
Declarative Programming with Algebra

Andre van Delft1(B) and Anatoliy Kmetyuk2

1 Rijswijk, The Netherlands
andre.vandelft@gmail.com

2 Odessa, Ukraine
anatoliykmetyuk@gmail.com

Abstract. The Algebra of Communicating Processes (ACP) is a theory
that views sequences and choices as mathematical operations: multipli-
cation and addition. Based on these base constructs others are defined,
such as parallel merge, interruption and disruption.

Conventional programming languages may be enriched with ACP fea-
tures, to gain declarative expressiveness. We have done this in SubScript,
an extension to the Scala language. SubScript has high level support for
sequences, choices and iterations in a style similar to parser generator
languages. It also offers parallel composition operations, such as and-
and or- parallelism, and dataflow.

The declarative style is also present in the way various execution
modes are supported. Conventional programming languages often require
some boilerplate code to run things in the background, in the GUI thread,
or as event handlers. SubScript supports the same execution modes, but
with minimal boilerplate. It is also easy to compose programs from blocks
having different execution modes.

This paper introduces ACP and SubScript; it briefly describes the
current implementation, and gives several examples.

1 Introduction

The Algebra of Communicating Processes (ACP) [2] is a concurrency theory
that allows for concise specifications of event-driven and concurrent processes.
ACP and the related theories CSP [9] and CCS [11] appear to be largely
ignored in R&D on declarative programming. This is unfortunate because
ACP offers a solid mathematical foundation for reasoning about program
behavior, and a uniform approach to high level process compositions such as
sequence, choice, parallelism, interruption (a process being suspended while
another one executes) and disruption (a process being canceled when another
one starts).

It is well possible to program applications using ACP. We are developing an
ACP based extension to Scala by the name of SubScript, with process refine-
ments called scripts. SubScript contains several constructs and ideas such as
or-parallelism, that are not yet covered by ACP; these are listed in [6].

The sequence and choice operators of ACP and Subscript are much like
constructs in parser generator languages. SubScript code is therefore much like
c© Springer International Publishing Switzerland 2016
O. Kiselyov and A. King (Eds.): FLOPS 2016, LNCS 9613, pp. 232–251, 2016.
DOI: 10.1007/978-3-319-29604-3 15

Declarative Programming with Algebra 233

grammar descriptions. But the style extends to other composition operations
such as parallelism, disruption and interruption.

SubScript also supports declarative specification of different code execution
modes. In conventional programming languages such as Java, handling events is
quite cumbersome: it requires creating, registering and later unregistering event
listeners. Other boilerplate code is needed to let things happen in a background
thread or in a GUI thread. In SubScript it is possible to largely abstract from
this boiler plate. Like in ACP process specifications events to which a process
reacts, appear just as actions; similar to internal actions.

It is also straightforward in SubScript to make compositions of code with
different execution modes. This is useful for instance in interactive programs.
E.g., a recurring pattern for handling user commands is to have a series of the
following kinds of actions, that have 3 different execution modes:

– handle an event (e.g. a button being pressed)
– perform an action in the GUI thread (e.g. updating a status label)
– perform an action in the background thread (e.g. requesting data from a web

server)
– perform an action in the GUI thread (e.g. showing the results)

SubScript also has anonymous scripts, also known as process lambdas. This
comes almost for free from Scala’s support for anonymous functions. Using these
there is relatively simple syntactic sugar to define a sequential dataflow construct,
which happens to be useful for exception handling as well. Another useful feature
inspired by Scala is implicit conversion from data to processes.

All of Scala is available in SubScript. This includes concurrency features such
as threads, actors and futures; SubScript allows wrapping those on a higher
declarative level.

A SubScript implementation is available. It comes with a preprocessor that
translates SubScript code into regular Scala code; some specific transformations
are deferred to Scala macros. Script translate into methods; their bodies contain
calls to the API of a SubScript Virtual Machine. There are also compatibility
layer, for the Swing and Akka frameworks.

The rest of this paper is structured as follows: Sect. 2 introduces ACP; Sect. 3
gives two SubScript example applications; Sect. 4 lists language features; Sect. 5
describes a SubScript Virtual Machine; Sect. 6 highlights dataflow programming
with SubScript; Sect. 7 discusses some related work.

The current paper is a follow up to a paper presented at the Scala Workshop
2013 [5] about dataflow programming support in SubScript, with application to
actor systems.1

2 ACP

The Algebra of Communicating Processes is an algebraic approach to reason-
ing about concurrent systems. It is a member of the family of mathematical
1 This paper contains some text fragments literally copied or adapted from the

predecessor paper.

234 A. van Delft and A. Kmetyuk

theories of concurrency known as process algebras or process calculi2. More so
than the other seminal process calculi (CCS and CSP), the development of ACP
focused on the algebra of processes, and sought to create an abstract, generalized
axiomatic system for processes.

ACP uses instantaneous, atomic actions (a,b,c,...) as its main primitives. Two
special primitives are the deadlock process 0, also known as δ, and the empty
process 1, also known as ε. Expressions of primitives and operators represent
processes. The main operators can be roughly categorized as providing a basic
process algebra, concurrency, and communication:

– Choice and sequencing - the most fundamental of algebraic operators are the
alternative operator (+), which provides a choice between actions, and the
sequencing operator (·), which specifies an ordering on actions. So, for example,
the process (a+ b) · c first chooses to perform either a or b, and then performs
action c. How the choice between a and b is made does not matter and is left
unspecified. Note that alternative composition is commutative but sequential
composition is not (because time flows forward).

