
123

Markus Helfert
Víctor Méndez Muñoz
Donald Ferguson (Eds.)

5th International Conference, CLOSER 2015
Lisbon, Portugal, May 20–22, 2015
Revised Selected Papers

Cloud Computing
and Services Science

Communications in Computer and Information Science 581

Communications
in Computer and Information Science 581

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Markus Helfert • Víctor Méndez Muñoz
Donald Ferguson (Eds.)

Cloud Computing
and Services Science
5th International Conference, CLOSER 2015
Lisbon, Portugal, May 20–22, 2015
Revised Selected Papers

123

Editors
Markus Helfert
Dublin City University
Dublin 9
Ireland

Víctor Méndez Muñoz
Universitat Autònoma de Barcelona
Bellaterra
Spain

Donald Ferguson
Dell
Round Rock
USA

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-29581-7 ISBN 978-3-319-29582-4 (eBook)
DOI 10.1007/978-3-319-29582-4

Library of Congress Control Number: 2015961031

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

This book includes extended versions of a set of selected papers from CLOSER 2015
(the 5th International Conference on Cloud Computing and Services Science), held in
Lisbon, Portugal, in 2015, organized and sponsored by the Institute for Systems and
Technologies of Information, Control and Communication (INSTICC). This confer-
ence was held in cooperation with the Association for Computing Machinery - Special
Interest Group on Management Information Systems and Turism of Lisbon. The papers
were peer reviewed to the professional and scientific standards expected of a pro-
ceedings journal published by Springer. Papers were assessed according to the jour-
nal’s peer review policy, which judges papers on aspects including scientific merit
(notably scientific rigor, accuracy, and correctness), clarity of expression, and
originality.

The technical program of CLOSER 2015 covered areas such as “Cloud Computing
Fundamentals,” “Services Science Foundation for Cloud Computing,” “Cloud Com-
puting Platforms and Applications,” “Cloud Computing Enabling Technology,” and
“Mobile Cloud Computing and Services.”We expect that these proceedings will appeal
to a broad audience of engineers, scientists, and business people interested in cloud
computing and service systems. We further believe that the papers in these proceedings
demonstrate new and innovative solutions, and highlight technical problems in the
aforementioned areas that are challenging and worthwhile.

The conference was also complemented with the second edition of the Emerging
Software as a Service and Analytics Workshop — EsaaSA 2015 (co-chaired by Victor
Chang, Muthu Ramachandran, Gary Wills, Robert Walters, Verena Kantere, and
Chung-Sheng Li).

CLOSER 2015 received 146 paper submissions from all continents. From these,
23 papers were published and presented as full papers, 64 were accepted as short
papers. These numbers, leading to a full-paper acceptance ratio of 15.8 % and an oral
paper acceptance ratio of 60 %, show the intention of preserving a high-quality forum
for the next editions of this conference.

The high quality of the CLOSER 2015 program was enhanced by five keynote
lectures, delivered by experts in their fields, including: Victor Chang (Leeds Beckett
University, UK), who delivered a keynote entitled “Cloud Computing and Big Data
Can Improve the Quality of Our Life;” Paolo Traverso (Center for Information
Technology - IRST (FBK-ICT), Italy) delivered a keynote on “Change Alone Is
Unchanging - Continuous Context-Aware Adaptation of Service-Based Systems for
Smart Cities and Communities;” Omer Rana (Cardiff University, UK) gave a keynote
entitled “In-transit Analytics on Distributed Clouds - Applications and Architecture;”
Chung-Sheng Li (IBM, USA) with a keynote entitled “At Scale Enterprise Comput-
ing;” and Cornel Klein (Siemens AG, Germany) with the keynote “Software and
Systems Architecture for Smart Vehicles.”

This book contains 15 papers from CLOSER 2015, which have been selected,
extended, and thoroughly revised.

We wish to thank all those who supported and helped to organize the conference.
On behalf of the conference Organizing Committee, we would like to thank the
authors, whose work mostly contributed to a very successful conference, the keynote
lecturers, and the members of the Program Committee, whose expertise and diligence
were instrumental in ensuring the quality of the final contributions. We also wish to
thank all the members of the Organizing Committee whose work and commitment were
invaluable. Last but not least, we would like to thank Springer for their collaboration in
getting this book to print.

May 2015 Markus Helfert
Donald Ferguson

Víctor Méndez Muñoz

VI Preface

Organization

Conference Chair

Markus Helfert Dublin City University, Ireland

Program Co-chairs

Víctor Méndez Muñoz Universitat Autònoma de Barcelona, UAB, Spain
Donald Ferguson Columbia University, USA

Program Committee

Antonia Albani University of St. Gallen, Switzerland
Vasilios Andrikopoulos University of Stuttgart, Germany
Claudio Ardagna Università degli Studi di Milano, Italy
Alvaro Arenas Instituto de Empresa Business School, Spain
José Enrique

Armendáriz-Iñigo
Universidad Pública de Navarra, Spain

Muhammad Atif Australian National University, Australia
Amelia Badica Faculty of Economics and Business Administration,

University of Craiova, Romania
Costin Badica University of Craiova, Romania
Costas Bekas IBM Zurich Research Lab, Switzerland
Adam S.Z. Belloum University of Amsterdam, The Netherlands
Simona Bernardi Centro Universitario de la Defensa - Academia General

Militar, Spain
Karin Bernsmed SINTEF ICT, Norway
Nik Bessis Edge Hill University, UK
Luiz F. Bittencourt IC/UNICAMP, Brazil
Stefano Bocconi TU Delft, The Netherlands
Anne Boyer Loria - Inria Lorraine, France
Ivona Brandić Vienna UT, Austria
Iris Braun Dresden Technical University, Germany
Andrey Brito Universidade Federal de Campina Grande, Brazil
John Brooke University of Manchester, UK
Anna Brunstrom Karlstad University, Sweden
Rebecca Bulander Pforzheim University of Applied Science, Germany
Tomas Bures Charles University in Prague, Czech Republic
Massimo Cafaro University of Salento, Italy
Manuel Isidoro

Capel-Tuñón
University of Granada, Spain

Miriam Capretz University of Western Ontario, Canada
Noel Carroll University of Limerick, Ireland
John Cartlidge University of Bristol, UK
Valentina Casola University of Naples Federico II, Italy
Rong N. Chang IBM T.J. Watson Research Center, USA
Augusto Ciuffoletti Università di Pisa, Italy
Daniela Barreiro Claro Universidade Federal da Bahia (UFBA), Brazil
José Cordeiro E.S.T. Setúbal, I.P.S, Portugal
Thierry Coupaye Orange, France
António Miguel Rosado

da Cruz
Instituto Politécnico de Viana do Castelo, Portugal

Eduardo Huedo Cuesta Universidad Complutense de Madrid, Spain
Eliezer Dekel IBM Research Haifa, Israel
Yuri Demchenko University of Amsterdam, The Netherlands
Frédéric Desprez Antenne Inria Giant, Minatec Campus, France
Khalil Drira LAAS-CNRS, France
Ake Edlund Royal Institute of Technology, Sweden
Erik Elmroth Umeå University and Elastisys AB, Sweden
Robert van Engelen Florida State University, USA
Antonio Espinosa Universitat Autònoma de Barcelona, Spain
Donald Ferguson Columbia University, USA
Stefano Ferretti University of Bologna, Italy
Mike Fisher BT, UK
Geoffrey Charles Fox Indiana University, USA
Chiara Francalanci Politecnico di Milano, Italy
David Genest Université d’Angers, France
Chirine Ghedira IAE - University Jean Moulin Lyon 3, France
Lee Gillam University of Surrey, UK
Katja Gilly Miguel Hernandez University, Spain
Tristan Glatard CNRS, Canada
Andrzej Goscinski Deakin University, Australia
Patrizia Grifoni CNR, Italy
Stephan Groß T-Systems Multimedia Solutions, Germany
Dirk Habich Dresden University of Technology, Germany
Benjamin Heckmann University of Applied Sciences Darmstadt, Germany
Dong Huang Chinese Academy of Sciences, China
Marianne Huchard LIRMM Université Montpelier 2, France
Mohamed Hussien Suez Canal University, Egypt
Sorin M. Iacob Thales Nederland B.V., The Netherlands
Ilian Ilkov IBM Nederland B.V., The Netherlands
Anca Daniela Ionita University Politehnica of Bucharest, Romania
Fuyuki Ishikawa National Institute of Informatics, Japan
Hiroshi Ishikawa Tokyo Metropolitan University, Japan
Ivan Ivanov SUNY Empire State College, USA
Martin Gilje Jaatun SINTEF ICT, Norway

VIII Organization

Keith Jeffery Independent Consultant (previously Science and
Technology Facilities Council), UK

Meiko Jensen Unabhängiges Landeszentrum für Datenschutz SH,
Germany

Yiming Ji University of South Carolina Beaufort, USA
Ming Jiang University of Sunderland, UK
Xiaolong Jin Chinese Academy of Sciences, China
Carlos Juiz Universitat de les Illes Balears, Spain
David R. Kaeli Northeastern University, USA
Yücel Karabulut VMware, USA
Gabor Kecskemeti MTA SZTAKI, Hungary
Attila Kertesz University of Szeged, Hungary
Claus-Peter Klas GESIS Leibniz Institute for the Social Sciences,

Germany
Carsten Kleiner University of Applied Sciences and Arts Hannover,

Germany
Geir M. Køien University of Agder, Norway
Dimitri Konstantas University of Geneva, Switzerland
George Kousiouris National Technical University of Athens, Greece
László Kovács MTA SZTAKI, Hungary
Marcel Kunze Karlsruhe Institute of Technology, Germany
Young Choon Lee Macquarie University, Australia
Miguel Leitão ISEP, Portugal
Wilfried Lemahieu KU Leuven, Belgium
Fei Li Siemens AG, Austria, Austria
Donghui Lin Kyoto University, Japan
Shijun Liu School of Computer Science and Technology,

Shandong University, China
Xumin Liu Rochester Institute of Technology, USA
Francesco Longo Università degli Studi di Messina, Italy
Pedro Garcia Lopez University Rovira i Virgili, Spain
Suksant Sae Lor HP Labs, UK
Joseph P. Loyall BBN Technologies, USA
Simone Ludwig North Dakota State University, USA
Glenn Luecke Iowa State University, USA
Hanan Lutfiyya University of Western Ontario, Canada
Theo Lynn Dublin City University, Ireland
Shikharesh Majumdar Carleton University, Canada
Elisa Marengo Free University of Bozen-Bolzano, Italy
Ioannis Mavridis University of Macedonia, Greece
Jose Ramon Gonzalez de

Mendivil
Universidad Publica de Navarra, Spain

Mohamed Mohamed IBM Research, Almaden, USA
Owen Molloy National University of Ireland, Galway, Ireland
Marco Casassa Mont Hewlett-Packard Laboratories, UK

Organization IX

Kamran Munir University of the West of England (Bristol, UK), UK
Víctor Méndez Muñoz Universitat Autònoma de Barcelona, UAB, Spain
Hidemoto Nakada National Institute of Advanced Industrial Science and

Technology (AIST), Japan
Philippe Navaux UFRGS - Federal University of Rio Grande Do Sul,

Brazil
Jean-Marc Nicod Institut FEMTO-ST, France
Bogdan Nicolae IBM Research, Ireland
Karsten Oberle Alcatel-Lucent Bell Labs, Germany
Sebastian Obermeier ABB Corporate Research, Switzerland
David Padua University of Illinois at Urbana-Champaign, USA
Federica Paganelli CNIT - National Interuniversity Consortium for

Telecommunications, Italy
Claus Pahl Dublin City University, Ireland
Michael A. Palis Rutgers University, USA
Nikos Parlavantzas IRISA, France
David Paul The University of New England, Australia
Siani Pearson HP Labs, Bristol, UK
Tomás Fernández Pena University of Santiago de Compostela, Spain
Mikhail Perepletchikov RMIT University, Australia
Juan Fernando Perez Imperial College London, UK
Giovanna Petrone University of Turin, Italy
Agostino Poggi University of Parma, Italy
Antonio Puliafito Università degli Studi di Messina, Italy
Francesco Quaglia Sapienza Università di Roma, Italy
Cauligi (Raghu)

Raghavendra
University of Southern California, Los Angeles, USA

Rajendra Raj Rochester Institute of Technology, USA
Arcot Rajasekar University of North Carolina at Chapel Hill, USA
Arkalgud Ramaprasad University of Illinois at Chicago, USA
Manuel Ramos-Cabrer University of Vigo, Spain
Nadia Ranaldo University of Sannio, Italy
Andrew Rau-Chaplin Dalhousie University, Canada
Christoph Reich Hochschule Furtwangen University, Germany
Norbert Ritter University of Hamburg, Germany
Luis Rodero-Merino Spain
Jerome Rolia Hewlett Packard Labs, Canada
Pedro Frosi Rosa UFU - Federal University of Uberlandia, Brazil
Elena Sanchez-Nielsen Universidad de La Laguna, Spain
Patrizia Scandurra University of Bergamo, Italy
Erich Schikuta Universität Wien, Austria
Lutz Schubert Ulm University, Germany
Uwe Schwiegelshohn TU Dortmund University, Germany
Wael Sellami Faculty of Sciences Economics and management, Sfax,

Tunisia
Giovanni Semeraro University of Bari Aldo Moro, Italy

X Organization

Carlos Serrao ISCTE-IUL, Portugal
Armin Shams Sharif University of Technology, Iran
Keiichi Shima IIJ Innovation Institute, Japan
Marten van Sinderen University of Twente, The Netherlands
Richard O. Sinnott University of Melbourne, Australia
Frank Siqueira Universidade Federal de Santa Catarina, Brazil
Cosmin Stoica Spahiu University of Craiova, Romania
Josef Spillner Zurich University of Applied Sciences, Switzerland
Ralf Steinmetz Technische Universität Darmstadt, Germany
Burkhard Stiller University of Zürich, Switzerland
Yasuyuki Tahara The University of Electro-Communications, Japan
Cedric Tedeschi IRISA - University of Rennes 1, France
Gilbert Tekli Nobatek, France, Lebanon
Joe Tekli Lebanese American University (LAU), Lebanon
Patricia J. Teller University of Texas at El Paso, USA
Guy Tel-Zur Ben-Gurion University of the Negev (BGU), Israel
Orazio Tomarchio University of Catania, Italy
Johan Tordsson Umea University and Elastisys, Sweden
Francesco Tusa University College London, UK
Astrid Undheim Telenor ASA, Norway
Geoffroy Vallee Oak Ridge National Laboratory, USA
Luis M. Vaquero HP Labs, UK
Sabrina de Capitani di

Vimercati
Università degli Studi di Milano, Italy

Bruno Volckaert Ghent University, Belgium
Hiroshi Wada NICTA, Australia
Maria Emilia M.T. Walter University of Brasilia, Brazil
Chen Wang CSIRO ICT Centre, Australia
Dadong Wang CSIRO, Australia
Martijn Warnier Delft University of Technology, The Netherlands
Hany F. El Yamany Suez Canal University, Egypt
Bo Yang University of Electronic Science and Technology

of China, China
Zhifeng Yun University of Houston, USA
Michael Zapf Georg Simon Ohm University of Applied Sciences,

Germany
Wolfgang Ziegler Fraunhofer Institute SCAI, Germany

Additional Reviewers

Márcio Assis Unicamp, Brazil
Maria Estrela Ferreira

da Cruz
Instituto Politécnico de Viana do Castelo, Portugal

Fernando Gómez-Folgar Centro Singular de Investigación en Tecnoloxías da
Información, Spain

Mehdi Khouja University of Gabes, Tunisia

Organization XI

Amardeep Mehta Umeå University, Sweden
Athina Provataki University of Macedonia, Greece
Eduardo Roloff UFRGS, Brazil

Invited Speakers

Victor Chang Leeds Beckett University, UK
Paolo Traverso Center for Information Technology - IRST (FBK-ICT),

Italy
Omer Rana Cardiff University, UK
Chung-Sheng Li IBM, USA
Cornel Klein Siemens AG, Germany

XII Organization

Contents

Invited Paper

Cloud Computing at the Edges . 3
Luiz F. Bittencourt, Omer Rana, and Ioan Petri

Papers

Scalable and Cost-Efficient Algorithms for Reliable and Distributed
Cloud Storage. 15

Makhlouf Hadji

Accountability Through Transparency for Cloud Customers 38
Martin Gilje Jaatun, Daniela S. Cruzes, Julio Angulo,
and Simone Fischer-Hübner

Towards a Standardized Quality Assessment Framework
for OCCI-Controlled Cloud Infrastructures . 58

Yongzheng Liang

Re-provisioning of Cloud-Based Execution Infrastructure Using the
Cloud-Aware Provenance to Facilitate Scientific Workflow Execution
Reproducibility . 74

Khawar Hasham, Kamran Munir, Richard McClatchey,
and Jetendr Shamdasani

Security and Privacy Preservation of Evidence in Cloud
Accountability Audits . 95

Thomas Rübsamen, Tobias Pulls, and Christoph Reich

Using Model-Driven Development to Support Portable PaaS Applications . . . 115
Elias Nogueira, Daniel Lucrédio, Ana Moreira, and Renata Fortes

LS-ADT: Lightweight and Scalable Anomaly Detection
for Cloud Datacentres . 135

Sakil Barbhuiya, Zafeirios Papazachos, Peter Kilpatrick,
and Dimitrios S. Nikolopoulos

Performance and Cost Trade-Off in IaaS Environments: A Scientific
Workflow Simulation Environment Case Study. 153

Santiago Gómez Sáez, Vasilios Andrikopoulos, Michael Hahn,
Dimka Karastoyanova, Frank Leymann, Marigianna Skouradaki,
and Karolina Vukojevic-Haupt

http://dx.doi.org/10.1007/978-3-319-29582-4_1
http://dx.doi.org/10.1007/978-3-319-29582-4_2
http://dx.doi.org/10.1007/978-3-319-29582-4_2
http://dx.doi.org/10.1007/978-3-319-29582-4_3
http://dx.doi.org/10.1007/978-3-319-29582-4_4
http://dx.doi.org/10.1007/978-3-319-29582-4_4
http://dx.doi.org/10.1007/978-3-319-29582-4_5
http://dx.doi.org/10.1007/978-3-319-29582-4_5
http://dx.doi.org/10.1007/978-3-319-29582-4_5
http://dx.doi.org/10.1007/978-3-319-29582-4_6
http://dx.doi.org/10.1007/978-3-319-29582-4_6
http://dx.doi.org/10.1007/978-3-319-29582-4_7
http://dx.doi.org/10.1007/978-3-319-29582-4_8
http://dx.doi.org/10.1007/978-3-319-29582-4_8
http://dx.doi.org/10.1007/978-3-319-29582-4_9
http://dx.doi.org/10.1007/978-3-319-29582-4_9

A Practical Evaluation of Searchable Encryption for Data Archives
in the Cloud . 171

Christian Neuhaus, Frank Feinbube, Daniel Janusz, and Andreas Polze

High Level Model Checker Based Testing of Electronic Contracts 193
Ellis Solaiman, Ioannis Sfyrakis, and Carlos Molina-Jimenez

Streamlining APIfication by Generating APIs for Diverse Executables
Using Any2API . 216

Johannes Wettinger, Uwe Breitenbücher, and Frank Leymann

Hybrid TOSCA Provisioning Plans: Integrating Declarative and Imperative
Cloud Application Provisioning Technologies . 239

Uwe Breitenbücher, Tobias Binz, Oliver Kopp, Kálmán Képes,
Frank Leymann, and Johannes Wettinger

An Analysis of Power Consumption in Mobile Cloud Computing 263
Abdelmounaam Rezgui and Zaki Malik

Using Satellite Execution to Reduce Latency for Mobile/Cloud
Applications . 279

Robert Pettersen, Steffen Viken Valvåg, Åge Kvalnes, and Dag Johansen

Author Index . 299

XIV Contents

http://dx.doi.org/10.1007/978-3-319-29582-4_10
http://dx.doi.org/10.1007/978-3-319-29582-4_10
http://dx.doi.org/10.1007/978-3-319-29582-4_11
http://dx.doi.org/10.1007/978-3-319-29582-4_12
http://dx.doi.org/10.1007/978-3-319-29582-4_12
http://dx.doi.org/10.1007/978-3-319-29582-4_13
http://dx.doi.org/10.1007/978-3-319-29582-4_13
http://dx.doi.org/10.1007/978-3-319-29582-4_14
http://dx.doi.org/10.1007/978-3-319-29582-4_15
http://dx.doi.org/10.1007/978-3-319-29582-4_15

Invited Paper

Cloud Computing at the Edges

Luiz F. Bittencourt1(B), Omer Rana2, and Ioan Petri2

1 Institute of Computing, University of Campinas, Campinas, Brazil
bit@ic.unicamp.br

2 School of Computer Science and Informatics, Cardiff University, Cardiff, UK
{ranaof,petrii}@cardiff.ac.uk

Abstract. Currently, most cloud computing deployments are generally
supported through the use of large scale data centres. There is a common
perception that by developing scalable computation, storage, network,
and by energy-acquisition at preferential prices, data centres are able to
provide more efficient, reliable and cost effective hosting environments
for user applications. However, although the network capacity within and
in the proximity of such a data centre may be high – the connectivity
of a user to their first hop network may not be. Understanding how a
distributed cloud can be provisioned, enabling capability to be made
available “closer” to a user (geographically or based on network metrics,
such as number of hops or latency), remains an important challenge –
aiming to provide the same benefits as a centralised cloud, but with
better Quality of Service for mobile users. With increasing proliferation
of mobile devices and sensor-based deployments, understanding how data
from such devices can be processed in closer proximity to the device
(ranging from capability directly available on the device or through first-
hop network nodes from the device) also forms an important requirement
of such distributed clouds. We review a number of technologies that
could be useful enablers of distributed clouds – outlining common themes
across them and identifying potential business models.

Keywords: Distributed clouds · Mobile computing · Edge device
integration

1 Introduction and Overview

There has been a recent increase in the diversity, type and number of devices
used to access cloud services – with such devices expected to reach 24 billion
by 2020 [1] and generally part of the increasing interest in Internet of Things
(IoT). IoT comprises any kind of objects that are able to generate a minimal
piece of data and transmit it through the network, ranging from small fixed
sensors to mobile, smart devices. The amount of data that can be generated by
these devices and that need to be processed and/or stored has no precedents.
Although the now established cloud computing paradigm could be utilised to
store and process data generated by IoT devices, the expected amount of data
can make this inefficient or even unpractical.
c© Springer International Publishing Switzerland 2016
M. Helfert et al. (Eds.): CLOSER 2015, CCIS 581, pp. 3–12, 2016.
DOI: 10.1007/978-3-319-29582-4 1

4 L.F. Bittencourt et al.

One drawback of using a centralised data centre alone to process and store
IoT data is related to constraints with existing network capacity and latency.
Devices constantly generating and transferring data to the cloud can result in
poor network conditions, yielding congestion and service disruption for many
applications. Moreover, much of the data generated by IoT devices do not need
to be stored in its raw form. There is now significant interest in combining cloud
computing, offered at large scale data centres, with services that have been made
available at regional data centres. With interest in providing cloud computing
capability across different types of data centres, this often implies that there
needs to be suitable coordination between distributed data centres that are able
to receive and process data from such devices, which may be located at different
geographical areas and operating with varying reliability criteria. The extent
of this distributed cloud model also encompasses recent interest in supporting
multiple micro and nano data centres, which may be connected over network
links with varying bandwidth, availability profiles and latency.

The distributed cloud deployment model enables a variety of different types
of market players to also engage and provision services and infrastructure, from
telecom operators who may use their existing network infrastructure to offer
cloud services, to a variety of businesses (such as coffee shops, supermarkets etc.),
who can host cloud services to enable a better Quality of Experience (QoE) for
a user. The benefits of this model are many and include: (i) improved resilience
of cloud services; (ii) location specific contextualisation of provisioned services;
(iii) ability to integrate regionally provisioned services in a seamless manner;
(iv) latency hiding through automated service “hand-off”; (v) better coupling
between cloud services and wireless access networks.

The distributed cloud model shares similarities with a number of emerging
technologies and approaches – in all cases attempting to move data and process-
ing closer to the user, thereby moving cloud provisioning from centralised data
centres to edge servers with varying capability and connectivity. We briefly out-
line some of these in Sect. 2, to demonstrate common themes and outline a gener-
alised architecture that attempts to combine features from these. Although each
of these approaches have their own specific use scenarios, and have been devel-
oped by different communities, we notice a significant overlap in the underlying
concepts being used. We characterise these in Sect. 3.

2 Related Approaches

The maturity of the cloud computing paradigm has contributed to a large num-
ber of distributed network applications that take advantage of cloud capacity to
overcome computing and data storage requirements of a user. This centralised
data centre architecture allows access to a large (potential) computing pool with
unbounded1 capacity. Elasticity is often a key enabler in such applications, allow-
ing dynamic scale up/down based on instantaneous resource requirements [2,3].

1 Unbounded here refers to the user perception of endless on-demand capacity.

Cloud Computing at the Edges 5

FOG

Cloud

Distr. Cloud

C-RAN

Mobile cloud Mobile cloud

Fig. 1. Distributed Clouds – a conceptual perspective.

Data centres-based Cloud systems are able to fulfil many application require-
ments, needing limited upfront investment and easing the management of con-
tinuous change in requirements over time. Recently, however, there has been
interest in providing support for “distributed clouds”, which provide similar
benefits but focus on cloud provisioning across multiple providers. We briefly
describe each of the approaches to support distributed clouds outlined in Fig. 1,
identifying their key characteristics and emphasising their similarities.

Distributed Data Centres: This approach involves the use of multiple types of
linked data centres, each type offering differing capabilities. Two general types are
often identified: (i) network data centres (NDC); (ii) cloud/enterprise data centres
(CDC). The first of these are generally owned and managed by network opera-
tors and able to provide a limited programmatic interface to external users. Exist-
ing efforts towards network function virtualisation and software defined networks
have enabled capability on network elements within an NDC, such as routers and
switches, to be directly accessed by external users – enabling a variety of in-network
operations to be made available (ranging from data encryption, data transcoding,
etc.). Techniques such as MiddleBox technologies (often also referred to as network

6 L.F. Bittencourt et al.

appliances) can be combined with such approaches to enable data streams arriv-
ing at NDCs to be aggregated in some way. Conversely, an enterprise data centre
offers computational and data storage capability of a much greater capacity than
an NDC, but often not situated at an intermediate point in the network. A CDC
has much greater potential for infrastructure scalability and can be part of a much
wider, global deployment (e.g. a CDC in Asia-Pacific, in Europe, etc.). A provider
is able to use the combined capability of multiple CDCs to enable elastic provi-
sioning to a user and to provide fault masking in one such CDC. There may be
a variety of other types of data centres (some user owned) in addition to the two
identified here, and significant recent research is attempting to identify potential
types that could be use to support resource provisioning to a user [4,5].

Mobile Cloud and Cloud-Offloading: This approach involves moving com-
putation (generally) and data stored on mobile devices to an enterprise/cloud
data centre. The general motivation is to enable more computationally intensive
processes to be carried out on large scale data centres (CDC) rather than on
the device, enabling: (i) improved battery usage on the device; (ii) latency and
network outage masking on the device – especially when a device user is moving
across geographical areas with varying network coverage; (iii) handling wire-
less connectivity across highly heterogeneous networks (always-on connectivity,
on-demand scalability and energy efficiency is a difficult problem across hetero-
geneous networks); (iv) improve (potential) availability when using a CDC –
due to reduced capacity on radio/wireless networks. Approaches can range in
complexity from providing a complete copy of a mobile device within a CDC,
with periodic synchronisation of state between the processes on the device and
the CDC-hosted copy (e.g. the CloneCloud system [6] to create a device clone
on the Cloud and provide an application level Virtual Machine (VM) at the
data centre). CloneCloud requires device to cloud connectivity for the clone to
remain in sync. with the device. An alternative approach is to annotate pro-
gram source code to identify what should run on the device and what should be
cloud-hosted – e.g. the Maui system [7]. In this approach, two versions of a pro-
gram are created, a local and a cloud version. The “reflection” technique from
programming languages is then used to determine which part should run where
and how the two copies should remain in sync. This approach generally requires
source code annotation (and can tolerate disconnection from network). Other
related approaches focus on annotating a program call graph (method calls) to
determine which parts should be off loaded – making use of criteria such as data
transfer costs and security/data privacy concerns (i.e. determining what should
remain local to the device and what can be moved to a CDC) [8].

Cloudlets and Fog Computing: This approach considers that processing and
storage can be performed on edge devices, as in the mobile cloud computing
paradigm, whenever this brings optimisation to the system and better quality
of service. Fog computing introduces the notion of cloudlets – “small clouds”
which are geographically scattered across a network and acting as “small data
centres” at the edge of the network [9,10]. Cloudlets aim to give support to IoT
devices by providing increased processing and storage capacity as an extension

Cloud Computing at the Edges 7

of those devices, but without the need to move data/processing to a CDC. This
leads to reduced communication delays and the overall size of data that needs
to be migrated to a CDC. Data processing offered by cloudlets can employ a set
of mechanisms to process data on behalf of the IoT device, effectively sending
to the cloud only data that are aggregated results or that need data/processing
that is not available at the cloudlet [11].

Cloud Radio Access Network (C-RAN): This approach provides an opti-
misation over an existing de-centralised Radio Access Network (RAN), due to a
significant increase in mobile internet traffic over recent years and the cost asso-
ciated with operating, building and upgrading such a network. The Cloud-RAN
approach involves splitting the capability offered at a mobile base station into
two: a Remote Radio Head (RRH) and a BaseBand Unit (BBU). In the C-RAN
approach, the BBU is centralised and shared amongst multiple sites in a virtu-
alised BBU pool – and often hosted at a data centre. This centralisation enables
reduced operating costs, improves scalability and reduces potential energy con-
sumption. As BBU’s are virtualised and hosted on a single data centre, this
enables multiple physical cells/sites to interact with lower delays leading addi-
tionally to increased spectral efficiency and throughput. The C-RAN approach
also aligns well with recent interest in creating Heterogeneous and Small Cell
networks (HetSNets), primarily leading to increased network capacity due to the
additional cells now available. The C-RAN approach is particularly relevant in
the context of distributed data centres as they enable improved handoff mech-
anisms for mobile users (due to the use of the same BBU hosting location) –
being geographically closer the user and able to support partial processing [12].

3 Common Themes

There are conceptual similarities that arise in the paradigms listed in the pre-
vious section. In this section we discuss related concepts and general aspects on
how these relate to cloud computing at network edges.

3.1 Architecture and Deployment

Enabling cloud computing at the edges involves, primarily, a decision on where
processing/storage capacity should be placed in order to fulfil users’ application
requirements. This decision can depend on several factors, including how efficient
and reliable the network is in connecting users to the edge processing/storage
equipment, as well as connecting those equipment among themselves. Other
criteria can also influence this decision – such as: (i) overall cost of undertak-
ing computation; (ii) size of data that needs to be transferred from a local
(proximity-based) device to a data centre; (iii) network reliability/availability,
amongst others.

It is necessary to consider the trade off between the computational infrastruc-
ture needed to host services (such as cloudlet) and their proximity to the user.
Locating a service closer to a user could potentially require a greater number

8 L.F. Bittencourt et al.

of facilities to deploy such services. This incurs higher costs, but smaller laten-
cies/delays for users accessing cloud data/applications. For example, a more
geographically distributed architecture such as advocated in Fog Computing
would be able to act as a real-time capacity extension for mobile devices, lead-
ing to a one-hop connection to processing/storage resources. On the other hand,
deployment costs may require different business models to make it feasible.

The deployment of equipment to support such edge services leads to greater
reliance on a dependable network. The straightforward approach is to let com-
munication go through existing infrastructure, i.e., with traffic between distrib-
uted processing/storage equipment traversing the core network using ordinary
TCP/IP communication – potentially leading to increased traffic in the core
network. A second approach would be to provide a direct connection using a
dedicated link (radio, fibre, or even ethernet), which increases cost but improves
performance. This trade-off between cost and performance can be also a focus
of study: distributed equipment “clusters” could be built using direct network
connections in places where demand is significantly higher, preventing routing
through the core network. Conversely, where communication requirement is lower
(or sparse), the core network could be utilised.

An important aspect is a consideration of who would be responsible for
deployment and maintenance of equipment when making use of distributed
cloud computing resources. Feasible/ potential options include cloud providers,
network (broadband) providers, mobile phone carriers, and/or local businesses.
While cloud/broadband providers seem like the obvious choices, mobile phone
carriers (especially in developing countries) and local businesses can utilise their
intrinsic distributed presence to host equipment and provide computing services
in addition to communication through 4G/LTE/5G and WiFi connections.

3.2 Virtualisation

Virtualisation enables sharing of infrastructure amongst users with software and,
potentially, hardware isolation. The hypervisor (or virtual machine monitor –
VMM) has the ability to replicate hardware interfaces and trap the necessary
instructions in order to share the underlying hardware among multiple privileged
tenants. Therefore, tenants generally have no knowledge they are running on a
virtualised and shared hardware.

Efficient resource virtualisation is essential to enable various Quality of Ser-
vice provisioning to be supported across a shared infrastructures – enabling
different users (with varying service requirements and QoS needs) to be isolated
from each other. In deploying cloud-based services, virtualisation is also impor-
tant to ease management through the use of virtual machines (VMs), which can
be migrated to different physical machines to fulfil an objective function, such as
infrastructure cost reduction. What is virtualised can vary – for instance: (i) a
physical machine or a mobile device can be virtualised (with CPU, memory and
network interface); (ii) network function, e.g. routing and forwarding of packets
can be virtualised; (iii) a base station capability (in C-RAN) can be virtualised,
(iv) a physical sensor may be virtualised – enabling the same “virtual” sensor

Cloud Computing at the Edges 9

interface to communicate with different physical sensors at different times, or to
enable data from multiple sensors to be aggregated and offered as a virtual sen-
sor; (v) a firewall or security interface can be virtualised, etc. Over recent years,
there has been interest in providing virtualisation at different levels of the com-
putational infrastructure – with “enterprise” and “data centre” virtualisation
enabling an aggregation of different levels of virtualisation to co-exist, leading
to a much greater efficiency in how the physical infrastructure is used, providing
isolation for users and enabling dynamic update of physical infrastructure that
is accessed through a virtualised interface.

In a distributed cloud context, such virtualisation capability can now extend
beyond a single data centre – along the different layers outlined above. Addi-
tionally, the isolation provided by virtualisation, the ability to replicate a user
session across different VMs and support for VM migration can help in reducing
latencies when the user moves from one geographical location to another. Ser-
vices hosted within such a VM can be utilised to perform data/process migration
along with user movement, aiming to reduce delays for specific applications. This
could be specially interesting in the fog computing paradigm, where VMs can
migrate among cloudlets to support users applications [13].

3.3 Data Migration and Management

When using a distributed cloud for mobility-based scenarios, support for efficient
data migration is necessary, enabling data to be placed closer to the user (with
a user location potentially changing several times during a single day). Nodes
within a distributed cloud may be used for storing more “volatile” data that
does not need to be kept for long periods of time, and such nodes can provide
a pre-processing facility to reduce data transfer to the centralised cloud, where
long-term data storage/processing can occur. To enable QoS-based provisioning,
user data and applications should be placed as closest (in terms of number of
hops or network latency) as possible to his/her device(s). The (potentially real-
time) need for migration introduces new challenges in resource management.
Data and processing should follow users, demanding mechanisms for mobility
detection/prediction to anticipate migration and reduce the number of service
disruptions seen by a user.

4 Business Models

Several business models may become relevant when considering virtualised dis-
tributed cloud environments. Nodes associated with a distributed cloud must
be deployed and managed by an individual or organisation, and the costs of
the infrastructure must be taken into account in the business model. Similar
to current broad availability of WiFi access points and cell phone antennas, we
envisage four general ways of funding cloud at the edge: (i) by cloud providers;
(ii) by local businesses; (iii) by public funding; and (iv) by mobile carriers. Var-
ious trust models exist that may be associated with each of these four options.

10 L.F. Bittencourt et al.

Service Selection: in this model, the user would be able to choose a cloud at the
edge provider on-the-go, according to his/her current activity or provider’s avail-
ability and potential reputation within a market place. The use of a service-based
approach enables loose coupling, enabling an eco-system of providers to co-exist.
However, there is no guarantee that integrating externally provisioned services
will lead to the fulfilment of the user objectives, since this would depend on
providers’ agreements to support data and process migration. Therefore, inter-
operability and trust issues are expected to dominate this selection decision.
Service Contracts: in this model, contracts are signed between the user and
the provider, where criteria that adequately captures the circumstances that
influence the performance of the externally provisioned services must be specified
and pre-agreed. Contracts can be based on particular (monitorable) service-
level objectives – where short-term contracts have proved to be more profitable
options for service providers. Providers can also offer in-contract guarantees
performance metrics (e.g. availability) to the customer, which is reflected in
the associated price.
All-in-One Enterprise Cloud: this model is a more comprehensive approach,
where a distributed node is actually hosted at a data centre. Therefore, large
cloud providers could joining local businesses/ network providers in order to
build a larger business ecosystem with greater financial stability, allowing users
content/data/processing to freely travel across their boundaries.

Business models are important to make distributed clouds profitable, as well
as to help users make informed decisions about providers. Each business model is
associated with a set of cost models according to the provider’s service strategies
and business objectives, as for example:

– Consumption-Based Cost Model: clients only pay for the resources they use.
For distributed clouds a user could be charged according to the size of his/her
files or processing time utilised by applications that need edge computing.

– Subscription-Cost Pricing Model: clients pay a subscription charge for using
a service for a period of time – typically on a monthly basis. This subscrip-
tion cost typically provides unlimited usage (subject to some “fair use” con-
straints) during the subscription period. For example, local businesses can
offer a subscription to their infrastructure that enables a user to have con-
tent/applications to be placed on that infrastructure.

– Advertising-Based Cost Model: clients get a no-charge or heavily-discounted
service whereas the providers receive most of their revenue from advertisers.
This model is quite common in cloud-based media services such as free TV
providers (e.g. net2TV) and can also be adopted in distributed clouds.

– Market-Based Cost Model: clients are charged on a per-unit-time basis. When
bringing computing to the edges, the user can have a configuration dashboard
to establish the maximum usage quota/capacity and other relevant parame-
ters, similarly to IaaS offerings such as Amazon EC2.

– Group Buying Cost Model: clients can acquire reduced cost services only if
there are enough clients interested in a deal. This can be adapted for distrib-
uted clouds, enabling users to have access to a larger set of edge infrastructure
but with limited concurrency among shared users, for example.

Cloud Computing at the Edges 11

5 Application Scenarios

We describe two potential scenarios where the approach being proposed in this
paper could be benefit:

– Crowd-sourced surveillance: this application would involve making use of user
provisioned resources to capture local data, aggregated through the use of
a Cloud-based platform. As increasing number of individuals posses mobile
devices able to record (via photos, videos or text-based data) information
about a scene locally, each of these devices could be used to record such
information and tag this with the location of the user. Such information could
then be submitted to a data centre for aggregation. While the information is
in-transit from the capture source to the data centre, it could be aggregate
enroute. Additional content related to crime rates within a geographical area,
known crime reports within a particular time frame, etc. could be combined
with such content to increase the potential veracity of information that is
subsequently submitted to the data centre. The device owned by a user could
connect to the nearest available “cloudlet” to offload some of the data recorded
about the particular event being monitored. Cloudlets would interact with
each other, based on the geographical proximity of other users to check if the
same incident has been recorded by others.

– Real time streaming: this application would involve a user interacting with
a real time information source, with a requirement tomaintain a persistent,
high quality (low latency, high throughput) connection to the information
source. In this scenario, the user would initially register their quality of service
requirements to a cloudlet, and as the user moves from one region to another,
there would need to be hand-off to other cloudlets. This hand-off could be
supported through technologies such as C-RAN, where a common regional
data centre may be used to host multiple cloudlets, with a potential predictive
hand-off with user movement.

6 Conclusion

We describe a variety of emerging technologies that promote the integration
of edge devices with Cloud computing, enabling both to be used in coordina-
tion. With increasing deployment and availability of sensing capability, there is
a realisation that not all of this data needs to be migrated to a centralised data
centre. Undertaking data processing and storage closer to a user allows mask-
ing of the last mile connectivity concerns that have been highlighted in Content
Distribution Networks. Understanding how resources that have a more efficient
(small number of hops or low latency) connection to a user, can be combined
with large scale data centres remains an important challenge for many applica-
tions. This contribution attempts to highlight common issues that occur within
multiple approaches addressing this concern.

12 L.F. Bittencourt et al.

Acknowledgements. We would like to acknowledge various individuals who have
contributed to our views expressed in this article, these include: Manish Parashar,
Javier Diaz-Montes, Mengsong Zou, Ali Reza Zemani (Rutgers University, USA),
Rafael Tolosana-Calasanz, Jose Banares (University of Zaragoza, Spain), Congduc
Pham (University of Pau, France), Yacine Rezgui, Tom Beach, Stuart Allen (Cardiff
University).

References

1. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a
vision, architectural elements, and future directions. Future Gener. Comput. Syst.
29, 1645–1660 (2013)

2. Bittencourt, L.F., Madeira, E.R.M., Da Fonseca, N.L.S.: Scheduling in hybrid
clouds. IEEE Commun. Mag. 50, 42–47 (2012)

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Comm. of
the ACM 53, 50–58 (2010)

4. Mazmanov, D., Curescu, C., Olsson, H., Ton, A., Kempf, J.: Handling performance
sensitive native cloud applications with distributed cloud computing and SLA man-
agement. In: 2013 IEEE/ACM 6th International Conference on Utility and Cloud
Computing (UCC), pp. 470–475 (2013)

5. Nygren, E., Sitaraman, R.K., Sun, J.: The akamai network: a platform for high-
performance internet applications. SIGOPS Oper. Syst. Rev. 44, 2–19 (2010)

6. Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execu-
tion between mobile device and cloud. In: Proceedings of the Sixth Conference on
Computer Systems, EuroSys 2011, pp. 301–314. ACM, New York (2011)

7. Cuervo, E., Balasubramanian, A., Cho, D.K., Wolman, A., Saroiu, S., Chandra, R.,
Bahl, P.: Maui: making smartphones last longer with code offload. In: Proceedings
of the 8th International Conference on Mobile Systems, Applications, and Services,
MobiSys 2010, pp. 49–62. ACM, New York (2010)

8. Pedersen, M., Fitzek, F.: Mobile clouds: the new content distribution platform.
Proc. IEEE 100, 1400–1403 (2012)

9. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: MCC Workshop on Mobile Cloud Computing, pp. 13–16.
ACM (2012)

10. Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for inter-
net of things and analytics. In: Bessis, N., Dobre, C. (eds.) Big Data and Internet of
Things: A Roadmap for Smart Environments. SCI, vol. 546, pp. 169–186. Springer,
Heidelberg (2014)

11. Fesehaye, D., Gao, Y., Nahrstedt, K., Wang, G.: Impact of cloudlets on interactive
mobile cloud applications. In: 2012 IEEE 16th International Enterprise Distributed
Object Computing Conference (EDOC), pp. 123–132 (2012)

12. Checko, A., Christiansen, H., Yan, Y., Scolari, L., Kardaras, G., Berger, M.,
Dittmann, L.: Cloud ran for mobile networks - a technology overview. IEEE Com-
mun. Surv. Tutorials 17, 405–426 (2015)

13. Bittencourt, L.F., Lopes, M.M., Petri, I., Rana, O.F.: Towards virtual machine
migration in fog computing. In: 10th International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing (2015)

Papers

Scalable and Cost-Efficient Algorithms
for Reliable and Distributed Cloud Storage

Makhlouf Hadji(B)

Technological Research Institute, SystemX,
8, Avenue de la Vauve, 91120 Palaiseau, France

makhlouf.hadji@irt-systemx.fr

Abstract. This paper focuses on minimizing jointly data storage and
networking costs in a distributed cloud storage environment. We present
two new efficient algorithms to place encrypted data chunks and enhance
data availability when guaranteeing a minimum cost of storage and com-
munication in the same time. The proposed underlying solutions, based
on linear programming approach lead to an exact formulation with con-
vergence times feasible for small and medium network sizes. A new poly-
nomial time algorithm is presented and shown to scale to much larger
network sizes. Performance assessment results, using simulations, show
the scalability and cost-efficiency of the proposed distributed cloud stor-
age solutions.

Keywords: Cloud computing · Distributed storage · Data replication ·
Commodity flow · Encryption · Broker · Optimization

1 Introduction

Cloud storage has emerged as a new paradigm to host user and enterprize data
in cloud providers and data centers. Cloud storage providers (such as Amazon,
Google, etc.) store large amounts of data and various distributed applications
[21] with differentiated prices. Amazon provides for example storage services at a
fraction of a dollar per Terabyte per month [21]. Cloud service providers propose
also different SLAs in their storage offers. These SLAs reflect the different cost
of proposed availability guarantees. End-users interested in more reliable SLAs,
must pay more, and this leads to cause high costs when storing large amounts
of data. The cloud storage providers to attract users do not charge for initial
storage or put operations. Retrieval becomes unfortunately a hurdle, a costly
process and users are likely to experience data availability problems. A way
to avoid unavailability of data is to rely on multiple providers by replicating
the data and actually chunk the data and distribute it across the providers so
none of them can actually reconstruct the data to protect it from any misuse.
This paper aims at improving this type of distributed storage across multiple

M. Hadji—A research fellow at the Technological Research Institute - IRT SystemX.

c© Springer International Publishing Switzerland 2016
M. Helfert et al. (Eds.): CLOSER 2015, CCIS 581, pp. 15–37, 2016.
DOI: 10.1007/978-3-319-29582-4 2

16 M. Hadji

providers to achieve high availability at reasonable (minimum) storage service
costs by proposing new scalable and efficient algorithms to select providers for
distributed storage. The objective is to optimally replicate data chunks and store
the replicates in a distributed fashion across the providers. In order to protect
the data even further, the chunks are encrypted.

1.1 Paper Contributions and Structure

We propose data chunk placement algorithms to tradeoff data availability and
storage and communication cost and provide some guarantees on the perfor-
mance of the distributed storage. We assume end-users involved in PUT (write)
and GET (read) operations of data objects stored in an encrypted manner and
distributed optimally in different data centers require a specified level of data
availability during data retrieval. More specifically, after data encryption and
partition operations which consist to split the data into encrypted chunks to be
distributed across multiple data centers, our main work focuses on improving
and optimizing two operations:

– Data Chunks Placement Optimization: through novel (b-matching and
commodity flow techniques), efficient, scalable algorithms that minimize place-
ment and networking cost and meet data availability requirements given prob-
abilities of failure (or unavailability) of the storage systems and hence the
stored data.

– Chunk Replication: to meet a required high level of availability of the data
using optimal replication of chunks to reduce the risk of inaccessibility of the
data due to data center failures (or storage service degradations).

To realize these objectives, we derive a number of mathematical models to be
used by a broker to select the storage service providers leading to cost-efficient
and reliable data storage. The proposed broker collaborates with the providers
having different storage costs, minimum latency access and reliability (storage
service availability), as depicted in detail in Fig. 1. We assume that the providers
propose storage services to the broker and to end-users with same reliability but
with different prices (prices for a real broker for instance will be lower than those
proposed to end-users).

It is consequently assumed that there exist benefits for a storage service bro-
kerage that optimally distributes encrypted data across the most appropriate
providers. Thus, the aim of this paper consists to propose a scalable and polyno-
mial algorithm spanning a cost efficient chunk placement model that can achieve
optimal solutions, when guaranteeing high data availability to end-users.

Section 2 presents related work on cloud storage and optimization. In Sect. 3,
we use the well known Advanced Encryption Standard (AES) algorithm [26] to
encrypt end-user data and divide them into |N | chunks. In the same section,
we propose mathematical models to deal with chunk placement and replication
in an optimal manner for given server and networking costs and availabilities.
Performance assessments and results are reported in Sect. 4. Conclusion and
future work are reported in Sect. 5.

Scalable and Cost-Efficient Algorithms 17

2 Related Work

Data storage and data replication has received a lot of attention at the data
management, distribution and application level since the distribution of original
data objects and their replicas is crucial to overall system performance, especially
in the cloud environment where data are supposed to be protected and highly
available in different data centers. The current literature concerns essentially the
cloud storage problem in tandem with replication techniques to improve data
availability, but to our knowledge, does not consider data transfer in/out costs,
or migration costs, etc. We will nevertheless cite some of the related work even
if it can not be directly compared to the proposed algorithms in this paper.

In [7], authors dealt with the problem of multi-cloud storage with a focus
on availability and cost criteria. The authors proposed a first algorithm to mini-
mize replication cost and maximize expected availability of objects. The second
algorithm has the same objective subject to budget constraints. However, this
paper did not embed security aspects apart from dividing the data into chunks or
objects. In our work, we propose to divide data into encrypted chunks, that will
be optimally stored and distributed through various data centers with minimum
costs while satisfying the QoS required by end-users. Moreover, the proposed
algorithm in [7] is a simple heuristic without any convergence guarantee to the
optimal solution. Our proposed algorithm converges in few seconds to optimal
solutions benchmarked by the Bin-Packing algorithm.

In [3], authors present Scalia, a system to deal with the problem of multi cloud
data storage under availability and durability requirements and constraints. The
authors note the NP-Hardness of the considered problem, and propose algo-
rithms to solve small instances of the problem. In our work, we propose a new
efficient and scalable solution capable of handling large instances in a few sec-
onds. Clearly, the proposed solution in [3] suffers from scalability challenges to
handle on with larger instances, when our algorithms are able to quickly solve
large instances of the defined problem.

