
Arie Gurfinkel
Sanjit A. Seshia (Eds.)

 123

LN
CS

 9
59

3

7th International Conference, VSTTE 2015
San Francisco, CA, USA, July 18–19, 2015
Revised Selected Papers

Verified Software:
Theories, Tools,
and Experiments

Lecture Notes in Computer Science 9593

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Arie Gurfinkel • Sanjit A. Seshia (Eds.)

Verified Software:
Theories, Tools,
and Experiments
7th International Conference, VSTTE 2015
San Francisco, CA, USA, July 18–19, 2015
Revised Selected Papers

123

Editors
Arie Gurfinkel
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA
USA

Sanjit A. Seshia
Department of Electrical Engineering
and Computer Science

University of California
Berkeley
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-29612-8 ISBN 978-3-319-29613-5 (eBook)
DOI 10.1007/978-3-319-29613-5

Library of Congress Control Number: 2016930277

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the papers presented at the 7th International Conference on
Verified Software: Theories, Tool and Experiments (VSTTE), which was held in San
Francisco, California, USA, during July 18–19, 2015, co-located with the 27th Inter-
national Conference on Computer-Aided Verification. The final version of the papers
was prepared by the authors after the event took place, which permitted them to take
feedback received at the meeting into account.

VSTTE originated from the Verified Software Initiative (VSI), which is an inter-
national initiative directed at the scientific challenges of large-scale software verifica-
tion. The inaugural VSTTE conference was held at ETH Zurich in October 2005, and
was followed by VSTTE 2008 in Toronto, VSTTE 2010 in Edinburgh, VSTTE 2012 in
Philadelphia, VSTTE 2013 in Menlo Park, and VSTTE 2015 in Vienna. The goal
of the VSTTE conference is to advance the state of the art through the interaction
of theory development, tool evolution, and experimental validation.

The call for papers for VSTTE 2015 solicited submissions describing large-scale
verification efforts that involve collaboration, theory unification, tool integration, and
formalized domain knowledge. We were especially interested in papers describing
novel experiments and case studies evaluating verification techniques and technologies.
We welcomed papers describing education, requirements modeling, specification lan-
guages, specification/verification, formal calculi, software design methods, automatic
code generation, refinement methodologies, compositional analysis, verification tools
(e.g., static analysis, dynamic analysis, model checking, theorem proving), tool inte-
gration, benchmarks, challenge problems, and integrated verification environments.

There were 25 submissions. Each submission was reviewed by at least three
members of the Program Committee. The committee decided to accept 12 papers. The
program also included two invited talks, given by Chris Hawblitzel (Microsoft
Research) and Lee Pike (Galois Inc.), and a panel on “Software Verification Compe-
titions: Lessons Learned and Challenges Ahead.”

We would like to thank the invited speakers, the panel members, and all submitting
authors for their contribution to the program. We thank Natarjan Shankar for the help
with the organization, our publicity chair, Daniel Bundala, our general chair, Martin
Schaef, and the CAV workshop chair, Dirk Beyer. Finally, we thank the external
reviewers and the Program Committee for their reviews and their help in selecting the
papers that appear in this volume.

December 2015 Arie Gurfinkel
Sanjit A. Seshia

Organization

Program Committee

Elvira Albert Complutense University of Madrid, Spain
Nikolaj Bjorner Microsoft Research, USA
Bor-Yuh Evan Chang University of Colorado at Boulder, USA
Ernie Cohen Amazon, USA
Vijay D’Silva University of California, Berkeley, USA
Jyotirmoy Deshmukh Toyota Technical Center, USA
Jinsong Dong National University of Singapore, Singapore
Vijay Ganesh University of Waterloo, Canada
Alex Groce Oregon State University, USA
Arie Gurfinkel Software Engineering Institute, Carnegie Mellon

University, USA
William Harris University of Wisconsin-Madison, USA
Chris Hawblitzel Microsoft Research, USA
Bart Jacobs Katholieke Universiteit Leuven, Belgium
Susmit Jha Strategic CAD Lab, Intel, USA
Rajeev Joshi Laboratory for Reliable Software, Jet Propulsion

Laboratory, USA
Vladimir Klebanov Karlsruhe Institute of Technology, Germany
Akash Lal Microsoft Research, India
Ruzica Piskac Yale University, USA
Zvonimir Rakamaric University of Utah, USA
Kristin Yvonne Rozier NASA Ames Research Center, USA
Martin Schäf SRI International, USA
Sanjit Seshia UC Berkeley, USA
Natarajan Shankar SRI International, USA
Nishant Sinha IBM Research Labs, India
Carsten Sinz Karlsruhe Institute of Technology (KIT), Germany
Alexander J. Summers ETH Zurich, Switzerland
Zach Tatlock University of Washington, USA
Sergey Tverdyshev SYSGO AG, Germany
Arnaud Venet Google, USA
Karen Yorav IBM Haifa Research Lab, Israel

Additional Reviewers

Arechiga, Nikos
Bai, Guangdong
Berezish, Murphy
Din, Crystal Chang
Fremont, Daniel J.
Liu, Yan
Nejati, Saeed

Prabhu, Vinayak
Rabe, Markus N.
Román-Díez, Guillermo
Santolucito, Mark
Schwerhoff, Malte
Shurek, Gil

VIII Organization

Contents

A Proof-Sensitive Approach for Small Propositional Interpolants 1
Leonardo Alt, Grigory Fedyukovich, Antti E.J. Hyvärinen,
and Natasha Sharygina

Recursive Games for Compositional Program Synthesis 19
Tewodros A. Beyene, Swarat Chaudhuri, Corneliu Popeea,
and Andrey Rybalchenko

Testing the IPC Protocol for a Real-Time Operating System. 40
Achim D. Brucker, Oto Havle, Yakoub Nemouchi, and Burkhart Wolff

Pseudo-Random Number Generator Verification: A Case Study 61
Felix Dörre and Vladimir Klebanov

Inside a Verified Flash File System: Transactions and Garbage Collection . . . 73
Gidon Ernst, Jörg Pfähler, Gerhard Schellhorn, and Wolfgang Reif

How to Avoid Proving the Absence of Integer Overflows 94
Martin Clochard, Jean-Christophe Filliâtre, and Andrei Paskevich

Machine-Checked Proofs for Realizability Checking Algorithms 110
Andreas Katis, Andrew Gacek, and Michael W. Whalen

Dynamic Frames Based Verification Method for Concurrent Java Programs . . . 124
Wojciech Mostowski

A Simpler Reduction Theorem for x86-TSO. 142
Jonas Oberhauser

Moving Around: Lipton’s Reduction for TSO (Regular Submission) 165
Ali Sezgin and Serdar Tasiran

Android Platform Modeling and Android App Verification in the ACL2
Theorem Prover . 183

Eric Smith and Alessandro Coglio

AUSPICE: Automatic Safety Property Verification for Unmodified
Executables . 202

Jiaqi Tan, Hui Jun Tay, Rajeev Gandhi, and Priya Narasimhan

Author Index . 223

http://dx.doi.org/10.1007/978-3-319-29613-5_1
http://dx.doi.org/10.1007/978-3-319-29613-5_2
http://dx.doi.org/10.1007/978-3-319-29613-5_3
http://dx.doi.org/10.1007/978-3-319-29613-5_4
http://dx.doi.org/10.1007/978-3-319-29613-5_5
http://dx.doi.org/10.1007/978-3-319-29613-5_6
http://dx.doi.org/10.1007/978-3-319-29613-5_7
http://dx.doi.org/10.1007/978-3-319-29613-5_8
http://dx.doi.org/10.1007/978-3-319-29613-5_9
http://dx.doi.org/10.1007/978-3-319-29613-5_10
http://dx.doi.org/10.1007/978-3-319-29613-5_11
http://dx.doi.org/10.1007/978-3-319-29613-5_11
http://dx.doi.org/10.1007/978-3-319-29613-5_12
http://dx.doi.org/10.1007/978-3-319-29613-5_12
http://dx.doi.org/10.1007/978-3-319-29613-5_12
http://dx.doi.org/10.1007/978-3-319-29613-5_12
http://dx.doi.org/10.1007/978-3-319-29613-5_12
http://dx.doi.org/10.1007/978-3-319-29613-5_12
http://dx.doi.org/10.1007/978-3-319-29613-5_12
http://dx.doi.org/10.1007/978-3-319-29613-5_12
http://dx.doi.org/10.1007/978-3-319-29613-5_12
http://dx.doi.org/10.1007/978-3-319-29613-5_12
http://dx.doi.org/10.1007/978-3-319-29613-5_12

A Proof-Sensitive Approach
for Small Propositional Interpolants

Leonardo Alt(B), Grigory Fedyukovich,
Antti E.J. Hyvärinen, and Natasha Sharygina

Formal Verification Lab, USI, Lugano, Switzerland
leonardoaltt@gmail.com

Abstract. The labeled interpolation system (LIS) is a framework
for Craig interpolation widely used in propositional-satisfiability-based
model checking. Most LIS-based algorithms construct the interpolant
from a proof of unsatisfiability and a fixed labeling determined by which
part of the propositional formula is being over-approximated. While this
results in interpolants with fixed strength, it limits the possibility of
generating interpolants of small size. This is problematic since the inter-
polant size is a determining factor in achieving good overa performance in
model checking. This paper analyses theoretically how labeling functions
can be used to construct small interpolants. In addition to developing the
new labeling mechanism guaranteeing small interpolants, we also present
its versions managing the strength of the interpolants. We implement the
labeling functions in our tool PeRIPLO and study the behavior of the
resulting algorithms experimentally by integrating the tool to a variety
of model checking applications. Our results suggest that the new proof-
sensitive interpolation algorithm performs consistently better than any
of the standard interpolation algorithms based on LIS.

1 Introduction

In SAT-based model checking, a widely used workflow for obtaining an inter-
polant for a propositional formula A is to compute a proof of unsatisfiability for
the formula φ = A∧B, use a variety of standard techniques for compressing the
proof (see, e.g., [17]), construct the interpolant from the compressed proof, and
finally simplify the interpolant [4]. The labeled interpolation system (LIS) [9] is a
commonly used, flexible framework for computing the interpolant from a given
proof that generalizes several interpolation algorithms parameterized by a label-
ing function. Given a labeling function and a proof, LIS uniquely determines
the interpolant. However, the LIS framework allows significant flexibility in con-
structing interpolants from a proof through the choice of the labeling function.

Arguably, the suitability of an interpolant depends ultimately on the appli-
cation [17], but there is a wide consensus that small interpolants lead to bet-
ter overall performance in model checking [3,17,21]. However, generating small
interpolants for a given partitioning is a non-trivial task. This paper presents, to
the best of our knowledge, the first thorough, rigorous analysis on how labeling
c© Springer International Publishing Switzerland 2016
A. Gurfinkel and S.A. Seshia (Eds.): VSTTE 2015, LNCS 9593, pp. 1–18, 2016.
DOI: 10.1007/978-3-319-29613-5 1

2 L. Alt et al.

in the LIS framework affects the size of the interpolant. The analysis is backed
up by experimentation showing also the practical significance of the result. We
believe that the results reported here will help the community working on inter-
polation in designing interpolation algorithms that work well independent of the
application. Based on the analysis we present the proof-sensitive interpolation
algorithm PS that produces small interpolants by adapting itself to the proof of
unsatisfiability. We prove under reasonable assumptions that the resulting inter-
polant is always smaller than those generated by any other LIS-based algorithms,
including the widely used algorithms Ms (McMillan [13]), P (Pudlák [16]), and
Mw (dual to Ms [9]).

In some applications it is important to give guarantees on the logical strength
of the interpolants. Since the LIS framework allows us to argue about the result-
ing interpolants by their logical strength [9], we know that for a fixed problem
A ∧ B and a fixed proof of unsatisfiability, an interpolant constructed with Ms

implies one constructed with P which in turn implies one constructed with Mw.
While PS is designed to control the interpolant size, we additionally define two
variants controlling the interpolant strength: the strong and the weak proof-
sensitive algorithms computing, respectively, interpolants that imply the ones
constructed by P and that are implied by the ones constructed by P.

We implemented the new algorithms in the PeRIPLO interpolation frame-
work [17] and confirm the practical significance of the algorithms with an
experimentation. The results show that when using PS, both the sizes of the
interpolants and the run times when used in a model-checking framework com-
pare favorably to those obtained with Ms,P, and Mw, resulting occasionally in
significant reductions.

1.1 Related Work

Interpolants can be compacted through applying transformations to the reso-
lution refutation. For example, [17,18] compare the effect of such compaction
on the interpolation algorithms Ms,P, and Mw in connection with function-
summarization-based model checking [10,20]. A similar approach is studied in [9]
combined with an analysis on the strength of the resulting interpolant. Differ-
ent size-based reductions are further discussed in [4,11]. While often successful,
these approaches might produce a considerable overhead in large problems. Our
approach is more light-weight and uses directly the flexibility of LIS to perform
the compression. An interesting analysis similar to ours, presented in [3], con-
centrates on the effect of identifying subsumptions in the resolution proofs. A
significant reduction in the size of the interpolant can be obtained by considering
only CNF-shaped interpolants [21]. However, the strength of these interpolants is
not as easily controllable as in the LIS interpolants, making the technique harder
to apply in certain model checking approaches. A light-weight interpolant com-
paction can be performed by specializing through simplifying the interpolant
with a truth assignment [12].

In many verification approaches using counter-examples for refinement it is
possible to abstract an interpolant obtained from a refuted counter-example.

A Proof-Sensitive Approach for Small Propositional Interpolants 3

For instance, [2,19] present a framework for generalizing interpolants based on
templates. A related approach for generalizing interpolants in unbounded model-
checking through abstraction is presented in [5] using incremental SAT solving.
While this direction is orthogonal to ours, we believe that the ideas presented
here and addressing the interpolation back-end would be useful in connection
with the generalization phase.

Linear-sized interpolants can be derived also from resolution refutations com-
puted by SMT solvers, for instance in the combined theory of linear inequalities
and equalities with uninterpreted functions [14] and linear rational arithmetic [1].
These approaches have an interesting connection to ours since they also contain a
propositional part. It is also possible to produce interpolants without a proof [7].
However, this method gives no control over the relative interpolant strength and
reduces in the worst case to enumerating all models of a SAT instance. Finally,
conceptually similar to our work, there is a renewed interest in interpolation
techniques used in connection with modern ways of organizing the high-level
model-checking algorithm [6,15].

2 Preliminaries

Given a finite set of propositional variables, a literal is a variable p or its negation
¬p. A clause is a finite set of literals and a formula φ in conjunctive normal form
(CNF) is a set of clauses. We also refer to a clause as the disjunction of its literals
and a CNF formula as the conjunction of its clauses. A variable p occurs in the
clause C, denoted by the pair (p,C), if either p ∈ C or ¬p ∈ C. The set var(φ)
consists of the variables that occur in the clauses of φ. We assume that double
negations are removed, i.e., ¬¬p is rewritten as p. A truth assignment σ assigns
a Boolean value to each variable p. A clause C is satisfied if p ∈ C and σ(p) is
true, or ¬p ∈ C and σ(p) is false. The propositional satisfiability problem (SAT)
is the problem of determining whether there is a truth assignment satisfying
each clause of a CNF formula φ. The special constants � and ⊥ denote the
empty conjunction and the empty disjunction. The former is satisfied by all truth
assignments and the latter is satisfied by none. A formula φ implies a formula
φ′, denoted φ → φ′, if every truth assignment satisfying φ satisfies φ′. The size
of a propositional formula is the number of logical connectives it contains. For
instance the unsatisfiable CNF formula

φ = (x1 ∨ x2) ∧ (¬x2 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x3) ∧ (¬x1) (1)

of size 14 consists of 4 variables and 5 clauses. The occurrences of the variable
x4 are (x4,¬x2 ∨ x4) and (x4,¬x2 ∨ ¬x3 ∨ ¬x4).

For two clauses C+, C− such that p ∈ C+, ¬p ∈ C−, and for no other
variable q both q ∈ C− ∪ C+ and ¬q ∈ C− ∪ C+, a resolution step is a triple
C+, C−, (C+ ∪ C−) \ {p,¬p}. The first two clauses are called the antecedents,
the latter is the resolvent and p is the pivot of the resolution step. A resolution
refutation R of an unsatisfiable formula φ is a directed acyclic graph where
the nodes are clauses and the edges are directed from the antecedents to the

4 L. Alt et al.

resolvent. The nodes of a refutation R with no incoming edge are the clauses of
φ, and the rest of the clauses are resolvents derived with a resolution step. The
unique node with no outgoing edges is the empty clause. The source clauses of a
refutation R are the clauses of φ from which there is a path to the empty clause.

Given an unsatisfiable formula A∧B, a Craig interpolant I for A is a formula
such that A → I, I ∧ B is unsatisfiable and var(I) ⊆ var(A) ∩ var(B). An
interpolant can be seen as an over-approximation of A that is still unsatisfiable
when conjoined with B. In the rest of the paper we assume that A and B only
consist of the source clauses of R.

The labeled interpolation system [9] (LIS) is a framework that, given proposi-
tional formulas A, B, a refutation R of A ∧ B and a labeling function L, computes
an interpolant I for A based on R. The refutation together with the partitioning
A,B is called an interpolation instance (R,A,B). The labeling function L assigns
a label from the set {a, b, ab} to every variable occurrence (p,C) in the clauses
of the refutation R. A variable is shared if it occurs both in A and B; otherwise
it is local. For all variable occurrences (p,C) in R, L(p,C) = a if p is local to
A and L(p,C) = b if p is local to B. For occurrences of shared variables in the
source clauses the label may be chosen freely. The label of a variable occurrence
in a resolvent C is determined by the label of the variable in its antecedents.
For a variable occurring in both its antecedents with different labels, the label
of the new occurrence is ab, and in all other cases the label is equivalent to the
label in its antecedent or both antecedents.

An interpolation algorithm based on LIS computes an interpolant with a
dynamic algorithm by annotating each clause of R with a partial interpolant
starting from the source clauses. The partial interpolant of a source clause C is

I(C) =
{∨{l | l ∈ C and L(var(l), C) = b} if C ∈ A, and∧{¬l | l ∈ C and L(var(l), C) = a} if C ∈ B, (2)

The partial interpolant of a resolvent clause C with pivot p and antecedents C+

and C−, where p ∈ C+ and ¬p ∈ C−, is

I(C) =

⎧⎨
⎩

I(C+) ∨ I(C−) if L(p,C+) = L(p,C−) = a,
I(C+) ∧ I(C−) if L(p,C+) = L(p,C−) = b, and
(I(C+) ∨ p) ∧ (I(C−) ∨ ¬p) otherwise.

(3)

The interpolation algorithms Ms, P, and Mw mentioned in the introduction
can be obtained as special cases of LIS by providing a labeling function returning
b, ab, and a for the shared variables, respectively.

In some applications it is useful to consider different interpolants con-
structed from a fixed interpolation instance, but using different interpolation
algorithms [10]. For such cases the LIS framework provides a convenient tool
for analyzing whether the interpolants generated by one interpolation algorithm
always imply the interpolants generated by another algorithm. If we order the
three labels so that b ≤ ab ≤ a, it can be shown that given two labeling functions
L and L′ resulting in the interpolants IL and IL′ in LIS and having the prop-
erty that L(p,C) ≤ L′(p,C) for all occurrences (p,C), it is true that IL → IL′ .

A Proof-Sensitive Approach for Small Propositional Interpolants 5

In this case we say that the interpolation algorithm obtained from LIS using the
labeling L′ is weaker than the interpolation algorithm that uses the labeling L.

We define here two concepts that will be useful in the next section: the class
of uniform labeling functions, and the internal size of an interpolant.

Definition 1. A labeling function is uniform if for all pairs of clauses C,D ∈ R
containing the variable p, L(p,C) = L(p,D), and no occurrence is labeled ab.
Any interpolation algorithm with uniform labeling function is also called uniform.

An example of non-uniform labeling function is Dmin, presented in [8].
Dmin is proven to produce interpolants with the least number of distinct vari-
ables.

Definition 2. The internal size IntSize(I) of an interpolant I is the number of
connectives in I excluding the connectives contributed by the partial interpolants
associated with the source clauses.

Typically, an interpolant constructed by a LIS-based algorithm will contain
a significant amount of subformulas that are syntactically equivalent. The struc-
tural sharing, i.e., maintaining a unique copy of the syntactically equivalent sub-
formulas, while completely transparent to the satisfiability, is of critical practical
importance. Similarly important for performance is the constant simplification,
consisting of four simple rewriting rules: � ∧ φ � φ, ⊥ ∧ φ � ⊥, � ∨ φ � �,
and ⊥ ∨ φ � φ, where φ is an arbitrary Boolean formula.

x1 x2 []¬x2 x4 [x2] ¬x2 ¬x3 ¬x4 [x2] x1 x3 [¬x1]

¬x1 [x1]
x1 ¬x2 ¬x4 [¬x1 x2]

x1 ¬x4
[¬x1 x2]

¬x4 [(¬x1 x2) x1]
¬x2

[((¬x1 x2) x1) x2]

x2 [x1]

I = [(((¬x1 x2) x1) x2) x1]

[x1 x2][] [] []

[]
[]

[x1 x2]

[x1 x2]

[x1 x2]

[x1 x2]

I = [x1 x2]

A = (x1 x2) B = (¬x2 x4) (¬x2 ¬x3 ¬x4) (x1 x3) (¬x1)Partitioning P1:

L = {(x2,C1):b, (x4,C1):b,
(x2,C2):b, (x3,C2):b, (x4,C2):b,
(x1,C3):b, (x3,C3):b, (x1,C4):b,
(x1,C5):b, (x2,C5):b}

L = {(x2,C1):a, (x4,C1):b,
(x2,C2):a, (x3,C2):b, (x4,C2):b,
(x1,C3):a, (x3,C3):b, (x1,C4):a,
(x1,C5):a, (x2,C5):a}

C1 C2 C3

C4

C5

Mw
Ms

Mw

Ms

Ms

Mw Mw Mw Mw

Mw

Mw

Mw

Mw

Mw

Mw

Ms Ms Ms

Ms

Ms

Ms

Ms

Ms

Ms

Fig. 1. Different interpolants obtained from the refutation using the partitioning P1.

The following example illustrates the concepts discussed in this section by
showing how LIS can be used to compute interpolants with two different uniform
algorithms Ms and Mw.

6 L. Alt et al.

Example 1. Consider the unsatisfiable formula φ = A∧B where φ is from Eq. (1)
and A = (x1 ∨ x2) and B = (¬x2 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x3) ∧ (¬x1).
Figure 1 shows a resolution refutation for φ and the partial interpolants com-
puted by the interpolation algorithms Ms and Mw. Each clause in the refu-
tation is associated with a partial interpolant ψ generated by labeling LMs

(denoted by [ψ]Ms) and a partial interpolant ψ′ generated by labeling LMw

(denoted by [ψ′]Mw). The generated interpolants are IMs
= x1 ∨ x2 and

IMw
= (((¬x1 ∧ x2) ∨ x1) ∧ x2) ∨ x1. Now consider a different partitioning

φ′ = A′ ∧ B′ for the same formula where the partitions have been swapped,
that is, A′ = B and B′ = A. Using the same refutation (figure omitted for lack
of space), we get the interpolants I ′

Ms
= (((x1∨¬x2)∧¬x1)∨¬x2)∧¬x1 = ¬IMw

and I ′
Mw

= ¬(x1 ∨x2) = ¬IMs
We use both structural sharing and constant sim-

plification in the example. The internal size of IMs
is 0, whereas the internal size

of IMw
is 4.

The two partitionings illustrate a case where the interpolation algorithm
Ms, in comparison to Mw, produces a small interpolant for one and a large
interpolant for another interpolation instance. Since the goal in this work is
to develop LIS-based interpolation algorithms that consistently produce small
interpolants, the labeling function of choice cannot be LMs

or LMw
. Note that

while in this case the interpolants IMs
and IMw

are equivalent, the representation
of IMw

is considerably smaller than the representation of IMs
. Since minimizing

a propositional formula is an NP-complete problem, producing interpolants that
are small in the first place is a very important goal.

3 Labeling Functions for LIS

This section studies the algorithms based on the labeled interpolation system in
an analytic setting. Our main objective is to provide a basis for developing and
understanding labeling functions that construct interpolants having desirable
properties. In particular, we will concentrate on three syntactic properties of the
interpolants: the number of distinct variables; the number of literal occurrences;
and the internal size of the interpolant. In most of the discussion in this section
we will ignore the two optimizations on structural sharing and constraint simpli-
fication. While both are critically important for practicality of interpolation, our
experimentation shows that they mostly have similar effect on all the interpola-
tion algorithms we studied, and therefore they can be considered orthogonally
(see Sect. 4.4). The exception is that the non-uniform labeling functions allow a
more efficient optimization compared to the uniform labeling functions through
constraint simplification. More specifically, the main results of the section are
the following theorems.

(i) If an interpolation instance is not p-annihilable (see Definition 3), which
in our experimentation turns out almost always to be the case, then all
LIS interpolants constructed from the refutation have the same number of
distinct variables (Theorem 1);

A Proof-Sensitive Approach for Small Propositional Interpolants 7

(ii) For a given interpolation instance, the interpolants In obtained with any
non-uniform labeling function and Iu obtained with any uniform labeling
function satisfy IntSize(Iu) ≤ IntSize(In). (Theorem 2); and

(iii) Among uniform labeling functions, the proof-sensitive labeling function (see
Definition 4) results in the least number of variable occurrences in the partial
interpolants associated with the source clauses (Theorem 3).

From the three theorems we immediately have the following:

Corollary 1. For not p-annihilable interpolation instances, the proof-sensitive
labeling function will result in interpolants that have the smallest internal size,
the least number of distinct variables, and least variable occurrences in the source
partial interpolants.

The proof-sensitive interpolant strength can only be given the trivial guarantees:
it is stronger than IMw

and weaker than IMs
. At the expense of the minimality

in the sense of the above corollary, we introduce in Eqs. (6) and (7) the weak
and strong versions of the proof-sensitive labeling functions.

3.1 Analysing Labeling Functions

An interesting special case in LIS-based interpolation algorithms is when the
labeling can be used to reduce the number of distinct variables in the final
interpolant. To make this explicit we define the concepts of a p-pure resolution
step and a p-annihilable interpolation instance.

Definition 3. Given an interpolation instance (R,A,B), a variable p ∈
var(A) ∪ var(B) and a labeling function L, a resolution step in R is p-pure
if at most one of the antecedents contain p, or both antecedents C,D contain p
but L(p,C) = L(p,D) = a or L(p,C) = L(p,D) = b. An interpolation instance
(R,A,B) is p-annihilable if there is a non-uniform labeling function L such that
L(p,C) = a if C ∈ A, L(p,C) = b if C ∈ B, and all the resolution steps are
p-pure.

The following theorem shows the value of p-annihilable interpolation
instances in constructing small interpolants.

Theorem 1. Let (R,A,B) be an interpolation instance, p ∈ var(A) ∩ var(B),
and I an interpolant obtained from (R,A,B) by means of a LIS-based algorithm.
If p �∈ var(I), then (R,A,B) is p-annihilable.

Proof. Assume that (R,A,B) is not p-annihilable, p ∈ var(A) ∩ var(B), but
there is a labeling L which results in a LIS-based interpolation algorithm that
constructs an interpolant not containing p. The labeling function cannot have
L(p,C) = b if C ∈ A or L(p,C) = a if C ∈ B because p would appear in the
partial interpolants associated with the sources by Eq. (2). No clause C in R
can have L(p,C) = ab since all literals in the refutation need to be used as a
pivot on the path to the empty clause, and having an occurrence of p labeled ab

8 L. Alt et al.

in an antecedent clause would result in introducing the literal p to the partial
interpolant associated with the resolvent by Eq. (3) when used as a pivot. Every
resolution step in the refutation R needs to be p-pure, since if the antecedents
contain occurrences (p,C) and (p,D) such that L(p,C) �= L(p,D) either the
label of the occurrence of p in the resolvent clause will be ab, violating the
condition that no clause can have L(p,C) = ab above, or, if p is pivot on the
resolution step, the variable is immediately inserted to the partial interpolant
by Eq. (3). �

While it is relatively easy to artificially construct an interpolation instance
that is p-annihilable, they seem to be rare in practice (see Sect. 4.4). Hence, while
instances that are p-annihilable would result in small interpolants, it has little
practical significance at least in the benchmarks available to us. However, we
have the following practically useful result which shows the benefits of labeling
functions producing p-pure resolution steps in computing interpolants with low
number of connectives.

Theorem 2. Let (R,A,B) be an interpolation instance. Given a labeling func-
tion L such that the resolution steps in R are p-pure for all p ∈ var(A∧B), and
a labeling function L′ such that at least one resolution step in R is not p-pure
for some p ∈ var(A ∧ B), we have IntSize(IL) ≤ IntSize(IL′).

Proof. For a given refutation R, the number of partial interpolants will be the
same for any LIS-based interpolation algorithm. By Eq. (3) each resolution step
will introduce one connective if both occurrences in the antecedents are labeled
a or b and three connectives otherwise. The latter can only occur if the labeling
algorithm results in a resolution step that is not p-pure for some p. �
Clearly, p-pure steps are guaranteed with uniform labeling functions. Therefore
we have the following corollary:

Corollary 2. Uniform labeling functions result in interpolants with smaller
internal size compared to non-uniform labeling functions.

The main result of this work is the development of a labeling function that is
uniform, therefore producing small interpolants by Corollary 2, and results in the
smallest number of variable occurrences among all uniform labeling functions.
This proof-sensitive labeling function works by considering the refutation R when
assigning labels to the occurrences of the shared variables.

Definition 4. Let R be a resolution refutation for A∧B where A and B consist
of the source clauses, fA(p) = |{(p,C) | C ∈ A}| be the number of times the
variable p occurs in A, and fB(p) = |{(p,C) | C ∈ B}| the number the variable
p occurs in B. The proof-sensitive labeling function LPS is defined as

LPS(p,C) =

{
a if fA(p) ≥ fB(p)
b if fA(p) < fB(p).

(4)

A Proof-Sensitive Approach for Small Propositional Interpolants 9

Note that since LPS is uniform, it is independent of the clause C. Let ShA be
the set of the shared variables occurring at least as often in clauses of A as in B
and ShB the set of shared variables occurring more often in B than in A:

ShA = {p ∈ var(A) ∩ var(B) | fA(p) ≥ fB(p)} and
ShB = {p ∈ var(A) ∩ var(B) | fA(p) < fB(p)} (5)

Theorem 3 states the optimality with respect to variable occurrences of the algo-
rithm PS among uniform labeling functions.

Theorem 3. For a fixed interpolation instance (R,A,B), the interpolation algo-
rithm PS will introduce the smallest number of variable occurrences in the partial
interpolants associated with the source clauses of R among all uniform interpo-
lation algorithms.

Proof. The interpolation algorithm PS is a uniform algorithm labeling shared
variables either as a or b. Hence, the shared variables labeled a will appear in the
partial interpolants of the source clauses from B of R, and the shared variables
labeled b will appear in the partial interpolants of the source clauses from A of
R. The sum of the number of variable occurrences in the partial interpolants
associated with the source clauses by PS is

nPS =
∑

v∈ShB

fA(v) +
∑

v∈ShA

fB(v).

We will show that swapping uniformly the label of any of the shared variables
will result in an increase in the number of variable occurrences in the partial
interpolants associated with the source clauses of R compared to nPS. Let v be a
variable in ShA. By (4) and (5), the label of v in PS will be a. Switching the label
to b results in the size n′ = nPS − fB(v) + fA(v). Since v was in ShA we know
that fA(v) ≥ fB(v) by (5), and therefore −fB(v) + fA(v) ≥ 0 and n′ ≥ nPS.
An (almost) symmetrical argument shows that swapping the label for a variable
v ∈ ShB to a results in n′ > nPS. Hence, swapping uniformly the labeling of
PS for any shared variable will result in an interpolant having at least as many
variable occurrences in the leaves. Assuming no simplifications, the result holds
for the final interpolant. �

Example 2. Figure 2 shows the interpolants that PS would deliver if applied to
the same refutation R of φ and partitionings A∧B and A′∧B′ given in Example 1.
Notice that PS adapts the labeling to the best one depending on the refutation
and partitions, and gives small interpolants for both cases.

Because of the way LPS labels the variable occurrences, we cannot beforehand
determine the strength of PS relative to, e.g., the algorithms Ms,P, and Mw.
Although it is often not necessary that interpolants have a particular strength, in
some applications this has an impact on performance or even soundness [17]. To
be able to apply the idea in applications requiring specific interpolant strength,

10 L. Alt et al.

A = (¬x2 x4) (¬x2 ¬x3 ¬x4) (x1 x3) (¬x1)
B = (x1 x2)

LPS= {(x 2,C1):a, (x4,C1):a, (x2,C2):a, (x3,C2):a, (x4,C2):a,
 (x1,C3):a, (x3,C3):a, (x1,C4):a, (x1,C5):a, (x2,C5):a}

Sh = {x1, x2}, ShA = {x1, x2}, ShB = {}

x1 x2 [¬(x1 x2)]¬x2 x4 [] ¬x2 ¬x3 ¬x4 [] x1 x3 []

¬x1 []
x1 ¬x2 ¬x4 []

 x1 ¬x4[¬(x1 x2)]

¬x4 [¬(x1 x2)]

 ¬x2[¬(x1 x2)]

 [¬(x1 x2)]

IPS = [¬(x1 x2)]

x2

A = (x1 x2)
B = (¬x2 x4) (¬x2 ¬x3 ¬x4) (x1 x3) (¬x1)

LPS = {(x2,C1):b, (x4,C1):b, (x2,C2):b, (x3,C2):b, (x4,C2):b,
 (x1,C3):b, (x3,C3):b, (x1,C4):b, (x1,C5):b, (x2,C5):b}

Sh = {x1, x2}, ShA = {}, ShB = {x1, x2}

x1 x2 [x1 x2]¬x2 x4 [] ¬x2 ¬x3 ¬x4 [] x1 x3 []

¬x1 []x1 ¬x2 ¬x4 []

 x1 ¬x4[x1 x2]

¬x4 [x1 x2]

 ¬x2[x1 x2]

[x1 x2]

IPS = [x1 x2]

x2

C1 C2 C3

C4

C5 C1 C2 C3

C4

C5

Fig. 2. Interpolants obtained by PS.

for example tree interpolation, we propose a weak and a strong version of the
proof-sensitive interpolation algorithm, PSw and PSs. The corresponding label-
ing functions LPSw

and LPSs
are defined as

LPSw
(p,C) =

⎧⎪⎨
⎪⎩

a if p is not shared and C ∈ A or p ∈ ShA

b if p is not shared and C ∈ B

ab if p ∈ ShB

(6)

LPSs
(p,C) =

⎧⎪⎨
⎪⎩

a if p is not shared and C ∈ A

b if p is not shared and C ∈ B, or p ∈ ShB

ab if p ∈ ShA

(7)

Finally, it is fairly straightforward to see based on the definition of the label-
ing functions that the strength of the interpolants is partially ordered as shown
in the diagram below.

≤
P ≤

PSs ≤

≤ ≤Dmin

PS≤ ≤ PSw Mw≤Ms

4 Experimental Results

We implemented the three interpolation algorithms within the PeRIPLO [17]
toolset and compare them with the Dmin algorithm, as well as with the popu-
lar algorithms Ms, P and Mw in the context of three different model-checking
tasks: (i) incremental software model checking with function summarization
using FunFrog [20]; (ii) checking software upgrades with function summariza-
tion using eVolCheck [10]; and (iii) pre-image overapproximation for hardware
model checking with PdTRAV [5]. The wide range of experiments permits the
study of the general applicability of the new techniques. In experiments (i) and

A Proof-Sensitive Approach for Small Propositional Interpolants 11

Fig. 3. Overall verification/interpolation framework.

(ii) the new algorithms are implemented within the verification process allowing
us to evaluate their effect on the full verification run. Experiment (iii) focuses
on the size of the interpolant, treating the application as a black box. Unlike in
the theory presented in Sect. 3, all experiments use both structural sharing and
constraint simplification, since the improvements given by these practical tech-
niques are important. Experiments (i) and (ii) use a large set of benchmarks each
containing a different call-tree structure and assertions distributed on different
levels of the tree. For (iii), the benchmarks consisted of a set of 100 interpolation
problems constructed by PdTRAV. All experiments use PeRIPLO both as the
interpolation engine and as the SAT solver.

Figure 3 shows a generic verification framework employing the new labeling
mechanism for interpolation. Whenever the application needs an interpolant for
the problem A ∧ B, it first requests the refutation from the SAT solver. After
the refutation is generated, the application provides the partitioning to the proof
analyser, which will generate functions fA and fB (Definition 4). The labeling
engine then creates a labeling function based on the partitions A and B, the
functions fA and fB , and a possible strength requirement from the application,
and then passes it to the interpolator. The latter will finally construct an inter-
polant and return it to the application.

As mentioned in Sect. 1, different verification tasks may require different
kinds of interpolants. For example, [17] reports that the FunFrog approach
works best with strong interpolants, whereas the eVolCheck techniques rely on
weaker interpolants that have the tree-interpolation property. As shown in [18],
only interpolation algorithms stronger than or equal to P are guaranteed to have
this property. Therefore, we evaluated only Ms, P and PSs for (ii), and Ms, P,
Mw, PS, PSw and PSs for (i) and (iii). Dmin was evaluated against the other
algorithms for (i), but couldn’t be evaluated for (ii) because it does not preserve
the tree interpolation property. For (iii), Dminwas not evaluated due to its poor
performance in (i).

In the experiments (i) and (ii), the overall verification time of the tools and
average size of interpolants were analysed. For (iii) only the size was analysed.
In all the experiments the size of an interpolant is the number of connectives in
its DAG representation.

The tool and experimental data are available at http://verify.inf.usi.ch/
periplo.

http://verify.inf.usi.ch/periplo
http://verify.inf.usi.ch/periplo

12 L. Alt et al.

4.1 Incremental Verification with Function Summarization

FunFrog is a SAT-based bounded-model-checker for C designed to incremen-
tally check different assertions. The checker works by unwinding a program up to
some predefined bound and encoding the unwound program together with the
negation of each assertion to a BMC formula which is then passed to a SAT
solver. If the result is unsatisfiable, FunFrog reports that the program is safe
with respect to the provided assertion. Otherwise, it returns a counter-example
produced from the model of the BMC formula.

Craig interpolation is applied in FunFrog to extract function summaries
(relations over input and output parameters of a function that over-approximate
its behavior) to be reused between checks of different assertions with the goal
of improving overall verification efficiency. Given a program P , and an asser-
tion π, let φP,π denote the corresponding BMC formula. If φP,π is unsatisfiable,
FunFrog uses Craig Interpolation to extract function summaries. This is an
iterative procedure for each function call f in P . Given f , the formula φP,π is
partitioned as φP,π ≡ Af ∧ Bπ, where Af encodes f and its nested calls, Bπ the
rest of the program and the negated assertion π. FunFrog then calls PeRIPLO

to compute an interpolant If,π for the function f and assertion π.
While checking the program with respect to another assertion π′, FunFrog

constructs the new BMC formula φP,π′ , ≡ If,π ∧ Bπ′ ; where If,π is used to
over-approximate f . If φP,π′ is unsatisfiable then the over-approximation was
accurate enough to prove that π′ holds in P . On the other hand, satisfiability of
φP,π′ could be caused by an overly weak over-approximation of If,π. To check
this hypothesis, φP,π′ is refined to φref

P,π′ , in which If,π is replaced by the precise
encoding of f and the updated formula is solved again. If φref

P,π′ is satisfiable,
the error is real. Otherwise, the unsatisfiable formula φref

P,π′ is used to create new
function summaries in a similar manner as described above.

In our previous work [17,20] FunFrog chooses the interpolation algorithm
from the set {Ms,P,Mw} and uses it to create summaries for all function calls
in the program. In this paper, we add the algorithms PS, PSw and PSs to the
portfolio of the interpolation algorithms and show that in particular the use of
PS and PSs improves quality of function summaries in FunFrog and therefore
makes overall model checking procedure more efficient.

Experiments. The set of benchmarks consists of 23 C programs with different
number of assertions. FunFrog verified the assertions one-by-one incrementally
traversing the program call tree. The main goal of ordering the checks this way is
to maximize the reuse of function summaries and thus to test how the labeling
functions affect the overall verification performance. To illustrate our setting,
consider a program with the chain of nested function calls

main(){f(){g(){h(){}assertg}assertf}assertmain},

where assertF represents an assertion in the body of function F . In a successful
scenario, (a) assertg is detected to hold and a summary Ih for function h is

A Proof-Sensitive Approach for Small Propositional Interpolants 13

Fig. 4. Overall verification time of FunFrog (left) and eVolCheck (right) using
different interpolation algorithms.

Table 1. Sum of overall verification time and average interpolants size for the Fun-

Frog (left) and eVolCheck (right) using the applicable labeling functions.

FunFrog eVolCheck

Ms P Mw PS PSw PSs Dmin Ms PSs P

Time (s) 2333 3047 3207 2272 3345 2193 3811 4867 4422 5081

Increase % 6 39 46 3 52 0 74 10 0 16

Avg size 48101 79089 86831 43781 95423 40172 119306 246883 196716 259078

Increase % 20 97 116 9 137 0 197 26 0 32

created; (b) assertf is efficiently verified by exploiting Ih, and Ig is then built
over Ih; and (c) finally assertmain is checked against Ig.

Figure 4 (left) shows FunFrog’s performance with each interpolation algo-
rithm. Each curve represents an interpolation algorithm, and each point on the
curve represents one benchmark run using the corresponding interpolation algo-
rithm, with its verification time on the vertical axis. The benchmarks are sorted
by their run time. The PS and PSs curves are mostly lower than those of the
other interpolation algorithms, suggesting they perform better. Table 1 (left)
shows the sum of FunFrog verification time for all benchmarks and the aver-
age size of all interpolants generated for all benchmarks for each interpolation
algorithm. We also report the relative time and size increase in percents. Both
PS and PSs are indeed competitive for FunFrog, delivering interpolants smaller
than the other interpolation algorithms.

4.2 Upgrade Checking Using Function Summarization

eVolCheck is an Upgrade Checker for C, built on top of FunFrog. It takes
as an input an original program S and its upgrade T sharing the set of func-
tions calls {f}. eVolCheck uses the interpolation-based function summaries

14 L. Alt et al.

{IS,f}, constructed for S as shown in Sect. 4.1 to perform upgrade checking. In
particular, it verifies whether for each function call f the summary IS,f over-
approximates the precise behavior of T . This local check is turned into showing
unsatisfiability of ¬IS,f ∧ AT,f , where AT,f encodes f and its nested calls in
T . If proven unsatisfiable, eVolCheck applies Craig Interpolation to refine the
function summary with respect to T .

Experiments. The benchmarks consist of the ones used in the FunFrog exper-
iments and their upgrades. We only experiment with Ms, P and PSs since
eVolCheck requires algorithms at least as strong as P. Figure 4 (right) demon-
strates that PSs, represented by the lower curve, outperforms the other algo-
rithms also for this task. Table 1 (right) shows the total time eVolCheck

requires to check the upgraded versions of all benchmarks and average inter-
polant size for each of the three interpolation algorithms. Also for upgrade
checking, the interpolation algorithm PSs results in smaller interpolants and
lower run times compared to the other studied interpolation algorithms.

4.3 Overapproximating Pre-image for Hardware Model Checking

PdTRAV [5] implements several verification techniques including a classical
approach of unbounded model checking for hardware designs [13]. Given a design
and a property, the approach encodes the existence of a counterexample of a fixed
length k into a SAT formula and checks its satisfiability. If the formula is unsat-
isfiabile, proving that no counterexample of length k exists, Craig interpolation
is used to over-approximate the set of reachable states. If the interpolation finds
a fixpoint, the method terminates reporting safety. Otherwise, k is incremented
and the process is restarted.

Experiments. For this experiment, the benchmarks consist of interpolation
instances generated by PdTRAV. We compare the effect of applying different
interpolation algorithms on the individual steps of the verification procedure.1

Table 2. Average size and increase relative to the winner for interpolants generated
when interpolating over A (top) and B (bottom) in A ∧ B with PdTRAV.

Ms P Mw PS PSw PSs

Avg size 683233 724844 753633 683215 722605 685455

Increase % 0.003 6 10 0 6 0.3

Avg size 699880 694372 649149 649013 650973 692434

Increase % 8 7 0.02 0 0.3 7

1 The forthcoming research question is how interpolants generated using PS affect the
convergence. This study is however orthogonal to ours and left for future work.

A Proof-Sensitive Approach for Small Propositional Interpolants 15

Table 2 (top) shows the average size of the interpolants generated for all the
benchmarks using each interpolation algorithm, and the relative size compared to
the smallest interpolant. Also for these approaches the best results are obtained
from Ms, PS and PSs, with PS being the overall winner. We note that Ms

performs better than Mw likely due to the structure of the interpolation instances
in these benchmarks: the partition B in A ∧ B is substantially larger than the
partition A. This structure favors algorithms that label many literals as b, since
the partial interpolants associated with the clauses in B will be empty while
the number of partial interpolants associated with the partition A will be small.
To further study this phenomenon we interchanged the partitions, interpolating
this time over B in A ∧ B for the same benchmarks resulting in problems where
the A part is large. Table 2 (bottom) shows the average size of the interpolants
generated for these benchmarks and the relative size difference compared to the
winner. Here Mw and PSw perform well, while PS remains the overall winner.

We conclude that the experimental results are compatible with the analysis in
Sect. 3. In the FunFrog and eVolCheck experiments, PSs outperformed the
other interpolation systems with respect to verification time and interpolant size.
PdTRAV experiments confirm in addition that PS is very capable in adapting
to the problem, giving best results in both cases while the others work well in
only one or the other.

4.4 Effects of Simplification

It is interesting to note that in our experiments the algorithm PS was not always
the best, and the non-uniform interpolation algorithm PSs sometimes produced
the smallest interpolant, seemingly contradicting Corollary 1. A possible reason
for this anomaly could be in the small difference in how constraint simplification
interacts with the interpolant structure. Assume, in Eq. (3), that I(C+) or I(C−)
is either constant true or false. As a result in the first and the second case
respectively, the resolvent interpolant size decreases by one in Eq. (3). However
in the third case, potentially activated only for non-uniform algorithms, the
simplification if one of the antecedents’ partial interpolants is false decreases the
interpolant size by two, resulting in partial interpolants with smaller internal
size. Therefore, in some cases, the good simplification behavior of non-uniform
algorithms such as PSs seems to result in slightly smaller interpolants compared
to PS. We believe that this is also the reason why P behaves better than Ms and
Mw in some cases.

We also observed (detailed data not shown) that in only five of the bench-
marks a labeling function led to interpolants with less distinct variables, the differ-
ence between the largest and the smallest number of distinct variables being never
over 3 %, suggesting that p-annihilable interpolation instances are rare. Finally, we
measured the effect of structural sharing. The results (see Appendix A) show that
there is no noticeable, consistent difference between any of the algorithms, sug-
gesting that the theory developed in Sect. 3 suffices to explain the experimental
observations.

16 L. Alt et al.

5 Conclusion and Future Work

This paper studies the labeled interpolation system (LIS), a framework for con-
structing interpolation algorithms for propositional proofs. In particular, we
study how different labeling functions influence the resulting interpolants by
analyzing how the choice of labeling affects several size metrics. Based on the
results we construct three new interpolation algorithms: the algorithm PS that
decides the labeling based on the resolution refutation, and its strong and weak
variants. We show that under certain practical assumptions PS results in the
smallest interpolants among the framework. Experimentally, when fully inte-
grated with two software model checkers, PS or its stronger variant outperforms
widely used algorithms. The results are similarly encouraging when we overap-
proximate pre-image in unbounded model checking with PS. We believe that
this result is due to the size reduction obtained by the new algorithms.

In the future we plan to study why p-annihilable proofs are rare and how to
make them common. We also plan to integrate our framework more tightly with
other model checkers through efficiently exchanging proofs and interpolants.

Acknowledgements. We thank our colleagues Professor Gianpiero Cabodi and
Danilo Vendraminetto from the University of Turin, Italy for the benchmarks and
instructions related to PdTRAV. This work was funded by the Swiss National Science
Foundation (SNSF), under the project #200021 138078.

Appendix A Experiments on Simplifications by
Structural Sharing

To investigate the effect of structural sharing on simplifications, we analysed
two parameters: the number of connectives in an interpolant on its pure tree
representation (SizeTree), and the number of connectives in an interpolant on
its DAG representation (SizeDAG), which is the result of the application of
structural sharing. Thus, we believe that the ratio SizeTree/SizeDAG is a good
way to measure the amount of simplifications due to structural sharing.

Figure 5 shows the results of this analysis on FunFrog benchmarks. Each
vertical line represents a benchmark, and each point on this line represents the
ratio SizeTree/SizeDAG of the interpolant generated by each of the interpolation
algorithms for the first assertion of that benchmark. The reason why only the
first assertion is considered is that from the second assertion on, summaries
(that is, interpolants) are used instead of the original code, and therefore it is
not guaranteed that the refutations will be the same when different interpolation
algorithms are applied.

It is noticeable that the existence of more/less simplifications is not related to
the interpolation algorithms, since all of them have cases where many/few simpli-
fications happen. Therefore, there is no difference between any of the algorithms
with respect to structural sharing.

A Proof-Sensitive Approach for Small Propositional Interpolants 17

Fig. 5. Relation SizeTree/SizeDAG on FunFrog benchmarks for different interpola-
tion algorithms

References

1. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Sharygina, N., Veith,
H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 313–329. Springer, Heidelberg (2013)

2. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy abstrac-
tion with interpolants for arrays. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18
2012. LNCS, vol. 7180, pp. 46–61. Springer, Heidelberg (2012)

3. Bloem, R., Malik, S., Schlaipfer, M., Weissenbacher, G.: Reduction of resolution
refutations and interpolants via subsumption. In: Yahav, E. (ed.) HVC 2014.
LNCS, vol. 8855, pp. 188–203. Springer, Heidelberg (2014)

4. Cabodi, G., Lolacono, C., Vendraminetto, D.: Optimization techniques for Craig
interpolant compaction in unbounded model checking. In: DATE, pp. 1417–1422
(2013)

5. Cabodi, G., Murciano, M., Nocco, S., Quer, S.: Stepping forward with interpolants
in unbounded model checking. In: ICCAD, pp. 772–778 (2006)

6. Cabodi, G., Palena, M., Pasini, P.: Interpolation with guided refinement: revisiting
incrementality in SAT-based unbounded model checking. In: FMCAD, pp. 43–50
(2014)

7. Chockler, H., Ivrii, A., Matsliah, A.: Computing interpolants without proofs. In:
Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS, vol. 7857, pp. 72–85. Springer,
Heidelberg (2013)

8. D’Silva, V.: Propositional interpolation and abstract interpretation. In: Gordon,
A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 185–204. Springer, Heidelberg (2010)

9. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength.
In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–
145. Springer, Heidelberg (2010)

18 L. Alt et al.

10. Fedyukovich, G., Sery, O., Sharygina, N.: eVolCheck: incremental upgrade checker
for C. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 292–307. Springer, Heidelberg (2013)

11. Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Compression of propositional reso-
lution proofs via partial regularization. In: Bjørner, N., Sofronie-Stokkermans, V.
(eds.) CADE 2011. LNCS, vol. 6803, pp. 237–251. Springer, Heidelberg (2011)

12. Janćık, P., Kofron, J., Rollini, S.F., Sharygina, N.: On interpolants and variable
assignments. In: FMCAD, pp. 123–130 (2014)

13. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr. W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

14. McMillan, K.L.: An interpolating theorem prover. In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, pp. 16–30. Springer, Heidelberg (2004)

15. McMillan, K.L.: Lazy annotation revisited. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 243–259. Springer, Heidelberg (2014)

16. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symbolic Logic 62(3), 981–998 (1997)

17. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO:
a framework for producing effective interpolants in SAT-based software verification.
In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol.
8312, pp. 683–693. Springer, Heidelberg (2013)

18. Rollini, S.F., Sery, O., Sharygina, N.: Leveraging interpolant strength in model
checking. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
193–209. Springer, Heidelberg (2012)

19. Rümmer, P., Subotic, P.: Exploring interpolants. In: FMCAD, pp. 69–76 (2013)
20. Sery, O., Fedyukovich, G., Sharygina, N.: FunFrog: bounded model checking with

interpolation-based function summarization. In: Chakraborty, S., Mukund, M.
(eds.) ATVA 2012. LNCS, vol. 7561, pp. 203–207. Springer, Heidelberg (2012)

21. Vizel, Y., Ryvchin, V., Nadel, A.: Efficient generation of small interpolants in
CNF. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 330–346.
Springer, Heidelberg (2013)

Recursive Games for Compositional
Program Synthesis

Tewodros A. Beyene1(B), Swarat Chaudhuri2,
Corneliu Popeea1, and Andrey Rybalchenko3

1 TU München, Munich, Germany
beyene@in.tum.de

2 Rice University, Texas, USA
3 Microsoft Research, Cambridge, UK

Abstract. Compositionality, i.e., the use of procedure summarization
instead of code inlining, is key to scaling automated verification to large
code bases. In this paper, we present a way to exploit compositionality
in the context of program synthesis.

The goal in our synthesis problem is to instantiate missing expres-
sions in a procedural program so that the resulting program satisfies a
safety or termination requirement in spite of an adversarial environment.
The problem is modeled as a game between two players — the program
and the environment — that take turns changing the program’s state and
stack. The objective of the program is to ensure that all executions of this
recursive game satisfy the requirement. Synthesis involves the modular
computation of a strategy under which the program meets this objective.
Our solution is based on the notion of game summaries, which generalize
traditional procedure summaries, and relate program states in a proce-
dural context with sets of states at which the game can return from that
context. Our method for compositional reasoning about game summaries
is embodied in a set of deductive proof rules. We prove these rules sound
and relatively complete. We also show that a sound approximation of
these rules can be automated using a Horn constraint solver that uti-
lizes SMT-solving, counterexample-guided abstraction refinement, and
interpolation. An experimental evaluation over a set of systems code
benchmarks demonstrates the practical promise of the approach.

1 Introduction

The last decade has seen remarkable advances in automated software verifica-
tion [6,39]. An essential lesson from these developments is that to be scalable,
techniques for reasoning about software need to be compositional. In other words,
an analysis for a large program needs to be constructed from analyses for mod-
ules (commonly, procedures) in the program.

Specifically, successful software analysis tools like Slam [6] and Saturn [39]
use procedure summarization [32] to compositionally analyze large systems code
bases. The idea here is to compute, for each procedure p in a program, a sum-
mary: a reachability relation between the input and output states of p. If p calls
c© Springer International Publishing Switzerland 2016
A. Gurfinkel and S.A. Seshia (Eds.): VSTTE 2015, LNCS 9593, pp. 19–39, 2016.
DOI: 10.1007/978-3-319-29613-5 2

20 T.A. Beyene et al.

a procedure q, then the summary of q is used to compute the summary of p.
The approach can handle recursion: if p and q are mutually recursive, then the
relationship between the summaries of p and q is given by a system of recursive
equations. To compute summaries of p and q, we find a fixpoint of this system.

The use of summaries in automated verification of programs is, by now, well-
understood [2,13]. Less is known about the use of summarization in the emerging
setting of automated program synthesis [7,25,34,35]. The goal in synthesis is to
generate missing expressions in a partial program so that a set of requirements
are satisfied. The problem is naturally framed in terms of a graph game [15].
This game involves two players — the program and its environment — who take
turns changing the state and stack of the program. The program wins the game
if all executions of the game satisfy a user-defined requirement, no matter how
the environment behaves. Synthesis amounts to the computation of a strategy
that ensures victory for the program.

There is a large literature, going back to the 1960s, on game-theoretic pro-
gram synthesis [11,30,36]. However, most of these approaches are: (1) restricted
to the synthesis of programs over finite data domains; and (2) do not support
compositional reasoning about procedural programs. While a recent paper [7]
offers a synthesis method that permits programs over unbounded data, it does
not support compositional reasoning. An approach for recursive infinite-state
games — games played on the configuration graphs of programs with recursion
and unbounded data — has remained elusive so far.

In this paper, we present such an approach. The key idea here is a generaliza-
tion of traditional summaries, called game summaries, that allow compositional
reasoning about strategies in the presence of procedures and recursion. Our con-
tributions include a set of sound and complete rules for compositional, deductive
synthesis using game summaries, and a way to automate a sound approximation
to these rules on top of an existing automated deduction system.

Concretely, a game summary sum for a program is a relation that relates
states of the program to sets of states. For a state s and a set of states f , we
have sum(s, f) whenever:

1. s is a reachable state.
2. Suppose the game starts from s in a certain procedural context. Then the

program has a strategy to ensure that in all executions of game, the first
unmatched return state — the state to which the game returns from the
initial context — is in f .

The genereralization to game summaries is called for as the use of tradi-
tional summaries leads to incompleteness in the game setting. Game summaries
were previously explored in branching-time model checking of pushdown sys-
tems [3–5], but their use in synthesis, or for that matter analysis of infinite-state
programs, is new.

Our proof rules for compositional inference of game summaries utilize quan-
tifier alternation: an existential quantifier is used to nondeterministically guess
moves for the program, and a universal quantifier is used to capture the adver-
sarial environment. The quantifiers are second-order because summaries are

Recursive Games for Compositional Program Synthesis 21

higher-order relations relating states to sets. As in the traditional verification set-
ting, a summary sum is propagated across procedure calls and returns through
inductive reasoning. The computation exploits compositionality: to generate the
parts of sum involving states of a procedure q, the rule generates the parts of
the summary that involve procedures that q calls, and adds these summaries to
sum once and for all. Like the corresponding proof rules for verification, the rule
is agnostic to whether the input transition relations encode recursion.

To verify that a safety property p is satisfied in all executions of the game,
we show that for all s, f such that sum(s, f), s satisfies p. A winning strategy for
the program is obtained as an instantiation of the existential quantifiers used
in the deduction. Synthesis with respect to termination requirements necessitates
the additional use of a disjunctively well-founded transition invariant [31].

We show that our rules are sound, meaning that if they derive a strategy,
then the program actually wins under the strategy. They are also relatively
complete, meaning that the rules can always derive a winning strategy when
one exists, assuming a suitably powerful language of assertions over local and
global program variables. Importantly, this completeness proof does not require
an encoding of the stack using auxiliary program variables.

We present an implementation RecSynth of a sound approximation to our
rules on top of an existing automated deduction engine. Specifically, our imple-
mentation RecSynth feeds our proof rules to the EHsf engine for solving con-
straints in the form of Horn-like clauses that permit existential quantification in
clause heads [8]. Solving the repair problem now amounts to finding an interpreta-
tion to unknown sets and relations over program variables. Ehsf performs this
task with some guidance from user-provided templates, and by using a combi-
nation of counterexample-guided abstraction-refinement (CEGAR), interpolation
and SMT-solving.

We evaluate RecSynth on an array of systems programs, including device
driver benchmarks drawn from the SV-COMP software verification competition
[9]. Some of our benchmarks contain up to 11 K lines of C code structured into
up to 181 procedures. For each of these benchmarks, we set up a synthesis prob-
lem by starting with a device driver that satisfies its requirements and eliding
certain expressions from the code. Our tool is now used to find values of these
expressions so that the resulting code satisfies its specification.

The experimental results are promising: in most cases, RecSynth is able to
return successfully within a minute, depending on amount of nondeterminism
to be resolved. The exploitation of compositionality is essential to these results,
as inlining procedures in these examples would lead to programs that are so
large as to be beyond the reach of existing program verifiers, let alone known
repair/synthesis techniques.

Now we summarize the main contributions of the paper:

– We present an approach to the compositional, deductive synthesis of programs
with infinite data domains as well as recursion. The method is based on the
use of the new notion of game summaries. We give a set of sound and complete
proof rules for synthesis using game summaries under safety and termination
requirements.

22 T.A. Beyene et al.

– We offer an implementation (called RecSynth) of a sound but incomplete
approximation of our inference rules on top of the EHsf deduction engine. We
illustrate the promise of the system using an array of challenging benchmarks
running into thousands of lines of code.

2 Motivation

Our program synthesis problem can be viewed as a game [15] between two
players: a program player, whose goal is to satisfy the program’s correctness
requirements, and an environment player, which aims to prevent the program
player from doing so. The two players take turns changing the configuration
(state and stack) of the program. The transitions of the program come from the
user-supplied partial program, with nondeterminism used to capture our lack of
knowledge of certain expressions. The environment’s transitions model inputs
that a hostile outside world feeds to the program. As the game is played on the
configuration graph of a recursive program, we call it a recursive game. Our goal
is to find a winning strategy for the program player, i.e., to reduce the nondeter-
minism in the program’s transitions so that the resulting program satisfies the
requirements no matter what the environment does.

Now we show that the standard notion of summaries, ubiquitous in verifi-
cation of programs with procedures, can be inadequate when solving recursive
games.

We consider the source code in Fig. 1 that describes an interaction between an
environment player that controls all statement except at line P and the program
player that only controls the non-deterministic assignment statement at line P.
The goal of the program player is to find a strategy that resolves the non-
determinism at line P such that regardless of how the environment player resolves
the non-determinism at line E the assertion is always satisfied.

We observe that a standard summary for foo can only relate values of the vari-
ables in scope foo at the start and exit states of its execution. That is, if a triple
(x, y, pc) represents a program state then we obtain the following summary for foo.

sum((x, y, pc), (x′, y′, pc)) = (pc = P ∧ x′ = x ∧ (y′ = 0 ∨ y′ = 1) ∧ pc′ = S)

Fig. 1. Program that exhibits inadequacy of summaries used for verification purposes
for solving games.

Recursive Games for Compositional Program Synthesis 23

Hence, when reasoning about the (existence of) winning strategy for the program
player we lack crucial information about the calling context in which foo is
executed. As a result, the summary for foo cannot distinguish if the top of the
stack stores the value A or C for the program counter of main. That is, when
applying sum((x, y, pc), (x′, y′, pc)) in the calling context with pc = A, we obtain
a state in which y = 0 ∨ y = 1. Hence the subsequent assignment x = 1; leads
to an assertion violation.

In contrast, when applying the notion of game summaries we relate each
entry state of foo with states of main at the return sites A and C. Thus, the game
summary can discriminate between the call site on the branch that executes x =
0; and the call site on the branch with x = 1;. As a result out method is able
to identify a winning strategy for the program player.

3 Preliminaries

In this section, we formally define programs, games, and our synthesis problem.

Procedural Programs. A program consists of a finite set of procedures P , where
main ∈ P is a distinguished main procedure. For simplicity we assume that the
program has no global variables (yet these can be easily added at the expense
of lengthier presentation). Let v be a tuple of local variables that are in scope
of each procedure.

We use an assertion init(v) to describe the initial valuation of the local vari-
ables of main, that is, we assume there is only one such evaluation. We use
step(v, v′) to represent intra-procedural transitions of all program procedures,
i.e., the union of intra-procedural transition relations of all procedures. An asser-
tion call(v, v′) represents argument passing transitions of all call sites, i.e., the
union of argument passing transition relations at all call sites in the program.
The left diagram below shows how the valuation of the program variables in
scope changes during a call transition. For simplicity, we assume that the valu-
ation of global variables can be modified during the argument passing.

For return value passing we use the relation ret(v, v′′, v′) where v represents the
callee state at the exit location, v′′ represents caller’s state at the corresponding
call site, and v′ is result of passing the return value (while keeping caller’s local
variables unchanged) and advancing the caller’s program counter value beyond
the call site. To model the fact that only local states are put on the stack,
we assume that only the local variables of v′′ occur in the return value pass-
ing relation. The right diagram above shows how the valuation of the program
variables in scope changes during a return transition. We assume that an asser-
tion safe(v) represents a set of safe valuations, and thus provides the means for
specifying temporal safety properties.

24 T.A. Beyene et al.

Recursive Games. We model the interaction between the program and its
environment as a recursive game: a game where two players Prog and Env (stand-
ing respectively for the program and the environment) take turns in perform-
ing computation steps1. In this paper, we assume that Env executes call and
return transitions, as well as some of the intra-procedural steps. We capture
two-player games by modifying our definition of programs as follows. We assume
that instead of the monolithic intraprocedural transition relation step(v, v′), we
are given two separate transition relations, prog(v, v′) and env(v, v′), respec-
tively belonging to Prog and Env. Among the intra-procedural steps we assume
a strict alternation between Prog and Env. That is, when considering an intra-
procedural segment of the computation we assume that the first step executed
in the environment, the second step is executed by the program, and so on.

Our partition of computation steps into program and environment steps is
chosen to simplify the presentation in the following sections, however it does
not restrict the applicability of our results. For example, in a similar way we
can model the scenario where the roles of the program and the environment are
exchanged, i.e., the program controls calls and returns while the environment
controls some of the intra-procedural steps.

Strategies and Plays. Let S be a set of valuations of v. We refer to each s ∈ S
as a state. A stack st is a finite sequence of states, i.e., st ∈ S∗. We use “ · ”
for sequence concatenation. We represent the empty stack by ε. A configuration
(s, st) ∈ S × S∗ consists of a state and a stack. A configuration (s, ε) such that
init(s) is called an initial configuration. A configuration that is in the domain
of the program transition relation prog is called a program configuration, oth-
erwise it is an environment configuration. Note that the sets of program and
environment configurations are mutually disjoint.

We define a transition relation next on configurations that takes into account
both program and environment transitions below.

next((s, st), (s′, st ′)) =(prog(s, s′) ∨ env(s, s′)) ∧ st = st ′ ∨
call(s, s′) ∧ st ′ = (s · st) ∨
∃s′′ : ret(s, s′′, s′) ∧ st = (s′′ · st ′)

We define a computation tree as a node-labeled tree that satisfies the follow-
ing conditions. The root is labeled by an initial configuration. Every pair of
parent/child nodes (s, st) and (s′, st ′) is related by next((s, st), (s′, st ′)).

