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Preface

This volume is a collective monograph with different contributions. Many of them
are related with the 4th International Conference on Network Analysis held in
Nizhny Novgorod, Russia, May 11–13, 2014. The main focus of these contributions
is the development of modern approaches for network analysis with different
applications. The previous books which cover the similar topics are: [1–4].

According to the covered topics, the volume can be divided into three parts: opti-
mization in networks, network data mining, and economics and other applications.

The first part deals with optimization problems in networks. In the chapter
“Maximally Diverse Grouping and Clique Partitioning Problem with Skewed
General Variable Neighborhood Search,” a new variant of variable neighborhood
search referred to as skewed general variable neighborhood search is used to solve
a maximally diverse grouping problem and a clique partitioning problem. Extensive
computational results show that the developed heuristic significantly outperforms
its competitors.

In the chapter “Test Generation for Digital Circuits Based on Continuous
Approach to Circuit Simulation Using Different Continuous Extensions of Boolean
Functions,” the analysis of continuous extensions of Boolean functions for test
generation using continuous optimization is conducted. It represents the results of
the developed software for a number of ISCAS schemes.

In the chapter “Konig Graphs for 4-Paths II: Wided Cycles,” characterization
of the graphs, whose each induced subgraph has the property that the maximum
number of induced 4-paths is equal to the minimum cardinality of the set of vertices
such as every induced 4-path contains at least one of them, is given. All such graphs
obtained from simple cycles by replacing some vertices into cographs are described.

In the chapter “Optimization Algorithms for Shared Groups in Multicast Rout-
ing,” the multicast group routing problem is considered. The problem requires the
construction of one or more routing trees such that each destination has its demand
satisfied by one or more data sources. The problem can be viewed as a generalization
of the multicast routing problem with a single data source. This problem has
important applications in the design of collaborative communication networks,
among other uses. While the problem is NP-hard, it is possible to develop algorithms
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vi Preface

for its solution that approximate the solution in practice. Existing techniques for
solving multicast group routing problems are discussed. Some fast heuristics for
this problem are proposed. It is shown that computational experiments support the
quality of the results achieved by these algorithms.

In the chapter “Minimizing the Fuel Consumption of a Multiobjective Vehicle
Routing Problem Using the Parallel Multi-Start NSGA II Algorithm,” a new
multiobjective formulation of the vehicle routing problem (VRP), the multiobjective
fuel consumption vehicle routing problem (MFCVRP), using two different objective
functions is presented. The first objective function corresponds to the optimization
of the total travel time and the second objective function is the minimization of the
fuel consumption of the vehicle taking into account the travel distance, the load of
the vehicle, and other route parameters. Two cases of the MFCVRP are solved.

In the chapter “Manifold Location Routing Problem with Applications in
Network Theory,” the problem of determining locations of facilities and the item
distribution to customers from these facilities from supply chain networks is
considered. Determination of the facility locations is a well-known problem in
the literature, named facility location problem (FLP). The distribution of items via
vehicles is known as the VRP. It is emphasized that solving VR and FL problems
simultaneously can yield a robust facility location and reduced-cost distribution
within the customer-supplier network.

In the chapter “A Branch and Bound Algorithm for the Cell Formation Problem,”
the cell formation problem (an NP-hard optimization problem) is considered for
cell manufacturing systems. A branch and bound algorithm which provides exact
solutions of the cell formation problem is proposed.

The second part of the book is devoted to data mining in networks. In the chapter
“Hybrid Community Detection in Social Networks,” several ideas to design hybrid
methods for community detection are discussed.

In the chapter “Spectral Properties of Financial Correlation Matrix,” the random
matrix theory (RMT) is applied to investigate the cross-correlation matrix of a
financial time series in four different stock markets: Russian, American, German,
and Chinese. The deviations of distribution of eigenvalues of market correlation
matrix from RMT global regime are investigated. Specific properties of each market
are observed and discussed.

In the chapter “Statistical Uncertainty of Minimum Spanning Tree in Market
Network,” the procedure for the minimum spanning tree construction as a multiple
decision statistical procedure is considered. The statistical uncertainty of the
procedure is investigated.

In the chapter “Uncertainty of Identification of Cliques and Independent Sets
in Pearson and Fechner Correlations Networks,” two market network models for
the analysis of NYSE stock market are used: Pearson correlation network and
Fechner correlation network. The problem of estimation of statistical uncertainty
of identification of maximum cliques and maximum independent sets in Pearson
and Fechner correlation networks is considered. It is shown that identification of
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maximal cliques and maximal independent sets in Fechner correlation network is
distribution-free in a certain class of distributions which is not true for Pearson
correlation network.

In the chapter “Investigation of Connections Between Pearson and Sign Cor-
relations in Market Network,” the connection between the sign correlation of
Fechner and the classic Pearson correlation is investigated. Testing hypothesis of
the connection by real market data is conducted.

In the chapter “Testing the Stationarity of Sign Coincidence in Market Network,”
a hypothesis of the stationarity of observations from financial market are considered.
For testing the stationarity hypotheses, the Kolmogorov–Smirnov test and multiple
comparisons Bonferroni and Holm procedures are applied. The stationarity hypoth-
esis is tested for sign coincidence of returns by binomial proportions. It is shown that
the null hypothesis of stationarity is rejected for prices and not rejected for returns
and their sign coincidence on some significance level.

In the chapter “Synchronization and Network Measures in a Concussion EEG
Paradigm,” the neurophysiologic changes in a patient who suffered a concussion
during a football practice via quantitative and graph theoretic measures and to
evaluate the results with respect to the preconcussion state are characterized.
The deviations in the selected quantitative and graph theoretic measures partially
corroborate the usual clinical characteristics of the post-concussion state, but further
investigation for additional data and evaluation of alternative quantitative measures
is needed.

In the chapter “Video-Based Pedestrian Detection on Mobile Phones with the
Cascade Classifiers,” the problem of real-time pedestrian recognition on mobile
phones is discussed. A specialized procedure of data gathering and preprocessing to
train cascade classifiers is proposed. Experimental results in testing under real road
conditions with several mobile phones are given. It is emphasized, that sometimes it
is necessary to choose faster, but less accurate, object detection algorithm, because
in this case it is possible to process more number of frames in a fixed period of time.
Hence, the total object detection accuracy can be increased.

In the chapter “Clustering in Financial Markets,” graph partition of a particular
kind of complex networks referred to as power law graphs is considered. In
particular, analysis on the market graph, constructed from time series of price return
on the American stock market, is conducted. Two different methods originating
from clustering analysis in social networks and image segmentation are applied to
obtain graph partitions, and the results are evaluated in terms of the structure and
quality of the partition. It is shown that the market graph possesses a clear clustered
structure only for higher correlation thresholds. Partitions for different time series
are considered to study the dynamics and stability in the partition structure.

The third part contains applications of network analysis. In the chapter “Key
Borrowers Detected by the Intensities of Their Short-Range Interactions,” the issue
of systemic importance that an individual financial institution can disturb the
whole financial system is discussed. Interconnectedness is considered as one of
the key drivers of systemic importance. Several measures have been proposed in
the literature in order to estimate the interconnectedness of financial institutions and
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systems. However, they do not fully take into consideration an important dimension
of this characteristic: intensities of agent interactions. This paper proposes a novel
method that solves this issue. The approach is based on the power index and
centrality analysis and is employed to find a key borrower in a loan market. The
approach is applied at the European Union level.

In the chapter “A Semantic Solution for Seamless Data Exchange in Supply
Networks,” the semantic solution for data exchange in dynamically changing supply
networks is proposed. Despite the dynamic nature of supply networks, there is a
necessity to manage their efficiency. The first step in this direction is proper data
exchange, which leads to transparency of networks and speeds up interactions of
their participants. Despite plenty of data standards, there is a lack of approaches to
data modeling that allowed seamless knowledge sharing within supply networks.
This paper introduces a new ontology-based data metamodel of supply networks
based on organizational ontology, consistent theory for data modeling, and the
ontologized standard in logistics domain.

In the chapter “Langmuir Solitons in Plasma with Inhomogeneous Electron
Temperature and Space Stimulated Scattering on Damping Ion-Sound Waves,” an
analytical solution for solitons in plasma is obtained in an approximate form. It is
shown that analytical and numerical results have a good agreement.

In the chapter “Equilibria in Networks with Production and Knowledge Exter-
nalities,” a game equilibrium is investigated in a network in each node of which
an economy is described by the simple two-period model of endogenous growth
with production and knowledge externalities. Each node of the network obtains an
externality produced by the sum of knowledge in neighbor nodes. Uniqueness of the
inner equilibrium is proved. Three ways of behavior of each agent are distinguished:
active, passive, and hyperactive. Behavior of agents in dependence on received
externalities is studied. It is shown that the equilibrium depends on the network
structure.

We would like to take the opportunity to thank all the authors and referees for
their efforts to contribute the chapters. In addition, we would like to thank Springer
for giving us the opportunity for this work. This work is partly supported by Russian
Federation Government grant N. 11.G34.31.0057.

Nizhny Novgorod, Russia Valery A. Kalyagin
Nizhny Novgorod, Russia Petr A. Koldanov
Gainesville, FL, USA Panos M. Pardalos
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Part I
Optimization in Networks



Maximally Diverse Grouping and Clique
Partitioning Problems with Skewed General
Variable Neighborhood Search

Jack Brimberg, Nenad Mladenović, and Dragan Urošević

Abstract The maximally diverse grouping problem (MDGP) requires finding a
partition of a given set of elements into a fixed number of mutually disjoint subsets
(or groups) in order to maximize the overall diversity between elements of the same
group. The clique partitioning problem (CPP) has a similar form as the MDGP, but
is defined as the minimization of dissimilarity of elements in an unknown number
of groups. In this paper a new variant of variable neighborhood search referred
to as skewed general variable neighborhood search (SGVNS) is used to solve
both problems. Extensive computational results show that the developed heuristic
significantly outperforms its competitors. This demonstrates the usefulness of a
combined approach of diversification afforded with skewed VNS and intensification
afforded with the local search in general VNS.

Keywords Diverse grouping • Clique partitioning • Variable neighborhood
search

1 Introduction

The maximally diverse grouping problem (MDGP) requires finding a partition of a
given set of elements into a fixed number of mutually disjoint subsets (or groups)
in order to maximize the overall diversity between elements of the same group.
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The clique partitioning problem (CPP) is similar. Instead of maximizing diversity
among groups, one wants to find an unknown number of groups such that the sum
of edge weights over the induced subgraphs (or cliques) is minimized.

MDGP Formulation. The MDGP may be formulated as follows (see, e.g., Fan
et al. [11]): P D fpi W i D 1; : : : ;Ng denotes the set of elements of interest, and pik,
k 2 f1; : : : ;Kg, the attribute values associated with each element pi. The measure
of diversity between any pair of elements pi and pj may be given by some distance
function, e.g.,

dij D
v
u
u
t

K
X

kD1
.pik � pjk/2

which calculates the Euclidean distance between corresponding points in the
attribute space. The objective is the partition of a set P into G disjoint groups so
that the sum of diversities over the individual groups is maximized.

Let xig D 1 if pi is assigned to the group g, and 0 otherwise, i D 1; 2; : : : ;N,
g D 1; 2; : : : ;G. The model may be written as the following quadratic binary integer
programming problem:

max
G
X

gD1

N�1
X

iD1

N
X

jDiC1
dijxigxjg (1)

s:t:
G
X

gD1
xig D 1; i D 1; 2; : : : ;N (2)

N
X

iD1
xig � ag; g D 1; 2; : : : ;G (3)

N
X

iD1
xig � bg; g D 1; 2; : : : ;G (4)

xig 2 f0; 1g; i D 1; 2; : : : ;N; g D 1; 2; : : : ;G: (5)

The constraints (2) ensure that each element is assigned to exactly one group.
Constraints (3) and (4) impose minimum and maximum group sizes, respectively.
In most studies of MDGP, it is assumed that group sizes must be equal so that
N D mG, where m is an integer, and ag D bg D m for all groups g D 1; 2; : : : ;G.
Then constraints (3) and (4) in the model above can be replaced with

N
X

iD1
xig D m; g D 1; 2; : : : ;G: (6)

The above model allows groups to differ in size, although in practical cases such as
study groups, the variation in size should be kept relatively small.
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CPP Formulation. The CPP can be described as follows. Given a weighted, non-
oriented, and complete graph G D .V;E;w/, we wish to find a partition of the node
set into an unknown number of nonempty, disjoint subsets V1;V2; : : : ;Vk such that
the sum of edge weights over the k induced subgraphs (or cliques) G1;G2; : : : ;Gk

is minimized. Let cij denote the weight (or cost) of edge .i; j/, for all pairs of nodes
.i; j/, 1 6 i < j 6 N, where N equals the number of nodes in graph G similarly as in
the MDGP. Note, however, that unlike the MDGP where diversities are specified by
edge distances dij � 0, the costs cij can now take on negative values. A mathematical
formulation of the problem is given by (see [6]):

min
X

.i;j/2E

cijxij

s.t.

xij C xjr � xir � 1; 81 6 i < j < r 6 N

xij � xjr C xir � 1; 81 6 i < j < r 6 N

� xij C xjr C xir � 1; 81 6 i < j < r 6 N

xij 2 f0; 1g; 81 6 i < j 6 N:

(CPP)

If xij D 1, then nodes i and j are in the same cluster, and the cost cij of edge .i; j/
is added in the objective function; otherwise, it is not. The constraint set ensures that
all edges in the complete subgraph Gt, t D 1; 2; : : : ; k, are included in the solution.

The CPP may be extended to incomplete graphs by inserting fictitious edges
with large positive weights between pairs of nodes wherever edges are missing
in the original graph. The large positive weight ensures that each subgraph Gt,
t D 1; 2; : : : ; k, is a clique that contains no fictitious edges. If all edges in a complete
graph G have negative (or zero) weights, the problem becomes trivial, with the
optimal solution given by k D 1 and G1 D G. Thus, the CPP becomes interesting
only when some of the edge weights have positive values.

MDGP Applications. One of the earliest applications of MDGP was in the
formation of student work groups. For example, in MBA programs it is very
important to divide a class into diverse study groups in order to enhance the learning
environment (Weitz and Lakshminarayanan [27], Desrosiers et al. [9]). Another
application concerns the formation of peer review groups to evaluate research
proposals. Again, the objective is to form diverse groups in order to ensure that
projects are evaluated from several different points of view (see Hettich and Pazzani
[16]). For other applications cited in the literature see, e.g., Lotfi and Cerveny
[18] for exam scheduling, Weitz and Lakshminarayanan [27] for very large scale
integration (VLSI) design, and Kral [17] for the storage of large programs onto
paged memory.

Problems similar to MDGP have been considered by Bhadury et al. [2], Baker
and Benn [1], and Desrosiers et al. [9]. A simplified model is proposed in [2], where
a high degree of intra-team similarity and/or inter-team dissimilarity is requested.
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A network flow problem, known as the dining problem, is used to assign MBA
students to different projects. The case study presented in [1] consists of assigning
235 students to eight tutor groups. The model used belongs to the mixed linear goal
programming class and is equivalent to the min-sum formulation of Desrosiers et al.
[9], where the `1-norm is used to measure dissimilarities between students. In the
proposed local search, swaps between the two worst teams are used to improve
the current solution. Desrosiers et al. [9] use a centroid to represent each group
of entities, and examine two objectives: min-sum—minimize the sum of distances
between group centroids and the general centroid of all data; min-max—minimize
the maximum of such distances. The authors also apply their method to partition 120
MBA students in groups of 5 at HEC, Montreal. If the `1-norm is used, the model
becomes linear. However, if Euclidean distance is considered, the corresponding
model is more similar to MDGP, and belongs to the class of quadratic 0–1 programs.
Exact and heuristic solution techniques are adapted for solving the problem.

CPP Applications. The CPP has important applications in the social sciences (e.g.,
see [6], and the references therein). Wang et al. [26] demonstrate that the CPP
compares favorably with K-means and latent class analysis for recovery of cluster
structure in real data sets. An advantage of the CPP model is that we do not need
to know the number of clusters beforehand. One of the most cited applications
of CPP is in the aggregation of binary equivalence relations. In this context, the
cij parameters represent the number of attributes on which nodes i and j disagree
minus the number on which they agree. For example, if there are 10 attributes in all
being compared and given nodes i and j have the same measurement on 8 of them,
cij D 2 � 8 D �6, and there is a strong tendency to place these two nodes in the
same cluster. If on the other hand cij D 8 � 2 D 6, there would be a tendency to
place them in separate clusters.

Recent Heuristics for Solving MDGP. The MDGP is known to be NP-hard [12],
and therefore, heuristics have been developed to solve it. Fan et al. [11] propose
a hybrid genetic algorithm to solve the problem. Gallego et al. [13] suggest tabu
search with strategic oscillation. The artificial bee colony optimization (ABCO)
method proposed by Rodriguez et al. [23] may be considered as a state-of-the-
art heuristic for solving MDGP. A competitive heuristic based on general variable
neighborhood search (GVNS) is found in [24]. GVNS is a variant where a deter-
ministic local search that uses several neighborhoods (called variable neighborhood
descent, or VND for short) is applied in the local search step in place of the single
neighborhood used in basic VNS.

Recent Heuristics for Solving CPP. The earliest methods to solve CPP use a
simple relocation procedure (analogous to the Insertion move for MDGP) that
interchanges nodes across clusters until a local optimum is reached (e.g., [22]).
Marcotorchino and Michaud [19] expanded the search to include merging of clusters
and exchanging cluster memberships for pairs of nodes. Simulated annealing and
tabu search heuristics are proposed by De Amorim et al. [8], based on the simple
relocation neighborhood above. However, this also includes the possibility of
relocating a node to the empty set, thereby increasing the number of clusters by 1.
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Charon and Hudry [7] investigate various “noising” procedures that distort the data
in order to allow uphill moves. Brusco and K ohn [6] develop a state-of-the-art
“neighborhood search heuristic,” following the ideas of the variable neighborhood
search (VNS) metaheuristic, where the shaking (or perturbation) step is carried out
in a random fashion instead of the systematic approach of VNS. The local search
employs the single node relocation neighborhood.

Outline. In this paper we present two related algorithms recently developed in
[4, 5] for solving the MDGP and CPP, respectively. The methodology is an extension
of the GVNS based heuristic proposed in [24]. In brief, the new algorithms consider
a skewed version of GVNS that allows moves to inferior points located in promising
regions of the solution space. In the next section the relationship between the
two problems is analyzed. The new heuristic is described in detail in Sect. 3, as
applied to the MDGP including a description of the data structure used for efficient
implementation of the VND local search. In Sect. 4 the implementation differences
for solving the CPP are summarized. A summary of computational results on a wide
range of test problems taken from the literature is given is Sects. 5 and 6 for MDGP
and CPP, respectively. For almost all problem instances examined, significantly
better solutions are obtained than those of the best competitors.

Concluding remarks are given in Sect. 7. This work unifies the results of two
journal articles [4, 5].

2 Relation Between CPP and MDGP

In the MDGP the number of groups (or cliques) is fixed, and typically these groups
must have the same size, or nearly the same size. However, in the CPP we don’t
know the number of groups, and there are no limitations on group size. To get around
this difficulty, we simply set the number of groups initially to an upper limit of N (the
number of nodes in G), and allow some of these groups to be empty. No limitations
on group size are imposed, so that the number of groups is effectively treated as a
variable in the model formulation.

Now let yig D 1, if node i belongs to group g, and 0 otherwise. We reformulate
CPP as the following equivalent quadratic binary integer program:

max �
N
X

gD1

N�1
X

iD1

N
X

jDiC1
cijyigyjg

s.t.

N
X

gD1
yig D 1; i D 1; : : : ;N

yig 2 f0; 1g; i D 1; : : : ;N; g D 1; : : : ;N

(CPPe)
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This formulation is equivalent to the general MDGP except that (a) all constraints
on group size have been deleted and (b) the number of groups is no longer specified.
Note that the nonlinear formulation in (CPPe) allows a reduction in the number of
constraints compared to the original linear formulation (CPP) from O.N3/ to N.
Meanwhile the number of binary variables remains close to the same in both
formulations.

A similar 0=1 quadratic program as (CPPe) may be found in Wang et al. [25]
as an alternate formulation of the CPP. However, in [25], a maximum number of
cliques (kmax < N) are assumed to be known, which is not necessary here. Also,
those authors use the quadratic formulation to solve the Group Technology Problem,
whereas we are showing here that the CPP may be viewed as a relaxed form of the
MDGP.

By recasting the model in the form of an MDGP, we are now able to borrow any
solution method for MDGP and apply it (after some small modifications) to solve
our original CPP. We will take advantage of this fact by adapting our new VNS
based heuristic that was originally applied on the MDGP, and is described next.

3 Solving MDGP with Variable Neighborhood Search

VNS is a well-known metaheuristic, or framework for building heuristics, whose
basic idea is a systematic change of neighborhood structures during a search for
a better solution (Mladenović and Hansen [20] and Brimberg et al. [3]). The
inner loop of basic VNS contains three steps: (a) shaking; (b) local search; and
(c) neighborhood change. A successful VNS variant, called general VNS, uses a
mechanism of changing neighborhoods not only in the diversification or shaking
step, but also in the intensification or deterministic local search step (Hansen et al.
[15], Mladenović et al. [21]). Skewed VNS is another VNS variant that modifies the
“neighborhood change” step. A current solution is allowed to move to an inferior
solution only if the latter is very far and of similar quality.

This section gives the details of the VNS implementation for solving MDGP.
The main idea is to combine the concepts of general VNS (GVNS) and skewed
VNS (SVNS), by allowing skewed moves within GVNS; that is, we combine the
intensification of the local search in GVNS with the diversification provided by
SVNS. The resulting framework is called skewed general variable neighborhood
search (SGVNS), as proposed in Brimberg et al. [4].

3.1 Solution Space of MDGP

The solution space includes all possible feasible divisions of elements into groups.
A division is feasible if and only if each created group g contains at least ag and at
most bg elements. A current solution is represented by a vector xc of length N such
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that xcŒi� is the label of the group containing the element i (i D 1; 2; : : : ;N). In order
to speed up the local search, we also maintain matrix sdc such that sdcŒi�Œg� is the
sum of diversities between the element i and all the elements assigned to the group
g in the current solution:

sdcŒi�Œg� D
X

jD1;2;:::;NIxcŒj�Dg

dij:

Note that for the current solution, matrix sdc can be computed in O.N2/.
For the solution represented by the vector xc (and by the corresponding matrix

sdc) it is possible to calculate the objective function value given in formula (1) in
the following way:

f c D f .xc/ D
N�1
X

iD1

N
X

jDiC1
dij�.x

c; i; j/

where

�.xc; i; j/ D
(

1 if xcŒi� D xcŒj�

0; if xcŒi� ¤ xcŒj�
:

Note also that the same objective value can be calculated by using the previously
calculated matrix sdc:

f .xc/ D 1

2

N
X

iD1
sdcŒi�ŒxcŒi��

3.2 VND Local Search

The local search is implemented using VND, for which the following neighborhoods
are designed (see [24]): Insertion, Swap, and 3-Chain.

Insertion. Neighborhood Insertion contains solutions obtained by moving only one
element from its current group to another group. By using the previously described
matrix sdc, it is possible to compute efficiently for each feasible move the change in
value of the objective function f . Denote with xn a solution obtained from solution
xc by moving the element i from its current group g1 to a group g2. In this case, the
sum of diversities in all groups except groups g1 and g2 is unchanged. The element i
is removed from the group g1 and because of that, the sum of diversities in the group
g1 decreases by the sum of diversities between i and all other elements belonging
to the group g1. The element i is inserted into g2; hence, the sum of diversities in
g2 increases by the sum of all diversities between i and the elements belonging to
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the group g2. It is easy to conclude that the difference between objective function
values for solutions xc and xn is

�f D f .xn/ � f .xc/ D sdcŒi�Œg2� � sdcŒi�Œg1�:
If�f > 0, the element i is moved from the group g1 to the group g2, (xcŒi� D g2);

then, groups g1 and g2 are modified and values sdcŒj�Œg1� and sdcŒj�Œg2� must be
updated in the following way:

sdcŒj�Œg1� D sdcŒj�Œg1� � dji

and

sdcŒj�Œg2� D sdcŒj�Œg2�C dji:

Since the updating must be performed for each element j, updating of matrix sdc

after performing an Insertion move has complexity O.N/. The number of solutions
in the Insertion neighborhood of xc is O.GN/. See Algorithm 1 for details of
the search. Note that the subroutine Updatesd is used to denote in general the
updating of matrix sdc after a move is made to a neighboring solution (Insertion,
Swap, or 3-Chain).

Swap. Neighborhood Swap contains solutions obtained by swapping a single pair
of elements belonging to different groups. Let element i be in group gi and element
j in group gj of the current solution xc. Denote with xn the solution obtained after
moving the element i into group gj and the element j into group gi. Since the element
i is removed from the group gi, the diversities between element i and the elements
remaining in the group gi do not contribute to the objective function value of the

Function LSIns.x; sd; f /;
rez false;
for v 1 to N do

for g 1 to G do
if xŒv� ¤ g then

df  sdŒv�Œg�� sdŒv�ŒxŒv��;
if df > 0 then

xŒv� g;
f  f C df ;
Updatesd.x; sd; v; g/;
rez true

end
end

end
end
return rez

Algorithm 1: VND implementation of local search in Insertion neighborhood
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Function LSSwap.x; sd; f /;
rez false;
for v 1 to N � 1 do

for u vC 1 to N do
if xŒv� ¤ xŒu� then

df  sdŒv�ŒxŒu��C sdŒu�ŒxŒv��� sdŒv�ŒxŒv��� sdŒu�ŒxŒu��� 2dv;u;
if df > 0 then

Swap.x; v; u/;
f  f C df ;
Updatesd.x; sd; v; u/;
rez true;
return rez

end
end

end
end
return rez

Algorithm 2: VND implementation of local search in Swap neighborhood

new solution. But, because the element i is inserted in the group gj, all diversities
between i and the elements belonging to the group gj contribute to the objective
function value of the new solution. Similar facts are true for the element j. So, we
can finally calculate the difference between the objective values of the current and
neighboring solutions:

�f D f .xn/ � f .xc/ D .sdcŒi�Œgj� � sdcŒi�Œgi�/C .sdcŒj�Œgi� � sdcŒj�Œgj�/ � 2dij:

It is obvious that the change of the objective value for each solution from
neighborhood Swap is done in O.1/, while the cardinality of Swap is O.N2/. After
performing a Swap move, it is necessary to update matrix sdc, and the complexity of
this update is O.N/. (We can consider Swap or 2-opt as two successive Insertions.)

3-Chain. A 3-Chain move is determined by three elements, i, j, and k, belonging
to three different groups, gi, gj, and gk, respectively, by moving the element i to
the group gj, the element j to the group gk, and the element k to the group gi.
Neighborhood 3-Chain consists of all solutions obtained by performing a single
3-Chain move.

We can calculate the difference between objective function values as follows:

�f D f .xn/ � f .xc/ D.sdcŒi�Œgj� � sdcŒi�Œgi�/C .sdcŒj�Œgk� � sdcŒj�Œgj�/C
.sdcŒk�Œgi� � sdcŒk�Œgk�/ � .dij C djk C dki/:

So, the complexity of solution checking is O.1/, but the cardinality of the whole
neighborhood is O.N3/. Updating of the matrix sdc after a 3-Chain move is made is
performed in a straightforward way by combining three successive Insertion moves.
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Function VND-2.x; sd; f /;
end false;
while not end do

repeat
rez LSIns.x; sd; f /;

until rez = false;
if LSSwap.x; sd; f / = false then end true

end

Algorithm 3: VND-2

Two VND Variants. We propose two variants of variable neighborhood descent:

• VND-2—use neighborhoods Insertion and Swap in this order and
• VND-3—use all three developed neighborhoods in the following order: Insertion,

Swap, and 3-Chain.

If no improvement is found in a given neighborhood of the current solution, the
search resumes in the next neighborhood in the sequence. If an improvement is
found, the local search always resumes in the Insertion neighborhood of the new
current solution, i.e., the first neighborhood in the sequence. If no improvement can
be found in any of the listed neighborhoods of xc, the local search is terminated.
See Algorithms 1–3 for a standard implementation of VND-2. Our implementation
is slightly different in that all pairs of elements are examined once in LSSwap, and
hence, a few Swap moves may occur before exiting the loop and returning to the
Insertion neighborhood. Also note that VND-2 is the only variant attempted in the
computational experiments due to limitations placed on the computing time.

3.3 Initial Solution

The calculation of the initial solution is done in two phases. In the first phase,
we ensure that each group g contains at least ag elements by inserting the chosen
elements. In the second phase, we distribute the remaining elements so that each
group g contains at most bg elements. At the beginning, we select G elements at
random and insert them into different groups.

Denote with Eg a set of elements currently assigned to a group g. During the
first phase, we maintain the set of groups that have fewer elements than the desired
minimum:

G0 D ˚

g W jEgj < ag
�

:

Each iteration of the first phase consists of selecting at random one unassigned
element, denoted with i, and assigning it to a selected group. The selected element
must be inserted into one of the groups from the set G0. So, for each group g 2 G0,
we calculate the average distance between the selected element i and all the elements
belonging to the group g, and select the group whose average distance value is the
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Procedure InitialSolution.x; sd; f /;
AV  f1; 2; : : : ;Ng; AG f1; 2; : : : ;Gg;
for g 1 to G do cg  0 end
while AG ¤ ; do

g RandomElem.AG/; v RandomElem.AV/;
xŒv� g; cg  cg C 1;
AV  AV n fvg;
if cg D ag then AG AG n fgg end

end
AG ;;
for g 1 to G do

if cg < bg then AG AG[ fgg end
end
while AV ¤ ; do

g RandomElem.AG/; v RandomElem.AV/;
xŒv� g; cg  cg C 1;
AV  AV n fvg;
if cg D bg then AG AG n fgg end

end
Computesd.x; sd/;
f  Computeobj.x/

Algorithm 4: Initial solution

largest. The selected group g is the one for which the expression Dig defined as

Dig D
P

j2Eg
dij

jEgj

is maximized.
The first phase ends when the set G0 becomes empty. During the second phase,

we maintain a set of groups which has fewer elements than the desired maximum:

G0 D ˚

g W jEgj < bg
�

:

All other steps of the second phase are the same. The second phase finishes when
all elements are assigned.

The initial solution can also be created at random: instead of assigning a selected
element to a group with maximal average distance, we assign it to a randomly
selected group.

3.4 Shaking

In order to perform a perturbation of the current solution, we define the kth
neighborhood as the set of solutions obtained by k consecutive Swap moves. Thus,
in the shaking step, we generate a random solution from the kth neighborhood of
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Procedure Shake.k; x; sd; f /;
while k > 0 do

.u; v/ (RandVert, RandVert);
if xŒu� ¤ xŒv� then

Swap.x; u; v/;
k k � 1

end
end
Computesd.x; sd/;
f  Computeobj.x/

Algorithm 5: Shake procedure

Function SGVNS(kmin; kstep; kmax; tmax);
InitialSolution.xc; sdc; f c/;
VND-2.xc; sdc; f c/;
.xb; sdb; f b/ .xc; sdc; f c/;
k kmin;
while CPUTime./ � tmax do

.xn; sdn; f n/ .xc; sdc; f c/;
Shake.k; xn; sdn; f n/;
VND-2.xn; sdn; f n/;

if f .xn/=f .xc/C ˛�.xc; xn/ > 1 and f .xn/=f .xb/C ˛�.xb; xn/ > 1 then
.xc; sdc; f c/ .xn; sdn; f n/;
if f .xc/ > f .xb/ then .xb; sdb; f b/ .xc; sdc; f c/ end;
k kmin

else
k kC kstep;
if k > kmax then k kmin

end
end

end
return xb

Algorithm 6: SGVNS

the current solution by performing k random Swap moves. In each of the moves, we
randomly select two elements that belong to two different groups.

3.5 Skewed General Variable Neighborhood Search

Unlike classical VNS, the idea is to allow skewed moves to inferior solutions in
promising regions of the solution space. In our implementation this means that after
shaking and local search, we move to the new solution xn if the following conditions
are satisfied:

f .xn/

f .xc/
C ˛�.xc; xn/ > 1 and

f .xn/

f .xb/
C ˛�.xb; xn/ > 1; (7)
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where xb is the best found solution, and xc the current solution. We use �.x.1/; x.2//
to denote the distance between solutions x.1/ and x.2/. This distance is defined in the
following way:

�.x.1/; x.2// D
ˇ
ˇx.1/�x.2/

ˇ
ˇ

N2=G
; (8)

where

x.1/�x.2/ D ˚

.i; j/ W ..x.1/Œi� D x.1/Œj�/ ^ .x.2/Œi� ¤ x.2/Œj�//_
..x.1/Œi� ¤ x.1/Œj�/ ^ .x.2/Œi� D x.2/Œj�//

�

;
(9)

which estimates the “fraction” of pairs belonging to the same group in one solution,
but not to the same group in the other solution. Note that the average number of

elements in any of the groups is approximately N
G , and thus there are

� N
G
2

� � N2

2G2
pairs

of elements in each group. Because there are G groups, the total number of pairs is
N2

2G in one solution, and 2� N2

2G D N2

G elements in both solutions. The parameter ˛ is
assigned a value of 0:05 (selected after detailed testing).

Combining the different parts described above leads to the implementation of
SGVNS that is summarized in Algorithm 6.

4 Implementation Differences for Solving CPP with SGVNS

To avoid duplication in this section, we only summarize the differences between the
SGVNS implementation for CPP and the one for MDGP. Further details on the CPP
implementation are given in [5]. Computational results in Sect. 6 demonstrate that
the new heuristic provides a powerful solution approach just as its counterpart for
the MDGP.

The solution space is constructed in the same way as for the MDGP. Thus, the
current solution is represented by vector xc of length N (xc D .xc

1; x
c
2; : : : ; x

c
N/) such

that xc
i is the label of the group (clique) containing element i (i D 1; 2; : : : ;N). In

order to speed up the local search, we also maintain matrix sdc such that sdcŒi�Œg� is
the sum of edge weights between element i and all elements assigned to the group
g in the current solution.

The number of groups (active columns in sdc) is initially set to N with one
element in each group. This, in fact, gives the initial solution. Unlike MDGP with a
constant number of groups (G), the number of groups (gmax) in CPP will be allowed
to change during the solution process. To accomplish this, we always maintain an
empty group in the list of groups (last column in sdc).

The local search is implemented using the same VND as for MDGP, including
the same nested structure of Insertion and Swap neighborhoods. If the Insertion
step is performed, we change the current solution, and then it becomes necessary
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to update matrix sdc. For example, if the element i moves from the group g1 to the
group g2, then groups g1 and g2 are modified and values sdcŒj�Œg1� and sdcŒj�Œg2�
must be updated in the following way:

sdcŒj�Œg1� D sdcŒj�Œg1� � cji

and

sdcŒj�Œg2� D sdcŒj�Œg2�C cji:

Since this updating must be performed for each element j, updating of matrix
sdc after performing an Insertion move has complexity O.N/. On the other hand,
the cardinality of the Insertion neighborhood is now O.gmaxN/, where gmax is the
current number of groups (including the empty group). Note that if a group becomes
empty as the result of an Insertion move, it is eliminated, the remaining groups are
renumbered accordingly, and gmax is reduced by 1. If the Insertion move results in
group gmax (the empty one) becoming a singleton, gmax is increased by 1.

Neighborhood Swap contains solutions obtained by swapping a single pair of
elements belonging to different groups (elements exchange the group they are
currently assigned to). As for MDGP, the change in objective value for each solution
from neighborhood Swap is done in O.1/, while the cardinality of Swap is O.N2/.
After performing a Swap move, it is necessary to update the matrix sdc, and the
complexity of this update is O.N/ again.

As in MDGP, the VND proceeds first in neighborhood Insertion until a local
optimum is obtained. The search then proceeds to neighborhood Swap. If after
one cycle, at least one Swap move is made, the search resumes in neighborhood
Insertion; otherwise, the VND stops. The distance between two solutions xn and xb

is now defined in the following way:

d.xn; xb/ D
ˇ
ˇ
ˇf.i; j/j1 � i < j � n; ..xb

i D xb
j / ^ .xn

i ¤ xn
j // _ ..xb

i ¤ xb
j / ^ .xn

i D xn
j //g

ˇ
ˇ
ˇ

Pgb
gD1

�cb
g
2

� ;

where gb is the number of groups in the best solution xb, and cb
g is the number of

elements in group g in the best solution. Intuitively, the expression in the numerator
is the number of pairs of elements belonging to the same cluster (or group) in one
solution, but not belonging to the same group in the other solution. On the other
hand the denominator is equal to the number of edges participating in cliques in
the best solution. The expression d.xc; xn/ denotes the distance between solutions xc

and xn and calculates in a similar way. The same criteria as in MDGP are applied to
allow skewed moves.
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5 Computational Results for MDGP

The purpose of this section is to compare our heuristic with other state-of-the-art
methods for solving MDGP. We first describe five data sets usually used in the
literature; then, we analyze the performance of SGVNS in order to estimate the
best values of its parameters. Note that the test instances are all randomly generated
as explained in the corresponding references given below. Finally, we perform an
extensive computational comparison. Also note that all computer runs by us for
both MDGP and CPP are conducted on an Intel x64 based machine with 3.4 GHZ
CPU (with 4 cores) and 4GB of RAM. The SGVNS heuristic is coded in CCC
computer language.

There are five sets of large instances used for the experiments. Set I contains
three groups of instances: RanReal, RanInt, and Geo (random instances proposed in
[11, 13] and [14], respectively).

• The set RanReal consists of 160 N � N matrices in which the distance values
dij are real numbers from the interval Œ0; 100�, generated by using a uniform
distribution. The number of elements N, the number of groups G, and bounds
for group size are given in Table 1. There are 20 instances for each combination
of parameters (i.e., each row in Table 1), 10 instances with equal group size
(EGS) and 10 with different group size (DGS). This data set was introduced by
Fan et al. [11] with N ranging from 10 to 240. Galego et al. [13] generated larger
instances with N D 480 and N D 960. In our tests, we use only instances with
N 2 f120; 240; 480; 960g.

• The RanInt set has the same structure and size as RanReal (shown in Table 1),
but the distances are random integers from the interval [0,100], generated by a
uniform distribution.

• The set Geo was introduced by Glover et al. [14], and has the same structure and
size as the previous two. However, the dij are calculated as Euclidean distances
between pairs of points with coordinates randomly generated from [0,10]. The
number of coordinates for each point is generated randomly in the range [2,21].

Table 1 Group sizes for RanReal, RanInt, and
Geo instances

DGS EGS

N G amin
g amax

g bmin
g bmax

g ag D bg

10 2 3 5 5 7 5

12 4 2 3 3 5 3

30 5 5 6 6 10 6

60 6 7 10 10 14 10

120 10 8 12 12 16 12

240 12 15 20 20 25 20

480 20 18 24 24 30 24

960 24 32 40 40 48 40
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Table 2 Group sizes for
instances with N D 2000

elements (Set II)

DGS EGS

G ag bg ag D bg

10 173 227 200

25 51 109 80

50 26 54 40

100 13 27 20

200 6 14 10

Table 3 Group sizes for
instances with N D 3000

elements (Set IV)

DGS EGS

G ag bg ag D bg

25 80 160 120

50 40 80 60

100 20 40 30

200 10 20 15

Set II contains 20 instances labelled Type1_22, as presented by Duarte and Martí
[10]. All instances have N D 2000 elements, while diversities dij are randomly
selected from the interval Œ1; 10�. In this case, we made tests with different numbers
of groups. These numbers as well as the bounds for group sizes are given in Table 2
(same as Rodriguez et al. [23]):

Set III contains 20 instances with N D 2000 elements. Diversities between
elements are integers randomly selected from the interval Œ0; 10�. We conducted
tests here only with G D 50. In the first series of tests (different group sizes), the
lower bound for group size was set to 32 and upper bound was set to 48; in the
second series, both lower and upper bounds were set to 40.

Set IV contains five instances with N D 3000 elements. These instances differ
in the number of pairs of elements connected by edges (density). Edge lengths are
random integers from the interval [1,10] representing the diversity (dij) between
corresponding elements (pairs of elements that are not connected have diversity
equal to 0). In this case, we made tests with different numbers of groups. These
numbers as well as bounds for group sizes are given in Table 3.

Set V contains five instances with N D 5000 elements. The corresponding graphs
are constructed in the same manner as for Set IV. Again, we made tests with different
numbers of groups as summarized in Table 4.
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Table 4 Group sizes for
instances with N D 5000

elements (Set V)

DGS EGS

G ag bg ag D bg

25 133 267 200

50 67 133 100

100 33 67 50

200 17 33 25

5.1 VNS Parameter Values

Three SGVNS parameters need to be specified in the given implementation: the
limit on CPU time tmax, the maximum neighborhood size kmax, and parameter ˛ for
MDGP (for skewed moves). The values of tmax are the same as those used in the
artificial bee colony optimization (ABCO) algorithm [23], and are given in the last
column of each table. The value of kmax is chosen to be 60 for all instances, while ˛
is set to 0:05 as explained below.

In order to choose a proper value for ˛, we ran our SGVNS on ten instances
from Set III with parameter ˛ 2 Œ0:01; 0:1�. In Fig. 1 are plotted average objective
function values (left) and the corresponding CPU times spent on these ten instances
(right). From this figure we see that the best results are obtained for ˛ D 0:05, since
the maximum average objective function value and the smallest average CPU time
used to find the best solution are both obtained with ˛ D 0:05.

5.2 Comparison of Average Results

In this subsection we compare the results obtained by our Skewed GVNS (SGVNS)
with four heuristics mentioned in Sect. 1: the hybrid genetic algorithm (HGA) by
Fan et al. [11]; tabu search with strategic oscillation (TS-SO) by Gallego et al. [13];
artificial bee colony optimization (ABCO) by Rodriguez et al. [23], and general
variable neighborhood search (GVNS) by Urošević [24].

Comparison on Set I Instances. In Tables 5, 6, and 7, we summarize the results on
the three different groups making up Set I: RanReal, RanInt, and Geo. The first two
columns identify the number of elements and the type of problem instance: DGS for
different group size, and EGS for equal group size. As noted above, ten instances are
randomly generated for each problem type and size. Columns 3, 4, 5, 6, and 7 report
average values on those ten instances obtained by HGA, TS-SO, ABCO, GVNS,
and SGVNS, respectively. The detailed results for each instance may be found in
Appendices 6.1, 6.2, and 6.3 of [4], as well as on our web site http://www.mi.sanu.
ac.rs/~nenad/mdgp.

http://www.mi.sanu.ac.rs/~nenad/mdgp
http://www.mi.sanu.ac.rs/~nenad/mdgp


20 J. Brimberg et al.

271600

271800

272000

272200

272400

272600

272800

273000

273200

273400

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
ve

ra
ge

 o
bj

ec
tiv

e 
on

 1
0 

in
st

an
ce

s

alpha

1090

1100

1110

1120

1130

1140

1150

1160

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
ve

ra
ge

 c
pu

 ti
m

e 
on

 1
0 

in
st

an
ce

s 
(in

 s
ec

on
ds

)

alpha

Fig. 1 Average objective value on ten instances obtained by executing SGVNS with different
values of parameter ˛, and average CPU times spent on these ten instances
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The next three columns report the average CPU times (sec) used to find the best
values by the three heuristics (ABCO, GVNS, and SGVNS), within the maximum
time (sec) allocated for each run (tmax) given in the last column. HGA and TS-SO
also used the same tmax values, but actual running times were not presented in the
corresponding papers.
We observe:

(1) In terms of solution quality, SGVNS outperforms all four heuristics on average
in all instance sets and for each N. Moreover, the detailed results in Appen-
dices 6.1, 6.2, and 6.3 of [4] show that the best known results are improved by
SGVNS on almost all 240 instances. There are just a few ties with GVNS.

(2) The performance of the four other heuristics are ordered (in decreasing quality)
as follows: GVNS, ABCO, TS-SO, and HGA.

(3) The same order of methods with respect to solution quality is maintained for
both types of problems: DGS and EGS.

(4) SGVNS superiority over the other heuristics is larger on RanReal and RanInt
instances than on Geo instances; largest average improvements of 3.73 %,
3.78 %, and 1.18 % were obtained by SGVNS for RanReal, RanInt, and Geo,
respectively.

(5) The CPU times to obtain the best solution (within tmax) are similar for each
heuristic.

Table 8 summarizes average % improvements of SGVNS over the other four
methods on all three instance types of Set I. For example, the value 3.47 in the
first line and third column of Table 8 reports that 3.47 % average improvement is
obtained by SGVNS when compared with HGA on ten random RanReal instances;
input parameters of all those instances are N D 120 and DGS. The detailed results
on all instances may be found on our web site http://www.mi.sanu.ac.rs/~nenad/
mdgp. From Table 8 one can easily see that SGVNS outperforms on average all
heuristics on all three instance types of Set I. The only exception applies to the
EGS RanReal instances with N D 960, where GVNS and SGVNS exhibit the same
average performances.

Comparison on Set II Instances. The number of elements is fixed here at
N D 2000. This data set is originally used in [10] for testing heuristics for the
maximum diversity problem. The maximum running time of each heuristic is set
to 1200 s. In this case, 20 instances of the same type are used to report average
results on each line of Table 9, where only a comparison with ABCO and GVNS
is presented. The last two columns of Table 9 give the average % improvement
obtained by SGVNS over ABCO and GVNS. Observe that the largest average
improvement of 2.2 % was obtained for the largest instance (200 non-equal groups).
In addition, improvements of the best known values are reported for all 200
instances (see Appendices 6.4 and 6.5 in [4]).

From the last columns of Table 9, one can observe that ABCO and GVNS have
similar solution quality, but ABCO is slightly faster.

http://www.mi.sanu.ac.rs/~nenad/mdgp
http://www.mi.sanu.ac.rs/~nenad/mdgp
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Table 10 Comparison of ABCO, GVNS, and SGVNS on Set III—DGS

% improvement

ABCO GVNS SGVNS of SGVNS over

Name Obj. Time Obj. Time Obj. Time ABCO GVNS

MDG-a_21 270,135 1181.33 270,483 1200.07 273,098 1073.74 1.08 0.96

MDG-a_22 270,037 1183.55 270,127 1200.07 273,207 1017.50 1.16 1.13

MDG-a_23 269,754 1177.73 270,007 1200.14 273,559 998.02 1.39 1.30

MDG-a_24 269,975 1151.14 270,205 1200.43 273,198 1088.31 1.18 1.10

MDG-a_25 269,590 1183.83 270,018 1198.21 273,344 1164.90 1.37 1.22

MDG-a_26 269,693 1170.51 269,951 1200.13 273,569 1173.18 1.42 1.32

MDG-a_27 269,608 1142.44 270,331 1195.33 273,225 1173.30 1.32 1.06

MDG-a_28 269,357 1154.58 270,139 1179.86 273,242 1044.67 1.42 1.14

MDG-a_29 269,566 1141.00 270,102 1196.20 273,571 1048.53 1.46 1.27

MDG-a_30 269,456 1179.67 270,096 1200.11 273,293 1180.24 1.40 1.17

MDG-a_31 269,492 1188.32 270,525 1200.04 273,887 1094.56 1.60 1.23

MDG-a_32 269,648 1141.74 270,132 1200.05 273,634 1195.78 1.46 1.28

MDG-a_33 269,347 1163.62 270,213 1199.08 273,376 1189.03 1.47 1.16

MDG-a_34 269,778 1195.74 270,200 1199.96 273,533 1123.70 1.37 1.22

MDG-a_35 269,669 1161.94 270,037 1200.01 273,301 1167.06 1.33 1.19

MDG-a_36 269,451 1195.89 270,364 1199.78 273,567 1123.29 1.50 1.17

MDG-a_37 269,355 1187.64 270,272 1200.04 273,289 1175.44 1.44 1.10

MDG-a_38 270,048 1191.83 270,221 1199.78 273,548 1180.45 1.28 1.22

MDG-a_39 269,453 1159.42 270,104 1200.04 273,633 954.10 1.53 1.29

MDG-a_40 269,802 1157.89 270,489 1199.88 273,424 1178.65 1.32 1.07

Avg 269,661 1170.49 270,201 1198.46 273,425 1117.22 1.38 1.18

Comparison on Set III Instances. The number of elements (N) in each problem
instance is equal to 2000. These instances were originally proposed in [10].

The format of Tables 10 and 11 is the same as that of Table 9. SGVNS
outperforms ABCO and GVNS on all instances with improvement of more than
1 % in each case. It also appears that GVNS is on average slightly more effective
than ABCO.

Comparison on Sets IV and V. In each of the last two data sets, five problem
instances (in3000_1, in3000_2, in3000_3, in3000_4, in3000_5 and in5000_1,
in5000_2, in5000_3, in5000_4, in5000_5) are run for 4 different numbers of groups.
Results are reported in Tables 12, 13, 14 and 15. In Set IV, there are 3000 elements
while instances in Set V contain 5000 elements. Results on each data set are divided
in two tables, according to non-equal and equal number of elements in each group.
Values of the SGVNS parameters are not changed, i.e., they are set to kmax D 60 and
˛ D 0:05. The running times are given in the second column under each method in
the tables.

Analyzing the results from Tables 12, 13, 14, and 15, one can make the following
observations:
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(1) Regarding solution quality, SGVNS is better than ABCO and GVNS in all
instances, with average % improvement varying from 1.4 to 2.1 % across the
tables;

(2) The average CPU time of the three methods is similar, except in Table 12, where
GVNS and SGVNS results are obtained in half of the ABCO time (compare
average times of 2974.28, 2824.70, and 4946.51 s used by GVNS, SGVNS, and
ABCO, respectively); and

(3) The largest improvement of 4.3 % of SGVNS over ABCO is obtained on the
instance in3000_1 with G D 200 (see Table 12). Computing times of 2839 and
4979 s are used here by SGVNS and ABCO, respectively.

6 Computational Results for CPP

Thirteen Benchmark Instances. The first set of test instances consists of seven
benchmark instances originally considered by Charon and Hudry [7] (rand100-100,
rand300-100, rand500-100, rand300-5, zahn300, sym300-50, and regnier300-50 )
and six instances generated by Brusco and Köhn [6] (rand200-100, rand400-100,
rand100-5, rand200-5, rand400-5, and rand500-5).

Thirty Large New Instances. In order to compare heuristics on large problems,
we introduce new CPP instances. They consist of sets with 1000, 1500, and 2000
vertices, each having ten instances. The edge lengths are generated at random as
integers uniformly distributed in the range Œ�100; 100�.
Preliminary Testing and Parameter Values. The SGVNS heuristic for CPP has
five parameters: ˛, kmin, kmax, kstep, and tmax. Values of the three neighborhood
parameters are set as follows: kmax D maxf100;N=5g and kmin D kstep D
maxf1; kmax=50g.

To obtain the value of parameter ˛ (used in the skewed phase of SGVNS), we
run our heuristic ten times on an instance with N D 1000 and with different values
of ˛, i.e., ˛ 2 f0:01; 0:02; 0:03; 0:04; 0:05; 0:06; 0:08; 0:10; 0:15; 0:20g. Results are
given in Table 16. From the table we can conclude that the best value for parameter
˛ is 0:02, and we use this value in the remaining tests. A limit on CPU time set at
tmax D N (in seconds) is used as the stopping condition in all runs.

We also compare our SGVNS heuristic with an exact method. To this end we
selected a CPLEX-LP solver for the linear formulation of the CPP, and a CPLEX
quadratic solver for the equivalent quadratic program (see (CPPe) above). The
quadratic solver required excessive computer time, and thus, was limited to very
small test instances (N � 15). The SGVNS heuristic obtained the optimal solution
in all cases tested (N D 10; 15; 20; 25; 30; 35). For example, for the test instance
with N D 35 nodes, the CPLEX-LP solver took 4127 s to find the optimal solution,
whereas SGVNS obtained the same solution in 0.03 s!

Comparison with State-of-the-Art Heuristics. We now compare results obtained
by our SGVNS with those from the literature. For this purpose, the state of
the art comprises the “neighborhood search” heuristics referred to as NS-R and
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Table 16 SGVNS results on large test instance using ten
restarts and different values of ˛

˛ fbest favg fworst Time

0.01 �875,776 �870,699.00 �861,370 989.96

0.02 �878,331 �877,307.50 �875,902 931.99

0.03 �878,153 �876,886.70 �875,075 878.77

0.04 �878,163 �877,169.60 �875,565 977.02

0.05 �877,970 �877,017.70 �874,985 993.88

0.06 �877,970 �877,208.70 �874,985 869.10

0.08 �877,881 �877,032.30 �875,561 996.54

0.10 �877,870 �877,097.00 �875,365 995.44

0.15 �877,713 �876,793.70 �875,263 981.28

0.20 �877,857 �876,935.50 �875,263 912.92

Table 17 Comparison of NS-R, NS-TS, and SGVNS on small instances; SGVNS is
restarted ten times with time limit tmax D N

SGVNS

Name Best NS-R NS-TS fbest favg Time

rand100-5 �1407 �1407 �1407 �1407 �1407 0.33

rand100-100 �24,296 �24,296 �24,296 �24,296 �24,296 1.42

rand200-5 �4079 �4079 �4079 �4079 �4079 26.59

rand200-100 �74,924 �74,924 �74,924 �74,924 �74,924 12.56

rand300-5 �7732 �7723 �7729 �7732 �7728 87.12

rand300-100 �152,709 �152,709 �152,709 �152,709 �152,709 24.81

sym300-50 �17,592 �17,592 �17,592 �17,592 �17,592 143.45

regnier300-50 �32,164 �32,164 �32,164 �32,164 �32,164 3.24

zahn300 �2504 �2503 �2504 �2504 �2504 29.4

rand400-5 �12,133 �12,096 �12,120 �12,133 �12,123 206

rand400-100 �222,757 �222,647 �222,374 �222,757 �222,735 212.65

rand500-5 �17,127 �17,008 �17,086 �17,127 �17,095.5 255.29

rand500-100 �309,125 �308,620 �308,341 �309,107 �308,754 291.00

NS-TS in [6]. In Table 17, we compare SGVNS with these two heuristics on the
13 small test instances. The second column reports the best known values obtained
by our SGVNS. Objective function values obtained by NS-R and NS-TS are given in
columns 3 and 4, respectively. The next 3 columns give results obtained by SGVNS:
the best objective value in 10 restarts, the average value and the average CPU time
spent before the best solutions were found. Note that the running times of the other
two heuristics were set to 500 s in [6]. It appears that results of equivalent quality
are obtained by all three heuristics for these smaller instances, although SGVNS is
slightly better on some. However, we shall see that for the larger instances, SGVNS
reports significantly better results.

In Table 18 the same methods are compared on our new large size test instances.
This time the best in ten, average in ten, and average CPU times for all three
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heuristics are reported. In the last two columns we give the % improvement of
SGVNS over the other two state-of-the-art heuristics.

It appears that in 29 of the 30 large instances, SGVNS solutions were of better
quality and obtained in less overall CPU time. In most cases the improvement in
quality was impressive (�1%). Therefore, our new heuristic may be viewed as state-
of-the-art for solving the CPP.

7 Conclusions

In this paper, we implement a new variant of VNS to solve the MDGP. This variant
combines general VNS (where several neighborhood structures are used in the local
search) and skewed VNS (where a move to a worse solution is allowed if it is
slightly inferior and relatively far). Therefore, it is referred to as skewed general
VNS (SGVNS). Based on extensive computational tests, we show that the SGVNS
heuristic outperforms the current state of the art significantly. Moreover, the best
known solutions have been improved on 531 out of 540 test instances taken from
the literature.

The SGVNS heuristic with some modifications is then applied to the related
CPP. Similar success is obtained, with significant improvement of solution quality
reported on several new large scale instances of CPP.

Future research directions include the design and testing of different neighbor-
hoods within VND, and the application of SGVNS to other combinatorial problems.
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9. Desrosiers, J, Mladenović, N., Villeneuve, D.: Design of balanced MBA student teams. J. Oper.
Res. Soc. 56, 60–66 (2005)

10. Duarte, A., Martí, R.: Tabu search and grasp for the maximum diversity problem. Eur. J. Oper.
Res. 178, 71–84 (2007)

11. Fan, Z.P., Chen, Y., Ma, J., Zeng, S.: A hybrid genetic algorithmic approach to the maximally
diverse grouping problem. J. Oper. Res. Soc. 62, 92–99 (2011)

12. Feo, T., Khellaf, M.: A class of bounded approximation algorithms for graph partitioning.
Networks 20, 181–195 (1990)

13. Gallego, M., Laguna, M., Martí, R., Duarte, A.: Tabu search with strategic oscillation for the
maximally diverse grouping problem. J. Oper. Res. Soc. 64, 724–734 (2013)

14. Glover, F., Kuo, C.C., Dhir, K.S.: Heuristic algorithms for the maximum diversity problem.
J. Inf. Optim. Sci. 19(1), 109–132 (1998)
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Test Generation for Digital Circuits Based
on Continuous Approach to Circuit Simulation
Using Different Continuous Extensions
of Boolean Functions

Nickolay Kascheev and Daniil Kascheev

Abstract This paper provides the analysis of continuous extensions of Boolean
functions for test generation using continuous optimization. It represents the results
of the developed software for a number of ISCAS schemes.

Keywords Boolean function • Testing • Test generation • Continuous model

1 Introduction

Most classical methods for tests construction are based on the stuck-at faults
model and combinatorial algorithms for tests generation. The algorithms are based
on optimization techniques that use variations of the branch-and-bound methods.
Complexity of such methods is well-known.

Nowadays industry requires development of effective methods of test generation.
In this paper, we propose a method for test generation based on continuous
optimization. We describe main ideas and features of the solution. We present the
results of the software running on a number of ISCAS circuits. Such an approach
offers the possibility to develop efficient algorithms of tests generation for a wide
set of faults.

2 Continuous Approach of Digital Circuits Simulation

Continuous approach for the simulation of circuit behavior is based on the concept
of continuous analogue of Boolean function. This paper describes the method which
is to replace Boolean functions of circuit elements by their continuous analogues.
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Table 1 Continuous models of Boolean
functions

Logic function Continuous analogue

Y D NX Qy D 1� x

Y D X1 \ X2 Qy D x1x2
Y D X1 [ X2 Qy D x1 C x2 � x1x2
Y D X1 ˚ X2 Qy D x1 C x2 � 2x1x2

This idea was first proposed by Kano [1] and continued in [5]. We extend the scope
of usage of this approach.

Let’s use the following notation: x D x1; : : : ; xn coordinates of a point in
n-dimensional space. Tn D .xj0 � xi � 1; i D 1; : : : ; n/. So Tn is a unit hypercube,
a set elements Vn � Tn are the vertices of the hypercube Tn �Vn D .xjxi 2 f0; 1g; i D
1; : : : ; n/.

Let’s consider �.x/ some n-place Boolean function that can be defined as the
mapping of vertices of unit n-dimensional hypercube in the set f0; 1g. So the
following expression is valid �.x/ W Vn ! V1. Continuous model of Boolean
functions �.x/ is any function f .x/ that maps an n-dimensional arithmetic space
Rn in the set of real numbers R1, and coincides with the set Vn.

f .x/ W Rn ! R1; f .x/ D �.x/;8x 2 Vn. As we can see the only significant
condition imposed of the function f .x/ is a requirement to match the values f .x/ and
�.x/ in the corners of the unit n-dimensional hypercube.

Let’s consider conjunctive Boolean basis. We define the following continuous
models of the basic functions: Qy D x1x2 for the conjunction; Qy D 1 � x for the
denial. It is easy to understand that values of continuous models really coincide
with the values of the corresponding Boolean functions on the set of vertices of
the unit hypercube. Let’s define continuous models for all major functions of the
Boolean algebra of logic (Table 1). So, the values 0 and 1 of continuous model are
matched only on the edges and vertices of the unit hypercube Tn.

Continuous model of the combinational circuit is called a continuous network.
Continuous model of a digital circuit is constructed by means of replacement of the
gates logic functions with corresponding continuous analogues.

Obviously, any logic function can be represented by an infinite number of
continuous models. For this work we have used a set of continuous models of
Boolean functions shown (see Sect. 4).

3 Test Pattern Generation Algorithm

The problem of finding the fault test can be reduced to the search of the input set
that identifies the difference between a working and a faulty circuit (see Fig. 1).
Thus, the system which checks the equivalence of the two schemes: serviceable and
unserviceable, helps us to state the objective function in the following general form:
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Fig. 1 Structure for fault testing

G.x/ D
S
[

kD1
.Fk ˚ F

0

k.x// (1)

As we can see from Fig. 1, the value of G is equal to 1 if the outputs of fault free
and faulty circuits are different, and zero—otherwise [3].

Most test generation algorithms use combinatorial methods, but if we create a
continuous model of the function (1), we can generate a circuit test using continuous
methods [2–4]. Test generation task, which is based on a continuous approach, can
be reduced to find the global maximum of the objective function. So it becomes
possible to use a global optimization algorithm to resolve the task of test generation
for logic circuits [2–4].

The objective function needs to achieve its maximum value equal to 1 only if its
argument is a test vector. So, to generate a test vector it is necessary:

1. To obtain a continuous model of the scheme;
2. To bring in a fault to the circuit and to obtain a continuous model of the circuit

with this fault;
3. To construct a continuous objective function;
4. To find an input vector that maximizes the objective function;
5. To verify the resulting test vector for the considered fault.
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Since we are interested in the global maximum of the objective function on the
entire domain of the particular function so finding the maximum of the objective
function—it is the task of global optimization. Note that although the global
maxima can be several, value of the objective function is equal to 1 at all points
of extremes. Maximum is already known, it simplifies the solution of the problem.
Each coordinate of the global maximum will be one of the possible test vectors.