To avoid failure and achieve higher availability when storing data in the
cloud, reference [5] proposes a distributed algorithm to better replicate data
objects in different virtual nodes instantiated in physical servers. According to
the traffic load of all considered nodes, the authors considered three decisions
or actions as replicate, migrate, or suicide to better meet end-user requirements
and requests. However, the proposed approach consists only in checking the
feasibility of migrating a virtual node, performs suicide actions or replicating a
copy of a virtual node, without optimizing the system. In our work, we propose
optimization algorithms based on a complete description of the convexe hull of
the defined problem, leading to reach optimal solutions even for large instances.

Reference [4] proposes a simple heuristic to give stored data greater protec-
tion and higher availability by splitting a file (data) into subfiles to be placed
in different virtual machines belonging to the physical resources (data centers
for example) of one provider or different providers. The paper dealt with PUT
and GET operations to distribute and retrieve the required subfiles (data) with-
out encrypting them. The proposed heuristic in [4] can only reach suboptimal

18 M. Hadji

solutions, leading to considerable gaps compared to the optimal solutions. We
propose a new scalable and cost efficient solution to deal with the multi-cloud
storage problem.

Aiming to provide cost-effective availability and improve performance and
load balancing of cloud storage, the authors of reference [6] propose CDRM
as a cost-effective dynamic replication management scheme. CDRM consists in
maintaining a minimal number of replica for a given availability requirement, and
proposes a replica placement based on the blocking probability of data nodes.
Moreover, CDRM allows us to dynamically adjust the replica number according
to changing workload and node capacities. However, the paper focuses only on
the relationship between availability and replica number, and there is no proposal
to deal with the optimal placement of replicas.

To achieve high performance and reduce data loss when we require storage
services in the cloud, different papers in the literature propose various algorithms
that are useful only for small instances due to the NP-Hardness of the problem. In
[8], the authors propose a key-value store named Skute, which consists in dynam-
ically allocating the resources of a data cloud to several applications in a cost
effective and fair way using game theoretical models. To guarantee cloud object
storage performance, the authors of [11] propose a dynamic replication scheme
to enhance the workload distribution of cloud storage systems. The authors of
[16] conduct a study based on a dynamic programming approach, to deal with
the problem of selecting cloud providers offering storage services with different
costs and failure probabilities.

Reference [12] proposes a distributed storage solution named RACS, to
avoid vendor lock-in, reduce the cost of switching providers, and better tolerate
provider outages. The authors applied erasure coding (see references [9,10,23])
to design the proposed solution RACS. In the same spirit, references [13–15,18]
addressed the cloud storage problem described above, under different constraints
including energy consumption, budget limitation, limited storage capacities, and
the availability of the stored data.

In [1], authors propose a new solution to guarantee the data integrity when
stored in a cloud data center. The proposed solution is based on homomorphic
verifiable response and hash index hierarchy. This kind of solutions can be inte-
grated to our work to reenforce data security and privacy for reticent users.
An other reference on secured multi cloud storage can be found in [2]. Authors
presented a cryptographic data splitting with dynamic approach for securing
information. The splitting approach of the proposed solution is not deeply stud-
ied. This may lead to not select cost efficient providers.

3 System Model

To store encrypted data in multiple DCs belonging to various cloud providers
system, while optimizing storage and networking costs and failure probabilities,
we separate the global problem into a number of combinatorial optimization
sub-problems. To derive the model we make a simplifying assumption regarding

Scalable and Cost-Efficient Algorithms 19

the pricing scheme between cloud service providers, the broker and end-users.
We assume that the proposed storage price by a service cloud provider to end-
users is higher than that proposed to the broker. This can be explained by the
large amount of demands that will be required by the broker aggregating the
demands of a finite set of end-users seeking to avoid vendor lock-in and higher
availability. One can assume that prices proposed by cloud providers are smaller
as the volume of data is larger. Note that the broker will guarantee a minimum
storage cost and minimum latency meeting end-users requirements, ensuring
that the proposed cost to end-users can never exceed a certain threshold.

We first propose to use the well known AES (Advanced Encryption Stan-
dard) algorithm [26,27] for efficient data encryption. This will generate different
encrypted chunks to be distributed in the available storage nodes or data cen-
ters. This encryption ensures the confidentiality of the stored data. Moreover, the
used solution permits to construct diverse chunks (with small sizes) to facilitate
PUT and GET requests as is shown in Fig. 1.

We derive three algorithms to handle encrypted data chunk placement and
replication to guarantee data high availability, network latency and storage cost
efficiency. This can be summarized as follows:

– Data Chunk Placement: The first important objective of our paper con-
sists in guaranteeing the availability of all chunks of stored data by optimally
distributing them to a cost-efficient set of selected data centers (see Fig. 1).
This avoids user lock-in, and reduces the total cost of the storage and net-
working service. This optimization is performed under end-user or data owner
constraints and requirements such as the choice of a minimum number of data
centers to be involved in storing the chunks of the data. This can reinforce
the availability of data for given data centers failure probabilities.

– Data Chunk Replication: After optimally storing the encrypted chunks
of a data according to network latency, we determine a replication algorithm
based on bipartite graph theory, to derive optimal solutions of the problem of
storing replica chunks. This ensures high data availability since content can
be retrieved even if some servers or data centers are not available.

Once all data chunks are placed in different data centers, end-users may
solicit the data by GET requests (download data). The broker needs to gather
all the data chunks, sort them, decrypt them, and finally deliver the entire data
to the end-user (see Fig. 1).

In the following, we suppose that each data object (chunk) has r replicas.
Finding the optimal number of replicas of each chunk, is not in the scope of this
paper. A well-known example on the choice of r is the Google storage solution
based on r = 3 replicas of each stored data chunk [17].

3.1 Data Placement Cost Minimization: B-Matching Formulation

We start data chunks placement model by considering each data D of a user
u, as a set of chunks (noted by N), resulting from the AES algorithm. Let S

20 M. Hadji

Fig. 1. The system model: PUT and GET requests.

be the set of all available data centers able to host and store end-user data. We
investigate an optimal placement by storing all the chunks in the “best” available
data centers. Each cloud provider with a data center s ∈ S proposes a storage
cost per Gigabyte and per month noted by μs. This price varies for different
reasons: varying demands and workloads, data center reliability, geographical
constraints, etc. End-user requests are submitted to the broker which will relay
them to cloud service providers, in an encrypted form with optimized storage
costs. The broker guarantees end-users high data availability with minimum
cost by choosing a set of cloud providers (or DCs) meeting the requirements (see
Fig. 1 for more details).

In the following, we will address chunks placement optimization model based
on different constraints as the probability of failure of a data center or a provider,
and a limited storage capacity. Each data center (or provider) has a probability
of data availability (according to the number of nines in the proposed SLA),
and a failure probability (f) is then equal to 1−probability of data availability.
Moreover, the limited storage capacity is given by a storage quota proposed by
the provider to the broker according to a negotiated pricing menue.

Our optimization problem is similar to a classical Bin-Packing formulation, in
which bins can be represented by the different Data Centers, and the items can be
seen as the data chunks. Reference [24] has shown a while ago the NP-Hardness
of the Bin-Packing problem. Thus, we deduce the complexity (NP-Hardness) of
our chunks’ placement problem.

For this reason, and the fact that workloads and requests to store date arrive
overtime, the broker seeks a dynamic chunk placement solution that will be

Scalable and Cost-Efficient Algorithms 21

Fig. 2. Complete bipartite graph construction.

regularly and rapidly updated to remain cost-effective and ensure data high
availability.

Each data chunk i ∈ N has a certain volume noted by νi. We graphically
represent the storage of a chunk i in a data center k as an edge e = (i, k) (with
the initial extremity (i = I(e)) of e corresponding to a chunk, and the terminal
extremity (k = T (e)) of e) representing the data center (see Fig. 2).

Based on this configuration, one can construct a new weighted bipartite graph
G = (N ∪ S, E), where N is the set of vertices representing encrypted chunks
to be stored, and S is the set of all available data centers (see Fig. 2). E is the
set of weighted edges between N and S constructed as follows: there is an edge
e = (i, k) between each encrypted chunk i and each available data center k, and
the weight of e is given by μkνi.

We now introduce the well known “minimum weight b-matching problem” to
build a combinatorial optimization solution. The b-matching is a generalization
of the minimum weight matching problem and can be defined as follows (see [24]
for more details):

Definition 1. Let G be an undirected graph with integral edge capacities: u :
E(G) → N ∪ ∞ and numbers b : V (G) → N. Then a b-matching in G is a
function f : E(G) → N with f(e) ≤ u(e), ∀e ∈ E(G), and

∑
e∈δ(v) f(e) ≤ b(v)

for all v ∈ V(G).

In the above, δ(v) represents the set of incident edges of v. To simplify notation,
with no loss in generality, we use E and V for the edges and vertices of G. That
is we drop the G in E(G) and V(G).

From the definition, finding a minimum weight b-matching in a graph G
consists in identifying f such that

∑
e∈E γef(e) is minimum, where γe is an

associated cost to edge e. This problem can be solved in polynomial time since
the full description of its convex hull is given in [24].

22 M. Hadji

Proposition 1. Let G = (N ∪ S, E) be a weighted complete bipartite graph
built as described in Fig. 2. Then, finding an optimal chunk placement solution
is equivalent to an uncapacitated (u ≡ ∞) minimum weight b-matching solution,
where b(v) = 1 if v ∈ N (v is a chunk) and for all vertices v ∈ S, we put
b(0) = 0, and for v ≥ 1, we have

b(v) =

⌈
|N | − ∑v−1

k=0 b(k)
β

⌉

(1)

where β is the minimum number of data centers to be used to store the data
chunks. This parameter is required by end-users to avoid vendor lock-in.

To mathematically formulate our model, we associate a real decision variable
xe to each edge e in the bipartite graph. As shown in Fig. 2, each edge links
a chunk to a data center. After optimization, if the decision is xe = 1 then
chunk i (i = I(e) initial extremity) will be stored in data center j (j = T (e)
terminal extremity). Since the solution of a b-matching problem is based on
solving a linear program, an integer solution of the minimum weight b-matching
is found in polynomial time. This is equivalent to the optimal solution of the
chunk placement problem described in this section.

According to the storage costs listed previously and by defining the proba-
bility of failure of a data center (or a provider) noted by f , we assign each chunk
to the best data center with minimum cost. We note by Costplac the total cost
of placing |N | chunks in an optimal manner. We can formulate the objective
function as follows:

min Costplac =
∑

e∈E,e=(i,j)

(
μj

1 − fj
νi

)

xe (2)

where νi is the volume of chunk i, and (1 − f) is the probability of data center
availability (or provider availability).

This optimization is subject to a number of linear constraints. For instance,
the broker has to consider the placement of all data chunks, and each chunk will
be assigned to one and only one data center (the chunk replication problem will
be discussed in the next section). This is represented by (3):

∑

e∈δ(v)

xe = 1,∀v ∈ N (3)

Each data center s has a capacity Qs. This leads to the following constraints:

|N |∑

C=1

νCxCs ≤ Qs,∀s ∈ S (4)

According to end-user requirements and to guarantee high data availability,
chunks will be deployed in different data centers to avoid vendor lock-in. This is
given by the following inequality:

Scalable and Cost-Efficient Algorithms 23

|N |∑

C=1

xCs ≤ b(s),∀s ∈ S (5)

Using the b-matching model with constraints (4), enables the use of the
complete convex hull of b-matching and makes the problem easy in terms of
combinatorial complexity theory.

Reference [24] gives a complete description of the b-matching convex hull
expressed in constraints (3), (4) and (5). These families of constraints are rein-
forced by blossom inequalities to get integer optimal solutions with continuous
variables:

∑

e∈E(G(A))

xe + x(F) ≤
⌊∑

v∈A bv + |F |
2

⌋

,∀A ∈ N ∪ S, (6)

where F ⊆ δ(A) and
∑

v∈A bv + |F | is odd, and δ(A) =
∑

i∈A,j∈A x(ij). E(G(A))
represents a subset of edges of the subgraph G(A) generated by a subset of
vertices A. An in depth study of blossom constraints (6) is out of the scope of
this paper, but more details can be found in [25].

Based on the bipartite graph G, we constructed a polynomial time approx-
imation scheme of the data chunks placement problem by identifying the b-
matching formulation. The blossom constraints (6) are added to our model to
get optimal integer solutions of the placement problem whose model is finally
given by:

min Costplac =
∑|S|

s=1

∑|N |
C=1

μs

1−fs
νCxCs

S.T. :⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑|S|
s=1 xCs = 1,∀C ∈ N

∑|N |
C=1 νCxCs ≤ Qs,∀s ∈ S

∑|N |
C=1 xCs ≤ b(s),∀s ∈ S

∑
e∈E(G(A)) xe + x(F) ≤

⌊∑
v∈A bv+|F |

2

⌋
,∀A ∈ N ∪ S

F ⊆ δ(A),
∑

v∈A bv + |F | is odd
xCs ∈ R

+,∀C ∈ N , ∀s ∈ S

(7)

The variables and constants used in (7) are summarized in Table 1.

3.2 Data Placement and Network Latency Minimization:
Commodity Flow Modeling

To derive the data storage system when taking into account hard constraints of
network access to cloud data centers, we view the problem as a commodity flow.
To derive the mathematical model for the commodity flow problem, we define
the graph G = (V,E) representing the network between the broker and all of
the available providers or data centers. V is the set of vertices and E the set of
arcs of G. Each arc e is weighted by a latency le. We consider a node b as the
unique access point from the Broker to this network.

24 M. Hadji

Table 1. Variables and constants of the model (7)

Variables Meaning

N set of data chunks

S set of data centers

νC volume of a data chunk C

μj storage cost per Gigabyte/month of provider j

xe real variable indicating if e is solicited or not

bv upper bound of the degree of v

δ(A) =
∑

i∈A,j∈A x(ij)

δ(v) set of incident edges to v

β minimum number of providers

We investigate a commodity flow algorithm ensuring that all of the chunks
(|N |) are stored within data centers with efficient storage cost and minimal
network latency. Thus, the commodity flow solution ensures the selection of the
best storage providers proposing efficient access to the data for PUT and GET
operations.

Since the objective is to minimize simultaneously the cost of storing data and
the latency to access data centers, the objective function can be given as:

min NetworkCostplac =
∑

e∈E

lexe +
S∑

j=1

μjyj (8)

The first term in (8) consists to select arcs with minimum latency when accessing
the data centers. The second term ensures that the storage providers (or data
centers) with minimum storage cost are selected to access and manage the data.

The objective function described in (8) is subject to a number of constraints:

1. Arc Capacity: We note by xe a continuous variable representing the fraction
of commodity flow (data chunks) that goes through the arc e. Thus, the sum
of all flows on an arc e can not exceed the arc capacity limit Ce. This is
given by:

0 ≤ xe ≤ Ce,∀e ∈ E (9)

2. Flow Conservation: The following equation ensures flow conservation in
nodes other than the source and sink nodes:

∑

w∈V

awuxwu −
∑

w∈V

auwxuw = 0,∀u ∈ V (10)

where awu is equal to 1 if the arc (w, u) exists, and 0 otherwise.
3. Commodity Demand Satisfaction: The demand of storing |N | data

chunks from the source node b has to be equal to the cumulated outflow

Scalable and Cost-Efficient Algorithms 25

from b, and in the same time equal to |N |
∑

w∈V

abwxbw =
∑

v∈V

S∑

s=1

avsxvs = |N | (11)

4. Data Confidentiality: To guarantee the data confidentiality when storing
it through various providers, we seek for a solution to store a limited number
of chunks within each provider. This is given as follows:

T∑

t=1

atjxtj ≤ b(j) (12)

where b(j) can be found in Proposition 1, and T is the number of nodes with
direct access to data centers.

5. Expected QoS: Data owners can request for a certain QoS which consists
to choose a minimum number of providers to be selected.

S∑

j=1

yj ≥ β (13)

where yj is a binary variable indicating if a data center j is used or not.

According to these constraints, we give the following mathematical model to
cope with the problem of network access and storage cost optimization:

min NetworkCostplac =
∑

e∈E lexe +
∑S

j=1 μjyj

S.T. :
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 ≤ xe ≤ Ce,∀e ∈ E∑
w∈V awuxwu − ∑

w∈V auwxuw = 0,∀u ∈ V
∑

w∈V abwxbw =
∑

v∈V

∑S
s=1 avsxvs = N

∑T
t=1 atjxtj ≤ b(j),∀j = 1, . . . , S

∑S
j=1 yj ≥ β

yj ∈ {0; 1},∀j = 1, . . . , S

(14)

3.3 Data Replication Algorithm

To enhance performance and availability of end-user stored data, we propose a
replication model of data chunks depending on data center failure probabilities,
and expected availability (noted by Aexpec) required by each user. The objective
consists in finding the optimal trade-off between data center availability and
storage costs. This leads to avoiding expensive data centers with high failure
probability.

We assume that each data chunk is replicated r times, and reconstituting a
file data needs to get one copy of all chunks (i.e. |N | chunks among r × |N | are
necessary to reconstruct a data). Figure 3 gives more details and shows chunks
replication procedure.

26 M. Hadji

Fig. 3. Data replication.

It is important to note that initially, each encrypted chunk will be replicated
by the selected hosting providers within their data centers, and the broker can
reinforce this mechanism by proposing to add more replicas guaranteeing higher
data availability.

In the following, we would like to replicate |N | chunks into |S| data centers
according to various costs (storage costs) and performance requirements such as
the data availability. We suppose that S =

{
s1, s2, . . . , s|S|

}
and for the sake

of simplicity (due to the problem NP-Hardness), we suppose w.l.o.g. each data
center has a large amount of storage resources able to host data chunks and
replicas. We associate each data center s ∈ S with a probability of failure fs.

We suppose (as cited above) that each data chunk C (C = 1, |N |) has r
replicas to place in r data centers that do not contain the chunk C. Thus we ask
the following question: How do we replicate data chunks through available data
centers so that the total cost of storage is optimal (minimal) and data availability
is maximal?

Thus, for each chunk C, the problem consists in selecting a subset ϕC of r
available data centers that do not contain C, leading to a minimum storage cost
and a high probability of data availability.

We note by P (C) the probability of chunk C availability (respect. P (C) is
the probability of non-availability of a chunk C). P (D) is the probability of data
availability (respect. P (D) is the probability of non-availability of data D). Note
that a chunk C is not available if all of its copies are not available (see Fig. 3).
In other words, a block in Fig. 3 with r replicas is non available if all of the data
centers storing this block are non available. By supposing the data centers are
independent, we get the following proposition:

Proposition 2. P (C) =
∏

s∈ϕC
fs, and P (D) =

∏|N |
C=1

(
1 − ∏

s∈ϕC
fs

)
.

Scalable and Cost-Efficient Algorithms 27

Proof.

P (C) = P (C1 and C2 and . . . and Cr)
= P (C1) × P (C2) × . . . × P (Cr)

=
∏

s∈ϕC

fs

A data D with r×|N | chunks, is entirely available if all chunks are available.
According to Proposition (2), the probability of data file availability (i.e. P (D))
is then given by:

P (D) =
|N |∏

C=1

P (C)

=
|N |∏

C=1

(

1 −
∏

s∈ϕC

fs

)

The QoS requirement for end-users is presented by the data availability. This
is noted by Aexpect (as used in [7] for example). Thus, to meet end-user QoS
requirement, the broker should replicate each D in a selected sub-set of data
centers that satisfies:

|N |∏

C=1

(

1 −
∏

s∈ϕC

fs

)

≥ Aexpect (15)

We derive a mathematical model to efficiently reduce the replication costs
noted by Costrep, under the QoS requirements described by the inequality (15).
As the number of replicas of each chunk is supposed to be r, we seek an optimal
sub-set of data centers of size r to store the replicas of each chunk. Moreover,
our solution should not put all the chunks within the same data center to avoid
vendor lock-in. Thus, in the following, we address a mathematical optimization
model to efficiently replicate all the chunks of a data D.

minϕC
Costrep =

∑|N |
C=1

∑
s∈ϕC

μsνC

S.T. :{∏|N |
C=1

(
1 − ∏

s∈ϕC
fs

)
≥ Aexpect, ;

|ϕC | = r, ∀C = 1, |N |;

(16)

Solving the model (16) is equivalent to find a subset of data centers able to
host chunks in a cost efficient manner, and that satisfies the requirement (15).
We propose a simple and scalable algorithm to solve (16) in few seconds for
large number of data centers and data chunks. Without loss of generality, we
assume that minimizing a function Z is approximatively equivalent to minimize

28 M. Hadji

ln(Z). Thus, for each chunk C, we seek a subset of data centers that minimizes
ln(

∏
s∈ϕC

fs). This is equivalent to minimize
∑

s∈ϕC
ln(fs). Moreover, We con-

struct a new bipartite graph G2 = (V2 ∪ S2, E2), where V2 is the set of chunks
to be stored and S2 is the set of all available data centers (see Fig. 4). E2 is the
set of weighted edges between the two parts of vertices of G2. There is an edge
between each chunk C and each data center s (not containing a copy of chunk
C) with a weight given by ln(fs). If a data center s has already stored a copy
of chunk C, then the weight of the edge (C, s) is equal to 2. Figure 4 gives more
details.

Fig. 4. New bipartite graph G2 to replicate chunks.

From graph G2, we identify a minimum weight b-matching with a given
vector b as follows:

– for each v ∈ V2, degree of v is equal to b(v) = r − 1,
– the degree of each vertex v ∈ S2 is equal to b(v) given by (1).

To summarize, we give the following algorithm, leading to find the best subset
of data centers to replicate all the chunks in a cost efficient manner, verifying
condition (15).

Algorithm 1. Data replication algorithm.

Step 0: Construct the bipartite graph G2 (see Fig. 4);
Step 1: Compute a b-Matching with a minimum cost solution using the vector b;
Step 2: Check if (15) is satisfied;
Step 3: If (15) is not satisfied, GOTO Step 0, by incrementing the degrees of vertices
in S2;

Scalable and Cost-Efficient Algorithms 29

The Algorithm 1 is deployed to replicate efficiently r − 1 copies of each chunk C
of a data D.

3.4 Data Chunk Splitting

In this section, we discuss the rational number of chunks (|N ∗|) to be used to split
the data according to data center failure probabilities (fs for a DC s), number
of replicas (r) of each chunk, and the data availability expected by end-users
(Aexpect).

According to Proposition (2), we seek a rational number of encrypted chunks
to get after splitting the data when satisfying end-users QoS represented by data
availability Aexpect. We get the following inequality:

PD =
|N |∏

C=1

PC =
|N |∏

C=1

(

1 −
∏

s∈ϕC

fs

)

≥ Aexpect (17)

As Aexpect < 1 and
∏|N |

C=1

(
1 − ∏

s∈ϕC
fs

)
< 1, inequality (17) leads to the

following one:

ln

⎛

⎝
|N |∏

C=1

(

1 −
∏

s∈ϕC

fs

)⎞

⎠ ≤ ln (Aexpect) (18)

We also note that for each chunk indexed by C, we have r replicas and then
|ϕC | = r. For the sake of simplicity, we also suppose that the failure probability
of each data center is close to the average failure probability given by f . This
allows us to deduce: ∏

s∈ϕC

fs =
(
f
)r

(19)

And following inequality (18), we get:

|N | × ln
(
1 − f

r
)

≤ ln (Aexpect) (20)

According to (20), we deduce the number of data chunks as follows:

|N ∗| ≥ ln (Aexpect)

ln
(
1 − f

r
) (21)

4 Numerical Results

To evaluate and assess performance, our algorithms have been implemented
and evaluated using simulations and an experimental platform managed by an
instance of OpenStack [19]. The linear programming solver CPLEX [22] was
used to derive the b-matching solution, the Commodity flow algorithm and the
Bin-Packing solution used to benchmark our heuristic.

30 M. Hadji

As our goal in this paper is to analyze and discuss the applicability and the
interest of storage brokerage services in interaction with multiple data centers
or cloud providers, we devote some numerical results to cross validating our
proposed algorithms and assessing their cost efficiency and scalability for large
data sizes. It is obvious to remark that the Bin-Packing model used to place
data chunks invokes a branch and bound approach leading to explore the entire
space of all the existing solutions. This leads to find “optimal” solutions for small
data sizes serving as a benchmark for other approaches and algorithms. As the
data size increases, the optimal solution for data chunk placement can only be
found in exponential time. Thus, for large data, we resort to our heuristic solu-
tion based on graph theory (commodity flow) and the b-matching approach. In
addition, our performance evaluation seeks to identify the limits of the discussed
problem in terms of algorithmic complexity, and its suitability for optimizing real
life instances. We will also determine the gap between the suboptimal heuristic
solutions and the optimal solution provided by the Branch and Bound model
when it can be reached in acceptable times.

4.1 Simulation Environment

The proposed algorithms in this paper were evaluated using a 1.70 GHz server
with 6 GBytes of available RAM. We used data files with sizes ranging from
100 Megabytes to 4 Gigabytes. These data were stored in a distributed manner
over a number of available data centers ranging from 10 to 50. We associate
with each data center, a price per Gigabyte and per month, uniformly generated
between 0 $ and 1 $. Each data is splitting multiple chunks and each chunk size is
equal to 1 Megabyte. This configuration leads to construct a full mesh bipartite
graph as described above. The number of generated bipartite graphs was set to
100 in our simulations yielding an average value reported in the following curves
and tables. Without loss of generality, we suppose that each data center has
an unlimited storage capacity. Moreover, we also used a platform of 20 servers
running a Havana instance of OpenStack [19] in a multi-node architecture. Each
server (assimilated to a data center in real life) proposes Swift containers [20]
to store data chunks. We associate a storage cost to each container (or DC) as
described above. It is important to note that we used Swift API only to guarantee
PUT and GET operations from and to the broker by intercepting and hosting
encrypted chunks, without considering Swift replication policy. To improve our
broker functionalities, we will add an S3 compatible interface allowing end-users
to request the broker storing their data within Amazon S3.

4.2 Performance Evaluation

The first experiment consists in comparing the Bin-Packing and b-Matching
(heuristic) approaches in terms of delay to derive the optimal and suboptimal
solutions, respectively. We report different scenarios in Table 2, varying the num-
ber of data centers able to store end-users data (from 12 to 700 DCs), and the
number of chunks ranging from 50 chunks to 2000 chunks, which is equivalent

Scalable and Cost-Efficient Algorithms 31

to store data size of 50 Megabytes to 2000 Megabytes, as each chunk is of 1
Megabyte. The performance of the heuristic algorithm compared to the optimal
solution is represented by a gap defined as the percentage difference between the
cost of the optimal and the heuristic solutions:

Gap(%) = 100 × bMsol − BPsol

BPsol
(22)

where BPsol is the cost of the exact solution provided by the Bin-Packing
algorithm (to use as a reference or benchmark) and bMsol is the cost of the
b-Matching solution.

Table 2 reports the results of the evaluation and clearly shows the difficulty
to reach optimal solutions using the Bin-Packing (Branch and Bound) algorithm
whose resolution times become prohibitive for the scenarios of a data file of 2
Gigabytes to be distributed on a selected set of data centers among 300, 500 and
700 providers or data centers. Our heuristic solution performs close to optimal
with Gap not exceeding 6% for the evaluated cases. More specifically the gap is
in the interval [0.65 %; 5.93 %].

The results shown in Table 2 illustrate the difficulty to optimally solve the
data chunks placement problem (see case of a data of 50 Mb with 25 DCs).
At the same time, they demonstrate that the heuristic approach can find good
and near-optimal solutions whose cost is quite close to the optimum (see case of
data with 2000 MB and 700 DCs). Our algorithm provides an excellent trade-
off between convergence time, optimality, scalability and cost. With respect to
convergence time as seen in the third column of Table 2, it converges in a few
seconds for the scenario with 2000 chunks and 700 DCs (54 secs compared to
more than 3 hours for Bin-Packing).

To get a better grasp of the relative performance of the two algorithms used
in this paper, a data file of 100 Megabytes is used and split into 100 encrypted
chunks to be stored in a number of data centers ranging from 20 to 200. Figure 5
shows the characteristics of the algorithms. The b-matching algorithm achieves
the best cost performance since it has consistently incurred the smallest cost,
very close to the Bin-Packing which does not scale (as seen in Table 2). Excep-
tionally, one can remark in Fig. 5 (the scenario with 20 to 40 available DCs), the
cost found by the b-Matching is slightly lower than the cost of the Bin-Packing
leading to negligible SLA violations caused by the quality of the upper bound
given by Eq. (1) which should be enhanced in a future work. This is explained by
the difficulty to optimally store and place all the data chunks in different data
centers.

Another experiment consists in evaluating the proposed heuristic solution to
determine the trade-off between storage cost and data availability. We associate
with each user a required percentage of its data availability, denoted by Aexpect.
We reformulate Aexpect in terms of the number of nines required by a user.
We simulated a cloud storage market of 15 data centers belonging to different
providers having different failure rates. For example, Amazon S3 [21] offers two
levels of services: “Standard Storage” witch has 11 nines of storage availability
for 0.03$ per Gigabyte per month, while “Amazon S3 Reduced Redundancy

32 M. Hadji

Table 2. Encrypted data chunks placement: b-Matching algorithm performances.

|N | |S| b-Matching time (sec) Bin-packing time (sec) Gap (%)

50 12 0.15 0.16 2.24

25 0.15 0.16 5.93

40 0.17 0.18 2.06

100 25 0.17 0.20 3.08

50 0.18 0.20 0.65

75 0.20 0.22 2.98

500 100 1.10 2.11 1.94

250 1.27 3.68 4.37

350 1.33 4.20 0.97

1000 200 7.22 12.7 5.36

400 8.5 17.5 1.37

700 10.4 22.6 3.66

2000 300 30.7 >3 H 1.45

500 45.2 >3 H 4.3

700 54.8 >3 H 0.81

Storage (RRS)” has 4 nines of data availability for 0.024$ per GB per month.
The simulated market is summarized in Table 3.

We consider a user data of 100 Gigabytes, and we investigate four methods
to find the trade-off between a maximum data availability and a minimum price
(cost). We use the following scenarios:

– Minimum Price: A user selects simply the cheapest provider in the mar-
ket (Provider 15 proposing a price of $0.01 per Gigabyte and per month in
Table 3) without concerns on data availability (3 nines). Following this app-
roach, the data will be stored with a total minimum costs of 1$ and a weak
data availability (3 nines in Fig. 6). Moreover, the user is locked-in within
one cloud provider with a weak data availability. This can lead to disrupting
services and loss of data.

– Maximum Availability: A user selects the provider with high availability
in the simulated market (Provider 1 with 10 nines in Table 3). According to
pricing proposal of Provider 2, the total storage cost is higher than the cost
of the first scenario (10$ in Fig. 6). This may also lead to users’ lock-in within
the same provider.

– Average Price: In this case, we use the average price of the market, and
we store the data within the provider with equivalent price (Provider 9 with
0.06$ per Gigabyte per month in Table 3). The total data cost in this case
is equal to 6$ with 6 nines of data availability (according to the proposal of
Provider 6). This scenario presents higher data availability than scenario 1

Scalable and Cost-Efficient Algorithms 33

Fig. 5. Storage cost gap.

Table 3. Storage market costs and data availability.

Providers Price ($/GB/month) Data availability

Prov 1 0.1 99.99999999 %

Prov 2 0.095 99.99999995 %

Prov 3 0.09 99,9999999 %

Prov 4 0.085 99,9999995 %

Prov 5 0.08 99,999999 %

Prov 6 0.075 99,999995 %

Prov 7 0.07 99.99999 %

Prov 8 0.065 99,99995 %

Prov 9 0.06 99,9999 %

Prov 10 0.055 99,9995 %

Prov 11 0.05 99,999 %

Prov 12 0.04 99,995 %

Prov 13 0.03 99.99 %

Prov 14 0.02 99.95 %

Prov 15 0.01 99.9 %

with a considerable cost increase. In this case, we also solicited one provider
to store the data, which may cause user lock-in.

– Distributed Storage: We used our proposed approach (Algorithm1) to find
the trade-off between data availability and price. As depicted in Fig. 6, our
solution reaches a maximum availability of 8 nines with a minimum cost of
4$. This is due to data distribution over a set of selected providers with high
availability and reasonable prices, avoiding user lock-in at the same time.

34 M. Hadji

Fig. 6. Data storage cost and availability trade-off.

Fig. 7. Commodity flow time resolution.

The following experimentation evaluates the time resolution of the commod-
ity flow algorithm to reach optimal solutions for small and large graph instances.
Figure 7 depicts the behaviour of this solution for three types of graph density
ranging in {30%; 50%; 80%}.

The commodity flow algorithm optimizes network access cost and storage
cost in tandem for different graph instances. We find that our approach reaches
optimal solutions for graph instances (number of nodes less than 2500 for a
density of 30%), in acceptable times (≈100 s). When we increase the connectivity
of the graph (50% and 80%), the commodity flow algorithm can reach optimal
solutions in less than 100 s for graphs of less than 2000 nodes, but this time
becomes prohibitively long past few thousands nodes (up than 2500 nodes). For
this last case, we will investigate in a future work, new approaches (rounding
techniques, for example) to accelerate solutions space exploration.

A last experiment consists in evaluating the behavior of the number of repli-
cas (noted by r) of each chunk with the evolution of the number of data chunks
(|N ∗|) identified in (21) for example. We supposed that the average value of data
centers failure probability is equal to 10−3, when the expected data availability
required by cloud consumers is equal to 99.9999%.

Scalable and Cost-Efficient Algorithms 35

Fig. 8. Data chunks replication behavior.

Figure 8 depicts the evolution of r for different chunks number ranging from
1 to 60. Thus, we remark that for a number of chunks |N ∗| ≤ 43, the number
of required replicas is equal to 2, and for |N ∗| ≥ 44 chunks, the number of
replicas converges to 3 and there is no need to replicate more even for larger
number of chunks. This may lead to store large data volumes with reduced costs
when satisfying the required QoS (data availability). Note that this result is very
similar than that determined by the Google File System solution [17].

5 Summary and Future Work

In this paper, we propose efficient and scalable algorithms to cope with the
encrypted and distributed data storage problem in a multi-cloud environnement,
when taking into account SLA requirements and network latency constraints.
Our approaches are based on b-Matching and Commodity Flow theory to opti-
mize the storage cost and the network latency in one shot, while considering data
failure constraints. The b-Matching algorithm works in tandem with a replica-
tion solution allowing to efficiently increase the data availability of end-users.
This replication algorithm is based on a simple and fast approach giving near
optimal solutions even for large problem instances. The commodity flow algo-
rithm leads to combine data storage and network latency in one stage to reduce
total cost.

Our future research will extend the model of the commodity flow to address
elasticity through predictions of dynamic incoming demands’ variations or sto-
chastic behavior. This can be done by proposing new polynomial algorithms
based on rounding techniques to deal with large problem instances. This will lead
to reinforce our broker’s functionalities to give cloud consumers various means to
consume proposed cloud resources in a more secure manner with reduced cost.

36 M. Hadji

References

1. Varghese, L.A., Bose, S.: Integrity verification in multi cloud storage. In: Proceed-
ings of International Conference on Advanced Computing (2013)

2. Balasaraswathi, V.R., Manikandan, S.: Enhanced security for multi-cloud storage
using cryptographic data splitting with dynamic approach. In: Advanced Commu-
nication Control and Computing Technologies (ICACCCT) Conference, pp. 1190–
1194 (2014)

3. Thanasis, P.G., Bonvin, N., Aberer, K.: Scalia: an adaptive scheme for efficient
multi-cloud storage. In: Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, Los Alamitos, CA, USA,
pp. 20: 1–20: 10 (2012)

4. Srivastava, S., Gupta, V., Yadav, R., Kant, K.: Enhanced distributed storage on
the cloud. In: Computer and Communication Technology (ICCCT) Conference,
pp. 321–325 (2012)

5. Yanzhen, Q., Naixue, X.: RFH: A resilient, fault-tolerant and high-efficient replica-
tion algorithm for distributed cloud storage. In: Parallel Processing (ICPP) Con-
ference, pp. 520–529 (2012)

6. Qingsong, W., Veeravalli, B., Bozhao, G., Lingfang, Z., Dan, F.: CDRM: a cost-
effective dynamic replication management scheme for cloud storage cluster. In:
Cluster Computing (CLUSTER) IEEE Conference, pp. 188–196 (2010)

7. Mansouri, Y., Toosi, A.N., Buyya, R.: Brokering algorithms for optimizing the
availability and cost of cloud storage services. In: Proceedings of the 2013 IEEE
International Conference on Cloud Computing Technology and Science, Washing-
ton, DC, USA, vol. 01, pp. 581–589 (2013)

8. Bonvin, N., Papaioannou, T.G., Aberer, K.: A self-organized, fault-tolerant and
scalable replication scheme for cloud storage. In: Proceedings of the 1st ACM
Symposium on Cloud Computing, Indianapolis, Indiana, USA, pp. 205–216 (2010)

9. Rodrigues, R., Liskov, B.: High availability in DHTs: erasure coding vs. replication.
In: van Renesse, R. (ed.) IPTPS 2005. LNCS, vol. 3640, pp. 226–239. Springer,
Heidelberg (2005)

10. Li, J., Li, B.: Erasure coding for cloud storage systems: a survey. Tsinghua Sci.
Technol. J. 18, 259–272 (2013)

11. Jindarak, K., Uthayopas, P.: Enhancing cloud object storage performance using
dynamic replication approach. In: Parallel and Distributed Systems (ICPADS)
IEEE Conference, pp. 800–803 (2012)

12. Abu-Libdeh, H., Princehouse, L., Weatherspoon, H.: RACS: a case for cloud stor-
age diversity. In: Proceedings of the 1st ACM Symposium on Cloud Computing,
New York, NY, USA, pp. 229–240 (2010)

13. Ford, D., Labelle, F., Popovici, F., Stokely, M., Truong, V.A., Barroso, L., Grimes,
C., Quinlan, S.: Availability in globally distributed storage systems. In: Proceedings
of the 9th USENIX Symposium on Operating Systems Design and Implementation
(2010)

14. Myint, J., Thinn Thu, N.: A data placement algorithm with binary weighted tree
on PC cluster-based cloud storage system. In: Cloud and Service Computing (CSC)
Conference, pp. 315–320 (2011)

15. Negru, C., Pop, F., Cristea, V., Bessisy, N., Jing, L.: Energy efficient cloud storage
service: key issues and challenges. In: Emerging Intelligent Data and Web Tech-
nologies (EIDWT) Conference, pp. 763–766 (2013)

Scalable and Cost-Efficient Algorithms 37

16. Chia-Wei, C., Pangfeng, L., Jan-Jan, W.: Probability-based cloud storage providers
selection algorithms with maximum availability. In: Parallel Processing (ICPP)
Conference, pp. 199–208 (2012)

17. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. SIGOPS Oper.
Syst. Rev. 37, 29–43 (2003)

18. Zhang, Q.F., Xue-zeng, P., Yan, S., Wen-juan, L.: A novel scalable architecture of
cloud storage system for small files based on P2P. In: Cluster Computing Work-
shops (CLUSTER WORKSHOPS) Conference, pp. 41–47 (2012)

19. Openstack. https://www.openstack.org/
20. Swift. http://docs.openstack.org/developer/swift/
21. Amazon Web Services. http://aws.amazon.com/fr/s3/pricing/
22. CPLEX Optimizer. http://www-01.ibm.com/software/commerce/optimization/

cplex-optimizer/
23. Weatherspoon, H., Kubiatowicz, J.D.: Erasure coding vs. replication: a quantitative

comparison. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002.
LNCS, vol. 2429, pp. 328–337. Springer, Heidelberg (2002)

24. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms.
Springer, Heidelberg (2001)

25. Grotschel, M., Lovasz, L., Shrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Heidelberg (1985)

26. Kang, S., Veeravalli, B., Aung, K.M.M.: ESPRESSO: an encryption as a service
for cloud storage systems. In: Sperotto, A., Doyen, G., Latré, S., Charalambides,
M., Stiller, B. (eds.) AIMS 2014. LNCS, vol. 8508, pp. 15–28. Springer, Heidelberg
(2014)

27. NIST: Announcing the Advanced Encryption Standard (AES) (2014)

https://www.openstack.org/
http://docs.openstack.org/developer/swift/
http://aws.amazon.com/fr/s3/pricing/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

Accountability Through Transparency
for Cloud Customers

Martin Gilje Jaatun1(B), Daniela S. Cruzes1, Julio Angulo2,
and Simone Fischer-Hübner2

1 Department of Software Engineering, Safety and Security, SINTEF ICT,
7465 Trondheim, Norway

{martin.g.jaatun,danielac}@sintef.no
2 Karlstad University, 65188 Karlstad, Sweden

{julio.angulo,simoner.fischer-huebner}@kau.se
http://infosec.sintef.no, http://www.kau.se/

Abstract. Public cloud providers process data on behalf of their cus-
tomers in data centres that typically are physically remote from their
users. This context creates a number of challenges related to data pri-
vacy and security, and may hinder the adoption of cloud technology. One
of these challenges is how to maintain transparency of the processes and
procedures while at the same time providing services that are secure and
cost effective. This chapter presents results from an empirical study in
which the cloud customers identified a number of transparency require-
ments to the adoption of cloud providers. We have compared our results
with previous studies, and have found that in general, customers are in
synchrony with research criteria for cloud service provider transparency,
but there are also some extra pieces of information that customers are
looking for. We further explain how A4Cloud tools contribute to address-
ing the customers’ requirements.

Keywords: Cloud computing ·Accountability ·Transparency ·Privacy ·
Security

1 Introduction

Cloud computing, which allows for highly scalable computing and storage,
is increasing in importance throughout information technology (IT). Cloud
computing providers offer a variety of services to individuals, companies, and
government agencies, with users employing cloud computing for storing and
sharing information, database management and mining, and deploying web ser-
vices, which can range from processing vast datasets for complicated scientific
problems to using clouds to manage and provide access to medical records [1].

Several existing studies emphasize the way technology plays a role in the adop-
tion of cloud services, and most of these studies conclude that the most important
challenges are related to security, privacy and compliance [2–6]. Cloud service users

c© Springer International Publishing Switzerland 2016
M. Helfert et al. (Eds.): CLOSER 2015, CCIS 581, pp. 38–57, 2016.
DOI: 10.1007/978-3-319-29582-4 3

Accountability Through Transparency for Cloud Customers 39

may hand over valuable and sensitive information to cloud service providers with-
out an awareness of what they are committing to or understanding of the risks,
with no control over what the service does with the data, no knowledge of the
potential consequences, or means for redress in the event of a problem. In the Euro-
pean A4Cloud research project1, our focus is on accountability as the most criti-
cal prerequisite for effective governance and control of corporate and private data
processed by cloud-based IT services. We want to make it possible to hold cloud
service providers accountable for how they manage personal, sensitive and con-
fidential information in the cloud, and for how they deliver services. This will be
achieved by an orchestrated set of mechanisms: preventive (mitigating risk), detec-
tive (monitoring and identifying risk and policy violation) and corrective (manag-
ing incidents and providing redress). Used individually or collectively, they will
make the cloud services in the short- and longer-term more transparent and trust-
worthy for:

– users of cloud services who are currently not convinced by the balance of risk
against opportunity

– their customers, especially end-users who do not understand the need to con-
trol access to personal information

– suppliers within the cloud eco-system, who need to be able to differentiate
themselves in the ultimate commodity market.

In this paper we report on the results of an elicitation activity related to
transparency requirements from the perspective of cloud customers. A Cloud
Customer in our context is an entity that (a) maintains a business relationship
with, and (b) uses services from a Cloud Provider; correspondingly, a Cloud
Provider is an entity responsible for making a [cloud] service available to Cloud
Customers.

Transparency is the property of an accountable system that is capable of ‘giv-
ing account’ of, or providing visibility of, how it conforms to its governing rules
and commitments [7]. Transparency involves operating in such a way as to max-
imize the amount of and ease-of-access to information which may be obtained
about the structure and behavior of a system or process. An accountable orga-
nization is transparent in the sense that it makes the policies on treatment of
personal and confidential data known to relevant stakeholders, can demonstrate
how these are implemented, provides appropriate notifications in case of policy
violation, and responds adequately to data subject access requests. In an ideal
scenario, the user knows the information requirements and is able to communi-
cate that clearly to the provider, and in return, the provider is transparent and
thus willing to address the regulatory and legislative obligations required with
regard to the assets.

The rest of the chapter is organized as follows. Section 2 presents some back-
ground from the literature. Section 3 explains the methods that we used to elicit
the views of the stakeholders. In Sect. 4 we present the results, and in Sect. 5 we
illustrate how the tools developed by the A4Cloud project contribute to meeting

1 http://a4cloud.eu.

http://a4cloud.eu

40 M.G. Jaatun et al.

the customer transparency requirements. We discuss our findings compared to
related work in Sect. 6, and draw our conclusions in Sect. 7.

2 Related Work

Transparency is closely connected to trust [8]. Onwubiko [9] affirms that trust
is a major issue with cloud computing irrespective of the cloud model being
deployed. He says that cloud users must be open-minded and must not whole-
heartedly trust a provider just because of the written-down service offerings
without carrying out appropriate due diligence on the provider; where certain
policies are not explicit, users should ensure that missing policies are included
in the service contract. By understanding the different trust boundaries, each
cloud computing model assists users when making decision as to which cloud
model they can adopt or deploy.

Fig. 1. Understanding cloud computing gaps.

Khorshed et al. [10] highlight the gaps between cloud customers’ expectations
and the actually delivered services, as shown in Fig. 1 (adapted from Khorshed
et al. [10]). They affirm that cloud customers may form their expectations based on
their past experiences and organizations’ needs. They are likely to conduct some
sort of survey before choosing a cloud service provider similar to what people do
before choosing an Internet Service Provider (ISP). Customers are expected to also
establish to what extent providers satisfy confidentiality, integrity and availabil-
ity requirements. On the other hand, cloud service providers may promise a lot to
entice a customer to sign a deal, but harsh reality is frequently accompanied by
insurmountable barriers to keeping some of their promises. Many potential cloud

Accountability Through Transparency for Cloud Customers 41

customers are well aware of this, and are consequentially still sitting on the side-
lines. They will not venture into cloud computing unless they get a clear indication
that all gaps are within acceptable limits.

Durkee [11] says that transparency is one of the first steps to developing trust
in a relationship, and that the end customer must have a quantitative model of

Table 1. Pauley’s cloud provider transparency scorecard.

Aspect Criteria Mentioned in interviews?

Business factors 1 Length in years in business > 5? No

2 Published security or privacy

breaches?

Yes

3 Published outages? Yes

4 Published data loss? Yes

5 Similar customers? Yes

6 Member of ENISA, CSA,

CloudAudit, OCCI, or other

cloud standards groups?

No

7 Profitable or public? No

Security 8 Portal area for security

information?

Yes

9 Published security policy? Yes

10 White paper on security

standards?

Yes

11 Does the policy specifically

address multi-tenancy issues?

Yes

12 Email or online chat for

questions?

No

13 ISO/IEC 27000 certified? Partially

14 COBIT, NIST SP800-53 security

certified?

Partially

15 Offer security professional

services (assessment)?

No

16 Employees CISSP, CISM, or

other security certified?

Partially

Privacy 17 Portal area for privacy

information?

Yes

18 Published privacy policy? Yes

19 White paper on privacy

standards?

Yes

20 Email or online chat for

questions?

No

21 Offer privacy professional

services (assessment)?

No

22 Employees CIPP or other privacy

certified?

Partially

External audits or certifications 23 SAS 70 Type II No

24 PCI-DSS No

25 SOX No

26 HIPAA No

Service-level agreements 27 Does it offer an SLA? Yes

28 Does the SLA apply to all

services

No

29 ITIL-certified employees? No

30 Publish outage and remediation? Yes

42 M.G. Jaatun et al.

the cloud’s behavior. The cloud provider must provide details, under NDA if
necessary, of the inner workings of their cloud architecture as part of developing
a closer relationship with the customer. Durkee also says that this transparency
can only be achieved if the billing models for the cloud clearly communicate the
value (and avoided costs) of using the service. To achieve such clarity, the cloud
vendor has to be able to measure the true cost of computing operations that the
customer executes and bill for them.

Pauley [12] proposed an instrument for evaluating the transparency of a cloud
provider. It is the only empirical evaluation that we found that focuses on trans-
parency in the cloud as a subject of study. The study aims to help businesses
assess the transparency of a cloud provider’s security, privacy, auditability, and
service-level agreements via self-service Web portals and publications. Pauley
designed a scorecard (Table 1) to cover the assessment areas frequently raised in
his research, and to begin to establish high-level criteria for assessing provider
transparency. He concludes that further research is needed to determine the
standard for measuring provider transparency. In our research we used a differ-
ent strategy than Pauley; we have interviewed customers of cloud services to see
what kind of information they would like to get from the cloud providers.

3 Method

As part of the project, we were responsible for running a set of stakeholder
workshops for eliciting requirements for accountability tools. In total, our elic-
itation effort has involved more than 300 stakeholders, resulting in 149 stake-
holder requirements. The first workshop dealt with eliciting initial accountability
requirements, serving as a reality-check on the three selected business use cases
we had constructed [13]. The second workshop dealt with risk perception. The
aim was to focus on the notion of risk and trust assessment of cloud services,
future Internet services and dynamic combinations of such services (mashups).
After the first two workshops, we decided to organize multiple smaller, local
workshops on each theme to ease participation of cloud customers and end users.
The third set of workshops presented stakeholders with accountability mecha-
nisms to gather their operational experiences and expectations about account-
ability in the cloud.

Of particular importance to this study was the risk workshop, where 15
tentative requirements related to transparency were identified. This work-
shop comprised 20 international stakeholders from the manufacturing industry,
telecom, service providers, banking industry and academia, and the tentative
transparency requirements were subsequently presented to our interviewees as a
starting point for the discussion.