A play π is a sequence of configurations that labels a branch of a computation
tree. We write πi, si and st i to refer to the i-th configuration, the i-th state,
and the i-th stack of the play, respectively. A play is safe if each of its states s
satisfies safe(s).

1 The name recursive game captures the fact that our games are played on the con-
figuration graphs of recursive programs, which can be infinite even when program
variables range over finite data domains.

Recursive Games for Compositional Program Synthesis 25

A safe strategy for Prog (respectively, Env) is a computation tree such that
each node that is labeled by an environment (respectively, program) configura-
tion (s, st) contains the entire set {(s′, st ′) | next((s, st), (s′, st ′))} as its chil-
dren, and each play is safe. A terminating strategy for Prog (respectively, Env)
is defined similarly and requires that each play is finite.

4 Solving Recursive Games

In this section, we present a set of deductive proof rules for synthesizing safe
and terminating strategies for compositional program synthesis. These proof
rules determine whether Prog has a winning strategy by solving implication and
well-foundedness constraints on auxiliary assertions over system variables. The
rules are based on the notion of game summaries, which generalize summaries
used in program verification and analysis and permit compositional reasoning in
the setting of games. Finally, the rules are sound as well as relatively complete.

4.1 Game Summaries

Given a play π, we define a reachability relation �π that connects positions
whose configurations are in the same calling context. Formally, we define

i �π j = (i ≤ j ∧ st i = stj ∧ ∀k : i < k < j → ∃st ′ : st ′ · st i = stk).

For a configuration πi we define the set of first unmatched returns (FUR) as the
set of configurations that are obtained by following the return transition out the
πi’s calling context. Formally, we obtain the following set.

{π′
j+1 | ∃π′ : π1 = π′

1 ∧ . . . ∧ πi = π′
i ∧ i �π′ j ∧ ∃s : stj = s · stj+1}

In the set comprehension above, we ensure that π′
j+1 is the FUR configuration by

asking for a play π′ that overlaps with π until the position i, connects π′
j+1 with

πi within the same calling context, and actually results from a return transition.
A game summary relates states with (over-approximations of) sets of states

occuring in their FUR configurations.

4.2 Safe Strategies

We consider a synthesis problem where Prog has a winning strategy if only states
from safe(v) are visited by all plays.

We present the corresponding proof rule in Figure 2. The proof rule relies
on a game summary sum. We connect the game summary with the reachable
states by resorting to reasoning by induction on the number of steps required
to reach a state from its entry state. S1 requires that for any initial state s0 of
the program, i.e., init(s0), we have sum(s0, ∅). S2 represent the induction step
for intra-procedural steps. Let us assume a state s1 is given together with a set
of states R1 such that sum(s1, R1). We require that for every state s2 satisfying

26 T.A. Beyene et al.

env(s1, s2) there exists a set of states R2 such that sum(s2, R2) and R1 ⊇ R2,
and there exist a state s3 such that prog(s2, s3). We also require that there exists
a set of states R3 such that sum(s3, R3) and R2 ⊇ R3. Let us assume a state s1
is given together with a set of states R1 such that sum(s1, R1). For any state s2
such that call(s1, s2), S3 requires that there exists a set of states R2 such that
sum(s2, R2). S4 represent the induction step for a call step. Given states s1 and
s2 together with sets of states R1 and R2, let us assume call(s1, s2), sum(s1, R1)
and sum(s2, R2). For any s3 ∈ R2, we require that there exists a set of states R3

such that sum(s3, R3) and R1 ⊇ R3. S1 and S3 ensure that sum(v,X) is defined
at entry states of the program and each procedural level. S2 and S4 ensure that
the set of states associated with each reachable state shrinks while traversing
on the same procedural level. S5 represent the induction step for a return step.
Given the states s1 and s2 and a set of states R1 such that sum(s1, R1) and
ret(s1, s2), we require that s2 is in R1. Since the winning condition requires all
states to satisfy safe(v), each state s such that sum(s,R) needs to satisfy safe(s).
This condition is enforced by S6.

Example 1. We show how the safety proof rule can be applied using the example
in Fig. 1.

Since the inital state of main is (E,−1,−1), by S1 we have
sum((E,−1,−1), ∅). Assuming Env decides to move from E to A, we apply S2
to derive sum((A,−1,−1), ∅). To strictly adhere with the alternation of players,
we assume that Prog does a skip. From pc = A, Env makes a call to foo and the
program control will go to the state (P,−1,−1). S3 ensures that there exists a
set of states R1 such that sum((P,−1,−1), R1). From sum((P,−1,−1), R1), let
Env make a skip and let Prog move to R thereby reaching the state (R,−1,−1).
S3 ensures that there exists a set of states R2 such that sum((R,−1,−1), R2)
and R1 ⊇ R2. From sum((R,−1,−1), R2), let once again Env make a skip
and let Prog move to S by updating value of y to 1 thereby reaching the
state (S,−1, 1). S3 ensures that there exists a set of states R3 such that
sum((S,−1, 1), R3) and R2 ⊇ R3. The return step from (S,−1, 1) in foo to
(B,−1, 1) in main together with S5 ensures that (B,−1, 1) is in R3 and by tran-
sitivity in R2 and R1. From sum((E,−1,−1), ∅), call((E,−1,−1), (P,−1,−1)),
and sum((P,−1,−1), {(B,−1, 1)}), S4 ensures that there exists R4 such that
sum((B,−1, 1), R4). Continuing in a similar way from sum((B,−1, 1), R4) by
applying S2, we reach a state (F, 0, 1) which violates the assertion.

However, from sum((P,−1,−1), R1), if Env makes a skip and Prog moves to
Q instead R, the assertion will be eventually satisfied. If Env decides to move from
E to B (instead of E to A), Prog needs to move to R instead Q for the assertion
to be satisfied. Therefore, the safe strategy for Prog should use information on
the top of the stack to know if it should move to Q or R from P. For example,
replacing prog nondet() by pc = A provides a winning strategy for Prog.

Theorem 1 (Correctness of Rule RuleSafe). The proof rule RuleSafe is
sound and relatively complete. �

Recursive Games for Compositional Program Synthesis 27

Find sum such that:

S1: init(v) → sum(v, ∅)

S2: sum(v1, X1) ∧ env(v1, v2) → ∃X2 : sum(v2, X2) ∧ X1 ⊇ X2 ∧
∃v3 : prog(v2, v3) ∧ ∃X3 : sum(v3, X3) ∧ X2 ⊇ X3

S3: sum(v1, X1) ∧ call(v1, v2) → ∃X2 : sum(v2, X2)

S4: sum(v1, X1) ∧ call(v1, v2) ∧ sum(v2, X2) ∧ X2(v3) → ∃X3 : sum(v3, X3) ∧ X1 ⊇ X3

S5: sum(v1, X) ∧ ret(v1, v2) → X(v2)

S6: sum(v,X) → safe(v)

Fig. 2. Proof rule RuleSafe for synthesis with respect to a safety requirement given
by assertion safe(v).

A complete proof of the theorem is given below. But first, we define the
following auxilary predicate S that imposes a certain totality and monotonicity
condition on game summaries. When considering a pair of configurations in the
same calling context, the game summary sum needs to provide corresponding
state sets and these state sets need to be non-increasing.

S(π, i, j) = i �π j → ∃Ri∃Rj : sum(si, Ri) ∧ sum(sj , Rj) ∧ Ri ⊇ Rj)

We extend the predicate to range over a prefix of a play as follows.

H(π, k) = (∀i∀j : 0 ≤ i ≤ j ≤ k → S(π, i, j))

The following lemma is crucial for proving the soundness of the proof rule for
proving the existence of safe strategies.

Lemma 1. For each play π and each of its positions k we have H(π, k).

Proof. Let π be a play and k be a position in this play. We prove the lemma by
induction over k.

First, we consider the base case k = 0. Since init(s0), from S1 follows
S(π, 0, 0) via R0 = R0 = ∅.

For the induction step we assume H(π, k) and prove H(π, k + 1). After
expanding definitions of H the proof goal is ∀i∀j : 0 ≤ i ≤ j ≤ k+1 → S(π, i, j).
For i and j such that 0 ≤ i ≤ j ≤ k we obtain S(π, i, j) from H(π, k) directly.
In the rest of this proof we consider the case 0 ≤ i ≤ j = k + 1, i.e., our proof
goal becomes

∃Ri∃Rk+1 : sum(si, Ri) ∧ sum(sk+1, Rk+1) ∧ Ri ⊇ Rk+1

for arbitrary 0 ≤ i ≤ k + 1 such that i �π k + 1. We proceed by performing a
case destinction on how πk transitions to πk+1.

In case env(sk, sk+1) we rely on the induction hypothesis to obtain Ri and
Rk such that sum(si, Ri), sum(sk, Rk), and Ri ⊇ Rk. The consequence of S2
yields Rk+1 such that sum(sk+1, Rk+1) and Rk ⊇ Rk+1, which together with
Ri ⊇ Rk proves our goal.

28 T.A. Beyene et al.

For prog(sk, sk+1) we first consider that env(sk−1, sk) since the program step
is always preceded by an environment step, so we have k − 1 ≥ 0. From the
induction hypothesis we obtain corresponding Ri ⊇ Rk−1. Thus, the premise
of S2 holds, as sum(sk−1, Rk−1) ∧ env(sk−1, sk). Hence there exists Rk such
that sum(sk, Rk) and Rk−1 ⊇ Rk, as well as there exists Rk+1 such that
sum(sk+1, Rk+1) and Rk ⊇ Rk+1. Hence, we meet our proof goal.

If call(sk, sk+1) then i = k + 1 since πk+1 is an entry configuration. Hence
from S(π, k, k) and S3 we directly prove our goal.

With ret(sk, sk+1) we first observe that there is a call configuration πc and
an entry configuration πe such that call(πc, πe). This call yields the exit con-
figuration πk and the return configuration πk+1. Since c �π k + 1 we have
i �π c. From the induction hypothesis we obtain corresponding Ri and Rc such
that Ri ⊇ Rc. Similarly, from e �π k we obtain corresponding Re ⊇ Rk. For
S5 we obtain the premise sum(sk, Rk) ∧ ret(sk, sk+1), and hence Rk(sk+1). By
transitivity, we have Re(sk+1). We instantiate the premise of S4 as follows.

sum(sc, Rc) ∧ call(sc, se) ∧ sum(se, Re) ∧ Re(sk+1)

As a consequence we get Rk+1 such that sum(sk+1, Rk+1) and Rc ⊇ Rk+1.
Hence, we have Ri ⊇ Rk+1, which proves the goal. �

Coming back to RuleSafe, we split the correctness proof into two parts:
soundness and relative completeness.

Soundness. If there exists sum that satisfies premises of RuleSafe then the
program has a strategy to win the safety game.

Proof. For a proof by contradiction we assume that sum satisfies the premises
of RuleSafe and the program does not have a safe strategy. Hence, there exists
a strategy for the environment in which every play eventually violates the safety
condition. Let us take one such play π and its position p in which the safety
condition is violated. By Lemma 1 for the position p we obtain Rp such that
sum(sp, Rp). Hence from S6 follows safe(sp), which is a contradiction to our
assumption that sum satisfies the premises of RuleSafe. �

Relative Completeness. If the program has a strategy to win the safety game
then there exists sum that satisfies premises of RuleSafe.

Proof. Let us assume that Prog has a safe strategy, i.e., the conclusion of Rule-

Safe holds. This strategy σ alternates between universal choices of Env and
existential choices of Prog. We prove the completeness claim by showing how
to construct sum satisfying the premises of the rule. Let sum(s,R) holds for
each state s that occurs in a configuration (s, st) of some play where R is the
corresponding set of first unmatched return states.

Since the initial state, say s, occurs in the strategy, sum(s,R) is defined such
that R = ∅ and hence S1 is satisfied.

Recursive Games for Compositional Program Synthesis 29

Now we consider an arbitrary pair (s0, R0) such that sum(s0, R0). The strat-
egy guarantees that for every successor s1 of s0 wrt. Env there exists a succes-
sor s2 wrt. Prog. For every such s2, there exists a set of FURs R2 such that
sum(s2, R2) since s2 is an Env state. In addition, R2 ⊆ R0 since the set of FURs
may only shrink across intra-procedural steps. i.e., sum satisfies S2.

Let us take an arbitrary pair (s0, R0) such that sum(s0, R0), and a state s1
such that call(s0, s1). For the set of FURs R1 of s1, we have sum(s1, R1) since
s1 is an Env state. This shows sum(v,R) satisfies S3.

Next, let us assume that for arbitrary states s0 and s1, we have sum(s0, R0)
and sum(s1, R1), and call(s0, s1). It follows that for any s2 ∈ R1 and a set of its
FURs R2, sum(s2, R2) holds since s2 is an Env state. In addition, since s2 is in
the same procedural level as s0, R2 ⊆ R0, i.e. S4 is satisfied.

Now let us assume that for arbitrary states s0 and s1, we have ret(s0, s1) and
sum(s0, R0). By definition of FURs, we see that s1 should be in R0, satisfying S5.

Finally, for all pairs (s,R) such that sum(s,R), we have safe(s) since we
consider a safe strategy. Therefore, sum also satisfies S6. �

5 Terminating Strategies

Let us now consider a synthesis problem where Prog has a winning strategy if a
state from which no further move can be made is eventually reached by each play.
Reasoning about such eventuality properties demands the use of well-founded
orders.

We connect the invariant assertion with the reachable states by resorting to
reasoning by induction on the number of steps required to reach a state from its
entry state.

T1 requires that for any initial state s0 of the program, sum(s0, s0, ∅). T2
represent the induction step for intra-procedural steps. Let us assume a state
s1 is given together with its entry state s0 and a set of states R1 such that
sum(s0, s1, R1). We require that for every state s2 satisfying env(s1, s2) there
exists a set of states R2 such that sum(s0, s2, R2) and R1 ⊇ R2, and there
exist a state s3 such that prog(s2, s3). We also require that there exists a set of
states R3 such that sum(s0, s3, R3) and R2 ⊇ R3. We also require that (s1, s3)
is in round . Assume for a state s1, sum(s0, s1, R1) is given. For any state s2
such that call(s1, s2), T3 requires that there exists a set of states R2 such that
sum(s2, s2, R2). T4 represent the induction step for a call step. Given states
s1 and s2 together with sets of states R1 and R2, let us assume call(s1, s2),
sum(s0, s1, R1) and sum(s2, s2, R2). For any s3 ∈ R2, we require that there
exists a set of states R3 such that sum(s0, s3, R3) and R1 ⊇ R3. We also require
that (s1, s3) is in round . T1 and T3 ensure that sum is defined at entry states
of the program and each procedural level. T2 and T4 ensure that the set of
states associated with each reachable state shrinks while traversing on the same
procedural level. T5 represent the induction step for a return step. For a return
step (s1, s2) such that sum(s0, s1, R1), we require that s2 is in R1. To ensure
that the game progresses when aiming at termination, we keep track of pairs

30 T.A. Beyene et al.

of states across every call site in descent . This is done in T3. Finally, to ensure
termination by each play we require that both descent and round represent a
well-founded relation. Thus, it is impossible to return to sum infinitely many
times. This is captured by T6 and T7 (Fig. 3).

Find sum, round , and descent such that:

T1: init(v) → sum(v, v, ∅)

T2: sum(v1, v2, R1) ∧ env(v2, v3) → ∃R2 : sum(v1, v3, R2) ∧ R1 ⊇ R2

∧ ∃v4 : prog(v3, v4) ∧ round(v2, v4)

∧ ∃R3 : sum(v1, v4, R3) ∧ R3 ⊇ R2

T3: sum(v1, v2, R1) ∧ call(v2, v3) → ∃R2 : sum(v3, v3, R2) ∧ descent(v1, v3)

T4: sum(v1, v2, R1) ∧ call(v2, v3)

∧ sum(v3, v3, R2) ∧ R2(v4) → ∃R3 : sum(v1, v4, R3) ∧ R1 ⊇ R3 ∧ round(v2, v4)

T5: sum(v1, v2, R) ∧ ret(v2, v3) → R(v3)

T6: well -founded(round)

T7: well -founded(descent)

Fig. 3. Proof rule RuleTerm for synthesis with respect to the termination
requirement.

Theorem 2 (Correctness of Rule RuleTerm). The proof rule RuleTerm

is sound and relatively complete. �

The complete proof of the theorem can be found in the appendix section.

6 Evaluation

In this section we describe an experimental evaluation of our compositional syn-
thesis approach on infinite-state programs. The evaluation relies on a solver of
Horn clauses with alternating quantification, so we first describe this class of
clauses.

Implementation. Our prototype implementation RecSynth is based on two
modules. The first module is a C frontend, derived from the CIL library [28], that
transforms C code into verification conditions represented as Horn clauses. This
transformation is based on a sound approximation of our proof rules. The second
module of RecSynth is a solver for Horn clauses that is based on predicate
abstraction and counterexample guided abstraction refinement [8]. The Horn

Recursive Games for Compositional Program Synthesis 31

clause solver Ehsf is implemented in SICStus Prolog and uses the CLP(Q)

solver for handling linear constraints [22] and the Z3 solver [14] for handling
non-linear constraints.

We skip the syntax and semantics of the clauses targeted by this system —
see [8] for more details. Instead, we illustrate these clauses with the following
example:

x ≥ 0 → ∃y : x ≥ y ∧ rank(x, y), rank(x, y) → ti(x, y),
ti(x, y) ∧ rank(y, z) → ti(x, z), dwf (ti).

These clauses represent an assertion over the interpretation of “query sym-
bols” rank and ti (the second order predicate dwf represents disjunctive well-
foundedness [31], and is not a query symbol). The semantics of these clauses
maps each predicate symbol occurring in them into a constraint over v. Specif-
ically, the above set of clauses has a solution that maps both rank(x, y) and
ti(x, y) to the constraint (x ≥ 0 ∧ y ≤ x − 1).

Ehsf resolves clauses like the above using a CEGAR scheme to discover
witnesses for existentially quantified variables. The refinement loop collects a
global constraint that declaratively determines which witnesses can be chosen.
The chosen witnesses are used to replace existential quantification, and then the
resulting universally quantified clauses are passed to a solver over decidable the-
ories, e.g., HSF [16] or μZ [21]. Such a solver either finds a solution, i.e., a model
for uninterpreted relations constrained by the clauses, or returns a counterex-
ample, which is a resolution tree (or DAG) representing a contradiction. Ehsf
turns the counterexample into an additional constraint on the set of witness
candidates, and continues with the next iteration of the refinement loop.

For the existential clause above, Ehsf introduces a witness/skolem relation
sk over variables x and y, i.e., x ≥ 0∧ sk(x, y) → x ≥ y ∧ rank(x, y). In addition,
since for each x such that x ≥ 0 holds we need a value y, we require that
such x is in the domain of the Skolem relation using an additional clause x ≥
0 → ∃y : sk(x, y). In the Ehsf approach, the search space of a skolem relation
sk(x, y) is restricted by a template function Templ(sk)(x, y). To conclude this
example, we note that one possible solution returned by Ehsf is the skolem
relation sk(x, y) = (y = x − 1).

Benchmarks. For evaluation, we used benchmarks from the repository of the
SV-COMP verification competition [9]. We selected 10 driver files from the direc-
tories ntdrivers and ntdrivers-simplified with sizes ranging between 576
and 11 K lines of code. Each benchmark contains assertions that correspond
to safety specifications. Due to their complexity and size, these driver bench-
marks have been considered a litmus test for verification tools during the last
decade [1,10,20].

For each benchmark file, our experiments consist of 3 conceptual steps:
(1) We mark a C expression in the input file where non-determinism is to
be resolved. (We call the code region that contains this expression a hole.)
(2) We use the frontend to generate a program representation in Horn clause

32 T.A. Beyene et al.

form. (3) We solve the Horn clauses using Ehsf and the solution returned by
Ehsf corresponds to synthesised-code to fill the hole in the code. If Ehsf suc-
ceeds in finding a solution for the Horn clauses, our approach guarantees that
the device driver code with the hole replaced by the Ehsf’s solution satisfies the
safety specification present in the original benchmark.

First, we describe in detail the SV-COMP example kbfiltr simpl1, however
in an abridged form due to space reasons. Similar to other C benchmark files,
kbfiltr simpl1 contains code corresponding to the driver and the test harness.

Fig. 4. Part of function IofCallDriver.

See Fig. 4 for the function IofCallDriver, a function that is invoked repeat-
edly on many execution paths of the driver. This function has two arguments
and some of the variables accessed in its body have global scope, i.e., the vari-
ables s, IPC, lowerDriverReturn, MPR1, MPR3, NP, SKIP1 and SKIP2. The safety
requirement is instrumented in the code using a finite-state automaton represen-
tation, where the variable s corresponds to the current state of the automaton.
The variable s is assigned integer values corresponding to different states of
the automaton, i.e., UNLOADED = 0, NP = 1, DC = 2, SKIP1 = 3, SKIP2 = 4,

Recursive Games for Compositional Program Synthesis 33

MPR1 = 5, MPR3 = 6 and IPC = 7. The file contains 10 assertions, including the
assertion shown on line 472. For our experiment, we marked the code region from
line 456 as non-deterministic. (The original SV-COMP benchmark file contained
the conditional test s==NP on line 456.)

For applying RecSynth we provide a template corresponding to the hole
expression that reflects the choice of automaton states

Templ(sk)(v) =
(?UNLOADED ∗ UNLOADED + ?NP ∗ NP + ?DC ∗ DC + ?SKIP1 ∗ SKIP1

+?SKIP2 ∗ SKIP2 + ?MPR1 ∗ MPR1 + ?MPR3 ∗ MPR3 + ?IPC ∗ IPC = s)

together with a template constraint

0 ≤ ?UNLOADED ≤ 1 ∧ 0 ≤ ?NP ≤ 1 ∧ 0 ≤ ?DC ≤ 1 ∧ 0 ≤ ?SKIP1 ≤ 1
∧ 0 ≤ ?SKIP2 ≤ 1 ∧ 0 ≤ ?MPR1 ≤ 1 ∧ 0 ≤ ?MPR3 ≤ 1 ∧ 0 ≤ ?IPC ≤ 1
∧ ?UNLOADED + ?NP + ?DC + ?SKIP1 + ?SKIP2 + ?MPR1 + ?MPR3 + ?IPC = 1

that reflects a comparison with an automaton state and excludes arithmetic
operations on them.

The task of Ehsf is to find suitable values for the template parameters,
i.e., the unknown coefficients ?UNLOADED, ?NP, ?DC, ?SKIP1, ?SKIP2, ?MPR1, ?MPR3, and
?IPC, and thus determine the hole expression. RecSynth returns in 1 s with the
solution NP = s.

Results. For our experiments we used a computer with an Intel Core i7 2.3
GHz CPU and 16 GB of RAM. See Table 1 for our experimental results. For
each of the 10 SV-COMP benchmark files, we list the benchmark name and
three synthesis scenarios named after a function where the synthesis region is
located (Column 1). We also report the size of the file (Column 2) and results
of running RecSynth (Column 4,5,6). For each file we also report verification
results using the complete driver code. For example, the result from the first row
of the benchmark parport indicates that verifying the driver code succeeds after
19s. (The benchmark indeed satisfies its safety specification.) For the three code
regions, IofCalldriver, PptDispatch, and KeSetEvent, our tool synthesises a
solutions after 26s, 27s, and 33s, respectively.

In all cases, RecSynth is able to succeed within 2-3 times overhead com-
pared to the verification time. We inspected the synthesized expressions and
observed that in most cases we obtain the original expressions that was erased
when constructing the benchmark. In the remaining cases the synthesized expres-
sions were logically equivalent to the original expressions.

Overall, our results indicate the feasibility of our synthesis approach across
a range of different drivers and code regions to synthesize.

34 T.A. Beyene et al.

Table 1. Application of RecSynth on 10 drivers.

Benchmark LOC Time (sec) Steps Benchmark LOC Time (sec) Steps

Total SMT Total SMT

kbfiltr simpl1 576 0.9 cdaudio simpl1 2124 8.1

IofCallDriver 1.1 0.5 3 IofCallDriver 11.7 3.7 13

StubDriverInit 1.4 0.6 12 HPCdrDevice 11.9 3.9 12

KbFilterPnP 1.3 0.5 4 KeSetEvent 12.9 4.1 16

kbfiltr simpl2 1001 1.2 diskperf 4462 3.2

IofCallDriver 1.9 0.9 3 IofCallDriver 3.6 0.9 10

StubDriverInit 2.1 0.6 12 FwdIrpSync 4.4 1.2 14

KbFilterPnP 1.9 0.5 4 KeSetEvent 4.2 1.1 14

diskperf simpl1 1095 2.7 floppy 8285 6.3

IofCallDriver 3.6 1.5 8 IofCallDriver 7.8 2.8 11

FwdIrpSync 3.9 1.2 12 FloppyPnp 7.7 2.9 11

KeSetEvent 3.6 1.1 11 KeSetEvent 9.2 3.1 16

floppy simpl3 1123 3.8 cdaudio 8827 11.3

IofCallDriver 3.3 0.9 1 IofCallDriver 14.2 4.1 22

FloppyPnp 3.4 1.0 1 HPCdrDevice 10.9 3.4 19

KeSetEvent 4.1 1.4 6 KeSetEvent 11.6 4.3 24

floppy simpl4 1598 5.6 parport 10934 13.5

IofCallDriver 6.7 1.2 1 IofCallDriver 17.7 4.2 14

FloppyPnp 6.8 1.3 1 PptDispatch 18.7 3.8 13

KeSetEvent 7.5 1.9 6 KeSetEvent 22.1 4.4 18

7 Related Work

The last few years have seen much work on constraint-based software synthe-
sis [25,34,35,37]. Like our paper, these approaches advocate synthesis from partial
programs, and leverage modern SMT-solving and invariant generation techniques.
However, most of these approaches are not compositional. Exceptions include work
on component-based synthesis, where programs are synthesized by composing rou-
tines from a software library in an example-driven way [23], and modular sketch-
ing [33]. The former work is restricted to the synthesis of loop-free programs. The
latter work allows the use of summaries for library functions called from a pro-
cedure with missing expressions, but requires that the library procedures do not
contain unknown expressions themselves. In contrast, our approach synthesizes
programs with procedures that call each other in arbitrary ways.

There is a rich literature on synthesis and repair of finite-state reactive
systems based on game-theoretic techniques [11,24,27,30,36], using both
explicit-state [36] and symbolic [29] approaches. Also well-known are algorithms
for pushdown games [12,38], which can be expanded into synthesis algorithms
for reactive programs with procedures and finite-domain variables [17]. Synthe-
sis of finite-state reactive systems from components has also been studied [26].

Recursive Games for Compositional Program Synthesis 35

The elemental distinction between these approaches and ours is that our pro-
grams can handle data from infinite domains.

Game summaries have previously been explored in the context of branching-
time model checking of pushdown systems [3–5]. Pushdown systems can be
viewed as recursive programs over finite data domains. Branching-time model
checking of pushdown systems is a computationally hard problem — Exptime-
complete in the size of the pushdown system. This is why the traditional defin-
ition of summaries, which gives an algorithm that is polynomial in the system
size, does not suffice here. [3,5] give an algorithm for this problem based on
game summaries. However, this algorithm relies on the fact that pushdown sys-
tems have a finite number of control states and stack symbols, and assumes an
explicit, rather than symbolic, representation of summaries. Two keys contribu-
tion of our work are an extension of the idea of game summaries to a setting
with infinite data domains, and its application in synthesis.

8 Conclusion

We have presented a constraint based approach to computing winning strategies
in infinite-state games. The approach consists of: (1) a set of sound and relatively
complete proof rules for solving such games, and (2) automation of the rules on
top of an existing automated deduction engine. We demonstrate the practical
promise of our approach through several case studies using examples derived
from prior work on program repair and synthesis.

Many avenues for future work remain open. The system we have presented
is a prototype. Much more remains to be done on engineering it for greater
scalability. In particular, we are especially interested in applying the system to
reactive synthesis questions arising out of embedded systems and robotics. On
the theoretical end, exploring opportunities of synergy between our approach
and abstraction-based [18,19] and automata-theoretic approaches to games [36]
remains a fascinating open question.

A Correctness Proofs for RuleTerm

Proof. We split the proof into two parts: soundness and relative completeness.

Soundness. We prove the soundness by contradiction.
Assume that there exist an assertions sum(v1, v2, R), round(v1, v2) and

descent(v1, v2) that satisfy the premises of the rule, yet the conclusion of the
rule does not hold. That is, there is no winning strategy for Prog.

Hence, there exists a strategy σ for Env in which each play does not termi-
nates. This strategy σ alternates between existential choices of Env and universal
choices of Prog. Let aux (v) be a set of states for which σ provides existentially
chosen successors wrt. Prog. Note that no play terminates from any s ∈ aux (v)
since no play determined by σ terminates.

36 T.A. Beyene et al.

We derive a contradiction by relying on a certain play π that is determined
by σ. The play π is constructed iteratively. We start from some root state s0 of
σ, which satisfies the initial condition init(v). Note that sum(s0, s0, R0), due to
T1, and aux (s0) due to σ.

Each iteration round extends the matched play s0..s obtained so far in three
ways:

– by two states, say s1 and s2 where env(s, s1) and prog(s1, s2),
– by a state, say s1 where call(s, s1), or
– by a sequence of states s1..s2 where we have call(s, s1), sum(s1, R1), and s1..s2

is a play from s1 to one of its FURs s2 ∈ R1.

We maintain a condition that for the last state s of each such play,
sum(s0, s, R) and aux (s) where s0 = entry(s), i.e., s0 is the entry state of the
calling context of s.

Let s be the last state of the play π constructed so far, and s0 = entry(s).
Due to our condition, we have sum(s0, s, R) and aux (s). We iteratively construct
a play π taking one of the following steps at a time:

– σ determines a successor state s1 such that env(s, s1), and T2 guarantees that
there exists a state s2 such that prog(s1, s2), round(s, s2), and sum(s0, s2, R2)
such that R2 ⊆ R. The play is extended by s1, s2. Furthermore, aux (s2) due
to G.

– σ determines a successor state s1 such that call(s, s1), and T3 guarantees
that there exists a set of FURs R1 of s1 such that sum(s1, s1, R1), and also
descent(s0, s1). The play is extended by s1. Furthermore, aux (s1) due to σ.

– σ determines a sequence of successor state s1 such that call(s, s1), where
sum(s1, s1, R1) is given together with some s2 ∈ R1. Here, T4 guarantees
that there exists a set of FURs R2 for s2 such that sum(s0, s2, R2) where
R2 ⊆ R, and also round(s, s2). The play is extended by s1..s2. Furthermore,
aux (s2) due to σ.

By iteratively constructing π following the above steps, we obtain a play that
satisfies the strategy σ. Hence, one of the following follows:

– there exists an infinite sequence of Env states at some procedural level if the
infinite play is due to infinite intra-procedural steps by Env which contradicts
with T6.

– there exists an infinite sequence of entry states if the infinite play is due to
infinite call steps by Env which contradicts with T7

Relative Completeness. Let us assume that Prog has a winning strategy, say σ.
We show how to construct sum(v1, v2, R), round(v1, v2) and descent(v1, v2) satis-
fying the premises of the rule by taking an arbitrary play π determined by σ.

Let sum(v1, v2, R) be the set of all triplets (s0, s, R) such that s is a state
inπ for which σ provides a universally chosen successor w.r.t. Env, s0 = entry(s),
and R is the set of FURs in σ starting at s. Let round(v1, v2) be the set of all
pairs of states (s1, s2) such that s1 and s2 are consecutive Env states on the same

Recursive Games for Compositional Program Synthesis 37

procedural level. Let descent(v1, v2) be the set of all pairs of states (s1, s2) such
that s1 and s2 are entry states of two consecutive procedural levels.

Since an initial state is an Env state, sum(v1, v2, R) is defined for any initial
state, satisfying T1.

Let us take an arbitrary summary sum(s0, s1, R1). σ guarantees that for
every successor s2 of s1 wrt. Env there exists a successor s3 wrt. Prog. For every
such s3, sum(s0, s3, R3). Since the set of FURs may only shrink across intra-
procedural steps, R3 ⊆ R1. In addition, we have round(s1, s3) since s1 and s3
are consecutive Env states on the same procedural level, i.e. sum(v1, v2, R) and
round(v1, v2) satisfy T2.

For an arbitrary Env state s1 with sum(s0, s1, R1) and a state s2 such
that call(s1, s2), we get sum(s2, s2, R2) since s2 is an Env state. Since s0
and s2 are entry states to the caller and callee context respectively, we have
descent(s0, s2),i.e. T3 is satisfied.

Let us consider a pair of states s1 and s2 such that sum(s0, s1, R1),
sum(s2, s2, R2), and call(s1, s2). For any s3 ∈ R2, we have sum(s0, s3, R3) since
s3 is an Env state by definition of FURs, and s0 is in the same procedural level
with all states in R1 including s2. It follows that any FUR of s2 is also FUR
of s0 implying R2 ⊆ R0. In addition, we have round(s1, s3) since s1 and s3 are
consecutive Env states on the same procedural level, i.e. T4 is satisfied.

Now let us consider a state s1 such that sum(s0, s1, R1) for s0 = entry(s1)
and ret(s1, s2) for some state s2. By definition of FURs, we see that s2 is in R1,
satisfying T5.

Now we show by contradiction that round(v1, v2) is well-founded. Assume
otherwise, i.e., there exists an infinite sequence of states s1, s2, ... induced by
round(v1, v2) and Prog still terminates. As noted previously, for each pair of
consecutive Env states si and si+1 there exists an intermediate sequence of
state s′

i...s
′′
i such that the sequence s1, s

′
1, .., s

′′
1 , s2, ..., si, s

′
i, .., s

′′
i , si+1, ... is a play.

Since this play does not terminate, we obtain a contradiction to the assumption.
Hence, we conclude that round(v1, v2) is well-founded, satisfying T6.

Similarly, we show by contradiction that descent(u, v) is well-founded, satis-
fying T7. �

References

1. Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: UFO: a framework for
abstraction- and interpolation-based software verification. In: CAV (2012)

2. Alur, R., Chaudhuri, S.: Temporal reasoning for procedural programs. In: Barthe, G.,
Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 45–60. Springer,
Heidelberg (2010)

3. Alur, R., Chaudhuri, S., Madhusudan, P.: A fixpoint calculus for local and global
program flows. In: POPL, pp. 153–165 (2006)

4. Alur, R., Chaudhuri, S., Madhusudan, P.: Languages of nested trees. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 329–342. Springer, Heidelberg
(2006)

38 T.A. Beyene et al.

5. Alur, R., Chaudhuri, S., Madhusudan, P.: Software model checking using languages
of nested trees. ACM Trans. Program. Lang. Syst. 33(5), 15 (2011)

6. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: POPL (2002)

7. Beyene, T.A., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based
approach to solving games on infinite graphs. In: POPL (2014)

8. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified horn
clauses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 869–882.
Springer, Heidelberg (2013)

9. Beyer, D.: Second competition on software verification. In: Piterman, N.,
Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 594–609.
Springer, Heidelberg (2013)

10. Beyer, D., Keremoglu, M.E.: CPACHECKER: a tool for configurable software ver-
ification. In: CAV (2011)

11. Büchi, J.R., Landweber, L.: Solving sequential conditions by finite-state strategies.
Trans. Amer. Math. Soc. 138, 295–311 (1969)

12. Cachat, T.: Symbolic strategy synthesis for games on pushdown graphs. In:
Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo,
R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 704–715. Springer, Heidelberg (2002)

13. Cook, B., Podelski, A., Rybalchenko, A.: Summarization for termination: no
return!. Formal Methods Syst. Design 35(3), 369–387 (2009)

14. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

15. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

16. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI (2012)

17. Griesmayer, A., Bloem, R., Cook, B.: Repair of boolean programs with an applica-
tion to C. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 358–371.
Springer, Heidelberg (2006)

18. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: Don’t Know in the µ-Calculus.
In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 233–249. Springer,
Heidelberg (2005)

19. Gurfinkel, A., Chechik, M.: Why waste a perfectly good abstraction? In: Hermanns,
H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 212–226. Springer,
Heidelberg (2006)

20. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL (2004)

21. Hoder, K., Bjørner, N., de Moura, L.: µZ– an efficient engine for fixed points with
constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 457–462. Springer, Heidelberg (2011)

22. Holzbaur, C.: OFAI clp(q, r) Manual, 1.3.3(edn.). Austrian Research Institute for
Artificial Intelligence, Vienna, TR-95-09 (1995)

23. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based
program synthesis. In: ICSE (2010)

24. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer,
Heidelberg (2005)

25. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Complete functional synthesis. In:
PLDI (2010)

Recursive Games for Compositional Program Synthesis 39

26. Lustig, Y., Vardi, M.Y.: Synthesis from component libraries. STTT 15(5–6),
603–618 (2013)

27. Madhusudan, P.: Synthesizing reactive programs. In: CSL, pp. 428–442 (2011)
28. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language

and tools for analysis and transformation of C programs. In: CC (2002)
29. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,

E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2006)

30. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL,
pp. 179–190. ACM (1989)

31. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS (2004)
32. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:

Program Flow Analysis: Theory and Applications, pp. 189–234 (1981)
33. Singh, R., Singh, R., Xu, Z., Krosnick, R., Solar-Lezama, A.: Modular synthesis of

sketches using models. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS,
vol. 8318, pp. 395–414. Springer, Heidelberg (2014)

34. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs. In: ASPLOS, pp. 404–415 (2006)

35. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program
synthesis. In: POPL, pp. 313–326 (2010)

36. Thomas, W.: On the synthesis of strategies in infinite games. In: STACS, pp. 1–13
(1995)

37. Vechev, M.T., Yahav, E., Yorsh, G.: Abstraction-guided synthesis of synchroniza-
tion. In: POPL (2010)

38. Walukiewicz, I.: Pushdown processes: games and model-checking. Inf. Comput.
164(2), 234–263 (2001)

39. Xie, Y., Aiken, A.: SATURN: A scalable framework for error detection using
boolean satisfiability. ACM TOPLAS, 29(3) (2007)

Testing the IPC Protocol for a Real-Time
Operating System

Achim D. Brucker1(B), Oto Havle3, Yakoub Nemouchi2, and Burkhart Wolff2

1 SAP SE, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

2 LRI, Université Paris Sud, CNRS, Centrale Supélec,
Université Saclay, Orsay, France

{nemouchi,wolff}@lri.fr
3 SYSGO AG, Am Pfaffenstein 14, 55270 Klein-Winternheim, Germany

oto.havle@sysgo.com

Abstract. In this paper, we adapt model-based testing techniques to
concurrent code, namely for test generations of an (industrial) OS kernel
called PikeOS. Since our data-models are complex, the problem is out of
reach of conventional model-checking techniques. Our solution is based
on symbolic execution implemented inside the interactive theorem prov-
ing environment Isabelle/HOL extended by a plugin with test generation
facilities called HOL-TestGen.

As a foundation for our symbolic computing techniques, we refine the
theory of monads to embed interleaving executions with abort, synchro-
nization, and shared memory to a general but still optimized behavioral
test framework.

This framework is instantiated by a model of PikeOS inter-process
communication system-calls. Inheriting a micro-architecture going back
to the L4 kernel, the system calls of the IPC-API are internally struc-
tured by atomic actions; according to a security model, these actions can
fail and must produce error-codes. Thus, our tests reveal errors in the
enforcement of the security model.

Keywords: Test program generation · Symbolic test case generations ·
Black box testing · Testing operating systems · Certification · CC ·
Concurrency · Interleaving

1 Introduction

The verification of systems combining soft- and hardware, such as modern avion-
ics systems, asks for combined efforts in test and proof: In the context of cer-
tifications such as EAL5 in Common Criteria [14], the required formal security
models have to be linked to system models via refinement proofs, and system
models to code-level implementations via testing techniques. Tests are required
for methodological reasons (“did we get the system model right? Did we ade-
quately model the system environment?”) as well as economical reasons (state
c© Springer International Publishing Switzerland 2016
A. Gurfinkel and S.A. Seshia (Eds.): VSTTE 2015, LNCS 9593, pp. 40–60, 2016.
DOI: 10.1007/978-3-319-29613-5 3

Testing the IPC Protocol for a Real-Time Operating System 41

of the art deductive verification techniques of machine-level code are practically
limited to systems with ca. 10 kLOC of size, see [11]).

This paper stands in the context of an EAL5+ certification project [7] of
the commercial PikeOS operating system used in avionics applications; PikeOS
[18–20] is a virtualizing separation kernel in the tradition of L4-microkernels [10].
Our work complements the testing initiative by a model-based testing technique
linking the formal system model of the PikeOS inter-process communication
against the real system. This is a technical challenge for at least the following
reasons:

– the system model is a transaction machine over a very rich state,
– system calls were implemented by internal, uninterruptible “atomic actions”

reflecting the L4-microkernel concept; atomic actions define the granularity of
our concurrency model, and

– the security model is complex and, in case of aborted system calls, leads to
non-standard notions of execution trace interleaving.

To meet these challenges, we need to revise conceptual and theoretical founda-
tions.

– We use symbolic execution techniques to cope with the large state-space;
their inherent drawback to be limited to relatively short execution traces is
outweighed by their expressive power,

– we extend the “monadic test-sequence approach” proposed in [2,4] to a test-
method for concurrent code. It combines an IO-automata view [13] with
extended finite state machines [9] using abstract states and abstract tran-
sitions, and

– we need an adaption of concurrency notions, a “semantic view” on partial-
order reduction and its integration into interleaving-based coverage criteria.

This sums up to a novel, tool-supported, integrated test methodology for concur-
rent OS-system code, ranging from an abstract system model in Isabelle/HOL
which was not not authored by us, complemented by our embedding of the latter
into our monadic sequence testing framework, our setups for symbolic execution
down to generation of test-drivers and the code instrumentation.

2 Theoretical and Technical Foundations

2.1 HOL-TestGen: From Formal Specifications to Testing

HOL-TestGen [3,4] is a specification-based test case generation environment that
integrates seamlessly formal verification and testing in a very unique way:

1. it is an extension of Isabelle/HOL [16] and, thus, inherits all its features (e.g.,
formal modeling and verification, code generation),

2. its test case generation algorithm is based on the symbolic computation engine
of Isabelle and, thus, can count as highly trustworthy,

42 A.D. Brucker et al.

Fig. 1. The HOL-TestGen workflow.

3. it generates automatically test hypothesis such as the uniformity hypothesis
and thus establish a formal link between test and proof (see [4] for details).

Besides test data, HOL-TestGen also generates test drivers including the test
oracles for the system under test (SUT) verifying it against the HOL specifica-
tion. Figure 1 shows on the left the HOL-TestGen architecture, and on the right
a screen shot of its user interface and a test execution. The usual workflow is:

1. we model the SUT using Isabelle/HOL (system specification). This modeling
process can leverage the full power and methodology of Isabelle, for example,
the system specification can build upon the rich library of datatypes provided
by Isabelle or properties of the system specification can be formally proven.

2. we specify the set of test goals (test specification), again, in Isabelle/HOL.
3. we use the test case generation implementation of HOL-TestGen to automat-

ically generate abstract test cases (that may still contain, e.g., constraints of
the form 0 < x < 10) from the system specification and test specification.

4. we use constraint solvers generating test data, i.e., we construct ground
instances for the constraints in the test cases (e.g., we choose x to be 4).

5. we generate automatically test scripts that execute the SUT as well as validate
the test output (by test oracles)

6. we compile the test script, together with a generic test harness, which controls
the test execution and collects statistics about the number of successful or
failed tests, to actually execute the test.

Depending on the SUT, we might need to manually write a small test adapter
that, e.g., converts data types between the representation in the generated test
scripts and the one actually used in the SUT. Moreover, for multi-threaded

Testing the IPC Protocol for a Real-Time Operating System 43

implementations, a scheduler mapping has to be provided that maps abstract
threads to the critical infrastructures in the implementation. Usually, the manu-
ally written code is orders or magnitude smaller than the generated code of the
testers and often reusable between different scenarios.

2.2 A Gentle Introduction to Sequence Testing Theory

Sequence testing is a well-established branch of formal testing theory having its
roots in automata theory. The methodological assumptions (sometimes called
testability hypothesis in the literature) are summarized as follows:

1. The tester can reset the system under test (the SUT) into a known initial
state,

2. the tester can stimulate the SUT only via the operation-calls and input of a
known interface; while the internal state of the SUT is hidden to the tester,
the SUT is assumed to be only controlled by these stimuli, and

3. the SUT behaves deterministic with respect to an observed sequence of input-
output pairs (it is input-output deterministic).

The latter two assumptions assure the reproducibility of test executions. The
latter condition does not imply that the SUT is deterministic: for a given input
ι, and in a given state σ, SUT may non-deterministically choose between the
successor states σ′ and σ′′, provided that the pairs (o′, σ′) and (o′′, σ′′) are dis-
tinguishable. Thus, a SUT may behave non-deterministically, but must make its
internal decisions observable by appropriate output. In other words, the relation
between a sequence of input-output pairs and the resulting system state must
be a function.

(in:”a“,out:1) (in:”a“,out:2)

(in:”a“,out:1)

(in:”a“,out:1) (in:”a“,out:2)

(in:”a“,out:1)

(in:”b“,out:2) (in:”b“,out:2)

(in:”a“,out:1)

Fig. 2. IO-Determinism and Non-IO-Determinism

There is a substantial body of theoretical work replacing the latter testability
hypothesis by weaker or alternative ones (and avoiding the strict alternates of
input and output, and adding asynchronous communication between tester and
SUT, or adding some notion of time), but most practical approaches do assume
it as we do throughout this paper. Moreover note, that there are approaches
(including our own paper [5]) that allow at least a limited form of access to the
final (internal) state of the SUT.

A sequence of input-output pairs through an automaton A is called a trace,
the set of traces is written Trace(A). The function In returns for each trace

44 A.D. Brucker et al.

the set of inputs for which A is enabled after this trace; in Fig. 2c for exam-
ple, In [(“a”,1)] is just {“b”}. Dually, Out yields for a trace t and input
ι ∈ In(t) the set of outputs for which A is enabled after t; in Fig. 2b for example,
Out([(“a”, 1)], “a”) this is just {1, 2}.

Equipped with these notions, it is possible to formalize the intended con-
formance relation between a system specification (given as automaton SPEC
labelled with input-output pairs) and a SUT. The following notions are known
in the literature:

– inclusion conformance [6]: all traces in SPEC must be possible in SUT,
– deadlock conformance [8]: for all traces t ∈ Traces(SPEC) and b /∈ In(t), b

must be refused by SUT, and
– input/output conformance (IOCO) [21]: for all traces t ∈ Traces(SPEC) and

all ι ∈ In(t), the observed output of SUT must be in Out(t, ι).

2.3 Using Monadic Testing Theory

The obvious way to model the state transition relation of an automaton A is by
a relation of the type (σ × (ι × o) × σ) set; isomorphically, one can also model it
via:

ι ⇒ (σ ⇒ (o × σ) set)

or for a case of a deterministic transition function:

ι ⇒ (σ ⇒ (o × σ) option)

In a theoretic framework based on classical higher-order logic (HOL), the dis-
tinction between “deterministic” and “non-deterministic” is actually much more
subtle than one might think: since the transition function can be underspecified
via the Hilbert-choice operator, a transition function can be represented by

step ι σ = {(o, σ′)|post(σ, o, σ′)}
or:

step ι σ = Some(SOME(o, σ′). post(σ, o, σ′))

for some post-condition post. While in the former “truly non-deterministic” case
step can and will at run-time choose different results, the latter “underspecified
deterministic” version will decide in a given model (so to speak: the implemen-
tation) always the same way: a choice that is, however, unknown at specification
level and only declaratively described via post. For the system in this paper and
our prior work on a processor model [5], it was possible to opt for an underspec-
ified deterministic stepping function.

We abbreviate functions of type σ ⇒ (o × σ) set or σ ⇒ (o × σ) option
MONSBE(o, σ) or MONSE(o, σ), respectively; thus, the aforementioned state
transition functions of io-automata can be typed by ι → MONSBE(o, σ) for

Testing the IPC Protocol for a Real-Time Operating System 45

the general and ι → MONSE(o, σ) for the deterministic setting. If these func-
tion spaces were extended by the two operations bind and unit satisfying three
algebraic properties, they form the algebraic structure of a monad that is well
known to functional programmers as well as category theorists. Popularized by
[22], monads became a kind of standard means to incorporate stateful compu-
tations into a purely functional world.

Since we have an underspecified deterministic stepping function in our system
model, we will concentrate on the latter monad which is called the state-exception
monad in the literature.

The operations bind (representing sequential composition with value passing)
and unit (representing the embedding of a value into a computation) are defined
for the special-case of the state-exception monad as follows:

definition bindSE :: "(’o,’σ)MONSE ⇒(’o ⇒(’o’,’σ)MONSE) ⇒(’o’,’σ)MONSE"
where "bindSE f g = (λσ. case f σof None ⇒None

| Some (out, σ’) ⇒g out σ’)"

definition unitSE :: "’o ⇒(’o,’σ)MONSE" ("(return _)" 8)

where "unitSE e = (λσ. Some(e,σ))"

We will write x ← m1; m2 for the sequential composition of two (monad)
computations m1 and m2 expressed by bindSE m1(λ x.m2). Moreover, we will
write “return” for unitSE.

This definition of bindSE and unitSE satisfy the required monad laws:

bind_left_unit: (x ← return c; P x) = P c

bind_right_unit: (x ←m; return x) = m

bind_assoc: (y ← (x ←m; k x); h y) = (x ←m; (y ←k x; h y))

On this basis, the concept of a valid monad execution, written σ |= m,
can be expressed: an execution of a Boolean (monad) computation m of type
(bool, σ) MONSE is valid iff its execution is performed from the initial state σ,
no exception occurs and the result of the computation is true. More formally,
σ |= m holds iff (m σ �= None ∧ fst(the(m σ))), where fst and snd are the usual
first and second projection into a Cartesian product and the the projection in
the Some-variant of the option type.

We define a valid test-sequence as a valid monad execution of a particular
format: it consists of a series of monad computations m1 . . .mn applied to inputs
ι1 . . . ιn and a post-condition P wrapped in a return depending on observed
output. It is formally defined as follows:

σ |= o1 ← m1 ι1; . . . ; on ← mn ιn; return(P o1 · · · on)

The notion of a valid test-sequence has two facets: On the one hand, it is
executable, i.e., a program, iff m1, . . . ,mn, P are. Thus, a code-generator can
map a valid test-sequence statement to code, where the mi where mapped to
operations of the SUT interface. On the other hand, valid test-sequences can be
treated by a particular simple family of symbolic executions calculi, characterized

46 A.D. Brucker et al.

by the schema (for all monadic operations m of a system, which can be seen as
the its step-functions):

(σ |= return P) = P
(1a)

Cm ι σ m ι σ = None

(σ |= ((s ← m ι;m′ s))) = False
(1b)

Cm ι σ m ι σ = Some(b, σ′)
(σ |= s ← m ι;m′ s) = (σ′ |= m′ b)

(1c)

This kind of rules is usually specialized for concrete operations m; if they contain
pre-conditions Cm (constraints on ι and state), this calculus will just accumulate
those and construct a constraint system to be treated by constraint solvers used
to generate concrete input data in a test.

An Example: MyKeOS. To present the effect of the symbolic rules during
symbolic execution, we present a toy OS-model (our functional PikeOS includ-
ing our symbolic execution process, theories on interleaving, memory and test
scenarios has a length of more than 12 000 lines of Isabelle/HOL code; a com-
plete presentation is therefore out of reach). MyKeOS provides only three atomic
actions for allocation and release of a resource (for example a descriptor of a com-
munication channel or a file-descriptor). A status operation returns the number
of allocated resources. All operations are assigned to a thread (designated by
thread id) belonging to a task (designated by task id, a Unix/POSIX-like
process); each thread has a thread-local counter in which it stores the number
(the status) of the allocated resources. The input is modeled by the data-type:

datatype in_c = alloc task_id thread_id nat

| release task_id thread_id nat

| status task_id thread_id

datatype out_c = alloc_ok | release_ok | status_ok nat

where out c captures the return-values. Since alloc and release do not have a
return value, they signalize just the successful termination of their corresponding
system steps. The global table var tab (corresponding to our symbolic state σ)
of thread-local variables is modeled as partial map assigning to each active thread
(characterized by the pair of task and thread id) the current status:

type_synonym thread_local_var_tab ="(task_id ×thread_id) ⇀int"

The operation have the precondition that the pair of task and thread id is actu-
ally defined and, moreover, that resources can only be released that have been
allocated; the initial status of each defined thread is set to 0.

Depicted as an extended finite state-machine (EFSM), the operations of our
system model SPEC are specified as shown in Fig. 3. A transcription of an EFSM
to HOL is straight-forward and omitted here. However, we show a concrete sym-
bolic execution rule derived from the definitions of the SPEC system transition
function, e.g., the instance for Eq. 1c:

Testing the IPC Protocol for a Real-Time Operating System 47

event : alloc(tid,thid,m)
guard : (tid,thid) dom(var_tab)
send : alloc_ok !
action : var_tab[tid,thid]+=m

event : status(tid,thid)
guard : (tid,thid) dom(var_tab)
send : status(n)!
action : n=var_tab[tid,thid]

event : release(tid,thid,m)
guard : (tid,thid) dom(var_tab)

var_tab[tid,thid]>m
send : release_ok!
action : var_tab[tid,thid]-=m var_tab

>

Fig. 3. SPEC: an extended finite state machine for MyKeOS.

(tid , thid) ∈ dom(σ) SPEC (alloc tid thid m) σ = Some(alloc ok, σ′)
(σ |= s ← SPEC (alloc tid thid m);m′ s) = (σ′ |= m′ alloc ok)

where σ = var tab and σ′ = σ((tid , thid) := (σ(tid , thid) + m)). Thus,
this rule allows for computing σ, σ′ in terms of the free variables var tab,
tid , thid and m. The rules for release and status are similar. For this rule,
SPEC (alloc tid thid m) is the concrete stepping function for the input event
alloc tid thid m, and the corresponding constraint CSPEC of this transition is
(tid , thid) ∈ dom(σ).

Conformance Relations Revisited. We state a family of test conformance
relations that link the specification and abstract test drivers. The trick is done
by a coupling variable res that transport the result of the symbolic execution of
the specification SPEC to the attended result of the SUT.

σ |= o1 ← SPEC ι1; . . . ; on ← SPEC ιn; return(res = [o1 · · · on])
−→

σ |= o1 ← SUT ι1; . . . ; on ← SUT ιn; return(res = [o1 · · · on])

Successive applications of symbolic execution rules allow to reduce the premise
of this implication to CSPEC ι1 σ1 −→ . . . −→ CSPEC ιn σn −→ res = [a1 · · · an]
(where the ai are concrete terms instantiating the bound output variables oi),
i.e., the constrained equation res = [a1 · · · an]. The latter is substituted into the
conclusion of the implication. In our previous example, case-splitting over input-
variables ι1, ι2 and ι3 yields (among other instances) ι1 = alloc t1 th1 m, ι2 =
release t2 th2 n and ι3 = status t3 th3, which allows us to derive automatically
the constraint:

(t1, th1) ∈ dom(σ) −→ (t2, th2) ∈ dom(σ′) ∧ n < σ′(t2, th2) −→
(t3, th3) ∈ dom(σ′′) −→ res = [alloc ok, release ok, status ok(σ′′(t3, th3)]

where σ′ = σ((t1, th1) := (σ(t1, th1)+m))) and σ′′ = σ′((t2, th2) := (σ(t2, th2)−
n))).

In general, the constraint CSPECi
ιi σi can be seen as an symbolic abstract

test execution; instances of it (produced by a constraint solver such as Z3 inte-
grated into Isabelle) will provide concrete input data for the valid test-sequence

48 A.D. Brucker et al.

statement over SUT, which can therefore be compiled to test driver code. In our
example here, the witness t1 = t2 = t3 = 0, th1 = th2 = th3 = 5, m = 4
and n = 2 satisfies the constraint and would produce (predict) the output
sequence res = [alloc ok, release ok, status ok2] for SUT according to SUT.
Thus, a resulting (abstract) test-driver is:

σ |= o1 ← SUT ι1; . . . ; o3 ← SUT ι3;
return([alloc ok, release ok, status ok2] = [o1 · · · o3])

This schema of a test-driver synthesis can be refined and optimized. First,
for iterations of stepping functions an ‘mbind’ operator can be defined, which
is basically a fold over bindSE. It takes a list of inputs ιs = [i1, . . . , in], feeds
it subsequently into SPEC and stops when an error occurs. Using mbind, valid
test sequences for a stepping-function (be it from the specification SPEC or the
SUT) evaluating an input sequence ιs and satisfying a post-condition P can be
reformulated to:

σ |= os ← mbind ιsSPEC; return(P os)

Second, we can now formally define the concept of a test-conformance notion:

(SPEC �〈Init,CovCrit,conf〉 SUT) =
(∀σ0 ∈ Init . ∀ι s ∈ CovCrit . ∀res.

σ0 |= os ← mbind ιs SPEC; return(conf ιs os res)
−→
σ0 |= (os ← mbind ιs SUT ; return(conf ιs os res)))

For example, if we instantiate the conformance predicate conf by:

conf ιs os res = (length(ιs) = length(os) ∧ res = os)

we have a precise characterization of inclusion conformance introduced in the
previous section: We constrain the tests to those test sequences where no excep-
tion occurs in the symbolic execution of the model. Symbolic execution fixes
possible output-sequence (which must be as long as the input sequence since no
exception occurs) in possible symbolic runs with possible inputs, which must be
exactly observed in the run of the SUT in the resulting abstract test-driver.

Using pre- and postcondition predicates, it is straight-forward to characterize
deadlock conformance or IOCO mentioned earlier (recall that our framework
assumes synchronous communication between tester and SUT; so this holds only
for a IOCO-version without quiescence). Further, we can characterize a set of
initial states or express constraints on the set of input-sequences by the coverage
criteria CovCrit , which we will discuss in the sequel.

2.4 Coverage Criteria for Interleaving

In the following, we consider input sequences ιs which were built as interleaving
of one or more inputs for different processes; for the sake of simplicity, we will

Testing the IPC Protocol for a Real-Time Operating System 49

assume that it is always possible to extract from an input event the thread and
task id it belongs to. It is possible to represent this interleaving, for example, by
the following definition:

fun interleave :: "’a list ⇒’a list ⇒’a list set"

where "interleave [] [] = {[]}"

|"interleave A [] = {A}"

|"interleave [] B = {B}"

|"interleave (a # A) (b # B) =

(λx. a # x) ‘interleave A (b # B) ∪
(λx. b # x) ‘interleave (a # A) B"

and by requiring for the input sequence ιs to belong to the set of interleavings
of two processes P1 and P2: ιs ∈ interleave P1 P2.

It is well known that the combinatorial explosion of the interleaving space
represents fundamental problem of concurrent program verification. Testing,
understood as the art of creating finite, well-chosen subspaces for large input-
output spaces, offers solutions based on adapted coverage criteria [17] of these
spaces, which refers to particular instances of CovCrit in the previous section.
A well-defined coverage criterion [1,23] can reduce a large set of interleavings
to a smaller and manageable one. For example, consider the executions of the
two threads in MyKeOS: T = [alloc 3 1 2, release 3 1 1, status 3 1]
and T’ = [alloc 2 5 3, release 3 1 1, status 2 5]. Since our simplistic
MyKeOS has no shared memory, we simulate the effect by allowing T’ to execute
a release-action on the local memory of task 3, thread 1 by using its identity.
In general, we are interested in all possible values of a shared program variable
x at position l after the execution of a process P . To this end we will define two
sets of interleavings under two different known criteria.

– Criterion1: standard interleaving (SIN) the interleaving space of actions
sequences gets a complete coverage iff all feasible interleavings of the actions
of P are covered.

– Criterion2: state variable interleaving (SVI) the interleaving space of
actions sequences gets a complete coverage iff all possible states of x at l in P
are covered.

The number of interleavings increases exponentially with the length of traces
(for bounds of the combinatorial explosion, see [17]). Under SIN we derive 10
possible actions sequences, which is reduced under SVI to 3 sequences (where one
leads to a crash; recall our assumption that the memory is initially 0). Unlike to
SIN, SVI has provided a smaller interleaving set that cover all possible states. If
we consider var tab[3,1] for x when executing status 3 1, the possible results
may be undefined, O or 1. While SIN has provided a bigger set, that cover all
possible 3 states of x with redundant sequences representing the same value.

In model-checking, this reduction technique is also known as partial order
reduction. It is now part of the beauty of our combined test and proof approach,
that we can actually formally prove that the test-sets resulting from the test-
refinements:

50 A.D. Brucker et al.

Fig. 4. PikeOS architecture.

SPEC �〈Init,SIN,conf〉 SUT and SPEC �〈Init,SV N,conf〉 SUT

are equivalent for a given SPEC. The core of such an equivalence proof is, of
course, a proof of commutativity of certain step executions, so properties of the
form:

o ← SPEC ιi; o′ ← SPEC ιj ;M o o′ = o′ ← SPEC ιj ; o ← SPEC ιi;M o o′,

which are typically resulting from the fact that these executions depend on
disjoint parts of the state. In MyKeOS, for example, such a property can be
proven automatically for all ιi = release t th and ιj = release t′ th ′ with t �=
t′ ∨ th �= th′; such reordering theorems justify a partial order on inputs to reduce
the test-space. We are implicitly applying the testability hypothesis that SUT
is input-output deterministic; if a input-output sequence is possible in SPEC,
the assumed input-output determinism gives us that repeating the test by an
equivalent one will produce the same result.

3 Application: Testing PikeOS

In the following, we will outline the PikeOS model (the full-blown model devel-
oped as part of the EUROMILS project is about 20 kLOC of Isabelle/HOL
code), and demonstrate how the this model is embedded into our monadic testing
theory.

3.1 PikeOS System Architecture

PikeOS is an operating system that supervises and ensures the execution and
separation between software applications running on the top of various hardware
platforms [19]. It stands in the tradition of so-called separation kernels and fol-
lows ideas of the influential L4 kernel project [12]. The PikeOS architecture com-
prises four layers (see Fig. 4). The virtual machine initialization table (VMIT)
is a data-base containing the global configuration of the system and its appli-
cation structure. In the VMIT, partitions (virtual machines), tasks (POSIX-like
processes), their threads, their memory-, processor-, and time resources, commu-
nication channels as well as access-control rights on these resources were defined.

Testing the IPC Protocol for a Real-Time Operating System 51

Only at boot-time, partitions, processes and threads can be created via PikeOS
System Software (PSSW); at run-time the application structure and its time-
scheduling is fixed: PikeOS has no dynamic process creation. In other words:
based on the VMIT configuration, the PikeOS system software (PSSW) will
generate a set of virtual machines in the Partitions layer during the boot-phase.
In this layer each resource partition is composed from a set of applications, and
can be executed under the predefined policy and use the predefined resources of
the VMIT. Applications in the resource partitions can also be used for system
calls of PikeOS kernel. In kernel layer, the set of resource partitions is seen as
a set of PikeOS tasks, that contain PikeOS threads and shares kernel resources
(memory, files, processors, communication channels . . .).

The kernel provides a set of APIs used by the threads and tasks. As in
Unix-like systems, special hardware—the MMU—gives application-level tasks
the illusion to live in an own separate memory space: the virtual memory. How-
ever, all threads belonging to a task live in the same memory space, namely the
memory space of the task they belong to. In contrast, system-level tasks can also
access the physical memory and the MMU. Besides memory separation, PikeOS
also offers time-separation and multi-core support.

Our work focuses on a particular part of the kernel layer providing inter-
process communication (IPC), the PikeOS IPC API.

3.2 PikeOS IPC API

The IPC mechanism [19,20] is the primary means of thread communication in
PikeOS. Historically, its efficient implementation in L4 played a major role in
the micro-kernel renaissance after the early 1990s. Microkernels had received a
bad reputation, as systems built on top were performing poorly, culminating in
the billion-dollar failure of the IBM Workplace OS. A combination of shared
memory techniques—the MMU is configured such that parts of virtual memory
space are actually represented by identical parts of the physical memory—and
a radical redesign of the IPC primitives in L4 resulted in an order-of-magnitude
decrease in IPC cost. Also in PikeOS, IPC message transfer can operate between
threads which may belong to different tasks. However, the kernel controls the
scope of IPC by determining, in each instance, whether the two threads are
permitted to communicate with each other. IPC transfer is based on shared
memory, which requires an agreement between the sender and receiver of an
IPC message. If either the sending or the receiving thread is not ready for mes-
sage transfer, then the other partner must wait. Both threads can specify a
timeout for the maximum time they are prepared to wait and have appropriate
access-control rights. Our IPC model includes eight atomic actions, correspond-
ing more-or-less to code sections in the API system calls p4 ipc buf send()
and p4 ipc buf recv() protected by a global system lock. If errors in these
actions occur—for example for lacking access-rights—the system call is aborted,
which means that all atomic actions belonging to the running system call as well
as the call of the communication partner were skipped and execution after the

52 A.D. Brucker et al.

system calls on both sides is continuing as normal. It is the responsibility of the
application to act appropriately on error-codes reported as a result of a call.

3.3 PikeOS Model Organization

We model the protocol as composition of several operational semantics; this
composition is represented by monad-transformers adding, for example, to the
basic transition semantics the semantics for abort behavior. The execution of
IPC system calls is supervised by a protocol containing a number of stages
corresponding to atomic actions.

