High Level Model Checker
Based Testing of Electronic Contracts

1(5) 2

Ellis Solaiman , Toannis Sfyrakis!, and Carlos Molina-Jimenez
1 School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
{ellis.solaiman,i.sfyrakis}@ncl.ac.uk
2 Computer Laboratory, University of Cambridge, Cambridge, UK
carlos.molina@cl.cam.ac.uk

Abstract. Within cloud and Internet-based collaborative settings, a
business contract (service agreement) is a specification that describes per-
missible interactions between partners. Specifically, a business contract
stipulates what operations the business partners have the rights, oblig-
ations or prohibitions to execute; it also specifies when the operations are
to be executed and in which order. The main purpose of an electronic con-
tract is to regulate (monitor and/or enforce) electronic service exchanges
between the contracted parties, making sure that participants adhere to
the service agreement in place. Because of the dynamic nature of Inter-
net and cloud-based relationships, the rapidity at which electronic con-
tracts are constructed, verified for correctness, tested, and deployed is an
extremely important factor. This paper describes a model checker based
framework for supporting automated testing and deployment of electronic
contracts. The central components of the framework are a contract mon-
itoring service called the Contract Compliance Checker (CCC), the SPIN
model checker coupled with EPROMELA, a high-level language developed
specifically for modeling electronic contracts, and the LTL Manager; a
graphical tool developed in order to aid with the specification of correct-
ness properties in Linear Temporal Logic (LTL). We describe how the LTL
Manager can used to create a repository of common contract related LTL
templates, which then can be easily selected and parameterized by the con-
tract designer. We also describe how SPIN can be used to automatically
generate execution sequences from an EPROMELA model of a contract,
and how such sequences can then be used to test the correctness of the
model equivalent electronic contract deployed to the CCC.

Keywords: Serviceagreement - Electronic contract - Service monitoring *
Model checking - Automated testing * Service oriented computing - Cloud
computing

1 Introduction

The context of this paper is Internet and cloud-based interactions conducted
between two or more business partners. Such relationships are normally preceded
© Springer International Publishing Switzerland 2016

M. Helfert et al. (Eds.): CLOSER 2015, CCIS 581, pp. 193-215, 2016.
DOI: 10.1007/978-3-319-29582-4_11

194 E. Solaiman et al.

by the negotiation and signing of business contracts also known as legal service
agreements (SA). Legal agreements, explicitly define the permissible actions of
the interacting parties, thus providing a legal basis for the resolution of any dis-
putes. A Legal agreement can also be used as a guide for developing an electronic
contract [1].

An electronic contract is an executable version of the service agreement,
and its main purpose is to regulate (monitor and/or enforce) electronic service
exchanges between the contracted parties, checking that business participants
adhere to the SA in place, and that performed actions comply with various
message timing and sequencing constraints. Electronic contracts are not confined
to the business domain, and can also be used for example to monitor/enforce
SAs between the components of distributed systems in the cloud and/or the
“Internet of Things”.

trusted third party

response:
CCINCC

electronic
contract

CCC
)

Y

biz events (S, TF,BF)

e i 0,
i\ Synchronizer U,
U 00’77@

buyer monitoring channel seller

f ;

communication channel

Fig. 1. The CCC deployed as a contract monitor.

Constructing an electronic contract that is correct (free from conflicts, and
which correctly represents the requirements of the original legal document), is
a challenging and time-consuming task. Cloud-based business relationships can
be both complex and of a highly dynamic nature [2]. Therefore, it is important
that the process of converting a legal document into an electronic contract that
is correct is automated. Previous work towards this goal has been extensive and
has covered problems such as electronic contract representation and modeling [3],
and contract verification [4,5]. Naturally, ensuring that a model of an electronic
contract is correct, does not guarantee that the electronic contract itself is also
correct. In this paper, we focus on the challenge of testing that an electronic
contract acts correctly at run-time, and that modifications and/or corrections
that need to be made to the rule base of the electronic contract can be applied
quickly. To this end, we develop a high-level model checker based framework to
support automatic electronic contract deployment and testing.

The central component of our framework is the contract compliance checker
(ccc) (Fig.1) [6,7], which together with the deployed electronic contract is
our System Under Test (SUT). The CCC is an independent contract monitor-
ing service that when provided with an executable specification of a contract,

High Level Model Checker Based Testing of Electronic Contracts 195

can be deployed by the contracted parties or by a third party. The CCC is
able to observe and log relevant interaction events, which it processes to deter-
mine whether the actions of the business partners are consistent with respect to
the rights, obligations, and prohibitions declared in the original legal contract.
Namely, the CCC declares interaction events as either contract compliant (CC')
or non contract compliant (NCC). As can be seen in Fig. 1, business partners
use a communication channel for exchanging their business messages. In addi-
tion, they use a monitoring channel for notifying events of interest to the CCC.
Notably, the figure shows that the CCC can cope with exceptions and failures,
observing events that have been declared by the interacting parties as either S
(successful), TF (technical failure), or BF (business failure).

The ability of the CCC to correctly declare interaction events as (CC) or
(NCC) relies on an executable contract that has been specified correctly. Our
goal is to provide a framework that enables; rapid testing of a deployed exe-
cutable contract, and rapid update of the contract rules when testing detects
errors. To do so, one must be able to exhaustively supply the CCC with execution
sequences that it would be expected to observe during runtime. Our approach
is to resort to model checker based testing. Previous research [8] describes the
basic idea: construct a behavioral model of the SUT and validate the behavior
using a model checker. Such a validated model can then be used for generating
executable test cases for the SUT.

The model checking tool we use is SPIN [9], a tool originally designed for the
verification of communication protocols. SPIN’s input language, Promela, pro-
vides constructs for modeling communication concepts such as messages, chan-
nels, and basic data types that include bit, bye, arrays, etc. Using these basic
constructs alone for modeling electronic contracts, at a sufficiently high level of
abstraction and in any consistently standard fashion, is almost impossible. This
in turn makes the process of generating accurate execution sequences required
for testing the CCC difficult. Another difficulty is that specifying the contract
correctness requirements is not easy. The contract designer needs to master both
Promela, the input language of SPIN, and LTL (Linear Temporal Logic), the
language for expressing correctness properties [10]. It is widely acknowledged
that LTL is a powerful language for expressing correctness properties. Yet it has
proven to be hard to master for non—experts in temporal logic. For instance,
the LTL syntax traditionally accepted by SPIN is low level and based on the
basic temporal logic operators (!, [], <>, etc.), which results in LTL formula
that are not easy to read or write. In addition, the semantics of LTL formula are
very subtle; thus writing an LTL formula that captures the intended correctness
requirement within a Promela model is particularly challenging and error prone.

