implies the safety assertion of i2. Observe that the safety
assertion for each instruction has three conjuncts, and each of the range con-
juncts (ms and cfi1 in Sect. 4.1) is specified by two conjuncts: one each for the
lower and upper bounds of the valid memory locations written to. Thus, the
safety assertion at each instruction comprises multiple conjuncts. However, in a
machine-code program, each basic block can only carry out one of the “elemen-
tary” arithmetic comparison operations (one of <, >, ≤, ≥, etc.), because each
cmp∗ instruction is a branch and will mark the end of the basic block it belongs
to. Hence, information from multiple predecessor basic blocks are required to
discharge the safety assertion at each instruction.

Forward Propagation of Branch Conditions. In Sect. 3.3, we noted that
we must use a local reasoning process to ensure our proof process is automatic,
because global reasoning would require manually-specified information. How-
ever, our safety assertions contain multiple conjuncts, whereas each basic block
in machine-code can provide only one conjunct in its pre-condition. To enable our
proof process to use pre-conditions from predecessors which are more than one
edge away from a given basic block in the program CFG, we selectively “propa-
gate” the pre-conditions of basic blocks forward. We call this process “selective
composition”, where we apply the pre-composition tactic (Sect. 2.4) forward to
successor theorems under certain conditions.

To illustrate the process of selective composition, consider, for example, the
store instruction str r2 [r3]. Figure 4 shows the CFG of the possible struc-
ture of the basic blocks in a program with safety checks to ensure that the

AUSPICE 215

store instruction is safe. Then, we need the pre-conditions from basic blocks
blk2, blk3, blk4, blk5 to be available at blk5 to discharge the safety assertion at
blk6. At each of the nodes blk2, blk3, blk4, blk5, there are two Hoare triple the-
orems: one where each blki executes blki+1 next (for i ∈ {2, 3, 4, 5}), and one
where the safety check fails, and each blki goes on to execute blk7. However,
we do not compose blk2, blk3, blk4, blk5 to form a single Hoare triple theorem,
because the resulting block of code will have multiple exits, which is not captured
by our safe basic block theorem (the MEM CFI SAFE COMPOSE rule), which only
admits single-exit blocks. Instead, we iteratively apply the pre-composition tac-
tic (Sect. 2.4) for basic blocks blk2, blk3, blk4, blk5. This lets us place the analysis
of the machine-code in blocks blk2, blk3, blk4, blk5, blk6 in the context of the pre-
state values of machine resources in blk2. This then allows us to discharge the
safety assertion at blk6 with the combined pre-conditions of blk2, blk3, blk4, blk5
at blk5. We call this process “selective composition” because we carry out the
pre-composition process without applying the composition rule. Note that this
selective composition process succeeds only when the target basic block which
the pre-conditions are being propagated forward to have only one predecessor
basic block. Only then is the pre-condition from the predecessor block blki the
only pre-condition that will apply at the successor block blki+1.

Algorithm 2 describes the Selective Composition tactic for the forward prop-
agation of branch-conditions in pseudocode. The tactic uses a fixed-point intra-
procedural static-analysis over the Hoare triple theorems of a function. The
static-analysis identifies branch-conditions to propagate forward from each the-
orem to its successor theorems (Lines 3 to 16; FindPreds returns the predecessors
for a given node in the CFG of the function, while GetThmPreconds returns the
pre-conditions for a given Hoare triple theorem). The analysis also ensures that
branch-conditions are propagated forward only when the target node has only
one predecessor in the CFG (Line 8). The analysis returns the branch-conditions
to add to each node’s theorem in the program’s CFG (Line 17).