3.4 Embedding the PikeOS Functional Model into the Monadic
Framework

System State. In our model, the system state is an abstraction of the VMIT
(which is immutable) and mutable task specific resources. It is presented by the
(polymorphic) record type:

record (’memory,’thread_id,’thread,’sp_th_th,’sp_th_res,’errors)kstate=

resource :: ’memory

current_thread :: ’thread_id

thread_list :: "’thread list"

communication_rights :: ’sp_th_th

access_rights :: ’sp_th_res

error_codes :: ’errors

errors_tab :: ’thread_id ⇀’errors

Note that the syntax is very close to functional programming languages such as
SML or OCaml or F#. The parameterization is motivated by the need of having
different abstraction layers throughout the entire theory; thus, for example, the
resource field will be instantiated at different places by abstract shared memory,
physical memory, physical memory and devices, etc.—from the viewpoint of an
operating system, devices are just another implementation of memory. In the
entire theory, these different instantiations of kstate were linked by abstraction
relations establishing formal refinements. Similarly, the field current thread will
be instantiated by the model of the ID of the thread in the execution context
and more refined versions thereof. thread list represents information on threads
and there executions. The communication rights field represent the communi-
cation policy defined between the active entities (i.e., threads and tasks). The
field access rights represent the access policy defined between active entities and
passive entities (i.e., system resources).

For the purpose of test-case generation, we favor instances of kstate which
are as abstract as possible and for which we derived suitable rules for fast sym-
bolic execution.

Shared Memory Model. Shared memory is the key for the L4-like IPC imple-
mentations: while the MMU is usually configured to provide a separation of

Testing the IPC Protocol for a Real-Time Operating System 53

memory spaces for different tasks (a separation that does not exist on the level
of physical memory with its physical memory pages, page tables, . . .), there is
an important exception: physical pages may be attributed to two different tasks
allowing to transfer memory content directly from one task to another.

We will use an abstract model for memory with a sharing relation between
addresses. The sharing relation is used to model the IPC map operation, which
establishes that memory spaces of different tasks were actually shared, such
that writes in one memory space were directly accessed in the other. Under the
sharing relation, our memory operations respect two properties:

1. Read memory on shared addresses returns the same value.
2. All shared addresses has the same value after writing.

We will present just the key properties of our shared memory model, where
write is denoted by :=$ and read by $:

typedef (α, β) memory = "..."

x shares(σ) x x shares(σ) y =⇒y shares(σ) x ...

x shares(σ) y =⇒ y ∈Domain σ =⇒ σ (x :=$ (σ $ y)) = σ
x ∈Domain σ =⇒ σ $ x = z =⇒ σ (x:=$ z) = σ
z shares(σ) x =⇒ σ (x :=$ a) $ z = a

¬(z shares(σ) x) =⇒ σ (x :=$ a) $ z = σ$ z

x shares(σ) x’ =⇒ σ (x :=$ y)(x’ :=$ z) = (σ(x’ :=$ z))

or, in other words, a memory theory where addresses were considered modulo
sharing.

Atomic Actions. As mentioned earlier, the execution of the system call can be
interrupted or aborted at the border-line of code-segments protected by a lock.
To avoid the complex representation of interruption points, we model the effect
of these lock-protected code-segments as atomic actions. Thus, we will split any
system call into a sequence of atomic actions (the problem of addressing these
code-segments and influencing their execution order in a test is addressed in the
next section). Atomic actions are specified by datatype as follows:

datatype (’ipc_stage,’ipc_dir)actionipc = IPC ’ipc_stage ’ipc_dir

datatype p4_stageipc = PREP | WAIT | BUF | MAP | DONE

datatype (’thread_id ,’adresses) p4_directipc =

SEND "’thread_id" "’thread_id" "’adresses"

| RECV "’thread_id" "’thread_id" "’adresses"

type_synonym

ACTIONipc = (p4_stageipc,(nat×nat×nat,nat list)p4_directipc)actionipc

Where ACTIONipc is type abbreviation for IPC actions instantiated by
p4 directipc. The type ACTIONipc models exactly the input events of our
monadic testing framework. Thread IDs are triples of natural numbers that

54 A.D. Brucker et al.

specify the resource partition the thread belongs to as well as the task and the
individual id. The stepping function as a whole is too complex to be presented
here; we refrain on the presentation of a portion of an auxilliary function of it
that models just the PREP SEND stage of the IPC protocol; it must check if the
task and thread id of the communication partner is allowed in the VMIT, if
the memory is shared to this partner, if the sending thread has in fact writing
permission to the shared memory, etc. The VMIT is part of the resource, so
the memory configuration, and auxiliary functions like is part mem th allow for
extracting the relevant information from it. The semantic of the different stages
is described using a total functions:

definition PREP_SEND :: "ACTIONipc stateid⇒ ACTIONipc ⇒ACTIONipc stateid"

where "PREP_SEND σ act =

(case act of (IPC PREP (SEND caller partner msg)) ⇒
...

if is_part_mem_th (get_thread_by_id’’ partner σ) (resource σ)
then

if IPC_params_c1 (get_thread_by_id’’ partner σ)
then ...)

Where PREP SEND, WAIT SEND, BUF SEND, and DONE SEND define an operational
semantic for the stages of the PikeOS IPC protocol.

Traces, Executions and Input Sequences. During our experiments, we
will generate input sequences rather than traces. An input sequence is a list
of a datatype capturing atomic action input syntactically. An execution is the
application of a transition function over a given input sequence. Using mbind,
the execution over a given input sequence is can be immediately constructed.

definition execution = (λis ioprog σ. mbind is ioprog σ)

IPC Execution Function. The execution semantic of the IPC protocol is
expressed using a total function:

fun exec_action :: "ACTIONipc stateid⇒ ACTIONipc ⇒ACTIONipc stateid"

where

PREP_SEND_run:"exec_action σ(IPC PREP (SEND caller partner msg)) =

PREP_SEND σ (IPC PREP (SEND caller partner msg))"|

(...)

The function is adapted to the monads using the following definition:

definition exec_action_Mon

where "exec_action_Mon = (λact σ. Some (error_codes(exec_action σact),
exec_action σ act))"

System Calls. As mentioned earlier, PikeOS system calls are seen as sequence
of atomic actions that respect a given ordering. Actually, each system call can
perform a set of operations. PikeOS IPC API provides seven different calls, the

Testing the IPC Protocol for a Real-Time Operating System 55

most general one is the call P4 ipc(). Using P4 ipc(), five operations can be
performed:

1. Send a copied message,
2. Receive a copied message,
3. Receive an event (not modeled),
4. Send a mapped message (not used in this paper), and
5. Receive a mapped message (not used in this paper).

The corresponding Isabelle model for the call is:

datatype (’thread_id,’msg) P4_IPC_call =

P4_IPC_call ’thread_id’thread_id’msg

| P4_IPC_BUF_call ’thread_id’thread_id’msg

| P4_IPC_MAP_call ’thread_id’thread_id’msg

(...)

Communication Coverage Criterion. An IPC call defines a communication
relation between two threads. In PikeOS, IPC communications can be symmet-
ric, transitive but can not be reflexive (a thread can not send or receive an
IPC message for himself). The transitivity or intransitivity of IPC communi-
cations depends mainly on the defined communication rights table and access
rights table. In this section, we will define a set of Isabelle rules to derive input
sequences for ipc calls. The derived input sequences express IPC communica-
tions between threads. Other rules, which are almost the same as the ones used
for deriving input sequences, will be defined to derive the possible communi-
cations between threads after the execution of an IPC call. While IPC input
sequences will be used in scenarios for testing information flow policy via IPC
error codes, IPC communications let us to address scenarios on access control
policy implemented via the two tables cited before.

To this end we define a new coverage criterion, i.e., the set of interleavings
that satisfy all these constrains. The definition of the criterion is based on the
functional model of PikeOS IPC (see Sect. 3.2) and our technique to reduce the
set of interleaving if two actions can commute (see Sect. 2.4).

– Criterion3: IPC communications (IPCcomm) the interleaving space of
input sequences gets a complete coverage iff all IPC communications of a
given SUT are covered.

IPC communications are input sequences. An example of a communication
derived under IPCcomm is:

[IPC PREP (SEND th_id th_id’ msg), IPC PREP (RECV th_id’ th_id msg),

IPC WAIT (SEND th_id th_id’ msg), IPC WAIT (RECV th_id’ th_id msg),

IPC BUF (RECV th_id’ th_id msg), IPC DONE (RECV th_id’ th_id msg),

IPC DONE (SEND th_id th_id’ msg)]"

56 A.D. Brucker et al.

4 Test Generation

Test Scenarios. A test scenario is represented by a test specification and can
have two main schemes: unit test or sequence test. An example of a test scenario
is the specification TS simple example2:

test_spec TS_simple_example2:

is ∈IPC_communication =⇒
σ 1 |=(outs ←mbind is(abortlift exec_action_Mon);return(outs = x)

−→σ1 |=(outs ←mbind is SUT; return(outs = x))

For a σ1 definition that contains a suitable VMIT configuration, a possible is
is, e.g.:

[IPC PREP (RECV (0,0,1) (0,0,2) [0,4,5,8]),

IPC PREP (SEND (0,0,2) (0,0,1) [0,4,5,8]),

IPC WAIT (RECV (0,0,1) (0,0,2) [0,4,5,8]),

IPC WAIT (SEND (0,0,2) (0,0,1) [0,4,5,8]),

IPC BUF (SEND (0,0,2) (0,0,1) [0,4,5,8]),

IPC DONE (SEND (0,0,2) (0,0,1) [0,4,5,8]),

IPC DONE (RECV (0,0,1) (0,0,2) [0,4,5,8])]

The sequence is an abstraction of an IPC communication between the thread
with the ID = (0, 0, 1) and the thread with ID = (0, 0, 2) via a message
msg = [0, 4, 5, 8]. Natural numbers inside the message are abstractions on mem-
ory addresses. The execution semantic of the input sequence is represented by
our execution function exec action Mon. We wrap around our execution func-
tion a monad transformer abort lift that express the behavior of an abort. The
equality specify our conformance relation between SUT outputs and the model
outputs. After using our symbolic execution process the out of this test case is:

[NO_ERRORS,

NO_ERRORS,

ERROR_IPC error_IPC_1_in_WAIT_RECV,

ERROR_IPC error_IPC_1_in_WAIT_RECV,

ERROR_IPC error_IPC_1_in_WAIT_RECV,

ERROR_IPC error_IPC_1_in_WAIT_RECV,

ERROR_IPC error_IPC_1_in_WAIT_RECV]

The error-codes observed in the sequence is related to IPC. The error-codes was
returned in the stage WAIT RECV. The interpretation of this error-codes is that
the thread has not the rights to communicate with his partner. We can observe
the behavior of our abort operator in this sequence of error-codes; All stages
following WAIT RECV are purged (not executed), and the same error is returned
instead. We focus on error-codes in our scenarios, since error-codes represent a
potential for undesired information flow: for example, un-masked error-messages
may reveal the structure of tasks and threads of a foreign partition in the system;
a revelation that the operating system as separation kernel should prevent.

Testing the IPC Protocol for a Real-Time Operating System 57

Generating Test Drivers. In this section we address the problem to compile
“abstract test-drivers” as described in the previous sections into concrete code
and code instrumentations that actually execute these tests.

HOL-TestGen can generate test scripts (recall Fig. 1) in SML, Haskell, Scala
and F#. For our application, we generate SML test scripts and use MLton (www.
mlton.org) for building the test executable: MLton 1. provides a foreign function
interface to C and 2. is easily portable to small POSIX system.

In more detail, we generate two SML structures automatically from the
Isabelle theories. The first structure, called Datatypes, contains the datatypes
that are used by the interface of the SUT. In our example, this includes, e.g.,
IPC protocol and P4 IPC call. The second structure, called TestScript, con-
tains a list of all generated test cases as well the test oracle, i.e., the algorithms
necessary to decide if a test result complies to the specification or not.

In addition, for testing C code, we need to provide a small SML structure (ca.
20 lines of code), called Adapter, that serves two purposes: 1. the configuration of
the foreign function, e.g., the mapping from SML datatypes to C datatypes and
2. the concretization of abstractions to bridge the gap between an abstract test
model and the concrete SUT. The Adapter structure only needs to be updated
after significant changes to either the system specification or the system under
test.

For testing concurrent, i.e., multi-threaded, programs we need to solve a par-
ticular challenge: enforcing certain thread execution orders (a certain scheduling)
during test execution. There are, in principle, three different options available
to control the scheduler during test execution: 1. instrumenting the SUT to
make the thread switching deterministic and controllable, 2. using a determin-
istic scheduler that can be controlled by test driver, or 3. using the features of
debuggers, such as the GNU debugger (gdb), for multi-threaded programs.

In our prototype for POSIX compliant systems, we have chosen the third
option: we execute the SUT within a gdb session and we use the gdb to switch
between the different threads in a controlled way. We rely on two features of
gdb (thus, out approach can be applied to any other debugger with similar
features), namely: 1. the possibility to attach to break points in the object code
scripting code that is executed if a break point is reached and 2. the complete
control of the threading, i.e., gdb allows to switch explicitly between threads
while ensuring that only the currently active thread is executed (using the option
set scheduler-locking on).

This approach has the advantage that we neither need to modify the SUT
nor do we need to develop a custom scheduler. We only need to generate a
configuration for controlling the debugger. The necessary gdb command file is
generated automatically by HOL-Testgen based on a mapping of the abstract
thread switching points to break points in the object code. The break points at
the entry points allows us to control the thread creation, while the remaining
break points allow us to control the switching between threads. Thus, we only
need the SUT compiled in debugging mode and this mapping. In this sense, we
still have a “black-box” testing approach.

www.mlton.org
www.mlton.org

58 A.D. Brucker et al.

Moreover, Using gdb together with taskset, we ensure that all threads are
executed on the same core; in our application, we can accept that the actual
execution in gdb changes the timing behavior. Moreover, we assume a sequential
memory model, so our approach does not cover TLB-related race conditions
occurring in multi-core CPU’s.

5 Conclusion

Related Work. There is a wealth of approaches for tests of behavioral models;
they differ in the underlying modeling technique, the testability and test hypoth-
esis’, the test conformance relation etc.; in Sect. 2 we mention a few. Unfor-
tunately, many works make the underlying testability hypothesis’ not explicit
which makes a direct comparison difficult and somewhat vague. For the space
of testability assumptions used here (the system is input-output determinis-
tic, is adequately modeled as underspecified deterministic system, synchronous
coupling between tester and SUT suffices), to the best of our knowledge, our
approach is unique in its integrated process from theory, modeling, symbolic
execution down to test-driver generation.

With respect to the test-driver approach, this work undeniably owes a lot
Microsoft’s CHESS project [15], which promoted the idea to actually control the
scheduler of real systems and use partial-order reduction techniques to test sys-
tematically concurrent executions for races in applications of realistic size (e.g.,
IE, Firefox, Apache). For our approach, controlling the scheduler is the key to
justify the presentation of the system as underspecified-deterministic transition
function.

Conclusion and Future Work. We see several conceptual and practical
advantages of a monadic approach to sequence testing:

1. a monadic approach resists the tendency to surrender to finitism and con-
structivism at the first-best opportunity; a tendency that is understandably
wide-spread in model-checking communities,

2. it provides a sensible shift from syntax to semantics: instead of a first-order,
intentional view in nodes and events in automata, the heart of the calculus
is on computations and their compositions,

3. the monadic theory models explicitly the difference between input and output,
between data under control of the tester and results under control of the SUT,

4. the theory lends itself for a theoretical and practical framework of numerous
conformance notions, even non-standard ones, and which gives

5. ways to new calculi of symbolic evaluation enabling symbolic states (via
invariants) and input events (via constraints) as well as a seamless, theo-
retically founded transition from system models to test-drivers.

We see several directions for future work: On the model level, the for-
mal theory of sequence testing (as given in the HOL-TestGen library theories

Testing the IPC Protocol for a Real-Time Operating System 59

Monad.thy and TestRefinements.thy) providing connections between monads,
rules for test-driver optimization, different test refinements, etc., is worth fur-
ther development. On a test-theoretical level, our approach provides the basis for
a comparison on test-methods, in particular ones based on different testability
hypothesis’.

Pragmatically, our test driver setup needs to be modified to be executable on
the PikeOS system level. For this end, we will need to develop a host-target setup
(see Sect. 4). Finally, we are interested in extending our techniques to actually
test information flow properties; since error-codes in applications may reveal
internal information of partitions (as, for example, the number of its tasks and
threads), this seems to be a rewarding target. For this purpose, not only action
sequences need to be generated during the constraint solving process, but also
(abstract) VMITs.

Acknowledgement. This work was partially supported by the Euro-MILS project
funded by the European Union’s Programme [FP7/2007-2013] under grant agreement
number ICT-318353.

References

1. Hierons, R.M., Bowen, J.P., Harman, M. (eds.): FORTEST. LNCS, vol. 4949.
Springer, Heidelberg (2008)

2. Brucker, A.D., Wolff, B.: Test-sequence generation with Hol-TestGen with an appli-
cation to firewall testing. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS,
vol. 4454, pp. 149–168. Springer, Heidelberg (2007)

3. Brucker, A.D., Wolff, B.: hol-TestGen: an interactive test-case generation frame-
work. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 417–420.
Springer, Heidelberg (2009)

4. Brucker, A.D., Wolff, B.: On theorem prover-based testing. Formal Aspects Com-
put. 25, 683–721 (2012)

5. Brucker, A.D., Feliachi, A., Nemouchi, Y., Wolff, B.: Test program generation for
a microprocessor. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942,
pp. 76–95. Springer, Heidelberg (2013)

6. Ponce de León, H., Haar, S., Longuet, D.: Conformance relations for labeled event
structures. In: Brucker, A.D., Julliand, J. (eds.) TAP 2012. LNCS, vol. 7305,
pp. 83–98. Springer, Heidelberg (2012)

7. Euro-Mils. http://www.euromils.eu/
8. Feliachi, A., Gaudel, M.-C., Wenzel, M., Wolff, B.: The Circus testing theory revis-

ited in Isabelle/HOL. In: Groves, L., Sun, J. (eds.) ICFEM 2013. LNCS, vol. 8144,
pp. 131–147. Springer, Heidelberg (2013)

9. Gill, A.: Introduction to the Theory of Finite-State Machines. McGraw-Hill,
New York (1962)

10. Härtig, H., Hohmuth, M., Liedtke, J., Schönberg, S., Wolter, J.: The performance
of microkernel-based systems. In: SOSP (1997)

11. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: formal verification of an OS kernel. In: SOSP, pp. 207–220
(2009)

http://www.euromils.eu/

60 A.D. Brucker et al.

12. Liedtke, J.: On μ-kernel construction. SOSP 29(5), 237–250 (1995)
13. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI-Quart.

2(3), 219–246 (1989)
14. Common criteria for information technology security evaluation. http://www.

commoncriteriaportal.org/
15. Musuvathi, M., Qadeer, S., Ball, T.: Chess: a systematic testing tool for concurrent

software. Technical report MSR-TR-2007-149, Microsoft Research (2007)
16. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283.

Springer, Heidelberg (2002)
17. Shan Lu, W.J., Zhou, Y.: A study of interleaving coverage criteria. In: ESEC-FSE

Companion, pp. 533–536 (2007)
18. SYSGO: Pikeos. http://www.sysgo.com/products/pikeos-rtos-and-virtualization-

concept/
19. SYSGO: PikeOS Fundamentals. SYSGO (2013)
20. SYSGO: PikeOS Kernel. SYSGO (2013)
21. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,

R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38.
Springer, Heidelberg (2008)

22. Wadler, P.: Comprehending monads. Math. Struct. Comput. Sci. 2(4), 461–493
(1992)

23. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Comput. Surv. (CSUR) 29(4), 366–427 (1997)

http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/
http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/
http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/

Pseudo-Random Number Generator
Verification: A Case Study

Felix Dörre and Vladimir Klebanov(B)

Karlsruhe Institute of Technology (KIT),
Am Fasanengarten 5, 76131 Karlsruhe, Germany

felix.doerre@student.kit.edu, klebanov@kit.edu

Abstract. In 2013, a monetarily moderate but widely noted bitcoin
theft drew attention to a flaw in Android’s pseudo random number gen-
erator (PRNG). A programming error affecting the information flow in
the seeding code of the generator has weakened the security of the cryp-
tographic protocol behind bitcoin transactions.

We demonstrate that logic-based verification can be efficiently applied
to safeguard against this particular class of vulnerabilities, which are very
difficult to detect otherwise. As a technological vehicle, we use the KeY
verification system for Java. We show how to specify PRNG seeding with
information flow contracts from the KeY’s extension to the Java Model-
ing Language (JML) and report our experiences in verifying the actual
implementation.

1 Introduction

In 2013 a security incident [3] resulting in theft of bitcoin gained significant pub-
lic attention. While the total monetary damage was at $5700 relatively modest,
the ease and low risk of attack were notable. The perpetrators were never iden-
tified, and the exact circumstances of the attack remain to a degree speculation.
Yet, the attack promptly raised public awareness of a vulnerability in the imple-
mentation of the pseudo-random number generator (PRNG) in Android [13].
Soon thereafter, Google replaced the Android PRNG.

The vulnerability in question is an instance of the “squandered entropy”
problem, where entropy (i.e., information difficult to guess for an attacker) flows
from a source to a destination, and some or all of it is lost (i.e., replaced by a
constant or predictable value) underway due to a programming error. Concretely,
out of 20 byte of entropy requested from the OS kernel to seed the PRNG, 12 did
not reach the generator’s internal state, significantly diminishing the quality of
the PRNG output. This kind of problem is difficult to detect (as explained later
on) and reoccurs periodically. Other notable instances include the Debian weak
key disaster [5] (PRNG broken for two years), or the recent FreeBSD-current
PRNG incident [7] (PRNG broken for four months), but there are also many
others.

So far, entropy squandering is typically detected by manual code inspection,
as, e.g., in [13]. With this paper, we present the first, to our knowledge, case
c© Springer International Publishing Switzerland 2016
A. Gurfinkel and S.A. Seshia (Eds.): VSTTE 2015, LNCS 9593, pp. 61–72, 2016.
DOI: 10.1007/978-3-319-29613-5 4

62 F. Dörre and V. Klebanov

study on formally verifying the implementation of a real-world PRNG.1 We
show that absence of entropy squandering can be efficiently specified (in terms
of information flow) and practically verified with current deductive verification
technology. In fact, we argue that formal verification is the tool of choice for
addressing the problem.

We have chosen the above-mentioned Android PRNG as the subject of the
case study as it allows us to illustrate how code verification can protect against
bugs that have indeed occurred in the wild. On the technical side, the PRNG is
implemented in Java, while we have experience in verification of Java programs.

The Bitcoin Theft Incident. The presumed genesis of the attack is as fol-
lows. Bitcoin operates a public database of all transactions, the block chain.
Each transaction is cryptographically signed by its initiator using the ECDSA
scheme [8]. Creating ECDSA signatures requires a per-transaction nonce. Partial
predictability of nonces allows for attacks like [14], but using the same nonce for
two transactions signed by the same key—which is what probably happened—
constitutes a catastrophic security failure. Anyone can easily identify this case
from the information recorded in the block chain, reconstruct the victim’s pri-
vate key, and divert their money to a bitcoin address of choice. No intrusion into
the victim’s system is necessary. A loss of seed entropy in the PRNG used for
generating nonces increases the probability of the breach.

2 Inner Workings of the Android PRNG

The origin of the Android PRNG lies in the Apache Harmony project, a
clean room reimplementation of the Java Core Libraries under the Apache
License. The PRNG was part of the Android platform up to and includ-
ing Android 4.1. The PRNG consists of the main class org.apache.
harmony.security.provider.crypto.SHA1PRNG SecureRandomImpl and the
auxiliary class SHA1Impl.

Overall size of the PRNG is slightly over 300 LOC, though not all function-
ality was exercised in this case study. The code is monolithic, dense, and hard to
follow. There are many comments, but these use jittering terminology, are not
always clear, and are at times inconsistent with the code. The description in [13]
was instrumental in facilitating our understanding of the implementation.

The main PRNG method engineNextBytes(byte[] bytes), shown sche-
matically in Listing 1.1, fills the caller-supplied array bytes with pseudo-random
bytes. The PRNG operates in cycles, each cycle generating 20 pseudo-random
bytes. If the caller requests more bytes, several cycles are performed; if the caller
requests fewer bytes, the surplus generated bytes are stored for later usage.

The main component of the PRNG state is an int[] array of length 87,
somewhat inappropriately named seed (Fig. 1). The front part of this array
is populated with the externally-provided entropy (i.e., the actual seed). The
PRNG can either be seeded manually by calling setSeed() or automatically.

1 Artifacts available at http://formal.iti.kit.edu/∼klebanov/pubs/vstte2015/.

http://formal.iti.kit.edu/~klebanov/pubs/vstte2015/

Pseudo-Random Number Generator Verification: A Case Study 63

In the latter case, the PRNG is seeded with 20 byte of entropy requested from
the OS kernel on first invocation of engineNextBytes() (Listing 1.1, line 6).
This so-called self-seeding mode was typically considered preferable as less error-
prone, and it is indeed the scenario we are considering here.2

Fig. 1. Structure of the Android PRNG’s main array (1 word = 1 int = 4 bytes)

In cycle k, the pseudo-random bytes are computed as the pseudo-SHA-1 hash
of the seed (words 0–4 in Fig. 1a) concatenated with the cycle counter k (as a
64-bit integer in words 5–6). The computation (Listing 1.1, line 17) makes use
of the scratch space in words 16–79, and its result is stored in words 82–86. The
latter are subsequently unpacked into bytes that form the output of the cycle.
The computed hash is not quite the standard SHA-1 hash, as only in cycle zero,
the initialization vector defined in the SHA-1 standard is used. In a cycle k > 0,
the initialization vector is formed by the 20 pseudo-random bytes generated in
cycle k − 1.

To compute the hash, the seed and the cycle counter have to be suffixed by
a standard-defined SHA-1 padding. Now, the PRNG keeps track of the length
of the seed in word 80. The essence of the vulnerability is that a stale value of
this length (i.e., zero) is used after initializing the seed in the self-seeding mode.3

As a consequence, the cycle counter and the SHA-1 padding constant overwrite
words 0–2, leaving only two words of the original seed (Fig. 1b). The effective
inflow of entropy into the PRNG amounts thus to 8 instead of 20 bytes.4

2 Google changed its stance on this matter several times, as the PRNG implementation
was updated. As far as we are aware, self-seeding is the recommended mode again.

3 There are more irregularities in the padding code, but they are irrelevant here.
4 The PRNG also contains a native backup component in case the kernel does not

provide an entropy source. Incidentally, this component contained two more instances
of entropy squandering, though these were much simpler technically.

64 F. Dörre and V. Klebanov

3 Information Flow Verification with the KeY System

The KeY Verification System. The case study has been carried out using
the KeY deductive verification system for Java [1,9]. The reasons for choosing
KeY are our familiarity with it due to our involvement with its development,
good programming language support (KeY supports, for instance, 100 % of the
Java Card standard), as well as a frontend for specifying information flow in
programs. On the other hand, the approach that we apply is not tool-specific
and could be reenacted with another deductive verification system.

The frontend of KeY takes as input a Java program annotated in the Java
Modeling Language (JML) [12]. The backend is a theorem prover for Dynamic
Logic (DL), which can be seen as a generalization of Hoare logic. Reasoning
about programs is based on symbolic execution. Proof construction is guided by
the user via program annotations and/or interacting with the prover GUI. All
proof steps are recorded and can be inspected via an explicit proof object.

For loop- and recursion-free programs, symbolic execution is performed in a
fully automated manner. Loops can either be unrolled or abstracted by a user-
provided loop invariant. Similarly, method calls can be handled either by inlining
the method body or by abstracting with a user-provided method specification.
All user-provided abstractions are machine-checked for soundness.

Going beyond functional properties, KeY supports a language for specifying
information flow in programs as part of its JML* extension of JML. The language
was originally published in [16] though we refer the interested reader to the more
up-to-date information source [15] for details.

Fig. 2. Concrete grammar for information flow contracts in JML*

Specifying Information Flow with JML*. The main instrument for specify-
ing information flow in JML* is an information flow contract. The contract can
be attached—among other things—to method declarations, and its grammar is
shown in Fig. 2.

Definition 1 (Semantics of information flow contracts). Let m be a ter-
minating sequential method with an attached information flow contract. Let (dsi)
and (dmj) be the expression sequences of the determinans and the determinan-
dum of the contract respectively. Let (sapre, s

a
post) and (sbpre, s

b
post) be a pair of

runs of the method m, where sapre and sbpre are the initial (or pre) states and
sapost and sbpost are the final (or post) states respectively. The method m satisfies

Pseudo-Random Number Generator Verification: A Case Study 65

the attached information flow contract, iff for each such pair of runs, the coincid-
ing evaluation of the determinans in both runs implies the coinciding evaluation
of the determinandum:

∧
i

(
(dsi in sax) = (dsi in sbx)

) → ∧
j

(
(dmj in say) = (dmj in sby)

)
,

where x, y ∈ {pre, post} according to the state designators wrapping the determi-
nans and determinandum respectively. In absence of explicit state designators,
the defaults x = pre and y = post are used.

For example, the specification

//@ determines \result \by l1, l2;

int f(int h, int l1 , int l2) { ... }

says that the return value of the method f is completely determined by the
method parameters l1 and l2. This means that no information flows from the
method parameter h (or other data on the heap) to the return value of f. Note
that since it is not stated otherwise, the determinans l1, l2 is evaluated in
the initial state, while the determinandum is evaluated in the final state. This
convention follows the original design goal of JML* in specifying absence of
undesired information flow in programs.

More interesting for our purposes is the specification

//@ determines \pre(h) \by \post(\ result); (∗)
int f(int h) { ... }

describing, in a sense, the opposite situation. It is fulfilled when knowing the
result of f is sufficient to reconstruct the (initial) value of the parameter h.
Mathematically, this case amounts to injectivity of f and means intuitively that
the complete information contained in h flows to the return value. Contrary
to the JML* defaults, the explicit state designators \pre() and \post() force
the determinans to be evaluated in the final state and the determinandum in
the initial state. We have extended JML* with these designators specifically on
occasion of this case study.

In case one needs to speak about array content in contracts, the finite
sequence comprehensions of JML* allow this easily. For example, the JML* com-
prehension expression (\seq def int i; 0; a.length; a[i]) is essentially a
shorthand for the expression sequence a[0],. . .,a[a.length-1] (for presenta-
tion in this paper, we also use the notation a[*] for this particular sequence).

Proof Obligations for Information Flow. To prove information flow con-
tracts, KeY formalizes the condition of Definition 1 in Dynamic Logic. The for-
malization follows self-composition style and is straight-forward. The (schematic)
proof obligation for a contract like (∗) is

∀ha, hb. f(ha) = f(hb) → ha = hb .

66 F. Dörre and V. Klebanov

We refer the interested reader to [15,17] for details of the formalization in
Dynamic Logic. The important fact is that information flow contracts of the
callee method can be used—just like functional contracts—when verifying the
caller method.

Listing 1.1. The main PRNG
method (schematic)
1 void
2 engineNextBytes(byte[] bytes) {
3 ...
4 if (state == UNDEFINED) {
5 // entropy source
6 updateSeed(
7 RandomBitsSupplier
8 .getRandomBits(20));
9 ...

10 } else { ... }
11

12 ...
13

14 for (;;) {
15 ...
16 // entropy target
17 SHA1Impl.computeHash(seed);
18 ...
19 }
20 }

Listing 1.2. Modified source with top-
level requirement specification (excerpt)
1 /*@
2 requires counter == 0;
3 requires state == UNDEFINED;
4

5 requires bytes.length == 20;
6 requires extSource.length == 20;
7

8 determines \pre (extSource [*])
9 \by \post(bytes [*]);

10 */
11 void
12 engineNextBytes(byte[] bytes ,
13 byte[] extSource) {
14 ...
15 if (state == UNDEFINED) {
16 updateSeed(extSource);
17 ...
18 } else ...
19 ...
20 }

Listing 1.3. Specification of the pseudo-SHA1 method
1 /*@ public normal_behavior
2 requires arrW.length ==87;
3 assignable arrW [16..79] , arrW [82..86];
4 determines \pre ((\ seq_def int i; 0; 5; arrW[i]))
5 \by \post ((\ seq_def int i; 82; 87; arrW[i]));
6 */
7 static void computeHash(int[] arrW) {...}

4 PRNG Specification and Correctness Proof

4.1 The Specification and Problems Attaching It

To show full flow of entropy (i.e., absence of squandering), we are instantiating
the specification pattern (∗) for the main PRNG method shown in Listing 1.1.

Our original intent was to show that the entropy returned by the call to
the RandomBitsSupplier.getRandomBits() method in line 7 of Listing 1.1 (the
source) is preserved at least until the call to the SHA1Impl.computeHash()
method in line 17 (the target). The problem is that the source is nested within
another method call expression that is itself nested within an if-statement, while
the target occurs in the middle of a loop body. Specification languages like

Pseudo-Random Number Generator Verification: A Case Study 67

JML are, in contrast, designed to specify programs in a mostly block-structured
way, i.e., pre- and postconditions can only be attached to complete blocks, loops,
method declarations, etc. Facilities for point-to-point specification are less devel-
oped. To overcome this obstacle, we resorted to a minor source code modification
as well as to extending the verified property as outlined in the following.

The Source. We removed the call to RandomBitsSupplier.getRandomBits()
in line 7 and replaced it by an extra parameter extSource, which allows us to
speak about the inflowing entropy in the method specification. The modified
source is shown in Listing 1.2. The precondition state == UNDEFINED states
that the PRNG is indeed in self-seeding mode. For the sake of clarity, we are
not showing a few more trivial preconditions stating that the PRNG object is
initially in a consistent state (fields are initialized with default values, etc.). These
preconditions stem from (separate) symbolic execution of the object constructor.

The Target. We solve the problem with the inaccessible entropy target by
stating a postcondition on the whole method. In other words, we are specifying
not only that the 20 byte of entropy in extSource are safely transferred into the
internal state of the PRNG but that they are contained in the 20 byte of output
returned to the caller, which is a stronger property.

The Hash. The above strengthening also causes a complication: the call to
SHA1Impl.computeHash() is now in the code path. Due to the (intended) com-
putational complexity of SHA-1, it is not practicable to reason about this method
either by inlining its code or stating a faithful functional specification. In con-
trast, it is possible to give an information flow specification, which can be used
for the proof of engineNextBytes().

We assume (but do not prove) the specification of SHA1Impl.computeHash()
shown in Listing 1.3, stating that the method transfers all information (i.e., is
injective) from the first five words of the main array into the last five words.
While we do not know if this assumption is true (as disproving it would amount
to finding a collision in SHA-1), it constitutes a fundamental proviso for the
security of the PRNG. Unsurprisingly, proof inspection showed that it was indeed
not disproved. A similar, if more obviously justifiable, contract was used for the
sole standard library method used by the PRNG, System.arraycopy().

4.2 The Proof

The vulnerability is unmissable when attempting the proof, so the following
remarks apply to the fixed implementation incorporating the official patch.

The main proof consists of 21 882 proof steps, of which 95 were interac-
tive. The majority of the latter are carrying out case distinctions, splitting
the equality of sequences into five equalities over words and 20 over bytes.
The rest are for weakening the proof goal to eliminate irrelevant information
and reduce the search space, as well as applications of rules for byte pack-
ing and unpacking (see below). The automated proof search took altogether
45 min to complete the proof. All loops in the main code were unrolled (thus

68 F. Dörre and V. Klebanov

also establishing termination), no invariants or auxiliary annotations were nec-
essary. Trivial invariants were used to prove termination and assignable clause
of SHA1Impl.computeHash().

A significant portion of proof complexity stems from the code packing bytes
into words and a later converse unpacking. Figure 3 shows the code factored for
exposition purposes as synthetic methods. For the proof, we have defined two
custom rules that express the injectivity of these code fragments. The soundness
of the rules has been proven using KeY’s rule justification mechanism and the
KeY’s SMT bridge to Z3/CVC4 (the only place where an external SMT solver
was used). Each rule was applied five times, once for each word of the seed.

Fig. 3. Packing and unpacking code (illustration)

The KeY logic is based on the theory of integers and not bitvectors. To achieve
soundness, proof rules either generate proof obligations showing absence of over-
flow, or perform operations modulo machine integer range. The former option
was used for the majority of the code, while the latter option was necessary to
handle the packing and unpacking code.

5 Alternatives and Related Work

Functional Verification and Testing. Of course, it is possible to state and
verify a functional specification of the methods involved without resorting to
the concept of information flow. However, such a specification would have to
closely mimic the implementation and thus be complex and tedious to write
(the same reasoning also applies to functional testing). It would be difficult
to understand it and ascertain its adequacy; neither would it be possible to
reuse it for another PRNG. It would also be challenging to write down such a
specification in existing languages due to the structure of the code (see Sect. 4.1).
The information flow specification, on the other hand, directly expresses the
desired property, is compact and easy to understand, and is nearly independent
of the PRNG implementation in question.

Statistical Testing. Several statistical test suites exist for assessing the quality
of random numbers. Among the most popular are DIEHARD with its open
source counterpart DIEHARDER and the NIST test suite. The suites scan a
stream of pseudo-random numbers for certain predefined distribution anomalies.
At the same time, we are not aware of recommendations on how the stream is
to be produced. In practice, it appears customary to derive the stream from

Pseudo-Random Number Generator Verification: A Case Study 69

a single seed. The tests are repeated multiple times (with different seeds) to
increase the degree of confidence but the results between individual runs are
not cross-correlated. In any case, distinguishing a PRNG seeded with 8 byte of
entropy from a PRNG seeded with 20 byte of entropy would likely require a
prohibitively high number of tests.

Quantitative Information Flow Analysis (QIF). Detecting entropy squan-
dering can be seen as an instance of the Quantitative Information Flow problem
(QIF) concerned with measuring leakage of secret information to an observer of
the program output. Several methods and tools for QIF exist, including our own
work [10,11]. Yet, the landscape of available QIF analyses is not well-suited for
the specifics of the problem we face. Some techniques are only practicable for
small leakage, or small/simple programs. Some are not implemented or do not
support real-world programming languages. Some only establish upper bounds
on the leakage, while we need lower bounds, as our observer is not an adver-
sary. Given these limitations, the prospects of using current QIF techniques for
practical PRNG verification remain unclear at best.

High-level PRNG Analysis. Apart from the above-mentioned [13], “modern”
PRNGs have been studied in, e.g., [2,4,6]. The perspective taken in the latter
works is based on elaborate attack models, where the attacker, for instance,
can control the distribution of the inputs used to seed the PRNG, view or even
corrupt the internal PRNG state. The analysis focuses primarily on design and
high-level implementation aspects w.r.t. these models and is not mechanized. In
contrast, we do not consider attackers with advanced capabilities, but our work
closes the gap concerning low-level implementation aspects with mechanized
reasoning.

6 Conclusions

A good design document and a high-level analysis are indispensable for a correct
PRNG, but so is low-level verification. The problem of squandered entropy due to
subtle code bugs is real and relevant, yet very difficult to detect by conventional
means. At the same time, a concise and uniform specification of correctness can
be given in terms of information flow. The JML* specification language proved
its convenience in this regard.

Logic-based information flow reasoning is the tool of choice for PRNG verifi-
cation, as other techniques (e.g., type systems, PDGs, etc.) inherently incorpo-
rate overapproximations that make them unsuitable. The correctness proofs are
conceptually quite simple, and do not require ingenuity, but the complexity and
monolithic nature of the code tax the verification system to a significant degree.

A large part of our effort went to understanding the details of the imple-
mentation. Besides referring to higher-level descriptions such as [4,13], we found
verification technology in general (for establishing data footprints of code seg-
ments) and symbolic execution in particular (for identifying dead code on a given
path) very helpful in this regard. While it is hard to quantify the total effort

70 F. Dörre and V. Klebanov

spent on the case study due to a learning process that occurred over a longer
period of time, we conjecture that we could now verify a comparable PRNG
within one or a few days.5

A Source Code of the Android PRNG (Excerpt)

Source code below has been slightly edited for presentation purposes. Comments
are removed. Constant declarations are elided or inlined. Code unreachable in
the verification scenario presented in the paper is elided.

1 public class SHA1PRNG_SecureRandomImpl implements SHA1_Data {

2
3 private transient int[] seed;

4 private transient byte[] nextBytes;

5 private transient int nextBIndex;

6 private transient long counter;

7 private transient int state;

8
9 public SHA1PRNG_SecureRandomImpl() { ... }

10
11 protected synchronized void engineNextBytes(byte[] bytes) {

12
13 int i, n;

14 long bits;

15 int nextByteToReturn ;

16 int lastWord;

17 final int extrabytes = 7;

18
19 if (bytes == null) throw new NullPointerException("bytes�==�null");

20
21 lastWord = seed [81] == 0 ? 0 : (seed [81] + extrabytes) >> 3 - 1;

22
23 if (state == UNDEFINED) {

24
25 updateSeed(RandomBitsSupplier.getRandomBits (20));

26 nextBIndex = 20;

27

28 // official patch for the vulnerability
29 lastWord = seed[81] == 0 ? 0 : (seed[81] + extrabytes) >> 3 - 1;
30
31 } else if (state == SET_SEED) { ... }

32 state = NEXT_BYTES;

33
34 if (bytes.length == 0) return;

35
36 nextByteToReturn = 0;

37
38 n = (20 - nextBIndex) < (bytes.length - nextByteToReturn) ?

39 20 - nextBIndex :

40 bytes.length - nextByteToReturn ;

41 if (n > 0) { ... }

42
43 if (nextByteToReturn >= bytes.length) return;

44
45 n = seed [81] & 0x03;

46 for (;;) {

47 if (n == 0) {

48

49 // the problem occurs here
50 seed[lastWord] = (int) (counter >>> 32);

51 seed[lastWord + 1] = (int) (counter & 0xFFFFFFFF);

52 seed[lastWord + 2] = END_FLAGS [0];

53
54 } else { ... }

55 if (seed [81] > 48) { ... }

56
57 SHA1Impl.computeHash(seed);

58
59 if (seed [81] > 48) { ... }

60 counter ++;

61
62 int j = 0;

5 This work was in part supported by the German National Science Foundation (DFG)
under the priority programme 1496 “Reliably Secure Software Systems – RS3.” The
authors would like to thank Christoph Scheben for help with the proof system, and
Bernhard Beckert, Mattias Ulbrich, and Sylvain Ruhault for comments on the topic.

Pseudo-Random Number Generator Verification: A Case Study 71

63 for (i = 0; i < 5; i++) {

64 int k = seed [82 + i];

65 nextBytes[j] = (byte) (k >>> 24);

66 nextBytes[j + 1] = (byte) (k >>> 16);

67 nextBytes[j + 2] = (byte) (k >>> 8);

68 nextBytes[j + 3] = (byte) (k);

69 j += 4;

70 }

71
72 nextBIndex = 0;

73 j = 20 < (bytes.length - nextByteToReturn) ?

74 20 : bytes.length - nextByteToReturn ;

75
76 if (j > 0) {

77 System.arraycopy(nextBytes , 0, bytes , nextByteToReturn , j);

78 nextByteToReturn += j;

79 nextBIndex += j;

80 }

81
82 if (nextByteToReturn >= bytes.length) break;

83 }

84 }

85
86 private void updateSeed(byte[] bytes) {

87 SHA1Impl.updateHash(seed , bytes , 0, bytes.length - 1);

88 seedLength += bytes.length;

89 }

90 }

91
92 public class SHA1Impl implements SHA1_Data {

93
94 static void computeHash(int[] arrW) { /* elided for brevity */ }

95
96 static void updateHash(int[] intArray , byte[] byteInput , int fromByte , int toByte) {

97
98 int index = intArray [81];

99 int i = fromByte;

100 int maxWord;

101 int nBytes;

102
103 int wordIndex = index >>2;

104 int byteIndex = index & 0x03;

105
106 intArray [81] = (index + toByte - fromByte + 1) & 077 ;

107
108 if (byteIndex != 0) { ... }

109
110 maxWord = (toByte - i + 1) >> 2;

111
112 for (int k = 0; k < maxWord ; k++) {

113
114 intArray[wordIndex] = (((int) byteInput[i] & 0xFF) <<24) |

115 (((int) byteInput[i + 1] & 0xFF) <<16) |

116 (((int) byteInput[i + 2] & 0xFF) <<8) |

117 (((int) byteInput[i + 3] & 0xFF)) ;

118 i += 4;

119 wordIndex ++;

120
121 if (wordIndex >= 16) { ... }

122 }

123
124 nBytes = toByte - i +1;

125 if (nBytes != 0) { ... }

126 }

127 }

References

1. Ahrendt, W., et al.: The KeY platform for verification and analysis of Java pro-
grams. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471,
pp. 55–71. Springer, Heidelberg (2014)

2. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation
with applications to /dev/random. In: Proceedings of the 12th ACM Conference
on Computer and Communications Security, CCS 2005, pp. 203–212. ACM (2005)

3. Bitcoin.org. Android security vulnerability (2013). https://bitcoin.org/en/alert/
2013-08-11-android

4. Cornejo, M., Ruhault, S.: Characterization of real-life PRNGs under partial state
corruption. In: Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, CCS 2014, pp. 1004–1015. ACM (2014)

https://bitcoin.org/en/alert/2013-08-11-android
https://bitcoin.org/en/alert/2013-08-11-android

72 F. Dörre and V. Klebanov

5. Debian Weak Key Vulnerability. CVE-2008-0166 (2008). https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2008-0166

6. Dodis, Y., Pointcheval, D., Ruhault, S., Vergniaud, D., Wichs, D.: Security analysis
of pseudo-random number generators with input: /dev/random is not robust. In:
Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security, CCS 2013, pp. 647–658. ACM (2013)

7. Gurney, J.-M.: URGENT: RNG broken for last 4 months (2015). https://lists.
freebsd.org/pipermail/freebsd-current/2015-February/054580.html

8. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

9. The KeY Tool. www.key-project.org
10. Klebanov, V.: Precise quantitative information flow analysis - a symbolic approach.

Theoret. Comput. Sci. 538, 124–139 (2014)
11. Klebanov, V., Manthey, N., Muise, C.: SAT-based analysis and quantification of

information flow in programs. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio,
P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 177–192. Springer, Heidelberg (2013)

12. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. SIGSOFT Softw. Eng. Notes 31(3), 1–38
(2006)

13. Michaelis, K., Meyer, C., Schwenk, J.: Randomly failed! the state of randomness
in current Java implementations. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol.
7779, pp. 129–144. Springer, Heidelberg (2013)

14. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the elliptic curve digital signature
algorithm with partially known nonces. Des. Codes Crypt. 30(2), 201–217 (2003)

15. Scheben, C.: Program-level specification and deductive verification of security prop-
erties. Ph.D. thesis, Karlsruhe Institute of Technology (2014)

16. Scheben, C., Schmitt, P.H.: Verification of information flow properties of Java
programs without approximations. In: Beckert, B., Damiani, F., Gurov, D. (eds.)
FoVeOOS 2011. LNCS, vol. 7421, pp. 232–249. Springer, Heidelberg (2012)

17. Scheben, C., Schmitt, P.H.: Efficient self-composition for weakest precondition cal-
culi. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp.
579–594. Springer, Heidelberg (2014)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0166
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0166
https://lists.freebsd.org/pipermail/freebsd-current/2015-February/054580.html
https://lists.freebsd.org/pipermail/freebsd-current/2015-February/054580.html
http://www.key-project.org

Inside a Verified Flash File System:
Transactions and Garbage Collection

Gidon Ernst(B), Jörg Pfähler, Gerhard Schellhorn, and Wolfgang Reif

Institute for Software and Systems Engineering,
University of Augsburg, Augsburg, Germany

{ernst,pfaehler,schellhorn,reif}@isse.de

Abstract. The work presented here addresses a long-standing concep-
tual gap in flash file system verification: We map an abstract graph-
based representation down to the flat blocks of bytes of the storage
medium. Specifically, we consider grouping of file system objects into
atomic transactions together with layout, allocation and garbage collec-
tion of on-flash storage space. Two major concerns guide the design and
verification: proper handling of errors and, more importantly, guaran-
teed recovery from unexpected power cuts. Finding useful specifications
of intermediate interfaces to address these concerns realistically domi-
nates the verification effort.

Keywords: Flash File Systems · Formal verification · Specification ·
Transactions · Garbage collection · Write buffer · KIV

1 Introduction

NASA’s proposal [19] to build a verified file system (FS) for flash memory has
been received with a lot of interest and has prompted a great body of work. Many
file system concepts have been modeled, formalized and verified by different
researchers, with varying degrees of abstraction, such as a path-based interface in
[17], and a graph-based view in [8]. Most of these approaches study some selected
aspects in isolation only. The inner workings of realistic flash file systems have
received relatively little formal treatment in comparison to high-level concepts.

As part of our ongoing effort [26] to construct a verified flash FS,1 we bridge
the remaining conceptual gap between a high-level structured representation
of file system objects towards an encoding within the erase blocks and pages of
flash hardware. We present the specifications and verified implementations of two
intermediate file system layers: A transactional journal provides atomic writes
of groups of file system objects alongside free-space management by garbage
collection of obsolete objects. A persistence layer provides the transition down to
bytes, caching partial writes for efficiency. The two layers are fully integrated into

This work is part of the project “Verifikation von Flash-Dateisystemen”
(RE828/13-1) sponsored by the Deutsche Forschungsgemeinschaft (DFG).

1 http://isse.de/flashix.

c© Springer International Publishing Switzerland 2016
A. Gurfinkel and S.A. Seshia (Eds.): VSTTE 2015, LNCS 9593, pp. 73–93, 2016.
DOI: 10.1007/978-3-319-29613-5 5

http://isse.de/flashix

74 G. Ernst et al.

the rest of our development by mechanized proofs, conducted in the interactive
verification system KIV [10].

Besides functional correctness, it is of great interest that the file system can
deal with power cuts anytime during the run of an operation. Whenever an oper-
ation is aborted in an intermediate state, a designated recovery procedure can
reconstruct a state sufficiently similar to the pre- resp. post-state of the respec-
tive operation. The journal and the persistence layer work in close cooperation
to provide strong guarantees in the presence of such power cuts and similarly for
nondeterministic hardware errors, which have to be taken into account as well.

Alongside the presentation of the formal models we will demonstrate that
artifacts tend to leak through abstractions and interfaces, disrupting “obvious”
verification approaches, even when the implementation concerns are cleanly sep-
arated. We will show how we have addressed such difficulties in this specific case
study, especially focusing on power cuts.

Section 2 provides an overview of our approach and of the core concepts of flash
file systems. Section 3 explains the formal models that represent the boundaries
and capture the requirements for this work. Sections 4 to 7 present the formal mod-
els and some verification artifacts with the details necessary to expose several intri-
cate aspects. Section 8 discusses related work and Sect. 9 draws insights from the
verification. In summary, the contribution of this paper consists of a significant
step towards a realistic, fully verified file system for flash memory.

2 Background

This section gives an overview over the project, the basic idea behind modern
flash file system implementations and how the various parts of the system play
together in Sect. 2.1. The formalism that backs the verification of functional
correctness and power cut safety is summarized in Sect. 2.2.

2.1 Project Overview and Flash File System Concepts

This work is part of an ongoing long-term project to construct a verified, POSIX-
compliant [29] file system for flash memory, taking up NASA’s proposal [19]. We
take the existing UBIFS [18] as a design blueprint, which realizes state-of-the-
art techniques to address the inherent access limitations of flash hardware. To
tackle such a complex verification task we follow an incremental, correct-by-
construction approach: a top-level specification of the textual POSIX standard
is gradually refined towards an implementation.

The resulting layers are (partially) visualized in Fig. 1. These correspond to
the various logical parts of the file system, and to different levels of abstraction.
Technically, each box represents an Abstract State Machines (ASMs) [4], which
are used to encode both specifications (white) and the implementations (gray) in
an operational way. The interface symbol denotes that one component uses
another. Correctness is established by a series of nested refinements, depicted by
dotted lines.

Inside a Verified Flash File System: Transactions and Garbage Collection 75

Index Journal Spec.

Transact. Journal

Persistence Specification

B+ tree

Flash file system core

Persistence with write buffer

Erase Block Management

Abstract FS VFS

POSIX top-level Spec.

this
work

Sec. 3

Sec. 6

GC, Sec. 5

Sec. 4

Fig. 1. System structure

In the first refinement step [12,13]
a formal top-level POSIX specification
is broken down into generic concepts
(such as path lookup) realized by a Vir-
tual Filesystem Switch (VFS) and flash-
specific concepts realized by the flash
file system core. An abstract specifica-
tion of the behavior of the latter decou-
ples the two.

A POSIX-compliant file system can
be thought of as a tree-like structure
consisting of directories with files as
leaves.2 File and directory names are
attached to the edges in the tree. As
an example, Fig. 2 shows an excerpt of
a typical file system hierarchy. Directo-
ries are visualized as grey circles, files as white ones. The root node at the top
corresponds to the path /.

The VFS decomposes the tree structure shown in Fig. 2 into three types
of file system objects: One for directories and files (storing metadata, such as
size, access rights and timestamps), one for directory entries (carrying a name
and a reference to the target object) and one for each segment of file data. In
response to each top-level POSIX operation, the VFS instructs the file system
core to create, modify, or delete a number of these objects. Creating a new file
/tmp/test.txt, for example, yields three updates, corresponding to the part
of Fig. 2 with a dotted contour: one for the new file, one for the new directory
entry, and one to update some metadata of the parent directory /tmp.

Storing these file system objects has to take into account the restricted access
characteristics of flash memory already at a very high level. Flash memory is
structured into erase blocks, each consisting of a number of pages. Random
reads are supported, but writes must be page aligned and sequential within a
block. Overwriting is not supported and space can be reclaimed by erasing whole
blocks only, which is slow and physically wears out the flash memory cells over
time. These difficulties are addressed incrementally by our models.

The flash file system core in Fig. 1 tackles the problem that updates need to
be written out-of-place to flash. For uniformity, file system objects (and their
updates) are encoded within so-called nodes, which are ultimately written to
flash memory through the journal layer. An index (implemented as a B+-tree)
tracks current versions of data by mapping keys to the respective addresses of
the most recent node for a given object. The core relies on the index component
to store this mapping in memory for efficient access and on flash (in an outdated
version) to speed up startup time.

2 With hard-links (which we support) this structure becomes an acyclic graph.

76 G. Ernst et al.

usr tmp

sh test.txt

Fig. 2. File system tree, creation of
/tmp/test.txt

flash
store

flash
index

RAM
index

... test.txt

log

Fig. 3. Conceptual view of the index,
flash store, and log; showing the update
corr. to Fig. 2.

The integration of the index and the journal is shown in Fig. 3. At the bottom
the flash memory is visualized as an unstructured storage, except that “recent”
writes are recorded in a sequential log. At the top, the index is shown: a current
version in main memory encompasses all modifications, but there is also an
outdated version stored on flash. Informally, the log corresponds exactly to the
difference between the two indices. At specific points, called commits, the current
index is stored on flash and the log is emptied.

The flash file system core thus already introduces the concepts necessary
to deal efficiently with out-of-place updates and recovery from power failures
(by replaying the log starting from the flash index). However, the following
aspects are delegated to lower layers: the core assumes that the journal (1) can
write several nodes atomically, (2) can perform a commit atomically together
with the index and (3) takes the block structure and sequential writes into
account. Furthermore, garbage collection is just specified abstractly, because an
implementation is meaningful only once blocks are considered.

In this paper we show how this can be achieved in two steps: The transac-
tional journal provides the atomicity of multiple updates based on blocks and
includes garbage collection. The transition down to bytes is realized within the
persistence layer, which in turn relies on the erase block management as a logical
view of the flash hardware (which is similar to UBI [16], see [23]). It writes the
nodes buffered and sequentially to flash. Additionally, atomicity of the commit
and free space management is provided.

From the implementation ASMs (gray in Fig. 1) we generate executable
Scala3 code (for simulation and testing purposes) and C code, which is inte-
grated into Linux via FUSE.4

2.2 Methodology

The formal foundations of our work are Abstract State Machines (ASMs) [4] and
a corresponding refinement theory [3,25] with a recent extension [11] to support
encapsulated submachines and the modular verification of power cuts.

3 http://scala-lang.org.
4 http://fuse.sourceforge.net.

http://scala-lang.org
http://fuse.sourceforge.net

Inside a Verified Flash File System: Transactions and Garbage Collection 77

Referring back to Fig. 1, the development follows a
recurring pattern as shown on the right: an abstract model
A is decomposed into an implementation part C which
realizes a specific subtask, whereas some concepts remain
abstract, encoded by a (local) subcomponent L. Such a hierarchical construction
of systems is modular in the sense that any correct implementation of L can
be plugged in instead without compromising the proof that C adheres to A.
The critical aspect wrt. power cuts is how persistent data is modeled as a not-
necessarily separable part of L.

Technically, we encode components uniformly as Abstract State Machines
M = ((OPi)i∈I ,St , Init ,Cr , Rec). These expose some operations OPi as external
interface, which have input and output parameters and preconditions. Opera-
tions are defined by abstract imperative programs that compute on an internal
state s : St , with the usual constructs such as assignments, conditionals, loops,
recursion, nondeterministic choice, and calls to submachines. Power cuts are
specified by a crash predicate Cr ⊆ St ×St , subsequent recovery is implemented
by the designated recovery operation Rec. A run of an ASM starts in an initial
state s0 : St with Init(s0) and repeatedly executes operations, that either ter-
minate normally, or are interrupted in an intermediate state followed by a crash
and execution of the recovery operation.

Correctness of a concrete ASM C = ((COPi)i∈I ,CSt ,CInit ,CCr , CRec) is
defined not by giving a postconditions per operation, but instead in terms
of another, more abstract ASM A = ((AOPi)i∈I ,ASt ,AInit ,ACr , ARec) that
encodes the specification and requirements. Intuitively, C refines A, if for each
run of C there is a matching run of A with the same inputs and outputs. For-
mally, we follow the contract approach to refinement [31]. We prove refinement
by forward simulation with a coupling relation R ⊆ ASt × CSt and commuting
diagrams (we omit the standard proof obligations for each pair COPi and AOPi).

On a semantic level, it is easy to integrate correctness of power cuts into the
refinement approach with a small-step semantics for operations: a crashed call
to a concrete operation and its recovery must be matched by a crashed call of
the corresponding abstract operation and recovery. This would lead, in principle
to a temporal proof obligation of the form � crashsafe that must hold during
the run of any COP. Such a property would lead to a huge number of verification
conditions and cannot be expressed in weakest-precondition/Hoare calculus. One
can, however, express the recovery condition in between completed operations as
a variant of the standard forward simulation condition prefixed with a crash

recovery:
R(as, cs) ∧ CCr(cs, cs ′)
→ 〈|CRec(; cs ′)|〉 (∃as ′. ACr(as, as ′) ∧ 〈ARec(; as ′)〉R(as ′, cs ′)), (1)

where 〈|p|〉ϕ denotes the weakest precondition (total correctness) of the pro-
gram p with respect to postcondition ϕ and 〈p〉ϕ asserts the existence of some
terminating execution of p satisfying ϕ in its final state.

78 G. Ernst et al.

Surprisingly, this property is sufficient, which can be derived on a purely
semantic level given simple conditions about the concrete machine C. This reduc-
tion exploits a close relationship between error handling and power cuts (see [21]
for a similar idea): Intuitively, at the lowest level, each operation of the hardware
has the possibility to fail without altering the flash memory. Conversely, all other
state is in RAM and will be completely arbitrary after a crash (for a suitable
definition of CCr). This means that each partial run has at least one completion
that leaves the flash untouched, which implies that the crashed flash states are a
subset of the final ones, reducing the verification burden to an entirely big-step
setting (i.e., expressible with standard verification methodology).

This observation can be generalized to a state space of some intermediate
machine that does not clearly separate flash and RAM data, which is important
for flexibility in modeling. Formally, an operation COPi of C is crash-neutral, if
there is the possibility to postpone the effect of a crash to some final state of
COPi, which leads to the additional proof obligation

crash-neutrality:
preCOPi

(in, cs) ∧ CCr(cs, cs ′) → 〈COPi(in; cs, out)〉 CCr(cs, cs ′) (2)

For a state that is entirely in RAM, this condition is trivial, since CCr is not
constrained then, i.e., admits arbitrary transitions. In practice this means that
(2) must only be proved for abstract submachines L called by C, which is typically
easy. The formalization of this approach and the proofs are detailed in [11].

In the remainder of the paper, we use the following notational conventions:
We write variables in italic and operations/functions/predicates in typewriter
font. We frequently use partial functions/finite maps f : A �→ B. For key a ∈
dom(f) the value associated to it by f is written f [a]. Function override is denoted
by f [a �→ b]. The assignment f [a] := b abbreviates f := f [a �→ b].

3 Formal Specification of the Journal and Index

This section presents the formal model of the journal, which defines the require-
ments for the work of this paper. It is based on our previous work [28]. The model
reflects the limited access characteristics of flash memory. Operations presented
here should be interpreted as atomic transitions, which captures the requirement
of transactional behaviour to be implemented in Sect. 4. The model furthermore
admits that the hardware may sporadically refuse to perform an operation. We
present several invariants that can be expressed (and proved easily) at this level
of abstraction and can be assumed later on for the verification of the refinement.

The abstract state is given by an unordered flash store fs and a list log of
addresses that have been written to since the last commit (c.f. Fig. 3)

spec var fs : Address �→ Node, log : List〈Address〉.

Inside a Verified Flash File System: Transactions and Garbage Collection 79

The journal has an operation to read a node from flash, and operations to store
groups of n nodes,5 extending the log . All operations may fail nondeterministi-
cally without changing the state,6 this can be observed with the returned error
code err (recall that output parameters follow the semicolon). In case of success,
the outputs adr1···n contain the addresses of the new nodes on flash, which are
later stored in the index.

jnl spec get(adr ; nd , err)

{ nd := fs[adr], err := ESUCCESS } or { err := EFAIL }
jnl spec appendn(nd1, . . . , ndn; adr1, . . . , adrn, err)

{ choose adr1···n �∈ dom(fs) distinct

fs := fs[adr1 �→ nd1] · · · [adrn �→ ndn] (�)

log := log + adr1 + · · · + adrn

err := ESUCCESS }
or { err := EFAIL }

We also need a formal model of the index (its implementation is out of scope
of this paper, though). The state of the corresponding ASM maintains two maps

spec var ri , fi : Key �→ Address,

the RAM index ri and the flash index fi . All operations, except commit and
recovery which are explained later on, access the RAM index only. There are
ASM operations to lookup, store, and remove mappings that directly refer to
their algebraic counterparts, e.g.,

idx lookup(key ; adr) { adr := ri [key] }
idx store(key , adr) { ri [key] := adr }
idx remove(key) { ri := ri − key }

The system maintains several invariants, for example that the RAM index
does not contain unallocated addresses; and that all addresses in the log are
valid.

invariant ran(ri) ⊆ dom(fs) and {adr | adr ∈ log} ⊆ dom(fs)

Addresses adr
∈ ran(ri) are obsolete and can be cleaned up by garbage collection
(see Sect. 5). However, the index is accessible (efficiently) only by keys. Each node
nd stores its respective key, denoted by nd .key, and thus one can equivalently
check fs[adr].key
∈ dom(ri). The induced invariant is

invariant ∀ key ∈ ri . fs[ri [key]].key = key (3)

5 A maximum group size of n = 4 nodes is sufficient for all operations of the FS core.
Note that an entire write operation is already decomposed into fixed-size writes of
individual segments by higher components.

6 The failure case also witnesses the crash-neutral run wrt. (4) as required by (2).

80 G. Ernst et al.

end start

...

partial/corrupt node (no trailer)

partial/corrupt group (no end node)

abstract view of
a buffered block

failed write or power cut

persistence:
individual nodes

journal:
node groups

Fig. 4. Detecting partially written nodes and groups

The RAM index determines exactly, which part of the flash memory constitutes
the observable file system state. However, in the event of a power cut the RAM
state is lost. We model this by setting ri to an arbitrary value, without changing
fs. Formally, the effect of a crash is specified by

Cr idx(ri ,fi , ri ′,fi ′) ↔ fi = fi ′

Cr jnl(fs, log , fs ′, log ′) ↔ fs = fs ′ ∧ log = log ′ (4)

(where the overall effect is the conjunction of the two predicates). That the RAM
index is truly redundant and can be recovered to its previous state after a power
cut is expressed by

invariant ri = replay(log ,fi , fs), (5)

where replay is part of the recovery operation Rec of the FS core. It traverses the
log from oldest to newest and (re-)applies all missing operations to the outdated
fi . As a consequence, the log must be computable by the implementation (see
Fig. 10), even though it is not part of the actual concrete state.

The size of the log determines how long it takes to mount the file system
initially. In order to keep the log reasonably small, a periodic commit writes
the current index to flash and empties the log. This has to happen atomically,
otherwise power cuts in between can lead to inconsistent states. Note that a
commit trivially establishes the recovery invariant. Commit is modeled as follows:

spec commit() { fi := ri , log := [] }

4 Transactions in the Journal

The transactional journal layer introduces a structured view of the flash storage
that takes the block structure of flash memory into account. It implements the

Inside a Verified Flash File System: Transactions and Garbage Collection 81

jnl append2(nd1,nd2; adr1, adr2, err)

let size = size(nd1) + size(nd2)

jnl allocate(size; loghead , err)

if err = ESUCCESS then

persistence add node(loghead , gnode(nd1, true, false); adr1, err)

if err = ESUCCESS then

persistence add node(loghead , gnode(nd2, false, true); adr2, err)

if err = ESUCCESS then

persistence flush(loghead , err)

if err = ESUCCESS then validhead := false

Fig. 5. Journal implementation to store two nodes on flash.

specification given in Sect. 3 by mapping fs to an array of blocks, each of which
contains a list of nodes. The log is represented implicitly within the blocks: since
blocks already give a sequential ordering for the contained nodes, it is sufficient
to maintain a list of those blocks which constitute the nodes referred to by
the abstract log . The main difficulty is that the journal needs to implement
transactions of multiple nodes atomically wrt. hardware errors and power cuts,
based on a (abstract specification of the) persistence layer that caches writes
until a page boundary is reached.