To address these challenges, we explore the development of a high level
modeling and deployment framework. A fundamental component of our testing
framework is EPROMELA, a high level language developed specifically for mod-
eling electronic contracts [5]. EPROMFELA extends Promela with constructs for
expressing core electronic contract concepts contained in the CCC, thus enabling
the construction of a contract model at a level of abstraction that is equivalent to

196 E. Solaiman et al.

the actual electronic contract. In addition, we have developed the LTL Manager
[11], a graphical tool and a repository that can be populated by LTL experts
with LTL templates (LTL formula with abstract variables) of typical correctness
properties required for electronic contracts, together with their English language
descriptions. These LTL templates can then be selected and parameterized by
contract designers in order to produce LTLs that are specific to their require-
ments. The LTL properties are then mechanically included in the EPROMELA
models and presented to SPIN for verification.

The overall contribution of this paper is to describe how SPIN, EPROMELA,
and the LTL Manager can be instrumented with the aid of appropriate automa-
tion and message parsing tools, to automatically produce business events that
can accurately test the executable electronic contract deployed within the CCC
service.

The remainder of the paper is structured as follows: In Sect.2 we describe
key electronic contracting concepts with the aid of a simple example. Section 3
is dedicated to presenting our model checker based testing framework and its
constituent tools. In Sect.4 we present research work that is related to ours.
Conclusions and future directions are discussed in Sect. 5.

2 Background

In order to elaborate key electronic contracting concepts, we present a simple
scenario. Let us assume that Fig.1 describes a relationship where two organi-
sations, a Buyer and a Seller (a store), agree to a business contract. Below are
some of its clauses:

1. The buyer can place a buy request with the store to buy an item.
2. The store is obliged to respond with either buy confirmation or buy rejec-
tion within 3 days of receiving the buy request.
(a) No response from the store within 3 days will be treated as a buy rejection.
3. The buyer can either pay or cancel the buy request within 7 days of receiving
a confirmation.
(a) No response from the buyer within 7 days will be treated as a cancellation.

The clauses of such a legal agreement should take into consideration all relevant
business operations (shown in bold in the contract text). A business contract
specifies a well defined list of business operations. A business operation is a
business activity which the participants are able to perform under certain condi-
tions. In the CCC, business operations are used to formally define the vocabulary
(alphabet) of the interaction. We use B= {boy, ..., bo, } to represent all the valid
business operations in the contract. The buyer and seller are regarded as role
players interested in executing the operations is a shared fashion. The set of
valid role players is represented by RP= {rp, ...,rp,}

The execution of each business process generates an individual outcome event
which is passed to the synchronizer shown in Fig. 1 through the monitor channel.
The synchronizer integrates the pair of individual outcomes from each side into

High Level Model Checker Based Testing of Electronic Contracts 197

a single business event. This business event is sent to the CCC. As a monitor,
the responsibility of the CCC is to determine whether a given event presented
to it represents the notification of a contract compliant operation C'C, or a none
contract compliant operation NCC. To be able to make this determination, the
CCC keeps track of the state of interaction as a Finite State Machine (FSM) with
states being determined by enabling and disabling the current rights, obligations
and prohibitions of the role players in force.

2.1 ROP Ontology

A contract distinguishes operations as Rights, Obligations, and Prohibitions (the
ROP set). A Right is an operation that a party is allowed to perform under
certain conditions, an Obligation is an operation that a party is expected to do
under certain conditions, and a Prohibition is an operation that a party is not
allowed to do under certain conditions.

We define an individual right r;, obligation o; or prohibition p; as a set of
operations where: r; € B, 0o; C B, and p; C B. For a particular role player
RP; Ryp = {r1,....rn}; Opp = {01,...,0n}; and P, = {p1,...,pn}, represent the
sets of rights, obligations, and prohibitions currently assigned to the role player
RP respectively. The sets of rights, obligations, and prohibitions of an RP are
represented as ROP, ..

2.2 Choreography of Interaction

To support our discussion, we will use a graphical representation of the con-
tract written in BPMN (Business Process Management Notation) choreography
language [12] (see Fig.2). The figure involves five activities, each resulting in
a message (BuyReq, BuyRej, BuyConf, BuyPay, BuyCanc) being sent from a
sender (shown as a white label in each activity), to a receiver (shown as a shaded
label). These messages correspond to the five business operations (buy request,
buy reject, buy confirmation, buy payment, buy cancellation) shown in bold in
the English text of the contract. The diamonds in the figure are gateways. The
figure includes two exclusive fork gateways (Gl and G2) and a single exclusive
merge gateway (G3).

The choreography specification describes, from a global perspective, all per-
missible message sequences that can be exchanged between the partners, and is
used by the interacting parties for two purposes: (i) designing and implementing
their individual parts of the business process; and (ii) it is also very useful as a
guide for developing the electronic contract.

2.3 Electronic Contracts

The electronic contract designer is able to use the legal contract and choreogra-
phy in order to accurately identify and extract the ROP set attributed to the
business partners, and to specify the rules which operate on the ROP set [13].

198 E. Solaiman et al.

&
' BuyRej
[7| Store
rej ™M
' BuyPa
g z Buyer
1 BuyReq ' BuyConf pay
‘ Buyer‘ ‘ Store ‘
&

O" Buyer Store
req conf
startEv G2 ' BuyCanc , endEv

Fig. 2. Correct choreography of contract example.

Rule implementation requires an appropriate specification language; contract
rules written for the CCC monitoring service are currently realized using the
Drools Rule Language [14].

An example of a rule that deals with receipt of a buy request event by the
CCC, written using Drools can be seen below. Line 5 checks that the buyRequest
operation is a right that the buyer is currently allowed to perform. If so then
buyRequest is declared by the CCC as contract compliant (line 13). This opera-
tion is also removed from the buyer’s ROP set (line 8), meaning that the buyer
no longer has a right to perform this operation. At lines 10 and 11, the seller is
given an obligation to perform one of 2 operations: buyConfirm, or buyReject.