– Concurrency - to allow the description of concurrency, ACP provides the
merge operator ‖. This represents the parallel composition of two processes,
the individual actions of which are interleaved. As an example, the process
(a ·b) ‖ (c ·d) may perform the atomic actions a, b, c, d in any of the sequences
abcd, acbd, acdb, cabd, cadb, cdab.

– Communication - pairs of atomic actions may be defined as communicating
actions, implying they cannot be performed on their own, but only together,
when active in two parallel processes. This way, the two processes synchronize,
and they may exchange data.

ACP fundamentally adopts an axiomatic, algebraic approach to the formal
definition of its various operators. Using the alternative and sequential composi-
tion operators, ACP defines a basic process algebra which satisfies the following
axioms:

x + y = y + x

(x + y) + z = x + (y + z)
x + x = x

(x + y) · z = x · z + y · z

(x · y) · z = x · (y · z)

0 + x = x

0 · x = 0
1 · x = x

x · 1 = x

The primitives 0 and 1 behave much like the 0 and 1 that are usually neutral
elements for addition and multiplication in algebra. x + 1 means: optionally x.
This is shown by rewriting (x + 1) · y using the axioms:

(x + 1) · y = x · y + 1 · y

= x · y + y

2 This description of ACP has largely been taken from Wikipedia.

Declarative Programming with Algebra 235

The parallel merge operator ‖ is defined in terms of the alternative and
sequential composition operators. This definition also requires two auxiliary
operators:

x ‖ y = x‖y + y‖x + x | y

– x‖y - “left-merge”: first x is to execute an atomic action, and then the rest of
x is done in parallel with y.

– x|y - “communication merge”: x and y start with a communication (as a pair
of atomic actions), and then the rest of x is done in parallel with the rest of y.

The definitions of many new operators such as the left merge operator use
a special property of closed process expressions with · and +: with the axioms
as term rewrite rules from left to right (except for the commutativity axiom for
+), each such expression reduces into one of the following normal forms: (x +
y), a · x, 1, 0. E.g. the axioms for the left merge operator are:

(x + y)‖z = x‖z + y‖z

(a · x)‖y = a · (x ‖ y)
1‖x = 0
0‖x = 0

Again these axioms may be applied as term rewrite rules so that each closed
expression with the parallel merge operator ‖ reduces to one of the four normal
forms. This way it has been possible to extend ACP with many new operators
that are defined precisely in terms of sequence and choice, e.g. interrupt and
disrupt operators, process launching, and notions of time and priorities.

Since its inception in 1982, ACP has successfully been applied to the specifi-
cation and verification of among others, communication protocols, traffic systems
and manufacturing plants.

ACP’s strict algebraic approach has an advantage over CSP and CCS: this
way theorists can study multiple models that satisfy a given set of axioms. This
fact was not relevant though choosing ACP as a base for SubScript rather than
CSP or CCS. The main reasons were:

– CSP has Two Choice Operators: a deterministic one and a nondeterministic
one. This distinction appears unnecessary as CCS and ACP can do without.

– CSP and CCS have Action Prefixing : a kind of sequential composition where
the left hand side must be an atomic action (an event, in CSP terms); the
right hand side cannot be an atomic action. In CCS this is an inconvenient
limitation. CSP has a separate sequential composition operator, but also this
is an unnecessary complication. ACP treats sequences much like mainstream
programming languages do: operands may be atomic, like assignments, or
composed, like method calls.

SubScript supports anonymous processes, also known as process lambdas.
These constructs have never been formalized for ACP, but they have been for
CCS. In 1989, Henk Goeman unified Lambda Calculus with process expressions
[8]. Shortly thereafter, Robin Milner et al. developed Pi-calculus [12], which also
combines the two theories.

236 A. van Delft and A. Kmetyuk

3 Two Simple GUI Applications

Suppose we need a simple program to look up
items in a database, based on a search string.
The user can enter a search string in the text
field and then press the Go button. This will
at first put a “Searching” message in the text
area at the lower part. Then the actual search
will be done at a database, which may take a
few seconds (simulated by a call to Thread.sleep). Finally the results from the
database are shown in the text area.

In plain Scala, the required code would be like:

val searchButton = new Button("Go") {
reactions += { case ButtonClicked(b) =>

enabled = false
outputTA.text = "Starting..."
new Thread(new Runnable {
def run() {
Thread.sleep(3000)
SwingUtilities.invokeLater(new Runnable{

def run() {outputTA.text="Ready"; enabled = true
}})

}}).start
} }

Here outputTA denotes the output text area. This code looks very technical:
lots of indentations and braces. The control flow is hidden in nested functions.
Parallelism is done by calling the start method on a Thread object. This looks
like a usual method call, but something magic happens inside. Parallelism does
not get a similar basic treatment as statement sequences do.

The order in which the lines are executed is spaghetti-like:

– The first two lines are done during initialization, in the main thread.
– Then a call back block follows, which, executed when the button is pressed.