In order to guarantee this atomicity, the journal groups nodes per operation.
The whole group must have been written successfully in order to make a valid
contribution to the observable file system state. Atomicity at the level of indi-
vidual nodes is required as well, but for the sake of modularization this concept
is not addressed in the journal but in the persistence layer. This approach per-
mits the journal to treat its underlying storage as a simple sequence of nodes in
contrast to a more complicated view.

Figure 4 puts the two layers in relation. A single erase block is shown at the
bottom, the grey area denotes the part that has already been written to (omitting
its partitioning into pages). Within the block the persistence layer stores the
sequence of nodes, each of which is marked by a header and a trailer. A node
group has a start/end marker at the first/last node. The ragged delimitations at
the right in Fig. 4 indicate a failed write or power cut, accordingly the last node
lacks its trailer, hence it is invalid and so is the entire group.

Transactional Journal. Appending n = 2 nodes to the transactional journal is
then implemented as shown in Fig. 5 (the cases n = 1, 3, 4 are similar). The
algorithm first selects a block number loghead with sufficient remaining space to
hold the new data.

state var loghead : N, validhead : B

The current block can be reused if the last write did not fail, leaving partially
written nodes at the end. So for example the erase block in Fig. 4 can not be

82 G. Ernst et al.

reused.7 We store in validhead whether the current block is still usable. Each
node is then written individually wrapped in a group node

data type GroupNode = gnode(nd : Node, start? : B, end? : B),

with the additional start and end marker. The first flag indicates whether this
node is the first one of a group, the second flag indicates whether it is the last one
(c.f. Fig. 4). A singleton group has both flags set. Every call to the persistence
layer can fail so the returned error code is checked after each step.

At the end of the operation, the corresponding block is flushed to ensure
that all nodes have actually been written. The persistence layer has a write
cache in order to improve efficiency—no guarantees are given about what has
been written until a block is flushed. Note that the returned addresses adr i are
chosen by the persistence layer and are simply passed through.

Persistence Specification. The journal uses the persistence layer to write nodes.
The specification of the persistence layer maintains the finite map blocks from
block numbers to block content of type GroupBlock . Each block consists of a
list of group nodes and additional data, that exposes some details of the persis-
tence implementation in a controlled way in order to express preconditions and
invariants precisely.

spec var blocks : N �→ GroupBlock
data type GroupBlock = gblock(nodes : List〈GroupNode〉, (6)

addrs : List〈Address〉,
flushindex : N, rsize : N)

Field addrs gives for each node in nodes the address where it is stored; rsize
stores the total size of all nodes in a block that are still referenced by the in-RAM
index. It is used to determine blocks suitable for garbage collection as explained
in Sect. 5. Finally, the flushindex exposes, which part of the list nodes has been
persisted; nodes nodes[i] at a position i ≥ flushindex are (conceptually) still
cached in RAM and lost on a power cut. Flushing increases flushindex to the
length of nodes.

The log itself is implicit in the final file system. It can be determined from
the blocks that contain new nodes. For this purpose the persistence layer keeps
their numbers in a list logblocks.

spec var logblocks : List〈N〉

Whenever the journal requests a fresh erase block to be used as part of the log,
this block is recorded at the end of logblocks. Each such addition needs to be
persisted to flash immediately in the implementation.

7 We need to be able to read all nodes from the erase block in order to perform garbage
collection, but detecting partially written nodes reliably in between completely writ-
ten ones is not possible.

Inside a Verified Flash File System: Transactions and Garbage Collection 83

Verification. For the correspondence between fs and log on the one hand and
blocks and logblocks on the other, unflushed nodes and partial groups need to
be omitted. The abstraction considers valid nodes only, which are part of a
proper group that has been flushed entirely. We write blocks↓ for the state blocks
stripped of all invalid nodes (at the end of each erase block, c.f. Fig. 4) and
corresponding addresses. The abstraction relation is formalized as

coupling fs = abs-fs(blocks↓) and log = abs-log(logblocks, blocks↓)

where

abs-fs(blocks)[adr] = nd (7)
iff blocks[n].nodes[i].nd = nd and

blocks[n].addrs[i] = adr for some n, i within bounds

and abs-log collects the addresses of the blocks in logblocks recursively

abs-log([], blocks) = [] (8)
abs-log(n+logblocks , blocks) = blocks[n].addrs + abs-log(logblocks, blocks)

The difficulty during the verification of jnl appendn is that assertions in inter-
mediate states can not be expressed adequately in terms of abs-fs(blocks↓)
and abs-log(logblocks, blocks↓). Both abstractions only reflect the changes after
flushing the cache. Intermediate assertions therefore refer to blocks↓loghead , which
removes all invalid nodes from all blocks except for the block loghead , where all
the changes take place.

The other aspect crucial for the verification of jnl appendn is that if the
journal head is valid, it is the last block in the log and it ends on a complete,
flushed group, i.e., if validhead is true then invariant

loghead ∈ blocks ∧ logblocks
= [] ∧ loghead = logblocks.last
∧ (blocks[loghead].nodes
= [] → blocks[loghead].nodes.last.end?)
∧ #blocks[loghead].nodes = blocks[loghead].flushindex

also holds. Otherwise, it would be possible that a newly appended node completes
a previously invalid node group.

5 Garbage Collection

The out-of-place updates of the transactional journal will necessarily accumulate
a lot of obsolete data over time, i.e., data that is no longer referenced by the
index. Garbage collection (GC) of the journal area remedies this problem by
moving and compacting live data at the granularity of nodes. The GC procedure
thus depends on and modifies the RAM index; furthermore, it is the only point
where flash memory space is actually reclaimed.

84 G. Ernst et al.

The difficulties from a formal perspective are twofold: caching of writes of
nodes is crucial for the effectiveness of garbage collection, but again considerably
complicates the verification. Furthermore, choosing a block for garbage collec-
tion requires additional information and ties several layers closer together than
already necessary, especially with respect to the recovery from power failures as
explained in more detail in Sect. 7.

Specification. Again referring to the view in terms of fs and ri of the journal
specification (Sect. 3), we can denote the central correctness property of the GC
that no data is lost. Formally,

fs ◦ ri = fs ′ ◦ ri ′ and dom(ri) = dom(ri ′) (9)

must hold for the primed state after the run of the GC, where ◦ denotes
function composition. The GC algorithm roughly corresponds to a number of
transitions of the form

fs[adr ′] := fs[ri [key]], ri [key] := adr ′, log := log + adr ′,

for some key ∈ dom(ri) and adr ′ fresh in fs. The first assignment moves live data
to a different location, the second assignment updates the index, and the third
records the operation in the log. Subsequently, some addresses adrs ∩ ran(ri) = ∅
can be deleted by

fs := fs\adrs.

Implementation. In practice, a number of side conditions need to be satisfied,
though. For example, a block that is part of the log cannot be collected until
it is merged into the ordinary part of the journal during a commit, because
it is needed for recovery (Sect. 7). Also, while the whole block is collected in
one go, the corresponding index updates must be deferred: Due to caching,
low-level write failures may not be detected immediately and only at the end
(after flushing) it is clear whether the copying succeeded. The implementation of
garbage collection is shown in Fig. 6. It first selects a block for garbage collection.
Then the live nodes of the selected block are copied, which yields a list keys of
affected keys and corresponding new addresses dstadr that are to be updated in
the index. Finally, the now obsolete block is deallocated.

The heart of the garbage collection is the procedure jnl copy block. It reads
all nodes nds and their addresses srcadrs from flash. In a loop, each node nd in
nds is checked whether it is still in the index, i.e., if the key nd .key exists in the
index and still maps to the node’s address srcadr . Note that the index does not
support queries by address, only by key, therefore each node has to store its own
key, and by invariant (3) the keys match. If the node is not obsolete, we append
a new copy to the journal and keep the index update key �→ dstadr for later. At
the end, we ensure that all nodes are persisted by flushing the block.

Verification. In the invariant (not shown) for the while loop in jnl copy block,
it is necessary to state that keys and dstadrs collected so far correspond to the

Inside a Verified Flash File System: Transactions and Garbage Collection 85

jnl garbage collection()

persistence get gc block(; block)

jnl copy block(block ; keys, dstadrs, err)

if err = ESUCCESS then idx update all(keys, dstadrs; err)

if err = ESUCCESS then persistence deallocate(block ; err)

jnl copy block(block ; keys, dstadrs, err)

let srcadrs = [],nds = []

persistence read block(block ; srcadrs,nds, err)

while srcadrs = [] ∧ err = ESUCCESS do {
let srcadr = srcadrs.head,nd = nds.head.nd, exists, idxadr , dstadr in

idx lookup(nd .key; exists, idxadr , err)

if err = ESUCCESS ∧ exists ∧ idxadr = srcadr then

. . . // if necessary move the log head and flush the old block

if err = ESUCCESS then

persistence add node(loghead , gnode(nd , true, true); dstadr , err)

keys := keys + key , dstadrs := dstadrs + dstadr

srcadrs := srcadrs.tail,nds := nds.tail

}
if err = ESUCCESS then persistence flush(loghead ; err)

Fig. 6. Garbage collection procedures

nodes that are still referenced by the index. Furthermore, not all of the nodes
written are actually persisted immediately, so in the actual abstraction only
a prefix of the written nodes appears in fs and log . It is therefore necessary
to reason about the abstraction “after” a flush to the current journal head.
Additionally, there may not always be a current journal head, leading to several
distinct cases in the invariant.

Choosing Blocks for GC. From the perspective of functional correctness it is
sufficient to choose any block of the journal that is outside the log,8 but we
certainly want to ensure that garbage collection picks a reasonable one. The
information necessary for a good choice is for each block how many bytes still
belong to live data, encoded in the rsize field (Sect. 4).

Here we have an example of coupling between components: although stored
within the persistence layer, rsize is updated alongside index operations, which
ultimately determines what data (addresses) are referenced. In order to make
the index aware of the size of nodes without the need to access them directly,

8 Note that wear-leveling is performed by a lower layer and therefore is not limited by
the choice of block of the garbage collection, i.e., blocks in the log can be moved by
wear-leveling.

86 G. Ernst et al.

addresses carry the number of bytes the corresponding node occupies on flash.
Addresses therefore are structured, they contain an erase block, a byte-offset in
the block, and the size of the node stored:

data type Address = @(block : N, offset : N, size : N)

If an index update replaces address adr stored under key with new adr ′, the
rsize field of the block adr belongs to is decreased by adr .size. Symmetrically,
the field of adr ′’s block is increased. For the quality of the garbage collection
this information should match the one we could obtain (inefficiently) from the
index. Therefore, we prove the invariant

blocks[n].rsize =
∑ {

adr .size | adr ∈ ran(ri), adr .block = n
}

(10)

for all n ∈ dom(blocks). The range operator yields the set of addresses in the
index, we restrict to those addresses in block n and then sum up all their size
fields. Note that invariant (10) is independent of the question of how many nodes
are actually stored on flash in block n, i.e., it does not mention blocks↓ but only
the size stored in addresses. This simplifies reasoning about changes to rsize.

6 Persistence: Atomic Commit and Write Buffering

The persistence layer encodes all data structures of the flash file system to bytes.
It maintains the disk layout in order to decide which erase blocks are allocated
for which purpose.

One challenge for the implementation and verification is again atomicity; this
time in the form of the commit operation and writing of individual nodes. The
second challenge is that free space management and the garbage collection (in
the form of the rsize field) requires additional information stored per block.
This information is kept in the Block Property Table (BPT) that is maintained
in RAM and (in an outdated form) on flash, stored during the commit. As shown
in Sect. 7, recovering the BPT after a power failure is quite delicate.

Disk Layout and Atomic Commit. The disk is partitioned into two parts:

main area: journal & index BPT 1 logblocks 1 superblock BPT 2 logblocks 2

The first part spans the superblock, a copy of the internal management data
BPT from the last commit and the list of blocks allocated for the log (corre-
sponding to logblocks in Sect. 4). For the BPT and log blocks, space for two
versions is provisioned. The superblock references the “current” one to be read
at startup time. The spare one is written during commit, a subsequent change
of the superblock ensures atomic transition to the new state. Assuming the flash
index is also written out-of-place by the index model, this already yields a correct
implementation of the commit operation from Sect. 3.

Inside a Verified Flash File System: Transactions and Garbage Collection 87

The second part of the device consists of all erase blocks with group nodes,
i.e., the blocks occupied by the journal, and erase blocks storing the on-flash
index (not covered in this paper).

The Block Property Table (BPT) is an array with some data for each erase
block of the main area:

state var bpt : Array〈BPTEntry〉
data type BPTEntry = bptentry(size : N, rsize : N, type : BPTType)
data type BPTType = FREE | GROUP NODES | INDEX NODES

pages written cached partial
page in RAM

erase
block

Fig. 7. Write buffer

The BPT is consulted to find a FREE block
when a fresh one is requested by the jour-
nal layer. The rsize field corresponds to the
abstract counterpart shown in (6). The size
field stores how many bytes have been writ-
ten to the block.

Write Buffering. The main functionality required by the journal is appending
a single (group-) node to a block. The implementation is shown in Fig. 8. It
is based on a write buffer, which stores one flash page as a cache in RAM to
aggregate non-aligned writes. Figure 7 visualizes how this cache is overlaid with
the data on flash: the whole part marked in grey designates written bytes. Write
buffers are allocated on demand and stored in the map wbufs.

state var wbufs : N �→ WBuf
data type WBuf = wbuf(off : N, buf : Array〈Byte〉, nbytes : N)

In order to create a write buffer the offset where we want to start writing
data must be known, which is readily available in the BPT as size. Proce-
dure persistence add node then writes a header containing the length of the
encoded node, the node itself and a trailer. The block number, offset and size are
assembled into the returned address adr . A partially written node is detected
by a missing trailer. Flushing of a block (persistence flush) requires a write
of a padding node that spans the space until the next page boundary.

Verification. The abstraction relation between the specification and implemen-
tation of the persistence layer basically states that

– the current version of logblocks is stored on flash,
– the BPT from the last commit is stored on flash,
– all group nodes are stored in the main area and
– the flushindex of each block corresponds to the exact number of nodes that

have been written to flash and are no longer held in the write buffer.

Difficult in terms of verification and specification is that the encoding of all nodes
in one block is not functional, since the abstraction needs to filter out padding
nodes and partially written nodes at the end of each block.

88 G. Ernst et al.

persistence add node(block , gnode; adr , err)

if ¬ wbuf is buffered(block) then wbuf create(block , bpt [block].size)

let buf = encode-group-node(gnode)

let buf 0 = encode-header(nodeheader(#buf , false))

wbuf write(block , HEADER SIZE, buf 0; err)

if err = ESUCCESS then wbuf write(block ,#buf , buf ; err)

if err = ESUCCESS then wbuf write(block , HEADER SIZE, trailer; err)

if err = ESUCCESS then

let size = 2 · HEADER SIZE + #buf

adr := @(block , bpt [block].size, size), bpt [block].size += size

else bpt [block].size = BLOCK SIZE

Fig. 8. Writing a single group node

7 Power Cuts and Recovery

In this section we describe how the various models interact in the event of a
power cut. It is modeled as assigning arbitrary values to all in-RAM data struc-
tures. The persistent storage is left unchanged. In bottom-up fashion we give
each model a chance to recover to a consistent and desirable state via the recov-
ery operation. The machine of the journal layer, for example, starts with the
recovered state of the persistence layer.

In general we show recovery property (1) for each refinement, i.e., the power
cut and subsequent recovery between abstract and concrete model match, in the
sense that invariants and abstraction relations hold afterwards. The difficulty
from a specification and verification perspective is that different parts of the
state behave differently: Some parts are restored to the state directly before the
power cut while other parts are restored to the state of the last commit. Some
parts need to be fixed and do not resemble any previous state. Furthermore,
several aspects of recovery from power cuts leak through abstractions, making
it an inherently collaborative effort of several models.

By definition (4) the journal and persistence implementation together restore
to the same state and return the list of addresses of the log for its replay (see
invariant (5)). The implementation of the recovery operations is shown in Figs. 9
and 10 (error handling omitted for brevity). After the persistence layer has read
the necessary data from flash and fixed the outdated BPT (which is the hard
part, as explained below), the journal takes over to scan the erase blocks that
form the log, removing invalid group nodes at the end of each block and con-
catenating all the addresses. Not incidentally, this corresponds exactly to the
abstraction abs-log in (8).

The BPT read from flash needs to be adapted in two ways: The blocks that
have been allocated for group nodes since the last commit (subset of those in
the log) need to be marked as allocated. The blocks constituting the log at the

Inside a Verified Flash File System: Transactions and Garbage Collection 89

persist recover(; bpt , logblocks)

read superblock(; superblock)

read log(superblock ; logblocks)

read bpt(superblock ; bpt)

fix bpt(logblocks; bpt)

Fig. 9. Recovery of persistence

jnl recover(logblocks; log)

log := []

while logblocks = [] do

persistence read blk(logblocks.head; adrs,nds)

remove nonend nodes(; adrs,nds)

log := log + adrs, logblocks := logblocks.tail

Fig. 10. Recovery of the log

time of the power cut must be considered non-writable: it cannot be determined
how far exactly they have been written. Therefore, we treat those blocks as full
and set their size field in the BPT accordingly.

Abstractly, after the recovery by the persistence implementation the journal
implementation sees the following changes to the group blocks blocks:

1. the nodes that were not yet persisted (i.e., are above flushindex) vanish,
2. the rsize field is reverted to the value from the last commit,
3. previously garbage collected and deallocated group blocks reappear.

The first point is no problem, because the abstraction (7) in terms of blocks↓
upwards to the flash store fs only considers the persisted nodes anyway.

The reverted rsize has the consequence that the invariant (10) is violated
if one considers the in-RAM index before the power cut. However, after a power
cut, we read the index from the last commit, too. And the index and the rsize
fields from the last commit obviously satisfied invariant (10) at the point of
commit. This establishes the invariant right after the recovery of the persistence
layer and reading of the on-flash index. Replaying the index afterwards then also
updates the rsize fields correctly.

The reappearing blocks are problematic, because they may contain garbage
data (it is unknown whether they have been erased on flash or not) and realloca-
tion is precluded until they are deallocated once again. We store the blocks that
have been deallocated since the last commit abstractly, exclude their contents in
the abstractions abs-log and abs-fs (and disallow reading and writing), prop-
agating this constraint towards the upper layers. After the replay of the index
by upper layers the RAM index will no longer reference them, since this was the
reason for their deallocation, and we can now safely remove these blocks.

8 Related Work

NASA’s proposal [19] has prompted a large body of related work, covering many
aspects of file systems in general and also specific to flash memory.

High-level specifications include the early work of Morgan and Sufrin [22] and
mechanized models and proofs [1,14,15,17]; a recent model of POSIX which is
very complete and detailed is presented in [24]. These efforts are orthogonal to
this paper, see [13] for a detailed comparison to our development. Formalizations
of flash memory below the models presented here include [5].

90 G. Ernst et al.

Two developments actually connect a high-level view to the pages and blocks
of flash hardware [8,20]. In both cases, only file content is mapped, written, and
garbage collected at the granularity of flash pages, at the expense of extra state
that is kept in memory. An encoding of the directory/file structure and any
other auxiliary data structures (such as the BPT, log and on-flash index) down
to flash and caching of writes are not considered. Kang and Jackson [20] deals
only with crashes during a write operation and intertwines the recovery strategy
with the implementation of the write operation. Some Flash Translation Layers
(FTLs) and [8,20] have a page-based allocation scheme assuming additional,
overwritable bits in each page that track the allocation status. These are not
always present or might be used entirely for error-correction codes [30]. We have
to recover newly allocated blocks and deallocate reappearing blocks after a power
cut. Furthermore, the models do not consider the restriction to sequential writes
within an erase block. [8] reads all pages during mounting/recovery in order to
rebuild the index.

Chen et al. [6] discuss different formalisms to express crash and recovery on
a high level, and settle for a pre/post verification in the Hoare-logic style, aug-
mented with a crash specification and a designated recovery operation attached
to individual operations. Very nice follow up work [7] introduces Crash Hoare
Logic in more detail and presents the verification of a small but complete file sys-
tem called FSCQ targeting conventional magnetic drives. In comparison, their
approach requires one to reason about intermediate states using a special logic,
whereas we are able to reduce the proof effort on a semantic level.

Marić and Sprenger [21] consider a storage system with similar properties of
that of a file system, but with a strong focus on redundancy.

9 Discussion and Conclusion

We have presented two central components for verified flash file systems, covering
concepts not realistically addressed in previous work.

The work has been done in the context of the Flashix project and it is
strongly connected to the design of the overall system. One observation is that
it is non-trivial to find a good decomposition of the system. Since we have taken
the existing implementation UBIFS as a blue-print, many concepts were already
worked out properly, but isolating these from the verification point-of-view took
quite some time—we estimate somewhat less than half a person-year in total for
the models and proofs; the overall project effort is in the order of three to four
person years. At least half can be attributed to errors and power cut safety. The
specifications developed in this work specifically are in the order of 4 k lines of
ASM code and algebraic definitions in addition to around 800 theorems.

The large gap in representation of system state (abstract tree down to bytes)
leads to a deeply nested hierarchy of layers, see the full version of Fig. 1 in [26].
It is beneficial to be able to pinpoint the individual concepts as abstract models
(i.e., ASMs) in their own respect: one can verify invariants on the abstract level,
executable specifications were also useful during testing and validation.

Inside a Verified Flash File System: Transactions and Garbage Collection 91

However, a deep hierarchy has the issue that models become semantically
entangled, which breaks modularity in a way that is hard to resolve, as noted
before in e.g., [2]. Resilience against hardware errors and abrupt power cuts
aggravates the problem of finding suitable, sufficiently abstract specifications. It
is likewise not obvious, to what extent such effects should be masked within the
implementation of a specific component.

Specification entanglement manifests for example in the flushindex and
rsize fields in Sect. 4 and the extra size field in addresses. Garbage collection
has issues on its own: it should be pointed out that upper layers in the software
stack must be able to deal with it, namely, the file system core should be agnostic
to GC (which is established in terms of its specification). Another issue are
the reappearing blocks in Sect. 7 caused by the fact that some internal data
structures are stored only during a commit. We think that this emphasizes that
specifying systems well is at least as hard as the verification itself.

It is doubtful whether it would pay off to further refactor the design, as we
found that even small changes tend to affect large parts of the verification, mainly
due to hardware failures and power cuts. Of course, improving tool support for
such refactoring is one way to mitigate this problem.

With previous work [13,23,28] we have now completed the design of a fully
functional flash file system. All models and proofs are available online at [9]. The
verification is almost done (missing: parts of the B+ trees) and we’re generating
preliminary C code, which is in the order of 10 kLoC. An evaluation of the
performance of the file system is currently under way.

Two important features that require further research are caching across
POSIX operations and concurrency. Caching across operations is in principle
supported by our implementation, but a suitable refinement theory still needs
to be worked out. Internal concurrency for garbage collection and erasing of
blocks reduces the latency of operations from the user’s point-of-view. To sup-
port this eventually (�), the semantics of our crash-refinement theory has been
made compatible with the temporal logic RGITL [27] implemented by KIV.

Acknowledgement. We thank the anonymous reviewers for their detailed and helpful
comments.

References

1. Arkoudas, K., Zee, K., Kuncak, V., Rinard, M.: Verifying a file system implemen-
tation. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol.
3308, pp. 373–390. Springer, Heidelberg (2004)

2. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Lessons learned from Micro-
kernel verification - specification is the new bottleneck. In: SSV, pp. 18–32 (2012)

3. Börger, E.: The ASM refinement method. Form. Asp. Comput. 15(1–2), 237–257
(2003)

4. Börger, E., Stärk, R.F.: Abstract State Machines – A Method for High-Level Sys-
tem Design and Analysis. Springer, Berlin (2003)

92 G. Ernst et al.

5. Butterfield, A., Woodcock, J.: Formalising flash memory: first steps. In: IEEE
International Conference on Engineering of Complex Computer Systems, pp. 251–
260 (2007)

6. Chen, H., Ziegler, D., Chlipala, A., Kaashoek, M.F., Kohler, E., Zeldovich, N.:
Specifying crash safety for storage systems. In: 15th Workshop on Hot Topics in
Operating Systems (HotOS XV). USENIX Association (2015)

7. Chen, H., Ziegler, D., Chlipala, A., Zeldovich, N., Kaashoek, M.F.: Using crash
hoare logic for certifying the FSCQ file system. In: Proceedings of SOSP. ACM
(2015)

8. Damchoom, K.: An incremental refinement approach to a development of a flash-
based file system in Event-B, Ph.D. thesis, University of Southampton (2010)

9. Ernst, G., Pfähler, J., Schellhorn, G.: Web presentation of the Flash Filesystem
(2015). https://swt.informatik.uni-augsburg.de/swt/projects/flash.html

10. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV - overview
and VerifyThis competition. Softw. Tools Technol. Transf. (STTT) 17(6), 677–694
(2015)

11. Ernst, G., Pfähler, J., Schellhorn, G., Reif, W.: Modular, crash-safe refinement for
ASMs with submachines. Science of Computer Programming, ABZ special issue,
2015 (submitted) (2014)

12. Ernst, G., Schellhorn, G., Haneberg, D., Pfähler, J., Reif, W.: A formal model
of a virtual filesystem switch. In: Proceedings of Software and Systems Modeling
(SSV), EPTCS, pp. 33–45 (2012)

13. Ernst, G., Schellhorn, G., Haneberg, D., Pfähler, J., Reif, W.: Verification of a
Virtual Filesystem Switch. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013.
LNCS, vol. 8164, pp. 242–261. Springer, Heidelberg (2014)

14. Ferreira, M.A., Silva, S.S., Oliveira, J.N.: Verifying intel Flash File System core
specification. In: Modelling and Analysis in VDM: Proceedings of the Fourth
VDM/Overture Workshop, pp. 54–71, Technical report CS-TR-1099 (2008)

15. Freitas, L., Woodcock, J., Fu, Z.: POSIX file store in Z/Eves: an experiment in the
verified software repository. Sci. Comput. Program. 74(4), 238–257 (2009)

16. Gleixner, T., Haverkamp, F., Bityutskiy, A.: UBI - Unsorted Block Images (2006).
http://www.linux-mtd.infradead.org/doc/ubidesign/ubidesign.pdf

17. Hesselink, W.H., Lali, M.I.: Formalizing a hierarchical file system. Form. Asp.
Comput. 24(1), 27–44 (2012)

18. Hunter, A.: A brief introduction to the design of UBIFS (2008). http://www.
linux-mtd.infradead.org/doc/ubifs whitepaper.pdf

19. Joshi, R., Holzmann, G.J.: A mini challenge: build a verifiable filesystem. Form.
Asp. Comput. 19(2), 269–272 (2007)

20. Kang, E., Jackson, D.: Formal Modeling and Analysis of a Flash Filesystem in
Alloy. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS,
vol. 5238, pp. 294–308. Springer, Heidelberg (2008)

21. Marić, O., Sprenger, C.: Verification of a transactional memory manager under
hardware failures and restarts. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM
2014. LNCS, vol. 8442, pp. 449–464. Springer, Heidelberg (2014)

22. Morgan, C., Sufrin, B.: Specification of the UNIX filing system. Specification Case
Studies, pp. 91–140. Prentice Hall Ltd., Hertfordshire (1987)

23. Pfähler, J., Ernst, G., Schellhorn, G., Haneberg, D., Reif, W.: Formal specification
of an erase block management layer for flash memory. In: Legay, A., Bertacco, V.
(eds.) HVC 2013. LNCS, vol. 8244, pp. 214–229. Springer, Heidelberg (2013)

https://swt.informatik.uni-augsburg.de/swt/projects/flash.html
http://www.linux-mtd.infradead.org/doc/ubidesign/ubidesign.pdf
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf

Inside a Verified Flash File System: Transactions and Garbage Collection 93

24. Ridge, T., Sheets, D., Tuerk, T., Giugliano, A., Madhavapeddy, A., Sewell, P.:
SibylFS: formal specification and oracle-based testing for POSIX and real-world
file systems. In: Proceedings of SOSP. ACM (2015)

25. Schellhorn, G.: Completeness of fair ASM refinement. Sci. Comput. Program.
76(9), 756–773 (2009). Elsevier

26. Schellhorn, G., Ernst, G., Pfähler, J., Haneberg, D., Reif, W.: Development of a
verified flash file system. In: Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS,
vol. 8477, pp. 9–24. Springer, Heidelberg (2014)

27. Schellhorn, G., Tofan, B., Ernst, G., Pfähler, J., Reif, W.: RGITL: a temporal logic
framework for compositional reasoning about interleaved programs. Ann. Math.
Artif. Intell. (AMAI) 71, 1–44 (2014)

28. Schierl, A., Schellhorn, G., Haneberg, D., Reif, W.: Abstract specification of the
UBIFS file system for flash memory. In: Cavalcanti, A., Dams, D.R. (eds.) FM
2009. LNCS, vol. 5850, pp. 190–206. Springer, Heidelberg (2009)

29. The Open Group: The Open Group Base Specifications Issue 7, IEEE Std 1003.1,
2008 Edition. http://www.unix.org/version3/online.html (login required)

30. UBI - Out-of-Band Data. http://www.linux-mtd.infradead.org/faq/ubi.html
31. Woodcock, J.C.P., Davies, J.: Using Z: Specification. Proof and Refinement. Pren-

tice Hall International Series in Computer Science. Prentice Hall, New York (1996)

http://www.unix.org/version3/online.html
http://www.linux-mtd.infradead.org/faq/ubi.html

How to Avoid Proving
the Absence of Integer Overflows

Martin Clochard1,2, Jean-Christophe Filliâtre1,2(B), and Andrei Paskevich1,2

1 Lab. de Recherche En Informatique, Univ. Paris-Sud, CNRS, Orsay 91405, France
2 INRIA Saclay – Île-de-France, Orsay 91893, France

{martin.clochard,jean-christophe.filliatre,andrei}@lri.fr

Abstract. When proving safety of programs, we must show, in partic-
ular, the absence of integer overflows. Unfortunately, there are lots of
situations where performing such a proof is extremely difficult, because
the appropriate restrictions on function arguments are invasive and may
be hard to infer. Yet, in certain cases, we can relax the desired property
and only require the absence of overflow during the first n steps of exe-
cution, n being large enough for all practical purposes. It turns out that
this relaxed property can be easily ensured for large classes of algorithms,
so that only a minimal amount of proof is needed, if at all. The idea is
to restrict the set of allowed arithmetic operations on the integer values
in question, imposing a “speed limit” on their growth. For example, if
we repeatedly increment a 64-bit integer, starting from zero, then we
will need at least 264 steps to reach an overflow; on current hardware,
this takes several hundred years. When we do not expect any single exe-
cution of our program to run that long, we have effectively proved its
safety against overflows of all variables with controlled growth speed.
In this paper, we give a formal explanation of this approach, prove its
soundness, and show how it is implemented in the context of deductive
verification.

1 Introduction

Proving the safety of a program involves showing the absence of arithmetic
overflows. By itself, an overflow does not crash the program, but it silently results
in a meaningless value with, typically, fatal consequences in other places of the
program. A famous example is described in Joshua Bloch’s blog post Nearly All
Binary Searches and Mergesorts are Broken [1]. It is related to the computation
of the mean of two 32-bit array indices involved in these two algorithms in
the Java standard library. When using large arrays, an arithmetic overflow may
occur, possibly resulting in a negative array index and hence a program crash.

Today, most formal methods do tackle arithmetic overflows, e.g., abstract
interpretation [2], model checking [3], or deductive verification [4]. In deductive
verification, for instance, one models machine integers as specific data types
where operations are given suitable statically-verified preconditions to prevent
overflows. In the case of binary search, it can be proved that the computation
of the mid-point of low and high as low + (high - low)/2 does not overflow.
c© Springer International Publishing Switzerland 2016
A. Gurfinkel and S.A. Seshia (Eds.): VSTTE 2015, LNCS 9593, pp. 94–109, 2016.
DOI: 10.1007/978-3-319-29613-5 6

How to Avoid Proving the Absence of Integer Overflows 95

Yet there are many situations where it is extremely difficult to prove the
absence of arithmetic overflows. Perhaps the simplest example is that of a global
counter that is incremented by one every time a fresh value is requested, for
instance to generate labels or timestamps. Deductive verification, in principle,
could accommodate the necessary bound pre-conditions; yet such bounds would
invade specifications throughout the program, resulting in an impractical anno-
tation/proof burden.

We may, however, observe, that to overflow this global counter— assuming it is
stored as a 64-bit unsigned integer and starts from zero— we need to perform 264

individual increment operations, plus all the work we do on each new value. Even if
we perform one billion increment operations per second, it would take us more than
584 years to reach the limit. Unless we expect our program to have century-long
runs, we can rest assured that this particular counter is, for all intents and pur-
poses, safe from overflow. The crucial part of the argument is that the counter can
only grow by one at a time: arbitrary additions, multiplications and so on are not
allowed. In this paper, we propose a way to make this meta-argument formal, and
we prove the soundness of our approach. We also demonstrate an implementation
of this method in Why3 [5], a tool for deductive program verification.

We stress that this approach does not reduce the need in traditional methods
(such as deductive verification, abstract interpretation, or model checking) for
proving the absence of integer overflows, as they target different uses of integers.
The idea is to use our technique in combination with other methods, within the
same program. We give an example of such a combination in this paper.

The paper is organized as follows. Section 2 motivates our work with classes
of programs where we want to avoid exhibiting bounds on integers to prove the
absence of overflows. Section 3 introduces our solution, along with its proof of
soundness. Section 4 describes our implementation in Why3 and illustrates it
with a representative example. We conclude with a discussion.

2 Motivating Examples

We have already mentioned the example of a symbol generator (gensym for
short): a program returning a fresh integer on each call. A gensym is trivially
implemented with a global variable, as described in Program 1. (A more robust
implementation would hide the global variable s, using for instance a static
variable local to function gensym.)

Program 1. Symbol generator
1: s ← 0
2: function gensym

3: s ← s + 1
4: return s
5: end function

96 M. Clochard et al.

Suppose that we want to prove, in a usual way, that the increment operation in
gensym does not overflow the counter. In the context of deductive verification, we
have to put a bound pre-condition on gensym, requiring s to be strictly less than
264−1. In order to satisfy this precondition, we now have to constrain, in the same
way, every user of gensym in our program. In cases where we call gensym inside a
loop or a recursive function, new preconditions and invariants are needed in order
to put a bound on the number of iterations or recursive calls. Essentially, we have
to unroll the whole execution of our program and come up with sufficient bounds
on its input in order to satisfy the bound pre-condition of gensym. At the very
least, these added annotations will inflate the program specification and hamper
verification. What is worse, inferring suitable bounds for the program input might
be a computationally hard problem. However, if s is a 64-bit unsigned integer, and
if we agree, as explained above, to content ourselves with the absence of overflows
during the first hundred years of the program execution—suddenly, we have noth-
ing to prove about gensym itself, and we only have to ensure that counter s is not
modified in some dangerous way (say, doubled) elsewhere in the program.

A large class of examples, where one might want to apply this meta-argument,
is that of programs computing the size of a data structure. Consider, for instance,
a function computing the length of a linked list. It can be implemented either
recursively (Program 2) or iteratively using a while loop (Program 3). In both
cases, it amounts to incrementing the length by one for each list element. Just
as in the previous case, if the result is stored in a 64-bit integer, it would take
too much time to overflow it.

Program 2. Length of a list, recursive
1: function length(l)
2: if l = null then return 0
3: else return 1 + length(l.next)
4: end if
5: end function

Program 3. Length of a list, iterative
1: function length(l)
2: len ← 0
3: while l �= null do
4: len ← len + 1
5: l ← l.next
6: end while
7: return len
8: end function

Another example in this category is Program 4 which computes the size of
a binary tree, recursively. In this code, we compute the sum of the sizes of the
two sub-trees, as returned by the recursive calls. Yet, in terms of computation,

How to Avoid Proving the Absence of Integer Overflows 97

Program 4. Size of a tree
1: function size(t)
2: if t = empty then return 0
3: else return 1 + size(t.left) + size(t.right)
4: end if
5: end function

this addition is equivalent to a sequence of increments by one. This equivalence
is evident if we rewrite the program to accumulate the size in a global counter.

x1

x2

...

xh

Data structures with sharing are a special case. Consider for instance
the tree of depth h shown on the right. It has size 2h−1. If, when computing
its size, we employ memoization in order to exploit the sharing and speed up
computation, our meta-argument does not hold anymore. In that case, the
additions performed could overflow since results of previous computations
are reused and thus accumulated several times in the result.

However, if memoization is not used, our approach applies even for trees
with sharing. Indeed, if we call the size function from Program 4 on a tree
with sharing, it will simply not terminate in practice for a large value of h,
say 100, even if we were able to build that tree in space and time O(h).
This shows that our meta-argument is really about time (in this case, the time
spent in the traversal of the data structure) and not space (the space used to
store the data structure).

Another class of programs for which our approach applies is that of data
structures that store integers for internal management. An example is non-empty
linked lists with destructive concatenation, as illustrated in Fig. 1. Each list con-
tains its length and two pointers to its first and last elements. When performing
the concatenation of lists a and b, the last element of a now points to the first
element of b. The pointer to the last element of a is updated so that it now
points to the last element of b. Finally, the length of list a is updated and list b
is invalidated, by setting its pointers to null. The code is given in Program 5.

Just as in the previous program, the addition on line 3 is not dangerous. Indeed,
the length of each list is limited by the time spent to build it. Since list b is invali-
dated when performing append(a, b), we are moving the “time credits” earned by
the construction of b into the updated length of a, without risking an overflow.

Program 5. Destructive Append on Linked Lists
1: procedure append(a, b)
2: assert a �= b ∧ a.first �= null ∧ b.first �= null
3: a.size ← a.size + b.size
4: a.last .next ← b.first
5: a.last ← b.last
6: b.first ← null
7: b.last ← null
8: end procedure

98 M. Clochard et al.

Before: 3 3
a b

⊥⊥

After: 6 3

⊥

a b

⊥

⊥

Fig. 1. Destructive append on linked lists.

Another example involving integers stored in a data structure is union-find
with weighted union. A union-find structure implements equivalence classes with
canonical representatives. It is a forest, where each node contains a pointer link
to its father and an integer w, its weight, which is an upper bound of the length
of a path from this node to a leaf. When performing the union of two classes
represented by root nodes a and b, the weights are used to decide whether a
is linked to b or, conversely, b is linked to a. When the weights are equal, we
choose arbitrarily and we increment the weight of the root node by one. There is
obviously no danger of arithmetic overflow here, since weights are only obtained
by successive increments by one.

Program 6. Union-Find with Weighted Union
1: procedure union(a, b)
2: if a �= b then
3: if a.w < b.w then a.link ← b else b.link ← a end if
4: if a.w = b.w then a.w ← a.w + 1 end if
5: end if
6: end procedure

Another potential use case, which we do not consider in detail here, is that
of de Bruijn indices [6], a technical solution to the implementation of binders
in symbolic computation. A variable is represented as an integer, which counts
the number of binders under which it appears. When performing substitutions,

How to Avoid Proving the Absence of Integer Overflows 99

such integer must be updated, being either incremented or decremented. Such
increments only occur one by one, hence are safe.

Program 7. Number of solutions to the N -queens problem
1: function n-queens(b)
2: if board b contains N queens then return 1
3: else
4: r ← 0
5: for any legal board b′ obtained by adding a queen to board b do
6: r ← r + n-queens(b′)
7: end for
8: return r
9: end if

10: end function

Our final class of examples are combinatorics programs in which backtrack-
ing is used to enumerate all the solutions of a problem. Consider for instance
the famous n-queens problem, where we count the number of ways to place n
non-attacking queens on a n × n board. Program 7 contains pseudo-code for a
function n-queens that progressively adds queens to a board b until a solution
is found. The numbers manipulated in this program are bounded by the number
of solutions that have already been enumerated by the recursive calls.

What is important in this example is that we do not know any reasonable
upper bounds on the value that we compute, so it would not be feasible to
prove the absence of arithmetic overflow. Another, more useful, example in this
category is the computation of Littlewood-Richardson coefficients [7].

3 A Solution

We propose the following method for verifying the safety against arithmetic
overflows in programs like those enumerated in the previous section.

First of all, we identify, inside the program code, the integer values for which
we do not want to (or realistically can not) exhibit bounds. For any such value,
represented as an n-bit machine integer, we relax the safety property and seek to
prove that overflow is impossible during the first 2n execution steps (with respect
to a reasonable operational semantics, where execution steps translate to a pro-
portional number of processor cycles). We leave to the user the responsibility of
verifying that the relaxed property is sufficient, that is, execution duration of
this magnitude indeed exceeds all practical expectations. We believe that 64-bits
integers fit perfectly our use case. On one hand, they are natively supported by
modern general-purpose CPUs; on the other hand, we are not aware of any appli-
cation where a single execution of a sequential program is expected to run long
enough to be able to overflow a 64-bit integer with singular increment operations.

100 M. Clochard et al.

To ensure the relaxed safety property for the selected integer values, we
restrict the operations available for manipulating these integers so as to prohibit
arbitrary growth. Depending on the programming language and the verification
methods, this restriction can be achieved in various ways. For example, we can
introduce new data types for such “restricted integers” and let the type system
verify that only the permitted operations are used on them. Of course, these
integers are still compiled to native machine integers. This is the approach we
show in this paper. Alternatively, one can work with a program where the native
integer types are used indiscriminately, and use a static analysis procedure to
detect the values for which the restrictions are respected. Notice that this static
analysis is itself, in essence, some form of type inference.

Below, we describe two kinds of such restricted integers. The first are Peano
integers, where only the increment operation is available to produce a number
greater than those already reached. Using Peano integers, we can implement
Programs 1 (symbol generator), 2 and 3 (length of a list), and 6 (union-find).
The second class allows us to use addition as well, provided that we do not let
the same number to be used more than once. To this end, we introduce one-time
integers, where operations like addition invalidate their arguments. Using one-
time integers, we can implement the remaining examples, namely Programs 4
(tree size), 5 (destructive append), and 7 (n-queens).

3.1 Peano Integers

Peano integers are introduced as a new data type peano. We provide a constant
zero and a successor operation on that type:

zero : peano
succ(p : peano) : peano

Other operations on Peano integers are provided, such as the conversion into an
arbitrary-precision integer

to int(p : peano) : Z

or the construction of a Peano integer from an arbitrary integer x, provided it
is no greater than a Peano integer p we have already built:

cap(x : Z, p : peano) : peano

This is not an exhaustive list. For instance, it is safe to compare two Peano
integers, to compute the minimum or the maximum of two of them, etc.

3.2 One-Time Integers

One-time integers are introduced as a new data type onetime. To account for
the idea that one-time integers are used in a linear way or, equivalently, in a
destructive way, each one-time integer carries a Boolean validity flag in addition

How to Avoid Proving the Absence of Integer Overflows 101

to its value. The validity flag is mutable, and is changed from true to false when
the one-time integer is invalidated. The value itself is immutable, and the allowed
operations generate fresh one-time integers.

For one-time integers, we provide zero and successor functions:

fresh zero() : onetime
succ(p : onetime) : onetime

Contrary to Peano integers, fresh zero is not a constant, since it must return a
new one-time integer distinct from all others. Function succ is also different from
the Peano version: it requires its argument to be valid, destroys its validity, and
returns a new, valid one-time integer. One-time integers also feature a destructive
addition:

add(x : onetime, y : onetime) : onetime

As function succ, function add requires valid arguments and destroys them.
Additionally, it requires x and y to be distinct one-time integers, to prevent one
from doubling the value of a one-time integer. Finally, one-time integers can be
non-destructively turned into Peano integers:

to peano(x : onetime) : peano

Notice that we provide no operation to check the validity state of a one-time
integer in a program; the validity flag is used for verification purposes only. Since
the compiler ought to translate one-time integers to native machine integers, the
validity of a given one-time integer cannot be available at the run time. For the
same reason, we provide no operation to check whether two one-time integers
are physically the same object.

3.3 Formalization

To prove the soundness of our approach, we consider a small While-like pro-
gramming language with heap-allocated records. Figure 2 introduces the abstract
syntax of this language, which distinguishes values v, expressions e, and state-
ments s. Values are either Peano integers, memory addresses, Booleans, or
arbitrary-precision integers. The set of addresses is assumed to be infinite. A
one-time integer is represented as a record with two fields: a field otP containing
its value, as a Peano integer; and a field otV containing its validity flag. As a
consequence, operation to peano, which turns a one-time integer into a Peano
integer, is simply a field access. Access to the otV field, though, is forbidden, for
the reasons explained above.

We equip our language with a small-step operational semantics. A heap
Σ is a finite-domain partial mapping from address/field pairs to values. A
program state is a triple (V,Σ, s), where V is a mapping from variables to
values, Σ is a heap, and s is a statement representing the remaining execu-
tion. The operational semantics defines a one-step execution for expressions,
written V,Σ, e → V,Σ′, e′, as well as a one-step execution for statements,

102 M. Clochard et al.

Fig. 2. Abstract syntax for a small programming language.

V,Σ, s → V ′, Σ′, s′. As usual, such relations are defined with head reductions
(Figs. 3, 4 and 5) and reduction contexts (Fig. 6). Note that expressions do not
modify the variable store V . Standard reduction rules for arbitrary-precision
integers and Booleans are omitted, for the sake of brevity. It is worth pointing
out that direct construction and mutation of one-time integers is not allowed;
see rules alloc and mem-assign.

VAR
V, Σ, x → V, Σ, V(x)

FIELD
a. f ∈ Σ f = otV

V, Σ, a. f → V, Σ, Σ(a. f)

ALLOC
a /∈ Σ ∀i. fi ∈ {otP,otV}

V, Σ, { f1 = v1, . . . , fn = vn} → V, Σ[a. f1 ← v1, . . . ,a. fn ← vn], a

Fig. 3. Reduction rules for expressions.

Informally, the main theorem can be stated as follows: a program that con-
tains no non-zero Peano constants will not cause any Peano/one-time integer to
exceed n in its first n steps of execution. Formally, we first define a notion of
bounded program states:

How to Avoid Proving the Absence of Integer Overflows 103

Fig. 4. Reduction rules for statements.

Fig. 5. Reduction rules for operations.

Fig. 6. Reduction contexts.

104 M. Clochard et al.

Definition 1. A state (V,Σ, s) is n-bounded if:

– Any Peano integer occurring anywhere in the state, including constants in the
program s, is no greater than n;

– The sum of all valid one-time integers allocated in Σ is no greater than n.

Then we can state the main result. It uses the notion of 0-bounded state to
capture the idea that all Peano integers are zeros at the start of a program.

Theorem 1. Let (V,Σ, s) be a 0-bounded state. Then, for any state (V ′, Σ′, s′)
reachable after n steps of execution, (V ′, Σ′, s′) is n-bounded.

Proof. First, we generalize the claim: if (V,Σ, s) is m-bounded (with m ≥ 0),
then for any state (V ′, Σ′, s′) reachable after n steps of execution, (V ′, Σ′, s′) is
(m + n)-bounded. By a straightforward induction on the number of steps, we
reduce to the case of a single step of execution. Then we proceed by case analysis
on the head reduction rule:

– peano-succ: as the Peano integer is bounded by m, its successor is bounded
by m + 1. Other parts of the state do not change, so the resulting state is
indeed (m + 1)-bounded.

– one-time-succ: Similar to the rule peano-succ, except that the sum of valid
one-time integers also changes. However, it increases by exactly one, so the
resulting state is indeed (m + 1)-bounded.

– fresh zero: the newly introduced one-time integer is 0, so the total sum of
valid one-time integers stays unchanged. As it is itself trivially m-bounded,
the resulting state is m-bounded as well, hence (m + 1)-bounded.

– cap: by hypothesis, it creates a Peano integer smaller than an existing one,
thus respecting the bound.

– add: the total sum of valid integers stays unchanged and is therefore m-
bounded. All we need to show is that the result of the addition is no greater
than m + 1. Using the separation hypothesis, the result is no greater than
the total sum of valid one-time integers in the initial state, hence no greater
than m.

– mem-assign: it does not introduce any new Peano nor one-time integer. Also,
one-time integers are not modified by this rule, so the sum of valid one-time
integers is still no greater than m.

– alloc: since this rule cannot be used to build a one-time integer, the resulting
state is still m-bounded.

– other rules: As they do not introduce new Peano/one-time integers and do
not change the memory, they preserve m-boundedness.
�
Note that in the proof above, the bound may only increase after successor

operations. This yields the following corollary:

Corollary 1. For any execution (V,Σ, s) →� (V ′, Σ′, s′), where (V,Σ, s) is a
0-bounded state, (V ′, Σ′, s′) is bounded by the number of successor steps in the
execution (rules peano-succ and one-time-succ).

How to Avoid Proving the Absence of Integer Overflows 105

4 Implementation in Why3

Why3 is a platform for deductive program verification. It provides a rich lan-
guage, called WhyML, to write programs [5] and their logical specifications [8,9],
and it relies on external theorem provers to discharge verification conditions.
Why3 is based on first-order logic with rank-1 polymorphic types, algebraic data
types, inductive predicates, and several other extensions. The programming lan-
guage can be seen as an ML dialect, providing variant types, pattern matching,
exceptions, and mutable data structures. In order to keep proof obligations rea-
sonably easy to read and to debug, Why3 imposes static control of aliases: every
l-value in a program must have a finite set of names and these names must be
known at the time of generation of verification conditions.

Verified WhyML programs can be automatically translated to OCaml,
producing executable correct-by-construction code. This procedure, called code
extraction, is guided by drivers: configuration files which assign OCaml transla-
tion to symbols that have not been given definition in the WhyML program. Dur-
ing extraction, Why3 erases from the program so-called ghost code which serves
to facilitate specification and verification and is guaranteed to not affect the
observable program behaviour and its final result [10]. For example, a ghost func-
tion argument can be used to pass a witness of some existential pre-condition;
a ghost record field may hold a pure logical “view” of the record’s contents.

Here is how Peano and one-time integers are introduced in Why3.

type peano model { v: int }

type onetime model { peano: peano; mutable valid: bool }

Here, type int is that of mathematical, arbitrary-precision integers. Both
types are introduced as model types whose structure is hidden from programs
but can be accessed from specification annotations. By virtue of being model
types, their values cannot be constructed in programs directly: the client code
has to employ abstract functions. For instance, addition over Peano integers can
be implemented via the basic abstract operation cap as follows:

val cap (x: int) (p: peano) : peano requires { 0 <= x <= p.v }
ensures { result.v = x }

let add (p q r: peano) : peano requires { 0 <= p.v + q.v <= r.v}
ensures { result.v = p.v + q.v }

= cap (to_int p + to_int q) r

Notice that addition takes a third argument, serving as an upper bound for the
result. For comparison, addition over one-time integers is specified as follows:

val add (o1 o2: onetime) : onetime writes { o1, o2 }
requires { o1.valid ∧ o2.valid }
ensures { result.peano.v = o1.peano.v + o2.peano.v }
ensures { result.valid ∧ not o1.valid ∧ not o2.valid }

106 M. Clochard et al.

Notice that we do not need to add any separation pre-condition for the arguments
of add: Why3 assumes it by default and checks separation whenever add is called.

To produce executable OCaml code, Why3 provides appropriate driver files
that translate Peano and one-time integers directly to OCaml’s native unboxed
63-bit integers on 64-bit architectures. For instance, Peano’s operation add is
translated into the OCaml function (fun p q _ → p + q). Notice that the
translation does not contain any run-time safety assertion: the bound argument
is simply ignored. Deductive verification of the initial WhyML program ensures,
statically, that the precondition of add is satisfied in any possible execution.

Similarly, operation add for one-time integers is translated into OCaml native
addition (+). It is worth pointing out that the validity flag appears nowhere in
the extracted code. Indeed, once the safety of calls to operations over one-time
integers has been established during the verification phase, the validity bit has
no further influence on the program behaviour and can be eliminated.

Example. To illustrate the use of our approach, let us consider implementing
Program 7 in Why3. Figure 7 shows a code where backtracking is implemented
with recursive function count bt queens. Its argument solutions is a Peano
counter, which is incremented each time we find a new solution (line 22). For
the sake of brevity, we omit specification annotations.

This program uses two flavors of machine integers. Type int63 is used for
array indexes and chessboard coordinates and we prove statically the safety of
operations on this type. For example, at line 12, a proof obligation is generated
to ensure that q can be incremented without overflow. This obligation is easily
discharged, thanks to the loop condition. The other flavor is Peano integers,
which we use to count the solutions; see the incrementation at line 22. No proof
obligation is generated for this operation. This is fortunate, since we would not
be able to prove it. Indeed, we do not have any a priori bound on the number of
solutions, except the obviously too large n!-related ones. And any bound inferred
automatically (e.g., by abstract interpretation) would be even larger. Both types
int63 and peano become OCaml type int in the extracted 64-bit code.

Caveats. It may seem that the bounds passed to functions cap and add for Peano
integers should be ghost arguments, as they only serve the verification purposes
and are ignored in the extracted OCaml code. Indeed, it is tempting to specify
add as

val bad_add (p q: peano) (ghost r: peano) : peano
requires { 0 <= p.v + q.v <= r.v }
ensures { result.v = p.v + q.v }

and simplify the translation to "(+)". This, however, would compromise the
safety of the Peano integers, because a client code could write a ghost loop,
incrementing some ghost variable up to an arbitrarily big value, well beyond 264.
This ghost loop incurs zero run-time expense, as it is erased during extraction.
Yet the ghost variable can be used in a call to bad add, giving a “false alibi”
to an overflowing non-ghost integer. In future versions of Why3, we may work

How to Avoid Proving the Absence of Integer Overflows 107

Fig. 7. N-queens in Why3.

around this problem by forbidding calls to succ in ghost code, making bad add
safe to use.

It should also be noted that we must not provide a function converting a
peano value to a fixed-size machine integer. Just as in the previous case, as long
as succ is admitted in ghost code, we can create an out-of-bounds ghost Peano
value. Converting it to a 64-bit integer would lead to a contradiction (i.e., a
proof of false) in a reachable state of execution, compromising all subsequent
verification conditions. Moreover, such conversion is dangerous even in the case
where the offending value is not ghost. Indeed, while we may consider the states
after 264 steps as effectively unreachable (which justifies the contradiction), it is

108 M. Clochard et al.

disturbing if the system validates the total functional correctness, termination
included, of

let p = ackermann_with_peano 4 2 (* = 2 65536 − 3 *) in
let n = to_int64 p in
assert { n > max_int64 >= n }

without raising any red flags.
On the other hand, it is perfectly safe to provide variants of the cap function

taking fixed-size integers as first argument. For programs that work with native
integers, this avoids an unnecessary conversion to arbitrary-precision integers.

5 Conclusion

We have presented a method to avoid proving the absence of arithmetic overflows
when we do not expect a single execution to run long enough to overflow a
machine integer of a fixed width. To the best of our knowledge, this is the first
practical approach to verifying safety of programs such as the ones listed in
Sect. 2. Despite its sheer simplicity, we feel that it effectively addresses a real-life
verification challenge.

Our technique consists in placing an upper bound on reachable integer values
in a sequential program, as a function of the number of execution steps. To apply
this technique safely, a number of conditions must be taken into account. The
most obvious one is the ratio of the chosen integer size to the available processor
speed. We believe that 64-bit integers are a good match for the modern hardware.

If the program is written in a compiled language, one also needs to be aware
of compiler optimisations. If a compiler rewrites for i = 1 to 232 do s ← s + 1
end for into s ← s + 232 then our meta-argument clearly does not hold any-
more. In practice, this should not be a concern for reasonably written algorithms.
We observe that most of the time, if not always, the use of function succ on
Peano/one-time integers coincides with an allocation or a branching point in
the program, and thus is not amenable to an aggressive optimization. To reduce
doubt, one can instrument the succ operation with some kind of “barrier instruc-
tion” that the compiler is not allowed to optimize out.

Computation on multiple cores introduces some additional constraints. For
example, it would be unsound to add one-time integers computed on different
cores: the individual increments are not serialized in this case, and the addition
should produce either an arbitrary-precision integer or a fixed-width integer with
a run-time check.

The solution proposed in this paper is not readily applicable when we want
to use short machine integers (of 8 bits or less). For example, when implement-
ing balanced binary search trees with AVL [11], the height of the sub-tree is
stored inside each node. The height of an AVL tree of n nodes does not exceed
1.44 log2(n). Thus 6 bits for the height would allow up to 244 nodes and 8 bits
for the height would allow up to 2177 nodes. The same argument applies to the
union-find weights. One possible approach to this problem is to introduce a vari-
ation of one-time integers where the linear quantity (a subject to increments and

How to Avoid Proving the Absence of Integer Overflows 109

destructive additions; for example, the size of a tree) is stored as a ghost field,
and the desired logarithmic quantity (tree height) is stored as a non-ghost field
linked to the linear quantity by a statically verified datatype invariant. Devising
a suitable generic interface for this purpose is one future direction of this work.

It is tempting to apply our approach for physical limits other than time,
such as available memory or energy. This is however not straightforward. It is
not enough to impose a physical limit; we must also be able to verify, statically,
that a particular integer value in the program grows “in lockstep” with the
consumption of the resource. So far, we were not able to ensure such a property
for any non-trivial use case.

Acknowledgments. We are grateful to Arthur Charguéraud for detailed and con-
structive comments regarding a first draft of this paper.

References

1. Bloch, J.: Nearly all binary searches and mergesorts are broken (2006). http://
googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html

2. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: The Astrée static analyzer. http://www.astree.ens.fr/

3. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded ANSI-C software. In: Proceedings of the 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE 2009, pp. 137–148.
IEEE Computer Society, Washington, DC (2009)

4. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: Hofmann,
M., Felleisen, M. (eds.) Proceedings of 34th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2007), pp. 97–108, Nice, France,
January 2007

5. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013)

6. de Bruijn, N.G.: Lambda calculus with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem. Proc. K.
Ned. Akad. 75(5), 380–392 (1972)

7. Littlewood, D., Richardson, A.: Group characters and algebra. In: Philosophical
Transactions of the Royal Society of London: Mathematical and Physical Sciences.
Harrison & Sons, London (1934)

8. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, pp. 53–64, Wroc�law, Poland, August 2011

9. Filliâtre, J.-C.: One logic to use them all. In: Bonacina, M.P. (ed.) CADE 2013.
LNCS, vol. 7898, pp. 1–20. Springer, Heidelberg (2013)

10. Filliâtre, J.-C., Gondelman, L., Paskevich, A.: The spirit of ghost code. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 1–16. Springer, Heidelberg
(2014)

11. Adel’son-Vel’skĭı, G.M., Landis, E.M.: An algorithm for the organization of infor-
mation. Sov. Math.-Dokl. 3(5), 1259–1263 (1962)

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://www.astree.ens.fr/

Machine-Checked Proofs
for Realizability Checking Algorithms

Andreas Katis1(B), Andrew Gacek2, and Michael W. Whalen1

1 Department of Computer Science and Engineering,
University of Minnesota, 200 Union Street, Minneapolis, MN 55455, USA

katis001@umn.edu, whalen@cs.umn.edu
2 Rockwell Collins Advanced Technology Center, 400 Collins Road NE,

Cedar Rapids, IA 52498, USA
andrew.gacek@gmail.com

Abstract. Virtual integration techniques focus on building architectural
models of systems that can be analyzed early in the design cycle to try
to lower cost, reduce risk, and improve quality of complex embedded
systems. Given appropriate architectural descriptions, assume/guarantee
contracts, and compositional reasoning rules, these techniques can be
used to prove important safety properties about the architecture prior
to system construction. For these proofs to be meaningful, each leaf-level
component contract must be realizable; i.e., it is possible to construct a
component such that for any input allowed by the contract assumptions,
there is some output value that the component can produce that satisfies
the contract guarantees.

We have recently proposed (in [1]) a contract-based realizability
checking algorithm for assume/guarantee contracts over infinite theo-
ries supported by SMT solvers such as linear integer/real arithmetic
and uninterpreted functions. In that work, we used an SMT solver and
an algorithm similar to k-induction to establish the realizability of a
contract, and justified our approach via a hand proof. Given the cen-
tral importance of realizability to our virtual integration approach, we
wanted additional confidence that our approach was sound. This paper
describes a complete formalization of the approach in the Coq proof and
specification language. During formalization, we found several small mis-
takes and missing assumptions in our reasoning. Although these did not
compromise the correctness of the algorithm used in the checking tools,
they point to the value of machine-checked formalization. In addition, we
believe this is the first machine-checked formalization for a realizability
algorithm.

1 Introduction

An ongoing effort at Rockwell Collins and The University of Minnesota has
explored algorithms and tools for compositional proofs of correctness. The idea
is to support hierarchical design and analysis of complex system architectures

c© Springer International Publishing Switzerland 2016
A. Gurfinkel and S.A. Seshia (Eds.): VSTTE 2015, LNCS 9593, pp. 110–123, 2016.
DOI: 10.1007/978-3-319-29613-5 7

Machine-Checked Proofs for Realizability Checking Algorithms 111

and co-evolution of requirements and architectures at multiple levels of abstrac-
tion [2]. We have created the AGREE reasoning framework [3] to support compo-
sitional assume/guarantee contract reasoning over system architectural models
written in AADL.

The soundness of the compositional argument requires that each leaf-level
component contract is realizable; i.e., it is possible to construct a component such
that for any input allowed by the contract assumptions, there is some output
value that the component can produce that satisfies the contract guarantees.
Unfortunately, without engineering support it is all too easy to write contracts
of leaf-level components that can’t be realized. When applying our tools in both
industrial and classroom settings, this issue has led to incorrect compositional
“proofs” of systems; in fact the goal of producing a compositional proof can
lead to engineers modifying component-level requirements such that they are
no longer possible to implement. In order to make our approach reasonable for
practicing engineers, tool support must be provided for checking realizability.

The notion of realizability has been well-studied for many years [4–9], both
for component synthesis and checking correctness of propositional temporal logic
requirements. Checking realizability for contracts involving theories, on the other
hand, is still an open problem. In recent work [1], we described a new approach
for checking realizability of contracts as a Satisfiability Modulo Theories (SMT)
problem and demonstrated its usefulness on several examples. Our approach is
similar to k-induction [10] over quantified formulas. In that work, we provided
hand-proofs for several aspects of two algorithms related to the soundness of the
approach with respect to both proofs and counterexamples.

Unfortunately, hand proofs of complex systems often contain errors. Given
the criticality of realizability checking to our tool chain and the soundness of our
computational proofs, we would like a higher level of assurance than hand proofs
can provide. In this paper, we provide a formalization of machine-checked proofs
of correctness that ensure that the proposed realizability algorithms will perform
as expected, using the Coq proof assistant.1 The facilities in Coq, notably mixed
use of induction and co-induction, make the construction of the proofs relatively
straightforward. This approach illustrates how interactive theorem proving and
SMT solving can be used together in a profitable way. Interactive theorem prov-
ing is used for describing the soundness of the checking algorithm (described in
this paper). The algorithm is then implemented using a SMT solver, which can
automatically solve complex verification instances.

The main contribution of this paper is, therefore, the first machine-checked
formalization (to our knowledge) of a realizability checking algorithm. This is
an important problem for both compositional verification involving virtual inte-
gration and component synthesis. In addition, the formalization process exposed
errors regarding our initial definitions, including necessary assumptions to one
of the main theorems to be proved and an error in the definition of realizabil-
ity itself. While these errors did not ultimately impact the correctness of the
algorithm, they underscore the importance of machine-checked proof.

1 The Coq file is available at https://github.com/andrewkatis/Coq/blob/master/
realizability/Realizability.v.

https://github.com/andrewkatis/Coq/blob/master/realizability/Realizability.v
https://github.com/andrewkatis/Coq/blob/master/realizability/Realizability.v

112 A. Katis et al.

In Sect. 2 we provide information on the Coq proof assistant. Section 3 con-
tains the necessary informal background towards understanding our realizability
checking approach. Sections 4.1 and 4.2 describe the definitions and theorems
that were used both for defining realizability and the algorithms. In Sect. 5 we
provide details on the algorithm’s implementation. Finally, in Sect. 6 we discuss
our experience from the process of defining realizability and the various changes
that were made along the way, and we report our conclusions in Sect. 7.

2 The Coq Proof Assistant

Coq2 is an interactive tool used to formalize mathematical expressions and algo-
rithms, and prove theorems regarding their correctness and functionality [11].
The tool was a result of the work on the calculus of constructions [12]. Its uses
in the context of computer science vary, such as being a tool to represent the
structure of a programming language and its characteristics, as well as to prove
the correctness of underlying procedures in compilers. Compared to other main-
stream interactive theorem provers, Coq is a tool that provides support on several
aspects, such as the use of dependent types, as opposed to the Isabelle theorem
prover [13], and proof by reflection, which is not supported by the PVS proof
assistant [14]. A particularly essential feature is the tool’s support for inductive
and coinductive definitions. Definitions using the Inductive type in Coq rep-
resent a least fixpoint of the corresponding type and are always accompanied
by an induction principle, which is implicitly used to progress through a proof
by applying induction on the definition. CoInductive definitions, on the other
hand, represent a greatest fixpoint to their type. They describe a set contain-
ing every finite or infinite instance of that type, and their proofs are essentially
infinite processes, built in a one-step fashion and requiring the existence of a
guard condition that needs to hold for them to remain well-formed. Coinductive
definitions allow a natural expression of infinite traces, which are central to our
formalization of realizability, and are tedious to prove with hand-written proofs.