1 rule "Buy Request Received"

2 //Verify type of event, originator, and responder

3 when

4 Se: Event (type=="BUYREQ", originator=="buyer",
responder=="gstore", status=="success")

5 eval (ropBuyer .matchesRights (buyRequest))

6 then

7 //Remove buyer'’s right to place other Buy Requests

8 ropBuyer.removeRight (buyRequest, seller);

9 //Add seller’s obligation to either accept or reject order

10 BusinessOperation[] bos = {buyConfirm, buyReject};

11 ropSeller.addObligation("React To Buy Request", bos, buyer,
60,2);

12 System.out.println("x Buy Request Received rule triggered");
13 responder.setContractCompliant (true)
14 end

High Level Model Checker Based Testing of Electronic Contracts 199

Each of the activities declared in the choreography of Fig. 2 has a rule such as the
one shown above. Typically, for each activity in a choreography, each business
partner can have several rights, obligations, and prohibitions in force.

Once an electronic contract specification has been completed, it can be loaded
into the CCC for deployment. As operations are executed, and events are received
by the CCC; rights, obligations, and prohibitions are granted to and revoked as
specified by the rules. Therefore within the CCC, a right, obligation or prohibi-
tion can be in one of two states only: inactive or active.

Drools as a language for specifying electronic contracts is verbose, and not as
declarative and readable as would be ideal. A much more suitable tool is EROP a
language that we developed precisely for the specification of electronic contracts.
EROP (for Events, Rights, Obligations, and Prohibitions) was first introduced
in [6], and we have just completed a tool for automatically translating EROP
to Drools. The EROP to Drools Translator has been developed using Java, and
ANTLR [15]. The translator takes as input an EROP file and outputs a Drools
file containing the contract rules. An example of an FROP to Drools conversion is
shown in Fig. 3. A detailed description of the EROP language can be found in [6].

rule "BuyRequestReceived"

when e matches (botype == BUYREQ,
originator == buyer,
responder == store,outcome == success)

BuyRequest in buyer.rights

then
buyer.rights -= BuyRequest (seller
seller.obligs += ReactToBuyRequest (buyer)

rule "BuyRequestReceived"

when $e: Event (type == "BUYREQ",
originator == "buyer",
responder == "store",status == "success")

eval (ropBuyer .matchesRights (buyRequest))
then

ropBuyer.removeRight (buyRequest, seller);
BusinessOperation[] bos = {buyConfirm,
buyReject};

end ropSeller.addObligation (reactToBuyRequest

bos,buyer) ;
end

Fig. 3. EROP to Drools conversion.

2.4 Contract Compliance Within the CCC Monitor

The overall architecture of the CCC is described in detail in [11]. The CCC
processes each event to determine if it is contract compliant (CC) or none con-
tract compliant (NCC). A business event is received by the CCC as an XML
document that includes the names of the participants, the business operation,
and its outcome from the set: (Success, BizFail, TecFail):

<event>
<originator>buyer</originator>
<responder>seller</responder>
<type>BuyReqg</type>
<status>success</status>
</event>

The event shown here is produced as a result of the implementation of a con-
versation synchronization protocol between the interacting parties. The protocol
guarantees mutually agreed conversation outcomes. It is the responsibility of the

200 E. Solaiman et al.

interacting partners to apply the protocol. A detailed discussed can be found
in [16]. The CCC inserts the response into an outcome queue, which can be
accessed by the contracted parties. The response is of the format:

<result>
<contractcompliant>true|false</contractcompliant>
</result>

The execution of a business operation (observed from the outcome event) is said
to be CC if it satisfies the following three conditions and is said to be NCC' if
it does not:

(1) bo; € BO; the business operation matches an operation within the set of
business operations expected by the CCC,

(2) bo; F ROP,,; the business operation matches the ROP set of its role player
(meaning, the role player that performed the operation has aright /obligation/
prohibition to perform that particular operation). By “match”, we mean that
for avalid business operation bo;, and a particular role player’s ROP set; ROF,.,
where: Rrp = {r1,...,rm}, Orp ={01,... .0}, Prp ={p1,- .. .pm }, and m > 1,
their relationship should be that: bo; € r; or bo; € o; or bo; € p;, where 1 < j
<m.

(3) the business operation must also satisfy the constraints stipulated in the
contractual clauses. An example of a constraint is the seven day deadline in
clause 3 of the contract discussed earlier.

We also consider that the execution of a given sequence of operations is NCC' if
it includes one or more operations that are flagged by the CCC as NCC. A sequence
of operations is also known as an ezecution sequence or execution trace and drives
the choreography from its initial state to a final state.

2.5 Exception Handling

The legal contract example and corresponding choreography of Fig. 2, deal with
successful outcome events only. However, a contract monitoring service such as
the CCC should also be able to observe outcome events that include exceptional
circumstances [17]. Therefore, following the ebXML standard [18], we assume
that at the end of a business conversation, each party independently declares an
execution outcome event from the set {Success(S), BizFail(BF), TecFail(TF)}
as shown in Fig. 1. Success events model successful execution outcomes. TecFail
models protocol related failures detected at the middleware level, such as a late,
or a syntactically incorrect message. BizFail models semantic errors in a message
detected at the business level, e.g., the credit card details extracted from the
received payment document are incorrect.

Adding exceptional outcome events to the CCC’s set of observable events,
naturally means that the CCC has to monitor a much larger number of execution
sequences. The task of generating these in order to test the CCC effectively is
extremely challenging, and strengthens the case for needing to automate the
testing process.

High Level Model Checker Based Testing of Electronic Contracts 201

3 Model Checker Based Testing Framework

To be able to claim that an electronic contract within the CCC is correct and
conflict free, we need to test that it can correctly identify contract compliant and
non-contract compliant executions of sequences and their constituent business
operations. To this end, one needs to be able produce sequences of operations
that are known to be contract compliant, and also produce sequences that include
both contract compliant and non contract compliant operations.The challenge
here is the production of such sequences.

Figure4 shows the main elements of our testing framework. Squares with
smooth corners represent humans involved in the design process. Tools are rep-
resented by solid squares with sharp corners, and dashed squares represent data.
The framework has been updated with 2 new tools since our work in [19] with
the addition of the LTL Manager, and the FROP to Drools Translator.

Electronic contract models are constructed using EPROMELA, a model-
ing language we developed specifically for modeling electronic contracts [5].
EPROMELA is essentially a high-level tool that extends SPIN’s modeling lan-
guage Promela with constructs for expressing core electronic contract concepts
contained in the CCC. Correctness properties that an EPROMELA model is
expected to satisfy, can be expressed by the model designer using Linear Tem-
poral Logic (LTL), which is not an easy task. The LTL Manager is a tool we
have developed in order to help the contract designer with expressing correct-
ness properties using LTL. When provided with a model of the contract and
appropriate LTL properties, SPIN is able to verify the correctness of the model
with respect to those properties. With the aid of tools for message parsing and
automation, SPIN also can be instrumented to generate message sequences that
can be used to test the ability of the CCC to detect contract compliant and
non contract compliant message sequences, a process that we will describe next.
Model checker based sequence generation follows these steps:

1. The designer constructs an abstract model of the System Under Test (SUT)
using EPROMELA, and verifies that the model is correct in that it satisfies
the correctness properties of interest.

