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Abstract Random matrix theory (RMT) is applied to investigate the cross-
correlation matrix of a financial time series in four different stock markets: Russian,
American, German, and Chinese. The deviations of distribution of eigenvalues
of market correlation matrix from RMT global regime are investigated. Specific
properties of each market are observed and discussed.
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1 Introduction

The study of correlation (or covariance) matrices has a long history in finance
and it is an important aspect of risk management and one of the cornerstone
of Markowitz’s theory of optimal portfolios [6, 10]. Besides, equal-time cross-
correlation matrices play a major role in market network analysis when it comes to
constructing different network structures, such as maximum spanning tree or market
graph [1, 2].

When stock market consists of several hundreds of individual stocks, it becomes
a high-dimensional and complex system. To study these systems some methods of
statistical physics have been employed, in particular, random matrix theory (RMT)
[3, 8, 11, 13]. The idea is to compare the properties of an empirical correlation matrix
to the ones of purely random matrix. In case of covariance matrix ensemble of such
random matrices is called Wishart–Laguerre ensemble [5]. Possible deviations from
the random case may reveal some peculiarities of empirical correlation matrices and
it may give some insight into the market structure.
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The main goal of the present paper is a comparative investigation of empirical
correlation matrices for different markets. The main problem addressed is to
understand whether the markets are different from RMT point of view and to point
out these differences. We investigate four different markets corresponding to
different levels of economic development: the US, German, Russian, and Chinese.
We analyze spectral properties of empirical correlation matrices and compare them
to global regimes provided by RMT. In addition, we test the stability of observed
deviations and their dependence on the distribution of the data.

The paper is organized as follows. In Sect. 2 we remind the main facts from
RMT and discuss the results of previous related studies. In Sect. 3 we present
our methods and describe the data used in numerical experiments. In Sect. 4 we
conduct a comparative analysis of correlations matrices for indicated markets.
Section 5 is devoted to a stability analysis of observed phenomena. Section 6
contains concluding remarks.

2 Theoretical Background

2.1 Random Matrix Theory

We want to compare spectral properties of empirical correlation matrices of stock
market with the spectral properties of random matrices. In case of covariance
(or correlation) matrices this is so-called Wishart–Laguerre ensemble [5]. Consider
rectangular .N � T/ matrix H whose elements Hi;t are independent, identically
distributed random variables. Then the product W D .1=T/ � H � H� is a positive
definite symmetric .N � N/ matrix that represents the normalized covariance matrix
of the data. When elements Hi;t are drawn from a Gaussian distribution, the product
matrices W D 1

T �H �H� constitute Wishart–Laguerre ensemble of random matrices.
For the case when T � N (the number of samples is larger than the dimension)

the spectral properties of these matrices are well studied and it is known that in limit
(N ! 1 and T ! 1 and Q D T=N � 1 fixed) all eigenvalues are positive and
density distribution of the eigenvalues is given by the Marchenko–Pastur function
[9, 14]:

�WL.�/ D Q

2�
�
p

.�C � �/.� � ��/

�
; �� < � < �C; (1)

where the lower and upper bounds of eigenvalues are calculated as follows:

�˙ D 1 C 1

Q
˙ 2

s
1

Q
: (2)

Note that above results are valid only in limit when N ! 1.
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2.2 Related Works

Recently series of studies has been conducted [3, 8, 11, 13] to analyze spectral
properties of empirical correlation matrices and compare them to RMT global
regime discussed in previous section. Following observations have been made:

• There is one largest eigenvalue �max, which is significantly higher than the upper
bound �C. It is also tends to be relatively close to the product N � C, where C
is the average of non-diagonal elements of correlation matrix C. The associated
eigenvector is connected with global market index.

• There are also several eigenvalues slightly greater than �C. They may reflect
sector behavior.

• There are a number of eigenvalues below the lower bound ��, which can
be explained by repulsion effect which we will talk about later. It may also
correspond particularly to highly correlated pair of stocks.