3 Realizability Checking

In [1] we presented our approach to the problem of realizability checking, intro-
ducing an algorithm involving the use of theories, a concept that, to the best of
our knowledge, has yet to be examined. The realizability checks are defined over
assume-guarantee contracts. Informally, assumptions describe the expectations
of the component on its environment, usually in terms of component inputs. The
guarantees describe the properties that will hold with respect to component out-
puts given that the assumptions are met. A contract holds on an infinite trace if
either the assumption is violated or the guarantee holds throughout the trace.

To illustrate, consider a system with a single integer input in and output out
and a contract consisting of no assumptions and two guarantees: out = 2∗in and

2 The Coq Proof Assistant is available at https://coq.inria.fr/.

https://coq.inria.fr/

Machine-Checked Proofs for Realizability Checking Algorithms 113

out ≥ 0. This contract is not realizable. At issue is the behavior of the system if
in < 0. In this case, the output of the system must both be positive and equal to
2∗ in, which is not possible. While this example is trivial, it can be very difficult
to determine whether a contract involving dozens or hundreds of assumptions
and guarantees is realizable. In [1], we describe two large-scale compositional
reasoning examples (one medical device and one flight control system) that con-
tained unrealizable leaf-level contracts that were previously unknown that were
detected by our tools.

Informally, a realizable contract is one for which there exists a transition sys-
tem that correctly and completely implements the contract. By “correctly” we
mean that the transition system always produces outputs that satisfy the guar-
antees as long as the assumptions have always been met, and by “completely”
we mean that the transition system never deadlocks on an input, so long as the
assumptions have always been met. We will make these definitions precise in the
next section.

This definition, while providing the proper theoretical basis for realizability,
is not actually useful for constructing our checking algorithm. At issue is that our
current algorithm provides no way to construct this ‘witness’ transition system
(doing so would solve the general problem of program synthesis over contracts
with theories, which we are currently researching). We therefore propose an
alternative definition, according to which a contract is realizable if there exists a
viable path consisting of viable states. A viable state is one where, for any inputs
that satisfy the assumptions, there are outputs that satisfy the guarantees and
lead to another viable state. This alternative definition requires that the contract
be able to start in a viable state.

To derive checking algorithms from first principles, we first demonstrate that
the two definitions (transition systems and viability) are equivalent. We can then
use the viable definition as the basis of an algorithm for realizability checking.
This algorithm consists of a base check, which ensures that there exists a finitely
viable state for paths of length at least n, and an extend check to show that
all the valid paths can be further extended in response to any input. Unfortu-
nately, the complexity of the base check does not allow for an SMT solver to
handle it efficiently. Because of this, we propose a simplified version of the algo-
rithm including a base check that ensures the extendability of every valid path
consisting of viable states. This check is only guaranteed sound with regard to
’realizable’ results, that is, it may generate “false positives” in which the tool
declares a contract unrealizable when in fact it can be realized. In early experi-
ments, however, the tool results have been accurate.

4 Formalization in Coq

In the next two subsections, we will describe the formalization and proofs of
these ideas in Coq. Section 4.1 will describe the definitions of realizability, while
Sect. 4.2 will describe the algorithms for realizability checking and their proofs of
adequacy with respect to the definitions. To provide a graphical overview of the

114 A. Katis et al.

Fig. 1. Proof graph

proof process, Fig. 1 describes the connections between the various definitions,
lemmas, and theorems in our work.

4.1 Definitions

The types state and inputs are used to represent a state, and a given set of
inputs. We use Coq’s Prop definition to describe the logical propositions regard-
ing the component’s transition system through a set I of initial states and the
transition relation T between two states and a set of inputs. Finally, the con-
tract is defined by its assumption and guarantee, with the latter being implic-
itly referenced by a pair of initial and transitional guarantees (iguarantee and
tguarantee). The corresponding definitions in Coq are shown below. Note that
we do not expect that a contract would be defined over all variables in the tran-
sition system – rather its outputs – but we do not make any distinction between
internal state variables and outputs in the formalism. This way, we can use state
variables to, in some cases, simplify statements of guarantees.

• Inductive inputs : Type :=
input : id → nat → inputs.

• Inductive state : Type :=
st : id → nat → state.

• Definition initial := state → Prop.

• Definition transition := state → inputs → state → Prop.

• Definition iguarantee := state → Prop.

Machine-Checked Proofs for Realizability Checking Algorithms 115

• Definition tguarantee := state → inputs → state → Prop.

• Definition assumption := state → inputs → Prop.

A state s is reachable with respect to the given assumptions if there exists
a path from an initial state to s, while each transition in the path is satisfying
the assumptions. Given a contract (A, (GI , GT)), a transition system (I, T) is
its realization if the following four conditions hold:

1. ∀s. I(s) ⇒ GI(s)
2. ∀s, i, s′. reachableA(s) ∧ A(s, i) ∧ T (s, i, s′) ⇒ GT (s, i, s′)
3. ∃s. I(s)
4. ∀s, i. reachableA(s) ∧ A(s, i) ⇒ ∃s′. T (s, i, s′)

Finally, we define that a given contract is realizable, if the existence of a
transition system, which is a realization of the contract, is proved. The formalized
definitions in Coq for the reachable state, the realization of a contract and
whether it is realizable follow.

• Inductive reachable (s : state) (I : initial) (T : transition) (A : assumption)
: Prop :=
rch :

((I s) ∨
((∃ (s’ : state) (inp : inputs),

(reachable s’ I T A) ∧ (A s’ inp) ∧ (T s’ inp s))) →
reachable s I T A).

• Inductive realization (I : initial) (T : transition) (A : assumption) (GI :
iguarantee) (GT : tguarantee) : Prop :=
real : ((∀ (s : state), (I s) → (GI s)) ∧

(∀ (s s’ : state) (inp : inputs),
((reachable s I T A) ∧ (A s inp) ∧ (T s inp s’)) → GT s inp s’) ∧
(∃ (s : state), I s) ∧
(∀ (s : state) (inp : inputs), (reachable s I T A ∧ (A s inp)) →

(∃ (s’ : state), T s inp s’))) →
realization I T A GI GT .

• Inductive realizable contract (A : assumption) (GI : iguarantee) (GT : tguar-
antee) : Prop :=
rc : (∃ (I : initial) (T : transition), realization I T A GI GT) →

realizable contract A GI GT .

While the definitions of realization and realizable contract are quite
straightforward, they cannot be used directly to construct an actual realizability
checking algorithm. Therefore, we proposed the notion of a state being viable
with respect to a contract, meaning that the transition system continues to be
a realization of the contract, while we are at such a state. In other words, a
state is viable (viable(s)) if the transitional guarantee GT infinitely holds, given
valid inputs. Using the definition of viable, a contract is realizable if and only
if ∃s. GI(s) ∧ viable(s).

116 A. Katis et al.

• CoInductive viable (s : state) (A : assumption) (GI : iguarantee) (GT : tguar-
antee) : Prop :=
vbl : (∀ (inp : inputs), (A s inp) →

(∃ (s’ : state), GT s inp s’ ∧ viable s’ A GI GT)) →
viable s A GI GT .

• Inductive realizable (A : assumption) (GI : iguarantee) (GT : tguarantee) :
Prop :=
rl : (∃ (s : state), GI s ∧ viable s A GI GT) → realizable A GI GT .

Having a more useful definition for realizability, we need to prove the equiv-
alence between the definitions of realizable contract and realizable. The Coq
definition of the theorem was split into two separate theorems, each for one of
the two directions of the proof. Towards the two proofs, the auxiliary lemma
that, given a realization, ∀s. reachableA(s) ⇒ viable(s) is necessary.

• Lemma reachable viable : ∀ (s : state) (I : initial) (T : transition) (A : assump-
tion) (GI : iguarantee) (GT : tguarantee),
realization I T A GI GT → reachable s I T A → viable s A GI GT .

The informal proof of the lemma relies initially on the unrolling of the viable
definition, for a specific state s. Thus, we are left to prove that there exists
another state s′ that we can traverse into, in addition to being viable. The
former can be proved directly from the conditions 2 and 4 of the definition of
realization. For the latter, by the definition of viable on s′ we need to show
that s′ is reachable. Given the definition of reachable though, we just need to
prove that there exists another reachable state from which we can reach s′, in
one step. But we already know that s is such a state, and thus the lemma holds.

• Theorem realizable contract implies realizable (I : initial) (T : transition) :
∀ (A : assumption) (GI : iguarantee) (GT : tguarantee),
realizable contract A GI GT → realizable A GI GT .

• Theorem realizable implies realizable contract (I : initial) (T : transition) :
∀ (A : assumption) (GI : iguarantee) (GT : tguarantee),
realizable A GI GT → realizable contract A GI GT .

The first part of the theorem requires us to prove that there exists a viable
state s for which the initial guarantee holds. Considering that we have a contract
that is realizable under the realizable contract definition, we have a transition
system that is a realization of the contract, and thus from the third condition
of the realization definition, there exists an initial state s′ for which, using the
first condition, the initial guarantee holds. Thus, we are left to prove that s′ is
viable. But, by proving that s′ is reachable, we can use the reachable viable
lemma to show that s′ is indeed viable.

The second direction requires a bit more effort. Assuming that we have
a viable state s0 with GI(s0) being true, we define I(s) = (s = s0)
and T (s, inp, s′) = GT (s, inp, s′) ∧ viable(s′). Initially, we need to prove the

Machine-Checked Proofs for Realizability Checking Algorithms 117

reachable viable lemma in this context, with the additional assumption that
another viable state already exists (s0 in this case). Having done so, we need
to prove that there exists a transition system that is a realization of the
given contract. Given the transition system that we defined earlier, we need
to show that each of the four conditions hold. Since I(s) = (s = s0) and
GI(s0) hold, the proof for the first condition is trivial. Using the assump-
tion that T (s, inp, s′) = GT (s, inp, s′) ∧ viable(s′), we can also trivially prove
the second condition, while the third condition is simply proved by reflexiv-
ity on the state s0. Finally, for the fourth condition we need to prove that
∀s, inp. reachableA(s) ∧A(s, inp) ⇒ ∃s′. GT (s, inp, s′) ∧ viable(s′). By applying
the reachable viable lemma on the reachable state s in the assumptions, we
show that s is also viable, if s0 is viable, which is what we assumed in the first
place. Thus, coming back into what we need to prove, and unrolling the defini-
tion of viable on s, we have that ∀inp. A(s, inp) ⇒ ∃s′. GT (s, inp, s′)∧viable(s′)
which completes the proof.

4.2 Algorithms

In this section we provide a description of the formalization and proof of
soundness of our realizability checking algorithms. Initially, we define an under-
approximation of the definition of viability, for the finite case. Thus, a state is
finitely viable for n steps (viablen(s)), if the transitional guarantee GT holds
for at least n steps, given valid inputs.

• Inductive finitely viable : nat → state → assumption → tguarantee → Prop
:=

| fvnil : ∀ s A GT , finitely viable O s A GT

| fv : ∀ n s A GT , finitely viable n s A GT →
(∀ (inp : inputs), A s inp → (∃ s’, GT s inp s’)) →
finitely viable (S n) s A GT .

In addition to the finitely viable definition, an under-approximation of via-
bility is also used, called one-step extension. Therefore, a valid path leading to
a state s is extendable after n steps, if any path from s, of length at least n, can
be further extended given a valid input.

• Inductive extendable : nat → state → assumption → tguarantee → Prop :=
| exnil : ∀ (s : state) (A : assumption) (GT : tguarantee),

(∀ (inp : inputs), A s inp → ∃ (s’ : state), GT s inp s’) →
extendable O s A GT

| ex : ∀ n s A GT ,
(∀ inp s’, A s inp ∧ GT s inp s’ ∧ extendable n s’ A GT) →
extendable (S n) s A GT .

An Exact Algorithm for Realizability Checking. The algorithm that we
propose for realizability checking consists of two checks. The BaseCheck(n)

118 A. Katis et al.

procedure ensures that ∃s. GI(s) ∧ viablen(s), while ExtendCheck(n) makes
sure that the given state from BaseCheck is extendable for any n.

• Definition BaseCheck (n : nat) (A : assumption) (GI : iguarantee) (GT :
tguarantee) :=
∃ (s : state), (GI s ∧ finitely viable n s A GT).

Definition ExtendCheck (n : nat) (A : assumption) (GT : tguarantee) :=
∀ s A GT , extendable n s A GT .

Using the BaseCheck(n) and ExtendCheck(n), the algorithm deter-
mines the realizability of the given contract, using the following proce-
dure.
for n = 0 to ∞ do
if not BaseCheck(n) then
return “unrealizable”

else if ExtendCheck(n) then
return “realizable”

end if
end for
Using the definitions of BaseCheck and ExtendCheck, we proved the algo-

rithm’s soundness, both for the ’unrealizable’ and ’realizable’ case. The main
idea behind the proof of soundness for the ’unrealizable’ result is to prove the
contrapositive, that is, given a realizable contract, there exists a natural number
x for which BaseCheck(x) holds. Unfolding the definition of BaseCheck(x),
we need to show that ∃s. GI(s) ∧ viablex(s). Knowing that our assumption
realizable contract A GI GT is equivalent to the realizable definition, pro-
vides us with a state s′, for which GI(s′) ∧ viable(s′) holds. Here, we need
an additional lemma, according to which ∀s, n. viable(s) ⇒ viablen(s) (stated
as viable implies finitely viable below). Thus, using the lemma on viable(s′)
with n = x, we get that viablex(s′), thus completing the proof.

• Lemma viable implies finitely viable : ∀ s A GI GT n,
viable s A GI GT → finitely viable n s A GT .

• Theorem unrealizable soundness : ∀ (I : initial) (T : transition) (A : assump-
tion) (GI : iguarantee) (GT : tguarantee),
(∃ n, ¬BaseCheck n A GI GT) → ¬ realizable contract A GI GT .

For the soundness of the ’realizable’ result, we first need to prove two lemmas.
Initially, extend viable shift, shows the way that Extendn(s) can be used to
shift viablen(s) forward. The proof for this lemma is done by using induction on
n. The base case is proved trivially, by unfolding the definitions of extendable
and finitely viable in the assumptions. For the inductive case, we assume that
the same state s is extendable and finitely viable for paths of length n + 1, and
try to prove that there exists a finitely viable state s′ for paths of length n + 1,
to which we can traverse from s, with the contract guarantees still holding after
the transition. By considering that s is extendable for paths of length n + 1,

Machine-Checked Proofs for Realizability Checking Algorithms 119

we can use it as that potentially existing state in the proof, requiring that we
can transition from s to itself, with the transitional guarantees staying true, and
s being finitely viable for paths of length n + 1. The former is true through the
definition of extendable, while the second is an already given assumption by the
inductive step.

• Lemma extend viable shift : ∀ (s : state) (n : nat) (inp : inputs) (A : assump-
tion) (GI : iguarantee) (GT : tguarantee),

(extendable n s A GT ∧ finitely viable n s A GT ∧ A s inp) →
(∃ s’, GT s inp s’ ∧ finitely viable n s’ A GT).

• Lemma fv ex implies viable : ∀ (s : state) (n : nat) (A : assumption) GI GT ,
(finitely viable n s A GT ∧ ExtendCheck n A GT) → viable s A GI GT .

• Theorem realizable soundness : ∀ (I : initial) (T : transition) A GI GT ,
(∃ n, (BaseCheck n A GI GT ∧ ExtendCheck n A GT)) →
realizable contract A GI GT .

To prove the theorem, we try to prove the equivalent for the realizable def-
inition instead. The existence of a state for which the initial guarantees hold
is derived from the assumption that BaseCheck holds for a finitely viable
state, while the proof that the same state is also viable comes from the
use of the fv ex implies viable lemma, which is proved through the use of
extend viable shift.

An Approximate Algorithm for Realizability Checking. Following the
definition of our approach, we noticed the problematic nature of BaseCheck(n)
having 2n quantifier alternations, which cannot be handled efficiently by an
SMT solver. To that end, we proposed a simplified version of the BaseCheck(n)
procedure, called BaseCheck′(n), stated as BaseCheck simple below.

• Definition BaseCheck simple (n : nat) (A : assumption) (GI : iguarantee)
(GT : tguarantee) := ∀ s, (GI s) → extendable n s A GT .

• Lemma finitely viable plus one : ∀ s n A (gi : iguarantee) (GT : tguarantee)
(inp : inputs),
(extendable n s A GT ∧ finitely viable n s A GT) →
finitely viable (S n) s A GT .

• Theorem BaseCheck soundness : ∀ n A (GI : iguarantee) (GT : tguarantee)
(i : inputs),
((∃ s, GI s) ∧ (∀ k, (k≤n) → BaseCheck simple k A GI GT)) →
BaseCheck n A GI GT .

The simplified BaseCheck′(n), while being an easier instance for an SMT
solver, is not sound for the ’unrealizable’ case, falsely reporting some realizable
contracts to not be so. Nevertheless, we proved the modified algorithm’s sound-
ness for the ’realizable’ result, with the use of an auxiliary lemma.

120 A. Katis et al.

The lemma, finitely viable plus one simply refers to the fact that an
extendable and finitely viable state s, for a given number of steps n, is also
finitely viable for n + 1 steps. The proof is done by induction on n. The base
case is trivially proved, by the definition of finitely viable, and the assumption
that s is extendable. For the inductive case, we use the inductive hypothesis,
which leaves us to prove the assumptions on a specific state s. The extendability
is trivially shown since we already know that s is extendable for paths of length
n + 1, with the same idea being applied to prove that s is finitely viable for n.

Finally, the proof of soundness for the ’realizable’ result of the BaseCheck′(n)
procedure is done by using induction on n. The base case is trivially true, using
the fact that all paths of zero length are finitely viable. The inductive step
then requires us to prove that BaseCheck(n + 1) holds. In order to do so, we
need to construct the inductive hypothesis’ assumption, as a separate assump-
tion to the theorem’s scope. By applying the inductive hypothesis to the newly
created assumption, we have that BaseCheck(n) holds. By unrolling the defi-
nition of BaseCheck(n) and applying the lemma finitely viable plus one on
the extracted state, say x, we finally prove that x is extendable through the
definition of BaseCheck′(n), completing the proof at the same time.

Figure 1 provides a simplified proof graph of all the necessary definitions
and partially, for graph simplicity purposes, the way that they are used towards
proving the lemmas and theorems stated in this paper.

5 Implementation

The algorithm is now an optional feature, namely JRealizability in JKind [15],
a Java implementation of the KIND 2 model checker,3 and supports models
expressed using the Lustre language [16], which are a result of AGREE’s trans-
lation process of contracts written in AADL. A typical process for checking
models in the above environment starts from providing the corresponding Lus-
tre program to JKind, which JRealizability uses to find a number n, n ≥ 0, such
that both BaseCheck′(n) and ExtendCheck(n) hold. Specifically, the model’s
variables and contract are being translated in the SMT-LIB2 format, followed
by the construction of each check’s corresponding query for the current value of
n, in its negated form. The resulting SMT-LIB2 file is provided as input to the
Z3 SMT solver [17], which attempts to answer the given query. In the case that
the negated formula is unsatisfiable, JRealizability returns a ’realizable’ result.
On the other hand, a satisfiable query implies that the model is unrealizable.
Consequently, the tool requests a model, i.e. an instance of the contract’s vari-
ables that reflects Z3’s result, and proceeds to construct a counterexample that
describes the exact cause of the contract’s unrealizability. Finally, in those cases
where the quantified query is too difficult for Z3 to solve, an ’unknown’ result is
reported, both by Z3 and JRealizability.

The implementation was used in [1] to verify the correctness of contracts in
terms of realizability in three different case studies. The performance was very
3 You can download the KIND model checker at http://kind2-mc.github.io/kind2/.

http://kind2-mc.github.io/kind2/

Machine-Checked Proofs for Realizability Checking Algorithms 121

good for the concrete results, with the tool exceeding its predefined timeout value
for the ’unknown’ ones. False positive results (BaseCheck′(n)) were not found
during this process, as every unrealizable contract was manually proved to be a
result of conflicts in the provided assumptions or guarantees. A final remark is the
fact that the most critical case studies already had an implementation that was
supposed to work correctly. As such, the discovery of unrealizable contracts in
these systems eventually required a total revision of the formalized requirements
defined for each system, thus hindering the development process.

6 Discussion

While our work on realizability is based on simple definitions, formalizing them
and refining the algorithms in Coq was non-trivial. Proving the lemmas and
theorems using Coq helped us discover minor errors in our informal statements.
For example, our proof of the one-way soundness theorem for the simplified
BaseCheck in [1] lacks the necessary assumption that there exists a state for
which the initial guarantees hold. Another example is that we forgot to include
initial states in our definition of reachable states in the informal proof. The
use of a mechanized theorem prover exposed some missing knowledge in the
informal text, and helped us provide a more precise version of the theorem.
Although these errors in the hand proofs did not lead to problems with our
implementation, Coq improved both our theorems and proofs, and provided a
very high level of assurance that our algorithm is correct.

7 Conclusion

The work in this paper was particularly important towards verifying our app-
roach and learning more about the actual functionality of the algorithm. Interac-
tive theorem provers like Coq provide the necessary support to define the notions
and assertions while being able to effectively prove theorems in a far more conve-
nient and reassuring way, in contrast to hand-written, informal proofs, especially
when it comes down to tracking formulas containing alternating quantifiers. Fur-
thermore, the procedure of proving the theorems in an interactive way with a
tool allowed us to refine our definitions. Additionally, the time that was required
was minimal when compared to the process of considering the informal proofs
and writing down our requirements in English. The most important outcome
was the proof of correctness of our approach that enabled us to provide a com-
plementary set of definitions and proofs, easily processed by an experienced Coq
user.

To conclude, there is substantial additional work that could be performed
in terms of fleshing out the formalisms used in the proofs for our particular
implementation. For example, we could define the structure and types of inputs
and outputs, and describe how transition systems are realized in the AGREE
tool suite. However, the work that has been performed shows the soundness
of the proof system and our algorithms with respect to proofs of realizability,

122 A. Katis et al.

allowing us to proceed with very high confidence as to the correctness of our
approach.

Acknowledgments. This work was funded by DARPA and AFRL under contract
4504789784 (Secure Mathematically-Assured Composition of Control Models), and by
NASA under contract NNA13AA21C (Compositional Verification of Flight Critical
Systems), and by NSF under grant CNS-1035715 (Assuring the safety, security, and
reliability of medical device cyber physical systems).

References

1. Gacek, A., Katis, A., Whalen, M.W., Backes, J., Cofer, D.: Towards realizability
checking of contracts using theories. In: Havelund, K., Holzmann, G., Joshi, R.
(eds.) NFM 2015. LNCS, vol. 9058, pp. 173–187. Springer, Heidelberg (2015)

2. Whalen, M.W., Gacek, A., Cofer, D., Murugesan, A., Heimdahl, M.P.,
Rayadurgam, S.: Your what is my how: iteration and hierarchy in system design.
IEEE Softw. 30(2), 54–60 (2013)

3. Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley, B., Sha, L.: Compo-
sitional verification of architectural models. In: Person, S., Goodloe, A.E. (eds.)
NFM 2012. LNCS, vol. 7226, pp. 126–140. Springer, Heidelberg (2012)

4. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 1889), pp. 179–190 (1989)

5. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL
synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358,
pp. 652–657. Springer, Heidelberg (2012)

6. Hamza, J., Jobstmann, B., Kuncak, V.: Synthesis for regular specifications over
unbounded domains. In: Proceedings of the Conference on Formal Methods in
Computer-Aided Design, pp. 101–109 (2010)

7. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg
(2007)

8. Gunter, C.A., Gunter, E.L., Jackson, M., Zave, P.: A reference model for require-
ments and specifications. IEEE Softw. 17(3), 37–43 (2000)

9. Patcas, L.M., Lawford, M., Maibaum, T.: From system requirements to software
requirements in the four-variable model. In: Automated Verification of Critical
Systems (AVOCS) 2013. Citeseer (2014)

10. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 108–125. Springer, Heidelberg (2000)

11. The Coq Development Team, The Coq Proof Assistant Reference Manual, 8th edn.
INRIA (2012–2014)

12. Coquand, T., Huet, G.: Constructions: a higher order proof system for mecha-
nizing mathematics. In: Buchberger, B. (ed.) EUROCAL 1985. LNCS, vol. 203,
pp. 151–184. Springer, Heidelberg (1985)

13. Paulson, L.C.: The foundation of a generic theorem prover. J. Autom. Reasoning
5(3), 363–397 (1989)

Machine-Checked Proofs for Realizability Checking Algorithms 123

14. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 2011. LNCS (LNAI), vol. 607, pp. 748–752. Springer,
Heidelberg (1992). http://www.csl.sri.com/papers/cade92-pvs/

15. Gacek, A.: JKind - a Java implementation of the KIND model checker (2014).
https://github.com/agacek/jkind

16. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language lustre. Proc. IEEE 79(9), 1305–1320 (1991)

17. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

http://www.csl.sri.com/papers/cade92-pvs/
https://github.com/agacek/jkind

Dynamic Frames Based Verification Method
for Concurrent Java Programs

Wojciech Mostowski1,2(B)

1 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
2 Center for Research on Embedded Systems,

Halmstad University, Halmstad, Sweden
wojciech.mostowski@hh.se

Abstract. In this paper we discuss a verification method for concurrent
Java programs based on the concept of dynamic frames. We build on
our earlier work that proposes a new, symbolic permission system for
concurrent reasoning and we provide the following new contributions.
First, we describe our approach for proving program specifications to be
self-framed with respect to permissions, which is a necessary condition
to maintain soundness in concurrent reasoning. Second, we show how we
use predicates to provide modular and reusable specifications for program
synchronisation points, like locks or forked threads. Our work primarily
targets the KeY verification system with its specification language JML∗

and symbolic execution proving method. Hence, we also give the current
status of the work on implementation and we discuss some examples that
are verifiable with KeY.

1 Introduction

Permission-based verification of concurrent programs relies on specifications in
an appropriate formalism enriched with permission annotations [1]. These anno-
tations specify the read or write access rights to memory locations of the program
to be verified. The verification is thread local and, when successful, shows the
absence of race conditions in the verified program as well as some functional
properties to hold. Many verification formalisms for permission-based reasoning
are built on Separation Logic [2] or equivalent Implicit Dynamic Frames [3,4].

In the context of the VerCors project1 [5], which is concerned with verifica-
tion of concurrent data structures, we propose an approach to permission-based
verification built on top of the more fundamental Dynamic Frames [6] verification
method. We base our work on the Java Dynamic Logic [7] and its implementation
in the KeY verifier2 [8]. KeY is a symbolic execution-based interactive verification
system for Java programs annotated with JML [9]. In addition to our automated

This work is supported by ERC grant 258405 for the VerCors project and by the
Swedish Knowledge Foundation grant for the AUTO-CAAS project.

1 http://fmt.cs.utwente.nl/research/projects/VerCors/.
2 http://www.key-project.org/.

c© Springer International Publishing Switzerland 2016
A. Gurfinkel and S.A. Seshia (Eds.): VSTTE 2015, LNCS 9593, pp. 124–141, 2016.
DOI: 10.1007/978-3-319-29613-5 8

http://fmt.cs.utwente.nl/research/projects/VerCors/
http://www.key-project.org/

Dynamic Frames Based Verification Method for Concurrent Java Programs 125

VerCors toolset [10], KeY is meant to provide interactive verification capabilities
in the VerCors project for more involved Java programs.

In our earlier work we developed a symbolic permission system that remedies
some of the problems we identified with fractional permissions [11] and we also
provided a base line for verification of concurrent Java programs in KeY based
on Dynamic Frames and explicit use of two memory heaps in the verification
logic and the specification language [12]. In this paper we extend this earlier
work and describe our method for showing self-framing of specification with
respect to permissions, and we discuss the use of JML model methods [13] for
modular specification and verification of concurrent Java programs that make
use of API methods that involve synchronisation. Throughout the paper, we
relate our approach to the existing ones.

The rest of this paper is organised as follows. Section 2 recapitulates our
symbolic permission system, and briefly explains verification of Java programs
with Dynamic Frames as implemented in the KeY verifier. Sections 3 to 5 present
the main contributions of the paper. Section 6 concludes the paper, discusses the
current state of the implementation and future work.

2 Background

2.1 Symbolic Permissions

In an earlier paper [11] we proposed a symbolic permission system for concurrent
reasoning as an alternative to classical fractional style permissions. Symbolic
permissions address some of the issues we identified with fractional permissions,
like inflexibility to handle complex synchronisation scenarios. Here we only give
a brief description of the main idea behind symbolic permissions and we refer
the reader to [11] for full account, including formal definitions and mechanically
proved consistency properties.

A single symbolic permission p refers to one heap memory location of the
program to be verified. From the point of view of the currently running thread,
permission p maintains information about which other threads possibly hold
access to the memory location and which threads are the permission’s origina-
tors, i.e., threads that the permission should be returned to during synchronisa-
tion. As in Java, threads are identified by their corresponding object references
and the currently running thread is uniquely identified by ct . On the top level,
the permission expression assigned to p consists of a list of permission slices,
and each slice defines one piece of ownership of the permission. Such a slice is
again a list that holds the history of owners (threads) of this slice, with the cur-
rent owner at the head of the list, and the tail containing previous owners that
this slice is owed to (originators of the slice). Permission p grants read access to
thread t when there is at least one slice in p that is owned by t, while the write
access requires all of the slices in p to be owned by t. In principle, no empty
permissions (with no slices) or empty slices (with no owners) are allowed and
the defined permission operations guarantee this property.

126 W. Mostowski

For example, after acquiring a simple read lock the running thread might hold
a permission of the form [[ct , l], [l]] to some memory location, where l is the lock
that provides read access to the threads that acquire it.3 This permission contains
two slices. The first slice [ct , l] belongs to the current thread and consequently
grants it a read permission while upon lock release it will be returned to the
lock l , the originator of this slice. The second slice belongs to lock l only and
allows further acquirings of the lock by other threads. When the current thread
releases the lock the complete permission becomes [[l], [l]] which is semantically
equivalent to [[l]] (and can become so) meaning that the lock holds the full access
to the associated memory location.

With symbolic permissions, the core difference compared to fractional style
permissions is how permission transfers are specified. In our approach we state
what kind of transfer is applied to a permission rather than saying how much of
the permission is transferred. Using functional style expressions, we specify how
a permission is changed with respect to its previous value upon a synchronisation
point. For our lock example, when acquiring the lock, the specification would say
p = transferPermPart(l , ct , p′). It states that the old permission p′ becomes per-
mission p after splitting one (any) slice that belongs to l and transferring the own-
ership of one of the newly created slices to ct . That is, if p′ = [[l]] it becomes p in
two steps, first it becomes [[l], [l]] and then [[ct , l], [l]]. For a write lock, by using
another transfer function transferPermAll , no splitting of the permission would
be applied and p would become [[ct , l]], temporarily giving ct full access right to
the associated resource.

Such functional style specifications are particularly suitable for dynamic
frames with explicit heaps as we explain in the next section. However, in many
situations it is not possible to operate on concrete permissions expressions that
explicitly state all the threads that share the permission. In fact, in the example
above the read lock would be passing the permission to other threads unknown
to ct and it cannot be assumed that the slices we specified are the only ones
that comprise the permission at any point in time. To cover situations like this,
abstraction of the permission is necessary and possible, as we show later in
Sect. 5. In particular, instead of spelling out concrete permission expressions,
one simply uses readPerm or writePerm predicates that establish if a permis-
sion is sufficient to grant a read or write access, respectively, to a given thread.

2.2 Dynamic Frames in JML∗ Specifications

In Dynamic Frames specifications [6] memory locations are first class citizens, typ-
ically stored in ghost or model variables typed as location sets, which in turn are
used to specify method frames or frame dependency relations, and mechanisms are
provided that allow to specify dynamic changes of these frames (typically called
memory footprints). In the KeY verification system, dynamic frames are added to
the Java Modelling Language (JML) [9], a behavioural specification language for
Java, to form a KeY-specific version of JML called JML∗ [7].
3 Although locks are actually not threads, classifying them as such allows us to suitably

generalise the symbolic permission approach.

Dynamic Frames Based Verification Method for Concurrent Java Programs 127

public interface List {

//@ instance model \locset

↪→ footprint;

//@ accessible footprint :

↪→ footprint;

//@ ensures \result == size();

//@ accessible footprint;

public /*@ pure @*/ int size();

//@ ensures size()==\old(size())

↪→ + 1;

//@ assignable footprint;

public void add(Object o);

}

public class ArrayList implements

↪→ List {

private Object[] contents;

private int size;

//@ represents footprint = size,

↪→ contents, contents[*];

public int size() {

return size;

}

public void add(Object o) {

contents[size++] = o;

}

}

Lst. 1. Java program annotated with JML∗

Listing 1 shows a simple example of a Java program specified with dynamic
frames, purposely underspecified for clarity. It implements a simple array list
based on an interface specification, which abstractly specifies a memory foot-
print that the implementations will be working with through declaring a model
variable of a primitive type \locset . This footprint is made concrete in the
implementing class with the represents clause that puts all the concrete loca-
tions used by the ArrayList class into the footprint model field. This model
field is in turn used in two frame specifications. Firstly, the assignable clause
of method add states that these are the locations that may change when add
is called. Secondly, through the accessible clause, the size method specifies
that its result only depends on the locations contained in the footprint. Such
specifications are commonly used to prove independence of pure expressions; If
an expression is to be evaluated on two different heaps and it can be proved that
the two heaps differ only on locations disjoint with the ones in the accessible
clause, then it can be concluded that the two expressions are equal. This in turn
enables abstract reasoning about expressions.

Note that in dynamic frames there is no implicit framing as found in
approaches based on Separation Logic [2] or Implicit Dynamic Frames [4], hence
the assignable and accessible clauses have to be stated explicitly. In particu-
lar, we also have to explicitly specify that the footprint is self-framed. However,
there is no obligation to use model (or ghost) fields as in our example, it is also
possible to state the locations explicitly in the corresponding clauses. In this
case the approach is equivalent to well known static frames [14].

To prove a JML∗ annotated programs correct in KeY, the specifications are
translated to the Java Dynamic Logic (JDL) in which the memory heap is mod-
elled with an explicit program variable using the theory of arrays [7]. This pro-
gram variable, simply called heap, is used in translating Java and JML∗ expres-
sions to JDL and generating suitable proof obligations over this variable to show

128 W. Mostowski

the correctness of method framing. For example, an object field access o.f is
typically translated to select(heap, o, f) which reads the contents of the heap
variable at the location mapped by o and f. Further, a part of the formula that
establishes correct framing of a method usually reads:

∀o:Object,f :Field (o, f) ∈ frame ∨ o.f@heap = o.f@heapAtPre (1)

where (i) frame is the methods frame, either concrete or abstract (in the latter
case it can be concretely instantiated when the concrete instance of the object
involved is known), (ii) @ is a shorthand notation for the select function, and (iii)
heapAtPre is a snapshot of the heap taken before the method was called (which
is also used to translate JML∗ \old expressions). The actual Java programs are
embedded in and treated with Dynamic Logic [p]φ and 〈p〉φ modalities for partial
and total correctness, respectively, where p is a program and φ is a correctness
formula. Modalities are actually in most part a orthogonal issue to the subject of
this paper, however, what is important is that during correctness proofs programs
in modalities are evaluated on a statement by statement basis using symbolic
execution. During this evaluation the program heap is modified accordingly by
updating the heap variable. For example, an object field assignment o.f = v;
results in a modification of the heap variable expressed by store(heap, o, f, v),
which gives a newly modified heap.

2.3 JML∗ Model Methods

Model methods [13] are specification only methods that extend the notion of
model fields to fully fledged abstract predicates. When abstract, they do not
have any method body, when instantiated (typically in a subclass), they contain a
single return statement that gives the predicate its definition. Model methods are
strictly pure, which means that they are not allowed to modify any of the heaps.
The accessible clause attached to the method specifies memory locations that
the method at most depends on, this is used to reason about their (in-)equality
upon state changes (see Sect. 4). Finally, a model method can have a specification
of its own, which essentially serves as a lemma mechanism for predicates to state
additional properties. Model methods are particularly suitable to specify linked
data structures [15], in this paper we use them to provide modular specification
of Java API synchronisation points. In Sect. 5 we give an example of the use of
model methods for this.

3 Dynamic Frames with Permissions

The above described verification methodology works very well in a sequential
setting. For the permission-based concurrent setting an appropriate extension
is needed. Because the heap is a first class citizen in JDL, the extension is
actually rather straightforward. The base heap stores the values of the memory
locations that the program operates on, adding a second heap that stores our
symbolic permissions in parallel to the values is in essence sufficient. Adding

Dynamic Frames Based Verification Method for Concurrent Java Programs 129

this permission heap means adding a second heap variable, which we simply call
permissions, and extending the verification mechanisms of Java Dynamic Logic
from one heap to two heaps. In fact, one can use more than two heaps in JDL
easily, as long as the number of heaps is fixed, all mechanisms that work with
the single heap variable extend naturally to multiple heaps [12].

For example, for proving the framing property (1) above, stemming from the
assignable clauses, now two quantifiers, over the two heaps, are needed. The
core semantics of the permission heap, i.e., granting of access permissions to
heap locations, is encoded in the rules for heap location reading and assignment,
these rules now operate on our two heaps. As before, the regular heap is read
and modified to store the values of corresponding memory locations as briefly
explained at the end of the previous section. In addition, each time a memory
location is read from or stored onto this heap, the access right is checked on
the permission heap. The permission heap is read at the corresponding location
and the resulting permission value is checked accordingly to establish that the
current thread has the respective permission.

More concretely, when a location writing statement o.f = v; is sym-
bolically executed, the value mapped to o.f on the heap is updated with
store(heap, o, f, v) as before, but first the permission p is read from the permis-
sion heap with select(permission, o, f) and p is checked to be a write permission
for the current thread, i.e., as explained in Sect. 2 all slices in p have to belong
to the current thread object ct . Reading of locations from the heap is analogous,
only the permission is checked to be a read permission instead. In both cases, the
permission values stored on the permission heap are only read, but in two cases
writing of permission values can also occur. First, when objects are created and
permissions are initialised to full permissions for the current thread, i.e., when
object o is created, for all fields f of this object a new full permission is stored
on the permission heap with store(permissions, o, f, [[ct]]). Second, permissions
are changed, and hence written on the permission heap, when they are subjected
to permission transfers upon synchronisation points, in which case the current
permission is first read from the permission heap and a modified one is then writ-
ten back. For example, when a permission for location o.f is transferred from the
lock l to the current thread as explained in Sect. 2, the permission heap becomes
store(permissions, o, f, transferPermPart(l , ct , select(permissions, o, f))).

For writing suitable user level specifications this extension of JDL to use two
heaps has to be lifted to JML∗. Following the explicit heap variable approach of
JDL, we allow for the same explicit reference of the heap variables in JML∗ and
provide operators to access permissions on the second heap and evaluate them.
The following is a short example that illustrates this:

//@ requires \writePerm(\perm(this.o));
//@ ensures this.o == p;
//@ assignable<heap> this.o;
//@ assignable<permissions> \nothing;
public void set(Object p) { this.o = p; }

130 W. Mostowski

First, we allow to explicitly state the heap variable that the assignable clause
refers to (and similarly for the accessible clauses). This allows us to decouple
the two heaps in the specifications. In the example, we state that the value of
the this.o field is changed by pointing the assignable clause to the main heap
variable, however, on the permissions heap the frame is empty, because the
permission to the field o does not change when the set method is executed, it
is only read to check the (write) access to the field this.o.

Furthermore, we provide operators to access the permission heap in the pre-
and postconditions, and to evaluate the permission values. In the example, we use
the \perm operator to access the this.o location on the permission heap. Thus,
\perm is somewhat analogous to the \old operator, which redirects access from
the current heap to the heap before the method was called. In our specifications
the combination of the two operators is also possible, \old(\perm(·)) reads the
value of the permission before the method was called. Then, \writePerm is a
predicate that abstracts checking the permission to be a write permission for the
current thread, an analogous predicate for checking the permission to be a read
one is called \readPerm . Finally, operations \transferPerm and \returnPerm
to modify permissions upon synchronisation points are also available. Typically,
when this happens the corresponding location is also listed in the assignable
clause for the permission heap, concrete examples of that are provided in Sect. 5.

4 Proof Obligations for Self-Framing

The above is sufficient to relate heap locations with their permissions and to
perform basic permission-aware reasoning in the dynamic frames approach, i.e.,
permissions can be specified and are checked when locations are accessed in the
verified program. However, permissions have also consequences for the specifi-
cations themselves, in terms of which specifications are actually sound and how
they should be applied in modular reasoning. Namely, specifications themselves
have to be self-framed with respect to permissions, i.e., specifications are only
allowed to reference heap locations they have at least a read permission to. Loca-
tions with no permission can be modified by other threads that potentially hold
a complete write permission, hence nothing can be said about them. The mech-
anism of applying method specifications in modular reasoning is also affected,
i.e., when a permission to some memory location is lost, so should be the infor-
mation about its current value on the heap. Unlike in Separation Logic (-like)
approaches [4], in dynamic frames self-framing of expressions (even without per-
missions) is not given and has to be shown explicitly. In particular, explicit
assignable clauses are required (not necessary in SL) and proof obligations
have to be generated, like (1) above, to prove them correct.

In permission-based reasoning each thread is verified (on a per-method basis)
in isolation under the assumption that it is the currently executing thread. The
reasoning itself is very similar to the one for sequential programs, with the addi-
tion that if permission annotations are verified to be consistent for each thread
then the threads are guaranteed to be non-interfering. In such a verification con-
text, it is sufficient to abstract the permissions to be simply read, write, or no

Dynamic Frames Based Verification Method for Concurrent Java Programs 131

permission for the current thread, also when talking about soundness of specifi-
cations themselves. Hence, the actual permission system (symbolic or fractions-
based) is irrelevant. What is relevant is how the memory and permissions are
referred to in the logic, in our case through explicit heap variables.

4.1 Examples of Sound and Unsound Specifications

Suppose we have the following very simple method specified with JML∗:
//@ requires \writePerm(\perm(this.f));
//@ ensures this.f == v;
//@ assignable<heap> this.f;
//@ assignable<permissions> \nothing;
void setF(int v) { this.f = v; }

This specification is sound with respect to permission annotations. The pre-
conditions establishes at least a read permission (here a full write one) for
this.f, the permission is not changed by this method, hence the postcondi-
tion can freely specify the value of this.f. However, if we change the scenario
slightly to become:

//@ requires \writePerm(\perm(this.f));
//@ ensures this.f == v;
//@ assignable<heap> this.f;
//@ assignable<permissions> this.f;
void setFandUnlock(int v) { this.f = v; l.unlock(); }

then referencing this.f in the postcondition is no longer sound. Knowing that
the unlock method modifies the permission to this.f we also have to put this
location in the assignable permissions of setFandUnlock and consequently we
cannot establish any permission to this.f in the postcondition. To fix this, if
the unlock method leaves a read permission with the current thread then we
can specify it:

//@ ensures \readPerm(\perm(this.f));
//@ ensures this.f == v;

Or, if no permission to this.f is left after unlock the postcondition over the
value of this.f has to be removed altogether, and the specification becomes:

//@ requires \writePerm(\perm(this.f));
//@ assignable<heap> this.f;
//@ assignable<permissions> this.f;

On top of that, when client code that calls setFandUnlock is verified, it is
mandatory to loose all information about this.f after the call.4 However, it is

4 This problem is common in permission-based approaches and makes reasoning about
functional behaviour of concurrent programs difficult. Solutions exist to enable to
keep certain information about temporarily inaccessible locations [16], however, they
are beyond the scope of this paper, here we concentrate on the basic soundness of
dynamic frames enriched with permissions.

132 W. Mostowski

sound to leave this location in the assignable clause for the base heap, and in fact
necessary. The presence of this location in the assignable clause actually causes
erasure of information about this location from the current verification context
upon a setFandUnlock method call, because no postcondition can be specified
that would give the new value of this location. In other verification systems the
mechanism of erasing information is typically called havocing [17], in the Java
Dynamic Logic it is called anonymisation, and incidentally it also gives us the
base for showing that specifications are self-framed with respect to permissions
in JDL. We show how this is done for the preconditions in their basic form.
With small technical alternations, the method scales correspondingly to other
specification constructs, like postconditions, measured by termination clauses,
or model methods with their specifications (see Sect. 5).

4.2 Anonymisation

Locations on the heap are anonymised with the anon(heap1, locs, heap2) func-
tion that returns a new heap with the locations not appearing in locs copied
from heap1 and otherwise the locations are copied from heap2. For example,
to anonymise locations o.f and o.g on the base heap one typically creates a
new heap with anon(heap, {(o, f), (o, g)}, anonHeap), where anonHeap is a fresh
unspecified heap. Such an operation is applied to the current heap during modu-
lar verification, when a method call is dispatched using its specification, in which
case locs are the locations defined in the assignable clause.

This function can also be used in an inverse way, i.e., all locations outside of
a certain set locs can be anonymised with anon(heap, allLocs \ locs, anonHeap).
Now all locations in locs keep their values in the resulting heap with respect to
the input heap, while all other locations are left undefined. This mechanism is
commonly used in JDL to show data independence of expressions, in particu-
lar, to prove the accessible clauses of read-only methods. Suppose a method
getVal() is specified with an accessible clause to only depend on o.f. To prove
that this is indeed so, the following JDL proof obligation has to be discharged:

getVal() = {heap := anon(heap, allLocs \{(o, f)}, anonHeap)}getVal() (2)

The meaning of the right hand side of this equality is that getVal should be
evaluated in a state with modified heap where all locations not in the set of
locations locs are anonymised. Proving this equality means that changing the
values of locations outside of the set locs cannot influence the valuation of getVal
and indeed it depends at most on the values of locations in locs. In KeY, such a
proof obligation is generated by default for every state observing symbol [7,13]
with an accessible clause, in particular, for all read-only methods.

4.3 Proof Obligations for Self-Framing

To prove correct framing of specifications with respect to permissions a similar
mechanism is used. The expression is simply our specification, e.g., a complete

Dynamic Frames Based Verification Method for Concurrent Java Programs 133

expression pre representing the method’s precondition. However, there is no
accessible clause to give the set of dependency locations of the expression, so
we have to “extract” it from the expression instead. To this end, we introduce a
fresh location set logic variable readLocs and we indirectly specify which locations
it contains. Namely, locations that we can show at least a read permission for
under the assumption that the expression pre itself holds. The complete proof
obligation to show self-framing then reads:

pre ∧ ∀o:Object,f :Field (readPerm(o.f@permissions) → (o, f) ∈ readLocs)
→ pre = {heap := anon(heap, allLocs \ readLocs , anonHeap)}pre (3)

For a postcondition this construction has small additional complexity, which
stems from the fact that the read permission might be specified in the postcon-
dition itself, or, if the permission is not modified by the method, it might be kept
from the precondition. To account for this, additional base and permission heap
operations are required to “find” the permission in the method specification.
Due to space restrictions, we do not quote the formula here, however, the main
principle is exactly the same as in (3).

Proof obligation (3) shows that every location referenced on the base heap
is accompanied by at least a read access on the permission heap. As explained
above, we also have to show that all locations that the method may loose permis-
sions to, i.e., locations for which at least a read permission cannot be established,
are included in the assignable clause for the base heap. For this, the following
formula has to be proved:

post → ∀o:Object,f :Field ((o, f) ∈ permMod
→ readPerm(o.f@permissions) ∨ (o, f) ∈ heapMod) (4)

where permMod and heapMod are locations listed in the assignable clauses for
the permission and base heap, respectively. Note, that (a) it is not necessary to
add locations to the base assignable clause for which the method did not have
permissions for in the first place, only for the ones that are lost, (b) locations
for which there is no permission can nevertheless remain in the base assignable
clause without breaking the soundness. Locations without an initial permission
(point (a)) cannot be used in method’s specification or code. Hence, any infor-
mation (or lack thereof) about such locations can remain in the verification
context. For point (b) it is a simple case of over-approximation where the veri-
fication context will loose more information about locations than necessary.

4.4 Discussion

Enforcing the lost permission locations to be explicit in the assignable clause of
the base heap puts unnecessary burden on the specifier. In (4) we name these
locations directly and simply check that they are in the assignable clause. What is
equivalently sound, but more practical, is to instead add these locations dynam-
ically to the anonymisation set when the method contract is applied during a
proof, in which case (4) does not have to be proved. In fact, this approach can

134 W. Mostowski

be pushed even more to completely deduce assignable (and accessible) clauses
from permission specifications. This exactly is the methodology used in Implicit
Dynamic Frames (IDF) [4], where frames are inferred from permissions. A spec-
ified read permission implies that the corresponding location is in the accessible
clause, and a specified write location puts the location in the assignable clause.
The resulting reasoning system has the look-and-feel of permission-based Sep-
aration Logic [18,19]. It is also possible to achieve full IDF-style framing in
our framework, however, we have chosen not to do so (yet) for two reasons.
First, our explicit approach enables high specification and verification precision,
in particular, explicit framing avoids frame over-approximation. For example, a
write permission in the specification does not necessarily imply that the method
assigns the corresponding location, in fact, it can still be a read-only method, in
which case it can be used in specifications. For us, the query or mutator status
of a method is indicated by the accessible, resp. assignable, clause independent
of the permissions. Second, keeping the base and permission heaps explicit with
separate framing enables decoupling permission-based reasoning from the classi-
cal sequential dynamic frames one while using the same specifications for both.
To change from permission-based to sequential reasoning the permission heap is
simply omitted during proof obligation generation, and our implementation in
KeY provides a simple mechanism to do that.

5 Modular Specifications for Synchronisers

The most intricate part of permission-based reasoning are permission transfers
that occur upon synchronisation points between threads, e.g., acquiring and
releasing of locks, thread forking and joining, etc. In approaches based on quan-
titative permissions the modelling of the synchronisation involve the use of so-
called resource (or monitor) invariants [20]. Such an invariant is essentially a
quantitative amount of resource permissions that is passed to and from the cur-
rent thread upon synchronisation. For example, in Chalice [3] every object can
be used as a lock (as in Java), and when an object is locked all permissions from
the object’s resource invariant are transferred to the currently running thread.
Using Java and JML would-be syntax, to use a shared counter one would specify
and use it as follows:

class Counter {
int val; /*@ monitor Perm(val, 1); @*/

}

class Client {
void inc(Counter c) {

synchronized(c) { c.val++; }
}

}

Here, in the scope of the synchronized block the method inc temporarily holds
the permission to c.val specified in the monitor of the Counter class.

Dynamic Frames Based Verification Method for Concurrent Java Programs 135

To make this method more modular and flexible one typically uses predicates
to embed a set of permissions in one formula and use it as a single resource
invariant. This way, concrete permissions are hidden behind the predicate and
are only unfolded when required during verification. Such a predicate can be also
passed between different classes. In particular, this is used when complex API
synchronisation methods are considered [21]. API based synchronisation brings
the challenge that several different use scenarios are possible for each mechanism
(for locks, e.g., there are read locks, write locks, reentrant locks, etc.) and that
they cannot be considered as primitive language constructs with a fixed notion of
a resource invariant as above. Instead, their semantics is given with a generic API
specification, which is external to the concrete use case. By passing a suitably
defined resource predicate one makes such a generic specification concrete [22].

However, we cannot use resource invariants in our approach in the same way,
because we specify permission transformations instead of permission amounts.
Instead, we use a two stage mechanism. First, similarly to resource invariants, we
give a formula that describes the state of permissions for the given synchroniser.
But here, this specification contains a compound description of the symbolic
permissions for both the state when the synchroniser is engaged and when it is
not, both of which are described with the reference to the current thread and the
synchroniser itself. Second, we make a connection between this state description
and the methods that change the state, i.e., the actual synchronisation calls, like
lock and unlock. We explain our method based on a simple example of a write
lock used to protect a single counter variable, as above.

The abbreviated listing of our lock specification and sample client is given in
Listing 2. We compacted it for presentation, in particular we skipped all but one
framing specifications to concentrate on the modular specification of the lock
behaviour with respect to permissions. The full example that can be loaded and
proved with KeY is available in the current development version of the system.5

The specification of a lock is delegated to a separate interface LockSpec that
serves as a template and provides signatures of all predicates that clients have
to instantiate. The lock itself, specified in the Lock interface, “receives” this
specification through a binding of its ghost field spec (l. 19). Then, the client
code in the Counter class instantiates the specification and passes it to the lock
object by specifying the binding in the invariant (l. 31).6

To enable modularity, our predicates are specified with JML∗ model meth-
ods [13] briefly introduced in Sect. 2. The state predicate (l. 4) describes the
state of the permissions in the locked and unlocked state. In the client (ls. 35–
36) the lock is specified to protect the val field of the Counter object. In the
unlocked state the permission to val is a single slice belonging to the lock –
[[lock]]. When locked, the permission is also a single slice, but temporarily

5 Available at http://www.key-project.org/download/.
6 This is not the most elegant way of passing specifications (predicates) around classes

in JML∗, however, a working one and currently the only one that the KeY implemen-
tation allows. In the future we plan to provide proper ghost and model parameters
to classes and methods in the style of [22].

http://www.key-project.org/download/

136 W. Mostowski

public interface LockSpec {

2 //@ model \locset fpPerm();

/*@ accessible<permissions> fpPerm(); . . .
4 model boolean state(boolean locked); @*/

/*@ accessible . . .;
6 model boolean status(boolean locked); @*/

8 //@ model two_state boolean lockTr();

//@ model two_state boolean unlockTr();

10

/*@ ensures \result;

12 model final two_state boolean consistent() { return

(\old(state(false)) && \old(status(false)) && lockTr() ==>

14 (state(true) && status(true))) &&

(\old(state(true)) && \old(status(true)) && unlockTr() ==>

16 (state(false) && status(false))); } @*/ }

18 public interface Lock {

//@ public instance ghost LockSpec spec;

20

//@ requires spec.status(false);

22 //@ ensures spec.status(true) && spec.lockTr();

public void lock();

24

//@ requires spec.status(true);

26 //@ ensures spec.status(false) && spec.unlockTr();

public void unlock(); }

28

public class Counter implements LockSpec {

30 private int val;

private Lock lock; //@ invariant lock.spec == this && . . .;
32

/*@ model \locset fpPerm() { return \singleton(val); } @*/

34

/*@ model boolean state(boolean locked) { return \perm(val) ==

36 locked ? [[\ct, lock]] : [[lock]]; } @*/

/*@ model boolean status(boolean locked) { return locked ?

38 \writePerm(\perm(val)) : !\readPerm(\perm(val)); } @*/

40 /*@ model two_state boolean lockTr() { return \perm(val) ==

\transferPermAll(lock, \ct, \old(\perm(val))); } @*/

42 /*@ model two_state boolean unlockTr() { return \perm(val) ==

\returnPerm(\ct, lock, \old(\perm(val))); } @*/

44

//@ requires status(false);

46 //@ ensures status(false);

public void inc() { lock.lock(); val++; lock.unlock(); } }

Lst. 2. Modular specification for a lock in JML∗.

Dynamic Frames Based Verification Method for Concurrent Java Programs 137

belonging to the current thread that acquired the lock and owing the slice to
the lock – [[\ct, lock]] . The status predicate (l. 6) serves two purposes.
First, it represents the binary state of actually holding the lock at any given
point. Second, it provides an abstracted view of the permission to the protected
resource, here the val field. By knowing the status the client can also deduce
the actual access permission to the resource without having to evaluate the con-
crete symbolic permission expression kept in the lock state. Our client code
(ls. 37–38) specifies that in the locked state it holds a complete write permission
to val, while in the unlocked state it holds no permission at all. Note that in this
case these two are not the binary opposites of each other, hence the need for the
locked parameter in status. The predicates lockTr and unlockTr (ls. 8 and 9)
describe the permission change upon lock acquiring and releasing, respectively.
They are two state predicates, because they describe the state of permissions
before and after the corresponding lock calls. Such two-state predicates can be
used in an appropriate context, i.e., the method postcondition (e.g., l. 22). Upon
locking (l. 41) all permission slices to val are transferred from the lock to the
currently running thread (denoted with \ct). Upon unlocking (l. 43) all slices
for val are returned from the current thread to the lock object.

Finally, the consistent predicate (ls. 11–16) binds the specification structure
together. It establishes the relationship between the concrete and abstract view
of permission for the lock, and that the two transfers correctly change the state of
the lock. This predicate is defined directly in LockSpec – all clients instantiating
this specification have to show this predicate to hold (its postcondition in l. 11
states so) to prove that their concrete lock specifications are consistent.

Following the same methodology we can develop similar generic specifications
for other synchronisation triggering methods of the Java API, and in particu-
lar modular specification for asynchronous method calls invoked through the
start() and join() methods of the Thread class [23]. In each such case a
generic specification that would cover the typical usage scenarios is possible.
Our Lock specification is not fully generic in this respect, in particular it does
not cover Java re-entrant locks, but it can be extended to resemble the ones
we developed before for Separation Logic [22] that cover all kinds of Java lock
flavours. However, there will always be scenarios that would not fall within such
a generic scheme. In particular, our version [11] of the motivating example from
[24] that uses a primitive lock combined with a counter variable to effectively
implement a semaphore-like read-write lock cannot be put in the frame of our
Lock specification presented here without further extensions of this specifica-
tion. Hence, we did not construct a complete generic specification solution for
all API-based synchronisers, we only showed a methodology with a number of
possible applications.

6 Conclusions

We presented an approach to the verification of concurrent Java programs based
on Dynamic Frames extended with permissions. In particular, we showed how

138 W. Mostowski

to treat the self-framing of specifications in Java Dynamic Logic and how to use
JML∗ model methods to provide modular specifications for Java API synchro-
nisation points.

6.1 Implementation Status

Our symbolic permission framework described in Sect. 2 is implemented in the
current development version of the KeY verifier, and so is the extension from
Sect. 3 that incorporates permissions into the JML∗ dynamic frames. Further-
more, model methods that we used for modular specification in Sect. 5 are also
implemented in KeY [13], and in fact did not require any particular extensions
to work with permissions, apart from accounting for one additional heap. What
is not yet implemented, is the generation of the additional proof obligations and
checks for self-framing with respect to permissions described in Sect. 4. This is
work in progress and we expect this to be finished soon.

6.2 Further Examples

The current state of the implementation allows for all the examples that we
discussed or referred to in this paper to be verified. Technically speaking, how-
ever, the tool is not yet fully sound, in the sense that possibly unsound spec-
ifications can be admitted by KeY. Nevertheless, we developed several more
non-trivial examples and verified them with KeY, while checking specification
framing by hand. In particular, the KeY distribution contains modularly speci-
fied and fully verifiable example of a multi-threaded plotter that we developed
earlier using Separation Logic [5]. In this example four different threads manip-
ulate two shared buffers to process and “draw” some input data passing the
permissions to these buffers in a non-trivial way. Few other examples are avail-
able in the KeY distribution, in particular fully specified and verified read-write
lock example from [24] we mentioned above, and the examples from this and
earlier paper on symbolic permissions are included in the development version
of the KeY system.

6.3 Related Work

To the best of our knowledge, our method so far is the only one that uses
Dynamic Frames in the explicit form with permissions [1] and in this paper we
have shown the necessary extensions and modifications to the Java Dynamic
Logic used in the KeY verifier to build a fully functional verification system
for this combination. The existing approaches to (fractional) permission-based
reasoning with functional tools are based on Separation Logic (SL) [2] or Implicit
Dynamic Frames (IDF) [4], e.g., our own VerCors toolset [5,19], VeriFast [25],
Silicon [26], or Chalice [3].

Compared to these existing approaches, ours is based on symbolic permissions
we developed earlier to allow for more flexibility in permission flow specifications.

Dynamic Frames Based Verification Method for Concurrent Java Programs 139

Furthermore, we are more explicit in terms of exhibiting the underlying logic
mechanism to the specifier, e.g., by allowing to refer to heaps directly in explicit
JML∗ frame specifications. In comparison, e.g., in IDF memory and permission
frames are calculated on the fly from pre- and postconditions. We stated two
reasons for considering our explicit approach advantageous, namely very precise
specifications and reasoning, as well as the possibility to decouple reasoning
about functional and permission properties.

6.4 Future Work

Approaches based on SL and IDF have been shown to be practically equiva-
lent [4]. On the verification end, the problems are translated to FOL formulas
to be proved by an appropriate verifier, e.g., an SMT solver. In this respect
our method is no different, symbolic execution of permission annotated program
leads to pure FOL problems which are then discharged with FOL reasoning.
However, our specification methodology is more explicit and closely related to
the actual reasoning logic, in our case Java Dynamic Logic implemented in the
KeY verifier. In this respect, for future work we also consider a translation from
permission-based SL to Java Dynamic Logic with permissions making it an inter-
mediate verification language, similarly to Silicon [26]. This translation would
be a mixture of ideas presented in this paper and in [27] where a bridge between
SL and Dafny – also based on dynamic frames – is described. Otherwise, we are
finishing the implementation and working on more examples for our approach.

References

1. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

2. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
17th IEEE Symposium on Logic in Computer Science, pp. 55–74. IEEE Computer
Society (2002)

3. Leino, K.R.M., Müller, P., Smans, J.: Verification of concurrent programs with
Chalice. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007/2008/2009.
LNCS, vol. 5705, pp. 195–222. Springer, Heidelberg (2009)

4. Parkinson, M.J., Summers, A.J.: The relationship between separation logic and
implicit dynamic frames. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp.
439–458. Springer, Heidelberg (2011)

5. Amighi, A., Blom, S., Darabi, S., Huisman, M., Mostowski, W., Zaharieva-
Stojanovski, M.: Verification of concurrent systems with VerCors. In: Bernardo,
M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.) SFM 2014. LNCS,
vol. 8483, pp. 172–216. Springer, Heidelberg (2014)

6. Kassios, I.T.: Dynamic frames: support for framing, dependencies and sharing with-
out restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS,
vol. 4085, pp. 268–283. Springer, Heidelberg (2006)

7. Schmitt, P.H., Ulbrich, M., Weiß, B.: Dynamic frames in Java dynamic logic. In:
Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 138–152.
Springer, Heidelberg (2011)

140 W. Mostowski

8. Ahrendt, W., Beckert, B., Bruns, D., Bubel, R., Gladisch, C., Grebing, S., Hähnle,
R., Hentschel, M., Herda, M., Klebanov, V., Mostowski, W., Scheben, C., Schmitt,
P.H., Ulbrich, M.: The KeY platform for verification and analysis of Java programs.
In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471, pp.
55–71. Springer, Heidelberg (2014)

9. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. SIGSOFT 31(3), 1–38 (2006)

10. Blom, S., Huisman, M.: The VerCors tool for verification of concurrent programs.
In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 127–
131. Springer, Heidelberg (2014)

11. Huisman, M., Mostowski, W.: A symbolic approach to permission accounting for
concurrent reasoning. In: 14th International Symposium on Parallel and Distrib-
uted Computing (ISPDC 2015), pp. 165–174. IEEE Computer Society (2015)

12. Mostowski, W.: A case study in formal verification using multiple explicit heaps.
In: Beyer, D., Boreale, M. (eds.) FMOODS/FORTE 2013. LNCS, vol. 7892, pp.
20–34. Springer, Heidelberg (2013)

13. Mostowski, W., Ulbrich, M.: Dynamic dispatch for method contracts through
abstract predicates. In: 15th International Conference on MODULARITY, pp.
109–116. ACM (2015)

14. Beckert, B., Schmitt, P.H.: Program verification using change information. In: Pro-
ceedings, Software Engineering and Formal Methods (SEFM) 2003, pp. 91–99.
IEEE Press (2003)

15. Bruns, D., Mostowski, W., Ulbrich, M.: Implementation-level verification of algo-
rithms with KeY. Softw. Tools Technol. Transf. 17(6), 729–744 (2013)

16. Blom, S., Huisman, M., Zaharieva-Stojanovski, M.: History-based verification of
functional behaviour of concurrent programs. In: Calinescu, R., Rumpe, B. (eds.)
SEFM 2015. LNCS, vol. 9276, pp. 84–98. Springer, Heidelberg (2015)

17. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

18. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: Palsberg, J., Abadi, M. (eds.) Principles of Programming Lan-
guages, pp. 259–270. ACM (2005)

19. Amighi, A., Haack, C., Huisman, M., Hurlin, C.: Permission-based separation logic
for multithreaded Java programs. Logical Methods Comput. Sci. 11, 1–66 (2015)

20. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theor. Comput. Sci.
375(1–3), 271–307 (2007)

21. Blom, S., Huisman, M., Kiniry, J.: How do developers use APIs? A case study in
concurrency. In: International Conference on Engineering of Complex Computer
Systems, pp. 212–221. IEEE Computer Society (2013)

22. Amighi, A., Blom, S., Huisman, M., Mostowski, W., Zaharieva-Stojanovski, M.:
Formal specifications for Java’s synchronisation classes. In: Lafuente, A.L., Tuosto,
E. (eds.) 22nd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, pp. 725–733. IEEE Computer Society (2014)

23. Haack, C., Hurlin, C.: Separation logic contracts for a Java-like language with
fork/join. In: Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS, vol. 5140, pp.
199–215. Springer, Heidelberg (2008)

24. Boyland, J., Müller, P., Schwerhoff, M., Summers, A.J.: Constraint semantics for
abstract read permissions. In: Formal Techniques for Java-Like Programs (FTfJP).
ACM (2014)

Dynamic Frames Based Verification Method for Concurrent Java Programs 141

25. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011)

26. Juhasz, U., Kassios, I.T., Müller, P., Novacek, M., Schwerhoff, M., Summers,
A.J.: Viper: a verification infrastructure for permission-based reasoning. Technical
report, ETH Zürich (2014)

27. Bao, Y., Leavens, G.T., Ernst, G.: Translating separation logic into dynamic frames
using fine-grained region logic. Technical report CS-TR-13-02a, Computer Science,
University of Central Florida, March 2014

A Simpler Reduction Theorem for x86-TSO

Jonas Oberhauser(B)

Saarland University, Saarbrücken, Germany
jonas@wjpserver.cs.uni-saarland.de

Abstract. The memory model of x86-TSO allows code to run in weakly
synchronous fashion, resulting in a smaller memory bottleneck but also
possibly causing inconsistent memory effects. Cohen and Schirmer [5]
described an efficient software discipline which provably provides sequen-
tial consistency. The contribution of this paper is threefold:

– We extend the Cohen-Schirmer discipline to handle non-triangular
races as defined by Owens [10], for which the Cohen-Schirmer disci-
pline introduces unnecessary fences.