2. The verified abstract model is used for generating execution sequences. This
is done by presenting the verification tool with the verified abstract model,
together with a negated correctness requirement in LTL (a trap property), and
then challenging the verification tool to find and produce counter examples
that violate the LTL.

3. Each counter example contains an execution sequence that can be extracted
with the aid of a message parsing tool.

3.1 EPROMELA Interaction Model

An abstract view of EPROMELA components is shown in Fig. 5, which essen-
tially models the system depicted in Fig. 1. The Business Event Generator (BEG)

202 E. Solaiman et al.

1 ! electronic !
I natural 1 contract ! contractin |
l-cznract text | designer ! EROP \

EROP to
contract Trg::;(l)alior
designer

________ CcC
M LTL : model of :
anager | contractual | T
1 operations 1
_________ iy message
| negated (trap) ' parsing tool
: properties in 1 I
| LTL ' R S .
SPIN model ' message |
checker : sequences |
_________ 1

Fig. 4. Model Checker based testing framework.

generates events that are simulations of events generated by the interacting par-
ties; for example a payment event placed by the buyer. The Contract Rules Man-
ager (CRM) together with the ROP sets and the ECA rules (rule base) represent
the CCC. The CRM is responsible for including rules as needed. The BEG and
CMR communicate by two uni-directional channels (BEG2R and R2BEG). The
contract rules are composed in a separate file. The ROP sets contain information
about the rights, obligations, and prohibitions currently in force. For a full descrip-
tion, see [5]. The rule base contains a rule for each business event representing the
outcome of an operation execution. So for a business operation such as “submit
purchase order” there will be a rule for the operation terminating successfully (S),
and optionally (depending on whether the contact has clauses dealing with failure
outcomes) a rule for the operation terminating in a technical failure (TF) and one
for the operation terminating in a business failure (BF).

The execution behavior of the interaction model shown in Fig.5 is as fol-
lows: (1) BEG generates event be; and sends it through the BEG2R channel;
(2) CRM reads be; from the BEG2R channel; (3) CMR includes the contract
rule R; corresponding to be;; (4) R; checks be; against the ROP sets, and executes
the coded action if the associated conditions are satisfied; (5) R; sends its deci-
sion about be; (either contract compliant or non—contract—compliant) through
the R2BEG channel; (6) BEG extracts the decision from the R2BEG channel

and resumes its event generation process.

3.2 Model Construction and Verification

Below is an example of a rule within of our EPROMELA contract model. The
rule deals with the BUYRRE(Q operation of Fig.2. Each of the operations for

High Level Model Checker Based Testing of Electronic Contracts 203

LTL Formulae ECA electronic contract rules
Ry ,Ry oy R,
(" Business Business Business){ Business
operation operation operation i operation
| mmmm= i
! --
[R,0,P] [R,0,P] [R,0,P]] ROP i
_ \>==-- ;
Busg?s,s,/\ BEGIR : \contll'act @
Event Rule

Generator Manager
(BEG) R2BEG_ (CRM)

® ®

Fig. 5. EPROMELA interaction model.

the choreography in Fig.2 has a rule which updates the status of the ROP set
belonging the participants as they transition from state to state. Notice that we
include within the rule, print statements that produce XML events. These are
XML events that will eventually be extracted and used to automatically test the

ele

ctronic contract deployed in the CCC. The end of each execution sequence is

marked using a reset message.

RULE (BUYREQ)
{
WHEN : : EVENT (BUYREQ,
IS_R(BUYREQ, BUYER), SC (BUYREQ)) ->{

SET_ X (BUYREQ, BUYER) ;
atomic{
printf ("<originator>buyer</originator>") ;
printf ("<responder>store</responder>") ;
printf ("<type>BUYREQ</type>") ;
printf ("<status>success</status>");

}

SET_R (BUYREQ, 0) ;

SET_O (BUYREJ, 1) ;

SET_O (BUYCONF, 1) ;

RD (BUYREQ, BUYER, CCR, CO) ;

}

END (BUYREQ) ;

Line 3 of the model deals with receiving a successful buy request event

SC
ar

(BUYREQ) . IS_R(BUYREQ, BUYER) is a guard that checks if the BUYER has
ight to perform the BUYREQ operation. If so, then SET_X (BUYREQ, BUYER)

declares that this operation has been executed, and the buyer’s right to execute
BUYREQ is removed at line 11. The rule then sets an obligation to the Store

204 E. Solaiman et al.

to execute either BUYREJ or BUYCONF (lines 12-13). At line 6 we introduce
the print statements required for parsing the generated execution sequences. The
print statements produce XML events in the format expected by the CCC. Each
of the operations BUYREQ, BUYREJ, BUYCONF, BUYPAR, BUYCANC, has
a rule such as the one above.

When the entire EPROMELA model has been constructed, SPIN can be used
to verify that the model is free from any inconsistencies. Common correctness
properties such as absence of deadlocks and reachability of states, can easily be
checked using SPIN’s configuration options. Checking for contract specific correct-
ness properties however, requires the application of Linear Temporal Logic (LTL)
formula. Typical correctness properties of the electronic contracting domain are
those that express mutual exclusion of rights, obligations, and prohibitions; for
example the requirement that the execution of a given operation (such as making a
purchase order) is never simultaneously obliged and prohibited. Thanks to the con-
tract constructs offered by EPROMELA, this correctness requirement can be ele-
gantly and intuitively expressed in LTL as follows: [1! (IS_O (BUYREQ, BUYER)
&& IS_P (BUYREQ, BUYER)) where [] isthe LTL always operator. ! is the uni-
versal not, IS_O (BUYREQ, BUYER) returns true if the BUYREQ operation is cur-
rently obliged and IS_P (BUYREQ, BUYER) returns true if the BUYREQ operation
is currently prohibited. Instructing SPIN to run through the EPROMELA model
using this LTL, will drive SPIN to find any examples that violate this property. If
such an example is found, then it is presented as a counter example to the designer,
who must then correct the model.