• Finally, most of the eigenvalues fall within a range predicted by RMT. These
eigenvalues are called bulk of eigenvalue spectrum. Nonetheless, it was shown
that these eigenvalues also may contain useful information [7].

These results may differ for emerging markets [4, 12]. Such as, in emerging markets
the largest eigenvalue appears to be higher with respect to �C and there are fewer
eigenvalues above the edge. At the same time, there is a large proportion of
eigenvalues below �� and, consequently, less number of eigenvalues in the bulk.
Also, average value of non-diagonal elements of correlation matrix is higher and
fluctuates more dynamically.

3 Method and Data

3.1 Method

We consider a set of N stocks over a period of T trading days. Let Pi.t/ be a closing
price of stock i.i D 1; : : : ; N/ in the day t.t D 1; : : : ; T/. Then the daily log return
Ri.t/ of stock i is defined by

Ri.t/ D ln
Pi.t/

Pi.t � 1/
: (3)

We normalize Ri with respect to its standard deviation �i as follows:

ri.t/ D Ri.t/ � Ri

�i
; (4)
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where Ri denotes the average return over the period studied and standard deviation

(or volatility) defined as �i D
q

R2
i � Ri

2
.

Then, the equal-time cross-correlation matrix C is expressed it terms of ri.t/:

Ci;j D
TX

tD1

ri.t/ � rj.t/: (5)

The element Ci;j of matrix C denotes correlation coefficient between stock i and
stock j. Correlation matrix C also can be expressed in matrix notation as

C D 1

T
� R � RT ; (6)

where R is an .N � T/ matrix with elements ri.t/.
The N eigenvalues �i and their corresponding eigenvectors ui are calculated by

diagonalizing C. One has

C � ui D �i � ui; i D 1; : : : ; N: (7)

Note that
P

�i is always equal to sum of the diagonal elements of C (the trace),
which is always constant and equal to N since for all elements Ci;i D 1. Hence, if
some eigenvalues increase, then some others must decrease to compensate, and vice
versa. This is called eigenvalue repulsion [3].

3.2 Data

In order to analyze spectral properties of empirical financial correlation matrices we
consider four different stock markets, representing different types of economies:
the US, Russian, German, and Chinese stock market. For Russian market we
consider stocks traded on The Moscow Interbank Currency Exchange (MICEX). For
American market we consider equities of S&P 500 traded on The New York Stock
Exchange (NYSE). For German market we consider equities of HDAX traded on
The Frankfurt Stock Exchange (FWB). And for Chinese market we consider stocks
traded on The Hong Kong Stock Exchange (HKEx).

We want Q D T=N to be relatively equal for all markets and we eliminate stocks
if they haven’t been traded long enough. For Russian market we also apply cleaning
procedure in order to eliminate stocks with low liquidity. One exception here is an
American market. In this case we allow Q to be essentially smaller than in other
markets so we can apply our method to larger data set. Dates and the number of
chosen stocks of each market are summarized in Table 1.
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Table 1 Characteristics of considered markets

Market Number of stocks, N Length of time series, T Q = T/N Starting date Ending date

Russia 101 1418 14.04 10/01/2008 06/06/2014

USA 316 3008 9.52 01/03/2003 12/12/2014

Germany 90 1282 14.24 01/05/2010 12/12/2014

China 78 1016 13.03 01/03/2011 12/12/2014
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Fig. 1 Distribution of correlations. Left—the US market. Right—German market

4 Comparative Analysis of Different Markets

In this section we present the results of the analysis of empirical correlation
matrices for four different stock markets. We compare the empirical distribution
of eigenvalue with predictions of RMT and discuss some deviations.

4.1 Distribution of the Correlation Coefficients

First, we take a look at the statistical properties of empirical cross-correlation
matrices. Figures 1 and 2 show histograms of correlation coefficients (i.e., non-
diagonal elements of correlation matrix C) for all four markets. Other comparative
characteristics are given in Table 2.