– We describe the discipline in terms of C11 data races and atomic
accesses, and conclude that the behaviour of data-race-free programs
is unchanged when executed on x86-TSO if no atomic load is issued
by a thread whose store buffer contains an atomic store.

– We give a considerably simpler proof of this fact.

Keywords: Store buffer reduction · Order reduction · Relaxed
memory · Sequential consistency · Consistency points · Compiler
optimization · Verification

1 Introduction

When arguing about parallel programs, it is convenient to assume sequential
consistency, i.e., that all steps occur in a global order that respects the local
program order. Guaranteeing such a strong memory model in hardware requires
synchronization overhead, which is why most modern hardware offers a more
relaxed hardware model.

In order to allow a programmer to gain access to a strong memory model,
the hardware may offer slow synchronization primitives (e.g., mfence on x86).
The question then becomes one of using the synchronization primitives as eco-
nomically as possible.

The relaxed memory model known as x86-TSO [12] is obtained by adding store
buffers to a sequentially consistent memory (as in the relatively common proces-
sor family of x86/AMD64). These local FIFO buffers act as a bridge between the
processor and the shared memory, buffering writes while the shared memory is
used by other processors (and thus reducing bottlenecks in parallel processors).
While buffered writes are made visible to the local processor by forwarding, they
are not visible to other processors, leading to sequentially inconsistent behaviour.
c© Springer International Publishing Switzerland 2016
A. Gurfinkel and S.A. Seshia (Eds.): VSTTE 2015, LNCS 9593, pp. 142–164, 2016.
DOI: 10.1007/978-3-319-29613-5 9

A Simpler Reduction Theorem for x86-TSO 143

For this architecture, Cohen and Schirmer [5] developed a generic software dis-
cipline that provably guarantees sequential consistency while using relatively lit-
tle synchronization. Furthermore, one can assume sequentially consistent memory
when verifying that a program adheres to the discipline, meaning that traditional
verification tools such as VCC [4] are fit for verifying this property.

The discipline marks memory accesses as volatile (shared) or non-volatile
(local) based on dynamic ownership. Volatile writes have to be separated from
later volatile reads on the same thread by a store buffer flush.

In this paper, we establish that the ownership state precisely defines the data
races that are possible on each variable, and that exactly the memory accesses
that race must be volatile. Therefore, atomic accesses in C11 and volatile accesses
in the Cohen-Schirmer discipline are the same. From this observation one can
easily conclude that the Cohen-Schirmer discipline can be expressed in terms
of data races rather than ownership, which simplifies the model and brings us
closer to languages like C11. In the remainder of the paper we will thus adopt
the language of C11 and speak of data races and atomic accesses.

Furthermore, we consider non-triangular races, which are races of the form

x.store () ; ... ; x.load() || x.store().
Owens [10] established that in such cases no fence is required between the

atomic store and the atomic load, whereas the original Cohen-Schirmer disci-
pline inserts a fence. Combining Owens’ results and the Cohen-Schirmer discipline
gives a new discipline: atomic writes have to be separated from subsequent atomic
reads to a different address by a store buffer flush. In this paper, we give a short
proof that the behaviour of programs obeying this new discipline is unchanged
when executed under x86-TSO, thus strengthening the results of both Owens’ and
Cohen-Schirmer. The main motivation behind finding a short proof is the fact that
modern multi-core processors use complex inter processor interrupt mechanisms,
which are not considered by current store buffer reduction proofs. We hope that
this simple proof can be extended to such machines easily.

1.1 Proof Overview

Like Cohen and Schirmer, we use two operational semantics in our proofs: one
for the store buffer machine where write instructions are buffered, and one for
a sequentially consistent abstract machine where write instructions immediately
become visible to all processors. We consider now a program which obeys the
software discipline while running on the abstract machine, and run it on the
store buffer machine. We say that this execution is sequentially consistent if it
simulates some execution of the program on the abstract machine. That is the
case if there is a (possibly different) order of processor steps such that

1. The original and the new order cause the same local traces when using the
store buffer machine, and

2. when executing the program in parallel on the store buffer machine and the
abstract machine, using the new order of processor steps, the resulting exe-
cutions are equal.

144 J. Oberhauser

We do so using two techniques. First we show that if a processor uses a
variable locally, this variable is not accessed by another processor until both
processors synchronize via shared variables. We call this lemma the Privacy
Theorem.

During an arbitrary execution, store buffers may contain conflicting atomic
writes, and atomic reads to such a location may be served out of execution
order. We consider instead executions in which the whole store buffer content is
committed after each atomic write (including the atomic write itself). Effectively,
atomic writes immediately become visible to all processors, and only non-atomic
writes may be buffered. We thus call such executions local store buffer executions.
In such executions, reads to local locations are correct due to the correctness of
the forwarding mechanism, and reads to shared locations are always served from
the shared memory, which is kept in sync with the abstract machine. Sequential
consistency for such executions is therefore easy to show.

Finally we show that arbitrary executions of programs that satisfy the soft-
ware discipline can be easily reordered into local store buffer executions. Fur-
thermore, our method does not reorder steps to infinity as long as all store buffer
entries are eventually committed.

1.2 Structure of this Paper

We first define the abstract and store buffer models and give their semantics in
Sect. 2. In that section we also define equivalence between store buffer computa-
tions, and a straightforward coupling relation between an abstract and a store
buffer computation. In Sect. 3, we describe how processors synchronize and give
the Privacy Theorem. We define local store buffer schedules in Sect. 4.1, which is
a class of schedules for which the abstract and store buffer computations coincide.
In Sect. 4.2, we then define a method of iteratively constructing equivalent sched-
ules of which a finite growing prefix falls into that class Applying this method
infinitely often yields an equivalent local store buffer schedule, and we thus com-
plete the store buffer reduction proof in Sect. 4.3. We sketch the corresponding
store buffer reduction theorem for machines with MMUs in Sect. 4.4.

Note that this paper only includes high-level proofs; for details, refer to the
technical report [9].

2 Definitions

2.1 Preliminaries

Let S, A, and V be sets of processor states, shared memory addresses, and values,
respectively. Let p be the number of processors, and we define P = [1 : p] as the
set of processors.

For read-modify-write instructions we consider a set ΣRMW of update flavors,
and for each update flavor σ ∈ ΣRMW we consider a memory update function

δσ : V → V.

A Simpler Reduction Theorem for x86-TSO 145

For example, one might model a compare-and-swap instruction by

(cas, cmpdata ∈ V, newdata ∈ V) ∈ ΣRMW

with the update function

δ(cas,cmpdata,newdata)(v) =

{
newdata cmpdata = v

v o.w.

Furthermore, we assume a transition function for processor states,

δ : S × (V ∪ {⊥}) → S,

where the second parameter is the value read from memory for read instructions.
For instructions that do not read from memory, we supply the place holder ⊥.

2.2 Instructions

We consider the following instructions I, the semantics of which we will formalize
later:

I ::= READat∈B (a ∈ A) |WRITEat∈B (a ∈ A, v ∈ V) |PROCESSOR
|RMW (a ∈ A, σ ∈ ΣRMW) |FENCE

The bit at ∈ B stands for atomic and is ghost code, i.e., part of the program
annotation used to prove that the program obeys the software discipline.

For instructions n ∈ I we define predicates Read(n), Write(n), RMW (n),
Fence(n), and Processor(n) with the obvious meaning. We can access the com-
ponents of an instruction using dot notation, e.g., for a write instruction n we
have

n.at ∈ B, n.a ∈ A,n.v ∈ V.

We also define the following shorthands:

R(n) = Read(n) ∨ RMW (n)
W (n) = Write(n) ∨ RMW (n)

Flush(n) = RMW (n) ∨ Fence(n)
At(n) = RMW (n) ∨ (Read(n) ∨ Write(n)) ∧ n.at = 1

Whenever a processor is stepped, it will execute one instruction n ∈ I that
only depends on its current processor state. In particular, instruction fetch and
instruction execution are two separate steps in our model; if our theory is to
be applied to a model where fetch and execute are a single cycle, one has to
prove that code regions are not modified by other processors. Note that this is
already a condition for most pipelined machines and typically does not introduce
additional proof effort. We denote this instruction by

pi : S → I.

146 J. Oberhauser

2.3 Models

We consider two models, the store buffer machine and the sequentially consistent
abstract machine. The components of store buffer and abstract configurations
are laid down in the table below. For each processor i ∈ P , component φi keeps
track of the current processor state of that processor. The shared memory m also
exists in both configurations. Note that the abstract components di are ghost
components used only to prove adherence to the software discipline.

Store Buffer Configuration Abstract Configuration

φi ∈ S

The processor state of processor i.

m : A → V

The shared memory.

sbi ∈ {n ∈ I | Write(n)}∗ di ∈ A ∪ {⊥}
The list of write instructions buffered in
the store buffer of processor i, ordered by
age: the oldest instruction is at the front.

The software discipline requires us to keep
track of atomic writes. While an atomic
write might be in the store buffer, we
say the store buffer is dirty and di is the
address of the last such write, otherwise we
say the store buffer is clean and di = ⊥.

Store buffer machines use forwarding to ensure that reads never overtake
writes of the same processor. We define the memory system with forwarding by
recursively applying all buffered writes to the shared memory in order:

fw(m, ε, a) = m(a), fw(m,w ◦ sb, a) = fw(apply(w,m), sb, a)

where apply applies (write) instructions n to a shared memory configuration m
as follows:

apply(n,m, a) =

⎧⎪⎨
⎪⎩

n.v Write(n) ∧ n.a = a

δn.σ(m(a)) RMW (n) ∧ n.a = a

m(a) o.w.

2.4 Store Buffer Semantics

We consider an arbitrary initial store buffer configuration c0 with empty store
buffers:

c0.sbi = ε.

Starting from this configuration, we apply steps in a non-deterministic order
given by a schedule (or stepping function)

s : N → P ∪ {SBi | i ∈ P} .

A Simpler Reduction Theorem for x86-TSO 147

This may yield a parametrized sequence of configurations (c[s]t), which we
will define recursively.

Assume now that c[s]t is already defined.
We first introduce the following notation:

X[s]t = c[s]t.X,

for components X ∈ {m} ∪ ⋃
i{sbi, φi}, and

mi[s]t(a) = fw(m[s]t, sbi[s]t)(a),

ei[s](t) =

{
pi(φi[s]t) s(t) = i

hd(sbi[s]t) s(t) = SBi,

rv[s](t) =

{
mi[s]t(ei[s](t).a) s(t) = i ∧ R(ei[s](t))
⊥ o.w.,

where ei stands for executed instruction and rv for the read value. We will use
this notation later and omit the index s whenever we consider only a single
stepping function.

Furthermore we overload the elementship for addresses and store buffers as
follows:

a ∈ sb ⇐⇒ ∃w ∈ sb. w.a = a

Note that the sequence can get stuck, e.g., if an empty store buffer is supposed
to make a step. We call step t well-formed if and only if

– s(t) = i and Flush(ei(t)) imply sbt
i = ε,

– and s(t) = SBi implies sbt
i �= ε.

If step t is not well-formed, we leave the behavior undefined. If step t is well-
formed, we distinguish between two cases: either step t is a processor step, or a
store buffer step.

Let i = s(t). We define the components of the next configuration by analysis
of n = ei(t), using notation analogous to what we have introduced, and leave
unspecified components unchanged.

φt+1
i = δ(φt

i, rv(t))

mt+1 =

{
apply(n,mt) RMW (n),
mt o.w.,

sbt+1
i =

{
sbt

i ◦ n Write(n)
sbt

i o.w.

Let now SBi = s(t). Note that the store buffer is not empty. We will commit
the oldest instruction in the store buffer to the shared memory, which is the
instruction at the head:

mt+1 = apply(hd(sbt
i),m

t),

sbt+1
i = tl(sbt

i).

148 J. Oberhauser

This fully defines the semantics of the store buffer machine.
In what follows we will only consider well-formed schedules, i.e., schedules in

which each step is well-formed.

Global and Local Steps. Note that only few steps t depend on or mod-
ify shared state. In such a case we say that the step is global for the store
buffer machine. Read-modify-writes and the commits of atomic writes are always
global. Reads are only global if they can not use forwarding from an atomic
write. Note that intuitively, non-atomic writes never need to forward to atomic
reads: since non-atomic writes can not race with accesses of other processors, the
existence of a non-atomic write to the same address in the store buffer implies
that the read access does not race either, and thus can be marked non-atomic.
Formally, we write G(t) in the following cases:

– if s(t) = i and RMW (ei(t)),
– if s(t) = SBi and ei(t).at = 1,
– or if s(t) = i and Read(ei(t)) and ei(t).at = 1 and ∀w ∈ sbt

i. w.a = ei(t).a →
w.at = 0.

We call the remaining steps local for the store buffer machine and write L(t).

2.5 Abstract Machine Semantics

For a stepping function s we define an abstract computation (a[s]t), where store
buffer steps are ignored and writes have their effect immediately. Note that this
means that each (well-formed) schedule s defines an abstract computation (a[s]t)
and a store buffer computation (c[s]t).

In order to avoid confusion with the store buffer computation, we denote
components and functions with a bar:

X[s]t = a[s]t.X,

ei[s](t) =

{
pi(φi[s]t) s(t) = i

⊥ s(t) = SBi.

rv[s](t) =

{
m[s]t(ei[s](t).a) R(ei[s](t))
⊥ o.w.

Again, we omit the index s when possible.
The starting configuration a[s]0 is nearly identical to the initial store buffer

configuration:

φi[s]
0 = φi[s]0,

m[s]0 = m[s]0,

di[s]0 = ⊥.

A Simpler Reduction Theorem for x86-TSO 149

We formalize the computation along the same lines as before. Let i = s(t).
We define the components of the next configuration by analysis of n = ei(t), and
leave unspecified components unchanged.

φ
t+1

i = δ(φ
t

i, rv(t)),

mt+1(a) = apply(n,mt(n.a)),

d
t+1

i =

⎧⎪⎨
⎪⎩

n.a Write(n) ∧ n.at

⊥ Flush(n)
d

t

i o.w.

Store buffer steps have no effect in the abstract model. That is if s(t) = SBi,
then at+1 = at.

Effectful Writes. Note that sometimes, a read-modify-write behaves as a regu-
lar read. For example, a compare-and-swap that fails its test has no effect on the
shared memory. The software discipline distinguishes between such read-modify-
writes and those that actually modify the memory. We say step t executes an
effectful write and write EW [s](t) if

Write(ei[s](t)) ∨ RMW (ei[s](t)) ∧ m[s]t+1 �= m[s]t.

2.6 Safety

Abstract Safety. Schedule s is safe if for all t the following holds. Let i �= j be
distinct processors making steps t and t + 1, and

n = ei[s](t), n′ = ei[s](t + 1)

be memory accesses to the same address such that one of the accesses is an
effectful write. Then both accesses must be atomic:

EW [s](t) ∧ (R(n′) ∨ W (n′)) ∧ n.a = n′.a → At(n) ∧ At(n′).

Furthermore, atomic writes and later atomic reads to a different address on
the same thread must be separated by a store buffer flush. Formally, if s(t) = i,
Read(ei[s](t)), and ei[s](t).at = 1, then di[s]t ∈ {⊥, ei[s](t).a}.

In this document, we argue only about programs where all schedules are safe.
We call those programs safe.

Cohen-Schirmer Safety. We describe here a simplified version of the
Cohen-Schirmer discipline, which does not consider all of the safety conditions.
Since programs that satisfy all conditions also satisfy the conditions shown here,
we can then show that all programs that obey the Cohen-Schirmer discipline are
safe.

150 J. Oberhauser

First, we introduce ownership states

O =
⋃
i∈P

{Oi,L,Oi,S} ∪ {S,R}.

A tabular overview over the individual ownership is given below:

Table 1. Ownership States in the Cohen-Schirmer Discipline

Status Speech Readers Writers

S Shared P P

Oi,S Owned P {i}
Oi,L Locally Owned {i} {i}
R Read-Only P ∅

Each address is assigned one of these states by means of an additional ghost
component

c.O : A → O,

and we consider a partial ownership transfer function

δO : S × (V ∪ ⊥) × A � O,

which for some states, read results, and addresses defines a new ownership state
for that address that is assumed when the state is left.

Let s(t) = i and n = ei(t). Then the new component changes as follows:

Ot+1
(a) =

{
δO(φ

t

i, rv(t), a) (φ
t

i, rv(t), a) ∈ Dom(δO)
Ot

o.w.

Note that each ownership state O is associated with a set of processors that
can read and a set of processors that can modify an address with that ownership
state, as indicated in Table 1. We write Readers(O) and Writers(O) to denote
those sets, and lift this definition to addresses in a configuration as follows:

Readers[s]t(a) = Readers(O[s]t(a)),

Writers[s]t(a) = Writers(O[s]t(a)).

Processors may only read or write to addresses according to these sets. When-
ever other processors may access the same address, accesses need to be atomic.
Formally, let n = ei(t) and i = s(t). Then

1. if R(n) then i ∈ Readers
t
(n.a),

2. if EW (t) then i ∈ Writers
t
(n.a),

3. if R(n) and Writers
t
(n.a) �⊆ {i}, then At(n),

A Simpler Reduction Theorem for x86-TSO 151

4. if W (n) and Writers
t
(n.a) ∪ Readers

t
(n.a) �⊆ {i}, then At(n).

Furthermore, whenever s(t) = i, Read(ei(t)), and At(ei(t)), then

d
t

i = ⊥.

We can now prove the result.

Lemma 1. Programs that obey the Cohen-Schirmer discipline are safe.

Proof. We obviously have that whenever Read(ei[s](t)), and ei[s](t).at = 1, then
di[s]t ∈ {⊥, ei[s](t).a}. It remains to be shown that races are marked as atomic.

Assume thus that s(t) �= s(t + 1) and

n = ei[s](t), n′ = ei[s](t + 1)

are racing:
EW [s](t) ∧ (R(n′) ∨ W (n′)) ∧ n.a = n′.a.

Let
a = n.a = n′.a.

We can infer from Rule 2

s(t) ∈ Writers[s]t(a) �⊆ {s(t + 1)}. (1)

We now swap the order of t, t+1 in s and obtain

s′(t′) =

⎧⎪⎨
⎪⎩

s(t + 1) t′ = t

s(t) t′ = t + 1
s(t′) o.w.

By straightforward induction one can show that the same state is reached at
t, i.e., a[s]t = a[s′]t, and we conclude

ei[s′](t) = ei[s](t + 1) = n′,

O[s]t(a) = O[s′]t(a). (2)

and thus by Rule 1 or Rule 2

s(t + 1) = s′(t) ∈ Readers
t
[s′](a) ∪ Writers

t
[s′](a) �⊆ {s(t)}.

Thus we conclude with Eqs. 1 and 2

Writers[s]t(a) ∪ Readers[s]t(a) �⊆ {s(t)},

Writers[s′]t(a) �⊆ {s′(t)},

and thus from Rules 3 and 4

At(n) ∧ At(n′).

��

152 J. Oberhauser

Store Buffer Safety. Note that we have safety only for abstract computations,
not for the store buffer computations. In particular, safety allows us to argue
about instructions executed in the abstract computation. However, if for some
schedule, the store buffer computation executes the same instructions as the
abstract computation, these properties directly transfer down to the store buffer
computation. This is the case if the store buffer computation and the abstract
computation reach the same processor states after each step. We say a schedule
s is t-abstract and write s ∈ ABSt if processor states agree until step t:

∀t′ ≤ t, i. φi[s]t
′
= φi[s]

t′
.

If this is the case for all steps, we say s is abstract and write s ∈ ABS:

∀t′, i. φi[s]t
′
= φi[s]

t′
.

2.7 Equivalence

We say two schedules are equivalent if they have the same local traces in the
store buffer computation, that is, the sequences of processor states coincide.

We define the instruction count icX : N → N as the function that counts how
often unit X has been stepped so far:

icX(t) = # {t′ < t | s(t′) = X} .

We say s is equivalent to s′ and write s ≡ s′ if both of the following hold:

– reached processor states are equal:

ici[s](t) = ici[s′](t′) → φi[s]t = φi[s′]t
′
,

– and the same states are reached:

(∃t.ici[s](t) = m) ⇐⇒ (∃t′.ici[s′](t′) = m).

A similar definition can be found in [11]. One can easily show that this relation
is an equivalence relation.

2.8 Reordering

We can reorder certain steps and maintain equivalence. The permutation of two
consecutive steps t, t+1 is defined as follows:

s[t ↔ t + 1](t′) =

⎧⎪⎨
⎪⎩

s(t′) t′ �∈ {t, t + 1}
s(t + 1) t′ = t

s(t) t′ = t + 1.

A Simpler Reduction Theorem for x86-TSO 153

Iterating the permutation of two steps allows us to move a step to the front
or delay it. This gives rise to the following two definitions:

s[t ← t′] =

{
s t′ ≤ t

s[t′−1 ↔ t′][t ← t′ − 1] o.w.

s[t → t′] =

{
s t′ ≤ t

s[t → t′ − 1][t′−1 ↔ t′] o.w.

3 Synchronization

We say step t′ reads from t if t is an effectful write which is not overwritten until
t′, which executes a read on the same address. Formally, we write t � t′ in the
following case:

t < t′ EW [s](t) R(ei[s](t′) ei[s](t).a = ei[s](t′).a
∀t′′ ∈ [t + 1 : t′ − 1].¬(EW [s](t′′) ∧ ei[s](t′′).a = ei[s](t′).a)

t � [s]t′

We say step t is directly synchronized with step t′ and write t � t′ if t reads
from t′ and both steps are atomic; or they are both steps of the same processor:

t < t′ s(t) = s(t′) = i

t � [s]t′

t � [s]t′ At(ei[s](t)) At(ei[s](t′))
t � [s]t′

If t �∗ t′, we say step t is synchronized with t′.
Note that this definition, which is similar to the definition of synchronized-

with in the C11 standard, is also very close to the definition of happened-before
of Lamport [7]; it only differs from the latter in that it considers only atomic
accesses for synchronization between threads. We will give two theorems that
are very similar in structure and together establish that synchronization and
happened-before are equivalent. Let in the following paragraphs t, t′ be two steps
such that t < t′.

The first theorem we call the Communication Theorem, which states that
information flows between two processors only by synchronization:

Theorem 1 (Communication).

t � t′

implies
t �∗ t′.

154 J. Oberhauser

The second theorem we call the Privacy Theorem, which states that asyn-
chronous accesses to the same variable are not possible:

Theorem 2 (Privacy). Let

n = ei(t), n′ = ei(t′)

be the instructions executed in t and t′, respectively. Then

EW (t) ∧ (R(n′) ∨ W (n′)) ∧ n.a = n′.a ∧ ¬(At(n) ∧ At(n′))

implies
t �∗ t′.

Both theorems are proven in the same way.

Proof. We first assume for the sake of contradiction that t is not synchronized
with t′. In the case of the Communication Theorem, this implies that either n
or n′ is not atomic; in the case of the Privacy Theorem, we already know that
n or n′ is not atomic. Consider now the last step

m ∈ [t : t′]

that is not synchronized with t′. Since it is the last such step and synchronization
is transitive, it is also not synchronized with any

l ∈ [m+1 : t′].

We establish that m can be delayed until such l, without affecting other
processors i �= s(m) or addresses a not changed by it:

φi[s]
l+1 = φi[s[m → l]]l, (3)

m[s]m(a) = m[s]m+1(a) → m[s]l+1(a) = m[s[m → l]]l(a) (4)

Proof. Let the instructions executed in those steps be

nm = ei[s](m), nl = ei[s](l),

and we only consider the only difficult case where

EW [s](m), Read(nl) ∧ nl.at = 0, nm.a = nl.a.

We recursively delay m to l−1. One easily shows that the two instructions nm, nl

are now executed next to each other, and from safety we conclude

¬EW [s[m → l−1]](l − 1).

This means that nm.a must have been overwritten by some step l′ ∈ [m+1 : l−1].
Since m is not synchronized with l′ in s, l′ must have executed a regular write.
The same write was also executed by l′−1 in s[m → l−1] and we conclude

m[s[m → l]]l−1(nl.a) = m[s[m → l−1]]l−1(nl.a) = m[s]l(nl.a).

A Simpler Reduction Theorem for x86-TSO 155

At this point it is trivial that l in s and l−1 in s[m → l] have the same effect,
and Claims 3 and 4 follow. ��

We repeatedly delay the last unsynchronized step in this way with l = t′

until
m = t.

Similarly to before we execute nm = n and nl = n′ next to each other, and con-
clude from safety that n and n′ are atomic. This contradicts what we established
earlier. ��

While both theorems are very natural, we could not find them in the litera-
ture.

4 Sequential Consistency

4.1 Local Store Buffer Schedules

Recall that our goal is to, starting from an arbitrary schedule, construct an
equivalent, abstract schedule. Consider now a schedule where each processor
step that writes to the store buffer is immediately followed by the store buffer
step that commits that instruction to the shared memory. Clearly writes imme-
diately become visible to all processors, and the abstract and the store buffer
computation trivially coincide.

Constructing such a schedule turns out to be difficult, and we instead con-
struct a weaker schedule, where non-atomic writes can stay in the store buffer
until the next atomic write of the same processor. In such a schedule, a processor
with a non-empty store buffer did not perform an atomic write and is thus not
synchronized with other processors.

Consequently, addresses modified by non-atomic writes in the store buffer
of this processor are not accessed by other processors (this follows from the
Privacy Theorem). We call such a schedule a local store buffer schedule, since
at the beginning of processor steps only non-atomic writes are buffered (i.e., the
buffers are used only for local stores).

We say s is a k-local store buffer schedule and write s ∈ LSBSk if the k-prefix
of s has the local store buffer property. Formally,

s ∈ LSBSk ⇐⇒ ∀t < k. s(t) = i → ∀j. w ∈ sbt
j → w.at = 0.

We have already hinted at the fact that all k-local store buffer schedules are
k-abstract, but we will require a stronger property. In a perfect world, it would
hold that if a k-local store buffer schedule is followed by local steps until l ≥ k,
it is also l-abstract. This is not true, since atomic writes constitute local steps if
they use forwarding; therefore, the following serves as a counter example, where
in the store buffer computation Threads 1 and 2 execute only local steps:

Thread1 : x.store();Thread2 : x.store();Thread1 : x.load(); . . .

156 J. Oberhauser

Note that Thread 1 reads from its own write in the store buffer computation,
but from the write of Thread 2 in the abstract computation.

We solve this problem by eliminating all interleavings in the local portion, and
thus between a store and a load only steps of the same processor are executed. For
convenience, we require that after the local store buffer portion of the schedule,
local steps are ordered by processor: processor i + 1 only makes steps when
processor i has completed all of its steps. Formally, Let Sl

k(i) be the number of
steps of i and its store buffer in the interval [k : l − 1]:

S[s]lk(i) = # {t ∈ [k : l − 1] | s(t) ∈ {i,SBi}} ,

and αl
k(i), ωl

k(i) be the beginning and end of the interleaving-free block in which
processor i is executing:

α[s]lk(i) = k +
∑
j<i

S[s]lk(j), ω[s]lk(i) = α[s]lk(i) + S[s]lk(i) − 1

Then s has a block structure from k to l and write s ∈ BLOCKl
k if for all

i ∈ P and t ∈ [k : l − 1]

(s(t) ∈ {i,SBi} ⇐⇒ t ∈ [α[s]lk(i) : ω[s]lk(i)]) ∧ L(t)

We are now interested in schedules s which combine three properties:

– they are a k-local store buffer schedule,
– store buffers are clean at k,
– they have a block structure from k to l.

We consider the steps [0 : k−1] the local store buffer part and [k : l−1] the local
part of such a schedule.

We can show that such schedules are l-abstract.

Lemma 2 (Abstraction).

s ∈ LSBSk ∧ (∀i.w ∈ sbk
i → w.at = 0) ∧ s ∈ BLOCKl

k → s ∈ ABSl

Proof. We augment the claim by a memory invariant stating that as long as an
address is modified by writes in a store buffer, forwarding from that store buffer
produces the same result as the shared memory in the abstract computation:

meminvi(t) = ∀a.(∀j.a ∈ sbt
j → a ∈ sbt

i) → mt
i(a) = mt(a).

In the local store buffer part, the invariant holds for all processors; in the local
part only for processors that still make steps, i.e., i ≥ j such that s(t) ∈ {j,SBj}.

We prove the augmented theorem by induction over t ≤ l. Note that for
t = 0, store buffers are empty and the invariants hold. Furthermore, s ∈ ABS0

by definition of a0.
For the inductive step, note that we have abstraction for all the steps before

t and can thus use abstract arguments like Theorems 1 and 2.
We first prove that the next configuration is abstract, then we sketch a proof

for the memory invariant.

A Simpler Reduction Theorem for x86-TSO 157

φt+1
i = φ

t+1

i : it suffices to show that processors read the same values in step t of
the abstract and store buffer computation, i.e.,

rv(t) = rv(t).

This is only difficult if s(t) = i and R(ei(t)), and by the memory invariant
we only need to show

∀j.a ∈ sbt
j → a ∈ sbt

i.

Assume thus that there is j and w ∈ sbt
j such that w.a = a and which was

executed at tj :
ei(tj) = w.

We assume for the sake of contradiction i �= j and consider only the difficult
case where either tj executed a non-atomic write or t executed a non-atomic
read. In this case by the Privacy Theorem we have

tj �∗ t.

Since i �= j there must be steps tw, tr, and processor i′ such that

tw � tr, tj ≤ tw < tr ≤ t, j = s(tw) �= s(tr) = i′.

In particular, tw and tr execute atomic accesses and

tw � tr.

Since atomic writes that are executed before k flush the store buffer and

w ∈ sbt
j ,

we obtain
tr > tw ≥ k.

Thus tr is a local step. Since tr is an atomic read there must be an atomic
write w′ ∈ sbtr

i′ to the same address

w′.a = ei(tr).a

Note again that atomic writes are always committed immediately before k
and thus w′ must have been executed at t′ > k:

ei(t′) = w′.

Since s has a block structure from k to l this implies that

tw < t′ < tr,

which contradicts
tw � tr.

158 J. Oberhauser

Sketch for meminvi(t+1): Note that conflicting writes can exist in store buffers
only during the local part of the schedule: for non-atomic writes this is a
consequence of the Privacy Theorem (Theorem 2), and atomic writes are
only buffered during the local part.

Note also that atomic writes are not committed during the local part of
the schedule.

Consequently, writes to an address are committed in the same order as
they are issued, and at least in the local store buffer part forwarding and
abstract memory agree. For the local part, writes of processors with a lower
index may be overwritten, and thus the invariant may no longer hold for such
processors. Recall that we do not claim the invariant for such processors, and
note that for the other processors the invariant is maintained. ��

4.2 Finite Reordering

We now describe a method to reorder a k-local store buffer schedule into an
equivalent k+1-local store buffer schedule. Note that all schedules are 0-local
store buffer schedules, and iterating the method yields an equivalent k-local
store buffer schedule for all k. The method also maintains a technical invariant,
which is that an atomic write is allowed into a store buffer only if the next global
step is the commit of that write. We call this invariant regularity and define

s ∈ REGk ⇐⇒ w ∈ sbk
i ∧ w.at = 1 → s(min {t > k |G(t)}) = SBi.

The method is as follows. Let r ∈ LSBSk ∩ REGk be a k-local store buffer
schedule maintaining the technical invariant. Then we define r′ ∈ LSBSk+1 ∩
REGk+1 (proof of the membership omitted) by the following case analysis:

Atomic Write in SB: Let there be w ∈ sbi[r]k such that At(w). In order to
get a local store buffer schedule, we must schedule the store buffer of i next.

t = min {t ≥ k | r(t) = SBi} ,

r′ = r[k ← t].

Note that t might not be the commit of w, since the store buffer might still
contain older non-atomic writes.

Atomic Write in the Next Step: Assume r(k) = i and Write(ei[r](k)) such
that ei[r](k).at = 1. Due to regularity we can only allow an atomic write to
be issued if the next global step is the commit of that write. Furthermore,
we do not change the order of global steps, and thus must potentially delay
the issue of the atomic write.

We therefore look for the next global step t′

t′ = min {t′ ≥ k |G[r](t′)} ,

which belongs to processor j such that r(t′) ∈ {j,SBj}.
We want to move the next step belonging to that processor to the front.

Note that this next step is not necessarily a processor step; e.g., if the next

A Simpler Reduction Theorem for x86-TSO 159

processor step of j is a flush, and there is still a non-atomic write in the store
buffer of j, we must commit the non-atomic write first.

We thus set

t = min {t ∈ [k : t′] | r(t) ∈ {j,SBj}} ,

r′ = r[k ← t].

Note that j = i is possible and occurs when the next global step is the
commit of the atomic write.

Otherwise: In all other cases the schedule r is already a k+1-regular k+1-local
store buffer schedule and we can set

r′ = r = r[k ← t]

with t = k.

4.3 In the Limit

Note that none of constructed schedules is an abstract schedule. However, a
growing prefix which never changes during the reordering is abstract, and it
is therefore easy to show that the limit of the constructed schedules - if it is
well-formed - is abstract.

Let rk ∈ LSBSk be the k-th reordered schedule, starting from s, and

r(t) = rt+1(t)

the limit of these schedules. Clearly r is well-formed and abstract, and it is also
possible to show that it is equivalent to s:

Theorem 3 (Sequential Consistency).

r ∈ ABS ∧ r ≡ s.

Proof. The proof has two difficult steps.

1. We have to show that rk+1 and rk are equivalent. This is difficult because
non-atomic accesses might conflict unless we can prove abstraction. We con-
struct an intermediate schedule r′ which is equivalent to rk and has a block
structure from k to t, by reordering steps l ∈ [k : t−1] one by one in the
obvious fashion: when we have constructed a block structure from k to l,
we move step l to its correct position. This is safe due to the Abstraction
Lemma (Lemma 2) and the fact that all involved steps are local, in particular
non-atomic accesses use distinct addresses and local atomic accesses use the
store buffer. Having constructed r′, we can now argue that it is safe to move
t to the front.

160 J. Oberhauser

2. It is difficult to show that no steps are lost, i.e.,

(∃t.ici[s](t) = m) → (∃t′.ici[r](t′) = m).

To prove this, one observes that we only delay local steps. Note that we only
delay in two cases: an atomic write in the store buffer, or an atomic write
that is going to enter the store buffer. In each case, we do not delay further
than the commit of that write. One thus considers the last step t′′ where an
atomic write, which was issued before step t, is committed. By a technical
argument, one can show that t′ exists and t′ ≤ t′′. ��

4.4 Memory Management Units

We only sketch how to treat Memory Management Units (MMUs). Note first
that MMUs behave like processors with no store buffers, except for the fact
that they share certain parts of the processor state with their processors, in
particular the Translation Lookaside Buffer and page table origin register. This
has two consequences: certain actions of the processor that modify shared state
bypass the store buffer, and steps of the processor sometimes are only enabled
by steps of its MMU. Therefore, reordering of processor and MMU steps is only
possible in one direction, i.e., reordering the MMU step to the front, and not
across steps that modify shared state. In order to obtain sequential consistency
in such a setting, we need to make sure that the store buffer is always empty
before we modify shared data.

Proof. For the proof, we consider all steps of the MMU and all steps that modify
shared state as global steps. Furthermore, synchronization can now also occur
between MMU and processor by means of shared state. Otherwise, we use exactly
the same reordering strategy and lemmas to prove sequential consistency.

The proof changes in only one important place: we need to show that proces-
sor steps stay enabled throughout our reordering. Note that global steps are
never delayed in our reordering strategy. Consequently, MMU steps are only
moved to the front, and processor steps stay enabled. ��

4.5 Related Work

We use a software discipline similar to that of Cohen and Schirmer [5] but which
does not use ownership. This allows us to argue about programs written in mod-
ern languages such as C11, D, Java, C++11, where racing accesses have to be
flagged by the programmer. On the other hand, one is usually also interested in
verifying properties other than store buffer reduction, and ownership is a valu-
able technique for many properties, e.g., order reduction. In those cases one has
to show, as we have done in Lemma 1, that ownership suffices to detect racing
variables and add memory fences accordingly. Our model is also simplified w.r.t.
the Cohen-Schirmer model, which has ghost components that record history
information. This history information is then used in a complex coupling rela-
tion, which can only be upheld using 23 invariants. Proving that the invariants

A Simpler Reduction Theorem for x86-TSO 161

are maintained during each step is the bulk work of the Cohen-Schirmer proof.
In our proof, we simplify the content of the store buffers by straightforward
reordering of steps. This has two important consequences: we can substitute the
complex coupling relation by a straightforward one, and the invariants become
a simple consequence of the software discipline. Both facts reduce the size of
the proof considerably. Note that the store buffer reduction presented in this
paper is slightly more efficient than the one in Cohen-Schirmer. This is due to
the fact that atomic reads do not require a flush if the last atomic write is to
the same address. However, this fact considerably complicates the Abstraction
Lemma and its proof in Sect. 4.1, and adds an additional proof step in verifiy-
ing the soundness of the reordering in Sect. 4.3. For the lecture hall it is thus
more convenient to consider a proof for store buffer reduction without this opti-
mization; a simple proof can be found in the technical report. Furthermore, this
additional optimization is rarely useful in practice.

Chen, Cohen, and Kovalev [3] extended the Cohen-Schirmer proof to consider
memory management units (MMUs) and programs that modify their own page
tables and translation lookaside buffers (e.g., by deleting outdated translations).
Their proof is 70 pages long. A corresponding proof using the techniques from
this paper is less than 30 pages long, and can be found in our technical report [9].
We are not aware of other results proving sequential consistency in the presence
of memory management units, let alone inter processor interrupts.

Our discipline also borrows a technique from Owens [10] store buffer reduc-
tion discipline. His discipline, which is called triangular race freedom, is complete
for (memory trace preserving) sequential consistency. The key aspect of his dis-
cipline is the consideration that writes never overtake reads to the same address,
which we model with the dirty address. However, Owens (in the terminology of
our paper) sets the dirty address even for non-atomic writes, which thus have to
be separated from subsequent atomic reads by unnecessary fences.

There are many results that prove sequential consistency under more restric-
tive disciplines or different memory models. Notably, Sullivan et al. [6] provide a
semantics for programs in absolutely relaxed memory machines, where visibility
and execution orders of instructions must be explicitly stated by the program-
mer. The compiler is then assumed to add synchronization that enforces these
visibility orders. Stating visibility explicitly adds a relatively small overhead to
the code, with a typical ratio of annotation lines to code lines of 1:2. For com-
parison, annotating ownership and exclusion-invariants for the Cohen-Schirmer
method typically requires four times as much annotation (2:1). In the same
paper, Sullivan et al. also prove sequential consistency for a less efficient software
discipline, where all atomic memory accesses are separated by synchronization
primitives - a condition that might be necessary to gain sequential consistency in
the extremely relaxed memory they consider. Interestingly, the Cohen-Schirmer
discipline arises naturally from the notions of visibility and execution order. Note
that in store buffer machines writes become visible in program order, reads are
executed in program order, and a read followed by a write are executed in pro-
gram order; a write followed by a read, however, are executed in program order

162 J. Oberhauser

only if separated by a store buffer flush or when to the same address. Conse-
quently, for memory locations that are accessed by other processors, store buffer
flushes need to be introduced between writes and later reads.

Bouajjani, Derevenetc, and Meyer [2] gave a discipline that is complete for
(modification order preserving) sequential consistency. Theoretically speaking,
our discipline is less efficient than their discipline. In practice there is little dif-
ference. A notable counterexample is the MCS lock [8] implemented in the Linux
kernel, for which our discipline requires one fence in the lock function, which is
not necessary for sequential consistency on TSO. On the other hand, the com-
pleteness comes at a cost: their discipline is considerably more complicated. In
fact, Bouajjani et al. have proven that minimal fence insertion for their disci-
pline is PSPACE complete; this remains so even if the set of racing statements
is known. In contrast, a conservative fence insertion algorithm for our discipline
simply keeps track of the dirty bit and is linear in the program size (if racing
accesses are known).

Abdulla, Atig, and Ngo [1] considered a simple discipline similar to that of
Owens, but which does not preserve the reads-from relation: reads may be served
by different writes in the store buffer and corresponding abstract computations,
as long as the same value is read. In particular, they prove that programs do
not require a fence between a write and a read on the same thread as long as
the value at the read address is not modified between the write and the read.
We are not aware of any practical example where this is the case; if the value
of the read address is not modified, it is usually known beforehand, and there
is no need to perform the read in the first place. This is also reflected in their
benchmarks, which show improvements in performance only in programs that
execute reads which read values that are known at compile time.

Vafeiadis and Nardelli [14] prove that fences are only necessary if they sepa-
rate atomic writes from reads or writes from atomic reads, and integrated their
findings in a working compiler. Our discipline is more efficient and it would thus
be of practical interest to implement it as a compiler optimization as well.

A different approach to sequential consistency is to change the hardware,
e.g., by adding atomic bits to the instruction set and letting the hardware ensure
sequential consistency. Singh et al. [13] propose such a processor, where an out-of-
order store buffer is added for non-atomic writes. Atomic reads stall the execution
until the store buffer is empty. They also suggest changes to operating systems
which, for guest applications and in conjunction with the extended hardware,
can dynamically deduct ownership by observing memory accesses using address
translation. If an error is detected, e.g., an address that was previously thought
to be owned by a thread turns out to be shared, store buffers are synchronized
by inter processor interrupts. The correctness of this approach obviously relies
on sequential consistency proofs in the presence of inter processor interrupts.
While their approach is already highly performant, it uses a static ownership
model and a conservative classification of accesses. Adding hardware support
for an efficient software discipline like that of Cohen-Schirmer is an interesting
research topic.

A Simpler Reduction Theorem for x86-TSO 163

5 Conclusion and Future Work

In this paper we have described a short proof of store buffer reduction in simple
processors, using the techniques of Sects. 3 and 4. A straightforward extension
to processors with address translation, running code that may modify the page
tables, is included in our technical report [9]. Work on extending the proof to
processors with inter processor interrupts is in progress.

When arguing about multi-core operating systems, one also has to prove
sequential consistency of the operating system code in the presence of malicious
guests that do not run sequentially consistent code. While modern operating
systems use some techniques for ensuring this property, we are not aware of any
proofs that these techniques work.

There are possible modifications to our discipline which allow us to eliminate
further fences. For example, a read of a thread that witnesses the most recent
atomic store of another thread may set the dirty address to null. On the other
hand, there are certain relaxations of TSO that are useful in practice, e.g., allow-
ing multiple threads to use the same store buffer, which are compatible with our
discipline, but not with such modifications. Both practical optimizations of the
discipline and other relaxed memory models are interesting avenues of research.

Acknowledgments. The author would like to thank Viktor Vafeiadis and
Steven Schäfer for helpful discussions. The author would also like to thank
Parosh Aziz Abdulla, Mohamed Faouzi Atig and Tuan-Phong Ngo for providing access
to their benchmarks. Finally, the author would like to thank the VSTTE reviewers for
their valuable feedback.

References

1. Abdulla, P.A., Atig, M.F., Ngo, T.-P.: The best of both worlds: trading efficiency
and optimality in fence insertion for TSO. In: Vitek, J. (ed.) ESOP 2015. LNCS,
vol. 9032, pp. 308–332. Springer, Heidelberg (2015)

2. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness
against TSO. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792,
pp. 533–553. Springer, Heidelberg (2013)

3. Chen, G., Cohen, E., Kovalev, M.: Store buffer reduction with MMUs. In: Gian-
nakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471, pp. 117–132.
Springer, Heidelberg (2014)

4. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

5. Cohen, E., Schirmer, B.: From total store order to sequential consistency: a prac-
tical reduction theorem. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS,
vol. 6172, pp. 403–418. Springer, Heidelberg (2010)

6. Crary, K., Sullivan, M.J.: A calculus for relaxed memory. In: Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 623–636. ACM (2015)

164 J. Oberhauser

7. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Com-
mun. ACM 21(7), 558–565 (1978). http://doi.acm.org/10.1145/359545.359563

8. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. (TOCS) 9(1), 21–65
(1991)

9. Oberhauser, J.: A simpler store buffer reduction theorem. Technical report,
Saarland University (2015). http://www-wjp.cs.uni-saarland.de/publikationen/
OberhauserSB.pdf

10. Owens, S.: Reasoning about the implementation of concurrency abstractions on
x86-TSO. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 478–503.
Springer, Heidelberg (2010)

11. Paul, W.J., Baumann, C., Lutsyk, P., Schmaltz, S.: System Architecture as an
Ordinary Engineering Discipline. Springer (in press)

12. Sindhu, P.S., Frailong, J.M., Cekleov, M.: Formal specification of memory models.
In: Dubois, M., Thakkar, S. (eds.) Scalable Shared Memory Multiprocessors, pp.
25–41. Springer, New York (1992). http://dx.doi.org/10.1007/978-1-4615-3604-8 2

13. Singh, A., Narayanasamy, S., Marino, D., Millstein, T., Musuvathi, M.: End-to-
end sequential consistency. ACM SIGARCH Comput. Archit. News 40, 524–535
(2012). IEEE Computer Society

14. Vafeiadis, V., Zappa Nardelli, F.: Verifying fence elimination optimisations. In:
Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 146–162. Springer, Heidelberg
(2011)

http://doi.acm.org/10.1145/359545.359563
http://www-wjp.cs.uni-saarland.de/publikationen/OberhauserSB.pdf
http://www-wjp.cs.uni-saarland.de/publikationen/OberhauserSB.pdf
http://dx.doi.org/10.1007/978-1-4615-3604-8_2

Moving Around: Lipton’s Reduction for TSO

(Regular Submission)

Ali Sezgin1(B) and Serdar Tasiran2

1 University of Cambridge, Cambridge, UK
as2418@cam.ac.uk

2 Koc University, Istanbul, Turkey
stasiran@ku.edu.tr

Abstract. We generalize Lipton’s reduction theory, hitherto limited to
SC, for TSO programs. We demonstrate the use of our theory by specify-
ing the conditions under which a particular write is SC-like (i.e. placing a
fence immediately after the write does not constrain the behavior of the
overall program) and a library implementation can be safely used (i.e.
compositionality). Our theory is complete: a program has only SC behav-
iors iff there is a proof that establishes that every write in the program
is SC-like. We adapt the notion of program abstraction to TSO analysis
via our theory. We define precisely what is meant by abstraction, and
propose a methodology by which one can obtain via abstraction SC sum-
maries of a program which may have non-SC behaviors. Finally, we show
how checking whether a write instruction is SC-like can be mechanized.
We describe a transformation in which the execution of each thread of
the original program (under TSO) is simulated by the execution of two
tightly coupled threads in the new program (under SC).

1 Introduction

Analysis of programs running under any memory model weaker than sequential
consistency (SC) is challenging. Total-store ordering (TSO), popular due to its
being used in the x86-family of processors, is no exception [23]. Unlike SC where
updates are assumed to take effect instantaneously over all threads, updates in
TSO are observably split into two: a locally visible update and an instantaneous
remote update not necessarily simultaneous with the local update. This split is
due to a thread local store buffer which an update has to go through before
becoming visible by other threads. Operational models of TSO formalize this
explicitly: local updates are inserted into the thread local queue; entries are
removed from these queues asynchronously and non-deterministically with each
removal updating a globally shared memory location.

Main questions about TSO program analysis have centered around determin-
ing the existence of non-SC behaviors, the minimal additional synchronization
to remove those behaviors, and the verification of safety properties. Formalisms,
with axiomatic or operational semantics, have not been the center of atten-
tion and mostly been relegated to being expressive enough to derive the desired
results.
c© Springer International Publishing Switzerland 2016
A. Gurfinkel and S.A. Seshia (Eds.): VSTTE 2015, LNCS 9593, pp. 165–182, 2016.
DOI: 10.1007/978-3-319-29613-5 10

166 A. Sezgin and S. Tasiran

In this paper, we make the formalism our primary concern in the analysis of
programs running under TSO. We generalize Lipton’s reduction theory [17], hith-
erto limited to SC, for TSO programs. In this theory, an execution is an interleaving
of the instructions of each thread; two executions are equivalent if their end states
are identical; an instruction i moves to the right of the concurrent instruction j if
e · i · j · e′ is equivalent to e · j · i · e′ for any e, e′; an instruction is a right-mover
if it moves to the right of every concurrent instruction (and similarly with left-
movers). Once mover types of instructions are determined, sequential code of the
form R∗ · N · L∗ (right-mover and left-mover instructions enveloping a non-mover
instruction) can be treated as atomic, i.e. executing in isolation. Clearly, such a
reduction in granularity simplifies the overall analysis (e.g. [12,16,22]).

Our adaptation to TSO is based on a partially commutative trace semantics
in which every write is split into a pair of actions, a write into buffer and its
flush from the buffer. We demonstrate the use of our theory by specifying the
conditions under which a particular write is SC-like (i.e. placing a fence immedi-
ately after the write does not constrain the behavior of the overall program) and
a library implementation can be safely used (i.e. compositionality). Our theory
is complete: a program has only SC behaviors iff there is a proof that establishes
that every write in the program is SC-like.

One immediate benefit of adapting a well-established theory to a new domain
is the potential applicability of old methods to the new domain. In this paper,
we give one such instance. To verify safety properties of program P in SC, it is
common practice to abstract P to a new program P ′ if proving that the latter
is safe implies the safety of the former. Such abstractions, in the context of
concurrent program verification, usually lead to less concurrent behavior, hence
easier overall analysis (e.g. [12]). We apply the same idea to TSO analysis via our
theory, define precisely what is meant by abstraction, and propose a methodology
by which one can obtain via abstraction SC summaries of a program which may
have non-SC behaviors.

Finally, we show how checking whether a write instruction is SC-like can
be mechanized. We describe a transformation in which the execution of each
thread of the original program (under TSO) is simulated by the execution of two
tightly coupled threads in the new program (under SC). Of these two threads,
one performs the accesses that are thread-locally visible and the other performs
accesses that are visible to other threads. The asynchronous nature of buffer
flushes is captured by a semaphore-like communication between the two threads:
as one performs the locally visible write, it also enables the write that will
be globally visible without forcing a particular instant at which the latter will
be performed. In the remainder of this section, we informally summarize the
highlights of the paper, mention related work and give the outline of the paper.

Reduction for TSO . Consider a code snippet from a program with three
threads:

{Ct1} {Cu1} {Cv1}
X:= 1; Y := 2; p:=X;

r:=X; q:=Y ;
{Ct2} {Cu2} {Cv2}

Moving Around: Lipton’s Reduction for TSO 167

where C∗ represent code segments which refer to neither X nor Y . In the
specified segment, the thread on the left, t, writes 1 into shared variable X. The
thread in the middle, u, writes 2 to shared variable Y and then reads the value
of X into local variable r. Finally, the thread on the right, v, reads the values of
X and Y into local variables p and q.

It is possible to observe r = q = 0 and p = 1 under TSO semantics which
constitutes a non-SC behavior. For instance, the execution segment

Wl
u(Y/2) · α ·Wl

t(X/1) · β ·Wr
t(X/1) · γ ·Wr

u(Y/2)

where Wl
u(Y/2) represents the insertion of the write of Y by u into its store buffer

and Wr
t(X/1) represents the flushing of the associated entry from the buffer and

α, β, γ are sequences of actions. The read values are possible if u executes its
read either in α or β and v executes its reads in γ.

In terms of reduction theory, we can equivalently claim that the given exe-
cution is non-SC by arguing that it is impossible to move the local write by u
next to its remote write without changing the values read by threads u and v.
In the sample execution given above, since the read of X by u is not in γ and
it cannot be reordered with Wr

t(X/1) without changing its observed value, the
local write Wl

u(Y/2) cannot move to the right of Wr
t(X/1) either. On the other

hand, the remote write Wr
u(Y/2) cannot move to the left of every action in γ

since it contains the read of Y executed by v whose observed value of 0 will not
be consistent with TSO semantics when it is preceded by a memory update of
Y with 2. Since a TSO execution has an equivalent SC execution only when all
local and remote write actions can be put together without changing the read
values, the above sequence is indeed non-SC.

SC-likeWrites.The sample programhas non-SCbehavior, or following the nota-
tion introduced in [20], it contains a triangular race. Briefly, a triangular race occurs
when one thread updates a location, continues with a sequence of reads the last of
which is to a different location and conflicts with the write of a concurrent thread.
It was shown in [20] that a program does not have triangular race, called a TRF
program, iff it only has SC behaviors. Now, before attempting to turn the sample
program into a TRF program, we observe that the local and remote write actions
due to the write by t can always be put together, if for the moment we ignore the
presence of Ct1 and Ct2; i.e. if we assume that t executes only the write to X. This
is because a local write action, which only updates the thread local state (chang-
ing buffer contents), moves to the right of every concurrent action without chang-
ing the overall behavior of the execution. The nice property of an SC-like write is
that, as we show, one can pretend that there exists a fence immediately after it,
simplifying program analysis under TSO semantics, without restricting the over-
all behavior of the program. In the remainder of the paper, we will use the term
atomic write interchangeably with SC-like write.

Removing Triangular Race. For the sake of simplicity, assume that the value
of q is not subsequently used by v; i.e. q is not read in Cv2. Then, we can obtain a
new program by replacing the read of Y with q:=�, which intuitively can assign

168 A. Sezgin and S. Tasiran

any value to q. The behaviors of this new program subsumes the behaviors of the
original program because of additional non-determinism. The fact that Y is not
read by v in the new program immediately allows us to prove that the previously
non-atomic write to Y now is atomic. However, unlike the atomicity argument
for the write of X by t, the write to Y is atomic because we can move Wr

u(Y/2)
to the left of Wr

t(X/1), in turn because γ does not contain the conflicting read
of Y . Here again we assumed that Cv1 and Cv2 do not exist which brings us to
our next observation.

Compositionality. At this point we know that in the abstracted program, the
write by t is atomic because its local action is a right-mover (abstraction does not
affect its atomicity argument), and the write by u is atomic because its remote
action is a left-mover. One of our results implies the write to X remains atomic if
the first action in Ct2 is a fence statement. Dually, the write to Y remains atomic
if the last action in Cv1 is a fence statement. Thus, analyzing write atomicity
based on reduction allows us to make these distinctions in finding places for
requiring fence statements.

Program Transformation and Mechanical Verification. Transforming
TSO programs into equivalent SC programs usually entails embedding an array
per thread, representing the local store buffer. Then, each write is inserted into
this array and a non-deterministic loop, representing flushing of the contents of
the store buffer, is placed between each statement of the original program. This
encoding for us is not suitable because we want to explicitly check the mover
types of local and remote writes. To that end, we make use of the fact that there
is a bijection between buffer insertions and removals that respect thread local
program order.

When we apply our transformation to the sample code above, the write to
X by t will be transformed into two writes, one by t to a new local copy of X
and one by t′ (the dual thread of t) to X. An important requirement is that the
local write by t always precede the remote write by t′, and this we achieve by
using a semaphore like structure per write statement, which is incremented by t
and decremented by t′.

Once an equivalent SC program is obtained, any SC analysis tool can be used
to reason about the program. In this paper, we are primarily interested in the
mover types of local and remote write actions and propose one particular way
of doing it.

To summarize, in this paper we:
- develop a formal reasoning framework for TSO programs based on reduc-

tion,
- obtain numerous theoretical results adding to the understanding of what

separates TSO programs with triangular races from those without,
- introduce abstraction for TSO programs in order to obtain TRF programs

from those that are not TRF,
- present a novel transformation from TSO programs to equivalent SC pro-

grams,
- propose a way to mechanically verify TRF.

Moving Around: Lipton’s Reduction for TSO 169

Related Work. Program analysis under relaxed memory models has been a field
of intense study, e.g. formalization of memory models [6,7,18,23], program logics
for relaxed memory models [5,13,21,25] or verification techniques [2,8,10,11,19].
In this discussion of related work, we focus only on research about TSO program
analysis.

Fundamental studies such as [8,20] have established necessary and sufficient
conditions for a program running under TSO semantics to have only SC behav-
iors. In [20], the concept of triangular race is defined and it was proved that a
program is triangular race free (TRF) iff it only has SC behaviors. In [8], the
equivalent concept of feasible attacks which coincide with non-SC behavior is
defined, and a fence insertion algorithm that would remove all feasible attacks
of a given program is proposed. Most of the remaining previous work have tack-
led the problem of removing non-SC behavior. In [9], a SAT-solver based method
to detect non-SC behavior which can be removed by adding synchronization via
fences is proposed. In [10], building on the delay set analysis of [24], a cycle
detection algorithm running under SC semantics is developed. This was subse-
quently extended to other relaxed memory models along with methods which
introduce enough synchronization to remove any non-SC behavior [4]. The works
of [1–3] are extensions of the cycle detection idea to the verification of concurrent
software running on relaxed memory including TSO. In particular, a method to
convert a given program running under TSO (and several others) to another
program with equivalent behavior running under SC is proposed in [2]. The SC
equivalent program then can be analyzed by any SC tool, whose analysis results
apply to the original program. Finally, in [15] a proof system to verify programs
running under TSO is developed.

Representing TSO via an operational semantics framework as we do in this
paper has been already done in [8,9,15,20]. In particular, approaches presented
in [8,15] are very similar to ours, splitting write events into local and remote
actions. The similarity with [15] goes even further since they are concerned with
decreasing the granularity of concurrency, which is the essential problematic of
Lipton’s reduction theory. In both [8,15], the notion of equivalent computations
exists, either in the proofs [8] or in the proof rules [15]. However, neither con-
siders a full generalization to mover types in their respective frameworks. Our
theoretical framework presents an orthogonal contribution to theirs: rules in the
proof system of [15] or the main results, such as the feasible attacker theorem,
of [8], can be proved within our framework. In other words, we offer an alterna-
tive and complementary meta-theory to existing and future work on the analysis
of programs running under TSO semantics.

The notion of an SC specification of a TSO program was presented in [14].
Unlike [14] which does not contain a method to obtain those specifications, in
this paper we show how one can obtain SC summaries of TSO programs. Our
method is a direct consequence of applying Lipton’s reduction theory to TSO
semantics and making use of existing work on the former, most notably that
of [12]. Similar to [2], we present a behavior preserving program transformation
algorithm from TSO to SC. Unlike [2] which uses auxiliary arrays and non-

170 A. Sezgin and S. Tasiran

deterministic loops, we capture the asynchronous nature of buffer flushes by
delegating them to auxiliary threads. This alternative transformation has the
benefit of identifying each buffer flush with a unique instruction in the program,
a feature impossible to achieve in transformations similar to the one given in [2].
It is this syntactic correspondence between instructions of the program and each
buffer flush that enables us to formulate the mover analysis of instructions.

2 Formal Framework

Notation . Let a be a sequence over A. We will use indexed notation to refer
to the elements in a: a[i] is the ith action in a. Similarly, we let a〈i, j〉 denote
the segment of a from a[i] to a[j] with both ends inclusive. The length of a is
written as len(a) and gives the number of symbols in a. Let π be a permutation
over [1, len(a)]. We use π(a) to denote the sequence a[π(1)] . . . a[π(len(a))]. Two
sequences a and b are permutationally equivalent, written a ∼π b, if there is a
permutation π with a = π(b).

We will consider three types of memory operations: writes, W, Wl, Wr; reads,
R; barriers, B. The type W is for write instructions executing on SC, Wl and
Wr are for write instructions executing on TSO, where the former is for the
insertion of the write into the local buffer, and the latter for the flushing of the
buffered write to memory. For any operation type A, At(l/v) denotes that A is
executed by thread t to location l with value v. For simplicity, we omit locked
operations which can be modeled by the given actions. We will use the notation
ActO,thr,loc to denote the subset of Act which contains all actions of type O ⊆
{W,R,Wl,Wr,B}, by thread thr, and into location loc. When O is a singleton, we
will ignore the braces. Omitting parameters denotes existential quantification;
e.g. Act−,t,− is the set of all actions done by thread t. The projection of a
sequence e over Act into ActO,t,l, written as e ↓O,t,l, is the subsequence obtained
by keeping only those actions in ActO,t,l. For instance, e ↓R,t,− is the subsequence
of e consisting of all the read actions done by t.

2.1 TSO and SC Executions

In this section, we define correct TSO and SC executions, and define what we
mean by an equivalent SC-execution to a given TSO-execution whenever the
former exists.

TSO-executions. TSO actions, subset of Act , exclude only the first kind,
Wt(x/v). A remote write Wr

t(x/v) matches the local write Wl
u(y/w) iff t = u,

x = y and v = w. Let e be a sequence of TSO actions. It is matched if for all t,
e ↓Wr,t,− [i] matches e ↓Wl,t,− [i]. A local write e[i] is buffered at j if it is matched
by a remote write at position l > j. We will call a matched e complete if there
are no buffered writes at |e|. Unless stated otherwise, sequences of TSO actions
are assumed to be complete.

A TSO-execution is a sequence e of TSO actions subject to well-formedness
constraints:

Moving Around: Lipton’s Reduction for TSO 171

- Local write actions occur before their matching remote write actions. For-
mally, if e[i] = Wl

t(x/v) and e[j] = Wr
t(x/v) are respectively the kth local and

remote write actions by thread t, then i < j.
- The read values are consistent. Formally, if e[j] = Rt(x/v), then either (i)

Wl
t(x/v) is the most recent buffered write at j by t to x, or (ii) no buffered write

to x by t at j exists and Wr
u(x/v) is the most recent remote write, or (iii) neither

condition applies and v is the initial value.
- The barrier operations can only happen when the buffer is empty. Formally,

if e[j] = Bt and if Wl
u(x/v) is buffered at j, then t �= u.

Definition 1 (Synchronous, Buffer-free). A local write e[i] is synchronous
if it is not buffered at i + 1. A complete TSO-execution e is called buffer-free if
all of its local writes are synchronous.

Synchronous local writes form the crux of the reduction we present in this
paper. The following observations state that a thread t can perform a synchro-
nous local write only when its buffer is empty.

Lemma 1. Let the local write e[i] = Wl
t(x/v) of a TSO-execution e be synchro-

nous. Then e〈1, i+1〉· Bt · e〈i+2, len(e)〉 is also a (well-formed) TSO-execution.

Proof. This follows from the definition of well-formedness which requires local
and remote writes of the same thread to be in the same order because that
implies that no local write can be buffered by t at i.

Each TSO-execution e induces a partial order <tso
e over {e[i] | i ∈ [1, |e|]}

such that a <tso
e b if a occurs before b in e, a, b ∈ Act−,t,− and either (i) both a

and b are remote write actions, or (ii) neither a nor b is a remote write action,
or (iii) a is the ith local write by t and b is the ith remote write by t. We will
make use of <tso in defining equivalence relations over TSO runs.

SC-executions. SC actions, subset of Act , include only the first two kinds
of actions; i.e., {Wt(x/v)} ∪ {Rt(x/v)}. SC-executions have to satisfy: if s[i] =
Rt(x/v), then either i) there is j < i with s[j] = Wu(x/v) and there are no write
actions to x in s〈j + 1, i〉, or ii) there is no write action in s〈1, i〉 and v is ⊥.

Correspondence between TSO and SC . For a TSO-execution e, let �e�
denote the sequence obtained by replacing all local write actions Wl

t(x/v) with
Wt(x/v) and projecting that sequence to SC actions, W,R.

Let e be a complete TSO-execution. We define SC(e) to be the set of all
SC-executions s such that �e ↓−,t,−� = s ↓−,t,− and e ↓Wr,−,− [i] = Wr

t(x/v) iff
s ↓W,−,− [i] = Wt(x/v). Informally, s belongs to SC(e) if it is an SC-execution,
respects the thread local ordering of read and local write actions, and preserves
the order among the remote write actions in e. We have the following result
following immediately from definitions.

172 A. Sezgin and S. Tasiran

Proposition 1. For any buffer-free TSO-execution e, �e� ∈ SC(e).

The proof follows from the fact that in a buffer-free TSO-execution, all reads are
from the memory (only condition (ii) of TSO well-formedness for consistent read
values applies).The desired SC-execution then canbe obtainedby simply replacing
each (adjacent) pair of local and remote write actions by their image under ��.

Equivalence (≈) and partial order (�) over TSO-executions. Two com-
plete TSO-executions e and f are equivalent, written e ≈ f , if they are permuta-
tionally equivalent and they both induce the same partial order. Formally, e ≈ f
if e ∼π f and <tso

e =<tso
f . Whenever no confusion is likely to arise, we will use

π to denote one of the permutations between two equivalent TSO-executions
establishing their equivalence.

Synchronous writes induce a partial order � on equivalent TSO-execution.
A TSO-execution f is tighter than e, written f � e if f ≈ e and whenever e[i]
is a synchronous local write, then so is f [π(i)]. In other words, f is tighter than
an equivalent e if all synchronous writes of the latter are also synchronous in
the former. Each TSO-execution thus induces a set of tighter executions. Let
T(e) = {f | f � e}; that is, the set of all TSO-executions tighter than e.

Definition 2 (SC-like). Let e be a TSO-execution. It is called SC-like if T(e)
contains a buffer-free execution. Otherwise, it is called TSO-specific.

The terms are not arbitrarily named as the following proposition shows.

Proposition 2. A TSO-execution e is SC-like iff T(e) ∩ SC(e) �= ∅.
Intuitively, permutationally equivalent TSO-executions have identical observa-
tions about the state of the memory; i.e. the values returned by the reads are
identical. A tighter execution is one which has at most as many buffered local
writes as those of the less tight one. At the limit, all local writes are synchronous
(no buffered writes), which makes the execution buffer-free. Thus, if an execu-
tion is equivalent to a buffer-free execution, then its behavior is identical to that
of an SC-execution which is obtained by replacing all synchronous write actions
with direct write actions.

