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Abstract. Cloud accountability audits are promising to strengthen
trust in cloud computing by providing reassurance about the process-
ing data in the cloud according to data handling and privacy policies.
To effectively automate cloud accountability audits, various distributed
evidence sources need to be considered during evaluation. The types of
information range from authentication and data access logging to loca-
tion information, information on security controls and incident detec-
tion. Securing that information quickly becomes a challenge in the sys-
tem design, when the evidence that is needed for the audit is deemed
sensitive or confidential information. This means that securing the evi-
dence at-rest as well as in-transit is of utmost importance. In this paper,
we present a system that is based on distributed software agents which
enables secure evidence collection with the purpose of automated eval-
uation during cloud accountability audits. We thereby present the inte-
gration of Insynd as a suitable cryptographic mechanism for securing
evidence. We present our reasoning for choosing Insynd by showing a
comparison of Insynd properties with requirements imposed by account-
ability evidence collection as well as an analysis how security threats
are being mitigated by Insynd. We put special emphasis on security and
privacy protection in our system analysis.

1 Introduction

Cloud Computing is known for its on demand computing resource provisioning
and has now become mainstream. Many businesses as well as private individu-
als are using cloud services on a daily basis. The nature of these services varies
heavily in terms of what kind of information is being out-sourced to the cloud
provider. Often, that data is sensitive, for instance when Personal Identifiable
Information (PII) is being shared by an individual. Also, businesses that move
(parts of) their processes to the cloud, for instance by using Customer Relation-
ship Management Software as a Service, are actively participating in a major
paradigm shift from having all data on-premise to moving data to the cloud.

However, many new challenges come along with this trend. Two of the most
important issues are customer trust and compliance [14,22]. These issues are
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closely tied to the loss of control over data. When moving to the cloud, direct
control over (i) where data is stored, (ii) who has access to it and (iii) how
it is shared and processed is given up. Because of this loss of control, cloud
customers have to trust cloud providers that they treat their data in an appro-
priate and responsible way. One way to enable that trust is by strengthening
transparency and accountability [12,30] of the cloud provider and services. This
includes providing information about data locality, isolation, privacy controls
and data processing in general.

Cloud audits can be used to check how data has been processed in the cloud
(i.e., by whom, for what purpose) and whether or not this happened in com-
pliance with what has been defined in previously agreed-upon privacy and data
handling policies. This way, a cloud customer can regain some of the information
he has given up control of by moving to the cloud. A central responsibility of
cloud audits is the collection of data that can be used as evidence. Depending
on the data processing policies in place, various sources of evidence need to be
considered. For instance, logs are a very important source of evidence, when it
comes to auditing the cloud operation (e.g., access logs and error logs). However,
other sources of information are also important, such as files (e.g., process doc-
umentation) or events registered in the cloud management system (e.g., access
control decisions, infrastructure changes, data transfers).

To capture evidence from this variety of sources, centralized logging mecha-
nisms are not enough. We therefore propose a system for accountability evidence
collection and audit. With this system, cloud providers are enabled to demon-
strate their compliance with data handling policies to their customers and to
third-party auditors in an automated way.

In our previous work, we proposed a concept [28] for cloud accountability
audits, that enables automated collection of evidential data in the cloud ecosys-
tem with the goal of performing accountability audits. A key mechanism of this
system is the secure and privacy-friendly collection and storage of evidence. In
our previous work we also explored the use of a somewhat homomorphic encryp-
tion scheme to secure evidence collected in the evidence store [17], which has
proven practical but very limited in terms of performance and functionality.

In this paper, we present a more practical alternative that imposes less restric-
tions on evidence collection.

The contributions of this paper are:

– An architecture for automated evidence collection for the purpose of cloud
accountability audits

– A process for secure and privacy-protecting evidence collection and storage

The remainder of this paper is structured as follows: in Sect. 2 we present
related work in the area of secure evidence collection and cloud auditing. The
core principles of Insynd are introduced in Sect. 3. Section 4 introduces the Audit
Agent System (AAS) and its architecture. Following that, we present in Sect. 5
a mapping of typical characteristics of digital evidence and secure evidence
collection in the cloud to how these are addressed by integrating Insynd in
our audit agent system. In Sect. 6 we describe the architectural details of the
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Insynd integration. We also present a scenario-based evaluation of our system in
Sect. 7 and conclude this paper in Sect. 8.

2 Related Work

Redfield and Date propose a system called Gringotts [27] that enables secure
evidence collection, where evidence data is signed at the system that produces
it, before it is sent to a central server for archival using the Evidence Record
Syntax. It is similar to our system with respect to the automatic collection of
evidential data from multiple sources. However, their focus is on the archival of
evidence, whereas we propose a system that also enables automated evidence
processing for audits. Additionally, our system also addresses privacy concerns
of evidence collection in a multi-tenant environment such as the cloud by intro-
ducing evidence encryption, whereas Redfield and Date focus on archival and
preservation of evidence integrity.