We notice that average value C is quite large for all cases. The interesting fact
here is that it is almost the same and around 0:3 for all considered markets, except
Russian. Furthermore, standard deviations are also relatively high and close to each
other, this time including Russian market. For American, German, and Chinese
markets almost all elements of correlation matrix are positive.

Next we test the assumption of normal distribution of cross-correlation matrix
elements. Histograms on Figs. 1 and 2 don’t show distribution similar to normal
(or maybe just for American market). Lilliefors test rejected hypothesis of normal
distribution at the 5 % significance level for all markets. We also use skewness and
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Fig. 2 Distribution of correlations. Left—Chinese market. Right—Russian market

Table 2 Statistics for cross-correlation

Market Mean Standard deviation Skewness Kurtosis

USA 0.3220 0.1060 0.3957 3.4929

Germany 0.3021 0.1282 0.3846 2.7806

China 0.2984 0.1514 0.5968 2.6833

Russia 0.2349 0.1408 0.8391 3.8482

kurtosis measures to see how much the deviations are. Skewness is a measure of the
asymmetry of the data around the sample mean and kurtosis is a measure of how
outlier-prone a distribution is (respectively, 0 and 3 for the normal distribution).
As shown in Table 2 for all markets skewness is positive which indicates that
correlations are skewed right meaning that the right tail is long with respect
to the left tail. Kurtosis measure, in contrast, deviates in different directions,
indicating more peaked distribution for American and Russian markets, and more
flat distribution for German and Chinese. The deviations are relatively small though.

4.2 Eigenvalue Distribution

In this section we analyze spectral properties of empirical cross-correlation matrices
and compare them to the predictions of RMT given by formulas (1) and (2).
The eigenvalue spectrum is shown in Figs. 3b, 4b, 5b, and 6b with the spectrum
predicted by RMT in Figs. 3a, 4a, 5a, and 6a. Table 3 presents the more detailed
characteristics.

As in the previous studies, we found that there is one largest eigenvalue �max

in every case which exceeds significantly the upper bound �C. We also noticed the
similarity between �max and N �C presented in Table 3 by their ratio close to the value
of 1. This explains the exceptionally large value of �max for American market with
respect to the others: since average value of correlation is similar for each market
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Fig. 3 American market. (a) Probability density of � in comparison with RMT density (the red
solid line) and (b) including the largest eigenvalue �max
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Fig. 4 German market. (a) Probability density of � in comparison with RMT density (the red solid
line) and (b) including the largest eigenvalue �max
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Fig. 5 Chinese market. (a) Probability density of � in comparison with RMT density (the red solid
line) and (b) including the largest eigenvalue �max
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Fig. 6 Russian market. (a) Probability density of � in comparison with RMT density (the red solid
line) and (b) including the largest eigenvalue �max

Table 3 Eigenvalues statistics

Market N C �
�

�
C

�max
�max
�

C

�max

N�C
� > �

C

USA 316 0.3220 0.4568 1.7533 106.7823 60.9039 1.0495 10

Germany 90 0.3021 0.5403 1.6001 30.0333 18.7694 1.1046 3

China 78 0.2984 0.5226 1.6309 26.1665 16.0440 1.1240 4

Russia 101 0.2349 0.5375 1.6050 27.9230 17.3975 1.1772 7

and American market is presented by data set greater by 3–4 times (with respect
to the number of stocks), the value of the largest eigenvalue is also greater by 3–4
times.

The number of eigenvalues above the edge �C differs for considered markets.
In German and Chinese markets there are, respectively, 2 and 3 such eigenvalues,
besides �max, which is small and in accordance with previous studies [11]. In
American and Russian markets this number is relatively high (9 and 6, respectively)
and for American market it is greater than what was observed before [8].