2.2 Programming Language

We briefly introduce the programming language we use. A method M = (N,C)
consists of a name N and a code C. A name is simply a string. A code is a, pos-
sibly empty, sequence of statements (S) sequentially composed (;). Statements
read from memory (r := mem[e]), update the contents of a memory location
(mem[e] := e′), empty the store buffer (fence), assign a value to a register (r :=
e). To model control flow, we have the usual branching (if e then {e1} else {e2})
and looping (while(e) {}) statements. Additionally, we also use an explicit block-
ing statement (assume e), which blocks as long as e evaluates to false. Finally,
the statement (assert e) is used to claim that e should hold whenever this
statement can execute. The shared data space is mapped by mem[e], where e is

Moving Around: Lipton’s Reduction for TSO 173

an expression which evaluates to N. As a syntactic sugar, we will use words in
italic font with first letters capitalized to denote a location in shared memory,
e.g. Obj will stand for some mem[i].

A program is a set of methods. Each statement of a program P is uniquely
identified, captured by a labelling function Lab : Stmt(P) → L, where Stmt(P)
denotes the set of statements in P and L is the (universal) label set.

The run of a program follows the conventional interpretations for each state-
ment. The semantics we define is in a unified framework, applicable to both SC
and TSO semantics. A program run is TSO-compliant if every memory update
statement mem[e] := e′ causes the TSO write actions Wl and Wr with the proper
arguments, and every memory read returns the most recent value inserted into
the thread local buffer or in the absence of such a slot in the buffer, the value
currently held in memory. Similarly, a program run is SC-compliant if every
memory update statement mem[e] := e′ causes the (SC) write action W, and
every memory read returns the value currently held in memory. Let Rtso(P)
denote the set of all TSO-compliant runs of P . Similarly, let Rsc(P) denote the
set of all SC-compliant runs of P .

Memory Traces. Let Mem(q, trans) denote the memory action associated with
executing the transition trans from state q. For instance, Mem(q,RdB, t : r :=)
mem[e] gives the memory action Rt(l/v), where, in state q, l is what e evaluates
to, there is a buffered update to l in the local buffer and v is the value of the
most recent buffered update to l. With an abuse in notation, we let Mem(r)
denote the memory trace of a run r. The following result establishes the link
between runs and executions.

Proposition 3. Let r be a TSO (resp. SC) compliant run. Then Mem(r) is a
TSO-execution (resp. SC-execution).

3 Reduction for TSO

In this section, we explain how the reduction theory of Lipton can be used for
TSO. Our goal is to present sufficient conditions for programs such that when
a program satisfies these conditions the program is guaranteed to be unable to
distinguish TSO semantics from SC semantics. In the following sections, we will
show how we can extend it to programs which are TSO-specific.

A statement s is left mover (resp. right mover) if reordering s before (resp.
after) any other statement that is concurrent with s does not change the behavior
(all runs belonging to the same equivalence have the same behavior. In the
classic definition of reduction, the equivalence relation requires that the two
sequences be permutations of each other and that the end states are identical,
which corresponds to ≈ in the TSO context. Our first result about movers follows
immediately from definitions.

Lemma 2. Let P be a program. All of its TSO runs are SC-like if all remote
writes are left-movers in ≈. Dually, all of its TSO runs are SC-like if all local
actions (i.e. ignoring remote writes) are right-movers in ≈.

174 A. Sezgin and S. Tasiran

Proof. Take any run r ∈ Rtso(P). If all remote writes are left-movers in ≈, then
there exists a run r′ ≈ r such that all local writes are synchronous. Then by
Definition 2, r is SC-like. A symmetric argument applies for the second case.

This result depends on a strong constraint, all updates being left-movers or
all reads being right-movers, which is unlikely to be satisfied by many programs.
In what follows we will provide a series of incrementally more general results. Fix
a labelled program P = {m1, . . . ,mn}. Let σ be a partitioning of (the methods
of) P . The σ-partitioned runs of P [T] is the subset of Rtso(P [T]) containing all
and only those runs in which each t executes methods from the same partition.

Lemma 3. Let P be a program and σ be a partitioning of P . If σ is such that in
σ-partitioned runs of P [T] for each partition, all remote write actions executed
by all the methods in the partition are left-movers or all local actions executed
by all the methods in the partition are right-movers, then σ-partitioned runs are
SC-like.

Call a subset of Rtso(P [T]) singular if it contains all and only those runs in
which each thread t ∈ T runs at most one method; i.e. the Init-transition is
executed at most once by each t. Then the following is a particular instance of
the previous result.

Corollary 1. All singular TSO runs of P [T] are SC-like if for each method mi,
either all of its local actions are right-movers in ≈ or all of its remote write
actions are left-movers in ≈.

We can specialize even further, obtaining the following, which is also implied by
triangular-race freedom of [20].

Corollary 2. Let P be such that each mi either only updates the shared memory
(no read actions) or only reads shared memory (no write actions). Then all
singular TSO runs of P [T] are SC-like.

Write Atomicity. We will call a statement s in P atomic if for every run of
P there is an ≈-equivalent run such that actions due to each execution of s are
adjacent. In particular, a memory update statement (s = mem[i]:=e) is atomic
if in an ≈-equivalent run the two transitions caused by s are adjacent; i.e. the
local write actions due to s are synchronous. The reason we introduce write
atomicity should be clear: By Lemma 1, if one can prove that for any TSO run
of program P there exists an equivalent run in which s is atomic, then we can
safely transform s to atomic{s;fence}. This substitution decreases the number
of possible interleavings, which in turn simplifies the analysis of the program.
Indeed, the latter is a step towards the ultimate goal of analyzing the whole
program under SC semantics. For the following fix an update statement s and
let sloc and srem denote its local and remote write actions.

Lemma 4. If in any TSO run in which sloc is executed by some thread t, all
statements executed by t up to the occurrence of sloc are atomic and srem is
left-mover in ≈, then s is atomic.

Moving Around: Lipton’s Reduction for TSO 175

Observe that we have to require all the statements executed by t preceding sloc

be atomic. To understand why we need this (sufficiency) condition, consider the
following run:

α · sloc · β1 · Wr
t(x/v) · β2 · srem

If the remote write action Wr
t(x/v), whose matching local action must precede

sloc, cannot move to the left of every action in β1, then even though srem itself is
a left-mover, there is not an equivalent run in which sloc and srem are adjacent
because of the presence of Wr

t(x/v) in between the two.
However, the above argument leads to the following special instance which

incidentally gives an insight about how fence statements can lead to SC-like
programs.

Corollary 3. If in any TSO run in which sloc is executed by thread t, there
exists a fence action executed by t preceding sloc, no other local write actions by
t occur between the two actions and srem is left-mover, then s is atomic.

Essentially, the antecedent of the Corollary 3 implies the absence of Wr
t(x/v) of

the above sample run. Thus, unlike the general case, in order to argue that a
write immediately following a fence statement is atomic, we only need to prove
that its matching remote write action is left-mover. There is a dual of this result.

Lemma 5. If in any TSO run in which sloc is executed by thread t, there does
not exist any read action executed by t until the occurrence of srem, then s is
atomic.

To see why this holds, observe that a local write action is always a right-mover
because the changes it makes are invisible to other threads. Then, to conclude
that a write statement is atomic, one has to consider the mover type of all
possible local actions that can come between the local and remote write actions.
A well-known way of restricting this sequence of actions is through the use of a
fence, which we state next as a special instance of the previous result which is
yet another way fence statements can result in SC-like behaviors.

Corollary 4. Let s;C; fence be a code block in some mi such that C does not
contain any read of shared memory (no statements of the form r := mem[e]).
Then s and all the writes in C are atomic.

Compositionality . Library implementations can be seen as programs which
are to be executed in arbitrary contexts. Unlike SC semantics where atomicity
of methods carry over to arbitrary execution contexts as long as there is a sep-
aration of memory footprints, atomicity of methods under TSO semantics does
not immediately translate into atomicity in other execution contexts even when
the footprints are distinct. We let non-interfering context (for P) denote any
program P ′ which does not access any location that P does. We will now state
our main compositionality results.

Theorem 1 (Compositionality-Remote). Let m be an atomic method in P
such that all remote write actions of m are left-movers. Then, m remains atomic

176 A. Sezgin and S. Tasiran

in any non-interfering context which executes a fence statement every time m
completes (returns).

Theorem 2 (Compositionality-Local). Let m be a method in P such that
all local actions of m are right-movers. Then, m remains atomic in any non-
interfering context which executes a fence statement before each call to m.

These results show that placing a fence statement relative to library calls can
benefit from mover analysis. One can omit an exit fence (entry fence) to m if
the conditions of Thoerem 1 (Theorem 2) hold.

Completeness. Call a TSO run unambiguous if there do not exist two distinct
write actions updating the same location with the same value. If the definition
of ≈ is strengthened to require that the mapping between reads and the writes
from which they obtain their value (known usually as the reads-from mapping),
then the requirement of unambiguity is not needed. We have the following result.

Theorem 3. Let P be a program and s a memory update statement in P . Let
r be an unambiguous TSO run of P , in the form α · sloc · β · srem where sloc

is executed by t. Then r has an ≈-equivalent run in which s is atomic iff there
is a permutation of β ∼π β1β2 such that r ≈ α · β1 · sloc · srem · β2.

Proof (Sketch). One direction is by definition. For the other direction, assume
that such a permutation does not exist and let len(β) = k. Without loss of
generality, assume that sloc cannot move to the right of β[1] and srem cannot
move the left of β[k]. Otherwise, move both actions to the right and to the left
until such actions which must exist by the assumption are found. Then, it must
be the case that there is an increasing sequence i1, . . . , in of indices in [1, k] such
that β[ij] cannot move to the right of β[ij+1] for 1 < j < n with i1 = 1 and
in = k. But if such a sequence exists, s cannot be atomic by the unambiguity
assumption.

4 Abstracting TSO Programs

Our approach so far allows us to at least alleviate some of the difficulties in
reasoning by showing that certain write statements can be taken to be atomic.
In this section, we go one step further and show that abstraction can be used to
turn a program with TSO-specific runs into one that contains only SC-like runs.

Let us call two TSO-runs r and r′ computationally equal if there are two
sequences of increasing index values, i1 . . . im and j1 . . . jm over the state indices
that occur in r and r′ such that i1 = j1 = 0, im = len(r), jm = len(r′), for all
1 ≤ n ≤ m we have qin = q′

jn
, and all transitions from qin to qin+1 and from

q′
jn

to q′
jn+1

are executed by the same thread. Intuitively, computationally equal
runs will result in identical execution paths, even though there may be syntactic
differences between the executed statements.

Moving Around: Lipton’s Reduction for TSO 177

Fig. 1. Sender/Receiver template with a triangular race.

Definition 3 (Program Abstraction). Let P and P ′ be two programs. We
say that P ′ abstracts P , if either (i) P ′ has a failed run (ending at an assertion
violation), or (ii) P does not have a failed run and for each terminated run
r ∈ Rtso(P), there exists a terminated run r′ ∈ Rtso(P ′) computationally equal
to r.

Intuitively, P ′ abstracts P if P ′ contains an assertion violation or has more
behaviors than P . This means that if P ′ can be proven to contain no assertion
violations, then neither does P . We should note that the other direction, that
when P does not contain an assertion violation neither should P ′, does not hold
in general.

Assume that we have a program P with TSO-specific runs. We construct an
abstraction P ′ of P such that if r is a TSO-specific run of P , then there will be
a run r′ of P ′ computationally equal to r such that r′ is SC-like. As we shall
see computational equality allows us to remove dependencies between memory
reads and writes by abstracting one or both.

Abstraction rules. There are many ways to ensure that a syntactic manip-
ulation of P results in another program P ′ abstracting the former. Here, we
consider those class of rewritings which replace the read or write of a particular
value with a non-deterministic value. Let � be a special notation to denote an
expression that can evaluate to any integer value. Then replacing any expression
with e with � is an abstraction. The possible instances are rewriting r := mem[e]
as r := �; r := e as r := �; and mem[e] := r as mem[e] := �. It is possible to
introduce non-determinism conditionally as well, i.e. abstract only if a certain
property holds (see example below).

Example - Send/Receive . Consider the code given in Fig. 1. The intended
operation proceeds as follows: The sender begins by preparing the message (rep-
resented by writing d into Buf), and then spins on Rdy. After observing Rdy
equal to 1 it sends the message ready signal by setting Flag to 1. The receiver
begins by setting Rdy (initially 0) to 1 to tell the sender that it is ready to receive
a message. Before spinning on Flag, the receiver reads the current content of
Buf (0 means message not in yet). If it observes a non-zero value denoting a
valid message, it skips the entire spinning block. Otherwise, it spins on Flag
and after observing it to be equal to 1, it reads the message from Buf . Let us
consider the set of TSO runs in which two threads t and u run Recv and Send()
respectively.

178 A. Sezgin and S. Tasiran

This program does have a triangular race depicted by the following memory
trace

Wl
t(Rdy/1) · Rt(Buf/0) · Wl

u(Buf/d) · Wr
u(Buf/d) · Ru(Rdy/0) · Wr

t(Rdy/1)

The first three actions, the local write to Rdy and read of Buf by t followed
by a write to Buf by u gives the triangular race. The remaining part of the
execution shows how the race can be extended into a non SC-like run.

One might be tempted to abstract the read of Buf by t altogether. However,
that would make the rest of the code behave incorrectly since a non-zero value
for Buf means a valid message which need not be equal to what u is about
to write, d. Let us instead consider the following abstraction for the statement
r[2] :=Buf :

if � then atomic{assume Buf = 0; r[2] := Buf ; } else atomic{assume Buf �= 0; r[2] := �; }

Informally, this rewriting introduces abstraction only when Buf �= 0. We claim
that in the new abstract program P ′ the write to Rdy by Recv is atomic. Let r
be a run in Rtso(P ′) whose memory trace is of the form

α · Wl
t(Rdy/1) · γ · Wr

t(Rdy/1) · β

where α, τ and β are sequences of memory actions. We have to show that there
exists another run r′ of P ′ computationally equal to r in which the write to Rdy
is atomic.

First, observe that γ cannot contain the write to Flag by u because that
action only happens when u ends its spinning by reading 1 from Rdy which can
only happen in β, i.e. after the remote write action Wr

t(Rdy/1). This in turn
means that the farthest t can go in γ is the reading of Flag. Any read action is a
right (and left) mover with respect to another action not writing to the location
read. Thus, in case γ contains read(s) of Flag they can all move to right of
Wr

t(Rdy/1).
Since a local write action is always a right mover, we are left with the read of

Buf by t. If the remote write action Wr
u(Buf/d) is not in γ, then we are done.

Assume that Wr
u(Buf/d) happens after some prefix γp of γ, i.e.

α · Wl
t(Rdy/1) · γp · Wr

u(Buf/d) · γq · Wr
t(Rdy/1) · β

If the read of Buf by t happens in γq, we are done. So assume that the read of
Buf happens in γp. Since it happens before the remote write action, the state
at which the abstract read statement occurs must have Buf = 0. According to
the abstraction, this means that the then branch must have been taken, which
sets r[2] to 0 (by reading the contents of Buf). If the abstracted statement is
executed after Wr

u(Buf/d), then because Buf �= 0 holds after the remote write,
the else branch will be taken. That in turn implies that r[2] can be assigned
any value, including 0. So, the sequence

α · γ′
p · Wr

u(Buf/d) · γ′
q · Wl

t(Rdy/1) · Wr
t(Rdy/1) · γ2 · β

Moving Around: Lipton’s Reduction for TSO 179

where γ′
p does not contain any action by t is also a memory trace of a run of P ′

computationally equal to r. Since γ was taken to be arbitrary, we conclude that
the write to Rdy by t is atomic.

Execution Context. Observe that our argument also establishes the remote
write action to Buf as a left mover. However, there is a fundamental difference
between the two arguments. Since we proved the atomicity of the write to Rdy
by showing that all actions of t until the remote write action to Rdy occurs are
right-movers, the result there being no other local actions by t until the remote
write action occurs. On the other hand, because our argument for the atomicity
of the write to Buf is based on showing that its remote write action is a left-
mover, the result depends on the contents of the store buffer. In other words, if
one wants to have atomicity of these writes in any execution context, Recv must
end with a fence whereas Send must begin with a fence, in accordance with the
compositionality results, Theorems 1 and 2, respectively.

5 Mechanical Verification of Write Atomicity

In this section, we present a program transformation to mechanically prove that
a particular write is SC-like. Due to space constraints, we keep the description
brief, only highlighting the essential aspects.

The execution of method m by some thread t is simulated by the execution of
two methods τl(m) and τr(m) by threads t and t′, respectively. The statements
of the methods τl(m) and τr(m) are in a bijection; the former are called local,
the latter are called remote. The local writes done in τl(m) by t are only visible
to t. Initially, all the remote writes in τr(m) are disabled. Every time a local
write is executed by t, the associated remote write in τr(m) is enabled. When
the remote write is committed to the memory is left unspecified, capturing the
asynchronous nature of buffer flushes. The local reads done in τl(m) either read
the most recent local update to the same location if its associated remote write
has not been executed yet by t′; otherwise, the value in the shared memory.
A remote read does not access memory at all; it merely copies the value that
was observed by its associated local read, which was registered to a dedicated
auxiliary location. A local fence statement in τl(m) can execute only if all prior
enabled remote statements in τr(m) are executed. We state the main technical
result of this section.

Theorem 4 [Soundness of Transformation]. Let P be a program and PS denote
its transformation. Then, for every TSO-run of P there exists a computation-
ally equal canonical SC-run of PS, and for every SC-run of PS, there exists a
computationally equal TSO-run of P .

Once PS is obtained, any SC analysis tool can be deployed on it.
Remark. An immediate concern about our construction is the increase in the
number of threads (2-fold) and the number of instructions (2-fold). One might
worry that this increase could slow down each round of mover type checking,

180 A. Sezgin and S. Tasiran

which essentially is quadratic in the size of the program as every instruction
has to be compared with every other instruction of the program. In order to
argue that this will not be the case, we make two observations. First, since each
local write is invisible to concurrent accesses, involving them in mover checks is
unnecessary: they are by definition both-movers. Second, since each remote read
is essentially copying the value that was read by its associated local read, they
are again oblivious to interference and thus are both-movers. In other words, the
mover types are only needed to be checked for local reads and remote writes,
which implies that the number of mover checks to be done in the transformed
program is the same as the number of mover checks to be done in the original
program.

6 Conclusion

Analyses based on determining the mover types of local and remote actions may
lead to less synchronization, not only because of the removal of fence statements
but also because of increased confidence in the correct use of optimistic and racy
reads which are very tricky to reason about. This is a line of work on which
we are planning to do further research. Another question is whether one can
specify sufficient conditions the satisfaction of which guarantees the mover type
of a write under SC semantics carries over to TSO semantics. That is, it is
interesting to determine when we can claim that a remote write is a left-mover
when its corresponding statement under SC semantics is shown to be left-mover,
thus lifting the results of an SC analysis to TSO.

Acknowledgment. This work is supported by EPSRC grants EP/H005633/1, EP/
K008528/1 and TUBITAK grant 111E135.

References

1. Alglave, J., Kroening, D., Nimal, V., Poetzl, D.: Don’t sit on the fence. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 508–524. Springer, Heidelberg
(2014)

2. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak
memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013)

3. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013)

4. Alglave, J., Maranget, L.: Stability in weak memory models. In: Gopalakrishnan,
G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 50–66. Springer, Heidelberg
(2011)

5. Batty, M., Dodds, M., Gotsman, A.: Library abstraction for c/c++ concurrency.
In: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2013, pp. 235–248. ACM (2013)

Moving Around: Lipton’s Reduction for TSO 181

6. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing c++ concur-
rency. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2011, pp. 55–66. ACM (2011)

7. Boehm, H.J. and Adve, S.V.: Foundations of the c++ concurrency memory model.
In: Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2008, pp. 68–78. ACM (2008)

8. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness
against TSO. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792,
pp. 533–553. Springer, Heidelberg (2013)

9. Burckhardt, S., Alur, R., Martin, M.M.: Checkfence: Checking consistency of con-
current data types on relaxed memory models. In: Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2007, pp. 12–21. ACM (2007)

10. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120.
Springer, Heidelberg (2008)

11. Dan, A.M., Meshman, Y., Vechev, M., Yahav, E.: Predicate abstraction for relaxed
memory models. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol.
7935, pp. 84–104. Springer, Heidelberg (2013)

12. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: Proceedings of
the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2009, pp. 2–15. ACM (2009)

13. Ferreira, R., Feng, X., Shao, Z.: Parameterized memory models and concurrent
separation logic. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 267–
286. Springer, Heidelberg (2010)

14. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: sequentially consistent
specifications of TSO libraries. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol.
7611, pp. 31–45. Springer, Heidelberg (2012)

15. Jagannathan, S., Laporte, V., Petri, G., Pichardie, D., Vitek, J.: Atomicity refine-
ment for verified compilation. ACM Trans. Program. Lang. Syst. 36(2), 6 (2014)

16. Koskinen, E., Parkinson, M., Herlihy, M.: Coarse-grained transactions. In: Pro-
ceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2010, pp. 19–30. ACM (2010)

17. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. ACM
Commun. 18(12), 717–721 (1975)

18. Mador-Haim, S., et al.: An axiomatic memory model for POWER multiprocessors.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 495–512.
Springer, Heidelberg (2012)

19. Norris, B., Demsky, B.: CDSchecker: Checking concurrent data structures writ-
ten with c/c++ atomics. In: Proceedings of the ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA 2013, pp. 131–150. ACM (2013)

20. Owens, S.: Reasoning about the implementation of concurrency abstractions on
x86-TSO. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 478–503.
Springer, Heidelberg (2010)

21. Ridge, T.: A rely-guarantee proof system for x86-TSO. In: Leavens, G.T., O’Hearn,
P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 55–70. Springer,
Heidelberg (2010)

22. Rinard, M.C., Diniz, P.C.: Commutativity analysis: A new analysis technique for
parallelizing compilers. ACM Trans. Program. Lang. Syst. 19(6), 942–991 (1997)

182 A. Sezgin and S. Tasiran

23. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: X86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. ACM Commun. 53(7),
89–97 (2010)

24. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share
memory. ACM Trans. Program. Lang. Syst. 10(2), 282–312 (1988)

25. Vafeiadis, V., Narayan, C.: Relaxed separation logic: A program logic for c11
concurrency. In: Proceedings of the ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages & Applications, OOPSLA 2013,
pp. 867–884. ACM (2013)

Android Platform Modeling and Android App
Verification in the ACL2 Theorem Prover

Eric Smith and Alessandro Coglio(B)

Kestrel Institute, Palo Alto, USA
{eric.smith,coglio}@kestrel.edu

http://www.kestrel.edu

Abstract. We present our work in using the ACL2 theorem prover to
formally model the Android platform and to formally verify Android
apps. Our approach allows the verification of the full functional correct-
ness of apps as well as security properties. It also lets us detect or prove
the absence of “functional malware”, malicious app functionality that
is triggered by complex conditions on state and that causes the app to
calculate the wrong results or otherwise behave incorrectly. Our formal
Android model is an executable simulator of a growing subset of the
Android platform, and app proofs are done by automated symbolic exe-
cution of the app’s event handlers using the formal model. By induction,
we prove that an app satisfies an invariant, including the correctness
properties of interest, for all possible sequences of events.

1 Introduction

Android devices [32] are vulnerable to security compromises carried out by rogue
apps that may abuse the user’s trust by masquerading as benign apps [12,40].
The Android security mechanisms are coarse and complex [11,34] and may be
bypassed via exploitable flaws in the platform [2,24].

A more detailed characterization of an app’s behavior, especially its access
to user data, can enable users to make more informed decisions about trusting
and installing the app. A suitable formal specification of the app can be used for
this purpose, and trust can be established via a formal proof that the app’s code
satisfies the specification. This requires a formal model of the platform that the
app runs on—both language and API.

The work described in this paper contributes to the goal of establishing trust
in apps based on formal specifications and proofs. We used the ACL2 theorem
prover [39] to build a formal model of a subset of the Android platform that
supports non-trivial apps. We developed a proof methodology based on induction
and symbolic execution of the app’s event handlers, showing that each handler
preserves the app’s invariant, which includes all properties of interest, including
functional correctness.

We applied this proof methodology to verify the full functional correctness
of a slightly simplified version of a calculator app written by others. For a ver-
sion of the app that contains malware, the correctness proof fails in a way that
c© Springer International Publishing Switzerland 2016
A. Gurfinkel and S.A. Seshia (Eds.): VSTTE 2015, LNCS 9593, pp. 183–201, 2016.
DOI: 10.1007/978-3-319-29613-5 11

184 E. Smith and A. Coglio

reveals the malware. In the process of verifying the app, we also uncovered a
subtle functional bug that may be representative of malware that is triggered by
complex conditions on an app’s state and whose malicious action is the calcu-
lation of incorrect results. This “functional malware” differs from more explicit,
and potentially more easily detectable, malware that, for example, sends private
user data to a remote server when the device is in a certain location at a certain
time. The latter kind of malware makes API calls to test the trigger conditions
and perform the malicious actions, while functional malware may not make any
suspicious API calls. For example, functional malware in a navigation app could
deliberately lead users off course, perhaps even directing them to dangerous
places.

Our approach is sound, precise, and high-assurance, in contrast to existing
approaches for vetting Android apps. Static analysis is imprecise, leading to
false warnings, sometimes unsound, and cannot check arbitrary functional cor-
rectness properties. Dynamic analysis cannot cover all possible cases. Manual
code inspection is not high-assurance, because hidden malicious functionality
can be overlooked or misunderstood. Our approach can prove virtually any true
property about an app, with high assurance. Its main disadvantage is that it
requires significant user effort, but we are working to improve the automation
of the proof process.

Our work makes the following contributions:

– A formal model of a non-trivial subset of the Android platform.
– A formal proof methodology for Android apps.

2 Background

2.1 Android

Most Android apps are written in Java [31]. Besides using a subset of the stan-
dard Java API, these apps use the Android API, which provides access to hard-
ware devices (camera, GPS, etc.), GUI elements (buttons, text boxes, etc.),
inter-app communication (e.g., to open a given URL in a web browsing app),
and so on. In addition to the Java source files, an app contains other resources,
which often take the form of XML files. An app’s Java source code is compiled
to Java Virtual Machine (JVM) bytecode [23] using a standard Java compiler.
The Android development tools are used to convert the JVM bytecode to Dalvik
bytecode [32], which is assembled with the XML and other resource files (e.g.,
images) into an installable app package.

An Android app is structured in terms of ‘activities’, each of which is a single
“screen” in the app’s GUI. Within an activity are various ‘views’—rectangular
regions of the screen that represent GUI elements, such as text boxes and buttons
that can be clicked. Events in Android include click events for these views. An app
can register listeners for such events, either statically in its layout XML or pro-
grammatically by calling setOnClickListener(). When these events occur, the
Android GUI thread invokes the appropriate methods of the registered listeners.

Android Platform Modeling and Android App 185

An app’s XML ‘manifest’ indicates, among other things, the initial activity to be
created when the app starts.

Android also includes lifecycle events (Create, Start, Resume, Restart, Pause,
Stop, and Destroy) that can be dispatched to the app. The sequencing of these
events must be consistent with the activity lifecycle state machine [31] (a typical
flow is: Create, Start, Resume, Pause, Stop, Destroy) but can otherwise occur
at any time. For example, a Pause event may occur when another app opens in
front of the current app. Apps typically implement handlers to respond to these
events (e.g., to save data when the app is paused) by overriding methods of the
Activity class, such as onPause().

Various entities belonging to the app are identified using numeric resource IDs.
These resource IDs are defined in special classes, namely the R class (‘resource’
class) and its inner classes, generated by the Android development tools. For
example, an XML layout entity <Button android:id="@+id/btnSeven" ...>
will cause the R$id class to contain a final static field called btnSeven whose
ConstantValue attribute is some large, unpredictable number, e.g., 2131034114.
In Java source code, the button object can be obtained by the method call
findViewById(R.id.btnSeven), but in the bytecode only the numeric ID is
present.

Android includes a permission mechanism to limit apps’ access to hardware
and other resources. For example, an app must possess the INTERNET permission
to open network sockets and the CALL PHONE permission to initiate phone calls.
An app declares, in its XML manifest, the set of permissions that it requests.
When an app is about to be installed, the requested permissions are shown to the
user, who decides whether to proceed with the installation, and thus grant the
app all the requested permissions. This permission mechanism is coarse-grained:
for instance, the INTERNET permission gives an app carte blanche to connect to
any host at any time to send any data.

Malware. Several kinds of malware affect Android devices [12,40]. Tools like
[16] can be effective at detecting malware that exfiltrates private user data by
(necessarily) making suspicious API calls. The mere presence of certain API calls
may be suspicious, e.g., an app that opens a network connection, when the app’s
purported functionality does not involve the network. The presence of an API
call may be legitimate, but the information that flows to the API calls may be
suspicious, e.g., an app reads a user’s contacts and sends them over the network,
when the app’s purported functionality does not include that.

A more stealthy kind of “functional malware” may not exfiltrate private user
data, and instead intentionally calculate incorrect results. The severity of this
kind of malware depends on how much the user relies on the app calculating
correct results: it may range from an annoyance to loss of life, e.g., if a military
navigation app sends a squad off-course to a dangerous place. Functional malware
may be triggered under complex conditions on an app’s state variables, eluding
detection via code inspection. Functional malware may involve API calls, but
not necessarily suspicious ones; or it may not involve any API calls.

186 E. Smith and A. Coglio

Unlike many other approaches, our work addresses functional malware. Of
course, it also addresses inadvertent errors. The difference between functional
malware and an unintentional bug is one of developer’s intent; but the impact
may be similar. Our app verification approach establishes functional correctness,
ruling out both intentional and unintentional bugs.

2.2 ACL2

The ACL2 theorem prover [39] consists of a first-order specification language
based on side-effect-free Common Lisp and automated proof methods for rea-
soning about programs and models written in the language. Two strengths of
ACL2 are its sophisticated term rewriter and its heuristic application of induc-
tion [4]. ACL2 supports reasoning about programs written in languages other
than its native Common Lisp dialect via embeddings that capture the languages’
semantics in terms of ACL2’s native language. Below we describe how we use
this approach to reason about JVM bytecode representing Android apps.

3 Platform Modeling

Since our motivation for modeling the Android platform is app verification, our
formal model describes not the internal structure and layers of the platform
stack, but the top-level interface that the platform provides to apps. This inter-
face consists of the language that apps are written in and the API calls exchanged
between apps and platform, including callbacks.

3.1 Formal JVM Bytecode Model

To reason about an Android app, we intercept its JVM bytecode during compi-
lation (before Dalvik bytecode is generated). To assign semantics to this byte-
code, we defined in ACL2 a formal model that is an executable interpreter of
the Java Virtual Machine [38]. Our model is similar to the M5 model developed
by J Moore and others [29], but covers more features (e.g., exceptions, string
interning, and class initialization). Theorems about JVM bytecode programs
are expressed using this formal model; we prove that when the program of inter-
est is executed on the model, starting from a state where certain properties hold,
then certain other properties always hold on the resulting state. This follows the
style pioneered in [27].

While we do not consider our JVM model to be a novel contribution of this
paper, we summarize its behavior here for concreteness. The state of the JVM in
our model includes the Java heap, static area (where static fields are stored), and,
for each thread, a call stack that includes invocation frames for each method that
the thread is currently executing. Also included are auxiliary data structures for
synchronization and locking, string interning, etc.

Each JVM instruction is modeled by specifying the effect on the JVM state
when that instruction is executed. For example, the iadd instruction for integer
addition is modeled as follows:

Android Platform Modeling and Android App 187

(defun execute-IADD (th s)
(modify th s

:pc (+ 1 (pc (top-frame th s)))
:stack (push (bvplus 32

(top (pop (stack (top-frame th s))))
(top (stack (top-frame th s))))

(pop (pop (stack (top-frame th s)))))))

The function execute-IADD modifies the data structures of thread th in the
JVM state s. In particular, it pops two operands off of the operand stack in the
top invocation frame of the call stack, adds them, and pushes the sum back onto
the operand stack. It then increments the program counter :pc by 1, which is
the length of the iadd instruction.

To run an entire program, we repeatedly step the machine state by fetch-
ing and dispatching on the next instruction. We use ACL2’s defpun utility to
soundly introduce the JVM interpreter as a partial function [25].

A crucial feature of our JVM model is that, in addition to running bytecode
programs on concrete inputs, it can be used for symbolic execution of bytecode
programs on arbitrary inputs. A typical theorem says, in essence, “When we run
the JVM model on this bytecode program, for any input satisfying this predi-
cate, the resulting state has the following properties.” The symbolic execution
is performed using the ACL2 rewriter to repeatedly step and simplify the state,
symbolically executing one instruction at a time and building up a symbolic rep-
resentation of the current state in terms of the symbolic inputs. This technique is
standard in the ACL2 community. In this way, our formal JVM model captures
the semantics of the JVM bytecode language and allows us to reason about the
code that constitutes Android apps.

3.2 Formal Android Model

We extended the formal JVM model described above to a formal model of the
Android platform, capable of executing and reasoning about simple Android
apps. A state in the Android model contains a JVM state and several additional
Android-specific state components. More precisely, our model of the Android
state contains:

– A JVM state, as discussed above. This contains the persistent data used by
the app, including its heap and static fields.

– The app’s activity stack, including the current activity on top of the stack,
and any activities that are currently paused, below the top activity.

– The set of currently allowed events (e.g., button clicks) for which the app has
registered event handlers.

– A parsed representation of the app’s manifest—see Sect. 2.
– The app’s layout information, parsed from the app’s XML layout files and

indexed by the layouts’ numeric IDs. This includes information about the
views (e.g., buttons) in the app’s GUI and their associated event handlers
(e.g., onClick listeners) and is used by our model of the setContentView()
API method when it constructs the GUI for an activity.

188 E. Smith and A. Coglio

– A map from the addresses of View objects to their listeners, used to dispatch
control when handling events. A listener is a pair of a method (often, but
not always, the onClick() method of some class) and an object on which
to invoke the method (often this is an Activity object or an instance of an
anonymous class whose sole purpose is to define the listener). This map is
updated by our model of the setOnClickListener() API method.

– A map from symbolic string names of views, used in the layout XML, to the
corresponding numeric resource IDs. This is used to translate events from
user-meaningful form to internal form. We build this map by inspecting the
names and values of the static fields of the R$Id resource class generated when
the app is built.

– A map from resource IDs to the addresses of their corresponding View objects.
This is used to determine the actual objects on which to dispatch events (e.g.,
click events) and by our model of the findViewById() API method.

– The API call history, a ghost variable that lets us reason about the API calls
that the app has (and, critically, has not) made, including a record of the
event whose handler made each API call.

– The event history, a ghost variable that lets us talk about the sequence of
events given to the app so far. If we are verifying that the app implements
an abstract state machine, we can abstract this event history and feed it to
the abstract state machine. The resulting abstract state should then be the
abstraction of the machine’s current concrete state. Proving that this property
is preserved by all event handlers in the app is the core step of our app proof
methodology described below.

– The event currently being handled, if any, so that we can record in the API
history which event was being handled when the API call was made. API calls
may be allowed for some events but not others. For example, a sound recorder
app may be allowed to start recording only when the user presses the Record
button.

Event Handling. Our Android model supports running an app on a sequence
of input events, by executing their event handlers in order. This can be done on a
concrete sequence of events, to test an app. More importantly, it can be used for
proof. We prove that, for any sequence of events, running the app’s handlers for
those events preserves the app’s invariant. At this level, events are represented
in terms that are meaningful to the user. For example, (:resume) represents the
event that resumes the current activity, and (:click "myButton") represents
a click of the button whose name in the layout is myButton. In order to actually
handle these events, our model must determine the objects on which the handler
methods should be invoked, so it first converts the events into an internal form.
For lifecycle events, this adds to the event the heap address of the topmost
activity object on the activity stack, giving something like (:resume 12345).
Click events are internalized by mapping the symbolic name of the button to a
numeric resource ID and then to the actual address of the View object with that
ID, giving something like (:click 6789). Currently our model only handles

Android Platform Modeling and Android App 189

lifecycle events and click events, but adding support for other events should be
straightforward.

Once the event has been elaborated to internal form, we dispatch it to the
appropriate handler by executing the code for the handler using the underlying
JVM model. For a lifecycle event, we execute an invokevirtual instruction
for the appropriate handler method (e.g., onResume()) on the given Activity
object, which causes the app’s onResume() handler method to run. Such methods
almost always begin by calling through to the corresponding method of the
parent class, e.g., super.onResume(). This causes code from the Android API
implementation to run, e.g., android.app.Activity.onResume(). Our model
includes special modeling for these lifecycle API calls. For example, the model
for onResume() causes the onClick listeners in the resuming activity to again be
added to the set of allowed events. To handle a click event, assuming it is already
in internal form, we look up the onClick listener for the given View object and
call the indicated method. In our model, handlers execute to completion and
cannot be interrupted. This corresponds to Android’s use of an app’s main ‘UI
thread’ to execute its handlers. Future work would include adding support for
background services, which an app can use to offload expensive computation
from its UI thread.

The sequential processing of events in our model corresponds to the way in
which the Android platform internally enqueues events and delivers them to an
app’s unique UI thread. By proving properties over all possible event sequences,
we ensure that the properties hold no matter how the Android platform enqueues
and delivers the events.

Events that are not currently allowed by the app (according to the set of
allowed events in the Android state) are ignored, e.g., a click on a view that has
no registered onClick listeners, or an illegal lifecycle event, such as stopping
an activity that has not been started. Every event is also recorded in the event
history, so that the invariant can refer to the state that the app should be in,
given the events seen so far.

3.3 Formal API Model

A major challenge in reasoning about Android apps is to properly model calls to
API methods. We are following a “demand-driven” approach in which we add
models of API methods as we encounter calls to them in apps that we want
to verify. Some methods such as sendTextMessage() do not really need to be
modeled because they affect only the external world, not the state of the app
itself: we simply record them in the API history, so that we can express properties
such as “the app has not sent any text messages”, and continue with execution.
When the API call does affect the app’s state, if possible we simply execute
on our model the actual code of the API from the Android implementation.
API calls treated this way include many calls in java.lang (e.g., dealing with
Strings and Enums) and setters and getters such as Activity.setTitle() and
View.isClickable(). There are situations where simply executing the API call
does not work, either because the code is unavailable (e.g., native methods)

190 E. Smith and A. Coglio

or too complicated, or because it affects parts of the Android state that we
model. To model such methods, we define executable ACL2 functions and include
them in our Android model. Methods that are modeled in this way include
setOnClickListener(), findViewById(), setContentView(), and the activity
lifecycle event handlers onStart(), onResume(), etc.

Our model of running an app begins by building an initial Android state for
the app (where many components, such as the API history, are initially empty)
and then calling the app’s onCreate() method. Further events are then handled
in order.

4 App Verification

Our platform model provides a formal semantics for non-trivial Android apps.
This allows us to formally prove that apps satisfy their functional specifications,
which implies the absence of the kind of functional malware discussed in Sect. 1.

Our methodology is based on formulating an invariant for the app: a predicate
over states of the Android model that is preserved as the app runs. The invariant
characterizes correct behavior, often using an abstraction to a high-level state
machine, and also makes many Android-specific assertions, such as specifying the
set of currently active event listeners. Each event is proved to preserve the invari-
ant, using the ACL2 rewriter to perform symbolic execution, as described below.
Failed proofs may require the invariant to be strengthened. Once an inductively-
strong invariant is obtained, an induction over event sequences establishes that
the invariant holds for all possible event sequences. This section discusses the
app verification process in more detail, using the running example of verifying a
calculator app.

4.1 Calculator App

The Red Team of the DARPA APAC Program [9] developed several apps, includ-
ing a calculator that applies the four arithmetic operations to floating-point num-
bers. Since our JVM bytecode model does not include floating-point numbers yet,
we modified the app to operate on integers instead, using Java’s normal modular
arithmetic. We also slightly simplified the GUI of the app to not use features that
are currently not covered by our model. The malware in the app replaces the
running result with a random number under certain conditions described later,
but we simplified it to return a fixed result of 88888888 instead, because we
do not yet model random numbers. These simplifications do not fundamentally
change the structure of the app.

4.2 Representation

Our Android model includes a parser, written in ACL2, that turns an app’s JVM
bytecode class files and XML files into an S-expression-based ACL2 representa-
tion usable by our platform model.

Android Platform Modeling and Android App 191

A parsed app, with the platform underneath, forms a state machine. The ini-
tial state S0 is defined by our model of app initialization discussed above. Each
transition is triggered by a platform-initiated event (e.g., pause app, resume app)
or a user-initiated event (e.g., click a button). The deterministic transition func-
tion T maps an input event E and a state S to the next state T (E ,S); it is lifted
to sequences of events by defining T ∗((E1, . . . ,En),S) = T (En, . . .T (E1,S) . . .),
and T ∗(ε,S) = S , where ε is the empty sequence. Our platform model currently
supports a single app (state machine) at a time, but can be extended to support
multiple apps.

For the calculator app, the state machine has an input event for each calcula-
tor button (0 1 2 3 4 5 6 7 8 9 + - * / = C) and each app lifecycle event.
The state includes a TextView GUI object whose content is the string shown on
the calculator display. The main correctness theorem for the app says that the
contents of the display are always correct, given the sequence of input events
supplied to the app so far. We defined an output function O that maps a state
S to this display string O(S). Different output functions could be defined for
different apps, each extracting from the state the app-specific observables of
interest.

4.3 Specification

The execution of the parsed app on the platform model corresponds to a low-level
state machine whose states are states of our Android model, as described above,
and whose transitions are expressed in terms of the execution of JVM bytecode
and API calls. Often a functional specification for an app is naturally expressed
as a higher-level state machine, whose states and transitions are defined in user-
oriented terms rather than code-oriented terms. The correctness of the code
with respect to the specification can then be expressed as a simulation [28] of
the high-level machine by the low-level machine.

A state machine specification for the calculator app is sketched in Fig. 1. Each
state has a name (in bold, e.g., value) and one or more state variables (in italics,
e.g., val); the underlined state variable is the one shown on the calculator display.
In each state, val is the latest result, which is 0 when the calculator starts or
when C (clear) is entered. In value-op and value-op-value, op is the latest
operator entered. In value-op-value, entering = or an operator op’ combines
val2 with val by applying op, completing the pending operation and replacing
the latest result; if op’ was entered, it becomes the latest operator. Figure 1
does not show the expressions assigned to state variables when transitions are
taken, e.g., a digit transition from value-op-value to value-op-value assigns
10×val2+digit to val2. Exploiting that 0 is identity for addition, entering a
digit in value sets val to 0, op to +, and val2 to digit, as if there were a
pending 0 + . . . operation.

We formalized this state machine specification in ACL2. The formalization
includes a constant s0 for the initial state, a deterministic transition function t
that maps an input event e and a state s to the next state t(e, s) (and is lifted
to t∗ over sequences of events, analogous to T ∗ above), and an output function
o that maps a state s to the content of the calculator display o(s).

192 E. Smith and A. Coglio

Fig. 1. A state machine specification for the calculator app

4.4 Invariants and Proofs

Often the simulation relation between a low-level and a high-level state machine
is defined as an abstraction function [18] from the low-level inputs and states to
the high-level inputs and states. For the calculator app, the abstraction function
α maps each calculator button press event to the corresponding input in Fig. 1
and each app lifecycle event to no input in Fig. 1; it also maps each app/platform
state to a state in Fig. 1.

In our Android platform model, the app/platform state S includes the his-
tory of input events. Thus, given an abstraction function to a high-level state
machine specification, the correctness of the app with respect to the specifi-
cation can be expressed as a predicate over the low-level app/platform states.
Intuitively, the app’s invariant says that the app is in fact in the state that it
should be in, given the sequence of inputs seen so far. If H (S) is the history of
input events in S , the predicate is Ω(S) ≡ [O(S) = o(t∗(α∗(H (S)), s0))], i.e.,
the observable outputs that result from executing the app’s code on the inputs
H (S), which take the initial state S0 to S , are the same that result from running
the high-level state machine on the corresponding abstract inputs α∗(H (S)),
where α∗ is the homomorphic lifting of α from events to event sequences. If
Ω includes all the states S reachable from S0, i.e., if Ω(T ∗((E1, . . . ,En),S0))
holds for every event sequence E1, . . . ,En, then the app’s code is observation-
ally equivalent to the specification, i.e., it yields the same outputs for the same
inputs. For the calculator app, the code is observationally equivalent to Fig. 1.
Ω(T ∗((E1, . . . ,En),S0)) is provable by induction if Ω is an invariant, i.e., if Ω
holds on the initial state (base case: Ω(S0)) and is preserved by each transition
(induction step: Ω(S) =⇒ Ω(T (E ,S))). Since Ω alone does not provide a suf-
ficiently strong induction hypothesis, the following invariants are defined, and
proved together:

1. A stronger correctness predicate that involves not only outputs (the calculator
display) but also states: Σ(S) ≡ [α(S) = t∗(α∗(H (S)), s0)∧O(S) = o(α(S))],

Android Platform Modeling and Android App 193

from which the weaker Ω(S) is easily proved. While α, t , and S0 are specific to
the app under verification, Σ has the same form for every app whose specifica-
tion is a state machine with an abstraction function, e.g., the calculator app.

2. Code-level predicates on the app’s state, e.g., that a Java int field is never
negative or is always within a certain range. Formulating these predicates
requires an understanding of the app’s code, but failed proof attempts in
ACL2 often suggest them.

3. Platform-level structural predicates about the Java heap containing the
objects that form the app under verification, the Android GUI objects being
consistent with the XML files, Java fields having values of the right types,
and so on. These constraints are largely boilerplate and we believe that they
could be automatically generated at the same time as the app is parsed into its
ACL2 representation. For the calculator, we manually defined several predi-
cates of this kind, because their automatic generation is not implemented yet.

Once a sufficiently strong invariant has been defined, proving its establish-
ment in the initial state and preservation by each transition can be carried out
by symbolic execution using the ACL2 rewriter. To prove preservation, we start
with an arbitrary Android state assumed to satisfy the invariant. We then show
that the execution of an arbitrary event results in a state that still satisfies the
invariant. The proof naturally splits into cases for each possible allowed event
(disallowed events have no effect on the state), and we usually prove each event
separately. Some application-specific rewrite rules are often needed (e.g., rules
about bit-vector math for the calculator app), and the proofs also use our grow-
ing library of rewrite rules about the Android model itself. Otherwise, proofs
for simple apps are largely automatic; for the calculator app, the proof corre-
sponding to each button click event is a single line of ACL2 code that invokes
our tactic called def-event-proof. This tactic unfolds the application of the
invariant to the initial state (to expose necessary assumptions for symbolic exe-
cution), performs the symbolic execution, often resulting in several cases, and
finally, in each case, unfolds the invariant applied to the final state and simplifies
the result. In successful proofs, everything simplifies to ‘true’.

A key intermediate formula that arises in the proof of the preservation of
the invariant is α(T (E ,S)) = t(α(E), α(S)), i.e., each low-level transition has a
corresponding high-level transition—a typical commuting diagram in simulation.
If an app’s code has no loops (as is the case for the calculator app), ACL2 can
automatically prove the invariant’s establishment and preservation, provided
that an appropriate set of rewrite rules is enabled. The absence of loops is not
so uncommon in simple Android apps, where the platform already provides a
GUI loop that reads inputs and invokes app code to process them. Verifying
apps whose event handlers contain loops is future work and will likely involve
formulating and proving appropriate loop invariants; Σ and the other invariants
discussed above apply to the platform GUI loop.

We found it convenient to verify the calculator app in two stages. We defined
an intermediate state machine whose structure closely resembles the Java code,
but without involving any Java or Android concepts. Its states are records whose

194 E. Smith and A. Coglio

components correspond to the app’s Java fields, and its transitions are defined
in terms of record component updates that correspond to the Java code. This
intermediate state machine is an abstraction of the code in the ACL2 logic, which
in particular does not involve the platform-level structural invariants discussed
above. It may be possible to obtain this intermediate machine automatically,
using the techniques in [38]. We prove that the app’s code simulates the inter-
mediate machine and that the intermediate machine simulates the high-level
machine. The two theorems are composed to obtain a proof of correctness of the
calculator app with respect to Fig. 1.

4.5 Malware Discovery

The calculator app keeps a count of the operations performed since the last
= was entered (or since the app started), e.g., after entering ... = 1 + 2 *
3 the count is 2. The malware (in our simplified version of) the app replaces
the running result with 88888888 when the count reaches 3. This is functional
malware, which does not involve API calls.

We attempted to prove that the calculator app with malware satisfies the
specification in Fig. 1. As it should, the verification fails. The output from the
failed ACL2 proof exposes the malware: a proof subgoal that cannot proved is
that when the operation count is 3, the correct running result is 88888888. In
general, failed proof subgoals can expose the conditions that trigger an app’s
malware and the malicious computations that violate the functional specifica-
tion.

This is a very simple example of functional malware, which is also fairly easy
to detect by the user. However, it is suggestive of more serious, and hard to
detect, kinds of functional malware. An example is a military navigation app
whose intentional miscalculations send a squad off-course to a dangerous place.

4.6 Functional Bugs

After manually removing the malware from the calculator app, we found two
functional bugs in the app that prevented a successful proof. The bugs are also
present in the original, unsimplified version.

The operation count is stored in a Java int, which wraps around and becomes
negative if 231 operations are entered without entering =. Since the condition
under which the display is updated includes that the count is larger than 1, the
display stops updating as the count becomes negative (until it wraps around
again to become positive). Since it is impractical to enter 231 operations, this
bug has arguably only theoretical significance (some may argue that it is in fact
not a bug). Nonetheless, we fixed this bug in the app code.

The other bug may occur in practice: under certain easily achievable condi-
tions, the display is not updated to show the running result. For example, start-
ing the calculator and entering - 1 2 3 4 5 + shows 12345 instead of −12345
on the display (the + should show the partial result 0 − 12345, where 0 is the
initial display). The details of this bug are unimportant, but are caused by what

Android Platform Modeling and Android App 195

we regard as an unnecessarily complicated implementation of the calculator: this
bug eluded our manual code inspection. While this bug was not malware planted
by the Red Team, and is not earth-shattering in its significance, it may be rep-
resentative of functional malware where a cleverly crafted, non-straightforward
implementation may sometimes produce an incorrect result under conditions
that cannot be easily detected by manual inspection. After fixing this last bug,
we proved the correctness of the app with respect to Fig. 1.

5 Related Work

In [26], JML [20] is used to specify contracts for API and application methods,
and the KeY theorem prover [21], which is based on dynamic logic [17], is used
to verify that the Java code of those methods satisfies the contracts. Our formal
model of the Android API is more comprehensive, e.g., we model callbacks,
which are not modeled in [26]. The app specifications in [26] consist of contracts
for various app methods, which are implicitly informally “composed” into an
overarching correctness argument for the apps. In contrast, our app verification
is carried out with respect to an explicit overarching app specification expressed
in user-oriented terms (not code-oriented terms like contracts). The translator
from Java/JML to KeY in [26] embodies the dynamic logic semantics of Java
and JML and is thus a critical component of that approach; in our approach, all
the semantics is explicated in ACL2.

In [19], a pencil-and-paper concrete and symbolic operational semantics for
Dalvik and for a few Android API methods is defined, and used as the founda-
tion to implement a symbolic executor of Android apps. The symbolic execu-
tor is connected to an SMT solver. The tool is shown to infer the conditions
under which an example app performs certain privileged actions. Our approach
also uses symbolic execution, but our semantics is mechanized inside a theo-
rem prover, and we use ACL2’s rewriter for symbolic execution. It is not clear
whether their approach can verify the full functional correctness of apps, due to
the use of an SMT solver rather than a more general (but likely less automatic)
theorem prover such as ACL2.

In [33], a pencil-and-paper operational semantics for a few Dalvik instruc-
tions and a few Android API methods is defined, and a progress property is
proved. The paper mentions work in progress on a symbolic executor, but no
app verification results are reported. Our Android model is mechanized inside a
theorem prover and covers more features of the Android platform.

Other formal models of the Android platform [1,5,13,36] are more abstract
than ours, focused on security aspects and properties. These formal models are
in a sense complementary to ours: it should be possible to formalize abstraction
mappings from our model to those models, ensuring that the security properties
of the more abstract models apply to the more concrete model.

Static analysis of app code to help detect malware (e.g., [7,14,16]) is comple-
mentary to our approach. It is more automated (e.g., no functional specification
is needed) but less precise; it cannot prove deep properties like functional cor-
rectness.

196 E. Smith and A. Coglio

In [6], post-conditions of API method calls are calculated from pre-conditions
via an algorithm that processes propositional formulas. It may be possible to use
our API model and the ACL2 theorem prover for that purpose, which may lead
to higher precision in the malware detection tool described in that paper.

Proposals to improve the Android security mechanisms (e.g., [10,30,37]) or to
add on-device virtualization (e.g., [22]) require extensions to the platform, which
the developers of all the fragmented versions of Android would have to agree on.
If implemented, these extensions may prevent certain classes of malware, but
not the kind of functional malware that our approach addresses.

Collecting data at run time and analyzing it to detect malware patterns (e.g.,
[35]) is likely to be more automatic than our approach but may allow malware
to execute before it is detected. It also may raise privacy concerns if the analysis
is performed off-device.

Dynamic analysis in off-device sandboxes prior to deployment (e.g., [3]) has
similar coverage limitations as conventional testing. In addition, some malware
may detect when it is being run in an emulator and behave differently than when
it is run on a device.

Automatically transforming app code to enforce security policies (e.g., [41])
may affect performance and potentially functionality and may not be agreeable
to app developers. This approach may thwart certain classes of malware, but
not the kind of functional malware that our approach addresses.

6 Takeaways

App Verification Methodology. Many aspects of the app verification work
described in Sect. 4 are not specific to the calculator app. We expect that the
same proof methodology can apply to a large class of apps:

– Automatically parse the app’s code and XML files into a deeply embedded
representation inside the theorem prover, obtaining a low-level state machine
based on the formal semantics of the JVM and of the Android platform, as in
Sect. 4.2.

– Formalize the app’s specification as a high-level state machine, expressed in
user-oriented terms (not in internal Android-oriented terms), as in Sect. 4.3.

– Define an abstraction function from the low-level state machine to the high-
level state machine, as in Sect. 4.4.

– Formulate a sufficiently strong state invariant on the low-level state machine
(like Σ in Sect. 4.4) that implies the desired relation between the high-level
state machine and the low-level state machine (like Ω in Sect. 4.4). The invari-
ant includes not only simulation conditions, but also code-level invariants and
platform-level invariants, as explained in Sect. 4.4.

– Use symbolic execution to prove that the low-level state machine’s invariant
is established by initialization and preserved by each event.

– If convenient, formalize intermediate state machines (between the low-level
one and the high-level one), staging the abstraction functions accordingly.
Prove simulations of each machine by the one immediately below it, and finally

Android Platform Modeling and Android App 197

compose the simulation theorems into one overarching simulation of the high-
level state machine by the low-level state machine. As mentioned in Sect. 4.4,
for the calculator app we used an intermediate state machine.

State Invariants vs. Trace Invariants. By keeping suitable history (e.g.,
the sequence of events processed so far) in our model of the Android state,
we are able to express properties of interest (such as Σ and Ω in Sect. 4.4) as
state invariants instead of more complex trace invariants, which involve multiple
successive states of execution.

Iterative Invariant Strengthening. It may be difficult to formulate a suffi-
ciently strong invariant in one attempt. The first attempt typically results in an
invariant that is too weak. However, the failed proof output from ACL2 often
readily suggests how to strengthen the invariant. The failed proof output consists
of one or more proof subgoals, each consisting of a number of hypotheses and a
conclusion. When these hypotheses express some impossible condition (e.g., that
an integer variable is outside it possible range of values), the invariant must be
strengthened to exclude that impossible condition (e.g., the range of the variable
must be part of the invariant). Several iterations may be needed before reaching
a sufficiently strong invariant.

Bugs Uncovered by Failed Proof Attempts. Bugs in the app (i.e., the fact
that the app does not satisfy the specification) are often exposed by failed proof
attempts. In some cases, the hypotheses of a failed proof subgoal, when they do
not correspond to an impossible situation (i.e., the failed proof is not due to the
invariant being too weak), reveal corner cases in which the invariant is broken.
This may indicate either a bug in the app or perhaps a need to reformulate the
invariant.

An ACL2 Trick. There are cases in which failed ACL2 proof subgoals do not
explicitly expose the problem, because the ACL2 rewriter rewrites an untrue
conclusion to ‘false’ and replaces it with the negation of one hypothesis—the
untrue conclusion has disappeared from the proof subgoal. This happens, for
instance, when attempting to prove that some term x equals a certain constant c,
when instead the term equals some other constant c′: The goal x = c is rewritten
to ‘false’ and it disappears. To debug this, we can introduce an uninterpreted
nullary function f and attempt to prove x = f(). The new proof attempt will of
course fail, but the rewriter will rewrite x to the correct constant c′, displaying
the failed proof subgoal c′ = f(). Then we can revise our original proof attempt
to prove x = c′ instead.

Android Platform Modeling. The Android documentation informally
describes the interaction of apps with the Android platform, without explicitly

198 E. Smith and A. Coglio

describing most of the internal state of the platform, aside from app lifecycle
states and similar aspects. Formalizing the Android platform involves creating
an explicit model of the internal Android state. In order to do that, we tried
to imagine how the implementation could support the behaviors described in
the documentation (e.g., maintain a mapping from resource IDs to references to
View objects), and defined our state (and transition) model accordingly.

Android API Modeling. The large size of the Android API makes its for-
mal modeling challenging. We believe that the best approach to address this
challenge is to model the API in a demand-driven fashion, i.e., formalize the
API classes and methods as they are needed to verify apps. API methods writ-
ten entirely in Java need not be explicitly modeled; instead, their code can be
symbolically executed along with the app code. However, it may be beneficial
to explicitly model API methods that have complex code that may complicate
symbolic execution. It should be also noted that, as suggested in [6], typical
apps use a relatively small “popular” subset of the Android API: thus, it is not
necessary to model most of the Android API in order to verify interesting apps.

7 Conclusion and Future Work

We have described our ongoing work on formally modeling the Android platform
and verifying Android apps. Compared to existing research, our Android model
has the highest coverage of Android features, and our Android app verification
goes deeper to include proofs of full functional correctness. A major motivation
for this work is to ensure the absence of functional malware in apps, which other
detection approaches to do not address. Our approach can be used to prove deep
properties of apps with high assurance.

The proof methodology described in this paper, based on state machines
and simulations, can verify a large class of app properties. But the ACL2 logic
and our Android model can express other kinds of assertions over the deeply
embedded apps. Examples are program-level properties such as the fact that
certain API calls are made only under certain conditions and with certain data,
which enables much finer distinctions than coarse Android permissions such as
INTERNET. Other examples are hyperproperties (i.e., predicates over multiple
executions) [8], including security policies like non-interference [15], which could
express the non-leakage of private user data to network sockets, text messages,
and other destinations. To verify these kind of properties, extensions to our proof
methodology may be needed, e.g., invariants over multiple states from different
execution traces.

We are extending our formal model to cover more Android features and are
tackling the verification of larger and more complex apps. We would also like to
extend our approach to support reasoning about multiple apps, including their
communication via Android’s ’intent’ mechanism.

Another direction for future research is the modeling and proof of non-
functional aspects of apps, e.g., to reason about resource usage or covert
channels.

Android Platform Modeling and Android App 199

Acknowledgments. This material is based on research sponsored by DARPA under
agreement number FA8750-12-X-0110. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon.

We would also like to thank Garrin Kimmell, James McDonald, and Allen Goldberg
for their helpful reviews of this paper.

References

1. Armando, A., Costa, G., Merlo, A.: Formal modeling and reasoning about the
Android security framework. In: Palamidessi, C., Ryan, M.D. (eds.) TGC 2012.
LNCS, vol. 8191, pp. 64–81. Springer, Heidelberg (2013)

2. Armando, A., Merlo, A., Migliardi, M., Verderame, L.: Would you mind forking
this process? A denial of service attack on Android (and some countermeasures).
In: Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IFIP AICT, vol.
376, pp. 13–24. Springer, Heidelberg (2012)

3. Bläsing, T., Batyuk, L., Schmidt, A.-D., Camtepe, S.A., Albayrak, S.: An Android
application sandbox system for suspicious software detection. In: Proceedings of 5th
International Conference on Malicious and Unwanted Software (Malware) (2010)

4. Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press, New York
(1979)

5. Chaudhuri, A.: Language-based security on Android. In: Proceedings of the ACM
SIGPLAN Fourth Workshop on Programming Languages and Analysis for Security
(PLAS) (2009)

6. Chen, K.Z., Johnson, N., D’Silva, V., Dai, S., MacNamara, K., Magrino, T., Wu,
E., Rinard, M., Song, D.: Contextual policy enforcement in Android applications
with permission event graphs. In: Proceedings of the 20th Annual Network and
Distributed System Security Symposium (NDSS) (2013)

7. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in Android. In: Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services (MobiSys) (2011)

8. Clarkson, M., Schneider, F.: Hyperproperties. J. Comput. Secur. 18(6), 1157–1210
(2010)

9. DARPA Information Innovation Office. Automated program analy-
sis for cybersecurity (APAC) program. http://www.darpa.mil/program/
automated-program-analysis-for-cybersecurity

10. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L.P., Jung, J.,
McDaniel, P., Sheth, A.N., TaintDroid, : An information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS)
32(2), 5:1–5:29 (2014)

11. Enck, W., Ongtang, M., McDaniel, P.: Understanding Android security. IEEE
Secur. Priv. Mag. 7(1), 50–57 (2009)

12. Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A survey of mobile
malware in the wild. In: Proceedings of the ACM CCS Workshop on Security and
Privacy in Smartphones and Mobile Devices (2011)

13. Fragkaki, E., Bauer, L., Jia, L., Swasey, D.: Modeling and enhancing Android’s
permission system. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012.
LNCS, vol. 7459, pp. 1–18. Springer, Heidelberg (2012)

http://www.darpa.mil/program/automated-program-analysis-for-cybersecurity
http://www.darpa.mil/program/automated-program-analysis-for-cybersecurity

200 E. Smith and A. Coglio

14. Fuchs, A., Chaudhuri, A., Foster, J.: SCanDroid: automated security certication
of Android applications. Technical report CS-TR-4991, Department of Computer
Science, University of Maryland, College Park (2009)

15. Goguen, J., Meseguer, J.: Security policies and security models. In: Proceedings of
the IEEE Symposium on Security and Privacy, pp. 11–20 (1982)

16. Gordon, M.I., Kim, D., Perkins, J., Gilham, L., Nguyen, N., Rinard, M.:
Information-flow analysis of Android applications in DroidSafe. In: Proceedings
of the 21st Annual Network and Distributed System Security Symposium (NDSS)
(2014)

17. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
18. Hoare, C.A.R.: Proof of correctness of data representations. Acta Informatica 1(4),

271–281 (1972)
19. Jeon, J., Micinski, K., Foster, J.: SymDroid: symbolic execution for Dalvik byte-

code. Technical report CS-TR-5022, University of Maryland, College Park (2012)
20. The Java Modeling Language (JML). http://jmlspecs.org
21. The KeY project. http://www.key-project.org
22. Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A., Peter, M.: L4Android: a

generic operating system framework for secure smartphones. In: Proceedings of the
1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices
(SPSM) (2011)

23. Lindholm, T., Yellin, F., Bracha, G., Buckley, A.: The Java Virtual Machine Spec-
ification - Java SE 8 Edition, March 2014. http://docs.oracle.com/javase/specs/
jvms/se8/html

24. Lineberry, A., Richardson, D.L., Wyatt, T.: These aren’t the permissions you’re
looking for. In: DEFCON 18 (2010)

25. Manolios, P., Moore, J.S.: Partial functions in ACL2. J. Autom. Reasoning 31,
107–127 (2003)

26. Haghighi Mobarhan, M.A.: Formal specification of selected Android core applica-
tions and library functions. Master’s thesis, Chalmers University of Technology,
University of Gothenburg (2011)

27. McCarthy, J.: A formal description of a subset of Algol. Technical report Stanford
Artificial Intelligence Project Memo No. 24, Stanford University (1964)

28. Milner, R.: An algebraic definition of simulation between programs. Technical
report CS-205, Stanford University (1971)

29. Moore, J.: Proving Theorems about Java and the JVM with ACL2. http://www.
cs.utexas.edu/users/moore/publications/marktoberdorf-02/index.html

30. Nauman, M., Khan, S., Zhang, X.: Apex: extending Android permission model and
enforcement with user-defined runtime constraints. In: Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security (ASIACCS)
(2010)

31. Open Handset Alliance. Android Development Resources. http://developer.
android.com

32. Open Handset Alliance. Android Open Source Project. http://source.android.com
33. Payet, E., Spoto, F.: An operational semantics for Android activities. In: Pro-

ceedings of the ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation (PEPM) (2014)

34. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., Glezer, C.: Google
Android: A comprehensive security assessment. IEEE Secur. Priv. Mag. 8(2), 35–
44 (2010)

http://jmlspecs.org
http://www.key-project.org
http://docs.oracle.com/javase/specs/jvms/se8/html
http://docs.oracle.com/javase/specs/jvms/se8/html
http://www.cs.utexas.edu/users/moore/publications/marktoberdorf-02/index.html
http://www.cs.utexas.edu/users/moore/publications/marktoberdorf-02/index.html
http://developer.android.com
http://developer.android.com
http://source.android.com

Android Platform Modeling and Android App 201

35. Shamili, A.S., Bauckhage, C., Alpcan, T.: Malware detection on mobile devices
using distributed machine learning. In: Proceedings of the 20th International Con-
ference on Pattern Recognition (ICPR) (2011)

36. Shin, W., Kiyomoto, S., Fukushima, K., Tanaka, T.: A formal model to analyze the
permission authorization and enforcement in the Android framework. In: Proceed-
ings of the IEEE Second International Conference on Social Computing (SOCIAL-
COM) (2010)

37. Smalley, S., Craig, R.: Security enhanced (SE) Android: bringing flexible MAC
to Android. In: Proceedings of the 20th Annual Network and Distributed System
Security Symposium (NDSS) (2013)

38. Smith, E.W.: Axe: an Automated Formal Equivalence Checking Tool for Programs.
Ph.D. dissertation, Stanford University (2011)

39. University of Texas at Austin. The ACL2 theorem prover. http://www.cs.utexas.
edu/moore/acl2

40. Vidas, T., Votipka, D., Christin, N.: All your droid are belong to us: a survey
of current Android attacks. In: Proceedings of the 5th USENIX Workshop on
Offensive Technologies (WOOT) (2011)

41. Rubin, X., Säıdi, H., Anderson, R.: Aurasium: practical policy enforcement for
Android applications. In: Proceedings of the USENIX Security Symposium (2012)

http://www.cs.utexas.edu/moore/acl2
http://www.cs.utexas.edu/moore/acl2

AUSPICE: Automatic Safety Property
Verification for Unmodified Executables

Jiaqi Tan(B), Hui Jun Tay, Rajeev Gandhi, and Priya Narasimhan

Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, USA

tanjiaqi@cmu.edu, htay@andrew.cmu.edu, rgandhi@ece.cmu.edu,

priya@cs.cmu.edu

Abstract. Verification of machine-code programs using program logic
has focused on functional correctness, and proofs have required manually-
provided program specifications. Fortunately, the verification of shal-
low safety properties such as memory isolation and control-flow safety
can be easier to automate, but past techniques for automatically ver-
ifying machine-code safety have required post-compilation transforma-
tions, which can change program behavior. In this work, we automatically
verify safety properties for unmodified machine-code programs without
requiring user-supplied specifications. Our novel logic framework, AUS-
PICE, for automatic safety property verification for unmodified executa-
bles, extends an existing trustworthy Hoare logic for local reasoning, and
provides a novel proof tactic for selective composition. We demonstrate
our automated proof technique on synthetic and realistic programs. Our
verification completes in 6 h for a realistic 533-instruction string search
algorithm, demonstrating the feasibility of our approach.