Local Use of Global Information. Next, we describe the second instance
of selective composition. Recall that for control-flow isolation, we require that
the address of each instruction executed must be within the text section of the
program. The address of the next instruction to be executed can be statically
determined at every point of the program except where a function returns to its
caller. Consider a typical machine-code instruction for returning from a function
call pop {pc}. Control is being returned from the function by restoring the saved
link register value from the stack to the program counter. The instruction will
be specified by the Hoare triple theorem:

� SPEC ARM MODEL (aPC p ∗ aR 13w r13 ∗ aMEMORY df f ∗ cond(((f r13) && 3w = 0w) ∧
((f r13) ∈ df))) {(p, 0xE8BD8000w)} (aPC (f r13) ∗ aR 13w (r13+4w) ∗ aMEMORY df f)

Here, aMEMORY df f is an assertion that the main memory is the map f which
when applied to an address addr, returns the word stored at addr, and df is a set
specifying the address domain of f . Thus, in the post-state of this instruction, we
can see that the next instruction to be executed is at address f r13. However, the
memory map f does not contain any information that enables us to determine the
value of f r13. The return address for a (non-leaf) function is saved to the stack

216 J. Tan et al.

in the function prologue before any instructions in the function. An example of
such an instruction is push {lr}, with the following Hoare triple:

� SPEC ARM MODEL (aR 14w r14 ∗ aR 13w r13 ∗ aPC p ∗ aMEMORY df f

cond(((f (r13 − 4w)) && 3w = 0w) ∧ ((f (r13 − 4w)) ∈ df))) {(p, 0xE92D4000w)}
(aR 14w r14 ∗ aR 13w (r13 − 4w) ∗ aPC (p+4w) ∗ aMEMORY df ((r13 − 4w = +r14) f))

The memory in the post-state of the function is ((r13 - 4w =+ r14) f), which
contains the value of the link register, r14, at the top of the stack, at the address
r13 - 4. Hence, the information we need to discharge the control-flow safety
assertion at the function exit is the memory expression at the post-state of the
function prologue, and the new value of register r13. After substituting the
post-state memory and register r13 values of the function prologue into the
return instruction, the program counter in the return instruction post-state will
contain ((r13 - 4w =+ r14) f) (r13 - 4w) which simplifies to r14, and the
safety assertion simplifies to r14 ∈ {addr | 0x85F8 ≤ addr ∧ addr ≤ 0x85F4},
which can be discharged by any caller of the function, which supplies a con-
crete value of r14. As long as the prologue precedes every instruction in the
function, and the function does not alter the callee-saved registers until its epi-
logue, this substitution is valid. Again, we can use the pre-composition tactic
to substitute the value of the memory (and registers) at the post-state of the
function prologue into every subsequent basic block in the function. Unlike the
forward-propagation of branch-conditions, a fixed-point analysis is not required,
and we directly substitute the information from the function prologue in every
subsequent basic block in the function.

4.3 Automatic Discharge of Proof Obligations

There are two ways to discharge the safety assertions of a theorem. First, for a
given safety theorem, the pure boolean conditions of the pre-state of the theo-
rem preceding it may imply the safety assertion holds for the current theorem.
Second, if the former does not hold, then the safety assertion is added to the
hypotheses of the preceding instruction, and the Frame rule is used to add the
undischarged assertion to the theorems of the preceding instructions. We use
abstract interpretation [7] to identify safety assertions which cannot be dis-
charged. At each instruction, our analysis records the safety assertions which
need to be framed to the safe instruction theorem for that instruction.

We use a flow-sensitive backwards fixed-point analysis. Our analysis pro-
ceeds across all nodes in the CFG of a function in reverse topological order
in each iteration. Each CFG node is a basic block in the function, and each
node is associated with a safe basic-block theorem (Sect. 3.2). At each node, the
analysis checks that for each predecessor node, the instruction theorem for that
node has pure boolean conditions which can discharge the safety assertions at
the current node’s theorem. For safety assertions which the predecessor node’s
theorem cannot discharge, our analysis adds the assertion to the predecessor
node’s theorem, propagating the assertion backwards up the CFG. Our analysis