We propose the following algorithm to find the maximum of the objective
function, based on the method of coordinate-wise ascent [2–4]:

1. The center of the unit hypercube is the point of an initial approximation of the
test suite.

X1 D .x11; x
1
2; : : : ; x

1
n/ D .0:5; 0:5; : : : ; 0:5/

2. Next step is to calculate estimate of the derivative

dG.x/

dxi
; i D 1; 2; : : : ; n:

with respect to each coordinate, which value is not equal to 0 or 1, concerning
to the current point. The estimate is determined as the absolute difference
between the objective function value at the current point and the value at the
point with the increment for one of the coordinates.

3. Then coordinate has to be chosen that has maximum estimate. The calculated
difference is used as criteria for determining values for the selected coordinates.
If the value of the difference is non-negative, it is set to 1, negative values set
to 0.

4. If the newly obtained point function attains a value 1, the test set is found, and
the algorithm terminates. Otherwise, next iteration should be started at point 2.
The test vector is the set of 1, 0, and 0.5. The value 0.5 corresponds a coordinate
which can be 1 or 0.

We artificially limit the number of iterations. If for a given number of iterations
the solution is not found, such a fault is considered undetectable. Obviously, the
restriction imposed on the number of iterations is a compromise between the speed
of the algorithm and the percentage of fault coverage.

4 Investigation of Various Continuous Models of Boolean
Functions for Test Generation

Efficiency of the test generation algorithm depends on the method of the objective
function optimization and the method of the objective function construction.
The purpose of this paper is to consider the dependence of the efficiency of the
test suites generation on the type of continuous models (Tables 2, 3, 4, and 5).
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Table 2 Continuous models option No. 2

NX Qy D 1�x
1Cx

X1 [ X2 Qy D .1Cx1/.1Cx2/�.1�x1/.1�x2/
.1Cx1/.1Cx2/C.1�x1/.1�x2/

X1 ˚ X2 Qy D x1.1Cx1/.1Cx2/C.1�x1/.1�x2/
.1Cx1/.1Cx2/Cx1x2.1�x1/.1�x2/

Table 3 Continuous models option No. 3

NX Qy D 1� sin.˘x
2
/

X1 [ X2 Qy D 1� sin..1� sin.˘x1
2
/� sin..˘x2

2
/C sin.˘x1

2
/ sin.˘x2

2
// ˘

2
/

X1 ˚ X2 Qy D 1� sin.˘
2
.sin.˘x1

2
/C sin.˘x2

2
/� sin.˘x1

2
/ sin.˘x2

2
//.1� sin.˘x1x2

2
//

Table 4 Continuous models option No. 4

NX Qy D cos.˘
2

x/

X1 [ X2 Qy D cos.˘
2
.cos.˘

2
x1/.cos.˘

2
x2//

X1 ˚ X2 Qy D cos.˘
2
.cos.˘

2
x1/.cos.˘

2
x2/.cos.˘

2
x1x2//

Table 5 Continuous models option No. 5

NX Qy D 1� log10.9xC 1/
X1 [ X2 Qy D 1�log10.9.1�log10..9x1C1/.9x2C1//Clog10.9x1C1/ log10.9x2C1//C1/
X1 ˚ X2 Qy D .1� log10.1� log10..9x1 C 1/.9x2 C 1//C log10.9x1 C 1/ log10.9x2 C 1/

.1� log10.9x1x2 C 1//

Evaluating the effectiveness was made on a set of ISCAS circuits faults. Time
execution optimizing was not a part of this analysis.

5 Results

Different sets of continuous models have been tested on circuits from a set of ISCAS
in the software for generation test sets for stuck-at faults. Table 6 shows the software
running results. The column Detectable shows the number of detectable faults. The
column Coverage shows the number of detected faults by the use of our approach
with different continuous extensions of Boolean functions.

6 Conclusion

In this paper we have proposed various types of continuous models of Boolean
functions to implement a continuous approach to modeling of discrete devices and
fault test generation. The results of testing of stuck-at faults ISCAS circuits show the
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Table 6 The Software Running Results

Coverage

Circuit opt.1 opt.2 opt.3 opt.4 opt.5 Detectable

S27 32 32 32 32 32 32

S349 335 332 319 319 335 335

S713 458 434 414 414 470 476

S1196 1239 1230 1140 1140 1240 1242

S1238 1283 1279 1209 1209 1283 1283

Total 3347 3307 3114 3114 3360 3368

effectiveness of the logarithmic function usage. The next work is to use the obtained
results to optimize the test generation algorithms based on the continuous approach
to test generation for discrete circuits.
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König Graphs for 4-Paths: Widened Cycles

Dmitry Mokeev

Abstract We characterize the graphs whose induced subgraphs all have the
following property: The maximum number of induced 4-paths is equal to the
minimum cardinality of the set of vertices such that every induced 4-path contains at
least one of them. In this chapter we describe all such graphs obtained from simple
cycles by replacing some vertices with cographs.

Keywords König graphs • Widened cycles • 4-paths • Duality

1 Introduction

Let X be a set of graphs. A set of disjoint induced subgraphs of a graph G
isomorphic to graphs in X is an X -matching of G. The X -matching problem
is to find a maximum X -matching in a graph. A subset of vertices of graph G that
covers all induced subgraphs of G isomorphic to graphs in X is its vertex cover
of G with respect to X , or simply its X -cover. The X -cover problem is to find
a minimum X -cover in a graph. A König graph for X is a graph in which every
induced subgraph has the property that the maximum cardinality of its X -matching
is equal to the maximum cardinality of its X -cover [1]. The class of all König
graphs for set X is denoted as K .X /. If X consists of a single graph H, then we
will discuss H-matchings, H-covers, and König graphs for H.

One can find some similar terms in the literature: a König–Egervary graph [2],
a graph with the König property [3], a König graph [4]. They all have the same
meaning, which is a graph in which the cardinalities of maximum matching and
minimum vertex cover are equal. Note that the definition of a König graph in this
chapter is not a generalization of the concept. This definition and usage of the term
are motivated by the fact that the class of bipartite graphs, referred to in König’s
theorem, is exactly the class of all graphs whose cardinalities of maximum matching
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and minimum vertex cover are equal not only for the graph but also for all its induced
subgraphs. Thus, the class of bipartite graphs coincides with the class of all König
graphs for P2 in this sense.

Several papers have been devoted to the X -matching problem, especially its
algorithmic aspects (see, e.g., [5, 6]). It is known that the H-matching problem is
nondeterministic polynomial time complete for any graph H having a connected
component with three or more vertices. The complexity theory of extremal problems
on graphs was developed by V. E. Alekseev and D. S. Malyshev (see, e.g., [1]).

Formulated as integer linear programming problems, X -matching and X -cover
form a pair of dual problems. Thus, König graphs are graphs such that for any
induced subgraph there is no duality gap. In this regard König graphs are similar
to perfect graphs, having the same property with respect to another pair of dual
problems (vertex coloring and maximum clique), which helps to efficiently solve
these problems on perfect graphs [7].

Class K .X / is hereditary for any X and therefore can be described by a set
of forbidden graphs (minimal graphs by the relation “to be an induced subgraph”
not belonging to X ). Such a characterization for P2 is given by König’s theorem
with a known criterion for bipartite graphs. In addition to this classical theorem,
the following results are known for this type of simple graph: In [8] all forbidden
subgraphs are described for the class K .C /, where C is the set of all simple
cycles. In [1] several families of forbidden graphs for K .P3/ are found, and it is
conjectured that the set of these families forms a complete set of forbidden graphs
for this class.

Graph G is P4-connected if both G and G are connected and each vertex of G is
a member of at least one induced P4.

In [9] we give two ways of characterizing the class K .P4/. One of them is the
standard description of hereditary class by forbidden subgraphs. We prove that the
set of forbidden subgraphs includes 10 infinite families and 62 individual graphs.
In the other approach, we show how to construct a graph of the given class by
widening the subdivision from an arbitrary P4-connected bipartite graph except a
simple cycle.

Theorem 1. Any graph obtained from a widened subdivision from an arbitrary P4-
connected bipartite graph except a simple cycle is König for P4.

The aim of this work is to show which graphs obtained by a widened subdivision
from simple cycles are König. In Chaps. 2 and 3, we give some definitions and
auxiliary propositions and in Chap. 4 we formulate and prove the main theorem,
which describes all König widened subdivisions of simple cycles./marginparComp:
Should we change "Chaps." and "Chap." in this paragraph to "Sects." and "Sect."
since the author is referring to sections within this chapter?

In what follows, a "König graph" means a König graph for P4. The maximum
number of subgraphs in a P4-matching of G is denoted as �P4 .G/, and the minimum
number of vertices in its P4-covering is denoted as ˇP4 .G/.
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The induced subgraph P4 is called a quartet. We denote by .v1; v2; v3; v4/ a
quartet that consists of vertices v1; v2; v3; v4.

We denote by jGj a number of vertices in G.
Considering cycle Cn, assume that the vertices are labeled along the cycle as

0; 1; : : : ; n � 1. The arithmetic operations with the vertex labels are performed
modulo n. Each residue class of vertices modulo 4 is called a 4-class.

2 Some Definitions

Definition 1. A graph without quartets is called a cograph.

Definition 2. We say that a cograph is trivial if it consists of one vertex and is
nontrivial otherwise.

Definition 3. The operation of replacing vertex x with a cograph consists of the
following steps:

1. The vertex is removed from the graph.
2. Several new vertices are added to it. New vertices are interconnected to form a

cograph.
3. Each new vertex is connected by an edge to each vertex adjacent to x in the

original graph.

Definition 4. We call an induced path of a graph terminal if one of its vertices is
terminal (has degree 1) and the others have degree at most 2. We call a contact vertex
of a terminal path one that is adjacent to one of the vertices of the path but does not
belong to it (if it exists).

Definition 5. The operation of replacing a terminal path of two vertices with a
cograph consists of the following steps:

1. Vertices of this path are removed from the graph.
2. New vertices k1; k2; : : : ; kp are added to the graph. New vertices are connected to

each other and connected to the contact vertex.
3. New vertices l1; l2; : : : ; lp�1 and possibly vertex lp are added to the graph; N.li/ D

fk1; k2; : : : ; kig.
4. Each vertex of set fk1; k2; : : : ; kp; l1; l2; : : : ; lp�1g and the contact vertex can be

replaced with an arbitrary cograph.

Definition 6. The operation of replacing a terminal path of three vertices with a
cograph consists of the following steps:

1. Vertices of this path are removed from the graph.
2. Several new vertices are added to the graph. New vertices are interconnected to

form a cograph.
3. Let y be a contact vertex of the path. New vertices are connected to vertex y so

that a maximum induced path that contains y and the added vertices has length 3.
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Definition 7. Let H be a bipartite graph. The operation of widening a subdivision
of H consists of the following steps:

1. Each cyclic edge (an edge that belongs to a cycle) of this graph is subdivided by
one vertex.

2. Each vertex added at the subdivision and each vertex of degree 1 or 2 not
belonging to the cycle is replaced with an arbitrary cograph.

3. Some of the old vertices belonging to cycles are also replaced with arbitrary
cographs. They are vertices of degree 2 except under the following conditions:

(a) For each cycle, if there is a vertex v adjacent to three or more vertices of
degree more than 1, then any vertex of a 4-class containing v cannot be
replaced with a cograph.

(b) For each cycle, if a there is a vertex v of degree 3 or more in the cycle, then
a vertex of the 4-class containing v and a vertex of another 4-class consisting
of old vertices cannot simultaneously be replaced with cographs.

4. Some terminal paths of two and three vertices in the obtained graph can be
replaced with arbitrary cographs.

We call the obtained graph a widened subdivision of the original bipartite graph H.

The notion of P4-structure was invented by Chvatal [10] in 1984.

Definition 8. For a given graph G D .V;E/, its P4-structure is defined as the
4-uniform hypergraph on V.G/ whose edges are all the 4-element sets that induce a
quartet in G.

One can associate the P4-matching and P4-cover of the graph with the matching and
vertex covering of its P4-structure. It motivates us to use this term to formulate some
useful definitions.

Definition 9. We say that a graph G is P4-connected if its P4-structure is the
connected hypergraph.

Obviously, if there is a vertex in a graph that does not belong to any quartet, then
it is an isolated vertex in the P4-structure. Thus, each P4-connected graph does not
contain such vertices.

Since P4 is a self-complementary graph, graphs G and G have the same
P4-structure. It means that each P4-connected graph G is a connected graph and
a complement of a connected graph.

Proposition 1. A connected graph G is P4-connected if and only if its complement
is connected and each of its vertices belongs to at least one induced 4-path.

Definition 10. We say that a subgraph H of graph G is its P4-connected component
if H is a maximal P4-connected subgraph in G.

Obviously, P4-matching of the graph is the sum of P4-matchings of all its
P4-connected components. Similarly, the P4-cover of the graph is the sum of
P4-covers of all its P4-connected components.
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In what follows we consider only P4-connected graphs. If the graph is not
P4-connected, one can consider each of its P4-connected components.

3 Widened Subdivisions of Even Cycles

Here we consider widened subdivisions of even cycles and show when such graphs
are König. Note that all degrees of the simple cycle equal 2. Therefore, it doesn’t
contain terminal paths. It means that each widened subdivision of an even cycle can
be obtained from a cycle of 4k vertices, where k � 2, by replacing each vertex with
an arbitrary (possibly trivial) cograph.

Definition 11. We replace a vertex labeled i in a cycle with an arbitrary cograph.
We call such a cograph a section and denote it as Si. We say that a section is trivial
if it consists of one vertex and otherwise is nontrivial.

In [9] we prove the following lemma:

Lemma 1. Let A be a section in the graph G. A vertex v 2 A belongs to the
minimum covering of graph G if and only if all the vertices of this section also
belong to this minimum covering.

Thus, each minimum covering of widened subdivisions of an even cycle consists
of whole sections.

In [9] we prove the following lemma:

Lemma 2. Each widened subdivision of the tree belongs to K .P4/.

In [9] we describe infinite families of forbidden subgraphs for König graphs. One
of those classes is denoted as D .

Definition 12. Denote by D .k1; k2; k3; k4/ the set of graphs obtained from a
cycle of length n D k1 C k2 C k3 C k4 by replacing four vertices numbered
0; k1; k1 C k2; k1 C k2 C k3 with cographs of two vertices. This set always consists
of exactly 16 graphs that differ by the structure of their cograph that replaced the
vertex (K2 or O2).

Denote

DD
[

k1 	 k2 	 k3 	
	 k4 	 1 .mod 4/ ;
ki � 5; i D 2; 3; 4;

or
k1 	 1 .mod 4/ ; k1 � 5;

k2 	 k4 	 2 .mod 4/ ;
k3 	 3 .mod 4/

˚

G
ˇ
ˇ G 2 D .k1; k2; k3; k4/ or G 2 D .k1; k2; k3; k4/

�

:



50 D. Mokeev

Now we define the shift-of-section operation for the cover of a widened
subdivision of a cycle.

Definition 13. Let G be obtained from a cycle or path of m vertices by replacing
each of its vertices with an arbitrary (possibly trivial) cograph. Denote all of its
sections as S1; : : : ; Sm along the cycle (path). Let C be a P4-cover of G. Let n � 3,
Si 2 C, 81 � k � nŒSiCk … C� and 91 � l � 4 � nŒSi�l 2 C�. The operation
of right-shifting section Si in C into n consists of replacing section Si by SiCn. In
other words, the result of this operation is a P4-cover C

0 D CŸSi [ SiCn. The
operation of left-shift is defined similarly. The result of this operation is a P4-cover
C

00 D CŸSi [ Si�n.

It’s easy to see that the following proposition is true:

Proposition 2. Let C be a minimum P4-cover of G and C
0

be a P4-cover obtained
from C by shifting one of its sections into the trivial section. Then C

0

is a minimum
P4-cover of G.

We prove some propositions before formulating the main theorem.

Proposition 3. Let G be obtained from a cycle of 4n vertices (where n > 2) by
replacing each vertex with an arbitrary cograph, and let i be such that sections
Si; SiC1; SiC2 are nontrivial and sections Si�1; SiC3 are trivial. Then there exist a
P4-cover C and a P4-matching M of G such that jMj D jCj.
Proof. Consider graph G

0

obtained from G by deleting sections Si�1; Si; SiC1;
SiC2; SiC3. By Lemma 2, a P4-cover C

0

and a P4-matching M
0

exist in G
0

such

that
ˇ
ˇ
ˇM

0

ˇ
ˇ
ˇ D

ˇ
ˇ
ˇC

0

ˇ
ˇ
ˇ. Then C D C

0 [ Si�1 [ SiC3 is a P4-cover of G and M D
M

0 [ f.xi�1; xi; xiC1; xiC2/ [ .xi; xiC1; xiC2; xiC3/g, where xj 2 Sj; yj 2 Sj; xj ¤
yj; j 2 fi � 1; : : : ; i C 3g is its P4-matching. Since sections Si�1; SiC3 are trivial,

jMj D
ˇ
ˇ
ˇM

0

ˇ
ˇ
ˇC 2 D

ˇ
ˇ
ˇC

0

ˇ
ˇ
ˇC 2 D jCj. ut

Proposition 4. Let graph G 2 Free.D/ be obtained from a cycle of 4n vertices
(where n > 2) by replacing each vertex with an arbitrary cograph in which three
nontrivial sections do not exist in a row and the numeration of such sections is such
that for some q � 0, sections S0; S4qC3 are nontrivial and sections S1; S2; : : : ; S4qC2
are trivial. Then there exist a P4-cover C and a P4-matching M of G such that
jMj D jCj.
Proof. Consider graph G

0

obtained from G by deleting sections S1; S2; : : : ; S4qC2
and deleting one vertex each from sections S0 and S4qC3. By Lemma 2, a P4-

cover C
0

and a P4-matching M
0

exist in G
0

such that
ˇ
ˇ
ˇM

0

ˇ
ˇ
ˇ D

ˇ
ˇ
ˇC

0

ˇ
ˇ
ˇ. Denote

S
0

1 D S4qC3Ÿfx4qC3g; S0

4.n�q�1/C2 D S0Ÿfx0g, where x4qC3 and x0 are deleted

vertices. For all i 2 f2; 3; : : : ; 4.n � q � 1/ C 1g, denote S
0

i D s4qC2Ci. Note
that S

0

1; : : : ; S
0

4.n�q�1/C2 are all sections in G
0

. Obviously, if C
0

contains at least one

of sections S
0

2; S
0

3, then M D M
0 [ f.x0; x1; x2; x3/; : : : ; .x4q; x4qC1; x4qC2; x4qC3/g,
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where Sj D fxjg for all 1 � 4q C 2, is the P4-matching of G and C D C
0 [

S1 [ S5 [ : : : [ S4qC1 is its P4-cover. It’s easy to see that jMj D jCj. Now we
prove that such a cover always exists. Note then that if C

0

contains at least one of
sections S

0

4.n�q�1/; S
0

4.n�q�1/C1, then we can reduce such a case to a previously used
numeration of sections. Since three nontrivial sections are not in a row in G, at least
one of S

0

2; S
0

3 is trivial. It means that any minimum P4-cover containing S
0

1 can be
reduced to a minimum P4-cover containing S

0

2 or S
0

3 by a right-shift of S
0

1. Now
suppose that C

0

does not contain S
0

1; S
0

2; S
0

3, and S
0

4.n�q�1/; S
0

4.n�q�1/C1; S
0

4.n�q�1/C2.
It means that it contains S

0

4 and S
0

4.n�q�2/C3. Let i be a minimum number such that i

is not divisible by 4 and S
0

i 2 C
0

. Three cases are possible:

1. i D 4k C 3. Then there exists j < k such that section S
0

4jC3 is nontrivial.

Otherwise, the consequent left-shift of S
0

4k; S
0

4k�4; : : : ; S
0

4 into 1 reduces the
minimum P4-cover containing S

0

3. Thus, in G sections S0; S4qC3; S4.qCjC1/C1
are nontrivial. It means that S

0

4.jC1Cl/ D S4.qCjC1Cl/C2 is trivial for all l 2
f0; 1; : : : ; n � j � q � 3g. Otherwise, G contains a forbidden subgraph from the
set D.4l C 1; 4.n � q � j � l/C 2; 4q C 3; 4j C 2/. Thus, S

0

4 [ S
0

8 [ : : : [ S
0

4j [
S

0

4.jC1/ [ : : : [ S
0

4.n�qC1/ is the minimum P4-cover containing S
0

4.n�qC1/.
2. i D 4k C 2. Then section S

0

4.k�1/C3 is nontrivial. Otherwise, using the left-shift

of S
0

4k, we can reduce this case to the case 1. Thus, in the same way as in case 1
we can say that S

0

4 [ S
0

8 [ : : : [ S
0

4j [ S
0

4.jC1/ [ : : : [ S
0

4.n�qC1/ is the minimum

P4-cover containing S
0

4.n�qC1/.
3. i D 4k C 1. Note that for all j � k at least one of S

0

4j�1; S
0

4j�2; S
0

4j�3 is trivial.

Also, at least one of S
0

2; S
0

3 is trivial. Let j� be the minimum number such that for
all j > j� sections S

0

4j�2; S
0

4j�3 are both nontrivial and one of S
0

4j��2 and S
0

4j��3 is

trivial. Then using the consequent left-shift of S
0

4k; S
0

4.k�1/; : : : ; S
0

4.j�C1/ into 3 and

then the left-shift of S
0

4j� into 1 or 2, we can reduce this case to the case 1 or 2.
Note that if j� D 1, then such shifts reduce the minimum P4-cover containing
S

0

2 or S
0

3.
ut

Proposition 5. Let graph G 2 Free.D/ be obtained from a cycle of 4n vertices
(where n � 2) by replacing each vertex with an arbitrary cograph in which three
nontrivial sections do not exist in a row and G contains an induced subgraph from
the set D.k1; k2; k3; k4/, where k1 	 k2 	 k3 	 k4 	 1.mod4/. Then there exist a
P4-cover C and a P4-matching M of G such that jMj D jCj.
Proof. Since G 2 Free.D and three nontrivial sections do not exist in a row in
G, two of k1; k2; k3; k4 equal 1. If, for example, k1 D k2 D 1, then G satisfies the
condition of Proposition 3. Thus, there exist a P4-cover C and a P4-matching M of
G such that jMj D jCj. It means that we must consider only case k2 D k4 D 1;

k1 � 5; k3 � 5 (the other cases are symmetric).
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Now let k1 D 4lC1; then k3 D n�4l�3. We number sections of G in such a way
that sections S0; S1; S4lC2; S4lC3 are nontrivial. Then for 1 � i � l, sections S4iC1
and S4i�2 are trivial. Otherwise, G contains an induced subgraph from D . Similarly,
for l C 1 � j � n � 1, sections S4j and S4jC3 are trivial.

Consider the P4-cover C D S2 [ S6 [ : : : [ S4l�2 [ S4lC1 [ S4.lC1/ [ S4.lC2/ [
: : : [ S4.n�1/ [ S4n�1 and the P4-matching M D f.v0; v1; v2; v3/; : : : ; .v4l; v4lC1;
v4lC2; v4lC3/g[f.u4lC2; u4lC3; u4.lC1/; u4.lC1/C1/; : : : ; .u4.n�1/C2; u4.n�1/C3; u0; u1/g,
where ui 2 si; vi 2 si; ui ¤ vi for all i 2 f0; : : : 4n � 1g. It’s easy to see that
jMj D jCj D n C 1. ut

4 The Main Theorem

Now we can formulate and prove the main theorem of this chapter.

Theorem 2. A widened subdivision of an even cycle is König if and only if it does
not contain induced subgraphs of the set D .

Proof. Let graph G 2 Free.D be a widened subdivision of a cycle of 2n vertices.
One can say that G was obtained from a cycle of 4n vertices by replacing each
vertex with an arbitrary cograph. Now we prove that there exist a P4-cover C and a
P4-matching M of G such that jMj D jCj. Consider the following cases:

1. There exist four nontrivial sections in a row in G. Let section S0 be trivial and
S1; S2; S3; S4 be nontrivial. We select vertices vi 2 Si for all i 2 f1; 2; 3; 4g.
Let G

0

be the graph obtained by removing the selected vertices. If G contains
no subgraphs of D , then G

0

does not contain them either. This allows us to use
induction on the number of vertices. By the induction hypothesis, there exist a
P4-matching M

0

and a P4-cover C
0

of G
0

such that jM0 j D jC0 j. Note that jC0 j
includes at least one of the sections SiŸfvig; i 2 f1; 2; 3; 4g, but not more than
two. If there are two such sections, then S0 is not part of C

0

(otherwise, C
0

is
not at a minimum) and at least one of SiŸfvig; i 2 f1; 2; 3g is part of C

0

. Then,
using a left-shift into the appropriate number, we obtain the minimum P4-cover
that includes exactly one of the sections SiŸfvig; i 2 f1; 2; 3; 4g. Adding to
the C

0

the deleted vertex from the corresponding section, and adding to M
0

the quartet .v1; v2; v3; v4/, we obtain the P4-cover and P4-matching of G having
equal cardinality.

2. There are not four nontrivial sections in a row, but there are three nontrivial
sections in a row in G. Then by Proposition 3 there exist a P4-cover C and a
P4-matching M of G such that jMj D jCj.

3. There are not three nontrivial sections in a row in G. Let k1; k2; : : : ; ks be

distances between nontrivial sections along the cycle. Note that
sP

iD1
ki D 4n.

Consider the following cases:
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(a) There exists i such that ki 	 3.mod4/. Then by Proposition 4 there exist a
P4-cover C and a P4-matching M of G such that jMj D jCj.

(b) There is no i such that ki 	 3.mod4/, but there are j1; j2 such that kj1 	 kj2 	
1.mod4/ and the other kjs are even. Then there exist an odd number of js such
that kj 	 2.mod4/. Number sections of a graph in such a way that sections
S0; S4pC1; S4qC3 are nontrivial for some 0 < p � q. Sections S2; S6; : : : ; S4n�2
are trivial. Otherwise, G contains an induced subgraph of D . Then there is
a P4-cover C D S2 [ S6 [ : : : [ S4n�2 and the cardinality of C equals n.
Obviously, there is a P4-matching of G of the same cardinality.

(c) There is an i such that ki 	 3.mod4/, but there are j1; j2; j3; j4 such that kj1 	
kj2 	 kj3 	 kj4 	 1.mod4/. Then there exist p; q; r such that

l1 D k1 C k2 C : : :C kp 	 1.mod4/

l2 D kpC1 C kpC2 C : : :C kq 	 1.mod4/

l3 D kqC1 C kqC2 C : : :C kr 	 1.mod4/

l4 D krC1 C krC2 C : : :C ks 	 1.mod4/:

Then by Proposition 2 there exist a P4-cover C and a P4-matching M of G
such that jMj D jCj.

(d) All kis are even. Then all sections with odd numbers are trivial. Both 4-classes
containing these sections are P4-covers of G of cardinality n. Obviously, G has
a P4-matching of the same cardinality.

Thus, there exist a P4-cover C and a P4-matching M of G such that jMj D jCj. But
any subgraph H also satisfies the conditions of the theorem. Therefore, �P4 .H/ D
ˇP4 .H/, and hence G 2 K .P4/. ut
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Optimization Algorithms for Shared Groups
in Multicast Routing

Carlos A.S. Oliveira and Panos M. Pardalos

Abstract Multicast group routing is a combinatorial optimization problem
occurring in the field of communication networks. Given a graph G D .V;E/,
a set of data sources S � V and destinations D � V , the problem requires the
construction of one or more routing trees such that each destination has its demand
satisfied by one or more data sources. The MGR can be viewed as a generalization of
the multicast routing problem with a single data source. This problem has important
applications in the design of collaborative communication networks, among other
uses. While the MGR problem is NP-hard, it is possible to determine algorithms for
its solution that approximate the result in practice. In this paper, we discuss existing
techniques for solving MGR. We also propose some fast heuristics for this problem
and show that computational experiments support the quality of the results achieved
by these algorithms.

Keywords Multicast group routing • Communication network • Combinatorial
optimization • NP-hard problem • Heuristics

1 Introduction

Multicast routing is the general problem of creating routes in a communication
network so that data packets can be correctly sent from sources to a set of
destinations [12, 13]. Multicast routing has become an active area of research due
to its multiple applications, which include work collaboration, video conferencing,
groupware, virtual reality, and cache placement [15]. Multicast routing also provides

C.A.S. Oliveira (�)
Quantitative Research Department, F-Squared Investments Inc., Ewing, NJ, USA
e-mail: oliveira@ufl.edu

P.M. Pardalos
Department of Industrial and Systems Engineering, University of Florida, 303 Weil Hall,
Gainesville, FL 32608, USA

National Research University Higher School of Economics, Nizhny Novgorod, Russia
e-mail: pardalos@ufl.edu

© Springer International Publishing Switzerland 2016
V.A. Kalyagin et al. (eds.), Models, Algorithms and Technologies
for Network Analysis, Springer Proceedings in Mathematics & Statistics 156,
DOI 10.1007/978-3-319-29608-1_4

55

mailto:oliveira@ufl.edu
mailto:pardalos@ufl.edu


56 C.A.S. Oliveira and P.M. Pardalos

multiple opportunities for the application of combinatorial optimization techniques.
Many of the problems occurring in this area can be modeled as combinatorial
problems [2, 9, 10, 14, 17, 18].

Despite the importance of multicast routing, several of the problems occurring
in this area are NP-hard, and require the development of intelligent algorithms
capable of exploring the unique combinatorial properties of the target problems.
In this paper we deal with the determination of optimal routes in multicast groups.
First, we provide some definitions that will be necessary to define multicast routing
problems. Later, we describe the multicast group routing (MGR) problem and its
applications.

1.1 Problem Formulation

A multicast network is represented by a directed graph G D .V;E/, where V is the
set of nodes in the communications network, and E is the set of direct links between
nodes. A multicast group is a set R D S [ D, for S � V and D � V with S \ D D ;,
where S is a set of data sources and D is a set of destinations. The objective of the
problem is to send data packets from the set of sources to the set of destinations,
so that all destinations have their aggregate demand satisfied. For this purpose, a
route (normally represented by an induced tree T 
 E) needs to be found, while
minimizing a particular objective function. Different versions of the problem arise
depending on the type of data required by each destination.

If each destination node can be served only by a particular source, then we have
a fixed version of the problem. In this version of the problem, links can be shared
and used by two or more multicast groups. If a source can serve any destination,
however, we have a non-fixed version of the problem where all routes may be shared.
Since routes are allowed to share links, both problems can be viewed as a specialized
version of the Steiner tree problem, which is well known to be NP-hard [7, 11]. The
MGR is also a generalized version of the single source multicast routing problem,
which has been studied by several people [14].

A multicast group is a set of nodes that are grouped together in order to share
a particular type of data. For example, the set of nodes interested in receiving
updates in a certain financial instrument may form a multicast group to consume
this information. Therefore, a multicast group M is composed of at least one source
and a set of destinations. Given the set of multicast groups Mi, for i 2 f1; : : : ; kg,
we can define a multicast problem on a network G D .V;E/, a set of source nodes
S D S

i �.Mi/ and destinations D D S

i ı.Mi/, where � W 2V ! 2V is the set of
sources in a multicast group Mi, and ı W 2V ! 2V is the set of destinations in Mi.

In this paper, we consider algorithms for the MGR problem, which can be
used to model the operation of multicast groups as described above. We assume a
generalized multicast routing problem, where one or more sources in a set S are used
to satisfy jDj destinations. The routing algorithms considered here aim at generating
a routing tree (or forest) connecting the sources to destinations. In the following
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sections, we explore different strategies used in the literature to solve this problem.
We also introduce a few algorithms that attempt to provide near-optimal solutions
for the MGR problem.

This paper is organized as follows. In Sect. 2 we discuss a few of the center-based
approaches for the MGR problem, where the goal becomes finding a central node,
from which one or more trees can be used to reach each of the destination nodes
in the multicast group. These approaches include the topological center, which
uses a measure of proximity based on the shortest paths between the central node
and destination nodes. Another approach is finding the median node, which uses a
weighted strategy to locate the central node. Also, the centroid strategy is presented,
a technique where a few mathematical properties are used to determine the location
of one or more central nodes. In Sect. 3 we discuss a few heuristics for the MGR
problem. In Sect. 4 we discuss the computational experiments performed with
the algorithms presented in the previous sections. Finally, we provide concluding
remarks on Sect. 5.

2 Literature Review

In this section, we review some of the approaches used in the literature for the
solution of MGR problems. We divide our coverage by type of general strategy
used to solve the problem, starting with center-based approaches, where a particular
node is used as the central point for the route construction process. Then we
review mathematical programming formulations for the problem and how such MIP
formulations have been used to compute solutions for the MGR problem. We also
discuss other algorithms for the MGR in the last part of this section.

2.1 Center-Based Approaches

A common strategy for solving the MGR problem is the use of center-based
approaches. The basic idea of such methods is to label one or more nodes of the
network as center nodes for the purpose of creating routes that are shared among
members of the multicast group. Using center nodes, one can more easily connect
new routing subtrees and allow new groups to be connected to existing routes.

The great challenge of center-based approaches is the computation of high-
quality center nodes. Depending on how such nodes are defined, it can become
computationally expensive to calculate the best solution to the problem. Three main
strategies have been devised to compute center nodes. The first strategy involves the
calculation of the topological center of the network. The second approach involves
the use of a median node. The third approach employs the concept of the centroid,
as described in the remainder of this section.
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First, let’s consider the necessary notation. Let G D .V;E/ be the underlying
network for the given multicast groups. Define as c W E ! R the cost function on
the arc set E. We want to select a node v 2 V such that the distance to every other
node w in the routing group is minimized according to some measure of distance.
Based on these concepts, we define the main center-based approaches as follows.

Problem 1 (Topological Center). The topological center problem requires the
determination of a node v� that minimizes the maximum distance between v and
all other nodes in the network. In mathematical terms, this can be described as

v� D arg min
v2V

max
w¤v

d.v;w/:

This problem can be solved in polynomial time when the underlying graph is a tree.
However, for general graphs and routing trees, the problem is known to be NP-hard
as shown in [2]. Beyond multicast routing, several applications for the topological
center have been identified [21].

Problem 2 (Median). The median node is a slight modification of the topological
center approach, where the desired center node is determined using a weighted
function W. In this case, let the function H W V ! R be defined as

H.v/ D
X

u2V

W.u/d.v; u/:

In this definition, we denote by W W V ! R the node weight function, while d.u; v/
is the shortest distance between nodes u and v. Then, the median node for a graph
G D .V;E/ is defined as the node v� that minimizes H.v/, i.e.,

v� D arg min
v2V

H.v/:

Problem 3 (Centroid). The third center-based strategy used with multicast groups
employs the concept of centroid. The centroid can be defined in the following way:
given an induced tree T on a graph G, the node v is a centroid of G if it is also a
median of T . That is, by creating an auxiliary tree we can simplify the computation
of the centroid, even if we lose the uniqueness of the solution. This type of center
node is important in applications because it has a number of convenient properties,
which allow the implementation of efficient algorithms. Here is one of the important
properties shared by centroids:

Theorem 1. Let be given a network G D .V;E/, a node v 2 V, and an induced
tree T of G. Then v is a centroid if and only if

F.v/ D max
i

w.Tvi/ � 1=2
X

u2V

W.u/:
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This property can be used as a verification of the properties of a centroid. The
following theorems are also used in the processing of centroids. They guarantee
that if a centroid v is found in a network, then any other centroids are also located
in the neighborhood of v.

Theorem 2. Given a network G D .V;E/ and a vertex v 2 V, then at most one
subtree rooted at v can contain a centroid.

Theorem 3. Given a network G D .V;E/ and a tree TG induced by G, then there
are at most two centroids in TG. If more than one centroid exist, they are adjacent.

Finally, the following proposition can be used to explore centroids using a
decomposition algorithm:

Theorem 4. In a rooted tree with v as root, let there be k subtrees containing v. If
y1; : : : ; yk are the resulting subtrees, then there is a centroid on subtree yj only if

nj > �nj C
X

iD1;k
ni

where nj is the number of nodes in subtree j.

Using such properties, it is possible to find centroids for any graph G in polynomial
time [8].

2.2 Mathematical Programming Formulation

Another way of formalizing the MGR problem is to use mathematical programming
formulations. Such MIP formulations can be used to provide either one or more
feasible solutions as well as defining lower bounds for the solution of the more
complex models. Over the last years, a number of such MIP models have been
proposed in the literature, as we will see in this section.

The model for group routing we consider first is referred to as multicast packing
model [20]. The goal of the problem is to determine the best way to pack the data
transferred by a set of multicast groups using a single routing tree. The objective
function tries to minimize the maximum congestion resulting from the use of a
candidate multicast route.

Let �e be a variable that represents the amount of flow passing through a
particular edge of the network. This can be calculated as

�e D
K
X

kD1
tkxk

e;

where tk is the amount of traffic generated by multicast group k, K is the number of
multicast groups, and xk

e is a decision variable that is 1 only when the arc e is being
used by group k.
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This results in the following MIP model, which minimizes the maximum
congestion variable �:

min�

subject to

K
X

kD1
tkxk

e � � for all e 2 E

xk
e 2 f0; 1g for k 2 f1; : : : ;Kg

This model has been successfully solved for instances of the multicast group routing
problem, as demonstrated in [16].

Another set of formulations for the MGR problem follow the more traditional
technique of modeling minimum tree problems, such as the Steiner problem. One
particular version of these models has been proposed and solved in [3] and can be
described as follows.

Let x be a vector of decision variables ve, for e 2 E.G/. Let N W V ! 2V be
a function returning the neighbors of node v in G. To simplify notation, we also
extend this function to N W V2 ! 2V so that N.S/ is the union of all N.v/ such that
v 2 S. Then the problem becomes

min cTx

subject to

X

e2N.v/

xe D 2 for all v 2 M

X

e2N.v/

xe � 2 for all v 2 V.G/ n M

X

e2N.S/

xe � 2 for all S � V.G/ s.t. u 2 S and M 6� S

x 2 f0; 1gjEj

Where M � V.G/ is the set of nodes participating in the multicast groups. Since
the number of possible subsets S is exponential, the model above is also exponential
in the number of constraints. Despite this, it is possible to use branch-and-bound
techniques to efficiently find a solution to this problem, as demonstrated in [3].
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2.3 Distributed Algorithms for MGR

In this section, we consider distributed algorithms for routing applied to multicast
groups. Although this is a combinatorial problem that can be solved using standard
optimization techniques, many of the algorithms proposed and implemented for the
MGR are in the format of distributed protocols. The reason is that such algorithms
need to be readily implemented in computer network routers, where each node
cooperates with its neighbors to achieve its routing objectives. As a result of this
design characteristic, many of these algorithms for MGR problem lack guarantees
of approximation or solution quality. They are targeted at providing fast, feasible
solutions with little overhead, while at the same time being amenable to distributed
implementations.

Among the most important distributed algorithms for multicast groups is the
core-based tree (CBT) protocol [2]. The CBT operates by electing a single node
to become the core of the multicast tree, using some of the techniques discussed
in Sect. 2.1. Once a core node is elected, other nodes can be added to routing tree
by proximity, implicitly using a distributed version of Dijkstra’s algorithm. Finally,
nodes are also able to process “disconnect” messages sent from destinations that
want to terminate their membership in the group.

The protocol independent multicast (PIM) protocol [5] acts as a method to
dynamically add and remove nodes from multicast groups. Its main design goal
is to designate certain nodes as rendezvous points, while allowing them to maintain
current data about the network topology. Like many such distributed algorithms,
the objective is to create feasible solutions quickly, instead of trying to achieve
optimality. Another proposal is the scalable multicast protocol (SCAMP) [19],
which was optimized for the management of large multicast groups occurring in
dynamic applications such as video conference.

3 Heuristics for Multicast Group Routing

In this section, we present a few heuristics that can be used to provide fast solutions
for the multicast group routing problem. While these heuristics by their nature
cannot guarantee optimality of results, nonetheless we have observed that we can
achieve high-quality solutions when using these strategies. The local optimality of
these strategies is generally determined by the properties of the shortest paths or
spanning trees, combined with local search techniques.

3.1 Tree Connection Heuristic

The first heuristic we applied to the MGR is based on the use of a spanning tree
as a starting point of the optimization process. You can see a quick listing of the
procedure in Algorithm in Fig. 1. In the algorithm, the arguments are the graph
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1 Algorithm Tree Connection
2 T ← ∅
3 R ← D ∪ S { set of Steiner nodes }
4 Compute the minimum spanning tree T for G
5 complete ← false
6 while not complete do
7 complete ← true
8 for v ∈ V do
9 if degT (v) = 1 and v �∈ R then
10 T ← T \ v
11 complete ← false
12 end
13 end
14 end
15 return T

Fig. 1 Tree construction heuristic

G D .V;E/, and the sets of sources S and destinations D. We denote by
degG W V ! N the degree function, which gives the number of nodes adjacent to
v in V.G/.

The first step of this algorithm is to compute a minimum spanning tree for the
graph G. For this step, we can use any of the standard algorithms for MST, which
run in polynomial time. Once a spanning tree is computed, we can use it as the basis
for the complete solution of the problem. Notice that for nodes that are not sources
and destinations, there are two possibilities: either it is a necessary node in a path
between sources and destinations or it is not part of a routing solution. To remove
such nodes, the algorithm employs a routine that checks if each node needs to be
part of the candidate solution.

The removal procedure starts on line 5 of Algorithm in Fig. 1. For each node
v 2 G, the procedure checks the degree degG.v/. If the degree is 1 and v 62 R, then
it is clearly not necessary as part of the candidate solution, since it is a leaf node
of the tree. Consequently, the node is removed at line 9. This process is repeated as
long as an improvement can be performed by the removing additional nodes. When
that is not possible, the resulting solution T is returned on line 14.

The complexity of this algorithm is dominated by the time spent in the construc-
tion of the spanning tree. Using a standard algorithm such as Kruskal’s method, this
can be performed in time O.m log n/ [1]. This remaining of the heuristic can run on
time O.n2/, since the loop is executed n times, each repetition executing on constant
time, and the number of repetitions of the external loop cannot be worse than O.n/.
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1 Algorithm Combined SP
2 S ← ∅
3 for v ∈ D do
4 Compute the shortest path P between v and a destination d ∈ D
5 S ← S ∪ P
6 end
7 while not complete do
8 complete ← true
9 for v ∈ V do
10 if degS(v) = 1 and v �∈ R then
11 S ← S \ v
12 complete ← false
13 end
14 end
15 end
16 return S

Fig. 2 Combined shortest path heuristic

3.2 Combined Shortest Path Heuristic

The second heuristic we studied for the MGR problem is based on the use of the
shortest paths between source and destination nodes in the multicast groups.
The heuristic employs the tactic of combining different shortest paths into a single
source tree, which is then locally optimized using a gradient descending algorithm.
The details of this strategy are quickly presented in Algorithm in Fig. 2. The input to
the algorithm is a graph G D .V;E/, a set of sources S, and a set of destinations D.

The algorithm starts by computing the shortest paths from each of the desti-
nations towards the closest source node. This can be done using one of the existing
algorithms for the shortest paths such as Dijkstra [6] or Bellman–Ford [4]. The paths
are combined in line 4, so that a new path extends the existing solution S . This can
be done by adding just the part of the path P from s to d that is not contained in
the existing tree. Once all destinations d 2 D have been satisfied in this way, we
can start the pruning process, which is similar to what we discussed in the previous
algorithm.

The complexity of the algorithm is dominated by the discovery of the shortest
paths in the first part. A traditional algorithm for the shortest paths, such as
Dijkstra’s, can be executed in time O.jEj C jVj log jVj/. Since this is performed
jDj times, the resulting complexity is O.jDj.jEj C jVj log jVj/. The resulting parts
of the algorithm can be executed in O.n2/ time, as previously explained.
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4 Computational Results

In this section we present preliminary results of computational testing performed
with the heuristics described in Sect. 3. We have implemented these algorithms
using a library of graph operations crafted by the authors using the C programming
language.

All tests were performed in a 64-bit machine using the Intel Core i5, 2.4 GHz
processor. The machine had 8 GB of available memory, although memory was not a
limiting factor for the tests described in this section. The code was compiled using
the GCC compiler, with the O3 level of optimization.

In all tests we used a set of 60 input files that simulate realistic instances of the
MGR. The number of nodes ranged from 20 to 90, while the number of edges ranged
from 100 to 380. The number of sources varied from 2 to 8. Finally, the number of
destinations ranged from 4 to 12.

In the first test, we decide to compare the performance of Algorithm in Fig. 1
(Algorithm Tree Connection) against a simple construction routing, which creates a
solution containing random paths. The random solution can be viewed as a baseline
for the improved algorithms we discussed earlier.

Table 1 shows the results of running these algorithms against 30 instances as
described above. The table columns can be read as follows: the first column is
an identifier for the MGR instance. The next columns give the size for the sets
V , E, S, and D, respectively. The next column Sr gives the value achieved by the
random tree generation algorithm. The column S�1 displays the optimum value
achieved by Algorithm in Fig. 1. Column S�2 displays the optimum value achieved
by Algorithm in Fig. 2. Column t displays the total running time for all iterations of
the algorithm, in seconds.

We observed that Algorithm in Fig. 1 gives results that are consistently better
than the baseline, with some results that are twice as good as the results achieved
by the baseline implementation. The data for Algorithm in Fig. 2 is also included
in Table 1. Results for this algorithm are very close to results for the first, which
indicates that they are both converging to similar solutions. Algorithm 2 is able to
improve the results for a few instances, but Algorithm 1 dominates the results for
most of the tests.

Table 2 summarizes the results for a second set of instances, with the same
number of nodes, sources, and destinations, but with different number of arcs. The
table includes results for both algorithms as discussed above.

5 Concluding Remarks

In this paper we considered the minimum routing problem in the context of shared
multicast groups. The MGR is a practical problem in telecommunications networks,
and it has received attention due to its numerous applications in the implementation
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Table 1 Results for Algorithms in Figs. 1 and 2

# jVj jEj jSj jDj Sr S�

1 S�

2 t

1 20 100 2 4 168.038 102.586 111.8191 4.656

2 20 120 2 5 78.8766 67.822 68.497 4.127

3 20 140 2 6 156.62 122.528 121.886 8.442

4 20 160 3 6 159.688 79.2063 78.5152 7.184

5 20 180 3 7 182.329 127.51 127.477 5.3331

6 30 120 3 5 139.5103 104.857 105.928 7.952

7 30 140 3 6 167.0446 98.7166 99.162 7.0414

8 30 160 3 7 153.646 94.555 93.459 5.05

9 30 180 4 7 115.5549 58.5034 59.859 10.507

10 30 200 4 8 110.794 154.272 152.446 13.545

11 40 140 4 6 95.4794 65.349 65.294 10.321

12 40 160 4 7 185.774 153.983 152.523 7.85607

13 40 180 4 8 92.9569 70.0457 72.562 8.5275

14 40 200 5 8 202.68 178.306 179.782 16.367

15 40 220 5 9 90.446 56.6629 57.08418 16.162

16 50 160 5 7 183.239 90.4917 91.561 14.19

17 50 180 5 8 127.142 101.545 102.648 6.8587

18 50 200 5 9 143.459 83.805 85.075 14.707

19 50 220 6 9 58.3205 13.9511 13.654 12.996

20 50 240 6 10 121.394 89.865 88.208 7.8097

21 70 200 6 8 139.261 105.199 105.887 13.572

22 70 220 6 9 48.5774 17.2112 16.762 13.1948

23 70 240 6 10 127.4463 78.4428 79.673 18.0209

24 70 260 7 10 160.835 132.645 133.719 17.015

25 70 280 7 11 131.3358 78.047 78.376 16.84

26 90 300 7 9 80.1889 69.7786 68.4517 16.0674

27 90 320 7 10 25.9581 12.8343 12.7936 25.7936

28 90 340 7 11 121.7618 84.0041 85.002 28.674

29 90 360 8 11 199.785 131.543 132.79 27.072

30 90 380 8 12 143.6514 112.6192 114.3989 37.334

of collaborative systems. We discussed the existing strategies for MGR that are
mainly based on the concept of center-based routing, along with some of their
advantages and disadvantages. Our discussion includes graph-theoretical techniques
as well as MIP-based formulations for the MGR.

We have also introduced two heuristic solutions for the MGR multicast routing
problem in the presence of shared groups. Preliminary tests have been performed
on a set of representative instances. Our algorithm has demonstrated to be able to
find efficient solutions for the MGR problem in very little time, when compared to
exact strategies. In future work, we intend to expand the testing of our algorithm
into more types of problem instances. We also plan to compare the algorithm to LP
and MIP-based strategies for the problem.
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Table 2 Results for Algorithm in Fig. 2 (combined SP)

# jVj jEj jSj jDj Sr S�

1 S�

2 t

31 20 120 2 4 191.294 143.6342 144.941 2.892

32 20 140 2 5 177.728 125.2151 127.6088 1.947

33 20 160 2 6 131.461 99.0888 102.896 1.691

34 20 180 3 6 171.735 152.095 154.8274 2.905

35 20 200 3 7 187.912 136.95 136.124 4.042

36 30 140 3 5 184.794 147.001 146.3734 5.664

37 30 160 3 6 179.683 136.889 136.7554 3.983

38 30 180 3 7 122.953 76.6377 75.2856 4.931

39 30 200 4 7 136.844 119.954 122.8322 9.241

40 30 220 4 8 182.194 173.7327 174.614 6.935

41 40 160 4 6 96.4981 58.8321 57.7313 14.664

42 40 180 4 7 63.165 46.4523 46.226 15.116

43 40 200 4 8 190.05 116.898 119.137 10.378

44 40 220 5 8 184.026 148.8825 147.293 11.614

45 40 240 5 9 39.532 30.478 31.0084 19.999

46 50 180 5 7 176.212 146.43 149.221 10.857

47 50 200 5 8 128.216 125.095 124.854 17.991

48 50 220 5 9 86.3907 58.694 59.6561 15.037

49 50 240 6 9 103.919 72.8204 72.2967 19.576

50 50 260 6 10 56.2119 49.014 49.508 14.815

51 70 220 6 8 157.2 114.906 116.864 14.108

52 70 240 6 9 161.4916 140.021 141.1835 14.458

53 70 260 6 10 89.4067 60.5059 60.2702 16.832

54 70 280 7 10 145.2213 104.313 103.537 18.614

55 70 300 7 11 37.5066 35.2421 35.9027 18.778

56 90 320 7 9 55.2469 48.0125 49.292 16.045

57 90 340 7 10 111.289 99.56 98.9886 22.6263

58 90 360 7 11 183.3003 146.531 147.696 28.338

59 90 380 8 11 33.9214 31.313 32.649 38.605

60 90 400 8 12 181.361 153.481 151.7783 36.939
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Abstract In this paper, a new multiobjective formulation of the Vehicle
Routing Problem, the Multiobjective Fuel Consumption Vehicle Routing Problem
(MFCVRP), using two different objective functions is presented. The first objective
function corresponds to the optimization of the total travel time and the second
objective function is the minimization of the fuel consumption of the vehicle taking
into account the travel distance, the load of the vehicle, and other route parameters.
We solve two cases of the Multiobjective Fuel Consumption Vehicle Routing
Problem. In the first case the problem is symmetric and in the second case
the problem is asymmetric. The problem is solved with the Parallel Multi-Start
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1 Introduction

In real world applications, very few optimization problems have only one objective
function. Usually for the real world problems more than one objective have to be
optimized in order to lead to a set of non-dominated solutions which is called
Pareto front [6]. The Vehicle Routing Problem (VRP) is a generalization of the
Traveling Salesman Problem [14, 28] and is an NP-hard optimization problem [18].
For more information on the VRP, please see [27, 44, 45]. In real world applications
the optimization only of one criterion, for example, the distance for the Capacitated
VRP may not be enough to prove that the quality of the routes is good enough and
that these routes can lead to a decrease of the cost of the routing plan. Thus, in recent
years the publications on Multiobjective Vehicle Routing Problems (moVRPs)
are increased [20]. For a more recent review please see [25].

In recent years, the optimization of energy reduction and of fuel consumption
in the Vehicle Routing Problems has been studied. An easy way to calculate the
fuel consumption of a vehicle is to calculate the tonne-kilometers of the vehicle
taking into account the covering distance and the load of the vehicle [34]. The tonne-
kilometers (tonne-km or tkm) is the load of a vehicle measured in tonnes multiplying
with the distance that the vehicle is covering measured in kilometers. If we multiply
this number (tonne-km) with the average CO2 emission factor (that is measured in
gCO2/tonne-km) [35], the result is the CO2 emissions of the vehicle measured in
grams (gCO2). A model for the Energy Minimizing VRP was proposed by Kara
et al. where the total cost of a route was calculated by multiplying the traveled
distance with the total weight of a vehicle (tare plus the load) [21]. Considering the
Leonardi et al.’s research [29] the “Efficiency of the vehicle use” can be calculated
by a ratio tonne-kilometers=mass-kilometers. To calculate mass-kilometers, the
weight of the empty vehicle is added to the load of the freight, resulting in the
total weight of a vehicle. Also, in order to calculate the “CO2 Efficiency” they
assume that there are some other real route parameters such as the vehicle class, the
driver’s behavior, and other environmental and route parameters that are multiplied
with the “Efficiency of the vehicle use” in order to give the CO2 consumption of
a vehicle. Another parameter that can be taken into account, especially for time
windows routing problems, is the parameter of speed [1, 2, 13, 24, 41]. Also, in [11]
a Green VRP model is presented. This model can be used if the fuel tank capacity
as well as the fuel consumption of a vehicle (gallons per mile) is known. In [43] the
“CO2 emissions” can be calculated if the vehicle’s load, the average distance, and
the average carbon dioxide emission factor are known. The Fuel Consumption Rate
(FCR) for a VRP (FCVRP) was proposed by Xiao et al. [46] and the objective of
the proposed model was to minimize the fuel consumption. In their research, both
the distance traveled and the load are considered for the calculation of the fuel costs
(FCR). Zhang et al. [47] multiply the FCR with the CO2 emission rate (CER) and
the distance between the nodes in order to calculate the amount of CO2 emissions
of a vehicle. In [17] a bi-objective Green Vehicle Routing Problem is proposed for
the minimization of the total traveled distance and the CO2 emissions using the
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NSGA II algorithm. The CO2 emissions are calculated by multiplying the travel
distance with an emission factor. Also, in this research it is referred that in real
world there are more than one factor that could affect the fuel economy of a vehicle
such as the vehicle’s load, the vehicle’s speed, the weather conditions (head-winds,
back-winds, or the use of air conditions in hot weather), and the traffic congestion
(stop-and-go movement or traveling at steady-state consumption). However, none
of those factors were included in their multiobjective model. Another factor that
could affect the CO2 emissions is the slope of the road [5]. In this research, it
is referred that the safe roads for the vehicles have slope grades between 0 and
10 %. In [10] a bi-objective Pollution Routing problem’s model is proposed where
the first objective function is minimizing the CO2 emissions considering the speed,
the load, and other parameters of a vehicle and the other objective function is the
minimization of the driving time. In [32, 42] two energy Pickup and Delivery VRP
models that are taking into account a large number of parameters are analyzed.
Other CO2 emissions minimizing models are presented in [22, 23, 30]. Another
suggestion for the minimization of the emissions of a vehicle is the reduction of the
traveling time by making shortest routes and by traveling with the best speed for
the environment [40]. A larger survey until 2014 for the Energy and Green Vehicle
Routing Problems can be found in [26, 33].

In this paper, the proposed multiobjective problem is a variant of the Multiobjec-
tive Energy Reduction VRP [38] where the time duration, the fuel consumption for
delivery routes, and the fuel consumption for pickup routes were minimized using
the Parallel Multi-start NSGA II algorithm.

In real life in order to travel from a point A to a point B different routes may be
used. We may use a highway road in order to reach B more quickly, covering more
distance with more speed or to reach B slower using smaller road networks, covering
less distance with lower speed. Considering that the increase of the traveled distance
(which may sometimes decrease the traveled time) with constant load will, also,
increase the fuel consumption of a vehicle [46], we can conclude that the traveled
time and the fuel consumption of a vehicle could be two “under minimization”
competitive parameters of a multiobjective problem.

In this paper, the Multiobjective Fuel Consumption Vehicle Routing Problem
is proposed. In this problem, two different objective functions are used and
minimized simultaneously. In the first objective function, the total travel time is
minimized. For the second objective function there are two cases, in the first case
(symmetric case) the Fuel Consumption (FC) is minimized taking into account the
traveled distance and the load of the vehicle [46] and considering that there are no
other route parameters or that there are perfect route conditions (for example, there
is no wind or there are routes without uphills and downhills). In the second case
(asymmetric case), the Route based Fuel Consumption (RFC) is minimized taking
into account some other asymmetric parameters of real life (weather conditions
or uphill and downhill routes) in addition to the load and the traveled distance
[17, 29]. We solved a number of instances with two objective functions. This
formulation is an improvement of the formulation that we presented in [38], where
the Multiobjective Energy Reduction Vehicle Routing Problem was formulated and
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solved. In the previous formulation [38], three different objective functions were
used, where the first two are the same as in the proposed formulation while the
third one was a completely different objective function as it was focused in a
route where only pickups were allowed. Instead of this objective function, in the
present formulation, an objective function that describes more realistic conditions
of the environment is added and the problem includes only deliveries in the routes.
Another difference of the two formulations is that in the Multiobjective Energy
Reduction Vehicle Routing Problem proposed by Psychas et al. [38] a symmetric
multiobjective energy VRP was solved while in this paper with the addition of the
real conditions of the road an asymmetric multiobjective energy VRP is solved.

For this research the Parallel Multi-Start NSGA II (PMS-NSGA II) algorithm
for the solution of the proposed problem is used and is compared with another
variant of NSGA II. PMS-NSGA II is an improved version of NSGA II (Non-
dominated Sorting Genetic Algorithm) [8, 9] and was originally proposed in [38].
A number of variants of the NSGA II algorithm have been used for solving Multiob-
jective Vehicle Routing Problems, e.g., for solving VRP with route balancing [19],
for solving multiobjective VRP problems with time windows [16], and for solving a
Green Vehicle Routing Problem [17]. Other Multiobjective Genetic Algorithms for
the solution of Multiobjective Vehicle Routing Problems have been used in [3, 37].

The structure of the paper is as follows. In Sect. 2, the optimization model
of the MFCVRP is described. In Sect. 3, an analytical description of the PMS-
NSGA II algorithm is presented. In Sect. 4, the evaluation measures used in the
comparisons are presented. In Sect. 5, the computational results are presented and,
finally, concluding remarks and the future research are given in the last section.

2 Multiobjective Fuel Consumption Vehicle Routing Problem

In this section, the formulation of the Multiobjective Fuel Consumption Vehicle
Routing Problem (MFCVRP) is given with two different objective functions. The
first objective function OF1 is the minimization of the time needed for a vehicle to
travel between two customers or a customer and the depot and the second objective
function OF2 is the minimization of the RFC when the decision maker plans
delivery routes where all the customers have only demands and there are, also,
route and environmental parameters in each road. For the creation of the second
objective function, in order to calculate the RFC from a node i to a node j taking into
account the covering distance and the load of the vehicle, we were based on the FCR
of Xiao et al. [46] and, thus, the RFC is calculated from the following equation:

RFCij D cijxij.1C yij

Q
/rij D FCijrij (1)

where cij is the distance from node i to node j, Q is the maximum capacity of the
vehicle, xij denotes that the vehicle visits customer j immediately after customer i
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with load yij, and rij are real route parameters (head-wind and back-wind, uphills
and downhills, and traffic congestion) that are proposed in [17, 29].

The parameter rij is always a positive number and it may be rij ¤ rji. If the value
of rij is between 0 and 1, we consider that the route from i to j is a downhill route or
the wind is back-wind. If rij is larger than 1, we consider that the route from i to j is
an uphill route or a head-wind. The product cijrij leads to an asymmetric formulation
of the whole problem due to the fact that it may be rij ¤ rji. If the rij D 18.i; j/ that
belongs to the route, then the problem is a symmetric problem. In that case, the
RFCij D FCij.

In order to calculate the rij parameter in real life problems the following method
is used: Based on Cicero et al. [5] the roads where the vehicles can travel safe have
slope in Grades between 0 and 10 %. Also, the Beaufort Scale that is used for
the measurement of the Wind Speed consists of an integer number between 0 and
12 [7]. In the proposed model, the Grade Index (Gij) and the Beaufort Index (Bij)
are calculated in two different ways considering the road (if it is uphill or downhill)
and if the wind is head-wind or back-wind taking into account Table 1. Taking
into account the “Scania” truck’s (engine capacity: 9 L, emission compliance:
Euro 5, and 230 Hp at 1900 rpm (rounds per minute)) rpm clock the economic
driving rpm value is between 1000 rpm and 1500 rpm (green rpm area) (http://www.
topspeed.com/trucks/truck-reviews/scania/2010-scania-p-series-ar126354.html). If
the driver drives with smooth shifting, the rpm index must not exceed the 1500 rpm.
On the other hand if the driver drives with aggressive shifting, the rpm index will
exceed the 1500 rpm. The upper limit of the rpm clock is 3000 rpm. The more the
rpm index exceeds the 1500 rpm the more fuel consumption is succeeded. Also, the
less the rpm index exceeds the 1500 rpm the less fuel consumption is succeeded.

Considering the Gij, the Bij, and the rpmij, the rij parameter is calculated as
follows:

rij D Gij C Bij

2
� rpmij

1500
(2)

For example, if from a point A to a point B the FC is equal to ten units, the Grade
is 5 % uphill, the wind is 4 Beaufort head-wind, and the rpm is equal to 1500, then
the RFC is calculated as follows:

RFC D FC � r D 10 � . .1C 0:05
0:1
/C .1C 4

12
/

2
/ � 1 D 14:1 units (3)

Table 1 Grade Index and Beaufort Index

Grade Index (Gij) Beaufort Index (Bij)

Uphill Downhill Head-wind Back-wind

1+(Grade/10%) 1-(Grade/10%) 1+(Beaufort/12) 1-(Beaufort/12)

http://www.topspeed.com/trucks/truck-reviews/scania/2010-scania-p-series-ar126354.html
http://www.topspeed.com/trucks/truck-reviews/scania/2010-scania-p-series-ar126354.html
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On the other hand if the FC is equal to ten units, the Grade is 5 % downhill,
the wind is 4 Beaufort back-wind, and the rpm is equal to 1500, then the RFC is
calculated as follows:

RFC D FC � r D 10 � . .1 � 0:05
0:1
/C .1 � 4

12
/

2
/ � 1 D 5:8 units (4)

For the Multiobjective Fuel Consumption Vehicle Routing Problem
(MFCVRP), the first objective function is used for the minimization of the total
travel time. Thus, if ti1

ij is the time needed to visit customer j immediately after

customer i using vehicle i1 and si1
j is the service time of customer j using vehicle i1,

then the first objective function is [38]:

min OF1 D
n
X

iD1

n
X

jD1

m
X

i1D1
.ti1

ij C si1
j /x

i1
ij (5)

where n is the number of nodes, m is the number of homogeneous vehicles, and the
depot is denoted by i D j D 1.