Zhang et al. [31] identify potential problems when storing massive amounts
of evidential data. They specifically address possible information leaks. To solve
these issues, they propose an efficient encrypted database model that is supposed
to minimize potential data leaks as well as data redundancy. However, they focus
solely on the storage backend and do not provide a workflow that addresses secure
evidence collection as a whole.

Gupta [11] identifies privacy issues in the digital forensics process, when it
comes to data storage devices that typically do not only contain investigation
related data, but may also hold sensitive information that may breach privacy.
He also identifies a lack of automation in the digital investigation process. To
address these issues, Gupta proposes the Privacy Preserving Efficient Digital
Forensic Investigation (PPEDFI) framework. PPEDFI automates the investi-
gation process by including knowledge about previous investigation cases, and
which kinds of files were relevant then. With that additional information, evi-
dence search on data storage devices is faster. However, while Gupta acknowl-
edges privacy issues, the PPEDFI framework is focused on classic digital forensics
and may not be applicable to a cloud ecosystem, where there is typically no way
of mapping specific data objects to storage devices, in full.

The Security Audit as a Service (SAaaS) system proposed by Dölitzscher
et al. [9,10] is used to monitor cloud environments and to detect security inci-
dents. SAaaS is specifically designed to detect incidents in the cloud and thereby
consider the dynamic nature of such ecosystems, where resources are rapidly pro-
visioned and removed. However, the main focus of SAaaS is not to provide audi-
tors with a comprehensive way of auditing the cloud provider’s compliance with
accountability policies, which requires additional security and privacy measures
to be considered in the data collection process.

3 Insynd

Insynd is a cryptographic scheme where a forward-secure author sends mes-
sages intended for clients through an untrusted server [23,24]. The author is
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forward-secure in the sense that the author is initially trusted but assumed to
turn into an active adversary at some point in time [5]. Insynd protects mes-
sages sent prior to author compromise. The server is untrusted, which is possible
thanks to the use of Balloon, a forward-secure append-only persistent authen-
ticated data structure [23]. This means that the server storing all messages can
safely be outsourced, e.g., to traditional cloud services. Clients are assumed
trusted to read messages sent to them by authors. Insynd contains support for
clients to also be in the forward-security model, by discarding key-material as
messages are read. For sake of ease of implementation, Insynd is designed around
the use of NaCl [6], an easy-to-use high-speed cryptography software library.

Insynd provides the following properties:

Forward Integrity and Deletion Detection. Nobody can modify or delete
messages sent prior to author compromise, as defined by Pulls et al. [25].
This property holds independently for Balloon (the data structure) and the
Insynd scheme. For Balloon, anyone can verify the consistency of the data
structure, i.e., it is publicly verifiable [23].

Secrecy. Insynd provides authenticated encryption [2].
Forward Unlinkability of Events. For each run by the author of the protocol

to send new messages, all the events sent in that run are unlinkable. This
implies that, e.g., an attacker (or the server) cannot tell which events belong
to which client [24]. When clients receive their events by querying the server,
if they take appropriate actions including but not limited to accessing the
server over an anonymity network like Tor [8], their events remain unlinkable.

Publicly Verifiable Proofs. Both the author and client receiving a message
can create publicly verifiable proofs of the message sender (the author),
the receiving client (by registered identity), and the time the message was
sent relative to e.g. a time-stamping authority [24]. The proof-of-concept
implementation of Insynd uses Bitcoin transactions [20] as a distributed
time-stamping server.

Distributed Settings. Insynd supports distributed authors, where one author
can enable other authors to send messages to clients it knows of with-
out requiring any interaction with clients. Client identifiers (public keys)
are blinded in the protocol, ensuring forward-unlinkable client identifiers
between different authors [24].

Pulls and Peters show that Insynd provide the above cryptographic proper-
ties under the assumptions of the decisional Diffie-Hellman (DDH) assumption
on Curve25519, an unforgeable signature algorithm, an unforgeable one-time
MAC, a collision and pre-image resistant hash function, a IND-CCA2 secure
public-key encryption scheme, and the security of the time-stamping mechanism
(in our case, the Bitcoin block-chain) [24]. The prototype implementation of
Insynd shows performance comparable to state-of-the-art secure logging schemes,
like PillarBox [7], securing syslog-sized messages (max 1 KiB) in the order of hun-
dreds of microseconds on average on a commodity laptop. We stress that Insynd
is subject to its own review and evaluation; in this paper, we use Insynd as
a building block to facilitate secure evidence collection and storage for cloud
accountability audits.
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4 Audit Agent System

In the following, the main actors, components and the general flow of information
from the evidence-producing source to the audit report in our Audit Agent
System (AAS) are described.