In addition to the stakeholder requirements, we have devised a set of high-
level requirements which, from an organizational perspective, set out what it takes
to be an accountable cloud provider [14]. These requirements intend to supple-
ment the requirements elicitation process by providing a set of high-level “guiding
light” requirements, formulated as requirements that accountable organizations

Accountability Through Transparency for Cloud Customers 43

should meet. In short, these requirements state that an accountable organization
that processes personal and/or business confidential data must (1) demonstrate
willingness and capacity to be responsible and answerable for its data practices
(2) define policies regarding their data practices, (3) monitor their data practices,
(4) correct policy violations, and (5) demonstrate policy compliance.

From these activities we have created a repository with requirements from all
elicitation workshops, the guiding lights requirements as well as a number of more
technical requirements that have originating from the conceptual work and tech-
nical packages in the project. These have been classified in terms of whether they
are functional requirements, which are directly related to the actors involved in
the cloud service delivery chain, or requirements for accountability mechanisms,
which are related to the tools and technologies that are being developed in the
project.

For refining and confirming the elicited requirements of transparency, we have
performed an interview study with eight interviewees, followed by an in-depth
analysis of the collected information.

Invitations were sent to our list of contacts in Norwegian software companies.
Participation was voluntary. Eight people accepted to participate in the inter-
views. The participants were all IT security experts working with cloud related
projects. The participants represented six different organizations: a consultancy,
2 cloud service providers (1 public, 1 private), an application service provider, a
distribution service provider, and a tertiary education institution.

The interviews were performed on Skype and lasted about one hour. The
main questions of the interview were:

1. What is the most important information you think should be provided to the
cloud customer when buying services from cloud service providers? (Fig. 2)

2. In which parts would you like to be involved in making the decisions? In
which parts would you like just to be informed of the decisions? (Fig. 3)

3. What would increase your trust that the data is secure in this scenario?
4. What do you want to know about how the provider corrects data security

problems? (Fig. 4)

The eight interviews for this study were transcribed into text documents
based on the audio recordings. For further analysis of the transcription, we fol-
lowed the Thematic Synthesis recommended steps proposed by Cruzes and Dyb̊a
[15]. Thematic synthesis is a method for identifying, analyzing, and reporting
patterns (themes) within data. It comprises the identification of the main, recur-
rent or most important (based on the specific question being answered or the
theoretical position of the reviewer) issues or themes arising from a body of evi-
dence. The level of sophistication achieved by this method can vary; ranging from
simple description of all the themes identified, through to analyses of how the
different themes relate to one another in a conceptual map. Five steps were per-
formed in this research: initial reading of data/text (extraction), identification
of specific segments of text, labeling of segments of text (coding), translation of
codes into themes, creation of the model and assessment of the trustworthiness
of the model.

44 M.G. Jaatun et al.

4 Results

For the question “What is the most important information you think should be
provided to the cloud customer in this scenario?” the participants talked mostly
about nine themes (Fig. 2):

1. clear statements of what is possible to do with the data,
2. conformance to data agreements,
3. how the provider handles data,
4. location,
5. who else other than the provider is participant of the value chain,
6. multi-tenant situations,
7. what the provider does with the data,
8. procedures to leave the service,
9. assurance that the user still owns the right to the data.

One respondent commented that even though he would like to have clear
statements of what is possible to do with the data: “100 pages document could
be written about this, but for some non-technical people it would not help at
all”. Another one said: “I would like to have a [web] page where they could tell
me about security mechanisms, for example, firewalls, backup etc.”

On the conformance to data agreements, the respondents agree that having
Data Agreements helps, but it is mainly for technicians, not for non-technical
people. On how the provider handles data, the respondents said that they would
like to have functional, technical and security related information about how the
providers handle the data. On location, the respondents are concerned about
where the data is physically stored, and the legal jurisdiction of the services.
Another important piece of information is about sub-providers, if there are any;
where they are located and whether they meet legal requirements of the cus-
tomer’s location. Multi-tenant situations are a concern of the customers, and
they would like to have this information transparent. Also, information on how
the providers ensure that data from one customer will not be accessed by another
customer.

It is also important for transparency to know what the provider does to pro-
tect customers’ data. One respondent said that he would like to have information
on: “How to protect the information or how the information is protected; not
much in detail for the end-user, but only for enterprises.” It was also highlighted
that they would like to have the procedures to leave the service and on how to
move data from one service to another transparent. Besides, they would like to
have the assurance that they still own the rights to their data. On the ques-
tion “What would increase your trust that the data is secure in this scenario?”
the participants mentioned eight different themes: (1) upfront transparency; (2)
community discussions, (3) customer awareness; (4) way out; (5) reputation; (6)
encryption; (7) data processor agreements; and (8) location.

Some answers were overlapping towards the answers from the first question:
upfront transparency, location and conformance to data processor agreement.

Accountability Through Transparency for Cloud Customers 45

Fig. 2. Important upfront information for transparent services.

Interesting answers for this question were related to community discussions, cus-
tomer awareness and reputation. The respondents said that it increases their trust
in a cloud provider if they know that the provider has an active security research
team, or participates in security communities. The respondents also said that for
security: “Customers should be proactive and make sure that all the documen-
tation is there”. And another one commented on the importance of having web-
pages telling what customers could do to keep the data safe. Two participants also

46 M.G. Jaatun et al.

Fig. 3. Involvement on making decisions.

mentioned “Way out”, meaning that they would like to have webpages telling them
what to do to remove the data from the service provider.

On the questions: “In which parts would you like to be involved in making the
decisions? In which parts would you like just to be informed of the decisions?”
it was surprising that the participants mostly answered that they would like to
be informed but not really taking part of every decision (Fig. 4); the exceptions
were when the provider was moving data to another country, other parties are
introduced in the service provider value chain, or there are significant changes in
the initial terms of contract. One participant said: “Some customers sometimes
have some requests, but in general they do not care about taking part in the
decisions”, and another one said: “there are some decisions that we don’t need
to explicitly know about, but it has to be regulated by some other agreement
about the responsibility of each one towards the data”. One respondent also
said: “I would like to be involved in decisions on moving my data to another
country in most situations. Unless for example a disaster and there is the need
to move to another country.” Some respondents said that they would like to be
informed when the data is transferred from one actor to the next, one of them
added: “For example if calling to the call center your data will be transferred
to another country then the customers has to be involved in the decision about
that. So he can take an informed decision.” On changes in the initial terms
of Contract, one respondent said: “the providers should be very aware of what
they changed since the contract with the customer [was signed], and inform them
about the changes that happen. Never leave the customer in the dark.”

When asked on what they would want to know about how the provider cor-
rects data security problems, it was again surprising to learn that the participants
have not thought much on what they could expect from the providers if some

Accountability Through Transparency for Cloud Customers 47

Fig. 4. Transparency on correction of data security problems.

security issue happens. Most of the respondents needed further elaboration of
the question before they would start saying something. Then, the participants
stated that they would like to know what is planned before something happens;
when something happens they want to know how the providers are handling
the situation, why the problem happened, and when will the services be back
online. Interesting was also the fact that the participants wanted to know how
the providers are improving their services after something happens, based on
lessons learned. These responses are collated in the taxonomy shown in Fig. 4.

5 Transparency Tools

Many of the transparency mechanisms that customers expressed a desire for are
actually being developed by the A4Cloud project [14]. Furthermore, a central
theme of A4Cloud is the development of the Accountability PrimeLife Policy
Language (A-PPL), which allows end users to specify a privacy policy that
also covers accountability requirements, including transparency [16]. A4Cloud
is developing an A-PPL Engine which will serve as a Policy Decision Point
for the associated policies at each cloud provider. Other tools developed by
A4Cloud include the Cloud Offerings Advisory Tool (COAT), which allow cloud
customers to select an appropriate cloud provider based on relevant accountabil-
ity requirements, including transparency [17]. This will eventually allow trans-
parency requirements to be built into standard cloud service level agreements
(SLAs), where transparency is just one of several security attributes [18].

In the following subsections, we will show in more detail how the A4Cloud
DataTrack tool enhances transparency for end users by allowing users to visualize
the personal data that have been disclosed to different online services.

5.1 The Data Track Tool

The Data Track transparency-enhancing tool was initially developed as part of the
European FP6 and FP7 research projects PRIME2 and PrimeLife3. Initially, the
Data Track consisted of a history function for keeping a log of each transaction in

2 EU FP6 project PRIME, https://www.prime-project.eu/.
3 EU FP7 project PrimeLife http://primelife.ercim.eu/.

https://www.prime-project.eu/
http://primelife.ercim.eu/

48 M.G. Jaatun et al.

which a user discloses personal data. The log contained a record for the user on
which personal data were disclosed to whom, for which purposes, which creden-
tials and/or pseudonyms have been used in this context as well as the details of the
agreed-upon privacy policy. These transaction records were stored at the user side
in a secure manner. During the PrimeLife project and in the A4Cloud project, the
Data Tack tool has been extended with online access functions, conceptually allow-
ing users to exercise their data subjects’ rights to access their data at the remote
services sides and to request correction or deletion of their data (as far as this is
permitted by the service side).

In its backend the architecture of the Data Track consists of four high-level
components. First, the user interface (UI) component, which displays different
visualizations of the data disclosures provided by the Data Track’s core. Sec-
ond, the core component is a backend to the UI with local encrypted storage.
Through a RESTful API, the core is able to provide a uniform view to the UI of
all users’ data obtained from a service provider via so called plugins. Third, the
plugin component provides the means for acquiring data disclosures from a given
source (e.g., a service provider’s database) and parsing them into the internal
format readable by the core. Fourth, the Data Track specifies a generic API
component that enables a service provider to support the Data Track by provid-
ing remote access, correction, and deletion of personal data. Based on solutions
proposed by Pulls et al. [19], the transfer of data through a service’s API can
be done in a secure and privacy-friendly manner. By retrieving data from dif-
ferent services through their provided APIs users would be able to import their
data immediately into the Data Track and visualize it in different ways, thus
providing immediate value for end-users.

Detailed descriptions of the initial Data Track’s proof-of-concept, user inter-
faces and results of its usability evaluations are given by Fischer-Hübner et al. [20],
and further design process is described by Angulo et al. [21]. The security and
privacy mechanisms of its software implementation have been documented by
Hedbom, Pulls et al. [22–24].

5.2 Visualizing Data Disclosures

The design of the Data Track’s UI considers different methods for visualizing
a user’s data disclosures in a way that is connected to this user’s momentary
intentions. Based on the ideas from previous studies suggesting ways to display
data disclosures [25,26] and the creation of meaningful visualizations for large
data sets [27–29], we have designed and prototyped two main visualizations for
the Data Track as part of the A4Cloud project, we refer to them as the trace
view and the timeline view

The main trace view interface, shown in Fig. 5, is separated into three main
panels. The services to which the user has released information appear in the
bottom panel and the information attributes that have been released by the user
to these different services appear in the top panel. The user is represented by
the panel in the middle, with the intention of giving users the feeling that this
interface is a place that focuses on them (i.e., data about them and services that

Accountability Through Transparency for Cloud Customers 49

they have contacted). When the user clicks on one (or many) service(s) from
the bottom panel, a trace is shown to the personal attributes (represented with
graphical icons) that have been disclosed to the selected service(s). Similarly,
if the user selects a personal attribute from the top panel, a trace is shown to
the service(s) to which the selected attribute has been disclosed at some point
in time. By its design, the trace view lets users answer the question of “what
information about me have I sent to which online services?”

Fig. 5. The prototype of the trace view interface of the data track tool.

In order to cater for users perceptual capabilities and considering the screen
real state, filtering mechanisms are put in place that would allow users to filter
for information that is relevant to what they want to find out. In the trace view,
users can search using free-text (i.e., by typing the name of a company, like
Flickr or Spotify, or the name of a personal attribute, like ‘credit card’ or ‘heart
rate’), they can also select categories of data or individual pieces of data, as well
as the number of entities to be displayed on the screen.

The other visualization presents each disclosure in chronological order, thus
name the timeline view. In this view, shown in Fig. 6, each circle along the
vertical line represents the service to which personal data has been disclosed at
a specific point in time. Each box besides a circle contains the personal attributes
that were sent with that particular disclosure. In order to keep the size of the
boxes consistent and to not overwhelm users with visual information, the boxes
only show four attributes initially, and users have the option to look at the rest
of the attributes in that particular disclosure by clicking in the “Show more”
button. Users can scroll vertically indefinitely, thus unveiling the disclosures of
data that they have made over time, and allowing them to answer the question

50 M.G. Jaatun et al.

“what information about me have I sent to which online services at a particular
point in time?”

Filters have also been considered for the timeline view, allowing users to
search, for instance, for all disclosures made in a specified time interval, or all
disclosures made to a particular service.

Fig. 6. The prototype of the timeline view interface of the Data Track tool.

Thanks to the envisioned architecture in the A4Cloud project, which consid-
ers the use of the A-PPL Engine mentioned earlier, the Data Track would allow
its end-users to access personal data about them that is located in a service’s
side (i.e., stored in the service’s databases). In both, the trace view and the
timeline view, a button (in shape of a cloud) located besides a service providers
logo, opens up a dialog showing users the data about them that is located on
the services’ side. This dialog, shown in Fig. 7, presents not only the personal
attributes that have been explicitly collected by the service provider, but also
data about the user that has been derived from analysis. Through this dialog
users would also be able to request correction or deletion of personal attributes,
thus being able to exercise their data access rights.

Accountability Through Transparency for Cloud Customers 51

Fig. 7. The pop-up dialog showing the explicitly sent and derived data stored at the
service’s side.

5.3 User Evaluations of the Data Track’s UI

Throughout the A4Cloud project, the user interface of the Data Track has gone
through several iterative rounds of design and user evaluations. The evaluations
had the purpose of testing the level of understanding of the interface, but also
as a method for gathering end-user requirements on the needs and expectations
that such a tool should provide to its users.

Usability testing of earlier designs of the Data Track revealed that lay users
expressed feelings of surprise and discomfort with the knowledge that service
providers analyze their disclosed data in order to derive additional insights about
them, like their music preferences or religion. In general, evaluations have also
shown that participants understand the purpose of the tool and ways to interact
with it, identifying correctly the data that has been sent to particular service
providers, and using the filtering functions to answer questions about their dis-
closed personal data. The tests also revealed users’ difficulties when differenti-
ating between data that is locally stored under their control on their computers
and data that is accessed on the services’ side (and shown through the pop-up
dialog), as well as skepticism of the level of security of the data stored locally.

During an evaluation workshop, attendees discussed the advantages and pos-
sible risks of using such a tool, as well as the requirements to make such a tool
not only user-friendly but also adopted in their routinary Internet activities. One

52 M.G. Jaatun et al.

participant, for instance, commented that the transparency that the Data Track
provides, would encourage service providers to comply with their policies and be
responsible stewards of their customers data, “it would keep me informed and hold
big companies in line.”. Another participant mentioned the benefit of becoming
more aware of disclosures made to service providers, “makes you aware of what
information you put on the Internet, you probably would be more careful.” On the
other hand, a participant commented on the risk of accumulating large amounts
of personal data in a single place, “if there is one tool collecting all the data, then
it is a single point of failure...”.

6 Discussion

After analyzing all the collected information we compiled a list of requirements
elicited in the interviews, as shown in AppendixA. The main “topics” mentioned
by the respondents were related to what is possible to do with the data, confor-
mance to data agreements, data handling, value chain, multi-tenant situations,
protection of the data, decisions and corrections of the data.

Pauley [12] designed a scorecard reproduced in Table 1 to cover the assess-
ment areas frequently raised in the research, and to begin to establish high-level
criteria for assessing provider transparency. When comparing our list of elicited
requirements (see Appendix A) to Pauley’s scorecard, we can see some slight
differences in the criteria that Pauley described as information that should be
provided by the cloud providers and the information that the customers are look-
ing for. In the criteria about the business factors, the customers did not mention
being concerned about the number of years in business, nor about membership of
CSA, CloudAudit, OCCI, or other cloud standards groups, or if the providers are
profitable or public. There is a possibility that the respondents did not mention
these criteria because (a) companies in Norway are usually stable, and (b) mem-
bership of a group or association does not in itself guarantee good performance
or compliance, even if the group or association promotes a certain standard.

On the security and privacy aspects, the customers mentioned all the crite-
ria, but they did not mention directly the standards/certifying bodies, such as
ISO/IEC 27000, COBIT and NIST, but they mentioned that it would be nice
to know if the provider was certified somehow, based on some criteria. The cus-
tomers also did not mention the need to know about “external” audits. One of
the reasons for not mentioning security standards and certification bodies may
be that companies that we have investigated are predominantly private compa-
nies in Norway, where there are not strong requirements from the certification
bodies yet.

One important aspect not very much explored in Pauley’s scorecard is that
customers would like providers to be transparent about what is possible to do
with the data. In addition, customers were quite concerned about transparency
on exit procedures (“way out”) and ownership of the data. The concern over
data ownership is interesting seen in the light of Hon et al. [30], who found no
evidence of cloud contracts leading to loss of Intellectual Property Rights.

Accountability Through Transparency for Cloud Customers 53

Another aspect further mentioned by the customers is on the decisions made
on “ongoing” services, where the customers would like that: “The cloud providers
should get the consent of the cloud customer before moving the data to another
country, in cases where new parties will be involved in the value chain and on
changes on the initial terms of contract.”

Physical location and legal jurisdiction, as well as specific information on the
value chain was a very important aspect to be transparent about for the cloud
customers, and it was not explicitly mentioned in Pauley’s scorecard.

The interviewees did not show a desire for the kind of detailed information
Durkee [11] deems necessary (the inner workings of their cloud architecture as
part of developing a closer relationship with the customer), and as also pointed
out by Durkee, some respondents were also aware that the costs of such clarity
may be prohibitive, and we might add that this level of disclosure seems highly
unlikely for ordinary customers of commodity cloud services.

The Data Track tool that we have described in Sect. 5 focuses more on end
users (data subjects) than professional cloud users, but is clearly relevant for the
customers of the cloud users. However, the tool can also be used to follow up
on what a provider claims to be able to do with the data (AppendixA.1). It
can be used to follow up on the geographical location of the customer’s data
(AppendixA.2), and can also help illustrating the existence of services from
other parties (AppendixA.4).

7 Conclusions

Cloud computing has been receiving a great deal of attention, not only in the
academic field, but also amongst the users and providers of IT services, regulators
and government agencies. The results from our study focus on an important
aspect of accountability of the cloud services to customers: transparency.

The customers made explicit all the information that they would like the
providers to be transparent about. Much of this information can be easily pro-
vided at a provider’s website. Our contention is that being transparent can be
a business advantage, and that cloud customers who are concerned with, e.g.,
privacy of the data they put into the cloud, will choose providers who can demon-
strate transparency over providers who cannot.

Our study increases the body of knowledge on the criteria needed for more
accountable and transparent cloud services, and confirms the results from pre-
vious studies on these criteria. The list of requirements in AppendixA comple-
ments, in part, the existing criteria.

An area for future research is to further evaluate how cloud providers cur-
rently make the information required by cloud customers available. In addition,
what are the effects of having transparent services in terms of costs and benefits
to cloud customers and providers. Besides, we plan to increase the number of
participants responding to our interview guide and adding strength to the evi-
dence provided in this paper. Another aspect we would like to investigate, is if
the results will be different for users of the different types of services (e.g., SaaS
vs IaaS).

54 M.G. Jaatun et al.

Acknowledgements. This paper is based on joint research in the EU FP7 A4CLOUD
project, grant agreement no: 317550.

A List of Requirements from Transparency Interviews

A.1 What is Possible to do with the Data

– The provider should show clear statements of what is possible to do with the
data.

– The provider should allow the cloud customer to choose what is possible to
do with his/her data.

– The provider should have a page that they could tell the cloud customer about
security mechanisms, e.g., firewalls, backup etc.

– The provider should have some kind of standard certification level of descrip-
tion or standard language that they have to make the situation easier to the
buyer to evaluate which security level do we need, what is required from us
and what is the provider offering.

– The provider should have a document explaining what are the procedures to
leave the service and take the data out of their servers.

– The provider should have a document in which they describe the ownership
of the data.

A.2 Conformance to Data Agreement

– The provider should make available the technical documentation on how data
is handled, how it is stored, and the procedures.

– There should be documentation of procedures in different levels of abstraction,
for example for technical staff or for cloud subjects.

– The provider should show that they follow the data handling agreement to
the type of data that is in question.

– The provider should provide geographical information of where the data is
stored.

A.3 Data Handling

– The provider should provide functional, technical and security-related infor-
mation about how they handle the data.

– The provider should provide very good information on how the data is stored
and who has access to it.

A.4 Value Chain

– In case of using services from other parties, the provider should inform cloud
customers on what the responsibilities of the parties involved in the agree-
ment are.

– In case of using services from other parties, the provider should inform about
the existence of sub providers, where they are located, and whether they meet
legal requirements of the country of the cloud customer.

Accountability Through Transparency for Cloud Customers 55

A.5 Multi-tenant Services

– The provider should inform the cloud customers on cases of multi-tenant
services.

– In case of multi-tenant services, the provider should inform how the customers
are separated from each other.

– In case of multi-tenant services, the provider should inform how they assure
that data from one customer will not be accessed by another customer.

A.6 Protection of the Data

– The provider should inform the cloud customer on how to protect the informa-
tion or how the information is protected not much in detail for the end-user,
but only for enterprises.

– The provider should have a document describing the mechanisms that secure
data not only for data loss but also for data privacy vulnerabilities.

A.7 Decisions

– The cloud providers should get the consent of the cloud customer before mov-
ing the data to another country, in cases where new parties will be involved
in the value chain and on changes on the initial terms of contract.

A.8 Correction of the Data

– The cloud provider should have a document stating what are the procedures
and mechanisms planned for cases of security breaches on customers’ data.

– In case of security breaches, the cloud provider should inform the cloud cus-
tomers on what happened, why did it happen, what are the procedures they
are taking to correct the problem and when will services be normalized.

References

1. Paquette, S., Jaeger, P.T., Wilson, S.C.: Identifying the security risks associated
with governmental use of cloud computing. Gov. Inf. Q. 27, 245–253 (2010)

2. Kuo, A.M.: Opportunities and challenges of cloud computing to improve health
care services. J. Med. Internet Res. 13, e67 (2011)

3. Gavrilov, G., Trajkovik, V.: Security and privacy issues and requirements for
healthcare cloud computing. In: Proceedings of the ICT Innovations (2012)

4. AbuKhousa, E., Mohamed, N., Al-Jaroodi, J.: e-health cloud: opportunities and
challenges. Future Internet 4, 621 (2012)

5. Rodrigues, J.J., de la Torre, I., Fernandez, G., Lopez-Coronado, M.: Analysis of the
security and privacy requirements of cloud-based electronic health records systems.
J. Med. Internet Res. 15, e186 (2013)

6. Ahuja, S.P., Mani, S., Zambrano, J.: A survey of the state of cloud computing in
healthcare. Netw. Commun. Technol. 1, 12–19 (2012)

56 M.G. Jaatun et al.

7. Felici, M., Koulouris, T., Pearson, S.: Accountability for data governance in cloud
ecosystems. In: 2013 IEEE 5th International Conference on Cloud Computing
Technology and Science (CloudCom), vol. 2, pp. 327–332 (2013)

8. Yang, H., Tate, M.: A descriptive literature review and classification of cloud com-
puting research. Commun. Assoc. Inf. Syst. 31, 35–60 (2012)

9. Onwubiko, C.: Security issues to cloud computing. In: Antonopoulos, N., Gillam, L.
(eds.) Cloud Computing. Computer Communications and Networks, pp. 271–288.
Springer, London (2010)

10. Khorshed, M.T., Ali, A.S., Wasimi, S.A.: A survey on gaps, threat remediation
challenges and some thoughts for proactive attack detection in cloud computing.
Future Gener. Comput. Syst. 28, 833–851 (2012). Including Special sections SS:
Volunteer Computing and Desktop Grids and SS: Mobile Ubiquitous Computing

11. Durkee, D.: Why cloud computing will never be free. Commun. ACM 53, 62–69
(2010)

12. Pauley, W.: Cloud provider transparency: an empirical evaluation. IEEE Secur.
Priv. 8, 32–39 (2010)

13. Bernsmed, K., Tountopoulos, V., Brigden, P., Rübsamen, T., Felici, M.,
Wainwright, N., Santana De Oliveira, A., Sendor, J., Sellami, M., Royer, J.C.:
Consolidated use case report. A4Cloud Deliverable D23.2 (2014)

14. Jaatun, M.G., Pearson, S., Gittler, F., Leenes, R.: Towards strong accountability
for cloud service providers. In: 2014 IEEE 6th International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 1001–1006 (2014)

15. Cruzes, D.S., Dyb̊a, T.: Recommended steps for thematic synthesis in software
engineering. In: Proceedings of the ESEM 2011, pp. 275–284 (2011)

16. Azraoui, M., Elkhiyaoui, K., Önen, M., Bernsmed, K., De Oliveira, A.S.,
Sendor, J.: A-PPL: an accountability policy language. In: Garcia-Alfaro, J.,
Herrera-Joancomart́ı, J., Lupu, E., Posegga, J., Aldini, A., Martinelli, F.,
Suri, N. (eds.) DPM/SETOP/QASA 2014. LNCS, vol. 8872, pp. 319–326. Springer,
Heidelberg (2015)

17. Alnemr, R., Pearson, S., Leenes, R., Mhungu, R.: Coat: cloud offerings advisory
tool. In: 2014 IEEE 6th International Conference on Cloud Computing Technology
and Science (CloudCom), pp. 95–100 (2014)

18. Jaatun, M.G., Bernsmed, K., Undheim, A.: Security SLAs – an idea whose time has
come? In: Quirchmayr, G., Basl, J., You, I., Xu, L., Weippl, E. (eds.) CD-ARES
2012. LNCS, vol. 7465, pp. 123–130. Springer, Heidelberg (2012)

19. Pulls, T.: Preserving privacy in transparency logging. Ph.D. thesis, Karlstad Uni-
versity Studies, vol. 28 (2015)

20. Fischer-Hübner, S., Hedbom, H., Wästlund, E.: Trust and assurance HCI. In:
Camenisch, J., Fischer-Hübner, S., Rannenberg, K. (eds.) Privacy and Identity
Management for Life, pp. 245–260. Springer, Heidelberg (2011)

21. Angulo, J., Fischer-Hübner, S., Pulls, T., Wästlund, E.: Usable transparency with
the data track: a tool for visualizing data disclosures. In: Extended Abstracts in
the Proceedings of the Conference on Human Factors in Computing Systems, CHI
2015, Seoul, Republic of Korea, pp. 1803–1808. ACM (2015)

22. Hedbom, H., Pulls, T., Hjärtquist, P., Lavén, A.: Adding secure transparency
logging to the PRIME core. In: Bezzi, M., Duquenoy, P., Fischer-Hübner, S.,
Hansen, M., Zhang, G. (eds.) IFIP AICT 320. IFIP AICT, vol. 320, pp. 299–314.
Springer, Heidelberg (2010)

23. Hedbom, H.: A survey on transparency tools for enhancing privacy. In:
Matyáš, V., Fischer-Hübner, S., Cvrček, D., Švenda, P. (eds.) The Future of Iden-
tity. IFIP AICT, vol. 298, pp. 67–82. Springer, Heidelberg (2009)

Accountability Through Transparency for Cloud Customers 57

24. Pulls, T., Peeters, R., Wouters, K.: Distributed privacy-preserving transparency
logging. In: Workshop on Privacy in the Electronic Society, WPES 2013, Berlin,
Heidelberg, Germany, pp. 83–94 (2013)

25. Kani-Zabihi, E., Helmhout, M.: Increasing service users’ privacy awareness by
introducing on-line interactive privacy features. In: Laud, P. (ed.) NordSec 2011.
LNCS, vol. 7161, pp. 131–148. Springer, Heidelberg (2012)

26. Kolter, J., Netter, M., Pernul, G.: Visualizing past personal data disclosures. In:
ARES 2010 International Conference on Availability, Reliability, and Security.
IEEE, pp. 131–139 (2010)

27. Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: real-world event
identification on twitter. In: Proceedings of the Fifth International AAAI Confer-
ence on Weblogs and Social Media, ICWSM 2011 (2011)

28. Freeman, L.C.: Visualizing social networks. J. Soc. Struct. 1, 4 (2000)
29. Kairam, S., MacLean, D., Savva, M., Heer, J.: Graphprism: compact visualization

of network structure. In: Proceedings of the International Working Conference on
Advanced Visual Interfaces, ACM, pp. 498–505 (2012)

30. Hon, W., Millard, C., Walden, I.: Negotiating cloud contracts - look-
ing at clouds from both sides now. Stan. Tech. L. Rev. 81 (2012).
Queen Mary School of Law Legal Studies Research Paper No. 117/2012.
https://journals.law.stanford.edu/stanford-technology-law-review/online/
negotiating-cloud-contracts-looking-clouds-both-sides-now, http://papers.ssrn.
com/sol3/papers.cfm?abstract id=2055199

https://journals.law.stanford.edu/stanford-technology-law-review/online/negotiating-cloud-contracts-looking-clouds-both-sides-now
https://journals.law.stanford.edu/stanford-technology-law-review/online/negotiating-cloud-contracts-looking-clouds-both-sides-now
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2055199
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2055199

Towards a Standardized Quality Assessment
Framework for OCCI-Controlled

Cloud Infrastructures

Yongzheng Liang(&)

bwcon GmbH, Breitscheidstraße 4, 70174 Stuttgart, Germany
liang@bwcon.de

http://www.bwcon.de

Abstract. Considering standardized testing methodologies and related tool
infrastructures as key elements of software quality assessment frameworks, for
Clouds controlled by the Open Cloud Computing Interface OCCI this paper is
going to present related first work based on the ETSI standardized test speci-
fication language TTCN-3. Initially motivated by studying the NIST Cloud
Computing Program and the ETSI Cloud Standards Coordination (CSC) effort
this approach is further stimulated by the recent evolution of the Cloud-oriented
ETSI Network Functions Virtualization (NFV) and related projects such as the
German Industrie 4.0.

Keywords: Cloud quality assessment � Standardized testing � TTCN-3 � Cloud
Standards � OCCI � Software Defined Network � Network Functions Virtual-
ization � Industrie 4.0

1 Introduction

Impacting basically all types of IT infrastructures “The Cloud” is one of the most
important evolving IT paradigms. A standard-based Cloud quality and compliance
assessment framework will be therefore of utmost importance. Bringing together the
Open Cloud Computing Interface OCCI of the Open Grid Forum OGF and the ETSI
standardized test specification language TTCN-3 and related test methodologies this
paper is going to demonstrate initial steps towards such a framework. Taking into
account the diversity of Cloud infrastructures, of service providers, and related archi-
tectural, harmonization and standardization effort our approach is initially motivated by
studying the NIST Cloud Computing Program, NIST CC and the ETSI Cloud Stan-
dards Coordination (CSC). Reflecting the Cloud-orientation of the Software Defined
Network (SDN) together with ETSI Network Functions Virtualization (NFV) and the
recent Industrie 4.0 project in Germany [38, 39], this paper is also considering these
initiatives within the scope of future standardized Cloud quality assessment framework.

The rest of the paper is organized as follows: Sect. 2 is introducing recent and
ongoing work of NIST CC and ETSI CSC. The methodological look at NIST/ETSI will
follow the triple “use cases – standards – testing” and corresponding mappings. Sec-
tion 3 describes how, following the virtualization paradigm, the “Software Defined
Network”, SDN, and ETSI NFV have met the Cloud.

© Springer International Publishing Switzerland 2016
M. Helfert et al. (Eds.): CLOSER 2015, CCIS 581, pp. 58–73, 2016.
DOI: 10.1007/978-3-319-29582-4_4

Section 4 introduces the OGF OCCI standard. Section 5 describes some OCCI
related effort of relevance in the given context. Section 6 introduces TTCN-3, the
“Testing and Test Control Notation Version 3” the test specification language stan-
dardized by ETSI. Section 7 describes relevant TTCN-3 effort. Section 8 demonstrates
“TTCN-3 on top of OCCI” for both a subset of the ETSI Interoperability test cases and
for BonFIRE a large European Multi-Cloud project. Section 9 resumes the paper and
gives an outlook on future work.

2 Toward a Standardized Cloud Quality Assessment
Framework

In the context of this paper the term “quality assessment” is potentially very broad and
related to testable attributes of Cloud systems such as conformance to protocol stan-
dards or regulations, performance metrics’ or security measures etc. Such “assessment”
may also be instrumental in the provision of “Cloud certification”.

Both influenced by and possibly influencing the evolution of Cloud ecosystems
potential Cloud adopters typically have developed related use cases of different
abstraction levels above the basic technologies in question. At the same time and in a
similar interdependency relation in numerous bodies Cloud standards have evolved and
are still evolving. In such a situation mapping use cases to compatible or even “inte-
grated” standards is one of the natural important steps. Eventually, addressing different
test types such as conformance, performance etc. test cases will be specified. Such
processes are assumed to be typical and necessary steps in the evolution towards a
quality assessment framework.

Envisioning such a process and given the sheer weight of the US Government as a
Cloud adopter and the important role of ETSI concerning high-quality standards and
formal testing methodologies we are going to use the NIST Cloud Computing Program
and the ETSI Cloud Standard Coordination effort in order to argue for a standardized
Cloud quality assessment framework to be constructed “above” the two standards
OCCI and TTCN-3.

2.1 NIST CC Program

The NIST (National Institute of Standards and Technology) designed its Cloud
Computing Program, CC, “to support accelerated US government adoption, as well as
leverage the strengths and resources of government, industry, academia, and standards
organization stakeholders to support cloud computing technology innovation” [22].
The cited document “US Government Cloud Computing Technology Roadmap”
comprising the Volume I “High-Priority Requirements to Further USG Agency Cloud
Computing Adoption” and Volume II “Useful Information for Cloud Adopters”
summarizes the results of the now finalized Phase I and defines and relates ten
“high-level requirements” to the different NIST CC working groups for Phase II.

Key documents of Phase I are concerning Cloud taxonomy and vocabulary, ref-
erence architecture, standards and security; for references see [22].

Towards a Standardized Quality Assessment Framework 59

The NIST projects and working groups apply a use case methodology to define
business and technical operational scenarios and requirements. The NIST-chaired
public Cloud Computing Business Use Case Working Group (CCBUCWG) has pro-
duced use cases at the functional mission level. Those “business use case are
decomposed into a list of high-level requirements, then into successively more detailed
requirements, until they can ultimately be mapped to technical requirements that are
required to identify and executed” as “technical use cases”. Dealt with by the group
“Standards Acceleration to Jumpstart the Adoption of Cloud Computing” (SAJACC)
the latter use cases are “designed to facilitate the qualitative testing of standards
through the use of third-party APIs implemented in adherence to candidate specifica-
tions and emerging standards”. SAJACC use cases represent single activities, such as
the “deletion of data, and the actions needed to successfully execute that activity
(receive the request, respond to the request, execute the request, etc.)”.

Without any ambition towards formalization in terms of possible map-ability and
automated processing, for the description of use cases two human-readable types of
templates have been developed.

A particular set of standards in relation to a use cases was termed “compatible
standards” – no specific exercise was undertaken to consider the “integration” of those
specific standards in question – e.g. CDMI and OCCI; see also below [4]. However,
concerning the “current state of conformity assessment in Cloud Computing”, [24],
Sect. 6.2.4 states: In some cases, such as the CDMI, OCCI, OVF, and CIMI standards…
industry-sponsored testing events and “plug-fests” are being advertised and conducted
with participation from a variety of vendors and open source projects and
community-based developers. In other cases, either the standards are not yet mature
enough to permit such testing, or the participants have not yet exposed the conformity
assessment processes to public view. – In this spirit NIST representatives gave pre-
sentations at the “First Cloud Interoperability Week” [34]; see also [17]. Finally, in order
to cope with questions like “is the proposed quality assessment framework not over-
kill?” - it should be mentioned that the NIST is considering Cloud ecosystems as
eventually big, complex and potentially endangered by “catastrophes” comparable to
the famous Internet or global power grid breakdowns. Accordingly – with participation
of the OGF Research Group on Grid Reliability and Robustness - NIST has started the
“Complex Information Measurement Project - Koala” [23].

So far, NIST doesn’t deal with SDN or NFV issues; see below.

2.2 ETSI CSC

Being part of the European Commission’s Cloud related strategy the so-called key
action “Cutting through the jungle of standards” was assigned by DG Connect to the
specifically created ETSI working group “Cloud Standards Coordination”, CSC. The
latter created three “Specification identification gap analysis” working groups: SLAs,
Security & Privacy, and Interoperability, Data port, Reversibility. Launched in
December 2012, the CSC provided a final report [8]. This report stated that “the Cloud
Standards landscape is complex but not chaotic and by no means a ‘jungle’”.

60 Y. Liang

In this report ETSI CSC introduces vocabulary and taxonomies applicable to Cloud
Actors and their Roles within Use Cases. The analysis of Use Cases comprises the
following dimensions: “Phases and Activities”, “Perspectives” (SLAs, Interoperability,
and Security), and generic domains (e.g. “Applications in the Cloud”, “Cloud Burst-
ing” etc.). This schema is then used in a mapping of use cases to standards.

Gaps related to SLAs, security and privacy are dealt with in the final report.
Interoperability is specifically covered by the Technical Specification “CLOUD;

Test Descriptions for Cloud Interoperability” [9]. The standards dealt with herein are
OCCI, see below, and CDMI, CAMP, OVF and CIMI. In Sect. 8 we are going to
demonstrate some initial work related to the OCCI-related test cases.

It should be mentioned that also ETSI CSC expresses a positive view concerning
OCCI (together with CDMI and OVF): “OCCI as the universal and extensible interface
description for the provisioning of virtualized computing resources.”

Under the umbrella “user needs” (http://csc.etsi.org/phase2/UserNeeds.html) and in
cooperation with NIST CC, ETSI CSC has started a second Phase of work to be
completed towards the end of 2015. “Users” are mainly administrations and SMEs. The
telecom sector as potentially important Cloud adopter is only indirectly mentioned, no
other large scale effort such as e.g. Industrie 4.0 is considered. At present, August 2015,
five ETSI CSC reports are out for public review. In the given context specifically
“Interoperability and Security in Cloud Computing …”, “Cloud Computing Standards
and Open Source …”, and “Cloud Computing Standards Maturity Assessment …” are
of interest: Based on high-level use cases, the first report [14], shows the conceptual
relation between interoperability, portability and security and the state of related stan-
dards. While mentioning the OGF standards OCCI and WS-Agreement/Negotiation,
this report is not a successor to Phase 1 “… Test Descriptions for Cloud Interoperability”
[9]. No hints are given to the potential establishment of a testing framework in support of
Cloud Certification authorities or similar bodies. Accordingly, there is also no men-
tioning of the ETSI TC MTS or the evolving Cloud related testing effort of ETSI NFV.

The second report, “… standards and Open Source in Cloud Computing” [13], is
divided in a generic part and two specific Case Studies, the latter being (interestingly)
only “ETSI NFV and OPNFV” and “OpenStack”; see the next Sect. 3 and [13], Sect. 7.
There is no mentioning that – firstly – OpenStack is virtually the (only) Cloud platform
in ETSI NFV PoC and OPNFV and – secondly – that neither the aforementioned efforts
nor OpenStack as organization do support or use OCCI, specifically the “Core”, or any
other standard as unifying reference model for their evolving set of RESTful APIs; see
e.g. [16] and below “MCN” [20].

The third report, “Cloud Computing Standards Maturity Assessment” [15], in
addition to analyze the related progress since Phase 1, introduces the topic of “Cloud
Certification”. Again, there is no mentioning of the need and potential construction of a
standards-based methodological test framework in support of Cloud certification
processes.

Towards a Standardized Quality Assessment Framework 61

http://csc.etsi.org/phase2/UserNeeds.html

3 ETSI NFV, SDN and the Cloud

Instrumental as a key concept and as enabler of many aspects of computing, storage
and networking “Virtualization” lies at the ground of both the Cloud and concepts or
initiatives such as the “Software Defined Network”, SDN [32], and ETSI’s “Network
Function Virtualization”, NFV [7].

SDN has evolved as a potential solution to both the growing management com-
plexity of the overly successful Internet and, in turn, the growing “ossification” of the
latter. Aiming at more flexibility and dynamicity of network services through pro-
grammability of network hardware boxes such as routers, switches, firewalls etc. the
OpenFlow™ protocol and API is a key element in the context. Launched in 2011 by
Deutsche Telekom, Facebook, Google, Microsoft, Verizon, and Yahoo!, the Open
Networking Foundation (ONF) is a non-profit organization with more than 140
members whose mission is to accelerate the adoption of open, standardized
OpenFlow-based SDN.

Used as generic term “software defined networking” is also addressed by the
“Network Functions Virtualization - Industry Specification Group”, NFV-ISG. Initiated
in 2012 within ETSI by seven telecom operators the group was joined by over 200
companies including network operators, telecoms equipment vendors. Opposed to
SDN, NFV was primarily driven by concerns related to CAPEX and OPEX of typical
telecom hardware appliances and of service agility. NFV aims to use “advanced IT
virtualization techniques” (aka Cloud plus Cloud enablers i.e. hypervisors etc.) in order
to convert typical telecom appliances and service frameworks into “X as a Service”
instances, the latter class being instantiated even into “IMS as a Service”, IMSaaS.

SDN and NFV are highly complementary to and independent of each other.
In order to promote NFV trough OpenFlow-based SDN in March 2014 ONF and

ETSI agreed on a related strategic partnership.
The NFV(ISG) has produced since five specifications covering NFV use cases,

requirements, the architectural framework, and terminology. The fifth specification
defines a framework for coordination and promotion of public demonstrations of Proofs
of Concept, PoC [10]. The PoC demonstrate key aspects of NFV use cases – specif-
ically the explicitly Cloud-related “NFV Infrastructure as a Service” (NFVIaaS), the
“Virtual Network Functions as a Service” (VNFaaS), the “Service Chain Forwarding
Graphs” (VNF FG), the “Virtual Network Platform as a Service” (VNPaaS) and the
mobility–oriented “Virtualization of the Mobile Core Network and IMS”. The first
results of the NFV PoC have been showcased.

While aiming at vendor and product neutrality the Cloud “core” of the PoC was the
OpenDaylight Hydrogen release of OpenStack comprising inter alia the OpenStack
Neutron component as OpenFlow oriented SDN controller.

It should be noticed that this whole architecture is controlled by a (super-) set of the
not standardized OpenStack RESTful APIs; see e.g. [16]. Emphasis in the OpenStack
context is not on standardization or software technology issues of the existing or newly
required interfaces. For a different approach see below the MCN project.

62 Y. Liang

So far ETSI NFV doesn’t refer to ETSI CSC or the ETSI TC MTS, the Technical
Committee “Methods for Testing and Specification” [11]; specifically, there is no hint
given to the ample, standardized TTCN-3-oriented test framework for IMS [12].

However, within its ongoing effort “Hot Topic 2: HT#2 (TST) Test Methodology
for NFV” (http://nfvwiki.etsi.org/index.php?title=HT02_-_Test_Methodology_for_
NFV; accessed August 17, 2015) NFV may eventually “meet” the aforementioned
work via its formal cooperation partners, specifically ETSI EP E2NA and the ITU-T
Study Groups 11 and 13.

4 OCCI

The Open Grid Forum’s (OGF) ‘Open Cloud Computing Interface’ (OCCI) is a
well-defined, RESTful Cloud management protocol and interface, which can be applied
to and extended from its initial target IaaS to functional and non-functional aspects also
of PaaS and SaaS – even in Multi-Cloud ecosystems [25].

The definition of OCCI comprises a “Core” and a meta-model aspect according to
the following Fig. 1, see [26].

The “Core” describes the foundation of the OCCI type system – “what types of
resources can be out there”. This is orthogonal and complementary to the “wire”.

The meta-model aspect represents the descriptive part allowing for extensibility,
hierarchies, and dynamic runtime modifications of resource instances and tagging via
Mixins, and introspection via the mandatory discovery interface [5].

The Core document was complemented by two documents – the Infrastructure
document [27], and the HTTP Rendering document [28].

The OCCI Working Group of the OGF is actively pursuing the further development
of the OCCI standard. Representing “OCCI 1.2” (http://occi-wg.org/2015/05/04/occi-
1-2-revision-in-public-comment/) a public review was just carried out till end of July
2015 of the following updated or new documents: Core, Infrastructure, Platform,
HTTP-, JSON -, Text-Rendering, Monitoring, SLA, Compute-Resource-Template.

Fig. 1. The OCCI Core Model version 1.2.

Towards a Standardized Quality Assessment Framework 63

http://nfvwiki.etsi.org/index.php%3ftitle%3dHT02_-_Test_Methodology_for_NFV
http://nfvwiki.etsi.org/index.php%3ftitle%3dHT02_-_Test_Methodology_for_NFV
http://occi-wg.org/2015/05/04/occi-1-2-revision-in-public-comment/
http://occi-wg.org/2015/05/04/occi-1-2-revision-in-public-comment/

Members of the OCCI specification group also developed a related conformance
platform in Python; see [29, 30]. This work was not continued after 2012. It is/was not
directly targeting whole OCCI-controlled Cloud systems but the conformance of
(language) specific OCCI implementations.

At the same time the WG is present at many related Cloud events such as the Cloud
Interoperability Week mentioned above. Basically all WG members are also present in
NIST CC or EGI [6] and MCN; see below.

5 OCCI-Related Effort

In order to further argue for the “robustness” of the OCCI case, in the following we are
going to shortly mention effort covering technical and “market” aspects of OCCI
applicability.

5.1 OCCI Technical Versatility

In [4] a standards conformant “integration scenario” of OCCI, CDMI and OVF is
presented.

The “First Open Cloud Broker” developed in the CompatibleOne project and ini-
tiative is an early example for the extensibility of OCCI beyond IaaS [2].

The EU project MCN - Mobile Cloud Networking, 2012-2015, “is motivated
primarily by an ongoing transformation that drives the convergence between the
Mobile Communications and Cloud Computing industry enabled by the Internet” [20].
MCN’s two scenarios are “Exploiting Cloud Computing for Mobile Network Opera-
tions” and “The End-To-End Mobile Cloud”. While not fully concurrent with ETSI’s
NFV PoC architectural principles MSC is about to realize a comparable SDN/NFV
framework wherein the Cloud component will be represented by OpenStack too. In
contrast to ETSI’s PoC non-standard set of related RESTful interfaces MCN is tar-
geting OCCI. Referring to Core meta-model mechanisms [21], section “2.4.1 OCCI
Extensions” and “2.4.2 OpenStack Extensions”, the project has defined necessary
extensions to both OCCI and OpenStack.

Finally, among the set of MCN’s XaaS to be provided we are specifically men-
tioning MaaS, Monitoring as a Service (see also the OCCI Monitoring document and
the BonFIRE project below) and IMSaaS, IMS as a Service.

The OCCI work in MCN is well aligned with the OCCI WG.

5.2 OCCI in Large Infrastructures

“The European Grid Infrastructure (EGI) is building a federated, standards-based IaaS
Cloud platform, building on its decade-long experience in delivering a reliable, fed-
erated Grid infrastructure for scientific computing and e-Research across Europe and
worldwide.” “Federations are enabled by a set of core services such as seamless
authentication and authorization of users, gathering of accounting information, infor-
mation discovery, monitoring a VM management across multiple Cloud domains” [6].

64 Y. Liang

In the given context it is of relevance that EGI Engage, the new project of the
intiative, is targeting well defined OCCI extensions in order to increase functions and
performance of its pan-European Cloud federation. This work is closely aligned with
the OCCI WG; see also the OGF Compute-Resource-Template document mentioned
above. The number of platforms supporting OCCI 1.2 is a formal activity parameter of
the project (https://wiki.egi.eu/wiki/EGI-Engage:WP4).

Our tests below are using the so-called rOOCI, an OCCI implementation in ruby.
The rOCCI is part of the EGI effort.

6 TTCN-3

TTCN-3, the “Testing and Test Control Notation Version 3” is a successful Test
Specification Language standardized by ETSI [36]. Initially targeting protocol con-
formance testing e.g. for IPv6, or SIP, the coverage of TTCN-3 was extended to new
technical domains such as the Web, embedded and real-time systems, and new sectors
such as Health, Automotive and “Intelligent Transport Systems” (ITS). Related orga-
nizations are e.g. 3GPP, OMA and AUTOSAR. The ETSI TTCN-3 standards have also
been adopted by International Telecommunication Union (ITU-T) in the Z.160 series.

The main characteristics of TTCN-3 are: Multi-Separation of Concerns by dividing a
test system into an abstract but executable Test Specification Layer (“ATS” in Fig. 2), and
Concrete Codec and System-Adaptation Layers; see again Fig. 2. From an effort point of
view codec and adapter represent a major piece of (initial) work, paving the way towards
a potential large testing framework at ATS level. This separation between concrete and
abstract layer is also allowing for a high degree of reusability. Addressing testing by
design TTCN-3 provides an elaborated mechanism for the construction of Templates the
latter to be used as test oracles; see e.g. [33]. A related powerful Template matching
mechanism then serves to validate output from the “System under Test” (SUT) on the
level of the ATS; compare this e.g. with the language dependencies in [29].

Related global Verdicts are computed, possibly composed from local Verdicts.

Fig. 2. Layout of a TTCN-3 executable test suite.

Towards a Standardized Quality Assessment Framework 65

https://wiki.egi.eu/wiki/EGI-Engage:WP4

7 TTCN-3 Related Effort

In following, the Sect. 7.1 is shortly describing effort related to TTCN-3 language
developments. Section 7.2 is showing TTCN-3 as an element of ETSI’s effort towards
model-based testing.

7.1 TTCN-3 Development

TTCN-3 related effort is devoted to both the development of the language as such (via
well-defined formal procedures within the ETSI); an example of relevance in context is
“MTS The Testing and Test Control Notation version 3; Part 11: Using JSON with
TTCN-3” - and other aspects. Such work may be carried out e.g. in cooperation with
tool providers. To improve the efficiency of the coding/decoding process in a Web
service environment would be an example. For a recent overview see [35].