The first case of the second objective function (OF2a) is used for the minimiza-
tion of the Fuel Consumption (FC) taking into account the traveled distance and the
load of the vehicle when the vehicle travels between two customers or a customer
and the depot in the case that the vehicle performs only deliveries in its route and we
consider that the rij D 18.i; j/ that belongs to the route. The vehicle should begin
with full load and after a visitation of a customer the load is reduced based on the
demand of the customer. If we consider that the most loaded is the vehicle the more
fuel it consumes, we take the following objective function [38]:

min OF2a D
n
X

jD1

m
X

i1D1
c1jx

i1
1j.1C yi1

1j

Q
/C

n
X

iD2

n
X

jD1

m
X

i1D1
cijx

i1
ij .1C yi1

i�1;i � Di

Q
/ (6)

with the maximum capacity of the vehicle denoted by Q, the i customer has
demand equal to Di (with D1 D 0), xi1

ij denotes that the vehicle i1 visits customer

j immediately after customer i with load yi1
ij , yi1

1j D
n
X

iD1
Di for all vehicles as the

vehicle begins with load equal to the summation of the demands of all customers
assigned in its route, and cij is the distance from node i to node j.

The second case of the second objective function (OF2b) is used for the
minimization of the Route based Fuel Consumption (RFC) taking into account
the route parameters in addition to the traveled distance and the load of the vehicle
when the vehicle travels between two customers or a customer and the depot in the
case that the vehicle performs only deliveries in its route. The vehicle should begin
with full load and after a visitation of a customer the load is reduced based on the
demand of the customer. If we consider that the most loaded is the vehicle the more
fuel it consumes, we take the following objective function:
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min OF2b D
n
X
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i1D1
c1jx
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1j.1C
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iD2

n
X

jD1

m
X

i1D1
cijx

i1
ij .1C yi1

i�1;i � Di

Q
/rij (7)

The constraints of the problems are the following:

n
X

jD1

m
X

i1D1
xi1

ij D 1; i D 1; � � � ; n (8)

n
X

iD1

m
X

i1D1
xi1

ij D 1; j D 1; � � � ; n (9)

n
X

jD1
xi1

ij �
n
X

jD1
xi1

ji D 0; i D 1; � � � ; n; i1 D 1; � � � ;m (10)

n
X

jD1;j¤i

yi1
ji �

n
X

jD1;j¤i

yi1
ij D Di; i D 1; � � � ; n; i1 D 1; � � � ;m (11)

Qxi1
ij � yi1

ij ; i; j D 1; � � � ; n; i1 D 1; � � � ;m (12)

xi1
ij D

�

1; if .i; j/ belongs to the route
0; otherwise

(13)

Constraints (8) and (9) represent that each customer must be visited only by
one vehicle; constraints (10) ensure that each vehicle that arrives at a node must
leave from that node. Constraints (11) indicate that the reduced load (cargo) of the
vehicle after it visits a node is equal to the demand of that node. Constraints (12) are
used to limit the maximum load carried by the vehicle and to force yi1

ij to be equal to

zero when xi1
ij D 0.

3 Parallel Multi-Start NSGA II Algorithm

In this paper, a Parallel Multi-Start NSGA II (PMS-NSGA II) algorithm is used
for the solution of the problem. The Parallel Multi-Start NSGA II (PMS-NSGA
II) algorithm is a suitable modified version of NSGA II (Non-dominated Sorting
Genetic Algorithm II) [9] for the solution of routing type problems. The algorithm
was first presented in [38] and its main characteristic is the use of a Multi-Start
method based on Greedy Randomized Adaptive Search Procedure (GRASP) [12]
for the creation of the initial population. A second characteristic is that the algorithm
uses more than one population that are evolved in parallel and a number of Pareto
fronts used (equal to the number of populations). The algorithm, also, incorporates
an external archive with the Pareto front of the whole population based on the
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crowding distance and the rank of each of the populations. Finally, in order to
increase the exploitation abilities of each member of the populations a Variable
Neighborhood Search (VNS) [15] algorithm is used in each one of them separately.

For all the algorithms, the solutions are represented with the path representation
of the tour. For example, if we have a solution with five nodes, a possible path
representation would be the “1 2 3 4 5”. If these routes do not start with node 1, we
find it and put it at the beginning of the route. This representation of solutions is used
in the main algorithm and in the local search phases of the algorithm. Only for the
calculation of the values of each objective function of the multiobjective problem,
for each solution, at first, we separate the nodes of each solution into vehicle routes
considering the time and the capacity of the vehicle constraints, for example, “1
2 3 1 4 5 1” and, then, the value of each objective function for each solution is
calculated.

Initially, it is assumed that X different initial populations with W individuals for
each population exist. Each population is separated in as many sub-populations of
w individuals as the number of the objective functions is. If K is the number of
objective functions, then w D W=K.

• The first solutions of the first 40 % of the populations are produced as follows.
The first solution of the first sub-population of w individuals is a solution that
is produced by solving a single objective problem with the VNS algorithm [38]
using the first objective function, the first solution of the second set of w is a
solution that is produced by solving a single objective problem with the VNS
algorithm using the second objective function, etc. For these first solutions,
the value of the other objective function is calculated without affecting the
procedure in this phase of the algorithm. As we would like to start with a good
solution, we increase the number of the two main parameters of the VNS (vnsmax

and localmax [38]).
• The first solutions of the next 20 % of the populations are produced as follows.

The first solution of the first sub-population of w individuals is a solution
that is produced by solving a single objective problem by using the Nearest
Neighborhood method [28] using the first objective function, the first solution
of the second set of w is a solution that is produced by solving a single objective
problem by using the Nearest Neighborhood method using the second objective
function, etc.

• The first solutions of the last 40 % of the populations are produced as follows.
The first solution of the first sub-population of w individuals is a solution that
is produced by solving a single objective problem by using a variant of GRASP
method [12] using the first objective function, the first solution of the second
set of w is a solution that is produced by solving a single objective problem by
using a variant of GRASP method using the second objective function, etc. In
this GRASP algorithm instead of using the Restricted Candidate List (RCL), we
use the following procedure: Node 1 is always used as a starting node. Then,
a random number (Rand) equal to 0 or 1 is generated. If Rand D 0, then the
nearest node to node i is visited. If Rand D 1, the second nearest node to node i
is visited.
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Table 2 How to produce the initial solutions for a two objective
functions problem

Number of individuals Method used

Individuals in the first 40 % of the populations

W w for OF1 1 VNS

2 to w/3 Swap method

(w/3)+1 to 2w/3 2-opt method

(2w/3)+1 to w Random solutions

w for OF2 1 VNS

2 to w/3 Swap method

(w/3)+1 to 2w/3 2-opt method

(2w/3)+1 to w Random solutions

Individuals in the next 20 % of the populations

W w for OF1 1 Nearest Neighborhood

2 to w/3 Swap method

(w/3)+1 to 2w/3 2-opt method

(2w/3)+1 to w Random solutions

w for OF2 1 Nearest Neighborhood

2 to w/3 Swap method

(w/3)+1 to 2w/3 2-opt method

(2w/3)+1 to w Random solutions

Individuals in the last 40 % of the populations

W w for OF1 1 GRASP

2 to w/3 Swap method

(w/3)+1 to 2w/3 2-opt method

(2w/3)+1 to w Random solutions

w for OF2 1 GRASP

2 to w/3 Swap method

(w/3)+1 to 2w/3 2-opt method

(2w/3)+1 to w Random solutions

For the calculation of the rest members of the populations we use the procedure
that follows next. For each population and for each objective function (each set of w)
the Swap method [28] is applied to the first solution and is used for the calculation
of the second to w=3 individuals while the 2-opt method [31] is applied to the first
solution and is used in order to produce the .w=3/C 1 to 2w=3 individuals. Finally,
the last individuals are produced at random. In Table 2, it is given an analytical
description of how the initial population of a 2-objective functions problem is
produced.

After the calculation of the initial population the classic steps of the NSGA II
are followed. The rank and the crowding distance [8, 9] of each member of the
populations are calculated. Then, in order to find the two parents’ solutions that
we need we make the following procedure. For each parent solution two candidate
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solutions are selected randomly from the population and the parent solution is the
one with the best rank or the best crowding distance in the case that the rank is the
same. Then, a crossover procedure between two parents is performed in order to
produce two offspring [38]. The equations for the two offspring are:

offspringl.t/ D .1 � g/ � parentm.t/C g � parentn.t/ (14)

offspringf .t/ D g � parentm.t/C .1 � g/ � parentn.t/ (15)

where g is a random number in (0,1), m; n are the indices denoting the two
parents (m; n D 1; � � � ;W) and l; f are the indices denoting the two offspring
(l; f D 1; � � � ;W). We repeat the two previous steps until W solutions (offspring)
are created. The next step is to improve the solutions using the VNS [15] algorithm
as it was proposed in [38] for the solution of the Multiobjective Energy Reduction
Vehicle Routing Problem, where the vnsmax was set equal to 20 and the localmax was
set equal to 10 in order not to increase the computational time of the algorithm. In
the next step, the parents (parenti) and offspring (offspringi) vectors are combined
in a new one (offspring0i) and, then, the members of the offspring0i are sorted using
the rank and the crowding distance as in the previous step. From these solutions,
a number of individuals for each population equal to the initial population survive
in the next iteration. At the end of each iteration, the solutions with rank equal to 1
from all populations are combined into one single population and a new Best Pareto
Front, using the rank and the crowding distance, is calculated. A pseudocode of the
algorithm is the following:

Do while the maximum number of initial Populations has not been reached:
Initialization
Selection of the number of individuals
Generation of the initial population
Evaluation of the population for each objective function
Selection of the mutation operator
Initialization of the Population’s Pareto Front
Main Phase
Do while the maximum number of generations has not been reached:

Calculate the rank and the crowding distance
For every two parents

Produce two offspring using crossover operator
Evaluation of the offspring for each objective function

Endfor
Application of VNS on each offspring
Calculate the rank and the crowding distance of all parents and offspring
Sort parents and offspring according to rank and crowding distance
Select W individuals
Evaluation of the individuals for each objective function
Update of the Pareto front

Enddo
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Return Population’s Pareto Front
Enddo
Return Best Pareto Front

In order to test the efficiency of the proposed algorithm, another version of the
NSGA II is used to compare it with the proposed algorithm. The difference of
this variant with the PMS-NSGA II is that in this variant one population of initial
solutions is created. The Nearest Neighborhood algorithm is used for the creation
of the first member of the initial population of w individuals and is improved using
the proposed variant of VNS [38]. The Swap method [28] is used for the calculation
of the second to w=3 individuals while the 2-opt method [31] is used in order to
produce the w=3C 1 to 2w=3 individuals. All the other members of the population
are created at random. The algorithm continues as the proposed algorithm does.

4 Evaluation Measures

The evaluation measures that are used for the comparison of the Pareto fronts of the
two methods are the same measures that are used in [38] except the Spacing [39]
that is replaced from � measure.

In this paper, as the optimum Pareto front is not known, four different measures
are used:

• The range to which the front spreads out is described by the following equa-
tion [48]:

Mk D
v
u
u
t

K
X

iD1
maxfk p0 � q0 kg (16)

where K is the number of objectives and p0 and q0 are the values of the objective
functions of two solutions that belong to the Pareto front.

• The number of solutions of the Pareto front (L).
• The � measure includes information about both spread and distribution of each

solutions [36]. For the calculation of the � measure the following equation is
used:

� D dsf C dsl CPjSj�1
iD1 jdisti � distj

dsf C dsl C .jSj � 1/dist
(17)

where S is the number of the intermediate solutions between the extreme
solutions, dsf and dsl are the Euclidean distances between the extreme solutions
[36] and the intermediate solutions [36] of the obtained non-dominated set [9],
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disti is the distance from an intermediate solution i to the next intermediate
solution, i D 1; 2; : : : ; .S � 1/, and dist the average value of all disti distances.

• The Coverage [48] is calculated for a pair .A1;B1/ of approximation sets of
Pareto solutions of two different algorithms. In this metric the fraction of
solutions in B1 that are weakly dominated by one or more solutions in A1 is
calculated. The Coverage measure (C measure) is calculated by the following
equation:

C.A1;B1/ D jfb 2 B1I 9a 2 A1 W a � bgj
jB1j : (18)

5 Computational Results

The algorithm was implemented in Visual C++ and it was tested in a set of instances.
As there was not available a set of benchmark instances in the literature for the
problem solved in this paper, we have to generate a number of instances that are
also have been used in [38]. As we didn’t want to test the algorithm in random set
of benchmark instances, we created a number of sets based on instances for the
solution of the Traveling Salesman Problem and the VRP. More precisely, from the
TSPLIB five instances (kroA100, kroB100, kroC100, kroD100, and kroE100) with
100 nodes were selected. However, these instances, as they are used for the solution
of the Traveling Salesman Problem, include only data for the coordinates of the
nodes. All the other data needed for the Multiobjective Fuel Consumption VRP
(capacity, time limits, and demands) were taken from the third instance (par3) of the
classic Christofides benchmark instances [4] used for the solution of the Capacitated
Vehicle Routing Problem (CVRP).

In each new test instance that was created, a combination of one or more instances
from the five kro#100 instances (where # corresponds to A or B or C or D or E) with
the par3 instance is performed. In this new generated instance the coordinates are
taken from the corresponding kro#100 data set and the corresponding demand of
each of the nodes was taken from the par3 instance. Also, the maximum tour length,
the service time, and the capacity of each vehicle were taken from the par3 instance.
We created 2-objective functions problems by combining these five instances. For
example, in order to create a 2-objective functions asymmetric problem using
the OF1 and the OF2b, we used kroA100par3, kroB100par3, kroC100par3, and
kroD100par3 as the data used for all objective functions, respectively. More
precisely, the first objective function is used as described in Sect. 2 and the necessary
data are taken from kroA100par3 and the second objective function (OF2b) is
used as described in Sect. 2 and the necessary data are taken from kroB100par3,
kroC100par3, and kroD100par3 as it is described in the following. In order to
create the route parameters of the network, we have to create an asymmetric table
with positive numbers. In order to create those numbers we divided the route
parameters’ table into two parts. In the first part all elements that are downside
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of the main diagonal are calculated using the Euclidean distance between the nodes
corresponding to the kroC100par3 set and in the second part all elements that are
upside of the main diagonal are calculated using the Euclidean distance between
the nodes corresponding to the kroD100par3 set. Then, each element of the route
parameters’ table is divided with the corresponding element of a table created
by calculating the Euclidean distance between the nodes corresponding to the
kroB100par3 set. Finally, the Euclidean distance between the nodes corresponding
to the kroB100par3 set corresponds to the distance matrix.

In case of solving a 2-objective functions symmetric problem with first objective
function the OF1 and second objective function the OF2a (OF1–OF2a) the com-
bination “A–B” in all the following tables and figures (in all tables and figures A
corresponds to kroA100par3, B corresponds to kroB100par3, and so on) means that
for the new generated instance the Euclidean distance between the nodes using the
kroA100par3 corresponds to the time duration between the nodes and the Euclidean
distance between the nodes using the kroB100par3 corresponds to the distance
between the nodes. In case of solving a 2-objective functions asymmetric problem
with first objective function the OF1 and second objective function the OF2b (OF1–
OF2b) the combination “A–B–CD” means that the Euclidean distance between the
nodes using the kroA100par3 corresponds to the time duration between the nodes,
the Euclidean distance between the nodes using the kroB100par3 corresponds to the
distance between the nodes, and the Euclidean distance between the nodes for the
instances kroC100par3, kroD100par3, and kroB100par3 is used for the calculation
of the route parameters table as it was explained previously.

A number of different alternative values for the parameters of the algorithm
were tested and the ones selected are those that gave the best computational results
concerning both the quality of the solution and the computational time needed to
achieve this solution and, also, taking into account the fact that we would like to test
the algorithms with the same function evaluations. Thus, the selected parameters for
all algorithms are given in the following:

Single population NSGA II

• Number of individuals: 1000.
• Number of generations: 500.
• Number of initial populations: 1.

Parallel Multi-Start NSGA II

• Number of individuals for each initial population: 100.
• Number of generations: 500.
• Number of initial populations: 10.

After the selection of the final parameters, the two versions of the Non-dominated
Sorting Genetic Algorithm II (NSGA II) were tested for ten combinations for two
and three objective functions, respectively. In the following tables and figures, the
comparisons performed based on the four evaluation measures presented previously
and the Pareto fronts are given. More precisely, we use the number of solutions (L)
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Table 3 Results of the four measures for the two algorithms and for ten
instances for OF1–OF2a

Objective Function 1–Objective Function 2a

Single population NSGA II Parallel Multi-Start NSGA II

L Mk � C L Mk � C

A–B 49 524:73 0:71 0:67 55 538:68 0:55 0:18

A–C 60 547:70 0:63 0:30 66 531:08 0:64 0:47
A–D 51 519:59 0:53 0:27 56 518:08 0:64 0:51
A–E 47 521:57 0:60 0:22 41 518:20 0:57 0:66
B–C 58 520:09 0:57 0:10 58 516:10 0:60 0:78
B–D 61 512:11 0:68 0:37 62 512:60 0:50 0:57
B–E 61 527:52 0:62 0:44 62 541:17 0:59 0:36

C–D 51 514:01 0:67 0:33 51 520:74 0:64 0:37
C–E 60 527:87 0:55 0:12 49 537:60 0:77 0:75
D–E 64 528:72 0:57 0:52 66 539:37 0:59 0:42

Table 4 Results of the four measures for the two algorithms and for ten instances
for OF1–OF2b

Objective Function 1–Objective Function 2b

Single population NSGA II Parallel Multi-Start NSGA II

L Mk � C L Mk � C

A–B–CD 59 538:37 0:62 0:33 70 545:13 0:66 0:36
A–C–BD 49 533:50 0:62 0:48 66 543:23 0:65 0:35

A–D–BE 58 538:93 0:61 0:26 54 527:69 0:59 0:53
A–E–BD 58 538:83 0:63 0:26 54 533:71 0:70 0:60
B–C–AD 63 517:91 0:59 0:26 46 527:89 0:60 0:40
B–D–AC 55 532:20 0:64 0:26 53 527:31 0:68 0:69
B–E–AD 57 534:61 0:55 0:51 63 537:84 0:60 0:35

C–D–AE 48 538:25 0:57 0:44 45 539:32 0:62 0:48
C–E–AB 46 515:14 0:68 0:51 51 530:63 0:65 0:33

D–E–BC 49 515:16 0:61 0:33 61 503:39 0:63 0:49

in the non-dominated set, the maximum extend in each dimension (Mk), the spread
of solutions (�), and the Coverage (C measure) for evaluation measures.

In Table 3, the results of the four measures for the two algorithms and for
ten combinations of instances are presented when a 2-objective functions problem
is solved using the objective functions OF1 and OF2a, while in Table 4 the
corresponding results when a 2-objective functions problem is solved using the
objective functions OF1 and OF2b are given. In Tables 3 and 4 with bold letters we
denote the best values found for every metric in each instance. In the four figures
(Figs. 1, 2, 3, and 4) two representative Pareto fronts for each one of Tables 3 and 4
are given, respectively. More precisely, in Figs. 1 and 2 two Pareto fronts from the
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Fig. 1 Pareto front for the instance kroA100par3–kroC100par3 (A–C) for OF1–OF2a
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Fig. 2 Pareto front for the instance kroD100par3–kroE100par3 (D–E) for OF1–OF2a

instances of Table 3 are given while in Figs. 3 and 4 the two Pareto fronts are from
the instances corresponding to Table 4.

In general, it is preferred to find as many as possible non-dominated solutions,
the expansion of the Pareto front to be as large as possible which shows that better
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Fig. 3 Pareto front for the instance kroA100par3–kroB100par3–kroC100par3–kroD100par3
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solutions have been found in every dimension, the spacing of solutions to be as
smaller as possible which means that the non-dominated solutions are close between
them, and the Coverage measure to be as large as possible. For the calculation of the
Coverage measure C.A1;B1/, A1 corresponds to the Pareto solutions of the Single
population NSGA II and B1 corresponds to the Pareto solutions of the Parallel Multi-
Start NSGA II.

In Table 3, the results of the two methods in a two objective problem using
OF1–OF2a objective functions are presented. Regarding the instances, the proposed
algorithm (Parallel Multi-Start NSGA II) performs better than the other in all
the measures except the � measure that performs equal with the other method.
According to the number of Pareto solutions L, the proposed algorithm performs
better than the other at six instances. Taking into account the Mk measure and
the C measure the proposed algorithm performs better at six and eight instances,
respectively.

In Table 4, the results of the two methods in a two objective functions problem
using OF1–OF2b objective functions are presented. In the ten instances, the
proposed algorithm (Parallel Multi-Start NSGA II) performs better than the other
for two measures. For the number of Pareto solutions measure, L, the two algorithms
have similar performance. Taking into account the Mk measure and the C measure
the proposed algorithm performs better at six and seven instances, respectively.
Considering the � measure, the Single population NSGA II algorithm performs
better than the proposed at eight instances.

In total, according to the results of all the previous tables the proposed method,
Parallel Multi-Start NSGA II, performs better at the three tested measures. More
specifically, the proposed method performs better at the 55 % of the instances for
the L and for the � measures, it performs better at 35 % of the instances. Also, it
performs better at the 60 and 75 % of the combinations for the Mk and C measures,
respectively.

6 Conclusions and Future Research

In this paper, the Multiobjective Fuel Consumption Vehicle Routing Problem is
formulated and solved using a variant of NSGA II algorithm, the Parallel Multi-Start
NSGA II. In this work, our main target was to minimize the fuel consumption that
a vehicle consumes during the routes in addition with the minimization of the total
travel time. In the formulation the real route conditions were added and, thus, the
problem was formulated as an asymmetric VRP. A variant of the NSGA II algorithm
was proposed for the solution of the problem and it was compared with a simpler
version of NSGA II. The main difference of the two algorithms is the Parallel Multi-
Start strategy that was proposed in order to have an efficient initial population for the
NSGA II algorithm and, thus, to converge faster in better Pareto fronts. A number
of instances were created for the comparisons of the two algorithms and the results
produced by the proposed algorithm proved the effectiveness of the algorithm.
Our future research will be focused on the application of the whole procedure in
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more difficult Multiobjective Routing Problems and the incorporation of the Parallel
Multi-Start in other Evolutionary Multiobjective Optimization algorithms in order
to see its effectiveness in different from NSGA II algorithms.
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Abstract A new location routing problem (LRP) named manifold location routing
problem (MLRP) and the corresponding solution technique were introduced to
the scientific and engineering communities for a single facility (1-MLRP) in
Tokgöz et al. (Computational Management Science. Springer, Berlin, 2014). MLRP
is an LRP when the surface is assumed to be a Riemannian manifold surface
(RMS). An example of an RMS is the surface of the Earth, where the roads
on this surface are geodesics. The shortest path and the distances between two
locations on RMS can be determined by using the shortest path geodesic distances.
In this work, the formulation of the 1-MLRP, the underlying theory used for
introducing 1-MLRP, and a heuristic algorithm to solve 1-MLRP are explained. In
addition, the generalization of 1-MLRP introduced in Tokgöz et al. (Computational
Management Science. Springer, Berlin, 2014) from a single-facility to the two-
facility case is implemented by introducing the 2-facility MLRP (i.e., 2-MLRP).
The implementation of a method called linked chain method employed in Tokgöz
et al. (Computational Management Science. Springer, Berlin, 2014) to determine
the vehicle routes from the potential locations of the facilities is also explained.
Riemannian geometry and the meaning of geodesics on Riemannian manifolds are
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1 Introduction

In supply chain networks, determining locations of facilities and the item distribu-
tion to customers from these facilities have an important role in determining cost
effective operations [31]. Determination of the facility locations is a well-known
problem in the literature, named facility location problem (FLP) [8]. The distribution
of items via vehicles is known as the vehicle routing problem (VRP) [15]. Solving
VR and FL problems simultaneously can yield a robust facility location and
reduced-cost distribution within the customer–supplier network [24]. The combi-
nation of FLP and VRP formulates a new problem, the so-called location routing
problem (LRP) [19]. The literature on the LRP expands to cover determination
of facility locations in both discrete (see, for example, [3, 5, 8, 20, 28, 32]) and
continuous (see, for example, [16, 17, 26, 27, 29]) spaces with capacitated (see,
for example, [4, 21]) and incapacitated (see, for example, [7]) facility assumptions.
Customers are assumed to order full-truckload in location analysis that is not always
practical in reality. In a case when a customer sits on more than one route within
the network, it is natural to obtain a sub-optimal solution [23]. Applications of
LRP in supply chain research include but not limited to grocery store location and
distribution [3, 28], and general goods distribution [20].

One of the aims of the continuous LRP formulated for a single facility in the
planar setting is to minimize the total Euclidean distance between the facility and
customers that is known as the Weber problem [30]. In the case of multiple facilities,
the corresponding problem is known to be the multi-facility Weber problem [7].
Weber problem (WP) is an NP-hard problem in continuous space [29]. One way of
solving WP is by employing the iterative procedure of Weiszfeld [33]. An obstacle
of continuous WP solution is the feasibility of the location determined for the
facility. For instance, the solution of a WP can suggest to locate a grocery location on
a lake within the network domain. The solutions obtained for WP can be either used
as the bounds for the feasible solution or for approximating the discrete location
solution (see, for example, [11]).

A limited number of heuristic solutions are obtained for the planar LRP using
neural networks. In [26, 27], planar single-facility LRP is studied by using two
similar approaches assuming inter-connected neuron ring connection between the
customers and the facility. An iterative heuristic solution for the multi-depot planar
LRP is developed in [25] assuming capacitated vehicles and bounded tour lengths
for the vehicles. A hierarchical heuristic-based method is employed in [16] that
employs continuous input from the routing results while systematically improving
the facility location using the heuristic method.

A problem named manifold location routing problem (MLRP) and the cor-
responding solution technique are introduced to the scientific and engineering
communities for a single facility (1-MLRP) in [31]. MLRP is an LRP on Rie-
mannian manifold surface (RMS). MLRP is a generalization of a set of existing
real life LRP problems: The surface of Earth is an RMS where the roads on this
surface are geodesics. The shortest path and the distances between two locations
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on RMS can be determined by using the shortest path geodesic distances. Noting
that the known techniques to solve the LRP in the literature are only obtained
for the Euclidean space by using planar and spherical surfaces and distances (see,
for example, [2, 10]), MLRP improves the existing theory on LRP and therefore
the corresponding results in applications [31]. In the case where the surface is
the Euclidean plane, the curvature of the RMS is 0 and the MLRP corresponds
to LRP on the Euclidean space. When the manifold surface is a sphere’s surface,
the curvature of the RMS is 1 and this MLRP corresponds to LRP on a sphere.
A heuristic algorithm is introduced to solve the proposed LRP on RMS with
computational results displayed for a particular scenario in [31]. The numerical
results obtained for the MLRP introduced in [31] are incomparable with the ones
known in the literature for the traditional LRP because of the change in the surface
and distance assumptions. In this work, the formulation of 1-MLRP, the underlying
theory used for introducing 1-MLRP, and the heuristic algorithm introduced in [31]
to solve 1-MLRP will be explained.

In addition, the generalization of 1-MLRP introduced in [31] from a single-
facility to two-facility case will be implemented to introduce the 2-facility MLRP
(i.e., 2-MLRP). The implementation of a method called linked chain method (LCM)
employed by Tokgöz et al. [31] to determine the vehicle routes from the potential
locations of the facilities will be also explained. Riemannian geometry and the
meaning of geodesics on Riemannian manifolds will be covered briefly. 2-MLRP
formulation with the corresponding algorithmic solution will be implemented. The
implementation of 2-MLRP in the network theory will be explained in the last
section.

2 Riemannian Manifolds and Geodesic Distances

The geometry of topological manifolds was studied by Bernhard Riemann in
the nineteenth century [22]. In Riemannian geometry, the metric properties vary
from point to point (see, for example, [9]). A Riemannian manifold (RM) is a
differentiable manifold M in which each tangent space is equipped with an inner
product, h, a Riemannian metric, which varies smoothly from point to point. Well-
known examples of Riemannian manifolds include the n-dimensional sphere Sn, and
n-dimensional Euclidean space R

n, for all n � 1. The curvature of a RMS indicates
the flatness of the local region of the manifold surface. The curvature of Rn is zero
in the entire space due to the flatness. The curvature of Sn is 1 on the entire manifold
surface. If the curvature of a surface changes from flat to spherical surface, then
the curvature changes from 0 to 1 in the local neighborhood. Every Riemannian
manifold can be considered as a local Euclidean space. This consideration is
possible by using a one-to-one and onto map  W U � M ! R

n called
homeomorphism. A homeomorphism is a mapping of each open neighborhood U
in the topology of the manifold M to an open neighborhood  .U/ in the Euclidean
space (see, for example, [9, 14].)
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A connected Riemannian manifold carries the structure of a metric space whose
distance function is the arc-length of a minimizing geodesic. Let M be a connected
Riemannian manifold and 	 W Œa; b� ! M be a parameterized differentiable curve
in M with the velocity vector 	 0. A path minimizing geodesic is the shortest path
curve between two points on RMS. For instance, a geodesic on the surface of a
sphere between the two poles is a great circle. The length of a geodesic 	 on an
RMS between customers ci and cj (i ¤ j) can be calculated by using the geodesic
distance formula

L
�

	ij
� D

Z

M

�
�r	ij

�
� d�

where r is the gradient operator and� is the standard measure on M. In this formula
every geodesic distance depends on the local curvature of M. For more details on
RMS and geodesics see [9].

In this work, the shortest path geodesic distances on RMS are calculated to
determine the shortest path distances between the customers and the facilities. The
geodesics correspond to the curves determined between the facilities and customers
on the RMS. The total cost of visiting all the customers is
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where Mij represents the local region of M between customers xi and xj: The open
sets Bij � R

2 correspond to Mij � M for all i and j noting that M is locally equivalent
to Euclidean space. The facilities are located on a three- dimensional RM therefore
the tangent space for each local neighborhood on the manifold is R2. Geodesics on
each Bij are obtained by projecting the local portion of the geodesic from RMS to
Bij in R

2: Therefore the total distance traveled to visit all the customers is
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2 corresponding to the geodesic 	ij on M and Bij is the
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In the case when the geodesic intersects with a domain constraint on the RMS,
the distance is calculated by considering the path on the boundary of the domain
constraint.

The distances between customers and the single facility to be allocated will
be measured on compact connected Riemannian manifold surfaces (CCRMS); a
generalization of planar surfaces. The shortest path geodesic distances are the
shortest distances between the customers and a possible location of the facility to
be allocated. Manifold Weber problem (MWP), restatement of the Weber problem
for manifold settings, is introduced in [31] to determine the shortest path geodesics
between nodes. The distance calculations used for MWP is a generalization of the
planar distances employed for the WP [30]. The distance calculation method used
for MLRP is a generalization of the planar distances employed by other researchers
to solve the existing facility allocation problems. For instance, consider a road path
that starts changing from flat surface to a mountain surface; this continuous change
in the surface results in changing the curvatures from zero (corresponding to the flat
surface) to a positive curvature at each local neighborhood throughout the surface
towards the mountain. In this case, the geodesics are the roads that connect certain
intersections in the local regions. The shortest path geodesic between two locations
on a manifold’s surface is determined by determining all the geodesics between
them.

Throughout this work the manifold domain M is assumed to be a compact
connected RMS with non-negative curvature. This is a realistic assumption noting
that there can be lakes, mountains, rivers, etc. that we call “obstacles” in the
domain causing infeasible facility allocation. We assume only vehicles to be used for
transportation and there exists at least one path (e.g., road) between the customers
and facilities. Let Vi be a family of finitely many open sets representing the obstacles
in M where facilities cannot be allocated geographically in the interior of these
sets. Vi are assumed to be open noting that the facilities can be allocated on the
boundaries of Vi. Therefore the customer and facility allocation domain on the
RMS is

D D M �S

i2I
Vi , I is a finite index set

Figure 1 is an example of a domain with obstacles represented by squares painted
in blue.

Figure 2 displays the projected locations of the customers from RMS to 2D
surface by using orthogonal projection which is a homeomorphism. Figure 3
displays the customer locations displayed in Fig. 2 in 3D without the RMS where red
and blue diamonds represent the classified customers. The customer classification
is due to assuming two facilities to serve two different sets of customers.
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Fig. 1

Fig. 2

3 MLRP Algorithmic Solution: Single-Facility Case

Tokgöz et al. [31] assumed

• Customers and the facility are located on a CCRMS;
• Distances between the customers and possible locations of the facility are

calculated by using geodesic distances;
• Customers have known demands and locations;
• Vehicles are capacitated and homogeneous;
• Facility to be allocated is incapacitated;
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• All the vehicles have the same capacity;
• The number of vehicles to be operated does not exceed the upper bound of the

number of vehicles;
• The number of vehicles to be used will be derived as a by-product of the solution;
• There is no fixed cost for vehicles; and
• Each vehicle route starts and finishes at the facility to be allocated.

The following notations are used

• M W CCRMS corresponding to the local region on Earth’s surface;
• C W Set of customers ci, i 2 I D f1; 2; : : : ;mgI
• ' W Homeomorphism defined for projection from m to R

2I
• ak W Customer locations on M with the coordinates ck D .' .xk/ ; ' .yk// on R

2I
• a0 W Facility location on M with the Euclidean coordinate c0 D .' .x0/ ; ' .y0//

on R
2I

• E W Combined set of customers and the facility with the facility indexed to be 0I
• 	ij W Parametric geodesic on M connecting customers’ ai and ajI
• V W Set of vehicles v D 1; 2; : : : ; n with jVj � nI
• vi

max W The maximum capacity of vehicle viI and
• D W The demand set with di 2 D corresponding to the demand of customer ci

2 C, i 2 II

ıijk D
�

1 if i and j are connected via route k
0 otherwise
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to introduce the single objective function of the 1-MLRP

min z D
X

i;j2E
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v2V
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�
�	 0ij .t/

�
� dt:ıijv (4)

that is designed to minimize the total transportation cost on the manifold setting M
subject to the constraints
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controlling the traffic flow for visiting each customer by the same vehicle;

X

i2I

X

j2C

ıijvdi � vi
max; 8v 2 V (5)

the maximum capacity of the vehicles is violated during the transportation;

X

i2U

X

v2V

X

j2E�U

ıijv � 1; 8U � C (6)

declines the existences of subtours ensuring that there exists at least one vehicle
leaving any subset of customers;

X

i2E

X

v2V

ıijv D 1; 8j 2 C (7)

indicating that each customer belongs to one and only one tour;

X

j2E

ı0jv � 1; 8v 2 V (8)

ensuring each vehicle leaving the facility either once or never used for transportation
noting that not all the vehicles are necessarily used for transportation;

ıijv 2 f0; 1g; 8i; j 2 EI v 2 V

are the decision variables conditions. This proposed 1-MLRP is a mixed integer non-
linear programming problem (MINLP) with 3 continuous variables and n.m C 1/2

discrete variables. Two of the continuous variables are the locations of the customers
in the Euclidean space and the third continuous variable is the parameter t used
for the geodesics on the manifold M. A heuristic algorithm is developed to solve
1-MLRP in [31] under certain assumptions. The proposed algorithm required
projecting customer locations and the geodesics between customers from M to
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R
2 as well as projecting the facility locations from the manifold surface R

2 to
M by using a homeomorphism. The geodesic distances between customers are
calculated on the manifold surface by using the metric defined on M. These
geodesic distances include all possible roads between customers within the compact
connected domain on the surface of M. These lengths correspond to the edge
lengths of the road network formed by the customers in the Euclidean space.
Therefore the metric choice on M determines the metric to be used in the Euclidean
space. A homeomorphism can be employed to project the customer locations and
the geodesic distances from M to R

2.
The second step of the solution algorithm of 1-MLRP is designed to solve the

LRP in the Euclidean space by employing a heuristic approach [31]. Weiszfeld’s
(1937) formula [33] is used in [16] for determining the initial location of the facility.
Ellipsoids are used for heuristic calculations that also formed the topology of the
Euclidean space in [16]. In [31] open balls are assumed to form the topology of Rn

for heuristic calculations. The ease of using open balls is calculating the radius of
the circles rather than calculating two different radii for an ellipsoid. The open-ball
heuristic method used in [31] is called the LCM: A cost effective facility allocation
after chaining z open balls with the center of the ith open ball being the best location
of the center of the step .i � 1/st open ball, i D 0; 1; : : : ; z. The center of each Bi is
determined by solving the routing problem within the disk obtained by the interior
of Bi for all i. The radius of the circle Bi is determined by calculating the distance
between the ith and .i � 1/st open balls. The radius of each consecutive circle is
modified dynamically. The stopping criterion for adding circles to the LCM is when
a sufficiently small distance between the .z � 1/st and zth circles is obtained.

In [31], third and last step of the algorithm is defined to project the results
obtained in the second step from R

2 to M for determining a feasible location of
the facility on M. The cost effective facility location determined on R

2 may or may
not be a feasible location on M, therefore a local neighborhood search is necessary
on M for the best allocation of the facility in the case when the solution is infeasible
on M.

3.1 Algorithmic Solution for 1-MLRP

In this section, the steps of the algorithm to solve 1-MLRP, computational complex-
ity of the algorithm, and the heuristic methodology to solve the 1-MLRP introduced
in [31] will be explained. This methodology employed to solve the 1-MLRP is
particularly important to understand the heuristic algorithm solution introduced for
2-MLRP.
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3.2 Computational Complexity

LRP in the Euclidean space is an NP-hard problem noting that both routing and
location problems are NP-hard on planar surfaces [29]. Therefore 1-MLRP is also
an NP-hard problem noting that the special case of the MLRP is the Euclidean space
when the curvature of the RMS is zero. The two main computational challenges in
the algorithmic solution are calculating the lengths of the pathways between the
customers on the RMS and solving the routing problem in the Euclidean space at
every circle generated by the LCM. On one hand the algorithm proposed has the
advantage of calculating a radius per circle compared to the algorithm of Manzour-
al-Ajdad et al. [16] with computations including two radii for each ellipsoid, on
the other hand the computational algorithm proposed for 1-MLRP in [31] includes
the challenge of calculating the objective function on the manifold surface M rather
than R

2. The time complexity of projection from R
2 to M and determining the best

location of the facility on the manifold surface can be a constant, therefore can be
negligible in computational complexity calculations in the case when the feasible
solution is within a close region on the RMS. It can also be the complexity of
the proposed algorithm in the case when the feasible location of the facility is too
far from the solution on the CCRMS after using the solution algorithm for 1-MLRP.

3.3 Algorithmic Solution Steps to Solve 1-MLRP

All possible pathway lengths between customers can be calculated and the cor-
responding geodesic functions can be pre-determined by using geographic infor-
mation systems (GIS). The geodesics determined between customers on the RMS
are projected from M to R

2 and these lengths are assigned to be the edge lengths
between the customers on the customer network formed in R

2. It is important to
note that the metric used on the manifold defines the metric used on the RMS. This
is due to the fact that the norm used in [31] for the distance calculations is the norm
used on the projected Euclidean surface.

3.4 Facility Locations on R2

The initial location of the facility to be allocated is determined by using Weiszfeld
formula [33] for circular objects in [31]. The corresponding point generation used
within each circle of the LCM is given by an algorithm. According to this algorithm,
the points chosen in each circle are particularly chosen in different directions for
homogenous point distribution. Homogenous distribution of points is necessary
since the best location of the facility can be in different directions within each circle.
The choice of homeomorphism ' used for the projection from M to R

2 can yield
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to a single circle with the center of the circle being the location of the facility. In
the infeasible case when the customer and facility locations are the same, this non-
optimal solution will be recovered by reallocating the facility at a distance from the
customer.

The next step of the algorithm is solving the routing problem from the initial
location of the facility to determine the possible routes to the customers. These local
areas are circles in R

2 corresponding to the local areas on the surface of M since M
is a locally Euclidean space.

After determining the best location of the facility within the first circle by solving
the routing problems for t1 points (locations), the next step of the algorithm is
application of the LCM by determining the circles k D 2; 3; : : : ; z. Consecutive
circles are generated by using the radius determined for each circle. At every kth
step of the LCM, there are tk numbers within the disk region formed by the interior
of the circle k, k D 2; : : : ; z, to solve the corresponding routing problem. Following
the vehicle and facility assumptions for the MLRP, the main objective of the routing
problem in [31] was to find the minimal length route for each one of the tk points
generated at the kth circle. The route duplication between customers i and j is
prevented by using the technique of Altinel and Oncan [1] with computational
complexity O .m log .m//. Circle generation used for the LCM continues until a
sufficiently small circle with radius (if exists) is obtained. This condition is a result
of determining a sufficiently small distance between two locations. Determination
of the best possible center of the last circle with this radial condition is the final step
of the LCM on the Euclidean surface. The numbers of points chosen within each
consecutive circle used for the LCM are forced to decrease by using an algorithm
yielding to the convergence of the circle radii for a randomly chosen sufficiently
small 
 [31].

It is important to note that the final location of the facility determined is close to
the best feasible solution that does not necessarily reflect the best feasible location
of the facility. The projection of the determined solutions from R

2 to M is the last
step of the solution to be explained next.

3.5 Projection from R
2 to M

The last step of the algorithm developed in [31] is to map the shortest path
distribution routes and the facility location back to the RMS by using the inverse
map '�1 of the homeomorphism. Customer location data is pre-existing on M,
therefore it is not necessary to map the customer data from the Euclidean surface
back to the RM surface. A discrete feasible location close to the infeasible facility
location solution is determined on M in the case of an infeasible facility location on
M after projection from R

2 to M:
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4 Manifold Location Routing Problem: 2-Facility Case

Two-facility case of the MLRP (2-MLRP) can be particularly important for
networks in which production and distribution require two facilities to be located.
In general terms, one of the two facilities in the network can be employed as the
receiver from the suppliers/providers while the other facility is assumed to serve to
the customers/clients. In this case we assume the domain of the MLRP to be

D D M � S

i2I1

Vi

4.1 Statement of 2-MLRP

In this section we introduce the assumptions, notations, and parameters to formulate
a 2-MLRP:

Assumptions

1. Customers have known demands and locations;
2. Two types of customers x and y with f1 serving customers of type x; and f2 serving

customers of type yI
3. Capacitated homogeneous vehicles;
4. Facilities are incapacitated in the items that they are required to distribute to

their customers and capacitated in the other items that they are not required to
distribute;

5. All vehicles have the same capacity;
6. The number of vehicles to be operated does not exceed the upper bound of the

number of vehicles;
7. There is no fixed cost for vehicles;
8. Each vehicle route starts and finishes at the facility that they initiated its route;

and
9. Facilities f1 and f2 are required to be allocated as close as they can be to each

other.

The goal of 2-MLRP is to find the best location of the two facilities with the
minimal transportation cost by determining the vehicle routes on RMS.

Notations

• C1 W Set of customers x
• C2 W Set of customers y
• C D C1 [ C2
• F W Set of facilities fi; i D 1; 2

• @a W Demand of customer a
• v W Maximum capacity of each vehicle
• Vi W Set of vehicles vi D 1; : : : ; ni with �i being the maximum number of vehicles

for facility fi
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Parameters

• xi D �

l1i ; r
1
i

�

and yj D
	

l2j ; r
2
j




: Customer coordinates

• fk D .pk; qk/ W Coordinates of the facility fk; k D 1; 2

• 	ij .t/ W The parametric geodesics connecting xi; xj; f1 2 C1 [ ff1g ; 1 � i; j � n1
• ˛ij .t/ W The parametric geodesics connecting yi , yj; f2 2 C2[ff2g ; 1 � i; j � n2
• ˇij .t/ W The parametric geodesics connecting the two facilities f1 and f2

�ijk D
�

1 if node i follows node j on route k
0 otherwise

Using the notation above, the 2-MLRP problem to be solved on D is the following
3-objective mixed integer non-linear programming problem (MINLP):

min
X

i;j2C1[ff1g

X

k2V1

Z

D

�
�	 0ij .t/

�
� dt:�ijk (9)

min
X

i;j2C2[ff2g

X

k2V2

Z

D

�
�˛0ij .t/

�
� dt:�ijk (10)

min
Z

D

�
�ˇ0ij .t/

�
� dt (11)

subject to

X

i2C[F

X

k2Vs

�ijk D 1 8 j 2 C [ F and s D 1; 2 (12)

X

j2C

@j

X

i2C[F

�ijk � v 8 k 2 Vs and s D 1; 2 (13)

X

i2C[F

�ijk �
X

i2C[F

�jik D 0 8 j; k (14)

X

j2C[ffsg
�sjk � 1 8 k and s D 1; 2 (15)

X

k2C

X

i2S

X

j2.C[F�S/

�ijk � 1 8S 
 C and fftg � F (16)

�ijk 2 f0; 1g for 8i; j 2 C [ fftg , k 2 Vt (17)

.mi; zi/ &
�

lj; rj
� 2 D1 (18)
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The objective functions (9) and (10) are designed for minimizing the total
transportation costs for facilities f1 and f2, respectively. Objective function (11)
determines the minimum distance between the two facilities to be allocated.
Constraints (12) indicate that every customer belongs to exactly one tour for each
facility. Constraints (13) are designed to prohibit agent capacity violation for each
facility. Constraints (14) represent the flow conservation ensuring that every node
is entered and left by the same agent for each customer network. Constraints (15)
represent that any given agent should leave the corresponding facility depot at most
once. Constraints (16) show that for any subset of customers in each network there
is at least one agent leaving the subset guaranteeing that subtours cannot exist.
Constraints (17) and (18) are related to the nature of the decision variables.

5 Solution Methodology for 2-MLRP

Sequential, iterative, and hierarchical methods have been employed to solve LRP in
R
2 (see, for example, [16, 25, 33]). The hierarchical method has the advantage of

determining a solution to the LRP by finding a solution to the vehicle routing and
FLPs simultaneously in comparison to the sequential and iterative methods. Ellipses
are used for heuristics yielding to computationally effective results compared to
the methods known in the literature [16]. Hierarchical solution approach follows
determining the location of the facility within a region and then solving the VRP.
The sequential and iterative methods are compared in [23] and concluded that the
iterative method can yield more accurate solutions. In this section the main steps of
the heuristic algorithm used for solving the formulated 2-MLRP will be explained.

5.1 Main Steps of the Heuristic Algorithm

The first step of the heuristic algorithm we employed to solve the 2-MLRP is
projection of the customer locations and geodesic distances from M to R

2 by using
a homeomorphism. At this step, the geodesic distances between the customers
are calculated on the manifold surface by using the metric defined on M. These
geodesic distances include all possible roads between customers on the CCRMS.
These lengths correspond to the edge lengths of the road network formed by the
customers in the Euclidean space, therefore the metric choice of M determines the
metric to be used for the Euclidean space. The homeomorphism used in the first step
is also used to project the customer locations and the geodesic distances from M to
R
2 after solving the MWP for each customer sets C1 and C2.
The third step of the algorithm is to initiate the locations of the two facilities f1

and f2 by using a formula similar to the one used in [31] for 1-MLRP.
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The fourth step of the algorithm is designed to solve the LRP in the Euclidean
space by employing a heuristic approach. We employ open balls Bi as the topology
for the heuristic calculations and use the LCM as explained in Sect. 3.4.

Fifth and last step of the algorithm is projecting the results obtained in the fourth
step of the algorithm from R

2 to M and determining feasible locations for the
facilities on M. The cost effective facility location determined on R

2 may or may
not be feasible on M, therefore a local neighborhood search is necessary on M for
the best allocation of the facility in the case when the solution is infeasible on M.
The main steps of the algorithm are summarized in the following Section and the
details of it will be explained in Sect. 5.

5.2 Heuristic Algorithm for the Proposed 2-MLRP

The following algorithm with a heuristic solution approach will be used to solve the
2-MLRP stated in the previous section.

2-MLRP Heuristic Algorithm

First Step Projections from Mto R
2

.1:a/ Use a homeomorphism ' to project the customer locations from the surface
of M to R

2

.1:b/ Map the obstacles from M to R
2 using ' introduced in .1:a/

Second Step Geodesic Projection

.2:a/ Solve the MWP by calculating the geodesic distances between customers
of C1 and C2 separately on M to determine the shortest path between the
customers

.2:b/ Use the homeomorphism ' introduced in .1:a/ for mapping the determined
geodesics between the customers from M to R

2

.2:c/ Assign the distances determined in .2:b/ for the customer sets C1 and C2 as
the distances between the corresponding customer locations on R

2

Third Step Facility Locations’ Initialization

.3:a/ Initiate the location of the facility f1 to serve customer of the set C1 by using a
formula similar to the one introduced in [31] for 1-MLRP. Calculate the radius
of the initial circle. Initiate a counter k1 D 1 for the corresponding number of
circles used.

.3:b/ Initiate the location of the facility f2 to serve customers of the set C2 by using
a formula similar to the one introduced in [31] for 1-MLRP. Calculate the
radius of the initial circle used. Initiate a counter k2 D 1 for the corresponding
number of circles used.
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Fourth Step The Linked Chain Method (LCM)—Heuristic Solution
Solve .4:a/–.4:c/ simultaneously

.4:a/ Choose tk1 random numbers within the disk region formed by the interior
of the circle k1, k1 D 1; 2; : : : ; z1 when the distances between f1 and x are
considered;

.4:b/ Choose tk2 random numbers within the disk region formed by the interior
of the circle k2, k2 D 1; 2; : : : ; z2 when the distances between f2 and y are
considered;

.4:c/ Choose tk3 random numbers within the disk region formed by the interior
of the circle k3, k3 D 1; 2; : : : ; z3 when the distances between f1 and f2 are
considered;

.4:d/ Solve the routing problem for each circle ki .i D 1; 2; 3/ for determining the
next center of the circle (if exists and different from the previous center of the
circle) with the best possible routing between all the customers x 2 C1 and f1;
all the customers y 2 C2 and f2; and the facilities f1 and f2; independently;

.4:e/ Employ the LCM to determine the best center for circle ki after determining
the center of circle ki � 1 for each i D 1; 2; 3I

.4:f / For each i D 1; 2; 3, design the new circle ki in the LCM by assigning its
center as the location determined from the VRP solution with the radius of the
new circle ki to be the distance between the centers of the circles ki and ki �1I

.4:g/ Continue linking circles to the LCM until the distance between the circles zi

and zi � 1 is sufficiently small for each i D 1; 2; 3I and
.4:h/ Determine the best possible location of the final circle zi as the last step of

LCM for each i D 1; 2; 3.

Fifth Step Projection from R
2 to M

.5:a/ Use the inverse map of the homeomorphism determined in .1:a/ to project the
allocated facilities and the corresponding minimum cost routes from R

2 to MI
.5:b/ Determine feasible locations for the facilities on M if the projected locations

from R
2 to M are not feasible by employing a local search within the local

region; and
.5:c/ IF one or more facility locations are infeasible, DO a neighborhood search to

determine a discrete feasible location on M:Recalculate the distances between
f1 and f2:

5.3 Computational Complexity

It is shown in [31] that 1-MLRP is an NP-hard problem noting that both routing and
location problems are NP-hard. Therefore, 2-MLRP is also an NP-hard problem
noting that it is clearly a more complicated problem than 1-MLRP. There are three
main computational challenges in the proposed algorithm for solving the 2-MLRP:
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First Challenge Calculating the lengths of the pathways (integrals given in (9)–
(11)) between the customers on the RMS;

Second Challenge Solving the routing problem in the Euclidean space at every
circle of the LCM; and

Third Challenge Determining the locations of f1 and f2 simultaneously based on
their dependence to their respective customers in addition to their dependence on
each other.

On one hand the proposed 2-MLRP heuristic algorithm has the advantage of
calculating a radius per circle compared to the heuristic algorithm employed in [16]
for the Euclidean case with computations including two radii for each ellipsoid, on
the other hand the computational algorithm we proposed includes the challenge of
calculating the objective functions (given by (9)–(11)) on the manifold surface M
rather than R

2. The heuristic algorithm we designed to solve the proposed MLRP
has computational complexity

O

0

@T1 C
3
X

iD1

0

@timi log .mi/

zi�1X

jD0
pj

1

AC T2 C T3

1

A

where

• T1 W The time it takes to compute the lengths of the geodesics between customers
on the surface of M;

• mi: The number of customers in set Ci

• ti W The number of points chosen within the initial circle for each i D 1; 2; 3;
• tipj W The number of points chosen within the jth circle for each i D 1; 2; 3;
• The expression

3
X

iD1

0

@timi log .mi/

zi�1X

jD0
pj

1

A

is the maximum time allocated to compute the routing paths between the facilities
f1 and f2 (i D 3/; the routing paths between f1 and the customers x .i D 2/; and
the routing paths between f2 and the customers y .i D 1/: The summation over i
is taken due to the fact that the computation of all paths between customers and
the facilities depends on each other;

• T2 W The time it takes to determine a feasible location of the facility on the
manifold’s surface after determining the corresponding locations in R

2; and
• T3 W Additional computational effort is needed in case the locations of the

facilities determined are infeasible on M.

The routing sub-problem’s computational complexity is O .mi log .mi// for each
i D 1; 2; 3; the time complexity obtained in [6]. The following figure displays the
linked chains between a single facility and its customers in R

2 that follows the
information from Figs. 1, 2 and 3.
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Fig. 4

5.4 Algorithmic Solution Details of 2-MLRP

In this section we explain the details of the 2-MLRP heuristic algorithm given in the
previous section. Instead of using D domain we use M (Fig. 4).

5.4.1 Projections from M to R2

The first and second steps of the heuristic algorithm require the use of a homeo-
morphism ' W M ! R

2 to project the customer locations and all possible routes
between the two sets of customers C1 and C2 from M to R

2. This projection from M
to R

2 is necessary due to the difficulty of calculations on Riemannian manifolds.
For 2-MLRP, similar to the projection mapping defined in [31], a homeomor-

phism that can be employed to map the locations of the customers from the
Riemannian manifold surface M to the Euclidean surface R

2 is

' W M ! R
2

xi 7! �

l1i cos .�1/ ; r
1
i sin .�1/

�

(19)

yj 7! �

l2j cos .�2/ ; r
2
j sin .�2/

�

(20)

where xi D �

l1i ; r
1
i

�

and yj D
	

l2j ; r
2
j




represent the customer locations, and �s

.s D 1; 2/ are the angles used for homeomorphic projection [9]. Changing the
homeomorphisms defined in Eqs. (19) and (20) would effect the appearance of the
customer locations in the Euclidean space but would not affect the actual locations
of customers on M. Our choice of homeomorphism ' defined in (19) and (20) yields



Manifold Location Routing Problem with Applications in Network Theory 107

the projection of customer locations to circular regions. The radii of these circles
formed for both set of customers C1 and C2 can be easily obtained by using the well-
known distance formula. The distance between the customers on M then becomes
the weights of the edges between the customers in the customer network.

5.4.2 Initial Facility Locations and LCM: Heuristic Solution

In this work, the initial locations of the facilities to be allocated are determined by
using the formula similar to the one used in [31] for circular objects. Therefore, the
formula we employ for the initial allocation of the facilities is

lk0 D

nkP

jD1
lkj cos.�k/

L
	

p
j�1
0 ;'.xj/




nkP

jD1
1

L
	

p
j�1
0 ;'.xj/




and rk
0 D

nkP

jD1
rk
j cos.�k/

L
	

p
j�1
0 ;'.xj/




nkP

jD1
1

L
	

p
j�1
0 ;'.xj/




for each k D 1; 2 where L
	

pj�1
0 ; '

�

xj
�



represents the geodesic distances between

the point pj�1
0 and the customer '

�

xj
�

. The following algorithm used in [31] for
point generation within each circle is also used for the 2-MLRP case:

Algorithm of Generating tk Number of Points at the kth Circle
For all k � 1 let tk�1 > tk and define

tk D d2�Rk�ke

where �k is a randomly chosen number from the interval .0:5; 1/ and Rk is the radius
of the kth circle. The sth point is allocated within the kth circle by using the formula

.lks; rks/ D
�

lk cos

�
2�Rk

tk
s

�

; rk sin

�
2�Rk

tk
s

��

for every s satisfying 0 � s � tk � 1: The chosen points within each circle
follow different directions within the circles for homogeneous point distribution.
Homogenous distribution of points is necessary since the best location of the facility
can be in different directions within each circle. The choice of homeomorphism
used for the projection from M to R

2 can yield a single circle with the center of the
circle being the location of the facility. This process is implemented on every circle
generated for determining the routing paths between the facilities f1 and f2, between
f1 and all customers x 2 C1; and the routing paths between f2 and all customers
y 2 C2:

In the case when the customer and facility locations are the same, this non-
optimal solution will be recovered by reallocating the facility to the closest feasible
location after a neighborhood search.
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The solution to the routing problem from the initial location of each facility to
their respective customers determines the possible routes to these customers. These
local areas are circles in R

2 corresponding to the local areas on the surface of M
since M is a locally Euclidean space. Recall that we chose ti to be the number of
points for the first circle generated to solve the routing problem when i D 1; 2; 3

represent the routes between customers of C1, customers of C2; and the facilities.
After determining the best location of each facility within the first circle by solving
the corresponding routing problems for ti points (locations) for each i D 1; 2; 3,
the next step of the algorithm is application of the LCM by determining the circles
k D 2; 3; : : : ; zi. Consecutive circles are generated by using the radius determined
for each circle. At every kth step of the LCM, we choose tk number of points
within the disk region formed by the interior of the circle k (k D 2; : : : ; z) to solve
the corresponding routing problem. The following formula introduced in [1] with
computational complexity O.m log .m// is used for fulfilling the main objective of
the routing problem: determining the minimal length route for each one of the tk
points generated at the kth by preventing from route duplication between customers
i and j:

dij D
�

.1C w1/L .'i0/C .1 � w1/L
�

'0j
� � w2L

�

'ij
�C w3
 if 'i0 > '0j

.1 � w1/L .'i0/C .1C w1/L
�

'0j
� � w2L

�

'ij
�C w3
 otherwise

In this formula L .'i0/ is the distance on the RMS between the ith customer and
the possible location of the facility indexed to be “0”; 
 is the total demands of
customers i and j divided by the average of the total demand; and .w1;w2;w3/ are
the weights assigned to the equation components.

Circle generation used for the LCM continues until a sufficiently small circle
with radius (if exists) is obtained. This condition is a result of the calculation
jRz � Rz�1j < 
 for a sufficiently chosen 
 where Rk is the radius of the circle k.
Determination of the best possible center of the last circle with this radial condition
is the final step of the LCM on the Euclidean surface. It is important to note that the
final location of the facility determined is close to the best feasible solution but does
not necessarily reflect the best feasible location of the facility. The last step of the
algorithm to be explained next is the projection of the determined solutions from R

2

to M.

5.4.3 Mapping from R
2 to M

The projection of the customers from CCRMS to the Euclidean space is accom-
plished by using the homeomorphism '. The geodesics determined between
customers on the RMS are also projected by using ' from M to R

2 and these
lengths are assigned to be the edge lengths between the customers on the customer
network formed in R

2. It is important to note that the metric used on the manifold
defines the metric used on the RMS. This is due to the fact that the norm we use
for the distance calculations is the norm used on the projected Euclidean surface.
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The customer locations on M are fixed therefore mapping these locations back to
M would be a redundant process. The locations of the two facilities determined on
R
2 need to be mapped back to the manifold surface by using the inverse map of

' W '�1 W M ! R
2: The path minimizing route between f1 and f2 needs to be also

determined by using the inverse mapping since the locations of these two facilities
are determined initially on R

2, not on M:

6 Applications in Network Theory

In this section, the theoretical solution described in the previous sections to solve the
2-MLRP will be explained for a large data network with the corresponding graphs.

Determining facility locations for a customer network is an interest of
researchers. For instance, in [12], assuming that the p-center problem with an
additional assumption that the facility at a node fails to respond to demands from
the node, dynamic programming is implemented for the location determination on a
path network in the Euclidean space. The findings of this work are particularly
useful for large emergency and health care services in big cities. For other
applications of data network and implementation of location analysis see [13, 18].

Figure 5 is an example of a manifold .M/ surface on which the customers are
assumed to be located.

Fig. 5
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Fig. 6

Figure 6 is visualization of the large customer network on the manifold surface
where customers are represented with dots. This graph represents the locations of
the customers before they are split into two set of customers C1 and C2.

In Fig. 7, large circles consisting of blue and red dots represent the projected
customers from the manifold surface to R

2 by using the homeomorphism '

explained in Sect. 5.4.1. The interior regions of the three solid lines represent the
locations where facilities cannot be allocated (i.e., obstacles). Therefore the large
data network represented in the figure above is re-represented and mapped on to the
circles in the figure below as a result of the mapping ' W M ! R

2.
The two boxes labeled f1 and f2 in Fig. 8 below represent the initial locations

of the two facilities we want to allocate that are determined by using the algorithm
introduced in Sect. 5.4.2. The two circles linking f1 and f2 represent the chain of
circles as a result of the LCM application.

The circles wrapping the great circles in Fig. 9 represent the circles generated by
LCM for a set of customers. LCM is implemented on the entire customer set.

Figure 10 illustrates the case when the facility allocation is finalized and one of
the facilities is allocated in the same place with a customer. In this case, the facility
with the infeasible location is relocated to a close-by reasonable location after a
neighborhood search in domain D.