4.1 Privacy and Accountability Cloud Audit System Actors

The main actor using the AAS is the Cloud Auditor. According to NIST, a cloud
auditor is a “A party that can conduct independent assessment of cloud services,
information system operations, performance and security of the cloud imple-
mentation.” [16] In general, a cloud consumer, cloud provider or an independent
third-party can act as a cloud auditor. Depending on the actual stakeholder that
assumes the role of the auditor, isolation issues can arise:

– A data protection authority (DPA) typically acts in good faith as a third-party
and assesses privacy policies. Therefore, they typically have broad access to a
provider’s internal documentation, infrastructure and potentially customer’s
data.

– A commercial third-party auditor is usually a specialized service provider (e.g.,
a penetration or security testing specialist) acting on behalf of the cloud
provider. Their access to information is similar to that available to the DPA.

– A customer can also assume the role of an auditor, however with a much
more limited scope of available information. We consider two major sub-types,
businesses as customers and individuals as customers.

In our proposed system, we consider business customers (e.g., companies
using cloud services to replace their IT) to be potential auditors but exclude pri-
vate individuals. Additionally, providers use the AAS internally for self-auditing
to regularly and continuously assess their policy compliance and detect poten-
tial violations in a timely manner. Depending on the view on an organization
(i.e., depending on who assumes the role of cloud auditor), data protection is
an issue to consider, when potential confidential information is processed dur-
ing an audit. This means data confidentiality, integrity and isolation have to be
preserved during an automated audit.

4.2 Architectural Components Audit Agent System

The architecture of the Audit Agent System (see Fig. 1) is based on the use of
software agents. This allows for improved flexibility by allowing to rapidly react
on infrastructure changes, and improved extensibility especially with respect to
data collectors that are used to gather information that is evaluated during an
audit. The collectors are adapters for the various heterogeneous sources of evi-
dence in a cloud environment. In Sect. 6.1, we describe more details of how the
collectors work. The architecture of the AAS comprises of the following com-
ponents: Audit Policy Module (APM), Audit Agent Controller (AAC), Evidence
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Fig. 1. Privacy and accountability cloud audit system architecture.

Processor and Presenter (EPP) and Evidence Store (ES). Especially the Evi-
dence Store and the aforementioned collection agents make heavy use of Insynd
to assure that data protection requirements are being met. To a lesser extent,
the AAC and EPP also utilize Insynd for securely transporting evidence.

All components are implemented as software agents based on the Java Agent
DEveleopment framework (JADE) [13] and make heavy use of the JADE Agent
Communication Language (ACL) for agent interaction. In the following, we
describe the architecture components:

Audit Policy Module. The main input to the AAS are machine-readable poli-
cies that describe data handling obligations (e.g., access control), security con-
trols (e.g., service configuration) and data protection mechanisms (e.g., encryp-
tion). From such policies, tasks for collecting evidence, and rules for evaluation
of the evidence with the goal of producing a compliance statement are extracted.
Additional input to the APM is provided by the auditor. We assume, that there
is always a need for at least some manual input for defining an automated audit
because the input policy might not be complete with respect to all the parame-
ters that are required for an automated audit. Such parameters include the audit
type (periodic or event-driven), the frequency (e.g., daily, monthly. . . ) but also
more task-specific information that is not provided by the input policy. Depend-
ing on the actual audit task, the input comprises of policies and auditor-supplied
information:
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1. Policies, which define obligations that have to be fulfilled by the cloud
provider, such as data access restrictions and usage policies, requirements
for the implementation of privacy controls, data retention requirements and
general security requirements. The A4Cloud [1] research project develops a
machine-readable policy language based on the Primelife Policy Language [3]
called Accountability PPL [4]. The A-PPL is capable of describing obligations
providers have to adhere to, such access control rules and data handling (e.g.,
data location, purpose etc.). A-PPL serves as the main input to the Audit
Agent System and for defining audits.

2. It is possible that an input policy does not necessarily include all information
required for mapping policy requirements to specific evidence sources, collec-
tors (e.g., evidence source specific REST client or log parser) and evaluators
(e.g., API endpoints, access credentials). That information is provided by the
auditor.

With the above mentioned data, the APM builds audit tasks - a combination
of evidence collector, processor and presenter agents - and passes that task on
to the Audit Agent Controller for instantiation.