7.2 TTCN-3 in the ETSI TC MTS

TTCN-3 is not “just another standalone test specification language” but is part of an
overall effort within ETSI to further the development of methodologies in the spirit of
“model-based testing” [11].

Initially targeting communicating systems the ETSI MTS is addressing the for-
malization and mechanization/automation of a stack of processes and specifications
ranging from requirements solicitation and “notation” over test and test purpose to test
case specification. Herein TTCN-3 is placed at the bottom layer.

Looking at the test description in the human-readable table format by the NIST and
ETSI CSC - the corresponding TC MTS historical effort is TPLan, ETSI ES 202 553.
At present the TC MTS is pursuing with the TDL, Test Description Language, a more
rigorous approach: integrating and unifying test description and test purpose specifi-
cation layer above TTCN-3 TDL raises the abstraction layer of the latter and allows at
the same time for down-mapping from the requirements layer [19].

8 TTCN-3 and OCCI

“TTCN-3 on top of OCCI” was, to our knowledge, presented for the first time at the
“Cloud Interoperability Week Workshop” [17] and at the UCAAT 2013 [18]. This
work was related to the initial version of ETSI “Test Descriptions for Cloud Interop-
erability” [9].

We improved and extended this effort in the following way:

– We wrote new versions of the Codec and the System Adapter allowing specifically
for a complete treatment of all coding and systems requirements of the OCCI tests
of [9]; see Figs. 2 and 3 again for the positioning these components.

66 Y. Liang

– Using the current version of the ETSI document, so far we carried out all the OCCI
Core and Infrastructure tests against a rOCCI-based EGI Cloud test infrastructure [6].

– We run initial tests of the BonFIRE Multi-Cloud project “Elasticity as a Service”
(for “BonFIRE and OCCI” see below) [1].

8.1 TTCN-3 and OCCI Mapping

The Fig. 3 shows the functional components and potential mappings of a TTCN-3 test
system and those of an OCCI controlled Cloud system.

Elements formatted according to the OCCI specification can be expressed in terms
of a TTCN-3 Abstract Test Specification. The rendering of the different MIME types
will be accomplished by the Codec. The OCCI transport via HTTP will be provided by
the System Adaptor.

For example, the OCCI “Category” can be abstracted into the following TTCN-3
Data type:

Towards a Standardized Quality Assessment Framework 67

In order to carry out the ETSI test case “TD/OCCI/INDRA/CREATE/004: Create
an OCCI Compute Resource” one has to create the following TTCN-3 request
template:

This template represents the test oracle, i.e. the expected response of the SUT, for
this conformance test.

The related HTTP verbs GET, POST, PUT and Delete and the OCCI rendering
have to be parameterized as follows:

68 Y. Liang

In the annotated Fig. 4 shows the corresponding result of the test in the
tool-window [37]:

– the list of all the implemented ETSI tests - the currently executed is highlighted (left
upper corner)

– the action “create” and the related content type “text/occi”

Fig. 3. Mapping TTCN-3 – OCCI.

Fig. 4. Creating an Infrastructure OCCI Compute resource modified by two Mixins.

Towards a Standardized Quality Assessment Framework 69

– a “compute” “kind” modified by the two “mixins” (large window, middle right; see
Fig. 1 again for terminology); (the small window, upper corner right, is showing
that the compute resource was created on a server of the PaaS provider HEROKU
used by EGI for testing purposes).

– the OCCI Request/Response message exchange between the System_under_Test
and the Test System (graphical window right bottom; the Verdict “pass” message is
just not visible).

8.2 TTCN-3 and “Bonfire OCCI”

BonFIRE [1, 3], a recent EU project has realized and is providing a multi-site federated
testbed on top of Cloud infrastructures operated by six project partners. BonFIRE IaaS
offers heterogeneous compute, storage and network resources. In the given context, the
main features of the BonFIRE (BF) architecture are the following:

– BF implements an “almost” OCCI-based resource manager on top of the partici-
pating IaaS testbed sites (no Categories etc., no MIXINS).

– The rendering uses the private type “application/vnd.bonfire+xml”
– BF provides a monitoring capability at both the VM and physical level. Under user

control events generated by (Zabbix) monitoring agents are transported via AMQP
to an “Aggregator”. From a functional point of view, the BF monitoring fits well the
“Focused Technical (security) Requirements” of [22] Part II, “Visibility/Control for
Consumers”.

– BF provides an experimental EaaS – Elasticity as a Service - across the test bed
sides.

Formally, according to the BF data model, the BF user carries out “Experiments”.
In a full OCCI setting “Experiments” would be defined as a Category above the
participating infrastructures. Except for the description part and the fixed allocation of
monitoring agents to user created VMs the monitoring architecture is close to the
proposal presently discussed within the OGF OCCI WG.

The annotated Fig. 5 shows

Fig. 5. Creating a BonFire elasticity group.

70 Y. Liang

– the creation of a elasticity group distributed over several BonFIRE geographical
sites in France, the UK and Germany - in response to the request template (upper
part right)

– the related action is (naturally) “create”
– (left below) the rendering’s private type “application/vnd.bonfire+xml”
– the verdict “pass” message (graphical window part).

Not considering the only “almost” OCCI compliance of the project BonFire is a
clear and working example for the potential of OCCI beyond its initial specification.

9 Summary and Future Work

Using Cloud related work of NIST and ETSI we have proposed standards-oriented
testing of standard-based Cloud infrastructures as a potential element of a Cloud quality
assessment framework. We have shown that OCCI is well positioned to play a pivotal
role within that context. And we have introduced the ETSI effort towards model-based
testing, the latter comprising TTCN-3 at the lowest layer.

As a proof-of-concept we demonstrated “standardized” TTCN-3 test cases of
ETSI CSC against OCCI controlled Cloud testbeds.

Assuming a key role of SDN/NFV in future Cloud provisioning for telecoms and
efforts such as Industrie 4.0 we have discussed the ETSI NFV and also pointed to work
using OCCI systematically in an SDN/NFV project.

We have seen possibilities to improve the coordination between ETSI CSC,
ETSI TC MTS and ETSI NFV.

To further the vision “Standardized Cloud ecosystems as the next big application
field of the well-established ETSI TTCN-3-related testing methodologies” future work
should initiate TTCN-3-based test frameworks for OCCI controlled Cloud federations
such as EGI ENGAGE and SDN/NFV-Systems such as MCN.

Acknowledgements. We would like to thank: Boris Parák of CESNET for support in using the
rOCCI/EGI infrastructure, Andy Edmonds of ZHAW, former colleagues of BonFIRE for pro-
vision of the BonFIRE testbed, Ina Schieferdecker for guidance in the TTCN-3 world, and last
but not least Testing Technologies for the friendly provision of their TTCN-3 tool TTworkbench.

This work was partially supported by the Cloud Socket project, Project number H2020-
644690.

References

1. BonFIRE: www.bonfire-project.eu/. Accessed 06 January 2015
2. CompatibleOne: CompatibleOne The Open Source Cloud broker. http://www.

compatibleone.org/. Accessed 06 January 2015
3. del Castillo, J.A.L., Mallichan, K., Al-Hazmi, Y.: OpenStack Federation in Experimentation

Multi-cloud Testbeds. HP Laboratories. HPL-2013-58
4. Edmonds, A., Metsch, T., Luster, E.: An Open, Interoperable Cloud. http://www.infoq.com/

articles/open-interoperable-cloud. Accessed 06 January 2015

Towards a Standardized Quality Assessment Framework 71

http://www.bonfire-project.eu/
http://www.compatibleone.org/
http://www.compatibleone.org/
http://www.infoq.com/articles/open-interoperable-cloud
http://www.infoq.com/articles/open-interoperable-cloud

5. Edmonds, A., et al.: Towards an Open Cloud Standards. IEEE Internet Comput. 16, 15–25
(2012)

6. EGI: EGI European Grid Infrastructure. https://www.egi.eu/infrastructure/cloud/
7. ETSI: http://www.etsi.org/technologies-clusters/technologies/nfv. Accessed 06 January

2015
8. ETSI: Cloud Standards Coordination Final Report November 2013 VERSION 1.0,

November 2013
9. ETSI: TS 103 142 V2.0.2 (2013-09) CLOUD; Test Descriptions for Cloud Interoperability
10. ETSI: NFV Proofs of Concept. http://www.etsi.org/technologies-clusters/technologies/nfv/

nfv-poc. Accessed 06 January 2015
11. ETSI: TC Methods for Testing and Specification http://www.etsi.org/images/files/

ETSITechnologyLealets/MethodsforTestingandSpecification.pdf. Accessed 06 January 2015
12. ETSI. http://www.etsi.org/technologies-clusters/technologies/testing/ims-testing. Accessed

27 January 2015
13. ETSI: Cloud Computing Standards and Open Source - Optimizing the relationship between

standards andOpen Source inCloudComputing -Analysis, conclusions and recommendations
fromCloud Standards Coordination Phase 2. For public comments - deadline for comments, 18
September 2015. ETSI SR 003 382 V1.0.0 (2015-07). http://csc.etsi.org/phase2/OpenSource.
html. Accessed 06 August 2015

14. ETSI: Interoperability and Security in Cloud Computing. Analysis, conclusions and
recommendations from Cloud Standards Coordination Phase 2. ETSI SR 003 382 V1.0.0
(2015-07). http://csc.etsi.org/phase2/OpenSource.html. Accessed 06 August 2015

15. ETSI: Cloud Computing Standards Maturity Assessment. A new snapshot of Cloud
Computing Standards. Analysis, conclusions and recommendations from Cloud Standards
Coordination Phase 2. For public comments SPECIAL REPORT ETSI SR 003 392 V1.0.0
(2015-08). Accessed 9 August 2015

16. Kavanagh, A.: OpenStack as the API framework for NFV: the benefits, and the extension
needed. ERICSSON Review, 2 April 2015

17. Liang, Y.: Harnessing TTCN-3 test framework for OCCI-based cloud ecosystems. In:
DMTF, ETSI, OASIS, OCEAN Project, OGF, OW2 and SNIA: First Cloud Interoperability
Week Santa Clara, USA, 16–18 September and Madrid, Spain, 18–20 September 2013
(co-hosted with the EGI and SDC conferences) http://www.cloudplugfest.org/events/past-
plugfest-agendas/cloud-interoperability-week/workshop. Accessed 14 December 2014

18. Liang, Y.: Towards a TTCN-3 test framework for OCCI-based cloud ecosystems. In:
UCAAT, 1st User Conference on Advanced Automated Testing. Paris 22–24 October 2013.
http://ucaat.etsi.org/2013/program_conf.html. Accessed 14 December 2014

19. Makedonski, P., et al.: Bringing TDL to Users: A Hands-on Tutorial. http://www.
sweinformatik.uni-goettigen.de/sites/default/files/publications/TDL%20Ttorial.pdf. Accessed
06 January 2015

20. MCN: Mobile Cloud Networking project. http://www.mobile-cloud-networking.eu/site/
21. MCN: Future Communication Architecture for Mobile Cloud Services. FP7-ICT-2011-8

Project No: 318109. D3.1 Infrastructure Management Foundations – Specifications &
Design for Mobile Cloud framework, 08 November 2013

22. NIST: Special Publication 500-293. Version 2. US Government Cloud Computing
Technology Roadmap. Volume I. High-Priority Requirements to Further USG Agency
Cloud Computing Adoption. Volume II. Useful Information for Cloud Adopters, October
2014. http://dx.doi.org/10.6028/NIST.SP.500-293

23. NIST, 2015. Koala. In “Measurement Science for Complex Information Systems”. http://
www.nist.gov/itl/antd/emergent_behavior.cfm. Accessed 06 January 2015

72 Y. Liang

https://www.egi.eu/infrastructure/cloud/
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv/nfv-poc
http://www.etsi.org/technologies-clusters/technologies/nfv/nfv-poc
http://www.etsi.org/images/files/ETSITechnologyLealets/MethodsforTestingandSpecification.pdf
http://www.etsi.org/images/files/ETSITechnologyLealets/MethodsforTestingandSpecification.pdf
http://www.etsi.org/technologies-clusters/technologies/testing/ims-testing
http://csc.etsi.org/phase2/OpenSource.html
http://csc.etsi.org/phase2/OpenSource.html
http://csc.etsi.org/phase2/OpenSource.html
http://www.cloudplugfest.org/events/past-plugfest-agendas/cloud-interoperability-week/workshop
http://www.cloudplugfest.org/events/past-plugfest-agendas/cloud-interoperability-week/workshop
http://ucaat.etsi.org/2013/program_conf.html
http://www.sweinformatik.uni-goettigen.de/sites/default/files/publications/TDL%2520Ttorial.pdf
http://www.sweinformatik.uni-goettigen.de/sites/default/files/publications/TDL%2520Ttorial.pdf
http://www.mobile-cloud-networking.eu/site/
http://dx.doi.org/10.6028/NIST.SP.500-293
http://www.nist.gov/itl/antd/emergent_behavior.cfm
http://www.nist.gov/itl/antd/emergent_behavior.cfm

24. NIST: Special Publication 500-299. Draft. NIST Cloud Computing Security Reference
Architecture

25. OCCI: http://occi-wg.org/about/. Accessed 06 January 2015
26. OCCI: Core Specification. http://ogf.org/documents/GFD.183.pdf
27. OCCI: Infrastructure. http://ogf.org/documents/GFD.184.pdf
28. OCCI: HTTP Rendering. http://ogf.org/documents/GFD.185.pdf
29. OGF: Grokking OCCI Syntax: OCCI ANTLR Grammar. http://occi-wg.org/2012/02/29/

occi-antlr-grammar/. Accessed 06 January 2015
30. OGF: Do you Speak OCCI? http://occi-wg.org/2012/03/05/do-you-speak-occi/
31. OGF: OGF42 Updates from the Group. http://occi-wg.org/2014/09/15/updates_from_ogf42/.

Accessed 06 January 2015
32. ONF: https://www.opennetworking.org/. Accessed 06 January 2015
33. Schieferdecker, I.: Oracles in TTCN-3 and UTP. In: CREST Workshop. 22nd May 2012,

London. 35
34. Sill, A.: SAJACC: The NIST Cloud Use Case Test Definition Project. In: same as [17]
35. Stepien, B., Peyton, L.: Innovation and evolution in integrated web application testing with

TTCN-3. Int. J. Softw. Tool Technol. Transf. 16(3), 269–283 (2014)
36. TTCN-3: http://www.ttcn-3.org/. Accessed 06 January 2015
37. TTworkbench: http://www.testingtech.com/proucts/ttworkbench.php
38. Industrie 4.0 (2015). https://en.wikipedia.org/wiki/Industry_4.0. Accessed August 2019
39. Krojer, F., Furjanic, I.: NFV und SDN machen Produktionsnetze fit für Industrie 4.0. http://

www.funkschau.de/datacenter/artikel/119192/2/. Accessed 19 August 2015

Towards a Standardized Quality Assessment Framework 73

http://occi-wg.org/about/
http://ogf.org/documents/GFD.183.pdf
http://ogf.org/documents/GFD.184.pdf
http://ogf.org/documents/GFD.185.pdf
http://occi-wg.org/2012/02/29/occi-antlr-grammar/
http://occi-wg.org/2012/02/29/occi-antlr-grammar/
http://occi-wg.org/2012/03/05/do-you-speak-occi/
http://occi-wg.org/2014/09/15/updates_from_ogf42/
https://www.opennetworking.org/
http://www.ttcn-3.org/
http://www.testingtech.com/proucts/ttworkbench.php
https://en.wikipedia.org/wiki/Industry_4.0
http://www.funkschau.de/datacenter/artikel/119192/2/
http://www.funkschau.de/datacenter/artikel/119192/2/

Re-provisioning of Cloud-Based Execution
Infrastructure Using the Cloud-Aware

Provenance to Facilitate Scientific Workflow
Execution Reproducibility

Khawar Hasham(B), Kamran Munir, Richard McClatchey,
and Jetendr Shamdasani

Centre for Complex Cooperative Systems (CCCS),
Department of Computer Science and Creative Technologies (CSCT),

University of the West of England (UWE), Frenchay Campus,
Coldharbour Lane, Bristol BS16 1QY, UK

{mian.ahmad,kamran2.munir,richard.mcclatchey,
jetendr2.shamdasani}@uwe.ac.uk

Abstract. Provenance has been considered as a means to achieve sci-
entific workflow reproducibility to verify the workflow processes and
results. Cloud computing provides a new computing paradigm for the
workflow execution by offering a dynamic and scalable environment with
on-demand resource provisioning. In the absence of Cloud infrastructure
information, achieving workflow reproducibility on the Cloud becomes a
challenge. This paper presents a framework, named ReCAP, to capture
the Cloud infrastructure information and to interlink it with the work-
flow provenance to establish the Cloud-Aware Provenance (CAP). This
paper identifies different scenarios of using the Cloud for workflow execu-
tion and presents different mapping approaches. The reproducibility of
the workflow execution is performed by re-provisioning the similar Cloud
resources using CAP and re-executing the workflow; and by comparing
the outputs of workflows. Finally, this paper also presents the evaluation
of ReCAP in terms of captured provenance, workflow execution time and
workflow output comparison.

Keywords: Cloud computing · Scientific workflows · Cloud infrastruc-
ture · Provenance · Reproducibility · Repeatability

1 Introduction

Modern scientific experiments such as the Large Hadron Collider (LHC)1, and
projects such as neuGRID [1] and its follow-on neuGRIDforUsers [2] are pro-
ducing huge amounts of data. This data is processed and analysed to extract
meaningful information by employing scientific workflows that orchestrate the

1 http://lhc.web.cern.ch.

c© Springer International Publishing Switzerland 2016
M. Helfert et al. (Eds.): CLOSER 2015, CCIS 581, pp. 74–94, 2016.
DOI: 10.1007/978-3-319-29582-4 5

http://lhc.web.cern.ch

Re-provisioning of Cloud-Based Execution Infrastructure 75

complex data analysis processes [3]. A large pool of compute and data resources
is required to execute the workflows. These resources have been available through
the Grid [4] and are now also being offered by the Cloud-based infrastructures.

Cloud computing [5] offers a new computing and storage paradigm, which
is dynamically scalable and usually works on a pay-as-you-go cost model. Its
ability to provide an on-demand computing infrastructure enables distributed
processing of scientific workflows with increased complexity and data require-
ments [6]. Research is under way to exploit the potential of Cloud infrastructure
for workflow execution [7].

During the data processing, an important consideration is given to collect
provenance [8] information. This can provide detailed information about both
the inputs and the processed outputs, and the processes involved in a workflow
execution. This information can be used to debug the workflow execution, to aid
in error tracking and reproducibility. This vital information can enable scientists
to verify the outputs and iterate on the scientific method, to evaluate the process
and results of other experiments and to share their own experiments with other
scientists [9]. The execution of scientific workflows in the Cloud brings to the
fore the need to collect provenance information that is necessary to ensure the
reproducibility of these experiments on the Cloud infrastructure.

A research study [10] conducted to evaluate the reproducibility of scientific
workflows has shown that around 80 % of the workflows cannot be reproduced,
and 12 % of them are due to the lack of information about the execution envi-
ronment. This lack of information affects a workflow on two levels. It can affect a
workflow’s overall execution performance and also job failure rate. For instance,
a data-intensive job can perform better on a resource with more available Ran-
dom Access Memory (RAM) because it can accommodate more data in RAM,
which is a faster medium to access data than hard disk. However, the job’s
performance will degrade if the allotted resource does not provide adequate
RAM. Moreover, it is also possible that jobs will fail during execution if their
required hardware dependencies are not met. This becomes a more challenging
issue in the context of Cloud in which resources can be created or destroyed at
runtime.

The dynamic nature of Cloud computing makes the capturing and process-
ing of provenance information a major research challenge [11,12]. Since Cloud
presents a transparent access to dynamic execution resources, the workflow para-
meters including execution resource configuration should also be known to a
scientist [13] i.e. what execution environment was used for a job in order to
reproduce a workflow execution on the Cloud. Due to these reasons, there is a
need to capture information about the Cloud infrastructure along with workflow
provenance, to aid in the reproducibility of workflow experiments. There has
been a lot of research related to provenance in the Grid (e.g. [14]) and a few ini-
tiatives (e.g. [15,16]) for the Cloud. However, they lack the information that can
be utilised for re-provisioning of resources on the Cloud, thus they cannot create
the similar execution environment(s) for workflow reproducibility. In this paper,
the terms Cloud infrastructure and virtualization layer are used interchangeably.

76 K. Hasham et al.

This paper presents a framework, named ReCAP, that augments workflow
provenance with the Cloud infrastructure information; and uses it to provision
similar execution environment(s) and reproduces the execution of a given work-
flow. Important areas discussed in this paper are as follows: Sect. 2 presents
the related work in provenance related systems. Section 3 presents a set of
requirements identified for workflow reproducibility on the Cloud after collect-
ing guidelines used and discussed in literature. Section 4 presents an overview
of ReCAP’s architecture. Section 4 also discusses two scenarios of using Cloud
resources and the provenance capturing approaches devised for these scenarios.
Section 5 presents an evaluation of the developed prototype. And finally Sect. 6
presents some conclusions and directions for future work.

2 Related Work

Significant research [17,18] has been carried out in workflow provenance for
Grid-based workflow management systems. Chimera [17] is designed to man-
age the data-intensive analysis for high-energy physics (GriPhyN)2 and astron-
omy (SDSS) (http://www.sdss.org) communities. It captures process informa-
tion, which includes the runtime parameters, input data and the produced data.
It stores this provenance information in its schema, which is based on a rela-
tional database. Although the schema allows storing the physical location of a
machine, it does not support the hardware configuration and software environ-
ment in which a job was executed. VisTrails [18] provides support for scientific
data exploration and visualization. It not only captures the execution log of a
workflow but also the changes a user makes to refine his workflow. However, it
does not support the Cloud virtualization layer information. Similar is the case
with Pegasus/Wings [19] that supports evolution of a workflow. However, this
paper is focusing on the workflow execution provenance on the Cloud, rather
than the provenance of a workflow itself (e.g. design changes).

There have been a few research studies (e.g. [15,16]) performed to capture
provenance in the Cloud. However, they lack the support for workflow repro-
ducibility. Some of the work in Cloud towards provenance is directed to the file
system [20,21] or hypervisor level [22]. However, such work is not relatable to
our approach because this paper focuses on virtualized layer information of the
Cloud for workflow execution. Moreover, the collected provenance data provides
information about the file access but it does not provide information about the
resource configuration. The PRECIP [9] project provides an API to provision
and execute workflows. However, it does not provide provenance information of
a workflow.

There have been a few recent projects [23,24] and research studies e.g. [25] on
collecting provenance and using it to reproduce an experiment. A semantic-based
approach [25] has been proposed to improve reproducibility of workflows in the
Cloud. This approach uses ontologies to extract information about the compu-
tational environment from the annotations provided by a user. This information
2 http://www.phys.utb.edu/griphyn/.

http://www.sdss.org
http://www.phys.utb.edu/griphyn/

Re-provisioning of Cloud-Based Execution Infrastructure 77

is then used to recreate (install or configure) that environment to reproduce a
workflow execution. On the contrary, our approach is not relying on annotations
rather it directly interacts with the Cloud middleware at runtime to acquire
resource configuration information and then establishes mapping between work-
flow jobs and Cloud resources. The ReproZip software [23] uses system call traces
to provide provenance information for job reproducibility and portability. It can
capture and organize files/libraries used by a job. The collected information along
with all the used system files are zipped together for portability and reproducibil-
ity purposes. Similarly, a Linux-based tool, CARE [24], is designed to reproduce a
job execution. It builds an archive that contains selected executable/binaries and
files accessed by a given job during an observation run. Both these approach are
useful at individual job level but are not applicable to an entire workflow, which
is the focus of this paper. Moreover, they do not maintain the hardware con-
figuration of the underlined execution machine. Furthermore, these approaches
operate along with the job on the virtual machine (VM). On the contrary, out
proposed approach works outside the virtual machine and therefore does not
interfere with job execution.

3 Requirements for Workflow Reproducibility on Cloud

As per our understanding of the literature, there is not a standard reproducibil-
ity model proposed thus far for scientific workflows, especially in a Cloud environ-
ment. However, there are some guidelines or policies, which have been highlighted
in literature to reproduce experiments. There is one good effort [26] in this regard,
but it mainly talks about reproducible papers and it does not consider execution
environment of workflows. In this section, we have highlighted a set of require-
ments for workflow reproducibility on Cloud that can provide guidelines for future
work in this regard. These requirements are discussed as follows.

– Data and Code Sharing: In computational science, particularly for scientific
workflow executions, it is emphasized that the data, code, and the workflow
description should be available in order to reproduce an experiment [27]. Code
must be available to be distributed, and data must be accessible in a readable
format [28]. In the absence of such information, experiment reproducibility
cannot be achieved because different result would be produced if the input data
changes. It is also possible that the experiment cannot be successfully executed
in the absence of the required code and its dependencies or configurations.

– Execution Infrastructure: The execution infrastructure is composed of a
set of computational resources (e.g. execution nodes, storage devices, network-
ing). The physical approach, where actual computational hardware are made
available for long time periods to scientists, often conserves the computational
environment including supercomputers, clusters, or Grids [25]. As a result, sci-
entists are able to reproduce their experiments in the same hardware environ-
ment. However, this luxury is not available in the Cloud in which resources are
virtual and dynamic. Therefore, it is important to collect the Cloud resource

78 K. Hasham et al.

information in such a manner that will assist in re-provisioning of similar
resources on the Cloud for workflow re-execution.

From a resource provisioning as well as a performance point of view, vari-
ous factors such as RAM, vCPU, Hard Disk and CPU speed (e.g. MIPS) are
important in selecting appropriate resources especially on the Cloud. As dis-
cussed previously, the RAM can affect the job’s execution performance as well
as its failure rate. A job will fail if it is scheduled to a resource with less available
RAM (as shown in Fig. 4). Similarly, vCPU (virtual CPUs meaning CPU cores)
along with the MIPS (million instructions per second) value directly affect the
job execution performance. In a study [29], it was found that the workflow task
durations differ for each major Cloud, despite the identical setup.

Hard disk capacity also becomes an important factor in provisioning a
new resource on the Cloud. It was argued [29] that building images for scien-
tific applications requires adequate storage within a virtual machine (VM). In
addition to the OS and the application software, this storage is used to hold
job inputs and output that are consumed and produced by a workflow job
executing on a VM [29].

– Software Environment: Apart from knowing the hardware infrastructure,
it is also essential to collect information about the software environment. A
software environment determines the operating system and the libraries used
to execute a job. Without the access to required libraries information, a job
execution will fail. For example, a job, relying on MATLAB library, will fail
in case the required library is missing. One possible approach [30] to conserve
software environment is thought to conserve VM that is used to execute a
job and then reuse the same VM while re-executing the same job. One may
argue that it would be easier to keep and share VM images with the research
community through a common repository, however the high storage demand
of VM images remains a challenging problem [31]. In the prototype presented
in this paper, the OS image used to provision a VM is conserved and thought
to present all the software dependencies required for a job execution in a work-
flow. Therefore, the proposed solution also retrieves the image information to
build a virtual machine on which the workflow job was executed.

– Provenance Comparison: The provenance traces of two executed workflows
should be compared to determine workflow reproducibility. The main idea is
to evaluate the reproducibility of an entire execution of a given workflow,
including the logical chaining of activities and the data. To provide the strict
reproducibility functionality, a system must guarantee that the data are still
accessible and that the corresponding activities are accessible [32]. Since the
focus of this paper is on workflow reproducibility on the Cloud infrastructure,
the execution infrastructure should also be part of the comparison. Therefore
the provenance comparison should be made at following levels:
1. Workflow structure should be compared to determine that both workflows

are similar. Because it is possible that two workflows are having similar
number of jobs but with different job execution order.

2. Execution infrastructure (software environment, resource configuration)
used on the Cloud for a workflow execution should also be compared.

Re-provisioning of Cloud-Based Execution Infrastructure 79

3. Comparison of input and output should be made to evaluate workflow
reproducibility. There could be a scenario that a user repeated a workflow
but with different inputs, thus producing different outputs. It is also pos-
sible that changes in job or software library result into different workflow
output. There are a few approaches [33], which perform workflow prove-
nance comparison to determine differences in reproduced workflows. The
proposed system in this paper incorporates the workflow output compari-
son to determine the reproducibility of a workflow.

– Cloud Resource Pricing: Cloud resource pricing can be important for
experiments in which cost is also a main factor. However, this can also be
argued that this information is not trivial for an experiment due to strong
industry competition between big Cloud providers such as Amazon, Google,
Microsoft etc., which can bring prices down. Having said this, one still cannot
deny the fact that a cost is associated with each acquired resource on the
Cloud, thus making this factor important to be focused on. The pricing factor
has been used in various studies to conduct the feasibility of a Cloud envi-
ronment for workflow execution [6]. In this study, the cost factor for various
resources such as compute and storage has been evaluated for workflow exe-
cution. The pricing information has also been used in cost-effective scheduling
and provisioning algorithms [34,35]. Therefore, this pricing information, if col-
lected as part of provenance, can help in reproducing an experiment within
the similar cost as was incurred in earlier execution. However, one must keep
this in mind that the prices are dynamic and subject to change and it depends
entirely on the Cloud providers. For an environment, in which cost does not
change rapidly, such information can be helpful. Therefore, this information
is captured as part of the Cloud-Aware Provenance data.

Workflow versioning is another factor that aids in achieving workflow repro-
ducibility [36]. Sandve et al. [26] also suggested archiving the exact versions of
all processes and enabling version control on all scripts used in an experiment.
With the help of workflow versioning, a user can track the evolution of a work-
flow itself. Since the focus of this research work is on the workflow execution
provenance and not on the workflow evolution, this factor is outside the scope
of the presented work. Based on the identified factors in this section, following
section presents a framework, named ReCAP, to capture the Cloud infrastruc-
ture information and to interlink it with the workflow provenance to establish
the Cloud-Aware Provenance (CAP). This information is used to re-provision
similar execution infrastructure on the Cloud in order to reproduce the execution
of a scientific workflow.

4 ReCAP: Workflow Reproducibility Using Cloud-Aware
Provenance

An overview of the ReCAP’s architecture, a proposed solution, is presented in
this section. This architecture is inspired by the mechanism used in a paper [37]

80 K. Hasham et al.

for executing workflows on the Cloud. Figure 1 illustrates the proposed archi-
tecture that collects the Cloud infrastructure information and interlinks it with
the workflow provenance gathered from a workflow management system such
as Pegasus. This augmented or extended provenance information compromis-
ing of workflow provenance and the Cloud infrastructure information is named
as Cloud-Aware provenance (CAP). The components of this architecture are
discussed as follow:

– WMS Wrapper Service: This component exposes the functionality of an
underlining workflow management system (WMS) by providing a wrapper
service. It is responsible for receiving various user and ReCAP’s components
requests in submitting a user provided workflow and monitoring its status.
For instance, there is no suitable HTTP-based facility available that a user
can use to submit a workflow and its associated files to Pegasus. Traditionally,
a command-based approach is used in which Pegasus provided commands are
invoked from a terminal. With such a service based component, a user can
submit his workflow through an HTTP client. Another purpose of this com-
ponent is to engage with a user from the very first step of workflow execution
i.e. workflow submission. Although this paper is focusing on workflow exe-
cution, it still needs a mechanism to access the submitted workflow and its
associated configuration files in order for it to reproduce and resubmit the
same workflow. Therefore, such a mechanism was required that can act as an
entry point for the system and also help in ensuring the access to the workflow
source, which is one of the points of the reproducibility requirements identified
for the Cloud (see Sect. 3).

Fig. 1. General overview of the ReCAP architecture.

Re-provisioning of Cloud-Based Execution Infrastructure 81

– Workflow Provenance: This component, named WFProvenance, is
responsible for receiving provenance captured at the application level by
the workflow management system e.g. Pegasus. Since workflow management
systems may vary, a plugin-based approach is used for this component. Com-
mon interfaces are designed to develop plugins for different workflow manage-
ment systems. The plugin also translates the workflow provenance according
to the representation that is used to interlink the workflow provenance along
with the information coming from the Cloud infrastructure.

– Cloud Layer Provenance: This component, CloudLayerProvenance, is
responsible for capturing information collected from different layers of the
Cloud. To achieve re-provisioning of resources on Cloud, this component
focuses on the virtualization layer and retrieves information related to the
Cloud infrastructure i.e. virtual machine configuration. This component inter-
acts with the Cloud infrastructure as an outside client to obtain the resource
configuration information. This component is discussed in detail in Sects. 4.2
and 4.3.

– Provenance Aggregator: This is the main component task to collect and
interlink the provenance coming from different layers as shown in Fig. 1. It
establishes interlinking connections between the workflow provenance and the
Cloud infrastructure information. The provenance information is then repre-
sented in a single format that could be stored in the provenance store through
the interfaces exposed by the ProvenanceAPI.

– Provenance API: This acts as a thin layer to expose the provenance stor-
age capabilities to other components. Through its exposed interfaces, outside
entities such as the ProvenanceAggregator would interact with it to store the
workflow provenance information. This approach gives flexibility to implement
authentication or authorization in accessing the provenance store.

– ReCAP Store: This data store is designed to keep record of the workflow
and its related configuration files being used to submit a user analysis on
the Cloud. It also keeps the mapping between workflow jobs and the virtual
resources used for execution on the Cloud infrastructure. This information is
later retrieved to reproduce the workflow execution.

4.1 Cloud Usage Scenarios

This section discusses the job to Cloud resource mapping, which will be used
later for re-executing a workflow on similar Cloud resources, mechanisms devised
in this research study. Before indulging into detailed discussion of these mecha-
nisms, first it is important to understand two different resource usage scenarios
on Cloud. These scenarios and their understanding provide a better picture of
the requirements and the motivation behind devising different mechanisms to
establish job to Cloud resource mapping for each discussed scenario.

– Static Environment on Cloud. In this environment, the virtual resources,
once provisioned, remain in RUNNING state on Cloud for a longer time. This
means that the resources will be accessible even after a workflows execution is

82 K. Hasham et al.

finished. This environment is similar to creating a virtual cluster or Grid on
top of Clouds resources. Such a Cloud environment is also in used in the N4U
infrastructure. The Static Mapping approach devised for such environment has
been discussed in Sect. 4.2.

– Dynamic Environment on Cloud. In this environment, resources are pro-
visioned on demand and released when they are no more required. This means
that the virtual machines are shutdown after the job is done. Therefore, a vir-
tual resource, which was used to execute a job, will not be accessible once a
job is finished. The Eager Mapping has been devised (see Sect. 4.3) to handle
this scenario.

The mapping approaches discussed in following sections achieve the job to Cloud
resource mapping using the workflow provenance information. One such infor-
mation is an indication of execution host or its IP in the collected workflow
provenance. Many a workflow management systems such as Pegasus, VisTrail
or Chiron [38] do maintain either machine name or IP information. In Clouds
infrastructure layer across one Cloud provider or for one user, no two virtual
machines can have same IP at any given time. This means any running virtual
machine should have unique IP or name. However, it is possible that a name
or IP can be reused later for new virtual machines. All rest properties of a vir-
tual machine accessible through the infrastructure layer can be used by multiple
machines at a time. For instance, multiple machines can be provisioned with
flavour m1.small or with OS image Ububtu 14.04 or Fedora etc.

4.2 Static Mapping Approach

As mentioned earlier, this information is used for reprovisioning the resources
to provide a similar execution infrastructure to repeat a workflow execution.
The Static Mapping approach has been devised for the Static environment on
the Cloud. Once a workflow is executed, Pegasus collects the provenance and
stores it in its own internal database. Pegasus also stores the IP address of
the virtual machine (VM) where the job is executed. However, it lacks other
VM specifications such as RAM, CPUs, hard disk etc. The CloudLayerProve-
nance component retrieves all the jobs of a workflow and their associated VM IP
addresses from the Pegasus database. It then collects a list of virtual machines
owned by a respective user from the Cloud middleware. Using the IP address, it
establishes a mapping between the job and the resource configuration of the
virtual machine used to execute the job. This information i.e. Cloud-Aware
Provenance is then stored in the ReCAPStore. The flowchart of this mecha-
nism is presented in Fig. 2. In this flowchart, the variable wfJobs representing
a list of jobs of a given workflow is retrieved from the Pegasus database. The
variable vmList represents a list of virtual machines in the Cloud infrastructure
is collected from the Cloud. A mapping between jobs and VMs is established
by matching the IP addresses (see in Fig. 2). Resource configuration parame-
ters such as flavour and image are obtained once the mapping is established.

Re-provisioning of Cloud-Based Execution Infrastructure 83

Fig. 2. Flowchart of the job to the Cloud resource mapping in the Static environment.

Flavour defines resource configuration such as RAM, Hard disk and CPUs, and
image defines the operating system image used in that particular resource. By
combining these two parameters together, one can provision a resource on the
Cloud infrastructure. After retrieving these parameters and jobs, the mapping
information is then stored in the Provenance Store (see in Fig. 2). This mapping
information provides two important data (a) hardware configuration (b) software
configuration using VM name. As discussed in Sect. 3, these two parameters are
important in recreating a similar execution environment.

4.3 Eager Mapping Approach

This approach is devised to establish a job to Cloud resource mapping for the
dynamic environment on Cloud. As discussed in Sect. 4.1, the resource on Cloud
may not be accessible once a job is finished, thus making a job to resource map-
ping a challenge. This is why, this approach attempts to identify, as early as
possible, the virtual machine on which a job is executing. In this mapping app-
roach, the Cloud-aware provenance is acquired in two phases, which are discussed
as follows.

Phase 1: Temporary Job to Resource Mapping : In this phase, the Eager
approach monitors the underlying WMS database i.e. Pegasus for the imple-
mented prototype. In Pegasus, along with the host name, its database also
maintains the Condor’s schedd ID, which is assigned to each job by Condor
[39]. The monitoring thread in WFProvenance retrieves the job’s Condor ID
and contacts the WMS Wrapper Service (WMS-WS) for information about the
job. Since the WMS-WS works on top of the underlying workflow managment
system, it has an access to the Condor cluster. Upon receiving the request, WMS-
WS retrieves job information from the Condor. This information contains the

84 K. Hasham et al.

Fig. 3. Temporary resource mapping established in the phase 1 of the Eager approach.

machine IP on which the job is currently running. The CloudLayerProvenance
component retrieves the virtual machine’s configuration information from the
Cloud middleware based on the machine IP (as discussed in the Sect. 4.2) and
stores this information in the database. This information is treated as tempo-
rary because the job is not finished yet and there is a possibility that a job may
be re-scheduled to another machine due to runtime failures [40]. This informa-
tion is then used in the second phase for establishing the final mapping between
the job and the Cloud resource. The flowchart of this mechanism is presented
in Fig. 3.

Phase 2: Final Job to Resource Mapping : This phase starts when the
workflow execution is finished. The ProvenanceAggregator component starts
the job to resource mapping process. In doing so, it retrieves the list of work-
flows from the database and list of virtual machines from the Cloud middle-
ware through the CloudLayerProvenance component. It starts the mapping
between the jobs and the virtual machines based on the IP information, stored
in the database, associated with the jobs. In the case of not finding any host
information in the database, which is possible in the Dynamic use case, the
ProvenanceAggregator retrieves the resource information for that job from
the temporary repository that was created in the first phase (as discussed in
the Sect. 4.2). Upon finding the Cloud resource information, the Provenance
Aggregator component registers this Cloud-Aware Provenance information in
the ReCAPStore. Once the mapping for a job is established and stored in the
database, its corresponding temporary mapping is removed in order to reduce the
disk storage overhead. The algorithm of the Eager mapping approach is shown in
Algorithm 1.

Re-provisioning of Cloud-Based Execution Infrastructure 85

4.4 Workflow Reproducibility Using ReCAP

In Sect. 4, different mapping approaches have been discussed to interlink the
job to Cloud resource information, which is stored in the database for workflow
reproducibility purposes. In order to reproduce a workflow execution, researcher
first needs to provide the wfID (workflow ID), which is assigned to every
workflow in Pegasus, to ReCAP to re-execute the workflow using the Cloud-
aware provenance. ReCAP retrieves the given workflow from the ReCAPStore
along with the Cloud resource mapping stored against this workflow. Using
this mapping information, it retrieves the resource flavour and image configura-
tions, and provisions the resources on Cloud. Once resources are provisioned,
it submits the workflow for execution. At this stage, a new workflow ID is
assigned to this newly submitted workflow. This new wfID is passed over to
the ProvenanceAggregator component to monitor the execution of the work-
flow and start collecting its Cloud-aware provenance information. Recapturing
the provenance of the repeated workflow is important, as this will enable us to
verify the provisioned resources by comparing their resource configurations with
the old resource configuration.

4.5 Workflow Output Comparison

Another aspect of workflow reproducibility is to verify that it has produced the
same output that was produced in its earlier execution (as discussed in Sect. 3).
In order to evaluate workflow repeatability, an algorithm has been proposed
that compares the outputs produced by two given workflows. It uses the MD5
hashing algorithm [41] on the outputs and compares the hash value to verify the
produced outputs. The two main reasons of using a hash function to verify the
produced outputs are; (a) simple to implement and (b) the hash value changes

86 K. Hasham et al.

with a single bit change in the file. If the hash values of two given files are same,
this means that the given files contain same content.

The proposed algorithm (as shown in Algorithm 2) operates over the two given
workflows identified by srcWfID and destWfID, and compares their outputs.
It first retrieves the list of jobs and their produced output files from the Prove-
nance Store for each given workflow. It then iterates over the files and compares
the source file, belonging to srcWfID, with the destination file, belonging to
destWfID. Since the files are stored on the Cloud, the algorithm retrieves the files
from the Cloud (see lines 11 and 12). Cloud storage services such as OpenStack
Swift (http://swift.openstack.org), Amazon S3 (http://aws.amazon.com/s3) use
the concept of a bucket or a container to store a file. This is why src container
and dest container along with src filename and dest filename are given in the
GetCloudF ile function to identify a specific file in the Cloud. The algorithm then
compares the hash value of both files and increments ComparisonCounter. If all
the files in both workflows are the same, ComparisonCounter should be equal to
FileCounter, which counts the number of files produced by a workflow. Thus, it
confirms that the workflows are repeated successfully. Otherwise, the algorithms
returns false if both these counters are not equal.

5 Results and Discussion

To demonstrate the effect of Cloud resource configuration such as RAM on job
failure rate, a basic memory-consuming job is written in Java. The job attempts
to construct an alphabet string of given size (in MB), which is provided at
runtime. To execute this experiment, three resource configurations, (a) m1.tiny,
(b) m1.small and (c) m1.medium, each with 512 MB, 2048 MB and 4096 MB
RAM respectively were used. Each job is executed at least 5 times with a given
memory requirement on each resource configuration. The result in Fig. 5 shows

http://swift.openstack.org
http://aws.amazon.com/s3

Re-provisioning of Cloud-Based Execution Infrastructure 87

that jobs fail if required RAM (hardware) requirement is not fulfilled. All jobs
with RAM requirement less than 500 MB executed successfully on all resource
configurations. However, the jobs start to fail on Cloud resources with m1.tiny
configuration (as shown in Fig. 4) as soon as the jobs memory requirement
approaches 500 MB because the jobs could not find enough available memory
on the given resource. This result confirms the presented argument (discussed
in Sect. 1 and also in Sect. 3) regarding the need for collecting Cloud resource
configuration and its impact on job failure. Since a workflow is composed of
many jobs, which are executed in a given order, a single job failure can result
in a workflow execution failure. Therefore, collecting Cloud-aware provenance is
essential for reproducing a scientific workflow execution on the Cloud.

Fig. 4. The effect of the Cloud resource’s RAM configuration on the job’s success rate.

To evaluate the presented mapping algorithm, which collects the Cloud
infrastructure information and interlinks it with the workflow provenance,
a Python based prototype has been developed using Apache Libcloud3, a
library to interact with the Cloud middleware. The presented evaluation of
the prototype is very basic currently. However, as this work progresses fur-
ther a full evaluation will be conducted. To evaluate this prototype, a 20 cores
Cloud infrastructure is acquired from the Open Science Data Cloud (OSDC)
(opensciencedatacloud.org). This Cloud infrastructure uses the OpenStack mid-
dleware (openstack.org) to provide Infrastructure-as-a-Service (IaaS) capability.
A small Condor cluster of three virtual machines is also configured. In this clus-
ter, one machine is a master node, which is used to submit workflows, and the

3 http://libcloud.apache.org.

http://opensciencedatacloud.org
http://openstack.org
http://libcloud.apache.org

88 K. Hasham et al.

remaining two are compute nodes. These compute nodes are used to execute
workflow jobs. Using the Pegasus APIs, a wordcount workflow application com-
posed of four jobs is written. This workflow has both control and data dependen-
cies [42] among its jobs along with the split and merge characteristics, which are
common characteristics in scientific workflows. The first job (Split job) takes a
text file and splits it into two files of almost equal length. Later, two jobs (Analy-
sis jobs), each take one file as input, and then calculate the number of words in
the given file. The fourth job (merge job) takes the outputs of earlier analysis
jobs and calculates the final result i.e. total number of words in both files.

This workflow is submitted using Pegasus. The wfID assigned to this work-
flow is 114. The collected Cloud resource information is stored in database.
Table 1 shows the provenance mapping records in the ReCAPStore for this
workflow. The collected information includes the flavour and image (image name
and Image id) configuration parameters. The Image id uniquely identifies an OS
image hosted on the Cloud and this image contains all the software or libraries
used during the job execution (as discussed earlier in Sect. 3). As an image
contains all the required libraries of a job, this prototype does not extract the
installed libraries information from the virtual machine at the moment for work-
flow reproducibility purpose. However, this can be done in future iterations to
enable the proposed approach to reconfigure a resource at runtime on the Cloud.
The reproducibility of the workflow using the proposed approach (discussed in
Sect. 4.2) has also been tested. The prototype is requested to repeat the work-
flow with wfID 114. Upon receiving the request, it first collects the resource

Table 1. Cloud-Aware Provenance captured for a given workflow.

WfID Host IP nodename Flavour Id minRAM minHD vCPU image name image Id

114 174.16.1.49 osdc-vm3 2 2048 20GB 1 wf peg repeat f102960c-557c-

4253-8277-

2df5ffe3c169

114 174.16.1.98 mynode 2 2048 20GB 1 wf peg repeat f102960c-557c-

4253-8277-

2df5ffe3c169

Table 2. Provenance data of the reproduced workflow showing that ReCAP success-
fully re-provisioned similar resources on the Cloud.

WfID Host IP nodename Flavour Id minRAM minHD vCPU image name image Id

117 172.16.1.183 osdc-vm3-

rep

2 2048 20GB 1 wf peg repeat f102960c-557c-

4253-8277-

2df5ffe3c169

117 172.16.1.187 mynode-

rep

2 2048 20GB 1 wf peg repea f102960c-557c-

4253-8277-

2df5ffe3c169

122 172.16.1.114 osdc-vm3-

rep

2 2048 20GB 1 wf peg repeat f102960c-557c-

4253-8277-

2df5ffe3c169

122 172.16.1.112 mynode-

rep

2 2048 20GB 1 wf peg repea f102960c-557c-

4253-8277-

2df5ffe3c169

Re-provisioning of Cloud-Based Execution Infrastructure 89

configurations, captured from earlier execution, from the database and provi-
sions the resources on the Cloud infrastructure. The name of re-provisioned
resource(s) for the repeated workflow has a postfix -rep e.g. mynova-rep as
shown in Table 2. It was named ‘mynova’ in original workflow execution as
shown in Table 1. From Table 2, one can assess that similar resources have been
re-provisioned using the ReCAP system to reproduce the workflow execution
because the RAM, Hard disk, vCPUs and image configurations are similar to
the resources used for workflow with wfID 114 (as shown in Table 1). This result
confirms that the similar resources on the Cloud can be re-provisioned with the
Cloud-Aware Provenance (CAP) collected using the proposed approach (dis-
cussed in Sect. 4). Table 2 shows two repeated workflow instances of original
workflow 114. In order to measure the execution time of the original workflow
and the re-produced workflow on the similar execution infrastructure on the
Cloud, the same workflow was executed multiple times on the Cloud infrastruc-
ture. An average execution time is calculated for these workflow executions and
treated as the average execution time of the original workflow. The ReCAP app-
roach is then used to reproduce the workflow execution by re-provisioning the
similar execution infrastructure using the Cloud-Aware Provenance (CAP). The
same workflow was re-executed on the re-provisioned resources to measure the
execution time of the reproduced workflow. Figure 5 shows the average workflow
execution times for both the original and reproduced workflows respectively. In
the case of original execution, the average workflow execution is 434.84 ± 6.52 s
and the workflow execution time for the reproduced workflow is 434.76± 7.3657 s.
This result shows that there is no significance difference (i.e. 0.08 s) in workflow
execution time because of the similar execution infrastructure used for workflow
re-execution. This result confirms that workflow can be reproduced with similar
execution performance provided a similar execution infrastructure is available
on the Cloud.

Fig. 5. Comparing the average workflow execution time of the original and the repro-
duced workflow execution.