AUSPICE 217

Algorithm 3. Safety Assertion Analysis
1: function SafetyAssertionAnalysis(bb safe thms map, cfg)
2: info map ← ∅
3: procedure AssertionAnalysisStep(info map, last info map, cfg)
4: for all node ∈ cfg do
5: for all pred ∈ FindPreds(cfg , node) do
6: pred preconds ← GetThmPreconds(pred)

⋃
last info[pred]

7: node asserts ← GetThmAsserts(node)
⋃

last info[node]
8: for all assert ∈ node asserts do
9: if PROVE(pred preconds, assert) == False then

10: info.term[pred] ← info.term[pred]
⋃

assert
11: a path ← FindAssertPath(last info.path[node], assert)
12: info.path[pred] ← info.path[pred]

⋃
a path

13: AbortIfAssertPathIsCycle(a path)
14: end if
15: end for
16: end for
17: end for
18: end procedure
19: repeat
20: last info ← info; info ← AssertionAnalysisStep(info, last info, cfg)
21: until last info == info
22: return info
23: end function

is also inter-procedural, and context-sensitive. Each function is summarized at
its call-site by a FUN SAFE theorem for that particular call-site.

In the general case, this analysis may not terminate. If there are safety asser-
tions being propagated which have values that change with a loop, the analysis
will not terminate: the free variable instantiation at loop boundaries will gen-
erate new safety assertions to be framed whenever the assertion is propagated
across the back-edge of the loop. We prevent the assertion analysis from run-
ning forever by (i) recording the propagation path of safety assertions, and (ii)
aborting the analysis if a cycle is detected on this path. Then, we inform the
user that we are unable to prove our safety properties for the program.

Algorithm 3 describes our static-analysis algorithm. GetThmPreconds (Line 6)
and GetThmAsserts (Line 7) return the pure boolean conditions in the pre-state
and the safety assertion at a node’s theorem respectively. PROVE tries to discharge
the given safety assertion, assert, using the given conditions pred preconds from the
predecessor theorem, and returns true if it can discharge the safety assertion, and
false otherwise (Line 9). If the safety assertion cannot be discharged, it is added to
the analysis information for the node’s predecessor node (Line 10), so that it will be
framed to the predecessor node’s theorem after the analysis. The analysis informa-
tionalsorecordsthepathalongwhicheachassertion ispropagated in info.path (Line
12). Then, the analysis checks if there is a cycle along the propagation path of the
assertion (Line 13) in the function AbortIfAssertPathIsCycle, and terminates

218 J. Tan et al.

the AUSPICE proof process if a cycle is found. This is because if a cycle is found
along which the pre-composition tactic causes the safety assertion term to change
with each iteration, the analysis is likely to not terminate as it will keep adding new
safety assertion terms to the analysis information on each successive iteration of the
analysis.

5 Discussion

Soundness of Proof Rules. AUSPICE’s proof rules for single instruction
(Sect. 3.1) and basic block (Sect. 3.2) safety are sound, because we derive our
MEM CFI SAFE, MEM CFI SAFE COMPOSE, and MEMCFISAFE FRAME proof rules from
the Hoare triples for machine-code programs in the Cambridge model, which
Myreen et al. have shown to be sound [16]. Also, using the HOL4 proof assistant
to define our proof rules further ensures they are sound. In addition, we proved
(Sect. 3.1) that safe single instruction and basic block theorems in AUSPICE
derived from our proof rules have the same instruction semantics as the ARM
machine-code semantics defined by the trustworthy, validated Cambridge ARM
model [9,15].

Correctness of Safety Rule. Next, we give a brief, informal argument of the
correctness of our proof rule for safe programs. The FUN SAFE theorem (Fig. 3)
can be proven for a program if and only if safety assertions are specified for every
instruction, and if these safety assertions hold before that instruction begins
executing (except for the first instruction, which relies on the OS to correctly
initialize the processor state for the program). We argue this by Structural Induc-
tion on the Control-Flow Graph (CFG) of a program. Each node in our CFG
of a function in a program is either a single-entry, single-exit basic block with
sequentially executing code, or a (callee) function called by the function.