Audit Agent Controller. The AAC is the core component of the Audit Agent
System. Its main responsibility is the management (i.e., instantiation, configura-
tion, deployment) of any type of agent in the AAS. The main input comes from
the APM, which effectively instructs the AAC on how to setup specific audit
tasks. A typical audit task deployment in AAS is called an audit workflow. The
typical audit workflow (depicted in Fig. 2) is as follows:

1. Preparation: The APM extracts audit task configuration from the policy,
combines it with input provided by the auditor and passes it on to the AAC.

2. Configuration: According to the input provided by the APM, the AAC con-
figures audit policies, its tasks and corresponding collection and evaluation
agents.

3. Instantiation: the AAC instantiates the previously configured agents as well
as the associated evidence store.

4. Migration: Agents are migrated from the core platform where the AAC is run-
ning to the target platforms (agent runtime environments as close as possible
to the evidence source).

5. Monitoring : During the agents’ lifetime, the AAC monitors registered plat-
forms and registered agents, handles exceptions, and manages the creation,
archival and deletion of evidence stores

6. Termination: The AAC disposes of the collector and evaluation agents when
they are not needed anymore. It also handles archival and / or deletion of the
corresponding evidence store in that case.

Evidence Processor and Presenter. After the collector agents have gathered
evidence data and stored it in the evidence store, the evaluation agent(s) of an
audit task retrieve that data and analyze it according to the rules that have been
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Fig. 2. Audit Agent System Architecture - Audit Workflow.

extracted from the policies in the preparation phase by the APM. The results
that are produced by the evaluation agents are written back to the evidence
store. A result can either positive (e.g., a message of proven compliance or the
absence of a violation) or negative (e.g., a violation that is detected by the
evaluation agent). Additionally the result is passed on to presenter agents that
inform the auditor about the audit results. Currently the presenter agents can
either display the audit result in a web-based dashboard or pass on the violation
in a machine-readable format to other tools or services via a REST API. The
whole of processor and presenter agents logically forms the EPP component.
It is thereby irrelevant, where these agents are running as long as they are
able communicate via a network, which helps in balancing the load that can be
introduced with complex analysis mechanisms or the sheer amount of evidence
data that needs to be analyzed. According to the complexity of task, due to the
amount of obligations, or the volume of evidence to analyse, different verification
processes may need to be considered for the evaluation agents, ranging from log
mining, checking for predefined tokens or patterns, to automated analysers and
automated reasoning upon the audit trail.

The processing or analysis of evidence consists of two steps:

1. Retrieve the appropriate information from Evidence store.
2. A verification process, which checks the correctness of recorded events accord-

ing to defined obligations and authorizations.

Evidence Store. The ES is the central repository for storing evidence. Some of
the more important characteristics of evidence are that they are associated with
a policy for which they were collected and contain supporting information such
as log entries collected by an agent, which points out a potential policy violation
or incident. For each cloud tenant, there is a separate ES to ensure basic data
protection principles are being adhered to by isolating tenants and their data.
This addresses some of the confidentiality and privacy issues associated with a
share data pool for potentially sensitive information.
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There are several approaches to harmonizing the storage format for digital
evidence that can be reused in the ES such as [15,26,29]. AAS uses a custom
evidence format that is based on concepts described in [26,29].

Securing the transport and storage of evidence is a considerable challenge.
The remainder of this paper focusses on how this is achieved in AAS by utilizing
Insynd.

5 Audit Evidence Storage Requirements

In this Section, we present a comparison of general evidence attributes, how
they apply in the context of evidence collection for cloud accountability audits
and how the integration of Insynd solves key issues in evidence storage.

5.1 Requirements of Digital Evidence

In [19] the core principles of any evidence are described as:

Admissibility. Evidence must conform to certain legal rules, before it can be
put before a jury.

Authenticity. Evidence must be tieable to the incident and may not be manip-
ulated.

Completeness. Evidence must be viewpoint agnostic and tell the whole story.
Reliability. There cannot be any doubts about the evidence collection process

and its correctness.
Believability. Evidence must be understandable by a jury.

These principles apply to common evidence as well as digital evidence. There-
fore, the evidence collection process for audits has to consider special require-
ments, which help in addressing these attributes and ensure best possible validity
in audits and applicability in court.

In Table 1 we present a mapping of the previously described evidence
attributes and how they are supported by the integration of Insynd as a means
of storing evidence records. We thereby focus on the key properties of Insynd as
described in Sect. 3.

Table 1. Mapping the Impact of Insynd Properties to Evidence Attributes.

Insynd
Forward Integrity and Publicly Verifiable Proofs

Deletion Detection

E
vi

de
nc

e
St

or
e

Admissibility
Authenticity
Completeness
Reliability
Believability
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Admissibility of digital evidence is influenced by the transparency of the
collection process and data protection regulation. Digital evidence can be any
kind of data (e.g., e-mail messages, social network messages, files, logs etc.).
Insynd does not have any direct influence on the admissibility of the evidence
stored in it.