3.3 The LTL Manager

As discussed earlier, Linear Temporal Logic (LTL), which we use for specifying
contract correctness requirements, is not easy to master. In order to deal with
this challenge, we have developed the LTL manager, a graphical interface that
can be used by contract designers to include correctness properties within their
EPROMELA models. The LTL manager offers the capability of editing LTL
templates (LTL formula with abstract variables), and stores them in a database.
The database is a repository of typical contract LTL formula that can be popu-
lated by LTL experts. Once the LTL repository has been populated, a contract
designer can retrieve an LTL template of interest, parameterize, and include it
in an EPROMELA model. The SPIN model checker is invoked from the LTL
manager by the designer. It takes EPROMELA models augmented with LTL
correctness properties and verifies whether the LTLs are satisfied or violated.
Details of how to download the LTL Manager can be found in [19].

Using the tool (see Fig. 6): (a) the LTL expert specifies and adds to the tem-
plate repository, common LTL templates that are of interest to contract designers.
This needs to be done in natural language (Description box), and in LTL syntax
(Formula box). (b) the contract designer can then load the LTLs from the data-
base, select, and parameterize those templates of interest. As can be seen in Fig. 6,
the @vle @v2@ @v3@ @v4@ variables are LTL propositional symbols that can be
parameterized. The tool offers a drop—down list that has all six operations (BuyReq,

High Level Model Checker Based Testing of Electronic Contracts 205
8enn BPMN verifier
File LTLMngmt Tools Help
Descripti...
Formula Nickna...
e ———— e S L Gy Add LTL
CD) GO (D) D) (=) (D) =) v (eve@)
eventually @V1@
Description DELETE
Formula <@vVi@ Nickna... eventually
always @V2@ Is followed by either @V3@ or @V4@
Description DELETE
Formula [(@V2@-> <>(@V3@ || @V4@)) Nickna... implication
800 BPMN verifier

File LTLMngmt Tools Help

BuyerStoreChore 4] (Properties) (View Image)

always [BuyReq [#] is followed by either | BuyConf [$] or [BuyRej |4

‘ Add

‘ Delete

BuyConf
BuyRej
BuyPay

always [BuyConf 8] is followed by either [BuyPay 18] or

| A
BuyReq

[o

Fig. 6. Using the LTL Manager to (a) create LTL templates and (b) parametrize them.

BuyRej, BuyConf, BuyPay, BuyCan) included in the choreography of Fig. 2. The
designer selects the desired parameters as shown in Fig. 6, and the LTL Manager
automatically creates the correct LTLs. After the LTL pattern has been parameter-
ized in the previous step, the designer can now simply validate the model by pressing
the Add button, and then the Validate button on the next screen (not shown here).
The results of the validation are then displayed to the designer. In this case, both
LTLs are satisfied by the validation model; consequently, SPIN displays errors: 0.
If on the other hand, the designer adds an LTL property that cannot be satisfied by
the model; for example (<> BuyPay) (all execution paths must eventually result
in BuyPay to be executed), SPIN signals that the formula is violated, and displays
errors: 1. In addition, SPIN creates a trail file in the working folder that can be used
by the designer to trace the source of the error within the model.

3.4 Generating the Test Sequences

Once the contract model has been verified for required correctness properties,
it can be used as an oracle for producing sequences that can test the electronic
contract. Test sequence generation is very similar to verification in that we make
use of LTL properties. We can instruct SPIN to find undesirable examples of

206 E. Solaiman et al.

sequences that violate a desirable property. But we also need to be able to
instruct SPIN to find desirable sequences that violate a non-desirable property.
The latter is done by negating a desirable LTL property converting it into a trap
property.

As a very simple example, let us instruct SPIN to generate all sequences of
messages that end with a BUYRFEJECT operation. The LTL formula required for
this task is: !'<>IS_X (BUYREJ, STORE) where < > is the LTL eventually
operator. The formula states that the model will not eventually reach a
state where BUYREJ is executed. SPIN can now be instrumented to show all
sequences that do end with BUYREJ. From the command line, we apply the fol-
lowing steps (CorrectChore is the name if the file that contains the EPROMELA
model):

O

1. spin -a CorrectChore is used for generating the verifier source code

in C.
2. % cc -o pan pan.c is used for compiling the verifier.
3. % ./pan -a -e -c100 instructs SPIN to produce all the counter examples

(trail files) that it can find, which violate the trap property. By default, SPIN
produces the first one it finds and stops. The —~c100 parameter instructs SPIN
to generate the first 100 counter examples it finds. The number of counter
examples requested needs to be above the actual number of counter examples
that SPIN could possibly find. This number can be determine by the designer
using trial and error.

4. spin -tN -s -r -B CorrectChore converts the N trail file into a
text file that includes the XML messages involved in the execution sequence.

Given the potentially large number of trail files that can be produced by SPIN, it
is advisable to mechanize the process. We use a simple shell script for this purpose.
The following text represents the contents of one of the trail files produced by the
Linux shell script. To ease readability, we have removed some irrelevant lines.

2: proc 0 (Buyer) line 35 "CorrectChore" Sent BuyReq,1l
3: proc 1 (Store) line 71 "CorrectChore" Recv BuyReq,1l

<originator>buyer</originator>
<responder>store</responder>
<type>BUYREQ</type>
<status>success</status>

5: proc 1 (Store) line 114 "CorrectChore" Sent BuyRej, 1
6: proc 0 (Buyer) line 049 "CorrectChore" Recv BuyRej,1

<originator>store</originator>
<responder>buyer</responder>
<type>BUYREJ</type>
<status>success</status>

<originator>reset</originator>
<responder>reset</responder>
<type>reset</type>
<status>reset</status>

High Level Model Checker Based Testing of Electronic Contracts 207

The execution sequence shown above includes a BUYRFE(Q message sent from
the buyer to the store, followed by BUYREJ sent by the store to the buyer.
The status element indicates the outcome of the execution of the operation.
The status in this example accounts only for successful execution outcomes (No
exceptional circumstances such as technical failures are assumed), consequently,
the content of this element is always success. The last message is the reset mes-
sage, which we artificially include to mark the end of the sequence. As can be
appreciated from this example, the files produced by SPIN and the shell script
need parsing to extract the XML tagged messages.

3.5 Sequence Parsing

Our parser is built using Python. It extracts all the XML tagged messages from
a given sequence and stores each message as an individual XML file. The parser
achieves this by creating a recursive grammar that describes the precise struc-
ture of the business events inside a sequence. As seen in the code segment below
in lines 2-5, we first define the XML tags we want to find.