7 Summary

In this work, MLRP for one- and two-facility cases is explained with the corre-
sponding algorithmic solutions. 1-MLRP is introduced in [31] as a mixed integer
non-linear programming problem that’s determined to be an NP-hard problem.
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Fig. 7

Fig. 8

Similarly, 2-MLRP is an NP-hard problem formulated as a mixed integer non-
linear programming problem with 3 objective functions. As a part of the heuristic
algorithm solution, Weiszfeld’s formula [33] is used for determining the initial
location of the facility in the 1-MLRP case. In the case of 2-MLRP, a similar
formula to the one used in [31] is used for determining the initial locations of
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Fig. 9

Fig. 10
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the facilities. The homeomorphism used in [31] for 1-MLRP is similarly used
for 2-MLRP when mapping from the manifold surface to the Euclidean space is
implemented. The point generation algorithm of Altinel et al. [1] and LRP solutions
are employed to solve the 2-MLRP similar to 1-MLRP. We explained the visual
network representation for both 1- and 2-MLRP cases throughout this work. The
solutions to both 1- and 2-MLRP cases are expected to yield more accurate results
than their special cases on planar and spherical surface cases. This is due to the
fact that a manifold surface is a generalization of planar and spherical surfaces.
In addition, the geodesic distance calculation on Earth’s surface (noting that Earth’s
surface is a manifold) is a more realistic approach than calculating the distances on
planar and spherical surfaces.
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A Branch and Bound Algorithm for the Cell
Formation Problem

Irina Utkina and Mikhail Batsyn

Abstract The cell formation problem (CFP) is an NP-hard optimization problem
considered for cell manufacturing systems. Because of its high computational
complexity several heuristics have been developed for solving this problem. In this
paper we present a branch and bound algorithm which provides exact solutions of
the CFP. This algorithm finds optimal solutions for 13 problems of the 35 popular
benchmark instances from the literature.

Keywords Cell formation problem • Branch and bound algorithm • NP-hard
problems • Combinatorial optimization • Upper bound • Exact solution

1 Introduction

The first paper on the cell formation problem (CFP) was by Flanders [10] in 1925.
In Russia the Group Technology was introduced by Mitrofanov [17]. The main
problem in the Group Technology (GT) is to find an optimal partitioning of
machines and parts into cells, in order to maximize the number of parts which are
processed inside cells and to minimize the number of parts which are processed
outside cells. This problem is called the CFP. Burbidge [4] developed product flow
analysis (PFA) approach to this problem and introduced the GT and the CFP in his
book [4].

Ballakur and Steudel [2] have shown that the CFP is an NP-hard problem for
different objective functions. That is why in order to solve this problem there have
been developed several heuristic approaches for this problem and almost no exact
ones.

In this paper we present an exact algorithm for the CFP based on a branch and
bound method.
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2 Formulation

The CFP is a bi-clustering problem in which we simultaneously cluster machines
and parts into cells. The objective of the CFP is to find an optimal partitioning of
machines and parts into groups (production cells, or shops) in order to minimize the
inter-cell movement of parts from one cell to another and to maximize the number of
intra-cell processing operations. The input data for this problem is matrix A which
contains zeroes and ones. The size of this matrix is m � p which means that it has
m machines and p parts. The element aij of input matrix is equal to one if machine i
processes part j. The objective is to minimize the number of zeroes inside cells and
the number of ones outside cells. Because it is not possible to minimize these two
parameters at the same time there have been suggested several objective functions
which combine these two goals.

3 Objective Functions

The following objective functions are well-known in the literature:

1. The number of exceptions (the number of ones outside cells) and voids (the
number of zeroes inside cells)

E C V D nout
1 C nin

0

2. Grouping efficiency by Chandrasekharan and Rajagopalan [9]

� D q � �1 C .1 � q/ � �2;

where

�1 D nin
1

nin

�2 D nout
0

nout

n1—the number of ones in the input matrix

n0—the number of zeroes in the input matrix

nin—the number of elements inside cells

nout—the number of elements outside cells

nin
1 —the number of ones inside cells
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nout
1 —the number of ones outside cells

nin
0 —the number of zeroes inside cells

nout
0 —the number of zeroes outside cells

This means that �1 is the ratio of ones inside cells to the total number of elements
inside cells and �2 is the ratio of zeroes outside cells to the total number of
elements outside cells. Parameter q is a coefficient, which reflects the weights
of intra-cell and inter-cell processing operations (0 � q � 1). Usually it is taken
0.5 which means that it is equally important to maximize the number of ones
inside cells and maximize the number of zeroes outside cells.

3. Grouping efficacy suggested by Kumar and Chandrasekharan [14]

f D nin
1

n1 C nin
0

4. Group capability index (GCI) suggested by Hsu [11]

GCI D 1 � nout
1

n1
D nin

1

n1

In this work we use the grouping efficacy as the objective function because of its
good properties (see Kumar and Chandrasekharan [14]).

4 Definitions

A.m � p/ D Œaij� D
(

1 if machine i processes part j

0 otherwise
—an input matrix

M.1 � m/—a vector which contains the assignment of machines to cells

P.1 � p/—a vector which contains the assignment of parts to cells

f �—the optimal value of function f

f D nin
1

n1 C nin
0

As an example M = [1231] and P=[11321] mean that machines 1, 4 and parts 1, 2,
5 are assigned to cell 1, machine 2 and part 4 are assigned to cell 2, and machine 3
and part 3 are assigned to cell 3.
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5 Branch and Bound Algorithm

5.1 Branching

Because of the bi-clustering structure of the CFP branching goes by two parameters,
the algorithm has branching on machines and parts sequentially changing each
other: machines–parts–machines–. . .
Branching on machines makes changes in vector M. It starts from assigning the first
machine to cell 1. After that, when the algorithm branches on machines, it finds the
first machine which is not assigned to any cell and tries to assign it to the existing
cells with numbers from 1 to k or creates a new cell .k C 1/ for this machine. An
example of branching is shown in Fig. 1.

Branching on parts makes changes in the vector P. It starts with all zeroes inside
P which means that no parts are assigned to any cell. When the algorithm branches
on parts it finds the first part which is not assigned to any cell and tries to assign it
to the existing cells from 1 to k or to a new cell .k C 1/ if there are some unassigned
machines which can be also added to this new cell. We assume that the number of
parts is greater than the number of machines. Examples are shown in Figs. 2 and 3.

The algorithm branches on parts and machines successively. It starts with M D
Œ100 : : : 0� and P D Œ00 : : : 0�. Next it changes vector P as illustrated in Figs. 2 and 3
then—vector M as illustrated in Fig. 1 and so on. This way the algorithm builds
the search tree. The leaves of the search tree contain complete solutions and nodes
contain partial solutions. The complete search tree does not depend on data in the
input matrix. It depends only on its size. The complete search tree for the input
matrix with two machines and three parts is shown in Fig. 4. Two first numbers
in square brackets represent vector M, three others—vector P. If vector M or P
contains zeroes, this means that these machines or parts are not yet assigned to any
cell. If vector P contains a number with a star, this means that this part can lie in a
cell with a number equal or greater than this number. The complete tree contains all
feasible solutions.

5.2 Bounds

In order to reduce the search tree size the algorithm calculates an upper bound
(UB) at each partial solution. After that, it is compared with the current best value
of function f found by the algorithm by this time. If it is less or equal, then the
algorithm prunes this branch and goes to the next alternative at this level. The UB is
calculated as follows.

1. Calculate the values of variables n1, nin
1 , and nin

0 in the current partial solution.
2. For every machine (row) which is not yet assigned to available cells the algorithm

tries to put it into available cells or a new cell. The algorithm takes into account
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10...0

120...0

1230...0

12340...0

12330...0

12320...0

12310...0

1220...0

12230...0

12220...0

12210...0

1210...0

12130...0

12120...0

12110...0

110...0

1120...0

11230...0

11220...0

11210...0

1110...0

11120...0

11110...0

Fig. 1 Vector M for branching on machines

all ones and zeroes in this row which can get into existing cells and all ones in
this row which are not yet assigned to any cell.

3. Choose the best alternative for all machines.
4. For every part (column) which is not yet assigned to available cells the algorithm

tries to put it into available cells or no one. The algorithm takes into account only
items lying in the rows which are already assigned.
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0..0

(k+1)*0...0

k0...0

...

20...0

10...0

Fig. 2 Vector P for branching on parts when there are unassigned machines

0...0

k0...0

...

20...0

10...0

Fig. 3 Vector P for branching on parts when all machines are assigned to cells

[10][000]

[10][2*00]

[12][2*00] [12][200]

[12][220] [12][221]

[12][210]

[12][212]

[12][211]

[11][2*00]

[10][100]

[12][100]

[12][120]

[12][122]

[12][121]

[12][110] [12][112]

[11][100] [11][110] [11][111]

Fig. 4 A complete search tree
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5. Choose the best alternative for all parts.
6. Calculate UB as function f with all parameters which have been calculated at

previous steps.

An example is shown below.

�����M
P

1 1 1 1 2 0 0

1 1 1 1 1 0 0 0
1 1 1 0 1 0 0 0
2 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 1

1. We have n1 D 14, nin
1 D 8, and nin

0 D 1.
2. Calculate the number of new zeroes and ones which get inside cells after the

corresponding machine assignment:

cell 1 cell 2 a new cell
machine 4 C40, C21 C00, C31 C00, C21
machine 5 C40, C11 C00, C21 C00, C11

3. The following assignments are the best. Machine 4 is assigned to cell 2. Machine
5 is assigned to cell 2.

4. Calculate the number of new zeroes and ones which get inside cells after the
corresponding part assignment:

cell 1 cell 2 no one
part 6 C20, C01 C00, C11 C00, C01
part 7 C20, C01 C10, C01 C00, C01

5. The following assignments are the best. Part 6 is assigned to cell 2. Part 7 is not
assigned to any cell.

6. UB D nin
1 C�nin

1

n1Cnin
0 C�nin

0

, where �nin
1 and �nin

0 are the total number of ones and zeroes

which get inside cells after the chosen machine and part assignment.
UB D 8C3C2C1C0

14C1C0C0C0C0 D 14
15

D 0:9333

6 Results

The suggested branch and bound algorithm has been able to solve 13 of 35 popular
benchmark instances from the literature. The results are presented in Table 1. All
computations were run on Intel Core i7 with 16 GB RAM. We start the algorithm
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with and without an initial solution. For an initial solution we apply the heuristic
suggested by James [12]. We use this heuristic because it always provides the
optimal solutions for the considered CFP instances in very small time.

The results show that the developed algorithm is more efficient than the CPLEX
model of Bychkov [5].
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Hybrid Community Detection in Social
Networks

Hongwei Du, Weili Wu, Lei Cui, and Ding-Zhu Du

Abstract Community detection is an important subject in the study of social
networks. In this article, we point out several ideas to design hybrid methods for
community detection.

Keywords Social networks • Community detection • Modularity • Hybrid algo-
rithms

1 Introduction

Social relationships have been used widely to develop online social networks
(OSNs) such as FaceBook, Twitter, ResearchGate, and LinkIn. They allow individu-
als to present themselves, articulate their social networks, and establish or maintain
personal data and connections with others. Many OSNs have gone through a rapid
progression from their birth. For example, Facebook states to have more than 400
million of active users, whereas Twitter counts a rate of 300,000 new users per day.
Collaboration and interaction among users in a social network pave the road for a
pervasive experience, since online communities and applications are available on a
large set of computing devices, ranging from personal computers to smart phones.

Often, OSNs have community structure. People in the same community may
have a lot of interests in common and they may influence each other strongly.
This makes the community structure play an important role in the study of social
networks. For example, if the community structure is known, then the influence
maximization problem can be approximated with good performance [3, 4, 14, 22],
while in general networks, the approximation performance ratio cannot be better
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than O log n/. Knowing community structure is also very helpful in studying the
rumor blocking [10]. While the rumor spreads too fast inside a community, blocking
is to cut its spread to outside the community.

When the community structure is unknown, the community detection becomes
a very important problem. There exist many algorithms in the literature for study
of the community detection. Most of them are heuristics, i.e., algorithms without
theoretical performance analysis. Therefore, research issues and challenges exist
in giving them theoretical analysis and designing new algorithms with guaranteed
performance. In this article, we would like to present some ideas and indicate some
possibilities.

Given a network, the community detection aims at clustering vertexes according
to some quality function or condition. Since the definition of community is
ambiguous, the quality function or condition has many choices. Each of them
is designed based on certain consideration. For example, we may consider the
following properties:

(A1) Connections in the same community are more than connections between
different communities.

(A2) The influence inside a community is stronger than the influence to outside.

If an algorithm is designed based on (A1), then it is called the connection-based
detection algorithm. If based on (A2), then it is called the influence-based detection
algorithm.

A very well-known quality function is called modularity defined by New-
man [18]. An algorithm is called a modularity-based algorithm if it is designed
based on the modularity function.

It has been known that communities obtained from an algorithm based on
a quality function may not be qualified based on another quality function. For
example, a connection-based algorithm may produce a community partition with
low modularity value. A modularity-based algorithm may produce community
partition not satisfying connection property. This article is motivated from this fact.
We propose hybrid algorithms which may be based on two or more quality functions
so that they may produce community partitions with high quality, meeting the need
of applications.

2 Connection-Based Detection

There are four different understandings for connection property (A1).

(C1) Each community has more connections inside than connections to outside.
(C2) Each community has more connections inside than connections to any other

community.
(C3) Each node in a community has more connections inside than connections to

outside.
(C4) Each node in a community has more connections inside than connections to

any other community.
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Consider an OSN with a graph G D .V;E/ as its mathematical model. A partition
of V , .V1;V2; ::;Vh/ is called a community partition under condition (Ci) if condition
(Ci) holds. Let A.G/ D .aij be the adjacency matrix of G, i.e.,

aij D
�

1 if edge .vi; vj/ exists
0 otherwise.

For any two node subsets U and W, define

L.U;W/ D
X

i2U;j2W

aij:

Then we can write these four conditions into the following formulations:

(C1) .8s/ŒL.Vs;Vs/ � L.Vs; NVS/�:

(C2) .8s/.8t ¤ s/ŒL.Vs;Vs/ � L.Vs;Vt/�:

(C3) .8s/.8v 2 Vs/ŒL.v;Vs/ � L.v; NVS/�:

(C4) .8s/.8v 2 Vs/.8t ¤ s/ŒL.v;Vs/ � L.v;Vt/�:

Clearly,

(C4) ) (C3) ) (C1); (C4) ) (C2) ) (C1):

Therefore, a community partition satisfying (C1) is also called in the most weak
sense [12] while a community partition satisfying (C2) is called in weak sense [21].

It is easy to see that if a community partition satisfies condition (C1) (or (C3)),
then putting some communities together to form a big community results in a
community partition still satisfying condition (C1) (or (C3)). Motivated from this
property, based on the above conditions, many researchers design algorithms for
community detection by maximizing the number of communities although this
property does not hold for conditions (C2) and (C4).

(Di) maximize h

subject to (Ci):

Zhang et al. [24] showed that (D1) is NP-hard and formulated (D1) into a 0–1 linear
programming. Lu et al. [16] showed that all (D2), (D3), and (D4) are NP-hard and
gave two heuristics for all four maximizations.

Based on different understandings, one has designed different algorithms in the
literature [16, 23].
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3 Modularity-Based Detection

Newman [18] proposed to find community partition .V1;V2; : : : ;Vk/ of node set
V by maximizing modularity function

Q.V1;V2; : : : ;Vk/ D
k
X

sD1

"

L.Vs;Vs/

L.V;V/
�
�

L.Vs;Vs/C L.Vs; NVs

L.V;V/

�2
#

:

Brandes et al. [2] that this is an NP-hard problem. Actually, Q is a nonlinear func-
tion. Its maximization is a typical nonlinear combinatorial optimization problem.
A popular property of this class of problems is that it is NP-hard even on trees [8].
Dasgupta and Desai [6] showed several interesting results, including the following
two:

Theorem 1. For regular .n � 4/ graphs, there exists a number " > 0 such that
there is no polynomial-time .1C "/-approximation for the modularity maximization
unless NP=P where n is the number of nodes.

Theorem 2. For d-regular graphs with d < n
2 ln n , there exists a polynomial-time

O.log d/-approximation.

Many algorithms have been designed for community detection using the mod-
ularity maximization [1, 5–8, 11, 19, 20]. While most of them are heuristics, Dinh
and Thai [7] gave polynomial-time constant-approximation for power-law graphs.
Especially, the low-degree following algorithm designed by them is quite simple
and clever.

4 Hybrid Detection

In this section, we would like to give several ideas to design hybrid community
detection methods.

A naive idea is to maximize Q subject to one of (C1)–(C4). The question is how
to give a good formulation for this optimization problem so that exact solution or
approximation solution can be computed efficiently. In the following, let us point
out the possibility of realization of this idea.

First, we introduce some formulation given in [24]. Let xis be a 0–1 variable
which indicates if node vi belongs to community Vs, and zhs a 0–1 variable which
indicates if edge eh belongs to community Vs. Then for edge eh D .vi; vj/, we have

zhs � xis; zhs � xjs; xis C xjs � 1 � zhs:
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Constraint (C1) can be represented by that for all s D 1; 2; : : : ; k,

2

m
X

hD1
zhs �

n
X

jD1

n
X

iD1
xisaij � 2

m
X

hD1
zhs:

This means that constraint (C1) can be represented by a set of linear inequalities.
Moreover, Q can be written as a quadratic function with respect to variables xis

and zhs. Therefore, maximizing Q subject to (C1) can be formulated as a 0–1
quadratic programming. In [9], we may find a method to transform a 0–1 quadratic
programming into a semi-definite programming with which it is quite hopeful to
find an approximation solution with guaranteed performance. (C2)–(C4) can also
be represented by a set of linear inequalities. It may be worth mentioning that semi-
definite programming has been successfully used for community detection [25–27].

Li et al. [15] proposed the modularity density function,

D.V1;V2; : : : ;Vk/ D
k
X

sD1

�
L.Vs;Vs/ � L.Vs; NVs/

jVsj
�

:

They claim that this function is superior than the modularity function Q in both
theoretical and numerical comparison. It provides equivalence with the objective
function of the kernel k means.

Could we optimize D subject to one of (C1)–(C4)? This would induce an
optimization problem with a fractional objective function, linear constraints, and
0–1 variables, which is called a 0–1 geometric programming. It is a quite challeng-
ing problem. Indeed, it is hard to find a reference in the literature on how to find an
exact solution or a good approximate solution for 0–1 geometric programming.

Lu et al. [17] gave an influence-based detection method. They proposed to do
community detection by solving the following:

maximize I.V1;V2; : : : ;Vk/ D
k
X

sD1
�m.Vs/

subject to .V1;V � 2; : : : ;Vk/ is a partition of V;

where m is a diffusion model such as independent cascade model, linear threshold
model, etc. This method is based on consideration that each community tends to
enlarge its group influence.

Could we design a hybrid method by combining a connection-based method
and an influence-based method? This combination would induce a maximization
problem with objective function I with linear constraints. Note that I is a monotone
nondecreasing submodular function because each �m.Vs/ is. This would give a very
interesting research direction. Again, if variables are continuous, then it is a tractable
problem. However, currently, we are considering discrete variables which would
generate a lot of research issues.
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Our discussion as above is on undirected graphs. Actually, all connection-based
detection methods, modularity-based detection methods have been extended to
directed graphs [6, 7, 13]. Therefore, above ideas of ours can also be studied in
directed graphs.

Following above ideas, we are working in detail in the design and analysis of
several hybrid methods. Both theoretical and computer experimental results will be
published in the future.
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Spectral Properties of Financial Correlation
Matrices

Maxim Kazakov and Valery A. Kalyagin

Abstract Random matrix theory (RMT) is applied to investigate the cross-
correlation matrix of a financial time series in four different stock markets: Russian,
American, German, and Chinese. The deviations of distribution of eigenvalues
of market correlation matrix from RMT global regime are investigated. Specific
properties of each market are observed and discussed.

Keywords Random matrices • Wishart–Laguerre ensemble • Stock market
• Market network • Random Graphs

1 Introduction

The study of correlation (or covariance) matrices has a long history in finance
and it is an important aspect of risk management and one of the cornerstone
of Markowitz’s theory of optimal portfolios [6, 10]. Besides, equal-time cross-
correlation matrices play a major role in market network analysis when it comes to
constructing different network structures, such as maximum spanning tree or market
graph [1, 2].

When stock market consists of several hundreds of individual stocks, it becomes
a high-dimensional and complex system. To study these systems some methods of
statistical physics have been employed, in particular, random matrix theory (RMT)
[3, 8, 11, 13]. The idea is to compare the properties of an empirical correlation matrix
to the ones of purely random matrix. In case of covariance matrix ensemble of such
random matrices is called Wishart–Laguerre ensemble [5]. Possible deviations from
the random case may reveal some peculiarities of empirical correlation matrices and
it may give some insight into the market structure.
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The main goal of the present paper is a comparative investigation of empirical
correlation matrices for different markets. The main problem addressed is to
understand whether the markets are different from RMT point of view and to point
out these differences. We investigate four different markets corresponding to
different levels of economic development: the US, German, Russian, and Chinese.
We analyze spectral properties of empirical correlation matrices and compare them
to global regimes provided by RMT. In addition, we test the stability of observed
deviations and their dependence on the distribution of the data.

The paper is organized as follows. In Sect. 2 we remind the main facts from
RMT and discuss the results of previous related studies. In Sect. 3 we present
our methods and describe the data used in numerical experiments. In Sect. 4 we
conduct a comparative analysis of correlations matrices for indicated markets.
Section 5 is devoted to a stability analysis of observed phenomena. Section 6
contains concluding remarks.

2 Theoretical Background

2.1 Random Matrix Theory

We want to compare spectral properties of empirical correlation matrices of stock
market with the spectral properties of random matrices. In case of covariance
(or correlation) matrices this is so-called Wishart–Laguerre ensemble [5]. Consider
rectangular .N � T/ matrix H whose elements Hi;t are independent, identically
distributed random variables. Then the product W D .1=T/ � H � H� is a positive
definite symmetric .N � N/matrix that represents the normalized covariance matrix
of the data. When elements Hi;t are drawn from a Gaussian distribution, the product
matrices W D 1

T �H �H� constitute Wishart–Laguerre ensemble of random matrices.
For the case when T � N (the number of samples is larger than the dimension)

the spectral properties of these matrices are well studied and it is known that in limit
(N ! 1 and T ! 1 and Q D T=N � 1 fixed) all eigenvalues are positive and
density distribution of the eigenvalues is given by the Marchenko–Pastur function
[9, 14]:

�WL.�/ D Q

2�
�
p

.�C � �/.� � ��/
�

; �� < � < �C; (1)

where the lower and upper bounds of eigenvalues are calculated as follows:

�˙ D 1C 1

Q
˙ 2

s

1

Q
: (2)

Note that above results are valid only in limit when N ! 1.
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2.2 Related Works

Recently series of studies has been conducted [3, 8, 11, 13] to analyze spectral
properties of empirical correlation matrices and compare them to RMT global
regime discussed in previous section. Following observations have been made:

• There is one largest eigenvalue �max, which is significantly higher than the upper
bound �C. It is also tends to be relatively close to the product N � C, where C
is the average of non-diagonal elements of correlation matrix C. The associated
eigenvector is connected with global market index.

• There are also several eigenvalues slightly greater than �C. They may reflect
sector behavior.

• There are a number of eigenvalues below the lower bound ��, which can
be explained by repulsion effect which we will talk about later. It may also
correspond particularly to highly correlated pair of stocks.

• Finally, most of the eigenvalues fall within a range predicted by RMT. These
eigenvalues are called bulk of eigenvalue spectrum. Nonetheless, it was shown
that these eigenvalues also may contain useful information [7].

These results may differ for emerging markets [4, 12]. Such as, in emerging markets
the largest eigenvalue appears to be higher with respect to �C and there are fewer
eigenvalues above the edge. At the same time, there is a large proportion of
eigenvalues below �� and, consequently, less number of eigenvalues in the bulk.
Also, average value of non-diagonal elements of correlation matrix is higher and
fluctuates more dynamically.

3 Method and Data

3.1 Method

We consider a set of N stocks over a period of T trading days. Let Pi.t/ be a closing
price of stock i.i D 1; : : : ;N/ in the day t.t D 1; : : : ;T/. Then the daily log return
Ri.t/ of stock i is defined by

Ri.t/ D ln
Pi.t/

Pi.t � 1/ : (3)

We normalize Ri with respect to its standard deviation �i as follows:

ri.t/ D Ri.t/ � Ri

�i
; (4)
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where Ri denotes the average return over the period studied and standard deviation

(or volatility) defined as �i D
q

R2i � Ri
2
.

Then, the equal-time cross-correlation matrix C is expressed it terms of ri.t/:

Ci;j D
T
X

tD1
ri.t/ � rj.t/: (5)

The element Ci;j of matrix C denotes correlation coefficient between stock i and
stock j. Correlation matrix C also can be expressed in matrix notation as

C D 1

T
� R � RT ; (6)

where R is an .N � T/ matrix with elements ri.t/.
The N eigenvalues �i and their corresponding eigenvectors ui are calculated by

diagonalizing C. One has

C � ui D �i � ui; i D 1; : : : ;N: (7)

Note that
P

�i is always equal to sum of the diagonal elements of C (the trace),
which is always constant and equal to N since for all elements Ci;i D 1. Hence, if
some eigenvalues increase, then some others must decrease to compensate, and vice
versa. This is called eigenvalue repulsion [3].

3.2 Data

In order to analyze spectral properties of empirical financial correlation matrices we
consider four different stock markets, representing different types of economies:
the US, Russian, German, and Chinese stock market. For Russian market we
consider stocks traded on The Moscow Interbank Currency Exchange (MICEX). For
American market we consider equities of S&P 500 traded on The New York Stock
Exchange (NYSE). For German market we consider equities of HDAX traded on
The Frankfurt Stock Exchange (FWB). And for Chinese market we consider stocks
traded on The Hong Kong Stock Exchange (HKEx).

We want Q D T=N to be relatively equal for all markets and we eliminate stocks
if they haven’t been traded long enough. For Russian market we also apply cleaning
procedure in order to eliminate stocks with low liquidity. One exception here is an
American market. In this case we allow Q to be essentially smaller than in other
markets so we can apply our method to larger data set. Dates and the number of
chosen stocks of each market are summarized in Table 1.
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Table 1 Characteristics of considered markets

Market Number of stocks, N Length of time series, T Q = T/N Starting date Ending date

Russia 101 1418 14.04 10/01/2008 06/06/2014

USA 316 3008 9.52 01/03/2003 12/12/2014

Germany 90 1282 14.24 01/05/2010 12/12/2014

China 78 1016 13.03 01/03/2011 12/12/2014
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Fig. 1 Distribution of correlations. Left—the US market. Right—German market

4 Comparative Analysis of Different Markets

In this section we present the results of the analysis of empirical correlation
matrices for four different stock markets. We compare the empirical distribution
of eigenvalue with predictions of RMT and discuss some deviations.

4.1 Distribution of the Correlation Coefficients

First, we take a look at the statistical properties of empirical cross-correlation
matrices. Figures 1 and 2 show histograms of correlation coefficients (i.e., non-
diagonal elements of correlation matrix C) for all four markets. Other comparative
characteristics are given in Table 2.

We notice that average value C is quite large for all cases. The interesting fact
here is that it is almost the same and around 0:3 for all considered markets, except
Russian. Furthermore, standard deviations are also relatively high and close to each
other, this time including Russian market. For American, German, and Chinese
markets almost all elements of correlation matrix are positive.

Next we test the assumption of normal distribution of cross-correlation matrix
elements. Histograms on Figs. 1 and 2 don’t show distribution similar to normal
(or maybe just for American market). Lilliefors test rejected hypothesis of normal
distribution at the 5% significance level for all markets. We also use skewness and
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Fig. 2 Distribution of correlations. Left—Chinese market. Right—Russian market

Table 2 Statistics for cross-correlation

Market Mean Standard deviation Skewness Kurtosis

USA 0.3220 0.1060 0.3957 3.4929

Germany 0.3021 0.1282 0.3846 2.7806

China 0.2984 0.1514 0.5968 2.6833

Russia 0.2349 0.1408 0.8391 3.8482

kurtosis measures to see how much the deviations are. Skewness is a measure of the
asymmetry of the data around the sample mean and kurtosis is a measure of how
outlier-prone a distribution is (respectively, 0 and 3 for the normal distribution).
As shown in Table 2 for all markets skewness is positive which indicates that
correlations are skewed right meaning that the right tail is long with respect
to the left tail. Kurtosis measure, in contrast, deviates in different directions,
indicating more peaked distribution for American and Russian markets, and more
flat distribution for German and Chinese. The deviations are relatively small though.

4.2 Eigenvalue Distribution

In this section we analyze spectral properties of empirical cross-correlation matrices
and compare them to the predictions of RMT given by formulas (1) and (2).
The eigenvalue spectrum is shown in Figs. 3b, 4b, 5b, and 6b with the spectrum
predicted by RMT in Figs. 3a, 4a, 5a, and 6a. Table 3 presents the more detailed
characteristics.

As in the previous studies, we found that there is one largest eigenvalue �max

in every case which exceeds significantly the upper bound �C. We also noticed the
similarity between �max and N �C presented in Table 3 by their ratio close to the value
of 1. This explains the exceptionally large value of �max for American market with
respect to the others: since average value of correlation is similar for each market
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Fig. 3 American market. (a) Probability density of � in comparison with RMT density (the red
solid line) and (b) including the largest eigenvalue �max
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Fig. 4 German market. (a) Probability density of � in comparison with RMT density (the red solid
line) and (b) including the largest eigenvalue �max
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line) and (b) including the largest eigenvalue �max



142 M. Kazakov and V.A. Kalyagin

0 1 2 3 4
0

0.5

1

1.5

λ

ρ(
λ)

0 10 20 30
0

0.5

1

1.5

λ

ρ(
λ)

λ
max

a b

Fig. 6 Russian market. (a) Probability density of � in comparison with RMT density (the red solid
line) and (b) including the largest eigenvalue �max

Table 3 Eigenvalues statistics

Market N C �
�

�
C

�max
�max
�

C

�max

N�C
� > �

C

USA 316 0.3220 0.4568 1.7533 106.7823 60.9039 1.0495 10

Germany 90 0.3021 0.5403 1.6001 30.0333 18.7694 1.1046 3

China 78 0.2984 0.5226 1.6309 26.1665 16.0440 1.1240 4

Russia 101 0.2349 0.5375 1.6050 27.9230 17.3975 1.1772 7

and American market is presented by data set greater by 3–4 times (with respect
to the number of stocks), the value of the largest eigenvalue is also greater by 3–4
times.

The number of eigenvalues above the edge �C differs for considered markets.
In German and Chinese markets there are, respectively, 2 and 3 such eigenvalues,
besides �max, which is small and in accordance with previous studies [11]. In
American and Russian markets this number is relatively high (9 and 6, respectively)
and for American market it is greater than what was observed before [8].

Furthermore, we noticed that about half of the eigenvalues falls into the range
Œ��; �C� predicted by RMT. A little less number of eigenvalues fall below the edge
��. Most of this may be explained by eigenvalue repulsion effect we talked about
in Sect. 3. These observations also support some previous results [11].

5 Stability Analysis

In this section we present the results of analysis of stability of observed phenomena.
We want to see whether the observed deviations from RMT predictions are specific
for a certain market or not. In order to do this we use bootstrap method. We
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Table 4 Characteristics

Market C �max
�max

N � C � > �
C

USA 0.3220 106.7823 1.0495 10

Germany 0.3021 30.0333 1.1046 3

China 0.2984 26.1665 1.1240 4

Russia 0.2349 27.9230 1.1722 7

also test dependence of the deviations on type of distribution of the data using
multivariate normal distribution and multivariate Student distribution. We test
following characteristics:

• The mean value of correlation coefficient C
• The value of the largest eigenvalue �max

• The ratio �max=.N � C/, where N denotes the number of stocks
• The number of eigenvalues above the upper bound �C predicted by RMT

These characteristics are summarized for all four considered markets in Table 4.

5.1 Bootstrapping

To test the stability of observed characteristics and, consequently, their deviations
from predictions of RMT we apply the bootstrap method. First, we resample the
data with replacement, saving the size of the resample .N � T/ the same as it was
in the original data set. Note that sample here is a vector Rt corresponding to a trade
day t characterized by daily returns of N stocks. Next we apply our method, defined
by formulas (4)–(7), to compute characteristics of interest. We repeat this routine
10; 000 times for each considered market.

Figures 7, 8, 9, and 10 present histograms of analyzed characteristics which
provide an estimate of the shape of the distribution. We found that almost all of
them are stable for each market indicating that considered deviations from RMT
predictions are specific for empirical correlation matrices. One exception here is the
number of eigenvalues above the upper bound �C. For German and Chinese markets
the value is quite robust (Fig. 10b, c), but for American and Russian cases results
show that the observed values are not reliable (Fig. 10a, d). The surprising result
is that the test revealed a greater number of those eigenvalues (about 12 for the USA
and 9 for Russia in average).
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Fig. 7 Estimated distribution of C for (a) American, (b) German, (c) Chinese, and (d) Russian
markets

5.2 Multivariate Normal Distribution

In this section we test how the cross-correlation matrix will change (with respect
to observed characteristics) if we let the distribution of the data be Gaussian.
We generate new data of size (N�T) (the same as original) from multivariate normal
distributions with zero means and the empirical correlation matrix C as covariance
matrix. Next we apply our method, defined by formulas (4)–(7), to compute new
correlation matrix and its characteristics. We repeat this routine 10; 000 times for
each considered market.

Figures 11, 12, 13, and 14 present histograms of analyzed characteristics. The
results of the analysis show that this approach keeps the main characteristics the
same except one. All characteristics saved their observed values in average and
estimated shape of distribution is similar with the one provided by bootstrapping
for most of the characteristics in each market. The number of eigenvalues above
the edge hasn’t saved its observed value in American and Russian markets but it
appeared to be less than for bootstrapping in average (11 and 8, respectively) with
very small probability for other values (Fig. 14a, d).
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Fig. 8 Estimated distribution of �max for (a) American, (b) German, (c) Chinese, and (d) Russian
markets

5.3 Multivariate Student Distribution

As in the previous section, we simulate our data (N � T time series), but this
time using multivariate Student distribution with the empirical correlation matrix
C as covariance matrix and 3 degrees of freedom. Then again we apply our
method, defined by formulas (4)–(7), to compute new correlation matrix and its
characteristics. We repeat this routine 10; 000 times for each considered market.

The histograms on Figs. 15, 16, and 17 show that again the characteristics saved
their observed values in average in each market. But this time variance is much
less and estimated shape of distribution is not reminiscent of the one provided by
bootstrapping. For the number of eigenvalues above �C the picture is completely
different from previous two tests. The average value is significantly higher for all
markets and estimated shape of distribution also differs (Fig. 18). It means that this
characteristic is sensitive to distribution of returns.
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Fig. 9 Estimated distribution of �max

N�C
for (a) American, (b) German, (c) Chinese, and (d) Russian

markets

6 Concluding Remarks

Four different stock markets (Russian, American, German, and Chinese) are
compared with respect to deviation of spectral properties of correlation matrix to
predictions provided by RMT. It is observed that (like in the previous studies),
there is one largest eigenvalue significantly higher than upper bound �C of RMT
range, and it is very close to the product N � C, where N denotes the number of
stocks and C—the average value of correlation. Average value of correlation is
about 0:3 for all markets, except Russian, which is surprisingly high. In contrast,
the number of eigenvalues above �C, and the value of these numbers, differs from
one market to another one. It can be related with sectors interconnections in different
markets. Stability of observed phenomena was tested using bootstrapping method
to see whether they are specific for considered markets or not. The analysis showed
that the most of observed deviations from RMT are stable, the exception is the
number of eigenvalues above the upper bound in American and Russian markets.
This characteristic is not stable with respect to distribution of returns too.
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for (a) American, (b) German, (c)
Chinese, and (d) Russian markets
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Fig. 11 Distribution of C for (a) American, (b) German, (c) Chinese, and (d) Russian markets
from data generated by MVN
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Statistical Uncertainty of Minimum Spanning
Tree in Market Network

Anastasia Komissarova and Petr Koldanov

Abstract The paper deals with uncertainty in market network analysis. The main
problem addressed is to investigate statistical uncertainty of Kruskal algorithm for
the minimum spanning tree in market network. Uncertainty of Kruskal algorithm is
measured by the probability of q incorrectly included edges. Numerical experiments
are conducted with the returns of a set of 100 financial instruments traded in the US
stock market over a period of 250 days in 2014. Obtained results help to estimate
the reliability of minimum spanning tree in market network analysis.

Keywords Market network • Market network analysis • Minimum spanning
tree • Kruskal algorithm • Statistical procedures • Uncertainty of statistical
procedures

1 Introduction

Financial market is a complex system that can be studied in the framework of
network analysis. Usually, network structures of the financial market are based
on Pearson correlations of stock’s returns. Each stock represents the node of
network and similarities between stocks (weight of edges) are measured by a
Pearson correlations between them [5]. Data mining on the market network can
be conducted using different filtering techniques applied to the complete weighted
graph (network). One of the filtering procedures is the construction and analysis of
the minimum spanning tree (MST). The MST is a tree that includes every vertex
and the total weight of all included edges is maximized. In order to construct the
MST, Kruskal’s algorithm can be applied [2]. Following this algorithm the list of
edges is sorted in decreasing order according to the weight and an edge is added
to the MST if it does not create a cycle. MST was proved to provide a useful
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information for market analysis, in particular it defines a hierarchical structure on
financial market [4].

Correct interpretation of MST in market network cannot avoid to take into
account uncertainty of its identification. Statistical uncertainty of different filtration
techniques for market network analysis was studied in [1]. This approach was
applied for analysis of statistical uncertainty of network structures for different
markets. The experimental study showed that market graphs, maximum cliques, and
maximum independent sets are more reliable with respect to statistical uncertainty
than MST. Uncertainty was measured in [1] by a total number of statistical errors
of first and second kind. In the present paper we take a different point of view and
measure the statistical uncertainty of MST by q-FWER (Family Wise Error Rate)
introduced in [3]. The main idea is to allow to have no more than q errors of the
first kind and to analyze the statistical uncertainty according to this condition. This
analysis is complementary to [1] and it helps to estimate the reliability of MST in
market network analysis.

The paper is organized as follows. In Sect. 2 we introduce reference and sample
MST and describe the estimation of uncertainty for additive loss function. In Sect. 3
we introduce a q-loss function and q-FWER (Family Wise Error Rate). In Sect. 4
we give and discuss the results of numerical experiments to evaluate the statistical
uncertainty of MST by q-FWER for the US stock market. In Sect. 5 we give
concluding remarks.

2 Statistical Uncertainty

We model the stocks returns on financial market by random variables Ri.t/, t D
1; : : : ; n, i D 1; 2; : : : ;N, where N is the number of stocks on the market, and n is the
number of days of observations. In our study we assume that Ri.t/, t D 1; : : : ; n, are
independent identically distributed random variables. Denote by Ri the distribution
of Ri.t/. We assume that the random vector R D .R1;R2; : : : ;RN/ has multivariate
normal distribution R � N.a; ˙/, where a D .a1; : : : ; aN/ is the vector of means
and ˙ is the covariance matrix. Reference MST is defined as maximum spanning
tree in the complete weighted graph with N nodes and weights given by the matrix
of correlations jj�i;jjj, �i;j D �i;j=

p
�i;i�j;j. To construct the reference MST we use

the Kruskal algorithm. Initially, the current set of edges is set empty. Then, among
all remaining edges, an edge of maximal weight is selected and added to the existing
set if this operation does not create a cycle. If there is a cycle, the edge is skipped.
If there are no more edges, the algorithm stops.

Let ri.t/, k D 1; : : : ;N, t D 1; : : : ; n, be observations of random variables
Ri.t/. Vectors r.t/ D .r1.t/; r2.t/; : : : ; rN.t//, t D 1; 2; : : : ; n, represent a sample
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of the size n from distribution R D .R1;R2; : : : ;RN/. One can define the sample
covariances by

si;j D 1

n � 1
n
X

tD1
.ri.t/ � ri/.rj.t/ � rj/; ri D 1

n

n
X

tD1
ri.t/:

Sample correlations are then defined by

ri;j D si;jp
si;isj;j

:

Sample MST is defined as maximum spanning tree in the complete weighted graph
with N nodes and weights given by the matrix of sample correlations jjri;jjj. To
construct the sample MST we use the same Kruskal algorithm. Initially, the current
set of edges is set empty. Then, among all remaining edges, an edge of maximal
weight is selected and added to the existing set if this operation does not create
a cycle. If there is a cycle, the edge is skipped. If there are no more edges, the
algorithm stops.

To measure statistical uncertainty one can compare the sample MST with the
reference MST. This approach was developed in [1]. Such comparison is based
on risk function connected with possible losses. For MST we introduce a set of
hypothesis:

• hi;j: edge between vertices i and j is not included in the reference MST and
• ki;j: edge between vertices i and j is included in the reference MST.

Let us consider two types of errors:

• Type I error: edge is included in the sample MST when it is absent in the
reference MST and

• Type II error: edge is not included in the sample MST when it is present in the
reference MST.

Let ai;j be the loss associated with the error of the first kind and bi;j the loss
associated with the error of the second kind for the edge .iI j/. Risk for additive
loss function is defined by

Radd.MST; n/ D
X

1�i�j�N

.ai;jPn.ki;jjhi;j/C bi;jPn.hi;jjki;j// (1)

where Pn.ki;jjhi;j/ is the probability of rejecting hypothesis hi;j when it is true and
Pn.hi;jjki;j/ is the probability of accepting hypothesis hi;j when it is false. Risk
function Radd.MST; n/ measures the statistical uncertainty of MST. It depends on
the choice of the losses ai;j and bi;j and on the number of observations n.
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3 Statistical Uncertainty of Kruskal Algorithm for MST

Statistical uncertainty of MST for different markets was investigated in [1] for
additive loss functions Radd.MST; n/. In the present paper we take a different point
of view and measure the statistical uncertainty of MST by the probability to have not
less than q Type I errors. Usually, in multiple hypotheses testing significance level
of multiple testing statistical procedure is defined by the probability to have not
less than 1 error of Type I. Our approach is a generalization of this. Define the loss
function:

Lossq D
�

1; if there is not less than q incorrectly included edges
0; otherwise

(2)

The risk function is then Rq.MST; n/ D E.Lossq/. This is connected with q-FWER
(Family Wise Error Rate) introduced in [3]. In order to define the reliability of
MST obtained by Kruskal algorithm, we investigate by simulations the risk function
Rq.MST; n/ as function of parameter q and numbers of observations.

4 Numerical Experiments

We use as a weight matrix .jj�i;jjj/ for the reference MST of the correlations of
returns of a set of 100 financial instruments traded in the NASDAQ100 over a period
of 250 trading days in 2014. Then we simulate multivariate normal distribution
N..0; : : : ; 0/; jj�i;jjj/ n times to get a sample of the size n. To evaluate the risk
function Rq.MST; n/ (probability to have not less than q Type I errors) we replicate
the experience 500 times, and use the frequency estimation for probability. To
measure uncertainty we solve the equation Rq.MST; n/ D P0, i.e. we calculate
the number of observations n needed to achieve the risk level P0. The results are
summarized in Tables 1, 2, 3, 4, and 5. One can see that an increase in q leads to
a considerable decrease in numbers of observations needed to reach the given level
of risk. For instance, the probability of not less than 1 incorrectly included edge
is equal to 0.1 with 700,000 observations, but only 1200 observations are required
when q D 10.

Figures 1, 2, and 3 give the number of observations needed to reach a given risk
level as a function of risk P0 for three values of q: 1, 5, and 10. One can see, that
dependence on q is not linear. This fact gives a possibility to control uncertainty of
MST by a choice of q.

Table 1 Number of observations needed to reach the value of risk Rq.MST; n/ D 0:1

n 7� 105 4� 105 3:5� 105 1:25� 105 0:1� 105 5000 3500 2500 2300 1000

q 1 2 3 4 5 6 7 8 9 10
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Table 2 Number of observations needed to reach the value of risk Rq.MST; n/ D 0:3

n 2:5� 105 1:5� 105 1:3� 105 0:5� 105 4000 2100 1600 1200 1000 600

q 1 2 3 4 5 6 7 8 9 10

Table 3 Number of observations needed to reach the value of risk Rq.MST; n/ D 0:5

n 1:5� 105 0:36� 105 0:1� 105 5000 3500 2000 1500 1100 600 550

q 1 2 3 4 5 6 7 8 9 10

Table 4 Number of observations needed to reach the value of risk
Rq.MST; n/ D 0:7

n 50,000 13,000 4000 2500 2000 1200 900 800 500 450

q 1 2 3 4 5 6 7 8 9 10

Table 5 Number of observations needed to reach the value of risk
Rq.MST; n/ D 0:9

n 40,000 9000 2500 1500 1000 640 540 460 430 350

q 1 2 3 4 5 6 7 8 9 10
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Fig. 1 Number of observations needed to reach the value of risk as a function of risk for q D 1



162 A. Komissarova and P. Koldanov

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

N
um

be
r 

ob
 o

bs
er

va
tio

ns

Frequency of not less q incorrectly included edges

Fig. 2 Number of observations needed to reach the value of risk as a function of risk for q D 5
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Fig. 3 Number of observations needed to reach the value of risk as a function of risk for q D 10
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5 Concluding Remarks

The most important conclusion from our study is that the MST cannot be regarded
as a stable structure even if we use a very light risk q-FWER. Moreover, we need a
huge amount of observations to reach the 90 % confidence of not at all, at most one,
or at most two incorrectly included edges. The increase in numbers of observations
does not cause a significant reduction in probability of not less than q D 1; 2; 3

incorrectly included edges. However, nonlinearity of dependence on q of risk of
MST gives a possibility to control uncertainty of MST by a choice of q.
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Identification of Cliques and Independent Sets
in Pearson and Fechner Correlations Networks

Oleg Kremnyov and Valery A. Kalyagin

Abstract We use two market network models for the analysis of stock market:
Pearson correlation network and Fechner correlation network. The main goal is to
estimate statistical uncertainty of identification of maximum cliques and maximum
independent sets. It is shown that identification of maximal cliques and maximal
independent sets in Fechner correlation network is distribution free in a certain class
of distributions which is not true for Pearson correlation network. This fact gives
advantage for Fechner correlation network in the case where no prior information is
known about distribution of returns.

Keywords Market network • Market graph • Cliques • Independent sets • Pear-
son correlation network • Fechner correlation network • Statistical procedures •
Risk function • Uncertainty of identification procedures

1 Introduction

Market network is a complete weighted graph. Every stock in a network corresponds
to a vertex in a graph and weights of edges between vertices correspond to values
of correlations between stock’s returns. Market graph is a subgraph of the market
network obtained from the network by removal of all edges whose weights do not
exceed a given threshold. Maximum cliques and maximum independent sets in the
market graph provide a valuable information about the market structure [1–3].

Due to the stochastic nature of stocks returns there is an uncertainty in identi-
fication of maximum cliques and maximum independent sets in the market graph.
A general approach to handle statistical uncertainty of market network structures
was proposed in [4]. In the present paper we investigate statistical uncertainty of
cliques and independent sets for two market network models: Pearson correlation
network and Fechner correlation network. We show that identification of maximal
cliques and maximal independent sets in Fechner correlation network is distribution
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free in a certain class of distributions which is not true for Pearson correlation
network. This fact gives advantage for Fechner correlation network in the case
where no prior information is known about distribution of returns.

The paper is organized as follows. In Sect. 2 we describe the overall model of
the market network and define maximum cliques and independent sets in the market
graph. In Sect. 3 we give a description of statistical procedures used for identification
of cliques and independent sets. In Sect. 4 we describe statistical uncertainty of
identification procedures. In Sect. 5 we present the results of numerical experiments
and give comments on it. In the last Sect. 6 we summarize the main finding of the
paper.

2 Random Variables Network

All graphs in this paper are simple, i.e. finite, undirected, without loops or multiple
edges. Clique in a graph is a set of vertices where any two vertices are connected
by an edge. Independent set in a graph is a set of vertices where any two vertices
are not connected by an edge. To model the market network we use the model of
random variables network. Random variables network is given by a random vector
R D .R1;R2; : : : ;RN/ and a measure of association 	 . In market network random
variable Ri represents return of the stock i. Weight of the edge between nodes i
and j is given by a measure of association 	.Ri;Rj/ which characterizes pair-wise
connections between random variables Ri and Rj.

One can identify threshold graph in random variables network. It is set by a
certain value of threshold 	0. An edge between vertices Ri and Rj is included in
the threshold graph if and only if the measure of the association 	.Ri;Rj/ exceeds
the value of threshold 	0. One can search for the maximum clique, i.e. the clique
of the greatest size, and the maximum independent set, i.e. the independent set of
the greatest size, in the threshold graph. Market graph (MG) is a special case of
the threshold graph, where the random variables are the stock’s returns. In this paper
we identify the maximum weighted maximal clique (MCMW), the maximum clique
with the greatest total weight which is a sum of weights of all edges in a clique
and the minimum weighted maximum independent set (MISMW), a maximum
independent set with the lowest total weight.

Inputs of maximum clique identification procedure are observations of stock
returns and output is the MCMW in the market graph. Similarly, inputs of maximum
independent set identification procedure are observations of stock returns and output
is the maximum independent set with the lowest total weight MISMW. We model
observations of returns of the stock i by random variables Ri.t/, t D 1; 2; : : : ; n. We
assume that random variables Ri.t/ are all independent, identically distributed as Ri.
In this setting observations R.t/, t D 1; 2; : : : ; n, form a sample from distribution R.
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3 Identification Statistical Procedures

In Pearson correlation network weight of edges between nodes i and j is given by
Pearson correlation between random variables Ri and Rj:

	P
i;j D COV.Ri;Rj/

p

VAR.Ri/VAR.RJ/

Let N be the number of stocks and n be the number of days of observations of stock
returns. Let ri.t/ be the observed value of the return of stock i for the day t. Sample
Pearson correlation is defined by

O	P
i;j D

Pn
tD1.ri.t/ � ri/.rj.t/ � rj/

pPn
tD1.ri.t/ � ri/2

Pn
tD1.rj.t/ � rj/2

For a given threshold 	P
0 an edge .i; j/ is included in the market graph if 	P

i;j > 	P
0 .

We will call the obtained graph reference market graph. To identify the MCMW
and MISMW in the reference market graph from observations we use the following
statistical procedure: first we identify the market graph by including the edge .i; j/
in the market graph if O	P

i;j > 	P
0 . This graph will be called sample market graph.

Once sample market graph is identified we calculate the MCMW and MISMW. Two
types of errors can occur with this identification: error of the first kind of the false
noninclusion of an edge in the structure and error of the second kind of the false
inclusion of an edge in the structure. Quality of identification statistical procedure
is measured by these errors.

In Fechner correlation network weight of edges between nodes i and j is given
by Fechner correlation between random variables Ri and Rj:

	FH
i;j D �1C 2P..Ri � E.Ri//.Rj � E.Rj// > 0/

Sample Fechner correlation is defined by

O	FH
i;j D �1C 2

n

n
X

tD1
sign..ri.t/ � ri/ � .rj.t/ � rj//:

For a given threshold 	FH
0 an edge .i; j/ is included in the reference market graph

if 	FH
i;j > 	FH

0 . To identify the MCMW and MISMW in the reference market
graph from observations we use the following statistical procedure: first we identify
the market graph by including the edge .i; j/ in the market graph if O	FH

i;j > 	FH
0 .

Thus we obtain sample market graph in Fechner correlation network. Once sample
market graph is identified we calculate the MCMW and MISMW. As above two
types of errors can occur with this identification: error of the first kind of the false
noninclusion of an edge in the structure and error of the second kind of the false
inclusion of an edge in the structure.
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4 Uncertainty of Statistical Procedures

To measure statistical uncertainty we propose to compare sample network structure
with the reference network structure. This comparison is based on risk function.
For a given network structure S (market graph, clique, and independent set) we
define a set of hypotheses: hi;j : edge .i; j/ is included in the reference structure S
and ki;j : edge .i; j/ is not included in the reference structure S. Two types of errors
can occur:

• Type I error (error of the first kind): edge (vertex) is not included in the sample
structure when it is present in the reference structure and

• Type II error (error of the second kind): edge (vertex) is included in the sample
structure when it is absent in the reference structure.

To evaluate the losses from Type I and Type II errors in MC and MIS identification
we use the following algorithm. As we can have many maximal cliques in a market
graph, we choose one with the maximal weight, MCMW. We can also have many
maximal independent sets, we also choose one with the minimal weight, MISMW.
Let SMCR be a structure MCMW in the reference market graph, and SMCS be MCMW
in the sample market graph. Similarly let SMISR be the structure MISMW in the
reference market graph, and SMISS be the structure MISMW in the sample market
graph. To measure the number of errors (losses) of the Type I for MC, we will
compare SMCS with its preimage in reference market graph SMCR. The number of
non-vertices in SMCR is the number of errors of Type I for maximal cliques. For MIS,
we define SMISS is a direct image in sample market graph of SMISR. The number of
vertices in SMISS is the number of errors of Type II for MIS. To measure the number
of errors of Type II for MC, we will compare SMCR with its direct image in sample
market graph SMCS. The number of non-vertices in SMCS is the number of errors of
Type II for maximal cliques. To measure the number of errors of Type II for MIS, we
will compare SMISS with its preimage in reference market graph SMISR. The number
of vertices in SMISR is the number of errors of the second type for MIS. Let M1 be
the maximal number of errors of Type I and M2 be the maximal number of errors of
Type II. One has for MC, M1=

�
2
K

�

,where K is the size of SMCS. Similarly, M1 D �
2
K

�

for MIS, where K is the size of SMISR. Similarly, one has M2 D �
2
K

�

, for MC, where
K is the size of SMCR.

Let X1 be the number of Type I errors, X2 be the number of Type II errors. Define
the random variable X by

X D 1

2

�
X1
M1

C X2
M2

�

The risk function is now defined as

R.S; n/ D E.X/ D 1

2
E

�
X1
M1

C X2
M2

�

(1)
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This function will measure statistical uncertainty of MC and MIS identification
procedures. Note that 0 � R.S; n/ � 1, and R.S; n/ D 0 means that there are
no errors in identification of the structure S, while R.S; n/ D 1 gives a maximal
number of errors.

5 Results

We investigate statistical uncertainty of identification of cliques and independent
sets by simulations. In our experiments distribution of random vector R D
.R1:R2; : : : ;RN/ is a mixture of multivariate Gaussian and Student distributions.
To generate observations ri.t/ we use multivariate Gaussian distribution with
probability � and multivariate Student distribution with 3 degrees of freedom with
probability .1 � �/. Both distributions have the same correlation matrix taken
from the real US market. Using simulations we compare the risk functions of
identification procedures in Pearson and Fechner correlations networks. To make
a correct comparison we need to have the same reference structure (market graph,
maximum clique, and maximum independent set) in both networks. This is possible
because there is a connection between Pearson and Fechner correlations for a
mixture of Gaussian and Student multivariate distributions [5]:

	FH D 2

�
arcsin.	P/:

Therefore if we choose 	FH
0 D 2

�
arcsin.	P

0 /, then maximum clique and independent
set in the market graph for Pearson correlation network with the threshold 	P

0 will be
the same as maximum clique and independent set in the market graph for Fechner
correlation network with the threshold 	FH

0 .
Figs. 1 and 2 represent the number of observations necessary to achieve the level

of risk 0.5 as a function of the parameter �, i.e. the number of observations n
satisfying the equation R.S; n/ D 0:5. One can see that identification of maximum
clique (Fig. 1) and maximum independent set (Fig. 2) is not sensitive to distribution
in Fechner correlation network but it is very sensitive to distribution in Pearson
correlation network. Moreover uncertainty in Pearson correlation network is lower
only in a neighborhood of � D 1 (Gaussian distribution).

Figs. 3 and 4 represent the number of observations necessary to achieve the
level of risk 0.3 as a function of the parameter �, i.e. the number of observations
n satisfying the equation R.S; n/ D 0:3. One can see that the situation is similar
to the level of risk 0.5. Identification of maximum clique (Fig. 3) and maximum
independent set (Fig. 4) is not sensitive to distribution in Fechner correlation
network but it is very sensitive to distribution in Pearson correlation network.
Uncertainty in Pearson correlation network is lower only in a neighborhood of � D 1

(Gaussian distribution).
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Fig. 1 Number of observations necessary to achieve the level of risk 0.5 for identification of
maximum clique in the market graph for Pearson (solid line) and Fechner (dashed line) correlations
networks. Threshold 	P

0 D 0:7

Figs. 5 and 6 represent the number of observations necessary to achieve the level
of risk 0.1 as a function of the parameter �, i.e. the number of observations n
satisfying the equation R.S; n/ D 0:1. One can see that the situation is similar to the
levels of risk 0.5 and 0.3. Identification of maximum clique (Fig. 5) and maximum
independent set (Fig. 6) is not sensitive to distribution in Fechner correlation
network but it is very sensitive to distribution in Pearson correlation network.
Uncertainty in Pearson correlation network is lower only in a neighborhood of � D 1

(Gaussian distribution).

6 Concluding Remarks

Identification of maximum cliques and maximum independent set in the market
graph is investigated for two types of random variables networks: Pearson cor-
relations network and Fechner correlations network. It is shown by numerical
simulations that identification of maximum clique and maximum independent set
is not sensitive to distribution in Fechner correlation network but it is very sensitive
to distribution in Pearson correlation network. This fact has a practical meaning for
identification of network structures in real stock markets.
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Fig. 2 Number of observations necessary to achieve the level of risk 0.5 for identification of
maximum independent set in the market graph for Pearson (solid line) and Fechner (dashed line)
correlations networks. 	P

0 D 0:2
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Fig. 3 Number of observations necessary to achieve the level of risk 0.3 for identification of
maximum clique in the market graph for Pearson (solid line) and Fechner (dashed line) correlations
networks. 	P

0 D 0:7
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Fig. 4 Number of observations necessary to achieve the level of risk 0.3 for identification of
maximum independent set in the market graph for Pearson (solid line) and Fechner (dashed line)
correlations networks. 	P
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maximum clique in the market graph for Pearson (solid line) and Fechner (dashed line) correlations
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Fig. 6 Number of observations necessary to achieve the level of risk 0.1 for identification of
maximum independent set in the market graph for Pearson (solid line) and Fechner (dashed line)
correlations networks. 	P
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Investigation of Connections Between Pearson
and Fechner Correlations in Market Network:
Experimental Study

Andrey Latyshev and Petr Koldanov

Abstract Network models for stock market attract a great attention in last decades.
Different measures of similarity between stocks attributes are largely used. In gen-
eral, different measures of similarity can generate different network structures. For
instance, Fechner and Pearson correlations networks can have different minimum
spanning trees, market graphs, maximum cliques, and maximum independent sets.
At the same time it is known that Fechner and Pearson correlations are connected
by a monotonic transformation for bivariate Gaussian distributions. This connection
can be generalized to bivariate elliptically contoured distributions. In this case it can
be shown that network structures are connected too. This fact can be used for data
mining in market network. In the present paper we study the connection between
Fechner and Pearson correlations for the real market data.

Keywords Stock market • Stock returns • Market network • Pearson correla-
tion • Fechner correlation

1 Introduction

Stock market can be investigated as a complex system [8]. Market network is a
complete weighted graph where the vertexes of the graph represent the stocks and
weights of edges are given by some measure of similarity between stocks attributes.
Network structure is a subgraph of the complete weighted graph obtained by some
filtration technique. The popular network structures are MST (minimum spanning
tree) [7] and market graph [3].
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Traditional measure of similarity used in market network analysis is Pearson
correlation. Recently it was shown that sign similarity of stocks returns known
as Fechner correlation can be useful for data mining in market network [2].
In general different measures of similarity can generate different network structures.
Surprisingly for some class of distributions (for example, for elliptically countered
distributions) the popular network structures such as MST and market graphs are
connected in Pearson and Fechner correlations networks. This fact is a conse-
quence of the connection between Pearson and Fechner correlations for elliptically
countered distributions [1, 5]. The main goal of the present paper is to study this
connection for the real market data. This study gives us some arguments to answer
the following question: whether distributions of stocks returns can be modeled by
elliptically contoured distributions?

2 Pearson and Fechner Correlations

Let N be the number of financial assets and n be the number of observations. Let
Pi.t/ be the price of stock i on day t (i D 1,N; t D 1,n/. The log-return of the stock
i per 1-day period from (t-1) until t can be defined as follows:

Ri.t/ D ln

�
Pi.t/

Pi.t � 1/
�

We assume that random variables Ri.t/, .i D 1;N/ D .i D 1;N/, are independent
when i is fixed, and identically distributed as Ri, i D 1,N), while random variables
R1, R2, . . . , RN have a joint distribution with the Pearson correlation matrix k�P

i;jk,
where

�P
i;j D COV.Ri;Rj/

p

VAR.Ri/VAR.Rj/

The sample Pearson correlation coefficient between returns of the stocks i and j is
defined by

ri;j D
P

.Ri.t/ � Ri/ .Rj.t/ � Rj/
q
P

.Ri � Ri/2
q
P

.Rj � Rj/2

Here Ri D 1
n

Pn
tD1 Ri.t/ is a sample expectation of the ith return.