Furthermore, we noticed that about half of the eigenvalues falls into the range
Œ��; �C� predicted by RMT. A little less number of eigenvalues fall below the edge
��. Most of this may be explained by eigenvalue repulsion effect we talked about
in Sect. 3. These observations also support some previous results [11].

5 Stability Analysis

In this section we present the results of analysis of stability of observed phenomena.
We want to see whether the observed deviations from RMT predictions are specific
for a certain market or not. In order to do this we use bootstrap method. We
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Table 4 Characteristics

Market C �max
�max

N � C
� > �

C

USA 0.3220 106.7823 1.0495 10

Germany 0.3021 30.0333 1.1046 3

China 0.2984 26.1665 1.1240 4

Russia 0.2349 27.9230 1.1722 7

also test dependence of the deviations on type of distribution of the data using
multivariate normal distribution and multivariate Student distribution. We test
following characteristics:

• The mean value of correlation coefficient C
• The value of the largest eigenvalue �max

• The ratio �max=.N � C/, where N denotes the number of stocks
• The number of eigenvalues above the upper bound �C predicted by RMT

These characteristics are summarized for all four considered markets in Table 4.

5.1 Bootstrapping

To test the stability of observed characteristics and, consequently, their deviations
from predictions of RMT we apply the bootstrap method. First, we resample the
data with replacement, saving the size of the resample .N � T/ the same as it was
in the original data set. Note that sample here is a vector Rt corresponding to a trade
day t characterized by daily returns of N stocks. Next we apply our method, defined
by formulas (4)–(7), to compute characteristics of interest. We repeat this routine
10; 000 times for each considered market.

Figures 7, 8, 9, and 10 present histograms of analyzed characteristics which
provide an estimate of the shape of the distribution. We found that almost all of
them are stable for each market indicating that considered deviations from RMT
predictions are specific for empirical correlation matrices. One exception here is the
number of eigenvalues above the upper bound �C. For German and Chinese markets
the value is quite robust (Fig. 10b, c), but for American and Russian cases results
show that the observed values are not reliable (Fig. 10a, d). The surprising result
is that the test revealed a greater number of those eigenvalues (about 12 for the USA
and 9 for Russia in average).
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Fig. 7 Estimated distribution of C for (a) American, (b) German, (c) Chinese, and (d) Russian
markets

5.2 Multivariate Normal Distribution

In this section we test how the cross-correlation matrix will change (with respect
to observed characteristics) if we let the distribution of the data be Gaussian.
We generate new data of size (N�T) (the same as original) from multivariate normal
distributions with zero means and the empirical correlation matrix C as covariance
matrix. Next we apply our method, defined by formulas (4)–(7), to compute new
correlation matrix and its characteristics. We repeat this routine 10; 000 times for
each considered market.

Figures 11, 12, 13, and 14 present histograms of analyzed characteristics. The
results of the analysis show that this approach keeps the main characteristics the
same except one. All characteristics saved their observed values in average and
estimated shape of distribution is similar with the one provided by bootstrapping
for most of the characteristics in each market. The number of eigenvalues above
the edge hasn’t saved its observed value in American and Russian markets but it
appeared to be less than for bootstrapping in average (11 and 8, respectively) with
very small probability for other values (Fig. 14a, d).



Spectral Properties of Financial Correlation Matrices 145

90 95 100 105 110 115 120 125
0

100

200

300

400

λmax

F
re

qu
en

cy

24 26 28 30 32 34
0

100

200

300

400

λmax

F
re

qu
en

cy

22 24 26 28 30
0

100

200

300

400

λmax

F
re

qu
en

cy

24 26 28 30 32 34
0

50

100

150

200

250

300

λmax

F
re

qu
en

cy

a b

c d

Fig. 8 Estimated distribution of �max for (a) American, (b) German, (c) Chinese, and (d) Russian
markets

5.3 Multivariate Student Distribution

As in the previous section, we simulate our data (N � T time series), but this
time using multivariate Student distribution with the empirical correlation matrix
C as covariance matrix and 3 degrees of freedom. Then again we apply our
method, defined by formulas (4)–(7), to compute new correlation matrix and its
characteristics. We repeat this routine 10; 000 times for each considered market.