1 #define grammar for sequence file

2 tagOriginator = pyp.Literal ("<originator>") +
pyp.Word (pyp.alphas) + pyp.Literal("</originator>")
3 tagResponder = pyp.Literal ("<responder>") +

pyp.Word (pyp.alphas) + pyp.Literal ("</responder>")

4 tagType = pyp.Literal ("<type>") + pyp.Word(pyp.alphas) +
pyp.Literal ("</type>")

5 tagStatus = pyp.Literal ("<status>") + pyp.Word(pyp.alphas) +
pyp.Literal ("</status>")

6 lineString = tagOriginator | tagResponder | tagType |
tagStatus

The parser reads a file containing a message sequence, and searches for matches
against each line according to the following rule in line 6: If there is a line that
includes a tag definition of either the originator, responder, type, or status, then
the match is successful. If the parser finds a match, then it performs the following
actions: (i) the parser creates a new folder with the name of the sequence, (ii) it
extracts the XML part that is matched according to the above rule, (iii) a new
XML file is created that includes the extracted business event. Thus, the folder
ExeSeqi-xzml for the sequence shown above will contain three XML files because
the sequences contain three messages, namely BUY REQ — BUY REJ — reset.

3.6 Testing the Electronic Contract

After loading and initializing the CCC with the rules that encode the electronic
contract, we can proceed with sending each of the execution sequences to the
BEvent queue. Responses are collected from the outcome queue (see Fig. 1). The
following lines show the results of testing the execution sequence BUY REQ —
BUY REJ — reset:

208 E. Solaiman et al.

filename: eventl.xml

-Begin Request to CCC service-

BusinessEvent [originator=buyer, responder=store, type=BUYREQ,
status=success]

-End Request to CCC service-

w N -

-Begin Response from CCC service-

<result>

<contractCompliant>true</contractCompliant>

</result>

10-End Response from CCC service-

11

12 filename: event2.xml

13 -Begin Request to CCC service-

14 BusinessEvent [originator=store, responder=buyer,
type=BUYREJ, status=success]

15 -End Request to CCC service-

16

17 -Begin Response from CCC service-

18 <result>

19 <contractCompliant>true</contractCompliant>

20 </result>

21 -End Response from CCC service-

22

23 filename: event3.xml

24 -Begin Request to CCC service-

25 BusinessEvent [originator=reset, responder=reset, type=reset,

status=reset]

26 -End Request to CCC service-

27 -Begin Response from CCC service-

28 <result>

29 <contractCompliant>true</contractCompliant>

30 </result>

31 -End Response from CCC service-

O 00 ~J O Ul x>

The operations (BUYREQ and BUYREJ) included in the sequence, are declared
contract compliant by the CCC indicating that the contract rules have been coded
correctly with respect to the LTL property in Sect. 3.4. The first operation is sent
to the CCC in line 3, and its response <contractCompliant>true is shown at
line 8. Similarly, BUYREJ operation is sent to the CCC at line 14, and its response
<contractCompliant>true can be seen at line 19.

3.7 Testing None Compliant Events

A model that has been verified will by default generate test sequences with events
corresponding to the execution of contract compliant (CC) operations only. An
EPROMELA model can be tuned to generate sequences which include unknown
and none contract compliant (NCC) business events using the EPROMELA
Event Generator module mentioned under Sect.3.1. Thus, we can alter the
EPROMELA model to follow any variation of the choreography shown in Fig. 2.
For example, the modified choreography of Fig.7 does not correctly reflect the
original text contract.

High Level Model Checker Based Testing of Electronic Contracts 209

&
' BuyRej
] Store &~
e ' BuyCanc
X ™M ™ Buyer
1 BuyReq i BuyConf :BuyPay cane
‘ Buyer‘ ‘ Store ‘ ‘ Buyer‘

O" Buyer Store | | Buyer
req < > conf pay
startEv

G® * @B @

G2 endEv

Fig. 7. Incorrect choreography of contract example.

The particularity of this diagram is that it produces CC sequences such as
BuyReq — BuyRej. In addition, it produces NCC sequences, for instance
it allows for cancellation after payment which is not stipulated in the orig-
inal contract. Consequently, the execution of BuyCanc within the sequence
BuyReq — BuyConf — BuyPay — BuyCanc should be declared NCC by the
CCC. The following text shows the results of the execution of the NCC sequence
discussed above. The first 2 events BUYRE(Q, BUYCONF, were declared CC by
the CCC as expected. To save space we only show the outcome of the 2 events
of relevance in this example (BUYPAY followed by BUYCANC):
1 filename: event3.xml

2 -Begin Request to CCC service-

3 BusinessEvent [originator=buyer, responder=store, type=BUYPAY,
status=success]
-End Request to CCC service-

4
5
6 -Begin Response from CCC service-
7
8
9

<result>
<contractCompliant> true </contractCompliant>
</result>

10 -End Response from CCC service-

12 filename: eventd.xml

13 -Begin Request to CCC service-

14 BusinessEvent [originator=buyer, responder=store,
type=BUYCANC, status=success]

15 -End Request to CCC service-

16

17 -Begin Response from CCC service-

18 <result>

19 <contractCompliant> false </contractCompliant>

20 </result>

21 -End Response from CCC service-

210 E. Solaiman et al.

Technical Failure

&7 &
i BuyConf | BuyPay

Buyer Technical Failure

Store Success | Buyer Success
] f] pa
con Gl i pay G2

Business Failure

L
Business Failure

Fig. 8. Execution model with success and failures.

The process BUYPAY is CC (lines 3 and 8). The execution of BUYCANC
at line 14 and the corresponding response received at line 19 indicates that
the CCC has declared BUYCANC NCC. This is the desired behavior from the
CCC, as it has detected that this sequence of events is not consistent with the
contract.

3.8 Accounting for Exceptional Outcome Events

The contract example we have used so far assumes that the execution of oper-
ations always succeeds; it does not account for potential failures. More realistic
examples would include the execution of activities as shown in Fig.8, which
account for successful and failed outcomes. As discussed in Sect. 2, and follow-
ing the ebXML standard [18], we would like to be able to detect two types of
failures; business failures, and technical failures. To this end, the EPROMELA
modeling language has been designed with the ability to deal with these 2
types of failures. As an example of an electronic contract that can handle
exceptional outcomes, we add the following clause to our original contract to
account for potential semantic errors (business failures) in the execution of any
operation:

4. Failure handling: if after 2 attempts, an operation is not performed correctly,
then the contractual interaction shall be declared terminated.