Base Case. The MEM CFI SAFE rule (Sect. 3.1) ensures every instruction’s theo-
rem contains our safety assertions (Sect. 2.2). The MEM CFI SAFE COMPOSE rule
ensures every basic block’s theorem is built up only from single-instruction
theorems with added safety assertions. The requirement that post-states of
predecessor theorems and pre-states of successor theorems must be equal in
MEM CFI SAFE COMPOSE ensures every basic block’s theorem accumulates the
safety assertions for every composed safe instruction theorem. Then, for a pro-
gram with only a single instruction or basic-block, if the OS correctly initializes
the processor state, the safety assertions will hold for the single instruction or
single basic block.

Inductive Case. We take the CFG of a function, G, and partition its vertices
into a single vertex, g, and all other vertices, G′. By the Inductive Hypothesis,
the FUN SAFE theorem holds for G′. Then, consider the edges E connecting G′

to g. In the absence of function pointers and unstructured jumps (longjmp),
the edges E are either (i) intra-procedural control-flow transfers between basic
blocks in the function, (ii) function calls from a basic block in the function to a
callee function, or (iii) function returns from a callee function to a basic block in

AUSPICE 219

the function. Then, for FUN SAFE to be true, the fourth to sixth conjunct clauses
of the FUN SAFE rule must be true, so the pre-conditions of the theorems of all
predecessor vertices to g in the CFG discharge the safety assertions at g, making
the safety assertions at g hold, for any type of possible control-flow transfer
to g. Thus, our FUN SAFE rule ensures that we have captured all the possible
control-flow transfers in a machine-code program. For FUN SAFE to be correct, we
require correct CFG predecessor and successor maps, which are straightforward
to compute without function pointers and unstructured jumps.

Limitations. Our machine-code safety properties (Sect. 2.2) have been formu-
lated to ensure they can be automatically proven to hold in machine-code pro-
grams. These properties are sufficient, but not strictly necessary to meet our
high-level goal of preventing the control-flow of a machine-code program from
being hijacked due to user input. The strictness of our safety properties helps
automate the verification process. Our requirement that machine-code instruc-
tions do not alter memory addresses greater than the current function’s frame
pointer address also prevents functions from modifying any variables passed by
reference from the stacks of caller functions. Instead, functions passing data by
reference must store this data either on the program’s heap, or use memory allo-
cated in the program’s data section. We believe this is a small inconvenience to
enable the fully automated verification of safety properties.

6 Evaluation

We aim to show that we can verify real-world programs, and we pick programs with
constructswhich are challenging to verify.Wealsomeasure our runtime to show the
feasibility of our verification.Our test programswere compiledusing anunmodified
gcc toolchain for the ARMv7 architecture with -O0 optimization. Figure 5 summa-
rizes our test programs. sort implements Bubble Sort, which has a doubly-nested
loop, and also contains 2 other functions to exercise our inter-procedural analy-
sis. memcpy is an implementation of the C library function which we developed,
and shows we can verify a real-world function. stringsearch is an application in
theMiBench commercially-representative embeddedbenchmark [10], and it imple-
ments the Boyer-Moore string search algorithm, and demonstrates our verification
on real-world programs.

Test Program Instructions Functions Description

memcpy 116 2 Real-world memcpy

sort 337 5 Nested loops, function calls/returns

stringsearch 530 5 Boyer-Moore string search (MiBench [10])

Fig. 5. Test programs, their sizes, and the purpose of each test.