For any pair of random variables Ri.t/ and Rj.t/ we can define the pairwise sim-
ilarity that is based on the probability that their deviations from the corresponding
expectations ai D E.Ri/ and aj D E.Rj/ have the same sign:

pi;j D P.Ri � ai;Rj � aj _ Ri < ai;Rj < aj/ (1)
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The measure defined in this way is linearly connected with the sign correlation of
Fechner which is defined by

�F
i;j D �1C 2pi;j

Sample Fechner correlation is defined by

si;j D 1

n

n
X

tD1
sign.Ri.t/ � Ri/sign.Rj.t/ � Rj/ (2)

where

sign.x/ D
�

1; x � 0

�1; x > 0

One has for the sample Fechner correlation

si;j D 1

n

n
X

tD1
sign.Ri.t/ � Ri/sign.Rj.t/ � Rj/ D eij � dij

eij C dij

where eij is the number of the pairs of corresponding returns Ri and Rj that have the
same signs and dij is the number of such pairs that have different signs. Then

E.si;j/ D �1C 2pi;j D �F
i;j

The interpretation of the proposed measures (1) and (2) can be described in the
following way. We suppose that there were 100 observed days. Then the percent
of the days when the signs of the deviations of two stock returns are coincident
corresponds to the probability measure pi;j. The transformation si;j D 2pi;j � 1 gives
the sample Fechner correlation. For example, if there were 80 days when the signs
of the deviations of two stock returns were the same, then we can find that pi;j D 0:8.
Hence si;j D 0:6. If si;j > 0, then the stocks i and j had more days when their prices
changed in the same directions. If si;j < 0, then the stocks had more days when their
prices changed in the different directions. When si;j � 0 the prices of stocks i and j
fluctuate independently.

3 Connection Between Pearson and Fechner Correlations

This connection is known for bivariate normal distribution [4]. For the sake of
completeness we reproduce here the main arguments of the proof. Let X and Y
be normally distributed random variables with zero expectations, unit variances,
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and Pearson correlation � D �.X;Y/. Let U and V be two independent normally
distributed random variables with zero expectations and unit variances. The random
variables X and Y can be expressed as

X D ˛U C ˇV; Y D 	U C ıV

Define the variables U and V from the equations

E.U/ D E.V/ D 0; D.U/ D D.V/ D 1;

E.V2/ D E.U2/ D D.U/C fE.U/g2 D 1C 0 D 1

Taking into account that U and V are independent we have

E.UV/ D E.U/E.V/ D 0

One has

D.X/ D D.˛U C ˇV/ D ˛2D.U/C ˇ2D.V/ D ˛2 C ˇ2 D 1

D.Y/ D D.	U C ıV/ D 	2D.U/C ı2D.V/ D 	2 C ı2 D 1

�.X;Y/ D E.XY/ D E..˛U C ˇV/.	U C ıV// D
D ˛	E.U2/C ˛ıE.UV/C ˇ	E.UV/C ˇıE.V2/ D

D ˛	 C ˇı D �

Finally we get the system of three equations connecting four parameters ˛; ˇ; 	 ,
and ı.

8

<

:

˛2 C ˇ2 D 1

	2 C ı2 D 1

˛	 C ˇı D �

Any solution of the system correspond to the pair of two-dimenision vector with
coordinates .˛; ˇ/, .	; ı/. The length of each vector is equal to one and the scalar
product of the vectors is equal to �. Let we fix one solution. Then it is obvious
that any other solution can be obtained from fixed solution by rotating the plane by
arbitrary angle. Assume the following solution

8

ˆ
ˆ
<

ˆ
ˆ
:

˛ D 1

ˇ D 0

	 D �

ı D p

1 � �2

Now we can state the connection between the Pearson and Fechner correlations. The
probability of the coincidence of the signs PS for two bivariate normal variables X
and Y can be expressed in the following way
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PS D P.X � 0;Y � 0 _ X < 0;Y < 0/ D
D P.X � 0;Y � 0/C P.X < 0;Y < 0/ D

D P.U � 0; �U Cp

1 � �2V � 0/C P.U < 0; �U Cp

1 � �2V < 0/

(3)

If we use the Cartesian plane with the axes U and V , then the proposed sum of
probabilities is equal to the measure of the sum of two angles between the lines
U D 0 and �U C p

1 � �2V divided by the measure of full sector 2� because U
and V are independent. The sum of angles can be found using the vectors described
below. This sum is equal to 2� � arccos �. Then

PS D 2� � 2 arccos �

2�
D 1 � arccos �

�

Now we can establish the connection between Fechner correlation �F.X;Y/ and
Pearson correlation �P.X;Y/ considering �F

X;Y D 2PS � 1

�F
X;Y D 1 � 2

�
arccos �P.X;Y/ (4)

It can be shown that the Eq. (4) can be applied to the pairs of stocks that have
elliptically contoured joint distribution of the returns.

4 Statistical Framework for Testing Relation Between
Pearson and Fechner Correlations

To test the statistical hypothesis of connections between Pearson and Fechner
correlations we use the following probabilistic model for the market returns: random
variables Ri.t/, i D 1;N, are independent when i is fixed, and identically distributed
as .i D 1;N/, i D .i D 1;N/, and random variables R1, R2, . . . , RN have a joint
distribution with the Pearson correlation matrix k�P

i;jk. Let us introduce hypotheses:

HX;Y W �F
X;Y D 1� 2

�
arccos �P.X;Y/ vs KX;Y W �F

X;Y ¤ 1� 2

�
arccos �P.X;Y/ (5)

We would like to test these hypotheses using the observations from financial market.
According to [6] test for (5) has the form:

'.x; y/ D
�

0; c1 < T.x; y/ < c2
1; else

(6)

where constants c1 and c2 are defined from the equation

P.c1 < T.x; y/ < c2j�F
X;Y D 1 � 2

�
arccos.�P

X;Y/ D 1 � ˛
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To define statistic T.x; y/ note that maximum likelihood estimation of (3) is the
frequency h.x; y/ of the coincidence of the signs of stocks X and Y . This frequency
can be written as

h.x; y/ D
n
X

iD1
Ii

where

Ii D
�

1; sign.xi/ D sign.yi/

0; sign.xi/ ¤ sign.yi/

Maximum likelihood estimation of 2
�

arccos �P
X;Y is 2

�
arccos.rX;Y/. Thus statistic

T.x; y/ can be defined as

T.x; y/ D h.x; y/ � 2

�
arccos.rX;Y/ (7)

Constant c1 from (6) is ˛
2

—quantile of distribution T.x; y/ and constant c2
is 1 � ˛

2
—quantile of distribution T.x; y/. Distribution of statistic T.x; y/ being

unknown one can estimate the constants c1 and c2 by numerical simulations of
bivariate distribution of .X;Y/. We consider two types of distributions (both from
the class of elliptically contoured distributions)

• The first joint bivariate distribution of .X;Y/ is normal with the means equal to
zero, the variances equal to one, the period n of observation is 250, 500, or 1000
days optionally, and the correlation between the variables � varies from �0:8 to
0.8 with an increment 0.1.

• The second joint bivariate distribution of .X;Y/ is Student distribution with
three degrees of freedom, the period n of observation is 250, 500, or 1000 days
optionally, and the correlation between the variables � varies from �0:8 to 0.8
with an increment 0.1.

The number of replications is 100,000 for every set of parameters. After the
described operations we determine the bounds .c1; c2/ on the significance levels
˛ D 0:05 and ˛ D 0:01 for known n and � using the following equations

P.T.x; y/ < c1.˛; �; n// D ˛

2

P.T.x; y/ > c2.˛; �; n// D ˛

2

Next the test for the hypotheses of the connection between sign and classical
correlations on the real market data is developed. For every pair of stocks i and j we
compute their returns Ri and Rj. Then we calculate the sample Pearson correlation
ri;j and the frequency of the coincidence of the signs si;j and define

�i;j D si;j � .1 � arccos ri;j

�
/
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After that we compare the resulting �i;j with the boundary values c1.˛; �; n/ and
c2.˛; �; n/ and make a decision.

The shown procedure has to be completed for all the possible C2
N pairs of stocks

f.i; j/j i; j D 1; 2; : : : ;N; i ¤ jg. The analysis of the results (the percentage of
acceptances and rejections of the hypotheses) lets us make some conclusions about
the nature of the distribution of the market stocks returns.

5 Testing Connection Between Pearson and Fechner
Correlations for the Real Market Data

In this section an analysis of the connection between Pearson and Fechner correla-
tion for the American stock market is presented. We selected N D 30 stocks that are
included in the DJI index. The period of observation is from January 01, 2009 until
July 19, 2013 (1000 trading days in total). We divided our observation period in
three different ways: into four periods (250 days each), into two periods (500 days
each) by grouping the periods 1–2 and 3–4, and the whole period of 1000 days.
Totally we analyze 435 joint distributions of each pair of DJI stocks. The results of
the described tests are represented in the tables below. In Table 1 we use the critical
values c1 and c2 obtained from normal distribution.

One can see from Table 1 that the average of proportion of rejected hypotheses is
many times larger than corresponding significance level. It means that the conjecture
of connection between Fechner and Pearson correlations for the set of DJI stocks is
not confirmed if the critical values c1 and c2 are calculated using normal distribution.

In Table 2 we use the critical values c1 and c2 obtained from Student distribution.
One can see from Table 2 that the average of proportion of rejected hypotheses

is lower than corresponding significance level. It means that the conjecture of
connection between Fechner and Pearson correlations for the set of DJI stocks is
confirmed if the critical values c1, c2 are calculated using Student distribution.

Table 1 Proportion of rejected hypotheses for different periods of observations. Critical values
of tests are taken from normal distribution

˛ Period 1 Period 2 Period 3 Period 4 Periods 1–2 Periods 3–4 Periods 1–4

0.05 0.137 0.128 0.119 0.282 0.168 0.262 0.301

0.01 0.071 0.039 0.036 0.160 0.067 0.181 0.186

Table 2 Proportion of rejected hypotheses for different periods of observations. Critical values
of tests are taken from student distribution

˛ Period 1 Period 2 Period 3 Period 4 Periods 1–2 Periods 3–4 Periods 1–4

0.05 0.002 0.004 0.002 0.030 0.002 0.075 0.059

0.01 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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6 Concluding Remarks

First experimental study on connections between Pearson and Fechner correlations
for the real market conducted in the paper shows that the conjecture of connection
can be accepted at least for a part of the market. A deeper analysis of the rejections
of hypothesis of connection between Pearson and Fechner correlations shows that
the hypothesis is rejected for the pairs of stocks with two hubs KO (Coca-Cola) and
NKE (Nike). If we remove these stocks, the conjecture of connection is confirmed
for both choice of critical values c1 and c2. This phenomenon needs a further
investigation.
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Testing the Stationarity of Sign Coincidence
in Market Network

Dmitry E. Mozokhin and Alexander P. Koldanov

Abstract The problem of stationarity of sign coincidence of returns is considered.
Stationarity of sign coincidence for a pair of stocks is tested by two-sample
Kolmogorov–Smirnov and Chi-Square tests. Multiple comparison procedures, such
as Bonferroni and Holm procedures, are employed to test stationarity of sign
coincidence in market network and to control the family wise error rate (FWER).
The method is validated for testing stationarity of stock’s prices and returns. It is
shown that the hypothesis of stationarity is rejected for prices and it is not rejected
for returns and their sign coincidence on some significance level.

Keywords Stock market • Stock price • Stock return • Correlations • Sign
coincidence • Stationarity • Multiple comparison • Multiple testing statistical
procedures • Banferroni procedure • Holm procedure • Family wise error rate

1 Introduction

Probabilistic models for stock prices and their returns were introduced in [1, 5].
Modern development of this topic is presented in [9]. It is known that prices are
not stationary [6] and returns of stocks can be considered as stationary (in [8]
the authors point out that returns are serially independent). Sign coincidence (sign
similarity) of returns was introduced in market network analysis in [2] as a measure
of similarity between stocks. This measure has some interesting properties with
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respect to classical Pearson correlation [3]. Therefore it is important to investigate
general properties of this measure of similarity, and, in particular, its stationarity. As
far as we know there is no work that is devoted to this problem.

Our method for testing stationarity has two main parts. First, it is stationarity
verification for quantitative characteristics of stocks that is implemented, thanks to
two-sample homogeneity test. Second, we apply a multiple comparison technique
and use family wise error rate (FWER) to control the risk. Multiple comparison
is conducted with Bonferroni and Holm multiple testing statistical procedures,
comparisons of binomial proportions, and Chi-square test of homogeneity. The
method is validated for testing stationarity of stock’s prices and returns. Using
this method we confirm the previous study (prices are not stationary, returns are
stationary) and obtain our main result: sign coincidences pass the stationarity tests
for some significance levels.

This paper is organized as follows. In Sect. 2 the problem statement with main
definitions and notations is provided. Section 3 contains description of statistical
procedures that are employed in the paper. In Sect. 4 the conducted experiments and
the analysis of the result observed are presented. Section 5 emphasizes the main
result of the paper.

2 Problem Statement

Let N and n be the number of stocks in the financial market and number of
observations, respectively. Define by pi.t/ the price of stock i for the day t, where
i D 1::N; t D 1::n. Also, denote by ri.t/ the daily return of stock i for the period
from .t � 1/ to t that can be calculated by

ri.t/ D ln
pi.t/

pi.t � 1/ (1)

Sign coincidence ci;j of returns i and j is defined by

ci;j.t/ D
�

1; ri.t/rj.t/ � 0

0; otherwise
; (2)

where ri.t/ and rj.t/ are stock returns i and j, respectively .i ¤ j/; t D 1 : : : n. Note
that the total number of ci;j is

�N
2

�

.
For testing stationarity we use the following pre-processing technique. The

vectors of prices (pi) and returns (ri) are divided into k intervals of the same
length. It is assumed that ri.1/ : : : ri.

n
k / (also pi.1/ : : : pi.

n
k / are the observations of

a random variable R.1/i (P.1/i ). In this case, R.t/i (P.t/i ) describes the behavior of daily
returns(prices) of the stock i for the period from .. n

k � 1/ � t C 1/ to . n
k / � t.
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By analogy with returns and prices, vectors of sign coincidence are divided
into k parts which are descried by the relevant random variables. It means that
cij.1/ P: : :cij.

n
k /) .i ¤ j/ are observations of random variable C.tD1/

ij and so on for
t D 1::k.

With considering all definitions and the assumption that the stationarity of the
characteristics is equivalent to pairwise testing the null hypothesis of homogeneity,
the problem can be interpreted in the following way: Firstly, for prices and returns
it is needed to test the fact that random variables R.t/i (P.t/i ) (t D 1; 2; : : : ; k)
are independent and identically distributed for fixed stock i. The total number of
hypotheses is equal to N

�k
2

�

and we study the stationarity problem as a multiple
decision problem. Secondly, for measures of sign coincidence between returns the
following hypothesis has to be tested:

Hi
0 W Fi

l.r/ D Fi
m.r/;

where l;m D 1 : : : kI l ¤ mI i D 1 : : :N.
This hypothesis tests the homogeneity of two distribution functions that corre-

spond to parts l and m of stock i.
It should be noted that there are several procedures to solve multiple comparisons

problem and control FWER. For instance, Bonferroni and Holm procedures, which
are described below, can be utilized for it.

3 Statistical Procedures

3.1 Multiple Comparisons

By definition, testing of each statistical hypothesis contains the possibility of error of
the first kind. The more we check the hypotheses on the same data, the more likely
to allow at least one such error. This phenomenon is called the effect of multiple
comparisons (multiple comparisons or multiple testing). Let V be the number of
errors of the first kind, then in a simultaneous test of a set of statistical hypotheses,
the goal is to minimize the number of false rejections. Since the probability to make
a mistake in at least one of these M (in our case M is equal to

�k
2

�

) comparisons is
equal to 1�.1�˛/, which substantially exceeds the original value of the significance
level (for example, ˛ D 0:05), then a further increase in the number of testable
hypotheses will be to lead to an inevitable increase in the error of the first kind. So,
if V � 1, we will make at least one error of the first kind and the likelihood of such
errors is called “group error probability (family wise error rate)”. By definition,
FWER D P.V � 1/. Accordingly, when we want to control an error of first kind at
a certain significance level ˛, we must have FWER � ˛. Finally, in order to make
adjustments in the significance level, there are a number of methods, such as the
Bonferroni procedure and Holm procedure.
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3.2 Bonferroni Procedure

It is one of the simplest and most well-known methods of control over the group
error probability. This method states that in order to achieve the level of significance
˛ it is enough to reject the hypothesis Hi

0, for which p � ˛
M , where M—total number

of hypotheses, and p is a p-value. The formal definition of the Bonferroni procedure
can be presented as follows. Let H1;H2; : : : ;HM—a family of hypotheses, and
p1; p2; : : : ; pM—corresponding p-values. It should be noted that p-value is a function
of the observed sample results which is calculated as the lowest ˛ for which the
null hypothesis is rejected for a given set of observations. Denote by I an unknown
subset of true null hypotheses that has power m0. Then FWER is the probability of
rejection of at least one hypothesis of I. Bonferroni correction method argues that
the rejection of all pi � ˛

M provides an FWER � ˛.

FWER D P.V � 1/ � P

 
m0[

iD1
ePi � ˛

!

�
m0X

iD1
P.ePi � ˛/ �

m0X

iD1

˛

m
D m0

˛

m
� ˛

3.3 Holm Procedure

Holm (Holm–Bonferroni) procedure is a method of controlling a group of probabil-
ity of errors. Holm procedure is based on an algorithm that includes the following
steps:

• The initial p-values are arranged in nondecreasing order:
p1 � p2 � : : : � pm. These values correspond to family of hypotheses which are
being tested H1;H2; : : : ;Hm.

• If p1 � ˛
m , then hypotheses H1;H2; : : : ;Hm are non-rejected and the algorithm

stops. Otherwise, if p1 <
˛
m , we have to reject the hypothesis H1 and continue

checking the remaining hypotheses at significance level ˛
m�1 .

• If p2 � ˛
m�1 , then hypotheses H2;H3; : : : ;Hm are non-rejected and the algorithm

stops. Otherwise, if p2 <
˛

m�1 , we have to reject the hypothesis H2 and continue
checking the remaining hypotheses at significance level ˛

m�2 , etc.

It should be noted that Bonferroni and Holm procedures are not the best available
procedures. There are many different methods that control the FWER and are more
powerful than Holm method. For instance, Hochberg and Hommel procedures can
be considered as more precise. However, the results observed show that in our case
it is enough to employ Bonferroni and Holm approaches to detect stationarity.
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3.4 Global Test for Comparisons of k Binomial Proportions

In order to test stationarity for sign coincidence of returns the comparisons of k
binomial proportions are utilized. This approach is described in more detail in [7].
The general idea is the following: Let Xi � BIN.m; pi/, where m is the length of
each part of division and equal to n

k Ibpi D Xi
m . Naturally, it is stated that proportions

are independent.
For testing H0 W p1 D : : : D pk an inverse-sine transformation that gives a

constant variance is done since standard errors of bpi depend on unknown pi.

Lpi D sin�1
s

Xi C 3
8

ni C 3
4

� N

�

sin�1ppi;
1

4ni

�

Using these transformed values, it is analyzed that the statistics G has an asymptotic
chi-square distribution with k � 1 degrees of freedom.

G D
Pk

iD1 ni. Lpi � Lp/2
1
4

; Lpi D sin�1
v
u
u
t

Pk
iD1 Xi C 3k

8
Pk

iD1 ni C 3k
4

Thus, the approach is reduced to calculation of the statistics G and comparison
of it with critical value for some significance level.

3.5 Chi-Square Test of Homogeneity

According to [4] we have k sequences of observations and in each of them some
event E (compliance of a sign) occurs v1; : : : ; vk times, respectively. The question
is, is there any reason to believe that the event E has the same constant but unknown
probability p in all cases. Obviously, estimation of p should be the frequency of the
event E in the total data-set.

p� D 1 � q� D 1

n

X

j

vj�

After that p� can be substituted in Chi-square statistic that has k � 1 degrees of
freedom in order to test the hypothesis that was mentioned above.

�2 D
X

j

.vj � njp�/2

njp�q�
D 1

p�q�
X

j

v2j

nj
� n

p�

q�
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4 Experiments

The conducted experiments have the following objectives:

• to check the null hypothesis of stationarity for prices of stocks and their returns
and confirm the fact that returns are stationary and prices are not.

• to investigate the stationarity of sign coincidence of returns

In the first part the two-sample Kolmogorov–Smirnov (KS) test is utilized for
testing homogeneity of distributions. Let F1;l.x/ and F1;m.x/ be empirical distribu-
tion functions which characterize the distributions of l and m parts, respectively,
that are obtained, thanks to division of the first stock into k parts. It is necessary
to note that these parts are considered as independent. Thus, KS test checks the
homogeneity in pairs for each stock. One needs a multiple comparisons in this case.

The second part is aimed to investigate stationarity of sign coincidence using
global comparisons test and Chi-square test of homogeneity which are described
above. Also, in both cases we change number of parts for division .k D 2; 5; 10; 20/

and significance level .˛ D 0:05; 0:5/ in order to conduct the comparison analysis.

4.1 Data-Set Description

For the experiments, information concerning prices of stocks of German financial
market from 2010 to 2011 has been collected. Namely, we take 85 tickers from
DAX, SDAX, and TECDAX indexes. Each ticker has 500 observations which
correspond to closing prices.

4.2 Stationarity of Prices

First of all, we investigate prices which according to [6] are non-stationary. Let k D
10, it means that we study stationarity on time frame within 50 days (approximately
2 months). In this case the total number of homogeneity hypotheses is equal to
45 and the largest number of non-rejected hypotheses corresponds to the stronger
stationarity. In other words, if all 45 hypotheses are not rejected for some stock,
then it will mean that its prices or returns are stationary. On the assumption of
adjustments, the results observed are presented in Fig. 1. Analyzing it, we can
state that prices of stocks are definitely non-stationary, since on the average the
null hypothesis of stationarity is not rejected in 4 cases for Bonferroni procedure.
As for the other approaches, the utilization of the single step procedure (with
constant significance level ˛) leads to complete absence of stationarity because 4%
of hypotheses are not rejected only.
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Fig. 1 Stationarity of prices. Integer value in cells determines the number of accepted hypotheses
of homogeneity, k D 10, ˛ D 0:05, the total number of hypotheses is 45
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4.3 Stationarity of Returns

To investigate the stationarity of returns the same methodology is employed. We
divide given vectors of returns into 10 and 20 parts which correspond to 2 and 1
months, respectively.

At first, for ˛ D 0:05 and k D 10 the results observed are shown in Fig. 2. It is
necessary to note that the total number hypotheses is 45. Hence, we assume the
stationarity of returns, since approaches that control FWER do not reject on average
44.7 hypotheses. However, for some tickers such as “ALVDE” and “CBKDE” the
single step procedure rejects approximately the half of hypotheses and at the result,
it means that in general the hypothesis of stationarity for returns can be rejected.

Figure 3 shows that Bonferroni and Holm procedures still accept the hypothesis
even if the initial probability of error is very large (˛ D 0:5). Also, it should be noted
that in both cases the number of non-rejected hypotheses is matched completely
when Bonferroni and Holm approaches are utilized.

In addition to this, we test the hypotheses of stationarity for k D 5 and ˛ D 0:05.
The results are shown in Fig. 4. It should be noted that majority of hypotheses are not
rejected also, since we have 190 hypotheses and on the average 189 are supported
from them. Therefore we can state that returns can be considered as stationary. What
is more, tickers “ALVDE” and “CBKDE” have non-stationary returns and this fact
is supported by calculations that are presented in Fig. 4.

4.4 Stationarity of Sign Coincidence

To test the stationarity of sign coincidence the Global test for comparisons of
k binomial proportions and Chi-square test of homogeneity are employed with
˛ D 0:05. The number of hypotheses is

�N
2

�

, where N is the number of stocks.
Therefore we take the first ten tickers and test 45 hypotheses, the results are
presented in Figs. 5 and 6. If a cell contains 0, it means that the sign coincidence
between TICKERi_TICKERj is non-stationary for some value k.

The last row is sum of columns. It allows to conclude that sign coincidence are
stationary. Moreover, the sign coincidence between tickers “ALVDE” and “CBKDE”
which is of great interest is stationary because the null hypothesis is rejected once.

5 Concluding Remarks

A new method is proposed to test stationarity of stocks characteristics (prices,
returns, sign coincidence). The method confirms the previously obtained results for
prices and returns. Besides, new problem of testing the hypothesis of stationarity for
sign coincidence of returns is considered. It is shown that sign coincidence passes
the stationarity test. It is interesting to investigate stationarity of other measures of
similarity between stocks, such as Pearson correlation and partial correlation. It will
be a subject of further researches.
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Fig. 2 Stationarity of returns. Integer value in cells determines the number of accepted hypotheses
of homogeneity, k D 10, ˛ D 0:05, the total number of hypotheses is 45
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Fig. 3 Stationarity of returns. Integer value in cells determines the number of accepted hypotheses
of homogeneity, k D 20, ˛ D 0:5, the total number of hypotheses is 190
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Fig. 4 Stationarity of returns. Integer value in cells determines the number of accepted hypotheses
of homogeneity, k D 5, ˛ D 0:05, the total number of hypotheses is 10
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Fig. 5 Global test
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Fig. 6 Chi-square test
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Synchronization and Network Measures
in a Concussion EEG Paradigm

Ioannis Pappas, Gianluca Del Rossi, John Lloyd, Joseph Gutmann,
James Sackellares, and Panos M. Pardalos

Abstract The objective of this work is to characterize the neurophysiologic
changes in a patient who suffered a concussion during a football practice via
quantitative and graph-theoretic measures and to evaluate the results with respect
to the pre-concussion state. We report on a high school athlete who sustained a
self-reported concussion while wearing a 16-channel portable EEG recorder and
a specially instrumented helmet capable of recording biomechanical impact data.
This opportune occurrence has enabled a detailed assessment of the type and
duration of changes that occur to human brain function immediately following a
sports-related concussion. In the post-concussion EEG segment, we observed a
significant decrease in both the quantitative and graph-theoretic measures. More
specifically, we observed a significant decline in the cross-mutual information
measure between certain pairs of electrodes as well as in the global efficiency of
the corresponding brain network. The deviations in the selected quantitative and
graph-theoretic measures partially corroborate the usual clinical characteristics of
the post-concussion state but further investigation for additional data and evaluation
of alternative quantitative measures are needed.

Keywords EEG brain network • Network measures of interconnection • Joint
entropy • Cross-mutual information measure • Global efficiency
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1 Introduction

According to the Centers for Disease Control and Prevention (CDC), there are up to
3.8 million concussions occur each year with over 300,000 requiring treatment from
health care providers [11] and a significant number of unreported cases [12]. Besides
the existence of guidelines provided by the American Academy of Neurology [8],
the accurate and timely diagnosis of sports-related concussion remains an elusive
challenge for clinicians, because there are currently no reliable biological or imaging
markers for the objective detection of a concussion. Detection and diagnosis may be
complicated further by an athlete’s tendency to mask symptoms when tested using
qualitative measures in an effort to return to play quickly.

The need for a means to accurately diagnose acute-sports concussions is under-
scored by the recognition that repeated concussions could be a significant risk factor
for delayed manifestation of neurodegenerative diseases such as chronic traumatic
encephalopathy [7], and for conditions such as second-impact syndrome (SIS), a
rapid and catastrophic brain swelling following a second trauma occurring minutes,
days, and weeks after the initial concussion [1].

EEG was established over 70 years ago as a diagnostic tool for assessing brain
function following traumatic head injury on the basis that the moment of head injury,
neurons discharge resulting in a release of neurotransmitters followed by neuronal
suppression [19]. Most EEG data following traumatic brain injury are from animal
models [20]. These models may not be directly applicable to human concussion due
to differences in normal EEG patterns among species and difficulty in reproducing
human concussions occurring during sports events in an animal model. In humans,
the waking EEG has a well-defined pattern, with characteristic waveforms and
frequencies in each region of the cerebral cortex. Any pathological process that
causes altered consciousness or impairment in concentration and attention can
cause diffuse slowing in the EEG background rhythms and changes in spatial
organization of normal background rhythms, which can be visually detected by a
trained electroencephalographer. Most published EEG studies following traumatic
brain injury have examined EEG changes in the days to months following the
injury [16]. Reports of EEG changes immediately after head injury are limited, with
only a few studies describing EEG findings immediately after head injuries [6] and
related to football head injuries [10]. These latter studies describe diffuse slowing in
the EEG background, usually due to an increase in theta range frequencies (5–8 Hz).
The findings are most prominent immediately after the injury, tend to vary with the
severity of the injury, and may persist from minutes to days [17].

The utility of EEG for detecting acute concussion in sports is limited by the
challenges of reliably obtaining an interpretable signal, and the fact that most sports
physicians are not trained in EEG interpretation. In 2014, Del Rossi et al. [5],
conducted a study that demonstrated the feasibility of acquiring continuous EEG
recordings during active play in high school football players. Using data from the
Del Rossi study, we explore the use of an automated signal analysis of the EEG,
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to detect mild concussion, based on a network analysis approach. We chose to
use network analysis because it provides information regarding both spatial and
temporal aspects of the EEG. Cross-mutual information was used to assess statistical
correlations between signals derived from each electrode because the measure does
not require assumption of linearity or stationarity of the signals [3, 9, 13, 14].

2 Methods

2.1 Source of EEG Data

A continuous multichannel EEG recording previously performed in a de-identified
17-year-old male high school football player during a practice session was analyzed.
The digital recording had been obtained as part of an IRB approved research proto-
col after obtaining informed written subject assent and parental consent. Changes in
the EEG were analyzed in relation to kinematic data obtained simultaneously in the
same subject.

2.2 Instrumentation and Materials

EEG recordings were obtained using a 16-electrode StatNet (HydroDot, Inc.) elec-
trode system and a Nicolet (CareFusion Corp., Madison, WI) wireless ambulatory
EEG amplifier at 1024 Hz sampling rate. The StatNet system approximates the
standard International 10/20 System of electrode placement. Fifteen minutes prior to
practice, the EEG was obtained with the subject in the alert relaxed state, with eyes
closed. For the remainder of the recording, the patient engaged in active football
practice on the field. The total duration of the recording was approximately 3 h
and 14 mins. In addition, the subject wore a Riddell Revolution Speed football
helmet fitted with the head impact telemetry system (HITS), developed by Simbex,
Inc. (Lebanon, NH), which incorporates an array of uni-axial accelerometers in the
crown of a player’s helmet. Linear head impact acceleration data were acquired and
sampled at 1 kHz, from which angular head kinematic is estimated.

After training, the data acquisition file was verified for completeness using
the Nicolet One software package, then exported as a CSV file for subsequent
processing. The following electrodes, each referenced to an average, were used
for this analysis: Fp1, Fp2, F7, F8, T3, T4, T5, T6, O1, O2, C3, C4, CZ, A1,
and A2. A high pass digital filter of 1 Hz and low pass digital filter of 35 Hz were
applied prior to quantitative analysis, for which custom scripts were developed using
MATLAB (The MathWorks, Inc., Natick, MA, USA) and its package EEGLAB [4].
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2.3 Quantitative Analysis of EEG Epochs

EEG spatiotemporal characteristics were analyzed using network analysis of each
3 s epochs. Epochs were selected by visual inspection by a board certified elec-
troencephalographer. The first segment was selected when the subject sat in the
locker-room in an alert relaxed state with eyes closed. The second segment was
selected at the beginning of the practice when the athlete was walking onto the
field. The third, fourth, and fifth segments were selected when the athlete was
actively engaged in practice. Selected resting segments were chosen based on
relative absence of artifact in the EEG. This was an arduous effort for the data in
their totality were noisy due to the nature of the recording.

2.3.1 Network Construction

Let X and Y be two random discrete variables. According to Shannon, the informa-
tion that is shared between two signals is connected with their degree of randomness
[14]. Entropy is a quantitative measure that can encapsulate the randomness of
signal and is defined as [3]

H.X/ D �
X

x2X

PX.x/log .P.x// ; (1)

where PX is the probability density function of X. The conditional entropy of X
given the information of Y is denoted as H.X=Y/ is defined as

H.X=Y/ D �
X

y2Y

X

x2X

PXY.x; y/log
�

PXjY.xjy/� ; (2)

where PXY is the joint probability distribution of X and Y and PXjY is the conditional
probability distribution of X with respect to Y . Similarly, the joint entropy of X and
Y is denoted as H.X;Y/ and is defined as

H.X;Y/ D �
X

y2Y

X

x2X

PXY.x; y/log .PXY.x; y// : (3)

The relationship among the entropy, joint entropy, and conditional entropy can be
highlighted by the following equation:

H.X;Y/ D H.X/C H.Y=X/ D H.Y/C H.X=Y/: (4)

Intuitively, the above relation states that the joint entropy of two random variables is
nothing but the conditional entropy of one random variable w.r.t. the other random
variable, plus the entropy of the other random variable. The joint entropy indicates
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the total uncertainty of the two random variables. In other words, it means the total
amount of information needed to describe the random variables. Notice that the
joint entropy is lesser than the individual sum of entropy of each random variable.
This reduction is due to the presence of shared knowledge provided by one random
variable regarding the other random variable. In fact, total uncertainty as a whole
may not provide any meaningful information about the relationship between any
two random variables. However, the common knowledge that is shared between the
two random variables, i.e., the mutual information, may provide insights into the
relationship. For example, if the mutual information between the random variables
X and Y is exactly equal to entropy of X, then the random variable Y can completely
describe the random variable X. Furthermore, if the mutual information between the
random variables X and Y is zero, then the random variables X and Y are completely
unrelated.

Mutual information between two random variables X and Y is denoted as I(X,Y)
and is defined as [3]

I.X;Y/ D H.X/� H.X=Y/ D H.Y/� H.Y=X/ D H.X/C H.Y/� H.X;Y/: (5)

It can be proved that mutual information can be rewritten as

I.X;Y/ D
X

x2X

X

y2Y

PXY.x; y/log
PXY

PXPY
: (6)

The above relationships are very natural, and they indicate the simple yet powerful
mechanism to quantify the information that one random variable contains about the
other random variable. In other words, mutual information indicates the amount
of reduction in uncertainty of one random variable due to the knowledge provided
by the other random variable. The mutual information measure is symmetric and
non-negative. Furthermore, two random variables have a zero mutual information
if and only if they are independent. Mutual information can be seen as measure
of dependency between two random variables. When compared to the correlation
coefficient, a zero value of mutual information indeed guarantees independence
irrespective of the probability distribution of the random variables. In addition, no
linear dependency between the random variables is assumed in calculation of the
mutual information. Therefore, mutual information is a general similarity measure
that is more suitable for EEG signals.

In order to incorporate the temporal effect, we calculated the mean mutual
information values (we call it cross-mutual information and abbreviate it as CI)
between electrodes over time delays of approximately 0–500 ms. We used 64 bins
to construct the histograms for the appropriate probability density functions.

A weighted network was constructed using each electrode as a node. Interelec-
trode dependence between all electrode (node) pairs was quantified using cross-
mutual information and this value was assigned as a weight to each edge.
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2.3.2 Network Analysis

Network characteristics were quantified using a measure of global efficiency
[15, 18]. Global efficiency is a calculation of the shortest path between networks,
determined by averaging the inverse of the shortest paths. We define the length
between two nodes as the inverse of their weight, i.e., lij D 1

wij
. The shortest path

between two nodes i and j is defined as dij and was calculated using Dijkstra’s
algorithm [2].

In turn, for the resulting network G with set of nodes N, we calculated the global
efficiency as

E.G/ D 1

.jNjjNj � 1/
X

i;j; i¤j; i;j2N

1

dij
: (7)

We observe that the higher the global efficiency, the shorter the paths (on average)
in the network.

3 Results

In the following five figures we present the average CMI interdependencies for
the selected segments. Electrode placements follow the placement of the StatNet
system and are named according to their respective brain regions. By convention
odd numbers denote electrodes placed over the left cerebral hemisphere, while
even numbers denote electrodes placed over the right cerebral hemisphere and z
is used to denote midline electrodes. Abbreviations are as follows: Fp (Frontpolar),
F (Frontal), C (Central), P (Parietal), O (Occipital), T (Temporal), and A (Ears).

Next, we present the global efficiency of the selected segments as well as the
severity of the head impacts that took place throughout the recording with respect
to their rotational accelerations.

The CMI distribution reveals attenuated connections between close and distant
areas of the brain during the resting state before the athlete starts to practice (Fig. 1).
The distribution of CMI among the edges seems to exhibit uniform behavior in the
resting state with insignificant deviations across its spectrum. The global efficiency
was calculated as 0.5397 for this state. During the athlete’s increased athletic
activity, an increase in the totality of the connections of the graph (Figs. 2 and 3)
is evident; a fact that is mapped to an increased global efficiency with values 0.9808
and 1.2833, respectively. After the concussive hit, we observe a decrease in the
weights of the edges that mainly stems from the occipital region (Fig. 4). Global
efficiency is now decreased to a value of 1.0389. As the athlete continues to play
under the influence of the concussive hit, the weights of the edges are continuously
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Fig. 1 Network representation of the cross-mutual information interdependencies between the
recording electrodes before the athlete starts practice and approximately 1 h and 30 mins before
the concussive event

weakened (Fig. 5). In addition the global efficiency tends to reach the pre-concussive
resting state with a value of 0.5517 although the athlete is still engaged in the
training.

The concussive hit exhibits the greatest rotational acceleration (4026 rad=s2)
recorded throughout the football practice. Following the concussive impact, there
were a significant number of subsequent hits and it is unclear what effect, if any,
these additional impacts had on the rate of decrease in global efficiency of the CMI
network.

Additionally, although the EEG recording was not investigated in its totality, it
seems that global efficiency follows a pattern beginning with the resting state value,
reaching a significant level during intense athletic activity, then declining during
the acute and sub-acute time frame following the concussive event, and eventually
returning to a resting state level although the athlete is still active during practice
(Fig. 6). In this scheme, the concussive impact seems to affect crucially the global
efficiency as it becomes the time point when the global efficiency begins to decrease.
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Fig. 2 Network representation of the cross-mutual information interdependencies between the
recording electrodes when the athlete starts walking onto the field and approximately 1 h and
26 mins before the concussive event

4 Discussion

The aforementioned observations may not provide a definitive answer with respect
to characterizing the concussive impact. The global efficiency of the CMI-based
network was decreased after the concussive event; including small declines in the
connections between both distantly connected and closely connected areas of the
brain, which continued for the duration of time that the athlete remained on the field.
According to the definition, this means a decreased information exchange between
distant and close parts of the brain—an observed symptom of the concussive brain
in the acute period.

From a quantitative point of view, CMI is considered as a statistical measure
that represents the exchange of information between signals. Beyond this statistical
definition though, we cannot draw conclusions about how those types of connections
are established. It is important to keep in mind that CMI is not necessarily
intertwined with the exchanging information mechanisms in the brain. Additional
nonlinear interdependencies are needed to determine the mechanisms that lead to
such deviations.
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Fig. 3 Network representation of the cross-mutual information interdependencies between the
recording electrodes when the athlete is actively engaged in the practice and approximately 26 mins
before the concussive event takes place

From a neurophysiological point of view, it is not clear whether this decrease
in global efficiency can be attributed to the concussive event and was not due to
fatigue due to high frequency of hits in the second half of the practice. Moreover,
it was extremely difficult for the recording team to associate each segment of
the EEG recording with the behavioral task of the subject in order to further
investigate the relationship between global efficiency and the subject’s behavior in
the practice field.

Finally, the fact that we possess only one dataset of live EEG recording during
a reported concussion limits our ability to establish distilled connections between
concussion, global efficiency, and other neurophysiological variables.

In conclusion, we analyzed a unique EEG real-time recording of a concussive
event that was experienced during an athlete’s football practice. We applied a
nonlinear measure to examine the correlations between different areas of the brain
in artifact-free segments before and after the concussive event. Based on previous
remarks, mutual information may stand as a possible discriminant for identifying
concussive events. Additional data and measures are needed for analysis to construct
a robust framework for identifying concussion via EEG analysis. It appears though
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Fig. 4 Network representation of the cross-mutual information interdependencies between the
recording electrodes when the athlete is actively engaged in the practice and approximately 6 mins
after the concussive event takes place

that quantitative EEG is affected in the post-concussive acute period. However,
it remains to be confirmed whether these changes are a recurring pattern in
concussions and not a random phenomenon attributed to fatigue or other factors.
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free epoch where the athlete is actively engaged in the practice and approximately 45 mins after
the concussive event takes place

1.4

1.2

0.8

0.6

0 20 40 60 80

Time of the recording (minutes)

G
lo

ba
l e

ffi
ci

en
cy

R
ot

at
io

na
l a

cc
el

er
at

io
n 

(r
ad

/s
2 )

100 120 140 160 180 200

5000

4000

3000

2000

1000

0

1

Fig. 6 Evolution of the global efficiency of the five selected segments. The dots represent the
selected segments and are associated with the global efficiency on the left y-axis. The circles
represent the hits that were recorded during practice and are associated with their rotational
acceleration on the right y-axis



208 I. Pappas et al.

References

1. Cifu, D., Drake, D.: Repetitive head injury syndrome. eMedicine.com (2006)
2. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms, 2nd edn.

McGraw-Hill, New York (2001)
3. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunica-

tions and Signal Processing. Wiley-Interscience, New York (2006)
4. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG

dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21
(2004)

5. Del Rossi, et al.: Real-time changes in human EEG immediately following athletic-related
concussion. Manuscript in preparation (2004)

6. Dow, R.S., Ulett, G., Raaf, J.: Electroencephalographic studies immediately following head
injury. Am. J. Psychiatr. 101, 174–183 (1944)

7. Gavett, B.E., Stern, R.A., McKee, A.C.: Chronic traumatic encephalopathy: a potential late
effect of sport-related concussive and subconcussive head trauma. Clin. Sports Med. 30(1),
179-xi (2011)

8. Giza, C.C., Kutcher, J.S., Ashwal, S., Barth, J., Getchius, T.S., Gioia, G.A., et al.: Summary of
evidence-based guideline update: evaluation and management of concussion in sports: report
of the guideline development subcommittee of the American academy of neurology. Neurology
80(24), 2250–2257 (2013)

9. Hayes, M.H.: Statistical Digital Signal Processing and Modeling, 1st edn. Wiley, New York
(1996)

10. Hughes, J.R., Hendrix, D.E.: Telemetered EEG from a football player in action. Electroen-
cephalogr. Clin. Neurophysiol. 24(2), 183–186 (1968)

11. Langlois, J.A., Rutland-Brown, W., Wald, M.M.: The epidemiology and impact of traumatic
brain injury: a brief overview. J. Head Trauma Rehabil. 21(5), 375–378 (2006)

12. McCrea, M., Hammeke, T., Olsen, G., Leo, P., Guskiewicz, K.: Unreported concussion in high
school football players: implications for prevention. Clin. J. Sport Med. 14(1), 13–17 (2004).
Official Journal of the Canadian Academy of Sport Medicine

13. Pikovsky, A., Rosenblum, M., Kurths, J., Hilborn, R.C.: Synchronization: a universal concept
in nonlinear science. Am. J. Phys. 70(6), 655–655 (2002)

14. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423,
623–656 (2009)

15. Skidmore, F., Korenkevych, D., Liu, Y., He, G., Bullmore, E., Pardalos, P.M.: Connectivity
brain networks based on wavelet correlation analysis in Parkinson fMRI data. Neurosci. Lett.
499(1), 47–51 (2011)

16. Teel, E.F., Ray, W.J., Geronimo, A.M., Slobounov, S.M.: Residual alterations of brain electrical
activity in clinically asymptomatic concussed individuals: an EEG study. Clin. Neurophysiol.
125(4), 703–707 (2014)

17. Thatcher, R.: Electroencephalography and mild traumatic brain injury. In: Slobounov, S.,
Sebastianelli, W. (eds.) Foundations of Sport-Related Brain Injuries, pp. 241–265. Springer,
New York (2006)

18. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393(6684),
440–442 (1998)

19. Werner, C., Engelhard, K.: Pathophysiology of traumatic brain injury. Br. J. Anaesth. 99(1),
4–9 (2007)

20. West, M., Parkinson, D., Havlicek, V.: Spectral analysis of the electroencephalographic
response in experimental concussion in the rat. Electromyogr. Clin. Neurophysiol. 53(2),
192–200 (1982)



Video-Based Pedestrian Detection on Mobile
Phones with the Cascade Classifiers

Ksenia G. Shipova and Andrey V. Savchenko

Abstract The paper is devoted to the problem of real-time pedestrian recognition
on mobile phones. The insufficient quality of conventional detection methods is
highlighted. We propose here a specialized procedure of data gathering and prepro-
cessing to train cascade classifiers. Firstly, automobile video recorder is used to get
real pedestrian images. Secondly, the application for training sample preprocessing
is designed to prepare positives and negatives by image cutting. Experimental results
in testing under real road conditions with several mobile phones reveal that the best
quality (3 % of false positives and 19 % of false negatives rate) is achieved with
the Haar features. In conclusion we emphasized that sometimes it is necessary to
choose faster, but less accurate, object detection algorithm, because in this case it
is possible to process more number of frames in a fixed period of time. Hence, the
total object detection accuracy can be increased.

Keywords Real-time recognition • Viola–Jones method • AdaBoost cascade
classifier • Haar features • Local binary patterns

1 Introduction

Nowadays, the need to use methods of computer vision and image analysis increases
dramatically. In particular, the issue of pedestrian detection in the current period is
of paramount importance and generates a lot of practical interest because contem-
porary road conditions cause introduction of such technologies into human life [1].
Despite plenty of methods offered [2, 3], there is no unified approach. The literature
review reveals that simple algorithms provide inexcusably high false positives and
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negatives rate, and complex ones mostly require too much time, energy, and memory
resources for implementation [1]. Moreover, though there exist several quite fast
algorithms [4], their performance is still insufficient to be implemented in mobile
devices. In the paper one of the most popular detection methods suitable for mobile
applications, namely, the histogram of oriented gradient (HOG) descriptor [5], is
examined to compare algorithms efficiency.

Unfortunately, the quality of the HOG method is sometimes insufficient for
practical applications [6]. Thus, this paper is intended to research into the details of
the Viola–Jones method [3, 7]: AdaBoost cascade classifier training algorithm [8],
Haar features [7], and local binary patterns (LBP) [9] are to be considered as
components of the fundamental model, because training procedure needs closer
examination to get improved and adopted to pedestrian recognition. The primary
practical aim of the investigation is to develop an application for real-time pedestrian
detection on mobile phone with the OpenCV library. The proposed approach is
expected to reduce problem concerning human representation and environment
variability with minimal costs due to the introduction of new solutions in data
selection and preprocessing.

The rest of the paper is organized as follows: in Sect. 2, we describe the cascade
classifier training procedure. In Sect. 3, we conduct an experimental study of the
application created and compare the results obtained with the existing detection
method. In Sect. 4, the findings and concluding comments are presented.

2 Materials and Methods

This part of the article is meant to represent the approach used in carrying out the
study on pedestrian detection. Pedestrian recognition is a technically challenging
task owing to certain problems that are caused by object and environment complex-
ity [1, 5]:

• absence of a standard pedestrian image;
• radical differences in person representation: facial expressions, hairstyles,

clothes, various items, posture, height, shape parameters, etc.;
• object configuration diversity, strong dependence on its spatial location, orienta-

tion, and scale; and
• variety of weather conditions, landscapes, illumination, etc.

The factors enumerated are admittedly the major reasons for false positives
and false negatives. In an attempt to reduce these risks, the HOG method [5] has
been developed. At this juncture, the algorithm dominates the pedestrian detection
sphere. We can use an idea that the main edges of a pedestrian remain relatively
constant, especially around the leg area, and histograms are able to show it. So,
with the HOG method we evaluate well-normalized local histograms of image
gradient orientations in a dense grid. Despite general recognition of the approach,
it has specific drawbacks. For example, traditional HOG method cannot extract the
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Fig. 1 Demonstration of the HOG-based pedestrian detection

body local features in comparatively large image region [10]. Figure 1 represents
insufficient detection accuracy of the method. That is why in the present research
it is decided to investigate the Viola–Jones method and modify it to achieve better
detection results than existing algorithms provide.

Traditional Viola–Jones method involves decision trees boosting via primitive
functions: Haar features [7] or LBP [9, 11]. Since these functions can be considered
as weak classifiers, the rigorous boosting technique provides their merging to create
a strong one. As a result, we have a cascade of strong classifiers [12, 13] and can
detect objects in video stream by comparing image representations and classifier
structure. This idea is implemented as a multistage procedure. We can use its
flexibility and modify it to improve detection accuracy.

The first step implies training samples selection to adjust the classifier to
only pedestrian detection. The main quality criteria are veracity of data gathered
and samples quantity. In order to maximize the benefit at this stage, automobile
video recorder is used to get real pedestrian images. Total sample size is 3377
positive images which contain objects in their natural environment and 8515
negative ones without any pedestrian pattern (640x480 resolution to get the real-
time detection results). In addition, we used the well-known Daimler Pedestrian
Detection Benchmark Dataset [14]. Such a tremendous body of data raises a
possibility to detect pedestrians in the most complicated cases: overlap, sudden pose
changing, or conditions worsening. Generally, the measures offered are directed
at avoiding problems concerning human representation multiplicity, environment
variability, and object configuration diversity.

Special samples preparation is supposed to be managed at the second step. The
innovative idea is that every positive sample is to contain only one object which
matches it in size. It is also proposed that pieces of positive samples which do
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Algorithm 1: The proposed algorithm of pedestrian detection
Input: Video frames fF.t/g; t 2 f1; : : : ;Tg, training set fSig
Output: Video frames fF.t/g with detected positions of pedestrians
1: for each each training image Si do {training phase}
2: while an object “pedestrian” exists do
3: Detect the borders of the pedestrian
4: Write file path to the positive sample, object number, coordinates and size into

positive.dat file
5: end while
6: if the object “pedestrian” does not exist in the area then
7: Cut the area as a negative training sample
8: Write file path to the negative sample into negative.dat file
9: end if

10: end for
11: Create a vec-file from positive and negative sets using opencv_createsamples utility
12: Train cascade via the opencv_traincascade utility
13: Assign counter D 0

14: for each each video frame F.t/ do {detection phase}
15: if F.t/ contains an object “pedestrian” then
16: Assign counter WD counterC 1
17: if counter > C then
18: draw a rectangle with coordinates of detected object in frames

F.t � CC 1/; : : : ;F.t/
19: end if
20: else
21: Assign counter D 0

22: end if
23: end for
24: return the modified set of video frames fF.t/g

not contain objects can be used as negative ones. A key for appropriate ideas
implementation lies in profound software support, because an additional application
is to be written to cut positive and negative images. The program allows filling in
the description file and looking over the whole dataset at a speed of one image per
second at the same time. Finally, samples and the description are processed with
opencv_createsamples utility to be converted into the vec-file.

At the third step the set of samples is used as a base for the classifier
training procedure. The main goal here is the generation of xml-cascades that
describe all possible variants of object form and location. To train the classifier,
opencv_traincascade utility is used and training parameters are chosen experimen-
tally. The proposed method with pedestrian detection at each frame and combining
the results with a committee [15] is presented in Algorithm 1. Here parameter C is
the number of frames to reliably detect the pedestrian.

This algorithm was implemented in an Android mobile application (Fig. 2).
Examples of usage of the proposed approach with the Haar-based features

are shown in Fig. 3. As one can see, here the quality of pedestrian detection is
much higher when compared with conventional HOGs (Fig. 1). The next section
experimentally supports this claim.
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Fig. 2 Graphical user interface of the developed mobile application

3 Experimental Results and Discussion

The system testing is carried out in six stages. To evaluate if cascade classifiers
are appropriate for the problem of real-time pedestrian detection, it is decided to
compare their performance with the results that the OpenCV-implemented HOG
method demonstrates. Tests are conducted to reveal application potential and
evaluate performance of Haar-trained classifier, LBP-trained classifier, and HOG
method quantitatively. We captured real HD-video with duration 600 s, which
contains 4152 pedestrians. The distance from the camera to each pedestrian is
between 6 and 10 m. Three mobile phones were used in this experiment. Their
descriptions are presented in Table 1.

Each frame of the video stream is scaled to the same resolution 640x480 to obtain
comparable results. To estimate the detection quality, we measure the number of true
positives (TP), false positives (FP), true negatives (TN), and false negatives (FN).

The results of this experiment are demonstrated in Table 2. Here we compute true
positive rate (TPR) and false positive rate (FPR) by using the following equations
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Fig. 3 Demonstration of the Haar features-based pedestrian detection

Table 1 Descriptions of the mobile phones used in the experiment

LG G2 GOLD D802 Philips Xenium W8510 LG Optimus L7 P705

CPU 4-core, 2.26 GHz 4-core, 1.2 GHz 1-core, 1 GHz

Display
5.2”, 1980x1080,
FULL HD IPS 4.7”, 1280x720, TFT IPS 4.3”, 800x480, IPS

RAM 2 GB 1 GB 512 Mb

Operating system Android 5.0.2 Android 4.2.2 Android 4.0.3

Table 2 Experimental results

LG G2 Philips W8510 Philips W8510

Haar LBP HOG Haar LBP HOG Haar LBP HOG

TPR (%) 97.2 84.1 86.4 94.4 82.3 91.6 85.4 83.8 85.0

FPR (%) 19.3 42.9 20.3 24.3 69.3 25.4 45.6 56.8 41.25
Frame processing
time (ms)

98 71 88 132 107 145 308 237 166

TPR D TP

TP C FN
� 100%

FPR D FP

TN C FP
� 100%

In this table we bold the highest values of TPR and the lowest values of FPR and
processing time for each mobile phone. Here, firstly, the best quality (2.8 % of false
positives and 19.3 % of false negatives rate) is obtained by the classifier trained via
Haar features. The HOG method provides similar computational complexity (except
the obsolete LG P705 L7), but its TPR is rather worse. The LBP-trained classifier
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does not provide normal detection quality: the average number of skipped objects
per second is inexcusable. Thus, the Haar features seem to be effective for pedestrian
detection in actual practice.

Finally, one can notice that the detection quality (TPR and FPR) is not the same
for different phones, though the input video was identical. It can be explained by
different characteristics of our smartphones. In fact, the more powerful the device
is, the more is the processed number of frames in a second. Hence, the quality of
pedestrian detection with the most powerful LG G2 is the best in all cases. It is a
very remarkable fact. It is widely known, that the higher accuracy is achieved in
object detection in a single image with the more complex algorithms. Hence, it is
necessary to choose the correct balance between accuracy and average processing
time. However, in video-based processing the situation is quite different. Really,
if the frame processing time is higher than the frame rate (20 frames per second),
the faster algorithm can process more number of frames and increase its quality by
combining the results from serial frames. For instance, in the obsolete LG P705 L7
phone, the quality of the HOG and the Haar features is the same as the performance
of the HOG here is twice higher, when compared with the performance of the Haar
features. However, if the quality of single-image detector is too poor (as in case of
the LBP features), even very fast processing does not lead to a superior detection
accuracy.

4 Conclusion and Future Work

In this paper we proposed the pedestrian detection method based on the cascade
classifier training, which provides 3–10 % higher detection accuracy, than the HOG
method. We paid attention to the preparation of the training dataset. Namely, we
proposed to use parts of pedestrians as negative images to improve the detection
quality. The presented approach allows reducing this time due to the use of an
additional application for semi-automatic positive and negative images cutting.
We implemented several detection algorithms in an Android application. It was
experimentally shown that the best quality is achieved with the Haar features and by
using the modern powerful devices. We emphasized the necessity to minimize the
detection speed to process more frames in a second.

We have not used the object tracking as we assumed that a new pedestrian can
suddenly appear, and the response time for such kind of event should be minimized.
However, in future it is important to explore the possibility to combine our approach
with the known tracking algorithms, e.g., the Lucas–Kanade method [16]. Another
direction for future research is the application of more complex dissimilarity
measures with the HOG features, known to improve the recognition accuracy (e.g.,
see [6] for details). Finally, it is important to explore other image sources, e.g.,
infrared images [17] and depth-map cameras [18].
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Clustering in Financial Markets

Kristina Sörensen and Panos M. Pardalos

Abstract This chapter considers graph partition of a particular kind of complex
networks referred to as power law graphs. In particular, we focus our analysis on the
market graph, constructed from time series of price return on the American stock
market. Two different methods originating from clustering analysis in social net-
works and image segmentation are applied to obtain graph partitions and the results
are evaluated in terms of the structure and quality of the partition. Our results show
that the market graph possesses a clear clustered structure only for higher correlation
thresholds. By studying the internal structure of the graph clusters we found that
they could serve as an alternative to traditional sector classification of the market.
Finally, partitions for different time series were considered to study the dynamics
and stability in the partition structure. Even though the results from this part were
not conclusive we think this could be an interesting topic for future research.

Keywords Complex network • Financial markets • Price returns • Market
network • Market graph • Clustering • Data mining

1 Introduction

Financial analysis of today often involves interpretation of very large data sets. One
convenient way to represent this large amount of data is in terms of a network.
Network theory has been used to analyze many different concepts, examples span
from Internet and social networks to biological networks, and recently financial
networks.
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Despite arising from different fields many of these networks share topological
characteristics which cannot be described neither by uniform random graphs nor by
regular lattices. Thus to describe the complex topology of these graphs a new field
emerged, complex network theory. One feature observed in many of these networks
is the occurrence of a heavy tail in the degree distribution. A network showing this
characteristic is called a scale free network or a power law graph. Another common
feature in these networks is their tendency to form clustered communities in the
graph. This introduces new problems to find specific clusters or partitions of the
networks into different clusters.

Several models for representing financial networks have been proposed. Results
from previous research revealed overall structure of the market as well as introduced
a tool for studying market dynamics [2]. Other considered topics involve the
grouping of instruments, stock classification, and finding highly influential actors
in the market [1]. Many previous studies have also focused on identifying specific
substructures in the graph [22]. One such example is the maximum clique problem,
i.e. to identify a complete sub-graph of maximal cardinality in the graph. However,
as many other network optimization problems this is NP-hard which often makes it
impossible to find an exact solution in a reasonable amount of time.

In this chapter a graph partition of the network is studied. The partitions will be
obtained by using two different, well-known objective functions for graph partition.
The resulting optimization problems will be presented together with heuristic
approaches to solve two partition formulations. Finally, the results for the market
graph will be analyzed further to interpret the structure of the market.

2 Graph Theory Concepts

Since networks are represented in terms of graphs some notations from basic graph
theory are introduced. Concepts related to graph partition and cluster analysis are
also included.

2.1 Definitions and Notations

Since networks are represented in terms of graphs some notations from basic graph
theory are introduced. Let G D .V;E/ be an undirected graph consisting of the
set V with jVj D n vertices and the set E with jEj D m edges. We say that AG

is the adjacency matrix representing G.V;E/, if AG is an n � n-matrix such that
AG D Œaij�

n
i;j, with aij D 1 if .i; j/ 2 E and i ¤ j and otherwise aij D 0. The degree

di of a vertex i is the number of edges emanating from it. For every di D d, we can
define n.d/ as the number of nodes in G with degree d. This gives rise to a degree
distribution of a graph G as the fraction of vertices having degree d. The (open)
neighborhood T.i/ of a vertex i 2 G is the set of all vertices sharing an edge with i,
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i.e. T.i/ D fjjaij D 1g. A path in G is a sequence of edges connecting vertices. The
average path length is the average number of steps along the shortest path for all
possible pairs of the network nodes. The diameter of the graph is the longest of all
the shortest paths in the graph. The graph G is connected if there is a path from any
vertex v 2 V to any vertex u 2 V . We call G a complete graph if there exists an edge
.i; j/ 2 E for every i ¤ j and i; j 2 V . Given a subset S 
 V , we denote by G.S/ the
sub-graph induced by the set S.

The complementary graph of G, denoted NG D .V; NE/, is defined as follows. If
.i; j/ 2 E, then .i; j/ … NE and if .i; j/ … E, then .i; j/ … NE. In words, one obtains
the complementary graph of G by removing all the edges .i; j/ present in G, and
then introducing all the edges not present in G in the graph. The edge density, ı.G/,
measures the connectivity in the graph, defined by the ratio between the number
of edges in the graph and the maximal possible number of edges in the graph.
Mathematically we write

ı.G/ D 2jEj
jVj.jVj � 1/ : (1)

The cluster coefficient reveals to what extent the nodes in the graph tend to
cluster together. The local clustering coefficient Ci for a vertex i with degree
di > 1 is defined as the ratio of the number of edges among its neighbors divided
by the maximal (possible) number of such edges. For di � 1 Ci is undefined.
Mathematically we write Ci as

Ci D 2Ei

di.di � 1/ ; di > 1 (2)

where di is the degree of node i and Ei is the number of common edges among its
neighbors. The global clustering coefficient C of the entire graph is defined as the
mean of the local clustering coefficients, i.e. C D 1

n

Pn
i Ci.

Generally speaking, a cluster in a network is a set of elements that are more
similar to each other than to elements not included in the cluster. Studying graph
clusters can reveal topological structure of the network as well as information about
the particular elements in the clusters. The similarity criterion varies depending on
what property the cluster should reveal. Common criteria include vertex degree,
vertex distance, or cluster density.

One special case of cluster is called a clique. We say that C 
 V is a clique
if the induced sub-graph G.C/ is complete. A clique is maximal if it cannot be
contained in any larger clique in the graph, and it is called a maximum clique if
it is a clique of maximal cardinality in the graph. A problem in graph theory is to
identify maximum cliques in a graph, called the maximum clique (MC.) problem.
The size of a maximum clique is called the clique number, denoted !.G/.

Since the strict requirements of cohesiveness in the clique definition often are
difficult to fulfill, several relaxations of cliques have been introduced. Examples
of clusters being cliques relaxations include k-clubs, k-cores, k-communities, and
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	 -quasi clique, all further discussed in [18]. We say that the set Q 
 V with jQj D p
is a 	 -quasi clique (0 < 	 < 1) if the graph G.Q/ induced by Q is connected and
satisfies jE.G.Q//j � 	

�p
2

�

. This means that we impose the requirement that the
edge density of the induced graph G.Q/ must be greater or equal to the threshold 	 .
Note that in the case when 	 D 1, then Q corresponds to a clique.

The opposite of a clique is an independent set. An independent set is a set
I 
 V such that the induced graph G.I/ has no edges. The problem of finding
an independent set of maximal cardinality in a graph is called the maximum
independent set (MIS.) problem. By ˛.G/ we denote the size of the largest
independent set of G. Note the symmetry between the maximum clique problem
and the maximum independent set problem. The set Q is a maximum clique in NG if
and only if Q is a maximum independent set in G. Therefore an MIS. can easily be
reformulated into an MC. and vice versa, and hence it holds that !.G/ D ˛. NG/.