The histograms on Figs. 15, 16, and 17 show that again the characteristics saved
their observed values in average in each market. But this time variance is much
less and estimated shape of distribution is not reminiscent of the one provided by
bootstrapping. For the number of eigenvalues above �C the picture is completely
different from previous two tests. The average value is significantly higher for all
markets and estimated shape of distribution also differs (Fig. 18). It means that this
characteristic is sensitive to distribution of returns.
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Fig. 9 Estimated distribution of �max

N�C
for (a) American, (b) German, (c) Chinese, and (d) Russian

markets

6 Concluding Remarks

Four different stock markets (Russian, American, German, and Chinese) are
compared with respect to deviation of spectral properties of correlation matrix to
predictions provided by RMT. It is observed that (like in the previous studies),
there is one largest eigenvalue significantly higher than upper bound �C of RMT
range, and it is very close to the product N � C, where N denotes the number of
stocks and C—the average value of correlation. Average value of correlation is
about 0:3 for all markets, except Russian, which is surprisingly high. In contrast,
the number of eigenvalues above �C, and the value of these numbers, differs from
one market to another one. It can be related with sectors interconnections in different
markets. Stability of observed phenomena was tested using bootstrapping method
to see whether they are specific for considered markets or not. The analysis showed
that the most of observed deviations from RMT are stable, the exception is the
number of eigenvalues above the upper bound in American and Russian markets.
This characteristic is not stable with respect to distribution of returns too.
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Fig. 10 Estimated distribution of the number of � above �
C

for (a) American, (b) German, (c)
Chinese, and (d) Russian markets
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from data generated by MVN
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from data generated by MVN



150 M. Kazakov and V.A. Kalyagin

1.045 1.05 1.055
0

100

200

300

400

F
re

qu
en

cy

1.09 1.1 1.11 1.12 1.13
0

100

200

300

400

F
re

qu
en

cy

1.1 1.12 1.14 1.16
0

100

200

300

400

λmax/(N⋅ Cmean) λmax/(N⋅ Cmean)

λmax/(N⋅ Cmean)λmax/(N⋅ Cmean)

F
re

qu
en

cy

1.16 1.18 1.2 1.22
0

100

200

300

400

F
re

qu
en

cy

a b

c d

Fig. 13 Distribution of �max

N�C
for (a) American, (b) German, (c) Chinese, and (d) Russian markets

from data generated by MVN



Spectral Properties of Financial Correlation Matrices 151

10 10.5 11 11.5 12
0

2000

4000

6000

8000

10000

Greater λ+ Greater λ+

Greater λ+Greater λ+

F
re

qu
en

cy

3 3.2 3.4 3.6 3.8 4
0

2000

4000

6000

8000

10000

F
re

qu
en

cy

3 4 5 6
0

2000

4000

6000

8000

F
re

qu
en

cy

6 7 8 9 10
0

2000

4000

6000

8000

F
re

qu
en

cy

a b

c d

Fig. 14 Distribution of the number of � above �
C

for (a) American, (b) German, (c) Chinese,
and (d) Russian markets from data generated by MVN



152 M. Kazakov and V.A. Kalyagin

0 0.2 0.4 0.6 0.8
0

500

1000

1500

Cmean
Cmean

CmeanCmean

F
re

qu
en

cy

0 0.2 0.4 0.6 0.8
0

200

400

600

800

1000

1200

F
re

qu
en

cy
F

re
qu

en
cy

0 0.2 0.4 0.6 0.8
0

200

400

600

800

1000

F
re

qu
en

cy

0.1 0.2 0.3 0.4 0.5 0.6
0

200

400

600

800

1000

a b

c d

Fig. 15 Distribution of C for (a) American, (b) German, (c) Chinese, and (d) Russian markets
from data generated by MVStudent
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