Disabling the button and setting the “Starting...” text must be done in the
Swing thread; this happens to be the case with the call back, so no special
provision are needed.

– The call to start makes a background thread start that will execute a sleep
– After this sleep, the background thread schedules code for execution in the

Swing thread, to set a “Ready” text and to enable the button.

Between the static program text and the dynamic process is a rather large
conceptual gap. The programming task is hard and boring. The result: many
applications fail to appropriately enable and disable their GUI widgets, or they
are not responsive, or they even hang every now and then. This not only holds
for Scala, but also for almost all imperative languages.

Declarative Programming with Algebra 237

This situation is unnecessary. The SubScript notation is more concise and
intuitive:

live = searchButton
@gui: {:outputTA.text="Starting...":}
{* Thread.sleep(3000) *}
@gui: {:outputTA.text="Ready":}
...

The line breaks here denote sequential composition.3

– Line 1: live is a method like refinement called “script” for the controller
behavior. searchButton is an object that is silently converted into a script
call clicked(searchButton). This is done by an extension of Scala’s support
for implicit conversions. This call “happens” when the user presses the search
button.

– As a bonus, the call to clicked makes sure the button is exactly enabled when
applicable, i.e. when the program is ready to handle a button click.

– Lines 2 and 4 each write a message in the text area. An annotation, @gui:,
makes sure this happens in the Swing thread, as needed.

– Line 3 simulates the lasting database search using a sleep call. The asterisks
next to the braces specify that this is done in a background thread, so that
neither the GUI nor the main thread will be blocked meanwhile.

– Line 5 turns the foregoing into an “eternal” sequential loop (. . . , “etcetera”)
of search sequences.

SubScript programmers can easily specify the GUI controller life cycle, event
handling, widget enabling, and switching to the GUI thread. This is not due to
specific language features geared towards Swing, but through a custom Swing
compatibility layer, with scripts such as clicked and methods such as gui.

3.1 Extending the Program

Now we add some realistic requirements to the program.

– Pressing the Enter key in the search text field triggers the search action as well.
– The search action requires that the input text field is not empty; only then

should the search button be enabled
– Clicking button Cancel, or pressing the Escape key cancels an ongoing search.
– As long as the database search is ongoing, the progress should be indicated:

4 times per second a number is appended to the output text area.
– Clicking an Exit button or in the close box at the window’s upper right corner

exits the program, provided that the user confirms this in a dialog box.

3 There is also a semicolon to denote sequences. SubScript has a similar semicolon
inference for line breaks as Scala.

238 A. van Delft and A. Kmetyuk

We can start by raising the abstraction level of the code above, giving names
to each of its individual actions, so that we can implement these extensions by
modifying the definitions of these named actions:

live = searchSequence...

searchSequence = searchCommand showSearchingText
searchInDatabase showSearchResults

searchCommand = searchButton
searchInDatabase = {* Thread.sleep(3000) *}
showSearchingText = @gui: {:outputTA.text="Starting...":}
showSearchResults = @gui: {:outputTA.text="Ready":}

In a Java or Scala version the application state would need to be kept in
variables; updating these would be nontrivial. The progress indicator would be
cumbersome and error-prone to program (and that is why it is rarely present).
It is easier to grow the SubScript version.

The three user commands will be:

searchCommand = searchButton + Key.Enter
cancelCommand = cancelButton + Key.Escape
exitCommand = exitButton + windowClosing

The first and second plus operators create exclusive choices between but-
tons and key codes. These operands are not processes, but data items for
which implicit conversions to processes have been defined (such as clicked and
keyPressed)4.

The library script windowClosing acts on window closing events.
Exiting is implemented using a process named exit that runs in or-parallel

composition to the rest. The or-parallel operator is | |. It means that both
operands execute in parallel; as soon as one finishes successfully then the other
is terminated and the whole composition terminates successfully. In this case,
the left hand operand is an eternal loop of search sequences; the right hand
operand is a (probably) finite loop.

The exit process starts with the exit command being given; then a confirma-
tion dialog is run; all to be repeated while the result of the confirmation dialog

4 We can combine this way any kind of item for which implicit conversions to scripts
are in scope; this yields an algebra of general items rather than just of processes.

Declarative Programming with Algebra 239

is false. The result of the confirmation dialog is transferred using a dataflow
operator (explained later) to a while construct; this operator is a curly arrow
that names and types the flowing data item.

live = searchSequence... || exit
exit = exitCommand

@gui: {! confirmExit !} ~~(b:Boolean)~~> while !b

The @gui annotation in combination with special brace pairs around
confirmExit ensure that the dialog is run asynchronously in the GUI thread;
this way other parts of this program may remain active. The exclamation marks
in the brace pairs denote that confirmExit is an atomic action in the ACP
sense, which is relevant in choice contexts.

The while construct at the end does not require the conditional expression
to be inside parentheses, as long as it is a simple expression that cannot be
confused with the other parts of the script.

For the search sequence we now add items at the start and the end.
searchGuard is an “active guard” containing a sequential loop. It first checks
whether the text field (searchTF) contains some text. If it does, there is an
“optional break”. This means that the sequence and thus also the guard may
end successfully, so that searchCommand becomes active.

However maybe an event happens at the text field before the user issues this
search command; then the check needs to be redone, etc. (. . .).