1 Introduction

Interactive theorem proving using logic is a promising technique for reasoning
about executable (i.e., machine-code) programs, as it provides a succinct speci-
fication of the program. However, formally reasoning about machine-code is chal-
lenging as accounting for low-level details and writing proofs interactively can be
tedious. Logics have been developed to formally reason about the low-level state
(e.g., registers, main memory) in machine-code programs: Myreen et al. developed
a Hoare logic for realistically modeled machine-code [16]. These logics are designed
to verify the correctness of programs, and hence must capture the complete exe-
cution state of the program, which requires manually supplied specifications e.g.,
loop invariants, and function pre-/post-conditions. Hence, techniques for reason-
ing about program correctness ease the job of the proof author [17], but do not
fully automate proof generation. Fortunately, verifying shallow safety properties
can be easier, as we are only concerned with the parts of program state which
affect our desired safety properties. Thus, there are more opportunities for proof
automation. Zhao et al. [27] proposed a program logic for automatically verifying
safety properties in executables, but programs must be compiled with a modified
c© Springer International Publishing Switzerland 2016
A. Gurfinkel and S.A. Seshia (Eds.): VSTTE 2015, LNCS 9593, pp. 202–222, 2016.
DOI: 10.1007/978-3-319-29613-5 12

AUSPICE 203

compiler and safety checks must be added post-compilation [27], thus developers
cannot observe how the safety checks added to their programs may change them.

In this paper, we present a novel logic framework, AUSPICE, for auto-
matically verifying safety properties for unmodified machine-code programs:
programs generated by an unmodified compiler, without any post-compilation
transformations (e.g., binary rewriting). Thus, any safety checks must be added
as source-code statements. This enables developers to gain assurance of their
program’s behavior and safety from observing the added safety checks. Our con-
tributions are: (i) a novel logic framework, AUSPICE, for automatically verifying
safety properties in unmodified machine-code programs, (ii) a logic, LLR, which
enables local reasoning to ensure that safety properties are asserted and checked
for every instruction in a machine-code program, (iii) a proof tactic for selec-
tive composition which enables the automatic verification of safety properties
without manual inputs, and (iv) an empirical evaluation of AUSPICE on verify-
ing real-world machine-code. To the best of our knowledge, AUSPICE is the first
logic framework which enables the fully automated proving of safety properties for
unmodified ARM machine-code programs, avoiding the post-compilation trans-
formations required by ARMor [27]. We currently target ARM machine-code
programs, although our technique can be applied to other architectures.

Intuition. Our safety property verification uses Hoare logic to reason about
machine-code. Hoare logic was designed to reason about program correctness,
hence, typical Hoare logic proofs must reason about the “global” effects of pro-
grams, i.e., capture all possible values of program state. Our first intuition is
that our safety properties at each instruction are affected only by the program
state immediately before the instruction runs. This enables us to consider only a
subset of program state and perform “local” reasoning (Sect. 3), and avoid requir-
ing manually supplied specifications. Second, previous efforts to automate safety
property verification [27] relied on binary rewriting to insert safety checks. In
unmodified machine-code, safety checks must be implemented entirely in source-
code. Our second intuition is that, when verifying safety properties for unmod-
ified machine-code, safety checks inserted in a program’s source-code can span
a larger part of a program than our “local” scope of reasoning described above.
Hence, we develop a novel proof tactic, selective composition (Sect. 4), which
uses the Hoare logic Compose rule (Sect. 2.4) to help us reason about safety
properties using additional contextual information not available in purely local
reasoning.

1.1 Problem Statement

Goals. The main objective of our logic framework is to automatically prove
safety properties for machine-code programs which have been compiled using
an unmodified compiler, with no post-compilation modifications (e.g., binary
rewriting). The goals of our logic framework are: (i) to use an independently
developed, trustworthy logic so that our approach is trustworthy; (ii) to fully
automate our proof by not requiring manual inputs from the user, and (iii) to
formalize the notion of safety for the execution of a machine-code program.

204 J. Tan et al.

Non-goals. We do not intend to prove the correctness of machine-code pro-
grams, and we are not concerned with the security and privacy of applications
implemented by the machine-code.

Scope. We choose to verify safety properties for the machine-code of programs
rather than their source-code so that (i) we do not need to trust the compiler
used, thus minimizing our Trusted Computing Base (TCB), and (ii) our verifi-
cation does not need access to the source-code of the program. We require no
modifications to the compiler used to generate the executables which we verify.
Our logic framework currently targets ARM machine-code programs, although
our technique can be applied to machine-code for other architectures by (i) para-
meterizing the Hoare logic [16] with a different instruction semantics, and (ii)
defining execution safety for the target architecture. We verify safety properties
for user programs running on a commodity operating system (currently Linux).

Assumptions. Our logic framework uses the trustworthy formalization of the
ARM Instruction Set Architecture (ISA) developed by Myreen et al. [15] at
Cambridge University (the “Cambridge ARM model”). Thus, our verification
inherits the assumptions and limitations of this model. We assume that the
behavior of the program being verified is not affected by exceptions, interrupts,
and page table operations, as these are not modeled in the model. We are also
unable to verify safety properties in the presence of system calls, as the model
does not capture the effects of specific system calls on user programs. We are also
unable to verify programs with concurrent behavior, nor unstructured control-
flow jumps (e.g., longjmp and switch statements). We assume that the compiler
and program obey the ARM-THUMB Procedure Call Standard (ATPCS) [1],
which specifies the behavior for function calls/returns, and that the OS correctly
isolates concurrently executing user programs. We also assume that the target
program being verified was compiled with a well-known, unmodified compiler
with well-known function prologues and epilogues, and that the machine-code
contains function boundaries. We also require programs to be statically compiled
so that all code to be executed is present, and that programs are not recursive.

2 Background

2.1 ARM Architecture

First, we review aspects of the ARM architecture pertinent to defining execution
safety for ARM machine-code programs. ARM is a RISC, load/store architec-
ture, and data instructions operate only on register contents but not memory [2].
There are 6 processor modes, and we focus on the user mode, which an operating
system (OS) runs applications in. The remaining modes handle various types of
exceptions, including system calls. Each ARM processor mode has a different
set of visible registers, and we focus on only the registers visible in user mode:
registers r0 through r15, and the status register (CPSR). We also consider the
ATPCS [1], which specifies conventions for procedure calls and returns. By the
convention in the ATPCS, registers r13, r14, r15 store the stack pointer (SP),

AUSPICE 205

link register (LR) for return addresses and program counter (PC). We highlight
these registers for their impact on control-flow safety. The state of an ARM
processor comprises the registers r0 to r15, the processor status register CPSR,
and the processor’s main memory (modeled as an array of 232 byte-addressed
bytes).

2.2 Safety Properties for ARM Machine-Code Programs

Kernel space
(reserved)

Typical addresses
(may vary slightly

across kernels)

0xC0000000

0xBF000000
Stack

Heap

BSS segment

Data segment

Text segment
0x08048000

A
ll m

e
m

o
ry

w

rite
s
 m

u
s
t b

e

c
o

n
fin

e
d

 to
 h

e
re

A

B

C

(a) Stack-based Memory
safety: Linux Process
Memory Layout

Previous Link Register
(Saved R14)

Previous Stack Pointer
(Saved R13)

Previous Frame
Pointer (Saved R11)

Caller-save register

Must not be
overwritten

Stack (called function)
Stack of callee

function
(address in

t33)

Stack of
caller

function

Stack grows
to smaller

addresses

(b) Stack-based Control-
flow safety: Function Ac-
tivation Record

Fig. 1. Safety properties

Next, we discuss the safety properties we wish to
prove for ARM machine-code programs. At a high-
level, we wish to prove that the execution of a
machine-code program is isolated from any harm-
ful effects of potentially malicious user input. Specif-
ically, we wish to prove that the control-flow of
a machine-code program cannot be hijacked and
changed at runtime due to user input, and that new
behaviors cannot be introduced through code injec-
tion or modification. We do this by proving that
(i) machine-code loaded to memory cannot be over-
written; that (ii) function-return addresses saved to
the program’s stack cannot be changed; and that
(iii) only machine-code initially loaded to memory
is executed. Concretely, at the machine-code level,
we prove two safety policies, memory isolation, and
control-flow isolation, which together provide the
machine-code safety properties sufficient to show that
our desired high-level safety property holds. This is
similar to Control-Flow Integrity [3], except that we
disallow the use of arbitrary function pointers on a
program’s heap. We instantiate these safety proper-
ties in the context of user programs running in an OS
(currently Linux), as our goal is to provide isolation
for user programs running in an OS.

Memory Isolation. The goal of our memory safety
policy, memory isolation, is to prevent a program
from modifying its own instructions to prevent
the introduction of new behaviors through self-
modification. In a multiprogramming OS such as

Linux, each user program runs as a separate process with its own virtual mem-
ory with a common layout. In processors with 32-bits of addressable memory,
each process has a 4 GB memory space, with the upper 1 GB reserved for the
OS. Figure 1(a) illustrates this layout. Our memory safety policy requires that
all memory writes be restricted to the area between the start of the process’s
stack space (marked 0xBF000000) and the start of the text segment of the code.

206 J. Tan et al.

Control-Flow Isolation. The goal of our control-flow safety policy, control-
flow isolation, is to ensure that there are no unexpected control-flow transfers,
that only instructions in the text section of the program are executed. We also
require that there can be no control-flow hijacks via modified function-return
addresses. Our memory safety policy partially ensures control-flow isolation by
preventing the modification of the text section. Our control-flow isolation is
also enforced by protecting the return addresses for function calls saved on the
program stack. First, we consider the ATPCS [1] convention. Registers r11 and
r13 store the frame pointer (stack base address) and stack pointer (stack top
address) respectively, while r14 stores the return address of the current function.
When a function call is made, the caller function first saves its current values of
r11, r13, and r14 on the stack, before loading the return address to r14. Also,
the ATPCS specifies that the stack grows downwards to lower addresses. Thus,
to prevent control-flow hijacks, we must ensure that all memory writes are to
addresses smaller than the current function’s frame pointer (r11) (Fig. 1(b)).

2.3 Hoare Logic for ARM Machine-Code Programs

We use the HOL4 theorem prover [20], and the Hoare logic [16] for ARM
machine-code programs [15] developed at Cambridge, to prove safety theorems.
The Cambridge ARM model has been extensively tested and validated [9], pro-
viding us with a strong, trustworthy foundation for our logic. The Cambridge
ARM model uses Hoare triple theorems and separation logic [19] to describe
the behavior of each instruction, and the model captures realistic details of
ARM instructions, which we illustrate briefly. The model decompiles each ARM
instruction to a Hoare triple theorem of the form (p) c (q), where p and q
are predicates describing the state of the processor before (pre-state) and after
(post-state) executing code c respectively1. Then, the theorem (p) c (q) infor-
mally means that for a processor in a state satisfying p before running c, after
running c, the processor will have state satisfying q. The predicates p and q are
pre- and post-state assertions about the values of machine resources e.g., regis-
ters, status flags and the program counter. They can also contain pure boolean
assertions which describe relationships among the values of machine resources
which are true before or after an instruction executes. The theorem for the ARM
instruction 0xE5832000 (mnemonic “str r2 [r3]”) is:

� SPEC ARM MODEL (aR 3w r3 ∗ aR 2w r2 ∗ aPC p ∗ aMEMORY df f

∗ cond((r3 && 3w = 0w) ∧ (r3 ∈ df))) {(p, 0xE5832000w)}
(aR 3w r3 ∗ aR 2w r2 ∗ aPC (p+4w) ∗ aMEMORY df ((r3 = +r2) f))

SPEC indicates that the theorem is a Hoare triple, while ARM MODEL is the ARM-
specific instruction semantics [15]. aR 2w and aR 3w are expressions which assert
that a given register stores the specified value, where 2w and 3w indicate the reg-
ister number whose value is being asserted, and the suffix w indicates the register
number is a fixed-width word. Then, the pre-state shows that the registers r2

1 In Hoare logic, p, q are named pre-, post-condition, but we use the terms pre-,
post-state as we call the boolean conditions imposed by a branch the pre-condition.

AUSPICE 207

and r3 contain the (symbolic) values r2 and r3 respectively, the main memory
contains the map f with domain df, and the program counter has some address
p before running the instruction. After running the instruction, the values of reg-
isters r2, r3 remain unchanged, and the program counter advances to p+4 . Also,
=+ is the map-update operator, hence r3 =+ r2 indicates that the memory has
been updated to store the value that was in register r2 at the address given by the
value that was in register r3. The expression cond((r3 && 3w = 0w)∧(r3 ∈ df))
is an assertion which specifies our memory alignment requirement for writes to
the address r3, and that r3 is in the domain of the memory map f. * is the
separating conjunction [19] which asserts all other resources are unchanged.

2.4 Composition Rule in Hoare Logic

SPEC x p c1 q SPEC x q c2 r

SPEC x p (c1; c2) r
COMPOSE

SPEC x p c q

SPEC x (p ∗ r) c (q ∗ r)
FRAME

The Compose rule of Hoare logic [11] is shown above, which extends single
instruction Hoare triple theorems to describe multiple instructions. One critical
detail of this rule is that to apply the Compose rule to compose two Hoare triple
theorems, the pre-state of the second theorem must be equal to the post-state
of the first theorem. Conceptually, when instruction i1 executes, followed by
instruction i2, as i2 is executing immediately after i1, so the processor state just
before i2 executes is exactly the processor state after i1 executes.

Pre-composition Tactic. A typical proof tactic for composing Hoare triple
theorems for sequential instructions, i1, i2, with i1 running immediately before
i2, into a single Hoare triple theorem, is given by the following steps: (i) Using
the Frame rule (shown above), add machine state assertions in i1, but not in i2,
to i2’s theorem; (ii) Using the Frame rule, add machine state assertions in i2, but
not in i1, to i1’s theorem; (iii) Instantiate free variables in i2 with the post-state
machine resource values from i1. We call these steps the pre-composition tactic.
This is similar to the “shift” operation described by Myreen et al. [15]. After
carrying out the above theorem manipulation steps, the manipulated theorems
i′1 and i′2 for both instructions will now have the post-state of i′1 matching the
pre-state of i′2, allowing us to directly apply the Compose rule in Hoare logic.

For instance, consider the two instructions, i1 (“mov r3,r4”), followed by
i2 (“sub r2, r3, #16”). We illustrate the use of the Compose rule to obtain a
theorem describing the behavior of a program (or its fragment), i1i2. The Hoare
triple theorems for each of the two instructions are shown respectively:

� SPEC ARM MODEL (aR 3w r3 ∗ aR 4w r4 ∗ aPC p) {(p, 0xE1A03004w)}
(aR 3w r4 ∗ aR 4w r4 ∗ aPC (p+4w))

� SPEC ARM MODEL (aR 2w r2 ∗ aR 3w r3 ∗ aPC p) {(p, 0xE2432010w)}
(aR 2w (r3 − 16w) ∗ aR 3w r3 ∗ aPC (p+4w))

208 J. Tan et al.

Thus, in composing the two theorems i1, i2 in our above example, our pre-
composition tactic will carry out the following steps on the theorems i1, i2: (i)
Use the Frame rule to add aR 2w r2 to i1 to get i′1; (ii) Use the Frame rule to
add aR 4w r4 to i2 to get i′2; (iii) Instantiate the value of p to p + 4w, and r3
to r4 in i′2 to get i′′2 ; (iv) Apply Compose rule to theorems i′1, i

′′
2 to obtain:

� SPEC ARM MODEL (aR 3w r3 ∗ aR 4w r4 ∗ aPC p ∗ aR 2w r2)

{(p, 0xE1A03004w); (p + 4w , 0xE2432010w)}
(aR 2w (r4 − 16w) ∗ aR 3w r4 ∗ aPC (p+8w) ∗ aR 4w r4)

The pre-composition tactic prepares two suitable Hoare triples for reasoning
about the effects of code on the same pre-state (i.e. pre-state of the first Hoare
triple) by placing them in the same context (i.e. describing the effects of the
code in both triples in terms of the pre-state variables of the first Hoare triple).

3 Design: The LLR Program Logic

Next, we describe the design of our logic framework for automatically verifying
safety properties, and discuss the rationale behind our design decisions. Our
logic framework needs to fulfill three tasks: (1) Specify safety assertions for each
instruction. A safety assertion of an instruction specifies the conditions which
must be true before the instruction is executed for our safety properties to hold.
(2) Ensure that the Hoare triple theorems for every instruction are encoded with
their safety assertions. (3) Define, formally, the requirements for a program to
possess our desired safety properties.

SPEC x (cond(ms ∧ cfi1 ∧ cfi2) ∗ p) {(offset , ins)} q

MEMCFISAFE x ((MCSAt offset ms cfi1 cfi2) ∗ p) {(offset , ins)} q
MEM CFI SAFE

MEMCFISAFE x p c1 q MEMCFISAFE x q c2 r

MEMCFISAFE x p (c1; c2) r
MEM CFI SAFE COMPOSE

MEMCFISAFE x p c q

MEMCFISAFE x (p ∗ r) c (q ∗ r)
MEMCFISAFE FRAME

Fig. 2. Logic rules for LLR. ms, cfi1 , cfi2 , cfi3 are safety assertions for memory and
control-flow isolation respectively. MCSAt is a syntactic label to group safety assertions.

3.1 Individual Instructions: Safety Assertion Specification

Figure 2 shows the MEM CFI SAFE rule for augmenting the Hoare triple theorem
of a single instruction with its safety assertion. This rule overcomes the chal-
lenge of reasoning about safety properties at every instruction using Hoare logic.
We add our safety assertions as a pure boolean condition to the pre-state of an
instruction’s Hoare triple. Then, when the Compose rule (Sect. 2.4) is applied to

AUSPICE 209

compose theorems of multiple instructions, the pre-states of successor instruc-
tions (q in the Compose rule) will be hidden, thus hiding our augmented safety
assertions. Also, safety assertions which hold can be simplified to true and elim-
inated from the Hoare triple. Thus, for a Hoare triple describing a sequence of
instructions, we cannot tell if the theorem contains safety assertions for every
instruction.

The MEM CFI SAFE rule overcomes this challenge by ensuring that the Hoare
triple for every instruction has been augmented with its safety assertions. This
rule has two features. First, MEM CFI SAFE can be instantiated only from single
instruction Hoare SPEC theorems, because code c in the SPEC theorem in the rule
antecedent admits only a single instruction with the machine word ins located
at address offset. Also, the second rule which generates safe MEMCFISAFE the-
orems, MEM CFI SAFE COMPOSE, does not admit Hoare triple SPEC theorems, and
only allows the composition of MEMCFISAFE theorems. Second, the MEM CFI SAFE
rule can be instantiated only when the pre-state is augmented with our safety
assertion, the pure boolean conjunction, ms∧ cfi1 ∧ cfi2, in its pre-state. Thus,
the MEMCFISAFE relation indicates the resulting Hoare triple has been augmented
with safety assertions for every instruction described. MCSAt is a syntactic rela-
tion which associates our safety assertion, ms ∧ cfi1 ∧ cfi2, with the address
offset which the assertion applies to. We also add the safety assertions ms, cfi1,
cfi2 to the hypotheses of the theorem, to indicate that they are undischarged.

Safe Instruction Semantics are Sound. Our safe instruction semantics, in
the form of MEMCFISAFE theorems, are a special form of Hoare triple theorems.
They are augmented to ensure that every instruction described in an MEMCFISAFE
theorem has an associated safety assertion, added to it as a pure boolean con-
dition in the pre-state of the instruction’s theorem. We proved the following
theorem: � ∀x p c q · MEMCFISAFE x p c q ⇒ SPEC x p c q. Informally, our
safety-augmented Hoare triple theorems retain a direct correspondence to the
Hoare triple theorems proven by the Cambridge ARM model. Hence, our safe
instruction semantics inherits the soundness of the Cambridge ARM model.

3.2 Sequential Code Blocks

Next, we describe how we obtain safety-augmented Hoare triple theorems for
basic blocks of sequential code (safe basic block theorems). A basic block is
a sequence of instructions which execute sequentially, with a single entry and
single exit instruction. The two rules (Fig. 2) we need for building safe basic block
theorems are MEM CFI SAFE COMPOSE, and MEMCFISAFE FRAME (proved using the
Frame rule in separation logic). These two rules allow us to inductively build
up a safe basic block theorem from safety theorems for individual instructions.
The process of building up a safety theorem for a basic block of sequential code
is the same as that of composing Hoare triple theorems (Sect. 2.4), except that
only safety-augmented Hoare triple theorems can be composed. This process
is repeated recursively for every instruction in a basic block to obtain a single
safe theorem for the basic block. Our safe basic block theorems have the same
semantics as Cambridge ARM Hoare triples, as proved in Sect. 3.1.

210 J. Tan et al.

addr ,NODES ,FUNCS ,CFGpred ,CFGsucc , ICFGcallpred , ICFGcallsucc ,

ICFGretpred , ICFGretsucc , assnsentry , postcondexit , prestate, poststate ·
FUN SAFE(addr ,NODES ,FUNCS ,CFGpred ,CFGsucc , ICFGcallpred , ICFGcallsucc ,

ICFGretpred , ICFGretsucc , assnsentry , postcondexit , prestate, poststate) ⇔
((∀node · node ∈ NODES ⇒ (min(node, addr) = addr))

∧ (∀min · min ∈ NODES ⇒ (CFGpred (min) = ∅ ∧ ICFGcallpred (min) = ∅ ∧ ICFGretpred (min) = ∅)
⇒ (∀node · (node ∈ NODES ⇒ node = min) ⇒ (min(node,min) = min))

⇒ ∃pd1 , x , c1 , p1 , q1 · HOARE WITH ASSERT(pd1 , assnsentry ,min,node, x , c1 , p1 , q1) ∧
(prestate = aPC min ∗ p1))

∧ (∀out · out ∈ NODES ⇒ (CFGsucc(out) = ∅)
⇒ (∀funcnode · (funcnode ∈ FUNCS ⇒ out ∈ ICFGcallsucc(funcnode)))

⇒ ∃pd1 , assn1 ,node, x , c1 , p1 , q1 · HOARE WITH ASSERT(pd1 , assn1 , out,node, x , c1 , p1 , q1) ∧
(poststate = q1) ∧ (pd1 ⇒ postcondexit))

∧ (∀node, pred · node ∈ NODES ⇒ pred ∈ CFGpred (node) ⇒ ∃pd1 , assn1 , x , c1 , p, q, pd2 ,

assn2 , c2 , r ,node · HOARE WITH ASSERT(pd1 , assn1 , pred,node, x , c1 , p, q) ∧
HOARE WITH ASSERT(pd2 , assn2 ,node,node , x , c2 , q, r) ∧ (pd1 ⇒ assn2))

∧ (∀node, succ · node ∈ ICFGcallsucc(succ) ⇒ succ ∈ ICFGcallpred (node) ⇒
∃pd1 , assn1 , x , c1 , p, q,nodes, funcs, cfg1 , cfg2 , cfg3 , cfg4 , cfg5 , cfg6 , assn2 , pd2 , r ·

HOARE WITH ASSERT(pd1 , assn1 ,node, succ, x , c1 , p, q) ∧
FUN SAFE(succ,nodes, funcs, cfg1 , cfg2 , cfg3 , cfg4 , cfg5 , cfg6 , assn2 , pd2 , q, r) ∧ (pd1 ⇒ assn2))

∧ (∀node, pred · node ∈ ICFGretsucc(pred) ⇒ pred ∈ ICFGretpred (node) ⇒
∃pd1 , assn1 , x , c2 , p, q, pd2 , assn2 , r ,node ,nodes, funcs, cfg1 , cfg2 , cfg3 , cfg4 , cfg5 , cfg6 ·

FUN SAFE(pred,nodes, funcs, cfg1 , cfg2 , cfg3 , cfg4 , cfg5 , cfg6 , assn1 , pd1 , p, q) ∧
HOARE WITH ASSERT(pd2 , assn2 ,node,node , x , c2 , q, r) ∧ (pd1 ⇒ assn2)))

Fig. 3. FSI rule: judgment for interprocedural function safety

3.3 Function Judgment for Local Reasoning

Global vs. Local Reasoning. In a typical correctness proof for a program using
Hoare logic, we would repeatedly apply the Compose rule to the Hoare triple for
every instruction in the program to obtain a single Hoare triple describing the
entire program. This is a “global reasoning” process which identifies the final
values of all registers, main memory, etc. at the end of the program’s execution.
In the presence of loops and function calls, loop invariants and pre- and post-
conditions for functions will need to be manually provided.

For safety assertions to hold in a program, we only need to ensure that the
safety assertions for each instruction hold locally at that instruction. For the
safety assertions at instruction i2 to hold, we consider every instruction i1 that
can execute immediately before i2. The machine-resource values in the post-state
of each i1 must satisfy the safety assertions at i2. This is analogous to the pre-
composition process (Sect. 2.4). As long as the machine-resource values in the
post-states of predecessor instructions i1 enable the safety assertion at i2 to be
true, the safety assertion holds. Also, any pure boolean condition from the post-
state of predecessor instructions i1 will also apply to the pre-state of instruction
i2. Hence, safety properties hold on a per-instruction basis. To check if a safety
assertion holds for an instruction, we only need to perform “local reasoning” by
considering the post-state and boolean conditions of all predecessor instructions.

AUSPICE 211

Safe Function Judgment. We define the FUN SAFE rule (Fig. 3), which encodes
what it means for a function to be safe. This rule encodes our “local reason-
ing” process for verifying that safety assertions hold. Thus, proving that the
machine-code of a given function is safe involves proving that the FUN SAFE
theorem holds for the function. First, we rearrange MEMCFISAFE theorems to
form HOARE WITH ASSERT theorems, which make explicit the hypotheses (i.e.,
undischarged safety assertions) of the theorems, and rearrange machine resource
expressions into tuples for pattern-matching.

� HOARE WITH ASSERT(pd, assn, pcpre, pcpost, x, c, p, q) ⇔
(assn ⇒ (MEMCFISAFE x (aPC pcpre ∗ p ∗ precond pd) c (aPC pcpost ∗ q)))

A function is comprised of basic blocks of instructions in the function. In a
function’s intra-procedural control-flow graph (CFG), nodes are basic blocks of
the function’s instructions, while edges are control transfers within the function.
In a function’s inter-procedural CFG, the nodes are (i) basic blocks which call
other functions, (ii) basic blocks which are return-sites from callee functions, and
(iii) callee functions, while edges are function calls or returns. To formally specify
the requirements for a function to be safe, we consider the safety assertions which
must be discharged at each edge in both the intra- and inter-procedural CFGs.
We walk through each of the 6 conjunct clauses in the FSI rule in Fig. 3.

Arguments to the FUN SAFE Relation. The FUN SAFE relation is parameter-
ized by the function address addr, a set of addresses of basic blocks in the func-
tion NODES, a set of addresses of callee functions FUNCS, and 6 maps CFG
and ICFG specifying the predecessors and successors of edges in the function’s
intra- and inter-procedural CFGs. FUN SAFE also records, for a function, the
safety assertions assnsentry, the conditions which hold at its exit postcondexit,
and the machine resource pre-state prestate and post-state poststate.

Function Entry and Exit Specifications. The first clause states that the
address of the function is the lowest basic block address for the function. The
second clause states that the safety assertions assnsentry and pre-state prestate
of the function are specified by the entry basic-block of the function. The third
clause states that the function’s guaranteed exit condition postcondexit and post-
state poststate are specified by the exit basic-block of the function.

Intra-procedural Safety Requirements. The fourth clause specifies that
for each intra-procedural CFG edge, the safety assertions of the instruction at
the destination of each edge must be discharged by the post-condition of the
instruction at the source of the edge, i.e., (pd1 ⇒ assn2). Also, in the spirit
of the Hoare Compose rule, we require that the post-state of the predecessor
instruction q, is equal to the pre-state of the successor instruction.

Inter-procedural Safety Requirements. The fifth and sixth clauses specify
the requirements for inter-procedural CFG edges. The fifth clause specifies that
for call edges, the safety assertions of the called function must be discharged by
the post-condition of the calling basic block (pd1 ⇒ assn2). The sixth clause
specifies that for return edges, the safety assertions of the basic block which is
the return site for the function must be discharged by the post-condition of the

212 J. Tan et al.

returning function (pd1 ⇒ assn2). In both clauses, we require that the post-state
of the predecessor node must equal the pre-state of the successor node.

Compositional Reasoning for Functions. Although the FSI rule appears to
be recursively defined without a base case, this rule actually collapses to include
only the first four clauses for functions which do not call any other functions.
This implies that our safety property proving requires the CFG of the program
to have no cycles, i.e. we are unable to analyze recursive programs.

4 Implementation: Proofs Using LLR

We describe the implementation of our automatic safety property verification.
Our framework consists of 128 lines of HOL4 definitions and 11.8 KLOC of
proof scripts in ML. Algorithm1 summarizes the overall workflow of the AUS-
PICE safety property proof process. First, AUSPICE computes basic blocks and
extracts function boundaries from the machine-code of the program (Line 14).
Next, AUSPICE obtains the Hoare triple theorems from the Cambridge ARM
model for each machine-code instruction (Line 15), adds safety assertions to the
Hoare triple theorem for each instruction (Sect. 4.1), and composes the individual
instructions’ theorems into a single Safe Basic Block theorem for each basic block
(Line 16). AUSPICE’s proof process takes place on a per-function basis begin-
ning from the entry-function. For each function, all callee functions called by that
function are analyzed before the function itself is analyzed (Line 3). Next, AUS-
PICE applies the Selective Composition tactic (Sect. 4.2) to the safe basic block
theorems to propagate branch conditions and function prologue information to
the appropriate theorems for the function (Lines 6 and 7). The main process for

Algorithm 1. Overall AUSPICE Workflow
1: function SafeFunctionAnalysis(function name, bb safe thms list)

2: cfg ← Compute Control-Flow Graph for function name

3: for all callee functions, callee do

4: SafeFunctionAnalysis(callee, bb safe thms)

5: end for

6: bb safe thms ← SC-FwdPropagate-BranchConds(bb safe thms, cfg)

7: bb safe thms ← SC-FwdPropagate-FuncPrologue(bb safe thms, cfg)

8: assertion info ← SafetyAssertionAnalysis(bb safe thms, cfg)

9: bb safe thms ← AugmentTheorems(bb safe thms,assertion info)

10: safety theorem ← FSI Rule(bb safe thms, cfg)

11: return safety theorem

12: end function

13: function AUSPICE((addr , instr) list) � List of machine-code instructions

14: (bb list) ← Compute basic blocks in program

15: (bb instr thms list) ← Obtain Hoare triple theorem for each instr in each bb

16: (bb safe instr thms list) ← map (λx.AddSafetyAssertions(x)) bb instr thms

17: bb safe thms ← map (λx.ComposeSafeInstrs(x)) bb safe instr thms

18: return SafeFunctionAnalysis(main,bb safe thms)

19: end function

AUSPICE 213

discharging safety proof obligations is the SafetyAssertionAnalysis function
(Line 8), which implements the proof search process using abstract interpreta-
tion (Sect. 4.3). Then, the results of the assertion analysis are applied to each of
the basic blocks’ theorems, and the FSI rule function (Line 10) generates the
FUN SAFE safety theorem for the target function being proved to be safe.

4.1 Automatic Safety Property Specification

To illustrate the safety assertions we augment instructions with, consider the
instruction word 0xE5832000 (str r2 [r3]) located at address 0x81E0. We
first obtain the following Hoare logic theorem from the decompiler:

� SPEC ARM MODEL (aR 3w r3 ∗ aR 2w r2 ∗ aPC (0x81E0) ∗ aMEMORY df f

∗ cond((r3 && 3w = 0w) ∧ (r3 ∈ df))) {(0x81E0 , 0xE5832000w)}
(aR 3w r3 ∗ aR 2w r2 ∗ aPC (0x81E4) ∗ aMEMORY df ((r3 = +r2) f))

Suppose the text section of this program lies in the range [0x80B4, 0x85F4].
This instruction writes to the byte locations r3, r3 + 1, r3 + 2, r3 + 3. Thus, we
set the first conjunct in the safety assertion ms to {r3 + 3; r3 + 2; r3 + 1; r3} ⊆
{addr | 0x85F8 ≤ addr ∧ addr ≤ 0xBF000000} which asserts that the memory
locations written to are in our allowed safe region. Then, the first control-flow
safety conjunct, cfi1 is set to ∃pc.pc = 0x81E4 ∧ pc ∈
{addr | 0x80B4 ≤ addr ∧ addr ≤ 0x85F4}, which asserts that the address of the
next instruction to be executed lies in the text section of the binary. Next, the
second control-flow safety conjunct, cfi2 is set to {r3 + 3; r3 + 2; r3 + 1; r3} ⊆
{addr | addr < r11}, which asserts that the memory locations written to cannot
overwrite the saved link register (lr, stored in register r11) value on the stack.

4.2 Selective Composition Proof Tactic

blk1

blk2

...

str r2, [r3]

...

blk3

blk4

blk5

blk6

blk7

r3 <= MAX_SAFE_MEM

r3 >= MIN_SAFE_MEM

r11 >= 0

r3 < r11

Fig. 4. Possible structure for
program with safe str r2 [r3].

Next, we discuss the steps for automatically
proving that safety properties hold using LLR.
After augmenting single instruction theorems
with safety assertions (Sect. 3.1) and obtaining
safe basic block theorems (Sect. 3.2), we need
to prove that the antecedents in the FSI rule
(Fig. 3) hold. Each of the top-level conjuncts of
FSI requires either a HOARE WITH ASSERT theo-
rem for safe basic blocks or a FUN SAFE theorem
for safe functions. We also need to prove that
the pre-condition pd1 of each predecessor CFG
node discharges the safety assertion assn2 in the
successor CFG node.

From Sect. 4.1, we can see that the safety
assertion at each instruction contains three con-
juncts: one for memory-isolation and two for

214 J. Tan et al.

Algorithm 2. Selective Composition: Branch-condition Forward Propagation
1: function SC-FwdPropagate-BranchConds(bb safe thms list)
2: info map ← ∅ � Conditions to propagate to each CFG node
3: procedure PropagateOneStep(info map, last info map, cfg)
4: for all node ∈ cfg do
5: curr node preds ← FindPreds(cfg ,node)
6: pred preconds ← (map (λx.GetThmPreconds(x)) curr node preds)
7: last info preconds ← (map (λx.last info[x]) curr node preds)
8: if length(curr node preds) == 1 then
9: info[node] = pred preconds

⋃
last info preconds

10: end if
11: end for
12: end procedure
13: repeat
14: last info ← info
15: info ← PropagateOneStep(info, last info, cfg)
16: until last info == info
17: return info
18: end function

control-flow isolation. In a safe program, for the theorem of a given instruc-
tion i2, its predecessor (safe basic block or function) theorem i1 should have a
pre-condition which implies the safety assertion of i2. Observe that the safety
assertion for each instruction has three conjuncts, and each of the range con-
juncts (ms and cfi1 in Sect. 4.1) is specified by two conjuncts: one each for the
lower and upper bounds of the valid memory locations written to. Thus, the
safety assertion at each instruction comprises multiple conjuncts. However, in a
machine-code program, each basic block can only carry out one of the “elemen-
tary” arithmetic comparison operations (one of <, >, ≤, ≥, etc.), because each
cmp∗ instruction is a branch and will mark the end of the basic block it belongs
to. Hence, information from multiple predecessor basic blocks are required to
discharge the safety assertion at each instruction.

Forward Propagation of Branch Conditions. In Sect. 3.3, we noted that
we must use a local reasoning process to ensure our proof process is automatic,
because global reasoning would require manually-specified information. How-
ever, our safety assertions contain multiple conjuncts, whereas each basic block
in machine-code can provide only one conjunct in its pre-condition. To enable our
proof process to use pre-conditions from predecessors which are more than one
edge away from a given basic block in the program CFG, we selectively “propa-
gate” the pre-conditions of basic blocks forward. We call this process “selective
composition”, where we apply the pre-composition tactic (Sect. 2.4) forward to
successor theorems under certain conditions.

To illustrate the process of selective composition, consider, for example, the
store instruction str r2 [r3]. Figure 4 shows the CFG of the possible struc-
ture of the basic blocks in a program with safety checks to ensure that the

AUSPICE 215

store instruction is safe. Then, we need the pre-conditions from basic blocks
blk2, blk3, blk4, blk5 to be available at blk5 to discharge the safety assertion at
blk6. At each of the nodes blk2, blk3, blk4, blk5, there are two Hoare triple the-
orems: one where each blki executes blki+1 next (for i ∈ {2, 3, 4, 5}), and one
where the safety check fails, and each blki goes on to execute blk7. However,
we do not compose blk2, blk3, blk4, blk5 to form a single Hoare triple theorem,
because the resulting block of code will have multiple exits, which is not captured
by our safe basic block theorem (the MEM CFI SAFE COMPOSE rule), which only
admits single-exit blocks. Instead, we iteratively apply the pre-composition tac-
tic (Sect. 2.4) for basic blocks blk2, blk3, blk4, blk5. This lets us place the analysis
of the machine-code in blocks blk2, blk3, blk4, blk5, blk6 in the context of the pre-
state values of machine resources in blk2. This then allows us to discharge the
safety assertion at blk6 with the combined pre-conditions of blk2, blk3, blk4, blk5
at blk5. We call this process “selective composition” because we carry out the
pre-composition process without applying the composition rule. Note that this
selective composition process succeeds only when the target basic block which
the pre-conditions are being propagated forward to have only one predecessor
basic block. Only then is the pre-condition from the predecessor block blki the
only pre-condition that will apply at the successor block blki+1.

Algorithm 2 describes the Selective Composition tactic for the forward prop-
agation of branch-conditions in pseudocode. The tactic uses a fixed-point intra-
procedural static-analysis over the Hoare triple theorems of a function. The
static-analysis identifies branch-conditions to propagate forward from each the-
orem to its successor theorems (Lines 3 to 16; FindPreds returns the predecessors
for a given node in the CFG of the function, while GetThmPreconds returns the
pre-conditions for a given Hoare triple theorem). The analysis also ensures that
branch-conditions are propagated forward only when the target node has only
one predecessor in the CFG (Line 8). The analysis returns the branch-conditions
to add to each node’s theorem in the program’s CFG (Line 17).

Local Use of Global Information. Next, we describe the second instance
of selective composition. Recall that for control-flow isolation, we require that
the address of each instruction executed must be within the text section of the
program. The address of the next instruction to be executed can be statically
determined at every point of the program except where a function returns to its
caller. Consider a typical machine-code instruction for returning from a function
call pop {pc}. Control is being returned from the function by restoring the saved
link register value from the stack to the program counter. The instruction will
be specified by the Hoare triple theorem:

� SPEC ARM MODEL (aPC p ∗ aR 13w r13 ∗ aMEMORY df f ∗ cond(((f r13) && 3w = 0w) ∧
((f r13) ∈ df))) {(p, 0xE8BD8000w)} (aPC (f r13) ∗ aR 13w (r13+4w) ∗ aMEMORY df f)

Here, aMEMORY df f is an assertion that the main memory is the map f which
when applied to an address addr, returns the word stored at addr, and df is a set
specifying the address domain of f . Thus, in the post-state of this instruction, we
can see that the next instruction to be executed is at address f r13. However, the
memory map f does not contain any information that enables us to determine the
value of f r13. The return address for a (non-leaf) function is saved to the stack

216 J. Tan et al.

in the function prologue before any instructions in the function. An example of
such an instruction is push {lr}, with the following Hoare triple:

� SPEC ARM MODEL (aR 14w r14 ∗ aR 13w r13 ∗ aPC p ∗ aMEMORY df f

cond(((f (r13 − 4w)) && 3w = 0w) ∧ ((f (r13 − 4w)) ∈ df))) {(p, 0xE92D4000w)}
(aR 14w r14 ∗ aR 13w (r13 − 4w) ∗ aPC (p+4w) ∗ aMEMORY df ((r13 − 4w = +r14) f))

The memory in the post-state of the function is ((r13 - 4w =+ r14) f), which
contains the value of the link register, r14, at the top of the stack, at the address
r13 - 4. Hence, the information we need to discharge the control-flow safety
assertion at the function exit is the memory expression at the post-state of the
function prologue, and the new value of register r13. After substituting the
post-state memory and register r13 values of the function prologue into the
return instruction, the program counter in the return instruction post-state will
contain ((r13 - 4w =+ r14) f) (r13 - 4w) which simplifies to r14, and the
safety assertion simplifies to r14 ∈ {addr | 0x85F8 ≤ addr ∧ addr ≤ 0x85F4},
which can be discharged by any caller of the function, which supplies a con-
crete value of r14. As long as the prologue precedes every instruction in the
function, and the function does not alter the callee-saved registers until its epi-
logue, this substitution is valid. Again, we can use the pre-composition tactic
to substitute the value of the memory (and registers) at the post-state of the
function prologue into every subsequent basic block in the function. Unlike the
forward-propagation of branch-conditions, a fixed-point analysis is not required,
and we directly substitute the information from the function prologue in every
subsequent basic block in the function.

4.3 Automatic Discharge of Proof Obligations

There are two ways to discharge the safety assertions of a theorem. First, for a
given safety theorem, the pure boolean conditions of the pre-state of the theo-
rem preceding it may imply the safety assertion holds for the current theorem.
Second, if the former does not hold, then the safety assertion is added to the
hypotheses of the preceding instruction, and the Frame rule is used to add the
undischarged assertion to the theorems of the preceding instructions. We use
abstract interpretation [7] to identify safety assertions which cannot be dis-
charged. At each instruction, our analysis records the safety assertions which
need to be framed to the safe instruction theorem for that instruction.

We use a flow-sensitive backwards fixed-point analysis. Our analysis pro-
ceeds across all nodes in the CFG of a function in reverse topological order
in each iteration. Each CFG node is a basic block in the function, and each
node is associated with a safe basic-block theorem (Sect. 3.2). At each node, the
analysis checks that for each predecessor node, the instruction theorem for that
node has pure boolean conditions which can discharge the safety assertions at
the current node’s theorem. For safety assertions which the predecessor node’s
theorem cannot discharge, our analysis adds the assertion to the predecessor
node’s theorem, propagating the assertion backwards up the CFG. Our analysis

AUSPICE 217

Algorithm 3. Safety Assertion Analysis
1: function SafetyAssertionAnalysis(bb safe thms map, cfg)
2: info map ← ∅
3: procedure AssertionAnalysisStep(info map, last info map, cfg)
4: for all node ∈ cfg do
5: for all pred ∈ FindPreds(cfg , node) do
6: pred preconds ← GetThmPreconds(pred)

⋃
last info[pred]

7: node asserts ← GetThmAsserts(node)
⋃

last info[node]
8: for all assert ∈ node asserts do
9: if PROVE(pred preconds, assert) == False then

10: info.term[pred] ← info.term[pred]
⋃

assert
11: a path ← FindAssertPath(last info.path[node], assert)
12: info.path[pred] ← info.path[pred]

⋃
a path

13: AbortIfAssertPathIsCycle(a path)
14: end if
15: end for
16: end for
17: end for
18: end procedure
19: repeat
20: last info ← info; info ← AssertionAnalysisStep(info, last info, cfg)
21: until last info == info
22: return info
23: end function

is also inter-procedural, and context-sensitive. Each function is summarized at
its call-site by a FUN SAFE theorem for that particular call-site.

In the general case, this analysis may not terminate. If there are safety asser-
tions being propagated which have values that change with a loop, the analysis
will not terminate: the free variable instantiation at loop boundaries will gen-
erate new safety assertions to be framed whenever the assertion is propagated
across the back-edge of the loop. We prevent the assertion analysis from run-
ning forever by (i) recording the propagation path of safety assertions, and (ii)
aborting the analysis if a cycle is detected on this path. Then, we inform the
user that we are unable to prove our safety properties for the program.

Algorithm 3 describes our static-analysis algorithm. GetThmPreconds (Line 6)
and GetThmAsserts (Line 7) return the pure boolean conditions in the pre-state
and the safety assertion at a node’s theorem respectively. PROVE tries to discharge
the given safety assertion, assert, using the given conditions pred preconds from the
predecessor theorem, and returns true if it can discharge the safety assertion, and
false otherwise (Line 9). If the safety assertion cannot be discharged, it is added to
the analysis information for the node’s predecessor node (Line 10), so that it will be
framed to the predecessor node’s theorem after the analysis. The analysis informa-
tionalsorecordsthepathalongwhicheachassertion ispropagated in info.path (Line
12). Then, the analysis checks if there is a cycle along the propagation path of the
assertion (Line 13) in the function AbortIfAssertPathIsCycle, and terminates

218 J. Tan et al.

the AUSPICE proof process if a cycle is found. This is because if a cycle is found
along which the pre-composition tactic causes the safety assertion term to change
with each iteration, the analysis is likely to not terminate as it will keep adding new
safety assertion terms to the analysis information on each successive iteration of the
analysis.

5 Discussion

Soundness of Proof Rules. AUSPICE’s proof rules for single instruction
(Sect. 3.1) and basic block (Sect. 3.2) safety are sound, because we derive our
MEM CFI SAFE, MEM CFI SAFE COMPOSE, and MEMCFISAFE FRAME proof rules from
the Hoare triples for machine-code programs in the Cambridge model, which
Myreen et al. have shown to be sound [16]. Also, using the HOL4 proof assistant
to define our proof rules further ensures they are sound. In addition, we proved
(Sect. 3.1) that safe single instruction and basic block theorems in AUSPICE
derived from our proof rules have the same instruction semantics as the ARM
machine-code semantics defined by the trustworthy, validated Cambridge ARM
model [9,15].

Correctness of Safety Rule. Next, we give a brief, informal argument of the
correctness of our proof rule for safe programs. The FUN SAFE theorem (Fig. 3)
can be proven for a program if and only if safety assertions are specified for every
instruction, and if these safety assertions hold before that instruction begins
executing (except for the first instruction, which relies on the OS to correctly
initialize the processor state for the program). We argue this by Structural Induc-
tion on the Control-Flow Graph (CFG) of a program. Each node in our CFG
of a function in a program is either a single-entry, single-exit basic block with
sequentially executing code, or a (callee) function called by the function.

Base Case. The MEM CFI SAFE rule (Sect. 3.1) ensures every instruction’s theo-
rem contains our safety assertions (Sect. 2.2). The MEM CFI SAFE COMPOSE rule
ensures every basic block’s theorem is built up only from single-instruction
theorems with added safety assertions. The requirement that post-states of
predecessor theorems and pre-states of successor theorems must be equal in
MEM CFI SAFE COMPOSE ensures every basic block’s theorem accumulates the
safety assertions for every composed safe instruction theorem. Then, for a pro-
gram with only a single instruction or basic-block, if the OS correctly initializes
the processor state, the safety assertions will hold for the single instruction or
single basic block.

Inductive Case. We take the CFG of a function, G, and partition its vertices
into a single vertex, g, and all other vertices, G′. By the Inductive Hypothesis,
the FUN SAFE theorem holds for G′. Then, consider the edges E connecting G′

to g. In the absence of function pointers and unstructured jumps (longjmp),
the edges E are either (i) intra-procedural control-flow transfers between basic
blocks in the function, (ii) function calls from a basic block in the function to a
callee function, or (iii) function returns from a callee function to a basic block in

AUSPICE 219

the function. Then, for FUN SAFE to be true, the fourth to sixth conjunct clauses
of the FUN SAFE rule must be true, so the pre-conditions of the theorems of all
predecessor vertices to g in the CFG discharge the safety assertions at g, making
the safety assertions at g hold, for any type of possible control-flow transfer
to g. Thus, our FUN SAFE rule ensures that we have captured all the possible
control-flow transfers in a machine-code program. For FUN SAFE to be correct, we
require correct CFG predecessor and successor maps, which are straightforward
to compute without function pointers and unstructured jumps.

Limitations. Our machine-code safety properties (Sect. 2.2) have been formu-
lated to ensure they can be automatically proven to hold in machine-code pro-
grams. These properties are sufficient, but not strictly necessary to meet our
high-level goal of preventing the control-flow of a machine-code program from
being hijacked due to user input. The strictness of our safety properties helps
automate the verification process. Our requirement that machine-code instruc-
tions do not alter memory addresses greater than the current function’s frame
pointer address also prevents functions from modifying any variables passed by
reference from the stacks of caller functions. Instead, functions passing data by
reference must store this data either on the program’s heap, or use memory allo-
cated in the program’s data section. We believe this is a small inconvenience to
enable the fully automated verification of safety properties.

6 Evaluation

We aim to show that we can verify real-world programs, and we pick programs with
constructswhich are challenging to verify.Wealsomeasure our runtime to show the
feasibility of our verification.Our test programswere compiledusing anunmodified
gcc toolchain for the ARMv7 architecture with -O0 optimization. Figure 5 summa-
rizes our test programs. sort implements Bubble Sort, which has a doubly-nested
loop, and also contains 2 other functions to exercise our inter-procedural analy-
sis. memcpy is an implementation of the C library function which we developed,
and shows we can verify a real-world function. stringsearch is an application in
theMiBench commercially-representative embeddedbenchmark [10], and it imple-
ments the Boyer-Moore string search algorithm, and demonstrates our verification
on real-world programs.

Test Program Instructions Functions Description

memcpy 116 2 Real-world memcpy

sort 337 5 Nested loops, function calls/returns

stringsearch 530 5 Boyer-Moore string search (MiBench [10])

Fig. 5. Test programs, their sizes, and the purpose of each test.

Figure 6 shows the time taken to verify the safety of each of our test programs.
We carried out the verification on an 2.6 GHz Core i7 system. The majority of

220 J. Tan et al.

Cambridge ARM
Decompiler

Safe Basic
Blocks

Abstract In-
terpretation

Safe Func-
tion

Total Proof
Time

memcpy 1.3 mins 2.7 mins 5.7 mins 6.7 mins 16.4 mins

sort 2.5 mins 11.2 mins 36 mins 73 mins 122.7 mins

stringsearch 2.8 mins 15.3 mins 327.6 mins 17.8 mins 363.5 mins

Fig. 6. Verification runtime.

the verification time is spent in the abstract interpretation (Sect. 4.3) and the
proof of the safe function theorem (Sect. 3.3). We believe these are feasible times
for verifying safety properties, as programs only need to be verified once on
installation.

7 Related Work

Many techniques have been developed for verifying machine-code programs using
logic. Certified assembly programming uses a Hoare logic with separation logic
to build certified libraries [18,26], but specifications must be manually annotated
in programs, and verification is interactive. Tan and Appel [21] developed a pro-
gram logic for multi-entry, multi-exit machine-code fragments to reason about
unstructured control-flows in executables in Foundational Proof Carrying Code
(FPCC). They require a special compiler to generate machine-code annotated
with types [13], while we verify unmodified executables compiled using an off-
the-shelf compiler. iTalX [22] infers types for x86 assembly programs, reducing
the amount of type annotations required from a modified compiler. Executa-
bles have also been verified without using a program logic, although concise
theorems cannot be proven. Bedrock [6] provides “mostly-automated” verifica-
tion for generic program properties, and provides memory safety as a side-effect,
for programs written using its idealized machine language, from which concrete
architectures can be targeted. Xu et al. [25] verify safety properties for machine-
code using static-analysis. RevGen [5] decompiles machine-code to the interme-
diate representation of the LLVM compiler framework, enabling other analyses
to be reused, whereas we use a validated model of ARM machine-code. Thakur
et al. [23] perform model-checking on machine-code without requiring a precom-
puted, fixed, inter-procedural CFG. Sequoll [4] also performs model-checking on
machine-code programs, and like our work, uses the Cambridge ARM model [15],
but it uses temporal logic to reason about worst-case execution time (WCET)
in the NuSMV model-checker, whereas our approach uses Hoare logic. XFI [8]
and ARMor [27], are software fault isolation (SFI) [24] implementations which
ensure and verify that (x86 and ARM, respectively) executables possess mem-
ory and control-flow safety properties. XFI requires modules being verified to
be annotated with hints. PittSFIeld [12] verifies that its SFI safety rewriting
for x86 binaries is correct, as opposed to verifying that the executables it pro-
duces are safe. RockSalt [14] also provides verified SFI by providing a verified
checker which checks that programs are isolated, whereas our work produces a

AUSPICE 221

safety proof for each program. ARMor [27] is closest to our work. They require
machine-code to be compiled with a modified compiler, after which the pro-
gram must undergo binary rewriting to insert safety checks. In contrast, we can
prove safety properties automatically for unmodified executables using our logic
framework and selective composition proof tactic.

8 Conclusion and Future Work

We have presented a novel logic framework, AUSPICE, for automatically veri-
fying safety properties in unmodified ARM machine-code programs. Our frame-
work consists of a program logic, LLR, which uses a subset of a trustworthy
Hoare logic for ARM executables [15,16], and extends it for local reasoning, and
the selective composition proof tactic, which fully automates the verification of
safety properties. We demonstrated the feasibility of our fully automated safety
property verification on one synthetic and two real-world (including a real-world
benchmark [10]) examples. In future, we intend to validate our approach on more
programs, and expand our verification to programs with system calls.

Acknowledgment. We thank Lu Zhao for his help with ARMor [27], Magnus Myreen
for his help with the Cambridge ARM model [15,16], and Xinyu Zhuang for his
feedback.

References

1. The ARM-THUMB Procedure Call Standard (2000). http://infocenter.arm.com/
help/topic/com.arm.doc.espc0002/ATPCS.pdf

2. ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (2014)
3. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow Integrity. In: ACM

CCS (2005)
4. Blackham, B., Heiser, G.: Sequel: a framework for model checking binaries. In:

IEEE RTAS (2013)
5. Chipounov, V., Candea, G.: Enabling sophisticated analyses of x86 binaries with

RevGen. In: HotDep (2011)
6. Chlipala, A.: Mostly-automated verification of low-level programs in computational

separation logic. In: PLDI (2011)
7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

8. Erlingsson, U., Abadi, M., Vrable, M., Budiu, M., Necula, G.: XFI: software guards
for system address spaces. In: OSDI (2006)

9. Fox, A.: Formal specification and verification of ARM6. In: Basin, D., Wolff, B.
(eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 25–40. Springer, Heidelberg (2003)

10. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: Mibench: a free, commercially representative embedded benchmark suite.
In: IEEE WWC Workshop (2001)

11. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

http://infocenter.arm.com/help/topic/com.arm.doc.espc0002/ATPCS.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.espc0002/ATPCS.pdf

222 J. Tan et al.

12. McCamant, S., Morrisett, G.: Evaluating SFI for a CISC architecture. In: USENIX
Security (2006)

13. Morrisett, G., Crary, K., Glew, N., Grossman, D., Samuels, R., Smith, F., Walker,
D., Weirich, S., Zdancewic, S.: TALx86: a realistic typed assembly language. In:
Workshop on Compiler Support for System Software (WCSSS) (1999)

14. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J., Gan, E.: RockSalt: better, faster,
stronger SFI for the x86. In: PLDI (2012)

15. Myreen, M.O., Fox, A.C.J., Gordon, M.J.C.: Hoare logic for ARM machine code.
In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 272–286.
Springer, Heidelberg (2007)

16. Myreen, M.O., Gordon, M.J.C.: Hoare logic for realistically modelled machine code.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 568–582.
Springer, Heidelberg (2007)

17. Myreen, M., Gordon, M., Slind, K.: Machine-code verification for multiple archi-
tectures: an application of decompilation into logic. In: FMCAD (2008)

18. Ni, Z., Shao, Z.: Certified assembly programming with embedded code pointers.
In: POPL (2006)

19. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: IEEE
LICS (2002)

20. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008)

21. Tan, G., Appel, A.W.: A compositional logic for control flow. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 80–94. Springer, Heidel-
berg (2006)

22. Tate, R., Chen, J., Hawblitzel, C.: Inferable object-oriented typed assembly lan-
guage. In: PLDI (2010)

23. Thakur, A., Lim, J., Lal, A., Burton, A., Driscoll, E., Elder, M., Andersen, T.,
Reps, T.: Directed proof generation for machine code. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 288–305. Springer, Heidelberg
(2010)

24. Wahbe, R., Lucco, S., Anderson, T., Graham, S.: Efficient software-based fault
isolation. In: SOSP (1993)

25. Xu, Z., Miller, B., Reps, T.: Safety checking of machine code. In: PLDI (2000)
26. Yu, D., Hamid, N.A., Shao, Z.: Building certified libraries for PCC: dynamic stor-

age allocation. In: Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 363–379.
Springer, Heidelberg (2003)

27. Zhao, L., Li, G., Sutter, B.D., Regehr, J.: ARMor: fully verified software fault
isolation. In: EMSOFT (2011)

Author Index

Alt, Leonardo 1

Beyene, Tewodros A. 19
Brucker, Achim D. 40

Chaudhuri, Swarat 19
Clochard, Martin 94
Coglio, Alessandro 183

Dörre, Felix 61

Ernst, Gidon 73

Fedyukovich, Grigory 1
Filliâtre, Jean-Christophe 94

Gacek, Andrew 110
Gandhi, Rajeev 202

Havle, Oto 40
Hyvärinen, Antti E.J. 1

Katis, Andreas 110
Klebanov, Vladimir 61

Mostowski, Wojciech 124

Narasimhan, Priya 202
Nemouchi, Yakoub 40

Oberhauser, Jonas 142

Paskevich, Andrei 94
Pfähler, Jörg 73
Popeea, Corneliu 19

Reif, Wolfgang 73
Rybalchenko, Andrey 19

Schellhorn, Gerhard 73
Sezgin, Ali 165
Sharygina, Natasha 1
Smith, Eric 183

Tan, Jiaqi 202
Tasiran, Serdar 165
Tay, Hui Jun 202

Whalen, Michael W. 110
Wolff, Burkhart 40

	Preface
	Organization
	Contents
	A Proof-Sensitive Approach for Small Propositional Interpolants
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Labeling Functions for LIS
	3.1 Analysing Labeling Functions

	4 Experimental Results
	4.1 Incremental Verification with Function Summarization
	4.2 Upgrade Checking Using Function Summarization
	4.3 Overapproximating Pre-image for Hardware Model Checking
	4.4 Effects of Simplification

	5 Conclusion and Future Work
	A Experiments on Simplifications by Structural Sharing
	References

	Recursive Games for Compositional Program Synthesis
	1 Introduction
	2 Motivation
	3 Preliminaries
	4 Solving Recursive Games
	4.1 Game Summaries
	4.2 Safe Strategies

	5 Terminating Strategies
	6 Evaluation
	7 Related Work
	8 Conclusion
	A Correctness Proofs for RuleTerm
	References

	Testing the IPC Protocol for a Real-Time Operating System
	1 Introduction
	2 Theoretical and Technical Foundations
	2.1 HOL-TestGen: From Formal Specifications to Testing
	2.2 A Gentle Introduction to Sequence Testing Theory
	2.3 Using Monadic Testing Theory
	2.4 Coverage Criteria for Interleaving

	3 Application: Testing PikeOS
	3.1 PikeOS System Architecture
	3.2 PikeOS IPC API
	3.3 PikeOS Model Organization
	3.4 Embedding the PikeOS Functional Model into the Monadic Framework

	4 Test Generation
	5 Conclusion
	References

	Pseudo-Random Number Generator Verification: A Case Study
	1 Introduction
	2 Inner Workings of the Android PRNG
	3 Information Flow Verification with the KeY System
	4 PRNG Specification and Correctness Proof
	4.1 The Specification and Problems Attaching It
	4.2 The Proof

	5 Alternatives and Related Work
	6 Conclusions
	A Source Code of the Android PRNG (Excerpt)
	References

	Inside a Verified Flash File System: Transactions and Garbage Collection
	1 Introduction
	2 Background
	2.1 Project Overview and Flash File System Concepts
	2.2 Methodology

	3 Formal Specification of the Journal and Index
	4 Transactions in the Journal
	5 Garbage Collection
	6 Persistence: Atomic Commit and Write Buffering
	7 Power Cuts and Recovery
	8 Related Work
	9 Discussion and Conclusion
	References

	How to Avoid Proving the Absence of Integer Overflows
	1 Introduction
	2 Motivating Examples
	3 A Solution
	3.1 Peano Integers
	3.2 One-Time Integers
	3.3 Formalization

	4 Implementation in Why3
	5 Conclusion
	References

	Machine-Checked Proofs for Realizability Checking Algorithms
	1 Introduction
	2 The Coq Proof Assistant
	3 Realizability Checking
	4 Formalization in Coq
	4.1 Definitions
	4.2 Algorithms

	5 Implementation
	6 Discussion
	7 Conclusion
	References

	Dynamic Frames Based Verification Method for Concurrent Java Programs
	1 Introduction
	2 Background
	2.1 Symbolic Permissions
	2.2 Dynamic Frames in JML* Specifications
	2.3 JML* Model Methods

	3 Dynamic Frames with Permissions
	4 Proof Obligations for Self-Framing
	4.1 Examples of Sound and Unsound Specifications
	4.2 Anonymisation
	4.3 Proof Obligations for Self-Framing
	4.4 Discussion

	5 Modular Specifications for Synchronisers
	6 Conclusions
	6.1 Implementation Status
	6.2 Further Examples
	6.3 Related Work
	6.4 Future Work

	References

	A Simpler Reduction Theorem for x86-TSO
	1 Introduction
	1.1 Proof Overview
	1.2 Structure of this Paper

	2 Definitions
	2.1 Preliminaries
	2.2 Instructions
	2.3 Models
	2.4 Store Buffer Semantics
	2.5 Abstract Machine Semantics
	2.6 Safety
	2.7 Equivalence
	2.8 Reordering

	3 Synchronization
	4 Sequential Consistency
	4.1 Local Store Buffer Schedules
	4.2 Finite Reordering
	4.3 In the Limit
	4.4 Memory Management Units
	4.5 Related Work

	5 Conclusion and Future Work
	References

	Moving Around: Lipton's Reduction for TSO
	1 Introduction
	2 Formal Framework
	2.1 TSO and SC Executions
	2.2 Programming Language

	3 Reduction for TSO
	4 Abstracting TSO Programs
	5 Mechanical Verification of Write Atomicity
	6 Conclusion
	References

	Android Platform Modeling and Android App Verification in the ACL2 Theorem Prover
	1 Introduction
	2 Background
	2.1 Android
	2.2 ACL2

	3 Platform Modeling
	3.1 Formal JVM Bytecode Model
	3.2 Formal Android Model
	3.3 Formal API Model

	4 App Verification
	4.1 Calculator App
	4.2 Representation
	4.3 Specification
	4.4 Invariants and Proofs
	4.5 Malware Discovery
	4.6 Functional Bugs

	5 Related Work
	6 Takeaways
	7 Conclusion and Future Work
	References

	AUSPICE: Automatic Safety Property Verification for Unmodified Executables
	1 Introduction
	1.1 Problem Statement

	2 Background
	2.1 ARM Architecture
	2.2 Safety Properties for ARM Machine-Code Programs
	2.3 Hoare Logic for ARM Machine-Code Programs
	2.4 Composition Rule in Hoare Logic

	3 Design: The LLR Program Logic
	3.1 Individual Instructions: Safety Assertion Specification
	3.2 Sequential Code Blocks
	3.3 Function Judgment for Local Reasoning

	4 Implementation: Proofs Using LLR
	4.1 Automatic Safety Property Specification
	4.2 Selective Composition Proof Tactic
	4.3 Automatic Discharge of Proof Obligations

	5 Discussion
	6 Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

	Author Index