2.2 Clustering and Graph Partitions

Clustering involves the task of partitioning the elements of the graph into disjoint
clusters. Generally one seeks a partition of the vertices in a way that maximizes
the similarity within the clusters and minimizes the similarity between the clusters.
A partition where each cluster is a clique is called a clique partition. The minimal
clique partition problem is to find the smallest integer k such that the vertex set V
of G can be partitioned into the k disjoint sets C1; : : : ;Ck, where each Ci is a clique.
This minimal integer k is called the clique partitioning number N�.G/.

A concept closely related to graph partitioning is graph coloring. A proper
k-coloring of the vertices of G is an assignment of colors to the vertices in G
such that no adjacent vertices in G have the same color. If such a coloring exists,
we call the graph G k-colorable. Seeking a coloring using a minimal number of
colors is called the graph coloring problem. The smallest integer k for which the
graph G is k-colorable is the chromatic number of G denoted �.G/. In a coloring
of G the vertices with the same color are all pairwise non-adjacent, making them
by definition independent sets. Thus, the graph coloring problem is equivalent to
finding a minimal partition of G into pairwise, disjoint independent sets. Due to
the symmetry between cliques and independent sets the graph coloring problem of
NG can therefore also be formulated as the minimum clique partition problem of G.
Again, due to the symmetry we have that N�.G/ D �. NG/.

2.2.1 Desirable Cluster Properties

What constitutes a cluster of high quality will of course depend on the application
at hand. However, some characteristics are relevant for most structures. First, the
cluster must be connected, thus if there is no path between two vertices u and v,
they should not be grouped within the same cluster. By classifying edges as internal
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if they connect vertices within a cluster to each other, the internal degree of a vertex
v in a cluster C � V is degint.v;C/ D jT.v/ \ Cj, where T.v/ is the neighborhood
of v in G. Similarly, edges are identified as external if they connect a vertex in a
cluster with a vertex outside the cluster. Thus the external degree of a vertex v in
a cluster C is degext.v;C/ D jT.v/ \ .V n C/j. Note that with these definitions we
have dv D degint.v;C/C degext.v;C/.

In general, if degint.v;C/ D 0, then v should not be included in cluster C as it
is not connected to the other vertices in C. Similarly degext.v;C/ D 0 implies that
C could be a good cluster for v as it has no connections outside C. Generally in
clustering one seeks to form clusters such that the induced sub-graph is dense and
has few connections to the rest of the graph. We therefore introduce two density
measures with respect to a cluster C. We call the density of the sub-graph induced
by C internal or intra-cluster density if it is defined by

ıint.C/ D jf.u; v/ 2 Ejv 2 C; u 2 Cgj
jCj.jCj � 1/ D 1

jCj.jCj � 1/
X

v2C

degint.v;C/: (3)

Given a clustering of a graph G into k clusters NC D .C1;C2 : : : ;Ck/we define the
intra-cluster density of the clustering NC as the average of the intra-cluster densities
of the included clusters.

ıint.GjC1;C2 : : : ;Ck/ D 1

k

k
X

iD1
ıint.Ci/: (4)

Similarly, we introduce the external or inter-cluster density of a clustering as the
ratio of the number of external edges and the maximal possible number of external
edges.

ıext.GjfC1;C2 : : : ;Ck/ D j.u; v/jv 2 Ci; u 2 Cj; i ¤ jgj
n.n � 1/ �Pk

lD1 jClj.jClj � 1/ (5)

Employing the introduced density measures above a good clustering should have
an internal density significantly higher than that of the overall graph, ı.G/, and
an external density much lower than ı.G/. Depending on how strict these density
constraints are imposed different cluster types can be obtained with the loosest
possible definition being a connected component and the strictest being a maximal
clique. However, in practice most interesting structures can be found somewhere in
between. Computation of connected components can be done in O.nCm/ time with
a breadth-first search while identifying maximal cliques is NP-complete [20].
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2.2.2 Clustering Structure

An important characteristic in a clustering structure is whether the clusters
C1;C2 : : : ;Ck must be disjoint or if cluster overlap is allowed. In the former case
we talk about a graph partition, or a “hard” clustering, Ci \ Cj D ;, 8i ¤ j. When
clusters overlap, we call this a graph cover or a “soft” clustering. In this paper we
will focus on the former structure and we will use the term clustering and partition
exchangeable, always referring to the hard clustering.

Another distinction for a clustering structure is the one between flat versus
hierarchical clustering. If the partition consists of a set of clusters without any
explicit structure that would relate clusters to each other, we talk about a flat
clustering. On the other hand, we say that a clustering is hierarchical if it contains
several levels of clusters where each top level cluster consists of clusters from lower
levels. Which type of clustering that is preferred depends on the network topology.
If it is known that the data contains a hierarchical structure, then this should be
preferred. However, if the number of clusters is known prior, then a flat clustering
approach is preferred over a hierarchical structure [20].

Hierarchical clustering can be separated further into two types, depending on
whether the partition is refined or coarsened between each level. In the first type,
called top-down or divisive hierarchical clustering the graph is recursively spilt
into smaller and smaller pieces. In the second version, bottom-up or agglomerative
clustering, smaller clusters are iteratively merged into larger ones.

2.2.3 Measures to Identify Clusters

Clusters are usually identified with two different approaches, using vertex similar-
ities or a fitness measure. In the former approach one computes a set of similarity
values for all vertices and then classifies them into clusters according to their overall
score. In the latter case one computes a fitness function over the set of possible
clusters and then chooses among the set of clusters that optimize the chosen fitness
measure. An extensive overview of clustering techniques can be found in [9, 20].

Density Based Measures

Some approaches use a density based fitness measure to identify maximal sub-
graphs with a density higher than a certain threshold. As Schaeffer [20] mentions,
finding clusters based on their edge density can essentially be considered as special
cases of the following decision problem:

Instance: Given an undirected graph G D .V;E/, with a density measure ı.�/
over the vertex subsets S 
 V, a positive integer k � jVj, and a rational number
� 2 Œ0; 1�.
Question: Does it exist a subset S 
 V such that jSj D k and the density
ı.S/ � �?
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Note that if the density measure used is the overall graph density, the problem is
NP-complete since for � D 1 it coincides with the NP-complete maximum clique
problem. Many variants and relaxations of this problem have been proposed and
studied during the years. Matsuda et al. proposed a model that considers 	 -quasi
cliques as clusters [14]. They showed that it is NP-complete to determine whether a
given graph has a 1

2
quasi clique of order at least k.

Cut Based Measures

Instead of focusing on the internal density of the cluster one can also measure how
connected the cluster is to the rest of the graph. These measures are usually based
on cut sizes. Given a graph G D .V;E/ and two subsets S1 
 V and S2 
 V we
define the cut size, c.S1; S2/, of S as the number of edges between nodes in S1 and
nodes in S2. Mathematically, we write this as

c.S1; S2/ D jf.u; v/ 2 Eju 2 S1; v 2 S2gj: (6)

The definition can be extended to a collection of clusters ˘ D .V1; : : : :;VK/

as the sum of all edges with end nodes in different clusters. We define the cut of a
collection of clusters ˘ D .V1; : : : ;VK/ as

C.˘/ WD 1

2

K
X

iD1
c.Vi; NVi/ (7)

where NVi is the complement of Vi in V , as NVi D V n Vi.
A normalization of this metric was introduced by Shi and Malik [21], called the

normalized cut, CN.˘/. They defined it as the ratio between the cut size and the
degrees of the vertices.

CN.˘/ WD 1

2

K
X

iD1

c.Vi; NVi/

vol.Vi/
(8)

where vol.Vi/ D P

j2Vi
dj, i.e. the sum over the degrees of the vertices in Vi.

Modularity

Another common measure to identify graph clusters is the metric modularity,
introduced by Newman and Girvan in [17]. The metric modularity, denoted Q, is
defined as

Q.˘/ D (the number of the edges that fall within a cluster) � (the expected such
number if edges were distributed at random)
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The meaning of the first term is clear. However, the second term requires some
comments. Expressing this term necessitate choosing a null model for the network,
a question we will address soon. First, we introduce Pij as the probability that there
is an edge between vertex i and j. Thus, the actual minus the expected number of
edges between i and j can be written Aij � Pij and the modularity is proportional
to the sum of this quantity over all pairs of vertices in the same cluster. Thus, the
modularity can be expressed as

Q D 1

2m

X

ij

ŒAij � Pij�ı.Ci;Cj/ (9)

where ı.Ci;Cj/ D 1 if Ci D Cj and zero otherwise.
Returning to the question of choosing a null model. A possible choice could be

to consider a standard uniform random graph, in which edges appear random with
equal probability Pij D p. However, this model turns out to be a bad representation
for many real life graphs. In particular the model often fails to reflect the degree
distribution of the graph. One way to deal with this in practice is to approximate
the expected degree of each vertex within the model with the actual degree, di, of
the corresponding vertex i in the real network. The expected degree of i is given by
P

j Pij, giving us the relation

X

j

Pij D di (10)

A null model in this class, is the one in which edges are distributed at random
subject to the constraint. This implies that the expected number of edges between i
and j, Pij, can be expressed as a product of separate functions of the degrees.

X

j

Pij D f .di/
X

j

f .dj/ D di (11)

Hence, f .di/ D Cdi, for some constant C. Furthermore, since
P

i di D 2m
(m being the number of edges in the graph) we can write

2m D
X

i

X

j

Pij D C2
X

i

X

j

didj D .2mC/2 (12)

which gives C D 1p
2m

, and hence Pi;j D didj

2m .
Thus, the modularity can be rewritten as

Q D 1

2m

X

ij

�

Aij � didj

2m

�

ı.Ci;Cj/ (13)
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2.3 Random Graph Models

2.3.1 Uniform Random Graph Model

The theory of random graphs was introduced in 1959 in the work of Erdös and
Rényi [7]. In the context of their probabilistic method a random graph can be
described in the following way. Consider the situation where we try to study the
existence of graphs GP with a specific property P. Let the existence of such a graph
be represented by the random variable X. Then, one can construct a probability
space such that the appearance of GP with property P can be described by the event
E. Showing that the probability of observing this event E is larger than zero, i.e.
showing that P.X D E/ > 0 implies that such a graph GP with property P in fact
can exist. By studying the distributions of probability spaces of these kind random
graphs are introduced.

In their first paper Erdös and Rényi introduced two formulations for the uniform
random graph model. The first version, G.n;m/ assigns a uniform probability
to all graphs with n nodes and m edges. By setting N D �n

2

�

we can see that

G.n;m/ has
�N

m

�

elements, all with probability
�N

m

��1
. In the second formulation

denoted G.n; p/, a graph is constructed by introducing edges between nodes with
an independent probability p, where 0 < p < 1. One can easily identify similarities
between the two formulations since all graphs with n nodes and m edges will have
the same probability pm.1 � p/.

n
2/�m in the G.n; p/ model. From now on we will

continue working with the second formulation of the model.
With the notation above a graph in G.n; p/ has

�n
2

� � p expected number of edges.
Therefore the degree distribution of a particular vertex v is given by the Binomial
distribution, and we have

P.dv D k/ D
 

n � 1
k

!

pk.1 � p/n�1�k: (14)

Letting n ! 1 we get that for the case np D constant the degree distribution
tends to the Poisson distribution OBS1.

P.dv D k/ D .np/ke�np

kŠ
(15)

Many properties of the G.n; p/ model have been studied, some fundamental
results cover graph connectivity, emergence of a giant connected component, as
well as results about graph diameter, independent sets, cliques, and colorings. The
interested reader is referred to [4] for a more comprehensive review of the different
properties of random graphs.

Two characteristics worth mentioning in this context are the degree distribution
and cluster coefficient of a random graph G.n; p/. First, as stated above the
degree distribution for G.n; p/ tends to the Poisson distribution as n grows large.
This is the first drawback when using this model to represent real-life graphs. Many
real life graphs have instead shown to exhibit a degree distribution with a heavy
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right end tail [6, 8]. This kind of degree distribution is often referred to as a power
law distribution. Secondly, the clustering coefficient of a random graph G.n; p/ is
given by CR D <k>

n D p. This is a second indication that G.n; p/ is not suitable for
modelling real life networks since it has been shown that in many real life graphs
the clustering coefficient highly exceeds this number [19].

2.3.2 Power Law Random Graph Model

Following the discoveries that the topology of many real life networks could not
be accurately modelled by the classical uniform random graph theory new models
for describing these scale free networks have been presented. A common feature of
these models is the occurrence of a power law in the right end tail of their degree
distribution. This section will therefore introduce the power law distribution and its
specific properties. We then move on and discuss some proposed graph models for
generating networks with a power law degree distribution.

One says that the random variable X > 0 follows a power law if it has the
probability density function.

f .x/X D ˛

xˇ
; x 2 S (16)

where S is the support of x, ˛ is a normalization constant, and ˇ is the power law
exponent.

A characteristic of power law distributions is their scale invariance property. That
a function f .x/ is scale invariant means that scaling x with a constant c is equivalent
to scaling the function itself with a constant, that is

f .x/ D ˛xˇ ) f .cx/ D ˛.cx/ˇ D cˇf .x/ (17)

The concept of a power law graph arises when the degree distribution of the
vertices in a graph G follows (or closely approximates) some power law, i.e. when
the number of vertices y with degree x in the graph can be described by the
relation y D e˛

xˇ
.

2.4 The Market Graph Model

By employing the market graph model introduced by Boginski et al. [1] we construct
the market graph by representing traded instruments by vertices and introducing
edges if the Pearson cross-correlation between two instruments exceeds a certain
threshold, � . This can be expressed in terms of the graph adjacency matrix A D
Œai;j�

n
i;jD1 as

aij D
(

1; if Ci;j � �

0; if Ci;j < �
(18)
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where � 2 Œ�1; 1�. The cross-correlation between i and j is given by

Ci;j D E.RiRj/ � E.Ri/E.Rj/
p

Var.Ri/Var.Rj/
(19)

where Ri.t/ is the daily return of instrument i at time t.

Ri.t/ D Pi.t/

Pi.t � 1/ (20)

and Pi.t/ is the closing price of instrument i at time t.
This results in an undirected, unweighted graph, represented with an adjacency

matrix A.�/ D Œai;j�
n
1, where ai;j is 1 if there is an edge between i and j and 0

otherwise.
Graph characteristics such as edge distribution, cluster coefficient, maximum

cliques, and independent sets can be examined to study the structure of the market.
Many previous studies have shown that above a certain threshold the degree
distribution of the market graph will follow a power law [2, 3, 10, 22].

In this paper we focus on the problem of partitioning the market graph into
disjoint clusters. In terms of the market graph this can be interpreted as a division
into different, strongly connected segments of the market.

3 Graph Partitioning Methods

In this section two formulations for graph partition are presented based on two
different fitness measures, the normalized cut (8) and modularity (13). Both
formulations result in integer programs which turn out to be NP-hard problems.

3.1 Minimizing Normalized Cut

The first formulation seeks a partition of V into (a fixed number of) k disjoint subsets
such that the normalized cut (8) of the partition is minimized. This approach was
introduced in [21] for image segmentation and is solved using a spectral relaxation
of the problem. That approach was further studied in [13]. The objective function in
this case is given by

minimize
.A1;:::;Ak/

CN.A1; : : : ;Ak/ (21)

Following the methodology presented in [13] this can be written as a min trace
problem by introducing the indicator variables
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hi;j D
8

<

:

1p
vol.Aj/

; if vi 2 Aj

0 otherwise.
(22)

Next we set the matrix H to be the matrix with the k indicator vectors as its
columns, i.e. H D fhjgk

jD1. Now, since HH0 D I, h0iDhi D 1, and that h0iLhi D
cut.Ai; NAi/

vol.Ai/
, the k-way CN.˘/ minimization problem (21) can be reformulated as

minimize
A1;:::;Ak

Tr.H0LH/

subject to H as in (22)

H0DH D I:

(23)

Now, relaxing the discreteness condition on hj, and introducing T by T D D1=2H,
we can write the relaxed problem in the following way

minimize
T2Rn�k

Tr.T 0D�1=2LD�1=2T/

subject to TT 0 D I:
(24)

System (24) is a standard trace minimization problem and its solution is obtained
by choosing the matrix T to contain the k first eigenvectors of Lsym as columns.
Substituting back H D D�1=2T , we see that H will consists of the first k eigenvectors
of the matrix Lrw, or equivalent to the first k generalized eigenvectors of Lu D �Du.
This results in the normalized spectral algorithm from [21] for arbitrary k.

3.2 Maximizing Modularity

Several graph partition formulations with modularity maximization have been
proposed. Here we only present the integer formulation introduced in [5]. Other
commonly used formulations include the spectral relaxation presented by Newman
[15], this has great similarities with the relaxed spectral formulation presented for
the normalized cut.

The formulation used here, first presented in [5], results in a linear integer
program. The objective is to find a partition ˘ of V that maximizes the modularity.
Note that in this formulation the number of clusters k in the partition is not fixed.

First we introduce the variable fij for each pair .i; j/ of vertices in the graph, where

fij D
(

1; if i and j belong to the same cluster

0; otherwise.
(25)
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These variables can be interpreted as an equivalence relation over V and thus
form a partition by its equivalence classes. To ensure consistency we must impose
the following constraints on the relation.

reflexivity 8i W fii D 1

symmetry 8i; j W fij D fji

transitivity 8i; j; l W fij C fjl � 2fil � 1:

(26)

Using the introduced decision variables fij the objective function can be
expressed as

Q D 1

2m

X

ij

�

Aij � didj

2m

�

fij (27)

where as before m is the total number of edges in the graph and di denotes the degree
of vertex i.

The modularity maximization problem is then given by

maximize
fij

Q

subject to fij as in (26); fij 2 Œ0; 1�:
(28)

Since we consider undirected graphs, we have fij D fji, so it is enough to
introduce

�n
2

� D O.n2/ optimization variables fij for i < j. However, there are
�n
3

�

constraints from (26). Brandes et al. showed [5] several characteristics of modularity
maximization, including a proof that the decision version of the problem is
NP-complete.

3.3 Algorithms

Considering the complexity of both the formulations in the previous section the
algorithms presented here will be heuristic. When solving (28) we will use a greedy
agglomerative approach, similar to the ones presented in [12, 16], while (23) will be
solved using the spectral relaxation (24) and the approach described in [13].

3.3.1 Spectral Algorithm for the Normalized Cut

A partition from minimizing the normalized cut will be found by considering
the relaxed problem (24). This problem is computed by solving the generalized
eigenvalue problem for L. The obtained relaxed solution must then be made
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feasible for the original problem, taking the discrete constraints into consideration.
Several approaches have been proposed for this including directional cosine method,
randomized projection heuristic, and clustering rounding. We will adapt the method
suggested in [13], using k-means algorithm on the eigenvectors of the normalized
Laplacian Lrw to obtain a feasible solution.

3.3.2 Greedy Algorithm for Modularity

Problem (28) is solved by using a greedy agglomerative hierarchical heuristic that
follows a scheme similar to [12]. The algorithm is based on an aggregation process
with two different phases. The first phase performs small changes by shifting nodes
between clusters and a second phase merges entire clusters, resulting in larger
changes. Starting from singleton clusters the algorithm evaluates the modularity
change in every phase, �Q, of each possible move/merging and then performs
the action that would result in the largest modularity increase. The algorithm will
alternate between these two actions as long as an improvement in the modularity is
possible.

4 Simulation Result

4.1 Cluster Properties of the Market Graph

By considering the closing prices of stocks on the New York Stock market
(comprising of NYSE, Nasdaq, and AMEX) a market graph was created. The
original data consisted of 504 observations of 6330 stocks taken from Yahoo Finance
with observations made between January 4th 2012 and December 31 2013.

In order to obtain more reliable results two pre-processing procedures were
applied on the original data. First, all illiquid instruments were removed. This was
done by removing all instruments that had no trading volume for more than 20%
of the observations. The second filtering procedure was introduced due to the large
amount of Exchange traded funds (ETFs) present on the American market. The
ETFs were removed since they often aim to track the market itself making them
highly correlated with most stocks in the market. Their presence adds a noise of
highly correlated instruments, not reflecting the overall behavior of the market. After
applying these two procedures 4519 instruments remained, these time series were
used to construct the market graph and its adjacency matrix Aij by using Eqs. (18)
and (19).
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Fig. 1 (a) Correlation distribution and fitted distribution for entire period. (b) Fitted correlation
distribution for different time periods

4.1.1 Correlation Distribution

The correlation distribution represents the fundamental structure of the market.
A plot of the correlation distribution for the entire time period can be found in the
left-hand graph in Fig. 1 together with a fitted normal distribution, with � D 0:1532

and � D 0:1264. One can see that the correlation distribution of the US market
does not seem to fit perfect with the normal distribution. Even though both tails of
the distribution are covered the shape of the fitted curve is not consistent with the
data. However, it is interesting to note that stocks seem to mainly exhibit positive
correlation, suggesting that stock prices will often move in the same direction. This
has been observed before and has then been interpreted as a sign of globalization
with the motivation that more and more stock effect each other positively [1].
The graph on the right in Fig. 1 shows fitted distributions for different, shorter time
periods, each period consisting of 100 observations. Even though there are some
differences between the different periods the correlation distribution of the market
remains stable over the considered time intervals.

4.1.2 Edge Density

The density of the market graph will of course depend on the correlation threshold.
Varying the threshold � generates graphs of different degrees of correlation. Figure 2
shows the edge density for different thresholds, as expected the density will decrease
with increasing threshold.
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4.1.3 Clustering Coefficient

By computing the global clustering coefficient for graphs of different � we found
that the cluster coefficient was larger among positively correlated stocks than for
negatively correlated stocks. As an example, the edge density of the graph obtained
with threshold 0:6 is very close to that of the complementary graph with threshold
�0:05. However, the corresponding global clustering coefficients of the two graphs
are C D 0:76 and C D 0:19, respectively. Hence, one can suspect that positively
correlated stocks tend to cluster more in the graph than negatively correlated stocks.
This feature has been observed previously for other market graphs [1, 2].

For higher positive thresholds the global clustering coefficient appears almost
constant. Figure 3 shows the graphs clustering coefficient for positive � . For all � 2
Œ0:2; 0:9� the clustering coefficient of the graph remains in the interval Œ0:70; 0:82�.
It should be noted that this is significantly higher than what would be expected from
a uniform random graph with the same edge density. A high clustering coefficient
is a common feature among many real life graphs, indicating that the market graph
could possess a community structure.

4.1.4 Degree Distribution

By fixing the threshold a specific market graph is obtained. For this graph a degree
distribution can be studied. As was also found in [1] the degree distribution is
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filled with noise for lower thresholds, however for higher values the power law
behavior becomes more clear. Figure 4 shows the degree distribution for thresholds
� D f0:5; 0:7g in a loglog plot. From the figure one can notice that the noise in
the graph decreases as the threshold is increased. Also, it is interesting to note that
the slope is lower compared to the edge distribution of many other real life graphs.
For instance, the Web graph has been estimated to follow a power law with slope
2.18 [8]. The small exponent suggests that there could exist many vertices with high
degree in the graph implying that there could exist larger clusters in the graph.
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4.2 Partitions of the Market Graph

Partitions of different instances of the market graph are obtained with the two
formulations presented in Sect. 3. The simulation setup is described in detail below.

4.2.1 Simulation Setup

By solving the two partition formulations for market graph instances partitions were
obtained. In a first attempt to evaluate the result of the two approaches we ran
both algorithms N times on each studied graph. For each of these N partitions the
following metrics were computed.

• Number of clusters found—Remember that this is a free variable for the
Modularity based formulation while it is fixed for the normalized cut approach.

• Internal clustering density—computed from Eq. (4)
• Max internal cluster density—computed from Eq. (3)
• Min internal cluster density—computed from Eq. (3)
• External cluster density—computed from Eq. (5)
• Min cluster size
• Max cluster size

Then, the average over all N values were taken, and the results are reported in
Table 1 and in the Appendix. Since the formulation based on normalized cut requires
a fixed number of clusters, k, as input, this algorithm was applied with three different
k D 10; 20; 30 for each graph.

Additionally, to evaluate the consistency of the partitions for each algorithm we
compute the adjusted rand index (ARI) [11] between some obtained partitions. The
ARI measures the overlap between two partitions and is defined in the following
way. Given a set V D .1; 2; : : : ; n/ and the partitions X D .X1; : : : ;Xs/ and Y D
.Y1; : : : ;Yt/ of V we can define the following quantities

a —the number of pairs of elements in V that are in the same set in X and in the
same set in Y.

b —the number of pairs of elements in V that are in different sets in X and in
different sets in Y.

c —the number of pairs of elements in V that are in the same set in X and in
different sets in Y.

d —the number of pairs of elements in V that are in different sets in X and in the
same set in Y.

Using these quantities the ARI is defined as

ARI D
�n
2

�

.a C d/ � Œ.a C b/.a C c/C .c C d/.b C d/�
�n
2

�2 � Œ.a C b/.a C c/C .c C d/.b C d/�
: (29)
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ARI has expected value 0 and maximal value 1, corresponding to identical
partitions. It can be used to compare both partitions obtained by the same approach,
to evaluate the method’s consistency as well as comparing the results obtained from
different formulations. Computed ARI for different pairs of partitions can be found
in Table 2 in the Appendix.

4.2.2 Partition Structure

The result from the simulations shows that for the lower thresholds � 2 Œ0:4; 0:5�,
both approaches produce partitions with low modularity. Also, the partitions have
low minimal internal cluster density and a high external density relative to the
overall graph density. As an example, for � D 0:4 the minimal internal density
of a cluster is of the same magnitude as the edge density of the entire graph for
both algorithms. Also, the external cluster edge density is approximately half that
of the overall graph density, indicating that the identified clusters are not well
separated. All these results indicate that the market graph lacks a strong community
structure for lower thresholds. This is not really surprising as at lower thresholds
even weakly correlated stocks can be connected in the graph making it more difficult
to distinguish which instruments truly form clusters.

Also, for these lower thresholds the size of the largest cluster found is very large,
especially for the greedy modularity approach where the largest cluster consists of
nearly 2=3 of the considered nodes. This cluster has low internal density and is
strongly connected to the rest of the graph. This further supports the idea that the
market graph lacks a clear community structure for lower thresholds. Figure 5 shows
a partition of the giant connected component obtained by the modularity approach
for � D 0:5. One can see that even though each cluster seems strongly connected,
most of them are not well separated.

For higher values of the thresholds (� 2 Œ0:6; 0:7�) the quality of the partitions
increases. Partitions of these graphs display higher modularity, combined with
higher minimal internal cluster density and lower external density. As an example,
for � D 0:7 the minimal internal cluster density is more than three times as high
as the overall graph density and the external cluster density is less than 1

10
the

edge density of the entire graph. Hence, clusters are both more dense and better
separated compared to partitions for lower thresholds. This result was found for
all the approaches. Figures 6 and 7 show the partitions of the largest connected
component for � D 0:7 for both algorithms. In this case the partitions seem
very similar, this is also confirmed by computing the ARI for the two partitions,
ARI D 0:9295, further indicating a large overlap between the two partitions.

In Fig. 8 we have plotted the internal cluster density against cluster size for
both approaches (with 20 partitions of each) applied on market graphs with
� D Œ0:5; 0:7�. From Fig. 8 we can notice that the result from the two approaches
becomes more similar for larger values of � , indicating a stronger community
structure for higher thresholds in the graph. Figure 9 shows the normalized cut
plotted against cluster size of the corresponding partitions. Here we can notice
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Fig. 5 Partition of the market graph (� D 0:5) into 18 clusters from modularity approach

a difference between the approaches since the modularity formulation produces
partitions with smaller fluctuations in the normalized cut of clusters than the cut
formulation.

Comparing the two approaches one can notice that using modularity generally
gives a larger giant cluster than the method using normalized cut (when they are set
to find the same number of clusters).

4.2.3 Internal Cluster Structure

Since a common way to classify instruments in portfolio management is by dividing
them into industrial sectors we will compare the internal structure of the clusters
with 12 industrial sectors of the market. First, the sector representation in the data
and for the giant component of different market graphs can be found in Table 3 in
the Appendix. It is especially interesting to note that as the threshold � increases
some sectors such as finance, basic industries, and energy increase their percentage
in the largest connected component of the graph while other sectors, such as health,
drastically decrease. Hence, the degree of correlation between industrial sectors in
the market differs.
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Fig. 6 Partition from modularity approach for market graph � D 0:7

To analyze the internal structure of the clusters in the graph partitions we study
the percentage representation of each sector in every cluster. Table 3 in the Appendix
shows the relation between industrial classification and clusters in partitions of the
giant connected component of the market graph, obtained by the greedy modularity
approach for different thresholds.

For lower thresholds � D 0:5 the sector overlap between clusters is relatively
large. This is especially clear for the two largest clusters in the partition. In these
sets all 12 industry sectors are represented. Hence, for moderate correlations there
is no strong connection between clusters and industry sectors. It is also interesting to
note that the financial sector stands out by existing in all of the four largest clusters,
indicating that this sector is connected to many other sectors at this correlation level.
This is further confirmed by the fact that when selecting the ten nodes with the
highest degrees in the graph more than 50% of these belong to the financial sector.

For higher thresholds the correlation between industrial sectors and clusters is
stronger. At threshold 0:7, no cluster includes stocks from all sectors and more
clusters now only consist of one sector. However, even though the correlation
between cluster and sector is very strong, it is not complete, even at this high
threshold level. This phenomenon introduces the possibility to use graph clusters
instead of industry sectors in portfolio diversification.



238 K. Sörensen and P.M. Pardalos

Fig. 7 Partition from normalized cut approach for market graph � D 0:7

Fig. 8 Internal cluster density against cluster size for GM (blue) and SC (red) � D Œ0:5; 0:7�
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Fig. 9 Normalized cut of cluster vs. cluster size for GM (blue) and SC (red) � D Œ0:5; 0:7�

4.2.4 Dynamics in Partition Structure

To study possible dynamics and stability in the partition structure we divide our
data of price returns into four periods, each consisting of 150 days, and with 50
days overlap between each consecutive period. For each time series we construct a
market graph for � D 0:7. First, computing the giant connected (GC) component
of each market graph we notice that its size varies greatly, from 253 instruments in
period 3 up to 701 in period 4. Thus the market correlations in these sub-periods
are quite different compared to the correlations obtained by using data covering all
time series. Moreover, by considering the overlap for these different GCs we can
see that it is not only the cardinality that changes but also which instruments that are
present in the GC. The intersection between all the GCs is 131 indicating that the
instruments composing the GCs change over different time periods. However, the
edge density of the GC is almost constant over all four periods.

Using the greedy modularity approach, partitions for the different time periods
were obtained (20 for each graph), the results are reported in Table 4. From these
numbers it can be observed that the modularity decreases between period 1 and
period 4. This together with the fact that the external cluster density increases over
the same time could imply that the community structure of the graph decreases over
time. Partitions of the market graph for � D 0:7 from period 1 and 4 can be found
in Figs. 10 and 11, these graphs confirm the differences between the partitions.
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Fig. 10 Partitions of market graph with � D 0:7 for period 1 into 11 clusters

By studying the sector composition of the clusters it was found that the
connection between sectors and clusters was weaker in all sub-periods compared
to the entire period. Also, this pattern increased for every considered period, and in
the last period most clusters consisted of several different industrial sectors. Hence,
the correlation between industrial sectors and graph clusters is weaker for shorter
time series.

Appendix

Number of runs is N D 50
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Fig. 11 Partitions of market graph with � D 0:7 for period 4 into 12 clusters

Adjusted Rand Index

ARI for different partition approaches and market graphs. The ARI was obtained by
choosing three pairs of partitions, at random from each type, computing the ARI for
each of them, and then taking the average of these values. (GM—greedy modularity,
SNC—spectral normalized cut.)

Industrial Sectors in the Market Graph

Industrial Sectors and Clusters

Market graph � D 0:5 with industrial sectors and clusters from greedy modularity.
The italic numbers represent the largest sector in every cluster.

Market graph � D 0:7 with industrial sectors and clusters from greedy
modularity.

Partitions of market graph for different periods.
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Table 1 Result for the algorithms on market graphs for
different �

Market graph Threshold �
0.4 0.5 0.6 0.7

Nr. nodes in GC 2964 2020 934 278

Global density (GC) 0.0928 0.0400 0.0282 0.0337

Greedy modularity

Mean nr. clusters 14.1 20.66 13.66 11.08

Max/Min nr. clusters [9,20] [15 33] [10 19] [10 12]

Mean internal density 0.5768 0.4686 0.4562 0.3758

Max internal density 0.9968 0.9571 0.9933 0.8691

Min internal density 0.0924 0.0996 0.0714 0.1009

External cluster density 0.0400 0.0123 0.0037 0.0013

Min cluster size 2.1 2.5 2.64 3.32

Max cluster size 938.78 630.22 276.78 66.48

Modularity 0.2406 0.4353 0.6738 0.7271

Spectral Ncut, k D 10

Nr. clusters 10 10 10 10

Mean internal density 0.3243 0.2765 0.3162 0.3514

Max internal density 0.7932 0.6511 0.6506 0.8282

Min internal density 0.1083 0.0526 0.0632 0.117

External cluster density 0.0689 0.0188 0.0051 0.0021

Min cluster size 13.40 11.70 9.40 5.15

Max cluster size 1086 976 280.8 71.45

Modularity 0.0490 0.1360 0.6290 0.7044

Spectral Ncut, k D 20

Nr. clusters 20 20 20 20

Mean internal density 0.2865 0.3037 0.3596 0.5113

Max internal density 0.8373 0.7370 0.8168 0.9950

Min internal density 0.0925 0.0874 0.0745 0.1524

External cluster density 0.0852 0.024 0.0079 0.0043

Min cluster size 7.25 8.80 4.10 2.60

Max cluster size 484.35 351.0 157.85 54.95

Modularity 0.0417 0.2844 0.5984 0.6349

Spectral Ncut, k D 30

Nr. clusters 30 30 30 30

Mean internal density 0.2576 0.3084 0.4412 0.5526

Max internal density 0.8150 0.7967 0.9837 1

Min internal density 0.0801 0.0979 0.0880 0.1599

External cluster density 0.0901 0.0274 0.0094 0.0108

Min cluster size 9.62 4.5 2.6 2

Max cluster size 257.75 227.5 127.4 43.7

Modularity 0.0489 0.2559 0.5654 0.5575
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Table 2 Adjusted rand index for different
algorithms and market graphs

Market graph Threshold �
0.5 0.6 0.7

ARI

GM & GM 0.5846 0.7845 0.9593

SNC & SNC 0.5317 0.9124 0.9212

GM & SNC 0.4084 0.5900 0.8963

Table 3 Sector representation in data and market graphs giant
connected component for � D Œ0:5; 0:6; 0:7�

Sector representation Threshold �
Data 0.5 0.6 0.7

Sector

Basic industries 0.0755 0.1065 0.1192 0.0294

Capital goods 0.0860 0.1097 0.1205 0.0196

Consumer Dur. 0.0326 0.0368 0.0314 0.0049

Consumer Non-Dur. 0.0508 0.0387 0.0226 0

Consumer Serv. 0.1525 0.1503 0.1267 0.2745

Energy 0.0712 0.0958 0.1192 0.1569

Finance 0.1649 0.2245 0.2961 0.5049

Health 0.1128 0.0323 0.0138 0.0049

Miscellaneous 0.0315 0.0146 0.0013 0

Public Util. 0.0590 0.0729 0.0803 0

Technology 0.1379 0.0977 0.0590 0.0049

Transportation 0.0252 0.0203 0.0100 0

Table 4 Partitions for different time periods and � D 0:7 from
greedy modularity approach

Time Periods
Market graph P1 P2 P3 P3

Nr. nodes in GC 532 559 253 701

Global density (GC) 0.0313 0.0209 0.0273 0.0291

Greedy modularity

Mean nr. clusters 9.1 12.5 10 13.45

Max/Min nr. clusters [7, 11] [11 13] [8 12] [10 16]

Mean internal density 0.2853 0.2614 0.3281 0.4988

Max internal density 0.7047 0.5613 1 1

Min internal density 0.0643 0.0511 0.09264 0.0727

External cluster density 0.0012 0.0012 0.0025 0.0070

Min cluster size 8.3000 8.1000 2.0 2.0

Max cluster size 134.4 120.5 62.8 239.7

Modularity 0.7483 0.7847 0.6143 0.5120
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A Semantic Solution for Seamless Data
Exchange in Supply Networks

Elena Andreeva, Tatiana Poletaeva, Habib Abdulrab, and Eduard Babkin

Abstract This paper proposes the semantic solution for data exchange in
dynamically changing supply networks. Because of the dynamic nature of supply
networks, there is a necessity to manage their efficiency. The first step in this
direction is proper data exchange, which leads to transparency of networks and
speeds up interactions of their participants. Despite plenty of data standards,
there is a lack of approaches to data modeling allowed the seamless knowledge
sharing within supply networks. This paper introduces a new ontology-based data
metamodel of supply networks based on organizational ontology, consistent theory
for data modeling, and the ontologized standard in logistics domain. At the first
part of the paper, selected approaches to data modeling are explained and justified.
Then, basic information patterns applicable for modeling of supply networks are
explained. Finally, we elaborate how the proposed ontological framework facilitates
knowledge integration in logistics.

Keywords Semantic data modeling • Domain ontology • Knowledge manage-
ment • Semantic interoperability • Supply network

1 Introduction

Nowadays the structure of supply networks is getting more complex with the
increasing volume of transportation load, the number of people and organizations
involved in logistical processes, stronger requirements to the quality of product
distribution, and the growing volume of information flow. Therefore, businesses
realize the necessity of applying information systems to facilitate the control of
products within supply networks. However, seamless information exchange between
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information systems of supply network parties is hindered by poor semantic
interoperability, in general, and data integration problems, in particular [1].

The lack of semantic interoperability of information systems comes out from
the impossibility to declare the universal standard for naming and meaning of
measures and characteristics of the supply network among its current and potential
future parties. The storage and transmission of logistics records have been the
object of many initiatives concerning standardization, to wit: Universal Business
Language, UBL (OASIS project),1 UN/CEFACT2 logistics module, GS13 Logistics
Interoperability Model, etc. Nevertheless, these standards are not amenable to foster
semantic interoperability, because their metamodels are not smoothly integrable.
In addition to the use of different standards and approaches to data modeling,
developers of information systems specify data storages with the particular concepts
and data patterns, which are rather based on their experience and intuition than on
any theoretical foundations [2]. The following commonly encountered problem is
a shining example of the problems of information exchange. The attribute “selling
price” of the same products has different meanings and, therefore, different values
for manufacturers and distributors. For a manufacturer the selling price of a product
equals the sum of net cost and extra cost. But a distributor considers the selling price
to be the sum of purchase price and some extra costs. As for other cases, the root of
heterogeneity lies in the differences of the definitions given for the same concept.
Aforementioned lack of semantic interoperability occurs when automated discovery
of concept definition and meaning in a data model is not possible.

The widely known solution for the problem of information exchange is the use
of domain ontologies. Logistics domain ontologies provide a theory to address
semantic interoperability and data/standard integration between information sys-
tems of supply network parties, allow automatic analysis by means of artificial
intelligence, and convey a knowledge repository. As soon as the elements of
particular data models are mapped onto complete collection of logically related
concepts provided by the domain ontology, the problem of information exchange is
resolved. Meanwhile the mapping between a particular data model and the ontology-
related data patterns is easier than the mapping between two particular data models,
because the meaning of ontological data elements is unambiguously defined by
their interrelations and related axioms [3]. Creation of underlying domain ontology
is propagated by many standards in different domains (ISO 15926,4 IDEAS,5

DoDAF,6 OMG FIBO,7 etc.). However, there are only some attempts of creation
the domain ontology in logistics [4–6].

1OASIS: https://www.oasis-open.org/.
2UN/CEFACT: http://www.unece.org/CEFACT/.
3GS1: http://www.gs1.org/.
4ISO 15926: http://15926.org/.
5IDEAS: http://ideasgroup.org/.
6DoDAF: http://dodcio.defense.gov/TodayinCIO/DoDArchitectureFramework.aspx.
7OMG FIBO: http://www.omg.org/.

https://www.oasis-open.org/
http://www.unece.org/CEFACT/
http://www.gs1.org/
http://15926.org/
http://ideasgroup.org/
http://dodcio.defense.gov/TodayinCIO/DoDArchitectureFramework.aspx
http://www.omg.org/
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The main drawback of known approaches in building the logistics domain
ontologies is the underestimation of the importance of the underlying foundational
ontology. Prevailing Entity paradigm [2] for data modeling lefts high levels of
freedom in the definition of entities and their attributes. On the other hand, it
provides a very weak theory about parts and wholes, types and instances, identity,
dependency, and unity. That is why relational data models contain ambiguous
definitions of real objects. Consequently, it is difficult to automate the mapping
process and the integration of the data models based on Entity paradigm.

Our research is aimed to overcome the problem of information exchange in logis-
tic networks by developing a logistic domain ontology based on the Object paradigm
by means of the business objects reference ontology (BORO) methodology [2]. In
opposition to the Entity paradigm, the Object paradigm of data modeling [2] has no
superficial division of the world into entities and attributes. Everything in the world
is considered as an explicit map of objects and their patterns of relationships [2],
whether it is individual, class, individuals’ relationship, or class of relationships.
The Object paradigm, fully expressed in the BORO methodology [2], (1) provides
strong logical foundations for classification and identity; (2) provides clearer and
more precise representation of reality based on spatial and temporal dimensions of
objects; (3) provides the ability to capture dynamic objects showing their changes
over time; and (4) allows avoiding subjective and possibly erroneous ontological
assumptions in modeling constructs [7]. That is why we chose this paradigm for
modeling of dynamic supply networks. BORO-based formal ontology has been
already designed by the IDEAS Group. IDEAS ontology was used for developing
of data-modeling standards—DoDAF, MODAF, and MODEM. Despite the fact
that the IDEAS-based data standards were developed to support the exchange and
sharing of military enterprise architectures, IDEAS upper-level ontology is domain-
independent [8]. In our work we partially use the IDEAS upper-level ontology, and
extend it with the concepts related to physical flows of enterprises.

In order to build the domain-specific level of the logistics ontology, we need
a comprehensive set of concepts that are used in this field. For this purpose we
chose supply chain operations reference model (SCOR model) [9] as a standardized
description of business operations in supply chains and the source of unambiguously
defined terms that participants of supply networks operate.

Thus, in this paper we present the data metamodel built in accordance with the
BORO methodology partially using the IDEAS upper-level ontology. Moreover, the
proposed metamodel is built on top of the formal enterprise ontology described in
detail in [10]—a core ontology for supply networks. Providing essential ontologized
domain-independent knowledge about enterprises, this ontology forms a shape for
the integration of heterogeneous data models in the logistics domain. The domain-
specific level of the metamodel is built by applying business objects of the SCOR
model to the domain-independent level. The proposed metamodel is aimed to
facilitate significantly the supply chain management and simplify interaction and
data exchange.

The outline of the paper is as follows. First, the theoretical background of
proposed ontology is summarized in Sect. 2. Proposed logistics ontology and basic
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information patterns applicable for modeling of supply networks are explained in
Sect. 3. Then, in order to verify the completeness and coherence of the developed
ontology, we used the ontology to build the data metamodel of a particular supply
process. The details of this data metamodel are described in Sect. 4. In Sect. 5 we
demonstrate the semantic power of the metamodel by the knowledge that can be
extracted from related data model. Moreover, in this section we elaborate on the
integration of the particular logistics data metamodel with the proposed one. Finally,
Sect. 6 provides conclusions and directions for further research.

2 The Ontological Engineering Approach

In our research the BORO methodology [2] is a theoretical basis for the ontology
development. The Object paradigm of data modeling underlies the BORO method-
ology and defines some fundamental approaches to data modeling.

Firstly, according to the BORO, only the concepts of tangible objects that exist
in a real world should form the ontological core. Moreover, object identity is
defined as an object’s extension in the universe [7]. The extensional approach
provides an ontology that is well suited to deconflicting multiple identification
schemes [11]. The second modeling principle is the consideration of spatio-temporal
(4D) extensions of any object. This approach intrinsically represents the temporality
of objects by the assumption that they just partly exist at each time instant of
their life span. Together with the essential information patterns listed hereafter, this
modeling principle makes the methodology perfectly suitable for designing data
models of dynamically changing logistic networks.

The ontological constructs used in the Object paradigm are individuals, classes,
and tuples (coupled relations) [2]. It is assumed that all these constructs represent
four-dimensional objects. Individuals are four-dimensional objects that persist
through time. A class is an object according to its definition as a collection of 4D-
individuals. A tuple as the ordered pair of interconnected individuals or classes is
also an object. Any object is a sequence of 4D-states within its lifecycle. Any state is
bounded by the events that mark its beginning and the end. Since an event happens
at a point of time, it has no time duration, but, in turn, it has a spatial extension.
A spatial extension of an event is a time slice that is a 3D-part of an object.

Finally, in the Object paradigm C. Partridge proposed fundamental information
patterns for expressing relationships between 4D-objects. He proposed using the
“whole-part” pattern to assign that an object is a part of another one. Also the
sequence of two states of an object can be related by means of the “before-after”
pattern. The role of the “pre-condition” pattern is to link an event with the conditions
required to make it happen.

The Object paradigm proposes the unique description of production processes
as the set of four-dimensional objects involved into this process. Consequently, a
process is also considered as a 4D-object. Thus, the extension of a simple process
can be the aggregation of the extensions of an actor and a product changed by the
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actor. Changes of the states of constituent objects define the states of the process.
The sequence of process states is unambiguously expressed by the means of the
“before-after” and “pre-condition” patterns.

In accordance with the Object paradigm, the BORO methodology allows reveal-
ing business objects as well as relationships between them. Moreover, the methodol-
ogy defines some conceptual modeling rules for defining new ontological concepts.

3 The Logistics Ontology

In this section we explain the developed ontology and we give the notion of invented
concepts and the reasons why they were added to the ontology.

The developed ontology consists of three levels of abstraction: the Framework,
the Application level, and the Operational level [2]. Because of the domain
requirements, the conceptualization of physical flows of enterprises (the Application
level) was created upon the formal enterprise ontology (the Framework) described
in detail in [10]. The Application level contains the concepts of standard supply
processes specified by the SCOR model. This ontological level is supposed to be
the common core of different data metamodels of supply networks putting aside
their specifics. The Operational level in turn comprises business objects related
to a particular business scenario. Also, as it was mentioned in the Introduction,
the notation of the IDEAS standard [8] was used for the visualization of created
conceptual model.

The top level of the Framework fully corresponds to the BORO fundamental
ontology. According to the extensional approach, all concepts have corresponding

“IDEAS: Type”
Thing

“IDEAS: Type”
Type

“IDEAS: Type”
Powertype

“IDEAS: Powertype”
Individual Type

“IDEAS: IndividualType”
Individual

“IDEAS: TupleType”
Tuple

“IDEAS: Powertype”
TupleType

Fig. 1 The top concepts of the Framework



254 E. Andreeva et al.

spatial equivalents. Thus, the top concept presented in Fig. 1 is a Thing—“a union
of Individual, Type, and Tuple” [2] where an Individual is an object that has a
spatio-temporal extent, i.e. it is tangible in our world [2], a Tuple is “a relationship
between two or more things” [2]. Spatio-temporal extension of a tuple comprises the
extensions of its placeholders. Specified set of individuals or tuples is a Type (class).
According to the IDEAS notation, yellow rectangles depict classes of Individual
objects, green rectangles—classes of relationships, and purple rectangles—classes
of classes of Individual or Tuple objects in figures of this section. A type and its
members are connected through classification relationships (presented by dotted
brown lines in the graphical notation of the metamodel). A relationship between a
type and one of its subtypes is the specialization relationship (presented by navy
blue arrow in the graphical notation of the metamodel).

Specialization of the Type depends on the nature of its possible members.
Thus, the IndividualType is the set of classes with members, which are Individual
instances. The TupleType is the set of classes with members, which are Tuple
instances. A class that has other classes as its members is called Powertype (a class
of classes). Subclasses of the Type can relate to each other. Thus, the IndividualType
and the TupleType are instances of the Powertype class.

Since the model reflects the concepts of the enterprise ontology [12], it includes
several categories of objects: agents, roles, resources, processes, transactions, and
facts. The concept Agent represents people or organizations that are authorized and
can take the responsibility to participate in business processes. Resource concept
expresses any kind of resources involved into processes, and Product as a subclass
of Resource is a class of end products. Process is an object of Individual type
whose extent is defined by its involvements [2]. And finally, world changes (facts)
and agents’ interactions about these facts (transactions) are represented in the
metamodel in accordance with DEMO enterprise ontology [12] by Transaction,
CoordinationFact, and ProductionFact concepts. Speaking in the language of
BORO we can consider facts as 3D-objects, events that change the state of business
processes. Besides, the data model includes classes of relationships between given
concepts. These relationships allow linking objects with their parts and their states;
they allow assigning process states and transactions into one sequence, relating
processes and involved roles, agents, and resources.

Following BORO fundamental ontology, proposed conceptual model exploits
four fundamental information patterns: whole-part, before-after, pre-condition, and
participation. For assigning agents, resources, and processes with their parts and
states the following concepts are used: agentWholePart and agentWholeState,
resourceWholePart and resourceWholeState (Fig. 2), and processWholePart and
processWholeState.

To link two successive states of an object BORO provides with beforeAfter
pattern. The beforeAfter tuple class has two subclasses: resourceStateBeforeAfter
and processStateBeforeAfter (Fig. 3). This specialization will be needed in further
computer processing of the data model.
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“IDEAS: IndividualType”
ResourcePart

“IDEAS: TupleType”
resourceWholeState

“IDEAS: TupleType”
resourceWholePart

whole

whole

part

temporalPart
“IDEAS: IndividualType”

ResourceState

“IDEAS: IndividualType”
Resource

Fig. 2 resourceWholePart and resourceWholeState patterns

“IDEAS: TupleType”
resourceStateBeforeAfter

“IDEAS: IndividualType”
ResourceState

“IDEAS: IndividualType”
ProcessState

beforebefore afterafter

“IDEAS: TupleType”
resourceStateBeforeAfter

Fig. 3 beforeAfter pattern

“IDEAS: IndividualType”
ProductState

“IDEAS: TupleType”
factPreconditionProductState

“IDEAS: IndividualType”
ProductionFact

whole

fact(1--*)

Fig. 4 factPreconditionProductState pattern

Links between events and their preconditions are important in the domain of
supply networks. For that reason factPreconditionProductState concept was added
to the metamodel (Fig. 4). In human language it means that a resource will not take
a certain state unless a fact happens.

In the domain of supply networks a process is performed by some actors and
involves some resources or products. This kind of relations is supported by means of
active (agentParticipation) roles (Fig. 5) and passive (passiveParticipation) (Fig. 6).
When Agent takes a certain role in a process, it becomes an ActiveParticipationEx-
tent related to this process (Fig. 7).
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“IDEAS: IndividualType”
Agent

“IDEAS: IndividualType”
ActiveParticipationExtent

“IDEAS: TupleType”
agentParticipation

whole role

Fig. 5 agentParticipation pattern
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“IDEAS: IndividualType”
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“IDEAS: TupleType”
productParticipation

Fig. 6 passiveParticipation pattern
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ActiveParticipationExtent

“IDEAS: IndividualType”
Process

“IDEAS: TupleType”
processWholeActiveParticipationExtent

role

whole

Fig. 7 processWholeActiveParticipationExtent pattern

But the notion “role” does not define responsible actors for certain processes.
To do this we use responsibleForProductionFact class of relationships (Fig. 8). The
responsibility for coordination facts is expressed by responsibleForCoordination-
Fact pattern.

Following the enterprise ontology [12], we consider a process as a sequence
of transactions. The model reflects essential parts of any transaction: coordi-
nation and production facts. A process is assigned with transactions through
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“IDEAS: TupleType”
responsibleForProductionFact

“IDEAS: IndividualType”
ProductionFact

“IDEAS: IndividualType”
ActiveParticipationExtent

responsible (1..1)responsibility (0..1)

Fig. 8 responsibleForProductionFact pattern
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whole temporalPart

Fig. 9 processWholeTransaction pattern
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ProductionFact
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“IDEAS: IndividualType”
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“IDEAS: TupleType”
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“IDEAS: IndividualType”
Transaction

whole(1..1)

Fig. 10 transactionWholeProductionFact and transactionWholeCoordinationFact patterns

processWholeTransaction pattern, and a transaction is assigned with facts through
transactionWholeFact pattern. Relevant diagrams are shown on Figs. 9 and 10.

The Application level is the specification and extension of the Framework in
application to logistics domain. The concepts of this level express specific kinds
of processes, transactions, resource states, and roles that may appear in supply
networks according to the supply chain operation reference (SCOR) model [9].
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To that moment Source Stocked Resource and Deliver Stocked Resource pro-
cesses [9] were translated from the standard to the ontology. By analyzing the
description of these processes given in the SCOR standard there were revealed onto-
logical transactions, production, and coordination facts, actor roles, and relation-
ships between all of these classes of objects. The process SourceStockedResource
includes five transactions: SchedulingDeliveries, Receiving, Verification, Transfer-
ring, and Payment. Within the process a resource changes states: ResourceReceived,
ResourceVerified, and ResourceTransferred. The process DeliverStockedResource
includes nine transactions: InventoryReservation, OrderConsolidation, LoadsBuild-
ing, ShipmentsRouting, CarrierSelection, Receiving, Pick, Pack, and Payment.
Within this process a resource changes states: ResourceReceived, ResourcePicked,
and ResourcePacked.

All the patterns of the Framework are reflected to the Application level. As an
illustration of Application level patterns we shall consider Transferring transaction
and its relations with other objects. Transferring transaction is involved into
“whole-part” relationships with its production fact PF-Transferring and SourceS-
tockedResource process (Fig. 11). Resource states as well as transactions form a
sequence by means of beforeAfter patterns (Fig. 12). A sequence of transactions
linked by preconditions (Fig. 13) forms the whole process (SourceStockedResource
or DeliverStockedResource). Some transactions change resource states as a result;
therefore, proposed metamodel provides an opportunity to trace resource lifecycle
within a certain process. In addition, each production fact has responsible actors
(responsibleForProductionFact pattern) (Fig. 14).

The power of the metamodel is also provided by cardinalities and additional
logic rules of objects’ associations. These parts of proposed metamodel were
implemented in OWL and in the form of coded rules. Moreover, first order logic

whole

whole

temporalPart

temporalPart

“IDEAS: TupleType”
SourceStockedResourceWholeTransferring

“IDEAS:TupleType”
transferringWholePF-Transfering

“IDEAS:IndividualType”
SourceStockedResource

“IDEAS: IndividualType”
Transferring

“IDEAS: IndividualType”
PF-Transferring

Fig. 11 wholePart pattern for Transferring transaction
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verification BeforeTransferring

“IDEAS: IndividualType”
Verification

before

Fig. 12 beforeAfter pattern for Verification and Transferring transactions

“IDEAS: Individual Type”
PF-Transferring

“IDEAS: Individual Type”
ResourceVerified

“IDEAS: TupleType”
PF-TransferringPreconditionResourceVerified

whole

fact

Fig. 13 precondition pattern for production fact of Transferring transaction

“IDEAS: IndividualType”
PF-Transferring

responsibility

responsibility

“IDEAS: IndividualType”
TransferrerExtent

“IDEAS: TupleType”
responsibleForPF-Transferring

Fig. 14 responsibleForProductionFact pattern for production fact of Transferring transaction

rules were used for extracting new knowledge that is not explicitly presented in the
metamodel. These rules add additional semantic power and allow building more
complex queries to related data model (Sect. 5).

The Application level of created conceptual model contains 49 classes of
individual objects and 71 associations (classes of relations). All created classes are
the subclasses of the formal enterprise ontology [10].
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At the stage of implementation (in accordance with SABiO’s Development
Process [13]) the ontology was presented in OWL format (dialect FULL). The OWL
representation takes into account all the classes and classes of classes of objects and
relations, cardinalities of object dependencies, restrictions on classes’ properties,
comments with the definitions of concepts, and the hierarchy of metamodel levels.

4 Case Study of Supply Network

To verify completeness and coherence of the developed metamodel we apply it to
the use-case8 that describes a possible business scenario close to supply processes
of the SCOR model.

The Fig. 15 shows the sequence of subprocesses of the whole process of supply.
The case includes four stages: Scheduling Product Deliveries, Verifying Product,
Transferring Product, and Payment. The first three stages change product states: On
Stock, Requested, Verified, and Transferred.

Apart from process stages and product states, the use-case gives information
about involved agents and their roles (Table 1).

The stages of the business process being described resemble subprocesses of S1
process of the SCOR model except Receiving Product subprocess. The flexibility
of the metamodel allows avoiding fixed sequence of process stages and, therefore,
applying the model to various cases.

All objects above and relevant relationships (beforeAfter, wholePart, precondi-
tion, responsibleFor, and other patterns) among them were added to the data model
and presented in OWL format to make the model appropriate for further computer
processing. Ultimately, OWL representation of the Operational level contains 30
instances of individual objects and 37 instances of relationships.

On Stock

Scheduling Product
Deliveries

Verifying Product

Transferring Product
Transferred

Payment

Requested

Requested

Verified

Verified

Fig. 15 The structure of the business process given in the use-case

8Taken from GS1 Logistics Interoperability Model (GS1 LIM), Version 1, Issue 1.0 (2007).
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Table 1 Agents and their roles within the process of replenishment

Role Agent

# Manufacturer # Laithwaite’s_ wine

# Material supplier # Le_ Chai_ au_ Quai

# Manufacturer warehouse # Laithwaite’s_ wine_ Warehouse

# Material supplier warehouse # Le_ Chai_ au_ Quai_ Warehouse

# Transport service provider # HAROPA

5 Semantic Analysis with Proposed Logistics Ontology

The use-case gave us instances of created classes on the Operational level of the
data model. According to the systematic approach for building ontologies (SABiO’s
Development Process [13]), we made a set of queries to the data model based
on some competency questions. Competency questions are the most important
questions from concerned parties’ perspective. The amount and the complexity of
queries the metamodel is able to answer shows its completeness and coherence,
and its semantic power. Therefore, it is crucial to test the metamodel by means of
competency questions.

The logic of queries building is the following. Each information pattern of the
metamodel is an atomic part of more complex information item. In such a way,
complex queries associated with complex information items comprise a set of
atomic queries associated with basic information patterns (ref. to Sect. 3). This logic
was implemented into software prototype designed on Apache Jena9 platform by
means of coded rules for extracting new knowledge. Table 2 contains some spread
questions in the natural language. Questions 1–6 are more general while the rest
questions are based on the basic Application level patterns. Evidently, the Table 2
can be extended because the set of possible queries is defined by the set of numerous
combinations of information patterns. Notably, the cardinalities of associations and
implemented logic rules of proposed metamodel form a “semantic glue” of complex
information items.

The semantic power makes the metamodel a core for different metamodels inte-
gration. As a particular case we consider combined data metamodel of three projects
of the EU 7th Framework program (FP7): EURIDICE,10 iCargo, and11 e-Freight.12

These projects put joint efforts on development of the new generation of information
systems in logistics, including the multilayered semantic metamodel [14].

The top level of the FP7 metamodel includes concepts: “Activity,” “Event,”
“Role,” “Actor,” “StaticResource,” and “MoveableResource”. “Activity” denotes

9Jena Ontology API: http://jena.apache.org/documentation/ontology/.
10EURIDICE project: http://www.euridice-project.eu.
11i-Cargo project: http://i-cargo.eu.
12E-Freight project: http://www.efreightproject.eu.

http://jena.apache.org/documentation/ontology/
http://www.euridice-project.eu
http://i-cargo.eu
http://www.efreightproject.eu
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Table 2 Implemented competency questions and their associated basic information patterns

No What is/are Information pattern

1 The role of an agent in a process? • processWholeActiveParticipationExtent
• agentParticipation

2 The resources/products involved into a
process?

• processWholePassiveParticipationExtent
• passiveParticipation

3 The sequence of process transactions? • processWholeTransactions
• set of processStateBeforeAfter

4 The result of a process? • processWholeTransaction
• set of processStateBeforeAfter
• transactionWholeProductionFact
• factPreconditionProductState

5 The detailed lifecycle of a product? • set of resourceStateBeforeAfter
• productStatebeforeAfter

6 The responsible agent for a transaction? • responsibleForProductionFact
• agentParticipation

7 The role of an agent in Source Stocked
Resource process?

• agentParticipation
• sourceStockedResourceWhole-

ActiveParticipationExtent

8 The resources/products involved into
Source Stocked Resource process?

• sourceStockedResourceWhole-
PassiveParticipationExtent

• passiveParticipation

9 The previous transaction for Transferring
transaction?

• verificationBeforeTransferring

10 The result of Transferring transaction? • transferringWholePF-Transferring
• PF-TransferringPrecondition-

ResourceTransferred

11 The previous state for Resource Trans-
ferred state?

• resourceVerifiedBeforeTransferred

12 The responsible agent for Verification
transaction?

• set of verificationWholePF-Verification
• responsibleForPF-Verification

an action and is connected with “Actor” via “hasProvider” and “hasConsumer”
relations, “Event” means something that happens and has no time duration. “Actor”
performing an “Activity” has “Role” that is expressed by means of “hasRole”
relationship. And finally, “Activity” is associated with resources (“StaticResource”
and “MoveableResource”) by “hasStaticResource” and “hasMoveableResource”
relations.