Authenticity of digital evidence before court is closely related to the integrity
requirement put on evidence records. Evidence may not be manipulated in any
way and must be protected against any kind of tampering (willingly and acci-
dentally). Insynd ensures that data cannot be tampered with once it is stored.

Completeness is not directly ensured by Insynd, but rather needs to be
ensured by the evidence collection process as a whole. Especially important are
the definition of which evidence sources provide relevant evidence that need to
be considered during the collection phase. Insynd can complement the evidence
collection process by providing assurance of that all data stored in the evidence
store are made available as evidence, and not cherry-picked.

Reliability is indirectly supported by integrating necessary mechanisms into
the evidence collection process, such as Insynd.

Believability of the collected evidence is not influenced by implemented mech-
anisms, but rather by the interpretation and presentation by an expert in court.
This is due to judges and juries usually being non-technical, which requires an
abstracted presentation of evidence. Insynd does not influence the believability
in that sense.

5.2 Privacy Requirements

Not all requirements that a secure evidence storage has to fulfill can be captured
by analyzing the attributes of digital evidence. Other aspects have to be taken into
account to address privacy concerns. Protecting privacy in the process of evidence
collection is utmost importance, since the collected data is likely to contain per-
sonal data. For cloud computing, one limiting factor may be whether or not the
cloud provider is willing to provide deep insight into its infrastructure. Table 2
presents a mapping of privacy principles and properties of our evidence process.

Below we summarise some key privacy principles:

Confidentiality. of data evolves around mechanisms for the protection from
unwanted and unauthorized access. Typically, cryptographic concepts, such
as encryption, are use to ensure confidentiality of data.

Table 2. Mapping of Insynd properties to Evidence Collection Requirements.

Insynd
Secrecy Forward Unlinkability Forward Unlinkability

of Events of Recipients

E
vi

de
nc

e
St

or
e

Confidentiality
Data Minimisation
Purpose Binding
Data Retention
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Data Minimization. states that the collection of personal data should be
minimized and limited to only what is strictly necessary.

Purpose Binding. of personal data entails that personal data should only be
used for the purposes it was collected for.

Retention Time. is concerned with how long personal data may be stored and
used, before it needs to be deleted. These periods are usually defined by legal
and business requirements.

Insynd and our evidence process provides various mechanisms that support
these privacy principles.

Confidentiality. A central property of Insynd is that it is always encrypting data
using public-key cryptography. By encrypting the evidence store, compromis-
ing the privacy of cloud customer data that has been collected in the evidence
collection processes becomes almost impossible by attacking the evidence store
directly. This goes as far as being able to safely outsource the evidence store to
an untrusted third-party, a key property of Insynd [24].

Data Minimisation. Furthermore, Insynd provides forward unlinkability of events
and client identifiers, as described in Sect. 3, which helps prevent several types
of information leaks related to storing and accessing data. Collection agents are
always configured for a specific audit task, which is very limited in scope of what
needs to be collected. Agents are never configured to arbitrarily collect data, but
are alway limited to a specific source (e.g., a server log) and data objects (e.g.,
a type of log events).

Purpose Binding. Neither Insynd nor our evidence process can directly influence
the purpose for which collected data is used. Indirectly, the use of an evidence
process like ours, incorporating secure evidence collection and storage, may serve
to differentiate data collected for auditing purposes with other data collected e.g.,
for marketing purposes.

Retention time poses a real challenge. In cloud computing, the precise location
of a data object is usually not directly available, i.e., the actual storage medium
used to store a particular block is unknown, making data deletion hard. However,
if data has been encrypted before storage, a reasonably safe way to ensure “dele-
tion” is to discarding the key material required for decryption. Insynd supports
forward-secure clients, where key material to decrypt messages are discarded as
messages are read.

In Sect. 7, we also describe the threat model for the system described in this
paper and present an evaluation of how Insynd is used to mitigate these threats.

6 Secure Evidence Storage Architecture

In this Section, we provide an architectural overview of the integration of Insynd
into a secure evidence collection and storage process. We describe the overall
architecture and its components, how the components of Insynd are mapped
into the Audit Agent System and which setup process is required to use Insynd
for securing evidence collection and storage.
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6.1 Architecture

In this Section we discuss the architectural integration of Insynd as an evi-
dence store in our audit system. There are basically three different components
required to perform secure evidence collection. Figure 3 shows an overview of
these components - Evidence Source, Evidence Store and Evidence Processing
(see Sect. 4 and Fig. 1 for reference) - as well as the flow of data between them.
From the various sources of evidence in the cloud, evidence records are collected
that will be stored in the evidence store on a per-tenant basis. The evidence store
is thereby located on a separate server. As previously mentioned, the server may
be an untrusted third-party cloud storage provider. This is important to ensure
so that this approach scales well with a growing number of tenants, evidence
sources and evidence records.