Between searchGuard and searchCommand is a space. Like in Scala, this con-
struct has a high priority, but unlike in Scala, it denotes sequential composition,
in addition to semicolons and new lines.

After searchCommand a new line follows; this separates the first line from
the remaining five lines. Therefore the rest, including cancelSearch, can only
become active after the searchCommand has happened. cancelSearch is pre-
ceded by a slash symbol (/), which stands for disruption: the left hand side
happens, possibly disrupted when the right hand side starts happening. The
parentheses group the items on the preceding lines, so that the whole becomes
the left hand side of the slash operator.

searchSequence = searchGuard searchCommand
[showSearchingText

searchInDatabase
showSearchResults] / cancelSearch

searchGuard = if !searchTF.text.isEmpty then break?
anyEvent(searchTF)
...

cancelSearch = cancelCommand showCanceledText
showSearchingText = @gui: {:outputTA.text =...:}
showSearchResults = @gui: {:outputTA.text =...:}
showCanceledText = @gui: {:outputTA.text =...:}

240 A. van Delft and A. Kmetyuk

The database search was mimicked by a few seconds of sleeping; we add a
progress monitor process in an or-parallel composition. This progressMonitor
is an eternal loop: wait a short time and then append a loop counter to the
output text field, etc.

The pseudo-value here denotes “the current operand”; it is comparable to
this, the “current object”. Its field pass yields 0, 1, 2, ... in subsequent passes
of the loop.

searchInDatabase = {*Thread.sleep(3000)*}
|| progressMonitor

progressMonitor = {*Thread.sleep(250)*}
@gui: {:searchTF.text +=" " + here.pass:}
...

4 SubScript Features

SubScript extends Scala with a construct named “script”. This is a counterpart
of ACP process refinements, that coexists with variables and methods in classes.
The body of a script is an expression like the ACP process expressions.

4.1 Notation

ACP processes are notated with the mathematical expression syntax. The ACP
symbol · for sequential composition is hard to type; therefore SubScript applies a
semicolon (;) as known from Scala. As with multiplication in math, the semicolon
symbol for sequence may also be omitted, but then some white space should
separate the operands.5

The Scala symbols for and- and or-compositions of booleans, &, &&, | and
| |, were reused for analogous flavors of parallelism in SubScript. Therefore the
ACP symbol ‖ corresponds with an ampersand (&) in SubScript.

The special ACP processes 0 and 1 would clash with the usual notation for
numbers. These are replaced by symbols: [-] and [+].6

Parentheses in ACP processes are replaced as rectangular brackets in Sub-
Script scripts. This is because parentheses are already heavy in use in the base
language Scala: for value expressions, tuple notation and parameter lists.

5 In general Scala’s operator precedence rules are followed, except for the dataflow
operators; in Scala white space denotes function application; in SubScript it is
sequential composition.

6 Library scripts that refine into such special processes, may be more readable. For
the time being we want a minimal set of new keywords.

Declarative Programming with Algebra 241

Scripts are usually defined together in a section, e.g.,

script..
hello = {! print("Hello,") !}
test = hello & {! print("world!") !}

From here on the section header script.. is mostly omitted for brevity.

4.2 Scala Code Fragments

{! print(‘‘Hello,’’) !} is a normal fragment of Scala code; by default
it is executed in the main thread. Conceptually this corresponds with an
atomic action happening in the sense of ACP. This atomic action is rele-
vant for instance in a choice context such as {! print(‘‘Hello,’’) !} + {!
print(‘‘world!’’) !}

Here as soon as the atomic action happens in the left hand side operand of
the plus, the right hand side is excluded: its code fragment cannot be executed
any more, and it is marked for deactivation.

There are different flavors of code fragments (s means some Scala code):

– {! s !} - normal code fragment; corresponds by default with one atomic
action.

– {* s *} - code executed in a new thread; corresponds with two atomic actions.
– {. s .} - a code fragment executed by an event handler, e.g. a GUI listener;

corresponds with an atomic action.
– {... s ...} - a code fragment that may be executed multiple times by a

permanent event listener; each execution corresponds with an atomic action.
– {: s :} - a “tiny” code fragment. It does not correspond with an atomic

action; therefore it is efficiently executed. Apart from the code being executed,
this behaves neutrally in the ACP sense: it corresponds with 0 or 1; which one
of these depends on nearest ancestor n-ary operator.

Normal code fragments may be manipulated to run in a distinct thread such
as the GUI thread. In such cases there is a correspondence to two atomic actions
instead of one: one atomic action happens just before the start of the code
fragment execution, and one happens just after the end. The latter action will
not happen when the executing code fragment had been disrupted, e.g. from the
disruption operator /.

Threaded code fragments run in new threads; they also correspond with
two such atomic actions. When disrupted while running, the thread will get an
interrupt signal.

Scala expressions within code fragments may use a special value named here.
It refers to the current node in the call graph (i.e. a generalization of a call stack,
see Sect. 5), like this refers to the current object. here is in particular useful
for implementing event handling scripts.7

7 For convenience here is an implicit value so that it may be left out of parameter
lists that have an implicit formal parameter of the node’s type.