Following the meaning of enumerated concepts we integrated FP7 meta-
model with our metamodel. “Activity” can be considered as a subclass of
Transaction class, “Actor”—a subclass of Agent, and “Role”—a subclass of
ActiveParticipationExtent (Fig. 16). “Event” has the meaning of CoordinationFact,
“StaticResource” and “MoveableResource” are subclasses of Resource (Fig. 17).
Relationships of FP7 metamodel can also be integrated as following. “hasProvider”
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“IDEAS: IndividualType”
Transaction

“IDEAS: IndividualType”
Agent

“IDEAS: IndividualType”
ActiveParticipationExtent

“FP7”
Activity

“FP7”
Actor

“FP7”
Role

Fig. 16 “Activity,” “Actor,” and “Role” integrated with the metamodel

“IDEAS: IndividualType”
Resource

“IDEAS: IndividualType”
CoordinationFact

“FP7”
Event

“FP7”
StaticResource

“FP7”
MoveableResource

Fig. 17 “Event,” “StaticResource,” and “MoveableResource” integrated with the metamodel

and ”hasConsumer” become subclasses of responsibleForProductionFact and
responsibleForCoordinationFact classes, correspondingly, “hasRole” a subclass
of agentParticipation, and “hasStaticResource” and “hasMoveableResource” are
subclasses of passiveParticipation class. Thus, all top level classes and the main
associations of the combined FP7 metamodel were easily integrated with the
proposed metamodel. Together with other subclasses of the FP7 metamodel,
obtained result of metamodels integration can be considered as a particular
metamodel of the open supply network supported ontology-based data exchange.

Thus, the strong semantics of proposed logistics ontology facilitates integration
of metamodels. Moreover, it helps to reveal semantic gaps in the integrated
conceptual models. Following the constraints of proposed metamodel, we found
that complex information patterns cannot be formed on the basis of initial FP7’s
data metamodel. For example, the information patterns answering questions: “What
are results of an activity?,” “How resources/products were transformed within a
process/activity?,” “What is the sequence of activities”, and so on cannot be built.
Moreover, some redundant associations were revealed in the initial metamodel
during the integration process.

In such a way, the proposed metamodel can be a platform for further integration
of different logistic standards and existing ontologies due to its semantic power.
Thus, it forms the platform for semantic interoperability.
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6 Conclusions

The article proposes the logistics ontology and its implementation—the data
metamodel for the domain of logistics built upon BORO foundational ontology
and the formal enterprise ontology [10]. In the research we extracted consistent
conceptual model from the SCOR standard using the BORO methodology. On the
other hand, we used the formal enterprise ontology to build semantically reach data
metamodel describing the lifecycle of products and providing the transparency of
supply networks. Proposed ontology-based metamodel is aimed at serving a basis
for the integration of different ontologized logistic standards and particular data
metamodels that are built upon the SCOR standard. The top level of the metamodel
contains 38 classes of individual objects and 48 types of associations, the logistics-
specific level—49 classes of individual objects and 71 types of associations. For the
validation and testing of proposed metamodel we used simulated data, to wit: 30
instances of individual objects and 37 particular associations were specified.

At the stage of validation the metamodel was applied to ordinary use-case close
to supply processes of the SCOR model. The metamodel was tested by means of
the set of queries in order to prove its completeness and coherence and to evaluate
its semantic power. For extracting new knowledge from the ontology-based data
model the software prototype was implemented on Apache Jena platform. To show
the suitability of proposed logistics ontology for the resolution of interoperability
problem, the developed metamodel was integrated with another existing metamodel
of the logistics domain. Developed metamodel helped to reveal semantic gaps in
the integrated metamodel as well as allowed to perform the integration without any
changes in the integrated metamodel.

In the nearest future both created logistics ontology and the data metamodel as
its implementation will be reinforced by the shared core of leadership standards in
logistics (GS1 and UN/CEFACT).
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Key Borrowers Detected by the Intensities
of Their Short-Range Interactions

Fuad Aleskerov, Irina Andrievskaya, and Elena Permjakova

Abstract The issue of systemic importance has received particular attention since
the recent financial crisis when it came to the fore that an individual financial
institution can disturb the whole financial system. Interconnectedness is considered
as one of the key drivers of systemic importance. Several measures have been
proposed in the literature in order to estimate the interconnectedness of financial
institutions and systems. However, they do not fully take into consideration an
important dimension of this characteristic: intensities of agents’ interactions. This
paper proposes a novel method that solves this issue. Our approach is based on the
power index and centrality analysis and is employed to find a key borrower in a loan
market. To illustrate the feasibility of our methodology we apply it at the European
Union level and find key countries-borrowers.

Keywords Power index • Key borrower • Systemic importance • Inter-
connectedness • Centrality

1 Introduction

The detection of a pivotal agent has received particular attention within systemic
risk analysis. Specifically, this refers to the identification of pivotal or, in other
words, systemically important financial institutions or countries. According to [26],
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“systemic importance is not a binary concept but can be measured along a
continuum: some firms, sectors, markets, or countries can be judged to be ‘more’ or
‘less’ systemically important than others, using different criteria” (p. 3).

A common approach in the literature with respect to systemic importance
identification is either to consider several indicators of systemic importance
(cf. [10, 21, 26]) or to examine the contribution to and participation in systemic
risk (cf. [1, 2, 14, 18, 20, 24, 30, 36, 38, 40]).

Among the possible indicators of systemic importance interconnectedness is
considered as the most important (cf. [18, 22, 25, 31]) and is used along with the
indicators of size, cross-jurisdictional activity, substitutability, and complexity for
the global systemically important banks assessment [10].

The recent financial crisis has revealed how interconnected a financial system
can be at the national and international level [6]. Connections can be direct, for
example, links in the interbank market, and indirect, which arise from similar
portfolio holdings.

In this paper we focus on direct links among financial institutions and systems.
The calculation of the level of interconnectedness of a financial institution or system
is not an easy task. The Basel committee on banking supervision (BCBS) proposes
using an indicator-based approach [10]. However, an indicator-based approach does
not take into consideration the links among financial institutions and, therefore, does
not reveal the possible level of contagion.

An alternative approach, which is receiving an increasing attention in the
literature, is to employ the network theory [22]. A network can be described as
the system of nodes and links among them. The network approach has been applied
to different areas in economics [34]. It has also received particular attention within
systemic risk, financial stability, and contagion analysis. Within the financial system
framework nodes are represented by financial institutions or systems and links can
be described as the mutual exposures among them. Early theoretical study that
employs the network theory within financial system stability context is presented
by Allen and Gale [7], where the authors investigate the effect of interregional bank
claims structure on financial contagion.1

For the purposes of the interconnectedness measurement, the researchers pro-
pose using such measures from the network theory as centrality indices. For
example, [26, 39] identify several centrality measures that are most suitable for
the calculation of interconnectedness within a global financial system framework.
Both papers consider a network of banking sectors and use bilateral data where
each banking center represents a node. The network measures used to identify
the “central” banking centers are the following: degree, closeness, betweenness,
intermediation (employed only in [39]), and prestige (or Bonacich centrality).2

1For detailed literature review with respect to theoretical and empirical application of network
approach to financial systems see [6, 32].
2Details on these measures are provided in Sect. 3.
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These centrality measures are widely used for the interbank market investigation
(see [3] for the Norwegian money market, [12] for the US Federal Funds mar-
ket, [16] for the Brazilian interbank market, [28] for the Italian interbank market,
and others) and global banking network analysis [33].

However, these centrality measures, when used separately, do not fully incor-
porate the intensity of agents’ interactions. Therefore, we contribute to the sys-
temic risk literature elaborating on agents’ interactions intensities as an important
dimension of interconnectedness. We also add to the network-in-finance literature
proposing a centrality measure adjusted in order to take into account a particular
nature of a financial system. Our methodology can be used for detecting the
most interconnected financial institutions or countries from the pivotal borrower
perspective.

The methodology we develop is built on the power analysis which is widely
used to determine voting power of agents employing power indices. Examples of
these indices are represented by Banzhaf index [9], Coleman index [19], Johnston
index [29], Penrose index [35], and Shapley–Shubik index [37].

Within systemic risk analysis there are few papers that employ power indices to
find systemically important financial institutions. Specifically, Tarashev et al. [38]
were the first to use the Shapley value to estimate the contribution of a bank to
systemic risk. The approach was extended in [20] taking into account interbank
linkages. The paper [23] employs the Shapley value in a different way. The index is
used to find a pivotal bank which is a bank that makes the system losses larger than
a predefined threshold.

However, these methodologies focus on systemic importance as a whole rather
than estimating the level of bank interconnectedness. We, in turn, concentrate
directly on the interconnectedness estimation proposing to use a preference-based
power index—we call it key borrower index—worked out in [4] and adjusted in our
paper in order to take into account the nature of a financial system. This index is of
a broad application. It can be used for interbank market analysis in order to detect
the most interconnected financial institution. Alternatively it can be applied at the
international level in order to find the most interconnected financial centers.

To the best of our knowledge, this is the first time this index is applied to
loan market analysis. We show how to use our approach in a hypothetical case
and compare it with the centrality measures identified in [26, 39] as the most
suitable for the network analysis of financial institutions or systems. Thereafter we
apply our methodology at the international level. The detection of jurisdictions with
systemically important financial sectors based on their size and interconnectedness
is considered by IMF as an important task for a country’s financial stability
assessment [27]. We demonstrate in a real-data case the applicability of our index
in order to detect the most interconnected financial systems.

Quite a few policy initiatives have already been worked out in order to reduce
systemic risk and systemic importance of financial institutions and, thus, enhance
financial stability (cf. Basel III). The approach we propose will hopefully help in
improving macroprudential regulation.
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The paper is organized as follows. In the next section, we explain the proposed
methodology. In Sect. 3 we compare our approach with the centrality measures
commonly used in the literature. Empirical application of our methodology is
presented in Sect. 4. Section 5 concludes.

2 Methodology

We modify the preference-based power index proposed in [4, 5] in order to capture
the nature of the loan market and call this modified index key borrower index. Our
aim is to find the most pivotal borrower. This index is calculated for each borrower
in order to determine the magnitude of his/her pivotal role in the market. The pivotal
role of a borrower reflects the level of his/her interconnectedness in the system.

We first consider a “one pure lender, many borrowers/lenders” case and then
adjust our approach for the general case “many lenders/borrowers.”

Consider a group of borrowers. The distressing group is interpreted as a group
whose default can lead to the default of a creditor (while the creditor is able to cover
his/her losses from the distress of the non-distressing group). Thus, the group is
distressing if the total amount of its members’ borrowings is greater than or equal
to a predefined quota. The quota should be determined on a case-by-case basis
according to the characteristics of the financial institution and system.

The pivotal (or key) borrower can be defined as a borrower who makes the
amount of losses critical for the lender and whose exclusion from the distressing
group makes it non-distressing. The most pivotal borrower will be the one who
becomes pivotal in more distressing groups than other pivotal borrowers.

When we consider a group of borrowers there is no sense in allowing for the
intensity of connection among borrowers. The crucial thing here is the intensity of
connection between a borrower and a lender.

First, we define the intensity of connection f .i;w/ taking into account not only
the direct links but also the indirect ones between a lender and a borrower:

f .i;wl/ D Pli C P0li
P

j Pli
; (1)

where wl is a distressing group with respect to a lender l and a borrower i is pivotal,3

Pli are total direct loans taken by a borrower i from a creditor l, and P0li are total
indirect loans taken by a borrower i from a creditor l.

3If the borrower is not pivotal in a distressing group, no intensities of connections are calculated
for this borrower. The intensities are assumed to be zero for this borrower in this distressing group.
The zero value is then taken into consideration for the calculation of the key borrower index for
this borrower.
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It is important to emphasize that the transferred funds represent a uniform
product (money). This indirect link reflects the additional channel through which
the borrower can potentially affect the lender and, therefore, cannot be ignored.
However, the indirect impact of a direct borrower is limited by the loans provided
by the lender to the intermediate borrower.

At this stage we consider only indirect connection of the first order between a
lender and a borrower. The first order indirect connection includes loans taken by
a borrower from a lender through only one intermediate borrower. For example,
suppose a lender L provides the amount of PL1 1000 USD to the borrower B1, PL2 to
the borrower B2, and PL3 to the borrower B3 (see Fig. 1). The borrower B1, in turn,
provides P12 to the borrower B2, P14 to the borrower B4, and P13 to the borrower B3.
Moreover, the borrower B2 takes P42 from the borrower B4 and provides P23 to B3.

The intensity of indirect connection between L and Bi through Bj—pji—is
calculated as

pji D
8

<

:

Pji
P

k PLk
; Pji < PLj; i ¤ j; k D 1; : : : ; 3 borrowers of a Lender L

Pji
P

k PLk
; Pji > PLj; i ¤ j; k D 1; : : : ; 3 borrowers of a Lender L

(2)

The direct connection between L and Bi is calculated as

pLi D PLi
P

k PLk
(3)

and the total intensity of connection between L and Bi would be

fli D
X

j

pji C pLi (4)

4

Fig. 1 Lender’s connections with its borrowers
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For a borrower B2, for example, the direct connection with L includes a loan PL2

and the indirect connection of the first order occurs through B1 and includes a loan
P12 (if P12 < PL1) or PL1 (if P12 > PL1). The indirect connection of a higher
order (of the second order, in this case) will be through B4. It is important to
emphasize that by including the indirect links we assume the worse-case scenario
when the default of an ultimate borrower disturbs not only the lender but also the
intermediate borrower. This assumption can be relaxed or adjusted (for example,
by determining the relative importance of an indirect link for the stability of an
intermediate borrower) depending on a loan market and on a particular problem
under study.

The intensity of connection for a borrower i is calculated separately for each
distressing group and then aggregated over all possible distressing groups as

Xi D
X

wl

f .i;wl/=Nw; (5)

where Nw—the number of borrowers in the group. The final form of the index for
each borrower is calculated according to the following formula:

˛i D Xi
P

j Xj
(6)

In order to demonstrate the full estimations we consider a numerical example
presented in Fig. 2 below.

Based on the loan amounts presented in Fig. 2, the intensities matrix P D .pji/,
where on the diagonal line we have a direct connection between L and a borrower
Bi, has the form depicted in Table 1. At the intersection of the row B1 and column

4

Fig. 2 Numerical example 1
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Table 1 Intensities matrix

B1 B2 B3 B4
B1 0.24 0.00 0.00 0.00

B2 0.06 0.18 0.00 0.00

B3 0.24 0.04 0.59 0.00

B4 0.24 0.00 0.00 0.00

Table 2 Distressing coalitions and pivotal borrowers

Distressing coalitions, w Pivotal borrowers, i f .i;w/

B1B2 B1B2 f .B1;w/ D 0:12

f .B2;w/ D 0:12

B3 B3 f .B3;w/ D 0:59

B1B3 B3 f .B3;w/ D 0:42

B2B3 B3 f .B3;w/ D 0:32

B1B2B3
B1B2B4 B1B2 f .B1;w/ D 0:08

f .B2;w/ D 0:08

B3B4 B3 f .B3;w/ D 0:30

B1B3B4 B3 f .B3;w/ D 0:28

B2B3B4 B3 f .B3;w/ D 0:21

B1B2B3B4

Table 3 Key borrower index, q = 25%

Xi DP

wf .i;w/ Index, ˛i

B1 0.20 0.08

B2 0.20 0.08

B3 2.12 0.84

B4 0.00 0.00
P

Xi 2.52 1.00

B1 we have 0.24. This number is received by dividing 400 by (400C 300C 1000).
At the intersection of the row B2 and the column B1 we have 0.06 which is 100 (the
amount borrowed by B2 from B1) divided by (400C 300C 1000).

Let us consider the quota q being equal to 25 %. Then distressing groups and
pivotal borrowers are the following (in Table 2 we omit the subscript l as we have
only one lender):

Therefore, the values of the key borrower index are the following (see Table 3):
Table 3 shows that the most pivotal borrower turns out to be B3. This borrower

indeed is the most interconnected one: she borrows relatively large amounts of
money from quite a few agents. B4, in turn, is the least pivotal/interconnected in
this case, which is in line with expectations as she takes money only from B1.
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For the “many lenders/borrowers” case we need to aggregate the index over
all lenders. Lenders are different in terms of their lending abilities. Therefore, the
aggregation of the index for each borrower over all lenders should take into account
the size of each lender’s total loans. The importance of a borrower for a large lender
(who provides a large amount of loans in total) is not the same as its importance
for a small one (who provides a small amount of loans in total). Therefore, the final
value of the key borrower index has the following form:

˛i D
X

l

 

Xi
P

j Xj
� Total_loansl
P

l Total_loansl

!

; (7)

where Total_loansl is the total amount of loans provided to all borrowers by a
lender l.

When we consider a banking system, several additional points should be taken
into considerations. First, loans have to be put in perspective relative to the equity
position of a bank. A bank is in default if its losses are higher than or equal to its
capital. Therefore, the group is “distressing” if the total amount of its members’
borrowings is greater than or equal to the amount of capital of a lender. Thus, the
magnitude of the quota can be specific for each bank (calculated as the ratio of total
bank capital over total bank loans). Alternatively, we can use the recommendations
of the Basel Committee with respect to the large exposure limits. In particular,
according to [11, p. 4], “The sum of all the exposure values of a bank to a single
counterparty or to a group of connected counterparties must not be higher than 25 %
of the bank’s available eligible capital base at all times.” Within our framework, the
distressing groups include, among others, those that consist of only one borrower.
This situation fits the Basel Committee’s recommendation with respect to the large
exposure limit. When a group consists of more than one borrower, it can be
considered as a group of connected counterparties in the sense that these borrowers
can be prone to the common risk factors. Therefore, the 25 % limit can also be
applied to this situation.

Second, the approach can be extended taking into account the bankruptcy theory
according to which not all creditors lose their money when a borrower defaults
(cf. [8, 13, 17]. For example, the indirect links should be included into calculations
again taking into account the equity position of an intermediate bank (a bank
through which the indirect connection takes place). Specifically, if the value of the
indirect link is higher than or equal to the amount of intermediate bank’s capital,
then this link should be considered for the estimation as described above. Otherwise,
this link is not included into calculations.

As a result, we obtain the value of the key borrower index for each borrower in a
general case “many lenders, many borrowers.” The borrower with the largest value
of the index is considered as the most pivotal/interconnected one in the market.



Key Borrowers Detected by the Intensities of Their Short-Range Interactions 275

3 Key Borrower Index vs. Centrality Measures

The aim of this section is to discuss the key borrower index in comparison with
centrality measures used in the literature for the interconnectedness assessment.
Centrality measures include degree centrality, indicators of closeness and between-
ness, intermediation measure, and the measure of prestige. They are described
in [39] and we follow the same logic.

We consider a hypothetical example with a “many lenders–many borrowers”
system of interconnections. Graphical representation is shown in Fig. 3. Bi can be a
lender and a borrower at the same time. Arrows indicate the direction of the money
flows. For example, B1 borrows 10,000 USD from B3, while B3 borrows 5000 USD
from B1.

In-degree and out-degree centrality measures of Bi are calculated as the number
of its ingoing and outgoing links. The level of closeness of Bi is the inverse from the
average distance from Bi to all other participants in the system. Betweenness of Bi is
based on the probability that the path between Bj and Bk lies through Bi. The level
of betweenness of Bi is the sum of all these probabilities over all pairs Bj and Bk.
While intermediation is an extension of betweenness, it takes into account the value
of the links and is calculated as the total probability (over all pairs Bj and Bk) that

B1

B2

B4

B5B3

5

5 000 155

1015

5 0003 000

5

105

Fig. 3 Numerical example 2
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Table 4 Centrality measures and the key borrower index

Borrower

Indices B1 B2 B3 B4 B5
Key borrower
indexa˛i; qD0:25

0.00 0.23 0.00 0.38 0.38

Closeness
(from a borrower
perspective)

0.16 0.19 0.28 0.19 0.19

Intermediation 0.12 0.12 0.65 0.06 0.06

Betweenness 0.11 0.19 0.62 0.05 0.03

Bonacich
centrality
(eigenvector
centrality)

0.10 0.19 0.35 0.24 0.11

In-degree 1.00 2.00 4.00 2.00 2.00

Out-degree 3.00 2.00 4.00 1.00 1.00
aFor higher levels of the quota, B5 gets higher scores
while B2 gets lower scores

monetary unit sent from Bj to Bk will be delivered through Bi. Bonacich centrality,4

or prestige,5 takes into account the scores of all the counterparties. It is received by
solving the linear system v D R0�, where � is the vector of the importance scores of
Bi and R is the matrix of relationships (in the rows we have Rij, the money borrowed
by Bj from Bi). The solution is represented by the eigenvector corresponding to the
eigenvalue 1. This vector contains the prestige levels of each Bi.

Based on the structure of connections and the loan amounts presented in Fig. 3,
the key borrower index and other centrality measures described above are the
following (see Table 4 below):

As can been seen from Fig. 3, there is one participant—B3—that takes and
provides money to all other participants. The values of its borrowing and lending,
though, are relatively small. Therefore, the default of B3 would unlikely seriously
affect any lender or cause contagion in the market. However, the centrality measures
described above show the opposite: B3 turns out to be the central player in the
market.

This occurs due to some weaknesses of these measures. For example, the degree
centrality, closeness, and betweenness measures lack information about the value
of the links (borrowed/lent amounts of money). It is taken into account by the
intermediation metrics. However, estimation of the intermediation level of Bi does
not control for the differences in the magnitude of the links. For example, Bi

transferring small amounts of money and Bj transferring large amounts of money
can receive the same intermediating rating (or even Bj can receive a lower rating,
which is visible from our example: B3 is rated higher than B2 even though B2

4The logic behind this measure is well explained in [15].
5We estimate only the outgoing Bonacich centrality in order to rank the borrowers (not the lenders).
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transfers relatively large amounts). The key borrower index solves this issue as it
is calculated separately with respect to each lender and then it is aggregated using
as weights the size of each lender (the share of the total amount given by a lender in
total amount of money provided by all lenders). Moreover, our approach takes into
account the degree centrality. For example, if a borrower takes small amounts of
money but from a lot of lenders (thus, its degree centrality is high), its key borrower
index will be higher compared to a borrower who takes small amounts of money
from fewer lenders.

The Bonacich measure seems to be the most appropriate one. Nevertheless, it
does not work well when a node is connected to other nodes with zero importance
scores. In such a situation the node receives the zero score as well. For example,
when Bi borrows from lenders who do not borrow from anyone else, the centrality
score of Bi will be zero. In order to solve this issue, Bonacich and Lloyd [15] pro-
pose incorporating in the Bonacich centrality measure the exogenous importance.
However, this exogenous importance should also be calculated somehow.

Our key borrower index, in turn, does not have this weakness. At the same time
it takes into account the importance of counterparties, as the final index is computed
as the sum of the indices with respect to each lender weighted by the share of this
lender in total system lending.

As a result, using this simple hypothetical example, we demonstrate the applica-
bility of the key borrower index. It incorporates the desired features of the existing
centrality measures and at the same time lacks their deficiencies described above.

4 Empirical Application: Country Assessment

Now we apply our methodology to detect the most pivotal/interconnected countries-
borrowers. As mentioned in Sect. 1, the identification of systemically important
financial centers is necessary for a country’s financial stability assessment [27]. And
interconnectedness is considered by IMF as an important determinant (along with
size) of systemic importance.

We estimate the level of country interconnectedness using the key borrower
index. Data are taken from the Bank of International Settlements (BIS) database.6

The sample covers countries from the European Union that have bank foreign claims
and obligations (28 countries) for the 1Q2013. The claims include outstanding loans
and holdings of securities as well as derivative contracts and contingent facilities.
The quota is assumed to be 25 %.7

6Consolidated banking statistics, table 9D “Foreign claims by nationality of reporting banks,
ultimate risk basis” http://www.bis.org/statistics/consstats.htm.
7For an individual banking system analysis the quota should be set specifically for each bank as
25 % of its capital following the recommendations of the Basel Committee [10]. At the country
level we likewise consider the same level of the quota. The results are similar also for higher levels
of the quota.

http://www.bis.org/statistics/consstats.htm
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Table 5 Countries’ ranking based on the key borrower index

Country Key borrower index ˛i

United Kingdom 0.232

Germany 0.188

France 0.102

Italy 0.084

Netherlands 0.069

Belgium 0.054

Spain 0.046

Luxembourg 0.036

Denmark 0.034

Austria 0.025

Finland 0.024

Ireland 0.024

Poland 0.022

Czech Republic 0.021

Country Key borrower index ˛i

Romania 0.008

Portugal 0.008

Slovakia 0.005

Croatia 0.005

Hungary 0.005

Sweden 0.003

Bulgaria 0.002

Cyprus 0.002

Slovenia 0.001

Estonia 0.000

Greece 0.000

Latvia 0.000

Lithuania 0.000

Malta 0.000

Table 5 below presents the rating of the countries-borrowers according to our
key borrower index. The highest ratings belong to the United Kingdom, Germany,
and France, which corresponds to the findings in [39]. These jurisdictions indeed
have a broad coverage of the global financial system [26]. They have high sovereign
ratings. Therefore, investments in their securities are an attractive tool for many
investors, which make these countries large borrowers. This result reflects the fact
that banks prefer to invest in countries with high sovereign ratings even at the cost
of lower profits. Moreover, we can conclude that financial sectors of these countries
could be of systemic importance and should be more closely monitored.

Malta, Lithuania, Latvia, Greece, and Estonia, in turn, have the lowest values of
the key borrower index. This is also not surprising and reflects the current weak
economic situation in these jurisdictions. They are relatively low-rated and are not
able to attract a lot of investments and loans.

5 Conclusions

Methods and techniques for systemic risk and systemic importance analysis have
been substantially advanced in terms of their complexity starting from the recent
financial crisis. One of the crucial determinants of systemic importance is consid-
ered to be the interconnectedness of financial institutions or countries. However,
such an important dimension of interconnectedness as the intensity of agent
interaction has not been fully considered.

Our paper fills this gap in the literature. We developed a methodology in order
to detect key borrowers in a loan market, the failure of whom could potentially
endanger the stability of this market. The approach was based on the power index
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analysis and network theory. Under this approach we proposed a new type of a
centrality measure—key borrower index—to take into consideration the nature of a
financial system and the intensity of connections among market participants.

We carried out estimations for a hypothetical example and at the level of the
European Union and demonstrated the feasibility of the proposed methodology. The
empirical results based on our methodology are in line with the conclusions made by
IMF. However, we avoided the calculation of a broad range of interconnectedness
indicators used by IMF and at the same time we took into consideration the
intensities of agent interactions. Our approach has wide-ranging applications and
adds to the on-going discussion of systemic importance and macroprudential
regulation.
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Langmuir Solitons in Plasma with
Inhomogeneous Electron Temperature
and Space Stimulated Scattering on Damping
Ion-Sound Waves

N.V. Aseeva, E.M. Gromov, T.V. Nasedkina, I.V. Onosova, and V.V. Tyutin

Abstract Dynamics of Langmuir solitons is considered in the framework of the
extended nonlinear Schrödinger equation (NLSE), including a pseudo-stimulated-
Raman-scattering (pseudo-SRS) term, caused by stimulated scattering on damping
ion-sound waves. Also included are spatially decreasing second-order dispersion
(SOD) and increasing self-phase modulation (SPM), caused by spatially decreasing
electron temperature of plasma. It is shown that the wavenumber downshift of
solitons, caused by the pseudo-SRS, may be compensated by an upshift provided
by the decreasing SOD and increasing SPM coefficients. An analytical solution for
solitons is obtained in an approximate form. Analytical and numerical results agree
well.

Keywords Extended nonlinear Schrödinger equation • Soliton solution • Stimu-
lated scattering • Damping low-frequency waves • Inhomogeneity • Second-order
dispersion • Self-phase modulation analytical solutions • Numerical simulation

1 Introduction

The great interest to the dynamics of solitons is motivated by their ability to travel
long distances keeping the shape and transferring the energy and information with
no little loss. Soliton solutions are relevant to nonlinear models in various areas
of physics which deal with the propagation of intensive wave fields in dispersive
media: optical beams and pulses in fibers and spatial waveguides, electromagnetic
waves in plasma, surface waves on deep water, etc. [1–7]. Recently, solitons have
also drawn a great deal of interest in plasmonics [8–10].
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Dynamics of long high-frequency (HF) wave packets is described by the second-
order nonlinear dispersive wave theory. The fundamental equation of the theory is
the nonlinear Schrödinger equation (NLSE) [11, 12], which includes the second-
order dispersion (SOD) and self-phase modulation (SPM). Soliton solutions in this
case arise as a result of the balance between the dispersive stretch and nonlinear
compression of wave packets.

The dynamics of narrow HF wave packets is described by the third-order non-
linear dispersive wave theory [1], which takes into account the nonlinear dispersion
(self-steeping) [13], stimulated Raman scattering (SRS) [13–15], and third-order
dispersion (TOD). The basic equation of the theory is the extended NLSE [15–19].
Soliton solutions in the framework of the extended NLSE with TOD and nonlinear
dispersion were found in [20–27]. In [28, 29], stationary kink waves were found
as solutions of the extended NLSE with SRS and nonlinear dispersion terms. This
solution exists as the equilibrium between the nonlinear dispersion and SRS. For
localized nonlinear wave packets (solitons), the SRS gives rise to the downshift of
the soliton spectrum [13–15] and eventually to destabilization of the solitons. The
use of the balance between the SRS and the slope of the gain for the stabilization of
solitons in long telecom links was proposed in [30]. The compensation of the SRS
by emission of linear radiation fields from the soliton’s core was considered in [31].
In addition, the compensation of the SRS in inhomogeneous media was considered
in several situations, viz., periodic SOD [32, 33], shifting zero-dispersion point of
SOD [34], and dispersion-decreasing fibers [35].

Intensive short pulses of HF electromagnetic or Langmuir waves in plasmas, as
well as HF surface waves in deep stratified water, suffer effective induced damping
due to scattering on low-frequency (LF) waves, which, in turn, are subject to
the action of viscosity. These LF modes are ion-sound waves in the plasma, and
internal waves in the stratified fluid. The first model for the damping induced by
the interaction with the LF waves was proposed in [36–38]. This model gives rise
to an extended NLSE with the spatial-domain counterpart of the SRS term, that
was called a pseudo-SRS one. The equation was derived from the system of the
Zakharov’s type equations [39] for the coupled HF and LF waves in plasmas. The
pseudo-SRS leads to the self-wavenumber downshift, similar to what is well known
in the temporal domain [1, 13–15, 40] and, eventually, to destabilization of the
solitons. The model elaborated in [36–38] also included smooth spatial variation
of the SOD, accounted for by a spatially decreasing SOD coefficient, which leads to
an increase of the soliton’s wavenumber, making it possible to compensate the effect
of the pseudo-SRS on the soliton by the spatially inhomogeneous SOD. However,
the consideration was carried out in disregard of spatial inhomogeneity of the SPM.

In this work the dynamics of Langmuir wave packets in plasma with spatial
inhomogeneous electron temperature and nonlinear interaction with damping ion-
sound waves is considered. Spatial inhomogeneous electron temperature in original
Zakharov-type system of equations for the Langmuir and ion-sound fields leads to
spatial variation of SOD Langmuir waves and ion-sound velocity. In the third-order
approximation of the dispersion-wave theory, the original Zakharov-type system is
reduced to an extended NLSE with pseudo-SRS and with spatially inhomogeneous
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coefficients of SOD and SPM terms. Spatially decreasing electron temperature gives
a spatially increasing coefficient of SPM term and spatially increasing coefficient
of SOD leads to an increase of the soliton’s wavenumber. The balance between
the pseudo-SRS and the increasing SPM and decreasing SOD, arising as result of
decreasing electron temperature, leads to stabilization of the soliton’s wavenumber
spectrum. An analytical soliton solution is found in an approximate form.

2 The Basic Equation and Integrals Relations

We consider the evolution of slowly varying envelope U.�; t/ of the intense Lang-
muir wave field U.�; t/exp.�i!pt/ in the plasma with space inhomogeneous electron
temperature T.�/, taking into account the nonlinear interaction with damping ion-
sound variations of the plasma density n.�; t/. The unidirectional propagation of the
fields along coordinate � with taking into account HF losses of ion-sound waves is
described by the system of the Zakharov’s type [39]:

2i
@U

@t
C 3!p

@

@�
ŒR2.�/

@U

@�
� � !p

n

N0
U D 0; (1)

@n

@t
C Cs.�/

@n

@�
� v @

2n

@�2
D � 1

16�mi

@.jUj2/
@�

; (2)

where !p D p

4�e2N0=me is the plasma frequency, R.�/ D p

kBT.�/=.4�e2N0/
is the Debye radius, kB is the Boltzmann constant, N0 is the unperturbed plasma
density, v is the coefficient of the HF losses of ion-sound wave perturbations n, and
Cs.�/ D p

T.�/=mi is the inhomogeneous velocity of ion-sound waves. Assuming
space inhomogeneous electron temperature T.�/ heterogeneity is larger than the
packet envelope scale heterogeneity, DT >> DjUj, in the third-order approximation
of the theory (for Langmuir wave packets v=� << Cs, where � is extension
of the wave packet) the nonlinear response of media has term with small spatial
antisymmetric nonlocality

n D � jUj2
16�miCs.�/

� v

16�miCs.0/

@jUj2
@�

:

Antisymmetric term causes with HF losses for ion-sound waves. In this case the
system (1)–(2) is reduced to model extension NLSE with small antisymmetric
nonlinear response
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@t
C @

@�
Œq.�/
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@�
�C 2˛.�/UjUj2 C �U

@jUj2
@�

D 0; (3)
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where q.�/ D 3!pR2.�/ � T.�/ is the SOD coefficient, ˛.�/ D 1=.32�miCs.�// �
1=
p

T.�/ is the SPM coefficient, and � D v=.16�miCs.0//. The last term in Eq. (3)
describes the stimulated scattering of Langmuir fields on ion-sound space domains
with HF losses. It is the spatial counterpart of SRS term in the temporal domain.

Equation (3) with zero boundary conditions at infinity, Uj�!˙1 ! 0 , gives rise
to the following integral relations for field moments, which will be used below:

dW
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	 d
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Z C1
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�jUj2d� D

Z C1
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where the complex field is represented as U 	 jUjexp.i�/ , and K 	 @�=@� is the
local wavenumber.

3 Analytical Results

For analytical consideration of the wave-packet dynamics, we assume that the scale
of the inhomogeneity of electron temperature is much larger than the inhomogeneity
scale of the wave-packet envelope, DT >> DjUj, and solution of the system (4)–(6)
will be found in adiabatic sech-like approximation

U.�; t/ D A.t/sech

"

� � N�.t/
�.t/

#

exp

�

ik.t/� � i
Z

˝.t/dt

�

; (7)

Solution (7) contains two free parameters: center-of-mass coordinate N�.t/ and
additional wavenumber k.t/. Using (7) the system of Eqs. (4)–(6) can be cast in the
form of evolution equations for the following parameters of the wave packets:

2
dk

dt
D �� 8

15

˛0

q0

A40
�9=2. N�/ � 2

3
A20˛0

� 0. N�/
�3. N�/ � q0�

0. N�/k2; (8)
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d N�
dt

D kq0�. N�/; (9)

where �. N�/ D T. N�/=T0 is the normalized electron temperature, T0 D T.0/ , � 0. N�/ D
.d�=d�/N� , q0 D q.0/, ˛0 D ˛.0/, and A0 D A.0/. The equilibrium state of the
system (8)–(9) is achieved under the conditions

k D 0; 4�A20 D �5� 0.0/q0: (10)

The equilibrium is achieved for spatially decreasing electron temperature � 0.0/ < 0.
With the help of substitutions, � 	 N�=DT , � 	 tq0=.

p
3DT�0/, and y 	 p

3k�0,
Eq. (9) is transformed into a scaled form,

2
dy

d�
D � 2�

�9=2
� . 2

�3
C y2/

d�

d�
;

d�

d�
D y�: (11)

where � 	 4�A20DT=5q0. The first integral of Eq. (11) is

�y2 C 2�

�Z

0

d�0

�9=2
� 1

�2
D const: (12)

In order to analyze the dynamics of the wave packet with non-equilibrium param-
eters, we assume that electron temperature � decreasing as linear � D 1 � �. The
first integral in this case is:

.1 � �/y2 � y20 C 4�

7

�
1

.1 � �/7=2 � 1
�

� 1

.1 � �/2 C 1 D 0: (13)

In Fig. 1, this relation between variables y and � is plotted for initial condition y0 D 0

with different �.

4 Numerical Results

We consider numerically the initial-value problem for the dynamics of the wave
packet, U.�; t D 0/ D sech � , in the framework of Eq. (3) for q.�/ 	 1 � �=10

and ˛.�/ 	 1=
p

1 � �=10 and different values of �. The analytically predicted
equilibrium value of pseudo-SRS for the initial pulse is �� D 1=8. In direct
simulations, the initial pulse for � D 1=8 is transformed into a stationary localized
distribution (the solid curve in Fig. 2) with zero wavenumber.

Variation of parameter� leads to variation of the soliton’s parameters (wavenum-
ber and amplitude). Spatial distributions of jUj at different moments of time for
� D 1:2=8 	 1:2�� are shown in Fig. 3.
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Fig. 1 First integral (13) in the plane .y; �/ for initial condition y0 D 0 with different values of
constant �

Fig. 2 The numerical result of the soliton’s envelope, jU.�/j, for � D 1=8 � �
�

In Fig. 4 numerical (solid curves) and analytical (dotted curves) results for the
local wavenumber at the point of the maximum of the wave-packet’s envelope as
functions of t for q.�/ 	 1 � �=10 and ˛.�/ 	 1=

p

1 � �=10 and different values
of � are shown.

For � D 1=8 	 ��, the local wavenumber at the soliton’s center does
not vary. It corresponds to the exact equilibrium between the pseudo-SRS and
the inhomogeneous SOD and SPM. For � ¤ 1=8, the analytical and numerical
results are seen to agree well. A similar picture is observed at other values of the
parameters.



Langmuir Solitons in Plasma with Inhomogeneous Electron Temperature: : : 287

Fig. 3 Numerical results for space–time distributions of jU.�; t/j for � D 1:2=8 � 1:2�
�

5 Conclusion

In the work the soliton dynamics is studied in the framework of the extended
inhomogeneous NLSE, which includes the pseudo-SRS effect (diffusive interaction
with LF waves) and inhomogeneous SOD and SPM, corresponding to linear
decreasing electron temperature profile. The results were obtained by means of
numerical and analytical methods. The solitons exist due to the balance between the
self-wavenumber downshift, caused by the pseudo-SRS, and the upshift induced by
the inhomogeneous SOD and SPM. The analytical soliton solution is found in an
approximate analytical form.

In this work the soliton dynamics was considered in the model neglecting the
nonlinear dispersion and third-order linear dispersion. The compensation of the
pseudo-SRS in inhomogeneous media which takes into regard these higher-order
terms will be considered elsewhere.
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Abstract We consider a game equilibrium in a network in each node of which
an economy is described by the simple two-period model of endogenous growth
with production and knowledge externalities. Each node of the network obtains an
externality produced by the sum of knowledge in neighbor nodes. Uniqueness of the
inner equilibrium is proved. Three ways of behavior of each agent are distinguished:
active, passive, and hyperactive. Behavior of agents in dependence on received
externalities is studied. It is shown that the equilibrium depends on the network
structure. We study the role of passive agents and, in particular, possibilities of
connection of components of active agents through components of passive agents.
Changes of the equilibrium under changes in the network structure are studied. It is
shown that appearance of a new link, as a rule, leads to decrease of knowledge in
all nodes, but sometimes knowledge in some nodes increases. A notion of type of
node is introduced and classification of networks based on this notion is provided.
It is shown that the inner equilibrium depends not on the size of network but on its
structure in terms of the types of nodes, and in similar networks of different size
agents of the same type behave in similar way.
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1 Introduction

Actions of agents/actors1 in a network are largely determined by the actions of their
neighbors or the information obtained from them. Models which do not take the
mutual dependence of agents into account become non-adequate, though in many
cases recommendations concerning economic and social policies are still based on
them.

Multi-agent networks are a natural object for studying interrelations in social
and economic systems. Network economics and network games theory consider
questions of networks formation, spreading (diffusion) of information in networks,
positive and negative externalities, complementarity and substitutability of activities
(see reviews [4, 6, 7]).

In the modern world mutual dependence includes, first of all, exchange of
information as well as other multiple externalities. Externalities, i.e. influence of
other agents, which does not go through the price mechanism, possess properties of
public goods and are not fully paid. In particular, the so-called “Jacobian” positive
externalities [8] are directly related to complementarity of agents’ activities. Positive
externalities, and among them externalities of knowledge and human capital, spring
up both in processes of production [9, 13] and consumption [1], and it is important to
account for them in economic and sociologic analysis, forecasting and mechanism
design.

In case of complementarity (and, correspondingly, supermodularity) a marginal
effect of the agent’s effort depends positively on efforts of other agents [3, 10–
12, 14]. The agent is interested in increase of his/her efforts if his/her neighbors
in the network create enough externalities. The more efforts neighbors do, the
more efforts will be done by the agent. Vice versa, in case of substitutability
(submodularity), if other agents increase their efforts, then the efforts of the agent
can become unessential, and he/she may rely on other agents [5, 7]; thus, the so-
called free-rider problem arises [2].

In game theory a branch related to analysis of the role of positive externalities in
networks has appeared, but attention there is devoted not to production externalities
but mostly to consumption externalities connected with distribution of efforts. A
typical model is as follows (e.g., [2]). Each of n agents in a network can make
some efforts. Efforts by neighbors produce externalities which allow to increase the
agent’s utility. The efficient, from the point of view of social welfare, distribution of
efforts and the Nash equilibrium essentially depend on the network structure.

In the present paper we continue the line of research of Nash equilibria in
networks in presence of positive externalities, but our work contains several
principally new elements in comparison to previous research.

1The term “agent” is used in economics, while the term “actor” is used in management, sociology,
and politology. We speak further about “agents” despite results of our work may have applications
in analysis of economic as well as social and political relations.
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Firstly, we study production but not consumption externalities; efforts in our
model have meaning of investments, in particular, investments into creation of
knowledge. The presence of production block allows us to interpret concepts of
complementarity (supermodularity) and substitutability (submodularity) as, corre-
spondingly, absence and presence of productivity. We carry out comparative analysis
of these concepts within the same model.

Secondly, our model for the first time in the network games literature uses the
notion of the “Jacobian” production externality in definition of the concept of equi-
librium. The essence of this notion is that any agent makes his/her decision staying
in a particular environment which depends on actions by the agent himself/herself
and by his/her neighbors. When making his/her decision, the agent considers the
state of the environment as exogenous; this means that the agent does not take into
account that his/her actions can directly influence the state of the environment.

As a simplest example imagine a game equilibrium in a collective of smokers and
non-smokers. When the agent decides whether to quit smoking, he/she is located in
a particular environment, which is defined by the fact that he/she smokes.

The third novation of our work is the use of dynamic approach. Essentially, our
model is a generalization of the simple two-period model of endogenous growth and
knowledge externalities due to Romer [13].

We show that equilibria depend on the network structure, and explain presence
of three ways of behavior of agents: passive, active, and hyperactive.

We introduce a notion of type of node and propose an algorithm of subdividing
the set of nodes. We provide a classification of networks by use of the types of
nodes and show the role of this classification in characterizing equilibria in classes
of networks which possess different sizes but similar structure of types of nodes.

Also we study consequences of adding a new link and connecting networks.
A general theorem is proved which formulates conditions under which the sum of
knowledge decreases after addition of a new link.

The paper is organized in the following way. In Sect. 2 the model is described.
The uniqueness of the inner equilibrium is proved, if it exists. A theorem is proved,
which serves further as a basic tool for comparison of utilities. In Sect. 3 behavior
of the agent in dependence on received pure externality is analyzed. Section 4 is
devoted to pure corner equilibria. In Sect. 5 equilibria in equidegree networks are
studied. In Sect. 6 possibilities of attaching of a node with passive agent to an
equidegree network with active agents, in such a way that the behavior of the agents
does not change, are considered. In Sect. 7 possibilities of connection of equidegree
components of active agents through nodes with passive agents are studied. In
Sect. 8 a notion of type of node is introduced and an algorithm of subdivision
is described. In Sects. 9 and 10, correspondingly, inner and corner equilibria for
networks with two types of nodes are studied. In Sect. 11 a network with three types
of nodes is considered. In Sect. 12 conditions are found under which addition of a
new link leads to a decrease in the sum of knowledge. In Sect. 13 connection of full
networks and stars is considered. Section 14 studies addition of a new link to cycles.
Section 15 concludes.
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2 Model

We consider a network with n nodes i D 1; 2; : : : ; n. Let M be the adjacency matrix:
elements Mij and Mji of this matrix are equal to 1 if nodes i and j are connected by a
link and equal to 0 in the opposite case. We set Mii D 0 for all i.

In each of the nodes there is an agent, whose preferences at two periods of time,
1 and 2, are described by a utility function U.ci

1; c
i
2/; where ci

1, ci
2 are consumptions

of the final good in node i in periods 1 and 2. The function U is assumed to be
twice continuously differentiable, increasing and concave in each argument (at least
in one of them—strictly concave).

In period 1 each agent is endowed by volume e of final good. This quantity
may be used for consumption in period 1, and for investment into knowledge:
e D ci

1 C ki. There is a research technology which produces knowledge one-to-one
from the invested good.

For an agent (index i is omitted now for notational simplicity), let k be his/her
investment into knowledge. Let QK be externality which is the sum of investments
of his/her close neighbors, and K D k C QK be his/her environment. Thus, the
environment is the sum of investments in the neighboring nodes and in the node
itself. The vector of environments of the agents K D .K1;K2; : : : ;Kn/

T can be
calculated by use of the adjacency matrix in the following way:

K D .M C I/k;

where I is the unit matrix of order n, k D .k1; k2; : : : ; kn/
T , T is the sign of

transposition.
The knowledge is used in production of final good for consumption in period 2.

Production of good in the node is described by a production function F.k;K/
depending on the state of knowledge (investment) k and the environment K.
The production function F.k;K/ is assumed to increase in each of its arguments
and be concave (may be not strictly) in k for each environment K.

The concept of externality, developed in [9, 13], means that at the moment of
decision making the agent takes the environment K as exogenously given, i.e. does
not account for a possibility of its change in result of his/her choice of investment k.
Correspondingly, the agent solves the following optimization problem P.K/:

U.c1; c2/ �����!
c1; c2; k

max
8

<

:

c1 � e � k;
c2 � F.k;K/;
c1 � 0; c2 � 0; k � 0:

The first two constraints of problem P.K/ at the optimum point are, evidently,
satisfied as equalities. Substituting these constraints into the objective function, one
can define new function (payoff function):
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V.k;K/ D U.e � k;F.k;K//:

Solution of problem P.K/ is one-to-one defined by k which maximizes the function
V.k;K/ under constraint k 2 Œ0; e� given environment K. Function V is, evidently,
strictly concave in k and, consequently, has a unique stationary point ks, to the left of
which it increases in k, and to the right—decreases. The stationary point ks satisfies
the equation

@V.k;K/=@k D 0; (1)

where D1 denotes derivative with respect to the first argument. If ks 2 .0; e/, then
it is the optimal solution k of problem P.K/; this solution will be referred as inner
solution. If ks < 0, then the optimal solution is k D 0; and if ks > e, then the
solution is k D e. In these cases the solution will be referred as corner solution.

Let us consider a game in which the players are the agents i D 1; 2; : : : ; n.
Feasible strategies of each player i are his/her investments ki 2 Œ0; e�. The payoff
of the player is his/her utility V.ki;Ki/: If profile .k1; k2; : : : ; kn/ defines a consistent
set of environments and optimal solutions of the players, this profile is referred as
Nash equilibrium with externalities. If all ki are inner solutions, then the equilibrium
.k1; k2; : : : ; kn/ will be referred as inner equilibrium. In the opposite case it will
be referred as corner equilibrium. It is clear that the inner Nash equilibrium with
externalities (if it exists under given values of parameters) is defined by the system
of equations

@V.ki;Ki/=@ki D 0; i D 1; 2; : : : ; n: (2)

We will choose a particular form of the utility function and production function
which allows to study the structure of equilibria in dependence on parameters.

Let the utility function U have the quadratic form:

U.c1; c2/ D c1.e � ac1/C dc2; (3)

where 0 < a < 1=2; d > 0. Here a is a satiation coefficient.
Let the production function have the form

F.k;K/ D gkK;

where g > 0. Notice that, by the meaning of parameters b and B, their increase
promotes investments of agents. We will use notation b D dg: It will be assumed
that

a < b: (4)

Remark 2.1. Under our assumptions, the utility function defined by (3), evidently,
strictly increases in both arguments and is concave. We could use instead a strictly
concave function by applying the following concave transformation:
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U.c1; c2/ D Œc1.e � ac1/C dc2�1��

1 � � ;

where 0 < � < 1, � is a coefficient of relative risk aversion. The points of maximum
for both functions do coincide, thus the problem P.K/ in our case also has a unique
solution which is guaranteed by the following lemma.

Lemma 2.1. The payoff function V.ki;Ki/ for the i-th node, considered under given
environment Ki, as a function of ki on the whole real axis, has a unique strict global
maximum. The system of equations (2) takes the form:

.b � 2a/k C bMk D e; (5)

where

e D

0

B
B
@

e.1 � 2a/
e.1 � 2a/

� � �
e.1 � 2a/

1

C
C
A
:

Proof.

V.ki;Ki/ D .e � ki/.e � a.e � ki//C bkiKi

D e2.1 � a/ � kie.1 � 2a/ � ak2i C bkiKi;

D1V.ki;Ki/ D e.2a � 1/ � 2aki C bKi; (6)

thus, the system of equations (2) takes the form (5). The second derivative of the
function V.ki;Ki/ with respect to the first argument in any point is �2a < 0: ut
Theorem 2.1. If b ¤ 2a, then the system of equations (5) has a unique solution.

Proof. The matrix of system (5) is

T D

0

B
B
@

b � 2a a12 : : : a1n

a21 b � 2a : : : a2n

: : : : : : : : : : : :

an1 an2 : : : b � 2a

1

C
C
A
;

where aij D bMij under i ¤ j. By dividing the elements of the matrix T by b, we
receive the matrix

QT D

0

B
B
@

˛ M12 : : : M1n

M21 ˛ : : : M2n

: : : : : : : : : : : :

Mn1 Mn2 : : : ˛

1

C
C
A
;
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where, because of (4), the diagonal elements satisfy condition 0 < j˛j < 1. To prove
the theorem it is sufficient to check the non-singularity of the matrix QT.

The determinant of the matrix is

˛n C a2˛
n�2 C a3˛

n�3 C � � � C an�1˛ C an D 0; (7)

where all coefficients a2; a3; : : : ; an are integer. Let m be the highest degree of the
variable ˛ under which the coefficient of the polynomial (7), an�m, differs from zero.
If an ¤ 0, then m D 0. In the opposite case we reduce the polynomial to obtain

˛n�m C a2˛
n�m�2 C a3˛

n�m�3 C � � � C an�m�1˛ C an�m: (8)

Let ˛1; ˛2; : : : ; ˛n�m be roots of the polynomial (8). Then

˛1 C ˛2 C � � � C ˛n�m D 0; (9)

˛1˛2 C ˛1˛3 C � � � C ˛n�m�1˛n�m D a2; (10)

˛1˛2˛3 C ˛1˛2˛4 C � � � C ˛n�m�2˛n�m�1˛n�m D �a3; (11)

˛1˛2˛3˛4 C ˛1˛2˛3˛5 C � � � C ˛n�m�3˛n�m�2˛n�m�1˛n�m D a4; (12)

� � �

˛1˛2 : : : ˛n�m D .�1/n�man: (13)

Let us show that no one of the roots can satisfy condition

0 < j˛ij < 1:

Assume the opposite: let, e.g., 0 < j˛1j < 1. Then (9) implies that there is another
root, e.g., ˛2, which is not integer. Then the product ˛1˛2 is also noninteger, and
it follows from (10) that there is another noninteger product, e.g., ˛2˛3. Then it
follows from (11) or (12) that there is one more noninteger product of three or
even four roots. Continuing this process further, we see that the product of all roots
˛1˛2 : : : ˛n�k cannot be integer; this contradicts to (13). This absurd proves that no
one of the roots of the polynomial (7) can satisfy condition 0 < j˛j < 1. Hence, for
any feasible values of parameters of the model, the matrix QT is non-singular. ut
Remark 2.2. If b D 2a, then the equilibrium exists only if for each agent QK D
e.1 � 2a/. We do not consider such artifact as far as the adjacency matrix is not
obliged to be non-singular.

Corollary 2.1. If, for given values of parameters, inner equilibrium exists, then it
is unique.
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It follows from (5), that the stationary solution ks
i for agent i is defined by

ks
i D e.2a � 1/C b QKi

2a � b
; (14)

where QKi is the pure externality received by the agent. In the inner equilibrium,
k�i D ks

i ; i D 1; : : : ; n.

Remark 2.3. In the theory of network games a notion of strategic complementarity
is used. If increase of neighbors’ investments leads to increase of investments by the
agent himself/herself, then one says that the strategic complementarity takes place.
If increase of neighbors’ investments leads to decrease of the agent’s investments,
then one says that the strategic substitutability takes place. From formula (14) it
becomes clear that if b < 2a, then the strategic complementarity takes place, and if
b > 2a, then the strategic substitutability takes place. In our model of production,
these inequalities indicate whether productivity is relatively high or low.

Definition 2.1. If b > 2a, we say that the productivity is present. In contrary case,
if b < 2a, we say, that the productivity is absent.

Remark 2.4. Since it is assumed that a < 1=2, the inequality b > 1 implies
presence of productivity, and, correspondingly, absence of productivity implies
b � 1.

We will prove a general theorem, that will serve an instrument for utilities
comparison.

Theorem 2.2. Let W� and W�� be two networks in inner equilibria; i is a node of
W�, and j is a node of W��; k�i , K�i , U�i are, correspondingly, optimal investment,
environment, and utility of agent i; k��j , K��j , U��j are corresponding values for
agent j. Then:

(1) if K�i < K��j , then U�i < U��j ;
(2) if K�i � K��j , then U�i � U��j ; and
(3) if K�i D K��j , then U�i D U��j . If k�i is a corner solution, k�i D 0, and k��j > 0,

then

U�i D U.e; 0/ < U��j :

If k�i or k��j (or both) are corner solutions, k�i D e or k��j D e; then the
statements 1)–3) are also true.

Proof. Let be K�i < K��j .K�i � K��j /. Since function V.kj;K��j / reaches its max-
imum at point k��j , we have V.k�i ;K��j / � V.k��j ;K��j /. Because @V.k;K/=@K > 0

for any k ¤ 0 and K, we obtain that V.k�i ;K�i / < V.k�i ;K��j / (respectively,
V.k�i ;K�i / � V.k�i ;K��j /). Thus, V.k�i ;K�i / < V.k�i ;K��j / � V.k��j ;K��j /

(respectively, V.k�i ;K�i / � V.k�i ;K��j / � V.k��j ;K��j /). Hence, U�i < U��j
(respectively, U�i � U��j ).
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Combining previous results, we see that if K�i D K��j , then U�i D U��j .
Obviously

U��j D V.k��j ;K��j / > V.0;K��j / D V.0;K�i / D U�i ;

since, as far as k D 0, function V does not depend on K. ut
The last statement of the theorem is quite obvious.

Remark 2.5. If k�i ¤ k��j , then as it is seen from the proof, in case 2) in the theorem,
we have U�i < U��j (in power of strict convexity of V in its first argument).

3 The Agent’s Behavior

Let us introduce the following terminology.

Definition 3.1. If the agent makes zero investments into knowledge, k D 0, we
will say that the agent is passive. If he/she makes investments 0 < k < e, he/she is
active. If the agent makes maximal possible investments, e (and, correspondingly,
does not consume at period 1), we will say that he/she is hyperactive.

The following lemma describes necessary and sufficient conditions of different
ways of behavior by the agent in dependence on the size of the pure externality QK
which he/she receives. Index i is omitted.

Lemma 3.1. The necessary and sufficient conditions for various types of behavior
by the agent are the following.

(1) Under absence of productivity:
The agent is passive if

QK � e.1 � 2a/

b
:

The agent is active if

e.1 � 2a/

b
< QK <

e.1 � b/

b
:

The agent is hyperactive if

QK � e.1 � b/

b
:
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(2) Under presence of productivity:
The agent is passive if

QK � e.1 � 2a/

b
:

The agent is active if

e.1 � b/

b
< QK <

e.1 � 2a/

b
:

The agent is hyperactive if

QK � e.1 � b/

b
:

Proof. It follows from (6) that

ks D e.2a � 1/C b QK
2a � b

: (15)

If ks � 0, then the agent makes no investments, k D 0. If 0 < ks < e, the solution is
in the inner point k D ks. If ks � e, the agent makes maximal possible investment,
k D e. Writing these conditions in detail, we receive the inequalities listed in the
formulation of the lemma. ut
Proposition 3.1. Under presence of productivity, if b > 1=2, then each agent, who
has a hyperactive neighbor, is not hyperactive, moreover, if b C 2a � 1 (which
implies b > 1=2), he/she is even passive.

Proof. If agent i has a neighbor, who is hyperactive, then i obtains pure externality
QK � e. Hence, if b > 1=2, then QK � e > e.1 � b/=b, and, by Lemma 3.1, agent i
is not hyperactive. Moreover, let b C 2a � 1, i.e. .1 � 2a/=b � 1. Then QK � e �
e.1 � 2a/=b and, by Lemma 3.1, the agent is passive. ut
Proposition 3.2. Under absence of productivity, if b � 1=2, then each agent, who
has a hyperactive neighbor, is hyperactive.

Proof. If the agent has a hyperactive neighbor, then, as in the proof of Proposi-
tion 3.1, QK � e. Hence, if b � 1=2, then QK � e � e.1 � b/=b. By Lemma 3.1, the
agent is hyperactive. ut
Proposition 3.3. Under presence of productivity, an agent, who stays in an isolated
node, or for whom all neighbors are passive, is active if b > 1, and hyperactive if
b � 1.

Proof. Since QK D 0, Lemma 3.1 implies that the agent is active under 1 � b < 0;
and hyperactive under 1 � b � 0. ut
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Proposition 3.4. Under absence of productivity, the agent, who stays in an isolated
node, or for whom all neighbors are passive, is passive.

Proof. Since QK D 0, by Lemma 3.1, the agent is passive. ut

4 Pure Corner Equilibria

Definition 4.1. Pure corner equilibrium is such equilibrium for which knowledge
in each node is equal either to 0 or to e, i.e. each agent is either passive or
hyperactive.

Proposition 4.1. Under absence of productivity, the situation when all agents are
passive is equilibrium.

Proof. For each node i, if QKi D 0, then, by Lemma 3.1, the agent is passive. ut
Proposition 4.2. For a connected network with more than one node, let � be the
smallest degree (the number of neighbors) and O� the biggest degree. Under absence
of productivity, the situation when all agents are hyperactive is equilibrium iff
b � 1=.� C 1/. Under presence of productivity, the situation when all agents are
hyperactive is equilibrium iff b � 1=. O�C 1/.

Proof. By Lemma 3.1, the agent who stays in a node with the smallest degree is
hyperactive iff�e D QK � e.1�b/=b; this is equivalent to condition b � 1=.�C1/. If
the latter condition is fulfilled, then the agents in all other nodes are all hyperactive.

Similarly, the agent who stays in a node with the biggest degree is hyperactive
under presence of productivity iff O�e D QK � e.1 � b/=b; the latter is equivalent to
condition b � 1=. O�C 1/. Under this condition, the agents in all other nodes are all
hyperactive. ut
Definition 4.2. A network is referred as equidegree network if each node has the
same degree m, where m � 1.

Corollary 4.1. In equidegree network, if b � 1=.1 C m/ under absence of
productivity, or if b � 1=.m C 1/ under presence of productivity, then the situation
when all agents are hyperactive is equilibrium.

Proof. In equidegree network: � D O� D m. ut
Corollary 4.2. In full network consisting of n nodes, equilibrium in which all
agents are hyperactive is possible under absence of productivity iff b � 1=n, and
under presence of productivity iff b � 1=n.

Proof. In full network: � D O� D n � 1. ut
Propositions 3.1 and 3.2 imply the following fact.

Corollary 4.3. In connected network under absence of productivity, if b � 1=2,
then a situation when all agents are hyperactive is equilibrium; moreover, it is



302 V. Matveenko and A. Korolev

a unique possible equilibrium in which at least one agent is hyperactive. If in a
network there is at least one link, under presence of productivity, if b > 1=2, then
the situation in which all agents are hyperactive is not equilibrium.

Proposition 4.3. Under absence of productivity, in each network there is equi-
librium in which all agents are passive. Under presence of productivity, such
equilibrium is impossible.

Proof. This follows directly from Propositions 3.3 and 3.4. ut
Theorem 4.1. Under presence of productivity, let r be a natural number such that
r � n, br � 1, and br C 2a � 1. In a full network, Cr

n pure corner equilibria are
possible, in each of which r nodes are hyperactive and other n�r nodes are passive.

Proof. A node, for which not more than r � 1 neighbors are hyperactive and other
neighbors are passive, receives pure externality QK D .r � 1/e. By Lemma 3.1,
such node is hyperactive iff r � 1=b: Similarly, a node, for which more than r � 1

neighbors are hyperactive and other neighbors are passive, is itself passive iff r �
.1 � 2a/=b: These inequalities are equivalent, correspondingly, to br � 1 and to
br C 2a � 1. ut
Remark 4.1. Besides pure corner equilibria which are listed in Corollary 4.2,
Proposition 4.3, and Theorem 4.1, there may exist corner equilibria and a unique
inner equilibrium.

Example 4.1. In a full network with four nodes, under presence of productivity and
under 2b � 1, 2b C 2a � 1; there is an equilibrium with two hyperactive and two
passive agents. Because of symmetry, any two nodes can be hyperactive, and others
passive; and in all C2

4 D 6 purely corner equilibria exist.
Under b � 1, b C 2a � 1 in the same network there is an equilibrium with one

hyperactive and three passive nodes; in all C1
4 D 4 such equilibria exist.

Under 3b � 1, 3b C 2a � 1 in the same network there is an equilibrium with
three hyperactive and one passive nodes. In all there are C3

4 D 4 such equilibria.
In case when 3b � 1, b C 2a � 1 all these pure corner equilibria are possible;

they are 6C 4C 4 D 14 in all.
Besides these 14 pure corner equilibria, in this network there are also other corner

equilibria and a unique inner equilibrium.