Fig. 3. Evidence Collection, Storage and Processing Workflow.

Evidence Collection. There are various evidence sources to be considered,
such as logs, cryptographical proofs, documentation and many more. For each,
there needs to be a suitable collection mechanism. For instance, a log parser for
logs, a tool for cryptographical proofs or a file retriever for documentation. This
is done by a software agent called Evidence Collection Agent that is specifically
developed for the data collection from the corresponding evidence source. The
collection agent acts as an Insynd Author meaning it uses the Sender API to
store evidence into the Evidence Store. The encryption happens in the Sender
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API. Typically, this agent incorporates or interfaces with a tool to collect evi-
dential data, for instance forensic tools, such as file carvers, log parsers or simple
search tools. Another type of collection agent have client APIs implemented to
interface with more complex tools, such as Cloud Management Systems (CMS).
Generally, these agents receive or collect information as input and translate that
information into an evidence record, before storing it in the Evidence Store.

Evidence Storage. From the Evidence Collection Agent, evidence records are
sent to the Evidence Store. The Evidence Store is implemented by the Insynd
Server. Since Insynd functions as a key-value store for storing evidence records
(encrypted messages identified by a key) NoSQL or RDBMS-based backend for
persisting evidence records can be used. All data contained in the Evidence Store
is encrypted. Each record is addressed to a specific receiver (e.g., an Evidence
Processing Agent). The receiver’s public key is used in the Sender API to encrypt
the record on the Evidence Store. This means that only the receiver is able to
access the evidence data from the Evidence Store. Isolation between tenants in
a single Evidence Store is achieved by providing one container for each tenant
where his evidence records are stored. However, even stronger isolation is also
possible by providing a separate Evidence Store hosted on a separate VM. Addi-
tionally, Evidence records require a unique identifier in the Evidence Store to
enable selective retrieval of records. In our implementation, we use a combina-
tion of a policy identifier and a rule identifier (where a rule is part of a policy) to
enable the receiver to reduce the amount of records to receive to a manageable
size.

Evidence Processing. Evidence Processing components are located at the
receiving end of this workflow. The Receiver API is used by the processing
agent (Insynd Client) to retrieve evidence records from the Evidence Store. The
receiver can request multiple records from a period of time at once. The Client is
also in possession of the corresponding private key to decrypt evidence records,
which means records can only be decrypted at the Client.

6.2 Identity Management and Key Distribution

Since asymmetric encryption is such an important part of our system, we describe
the encryption key distribution sequence next. In this software agent-based sys-
tem, the automated setup of key material and registration with Insynd is par-
ticularly important. Figure 4 depicts the initialization sequence of collection and
processing agents with a focus on key distribution.

In Fig. 4, we introduce an additional component beyond those already
described in the general architecture: the Controller. The Controller serves as an
entry point that controls the agent setup and distribution process in the audit
system. It is an important part of the lifecycle management of the system’s
agents (e.g., creating and destroying of agents or migration between platforms).
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Fig. 4. Evidence Collection Setup Sequence.

In Fig. 4, we describe the initialization sequence for a simple scenario, where a
particular tenant wishes to audit compliance with a policy and one rule included
in that policy in particular. The following steps have to be performed to setup
the evidence collection and storage process for that particular rule:

1. In the first step, a Processing Agent is created and configured according to
the input policy and rule respectively for the tenant.

2. During the setup phase, the Processing Agent sets up a key pair at the
Receiver API. The Receiver API is a RESTful service that holds private key
material and is therefore located at the same servers hosting the Processing
Agents (i.e., a trusted environment).

3. After the key material has been generated, the Processing Agent registers
itself as a recipient at the Sender API. For this, it uses a unique identifier
generated from the policy ID and the rule ID (i.e., policyID.ruleID).

4. In the last step, the Controller sets up the required Collection Agents and
connects them with the corresponding Processing Agents by using the unique
recipient identifier.

Now, it is possible for the Collection Agents to send evidence records to
their corresponding Processing Agents. The messages will be encrypted at the
Sender API service before storage, using the provided recipient’s public key. The
Processing Agent then pulls the evidence records from the Evidence Store using
the Receiver API the records are decrypted using the receiver’s private key.

7 Evaluation

In this Section we present an informal security evaluation of the system we
have implemented for secure evidence collection. We describe the evidence
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collection work flow using a fictitious scenario. By applying the evidence collec-
tion and storage process to the setting described in this scenario, we demonstrate
how the requirements stated in Sect. 5 are addressed. Additionally, we provide a
model that states threats and adversaries to the process as well as the mitigation
functions introduced by Insynd.