Below we show how an exception such as a business failure of the BUYREQ
operation can be intuitively and naturally modeled using EPROMELA. The rule
for BUYREQ described in Sect. 3.2 can be easily enhanced as follows:

High Level Model Checker Based Testing of Electronic Contracts 211

/+*handle failure outcome eventsx/

::EVENT (BUYREQ, IS_R (BUYREQ, BUYER) , BF (BUYREQ)) ->{
atomic{

printf ("<originator>buyer</originator>") ;
printf ("<responder>store</responder>") ;
printf ("<type>BUYREQ</type>") ;

printf ("<status>bizfail</status>");

}

if /+x1lst notification of BFx/

10 ::(RegFailBefore==NO)->ReqgFailBefore=YES;
11 printf ("First BUYREQ-BF");

12 RD(BUYREQ, BUYER, CCR,CO) ;

13 /*2nd notification of BF=*/

14 ::(RegFailBefore==YES)->abncoend=TRUE;

15 printf ("Last BUYREQ-BF") ;

16 SET_R(BUYREQ,0) ;

17 atomic({

19 printf("<originator>reset</originator>");
20 printf ("<responder>reset</responder>") ;
21 printf ("<type>reset</type>");

22 printf ("<status>reset</status>");

23 RD(BUYREQ, BUYER,NCCR,CND) ; /*abnormal contract endx/

OO JoU s WN P

The model can now also handle BUYRE(Q events that result in BF outcomes
(line 2). If a failed event is received, then the rule checks if a failure of this kind
has happened before. If not (line 10), then this first failure is registered, and
contract execution is allowed to continue (line 12). On the other hand, if this is
the second time BUYRE(Q has been received with a BF' outcome then the rule
terminates contract interaction at line 23. The EPROMELA model includes rules
like the one described above for dealing with each of the 5 business events shown
in bold in our contract example. After the model has been verified using SPIN,
the electronic contract deployed to the CCC can be tested, in combination with
the testing framework described previously, using much more realistic execution
sequences that include exceptions. A detailed description of how exceptions are
handled in the CCC can be found in [17].

4 Related Work

Research work on the monitoring of cross-organizational interactions between
parties was pioneered by Minsky [20] with work on Law Governed Interaction
(LGI). The notion of rights, obligations, and prohibitions was introduced in [21].
A useful summary of various issues involved in contract management is provided
in [22].

Linear Temporal Logic (LTL) is a powerful tool for specifying correctness
properties in a model whether it is for verifying the correctness of the model, or
for the generation of test sequences. However, not all correctness properties can
be expressed using LTL; for example it is not possible to specify that a particular
property will hold for every 3rd or 4th state of the system. Such limitations are
discussed in [23], where extensions to LTL are suggested.

212 E. Solaiman et al.

Naturally, building a model of the SUT and describing the required LTL
properties relies heavily on the skills of the technical person who must also
be intimately familiar with the SUT. Also, it is difficult to ensure complete
coverage of all possible system behaviors during testing with manually specified
LTL properties. Therefore, it is desirable to be able to systematically create
complete test suites according to some test objective [24]. Research work in
[25] proposes to automate the task of specifying LTL properties by means of a
graphical language (DecSerFlow) that is then mapped into LTL formulas. Using
this language, the designer can specify a set of common or frequent correctness
requirements, as can be done using our LTL Manager.

The advantages and disadvantages of model checker based testing are dis-
cussed in [26] where the author provides a practical guide. Although model
checker based testing techniques have been studied widely in the software engi-
neering community [27-29], their use in the testing of a contract monitoring ser-
vice has received little attention. The principles of model checker based testing
of electronic contracts are investigated previously by us in [8], however contract
models in this work are built using Promela, the basic input language of SPIN.
Attempting to predict how a designer would use basic Promela to model a con-
tract in any standard manner is almost an impossible task, which makes devel-
oping tools for automating the testing process extremely difficult. An important
contribution of this paper is that we highlight the benefits of developing a tool
based framework that can leverage the capabilities of a domain specific modeling
language such as EPROMELA, which was developed specifically for modeling
electronic contracts.

5 Conclusion and Future Work

Cloud and Internet based interactions between business partners can be
extremely complex, and this is especially true when exceptional outcome events
from these interactions are taken into consideration. Reproducing such complex
exchanges in order to test the correct functionality of a service such as the Con-
tract Compliance Checker (CCC) is difficult and cannot be achieved manually.
We have presented a model checker based framework that includes tools to auto-
mate the testing process. By using the SPIN model checker in combination with
EPROMELA, a high level modeling language designed specifically for modeling
electronic contracts, we can build verified models that accurately resemble the
System Under Test (SUT) with relative ease. By using appropriate LTL formula
within an EPROMELA model, we can instrument SPIN to automatically pro-
duce contract compliant, and none contract compliant execution sequences that
are capable of exhaustively testing the correct operation of the CCC.

The LTL Manager presented in Sect. 3.3, enables the creation and description
of common contract related correctness requirements as LTL templates, which
are stored in an LTL repository. The choreography designer can use the LTL
manager to augment an EPROMELA model with LTL correctness properties
that result from the parameterization of the LTL templates. The EPROMELA

High Level Model Checker Based Testing of Electronic Contracts 213

model can then be presented to the SPIN model checker for verification and for
generating test sequences.

There are a number of future research directions which we are currently
exploring. We would like to enhance the CCC, which currently acts as a passive
monitor, with the capability to act as a contract enforcer. The aim of a contract
enforcement service would be to ensure that an operation is executed only if
it is contract compliant. Also an important item for future work is to conduct
experiments to determine how the presented testing framework performs as the
number of possible events increases.

An issue that requires further exploration, is the development of mechanisms
to aid with establishing conformance between electronic contracts and business
choreographies [13]. Additional research work is required to extend such mech-
anisms to business functions involving more than two parties [30].

In addition to the FROP to Drools translator presented in Sect.2.3, we
would also like to create a translation tool that can produce an EPROMELA
model from an electronic contract specification written in EROP automatically.
This would reduce the risk of introducing unwanted errors into the contract
model during construction. We believe that this goal is achievable because of
the semantic similarities between EPROMELA and the electronic contracting
concepts within the CCC.