5 Equilibria in Equidegree Networks

For an equidegree network, an equilibrium in which all agents have the same level
of knowledge (i.e., make the same investments) will be referred as symmetric. For a
symmetric equilibrium, Eq. (15) (under QK D mk) implies

ks D e.1 � 2a/

b.m C 1/ � 2a
: (16)
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If b > 1=.m C 1/, then k D ks, i.e. the equilibrium is inner: the agents are active. If
2a=.m C 1/ < b � 1=.m C 1/, then k D e, i.e. the equilibrium is corner: the agents
are hyperactive.

Remark 5.1. Thus, the condition of existence of an inner equilibrium in an equide-
gree network is b > 1=.mC1/ (remind also permanent constraints a < 1=2, a < b).

5.1 Examples of Equidegree Networks

1. Cycle. In this case m D 2. According to (16), investment by an agent does not
depend on the size of cycle.

2. Full network. In this case m D n � 1, where n is the number of nodes in the
network. This case is similar to [13]. According to (16), knowledge in nodes
declines with increase in the size of network. The sum of knowledge nks D
e.1 � 2a/=.b � 2a=n/ also declines and converges to e.1 � 2a/=b.

3. Chain with two nodes. It is the case of m D 1 (and also a case of full network).
4. Networks in which each node has degree m D 3 (see Fig. 1).

Remark 5.2. Equation (16) is also true for isolated node, under m D 0. It is seen
from (16) that in an isolated node:

(1) under b < 2a the agent is passive;
(2) under 2a < b � 1 the agent is hyperactive; and
(3) under b > 1 the agent is active and

k D e.1 � 2a/

b � 2a
:

Fig. 1 Examples of equidegree networks with degree m D 3
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Generally, (16) allows to study dependence of knowledge, consumption, and
utility on the degree of nodes, m, of the equidegree network. Knowledge k decreases
with respect to degree. Consumptions at the first and the second periods of time are,
correspondingly,

c1 D e � k D e
.m C 1/b � 1
.m C 1/b � 2a

;

c2 D F.k; .1C m/k/ D g.1C m/k2 D g.m C 1/e2.1 � 2a/2

Œ.m C 1/b � 2a�2
:

One can check that c1 increases and c2 decreases with respect to degree.

Proposition 5.1. For inner equilibria in equidegree networks, utility decreases with
respect to degree and converges to U.e; 0/.

Proof. The utility function turns into

U D e2
Œ.m C 1/b � 1�Œ.m C 1/b.1 � a/ � a�C b.m C 1/.1 � 2a/2

Œ.m C 1/b � 2a�2
:

Differentiating U with respect to x D 1C m (as if x is continuous) we obtain

dU

dx
D �2ab.bx � 2a/.2a � 1/2

.x2b2 � 4abx C 4a2/2
:

Under x � 2, i.e. under m � 1, the inequality bx � 2a > 0 is fulfilled, hence
dU=dx < 0; thus, utility in each node decreases with respect to degree. Under m !
C1 we have c1 ! e, c2 ! 0 and, because of continuity, the limit of the utility is
equal to U.e; 0/. ut

This result corresponds to intuition: in big social and economic systems utility
can be high because of diversity, but in a system consisting of similar agents, the
world, probably, loses its utility under very high degrees of nodes if there is no
diversity.

6 Adding a Node with Passive Agent into an Equidegree
Network

We have seen that, in definite areas of parameters, equilibrium in equidegree net-
work can be rather simple: all agents are hyperactive, or all are active. At the same
time, passive agents do not create externalities, i.e. do not influence the environ-
ments of other agents. This means that under some conditions an equilibrium is
possible which consists of components with either active or hyperactive agents and
of groups of passive agents which connect these components.
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Below in Sect. 7 we consider connection of equidegree networks through nodes
with passive agents. As a preliminary, in this section we study a possibility of adding
a node with passive agent to equidegree network.

Proposition 6.1. Let a node with passive agent be connected by use of l links to
an equidegree network with degree m > 0, which is initially in inner equilibrium.
Necessary and sufficient condition of existence of such equilibrium, in which the
adjoined agent remains passive and the active agents remain in the previous inner
equilibrium, is the following:

under absence of productivity,

l � m C 1 � 2a

b
I (17)

under presence of productivity,

l � m C 1: (18)

Proof. For the newly adjoined node the pure externality is equal to

QK D le.1 � 2a/

b.m C 1/ � 2a
:

By Lemma 3.1, the adjoined agent can stay passive in equilibrium iff

b < 2aI l.1 � 2a/e

b.m C 1/ � 2a
� .1 � 2a/e

b
(19)

or

b > 2aI l.1 � 2a/e

b.m C 1/ � 2a
� .1 � 2a/e

b
(20)

Conditions (19) and (20) are equivalent, correspondingly, to (17) and (20). ut
The meaning of (17) is that, under absence of productivity, the adjoined agent can
stay passive only as long as he/she is not sufficiently connected with active agents.
Staying passive, he/she does not influence the initial equilibrium of active agents.
But if the number of his/her neighbors becomes sufficiently big, the adjoined agent
receives so big externality that he/she is not able to hold the indifferent behavior in
equilibrium. When he/she starts investing, an absolutely different inner equilibrium
appears in the network.

Vice versa, under presence of productivity, the agent can preserve his/her indif-
ferent behavior only until he/she has sufficiently big number of active neighbors.

Corollary 6.1. In case of m D l, adjunction of a passive agent in such a way that
each of the agents preserves his/her behavior in equilibrium is impossible.
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Corollary 6.2. Under absence of productivity, if an equidegree network with degree
m � 2 is in inner equilibrium, then a node with passive agent can be adjoined by one
link in such a way that each of the agents preserves his/her behavior in equilibrium.

Proposition 6.2. A node with passive agent can be adjoined to an isolated node, in
such a way that each of the agents preserves his/her behavior in equilibrium, in the
following three cases:

(1) b < 2a (in this case the agent in the isolated node is passive);
(2) 2a < b � 1; b C 2a � 1 (in this case the agent in the isolated node is

hyperactive); and
(3) b > 1 (in this case the agent in the isolated node is active and k D e.1 � 2a/=

.b � 2a/).

Proof. If b < 2a, then there are no externalities and nothing changes after
adjunction. Thus, we have equilibrium of two passive agents.

If 2a < b � 1, then the adjoined agent receives externality QK D e and, by
Lemma 3.1, remains passive under b � 1 � 2a.

If b > 1 (this is a condition for the isolated agent to be active), then the adjoined
agent receives externality QK D e.1 � 2a/=.b � 2a/. By Lemma 3.1, the agent will
remain passive if b � 2a � b, but this inequality is certainly true. ut

6.1 Examples of Adjunction of a Passive Agent
to an Equidegree Network

Example 6.1. In the chain of 3 nodes 1–2–3, under b > 1=2, equilibrium with
k1 D 0, k2 D k3 D .1 � 2a/e=Œ2.b � a/� is impossible, by virtue of Corollary 6.1.

Example 6.2. If initially there is a chain of two active agents, 2–3, and passive agent
1 establishes links to both of them, i.e. l D 2, m D 1, then, by Proposition 6.1, there
is equilibrium, in which all three agents maintain their initial behavior.

Example 6.3. Let a passive agent establish l D 4 links with agents in equidegree
network with degree m D 3, which is in inner equilibrium. The initial equilibrium
exists only if b > 1=4 (see Remark 5.1). If, moreover, productivity takes place
(b > 2a), then, by Proposition 6.1, there exists equilibrium in which all agents
maintain their initial behavior.

Under absence of productivity, similarly to adjunction of one node with passive
agent, any connected network with passive agents can be added.



Equilibria in Networks with Production and Knowledge Externalities 307

7 Connection of Equidegree Networks Through Nodes
with Passive Agents

In this section we consider connection of two equidegree networks being initially in
inner equilibrium. We wonder is it possible to construct a new network from such
blocks, connecting them by components of passive agents in such a way that in the
new network there exists an equilibrium, in which all the agents behave in the same
way as before unification.

Proposition 7.1. Under 2a=.m � 1/ � b < 2a (what implies m � 3), two
equidegree networks with the same degree m, being initially in inner equilibrium,
can be connected through a node with passive agent in such a way that all agents
maintain their initial behavior in equilibrium. Under m D 2 (case of cycles) such
equilibrium is impossible. Under m D 1 (case of active dyads, when b > 1=2) such
equilibrium is possible under presence of productivity (b > 2a). Under m D 0 (case
of active isolated nodes, when b > 1) such connection is always possible.

Proof. The connecting passive node receives externality from two active nodes,
l D 2. Under absence of productivity, condition (6.1) takes the form 2a.m � 1/ � b.
Condition (6.2) takes the form 2 � m C 1 and is fulfilled under m D 1. Let m D 0,
b > 1, and, hence, b > 2a. Initially the inner equilibrium in two isolated nodes was
k D e.1 � 2a/=.b � 2a/, hence the connecting node receives externality

QK D 2e.1 � 2a/

b � 2a
:

By Lemma 3.1, it remains passive under

2

b � 2a
>
1

b
;

and the latter inequality is certainly fulfilled. ut
Proposition 7.2. Under m � 2 and the absence of productivity, two equidegree
networks with the same degree m, being initially in inner equilibrium, can be
connected by a chain of two or more passive nodes in such a way that behavior of
the agents does not change in equilibrium. Such connection is impossible if m D 1.
In case of m D 0 (isolated nodes) such connection is possible under b > 1 through
a chain of two passive nodes but is not possible through chains of three or more
passive nodes.

Proof. Statements for m � 2 and m D 1 follow from Proposition 6.1 and Corol-
lary 6.1. Statement for m D 0 follows from Proposition 6.2. If two active agents
are connected by a chain of three or more passive nodes, then, by Proposition 3.3,
the agent, who has no active neighbors, could not stay passive in equilibrium under
presence of productivity. ut
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Under the same conditions, there exists a “cycle,” consisting of equidegree
networks connected by chains of nodes with passive agents. Components of active
agents in such cycle alternate with components of passive agents.

8 Types of Nodes

Definition 8.1. Let the set of nodes 1; 2; : : : ; n be decomposed into disjoint classes
in such a way that any nodes belonging the same class have the same numbers of
neighbors from each class. The classes will be referred as types of nodes. Type j is
characterized by vector l.j/ D .l1.j/; l2.j/; : : : ; lk.j//, where li.j/ is the number of
neighbors in class i for each node of class j.

Let us describe an algorithm of subdivision of the set of nodes of network into
types. Let s be a current number of subsets of subdivision. Initially s D 1.

Iteration of the algorithm. Consider nodes of the first subset. If all of them have
the same numbers of neighbors in each subset 1; 2; : : : ; s, then the first subset is not
changed. In the opposite case, we divide the first subset into new subsets in such a
way that all nodes of each new subset have the same vector of numbers of neighbors
in subsets.

We proceed in precisely the same way with the second, the third, . . . , the s-th
subset. If on the present iteration the number of subsets s has not changed, then the
algorithm finishes its work. If s has increased, then the new iteration is executed.

The number of subsets s does not decrease in process of the algorithm. Since
s is bounded from above by the number of nodes in the network, the algorithm
converges.

It is clear that the algorithm divides the set of nodes into the minimal possible
number of classes.

8.1 Example

Let us apply the algorithm to the network depicted in Fig. 2. Initially s D 1, all
nodes are from the same one set (Fig. 2).

After the first iteration we obtain the division depicted in Fig. 3.
Then, on the first step of the second iteration, we obtain the division depicted

in Fig. 4.
On the second step of the second iteration we obtain the division shown in Fig. 5.
On the third iteration nothing changes, and the algorithm stops. We have

obtained a subdivision of the set of nodes of the network into four types which
are characterized by the vectors of numbers of neighbors: l.1/ D .1; 2; 1; 0/,
l.2/ D .1; 0; 1; 1/, l.3/ D .1; 2; 0; 1/, and l.4/ D .0; 2; 1; 0/.
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Fig. 2 Start of the algorithm: s D 1
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Fig. 3 Result of the first iteration: s D 2
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22
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Fig. 4 The first step of the second iteration: s D 3
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2

1 1

3 3

4 4

Fig. 5 The second step of the second iteration: s D 4

Definition 8.2. Let us call symmetric such equilibrium in which agents of the same
type make the same investments.

Remark 8.1. Inner equilibrium is always symmetric. It follows from the uniqueness
of solution of the system of Equations (5) and symmetry of this system with respect
to types.

Later on ki will denote investment in any node of type i.
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Fig. 6 Networks with “coinciding” inner equilibria

Remark 8.2. If two networks have the same number of types of nodes, S, and these
types are characterized by the same set of vectors l.1/, l.2/, . . . , l.S/, then the inner
equilibria in these networks do coincide, in the sense that agents in the nodes of the
same type behave in the same way.

Figure 6 provides an example of three networks which possess the same types
of nodes characterized by vectors l.1/ D .1; 2/ and l.2/ D .0; 2/. Correspondingly,
these networks have the same inner equilibria, despite these networks have different
sizes.

9 Inner Equilibria in Networks with Two Types of Nodes

Let a network have two types of nodes which are characterized by vectors
l.1/ D .s1; s2/ and l.2/ D .t1; t2/. Here si is the number of links connecting a
node of type 1 with nodes of type i; ti is the number of links connecting a node
of type 2 with nodes of type i; i D 1; 2: Then (5) implies the following system of
equations:

�

.b � 2a C s1b/k1 C s2bk2 D e.1 � 2a/;
t1bk1 C .b � 2a C t2b/k2 D e.1 � 2a/:

(21)
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Its solution is the pair

ks
1 D e.1 � 2a/Œb � 2a C .t2 � s2/b�

.b � 2a/2 C .s1 C t2/.b � 2a/b C .s1t2 � t1s2/b2
: (22)

ks
2 D e.1 � 2a/Œb � 2a C .s1 � t1/b�

.b � 2a/2 C .s1 C t2/.b � 2a/b C .s1t2 � t1s2/b2
: (23)

If 0 < ks
1 < e, 0 < ks

2 < e, then the stationary values ks
1, ks

2 define the inner
equilibrium in the network.

9.1 Special Cases of the Network with Two Types of Nodes

1. Chain of four nodes: 2–1–1–2. Types 1 and 2 are characterized by vectors l.1/ D
.1; 1/ and l.2/ D .1; 0/. Formulas (22) and (23) take the form:

k1 D 2ae.1 � 2a/

6ab � 4a2 � b2
; (24)

k2 D e.1 � 2a/.2a � b/

6ab � 4a2 � b2
: (25)

Inequalities 0 < ki < e, i D 1; 2 are fulfilled under absence of productivity
.b < 2a/.

2. A generalization of the previous case is a fan, i.e. a chain of two nodes, to each
of which a bundle of � hanging nodes is adjoined. The types are characterized by
vectors l.1/ D .1; �/ and l.2/ D .1; 0/. In Sect. 13 we will consider the fan as a
result of connection of two stars.

3. Star of order �, i.e. a network, in which a central node of type 1 has � peripheral
neighbors of type 2. The types are characterized by vectors l.1/ D .0; �/ and
l.2/ D .1; 0/. Equations (22) and (23) turn into

k1 D e.1 � 2a/Œ.� � 1/b C 2a�

�b2 � .b � 2a/2
; (26)

k2 D 2ea.1 � 2a/

�b2 � .b � 2a/2
; (27)

The pair k1, k2 defines inner equilibrium if 0 < ki < e, i D 1; 2, i.e. if

8

<

:

�b2 � .b � 2a/2 > 0;
�b2 � .b � 2a/2 > .1 � 2a/Œ.� � 1/b C 2a�;
�b2 � .b � 2a/2 > 2a.1 � 2a/:
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Evidently, this system of inequalities is equivalent to the second of them,

.� � 1/b2 C Œ2a.� C 1/ � .� � 1/�b � 2a > 0: (28)

This inequality is fulfilled iff

b >
�2a.� C 1/C � � 1Cp

Œ2a.� C 1/ � .� � 1/�2 C 8a.� � 1/
2.� � 1/ :

We see that under big � inequality (28) is true if b2 C 2ab � b > 0, which
is equivalent to b C 2a > 1. It is also easily seen that the left-hand side of (28)
increases in �. Hence, if (28) is fulfilled for � D 2, it is fulfilled for all �. This
implies that if b C 2a > 1 and

b >
�6a C 1C p

36a2 � 4a C 1

2
;

then formulas (26) and (27) define inner equilibrium for all � � 2.

Proposition 9.1. In a star, if the number of peripheral nodes � increases, then
knowledge and utility in the central node decrease under absence of productivity, but
increase under presence of productivity. Knowledge and utility in each peripheral
node always decrease.

Proof. Derivative of k1 in �, if � is considered as a continuous parameter, is

2bae.1 � 2a/.b � 2a/

Œ.b � 2a/2 � �b2�2
:

Hence, knowledge in the central node decreases in � if b < 2a, and increases if
b > 2a. It is directly seen from (27) that k2 decreases in �.

Environment for the central node is

K1 D e.1 � 2a/Œ�.b C 2a/ � .b � 2a/�

�b2 � .b � 2a/2
:

Derivative of K1 is

4a2e.1 � 2a/.b � 2a/

Œ�b2 � .b � 2a/2�2
:

Theorem 2.2 implies that utility in the central node decreases in � if b < 2a, and
increases if b > 2a. Environment for any peripheral node is

K2 D e.1 � 2a/Œ.� � 1/b C 4a�

�b2 � .b � 2a/2
:
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Derivative of K2 is

�4a2be.1 � 2a/

Œ�b2 � .b � 2a/2�2
< 0:

Hence, by Theorem 2.2, utility in a peripheral node decreases in �. ut
Remark 9.1. When the order of the star, �; increases, the sum of knowledge in
the peripheral nodes decreases and under � ! 1 converges to 2ae.1 � 2a/=b2,
while knowledge in each separate peripheral node converges to 0. Knowledge in the
central node converges to e.1 � 2a/=b.

Remark 9.2. If � D 2, then the star turns into a chain of three nodes.

4. Cycle of k nodes .k � 3/, to each of which a bundle of � “hanging” nodes is
added. Equilibria in this network will be studied in Sect. 10 below.

5. Network shown in Fig. 7. The types of nodes are characterized by vectors l.1/ D
.2; 2/ and l.2/ D .2; 0/. Equations (22) and (23) turn into

k1 D e.1 � 2a/.b C 2a/

b2 C 8ba � 4a2
; (29)

k2 D e.1 � 2a/.2a � b/

b2 C 8ba � 4a2
: (30)

Positivity ki > 0, i D 1; 2 is equivalent to the absence of productivity .b < 2a/
and fulfillment of the inequality

b2 C 8ba � 4a2 > 0:

2

2

2 1

1

1

Fig. 7 Network with types characterized by vectors l.1/ D .2; 2/ and l.2/ D .2; 0/
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Conditions ki < e, i D 1; 2 are then equivalent to

b2 C 8ba � 4a2 > .1 � 2a/.b C 2a/;

b2 C 8ba � 4a2 > .1 � 2a/.2a � b/:

The system of the latter three inequalities is equivalent to the second of them,
which can be written in the form

b2 C 10ab � b � 2a > 0:

Ultimately, we obtain necessary and sufficient condition of inner equilibrium:

�10a C 1Cp

.10a � 1/2 C 8a

2
< b < 2a:

Let us compare levels of knowledge and utility for the network in Fig. 7 and for
the full network.

Proposition 9.2. If the network of the type depicted in Fig. 7 is completed to
become the full network, then, under absence of productivity, knowledge and utility
in nodes of type 1 decrease, while knowledge and utility in nodes of types 2 increase.

Proof. Comparing k1 and k2 with knowledge in a node of the full network, k D
e.1 � 2a/=..n � 1/b � 2a/, we see that k1 > k, k2 < k. Comparing environments

K1 D e.1 � 2a/.b C 10a/

b2 C 8ab � 4a2
; K2 D e.1 � 2a/.b C 6a/

b2 C 8ab � 4a2

of the nodes of the initial network with environment of a node of the full network,

K D .n � 1/e.1 � 2a/

.n � 1/b � 2a
;

we see that K1 > K, K2 < K. Theorem 2.2 provides the needed result. ut

10 Corner Equilibria in Networks with Two Types of Nodes

In this section we will study symmetric corner equilibria. The network of type
depicted in Fig. 8 can be considered in two ways: as a result of addition of �
previously isolated nodes to each node of the cycle of order n, or as a result of
conjunction of n stars, each of them with � peripheral nodes, into one cycle. The
types are characterized by vectors l.1/ D .2; �/ and l.2/ D .1; 0/:
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Fig. 8 Cycle of stars

Proposition 10.1. In the network depicted in Fig. 8 inner equilibrium is impossible.
Under presence of productivity, the corner equilibrium

k1 D e.1 � 2a/

3b � 2a
; k2 D 0;

is possible if b > 1=3, and the pure corner equilibrium

k1 D e; k2 D 0;

is possible if b � 1=3, 2a C �b > 1.
Besides, under absence of productivity, the pure corner equilibrium k1 D k2 D 0

is possible.
Under presence of productivity, the corner equilibrium

k1 D 0; k2 D e.1 � 2a/

b � 2a
;

is possible if b > 1, and the pure corner equilibrium

k1 D 0; k2 D e;

is possible if b � 1, 2a C �b > 1.
In each case, increase in � does not influence knowledge and utilities.

Proof. Equations (22) and (23) turn into

ks
1 D e.1 � 2a/.b � 2a � �b/

.b � 2a/.3b � 2a/ � �b2
;
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ks
2 D 2e.1 � 2a/.b � a/

.b � 2a/.3b � 2a/ � �b2
:

We see that the numerator of the expression for ks
1 is negative, and the numerator

of the expression for ks
2 is positive, hence, independently on the sign of the

denominator, ks
1 and ks

2 have different signs. Hence, inner equilibrium is impossible.
Let b < 2a, b > 1=3. If k2 D 0, then k1 D e.1 � 2a/=.3b � 2/. But if k1 D

e.1�2a/=.3b�2a/, then ks
2 D e.1�2a/.2b�2a/=.b�2a/ < 0 and, hence, k2 D 0.

Let b < 2a, b � 1=3, 2a C �b > 1. If k2 D 0, then k1 D e. If k1 D e, then
ks
2 D e.1 � 2a � �b/=.3b � 2a/ < 0 and, correspondingly, k2 D 0.

Let b > 2a, b > 1. If k1 D 0, then k2 D e.1 � 2a/=.b � 2a/. If k2 D e.1 �
2a/=.b�2a/, then ks

1 D e.1�2a/Œ.1��/b�2a�=.3b�2a/.b�2a/ < 0 and, hence,
k1 D 0.

Let b > 2a, b � 1, 2a C �b > 1. If k1 D 0, then k2 D e. If k2 D e, then
ks
1 D e.1 � 2a � �b/=.3b � 2a/ < 0 and, hence, k1 D 0. ut

Proposition 10.2. Let centers of several stars, each with � peripheral nodes,
being initially in inner equilibrium, be unified into one cycle. Under absence of
productivity and b > 1=3, knowledge in each node in equilibrium declines, and,
moreover, each peripheral node becomes passive. Utility in each node declines.

Under b > 1 (which implies presence of productivity), each central node
becomes passive, while knowledge in each periphery node decreases if � D 1 and
increases if � � 2. Utility in each central node decreases and in each periphery
node increases.

Proof. According to (26) and (27), before unification, the equilibrium level of
knowledge in each central node was

k�1 D e.1 � 2a/Œ.� � 1/b C 2a�

�b2 � .b � 2a/2
;

and in each peripheral node

k�2 D 2ea.1 � 2a/

�b2 � .b � 2a/2
:

The environments were

K�1 D e.1 � 2a/Œ.� � 1/b C 2a C 2�a�

.� � 1/b2 C 4ab � 4a2
;

K�2 D e.1 � 2a/Œ.� � 1/b C 4a�

.� � 1/b2 C 4ab � 4a2
:
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Under absence of productivity and b > 1=3, after unification, the level of
knowledge in each central node becomes

k��1 D e.1 � 2a/

3b � 2a
;

and in each peripheral node

k��2 D 0:

The environment in each central node becomes

K��1 D 3e.1 � 2a/

3b � 2a
:

We see that k�1 > k��1 , K�1 > K��1 . According to Theorem 2.2, utility in each central
node decreases. Evidently, utility in each peripheral node also decreases, since the
node becomes passive.

If b > 1 (which implies presence of productivity), after unification, the level of
knowledge in each central node becomes

k��1 D 0;

by Proposition 10.1; and in each peripheral node:

k��2 D e.1 � 2a/

b � 2a
:

The environment in each peripheral node becomes

K��2 D e.1 � 2a/

b � 2a
:

We see that k�2 > k��2 if � D 1, k�2 < k��2 if � � 2, K�2 < K��2 . By Theorem 2.2,
utility in each peripheral node increases. In each central node, utility decreases. ut
Remark 10.1. Strategic complementarity is observed when the stars are unified
under absence of productivity. After unification, investments in central nodes
decrease, and in peripheral nodes it is not profitable to make investments. As a
result, the knowledge in the central nodes is the same as if there are no peripheral
nodes at all. Strategic substitutability takes place under presence of productivity.
After unification, investments of peripheral nodes increase if � � 2 and it is not
profitable for central nodes to make investment. As a result, in periphery nodes the
knowledge is the same as if there are no central nodes.
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11 Chains with Three Types of Nodes

Let us consider chain with five nodes of 3 types: 3–2–1–2–3.

Proposition 11.1. If a < b < .
p
5 � 1/a and parameter a is sufficiently close to

1=2, then the following inner equilibrium exists:

k1 D 2a2e.1 � 2a/

.2a � b/.b2 C 2ab � 2a2/
; (31)

k2 D e.1 � 2a/.b C 2a/

2.b2 C 2ab � 2a2/
; (32)

k3 D e.1 � 2a/.4a2 � 2ab � b2/

2.2a � b/.b2 C 2ab � 2a2/
: (33)

Proof. System of equations (5) for the chain is

8

<

:

.b � 2a/k1 C 2bk2 D e.1 � 2a/;
bk1 C .b � 2a/k2 C bk3 D e.1 � 2a/;
bk2 C .b � 2a/k3 D e.1 � 2a/:

A solution can be found by use of Cramer’s formulas:

� D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

b � 2a 2b 0

b b � 2a b
0 b b � 2a

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D �2.b � 2a/.b2 C 2ab � 2a2/;

�1 D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

e.1 � 2a/ 2b 0

e.1 � 2a/ b � 2a b
e.1 � 2a/ b b � 2a

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D 4a2e.1 � 2a/;

�2 D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

b � 2a e.1 � 2a/ 0

b e.1 � 2a/ b
0 e.1 � 2a/ b � 2a

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D �e.1 � 2a/.b � 2a/.b C 2a/;

�3 D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

b � 2a 2b e.1 � 2a/
b b � 2a e.1 � 2a/
0 b e.1 � 2a/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D �e.1 � 2a/.b2 C 2ab � 4a2/;

from which Eqs. (31)–(33) follow. The quadratic trinomial b2 C 2ab � 2a2 has roots
b1;2 D .�1˙ p

3/a; and the roots of quadratic trinomial b2 C 2ab � 4a2 are b1;2 D
.�1˙ p

5/a.
Closeness of a to 1=2 implies ki < e, i D 1; 2; 3. Thus, 0 < ki < e, i D 1; 2; 3

are fulfilled, i.e. the equilibria are inner. ut
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Some corner equilibria for the chain can be found by considering this chain as a
result of adjunction of passive agents to a chain of a smaller size.

Proposition 11.2. If .
p
5 � 1/a � b < 2a, then passive agents can be adjoined to

the ends of the chain of three nodes being in inner equilibrium, in such a way that in
equilibrium behavior of each of the five agents does not change. If b < .

p
5 � 1/a

or b > 2a, then such connection is impossible.

Proof. Inner equilibrium in a network of three nodes was considered in Sect. 9,
case 3. By Lemma 3.1, under absence of productivity, the adjoined agent is
passive iff

2ae.1 � 2a/

b2 C 4ab � 4a2
� e.1 � 2a/

b
;

which is equivalent to

.
p
5 � 1/a � b < 2a:

Under presence of productivity, the adjoined agent is passive iff

2ae.1 � 2a/

b2 C 4ab � 4a2
� e.1 � 2a/

b
;

which is impossible. ut
Similarly one or two passive agents can join the chain of four active agents,

connecting to one or both of its end agents: 2–1–1–2–3, 3–2–1–1–2, or 3–2–1–1–
2–3.

Proposition 11.3. If b < 2a (absence of productivity) or b � .3 C p
5/a, then

passive agent can be adjoined to an end of the chain of four nodes which was
in inner equilibrium, in such a way that each of the five agents does not change
behavior in equilibrium. If 2a < b < .3Cp

5/a, then such connection is impossible.

Proof. Inner equilibrium for the chain of four nodes was considered in Sect. 9,
case 1. For the quadratic trinomial b2 � 6ab C 4a2 in the denominator of expres-
sions (24) and (25), the roots are

b1;2 D .3˙ p
5/a:

By Lemma 3.1, under absence of productivity, the adjoined agent is passive, since
condition

e.1 � 2a/.b � 2a/

b2 � 6ab C 4a2
� e.1 � 2a/

b
:
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is fulfilled. Under presence of productivity, the adjoined agent is passive iff

e.1 � 2a/.b � 2a/

b2 � 6ab C 4a2
� e.1 � 2a/

b
;

i.e. under b > .3C p
5/a: Hence, under b < 2a or b � .3C p

5/a such adjunction
is possible, and under 2a < b < .3C p

5/a it is not possible. ut
Proposition 11.4. In the chain 3–2–1–1–2, if b > 1, then the equilibrium

k1 D k3 D 0; k2 D e.1 � 2a/

b � 2a

is possible. If 2a < b � 1, b C 2a � 1, then the pure corner equilibrium

k1 D k3 D 0; k2 D e

is possible.

Proof. Existence of the first of the equilibria is equivalent to a possibility of
adjunction of a passive agent to an isolated active agent (Proposition 6.2) and
connection of isolated active agents through a passive agent (Proposition 7.2).
Conditions of passivity of the agents of types 1 and 3 are, correspondingly,

2e � e.1 � 2a/

b
;

e � e.1 � 2a/

b
:

Evidently, these inequalities are fulfilled. ut
Proposition 11.5. In the chain of five nodes 3–2–1–1–2, if 2a < b � 1=2 and
2b C 2a � 1, then the following pure corner equilibrium is possible:

k1 D 0; k2 D k3 D e:

If 2a < b � 1=3 or 1=2 � b < 2a, then the following pure corner equilibrium is
possible:

k1 D k2 D k3 D e:

Proof. Let 2a < b � 1=2 and 2bC2a � 1. Assume that k1 D 0, k2 D k3 D e. Then,
by Lemma 3.1, the necessary and sufficient condition of passivity of the agents in
nodes of type 1 is

e � e.1 � 2a/

b
; (34)
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while the necessary and sufficient condition of hyperactivity of the agents in nodes
2 and 3 is

e � e.1 � b/

b
: (35)

Conditions (34) and (35) are, evidently, fulfilled. The second statement follows from
Proposition 4.2. ut

Similarly, a chain of six nodes 3–2–1–1–2–3 can be considered.

Proposition 11.6. In the chain of six nodes 3–2–1–1–2–3, under presence of
productivity, if parameter a is sufficiently close to 1=2, then the following inner
equilibrium exists:

k1 D 2ae.1 � 2a/.b � 2a/

b3 C 6ab2 � 16a2b C 8a3
; (36)

k2 D e.1 � 2a/.b2 C 2ab � 4a2/

b3 C 6ab2 � 16a2b C 8a3
; (37)

k3 D 4ae.1 � 2a/.b � a/

b3 C 6ab2 � 16a2b C 8a3
: (38)

Proof. System of equations (5) for this chain is

8

<

:

.2b � 2a/k1 C bk2 D e.1 � 2a/;
bk1 C .b � 2a/k2 C bk3 D e.1 � 2a/;
bk2 C .b � 2a/k3 D e.1 � 2a/:

A solution can be found by use of the Cramer’s formulas:

� D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2b� 2a b 0

b b� 2a b
0 b b� 2a

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D �2.b� 2a/.b2 C 2ab� 2a2/ D 16a2b� b3 � 6ab2 � 8a3:

We see that under presence of productivity � < 0.

�1 D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

e.1 � 2a/ b 0

e.1 � 2a/ b � 2a b
e.1 � 2a/ b b � 2a

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D �2ae.1 � 2a/.b � 2a/:

We have �1 < 0 under presence of productivity.

�2 D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2b � 2a e.1 � 2a/ 0

b e.1 � 2a/ b
0 e.1 � 2a/ b � 2a

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D e.1 � 2a/.4a2 � b2 � 2ab/:
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The roots of the quadratic trinomial 4a2 � b2 � 2ab are a.˙p
5� 1/, hence �2 < 0

under presence of productivity.

�3 D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2b � 2a b e.1 � 2a/
b b � 2a e.1 � 2a/
0 b e.1 � 2a/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D �4ae.1 � 2a/.b � a/ < 0

if b > a. Thus, presence of productivity implies ki > 0, i D 1; 2; 3; and closeness
of parameter a to 1=2 implies ki < e, i D 1; 2; 3; hence, .k1; k2; k3/ is inner
equilibrium. ut
Proposition 11.7. If .3 C p

5/a � b < 2a, then it is possible to adjoint nodes
with passive agents to the ends of a chain 2–1–1–2 of four nodes being in
inner equilibrium, in such a way that the agents do not change their behavior in
equilibrium. If 2a < b < .3C p

5/a, then such adjunction is impossible.

Proof. The same proof as for Proposition 11.3. ut
Proposition 11.8. In the network of six nodes 3–2–1–1–2–3, if b > 1 (which
implies presence of productivity), then the following equilibrium is possible:

k1 D k3 D 0; k2 D e.1 � 2a/

b � 2a
:

If 2a < b � 1, b C 2a � 1, then the following equilibrium is possible:

k1 D k3 D 0; k2 D e:

Proof. Let b > 1, b > 2a, k2 D e.1 � 2a/=.b � 2a/. By Lemma 3.1, the necessary
and sufficient condition of passivity of agents of types 1 and 3 is

e.1 � 2a/

b � 2a
� e.1 � 2a/

b
;

which is, evidently, fulfilled. If 2a < b � 1, k2 D e, bC2a � 1, then, by Lemma 3.1,
the necessary and sufficient condition of passivity of agents of types 1 and 3 is

e � e.1 � 2a/

b
;

which is also, evidently, fulfilled. ut
Proposition 11.9. In the network of six nodes 3–2–1–1–2–3 if 2a < b � 1=2 and
2b C 2a � 1, then the following equilibrium is possible:

k1 D 0; k2 D k3 D e:



Equilibria in Networks with Production and Knowledge Externalities 323

If 2a < b � 1=3 or 1=2 � b < 2a, then the following equilibrium is possible:

k1 D k2 D k3 D e:

Proof. The same proof as for Proposition 11.6. ut

12 Rise of New Links

Let us see what is going on when in equilibrium a new link in a network appears.
We will provide conditions under which the sum of knowledge in the whole network
decreases.

Theorem 12.1. Let W be a network, and W 0 be the network obtained from W by
addition of a new link between nodes i and j. The network W 0 is assumed to be
connected. Let .k1; k2; : : : ; kn/ be an inner equilibrium in W, and .k01; k02; : : : ; k0n/ an
inner equilibrium in W 0. Then

Pn
iD1 k0i <

Pn
iD1 ki.

Proof. Let M be the adjacency matrix of W, and M0—the adjacency matrix of W 0.
The system of equations (5) for network W can be written as

b.M C I � 2aI/X D e; (39)

and for network W 0 as

b.M0 C I � 2aI/X D e; (40)

where I is the identity matrix, X D .x1; x2; : : : ; xn/
T is the column of variables,

M0 D M C Dij; e D .e.1� 2a/; e.1� 2a/; : : : ; e.1� 2a//T , Dij is the n � n-matrix,
in which units stay in intersection of i-th row and j-th column and in intersection of
j-th row and i-th column, and all other elements are zeros.

Let k D .k1; k2; : : : ; kn/
T and k0 D .k01; k02; : : : ; k0n/T be solutions of systems (39)

and (40), correspondingly, satisfying conditions of the theorem; in particular, k and
k0 are strictly positive:

b.M C I � 2aI/k D e; (41)

b.M0 C I � 2aI C Dij/k0 D e: (42)

Subtracting (42) from (41), we obtain

b.M C I � 2aI/.k � k0/ D AGij; (43)
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where Gij is a column, the i-th element of which is k0j , and the j-th element is k0i .
Multiplying (41) from the left by the matrix-row kT, we receive

kTb.M C I � 2aI/k D e.1 � 2a/
n
X

iD1
ki: (44)

Using the symmetry of the matrix b.MC I�2aI/ and transposing Eq. (41), we have

kTb.M C I � 2aI/ D eT
: (45)

At the same time, from (43) and (45), we obtain

kTb.M C I � 2aI/k D kTŒb.M C I � 2aI/k0 C bGij�

D eTk0 C kTbGij D e.1 � 2a/
n
X

iD1
k0i � b.kik

0
j C kjk

0
i/: (46)

Comparing (44) with (46), we see that

e.1 � 2a/
n
X

iD1
k0i D e.1 � 2a/

n
X

iD1
ki � b.kik

0
j C kjk

0
i/:

Since the values k and k0 are strictly positive, we receive

n
X

iD1
k0i <

n
X

iD1
ki:

ut

13 Connections of Full Networks and of Stars

Let us consider the case when two full networks, each with n � 2 nodes, adjoint by
a new link.

Proposition 13.1. If two full networks, each with n � 2 nodes, being initially in
inner equilibrium, adjoint, then inner equilibrium in the new network exists under
following conditions: absence of productivity (b < 2a),

a >
2.n � 1/
.n C 1/2

; (47)
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.n C 1/a �p

.n C 1/2a2 � 2.n � 1/a
n � 1 < b <

.n C 1/a Cp

.n C 1/2a2 � 2.n � 1/a
n � 1 :

The inner equilibrium (where “ports” are nodes of type 1) is

k1 D 2ae.1 � 2a/

2.n C 1/ab � .n � 1/b2 � 4a2
; (48)

k2 D e.1 � 2a/.2a � b/

2.n C 1/ab � .n � 1/b2 � 4a2
: (49)

The level of knowledge in the “ports” in equilibrium after junction is higher than
in other nodes. In comparison with the equilibrium before junction, knowledge in
ports decreases if n D 2, and increases if n � 3. In all other nodes, knowledge
decreases for any n � 2.

Proof. The types of nodes in the new network are characterized by vectors l.1/ D
.1; n � 1/ and l.2/ D .1; n � 2/. From (22) and (23), the stationary levels of
knowledge are k1 and k2 given by (48) and (49). Conditions of inner equilibrium
0 < ki < e are reduced to

2a � b > 0

2a.1 � 2a/ < 2.n C 1/ab � .n � 1/b2 � 4a2:

The latter inequality is

.n � 1/b2 � 2.n C 1/ab C 2a < 0: (50)

Discriminant of (50) is positive under (47). In this case b has to lie between the
roots, and we come to the conditions listed above.

The level of knowledge in “ports” is above knowledge in other nodes.
Let us see how the levels of knowledge in the nodes change after junction.

Comparing k1 with

k D e.1 � 2a/

nb � 2a
;

we see that k1 < k if n D 2 and k1 > k if k � 3. Comparing k2 with k, we see that
k2 < k.

Comparing environment in any “ports” after unification

K1 D e.1 � 2a/Œ4a C .n � 1/.2a � b/�

2.n C 1/ab � .n � 1/b2 � 4a2
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and before unification

K D ne.1 � 2a/

nb � 2a
;

we see that K1 < K if n D 2, and K1 > K if n � 3. Comparing environment in other
nodes after unification

K2 D e.1 � 2a/Œ2a C .n � 2/.2a � b/�

2.n C 1/ab � .n � 1/b2 � 4a2

with environment before unification, K, we see that K2 < K. Applying Theorem 2.2,
we obtain the needed statement. ut
Proposition 13.2. Let centers of two stars of order �, which were initially in inner
equilibrium, be connected. An inner equilibrium in the united network is possible
only under absence of productivity and for parameter a sufficiently close to 1=2. In
this equilibrium the levels of knowledge in nodes of type 1 (centers of the stars) and
of type 2 (peripheral nodes) are, correspondingly,

k1 D e.1 � 2a/Œ2a C .� � 1/b�
.� � 2/b2 C 6ab � 4a2

; (51)

k2 D e.1 � 2a/.2a � b/

.� � 2/b2 C 6ab � 4a2
: (52)

The level of knowledge in the central nodes is higher than in the peripheral ones.
The levels of knowledge and utilities in all nodes in equilibrium after unification
are smaller than before unification. Knowledge and utility in both types of nodes
decrease in �.

Proof. The types are characterized by vectors l.1/ D .1; �; / and l.2/ D .1; 0/;
from (22) and (23) we find stationary levels of knowledge (51) and (52). Under
absence of productivity and a close to 1=2, there will be 0 < ki < e, i D 1; 2; this is
inner equilibrium. In this case, k1 > k2.

Let us see how the levels of knowledge and utilities have changed after the
unification. Comparing k1 and k2 with the levels of knowledge in the center of star
before unification

k01 D e.1 � 2a/Œ2a C .� � 1/b�
.� � 1/b2 C 4ab � 4a2

;

k02 D 2ae.1 � 2a/

.� � 1/b2 C 4ab � 4a2
;

we see that k1 < k01; k2 < k02.
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Comparing the environments in the nodes after unification

K1 D e.1 � 2a/Œ.3� � 2/b � 2.� � 2/a�
.� � 2/b2 C 6ab � 4a2

;

K2 D e.1 � 2a/Œ4a C .� � 2/b�
.� � 2/b2 C 6ab � 4a2

;

and before unification

K0
1 D e.1 � 2a/Œ.� � 1/b C 2.� C 1/a�

.� � 1/b2 C 4ab � 4a2
;

K0
2 D e.1 � 2a/Œ.� � 1/b C 4a�

.� � 1/b2 C 4ab � 4a2
;

we see that K1 < K0
1 ; K2 < K0

2 . It is easy to check that k1, K1, k2, K2 decrease in �.
Theorem 2.2 leads to the needed statement. ut

14 Rise of a New Link in a Cycle

Let a new link connect two nodes of a cycle. We will limit ourselves by the cases
when only two types of nodes appear. In particular, let us consider the cases of
cycles with n D 4; n D 6, and n D 8 nodes and new link connecting opposite nodes
of the cycle.

Proposition 14.1. 1. After adding the new link into cycle of four nodes being in
inner equilibrium, under condition2

b >

p
64a2 C 1 � .8a � 1/

4
; (53)

the following inner equilibrium exists:

k1 D e.1 � 2a/.b C 2a/

2.b2 C 3ba � 2a2/
; (54)

k2 D ae.1 � 2a/

b2 C 3ba � 2a2
: (55)

2Since b > a, the necessary and sufficient condition (53) follows from simple sufficient condition
a > 3=10.
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Knowledge and utility in the nodes of type 1 (“bridges”) decrease under absence
of productivity. Knowledge and utility in the nodes of type 2 decrease under any
values of parameters.

2. After adding the new link into cycle of six nodes, being in inner equilibrium,
under conditions

2a �
p
4a2 � a < b < 2a; a >

1

4
;

the following inner equilibrium exists:

k1 D ae.1 � 2a/

�b2 C 4ba � 2a2
; (56)

k2 D e.1 � 2a/.2a � b/

2.�b2 C 4ba � 2a2/
; (57)

The level of knowledge and utility in the nodes of type 1 (“bridges”) increase
after adjunction, while the level of knowledge and utility in the nodes of type 2
decrease.

Proof. 1. The types of nodes are characterized by vectors l.1/ D .1; 2/ and l.2/ D
.2; 0/, and (22) and (23) imply (54) and (55). Conditions of inner equilibrium
0 < ki < e, i D 1; 2 can be reduced to

.1 � 2a/.b C 2a/ < 2.b2 C 3ba � 2a2/:

The solution is described by (53). Comparing k1 with the level of knowledge
before adding the new link, k D e.1 � 2a/=.3b � 2a/, we see that k1 < k if
b < 2a, and k1 > k if b > 2a. We see also that k2 < k independently on the value
of b. Comparing environments after adding the new link,

K1 D e.1 � 2a/Œ2.b C 2a/C 4a�

2b2 C 6ab � 4a2
;

K2 D e.1 � 2a/Œ2.b C 2a/C 2a�

2b2 C 6ab � 4a2
;

with environment in a node before adding the additional link

K D 3e.1 � 2a/

3b � 2a
;

we see that K1 < K if b < 2a, K1 > K if b > 2a, K2 < K for any b. Theorem 2.2
gives the needed result.

2. The types of nodes are characterized by vectors l.1/ D .1; 2/ and l.2/ D .1; 1/,
and (22) and (23) turn into (56) and (57). Conditions of inner equilibrium 0 <

ki < e, i D 1; 2 can be reduced to the inequality
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2a.1 � 2a/ < �2b2 C 8ab � 4a2

which implies

2a �
p
4a2 � a < b < 2a C

p
4a2 � a:

This leads to conditions of inner equilibrium listed in the formulation of the
proposition. Comparing k1 and k2 with knowledge in a node before adding
the link k D e.1 � 2a/=.3b � 2a/, we see that k1 > k, k2 < k. Comparing
the environments in the nodes after adding the new link,

K1 D e.1 � 2a/Œ4a C 2.2a � b/�

�2b2 C 8ab � 4a2
;

K2 D e.1 � 2a/Œ2a C 2.2a � b/�

�2b2 C 8ab � 4a2
;

with the environment in a node before the adding,

K D 3e.1 � 2a/

3b � 2a
;

we see that K < K1; K2 < K. Hence, by Theorem 2.2, utility in the nodes of
type 1 increased, while utility in nodes of type 2 decreased after appearance of
the new link. ut
After adding a new link connecting two opposite nodes in a cycle of eight nodes,

we receive a network with three types of nodes.

Proposition 14.2. If in a cycle of eight nodes a new link appeared which connects
two opposite nodes, then inner equilibrium in the new network is impossible.

Proof. The system of equations for the network under consideration has the form

8

<

:

.2b � 2a/k1 C 2bk2 D e.1 � 2a/;
bk1 C .b � 2a/k2 C bk3 D e.1 � 2a/;
2bk2 C .b � 2a/k3 D e.1 � 2a/:

(58)

The solution can be found by use of the Cramer’s formulas:

� D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2b � 2a 2b 0

b b � 2a b
0 2b b � 2a

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D 2.8a2b � 4a3 � 2b3 � ab2/;

�1 D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

e.1 � 2a/ b 0

e.1 � 2a/ b � 2a b
e.1 � 2a/ 2b b � 2a

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D e.1 � 2a/.b � 2a/.b C 2a/;
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�2 D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2b � 2a e.1 � 2a/ 0

b e.1 � 2a/ b
0 e.1 � 2a/ b � 2a

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D e.1 � 2a/.b2 C 2ab � 4a2/;

�3 D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2b � 2a 2b e.1 � 2a/
b b � 2a e.1 � 2a/
0 2b e.1 � 2a/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D 2e.1 � 2a/.2a2 � ab � b2/;

k1 D e.1 � 2a/.2a � b/.b C 2a/

2.8a2b � 4a3 � ab2 � 2b3/
; (59)

k2 D e.1 � 2a/.b2 C 2ab � 4a2/

2.8a2b � 4a3 � ab2 � 2b3/
; (60)

k3 D 2e.1 � 2a/.2a2 � ab � b2/

2.8a2b � 4a3 � ab2 � 2b3/
; (61)

We see that, under b > a, expressions (59)–(61) cannot be positive simultaneously,
hence, inner equilibrium is impossible.

15 Conclusions

Our model describes situations in which agents in a network make investments of
some resource (such as money or time) on the first stage (period 1 in the model),
and obtain a gain on the second stage (period 2). Such situations are typical in life
of families, communities, firms, countries, international organizations, etc. Thus, the
model can have numerous applications in analysis of equilibria in various economic,
social, and political systems.

In framework of the model, we consider questions which concern relations
between network structure, incentives, behavior of the agents, and the equilibrium
state of economic or social system in terms of welfare of the agents.

We introduce new concepts and develop techniques which can be used in such
kind of analysis. We provide some results of studying the model, among them are
results describing consequences of appearance of new links in networks and of
adjunctions of components. We introduce the concept of types of nodes, propose
classification of networks based on this concept, describe an algorithm of subdivi-
sion of networks into types, and demonstrate the role of types in characterizing the
inner equilibria.

Interesting questions for further research, which are not touched in the present
paper, are relations between different possible concepts of equilibrium, and dynam-
ics of formation of new equilibrium after adjunction of components or after rise of
new links.
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histograms, 210
system testing, 213–215

HOG. See Histogram of oriented gradient
(HOG)

Holm (Holm-Bonferroni) procedure, 186
Hybrid algorithms, 128
Hybrid community detection methods

connection-based method, 131
diffusion model, 131
geometric programming, 131
influence-based detection method, 131
modularity density function, 131
semi-definite programming, 131

Hybrid genetic algorithm (HGA), 19

I
Independent sets, Pearson and Fechner

correlations, 169–173
Intra-cluster density, 221
ISCAS circuits, 43–44

J
Joint entropy, 200–201

K
Key borrower index

vs. centrality measures, 275–277
countries’ ranking, 278
interbank market analysis, 269
values of, 273

Key borrowers
centrality, 268–269
connection intensity, 270, 271
country assessment, 277–278
definition, 270
direct connection, 271, 272
distressing coalitions, 273
distressing group, 270, 272
indirect connection, 271, 272
intensities matrix, 272, 273
interconnectedness, 270
key borrower index, 269. 273, 275–277
many lenders/borrowers, 274
network theory, 268
power analysis, 269
Shapley value, 269
systemic importance, 268

Kolmogorov-Smirnov (KS) test, 188
König-Egervary graph

bipartite graphs, 45–46
integer linear programming, 46

König graphs, 4-paths
arbitrary cograph, 49, 50
arithmetic operations, 47
definitions, 47–49
induced subgraph, 51
integer linear programming problems, 46
theorem, 52–53

Kruskal algorithm, statistical uncertainty, 160

L
Langmuir solitons

LF modes, 282
NLSE

analytical consideration, 284–285
basic equation, 283–284
integrals relations, 283–284
numerical consideration, 285–287
pseudo-SRS, 282, 283
SOD, 282, 283
SPM, 282, 283
SRS, 282
TOD, 282
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Langmuir solitons (cont.)
secondorder nonlinear dispersive wave

theory, 282
soliton solutions, 281
third-order nonlinear dispersive wave

theory, 282
Zakharov-type system, 282

Linked chain method (LCM)
customer set, 110, 112
definition, 104
facility allocation, 110

Local binary patterns (LBP). See Haar features
Location routing problem (LRP)

Euclidean space, 91
heuristic solutions, 90
neural networks, 90

Logarithmic function usage, 43–44
Logistics domain ontology

application level, 253, 257–259
BORO methodology, 251–253
drawback, 251
entity paradigm, 251
4D-object, 252
framework

agentParticipation pattern, 255, 256
beforeAfter pattern, 254, 255
concepts of, 253–254
factPreconditionProductState, 255
passiveParticipation pattern, 255, 256
processWholeActiveParticipationExtent

pattern, 255, 256
processWholeTransaction pattern, 257
resourceWholePart patterns, 254, 255
resourceWholeState patterns, 254, 255
responsibleForCoordinationFact

pattern, 256
responsibleForProductionFact class,

256, 257
transactionWholeCoordinationFact

patterns, 257
transactionWholeProductionFact

pattern, 257
object paradigm, 251–253
operational level, 253
OWL format, 259
SCOR model, 251
semantic analysis, 261–263

Low-frequency (LF) waves, 282

M
Manifold location routing problem (MLRP)

algorithmic solution, 91, 97, 98
cost effective facility location, 97

facility locations, R2, 98–99
geodesic distances, 97
heuristic algorithm, 91
2-MLRP, 100–104
planar and spherical surfaces, 113
reduced-cost distribution, 90
on RMS, 90
single-facility case, 94–97
supply chain networks, 90
Weiszfeld formula, 98

Marchenko-Pastur function, 136
Market graph

cluster properties of
clustering coefficient, 232, 233
correlation distribution, 231
degree distribution, 232–233
edge density, 231–232
ETF, 230
illiquid instruments remove, 230

graph theory concepts, 226–227
industrial sectors and clusters

algorithms, 242
giant connected component, 243
greedy modularity, 241, 243

partition of
external cluster edge density, 235
internal cluster density, 235, 238
internal cluster structure, 236–237
modularity approach, 235–237
normalized cut approach, 235–236, 238,

239
partition structure, dynamics in,

239–241
simulation setup, 234–235

of Pearson and Fechner correlations,
169–173

Market network analysis, 158, 176, 183
equal-time crosscorrelation matrices,

135
market graph, 135, 175
maximum cliques and independent sets,

165
maximum spanning tree, 135
measure of similarity, 176
MST, 175
network structure, 175
numerical experiments, 166
Pearson and Fechner correlations, 176–181
statistical uncertainty, 165
stochastic nature, stocks returns, 165

Markowitz’s theory of optimal portfolio,
135

Maximally diverse grouping problem (MDGP)
applications, 5–6
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vs. CPP, 7–8
formulation, 4
heuristics, 6
RanInt set, 17, 22
RanReal set, 17, 21
set Geo, 17–19, 23
set III instances comparison, 27, 28
set II instances comparison, 24, 26
set I instances comparison, 19, 21–24
set IV instances comparison, 27, 29, 30
set V instances comparison, 31, 32
solution space, 8–9
with VNS, 8–16

Maximum independent set (MIS.), 220
Minimum spanning tree (MST)

description, 175
in market network (see Financial markets)
standard algorithms, 62

Mixed integer nonlinear programming problem
(MINLP), 96

Modularity-based detection, 130
Multicast group routing (MGR)

cache placement, 55
center-based approaches, 57–59
for combinatorial optimization techniques,

56
computational testing, 64
data packets, 55
distributed algorithms, 61
groupware, 55
heuristics, 61–63
mathematical programming formulation,

59–60
MIP-based formulations, 65, 66
NP-hard problems, 56, 58
problem formulation, 56–57
routing algorithms, 56
video conferencing, 55
virtual reality, 55
work collaboration, 55

Multiobjective fuel consumption vehicle
routing problem (MFCVRP)

evaluation measures, 79–80
Grade and Beaufort Index, 73
minimization, RFC, 72
Pareto front, 82–84

Multiobjective vehicle routing problems
(moVRPs), 70

Multiple comparison
inverse-sine transformation, 187
of k binomial proportions, 187

Multiple testing statistical procedures,
185

N
Nash equilibrium, 292, 295
Network measures of interconnection, 203–207
Networks. See also Financial markets

agent’s behavior, 299–301
centrality, 268
chains, three types of nodes

corner equilibria, 319
Cramer’s formulas, 318
four nodes, 319–320, 322
inner equilibrium, 318
pure corner equilibrium, 320–321
six nodes, 321–323

complementarity, 292
corner equilibria, two types of nodes,

314–317
endogenous growth, 293
equidegree network

inner equilibria, 304
isolated node, 303
passive agent, nodes with, 304–308
symmetric, 302–303

externalities, 292
game, 292, 293
inner equilibria, two types of nodes,

310–314
knowledge externalities, 293
LRP, 90
model

adjacency matrix, 294
concave function, 295–296
corner solution, 295
definition, 298
inner equilibrium, 297–298
inner solution, 295
Nash equilibrium, 295
optimization problem, 294
payoff function, 294–296
production function, 294, 295
strategic complementarity, 298
strategic substitutability, 298
theorem, 296–299
utility function, 294, 295

multi-agent, 292
new link, 323–324, 327–330
pure corner equilibrium, 301–302
stars, 326–327
substitutability, 292
theory, applications, 109–110
types of nodes, 293, 308–310

The New York Stock Exchange (NYSE), 138
NLSE. See Extended nonlinear Schrödinger

equation (NLSE)
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Non-dominated Sorting Genetic Algorithm II
(NSGA II), 75, 81

NP-hard problems, 90, 98, 104, 110, 111, 117,
130, 227

NSGA II (Nondominated Sorting Genetic
Algorithm), 72

O
1-MLRP

algorithm solution, 97, 98
computational complexity, 98
MINLP, 96
RMS, 90

Online social networks (OSNs)
approximation performance ratio, 127–128
community detection, 128
community structure, 127, 128
connection-based detection, 128–129
hybrid detection, 130–132
modularity-based detection, 130, 131

P
Parallel Multi-Start NSGA II (PMS-NSGA II)

algorithm
Best Pareto Front, 78–79
GRASP, 75
objective functions problem, 77
2-opt method, 77
RCL, 76
VNS algorithm, 76

Pearson correlation
bivariate normal distribution, 177–179,

181
definition, 176–177
maximum likelihood estimation, 180
network, 169–173
statistical hypothesis of connections,

179–181
stock returns, 177
student distribution, 181
testing connection, real market data,

181
Peripheral nodes, 311–314, 316, 317, 326
Poisson distribution, 225
Positive externalities, 292
Power law distribution, 226
Power law random graph model, 226
Preference-based power index. See Key

borrower index
Product flow analysis (PFA) approach,

117

R
Random graphs, 218, 224–226, 232
Random matrix theory (RMT)

economic development, 136
empirical correlation matrices, 137
numerical experiments, 136

Random variables network, 166
Restricted Candidate List (RCL), 76
Riemannian manifold surface (RMS)

and geodesic distances, 91–94
1-MLRP, 90

Risk function, statistical uncertainty, 168, 169
Route based Fuel Consumption (RFC), 71, 74

S
SCOR model. See Supply chain operations

reference (SCOR) model
Second order dispersion (SOD), 282–284, 286
Self-phase modulation (SPM), 282–284, 286
Sign coincidence, 190
Skewed general variable neighborhood search

(SGVNS)
vs. ABCO and GVNS, 24, 27
percent improvement, 24, 25

Social networks, hybrid detection. See Hybrid
community detection methods

SOD. See Secondorder dispersion (SOD)
Spectral properties, empirical correlation

matrices. see Financial correlation
matrices

SPM. See Self-phase modulation (SPM)
SRS. See Stimulated Raman scattering (SRS)
Stability analysis, RMT

bootstrap method, 143–147
multivariate normal distribution, 144,

148–151
multivariate Student distribution, 145,

152–155
test dependence, deviations, 142–143

Stationarity
data-set description, 188
global test, 190, 194
multiple comparison technique, 184
pre-processing technique, 184
of prices, 188, 189
of returns, 190–193
sign coincidence, 185
of sign coincidence, 190
stocks, quantitative characteristics, 184

Statistical procedures
identification, 167
of Kruskal Algorithm, 160
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Statistical uncertainty
distributed random variables, 158
of Kruskal algorithm, MST, 160
numerical experiments, 160–162
risk for additive loss function, 159
sample correlations, 159
types of errors, 159

Steiner tree problem, 56
Stimulated Raman scattering (SRS), 282, 284
Stock market, 135, 136, 138, 139, 146,

158, 170, 175, 181, 230. See also
Financial correlation matrices

Stock price, 183, 231
Stock return, probabilistic models, 183
Supply chain operations reference (SCOR)

model, 251, 253, 257, 258, 260, 263
Supply networks

agents and roles, 260, 261
business process, structure of, 260
logistics domain ontology (See Logistics

domain ontology)
semantic interoperability, 250

Swap method, 79

T
Test generation

branch-and-bound methods, 39
combinatorial algorithms, 39
optimization techniques, 39
stuck-at faults model, 39

Test pattern generation algorithm, 40–42
Third-order dispersion (TOD), 282
Tree connection heuristic, MGR, 61–63
2-MLRP

algorithm solution
initial facility locations and LCM,

107–108
mapping from R2 to M, 108–109
projections from M to R2, 106–107

computational complexity, 104–105
heuristic algorithm

cost effective facility location, 103
customer locations, 102
Euclidean space, 102, 103
facility locations’ initialization, 103
geodesic distances, 102
geodesic projection, 103
LCM, 104
projection from R2 to M; 104

MINLP, 101
mixed integer non-linear programming

problem, 111
objective functions, 102

vehicle routes, RMS, 100
Weiszfeld’s formula, 111

U
Uncertainty of identification procedures,

168–169
Uncertainty of statistical procedures. See

Statistical uncertainty
Uniform random graph model, 225–226
Upper bound (UB), 18, 95, 100, 120–123, 136,

137, 140, 143, 146

V
Variable neighborhood search (VNS)

general VNS (GVNS), 8
initial solution, 12–13
local search

3-Chain move, 11–12
Insertion neighborhood, 9–10
Swap neighborhood, 10–11
VND variants, 12

objective problem, 76
parameter values, 19
SGVNS, 8, 14–15
shaking, 13–14
skewed VNS (SVNS), 8

Vehicle routing problem (VRP), 90
“CO2 efficiency”, 70
energy reduction optimization, 70
fuel consumption optimization, 70

Video-based pedestrian detection
depth-map cameras, 215
HOG

drawbacks, 210–211
histograms, 210
system testing, 213–215

infrared images, 215
Lucas-Kanade method, 215
OpenCV library, 210
Viola-Jones method (see Viola-Jones

method)
Viola-Jones method

AdaBoost cascade classifier training
algorithm, 210

Haar features/LBP
algorithm, 212
automobile video recorder, 211
Daimler Pedestrian Detection

Benchmark Dataset, 211
graphical user interface, 212, 213
opencv_createsamples utility, 212
opencv_traincascade utility, 212
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Viola-Jones method (cont.)
quality criteria, 211
samples preparation, 211–212
system testing, 213–215
training samples selection, 211

VNS. See Variable Neighborhood Search
(VNS)

W
Weiszfeld formula, 98
Widened cycles

arbitrary cograph, 49, 50
induced subgraph, 51

Wishart-Laguerre ensemble, 135,
136
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