In this scenario, the CCOMP company is a customer of the Infrastructure
as a Service provider CloudIA. In particular, we analyze the security properties
of the evidence collection process by looking at the data at rest as well as the
data in transit protection at any time during the flow from the evidence source
to its processor. We thereby assume that CloudIA is using OpenStack [21] as a
its Cloud Management System (CMS), since this a widely popular open source
CMS, which we use for developing our audit agent system. However, any other
CMS could be used as well as long as it provides the needed monitoring interfaces.

7.1 Scenario

CloudIA is specialized in providing its customers with virtualized resources in
the form of virtual machines, networks and storage. CCOMP has outsourced
most of its IT services to CloudIA. Among them is a service that processes data
of CCOMP’s customers. For that data, CCOMP has to guarantee data reten-
tion. CCOMP has identified snapshots to be one major problem with respect
to the data retention policy, since the virtual machine’s storage is duplicated
in the process. This means for CCOMP that in order to be compliant with the
data retention policy, a snapshot of that virtual machine may have a maximum
lifetime of one day, which limits its usefulness to e.g., backing up before patch-
ing. Now, we assume a trustworthy but sloppy administrator at CCOMP who
creates a snapshot before patching software on the virtual machine, but then
omits deleting the snapshot after he is done. However, an automated daily audit
of its cloud resources was put in place by CCOMP to detect such compliance
violations.

7.2 Implementation

The collection agent required for the above scenario communicates with our
OpenStack CMS to gather evidence of the CMS behavior regarding virtual
machine snapshots. The processing agent contains the logic for detecting snap-
shot violations (i.e., base virtual machine and a maximum age of the snapshot
derived from the retention policy). The collection agent is deployed at the CMS
controller node and has access to OpenStack’s RESTful API. The processing
agent is located on the same trusted host as the controller agent (see Fig. 3
for reference). The evidence store is located on a separate, untrusted virtual
machine. Now, the following steps are performed:

1. The collection agent opens a connection to the OpenStack RESTful API on
the same host and requests a history of snapshot events for CCOMP’s virtual
machine. Despite there being no communication over the network, HTTPS is
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used to secure the communication between the collection agent and the CMS.
Since the policy only requires information about snapshots to be collected,
the CMS agent limits evidence record generation to exactly that information,
nothing more.

2. The collection agent sets up the receiver of the evidence according to the
process depicted in Fig. 4 and sends the collected records to the evidence
store (Insynd). The communication channel is encrypted using HTTPS and
the payload (evidence records) is encrypted with the receiving agent’s public
key.

3. The processing agent pulls records from the evidence store in regular intervals
(e.g., every 24 h), analyses them and triggers a notification of a detected
violation. The communication between the processing agent and the evidence
store is secured using HTTPS.

4. In the last step, evidence records are deleted because their retention limit has
been reached. This is done by discarding the keys required for decryption.

7.3 Threat Model

To demonstrate which security threats exist for the evidence collection process
and Insynd is used to mitigate them, we describe the threat model for this system
categorized according to the STRIDE [18] threat categorization:

– Spoofing Identity
– Tampering with Data
– Repudiation
– Information disclosure
– Denial of Service
– Elevation of Privilege

We have identified the following major threats to the evidence collection and
storage process:

– Unauthorized access to evidence (S,I): the protection of evidence from being
accessed by unauthorized persons. Possible adversaries are a malicious third-
party evidence storage provider (cloud service provider), another tenant (isola-
tion failure) or an external attacker. Using Insynd for evidence collection and
storage addresses this threat since recipients of messages are authenticated
using appropriate mechanisms such as user credentials for API authentication
and public keys for encryption.

– Data leakage (S,I): the protection from unintentional data leakage. This could
be caused by misconfiguration (e.g., unencrypted evidence being publicly
available). Using Insynd for evidence collection and storage addresses this
threat by encrypting data by default.

– Eavesdropping, (T,I): the protection of evidence during the collection phase,
especially in transit. Possibly adversaries are another tenant (isolation failure)
or external attackers in case evidence is transported to an external storage
provider or auditor. Using Insynd for evidence collection and storage addresses
this threat by using transport layer as well as message encryption.



Security and Privacy Preservation of Evidence 111

– Denial of Service (D): the protection of the evidence collection and storage
process from being attacked directly with the goal of disabling or shutting it
down completely (e.g., to cover-up simultaneous attacks on another service).
Possible adversaries are external attackers. This is a very generic threat that
cannot be addressed by a single tool or control but rather requires a set a
measures (on the network and application layer) to enhance denial of service
resilience.