90 K. Hasham et al.

The other aspect to evaluate the workflow reproducibility (as discussed in
Sect. 3) is to compare the outputs produced by both workflows. This has been
achieved using the algorithm discussed in Sect. 4.5. Four jobs in both the given
workflows i.e. 114 and 117 produce the same number of output files (see Table 3).
The Split job produces two output files i.e. wordlist1 and wordlist2. Two analy-
sis jobs, Analysis1 and Analysis2, consume the wordlist1 and wordlist2 files, and
produce the analysis1 and analysis2 files respectively. The merge job consumes
the analysis1 and analysis2 files and produces the merge output file. The hash
values of these files are shown in the MD5 Hash column of the Table 3, here both
given workflows are compared with each other. For instance, the hash value of
wordlist1 produced by the Split job of workflow 117 is compared with the hash
value of wordlist1 produced by the Split job of workflow 114. If both the hash val-
ues are same, the algorithm returns true. This process is repeated for all the files
produced by both workflows. The algorithm confirms the verification of workflow
outputs if the corresponding files in both workflows have the same hash values.
Table 3 shows that both workflows have produced the identical files because the
hash values are same. In order to measure the impact of provenance mapping
approaches (as discussed in Sects. 4.2 and 4.3) on the workflow execution per-
formance, the workflow jobs were modified to eliminate the effect of the data
transfer time on the workflow execution. The jobs in the workflow mimic the
job processing by introducing a sleep interval for a given time period, which is
passed as an argument. Figure 6 shows that the average workflow execution time
in the absence of any provenance approach (i.e. No Mapping) is 434.69 ± 6.52 s.
The average workflow execution time is 434.71 ± 4.49 and 434.74 ± 4.28 s for the
Static and Eager Mapping approaches respectively. The difference between the
execution times is 0.02 and 0.05 s for the Static and Eager approaches respec-
tively. This slight difference in execution time is mainly caused by the delays a job
faces during its execution. The overall workflow execution time remains almost
the same in the presence of the proposed provenance capturing approaches. The
main reason for these mapping approaches to not having a major impact on the

Table 3. Provenance data of the reproduced workflow showing that ReCAP success-
fully re-provisioned similar resources on the Cloud.

Job WfID Container Name File Name MD5 Hash

Split 114 wfoutput123011 wordlist1 0d934584cbc124eed93c4464ab178a5d

117 wfoutput125819 wordlist1 0d934584cbc124eed93c4464ab178a5d

114 wfoutput123011 wordlist2 0d934584cbc124eed93c4464ab178a5d

117 wfoutput125819 wordlist2 0d934584cbc124eed93c4464ab178a5d

Analysis1 117 wfoutput125819 analysis1 494f24e426dba5cc1ce9a132d50ccbda

114 wfoutput123011 analysis2 127e8dbd6beffdd2e9dfed79d46e1ebc

Analysis2 114 wfoutput123011 analysis2 127e8dbd6beffdd2e9dfed79d46e1ebc

117 wfoutput125819 analysis2 127e8dbd6beffdd2e9dfed79d46e1ebc

Merge 114 wfoutput123011 merge output d0bd408843b90e36eb8126b397c6efed

117 wfoutput125819 merge output d0bd408843b90e36eb8126b397c6efed

Re-provisioning of Cloud-Based Execution Infrastructure 91

Fig. 6. Cloud-Aware Provenance capturing overhead on the workflow execution time.

workflow execution time is because they work outside the virtual machines, thus
they don’t interfere with the job execution.

6 Conclusion and Future Direction

The dynamic nature of the Cloud makes provenance capturing of workflow(s)
with the underlying execution environment(s) and their reproducibility a difficult
challenge. In this regard, a list of workflow reproducibility requirements has been
presented after analysing the literature and workflow execution scenario on the
Cloud infrastructure. The proposed ReCAP’s framework can augment the exist-
ing workflow provenance with the Cloud infrastructure information. Based on
the identified Cloud usage scenarios i.e. Static and Dynamic, the proposed map-
ping approaches iterate over the workflow jobs and establishes mappings with
the resource information available on the Cloud. The results show that the pro-
posed approaches can capture the Cloud-Aware Provenance (CAP) by capturing
the information related to Cloud infrastructure (virtual machines) used during
a workflow execution. It can then re-provision a similar execution infrastruc-
ture with same resource configurations on the Cloud using CAP to reproduce
a workflow execution. Figure 5 shows that the workflow execution time remains
the same for reproduced workflow because similar execution infrastructure was
provisioned using the Cloud-Aware Provenance. The workflow reproducibility is
verified by comparing the outputs produced by the workflows. In this regard, the
proposed algorithm (see Algorithm 2) compares the outputs produced by two
given workflows. Furthermore, this paper also presents the impact of the devised
mapping approaches on the workflow execution time. The result in Fig. 6 shows
that the presented mapping approaches do not significantly affect the workflow
execution time because they work outside the virtual machine and do not inter-
fere with the job execution. In future, the proposed approach will be extended
and a detailed evaluation of the ReCAP framework will be conducted. Differ-
ent performance matrices such as the impact of different resource configuration

92 K. Hasham et al.

on workflow execution performance, and total resource provisioning time will
also be measured. In this paper, only workflow outputs have been used to com-
pare two workflows’ provenance traces. In future, the comparison algorithm will
also incorporate workflow structure and execution infrastructure (as discussed
in Sect. 3) to verify workflow reproducibility. Moreover, the ReCAP framework
has not addressed the issue of securing the stored Cloud-Aware Provenance. In
future, the presented architecture will be extended by adding a security layer on
top of the collected Cloud-Aware Provenance.

Acknowledgements. This research work has been funded by a European Union FP-
7 project, N4U neuGrid4Users (grant agreement n. 283562, 2011-2014). Besides this,
the support provided by OSDC by offering a free Cloud infrastructure of 20 cores is
highly appreciated.

References

1. Mehmood, Y., Habib, I., Bloodsworth, P., Anjum, A., Lansdale, T., McClatchey,
R.: A middleware agnostic infrastructure for neuro-imaging analysis. In: 22nd IEEE
International Symposium on Computer-Based Medical Systems, CBMS 2009, pp.
1–4, August 2009

2. Munir, K., Kiani, S.L., Hasham, K., McClatchey, R., Branson, A., Shamdasani, J.:
Provision of an integrated data analysis platform for computational neuroscience
experiments. J. Syst. Inf. Technol. 16(3), 150–169 (2014)

3. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: An
overview of workflow system features and capabilities. Future Gener. Comput.
Syst. 25(5), 528–540 (2009)

4. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco (1999)

5. Mell, P. M., Grance, T.: Sp 800–145. The nist definition of cloud computing. Tech-
nical report, Gaithersburg, MD, United States (2011)

6. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing
science on the cloud: the montage example. In: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, SC 2008. pp. 50:1–50:12. IEEE Press, USA (2008)

7. Juve, G., Deelman, E.: Scientific workflows and clouds. Crossroads 16(3), 14–18
(2010)

8. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.
SIGMOD Rec. 34(3), 31–36 (2005)

9. Azarnoosh, S., Rynge, M., Juve, G., Deelman, E., Niec, M., Malawski, M.,
da Silva, R.: Introducing PRECIP: an API for managing repeatable experiments
in the cloud. In: 2013 IEEE 5th International Conference on Cloud Computing
Technology and Science (CloudCom), vol. 2, pp. 19–26, December 2013

10. Belhajjame, K., Roos, M., Garcia-Cuesta, E., Klyne, G., Zhao, J., De Roure, D.,
Goble, C., Gomez-Perez, J.M., Hettne, K., Garrido, A.: Why workflows break -
understanding and combating decay in taverna workflows. In: Proceedings of the
2012 IEEE 8th International Conference on E-Science (e-Science), E-SCIENCE
2012, pp. 1–9. IEEE Computer Society, USA (2012)

11. Vouk, M.: Cloud computing - issues, research and implementations. In: 30th Inter-
national Conference on Information Technology Interfaces, ITI 2008, pp. 31–40,
June 2008

Re-provisioning of Cloud-Based Execution Infrastructure 93

12. Zhao, Y., Fei, X., Raicu, I., Lu, S.: Opportunities and challenges in running scien-
tific workflows on the cloud. In: 2011 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC), pp. 455–462, October
2011

13. Shamdasani, J., Branson, A., McClatchey, R.: Towards semantic provenance in
cristal. In: Third International Workshop on the Role of Semantic Web in Prove-
nance Management (SWPM 2012) (2012)

14. Stevens, R.D., Robinson, A.J., Goble, C.A.: myGrid: personalised bioinformatics
on the information grid. Bioinformatics 19, i302–i304 (2003)

15. de Oliveira, D., Ogasawara, E., Baiao, F., Mattoso, M.: Scicumulus: a lightweight
cloud middleware to explore many task computing paradigm in scientific work-
flows. In: 2010 IEEE 3rd International Conference on Cloud Computing (CLOUD),
pp. 378–385, July 2010

16. Ko, R.K.L., Lee, B.S., Pearson, S.: Towards achieving accountability, auditability
and trust in cloud computing. In: Abraham, A., Mauri, J.L., Buford, J.F., Suzuki,
J., Thampi, S.M. (eds.) ACC 2011, Part IV. CCIS, vol. 193, pp. 432–444. Springer,
Heidelberg (2011)

17. Foster, I., Vöckler, J., Wilde, M., Zhao, Y.: Chimera: a virtual data system for
representing, querying, and automating data derivation. In: Proceedings of the
14th International Conference on Scientific and Statistical Database Management,
pp. 37–46 (2002)

18. Scheidegger, C., Koop, D., Santos, E., Vo, H., Callahan, S., Freire, J., Silva, C.:
Tackling the provenance challenge one layer at a time. Concurr. Comput.: Pract.
Exper. 20(5), 473–483 (2008)

19. Kim, J., Deelman, E., Gil, Y., Mehta, G., Ratnakar, V.: Provenance trails in the
wings-pegasus system. Concurr. Comput.: Pract. Exper. 20(5), 587–597 (2008)

20. Zhang, O.Q., Kirchberg, M., Ko, R.K., Lee, B.S.: How to track your data: the case
for cloud computing provenance. In: 2011 IEEE Third International Conference on
Cloud Computing Technology and Science (CloudCom), pp. 446–453. IEEE (2011)

21. Tan, Y.S., Ko, R.K., Jagadpramana, P., Suen, C.H., Kirchberg, M., Lim, T.H.,
Lee, B.S., Singla, A., Mermoud, K., Keller, D., Duc, H.: Tracking of data leaving
the cloud. In: 2013 12th IEEE International Conference on Trust, Security and
Privacy in Computing and Communications, pp. 137–144 (2012)

22. Macko, P., Chiarini, M., Seltzer, M.: Collecting provenance via the xen hypervisor.
In: 3rd USENIX Workshop on the Theory and Practice of Provenance (TAPP)
(2011)

23. Chirigati, F., Shasha, D., Freire, J.: Reprozip: using provenance to support com-
putational reproducibility. In: Proceedings of the 5th USENIX Workshop on the
Theory and Practice of Provenance, TaPP 2013, pp. 1:1–1:4. USENIX Association,
Berkeley (2013)

24. Janin, Y., Vincent, C., Duraffort, R.: Care, the comprehensive archiver for repro-
ducible execution. In: Proceedings of the 1st ACM SIGPLAN Workshop on Repro-
ducible Research Methodologies and New Publication Models in Computer Engi-
neering, TRUST 2014, pp. 1:1–1:7. ACM, New York (2014)

25. Santana-Perez, I., Ferreira da Silva, R., Rynge, M., Deelman, E., Pérez-Hernández,
M.S., Corcho, O.: A semantic-based approach to attain reproducibility of compu-
tational environments in scientific workflows: a case study. In: Lopes, L., et al.
(eds.) Euro-Par 2014, Part I. LNCS, vol. 8805, pp. 452–463. Springer, Heidelberg
(2014)

26. Sandve, G.K., Nekrutenko, A., Taylor, J., Hovig, E.: Ten simple rules for repro-
ducible computational research. PLoS Comput. Biol. 9(10), e1003285 (2013)

94 K. Hasham et al.

27. Stodden, V.C.: Reproducible research: addressing the need for data and code shar-
ing in computational science. Comput. Sci. Eng. 12, 8–12 (2010)

28. Santana-Perez, I., Ferreira da Silva, R., Rynge, M., Deelman, E., Perez-Hernandez,
M.S., Corcho, O.: Leveraging semantics to improve reproducibility in scientific
workflows. In: The Reproducibility at XSEDE Workshop (2014)

29. Vöckler, J.S., Juve, G., Deelman, E., Rynge, M., Berriman, B.: Experiences using
cloud computing for a scientific workflow application. In: Proceedings of the 2nd
International Workshop on Scientific Cloud Computing, ScienceCloud 2011, pp.
15–24. ACM, USA (2011)

30. Howe, B.: Virtual appliances, cloud computing, and reproducible research. Com-
put. Sci. Eng. 14(4), 36–41 (2012)

31. Zhao, Y., Li, Y., Raicu, I., Lu, S., Tian, W., Liu, H.: Enabling scalable scientific
workflow management in the cloud. Future Gener. Comput. Syst. 46, 3–16 (2014)

32. Lifschitz, S., Gomes, L., Rehen, S. K.: Dealing with reusability and reproducibility
for scientific workflows. In: 2011 IEEE International Conference on Bioinformatics
and Biomedicine Workshops (BIBMW), pp. 625–632. IEEE (2011)

33. Missier, P., Woodman, S., Hiden, H., Watson, P.: Provenance and data differencing
for workflow reproducibility analysis. Concurr. Comput.: Pract. Exp. (2013)

34. Abrishami, S., Naghibzadeh, M., Epema, D.H.: Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds. Future Gener. Com-
put. Syst. 29(1), 158–169 (2013). Including Special section: AIRCC-NetCoM 2009
and Special section: Clouds and Service-Oriented Architectures

35. Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Algorithms for cost- and
deadline-constrained provisioning for scientific workflow ensembles in iaas clouds.
Future Gener. Comput. Syst. 48, 1–18 (2015). Special Section, Business and Indus-
try Specific Cloud

36. Woodman, S., Hiden, H., Watson, P., Missier, P.: Achieving reproducibility by
combining provenance with service and workflow versioning. In: Proceedings of
the 6th Workshop on Workflows in Support of Large-scale Science, WORKS 2011,
pp. 127–136. ACM, USA (2011)

37. Groth, P., Deelman, E., Juve, G., Mehta, G., Berriman, B.: Pipeline-centric prove-
nance model. In: Proceedings of the 4th Workshop on Workflows in Support of
Large-Scale Science, WORKS 2009, pp. 4:1–4:8. ACM, USA (2009)

38. Horta, F., Silva, V., Costa, F., de Oliveira, D., Ocaña, K., Ogasawara, E., Dias, J.,
Mattoso, M.: Provenance traces from chiron parallel workflow engine. In: Proceed-
ings of the Joint EDBT/ICDT 2013 Workshops, EDBT 2013, pp. 337–338. ACM,
New York (2013)

39. Tannenbaum, T., Wright, D., Miller, K., Livny, M.: Beowulf Cluster Computing
with Linux, pp. 307–350. MIT Press, Cambridge (2002)

40. Latchoumy, P., Khader, P.S.A.: Survey on fault tolerance in grid computing. Int.
J. Comput. Sci. & Eng. Surv. (IJCSES) 2 (2011)

41. Stallings, W.: Cryptography and Network Security: Principles and Practice, 5th
edn. Prentice Hall Press, Upper Saddle River (2010)

42. Ramakrishnan, L., Plale, B.: A multi-dimensional classification model for scientific
workflow characteristics. In: Proceedings of the 1st International Workshop on
Workflow Approaches to New Data-Centric Science, Wands 2010, pp. 4:1–4:12.
ACM, USA (2010)

Security and Privacy Preservation of Evidence
in Cloud Accountability Audits

Thomas Rübsamen1(B), Tobias Pulls2, and Christoph Reich1

1 Cloud Research Lab, Furtwangen University, Furtwangen, Germany
{thomas.ruebsamen,christoph.reich}@hs-furtwangen.de

2 Department of Mathematics and Computer Science, Karlstad University,
Karlstad, Sweden

tobias.pulls@kau.se

Abstract. Cloud accountability audits are promising to strengthen
trust in cloud computing by providing reassurance about the process-
ing data in the cloud according to data handling and privacy policies.
To effectively automate cloud accountability audits, various distributed
evidence sources need to be considered during evaluation. The types of
information range from authentication and data access logging to loca-
tion information, information on security controls and incident detec-
tion. Securing that information quickly becomes a challenge in the sys-
tem design, when the evidence that is needed for the audit is deemed
sensitive or confidential information. This means that securing the evi-
dence at-rest as well as in-transit is of utmost importance. In this paper,
we present a system that is based on distributed software agents which
enables secure evidence collection with the purpose of automated eval-
uation during cloud accountability audits. We thereby present the inte-
gration of Insynd as a suitable cryptographic mechanism for securing
evidence. We present our reasoning for choosing Insynd by showing a
comparison of Insynd properties with requirements imposed by account-
ability evidence collection as well as an analysis how security threats
are being mitigated by Insynd. We put special emphasis on security and
privacy protection in our system analysis.

1 Introduction

Cloud Computing is known for its on demand computing resource provisioning
and has now become mainstream. Many businesses as well as private individu-
als are using cloud services on a daily basis. The nature of these services varies
heavily in terms of what kind of information is being out-sourced to the cloud
provider. Often, that data is sensitive, for instance when Personal Identifiable
Information (PII) is being shared by an individual. Also, businesses that move
(parts of) their processes to the cloud, for instance by using Customer Relation-
ship Management Software as a Service, are actively participating in a major
paradigm shift from having all data on-premise to moving data to the cloud.

However, many new challenges come along with this trend. Two of the most
important issues are customer trust and compliance [14,22]. These issues are

c© Springer International Publishing Switzerland 2016
M. Helfert et al. (Eds.): CLOSER 2015, CCIS 581, pp. 95–114, 2016.
DOI: 10.1007/978-3-319-29582-4 6

96 T. Rübsamen et al.

closely tied to the loss of control over data. When moving to the cloud, direct
control over (i) where data is stored, (ii) who has access to it and (iii) how
it is shared and processed is given up. Because of this loss of control, cloud
customers have to trust cloud providers that they treat their data in an appro-
priate and responsible way. One way to enable that trust is by strengthening
transparency and accountability [12,30] of the cloud provider and services. This
includes providing information about data locality, isolation, privacy controls
and data processing in general.

Cloud audits can be used to check how data has been processed in the cloud
(i.e., by whom, for what purpose) and whether or not this happened in com-
pliance with what has been defined in previously agreed-upon privacy and data
handling policies. This way, a cloud customer can regain some of the information
he has given up control of by moving to the cloud. A central responsibility of
cloud audits is the collection of data that can be used as evidence. Depending
on the data processing policies in place, various sources of evidence need to be
considered. For instance, logs are a very important source of evidence, when it
comes to auditing the cloud operation (e.g., access logs and error logs). However,
other sources of information are also important, such as files (e.g., process doc-
umentation) or events registered in the cloud management system (e.g., access
control decisions, infrastructure changes, data transfers).

To capture evidence from this variety of sources, centralized logging mecha-
nisms are not enough. We therefore propose a system for accountability evidence
collection and audit. With this system, cloud providers are enabled to demon-
strate their compliance with data handling policies to their customers and to
third-party auditors in an automated way.

In our previous work, we proposed a concept [28] for cloud accountability
audits, that enables automated collection of evidential data in the cloud ecosys-
tem with the goal of performing accountability audits. A key mechanism of this
system is the secure and privacy-friendly collection and storage of evidence. In
our previous work we also explored the use of a somewhat homomorphic encryp-
tion scheme to secure evidence collected in the evidence store [17], which has
proven practical but very limited in terms of performance and functionality.

In this paper, we present a more practical alternative that imposes less restric-
tions on evidence collection.

The contributions of this paper are:

– An architecture for automated evidence collection for the purpose of cloud
accountability audits

– A process for secure and privacy-protecting evidence collection and storage

The remainder of this paper is structured as follows: in Sect. 2 we present
related work in the area of secure evidence collection and cloud auditing. The
core principles of Insynd are introduced in Sect. 3. Section 4 introduces the Audit
Agent System (AAS) and its architecture. Following that, we present in Sect. 5
a mapping of typical characteristics of digital evidence and secure evidence
collection in the cloud to how these are addressed by integrating Insynd in
our audit agent system. In Sect. 6 we describe the architectural details of the

Security and Privacy Preservation of Evidence 97

Insynd integration. We also present a scenario-based evaluation of our system in
Sect. 7 and conclude this paper in Sect. 8.

2 Related Work

Redfield and Date propose a system called Gringotts [27] that enables secure
evidence collection, where evidence data is signed at the system that produces
it, before it is sent to a central server for archival using the Evidence Record
Syntax. It is similar to our system with respect to the automatic collection of
evidential data from multiple sources. However, their focus is on the archival of
evidence, whereas we propose a system that also enables automated evidence
processing for audits. Additionally, our system also addresses privacy concerns
of evidence collection in a multi-tenant environment such as the cloud by intro-
ducing evidence encryption, whereas Redfield and Date focus on archival and
preservation of evidence integrity.

Zhang et al. [31] identify potential problems when storing massive amounts
of evidential data. They specifically address possible information leaks. To solve
these issues, they propose an efficient encrypted database model that is supposed
to minimize potential data leaks as well as data redundancy. However, they focus
solely on the storage backend and do not provide a workflow that addresses secure
evidence collection as a whole.

Gupta [11] identifies privacy issues in the digital forensics process, when it
comes to data storage devices that typically do not only contain investigation
related data, but may also hold sensitive information that may breach privacy.
He also identifies a lack of automation in the digital investigation process. To
address these issues, Gupta proposes the Privacy Preserving Efficient Digital
Forensic Investigation (PPEDFI) framework. PPEDFI automates the investi-
gation process by including knowledge about previous investigation cases, and
which kinds of files were relevant then. With that additional information, evi-
dence search on data storage devices is faster. However, while Gupta acknowl-
edges privacy issues, the PPEDFI framework is focused on classic digital forensics
and may not be applicable to a cloud ecosystem, where there is typically no way
of mapping specific data objects to storage devices, in full.

The Security Audit as a Service (SAaaS) system proposed by Dölitzscher
et al. [9,10] is used to monitor cloud environments and to detect security inci-
dents. SAaaS is specifically designed to detect incidents in the cloud and thereby
consider the dynamic nature of such ecosystems, where resources are rapidly pro-
visioned and removed. However, the main focus of SAaaS is not to provide audi-
tors with a comprehensive way of auditing the cloud provider’s compliance with
accountability policies, which requires additional security and privacy measures
to be considered in the data collection process.

3 Insynd

Insynd is a cryptographic scheme where a forward-secure author sends mes-
sages intended for clients through an untrusted server [23,24]. The author is

98 T. Rübsamen et al.

forward-secure in the sense that the author is initially trusted but assumed to
turn into an active adversary at some point in time [5]. Insynd protects mes-
sages sent prior to author compromise. The server is untrusted, which is possible
thanks to the use of Balloon, a forward-secure append-only persistent authen-
ticated data structure [23]. This means that the server storing all messages can
safely be outsourced, e.g., to traditional cloud services. Clients are assumed
trusted to read messages sent to them by authors. Insynd contains support for
clients to also be in the forward-security model, by discarding key-material as
messages are read. For sake of ease of implementation, Insynd is designed around
the use of NaCl [6], an easy-to-use high-speed cryptography software library.

Insynd provides the following properties:

Forward Integrity and Deletion Detection. Nobody can modify or delete
messages sent prior to author compromise, as defined by Pulls et al. [25].
This property holds independently for Balloon (the data structure) and the
Insynd scheme. For Balloon, anyone can verify the consistency of the data
structure, i.e., it is publicly verifiable [23].

Secrecy. Insynd provides authenticated encryption [2].
Forward Unlinkability of Events. For each run by the author of the protocol

to send new messages, all the events sent in that run are unlinkable. This
implies that, e.g., an attacker (or the server) cannot tell which events belong
to which client [24]. When clients receive their events by querying the server,
if they take appropriate actions including but not limited to accessing the
server over an anonymity network like Tor [8], their events remain unlinkable.

Publicly Verifiable Proofs. Both the author and client receiving a message
can create publicly verifiable proofs of the message sender (the author),
the receiving client (by registered identity), and the time the message was
sent relative to e.g. a time-stamping authority [24]. The proof-of-concept
implementation of Insynd uses Bitcoin transactions [20] as a distributed
time-stamping server.

Distributed Settings. Insynd supports distributed authors, where one author
can enable other authors to send messages to clients it knows of with-
out requiring any interaction with clients. Client identifiers (public keys)
are blinded in the protocol, ensuring forward-unlinkable client identifiers
between different authors [24].

Pulls and Peters show that Insynd provide the above cryptographic proper-
ties under the assumptions of the decisional Diffie-Hellman (DDH) assumption
on Curve25519, an unforgeable signature algorithm, an unforgeable one-time
MAC, a collision and pre-image resistant hash function, a IND-CCA2 secure
public-key encryption scheme, and the security of the time-stamping mechanism
(in our case, the Bitcoin block-chain) [24]. The prototype implementation of
Insynd shows performance comparable to state-of-the-art secure logging schemes,
like PillarBox [7], securing syslog-sized messages (max 1 KiB) in the order of hun-
dreds of microseconds on average on a commodity laptop. We stress that Insynd
is subject to its own review and evaluation; in this paper, we use Insynd as
a building block to facilitate secure evidence collection and storage for cloud
accountability audits.

Security and Privacy Preservation of Evidence 99

4 Audit Agent System

In the following, the main actors, components and the general flow of information
from the evidence-producing source to the audit report in our Audit Agent
System (AAS) are described.

4.1 Privacy and Accountability Cloud Audit System Actors

The main actor using the AAS is the Cloud Auditor. According to NIST, a cloud
auditor is a “A party that can conduct independent assessment of cloud services,
information system operations, performance and security of the cloud imple-
mentation.” [16] In general, a cloud consumer, cloud provider or an independent
third-party can act as a cloud auditor. Depending on the actual stakeholder that
assumes the role of the auditor, isolation issues can arise:

– A data protection authority (DPA) typically acts in good faith as a third-party
and assesses privacy policies. Therefore, they typically have broad access to a
provider’s internal documentation, infrastructure and potentially customer’s
data.

– A commercial third-party auditor is usually a specialized service provider (e.g.,
a penetration or security testing specialist) acting on behalf of the cloud
provider. Their access to information is similar to that available to the DPA.

– A customer can also assume the role of an auditor, however with a much
more limited scope of available information. We consider two major sub-types,
businesses as customers and individuals as customers.

In our proposed system, we consider business customers (e.g., companies
using cloud services to replace their IT) to be potential auditors but exclude pri-
vate individuals. Additionally, providers use the AAS internally for self-auditing
to regularly and continuously assess their policy compliance and detect poten-
tial violations in a timely manner. Depending on the view on an organization
(i.e., depending on who assumes the role of cloud auditor), data protection is
an issue to consider, when potential confidential information is processed dur-
ing an audit. This means data confidentiality, integrity and isolation have to be
preserved during an automated audit.

4.2 Architectural Components Audit Agent System

The architecture of the Audit Agent System (see Fig. 1) is based on the use of
software agents. This allows for improved flexibility by allowing to rapidly react
on infrastructure changes, and improved extensibility especially with respect to
data collectors that are used to gather information that is evaluated during an
audit. The collectors are adapters for the various heterogeneous sources of evi-
dence in a cloud environment. In Sect. 6.1, we describe more details of how the
collectors work. The architecture of the AAS comprises of the following com-
ponents: Audit Policy Module (APM), Audit Agent Controller (AAC), Evidence

100 T. Rübsamen et al.

Fig. 1. Privacy and accountability cloud audit system architecture.

Processor and Presenter (EPP) and Evidence Store (ES). Especially the Evi-
dence Store and the aforementioned collection agents make heavy use of Insynd
to assure that data protection requirements are being met. To a lesser extent,
the AAC and EPP also utilize Insynd for securely transporting evidence.

All components are implemented as software agents based on the Java Agent
DEveleopment framework (JADE) [13] and make heavy use of the JADE Agent
Communication Language (ACL) for agent interaction. In the following, we
describe the architecture components:

Audit Policy Module. The main input to the AAS are machine-readable poli-
cies that describe data handling obligations (e.g., access control), security con-
trols (e.g., service configuration) and data protection mechanisms (e.g., encryp-
tion). From such policies, tasks for collecting evidence, and rules for evaluation
of the evidence with the goal of producing a compliance statement are extracted.
Additional input to the APM is provided by the auditor. We assume, that there
is always a need for at least some manual input for defining an automated audit
because the input policy might not be complete with respect to all the parame-
ters that are required for an automated audit. Such parameters include the audit
type (periodic or event-driven), the frequency (e.g., daily, monthly. . .) but also
more task-specific information that is not provided by the input policy. Depend-
ing on the actual audit task, the input comprises of policies and auditor-supplied
information:

Security and Privacy Preservation of Evidence 101

1. Policies, which define obligations that have to be fulfilled by the cloud
provider, such as data access restrictions and usage policies, requirements
for the implementation of privacy controls, data retention requirements and
general security requirements. The A4Cloud [1] research project develops a
machine-readable policy language based on the Primelife Policy Language [3]
called Accountability PPL [4]. The A-PPL is capable of describing obligations
providers have to adhere to, such access control rules and data handling (e.g.,
data location, purpose etc.). A-PPL serves as the main input to the Audit
Agent System and for defining audits.

2. It is possible that an input policy does not necessarily include all information
required for mapping policy requirements to specific evidence sources, collec-
tors (e.g., evidence source specific REST client or log parser) and evaluators
(e.g., API endpoints, access credentials). That information is provided by the
auditor.

With the above mentioned data, the APM builds audit tasks - a combination
of evidence collector, processor and presenter agents - and passes that task on
to the Audit Agent Controller for instantiation.

Audit Agent Controller. The AAC is the core component of the Audit Agent
System. Its main responsibility is the management (i.e., instantiation, configura-
tion, deployment) of any type of agent in the AAS. The main input comes from
the APM, which effectively instructs the AAC on how to setup specific audit
tasks. A typical audit task deployment in AAS is called an audit workflow. The
typical audit workflow (depicted in Fig. 2) is as follows:

1. Preparation: The APM extracts audit task configuration from the policy,
combines it with input provided by the auditor and passes it on to the AAC.

2. Configuration: According to the input provided by the APM, the AAC con-
figures audit policies, its tasks and corresponding collection and evaluation
agents.

3. Instantiation: the AAC instantiates the previously configured agents as well
as the associated evidence store.

4. Migration: Agents are migrated from the core platform where the AAC is run-
ning to the target platforms (agent runtime environments as close as possible
to the evidence source).

5. Monitoring : During the agents’ lifetime, the AAC monitors registered plat-
forms and registered agents, handles exceptions, and manages the creation,
archival and deletion of evidence stores

6. Termination: The AAC disposes of the collector and evaluation agents when
they are not needed anymore. It also handles archival and / or deletion of the
corresponding evidence store in that case.

Evidence Processor and Presenter. After the collector agents have gathered
evidence data and stored it in the evidence store, the evaluation agent(s) of an
audit task retrieve that data and analyze it according to the rules that have been

102 T. Rübsamen et al.

Fig. 2. Audit Agent System Architecture - Audit Workflow.

extracted from the policies in the preparation phase by the APM. The results
that are produced by the evaluation agents are written back to the evidence
store. A result can either positive (e.g., a message of proven compliance or the
absence of a violation) or negative (e.g., a violation that is detected by the
evaluation agent). Additionally the result is passed on to presenter agents that
inform the auditor about the audit results. Currently the presenter agents can
either display the audit result in a web-based dashboard or pass on the violation
in a machine-readable format to other tools or services via a REST API. The
whole of processor and presenter agents logically forms the EPP component.
It is thereby irrelevant, where these agents are running as long as they are
able communicate via a network, which helps in balancing the load that can be
introduced with complex analysis mechanisms or the sheer amount of evidence
data that needs to be analyzed. According to the complexity of task, due to the
amount of obligations, or the volume of evidence to analyse, different verification
processes may need to be considered for the evaluation agents, ranging from log
mining, checking for predefined tokens or patterns, to automated analysers and
automated reasoning upon the audit trail.

The processing or analysis of evidence consists of two steps:

1. Retrieve the appropriate information from Evidence store.
2. A verification process, which checks the correctness of recorded events accord-

ing to defined obligations and authorizations.

Evidence Store. The ES is the central repository for storing evidence. Some of
the more important characteristics of evidence are that they are associated with
a policy for which they were collected and contain supporting information such
as log entries collected by an agent, which points out a potential policy violation
or incident. For each cloud tenant, there is a separate ES to ensure basic data
protection principles are being adhered to by isolating tenants and their data.
This addresses some of the confidentiality and privacy issues associated with a
share data pool for potentially sensitive information.

Security and Privacy Preservation of Evidence 103

There are several approaches to harmonizing the storage format for digital
evidence that can be reused in the ES such as [15,26,29]. AAS uses a custom
evidence format that is based on concepts described in [26,29].

Securing the transport and storage of evidence is a considerable challenge.
The remainder of this paper focusses on how this is achieved in AAS by utilizing
Insynd.

5 Audit Evidence Storage Requirements

In this Section, we present a comparison of general evidence attributes, how
they apply in the context of evidence collection for cloud accountability audits
and how the integration of Insynd solves key issues in evidence storage.

5.1 Requirements of Digital Evidence

In [19] the core principles of any evidence are described as:

Admissibility. Evidence must conform to certain legal rules, before it can be
put before a jury.

Authenticity. Evidence must be tieable to the incident and may not be manip-
ulated.

Completeness. Evidence must be viewpoint agnostic and tell the whole story.
Reliability. There cannot be any doubts about the evidence collection process

and its correctness.
Believability. Evidence must be understandable by a jury.

These principles apply to common evidence as well as digital evidence. There-
fore, the evidence collection process for audits has to consider special require-
ments, which help in addressing these attributes and ensure best possible validity
in audits and applicability in court.

In Table 1 we present a mapping of the previously described evidence
attributes and how they are supported by the integration of Insynd as a means
of storing evidence records. We thereby focus on the key properties of Insynd as
described in Sect. 3.

Table 1. Mapping the Impact of Insynd Properties to Evidence Attributes.

Insynd
Forward Integrity and Publicly Verifiable Proofs

Deletion Detection

E
vi

de
nc

e
St

or
e

Admissibility
Authenticity
Completeness
Reliability
Believability

104 T. Rübsamen et al.

Admissibility of digital evidence is influenced by the transparency of the
collection process and data protection regulation. Digital evidence can be any
kind of data (e.g., e-mail messages, social network messages, files, logs etc.).
Insynd does not have any direct influence on the admissibility of the evidence
stored in it.

Authenticity of digital evidence before court is closely related to the integrity
requirement put on evidence records. Evidence may not be manipulated in any
way and must be protected against any kind of tampering (willingly and acci-
dentally). Insynd ensures that data cannot be tampered with once it is stored.

Completeness is not directly ensured by Insynd, but rather needs to be
ensured by the evidence collection process as a whole. Especially important are
the definition of which evidence sources provide relevant evidence that need to
be considered during the collection phase. Insynd can complement the evidence
collection process by providing assurance of that all data stored in the evidence
store are made available as evidence, and not cherry-picked.

Reliability is indirectly supported by integrating necessary mechanisms into
the evidence collection process, such as Insynd.

Believability of the collected evidence is not influenced by implemented mech-
anisms, but rather by the interpretation and presentation by an expert in court.
This is due to judges and juries usually being non-technical, which requires an
abstracted presentation of evidence. Insynd does not influence the believability
in that sense.

5.2 Privacy Requirements

Not all requirements that a secure evidence storage has to fulfill can be captured
by analyzing the attributes of digital evidence. Other aspects have to be taken into
account to address privacy concerns. Protecting privacy in the process of evidence
collection is utmost importance, since the collected data is likely to contain per-
sonal data. For cloud computing, one limiting factor may be whether or not the
cloud provider is willing to provide deep insight into its infrastructure. Table 2
presents a mapping of privacy principles and properties of our evidence process.

Below we summarise some key privacy principles:

Confidentiality. of data evolves around mechanisms for the protection from
unwanted and unauthorized access. Typically, cryptographic concepts, such
as encryption, are use to ensure confidentiality of data.

Table 2. Mapping of Insynd properties to Evidence Collection Requirements.

Insynd
Secrecy Forward Unlinkability Forward Unlinkability

of Events of Recipients

E
vi

de
nc

e
St

or
e

Confidentiality
Data Minimisation
Purpose Binding
Data Retention

Security and Privacy Preservation of Evidence 105

Data Minimization. states that the collection of personal data should be
minimized and limited to only what is strictly necessary.

Purpose Binding. of personal data entails that personal data should only be
used for the purposes it was collected for.

Retention Time. is concerned with how long personal data may be stored and
used, before it needs to be deleted. These periods are usually defined by legal
and business requirements.

Insynd and our evidence process provides various mechanisms that support
these privacy principles.

Confidentiality. A central property of Insynd is that it is always encrypting data
using public-key cryptography. By encrypting the evidence store, compromis-
ing the privacy of cloud customer data that has been collected in the evidence
collection processes becomes almost impossible by attacking the evidence store
directly. This goes as far as being able to safely outsource the evidence store to
an untrusted third-party, a key property of Insynd [24].

Data Minimisation. Furthermore, Insynd provides forward unlinkability of events
and client identifiers, as described in Sect. 3, which helps prevent several types
of information leaks related to storing and accessing data. Collection agents are
always configured for a specific audit task, which is very limited in scope of what
needs to be collected. Agents are never configured to arbitrarily collect data, but
are alway limited to a specific source (e.g., a server log) and data objects (e.g.,
a type of log events).

Purpose Binding. Neither Insynd nor our evidence process can directly influence
the purpose for which collected data is used. Indirectly, the use of an evidence
process like ours, incorporating secure evidence collection and storage, may serve
to differentiate data collected for auditing purposes with other data collected e.g.,
for marketing purposes.

Retention time poses a real challenge. In cloud computing, the precise location
of a data object is usually not directly available, i.e., the actual storage medium
used to store a particular block is unknown, making data deletion hard. However,
if data has been encrypted before storage, a reasonably safe way to ensure “dele-
tion” is to discarding the key material required for decryption. Insynd supports
forward-secure clients, where key material to decrypt messages are discarded as
messages are read.

In Sect. 7, we also describe the threat model for the system described in this
paper and present an evaluation of how Insynd is used to mitigate these threats.

6 Secure Evidence Storage Architecture

In this Section, we provide an architectural overview of the integration of Insynd
into a secure evidence collection and storage process. We describe the overall
architecture and its components, how the components of Insynd are mapped
into the Audit Agent System and which setup process is required to use Insynd
for securing evidence collection and storage.

106 T. Rübsamen et al.

6.1 Architecture

In this Section we discuss the architectural integration of Insynd as an evi-
dence store in our audit system. There are basically three different components
required to perform secure evidence collection. Figure 3 shows an overview of
these components - Evidence Source, Evidence Store and Evidence Processing
(see Sect. 4 and Fig. 1 for reference) - as well as the flow of data between them.
From the various sources of evidence in the cloud, evidence records are collected
that will be stored in the evidence store on a per-tenant basis. The evidence store
is thereby located on a separate server. As previously mentioned, the server may
be an untrusted third-party cloud storage provider. This is important to ensure
so that this approach scales well with a growing number of tenants, evidence
sources and evidence records.

Fig. 3. Evidence Collection, Storage and Processing Workflow.

Evidence Collection. There are various evidence sources to be considered,
such as logs, cryptographical proofs, documentation and many more. For each,
there needs to be a suitable collection mechanism. For instance, a log parser for
logs, a tool for cryptographical proofs or a file retriever for documentation. This
is done by a software agent called Evidence Collection Agent that is specifically
developed for the data collection from the corresponding evidence source. The
collection agent acts as an Insynd Author meaning it uses the Sender API to
store evidence into the Evidence Store. The encryption happens in the Sender

Security and Privacy Preservation of Evidence 107

API. Typically, this agent incorporates or interfaces with a tool to collect evi-
dential data, for instance forensic tools, such as file carvers, log parsers or simple
search tools. Another type of collection agent have client APIs implemented to
interface with more complex tools, such as Cloud Management Systems (CMS).
Generally, these agents receive or collect information as input and translate that
information into an evidence record, before storing it in the Evidence Store.

Evidence Storage. From the Evidence Collection Agent, evidence records are
sent to the Evidence Store. The Evidence Store is implemented by the Insynd
Server. Since Insynd functions as a key-value store for storing evidence records
(encrypted messages identified by a key) NoSQL or RDBMS-based backend for
persisting evidence records can be used. All data contained in the Evidence Store
is encrypted. Each record is addressed to a specific receiver (e.g., an Evidence
Processing Agent). The receiver’s public key is used in the Sender API to encrypt
the record on the Evidence Store. This means that only the receiver is able to
access the evidence data from the Evidence Store. Isolation between tenants in
a single Evidence Store is achieved by providing one container for each tenant
where his evidence records are stored. However, even stronger isolation is also
possible by providing a separate Evidence Store hosted on a separate VM. Addi-
tionally, Evidence records require a unique identifier in the Evidence Store to
enable selective retrieval of records. In our implementation, we use a combina-
tion of a policy identifier and a rule identifier (where a rule is part of a policy) to
enable the receiver to reduce the amount of records to receive to a manageable
size.

Evidence Processing. Evidence Processing components are located at the
receiving end of this workflow. The Receiver API is used by the processing
agent (Insynd Client) to retrieve evidence records from the Evidence Store. The
receiver can request multiple records from a period of time at once. The Client is
also in possession of the corresponding private key to decrypt evidence records,
which means records can only be decrypted at the Client.

6.2 Identity Management and Key Distribution

Since asymmetric encryption is such an important part of our system, we describe
the encryption key distribution sequence next. In this software agent-based sys-
tem, the automated setup of key material and registration with Insynd is par-
ticularly important. Figure 4 depicts the initialization sequence of collection and
processing agents with a focus on key distribution.

In Fig. 4, we introduce an additional component beyond those already
described in the general architecture: the Controller. The Controller serves as an
entry point that controls the agent setup and distribution process in the audit
system. It is an important part of the lifecycle management of the system’s
agents (e.g., creating and destroying of agents or migration between platforms).

108 T. Rübsamen et al.

Fig. 4. Evidence Collection Setup Sequence.

In Fig. 4, we describe the initialization sequence for a simple scenario, where a
particular tenant wishes to audit compliance with a policy and one rule included
in that policy in particular. The following steps have to be performed to setup
the evidence collection and storage process for that particular rule:

1. In the first step, a Processing Agent is created and configured according to
the input policy and rule respectively for the tenant.

2. During the setup phase, the Processing Agent sets up a key pair at the
Receiver API. The Receiver API is a RESTful service that holds private key
material and is therefore located at the same servers hosting the Processing
Agents (i.e., a trusted environment).

3. After the key material has been generated, the Processing Agent registers
itself as a recipient at the Sender API. For this, it uses a unique identifier
generated from the policy ID and the rule ID (i.e., policyID.ruleID).

4. In the last step, the Controller sets up the required Collection Agents and
connects them with the corresponding Processing Agents by using the unique
recipient identifier.

Now, it is possible for the Collection Agents to send evidence records to
their corresponding Processing Agents. The messages will be encrypted at the
Sender API service before storage, using the provided recipient’s public key. The
Processing Agent then pulls the evidence records from the Evidence Store using
the Receiver API the records are decrypted using the receiver’s private key.

7 Evaluation

In this Section we present an informal security evaluation of the system we
have implemented for secure evidence collection. We describe the evidence

Security and Privacy Preservation of Evidence 109

collection work flow using a fictitious scenario. By applying the evidence collec-
tion and storage process to the setting described in this scenario, we demonstrate
how the requirements stated in Sect. 5 are addressed. Additionally, we provide a
model that states threats and adversaries to the process as well as the mitigation
functions introduced by Insynd.

In this scenario, the CCOMP company is a customer of the Infrastructure
as a Service provider CloudIA. In particular, we analyze the security properties
of the evidence collection process by looking at the data at rest as well as the
data in transit protection at any time during the flow from the evidence source
to its processor. We thereby assume that CloudIA is using OpenStack [21] as a
its Cloud Management System (CMS), since this a widely popular open source
CMS, which we use for developing our audit agent system. However, any other
CMS could be used as well as long as it provides the needed monitoring interfaces.

7.1 Scenario

CloudIA is specialized in providing its customers with virtualized resources in
the form of virtual machines, networks and storage. CCOMP has outsourced
most of its IT services to CloudIA. Among them is a service that processes data
of CCOMP’s customers. For that data, CCOMP has to guarantee data reten-
tion. CCOMP has identified snapshots to be one major problem with respect
to the data retention policy, since the virtual machine’s storage is duplicated
in the process. This means for CCOMP that in order to be compliant with the
data retention policy, a snapshot of that virtual machine may have a maximum
lifetime of one day, which limits its usefulness to e.g., backing up before patch-
ing. Now, we assume a trustworthy but sloppy administrator at CCOMP who
creates a snapshot before patching software on the virtual machine, but then
omits deleting the snapshot after he is done. However, an automated daily audit
of its cloud resources was put in place by CCOMP to detect such compliance
violations.

7.2 Implementation

The collection agent required for the above scenario communicates with our
OpenStack CMS to gather evidence of the CMS behavior regarding virtual
machine snapshots. The processing agent contains the logic for detecting snap-
shot violations (i.e., base virtual machine and a maximum age of the snapshot
derived from the retention policy). The collection agent is deployed at the CMS
controller node and has access to OpenStack’s RESTful API. The processing
agent is located on the same trusted host as the controller agent (see Fig. 3
for reference). The evidence store is located on a separate, untrusted virtual
machine. Now, the following steps are performed:

1. The collection agent opens a connection to the OpenStack RESTful API on
the same host and requests a history of snapshot events for CCOMP’s virtual
machine. Despite there being no communication over the network, HTTPS is

110 T. Rübsamen et al.

used to secure the communication between the collection agent and the CMS.
Since the policy only requires information about snapshots to be collected,
the CMS agent limits evidence record generation to exactly that information,
nothing more.

2. The collection agent sets up the receiver of the evidence according to the
process depicted in Fig. 4 and sends the collected records to the evidence
store (Insynd). The communication channel is encrypted using HTTPS and
the payload (evidence records) is encrypted with the receiving agent’s public
key.

3. The processing agent pulls records from the evidence store in regular intervals
(e.g., every 24 h), analyses them and triggers a notification of a detected
violation. The communication between the processing agent and the evidence
store is secured using HTTPS.

4. In the last step, evidence records are deleted because their retention limit has
been reached. This is done by discarding the keys required for decryption.

7.3 Threat Model

To demonstrate which security threats exist for the evidence collection process
and Insynd is used to mitigate them, we describe the threat model for this system
categorized according to the STRIDE [18] threat categorization:

– Spoofing Identity
– Tampering with Data
– Repudiation
– Information disclosure
– Denial of Service
– Elevation of Privilege

We have identified the following major threats to the evidence collection and
storage process:

– Unauthorized access to evidence (S,I): the protection of evidence from being
accessed by unauthorized persons. Possible adversaries are a malicious third-
party evidence storage provider (cloud service provider), another tenant (isola-
tion failure) or an external attacker. Using Insynd for evidence collection and
storage addresses this threat since recipients of messages are authenticated
using appropriate mechanisms such as user credentials for API authentication
and public keys for encryption.

– Data leakage (S,I): the protection from unintentional data leakage. This could
be caused by misconfiguration (e.g., unencrypted evidence being publicly
available). Using Insynd for evidence collection and storage addresses this
threat by encrypting data by default.

– Eavesdropping, (T,I): the protection of evidence during the collection phase,
especially in transit. Possibly adversaries are another tenant (isolation failure)
or external attackers in case evidence is transported to an external storage
provider or auditor. Using Insynd for evidence collection and storage addresses
this threat by using transport layer as well as message encryption.

Security and Privacy Preservation of Evidence 111

– Denial of Service (D): the protection of the evidence collection and storage
process from being attacked directly with the goal of disabling or shutting it
down completely (e.g., to cover-up simultaneous attacks on another service).
Possible adversaries are external attackers. This is a very generic threat that
cannot be addressed by a single tool or control but rather requires a set a
measures (on the network and application layer) to enhance denial of service
resilience.

– Evidence manipulation (T,R,I): the protection of evidence from intentional
manipulation (e.g., deletion of records, changing of contents, manipulation of
timestamps). Possible adversaries are malicious insiders and external attack-
ers. Using Insynd for evidence collection and storage addresses this threat,
since Insynd provides tampering and deletion detection.

Some of these threats can be mitigated by implementing appropriate secu-
rity controls (i.e., using Insynd for evidence transport and storage). It provides
effective protection by employing security techniques described in Sect. 3.

7.4 Requirements Evaluation

In this section, we evaluate the integration of Insynd against the requirements
described in Sect. 5. In step 1 of the fictitious scenario, the data minimization
principle is being followed because the specialized agent only collects evidence
on the existence of snapshots.

This workflow is secure as soon as the collection agent inserts data into the
evidence store in step 2. More precisely, evidence records are tamper-evident
and encrypted. This is true, even though the evidence is actually stored on an
untrusted virtual machine. The only way to compromise evidence now, is to
attack the availability of the server hosting the Insynd server.

When the processing agent in step 3 retrieves records for evaluation, it can
be assured of the authenticity of the data and that it has been provably collected
by a collection agent. Since evidence records may be subject to maximum data
retention regulation, records that are not needed anymore are deleted.

As previously mentioned in Sect. 6 we use JADE as an agent runtime. To
secure our system against non-authorized agents, we use the TrustedAgents add-
on for the JADE platform. This ensures that only validated agents are able to
join our runtime environment. This effectively prevents agent injection attacks,
where malicious agents could be inserted at either the collection or processing
side to compromise our system.

As can be seen, the evidence records are protected all the way from the
evidence source to the processing agent using only encrypted communication
channels and having an additional layer of security (message encryption) pro-
vided by Insynd. Additionally, while the evidence is being stored, it remains
encrypted.