Figure 6 shows the time taken to verify the safety of each of our test programs.
We carried out the verification on an 2.6 GHz Core i7 system. The majority of

220 J. Tan et al.

Cambridge ARM
Decompiler

Safe Basic
Blocks

Abstract In-
terpretation

Safe Func-
tion

Total Proof
Time

memcpy 1.3 mins 2.7 mins 5.7 mins 6.7 mins 16.4 mins

sort 2.5 mins 11.2 mins 36 mins 73 mins 122.7 mins

stringsearch 2.8 mins 15.3 mins 327.6 mins 17.8 mins 363.5 mins

Fig. 6. Verification runtime.

the verification time is spent in the abstract interpretation (Sect. 4.3) and the
proof of the safe function theorem (Sect. 3.3). We believe these are feasible times
for verifying safety properties, as programs only need to be verified once on
installation.

7 Related Work

Many techniques have been developed for verifying machine-code programs using
logic. Certified assembly programming uses a Hoare logic with separation logic
to build certified libraries [18,26], but specifications must be manually annotated
in programs, and verification is interactive. Tan and Appel [21] developed a pro-
gram logic for multi-entry, multi-exit machine-code fragments to reason about
unstructured control-flows in executables in Foundational Proof Carrying Code
(FPCC). They require a special compiler to generate machine-code annotated
with types [13], while we verify unmodified executables compiled using an off-
the-shelf compiler. iTalX [22] infers types for x86 assembly programs, reducing
the amount of type annotations required from a modified compiler. Executa-
bles have also been verified without using a program logic, although concise
theorems cannot be proven. Bedrock [6] provides “mostly-automated” verifica-
tion for generic program properties, and provides memory safety as a side-effect,
for programs written using its idealized machine language, from which concrete
architectures can be targeted. Xu et al. [25] verify safety properties for machine-
code using static-analysis. RevGen [5] decompiles machine-code to the interme-
diate representation of the LLVM compiler framework, enabling other analyses
to be reused, whereas we use a validated model of ARM machine-code. Thakur
et al. [23] perform model-checking on machine-code without requiring a precom-
puted, fixed, inter-procedural CFG. Sequoll [4] also performs model-checking on
machine-code programs, and like our work, uses the Cambridge ARM model [15],
but it uses temporal logic to reason about worst-case execution time (WCET)
in the NuSMV model-checker, whereas our approach uses Hoare logic. XFI [8]
and ARMor [27], are software fault isolation (SFI) [24] implementations which
ensure and verify that (x86 and ARM, respectively) executables possess mem-
ory and control-flow safety properties. XFI requires modules being verified to
be annotated with hints. PittSFIeld [12] verifies that its SFI safety rewriting
for x86 binaries is correct, as opposed to verifying that the executables it pro-
duces are safe. RockSalt [14] also provides verified SFI by providing a verified
checker which checks that programs are isolated, whereas our work produces a

AUSPICE 221

safety proof for each program. ARMor [27] is closest to our work. They require
machine-code to be compiled with a modified compiler, after which the pro-
gram must undergo binary rewriting to insert safety checks. In contrast, we can
prove safety properties automatically for unmodified executables using our logic
framework and selective composition proof tactic.

8 Conclusion and Future Work

We have presented a novel logic framework, AUSPICE, for automatically veri-
fying safety properties in unmodified ARM machine-code programs. Our frame-
work consists of a program logic, LLR, which uses a subset of a trustworthy
Hoare logic for ARM executables [15,16], and extends it for local reasoning, and
the selective composition proof tactic, which fully automates the verification of
safety properties. We demonstrated the feasibility of our fully automated safety
property verification on one synthetic and two real-world (including a real-world
benchmark [10]) examples. In future, we intend to validate our approach on more
programs, and expand our verification to programs with system calls.

Acknowledgment. We thank Lu Zhao for his help with ARMor [27], Magnus Myreen
for his help with the Cambridge ARM model [15,16], and Xinyu Zhuang for his
feedback.