242 A. van Delft and A. Kmetyuk

4.3 Annotations

An annotation is a piece of Scala code that is executed when the annotated
part of a program is activated. The code may refer to its operand using the
value named there. The code may in turn register callback code for other
events that happen on the operand, e.g. when it is deactivated. This was
applied for automatic GUI widget enabling and disabling, as seen in the pre-
vious examples.

Annotations can also change the execution behavior for code fragments.
E.g. in

clearText = @gui: {: aTextField.text = " " :}

the tiny code fragment will be executed synchronously in the Swing GUI thread,
using the Swing method SwingUtilities.invokeAndWait().

When combined with a normal code fragment the annotation will execute
the code asynchronously in the Swing GUI thread using SwingUtilities.
invokeLater(); meanwhile other code fragments may be executed.8

4.4 Parallelism

For each of the boolean operators &, &&, | and || there is a counterpart parallel
operator in SubScript: & and && are and-like; they succeed when all operands
succeed. | and || are or-like; they succeed when any operand succeeds.

& and | terminate when all operands terminate. && denotes strong and-
parallelism: it terminates when any operand terminates without success. ||
denotes strong or-parallelism: it terminates when any operand terminates suc-
cessfully.

Between {!print(‘‘hello!’’)!} & {!print(‘‘world!’’)!}, each operand
essentially contains a simple code fragment rather than code to be run in a sep-
arate thread. Therefore one operand will be executed before the other; the result
is either “hello!world!” or “world!hello!”. In general the atomic actions in parallel
branches are shuffle merged, like one can shuffle card decks.

The most straightforward execution strategy will deterministically apply a
left-to-right precedence for the code fragments that are operands to the opera-
tor &. However, alternative strategies are possible, e.g. for random simulations.

4.5 Disruption and Interruption

The slash operator denotes disruption: in x/y, both operands are activated; x is
terminated as soon as an atomic action in y happens. For interruption there are
two operators: in x%/y execution of x is suspended as soon as an atomic action

8 In annotations there is implicit instead of here. Thus @gui: is equivalent to
@gui(there).

Declarative Programming with Algebra 243

in y happens; it may resume when y has success. The operator %/%/ is for zero
or more interruptions.9

4.6 Control and Iteration

SubScript has if-then-else, match, while, for and break constructs much like
counterparts in Scala. The latter three are not limited to sequential contexts,
so they enable alternative and parallel iteration control. Some special processes
are:

– break? denotes an optional break. The nearest n-ary operator determines the
exact behavior. E.g. x may or may not be executed in [break? x] y; this is
much like [[+] + x] y.

– ... marks a loop; it is equivalent to while(true).
– ..? marks a loop and at the same time an optional break.

4.7 Scripts and Calls

A SubScript implementation will translate each script into a method that has
return type Script[T] where T is the type of the script’s result value (see below).
This way most Scala language features for methods also apply to scripts: scripts
may have both type parameters and data parameters; each parameter may be
named or implicit. Variable length parameters and even script currying are pos-
sible.

The body of the example script test in Sect. 4.1 contains a call to script
hello. This is much like a method call.

A script expression may also contain value terms such as variables, literals
and Scala code between () or {}. If such a term is of type Unit then it is assumed
to be in a tiny code fragment; if it is of type Script[T] then it is a script call;
else there should be an implicit conversion to a Script[T].

ACP processes supports process communications as atomic actions that are
shared by two or more parties. In SubScript this has been generalized to shared
scripts that are called by multiple parties. E.g.

send, receive = {! println("Communication") !}

Synchronous calls to send and receive that do not exclude one another,
may result in the execution of the shared script body. This is also a generaliza-
tion of normal script calls; the latter may be considered to be special cases of
communication with only one party involved.

9 These operators start with a percent sign; they are members of a larger family of
operators that can suspend and resume operands. These operators are not meant
to be memorized; rather they may be encapsulated in higher level scripts with
descriptive names.

244 A. van Delft and A. Kmetyuk

4.8 Script Lambdas

For Scala value expressions there is a new kind of term: parameterless script
lambdas (AKA closures). These appear as script expressions placed between
rectangular brackets, such as [[a b+c] d]. These values of type Script[T] for
some type T.

The Scala way of defining parameterized lambda expressions applies
as well, essentially giving parameterized script lambdas, e.g., (i:Int) =>
[{:print(i):}].

4.9 Result Values

Code fragments and scripts have result values, which are comparable to method
return values. A difference is that a method returns only once, whereas the script
result value is available to the caller each time that the script has a success; this
may be more than once, due to the 1-element of ACP. The following scripts each
have result type Int:

s1:Int = {!5!}^
s2 = s1
s3 = s2 ^5

The first script has its result type explicitly stated; for the others the type is
inferred. The caret as a postfix operator indicates that the script’s result value
is set from its operand. The second script has only one operand that is a script
call or code fragment; in such cases the caret may be omitted.

The notation ^5 is shorthand for {:5:}^.10
A double caret is useful for operands that appear in loops, as in ..? x^^.

The result of these zero or more x’s is a list; on each success of an x, its result
value is copied to the list at the position corresponding to the position of that x
in the loop.