– Evidence manipulation (T,R,I): the protection of evidence from intentional
manipulation (e.g., deletion of records, changing of contents, manipulation of
timestamps). Possible adversaries are malicious insiders and external attack-
ers. Using Insynd for evidence collection and storage addresses this threat,
since Insynd provides tampering and deletion detection.

Some of these threats can be mitigated by implementing appropriate secu-
rity controls (i.e., using Insynd for evidence transport and storage). It provides
effective protection by employing security techniques described in Sect. 3.

7.4 Requirements Evaluation

In this section, we evaluate the integration of Insynd against the requirements
described in Sect. 5. In step 1 of the fictitious scenario, the data minimization
principle is being followed because the specialized agent only collects evidence
on the existence of snapshots.

This workflow is secure as soon as the collection agent inserts data into the
evidence store in step 2. More precisely, evidence records are tamper-evident
and encrypted. This is true, even though the evidence is actually stored on an
untrusted virtual machine. The only way to compromise evidence now, is to
attack the availability of the server hosting the Insynd server.

When the processing agent in step 3 retrieves records for evaluation, it can
be assured of the authenticity of the data and that it has been provably collected
by a collection agent. Since evidence records may be subject to maximum data
retention regulation, records that are not needed anymore are deleted.

As previously mentioned in Sect. 6 we use JADE as an agent runtime. To
secure our system against non-authorized agents, we use the TrustedAgents add-
on for the JADE platform. This ensures that only validated agents are able to
join our runtime environment. This effectively prevents agent injection attacks,
where malicious agents could be inserted at either the collection or processing
side to compromise our system.

As can be seen, the evidence records are protected all the way from the
evidence source to the processing agent using only encrypted communication
channels and having an additional layer of security (message encryption) pro-
vided by Insynd. Additionally, while the evidence is being stored, it remains
encrypted.
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7.5 Scalability

Obviously, since there is a vast amount of evidence sources and therefore a
potentially equal number of collection agents, ensuring the scalability of the
process and the implementation is very important. This has been considered
very early in the design process by choosing an software agent-based approach
for the system architecture. Software agents are inherently distributable and
allow for complex message flow modeling in an infrastructure. Therefore, the core
components evidence collection, storage and processing become distributable as
well. In our future work, we’ll focus on the scalability aspects. We will follow a
methodology where we focus on the following technical key scalability indicators:

– Data transfer volume: amount of evidence data being transferred over the
network

– Message volume: amount of evidence message transmissions over the network
– Storage volume: amount of storage required for evidence
– Encryption overhead: performance impact introduced by encryption and

decryption

Based on the identified performance impact of each of these indicators, in the
second step, we model different message flow optimization strategies to alleviate
their impact and ensure scalability.

8 Conclusion and Future Work

In this paper, we presented our system design and implementation for secure
evidence collection in cloud computing. The evidence provides the general basis
for performing cloud accountability audits. Accountability audits take a large
variety of evidence sources and data processing requirements into account.

We showed what the requirements for a secure evidence collection process
are and demonstrated how these issues are addressed by incorporating Insynd
into our system. We described how the core principles of digital evidence are
addressed by our system. Additionally, we considered data protection principles
for the evidence collection process, how they influence our approach and how
they are addressed in our system by integrating Insynd. For this, we presented
the relevant architectural parts of our prototype. Additionally, we provided an
overview of how the evidence collection is integrated in our system for automated
cloud audits.

In our future work, we will focus on the scalability of our audit system in
general and the scalability of the components involved in evidence collection in
particular. For that reason, we will focus on the distribution of the audit sys-
tem and evidence collection not only in the same domain (i.e., in the same
infrastructure), but also taking into account outsourcing and multi-provider
collection scenarios.

Acknowledgements. This work has been partly funded from the European Com-
mission’s Seventh Framework Programme (FP7/2007–2013), grant agreement 317550,
Cloud Accountability Project - http://www.a4cloud.eu/ - (A4CLOUD).

http://www.a4cloud.eu/


Security and Privacy Preservation of Evidence 113

References

1. A4Cloud FP7 Project (2015). http://www.a4cloud.eu/
2. An, J.H.: Authenticated encryption in the public-key setting: security notions and

analyses. IACR Cryptology ePrint Archive 2001, 79 (2001). http://eprint.iacr.org/
2001/079

3. Ardagna, C.A., Bussard, L., Vimercati, S.D.C.D., Neven, G., Paraboschi, S.,
Pedrini, E., Preiss, S., Raggett, D., Samarati, P., Trabelsi, S., Verdicchio,
M.: Primelife policy language (2009). http://www.w3.org/2009/policy-ws/papers/
Trabelisi.pdf
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