112 T. Rübsamen et al.

7.5 Scalability

Obviously, since there is a vast amount of evidence sources and therefore a
potentially equal number of collection agents, ensuring the scalability of the
process and the implementation is very important. This has been considered
very early in the design process by choosing an software agent-based approach
for the system architecture. Software agents are inherently distributable and
allow for complex message flow modeling in an infrastructure. Therefore, the core
components evidence collection, storage and processing become distributable as
well. In our future work, we’ll focus on the scalability aspects. We will follow a
methodology where we focus on the following technical key scalability indicators:

– Data transfer volume: amount of evidence data being transferred over the
network

– Message volume: amount of evidence message transmissions over the network
– Storage volume: amount of storage required for evidence
– Encryption overhead: performance impact introduced by encryption and

decryption

Based on the identified performance impact of each of these indicators, in the
second step, we model different message flow optimization strategies to alleviate
their impact and ensure scalability.

8 Conclusion and Future Work

In this paper, we presented our system design and implementation for secure
evidence collection in cloud computing. The evidence provides the general basis
for performing cloud accountability audits. Accountability audits take a large
variety of evidence sources and data processing requirements into account.

We showed what the requirements for a secure evidence collection process
are and demonstrated how these issues are addressed by incorporating Insynd
into our system. We described how the core principles of digital evidence are
addressed by our system. Additionally, we considered data protection principles
for the evidence collection process, how they influence our approach and how
they are addressed in our system by integrating Insynd. For this, we presented
the relevant architectural parts of our prototype. Additionally, we provided an
overview of how the evidence collection is integrated in our system for automated
cloud audits.

In our future work, we will focus on the scalability of our audit system in
general and the scalability of the components involved in evidence collection in
particular. For that reason, we will focus on the distribution of the audit sys-
tem and evidence collection not only in the same domain (i.e., in the same
infrastructure), but also taking into account outsourcing and multi-provider
collection scenarios.

Acknowledgements. This work has been partly funded from the European Com-
mission’s Seventh Framework Programme (FP7/2007–2013), grant agreement 317550,
Cloud Accountability Project - http://www.a4cloud.eu/ - (A4CLOUD).

http://www.a4cloud.eu/

Security and Privacy Preservation of Evidence 113

References

1. A4Cloud FP7 Project (2015). http://www.a4cloud.eu/
2. An, J.H.: Authenticated encryption in the public-key setting: security notions and

analyses. IACR Cryptology ePrint Archive 2001, 79 (2001). http://eprint.iacr.org/
2001/079

3. Ardagna, C.A., Bussard, L., Vimercati, S.D.C.D., Neven, G., Paraboschi, S.,
Pedrini, E., Preiss, S., Raggett, D., Samarati, P., Trabelsi, S., Verdicchio,
M.: Primelife policy language (2009). http://www.w3.org/2009/policy-ws/papers/
Trabelisi.pdf

4. Azraoui, M., Elkhiyaoui, K., Önen, M., Bernsmed, K., De Oliveira, A.S.,
Sendor, J.: A-PPL: an accountability policy language. In: Garcia-Alfaro, J.,
Herrera-Joancomart́ı, J., Lupu, E., Posegga, J., Aldini, A., Martinelli, F.,
Suri, N. (eds.) DPM/SETOP/QASA 2014. LNCS, vol. 8872, pp. 319–326. Springer,
Heidelberg (2015). http://www.eurecom.fr/publication/4381

5. Bellare, M., Yee, B.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (2003)

6. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a
new cryptographic library. In: Hevia, A., Neven, G. (eds.) Latin-
Crypt 2012. LNCS, vol. 7533, pp. 159–176. Springer, Heidelberg (2012).
http://dx.doi.org/10.1007/978-3-642-33481-8 9

7. Bowers, K.D., Hart, C., Juels, A., Triandopoulos, N.: PillarBox: combating next-
generation malware with fast forward-secure logging. In: Stavrou, A., Bos, H.,
Portokalidis, G. (eds.) RAID 2014. LNCS, vol. 8688, pp. 46–67. Springer,
Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-11379-1 3

8. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion
router. In: Blaze, M. (ed.) Proceedings of the 13th USENIX Security Symposium,
9–13 August 2004, San Diego, CA, USA, pp. 303–320. USENIX (2004), http://
www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html

9. Doelitzscher, F., Reich, C., Knahl, M., Passfall, A., Clarke, N.: An agent based
business aware incident detection system for cloud environments. J. Cloud Comput.
Adv. Syst. Appl. 1(1), 9 (2012)

10. Doelitzscher, F., Ruebsamen, T., Karbe, T., Reich, C., Clarke, N.: Sun behind
clouds - on automatic cloud security audits and a cloud audit policy language. Int.
J. Adv. Netw. Serv. 6(1,2), 1–16 (2013)

11. Gupta, A.: Privacy preserving efficient digital forensic investigation framework.
In: 2013 Sixth International Conference on Contemporary Computing (IC3), pp.
387–392, August 2013

12. Haeberlen, A.: A case for the accountable cloud. In: Proceedings of the 3rd ACM
SIGOPS International Workshop on Large-Scale Distributed Systems and Middle-
ware (LADIS 2009), October 2009

13. JADE: Java Agent Developement framework (2015). http://jade.tilab.com
14. Jansen, W., Grance, T.: Sp 800–144. guidelines on security and privacy in public

cloud computing. Technical report, National Institute of Standards and Technol-
ogy, Gaithersburg, MD, United States (2011)

15. Jerman Blaič, A., Klobučar, T., Jerman, B.D.: Long-term trusted preservation
service using service interaction protocol and evidence records. Comput. Stand.
Interfaces 29(3), 398–412 (2007). http://dx.doi.org/10.1016/j.csi.2006.06.004

16. Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., Leaf, D.: Nist cloud
computing reference architecture (2011). http://www.nist.gov/customcf/get pdf.
cfm?pub id=909505

http://www.a4cloud.eu/
http://eprint.iacr.org/2001/079
http://eprint.iacr.org/2001/079
http://www.w3.org/2009/policy-ws/papers/Trabelisi.pdf
http://www.w3.org/2009/policy-ws/papers/Trabelisi.pdf
http://www.eurecom.fr/publication/4381
http://dx.doi.org/10.1007/978-3-642-33481-8_9
http://dx.doi.org/10.1007/978-3-319-11379-1_3
http://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html
http://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html
http://jade.tilab.com
http://dx.doi.org/10.1016/j.csi.2006.06.004
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505

114 T. Rübsamen et al.

17. Lopez, J., Ruebsamen, T., Westhoff, D.: Privacy-friendly cloud audits with some-
what homomorphic and searchable encryption. In: 2014 14th International Con-
ference on Innovations for Community Services (I4CS), pp. 95–103, June 2014

18. Microsoft Developer Network: The Stride Threat Model (2015). https://msdn.
microsoft.com/en-US/library/ee823878(v=cs.20).aspx

19. Mohay, G.M., Anderson, A.M., Collie, B., de Vel, O., McKemmish,
R.D.: Computer and Intrusion Forensics. Artech House, Boston (2003).
http://eprints.qut.edu.au/10849/. For more information about this book please
refer to the publisher’s website (see link) or contact the authors

20. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted 1(2012),
28 (2008)

21. OpenStack: Openstack (2015). http://www.openstack.org/
22. Pearson, S.: Toward accountability in the cloud. IEEE Internet Comput. 15(4),

64–69 (2011)
23. Pulls, T., Peeters, R.: Balloon: a forward-secure append-only persistent authen-

ticated data structure. In: Pernul, G., Y A Ryan, P., Weippl, E., Torres, C.F.,
Jonker, H., Mauw, S., Diao, W., Liu, X., et al. (eds.) ESORICS. LNCS, vol. 9327,
pp. 622–641. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24177-7 31

24. Pulls, T., Peeters, R.: Insynd: secure one-way messaging through Balloons. Cryp-
tology ePrint Archive, Report 2015/150 (2015)

25. Pulls, T., Peeters, R., Wouters, K.: Distributed privacy-preserving transparency
logging. In: Sadeghi, A.R., Foresti, S. (eds.) WPES, pp. 83–94. ACM (2013)

26. R. Brandner, U.P., Gondrom, T.: Evidence record syntax (ERS) (2014). http://
tools.ietf.org/html/rfc4998

27. Redfield, C. M., Date, H.: Gringotts: securing data for digital evidence. In: 2014
IEEE Security and Privacy Workshops (SPW), pp. 10–17, May 2014

28. Ruebsamen, T., Reich, C.: Supporting cloud accountability by collecting evidence
using audit agents. In: 2013 IEEE 5th International Conference on Cloud Com-
puting Technology and Science (CloudCom), vol. 1, pp. 185–190, December 2013

29. Turner, P.: Unification of digital evidence from disparate sources
(digital evidence bags). Digit. Investig. 2(3), 223–228 (2005).
http://dx.doi.org/10.1016/j.diin.2005.07.001

30. Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J.,
Sussman, G.J.: Information accountability. Commun. ACM 51(6), 82–87 (2008).
http://doi.acm.org/10.1145/1349026.1349043

31. Zhang, R., Li, Z., Yang, Y., Li, Z.: An efficient massive evidence storage and
retrieval scheme in encrypted database. In: 2013 International Conference on Infor-
mation and Network Security (ICINS 2013), pp. 1–6, November 2013

https://msdn.microsoft.com/en-US/library/ee823878(v=cs.20).aspx
https://msdn.microsoft.com/en-US/library/ee823878(v=cs.20).aspx
http://eprints.qut.edu.au/10849/
http://www.openstack.org/
http://dx.doi.org/10.1007/978-3-319-24177-7_31
http://tools.ietf.org/html/rfc4998
http://tools.ietf.org/html/rfc4998
http://dx.doi.org/10.1016/j.diin.2005.07.001
http://doi.acm.org/10.1145/1349026.1349043

Using Model-Driven Development to Support
Portable PaaS Applications

Elias Nogueira1,2,3(B), Daniel Lucrédio1,2,3, Ana Moreira1,2,3, and Renata
Fortes1,2,3

1 University of São Paulo (ICMC-USP), São Paulo, Brazil
2 Federal University of São Carlos (UFSCar), São Carlos, Brazil

3 NOVA LINCS, Universidade NOVA de Lisboa, Lisbon, Portugal
{eliasnog,renata}@icmc.usp.br, daniel@dc.ufscar.br, amm@fct.unl.pt

Abstract. Context: In cloud computing, lock-in refers to the diffi-
culty of porting an application and/or data from one cloud platform
to another. Current attempts to address this problem revolve around
standardization of APIs and frameworks. We propose a different path,
using model-driven engineering (MDE).
Objective: Our goal is to build a repository of MDE transformations
and use code generation to reduce the development effort for each plat-
form, thus reducing repetitive programing tasks, increasing portability
and minimizing lock-in side-effects.
Method: To attain this objective, we developed an MDE approach to
handle persistence for Google App Engine and Azure, and discuss how
MDE can reconcile the differences between features of each platform per-
sistence model. A controlled experiment has been performed to evaluate
the proposal, in which subjects were asked to use two versions of the
same application implemented using our MDE approach. Both versions,
one for each platform, were generated from the same domain model.
Results: According to the subjects, no differences in functionality were
perceptible between the two versions. Indeed, applications were more
easily ported between the two chosen cloud providers without noticeable
differences in terms of persistence functionality.
Conclusion: The main contribution of our work is to show that there
is an alternative path to the standardization of cloud technologies. MDE
can increase the portability of the applications by reducing the negative
impacts of lock-in. A limitation of our approach, that is inherent to most
MDE approaches, is that if the generated code needs to be adapted or
modified, the MDE life-cycle can be broken. Changes in the generated
code have to be replicated, either in the models or in the transformations,
which is not a trivial task.

Keywords: Cloud computing · Model-Driven Engineering · Platform-
as-a-Service · Portability · Persistence

c© Springer International Publishing Switzerland 2016
M. Helfert et al. (Eds.): CLOSER 2015, CCIS 581, pp. 115–134, 2016.
DOI: 10.1007/978-3-319-29582-4 7

116 E. Nogueira et al.

1 Introduction

Cloud computing is not a new technological model, but the integration of tech-
nologies from the past [1]. What is new though, is the different ways in which it
is used to provide computing power as-a-service through the Internet. According
to Armbrust et al. [2], cloud computing permits acquiring computing resources
on demand, enables payment according to the utilization volume, and allows a
company to ignore the sources of the resources.

In previous work [3] we identified ten cloud computing research opportunities
for software engineers. Lock-In and lack of portability between cloud platforms
are two of the opportunities that stand out. Several technological requirements
are needed for the cloud model to operate properly. The most common are
virtualization technologies, standards and interfaces that allow shared access,
facilitated instantiation and management of virtual servers, the so-called IaaS
(Infrastructure-as-a-Service). Additionally, different kinds of cloud resources are
available, such as load balancing, data persistence and analytics. Given this
variety, and depending on its field of expertise, each cloud provider offers a
different set of services. Some even provide a complete development platform
(PaaS — Platform-as-a-Service) that puts together many different resources, all
under the control of the cloud provider.

The heterogeneity and diversity of cloud services result in increased complex-
ity and reduced reuse and portability of the applications [4]. In practice, some
applications need to be highly specialized with respect to a particular type of
resource (e.g., hardware, platform and/or set of services), yielding the lock-in
problem [2]. For example, when choosing a particular PaaS provider, the appli-
cation developer usually has to follow a specific data management system and
programming style. This typically reduces portability, resulting in applications
“locked-in” to that particular environment.

Some strategies based on standardization have been proposed to address this
issue [5]. However, standards take time to define and approve and acceptance
by the community is very slow. Currently, there are so many different standards
being proposed [25] that even choosing one may be a difficult task. Another
difficulty is that cloud providers may not want to follow a standard and instead
use specific technologies to create solutions that are better-aligned with their
own business goals. Thus, until standardization becomes a fact, portability, and
lock-in in particular, remains a problem.

We have been exploring how Model-Driven Engineering (MDE) (see Sect. 2)
can be used to increase portability. Approaches based on MDE [6] have been
investigated in several other contexts and may constitute an interesting alterna-
tive to address the problem. The choice for MDE over standardization is justified
by the additional benefits offered by this development paradigm. In particular,
MDE claimed increase on quality and productivity [7] could leverage cloud adop-
tion while simultaneously reducing Lock-In.

We have investigated how to build a simple textual domain-specific language
(DSL) that allows the specification of applications at a high abstraction level
[4]. Also, we built a code generation prototype to support Google’s App Engine

Using Model-Driven Development to Support Portable PaaS Applications 117

(GAE) and Microsoft Azure platforms. The prototype demonstrates that the
developed language, despite simple, can be used as input to a full code generation
process targeting a cloud platform. In previous work [5] we show how differences
between persistence models can be hidden using a single conceptual model, and
discuss a set of MDE artifacts to support this idea. This can be seen as an
abstraction layer that allows specifying entities and a set of code generators to
build similar persistence models for different storage mechanisms. The result is
applications that are more easily ported between the two cloud providers.

The contribution of this paper is to extend that previous work [4,5] and dis-
cuss the experiment we performed, presenting more details and results about this
evaluation. As mentioned before, our long-term goal is to build a repository of
MDE transformations and use code generation to reduce the development effort
for each platform, consequently reducing repetitive programing tasks, increasing
portability, and minimizing the lock-in effects. The two central points of the
idea are: (i) using a DSL for modeling entities; (ii) building a set of transfor-
mations that, from the same set of source models, generate code for different
targets. Such code-generation approach allows developers focus on platform-
independent models, thus achieving portability by reducing the lock-in effects.
Both, the models created using DSLs and the transformations using those models
to generate implementations for different platforms constitute two fundamental
reusable artifacts that can be made available in a repository.

As our approach is generic, transformations considering standards may also
be added to the repository later. Although the typical claimed MDE-benefits are
expected (e.g., facilitated maintenance and increased productivity), an analysis
of the economic viability of creating and maintaining a repository of transfor-
mations is out of the scope of this paper1.

The rest of this paper is organized as follows. Section 2 presents some con-
ceptual background, including a more detailed definition of the lock-in problem,
the different types of cloud portability, concepts of MDE and an overview of the
previously proposed MDE approach. Section 3 discusses the two platforms that
were the subject of this study (GAE and Azure), focusing on the differences in
their persistence models. Section 4 presents our proposed solution using MDE
and Sect. 5 discusses the evaluation performed. Section 6 presents related work
and, finally, Sect. 7 concludes with some final remarks and future work.

2 Background

This section starts with a discussion of lock-in and known types of portability. It
then introduces model-driven engineering, and finishes with a summary of our
vision on the use of MDE to support PaaS portability.

1 Mohaghegi and Dehlen present a summary of experiences from applying MDE in
industry [8].

118 E. Nogueira et al.

2.1 The Lock-in Problem

Lock-in is the difficulty faced to move data and programs from one cloud plat-
form to run on another one [2]. This is a major issue in the PaaS scenario: in
order to take advantage of a very flexible cloud architecture, the applications
are developed conforming to the specificity of the chosen platform. For example,
to offer great elasticity, the GAE PaaS provider imposes a specific programming
style and specific data management policies. Thus, an application developed for
it may not be easily ported to a different PaaS provider, nor can its data. Even
if the developer wants to host the application in his own private cloud later, con-
siderable effort may be necessary to rebuild the code, redeploy it, and migrate
all the data. This lack of portability causes the so-called lock-in effect.

The possibility of becoming “locked in” to a particular platform, not being
able to choose a different one later (customer lock-in), leaves developers in a
difficult position. They mostly fear being charged abusive fees later, or having
their applications unavailable due to lack of service quality [2].

2.2 Types of Portability

Prior to deciding on the adoption of a cloud model, an organization should
take into account the viability of the one that better fits its business. It must
carefully analyze the constraints related to cloud platforms, both technical and
organizational [4], as well as its business requirements [9]. The main problem
caused by the lack of portability is that the work committed to platform-specific
tasks cannot be reused in a different platform. Ideally, software development
should be more conceptual and less focused on repetitive tasks [10].

The ISO 9126 standard [11], developed to identify software quality attributes,
defines portability in terms of how easy it is to migrate software from one envi-
ronment to another. It has the following sub-attributes: Adaptability: the soft-
ware’s ability to adapt to different environments without the need for additional
actions (settings); Capacity to be installed: identifies the ease with which the
system can be installed into a new environment; Coexistence: measures how
easily a software coexists with other software installed in the same environment;
Ability to replace: measures how easily the system is replaced by another.

In the context of this research, portability is a key attribute for the improve-
ment and dissemination of the cloud model, and four main types can be distin-
guished [4]:

Portability of Virtual Machines between Cloud Providers: the IaaS
model normally uses server virtualization2 to provide computing resources to
customers. Typically, the virtual machines are managed by the customers them-
selves. Migrating a virtual machine from one provider to another causes little
impact on the systems being virtualized, as all that is needed is a copy of the

2 Server Virtualization is the technique of running one or more virtual servers on one
physical server [12].

Using Model-Driven Development to Support Portable PaaS Applications 119

virtual disk. The Open Virtualization Format (OVF3) makes this task even eas-
ier; it provides a standard format, reducing the effort required to port a virtual
machine from one provider to another (as long as both support this format).

Portability of Applications in the Context of IaaS: instead of virtual
machines (VM), some providers offer hosting plans that support only a specific
technology. Many propose plans for hosting Java, Ruby, PHP, among others.
In this case, users have no control over the VM, i.e., the provider manages the
entire infrastructure. Once applications are deployed, and depending on how
much configuration is needed, a big effort is necessary to change the provider,
because each provider offers plans according to different business goals. Many
providers offer specific plans, and the user has the option to buy only the package
according to the technologies he needs. If a user chooses to change the provider,
he must check if the destination provider supports the same technologies.

Portability of PaaS Applications: users of the PaaS service model must
follow a specific programming style and use libraries and technologies offered
by the providers. The migration of applications between two platforms often
requires a total re-engineering process [3]. The developer must know the libraries
and details of each platform, what makes migration difficult and expensive.

Data Portability between Cloud Providers: similarly to the previous case,
there is not a standard for using traditional database management systems
(DBMS) in the cloud [2]. Therefore, data portability between providers is another
detail to consider. In the IaaS case, the user may choose to install his own
instance of a DBMS, and use it in a single, virtual machine. If elasticity is nec-
essary, the user is responsible for setting multiple, interconnected servers and
define some kind of distribution scheme. Another possibility is to hire a provider
that supports a particular DBMS. Thus, just as for applications’ portability,
it is important to ensure that the new provider supports the DBMS. Shirazi
et al. [13] present a solution based on design standards to allow data portability
among some cloud databases. However, the solution is still in the research phase
and more studies are required.

This paper focuses on portability of PaaS applications. However, the code
generators and repository proposed here can be used in other contexts. Petcu
et al. present a list of initiatives to handle portability [25]. They also discuss the
reasons, scenarios, taxonomies, measurements, and requirements for portability.
Several other authors are also looking at the problem and proposing alternative
solutions (see Sect. 6). One such alternative is the use of MDE.

2.3 Model-Driven Engineering (MDE)

Despite the advances of software development techniques, concerns about reuse,
productivity, maintenance, documentation, validation, optimization, portabil-
ity and interoperability are still under discussion. Model-Driven Engineering,

3 OVF: http://www.dmtf.org/standards/ovf.

http://www.dmtf.org/standards/ovf

120 E. Nogueira et al.

or MDE, aims at solving some of those issues [7], shifting the focus of mod-
ern development methodologies from implementation to conceptual modeling.
Models are then first-class citizens, and transformation mechanisms are used to
generate code from them, reducing developers’ effort [7] and increasing porta-
bility and productivity [4]. The vision is that MDE will reduce the accidental
complexity by increasing the level of abstraction used to develop software.

According to Schmidt, MDE technologies”offer a promising approach to
address the inability of third-generation languages to alleviate the complexity
of platforms and express domain concepts effectively” [21]. That is exactly our
goal: use MDE to abstract away platform-specific details, building conceptual
domain models that express the essence and logic of the domain. From these
models, applications can then be generated through automatic transformations,
thus reducing the development effort for implementations on different platforms.

Such models are abstract descriptions or specifications of the system and are
usually represented as a combination of graphical (Domain-Specific Modeling
Languages – DSML) and textual elements (Domain-Specific Languages – DSL)
[14]. DSLs are small languages focused on a particular problem/domain, and are
normally declarative [15]. The language definition usually requires a metamodel
capable of capturing the common and variable elements of a specific domain
[14,15].

2.4 A Model-Driven Approach for Cloud PaaS Portability

Previous study [4] discusses a vision for using MDE to increase cloud PaaS
portability, and shows how to build a DSL and a set of code transformations,
based on the Model-View-Controller (MVC) architecture, to reduce the effort of
developing cloud applications. We also presented a DSL metamodel, samples of
code transformations, the grammar of the DSL and a quasi-experiment [16,17]
showing that MDE helps both reducing the development effort and achieving
portability. Figure 1 summarizes the methodology followed.

Adopting a typical MDE life-cycle, this methodology obeyed to the following
strategy:

Fig. 1. A MDE approach for cloud PaaS portability.

Using Model-Driven Development to Support Portable PaaS Applications 121

1. Case studies were developed to identify the main concepts of PaaS. These
studies involved a careful analysis of the different providers’ documentation,
as well as the development of sample applications for different platforms.

2. These concepts were used to prototype a specification language. This language
serves to support the creation of platform-independent models that developers
will use to specify the applications’ structure and logic. This step involves
developing a domain metamodel and a concrete syntax.

3. Based on the case studies and on the specification language, transformations
were defined to automatically generate code for cloud platforms.

4. Tests were performed to verify the conformance between the generated code
and the platforms’ requirements.

3 Persistence in PaaS

The PaaS model leverages the flexibility of the cloud model, by providing a
complete platform for software development. A cloud platform hides many of
the complexities of developing cloud software, therefore increasing scalability
and elasticity. In the PaaS model, the development platform is provided as-a-
service. Applications that are developed for this particular platform can benefit
from a specific programming model that can be fully, fine grained, managed by
the platform provider.

Among the existing platforms, we selected two well-known ones for developing
our prototype: the Google App Engine4 (GAE) and the Windows Azure. How-
ever, as the developed DSL is platform independent (although domain depen-
dent), it can be used to generate code for any other platform.

One of the services managed by cloud providers is data persistence. By defin-
ing its own way to store data, a provider may incorporate services such as load
balancing, automatic data distribution and optimized querying. This is so for the
two selected platforms for our study. Both GAE and Azure offer PaaS solutions
incorporating NoSQL storage. This service is provided to applications through
simple configuration steps. Actually, Azure offers two types of cloud services:
IaaS and PaaS. It is not hard porting an IaaS application because this offer
is based on virtual machines (VM). Just migrating a VM from one provider
to another causes little impact on the systems being virtualized, as all that is
needed for them to run is a copy of the virtual disk. The Open Virtualization
Format (OVF5) makes this task even easier, by providing a standard format so
that there is little effort to port a virtual machine from one provider to another,
as long as both support this format. The main issue in this case is to choose a
different provider that accepts the same VM format6.

However, in terms of PaaS, both Azure and GAE offer solutions based on
Java servlets and JSP with NoSQL storage. Even if they allow the same set of
4 https://cloud.google.com/appengine.
5 OVF: http://www.dmtf.org/standards/ovf.
6 Paasify may be an interesting solution to select compatible PaaS: http://www.

paasify.it/vendors.

https://cloud.google.com/appengine
http://www.dmtf.org/standards/ovf
http://www.paasify.it/vendors
http://www.paasify.it/vendors

122 E. Nogueira et al.

technologies (Java based), applications implemented for them are not portable.
This happens mainly because of the differences between their persistence mod-
els. (Section 3 discusses these models in detail.) Indeed, Gorton in a post7 at
Software Engineering Institute’s blog and Armbrust et al. [18] highlight that the
differences in data management technologies make applications less reusable by
different providers.

The next subsections present specific details of each platform persistence
model, and finish with a discussion of the main issues found.

3.1 Google App Engine

Google App Engine DataStore is typically one of the first choices for big data
applications. The DataStore is GAE’s native API and its scalability is managed
by the platform itself, which means that the user does not need to worry about
the actual storage details.

GAE’s DataStore offers two mechanisms to specify persistent entities: Java
Data Objects8 (JDO) and Java Persistence API9 (JPA). The JDO and JPA
interfaces are implemented using the Datanucleus10 platform, which is an open-
source implementation of JDO and JPA. With JDO/JPA, GAE allows the defi-
nition of simple entity relationships. As a result, even without direct relational
support from the actual database system, applications can use GAE’s DataStore
to manage related entities.

For simplicity reasons, we chose JDO for this study. To persist an entity
in GAE’s DataStore, all that is necessary is to annotate a class according to
the JDO specification. Related entities (one-to-one and one-to-many) are also
managed by GAE automatically through proper annotations.

Let us consider a simple example: a clinical laboratory system must maintain
a record of customers, doctors and examinations; each customer has one doctor,
and each doctor may choose among a set of examinations to be performed.

The first step is to annotate the classes that represent persistent entities
according to the JDO specification. After this, calls to JDO’s CRUD11 methods
can be used directly. In summary, all that is needed to make an entity persistent
are some annotations. The actual storage of the entity and its related entities is
performed by the platform.

It is important to stress that even with the possibility to define simple rela-
tionships through annotations, the GAE DataStore service is a NoSQL solu-
tion. If a relational solution is needed, a fully-fledged SQL solution, such as the
MySQL-based service offered by GAE (Google Cloud SQL), is recommended. A
tradeoff between scalability and robustness is necessary in these cases.
7 http://blog.sei.cmu.edu/post.cfm/importance-software-architecture-big-data-syste

ms-013.
8 http://www.oracle.com/technetwork/java/index-jsp-135919.html.
9 http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.

html.
10 http://www.datanucleus.org/.
11 CRUD: Create, Retrieve, Update and Delete.

http://blog.sei.cmu.edu/post.cfm/importance-software-architecture-big-data-systems-013
http://blog.sei.cmu.edu/post.cfm/importance-software-architecture-big-data-systems-013
http://www.oracle.com/technetwork/java/index-jsp-135919.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.datanucleus.org/

Using Model-Driven Development to Support Portable PaaS Applications 123

3.2 Windows Azure

Windows Azure is the Microsoft’s cloud platform, which offers different services,
such as virtualization, storage and web hosting. Similarly to GAE, Azure’s PaaS
solution supports regular web-based applications (pages, controllers and other
classes/libraries), but with a wider choice of languages (.Net, Node.js, PHP,
Java, etc.).

Azure offers persistence through four main storage options:

– Table Storage: this is Azure’s NoSQL persistence solution. It is a simple
persistence model that allows applications to store basic data types (e.g.,
integer, string, boolean). It is a highly scalable solution, but with three major
restrictions. First, Azure’s Table Storage structures do not directly support
relationships between entities. Second, there is a limit of 255 properties per
entity, and every entity must define at least two properties for identification,
which leaves 253 properties for general use. Third, data in a single entity
cannot exceed one MByte.

– SQL Database: formerly known as SQL Azure, this is a fully managed rela-
tional database service. Being a relational database, it is not as scalable as
the NoSQL service.

– SQL Server in Windows Azure VM: if the developer wants more control
over the DBMS, he may opt to deploy his own instance of SQL Server in a
virtual machine. This renders more control, but also requires more effort to
setup, and to manage the database server and the virtual machine.

– Blob Storage: this service supports the storage of large, non-structured data.
It has great scalability, but it is focused on files like audio and video.

As Azure also allows NoSQL services, which offer a good combination
between storage and scalability for big data applications, we also chose to study
this model in Azure. However, unlike GAE JDO/JPA-based implementation,
Azure does not have an official support for JPA/JDO. As a result, the developer
has to deal with relationships manually. Additionally, there are many restric-
tions in Azure, for example: persistence is defined through inheritance, and not
annotations as in GAE; the identification field (primary key) has to be manually
managed.

In Azure Table Storage, entities are stored in table structures called parti-
tions. One partition can store multiple entities, which may be of different types.
An entity has a unique identification field. Partition names and identification
fields are both strings, and are inherited by the entity classes.

To perform CRUD operations, the Table Storage API has some predefined
methods. Listing 1.1 shows an example of how an entity can be persisted. The
method “saveOrUpdate” (line 1) is used to either create or update an entity.
First, a table client object is obtained (“tableClient”), based on some predefined
connection string (line 2). Next, a table operation is created, in this case, to
insert or replace an entity (line 3). Then, the table (partition) is created, if it
does not exist already (line 5). Finally, the operation is executed (line 6). In this
example, for simplicity, the name of the partition and of the entity class will be
the same.

124 E. Nogueira et al.

Listing 1.1. Persisting an entity in Azure.

1 public void saveOrUpdate(TableServiceEntity tse) {

2 CloudTableClient tableClient = CloudStorageAccount .parse(

storageConnectionString).createCloudTableClient ();

3 TableOperation tableOperation = TableOperation.

insertOrReplace (tse);

4 try {

5 tableClient.getTableReference (tse.getClass ().

getSimpleName ()).createIfNotExist ();

6 tableClient.execute(tse.getClass ().getSimpleName (),

tableOperation);

7 } catch (StorageException e) { ... }

8 }

Dealing with relationships requires manual management of the id fields. For
one-to-one relationships, it is possible to simply store the id of the related (depen-
dent) entity as a property in the container entity. For example, in the customer-
has-a-doctor one-to-one relationship, to obtain the doctor for a given customer,
first we obtain its id, and then we perform a query in the Doctor table.

For one-to-many or many-to-many relationships, the strategy is to maintain
a separate entity for relationships. Listing 1.2 illustrates the idea. In this exam-
ple, “Relationship” (line 1) is a persistent entity that merely stores two string
values: the “end1” and the “end2” (lines 2 and 3), each representing an end
of the relationship. This entity will be stored in a partition of its own, called
“Relationship” (line 5).

Listing 1.2. Persistent relationship in Azure.

1 public class Relationship extends TableServiceEntity {

2 private String end1;

3 private String end2;

4 public Relationship () {

5 this.partitionKey =" Relationship ";

6 }

7 ... setters and getters ...

8 }

The “Relationship” entity from Listing 1.2 can be used to establish a relation-
ship between any two entities. A Method “saveRelationship” realises a relation-
ship between two entities, instantiating the “Relationship” entity and persisting
it using calls to Azure’s API.

Once the relationship is established, retrieving all related entities can be done
by searching through the “Relationship” partition. The example of Listing 1.3
shows a way to implement this strategy. The method “getAllRelatedEntities”
(line 1) gets all entities related to a given entity. The id of the containing entity
and the class of the related entity are provided as arguments. First, all relation-
ships are retrieved (line 2) through the “getAll” method, which is not shown here
but should be trivial to imagine. Then, the resulting list is iterated in search for
instances that have a matching “end1” property (lines 4–5). For those matching

Using Model-Driven Development to Support Portable PaaS Applications 125

relationships, the instance corresponding to the “end2” is retrieved and added
to the result (line 6). A method “retrieve”, which is not shown here, looks into
the partition of the corresponding entity class and returns the instance itself.

Listing 1.3. Retrieving related entities in Azure.

1 public List getAllRelatedEntities (String end1Id , Class end2Class

) {

2 List <Relationship > temp = getAll(Relationship.class);

3 List result = new ArrayList ();

4 for (Relationship r : temp) {

5 if (r.getEnd1 ().equals(end1Id)) {

6 result.add(retrieve(end2Class , c.getEnd2 ()));

7 }

8 }

9 return result;

10 }

The implementation of Listing 1.3 is not very efficient, as it examines all
relationships every time. However, it is not difficult to optimize this code with
more refined structures such as trees or hash functions.

3.3 Difficulties in Conciliating both Persistence Models

Although both GAE and Azure offer NoSQL services, GAE adds a layer that
facilitates the management of relationships between persistent entities, while
Azure demands some additional effort to be able to deliver similar functional-
ity. The problem, however, is not the extra effort required by Azure. In fact, the
jpa4azure12 third-party API, adds an object-relational mapping layer to Azure,
similar to what is natively available in GAE. (At the time we started our research,
this API was not stable, at least according to our tests; so we decided to implement
our own layer.) The problem, really, is that even allowing the use of the same set of
technologies, the differences between the platforms impose specific programming
styles when developing for each one. For this reason, the effort spent on specific
programing tasks cannot be reused. Even considering the existence of a common
API, the problem remains, due to the differences between the implementations
and storage philosophies. Standardization could be an alternative, but, as we dis-
cussed before, it is not the path followed in this work.

Hence, despite the apparent similarities of the platforms (which use the same
set of technologies: Java back-end, web-based front-end, and NoSQL persistence),
the resulting applications have considerable differences. If for a small application
like the one presented here the differences are so substantial, in a real case, man-
aging thousands of persistent entities, the effort of developing such a system can
increase quickly. If we consider other platforms, supporting different technologies
such as Redis13 or memcacheDB14, the problem becomes even worse.
12 https://jpa4azure.codeplex.com/.
13 http://redis.io/.
14 http://memcachedb.org/.

https://jpa4azure.codeplex.com/
http://redis.io/
http://memcachedb.org/

126 E. Nogueira et al.

We argue that MDE can solve the portability problem in a more fundamen-
tal way, reaching flexibility levels that no API or standard can provide. The
following section describes our proposal, based on a single platform-independent
development model that hides the details of the platforms. This proposal also
helps to reduce the extra effort needed by Azure, or any other platform that uses
different technology.

4 Supporting Multiple Persistence Models Using MDE

This section presents a model implemented using the previously developed DSL,
discusses the specific details of the generated code for GAE and Azure, gives
a synthesis of the whole generation process, and offers some highlights on the
work done.

Listing 1.4 presents the model for the clinical laboratory system. This exam-
ple uses the language presented in a previous work [4], which is summarized
next. First, the model defines some basic configuration properties, such as the
application name (line 1), visual theme (line 2), version (line 3), title (line 4),
and a set of tabs to be displayed in the main interface (lines 5–10). Next are
the entities and their relationships. The syntax is straightforward. Two points
worth mentioning are the definition of the primary keys (lines 14, 27 and 34),
which are inspired by JDO’s annotations, and the possibility to define custom
labels to be displayed in the main interface (line 36).

Listing 1.4. Model of the clinical laboratory system.

1 ...

2 entity Customer {

3 pk { id:Key(strategy=IDENTITY) readOnly=true }

4 property name : String

5 property address : String

6 property email : String

7 property phone1 : String

8 property birth : Date

9 property doctor : Doctor

10 property gender : String

11 property examinations : Examination []

12 }

13

14 entity Examination {

15 pk { id:Key(strategy=IDENTITY) readOnly = true }

16 property name : String

17 property material : String

18 property price : Double

19 }

20 ...

Listing 1.4 also shows the relationships established for this system. One cus-
tomer has one doctor (line 21) and many examinations (line 23 - the [] suffix
indicates that a property may have multiple instances). These appear in the
model as properties mapped to other entities.

Using Model-Driven Development to Support Portable PaaS Applications 127

We developed two sets of transformations, one for GAE and another for
Azure. A more generic view of this process can be seen in our previous works
[4,5].

4.1 Generating Persistence Code for GAE

Since GAE has JDO support, the transformations are not too difficult to define.
One JDO-annotated Java class is generated for each persistent entity, including
its properties and relationships. There is a single, generic, non-generated data-
access object (DAO) that performs basic CRUD operations. The invocations of
the CRUD operations for each entity are generated in specific controller classes.
One controller class is generated for each entity. For further information on the
code generation strategy the reader is directed to [5].

4.2 Generating Persistence Code for Azure

For Azure, one class per persistent entity is generated. For basic CRUD opera-
tions, as well as for dealing with relationships manually, there is a single, generic,
non-generated data-access object (DAO). Details the code generation strategy
for this case can also be found in [5].

5 Evaluation

In an evidence-based view [16,17,19], the case study presented in [5] already
constitutes some evidence that it is possible to deal with different database
models at high abstraction level and port applications between different cloud
providers using our approach. But to reinforce such evidence, we performed a
more careful evaluation (see Sect. 7).

We defined a set of test cases, which subjects executed on the same appli-
cation generated for the two platforms (GAE and Azure). After executing the
tests, the subjects perceived no difference in terms of functionality, which indi-
cates that portability can indeed be achieved through our approach. We also
observed considerable gains in productivity, due to the automation power of
MDE transformations.

Following the experimental phases suggested by Wohlin et al. [16], we started
with the planning, then proceeded to the execution and ended with the data
analysis.

5.1 Planning

The main idea of the evaluation was to have two versions of the same application,
one running on Google App Engine, and the other running on Windows Azure.
Subjects were then asked to use both versions, and tell if they could perceive
any difference. Since both versions are generated from a single model, if there

128 E. Nogueira et al.

are no perceivable differences, we consider that portability is successful. With
this in mind, the planning involved the following four phases:
Context Selection: the experiment occurred in the academic environment. It
was performed at the Software Engineering Laboratory at Federal University of
São Carlos.
Research Question: is it possible to use MDE to port an application between
cloud platforms so that the final users do not perceive any differences between
the original and the ported applications?
Selection of Subjects: the subjects were selected through convenience sam-
pling, i.e., the nearest and most convenient people [16].
Design: Inspired by other reports from the literature [20], we defined a set of
black box test cases to serve as a script for the subjects. The idea was to ensure
they would use both versions in a similar way, and also exercise all functions of
the application. These are conventional test cases, with a description, precondi-
tions, a set of steps to be performed, and the expected results.

For this evaluation, we used the clinical laboratory domain described in
Sect. 3. A total of eleven test cases were defined, as shown in Table 1.

Table 1. Description of the test cases.

Id Description Entities involved Type Relationship

1 Insert a doctor Doctor Create none

2 Insert an examination Examination Create none

3 Insert a customer Doctor, customer Retrieve, create one-to-one

4 Register an
examination

Customer, examination Retrieve, create one-to-many

5 Update a customer’s
address

Customer Update none

6 Change a doctor Doctor, customer Retrieve, update one-to-one

7 Update a doctor’s
registration number

Doctor Update none

8 Update an
examination’s price

Examination Update none

9 Remove an
examination

Examination Delete none

10 Unregister an
examination

Customer, examination Retrieve, delete one-to-many

11 Remove a doctor Doctor Delete none

Since our focus was on persistence, these test cases were designed to cover
all CRUD operations and involve different kinds of entities and relationships. In
this sense, the following criteria were adopted:

Using Model-Driven Development to Support Portable PaaS Applications 129

– All CRUD Operations: test cases 1 through 4 involve “create” operations,
test cases 5 through 8 involve “update” operations, and test cases 9 through 11
involve “delete” operations. “Retrieve” operations are implicitly involved in
all test cases, since the main user interface starts with a listing of all entities
of a particular type. But test cases 3, 4 and 6 add more refined “retrieve”
operations. For example, in test case 3, to insert a customer, the user must first
retrieve the corresponding doctor. In test case 4, to register an examination
for a customer, the user must first retrieve it from a list. In test case 10,
to unregister an examination, the user must first obtain a list of registered
examinations, and choose one to unregister.

– All Domain Entities: the test cases also attempt to exercise the different
entities of the domain. All four entities are present in at least five test cases,
as it can be seen in Table 1. We also attempted to perform all possible CRUD
operations in all entities. Test cases 1, 3, 6, 7 and 11 are responsible for
creating, retrieving, updating and deleting doctors. Test cases 2, 4, 8, 9 and
10 involve the examination entity. And test cases 3, 4, 5, 6 and 10 involve the
customer entity.

– Both Kinds of Relationships: the test cases also involve the two types
of relationships that are supported by our approach: one-to-one and one-to-
many. They also attempt to perform all possible CRUD operations in these
two kinds of relationships. In this sense, test case 3 creates a one-to-one rela-
tionship. Test case 6 updates a one-to-one relationship. Test case 4 creates a
one-to-many relationship, and test case 10 deletes a one-to-many relationship.
Retrieving relationships is implicit in all related test cases, because a listing
of related entities is shown whenever some entity is being edited. But they
appear more explicitly in test cases 4 and 10 (retrieving examinations), and in
test case 6 (retrieving a doctor). Some combinations are missing, as follows:
in this domain it is not possible to delete a one-to-one relationship, because
a customer must have at least one associated doctor. It also makes no sense
to update a one-to-many relationship, because examinations are either added
or removed from the customer’s list.

5.2 Execution

Continuing with the experimental phases suggested by Wohlin et al. [16], we
moved on to the execution. The tests were executed in 2 steps:

Step 1: Preparation. In this step the following two instrumentation elements
were elaborated:

– Guidelines — this material consisted of one document with the description
of the tasks and instructions the subject should follow and one document with
the application description and support material;

– Data Collection Instruments — data collection was performed in two
moments. The first moment was during test case execution, where after each
test case description, in the task description document, the subjects would
need to respond if they considered the test case successful. In a second

130 E. Nogueira et al.

moment, after the execution of all test cases, a questionnaire was given to
each subject to ask about his perception on portability. This questionnaire
was based on the ISO standard 9126 [11], which defines portability as a set
of attributes that bear on the ability of software to be transferred from one
environment to another. Among its four attributes (e.g., adaptability, instal-
lability, co-existence and replaceability), we focused on replaceability, as we
believe that it is the most adequate to the goal of this research.

Step 2: Execution. Here we used our approach to generate the two versions of
the application, for the two supported platforms (GAE and Azure). As described
earlier, we used the laboratory analysis example. The subjects were then asked
to execute the test cases. This study had ten participants The execution took
one day, strating with an initial training and finishing with answering the ques-
tionnaire.

5.3 Data Analysis

All ten subjects were able to use both versions of the application and perform all
test cases successfully. Regarding the questionnaire, the results of each question
are discussed next.

Question 1. Do you consider that the two versions of the application
are equivalent in terms of functionality? For two applications A and B
to be equivalent in terms of persistence operations, the set of CRUD functions
implemented in A must be equal to the set of functions implemented in B. All
the subjects answered that the two versions of the application were equivalent
in terms of persistence operations.

Question 2. Do you consider that the two versions of the application
are equivalent in terms of the interface? Two applications can be equivalent
in terms of functionality but have different interfaces. All the subjects answered
that the two versions of the application were equivalent in terms of the interface,
i.e., the interfaces allow equivalent access to persistence operations.

Question 3. Do you consider that for the same input on each version
of the application, the outputs were equal? This question evaluates if the
systems are equivalent in terms of input and output. All the subjects answered
that the two versions of the application were equivalent in terms of input/output,
i.e., persistence works in the same way in both versions.

Question 4. Do you consider that the Azure version can be replaced
by the GAE version, and vice-versa? All the subjects answered that the
two versions could be replaced by each other.

From this evaluation, we can conclude that our approach supports porting
an application between cloud platforms in such a way that the final users do
not perceive the differences when using the two versions. This is particularly
interesting if we consider that the underlying data management mechanisms
are different, as discussed in Sect. 3. This effectively puts MDE as a possible
alternative to port applications between cloud providers.

Using Model-Driven Development to Support Portable PaaS Applications 131

5.4 Threats to Validity

Low Number of Subjects: a small set of users participated in the tests. A larger
number of people using the system can lead to the discovery of some fails and dif-
ferences.

Simple Domain: the application built for the case study is relatively small
and represents a small problem domain. These elements may have facilitated
the analysis, and it is possible that we did not test all situations, although we
attempted to cover all combinations between CRUD operations, entities and
relationships.

Statistical Treatment: the collected data did not allow a formal, complete
statistical treatment, which could lead to more solid results. But we believe the
qualitative analysis has lead to important insights regarding the approach.

6 Related Work

There are several different proposals for developing portable cloud applications,
being standardization and open source software the more popular in the industry.
In academia, many authors also attempt to use MDE to solve to lock-in problem.

Miranda et al. present their vision on how MDE can support the develop-
ment of adaptive multi-cloud applications, thus integrating MDE and Software
Adaptation techniques [22]. Developers are requested to tag the components indi-
cating in which cloud they will be deployed. MDE techniques are then applied
to generate an XML-based cloud deployment plan. The source code and the
XML deployment plan are processed to generate cloud compliant artifacts to
access the underlying cloud services. This work aims at generating the deploy-
ment plan while our targets the design and development time. MODAClouds15

(MOdelDriven Approach for the design and execution of applications on multiple
Clouds) aims at supporting system developers and operators in exploiting multi-
ple clouds and in migrating their applications from cloud to cloud as needed [23].
Its main objective is to provide methods, a decision support system, an open
source IDE and runtime environment for the high-level design, early prototyping,
semi-automatic code generation, and automatic deployment of applications on
multiple clouds. It also helps administrators to monitor the services and measure
their quality. While the project is developing a post-fact adoption standard [24]
with CloudML, a domain-specific modeling language and runtime environment
that facilitates the specification of cloud application provisioning, deployment,
and adaptation, we argue that each enterprise can build its own language or
generation strategy more aligned with their business.

A strategy to solve the portability without MDE is described in [26]. Giove
et al. propose a library called CPIM (Cloud Provider Independent Model), that
encapsulates PaaS-level services such as message queues, noSQL, and caching.
Instead of relying on the providers following a standard, they add a mediation

15 http://www.modaclouds.eu/.

http://www.modaclouds.eu/

132 E. Nogueira et al.

layer that hides the details of the underlying PaaS provider and exposes a com-
mon API that allows platform-independent code to be developed on top of it.

Both our approach and the CPIM library attempt to deal with the differences
between PaaS services. Both agree that standardization may not be the only
solution. And both allow platform-independent applications to be specified. Our
proposal has the advantage of allowing developers to work on a higher abstraction
level. Therefore, we can collect additional benefits in terms of productivity and
maintenance. On the other hand, CPIM requires no effort to setup a modeling
and code generation environment, resulting in less upfront investment and being
easier to adopt. In fact, an hybrid solution, combining MDE and a mediation
layer, could bring benefits from both approaches.

More research issues and approaches related to the development of systems
to the cloud model can be found in Armbrust et al. [2] and our previous works
[4,5]. Cloud computing is still evolving, and research opportunities are still being
identified. More research and evaluations are still necessary.

7 Concluding Remarks and Future Work

This paper shows how the differences in cloud persistence models can make
an application difficult to reuse and/or be ported to a different provider. It
extends our previous works on exploring the use of MDE to overcome portability
in cloud computing, and shows how that previous approach can be used to
solve the persistence related lock-in issue. The main contribution of our work
is to show that there is an alternative path to the standardization of cloud
technologies. MDE can increase the portability of the applications, but it can also
lead to additional benefits inherently associated with it, consequently, reducing
the impacts of lock-in.

In the near future we plan to include more platforms to implement the repos-
itory of models and transformations, and to perform some more evaluations,
which includes applying our approach to other case studies.

Acknowledgements. We would like to thank FAPESP (processes 2012/24487-3 and
2012/04549-4), Coordination of Superior Level Staff Improvement - CAPES and Brazil-
Europe Erasmus Mundus project (process BM13DM0002) for partially funding this
research.