Double carets that immediately followed by integers creates a result tuple.
E.g.

s = {:1:}^^1 {!"str"!}^^2

will produce a tuple (1,"str"), of type (Int,String).
[x]^ is shorthand for ([x])^, and likewise for double carets etc. This mean-

ing is as follows: the parentheses enclose a Scala value, which is a script lambda
having x as body. That has a Script type, which implies that the whole is a
script call. But it is not entirely the same as x. Such a construct is useful for
more complex result structures such as lists of tuples. E.g.,

s = ..? [x^^1 y^^2]^^

10 5^ is also valid syntax; this requires an implicit conversion to be in scope that turns
the number into a script call.

Declarative Programming with Algebra 245

results in a List[(X,Y)], where X and Y are the result types of x and y.
Apart from having success, a script may terminate in failure; that will often

be due to an exception thrown from within a code fragment. The exception
should be available as an alternative kind of result, similar to what can happen
in future constructs used in functional reactive programming. Like in futures, a
normal result is packed in a Success container, and an exception is packed in a
Failure container.

5 The SubScript Virtual Machine

SubScript implementations have a Virtual Machine that executes scripts by
internally doing graph manipulation.

5.1 Script Execution from Scala

From Scala code a so called script executor may execute a script lambda, as
in executor.run([test]). The executor may be tailored for the type of appli-
cation, e.g. discrete event simulations. After the execution ends, the executor
may provide information on the execution, e.g. on whether the script ended suc-
cessfully. The SubScript VM method execute creates a fresh CommonExecutor
(the default executor type) and then calls its run method with the script closure,
e.g., execute([test]).

Other types of executors could be more suited for specific application
domains, such as discrete event simulations and multicore parallelism.

The code generated for the script closure calls library methods that build so-
called “template trees”, representing the static structure of the invoked scripts.
Based on these template trees the script executor maintains a so called call graph.
This is a generalization of a regular call stack. It is an acyclic graph; under its
root node other nodes will be added and removed according to the template tree
as the program is executed. These nodes represent process expression constructs,
such as script calls, n-ary operators and code fragments. Recursive script calls
lead to repeated occurrences, like in a call stack.

Each type of node has its own typical kind of life cycle. The executor main-
tains a prioritized queue of messages that direct the state transitions along these
life cycles.

For instance, consider the following process which prints optionally “Hello”,
and then “world!”:

Main = [{!print("H")!} + [+]] {!print("W")!}

[+] corresponds with 1 in ACP. Given the equivalence (x + 1) · y = x · y + y),
this process should behave much like

Main = {!print("H")!} {!print("W")!} + {!print("W")!}

246 A. van Delft and A. Kmetyuk

The following figure gives the template tree (in yellow) and 4 typical stages
of the call graph (in green and red):

In the first depicted call graph, the left hand side of the semicolon has been
activated. Node 7 now succeeds. Its success is propagated upwards, through node
5 until node 4.

This node does not react immediately; that has to wait until there is no
more graph management to be done at its descendant nodes. Indeed, node 7
deactivates. Then node 4 takes action. Because of the received success, this
sequential operator looks up in the template whether there would be a next
operand to activate; indeed there is one, which will become node 8.

At that point there is no more call graph management to do. Then the code
fragment of node 6 is executed (depicted in red). At the same time a conceptual
atomic action happens; a message about this is propagated upwards in the call
graph. The sequential node 4 reacts to this by excluding all its other operands;
in this respect it acts the same as a plus node. Thus the branch with node 8 is
deactivated as soon as node 6 starts executing.

After the execution, node 6 will succeed, and then again node 4 activates
the next operand from the template, this time as node 9. Node 6 is deactivated,
as is its parent node 5. The code fragment of node 9 executes. Then a success
follows which propagates upwards to the root. Finally node 9 and its ancestors
are deactivated.

Call graph management has a higher priority than executing code for atomic
actions. Graph operations below a unary or n-ary operator has a higher priority
than such operations at such an operator. This is achieved by collecting messages
arriving at such operators in so called Continuation messages. This way the
response at the n-ary operator can take into account all messages that have
arrived.

Declarative Programming with Algebra 247

The message types, in descending priority order, are:

– Activation - a node is to be added to the call graph, according to the template
tree. This may also involve executing native code for annotations, process
parameter evaluation, if- and while conditions, etc.

– CFActivated - a code fragment has been activated
– AAHappened - an atomic action has happened
– Break - a break has been encountered; a flag indicates whether it is optional
– Success - a success has been encountered
– Exclude, Suspend, Resume - atomic actions in descendants must be

excluded, suspended or resumed
– Deactivation - a node is to be removed from the graph
– Continuation - collected messages for an operator node
– CFExecutionFinished - the execution of a code fragment has finished
– CFToBeExecuted - a code fragment is to be executed in the main thread

Messages Exclude, Resume and Suspend are propagated downwards in the
call graph. Messages AAHappened, CAActivated, CFActivated are propagated
upwards in the graph; they may have effects at the nodes that they pass by.

E.g., when a AAHappened message arrives from a child node at a + or ; node,
Exclude messages for the sibling nodes are inserted in the message queue.

Break and Success are also propagated upwards, up to n-ary nodes. Such
nodes have different ways to handle Success messages that arrived from their
child nodes; often these result in sending new Success themselves.

Process communication involves multiple callers that call a single shared
script. This binds branches of the call graph together; without communication
the call graph would be a tree.