References

1. Molina-Jimenez, C., Shrivastava, S., Solaiman, E., Warne, J.: Contract representa-
tion for run-time monitoring and enforcement. In: 2003 IEEE International Con-
ference on E-Commerce (CEC 2003). IEEE (2003)

2. Molina-Jimenez, C., Shrivastava, S., Wheater, S.: An architecture for negotiation
and enforcement of resource usage policies. In: IEEE International Conference on
Service Oriented Computing and Applications (SOCA). IEEE (2011)

3. Strano, M., Molina-Jimenez, C., Shrivastava, S.: A rule-based notation to specify
executable electronic contracts. In: Bassiliades, N., Governatori, G., Paschke, A.
(eds.) RuleML 2008. LNCS, vol. 5321, pp. 81-88. Springer, Heidelberg (2008)

4. Solaiman, E., Molina-Jiménez, C., Shrivastav, S.: Model checking correctness prop-
erties of electronic contracts. In: Orlowska, M.E., Weerawarana, S., Papazoglou,
M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 303-318. Springer,
Heidelberg (2003)

5. Abdelsadiq, A., Molina-Jimenez, C., Shrivastava, S.: A high level model checking
tool for verifying service agreements. In: The 6th IEEE International Symposium
on Service-Oriented System Engineering (SOSE 2011). IEEE (2011)

6. Strano, M., Molina-Jimenez, C., Shrivastava, S.: Implementing a rule-based con-
tract compliance checker. In: Godart, C., Gronau, N., Sharma, S., Canals, G. (eds.)
I3E 2009. IFIP AICT, vol. 305, pp. 96-111. Springer, Heidelberg (2009)

7. Molina-Jimenez, C., Shrivastava, S., Strano, M.: A model for checking contractual
compliance of business interactions. IEEE Trans. Serv. Comput. 5(2), 276-289
(2012)

8. Abdelsadiq, A., Molina-Jimenez, C., Shrivastava, S.: On model checker based test-
ing of electronic contracting systems. In: IEEE International Conference on Com-
merce and Enterprise Computing (CEC 2010). IEEE (2010)

214

10.

11.

12.

13.

14.
15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

E. Solaiman et al.

Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison
Wesley Professional, Boston (2003)

Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th Annual Sym-
posium on Foundations of Computer Science (FOCS 1977), pp. 46-57 (1977)
Solaiman, E., Sun, W., Molina-Jimenez, C.: A tool for the automatic verification
of bpmn choreographies. In: IEEE 12th International Conference on Services Com-
puting (SCC). IEEE (2015)

OMG: Documents associated with business process model and notation (bpmn)
version 2.0 (2011). http://www.omg.org/spec/BPMN/2.0/

Molina-Jimenez, C., Shrivastava, S.: Establishing conformance between contracts
and choreographies. In: 15th IEEE Conference on Business Informatics (CBI),
IEEE Computer Society, Vienna, Austria. IEEE (2013)

RedHat: Drools (2013). http://www.drools.org/

Parr, T.: The Definitive ANTLR 4 Reference, January 2013

Molina-Jimenez, C., Shrivastava, S., Cook, N.: Implementing business conversa-
tions with consistency guarantees using message-oriented middleware. In: TEEE
11th International Enterprise Computing Conference (EDOC 2007), pp. 51-62
(2007)

Molina-Jimenez, C., Shrivastava, S., Strano, M.: Exception handling in electronic
contracting. In: IEEE Conference on Commerce and Enterprise Computing (CEC).
IEEE, Vienna, Austria (2009)

OASIS: ebXML Business Process Specification Schema Technical Specifica-
tion v2.0.4. http://docs.oasis-open.org/ebxml-bp/2.0.4/0S/spec/ebxmlbp-v2.0.
4-Spec-os-en.pdf (2006)

Solaiman, E., Sfyrakis, I., Molina-Jimenez, C.: Dynamic testing and deployment
of a contract monitoring service. In: 5th International Conference on Cloud Com-
puting and Services Science. SCITEPRESS (2015)

Ungureanu, V., Minsky, N.H.: Establishing business rules for inter-enterprise elec-
tronic commerce. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 179-193.
Springer, Heidelberg (2000)

Ludwig, H., Stolze, M.: Simple obligation and right model (SORM) - for the run-
time management of electronic service contracts. In: Bussler, C.J., Fensel, D.,
Orlowska, M.E., Yang, J. (eds.) WES 2003. LNCS, vol. 3095, pp. 62—76. Springer,
Heidelberg (2004)

Hvitved, T.: A survey of formal languages for contracts. In: Fourth Workshop on
Formal Languages and Analysis of Contract-Oriented Software (FLACOS 2010)
(2010)

Galton, A.: Temporal Logics and Computer Science: an Overview. Academic Press,
Cambridge (1987). Chap. 1

Fraser, G., Wotawa, F., Ammann, P.: Testing with model checkers: a survey, pp.
215-261. Verification and Reliability, Software Testing (2009)

van der Aalst, W.M.P., Pesic, M.: DecSerFlow: towards a truly declarative service
flow language. In: Bravetti, M., Nufiez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1-23. Springer, Heidelberg (2006)

El-Far, I.K.: Enjoying the perks of model-based testing. In: Proceedings of the
Software Testing, Analysis, and Review Conference (STARWEST 2001) (2001)
Utting, M., Legeard, B.: Practical Model-Based Testing: a Tools Approach.
Morgan-Kaufmann, Burlington (2006)

Pezze, M., Young, M.: Software Testing and Analysis: Process. Wiley, Principles
and Techniques, New York (2008)

http://www.omg.org/spec/BPMN/2.0/
http://www.drools.org/
http://docs.oasis-open.org/ebxml-bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-os-en.pdf
http://docs.oasis-open.org/ebxml-bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-os-en.pdf

29.

30.

High Level Model Checker Based Testing of Electronic Contracts 215

Torsel, A.M.: A testing tool for web applications using a domain-specific modelling
language and the nusmv model checker. In: IEEE Sixth International Conference
on Software Testing, Verification and Validation (2013)

Shrivastava, S., Little, M.: Designing atomic business functions with distributed
control. In: 17th IEEE Conference on Business Informatics (CBI 2015). IEEE
(2015)

	High Level Model Checker Based Testing of Electronic Contracts
	1 Introduction
	2 Background
	2.1 ROP Ontology
	2.2 Choreography of Interaction
	2.3 Electronic Contracts
	2.4 Contract Compliance Within the CCC Monitor
	2.5 Exception Handling

	3 Model Checker Based Testing Framework
	3.1 EPROMELA Interaction Model
	3.2 Model Construction and Verification
	3.3 The LTL Manager
	3.4 Generating the Test Sequences
	3.5 Sequence Parsing
	3.6 Testing the Electronic Contract
	3.7 Testing None Compliant Events
	3.8 Accounting for Exceptional Outcome Events

	4 Related Work
	5 Conclusion and Future Work
	References