References

1. The ARM-THUMB Procedure Call Standard (2000). http://infocenter.arm.com/
help/topic/com.arm.doc.espc0002/ATPCS.pdf

2. ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (2014)
3. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow Integrity. In: ACM

CCS (2005)
4. Blackham, B., Heiser, G.: Sequel: a framework for model checking binaries. In:

IEEE RTAS (2013)
5. Chipounov, V., Candea, G.: Enabling sophisticated analyses of x86 binaries with

RevGen. In: HotDep (2011)
6. Chlipala, A.: Mostly-automated verification of low-level programs in computational

separation logic. In: PLDI (2011)
7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

8. Erlingsson, U., Abadi, M., Vrable, M., Budiu, M., Necula, G.: XFI: software guards
for system address spaces. In: OSDI (2006)

9. Fox, A.: Formal specification and verification of ARM6. In: Basin, D., Wolff, B.
(eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 25–40. Springer, Heidelberg (2003)

10. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: Mibench: a free, commercially representative embedded benchmark suite.
In: IEEE WWC Workshop (2001)

11. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

http://infocenter.arm.com/help/topic/com.arm.doc.espc0002/ATPCS.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.espc0002/ATPCS.pdf

222 J. Tan et al.

12. McCamant, S., Morrisett, G.: Evaluating SFI for a CISC architecture. In: USENIX
Security (2006)

13. Morrisett, G., Crary, K., Glew, N., Grossman, D., Samuels, R., Smith, F., Walker,
D., Weirich, S., Zdancewic, S.: TALx86: a realistic typed assembly language. In:
Workshop on Compiler Support for System Software (WCSSS) (1999)

14. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J., Gan, E.: RockSalt: better, faster,
stronger SFI for the x86. In: PLDI (2012)

15. Myreen, M.O., Fox, A.C.J., Gordon, M.J.C.: Hoare logic for ARM machine code.
In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 272–286.
Springer, Heidelberg (2007)

16. Myreen, M.O., Gordon, M.J.C.: Hoare logic for realistically modelled machine code.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 568–582.
Springer, Heidelberg (2007)

17. Myreen, M., Gordon, M., Slind, K.: Machine-code verification for multiple archi-
tectures: an application of decompilation into logic. In: FMCAD (2008)

18. Ni, Z., Shao, Z.: Certified assembly programming with embedded code pointers.
In: POPL (2006)

19. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: IEEE
LICS (2002)

20. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008)

21. Tan, G., Appel, A.W.: A compositional logic for control flow. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 80–94. Springer, Heidel-
berg (2006)

22. Tate, R., Chen, J., Hawblitzel, C.: Inferable object-oriented typed assembly lan-
guage. In: PLDI (2010)

23. Thakur, A., Lim, J., Lal, A., Burton, A., Driscoll, E., Elder, M., Andersen, T.,
Reps, T.: Directed proof generation for machine code. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 288–305. Springer, Heidelberg
(2010)

24. Wahbe, R., Lucco, S., Anderson, T., Graham, S.: Efficient software-based fault
isolation. In: SOSP (1993)

25. Xu, Z., Miller, B., Reps, T.: Safety checking of machine code. In: PLDI (2000)
26. Yu, D., Hamid, N.A., Shao, Z.: Building certified libraries for PCC: dynamic stor-

age allocation. In: Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 363–379.
Springer, Heidelberg (2003)

27. Zhao, L., Li, G., Sutter, B.D., Regehr, J.: ARMor: fully verified software fault
isolation. In: EMSOFT (2011)

	AUSPICE: Automatic Safety Property Verification for Unmodified Executables
	1 Introduction
	1.1 Problem Statement

	2 Background
	2.1 ARM Architecture
	2.2 Safety Properties for ARM Machine-Code Programs
	2.3 Hoare Logic for ARM Machine-Code Programs
	2.4 Composition Rule in Hoare Logic

	3 Design: The LLR Program Logic
	3.1 Individual Instructions: Safety Assertion Specification
	3.2 Sequential Code Blocks
	3.3 Function Judgment for Local Reasoning

	4 Implementation: Proofs Using LLR
	4.1 Automatic Safety Property Specification
	4.2 Selective Composition Proof Tactic
	4.3 Automatic Discharge of Proof Obligations

	5 Discussion
	6 Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