References

1. Chen, Y., Li, X., Chen, F.: Overview and analysis of cloud computing research and
application. In: 2011 International Conference on E-Business and E-Government
(ICEE), pp. 1–4 (2011)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: a Berkeley
view of cloud computing. Dept. Electrical Eng. and Comput. Sciences, University
of California, Berkeley, Report UCB/EECS 28 (2009)

Using Model-Driven Development to Support Portable PaaS Applications 133

3. da Silva, E.A.N., Lucredio, D.: Software engineering for the cloud: a research
roadmap. In: 2012 26th Brazilian Symposium on Software Engineering, pp. 71–
80 (2012)

4. da Silva, E.A.N., Fortes, R.P.M., Lucrédio, D.: A model-driven approach for pro-
moting cloud paas portability. In: Proceedings of the 2013 Conference of the Center
for Advanced Studies on Collaborative Research, CASCON 2013, Riverton, NJ,
USA, pp. 92–105. IBM Corp. (2013)

5. da Silva, E.A.N., Moreira, A., Lucrrédio, D., andFortes, R.P.M.: Supporting mul-
tiple persistence models for PaaS applications using model-driven engineering. In:
Proceedings of the 5th International Conference on Cloud Computing and Services
Science, CLOSER 2015, Lisbon, Portugal. INSTICC (2015)

6. France, R., Rumpe, B.: Model-driven development of complex software: a research
roadmap. In: Future of Software Engineering, FOSE 2007, pp. 37–54. IEEE Com-
puter Society, Washington, DC (2007)

7. Kleppe, A., Jos, W., Wim, B.: MDA Explained, the Model-Driven Architecture:
Practice and Promise. Addison-Wesley, Boston (2003)

8. Mohagheghi, P., Dehlen, V.: Where is the proof? - a review of experiences from
applying MDE in industry. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA
2008. LNCS, vol. 5095, pp. 432–443. Springer, Heidelberg (2008)

9. Khajeh-Hosseini, A., Sommerville, I., Bogaerts, J., Teregowda, P.: Decision support
tools for cloud migration in the enterprise. In: 2011 IEEE International Conference
on Cloud Computing (CLOUD), pp. 541–548 (2011)

10. Lucrédio, D., Almeida, E.S., Fortes, R.P.M.: An investigation on the impact of
MDE on software reuse. In: 2012 Sixth Brazilian Symposium on Software Compo-
nents Architectures and Reuse (SBCARS), pp. 101–110. IEEE (2012)

11. ISO/IEC9126: Software product evaluation - Quality characteristics and guidelines
for their use. ISO Norm. (1991)

12. Daniels, J.: Server virtualization architecture and implementation. Crossroads 16,
8–12 (2009)

13. Shirazi, M.N., Kuan, H.C., Dolatabadi, H.: Design patterns to enable data porta-
bility between clouds’ databases. In: 2012 12th International Conference on Com-
putational Science and Its Applications (ICCSA), pp. 117–120 (2012)

14. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in prac-
tice. Synth. Lect. Softw. Eng. 1, 1–182 (2012)

15. Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. ACM Sigplan Not. 35, 26–36 (2000)

16. Wohlin, C., Runeson, P., Host, M., Ohlsson, C., Regnell, B., Wesslén, A.: Experi-
mentation in Software Engineering: An Introduction. Springer, Heidelberg (2000)

17. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation.
Springer, Heidelberg (2010)

18. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53, 50–58 (2010)

19. Tichy, W.F.: Should computer scientists experiment more? Computer 31, 32–40
(1998)

20. Silva, L., Soares, S.: Analyzing structure-based techniques for test coverage on a
J2ME software product line. In: 10th Latin American Test Workshop, LATW 2009,
pp. 1–6. IEEE (2009)

21. Schmidt, D.C.: Model-driven engineering. Comput.-IEEE Comput. Soc. 39(2), 25
(2006)

134 E. Nogueira et al.

22. Miranda, J., Guillén, J., Murillo, J.M., Canal, C.: Development of adaptive multi-
cloud applications a model-driven approach. In: MODELSWARD (2013)

23. Ardagna, D., Di Nitto, E., Mohagheghi, P., Mosser, S., Ballagny, C., D’Andria, F.,
Casale, G., Matthews, P., Nechifor, C.S., Petcu, D., et al.: Modaclouds: a model-
driven approach for the design and execution of applications on multiple clouds.
In: 2012 ICSE Workshop on Modeling in Software Engineering (MISE), pp. 50–56.
IEEE (2012)

24. Petcu, D.: Portability and interoperability between clouds: challenges and case
study. In: Abramowicz, W., Llorente, I.M., Surridge, M., Zisman, A., Vayssière, J.
(eds.) ServiceWave 2011. LNCS, vol. 6994, pp. 62–74. Springer, Heidelberg (2011)

25. Petcu, D., Vasilakos, A.V.: Portability in clouds: approaches and research oppor-
tunities. Scalable Comput. Pract. Experience 15(3) (2014)

26. Giove, F., Longoni, D., Yancheshmeh, M.S., Ardagna, D., Di Nitto, E.: An app-
roach for the development of portable applications on paas clouds. In: Proceedings
of CLOSER, pp. 591–601 (2013)

LS-ADT: Lightweight and Scalable Anomaly
Detection for Cloud Datacentres

Sakil Barbhuiya, Zafeirios Papazachos(B), Peter Kilpatrick,
and Dimitrios S. Nikolopoulos

School of Electronics, Electrical Engineering and Computer Science,
Queens University Belfast, Belfast BT7 1NN, UK

{sbarbhuiya03,z.papazachos,p.kilpatrick,d.nikolopoulo}@qub.ac.uk

Abstract. Cloud data centres are implemented as large-scale clusters
with demanding requirements for service performance, availability and
cost of operation. As a result of scale and complexity, data centres typ-
ically exhibit large numbers of system anomalies resulting from opera-
tor error, resource over/under provisioning, hardware or software failures
and security issus anomalies are inherently difficult to identify and resolve
promptly via human inspection. Therefore, it is vital in a cloud system
to have automatic system monitoring that detects potential anomalies
and identifies their source. In this paper we present a lightweight anom-
aly detection tool for Cloud data centres which combines extended log
analysis and rigorous correlation of system metrics, implemented by an
efficient correlation algorithm which does not require training or complex
infrastructure set up. The LADT algorithm is based on the premise that
there is a strong correlation between node level and VM level metrics
in a cloud system. This correlation will drop significantly in the event
of any performance anomaly at the node-level and a continuous drop in
the correlation can indicate the presence of a true anomaly in the node.
The log analysis of LADT assists in determining whether the correlation
drop could be caused by naturally occurring cloud management activity
such as VM migration, creation, suspension, termination or resizing. In
this way, any potential anomaly alerts are reasoned about to prevent
false positives that could be caused by the cloud operator’s activity. We
demonstrate LADT with log analysis in a Cloud environment to show
how the log analysis is combined with the correlation of systems metrics
to achieve accurate anomaly detection.

Keywords: Data analysis · Cloud computing · SPARK · Distributed
data processing · Monitoring

1 Introduction

A cloud data centre comprises of large pools of compute, storage, and networking
resources. The VMs in a cloud are hosted on compute nodes which manage the
VMs with the help of the hypervisor. The major task of these nodes is to host the
VMs, hence the largest part of the workload of these nodes consists of the VM
c© Springer International Publishing Switzerland 2016
M. Helfert et al. (Eds.): CLOSER 2015, CCIS 581, pp. 135–152, 2016.
DOI: 10.1007/978-3-319-29582-4 8

136 S. Barbhuiya et al.

execution. In an anomaly-free compute node most of the supporting services
are designed so as not to interfere with the execution of the VMs. However,
an anomaly on the hosting services could cause the node to utilise resources
which are not justified by the VMs workload. Moreover, a malicious attack could
compromise the system security and let the intruder access the compute nodes’
resources. Security breaches of this kind have been recorded in the past and they
have been always addressed with high priority. An example of these breaches is
the Blue Pill attack which manipulates kernel mode memory paging and the
instructions that control the interaction between the host and guest (virtual
machine). This permits undetected, on-the-fly placement of the host operating
system in its own secure virtual machine allowing for complete control of the
system including manipulation by other malware. Accessing the host resources
in this way could interfere with workload of the registered VMs.

Modern analytic tools are capable of extracting information from logs [1,2]
and use statistical learning techniques to build models that detect and diag-
nose system anomalies in data centres. The complexity of these models imposes
several difficulties both on their interpretation by human operators and on their
efficient implementation in large scale cloud platforms. As an alternative to using
console logs, a number of anomaly detection tools use system metrics [3–7]. Such
metrics can be collected with minimum overhead and without requiring access to
the source code of hosted applications. EbAT [4] analyses metric distributions
and measures the dispersal or concentration of the distributions. The metrics
are aggregated by entropy distributions across the cloud stack in order to form
entropy time series. EbAT uses online tools like spike detection, signal process-
ing and subspace methods to detect anomalies in the entropy time series. The
tool incurs the complexity of analysing the metric distributions and also requires
third party tools to detect anomalies.

In previous work [8] we introduced a Lightweight Anomaly Detection Tool
(LADT) which monitors system-level and virtual machine (VM)-level metrics
in Cloud data centres to detect node-level anomalies using simple metrics and
correlation analysis with Apache Pig [9]. In this study we combine system metric
information with console logs analysis. In this way we perform a diagnosis on
the alert to determine whether it could be a false positive that is derived from
usual cloud management activities on the hosting node such as the migration or
creation of new VM. We also present the performance of the correlation analysis
on the collected data using Apache Spark. The major contribution of LADT
over other tools in this context is the ability to efficiently detect anomalies in
a Cloud data centre by combining in an effective way monitoring information
from logs, VM metric measurements and host node metric measurements without
requiring complex algorithms, application source code availability, or complex
infrastructure set up.

The evaluation of the LADT tool is done in an OpenStack testbed, where
it continuously collects and stores system metrics from all nodes and VMs. The
tool shows that the cpu and disk I/O metrics in each hosted node are strongly
correlated with the aggregate VM cpu and disk I/O metrics, but this correla-
tion vanishes when a cpu or disk-stressing application is introduced in a node,

LS-ADT: Lightweight and Scalable Anomaly Detection 137

indicating a node-level anomaly. We also demonstrate how the VM actions on
the hosting node can affect the correlation analysis and the way the log analysis
can prevent a false positive alert.

The remainder of the paper is organised as follows. Section 2 presents back-
ground and related work in anomaly detection. Sects. 3 and 4 provide detail
of the LADT architecture and algorithm, respectively. Experimental results are
presented and discussed in Sect. 5. Section 6 concludes the paper and discusses
future work.

2 Background and Related Work

In this section we describe the challenges of detecting anomalies in Cloud data
centres. A number of different tools and methods are considered and placed into
separate categories based on the input they analyse. We consider two cases for
monitoring and detecting anomalies: console log based anomaly detection and
anomaly detection based on system metrics.

2.1 Anomaly Detection Challenges

Cloud data centres are implemented as large-scale clusters with demanding
requirements for service performance, availability and cost of operation. As a
result of scale and complexity, data centres exhibit large numbers of system
anomalies caused by operator error [10], resource over/under provisioning [11],
and hardware or software failures [12]. These anomalies are inherently difficult
to identify and resolve promptly via human inspection [13]. Thus, automatic sys-
tem monitoring that captures system state, behaviour and performance becomes
vital. Computer system logs are the main source of information for anomaly
detection. Logs can be of two types: structured or unstructured. Unstructured
logs are free-form text strings, such as console logs, which record events or states
of interest and capture the intent of service developers [1], whereas structured
logs are numerical logs, such as logs of system metrics, which capture workload
and system performance attributes, such as CPU utilisation, memory usage,
network traffic and I/O.

2.2 Console Log Based Anomaly Detection

Analytic tools for anomaly detection based on console logs, such as SEC [14],
Logsurfer [15] and Swatch [16] check logs against a set of rules which define
normal system behaviour. These rules are manually set by developers based
on their knowledge of system design and implementation. However, rule-based
log analysis is complex and expensive because it requires significant effort from
system developers to manually set and tune the rules. Moreover, modern sys-
tems consisting of multiple components developed by different vendors and the
frequent upgrades of those components make it difficult for a single expert to
have complete knowledge of the total system and to set the rules effectively.

138 S. Barbhuiya et al.

This complexity has given rise to statistical learning based log analytic tools
such as the works of Lou et al. [1] and Xu et al. [2], which extract features from
console logs and then use statistical techniques to automatically build models
for system anomaly identification.

Lou et al. [1] propose a statistical learning technique which consists of a
learning process and a detection process. The learning process groups the log
message parameters and then discovers the invariants among the different para-
meters within the groups. For new input logs, the detection process matches
their invariants among the parameters with learned invariants from the learn-
ing process. Each mismatch in the invariants is considered to be anomalous. Xu
et al. [2] propose a new methodology to mine console logs to automatically detect
system problems. This first creates feature vectors from the logs and then applies
the PCA (Principal Component Analysis) algorithm on the feature vectors to
detect anomalies. However, the learning based tools require a custom log parser
for mining the console logs in order to create the features for the learned model.
The log parsers require source code of the hosted applications to recover the
inherent structure of the logs.

2.3 System Metric Based Anomaly Detection

A number of anomaly detection tools use system metrics [3–7], which can be col-
lected with minimum overhead and without requiring any access to the source
code of hosted applications. Using system metrics for detecting anomalies has
advantages over traditional log-based anomaly detection tools due to consid-
eration of elasticity and workload evolution in Cloud computing, but also due
to provisioning, scaling, and termination of services in short periods of time.
Some of these tools are based on feature selection and machine learning outlier
detection to flag anomalies [17].

EbAT [4] is a tool that uses entropy based anomaly detection. EbAT analyses
metric distributions and measures the dispersal or concentration of the distribu-
tions. The metrics are aggregated by entropy distributions across the Cloud stack
in order to form entropy time-series. EbAT uses online tools like spike detection,
signal processing and subspace methods to detect anomalies in the entropy time-
series. The tool incurs the complexity of analysing the metric distributions and
also requires third party tools to detect anomalies.

PeerWatch [6] uses canonical correlation analysis (CCA) to extract the corre-
lations between multiple application instances, where attributes of the instances
are system resource metrics such as CPU utilisation, memory utilisation, network
traffic etc. PeerWatch raises an alarm for an anomaly whenever some correlations
drop significantly. As a result of analysing the application instance behaviours
and correlating them, this tool is capable of detecting application-level or VM-
level anomalies. However, this approach requires statistical metrics analysis and
knowledge of the hosted applications, which is a limitation in large-scale Clouds,
where hundreds of different types of applications run on the VMs.

Varanus [5] uses a gossip protocol, which is layered into Clouds, groups and
VMs in order to collect system metrics from the VMs and analyse them for

LS-ADT: Lightweight and Scalable Anomaly Detection 139

anomalies. This approach allows in-situ collection and analysis of metrics data
without requiring any dedicated monitoring servers to store the data. However,
setting up a dedicated gossip protocol across thousands of VMs in a large-scale
Cloud environment and maintaining the gossip based overlay network over each
of the VMs is a challenging task.

The metric-based black box detection technique presented in [3] uses the
LFD (Light-Weight Failure Detection) algorithm to detect system anomalies.
LFD raises an alarm when there is a lack of correlation between two specific sys-
tem metrics. The anomaly indicates a system problem and each such problem is
associated with a specific system metrics pair. LFD is a lightweight algorithm
with lower complexity than EbAT, PeerWatch and Varanus. Furthermore, LFD
does not require any training or source code and understanding of hosted appli-
cations. The LFD follows a decentralised detection approach, where each node
analyses its own system metrics in order to achieve higher scalability. However,
this may also limit LFD in large-scale Cloud data centres, where it may not be
feasible to implement LFD on each node individually, due to overhead.

In this paper we address the limitations of existing system anomaly detec-
tion tools by introducing LADT. LADT uses Apache Chukwa [18] for collecting
metrics data from all nodes and VMs in a data centre, and HBase [19] for stor-
ing the data in servers to allow centralised monitoring of Cloud systems. LADT
implements a new correlation algorithm to perform the correlation analysis on
the centrally stored metrics data. The LADT algorithm correlates node-level and
VM-level metrics, which is a new approach to correlation analysis in detecting
Cloud system anomalies. Furthermore, the LADT algorithm deals with the syn-
chronisation problem between the node and VM generated metrics timestamp.
This problem arises due to latency in storing the VM-level metrics in the mon-
itoring server and results in poor correlation analysis. LADT is lightweight as
it uses a simplified infrastructure set-up for metrics data monitoring and the
LADT algorithm uses the simple Pearson correlation coefficient for analysing
the metrics data. We program the algorithm using Apache Spark [9] to leverage
MapReduce jobs in order to achieve higher throughput. We use disk I/O metrics
from both nodes and VMs in an actual Cloud set-up to detect I/O performance
anomalies.

3 LADT Architecture

The following sub-sections describe the architecture of the LADT tool and its
functionality.

3.1 Metrics Data Monitoring

LADT utilises an agent-based monitoring architecture to retrieve system metrics
from the hosting nodes and VMs in a Cloud data centre. The monitoring agent
extracts system metrics from the nodes and VMs at regular time intervals. The
collector gathers the data extracted by the agents. LADT uses the agents and

140 S. Barbhuiya et al.

Fig. 1. LADT Architecture.

collectors provided by Apache Chukwa’s [18] runtime monitoring. The Chukwa
agent collects CPU, memory, disk, and network information from the hosting
nodes using sigar [20] and from the VMs using Virt-Top [21]. The Chukwa col-
lector then collects the output generated by the agents. The collector processes
the data and registers the input to HBase, which is installed in the monitoring
node.

Figure 1 illustrates the architecture of LS-ADT. The tool installs one Chukwa
agent for collecting both node-level and VM-level metrics on each monitored
node in the data centre. LS-ADT uses Chukwa collectors running on data analy-
sis servers for collecting node-level and VM-level metrics into HBase. The corre-
lation analysis on the stored metrics is performed by Spark. Each Chukwa agent
consists of adaptors which are dynamically loadable modules that run inside
the agent process. LS-ADT sends the metrics from the agents to the Chukwa
collectors via HTTP. The primary task of the collector is to parse the collected
data from the agent and store the extracted information in an HBase database.
HBase runs on top of the Hadoop Distributed File System (HDFS) [22].

3.2 Metrics Data Analysis

The LS-ADT framework has been extended as compared with LADT with the
necessary modules to allow for parallel trace analysis. This includes in-situ mod-
ules which run locally in each compute node and perform pre-processing and
analysis of local data before storing them in the monitoring database. The advan-
tage of this technique is that part of the analysis workload is off loaded to the
compute nodes which provide an additional level of real-time processing much
closer to the data source. The log filtering module enables LADT to detect VM
operations on the node such as creation of a new VM or migration of a VM. It
also allows detection of erroneous entries inside the log files. The filtering module

LS-ADT: Lightweight and Scalable Anomaly Detection 141

is assessing the number of these occurrences over a selected time period and reg-
isters to the database a statistical number of them along with a timestamp. In
this way, only a few entries are required to be recorded in the database, instead
of a full log record. To analyse the stored information in HBase, we use a Light-
weight Anomaly Detection Tool (LADT) which is currently based on the apache
Spark framework. The Spark framework has an advanced DAG execution engine
that supports cyclic data flow and in-memory computing. It is a fast and gen-
eral engine for large-scale data processing. LADT runs the metrics correlation
analysis on the stored metrics between the node-level and VM-level metrics to
detect anomalies. It then takes the mean values of the metric samples in 15-s
windows. The program groups the mean values into 5-min windows and calcu-
lates the Pearson Correlation Coefficient between the node-level and VM-level
metrics in each group. Finally, the program compares the correlation coefficient
value with the threshold value and generates an anomaly alarm if it finds the
coefficient value is below an adjustable threshold level. Any potential alerts are
then validated by checking for any log entries coming from VM activities such
as new VM creation. A VM action could consume host resources which are not
yet registered as VM utilisation and therefore indicate a false alarm. However,
the log analysis can provides us with valuable information about any ongoing
VM activities.

4 LADT Hypothesis and Algorithm

The underlying approach of LADT is based on the premise of the LFD technique,
which identifies two metrics that are correlated during normal operation but
diverge in the presence of an anomaly.

4.1 LFD: The Baseline Method

LFD is a lightweight technique for anomaly detection proposed by Tan et al. [3].
The hypothesis of LFD is that in an anomaly-free system, whenever an appli-
cation requests service, the processing alternates between two phases: the com-
munication phase and the compute phase. In the communication phase, the
application responds to requests received from the user, reads data from the
disk, or writes data to the disk. In the compute phase, the application operates
on the received inputs or requests. At the operational level, the compute phase
is characterised by user-space CPU activity, whereas the communication phase
is characterised by the behaviour of one or more types of system-level resource
consumption, including kernel-space CPU time, disk I/O or network I/O. Behav-
ioural change between the two phases results in a correlation between user-space
CPU utilisation and system resource consumption. The LFD also hypothesises
that in the case of an anomaly, there will be a significant change in the relation-
ship between the compute phase and the communication phase. Hence, there will
be lack of correlation between user-space CPU utilisation and system resource
consumption, based on which anomalies can be detected in the system.

142 S. Barbhuiya et al.

4.2 LADT Hypothesis

LADT formulates a new hypothesis, according to which there is strong correla-
tion between the node-level and VM-level metrics in a Cloud system. Also, that
this correlation will drop significantly in the event of any performance anom-
aly at the node-level and a continuous drop in the correlation can indicate the
presence of a true anomaly in the node.

4.3 LADT Algorithm

We propose a new algorithm based on LFD, to correlate node-level and VM-level
metrics. We use disk I/O metrics as a running example. The algorithm correlates
disk I/O between the hosting node and the VMs in order to detect anomalies in
IaaS Cloud environments. LADT computes the Pearson correlation coefficient
(ρ) between the hosting node disk IOPS and the aggregated VM disk IOPS.
Pearson’s correlation coefficient is the ratio of the covariance between the two
metrics to the product of their standard deviations as described in Eq. 1 and
ranges between −1.0 and 1.0.

ρN ,V =
covariance(N,V)

σNσV
(1)

where

N = time-series of node disk IOPS
V = time-series of VM disk IOPS

Similar to the LFD algorithm, there are five tunable parameters in the LADT
algorithm, which are summarised in Table 1. LADT collects raw disk I/O metrics
with a 3 s period from both the nodes and VMs. The metrics collection period
is set to more than a second in order to mitigate the timestamp synchronisation
problem between the node-level and VM-level metrics, which arises as a result
of latency in storing VM-level metrics in the LADT monitoring server. Before
calculating the correlation coefficient between the metrics, their mean values are
taken in small windows (LW = 5) in order to reduce noise. An anomaly alarm
is raised when the average of D consecutive values of the correlation coefficient
drops below the threshold T in order to detect the true anomalies by considering
a larger range of system behaviour.

Table 1. Tunable parameters in LADT Algorithm.

LW , low-pass window width Raw samples to take mean

LS, low-pass window slide Raw samples to slide

W , correlation window width Samples to correlate

S, correlation window slide Samples to slide detection window

D, diagnosis window Correlation coefficients to consider

LS-ADT: Lightweight and Scalable Anomaly Detection 143

We keep the same parameter values as the LFD algorithm for four parameters
(LW = 5, LS = 5,W = 60,D = 10) [3], which we experimentally found to
achieve best performance. However, the correlation window slide, S is changed
from 12 to 60 as this amortises better the overhead of a Spark program, which
is used to execute the LADT algorithm. Therefore, each correlation coefficient
value considers the last LW × W = 300 s (5 min) of system behaviour.

4.4 Console Log Analysis

In a cloud data centre which supports automatic management of the resources,
there is a series of different actions happening on the background in order to
achieve different goals set by the operator, some of the most important goals
are to keep the workload balanced, maintain Service Level Agreements (SLAs)
and optimise energy consumption. These macroscopic targets imply certain VM
actions happening on each node of the cloud. The following are some examples
of a VM action on a node: migration, new VM creation, suspend, terminate,
resize. The VM actions and any potential errors on a node are registered into
different log files. The amount of information on the log file and the large number
of nodes included in a cloud platform makes it difficult for cloud operators to
track important events.

Tracking VM actions efficiently is important for the analysis of the system
performance and allows cloud data centre operators to manage their platform.
In order for a VM action to complete, it requires different amount of resources
before it boots up. For example, creating a new instance on a node would require
claiming memory, disk and VCPUs from the node by the VM. It would also create
a temporal network and disk I/O bandwidth consumption on the node for the
VM image to be transferred. All the aforementioned resource demands could
cause an analysis on the node to lead to faulty results if they are not taken into
account. For this reason we examine coupling the parallel correlation analysis of
LADT with the functionality of a cloud log tracking mechanism to reduce any
false positives by the detection mechanism (Fig. 2).

The procedure of log processing is displayed in Fig. 16. The process starts
from each compute node of the cloud data centre where the log file is generated.
A text analysis module is triggered periodically by an agent resided in each node.
The module is tailing the file for the logs of the most recent time interval. Then it
searches for a set of specific patterns of words and phrases that indicated certain

Fig. 2. One kernel at xs (dotted kernel) or two kernels at xi and xj (left and right)
lead to the same summed estimate at xs. This shows a figure consisting of different
types of lines. Elements of the figure described in the caption should be set in italics,
in parentheses, as shown in this sample caption.

144 S. Barbhuiya et al.

VM actions or errors. For example, the phrase Attempting claim: memory X
MB, disk Y GB, VCPUs Z indicates that a new VM allocation is in progress
on the current node. Other examples of interesting occurrences are: Instance
destroyed successfully, Migrating instance to X finished successfully, QEMU:
error. These occurrences are then organised into an HBase row-key with the key
time period-node and a column family VMActions which has different columns
such as Placement and migration. Each of these columns has a value equal to the
number of occurrences that placement and migration related keywords/phrases
appeared during the period and by the node marked by the row-key. In this
way the actual log files are filtered and only a statistical row-key is recorded
in the datastore. Part of the information in the log file is unique and contains
information relevant to the service that produced the log. This means that it is
difficult to retrieve this information by another way, since this information might
not be available elsewhere. The LADT tool performs the correlation analysis
using Spark and in the case of detected anomalies it tries to validate them by
looking on the entries of the related period to see if these alarms are justified by
other VM management activities on the current node.

5 Experimental Evaluation

This section describes the workload and the experimental set-up used to evaluate
LADT. The section also analyses our experimental results and the functionality
of the LADT tool.

5.1 Experimental Set-Up

To test the functionality of our tool we used a compute node from an OpenStack
cloud testbed. The host is a Dell PowerEdge R420 server which runs CentOS 6.6
and has 6 cores, 2-way hyper-threaded, clocked at 2.20 GHz with 12 GB DRAM
clocked at 1600 MHz. The node includes two 7.2K RPM hard drives with 1 TB
of SATA in RAID 0 and a single 1GBE port. KVM is the default hypervisor of
the node. The sampling rate of the performance metrics from the node is one
measurement every 3 s. The node level metrics are generated using Sigar (Sigar,
2015) and the vm-level metrics are generated from Virt-Top (Virt-Top, 2015).

Four active instances on the node are running the Data Serving and the
Graph Analytics benchmark from Cloud-Suite [23]. The Data Serving benchmark
relies on the use of Cassandra, an open-source NoSQL datastore, stimulated
by the Yahoo! Cloud Serving Benchmark. YCSB is a framework to benchmark
data store systems. This framework comes with the interfaces to populate and
stress many popular data serving systems. The second benchmark from Cloud-
Suite is the Graph Analytics benchmark which uses the GraphLab machine
learning and data mining software. Graph Analytics performs data analysis on
large-scale graphs, using a distributed graph-processing system. Graph Analytics
becomes increasingly important with the emergence of social networks such as
Facebook and Twitter. The graph analytics benchmark implements TunkRank

LS-ADT: Lightweight and Scalable Anomaly Detection 145

on GraphLab, which provides the influence of a Twitter user based on the number
of that user’s followers.

The experiment runs over a time period of 60 min, where we inject an anom-
aly in the node at the end of the first 30 min using a disk and CPU stress-
ing application, which periodically increases the disk read/write operations and
CPU load runs for the remaining 30 min. This anomaly reflects a Blue Pill or
a Virtual Machine Based Rootkit (VMBR) attack on a Cloud system, where
the attacker introduces fake VMs via a hidden hypervisor on the victim hosting
node to get access to the hardware resources such as CPU, memory, network or
disk [24]. Research such as [25] has already used system resource-level anomaly
analysis to deal with such attacks. That research analyses system resource util-
isation to explore the normal system behaviour and builds a model, based on
which it detects the abnormal behaviours in the system, and subsequently, the
attacks. However, this approach of detecting the attacks requires a large amount
of historical data and use of machine learning techniques. LADT can detect the
attacks using the correlation analysis between the node-level and the VM-level
metrics. LADT is implemented in the testbed, which uses Chukwa agents in each
of the hosting nodes to collect both the hosting node and VM disk read/write
metrics. The tool stores the collected metrics in the HBase running in the mon-
itoring node, which is a dual AMD Opteron 6272 server. Finally, in the moni-
toring node, LADT analyses the stored metrics by running the algorithm, which
calculates the correlation between the individual hosting node metrics and the
aggregated performance measurements of all the VMs in that node, to detect the
injected anomaly. Current implementation of LADT is based on Spark, which
has an advanced DAG execution engine that supports cyclic data flow and in-
memory computing. It is a fast and general engine for large-scale data processing.
Spark uses the concept of resilient distributed datasets (RDD), which represent
a read-only collection of objects partitioned across a set of machines that can
be rebuilt if a partition is lost. Users can explicitly cache an RDD in memory
across machines and reuse it in multiple MapReduce-like parallel operations.

5.2 Results and Discussion

In Figs. 6 and 7 we illustrate the data collected for the CPU utilisation and
Input/Output Operations Per Second(IOPS) of the hosting node (blue line)
and the aggregated VM CPU utilisation and IOPS (red line) respectively. We
present the normalised values of the IOPS, which are the mean values in small
windows of 15 s, including 5 samples of metrics data (the frequency of metrics
collection is 3 s). The correlation coefficient values are calculated in correlation
windows of 5 min, covering 5 min of metrics data. Hence, there are 12 correlation
intervals in the 60 min of experiment. The fault injection in both cases appears
after 30 min. In the case of IOPS, the node IOPS appear to be higher than
the aggregated VM IOPS because of the overhead that is inflicted by the extra
software layer of the hypervisor, which is interposed between guest operating
systems and hardware [26]. The hypervisor multiplexes I/O devices by requiring
guest operating systems to access the real hardware indirectly and hence induces

146 S. Barbhuiya et al.

an overhead in the I/O context. The IOPS measurements are also taken with a
different tool in each case (virt-top and Sigar), which means that the accuracy of
each tool might differ. However, the correlation trace analysis is not significantly
affected by these factors, since the major factor is the pattern and the relation
of the two measurements.

The correlation analysis for CPU utilisation and IOPS in Figs. 8 and 9 respec-
tively, clearly shows that there is a strong correlation between the hosting node
metrics and the aggregated metrics of the VMs for the first half of the experi-
ment, where the correlation coefficient values are above 0.5. However the correla-
tion value drops below 0.0 suddenly at the tenth interval when the fault injection
starts. The coefficient value remains very low during the injected anomaly. We
consider correlation coefficient values above 0.5 (marked with red line) to indi-
cate a strong correlation in this case. This is a clear reflection of the injected
anomaly in the host node, which distorts the correlation in both cases of CPU
utilisation and IOPS.

The time taken to process one hour of collected data with a different number
of assigned cores is presented in Figs. 10 and 11. We observed experimentally
that different runs did not yield any significant difference in execution time.
The first figure is giving us the execution time that is needed for the section
of the program that does the analysis on the collected data. This section does
not include loading the values from HBase into proper structures that can be
processed by Hadoop or Spark. The reason we exclude this part in the first figure
is that it cannot be simply parallelised by just adding more working cores to the
node and the procedure can be limited by having to access the data from the
nodes disk. This becomes clearer when we do a comparison with Fig. 11 where
we realise that there is a fixed difference between the graphs of the two figures
which remains the same for different number of cores. Another observation based
on the number of assigned cores is that the performance of the tool is improving
while adding up to 8 cores, but remains the same for 16 cores. The throughput of
LADT is depicted in Figs. 13 and 14. In the first case we calculate the throughput
in terms of total HBase rowkeys processed per second when we consider only the
data processing part of the application. The second case is showing the number
of records processed per second if we include loading the data from HBase into
structures which can be processed by Spark.

5.3 Textual Log Analysis

In the following section we examine the effect of a new VM placement on the
node. We identify any correlation drops and examine if these are justified by
any activities that are recorded by the text analysis tool. We also analyse any
overhead that the text analysis adds to the LADT tool (Figs. 3, 4 and 5).

The graphs in Figs. 17 and 18 present the CPU utilisation and IOPS for the
node and the VMs. In the case of the VMs the measurements are aggregated for
all the active VMs. In this scenario, we examine the correlation analysis using
the Spark implementation of the extended LADT under the influence of a new
VM allocation and an injected anomaly occurring at two different time frames.

LS-ADT: Lightweight and Scalable Anomaly Detection 147

Fig. 3. First figure. Fig. 4. Second figure.

Fig. 5. First figure (Color figure
online).

Fig. 6. Second figure (Color figure
online).

The VM allocation is taking place after 15 min and the fault injection is happen-
ing on the 45th min. The VM allocation requires only a few minutes (approx-
imately 5 min) to be fulfilled in this case. The parallel trace analysis tool is
examining the correlation results (Figs. 19 and 20) along with the HBase records
of the VM placement. We notice that the first occasion where the correlation
values for the IOPs (Fig. 20) drops is when the VM placement takes place (at
the 4rth time interval of Fig. 21). The correlation drop is explained if we consider
that the VM allocation required a significant amount of disk to store the new VM
instance. In the case of the correlation analysis of the CPU utilisation in Fig. 19,
we observe that the correlation values remain above the 0.5 threshold during
the allocation of the new VM on the node. The reason is that the process of
allocating the new VM does not require significant amount of CPU utilisation.
Therefore, the correlation analysis of the CPU utilisation remains unaffected.
The second drop in Fig. 20 is matching the appearance of the injected fault. The
same fault also affects the CPU correlation in Fig. 19 and there is no indicated
VM action in Fig. 21. Furthermore, the duration of the fault is longer that the
VM allocation correlation drop and also affects both IOPS and CPU utilisa-
tion. All these factors are indicating that this is an actual anomaly instead of
a false positive generated by normal cloud operation activity. We conclude that
the analysis of textual log files plays an important role in deciding whether an
anomaly alert is true or just a false positive.

148 S. Barbhuiya et al.

Fig. 7. One kernel at xs (dotted kernel) or two kernels at xi and xj (left and right)
lead to the same summed estimate at xs. This shows a figure consisting of different
types of lines. Elements of the figure described in the caption should be set in italics,
in parentheses, as shown in this sample caption (Color figure online).

Fig. 8. First figure. Fig. 9. Second figure.

Fig. 10. First figure. Fig. 11. Second figure.

5.4 LADT Overhead

Our next experiment assesses LADT in terms of the overhead that it introduces
on hosted application VMs, because of the LADT agents that collect metrics
simultaneously with the execution of application workloads. To investigate this

LS-ADT: Lightweight and Scalable Anomaly Detection 149

we executed a test where a single VM runs a data serving benchmark for the
duration of 10000 data operations with a rate of 200 operations/sec. With an
agent running concurrently with the data serving benchmark, and during an
execution interval of 50 s, the average update and read latencies of the benchmark
were 0.21 ms and 8.28 ms, respectively. With no agent running and during the
same 50 s execution interval, the average update and read latencies were 0.21 ms
and 6.97 ms, respectively. In both cases we observed the expected response time
from the benchmark and any differences observed in the average latencies of the
update and read operations were justified by the variability introduced by the
storage medium.

5.5 Further Analysis

We observe that during normal operation there is a strong correlation between
the node disk IOPS and aggregated disk IOPS of the VMs. However, the cor-
relation becomes weaker during some intervals for short periods. This happens
because in these intervals the overhead on the VM I/O operations resulting
from accessing the disk indirectly via the hypervisor [26] rises unpredictably and
degrades the VM IOPS with respect to the corresponding node IOPS. Although
the correlation coefficient value drops in some intervals even when the hosts are
in a stable expected state, this drop is not as significant as it is in the case of an
anomaly. Moreover, the correlation coefficient average drops below 0 when an
anomaly occurs, whereas the average coefficient value ranges between 0.5 and 1
when the hosts are anomaly-free.

We conclude that the correlation coefficient values require normalisation in
order to avoid false alarms for anomaly, which could arise because of a fluctuation
in the overhead on VM IOPS. We detect the true anomalies by considering a
larger period of system behaviour and this is done by taking the average of D
consecutive coefficient values and checking if it is below the threshold value, T.
The values of T and D depend on how often the user wishes to get an alarm
for the anomalies. From the results, we observe the anomaly as the security
attack when the correlation coefficient value drops significantly and stays low
for a longer period of time.

6 Conclusion and Future Work

We presented LADT, a lightweight anomaly detection tool for Cloud data cen-
tres. LADT is based on the hypothesis that, in an anomaly-free Cloud data
centre, there is a strong correlation between the node-level and VM-level per-
formance metrics and that this correlation diminishes significantly in the case of
abnormal behaviour at the node-level. The LADT algorithm raises an anomaly
alarm when the correlation coefficient value between the node-level and VM-level
metrics drops below a threshold level. We have demonstrated a lightweight dis-
tributed implementation of LADT using Chukwa and also demonstrated that the
tool can detect node-level disk performance anomalies by correlating the hosting

150 S. Barbhuiya et al.

node IOPS with the aggregated hosted VM IOPS. Such anomalies may arise as
a result of security attacks such as distributed denial-of-service (DDoS). We also
demonstrated that LADT introduces acceptably low overhead, while recognizing
that the implementation is amenable to optimisation along the entire path of
metrics collection, data aggregation and analysis.

We intend to conduct a detailed analysis of possible attack models of the sys-
tem. LADT can also detect CPU/memory/network related performance anom-
alies, due to the performance implications of virtualisation and resource man-
agement software stacks. We wish to explore these anomalies in more detail,
using both controlled and uncontrolled set-ups (i.e. production-level set-ups
with unseen anomalies) in our Cloud testbed. We plan to conduct a more thor-
ough analysis of LADT performance, scalability and intrusion minimisation with
respect to the hosted VMs. We are particularly interested in co-executing VMs
with diverse characteristics (e.g. CPU-intensive, I/O-intensive), and latency sen-
sitivity. Our aim is to understand whether adapting parameters such as the num-
ber of agent adaptors in the hosts, the frequency of data collection per VM in
the hosts and the number of data aggregation tasks and cores used by collectors
is necessary to keep the monitoring overhead low.

References

1. Lou, J.G., Fu, Q., Yang, S., Xu, Y., Li, J.: Mining invariants from console logs
for system problem detection. In: Proceedings of the 2010 USENIX Conference on
USENIX Annual Technical Conference, USENIXATC 2010, pp. 24–24. USENIX
Association, Berkeley, CA, USA (2010)

2. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale
system problems by mining console logs. In: Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP 2009, pp. 117–132. ACM, New
York, NY, USA (2009)

3. Tan, J., Kavulya, S., Gandhi, R., Narasimhan, P.: Light-weight black-box failure
detection for distributed systems. In: Proceedings of the 2012 Workshop on Man-
agement of Big Data Systems, MBDS 2012, pp. 13–18. ACM, New York (2012)

4. Wang, C.: Ebat: Online methods for detecting utility cloud anomalies. In: Proceed-
ings of the 6th Middleware Doctoral Symposium, MDS 2009, pp. 4:1–4:6. ACM,
New York (2009)

5. Ward, J.S., Barker, A.: Varanus: In situ monitoring for large scale cloud systems.
In: Proceedings of the 2013 IEEE International Conference on Cloud Computing
Technology and Science, CLOUDCOM 2013, Computer Society, vol. 02, pp. 341–
344. IEEE, Washington, DC (2013)

6. Kang, H., Chen, H., Jiang, G.: Peerwatch: a fault detection and diagnosis tool for
virtualized consolidation systems. In: Proceedings of the 7th International Confer-
ence on Autonomic Computing, ICAC 2010, pp. 119–128. ACM, New York (2010)

7. Jiang, M., Munawar, M.A., Reidemeister, T., Ward, P.A.: System monitoring with
metric-correlation models: problems and solutions. In: Proceedings of the 6th Inter-
national Conference on Autonomic Computing, ICAC 2009, pp. 13–22. ACM, New
York (2009)

LS-ADT: Lightweight and Scalable Anomaly Detection 151

8. Barbhuiya, S., Papazachos, Z., Kilpatrick, P., Nikolopoulos, D.: In: A Lightweight
Tool for Anomaly Detection in Cloud Data Centres, SCITEPRESS Digital Library,
pp. 343–351 (2015)

9. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-
foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2008, pp. 1099–1110.
ACM, New York (2008)

10. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do internet services fail,
and what can be done about it? In: Proceedings of the 4th Conference on USENIX
Symposium on Internet Technologies and Systems, USITS 2003, vol. 4, p. 1.
USENIX Association, Berkeley, CA, USA (2003)

11. Kumar, V., Cooper, B.F., Eisenhauer, G., Schwan, K.: iManage: policy-driven self-
management for enterprise-scale systems. In: Cerqueira, R., Campbell, R.H. (eds.)
Middleware 2007. LNCS, vol. 4834, pp. 287–307. Springer, Heidelberg (2007)

12. Pertet, S., Narasimhan, P.: Causes of failure in web applications. Technical report,
CMU-PDL-05-109 (2005)

13. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36,
41–50 (2003)

14. Rouillard, J.P.: Refereed papers: real-time log file analysis using the simple event
correlator (sec). In: Proceedings of the 18th USENIX Conference on System
Administration, LISA 2004, pp. 133–150. USENIX Association, Berkeley, CA, USA
(2004)

15. Prewett, J.E.: Analyzing cluster log files using logsurfer. In: in Proceedings of the
4th Annual Conference on Linux Clusters (2003)

16. Hansen, S.E., Atkins, E.T.: Automated system monitoring and notification with
swatch. In: Proceedings of the 7th USENIX Conference on System Administration,
LISA 1993, pp. 145–152. USENIX Association, Berkeley, CA, USA (1993)

17. Azmandian, F., Moffie, M., Alshawabkeh, M., Dy, J., Aslam, J., Kaeli, D.: Virtual
machine monitor-based lightweight intrusion detection. ACM SIGOPS Operating
Syst. Rev. 45, 38–53 (2011)

18. Rabkin, A., Katz, R.: Chukwa: a system for reliable large-scale log collection. In:
Proceedings of the 24th International Conference on Large Installation System
Administration, LISA 2010, pp. 1–15. USENIX Association, Berkeley, CA, USA
(2010)

19. Vora, M.: Hadoop-hbase for large-scale data. In: 2011 International Conference on
Computer Science and Network Technology (ICCSNT), vol. 1, pp. 601–605 (2011)

20. Sigar: https://support.hyperic.com/display/sigar (2014)
21. Virt-Top: http://virt-tools.org/about/ (2014)
22. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file

system. In: Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Sys-
tems and Technologies (MSST), MSST 2010, Computer Society, pp. 1–10. IEEE,
Washington, DC (2010)

23. Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee, M., Jevdjic, D.,
Kaynak, C., Popescu, A.D., Ailamaki, A., Falsafi, B.: Clearing the clouds: a study
of emerging scale-out workloads on modern hardware. In: Proceedings of the Sev-
enteenth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS 2012, pp. 37–48. ACM, New York (2012)

24. Dahbur, K., Mohammad, B., Tarakji, A.B.: A survey of risks, threats and vulnera-
bilities in cloud computing. In: Proceedings of the 2011 International Conference on
Intelligent Semantic Web-Services and Applications, ISWSA 2011, pp. 12:1–12:6.
ACM, New York (2011)

https://support.hyperic.com/display/sigar
http://virt-tools.org/about/

152 S. Barbhuiya et al.

25. Antunes, J., Neves, N., Verissimo, P.: Detection and prediction of resource-
exhaustion vulnerabilities. In: 19th International Symposium on Software Relia-
bility Engineering, ISSRE 2008, pp. 87–96 (2008)

26. Li, D., Jin, H., Liao, X., Zhang, Y., Zhou, B.: Improving disk i/o performance in
a virtualized system. J. Comput. Syst. Sci. 79, 187–200 (2013)

Performance and Cost Trade-Off in IaaS
Environments: A Scientific Workflow Simulation

Environment Case Study

Santiago Gómez Sáez(B), Vasilios Andrikopoulos, Michael Hahn,
Dimka Karastoyanova, Frank Leymann, Marigianna Skouradaki,

and Karolina Vukojevic-Haupt

Institute of Architecture of Application Systems, University of Stuttgart,
Stuttgart, Germany

{gomez-saez,andrikopoulos,hahn,karastoyanova,leymann,skouradaki,
vukojevic}@iaas.uni-stuttgart.de

Abstract. The adoption of the workflow technology in the eScience
domain has contributed to the increase of simulation-based applications
orchestrating different services in a flexible and error-free manner. The
nature of the provisioning and execution of such simulations makes them
potential candidates to be migrated and executed in Cloud environments.
The wide availability of Infrastructure-as-a-Service (IaaS) Cloud offer-
ings and service providers has contributed to a raise in the number of
supporters of partially or completely migrating and running their sci-
entific experiments in the Cloud. Focusing on Scientific Workflow-based
Simulation Environments (SWfSE) applications and their corresponding
underlying runtime support, in this research work we aim at empirically
analyzing and evaluating the impact of migrating such an environment
to multiple IaaS infrastructures. More specifically, we focus on the inves-
tigation of multiple Cloud providers and their corresponding optimized
and non-optimized IaaS offerings with respect to their offered perfor-
mance, and its impact on the incurred monetary costs when migrating
and executing a SWfSE. The experiments show significant performance
improvements and reduced monetary costs when executing the simula-
tion environment in off-premise Clouds.

Keywords: Workflow simulation · eScience · Iaas · Performance
evaluation · Cost evaluation · Cloud migration

1 Introduction

The introduction and adoption of the workflow technology has been widely
noticed in the last years in several domains, such as business or eScience. Reasons
that contributed towards such direction are its offered high level abstraction,
design, and runtime flexibility, and the continuous development of the neces-
sary middleware support for enabling its execution [1]. Such a technology has

c© Springer International Publishing Switzerland 2016
M. Helfert et al. (Eds.): CLOSER 2015, CCIS 581, pp. 153–170, 2016.
DOI: 10.1007/978-3-319-29582-4 9

154 S. Gómez Sáez et al.

encompassed the fulfillment of different domain-specific requirements in terms
of enforced functionalities and expected behavior of the underlying infrastruc-
ture for different types of applications. Focusing on eScience applications as the
foundations for the case study evaluation driving this work, simulation work-
flows are a well-known research area, as they provide scientists with the means
to model, provision, and execute automated and flexible long running simulation-
based experiments [2]. Ordinary simulation-based experiments typically enclose
the following characteristics: (i) the gathering and processing of large amounts
of data, (ii) the transfer and consumption at irregular time intervals of multiple
distributed simulation services during (iii) long periods of time. Due to the access
and resource consumption behaviour exhibited by such services, previous works
have targeted the migration and adaptation of such environments. These envi-
ronments can be deployed, provisioned, and executed in Cloud infrastructures in
order to optimize the provisioning and usage of computational resources, while
minimizing incurred monetary costs [3–6].

The introduction and adoption of Cloud computing in different domains has
contributed in the creation and expansion of existing and new Cloud services
and providers. Nowadays, the number of applications partially or completely
running in different Everything-as-a-Service Cloud offerings has substantially
increased. The existence of a wide variety of Cloud services offering different and
frequently optimized Quality of Service (QoS) characteristics has introduced a
broadened landscape of alternatives for selecting, configuring, and provisioning
Cloud resources. These offer the possibility to host the different application com-
ponents with special resources consumption patterns in a distributed manner,
e.g. computationally or memory intensive ones in compute optimized or memory
optimized virtualized resources, respectively. However, such a wide spectrum of
possibilities has become a challenge for application developers for deciding among
the different Cloud providers and their corresponding services.

Previous works targeted such a challenge by assisting application developers
in the tasks related to selecting, configuring, and adapting the distribution of
their application among multiple services [4,7]. Previous findings identify the
existence of multiple decision points that can influence the distribution of an
application, e.g. cost, performance, security concerns, etc. [8]. This work incorpo-
rates such findings towards the development of the necessary support for assess-
ing application developers in the selection and configuration of Infrastructure-as-
a-Service (IaaS) offerings for migrating scientific applications to the Cloud. More
specifically, the focus of this research work is to provide an overview, evaluate,
and analyze the trade-off between the performance and cost when migrating a
Scientific Workflow-based Simulation Environment (SWfSE) to different Cloud
providers and their corresponding IaaS offerings.

The contributions of this work build upon the research work presented in [9],
and can be summarized as follows:

– the selection of a set of viable and optimized IaaS offerings for migrating a
previously developed simulation environment,

– a price analysis of the previously selected IaaS offerings,

Performance and Cost Trade-Off in IaaS Environments 155

– an empirical evaluation focusing on the performance and the incurred mone-
tary costs, and

– an analysis of the performance and cost trade-off when scaling the simulation
environment workload.

The rest of this work is structured as follows: Sect. 2 motivates this work
and frame the challenges that will be addressed. The case study simulation
environment used for evaluating this work is introduced in Sect. 3. Section 4
presents the experiments on evaluating the performance and incurred costs when
migrating the simulation environment to different IaaS offerings, and discusses
our findings. Finally, Sect. 5 summarizes related work, and Sect. 6 concludes and
presents our plans for future work.

2 Motivation and Problem Statement

Simulation workflows, a well-known topic in the field of eScience, describe the
automated and flexible execution of simulation-based experiments. Common
characteristics of such simulation workflows are that they are long-running as
well as being executed in an irregular manner. However, during their execution a
wide amount of resources are typically provisioned, consumed, and released. Con-
sidering these characteristics, previous works focused on migrating and execut-
ing simulation environments in the Cloud, as Cloud infrastructures significantly
reduce infrastructure costs while coping with an irregular but heavy demand of
resources for running such experiments [5].

Nowadays there exists a vast amount of configurable Cloud offerings among
multiple Cloud providers. However, such a wide landscape has become a chal-
lenge for deciding among (i) the different Cloud providers and (ii) the multiple
Cloud offering configurations offered by such providers. We focus in this work
on IaaS solutions, as there exists a lack of Platform-as-a-service (PaaS) offer-
ings that enable the deployment and execution of scientific workflows in the
Cloud. IaaS offerings describe the amount and type of allocated resources, e.g.
CPUs, memory, or storage, and define different VM instance types within differ-
ent categories. For example, the Amazon EC21 service does not only offer VM
instances of different size, but also provides different VM categories which are
optimized for different use cases, e.g. computation intensive, memory intensive,
or I/O intensive. Similar offerings are available also by other providers, such
as Windows Azure2 or Rackspace3. The offered performance and incurred cost
significantly vary among the different Cloud services, and depend on the simu-
lation environment resource usage requirements and workload. In this work, we
aim to analyze the performance and cost trade-off when migrating to different
Cloud offerings a simulation environment developed and used as case study, as
discussed in the following section.