5.2 Implementation

The first SubScript implementation consisted only of a SubScript Virtual
Machine: a library written in Scala, called from code with plain Scala syntax.
The VM had been programmed using 2500 lines of Scala code. This is not a
complete implementation; most notably support for ACP style communication
is still to be done. When complete the VM may contain about 4000 lines.

In principle this approach suffices for writing the essence of SubScript pro-
grams. However, with the special syntax, e.g. for parameter lists, n-ary infix
operators, various flavors of code fragments, specifications become considerably
smaller, and these require much less parentheses and braces, which is important
for clarity.

Therefore we made a special branch of the Scala compiler that translated the
genuine SubScript syntax to the library calls. This took about 2000 lines of Scala
code, mainly in the scanner, the parser and the typer. As of 2015 by a Parboiled
[14] based preprocessor parses SubScript sources and generates Scala with some
dedicated macro calls therein; the standard Scala compiler is thereafter invoked.
This approach is leaner and more maintainable; however it leads to inconvenient
compile error messages, and it is not suited for IDE integration.

248 A. van Delft and A. Kmetyuk

6 Dataflow Programming

A relatively new SubScript language feature is dataflow, expressed by curly
arrows as seen in the GUI controller example:

exit = exitCommand
@gui: {! confirmExit !} ~~(b:Boolean)~~> while !b

We could also use a ternary version of the dataflow operator:

exit = exitCommand
@gui: {! confirmExit !} ~~(b:Boolean)~~> while !b

+~/~(e:Exception)~~> {:println(e
);}

...

In case confirmExit would throw an exception, the code fragment would end
in failure and its result would be a Failure wrapper containing the exception.
Next, because of the failure, the arrow part with the slash would be followed, so
that the exception is printed. The periods on the last line enforce that the script
is a loop, even in case while has not been reached.

In general the dataflow operator can become analogous to a combination
of match statements and exception handers. E.g., the dataflow on the left is
syntactic sugar for a lower level dataflow on the right:

x ~~(b:Boolean)~~> y1 | x ~~> case b:Boolean => [y1]

+~~(i:Int if i<10)~~> y2 | case i:Int if i<10 => [y2]

+~~(_)~~> y3 | case _ => [y3]

+~/~(e:IOException)~~> z1 | +~/~> case e:IOException => [z1]

+~/~(e: Exception)~~> z2 | case e: Exception => [z2]

So it comes down to the meaning of x~~>y+~/~>z. In such a dataflow, y and
z must be partial scripts, i.e. partial functions that return a Script[T] for some
type T. The dataflow starts with x. When x has success, y is activated with x’s
normal result value passed as actual parameter. When x terminates as a failure,
z is activated with x’s resulting exception passed as actual parameter.

x~~>y is similar, except for that it ends in failure when x ends in failure.
x~/~>z is also similar, except for that it succeeds when x succeeds.

6.1 Example: Twitter Search

A simple Twitter search application contains an input text field and a result text
area; when the user has changed the content of the input text field the application
starts a request to the Twitter web service to get 10 tweets matching the input
text.

Declarative Programming with Algebra 249

But Twitter imposes request rate limit on its API, and the client should not
exceed this. Therefore after each change in the text field the application waits
200 ms before sending the request to Twitter. If meanwhile the text field changes
again, we will restart the wait. When the input text changes while a request had
already been sent and the result was awaited, then that process is disrupted as
well.

The searches may go wrong; we can (intentionally) send an empty search
string, which will result in an error reply by the Twitter server.

A pure Scala version for the controller would contain something like:

def bindInputCallback = {
listenTo(view . searchField . keys)

val fWait = InterruptableFuture { . . . }
val fSearch = InterruptableFuture { . . . }

reactions += {case => fWait . execute ()

. flatMap {case => fSearch . execute ()}

. onComplete{case Success(tweets) => Swing .onEDT{ . . . }
case Failure (e :Throwable) => Swing .onEDT{ . . . }

} } }

InterruptableFutures are a flavor of futures that can be cancelled on demand.
This functionality requires a bunch of ad-hoc utility code in pure Scala, whereas
it is supported out-of-the-box in SubScript, backed by theory.

The SubScript version has a live script for the controller, containing a loop
of complete search sequences.

live = initialize; [mainSeq/..?]...

mainSeq = anyEvent(view.searchField)

{* Thread.sleep(keyTypeDelay) *}

{* searchTweets *} ~~(ts:Seq[Tweet])~~>updateView(ts)

+~/~(t: Throwable)~~>setErrorMsg(t)

updateView(ts: Seq[Tweet]) = @gui: {:...:}

setErrorMsg(t: Throwable) = @gui: {:...:}

The slash and the iterator in mainseq/..? denote a disruptive loop that
starts by activating 1 instance of mainSeq. As soon as the first atomic action
therein happens (anyEvent in the search field) a next iteration of the disruptive
loop is activated. Thus if a next event arrives soon enough, before the rest of
the ongoing earlier mainSeq instance has terminated successfully, that ongoing
instance is disrupted and a new delay starts, and a new instance of mainSeq is
activated, etc. The disruptive loop ends when such a mainseq has terminated
successfully.

A ternary dataflow operator directs the search result (of searchTweets) to
the either updateView or setErrorMsg..

250 A. van Delft and A. Kmetyuk

It is possible to create an implicit script that converts a future into an appro-
priate script. If such an implicit script were in scope, we may replace the threaded
code fragment {*searchTweets*} by the future fSearch.

7 Related Work

Since the predecessor paper [5] we have improved the features for result values
and dataflow.11 The dataflow support now also covers pattern matching and
exception handling. This improves the cooperation with futures and actors.

The predecessor paper contains an overview of other languages that show
some resemblance to this work. Grammar notation formalisms are most related,
as these have similar support for sequences and choices. SubScript result values
were inspired by YACC [10] and by the parser combinator library FastParse12.

SubScript has a delayed task execution. This also occurs in futures and the
async idiom, known from functional reactive programming. Futures may termi-
nate successfully or in a failure, which comparable to SubScript scripts; however
they lack alternative compositions and a 1 element. In a way SubScript adds the
expressiveness of grammar formalisms to the concurrency domain.

Other related approaches are Reactive-C [3] and its follow up SugarCubes [4].
These two have a similar execution mechanism with call graphs; yet they are not
process algebra implementations since also they lack alternative compositions
and a 1 element.

There are some papers that apply process algebra as a theoretical underpin-
ning to actors: [1,7] use Pi-calculus, and [13] applies ACP.

8 Conclusion

SubScript offers constructs from the Algebra of Communicating Processes that
supports a declarative programming style. This is useful for GUI controllers, text
parsers and probably other areas.

Futures may conveniently placed in SubScript process expressions. Likewise
SubScript processes may be converted into futures, but there is an “impedance
mismatch”. A variant of Futures that supports a kind of 1-element from ACP,
could be interesting.

The performance is typically in the order of 10,000 actions per second on
current mainstream personal computers. For most GUI controllers this speed is
acceptable; for text processing that would depend on the input size.

11 A useful definition for [x]^ (see Sect. 4.9) triggered several syntax changes. E.g.
rectangular brackets replaced parentheses to delimit process expressions. Script
lambda’s are now also written between rectangular brackets. Script terms may now
have the form (s) or {s}, with s a Scala value; such terms are method calls or script
calls, possibly after implicit conversion. Normal code fragments had the form {s};
this became {!s!}.

12 http://lihaoyi.github.io/fastparse/.

http://lihaoyi.github.io/fastparse/

Declarative Programming with Algebra 251

SubScript is an open source project13. It is currently implemented as a branch
of the regular Scala compiler, bundled with a virtual machine and libraries for
interfacing with Akka actors and Swing GUIs.

Acknowledgement. We thank the referees and especially the shepherd for their use-
ful suggestions and other comments.

References

1. Thati, P., Agha, G.: An algebraic theory of actors and its application to a simple
object-based language. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-
Orientation to Formal Methods. LNCS, vol. 2635, pp. 26–57. Springer, Heidelberg
(2004)

2. Baeten, J.C.M.: A brief history of process algebra. Theor. Comput. Sci. 335,
131–146 (2005)

3. Boussinot, F.: Reactive c: an extension of c to program reactive systems. Softw.
Pract. Experiance 21(4), 401–428 (1991)

4. Boussinot, F., Susini, J.F.: The sugarcubes tool box. In: Nets of Reactive Processes
Implementation

5. van Delft, A.: Dataflow constructs for a language extension based on the algebra
of communicating processes. In: Proceedings of 4th Workshop on Scala, SCALA
2013. ACM (2013)

6. van Delft, A.: Some new directions for ACP research. CoRR abs/1504.03719 (2015).
http://arxiv.org/abs/1504.03719

7. Gaspari, M., Zavattaro, G.: An algebra of actors. In: Ciancarini, P., Fantechi,
A., Gorrieri, R. (eds.) FMOODS, IFIP Conference Proceedings, vol. 139. Kluwer
(1999)

8. Goeman, H.: Towards a theory of (self) applicative communicating processes: a
short note. Inf. Process. Lett. 34(3), 139–142 (1990)

9. Hoare, C.: Communicating sequential processes. ACM Comput. Surv. 7(1), 80–112
(1985)

10. Johnson, S.: Yacc: Yet another compiler- compiler. Technical report, Bell Labora-
tories (1979)

11. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag New York Inc.,
Secaucus (1982)

12. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part i. Inf.
Comput. 100, 1–40 (1989)

13. Wang, Y.: Fully abstract game semantics for actors. CoRR abs/1403.6563 (2014)
14. Wills, P.: No more regular expressions. Scala Exchange, Skills Matter, London

(2014)

13 Subscript web site: http://subscript-lang.org.

http://arxiv.org/abs/1504.03719
http://subscript-lang.org

	Declarative Programming with Algebra
	1 Introduction
	2 ACP
	3 Two Simple GUI Applications
	3.1 Extending the Program

	4 SubScript Features
	4.1 Notation
	4.2 Scala Code Fragments
	4.3 Annotations
	4.4 Parallelism
	4.5 Disruption and Interruption
	4.6 Control and Iteration
	4.7 Scripts and Calls
	4.8 Script Lambdas
	4.9 Result Values

	5 The SubScript Virtual Machine
	5.1 Script Execution from Scala
	5.2 Implementation

	6 Dataflow Programming
	6.1 Example: Twitter Search

	7 Related Work
	8 Conclusion
	References