1 Amazon EC2: http://aws.amazon.com/ec2/instance-types/.
2 Windows Azure: http://azure.microsoft.com/en-us/.
3 Rackspace: http://www.rackspace.com/.

http://aws.amazon.com/ec2/instance-types/
http://azure.microsoft.com/en-us/
http://www.rackspace.com/

156 S. Gómez Sáez et al.

3 The OPAL Simulation Environment

A Scientific Workflow Management System (SimTech SWfMS) is being devel-
oped by the Cluster of Excellence in Simulation Technology (SimTech4), enabling
scientists to model and execute their simulation experiments using workflows
[2,10]. The SimTech SWfMS is based on conventional workflow technology which
offers several non-functional requirements like robustness, scalability, reusabil-
ity, and sophisticated fault and exception handling [11]. The system has been
adapted and extended to the special needs of the scientists in the eScience
domain [10]. During the execution of a workflow instance the system supports
the modification of the corresponding workflow model, which is then propagated
to the running instances. This allows running simulation experiments in a trial-
and-error manner.

The main components of the SimTech SWfMS shown in Fig. 1 are a modeling
and monitoring tool, a workflow engine, a messaging system, several databases,
an auditing system, and an application server running simulation services. The
workflow engine provides an execution environment for the workflows. The mes-
saging system serves as communication layer between the modeling- and moni-
toring tool, the workflow engine, and the auditing system. The auditing system
stores data related to the workflow execution for analytical and provenance pur-
poses.

The SimTech SWfMS has been successfully applied in different scenar-
ios in the eScience domain; one example is the automation of a Kinetic
Monte-Carlo (KMC) simulation of solid bodies by orchestrating several Web
services being implemented by modules of the OPAL application [13]. The
OPAL Simulation Environment is constituted by a set of services which are

Fig. 1. System overview of the SimTech Scientific Workflow Management System
(SWfMS).

4 SimTech: http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/.

http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/

Performance and Cost Trade-Off in IaaS Environments 157

Fig. 2. Simplified simulation workflows constituting the OPAL simulation environ-
ment [12].

controlled and orchestrated through a main OPAL workflow (the Opal Main
process depicted in Fig. 2). The simulation services are implemented as Web
services and divided into two main categories: (i) resource management, e.g. dis-
tributing the workload among the different servers, and (ii) wrapped simulation
packages depicted in [14,15]. The main workflow can be divided in four phases
as shown in Fig. 2: preprocessing, simulation, postprocessing, and visualization.
During the preprocessing phase all data needed for the simulation is prepared.
In the simulation phase the workflow starts the Opal simulation by invoking
the corresponding Web service. In regular intervals, the Opal simulation creates
intermediate results (snapshots). For each of these snapshots the main work-
flow initiates the postprocessing which is realized as a separate workflow (Opal
Snapshot process in Fig. 2). When the simulation is finished and all intermediate
results are postprocessed, the results of the simulation are visualized.

4 Experiments

4.1 Methodology

As shown in Fig. 2, the OPAL Simulation Environment is comprised of multi-
ple services and workflows that compose the simulation and resource manage-
ment services. The environment can be concurrently used by multiple users, as
the simulation data isolation is guaranteed through the creation of independent
instances (workflows, services, and temporal storage units) for each user’s simu-
lation request. The experiments must therefore consider and emulate the usage
of the environment by multiple users concurrently.

The migration of the simulation environment to the Cloud opens a wide set
of viable possibilities for selecting and configuring different Cloud services for
the different components of the OPAL environment. However, in this first set of

158 S. Gómez Sáez et al.

Table 1. IaaS Ubuntu Linux On-demand instances categories per provider (in January
2015) for the European (Germany - DE, and Ireland - IRL) and USA regions.

Instance
Category

Cloud Provider Instance Type vCPU Memory
(GB)

Region Price
(US$/h)

on-premise micro 1 1 EU (DE) 0.13

Micro AWS EC2 t2.micro 1 1 EU (IRL) 0.014

Windows Azure A1 1 1.75 EU (IRL) 0.06

Rackspace General 1 1 1 USA 0.06

on-premise large 2 4 EU (DE) 0.26

General AWS EC2 m3.large 2 7.5 EU (IR) 0.154

Purpose Windows Azure A2 2 3.5 EU (IR) 0.12

Rackspace General 2 2 2 USA 0.074

on-premise compute3.large 4 4 EU (DE) 0.52

Compute AWS EC2 c3.large 2 3.75 EU (IRL) 0.120

Optimized Windows Azure D2 2 7 EU (IRL) 0.23

Rackspace Compute 1-3.75 2 3.75 USA 0.1332

on-premise memory4.large 2 15 EU (DE) 0.26

Memory AWS EC2 r3.large 2 15.25 EU (IRL) 0.195

Optimized Windows Azure D3 4 14 EU (IRL) 0.46

Rackspace Memory 1-15 2 15 USA 0.2522

experiments we restrict the distribution of the simulation environment compo-
nents by hosting the complete simulation application stack in one VM, which is
made accessible to multiple users. Future investigations plan to distribute such
environment using different Cloud offerings, e.g. Database-as-a-Service (DBaaS)
for hosting the auditing databases. We therefore focus this work on driving a
performance and cost analysis when executing the OPAL Simulation Environ-
ment in on- and off-premise infrastructures, and using different IaaS offerings
and optimized configurations.

Table 1 shows the different VM categories, based on their characteristics and
offered prices by three major Cloud providers: Amazon AWS, Windows Azure,
and Rackspace. In addition to the off-premise VM instances types, multiple
on-premise VM instances types were created in our virtualized environment,
configured in a similar manner to the ones evaluated in the off-premise scenarios,
and included in such categories. The on-premise VM instances configurations
are based on the closest equivalent to the off-premise VM configurations within
each instance category. The encountered providers and offerings showed two
levels of VM categories, i.e. based on the optimization for custom use cases
(Micro, General Use, Compute Optimized, and Memory optimized), and based

Performance and Cost Trade-Off in IaaS Environments 159

on a quantitative assignment of virtualized resources. This fact must be taken
into consideration in our evaluation due to the variation in the performance,
and its impact on the final incurred costs for running simulations in different
Cloud offerings. The pricing model for the on-premise scenarios was adopted
from [16] as discussed in the following section, while for the off-premise scenarios
the publicly available information from the providers was used [17], taking into
account on-demand pricing models only.

4.2 Setup

The scientific workflow simulation environment is constituted by two main sys-
tems: the SimTech SWfMS [2,10], and a set of Web services grouping the resource
management and the KMC simulation tasks depicted in [14,15]. The former com-
prises the following middleware stack:

– an Apache Orchestration Director Engine (ODE) 1.3.5 (Axis2 distribution)
deployed on

– an Apache Tomcat 7.0.54 server with Axis2 support.
– The scientific workflow engine (Apache ODE) utilizes a MySQL server 5.5 for

workflow administration, management, and reliability purposes, and
– provides monitoring and auditing information through an Apache ActiveMQ

5.3.2 messaging server.

The resource management and KMC simulation services are deployed as Axis2
services in an Apache Tomcat 7.0.54 server. The underlying on- and off-premise
infrastructure configurations selected for the experiments are shown in Table 1.
The on-premise infrastructure aggregates an IBM System x3755 M3 server5

with an AMD Opteron Processor 6134 exposing 16 CPU of speed 2.30 GHz and
65 GB RAM. In all scenarios the previously depicted middleware components
are deployed on an Ubuntu server 14.04 LTS with 60 % of the total OS memory
dedicated to the SWfMS. Figure 3 depicts the topological representation of the
migrated to the Cloud Opal Simulation Environment. As previously introduced,
the evaluation in this work is geared towards the analysis of the performance and
cost when using different instance categories among different providers. Conse-
quently, we provisioned for the driven experiments a total of 16 Ubuntu 14.04
virtual machines, each one hosting an Apache Servlet Container, an ActiveMQ
Message Broker, and a MySQL Database Server, as the fundamental middleware
components of the Opal Simulation Environment. Such middleware components
host the different simulation Web services, JMS-based6 message events, and
auditing and engine databases, respectively (see Fig. 3).

For all evaluation scenarios a system’s load of 10 concurrent users sequentially
sending 10 random and uniformely distributed simulation requests/user was cre-
ated using Apache JMeter 2.9 as the load driver. Such a load aims at emulating
5 IBM System x3755 M3: http://www-03.ibm.com/systems/xbc/cog/x3755m3 7164/

x3755m3 7164aag.html.
6 Java Message Service Specification (JMS): http://www.oracle.com/technetwork/

java/docs-136352.html.

http://www-03.ibm.com/systems/xbc/cog/x3755m3_7164/x3755m3_7164aag.html
http://www-03.ibm.com/systems/xbc/cog/x3755m3_7164/x3755m3_7164aag.html
http://www.oracle.com/technetwork/java/docs-136352.html
http://www.oracle.com/technetwork/java/docs-136352.html

160 S. Gómez Sáez et al.

Fig. 3. Opal simulation infrastructure cloud topology - specified as depicted in [8].

a shared utilization of the simulation infrastructure. Due to the asynchronous
nature of the OPAL simulation workflow, a custom plugin in JMeter was realized
towards receiving and correlating the asynchronous simulation responses. The
latency perceived by the user for each simulation was measured in milliseconds
(ms). Towards minimizing the network latency, in all scenarios the load driver
was deployed in the same region as the simulation environment.

On-Premise Cost Model. The incurred monetary costs for hosting the sim-
ulation environment on-premise are calculated considering firstly the purchase,
maintenance, and depreciation of the server cluster, and secondly by calculating
the price of each CPU time. [16] proposes pricing models for analyzing the cost
of purchasing vs. leasing CPU time on-premise and off-premise, respectively. The
real cost of a CPU/hour when purchasing a server cluster, can be derived using
the following equations:

(1 − 1/
√

2) × ∑Y −1
T=0

CT

(1+k)T

(1 − (1/
√

2)Y) × TC
(1)

where CT is the acquisition (C0) and maintenance (C1..N) costs over the Y years
of the server cluster, k is the cost of the invested capital, and

TC = TCPU × H × µ (2)

Performance and Cost Trade-Off in IaaS Environments 161

where TCPU depicts the total number of CPU cores in the server cluster, H
is the expected number of operational hours, and µ describes the expected uti-
lization. The utilized on-premise infrastructure total cost breaks down into an
initial cost (C0) of approximately 8500$ in July 2012 and an annual maintenance
cost (C1..N) of 7500$, including personnel costs, power and cooling consumption,
etc. The utilization rate of such cluster is of approximately 80 %, and offers a
reliability of 99 %. Moreover, the server cluster runs six days per week, as one
day is dedicated for maintenance operations. Such a configuration provides 960K
CPU hours annually. As discussed in [16], we also assumed in this work a cost of
5 % on the invested capital. The cost for the off-premise scenarios was gathered
from the different Cloud providers’ Web sites.

Table 1 depicts the hourly cost for the CPUs consumed in the different on-
premise VM configurations. In order to get a better sense of the scope of the
accrued costs, the total cost calculation performed as part of the experiments
consisted of predicting the necessary time to run 1 K concurrent experiments.
Such estimation was then used to calculate the incurred costs of hosting the
simulation environment in the previously evaluated on- and off-premise scenar-
ios. The monetary cost calculation was performed by linearly extrapolating the
obtained results for the 100 requests to a total of 1 K requests. The scientific
library Numpy of Python 2.7.5 was used for performing the prediction of 1 K
simulation requests. The results of this calculation, as well as the observed per-
formance measurements are discussed in the following section.

4.3 Evaluation Results

Performance Evaluation. Figure 5 shows the average observed latency for the
different VM categories depicted in Table 1 for the different Cloud providers. The
latency perceived in the scenarios comprising the selection of Micro instances
have been excluded from the comparison due to the impossibility to finalize the
execution of the experiments. More specifically, the on-premise micro-instance
was capable of stably running approximately 80 requests (see Fig. 4(a)), while in
the off-premise scenarios the load saturated the system with 10 requests approx-
imately in the AWS EC2 and Windows Azure scenarios (see Fig. 4(b) and (c),
respectively). For the scenario utilizing Rackspace, the VM micro instance was
saturated immediately after sending the first set of 10 concurrent simulation
requests.

With respect to the remaining instance categories (General Purpose, Com-
pute Optimized, and Memory Optimized), the following performance variation
behaviors can be observed:

1. The on-premise scenario shows in average a latency of 320 K ms. over all
categories, which is 40 % higher in average than the perceived latency in the
off-premise scenarios.

2. However, the performance is not constantly improved when migrating the
simulation environment off-premise. For example, the General Purpose Win-
dows Azure VM instance shows a degraded performance of 11 %, while the

162 S. Gómez Sáez et al.

Fig. 4. Performance analysis per provider and VM category.

Windows Azure Compute Optimize VM instance shows only a slightly per-
formance improvement of 2 %, when compared with the on-premise scenario.

3. The performance when migrating the simulation environment to the Cloud
improves by approximately 56 % and 62 % for the AWS EC2 and Rackspace
General Purpose VM instances, respectively,

4. 54 %, 2 %, and 61 % for the AWS EC2, Windows Azure, and Rackspace Com-
pute Optimized VM instances, respectively, and

5. 52 %, 19 %, and 63 % for the AWS EC2, Windows Azure, and Rackspace
Memory Optimized VM instances, respectively.

When comparing the average performance improvement among the differ-
ent optimized VM instances, the Compute Optimized and Memory Optimized
instances enhance the performance by 12 % and 6 %, respectively.

Performance and Cost Trade-Off in IaaS Environments 163

Fig. 5. Average simulation latency per provider and VM category.

Figure 4 shows the perceived latency for the different requests. During the
execution of the simulation environment in the Rackspace infrastructure that the
performance highly varies when increasing the number of requests (see Fig. 4(d)).
Such performance variation decreases in the on-premise, AWS EC2, and Win-
dows Azure infrastructures (see Fig. 4(a), (b) and (c), respectively). In all sce-
narios, the network latency does not have an impact in the performance due to
the nature of our experimental setup described in the previous section.

When comparing the performance improvement among the different VM
instances categories, the Windows Azure infrastructure shows the greatest when
selecting a Compute Optimized or Memory Optimized VM instance over a Gen-
eral Purpose VM instance (see Fig. 4(c)).

164 S. Gómez Sáez et al.

Cost Comparison. Figures 6 and 7 present an overview of the costs per hour of
usage published by the Cloud providers (referring to Table 1), and the expected
costs for running 1 K experiments among 10 users. The following pricing varia-
tions can be observed:

Fig. 6. Cost comparison (in January 2015 prices).

Fig. 7. Cost comparison extrapolated to 1 K simulation requests (in January 2015
prices).

Performance and Cost Trade-Off in IaaS Environments 165

1. The provisioning of on-premise resources shows in average an increase of 65 %,
55 %, 69 % of the price, for the micro, general purpose, and compute optimized
VM instances, respectively. However,

2. the provisioning of on-premise memory optimized instances incurs in average
a 16 % less monetary costs.

3. Amazon EC2 instances are in average 36 % low-priced, when comparing it to
the on-premise costs and the remaining of the public Cloud services considered
in this work.

4. The incurred costs of hosting the simulation environment on-premise is 25$
in average.

5. When migrating the simulation infrastructure off-premise, the cost descends
in average 80 %, 12 %, and 94 % when utilizing the AWS EC2, Windows
Azure, and Rackspace IaaS services, respectively.

6. When comparing the incurred costs among the different VM categories, the
Memory Optimized categories are in average 61 % and 47 % more expensive
when compared to the Compute Optimized and General Purpose VM cate-
gories, respectively.

7. Among the different off-premise providers, Windows Azure is in average 900 %
more expensive for running the simulation environment.

4.4 Discussion

The experiments driven as part of this work have contributed to derive and
report a bi-dimensional analysis focusing on the selection among multiple IaaS
offerings to deploy and run the OPAL Simulation Environment. With respect to
performance, it can be concluded that:

1. The migration of the simulation environment to off-premise Cloud services
has an impact on the system’s performance, which is beneficial or detrimental
depending on the VM provider and category.

2. The selection of Micro VM instances did not offer an adequate availability
to the simulation environment in the off-premise scenarios. Such a negative
impact was produced by the non-automatic allocation of swap space for the
system’s virtual memory.

3. When individually observing the performance within each VM category, the
majority of the selected off-premise IaaS services improved the performance of
the simulation environment. However, the General Purpose Windows Azure
VM instances showed a degradation of the performance when compared to
the other IaaS services in the same category.

4. The perceived by the user latency was in average reduced when utilizing
Compute Optimized VM instances. Such an improvement is in line with the
compute intensity requirements of the simulation environment.

The cost analysis derived the following conclusions:

1. There exists a significant monetary cost reduction when migrating the simu-
lation environment to off-premise IaaS Cloud services.

166 S. Gómez Sáez et al.

2. Despite of the improved performance observed when running the simula-
tion environment in the Compute Optimized and Memory Optimized VM
instances, scaling the experiments to 1 K simulation requests produces in an
average increase of 9 % and 61 % with respect to the General Purpose VM
instances cost, respectively.

3. The incurred monetary costs due to the usage of Windows Azure services tend
to increase when using optimized VM instances, i.e. Compute Optimized and
Memory Optimized. Such behavior is reversed for the remaining off-premise
and on-premise scenarios.

4. Due to the low costs demanded for the usage of Rackspace IaaS services
(nearly 40 % less in average), the final price for running 1 K simulations is
considerably lower than the other off-premise providers and hosting the envi-
ronment on-premise.

The previous observations showed that the IaaS services provided by Rackspace
are the most suitable for migrating our OPAL Simulation Environment. How-
ever, additional requirements may conflict with the migration decision of further
simulation environments, e.g. related to data privacy and transfer between EU
and USA regions, as Rackspace offers a limited set of optimized VMs in their
European region.

5 Related Works

We consider our work related to the following major research areas: performance
evaluation of workflow engines, workflow execution in the Cloud, and migration
and execution of scientific workflows in the Cloud.

When it comes to evaluating the performance of common or scientific work-
flow engines, a standardized benchmark is not yet available. A first step towards
this direction is discussed in [18], but propose approach is premature and could
not be used as the basis for this work. Beyond this work, performance evaluations
are usually custom to specific project needs. Specifically for BPEL engines not
much work is currently available. For example [19] summarize nine approaches
that evaluate the performance of BPEL engines. In most of the cases, work-
flow engines are benchmarked with load tests with a workload consisting of 1–4
workflows. Throughput and latency are the metrics most frequently used.

There are only few Cloud providers supporting the deployment and execu-
tion of workflows in a Platform-as-a-Service (PaaS) solution. The WSO2 Stratos
Business Process Server [20] and Business Processes on the Cloud is offered by
IBM Business Process Manager7. These offer the necessary tools and abstraction
levels for developing, deploying and monitoring workflows in the Cloud. How-
ever, such services are optimized for business tasks, rather than for supporting
simulation operations.

Scientific Workflow Management Systems are exploiting business workflows
concepts and technologies for supporting scientists towards the use of scientific

7 http://www-03.ibm.com/software/products/en/business-process-manager-cloud.

http://www-03.ibm.com/software/products/en/business-process-manager-cloud

Performance and Cost Trade-Off in IaaS Environments 167

applications [2,21]. Zhao et al. [6] develop a service framework for integrating
Scientific Workflow Management Systems in the Cloud to leverage from the
scalability and on-demand resource allocation capabilities. The evaluation of
their approach mostly focuses on examining the efficiency of their proposed PaaS
based framework.

Simulation experiments are driven in the scope of different works [14,15].
Later research efforts focused on the migration of simulations to the Cloud. Due
to the diverse benefits of Cloud environments the approaches evaluate the migra-
tion with respect to different scopes. The approaches that study the impact of
migration to the performance and incurred monetary costs is considered more rel-
evant to our work. In [4] the authors examine the performance of X-Ray Crysta-
lography workflows executed on the SciCumulus middleware deployed in Amazon
EC2. Such workflows are CPU-intensive and require the execution of high paral-
lel techniques. Likewise, in [3] the authors compare the performance of scientific
workflows migrated from Amazon EC2 to a typical High Performance Computing
system (NCSA’s Abe). In both approaches the authors conclude that migration
to the Cloud can be viable but not equally efficient to High Performance Com-
puting environments. However, Cloud environments allow the provisioning of
specific resources configurations irregularly during the execution of simulation
experiments [22]. Moreover, the performance improvement observed in Cloud
services provide the necessary flexibility for reserving and releasing resources
on-demand while reducing the capital expenditures [23]. Research towards this
direction is a fertile field. Juve et al. [24] execute nontrivial scientific workflow
applications on grid, public, and private Cloud infrastructures to evaluate the
deployments of workflows in the Cloud in terms of setup, usability, cost, resource
availability, and performance. This work can be considered complementary to our
approach, although we focused on investigating further public Cloud providers
and took into account the different VM optimization categories.

Further Cloud application migration assessment frameworks, such as the
CloudSim [25] or CloudMIG [26], focus on estimating the benefit of using Cloud
resources under different configurations. However, the vast majority rely on the
usage of simulation techniques, which require the definition of the corresponding
behavioral model for each Cloud. Moreover, such approaches solely target the
application’s QoS dimension, while in our work we aim at bridging and compar-
ing the trade-off between the observed performance and the incurred monetary
costs.

6 Conclusion and Future Work

Simulation workflows have been widely used in the eScience domain due to their
easiness to model, and because of their flexible and automated runtime proper-
ties. The characteristics of such workflows together with the usage patterns of
simulation environments have made these type of systems suitable to profit from
the advantages brought by the Cloud computing paradigm. The existence of a
vast amount of Cloud services together with the complexity introduced by the

168 S. Gómez Sáez et al.

different pricing models have become a challenge to efficiently select which Cloud
service to host the simulation environment. The main goal of this investigation is
to report the performance and incurred monetary cost findings when migrating
the previously realized OPAL simulation environment to different IaaS solutions.

A first step in this experimental work consisted of selecting a set of potential
IaaS offerings suitable for our simulation environment. The result of such selec-
tion covered four major deployment scenarios: (i) in our on-premise infrastruc-
ture, and in (ii) three off-premise infrastructures (AWS EC2, Windows Azure,
and Rackspace). The selection of the IaaS offerings consisted of evaluating the
different providers and their corresponding optimized VM instances (Micro,
General Purpose, Compute Optimized, and Memory Optimized). The simulation
environment was migrated and its performance was evaluated using an artificial
workload. A second step in our analysis consisted on extrapolating the obtained
results towards estimating the incurred costs for running the simulation envi-
ronment on- and off-premise. The analyses showed a beneficial impact in the
performance and a significant reduction of monetary costs when migrating the
simulation environment to the majority of off-premise Cloud offerings.

The efforts in this work build towards the assessment for the migration of
Cloud applications to the Cloud, as defined in [27]. More specifically, in this
work we cover the subset of tasks relevant to the selection and configuration
of Cloud resources to distribute the application, w.r.t. their performance and
the incurred monetary costs. Despite our efforts towards analyzing and finding
the most efficient Cloud provider and service to deploy and run our simulation
environment, our experiments solely focused on IaaS offerings.

Future works focus on analyzing further service models, i.e. Platform-as-
a-Service (PaaS) or Database-as-a-Service (DBaaS), as well as evaluating the
distribution of the different components that constitute the simulation environ-
ment among multiple Cloud offerings. Investigating different autoscaling tech-
niques and resources configuration possibilities is also part of future work, e.g.
feeding the application distribution system proposed in [28] with such empirical
observations.

Acknowledgements. The research leading to these results has received funding from
the FP7 EU project ALLOW Ensembles (600792), the German Research Foundation
(DFG) within the Cluster of Excellence in Simulation Technology (EXC310), and the
German DFG project BenchFlow (DACH Grant Nr. 200021E-145062/1).

References

1. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice
Hall, Upper Saddle River (2000)

2. Sonntag, M., Karastoyanova, D.: Next generation interactive scientific experi-
menting based on the workflow technology. In: Alhajj, R., Leung, V., Saif, M.,
Thring, R. (eds.) Proceedings of the 21st IASTED International Conference on
Modelling and Simulation (MS 2010). ACTA Press (2010)

Performance and Cost Trade-Off in IaaS Environments 169

3. Juve, G., Deelman, E., Vahi, K., Mehta, G., Berriman, B., Berman, B.,
Maechling, P.: Scientific workflow applications on Amazon EC2. In: 2009 5th IEEE
International Conference on E-Science Workshops, pp. 59–66 (2009)

4. de Oliveira, D., Ocaña, K., Ogasawara, E.S., Dias, J., Baião, F.A., Mattoso, M.:
A performance evaluation of X-Ray crystallography scientific workflow using Sci-
Cumulus. In: Liu, L., Parashar, M. (eds.) IEEE CLOUD, pp. 708–715. IEEE

5. Vukojevic-Haupt, K., Karastoyanova, D., Leymann, F.: On-demand provisioning
of infrastructure, middleware and services for simulation workflows. In: 2013 IEEE
6th International Conference on Service-Oriented Computing and Applications
(SOCA), pp. 91–98. IEEE (2013)

6. Zhao, Y., Li, Y., Raicu, I., Lu, S., Lin, C., Zhang, Y., Tian, W., Xue, R.: A service
framework for scientific workflow management in the cloud. In: IEEE Transactions
on Services Computing, p. 1 (2014)

7. Gómez Sáez, S., Andrikopoulos, V., Leymann, F., Strauch, S.: Design support
for performance aware dynamic application (Re-) distribution in the cloud. IEEE
Trans. Serv. Comput. 8, 225–239 (2014)

8. Andrikopoulos, V., Gómez Sáez, S., Leymann, F., Wettinger, J.: Optimal dis-
tribution of applications in the cloud. In: Jarke, M., Mylopoulos, J., Quix, C.,
Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014.
LNCS, vol. 8484, pp. 75–90. Springer, Heidelberg (2014)

9. Gómez Sáez, S., Andrikopoulos, V., Hahn, M., Karastoyanova, D., Leymann, F.,
Skouradaki, M., Vukojevic-Haupt, K.: Performance and cost evaluation for the
migration of a scientific workflow infrastructure to the cloud. In: Proceedings of the
5th International Conference on Cloud Computing and Service Science (CLOSER
2015), pp. 1–10. SciTePress (2015)

10. Sonntag, M., Hahn, M., Karastoyanova, D.: Mayflower - explorative modeling of
scientific workflows with BPEL. In: Proceedings of the Demo Track of the 10th
International Conference on Business Process Management (BPM 2012), CEUR
Workshop Proceedings, 2012, pp. 1–5. CEUR Workshop Proceedings (2012)

11. Görlach, K., Sonntag, M., Karastoyanova, D., Leymann, F., Reiter, M.: Con-
ventional workflow technology for scientific simulation. In: Yang, X., Wang, L.,
Jie, W. (eds.) Guide to e-Science, pp. 323–352. Springer, London (2011)

12. Sonntag, M., Karastoyanova, D.: Model-as-you-go: an approach for an advanced
infrastructure for scientific workflows. J. Grid Comput. 11, 553–583 (2013)

13. Sonntag, M., Hotta, S., Karastoyanova, D., Molnar, D., Schmauder, S.: Using
services and service compositions to enable the distributed execution of legacy
simulation applications. In: Abramowicz, W., Llorente, I.M., Surridge, M.,
Zisman, A., Vayssière, J. (eds.) ServiceWave 2011. LNCS, vol. 6994, pp. 242–253.
Springer, Heidelberg (2011)

14. Binkele, P., Schmauder, S.: An atomistic monte carlo simulation of precipitation
in a binary system. Zeitschrift für Metallkunde 94, 858–863 (2003)

15. Molnar, D., Binkele, P., Hocker, S., Schmauder, S.: Multiscale modelling of nano
tensile tests for different Cu-precipitation states in α-Fe. In: Proceedings of the 5th
International Conference on Multiscale Materials Modelling, pp. 235–239 (2010)

16. Walker, E.: The real cost of a CPU hour. IEEE Comput. 42, 35–41 (2009)
17. Andrikopoulos, V., Song, Z., Leymann, F.: Supporting the migration of applica-

tions to the cloud through a decision support system. In: 2013 IEEE Sixth Inter-
national Conference on Cloud Computing (CLOUD), pp. 565–572. IEEE (2013)

170 S. Gómez Sáez et al.

18. Skouradaki, M., Roller, D.H., Frank, L., Ferme, V., Pautasso, C.: On the road to
benchmarking BPMN 2.0 workflow engines. In: Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering ICPE 2015, pp. 1–4. ACM
(2015)

19. Röck, C., Harrer, S., Wirtz, G.: Performance benchmarking of BPEL engines: a
comparison framework, status quo evaluation and challenges. In: 26th Interna-
tional Conference on Software Engineering and Knowledge Engineering (SEKE),
Vancouver, Canada, pp. 31–34 (2014)

20. Pathirage, M., Perera, S., Kumara, I., Weerawarana, S.: A multi-tenant architec-
ture for business process executions. In: Proceedings of the 2011 IEEE International
Conference on Web Services, ICWS 2011, pp. 121–128. IEEE Computer Society,
Washington, DC, USA (2011)

21. Sonntag, M., Hotta, S., Karastoyanova, D., Molnar, D., Schmauder, S.: Workflow-
based distributed environment for legacy simulation applications. In: ICSOFT,
vol. 1, pp. 91–94 (2011)

22. Strauch, S., Andrikopoulos, V., Bachmann, T., Karastoyanova, D., Passow, S.,
Vukojevic-Haupt, K.: Decision support for the migration of the application data-
base layer to the cloud. In: 2013 IEEE 5th International Conference on Cloud
Computing Technology and Science (CloudCom), vol. 1, pp. 639–646. IEEE (2013)

23. Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: A
performance analysis of EC2 cloud computing services for scientific computing. In:
Avresky, D.R., Diaz, M., Bode, A., Ciciani, B., Dekel, E. (eds.) Cloud Computing.
LNICST, vol. 34, pp. 115–134. Springer, Heidelberg (2010)

24. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Charac-
terizing and profiling scientific workflows. Future Gener. Comput. Syst. 29, 682–
692 (2013)

25. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and eval-
uation of resource provisioning algorithms. Softw. Pract. Experience 41, 23–50
(2011)

26. Frey, S., Hasselbring, W.: The cloudmig approach: model-based migration of soft-
ware systems to cloud-optimized applications. Int. J. Adv. Softw. 4, 342–353 (2011)

27. Darsow, A., Karastoyanova, D., Andrikopoulos, V., Leymann, F.: CloudDSF –
the cloud decision support framework for application migration. In: Villari, M.,
Zimmermann, W., Lau, K.-K. (eds.) ESOCC 2014. LNCS, vol. 8745, pp. 1–16.
Springer, Heidelberg (2014)

28. Gómez Sáez, S., Andrikopoulos, V., Wessling, F., Marquezan, C.C.: Cloud adap-
tation and application (Re-) distribution: bridging the two perspectives. In: Pro-
ceedings of the First International Workshop on Engineering Cloud Applications
and Services (EnCASE 2014), pp. 163–172. IEEE Computer Society Press (2014)

A Practical Evaluation of Searchable Encryption
for Data Archives in the Cloud

Christian Neuhaus1(B), Frank Feinbube1, Daniel Janusz2, and Andreas Polze1

1 Operating Systems and Middleware Group, Hasso Plattner Institut,
Potsdam, Germany

{christian.neuhaus,frank.feinbube,andreas.polze}@hpi.de
2 DBIS Group, Humboldt-Universität Zu Berlin, Berlin, Germany

janusz@informatik.hu-berlin.de

Abstract. Traditional encryption schemes can effectively ensure the
confidentiality of sensitive data stored on cloud infrastructures. Unfor-
tunately, they also prevent most operations on the data such as search
by design. As a solution, searchable encryption schemes have been pro-
posed that provide keyword-search capability on encrypted content. In
this paper, we evaluate the practical usability of searchable encryp-
tion schemes and analyze the tradeoff between performance, function-
ality and security. We present a prototypical implementation of such a
scheme embedded in a document-oriented database, report on perfor-
mance benchmarks under realistic conditions and analyze the threats to
data confidentiality and corresponding countermeasures.

Keywords: Keyword search · Searchable encryption · Cloud
computing · Performance · Security · Data confidentiality

1 Introduction

Data sharing is essential to companies and government services alike. A strik-
ing example is healthcare, where doctor’s offices, hospitals, and administrative
institutions rely on exchange of information to offer the best level of care and
optimizing cost efficiency at the same time. For scenarios like these, moving to
the cloud solves many problems: The scalability of the cloud makes resources sim-
ple to provision and extend and centralization of data improves the availability
and helps to avoid information silos. Most importantly, cloud computing helps
to reduce IT expenses – an effect most welcome in healthcare. However, con-
cerns about data confidentiality still prevent the use of cloud in many domains.
Traditional encryption is of little help: It effectively protects the privacy of data
but also prevents important operations such as search. While efficient encryp-
tion schemes that enable generic operations on encrypted data are still elusive,
searching over encrypted data is possible: searchable encryption schemes enable
keyword search without disclosing these keywords to the cloud operator. The
query performance of such schemes cannot match unencrypted operation, but
c© Springer International Publishing Switzerland 2016
M. Helfert et al. (Eds.): CLOSER 2015, CCIS 581, pp. 171–192, 2016.
DOI: 10.1007/978-3-319-29582-4 10

172 C. Neuhaus et al.

may well be suitable for areas of application such as electronic health records,
where data has to be retrieved from a cloud-hosted archive.

In this paper1, we investigate the trade-off between performance and security
when using searchable encryption schemes for data archives in the cloud. We
make the following contributions:

(1) We report on an architecture for integrating Gohs Z-IDX searchable encryp-
tion scheme [1] into a database and present a practical implementation by
the example of MongoDB.

(2) We discuss the overhead introduced by encrypted search and provide bench-
mark results on the performance of using Gohs scheme for encrypted search
with MongoDB. These benchmarks give a meaningful account of the practi-
cal performance and usability of searchable encryption in databases.

(3) We give a qualitative assessment of the security implications of using search-
able encryption schemes for cloud data archives using attack-defense-tree
models. This assessment is generic to searchable encryption and not limited
to Goh’s scheme. We also discuss mitigation strategies to manage threats by
statistical inference attacks.

2 Related Work

In this section, we review related work in the field of private database outsourcing
and searchable encryption.

Private Database Outsourcing. Outsourcing private data to a remote database
inherently bears the risk of exposure of confidential information – through eaves-
dropping, data theft or malfunctions. The key challenge is to protect private data
from being accessed by potentially untrusted cloud providers. In this paper,
we focus on technologies that protect data within a database. While encryp-
tion is the basic mechanism to ensure data confidentiality, providing an efficient
database-as-a-service that can run on encrypted data is a challenging task. Sev-
eral recent approaches try to offer solutions for outsourcing private databases.

TrustedDB [2] and Cipherbase [3] offer SQL database functionalities that
support the full generality of a database system while providing high data confi-
dentiality. Both systems use a secure co-processor for performing operations on
the cloud server side. The drawbacks of such approaches are at least twofold:
On one hand all clients have to trust the secure co-processor with their private
data. On the other hand it is not clear how the co-processor scales up in the
number of clients connected and the amount of data processed. In CryptDB [6],
the authors apply an layered approach that makes use of several cryptographic
schemes, where values are only decrypted to a level that is required to complete
the query.

1 This paper is an extended version of the article Secure Keyword Search over Data
Archives in the Cloud presented at the 5th International Conference on Cloud Com-
puting and Services Science in Lisbon, Portugal in 2015.

A Practical Evaluation of Searchable Encryption for Data Archives 173

Another class of approaches aims at processing encrypted data directly with-
out any decryption. To this day, there are no efficient encryption schemes that
enable fully encrypted operation of a DBMS (database management system)
without loss of functionality. An early approach for keyword search on encrypted
data was published by [4]. An approach for securely processing exact match
queries on database cells was proposed by [5]. However, most DBMS rely on other
common operations such as range and aggregation queries as well as updates,
inserts and deletes. Existing approaches cannot efficiently process this type of
queries on encrypted data. A common solution is to reduce data confidential-
ity to gain query efficiency, e.g., order preserving encryption [7] may reveal the
underlying data order. Most methods can be attacked by statistical analysis
of the encrypted data or the access patterns. Another solution is to lose some
query efficiency in order to guarantee confidentiality. While (fully) homomorphic
encryption schemes as proposed by Rivest et al. [8] in fact allow the encrypted
computation of any circuit (and therefore computer program), current construc-
tions (see [9,10]) are yet too inefficient for practical application.

Traditional databases use indices for efficient record search. The existing
methods have been adapted to work on encrypted data [11]. Private indexing
[12] enable an untrusted server to evaluate obfuscated range queries with limited
information leakage. Wang et al. [13] propose a secure B+-Tree to efficiently
process any type of database query. Encrypted index-based approaches do not
rely on any trusted third parties or trusted hardware. This seems to be a practical
and secure method to search in encrypted databases. The next section discusses
searchable encryption.

Searchable Encryption. Searchable encryption schemes provide one or many
cryptographic data structures called search indices that allow encrypted key-
word search for exact keyword matches. A good overview of searchable encryp-
tion schemes is given in [14]. In general, searchable encryption schemes do not
replace symmetric encryption schemes but provide the search capability through
additional data structures – the index (see Fig. 1). To provide keyword search

Fig. 1. Searchable encryption: conceptual view.

174 C. Neuhaus et al.

on data, a list of keywords is extracted from the plaintext. This keyword list
is used to create a secure index using a dedicated secret key for the searchable
encryption scheme. The data is encrypted separately (usually symmetric block
ciphers such as AES) and uploaded stored alongside the encrypted index in a
remote location. To search over the uploaded data in the remote location, a
search token is generated for a search keyword using the secret key. This token
is sent to the remote server. The remote sever can now determine whether the
token matches a search index without being able to learn the keyword.

Searchable encryption schemes can be distinguished between Symmetric
Searchable Encryption (SSE) and Asymmetric Searchable Encryption (ASE)
schemes. SSE schemes use the same secret key both for insertion and search-
ing of data. In general, they are more efficient than ASE schemes and provide
stronger security guarantees. They were first introduced by [4], where the authors
provide a linear search capability over ciphertext – one of the few schemes that
does not make use of indices. To speed up search, the scheme of Goh [1] uses
indices that are created separately for every searchable data item, which enables
efficient update. Improved search time can achieved by using an inverted index
(see e.g. [15]). A scheme that enables both efficient updates and optimal search
time (linear in the number of documents that contain the keyword) is offered in
a recent construction by Kamara et al. [16].

In contrast, ASE schemes use different keys for insertion and searching
of data, which provides greater flexibility. However, the constructions of ASE
schemes are generally less efficient than those of SSE schemes and provide weaker
security guarantees. The first construction was given by Boneh et al. [17] and is
based on elliptic curve cryptography. Improved constructions were introduced in
[18]. Unfortunately, ASE are generally susceptible to dictionary attacks against
search tokens (see [19]). This limits the application of ASE schemes to use case
where keywords are either hard to guess or the keyword attack is tolerable.

3 The Z-IDX Scheme

For our implementation, we chose the Z-IDX searchable encryption scheme by
[1]. As a symmetric scheme, it is not susceptible to dictionary attacks on search
tokens like ASE schemes (see Sect. 2). This scheme offers several desirable prop-
erties:

– Maturity: While the field of research in searchable encryption schemes is
rather young, Goh’s scheme was one of the earliest proposed. In contrast
to more recent constructions, the scheme passed several years without the
discovery of security flaws.

– Per-document Indexing: The Z-IDX scheme creates per-document indices.
This property facilitates integration into existing DBMS.

– Standard Cryptographic Primitives: The cryptographic mechanisms
used by Z-IDX are widely available in software libraries for most platforms.

In this section, we give an overview of Bloom Filters and how they are used
to construct Gohs Z-IDX scheme.

A Practical Evaluation of Searchable Encryption for Data Archives 175

3.1 Bloom Filters

The encrypted indices in Z-IDX make use of space-efficient probabilistic data
structures called bloom filters [20]. For a set of elements E = {e1, ..., en}, the set
membership information is encoded in a bit array of length l. A number of r hash
functions h1, ..., hr is selected that map every element of E to a number ∈ [1; l].
To store the set membership of an element ex in the filter, its hash value from
every hash function h1, ..hr is calculated. These hash values h1(ex), ..., hr(ex) are
used as index positions in the filter bit array. At every referenced index position,
the bit in the array is set to 1. To test the set membership for an element ey, the
procedure is similar: All hash values h1(ey), ..., hr(ey) are calculated and used as
index positions in the filter bit array. If all positions in the array pointed to by
the hash function values are set to 1, the element is assumed to be in the set.

This design of bloom filters can produce false positives: If all corresponding
array positions of an element ez were set to 1 by insertion of other elements, the
bloom filter produces a false positive for ez. On the other hand, false negatives do
not occur. The false positive rate of a bloom filter can be influenced by adjusting
the size of the bit array and the number of hash functions used.

3.2 Gohs Secure Indexes

Based on bloom filters, Goh constructs a secure index scheme called Z-IDX [1]
that allows encrypted keyword search. Like similar schemes, it does not replace
other means of encryption but provides additional data structures for its func-
tionality (see Fig. 1). The scheme builds upon the abstraction of documents,
which are the units of granularity for keyword search. Every document di ∈ D
can contain a number of keywords w ∈ W and is identified by a unique ID i ∈ I.
Authorized clients hold a secret key Kpriv. The scheme is then defined by the
following operations:

– Keygen(s) outputs a secret key Kpriv, where s is a variable security parameter.
– Trapdoor(Kpriv, w) outputs a trapdoor Tw for keyword w using the secret key

Kpriv.

Fig. 2. Example of a Bloom Filter with a 32-bit array.

176 C. Neuhaus et al.

– BuildIndex(d,Kpriv) outputs an encrypted index for document d using the
secret key Kpriv.

– SearchIndex(Tw, d) takes a trapdoor for keyword w and tests for a match in
the index of document d. If d contains w it outputs 1 and 0 otherwise.

Additionally, a pseudorandom function f : {0, 1}∗ × {0, 1}s → {0, 1}m is
required.

For a precise formal definition, e.g. with respect to bit string lengths, please
see the original publication [1]. In this presentation of the scheme, we also omit
the step of adding blinding bits to the filter.

To set up the scheme, security parameter s, a number of hash functions r and
a index size m are chosen (for choice of m and r, see Sect. 5.2). Then, a secret key
is generated by the Keygen operation, so that Kpriv = (k1,, kr) ← {0, 1}sr.

To create a search index for a document d with a set of keywords Wd =
{w1, ..., wx} ⊂ W , BuildIndex operation first creates an empty bloom fil-
ter with a bit array of length m. First, a trapdoor Tw is calculated for
every keyword w using the Trapdoor operation, so that Tw = (tw1 , ..., twr

) =
(f(w, k1), ..., f(w, kr)). This results in a set of trapdoors: Using the set of trap-
doors Tw1 , ..., Twx

and the id of the document d, the set of codewords Cw1 , ..., Cwx

is calculated. For every trapdoor Tw the codeword Cw is calculated so that
Cw = (cw1 , ..., cwr

) = (f(id, tw1), ..., f(id, twr
)). Then, the filter of the document

is populated by setting every bit position ti 1 that is referenced by the trapdoors:
For every trapdoor Cw, the bits at positions cw1 , ..., cwr

are set to 1 (see Fig. 2).
To query a collection of documents for a keyword w, the trapdoor Tw is

calculated using the Trapdoor operation and sent to the server. To test whether
a document contains the keyword, the server calculates the codeword Cw using
the trapdoor Tw and the document id. Using the trapdoor Cw the server tests
whether all bit at positions cw1 , ..., cwr

are set to 1. If so, the document is sent
back to the client as a match. This process is applied to all documents in the
collection. In the Z-IDX scheme, a separate index data structure is created per
document. This accounts for a search time that is linear over the number of
documents, but facilitates the administration of secure indices, as they can be
created stored alongside the documents. This makes the addition or removal of
documents a simple operation.

From a more technical perspective, the above steps can be described and
implemented using a keyed hash function such as HMAC-SHA1 [21], which is
also used in our implementation (see Sect. 4). In a first step, a keyword w is
hashed with all elements of the secret key k1, ..., kr to obtain the trapdoor vector.
The elements of the trapdoor vector are each hashed again together with the
document identifier id to obtain the codeword vector. Each of the codeword
vector elements is used as an index position to set a bit in the bloom filter bit
array to 1.

4 Searchable Encryption in MongoDB

To evaluate the practical usability of searchable encryption, we created a pro-
totypical implementation of Z-IDX scheme and integrated it into the document

A Practical Evaluation of Searchable Encryption for Data Archives 177

oriented database MongoDB. In this section, we explain why we chose Mon-
goDB, present the architecture of our prototype, introduce new commands for
secure keyword search and present implementation details.

4.1 Selection of a Database System

While the searchable encryption scheme Z-IDX can be used standalone, its prac-
tical usability and performance under realistic workloads can only be evaluated
if the scheme is used in conjunction with other means of encryption and data
handling. To do this, we integrated Z-IDX into an existing DBMS. The choice of
a DBMS has to correspond to the basic properties of the Z-IDX scheme – exact
keyword matching as a search mechanism and the notion of documents as the
basic units of granularity for searching.

To select a DBMS, we considered different database paradigms: The most
widespread type of databases are relational databases – most of them sup-
porting the Structured Query Language (SQL). This type of database has a long
development history and offers features such as transactional security, cluster-
ing techniques and master-slave-configurations to ensure availability. The SQL
language allows detailed queries, where specific data fields in the database can
be selected and returned using complex search criteria based on structure or
data field values and logical combinations thereof. The expressive power of the
SQL language goes far beyond simple keyword search. It is therefore difficult
to isolate queries that can make use of searchable encryption. Additionally, the
fine-grained selection of data fields does not correspond well to the document-
oriented approach of searchable encryption.

Besides relational databases, other database types have been developed under
the umbrella term of NoSQL databases. A very minimalistic approach are key-
value stores (e.g. Redis, Dynamo): They omit many of the features known from
SQL databases in favor of simplicity and performance. However, the complex-
ity of data structures is severely limited. This makes storing documents and
associated indices difficult or impossible.

Document-oriented databases, however, are well-suited to implement search-
able encryption. As the name suggests, data is organized in containers called
documents as opposed to tables in relational databases. These documents are the
units of granularity for search operations and can contain complex data struc-
tures without adhering to a schema definition. As this approach corresponds well
to the properties of searchable encryption schemes, we chose to add searchable
encryption features to the open-source document-oriented database MongoDB.

Floratou et al. [22] compare MongoDB to Microsoft SQL Server. They show
that relational databases may have better query performance. However, Mon-
goDB is optimized for storing data records across multiple machines and offers
efficient load balancing, which makes it more suitable for cloud-based applica-
tions. Furthermore, the increasing use of NoSQL databases in real world appli-
cations lead to an increasing demand for enhancing these databases with privacy
technologies such as searchable encryption.

178 C. Neuhaus et al.

4.2 Extended MongoDB Commands

As MongoDB is a document-oriented database, a document is the primary unit
of abstraction for organization of data. A document does not adhere to a fixed
schema and can store data in a JSON-like fashion of field-value pairs. Like
in JSON, documents support a number of primitive data types (e.g. integer,
String) and a data structures like arrays. All of these data structures can be
nested. In addition to standard JSON, MongoDB can also store binary data
in fields. Documents in MongoDB are stored in collections, these, in turn, are
stored in a database. The prime commands for data handling in collections are
insert() and find(). They accept a document as a parameter. To make search-
able encryption explicitly available, we introduced two additional commands:

– The insertSecure() can be used to insert documents into a collection using
searchable encryption. Using this command, every array of strings in the doc-
ument is removed and its content used as keywords. The contained strings are
inserted into a Z-IDX filter or encrypted search. Every other datatype remains
untouched.

– The findSecure() command triggers encrypted search over all documents of
a collection. As a parameter, it takes a keyword embedded in a document,
e.g.: findSecure({keyword: ‘foo’})

4.3 Architecture and Implementation

We created a prototypical implementation of the Z-IDX scheme as a separate
C++ translation unit that can easily be integrated with the existing code of Mon-
goDB. The C++ module contains methods for the computation of trapdoors,
codewords and the resulting filters as well as helper code to load cryptographic
key information for the scheme from files. In our implementation, we omitted
the step of adding blinding bits to the filter data structures of Z-IDX for better
performance of the scheme. The security implications of the step are discussed
in Sect. 5.1.

To integrate the implementation of Z-IDX with MongoDB, modifications
were made to booth the server and the command line client. An overview of
the architecture of MongoDB server and client is given in Fig. 3. In theory, it
is possible to add searchable encryption to MongoDB modifying only the client
but not the server. However, this leads to a disproportionately high increase in
communication overhead as per-document operations would have to be carried
out on the client, each requiring the transmission of the documents Z-IDX data
structures.

The MongoDB command line client is comprised of a JavaScript shell that
uses a core driver written in C++. The client connects to the server, which is also
written in C++. To provide searchable encryption functionality, we implemented
the Z-IDX scheme (see Sect. 3) and additional helper functions in a separate
module that is compiled both into the server and the C++ driver of the client
(Z-IDX Module, see Fig. 3). As suggested by Goh, we apply data compression

A Practical Evaluation of Searchable Encryption for Data Archives 179

Fig. 3. Architecture of MongoDB server and client.

(zlib) to the index data structures before transmission over the network. As these
data structures are very sparse, the compression works very effectively and the
additional compute overhead is easily outweighed by reduced transmission times
in most settings.

To integrate the functionality, we made the following modifications: The
JavaScript shell is modified to read the secret key information from a file,
which has to be passed as a parameter at startup. If a secure search or insert
request is identified, the request is modified to include the secret key informa-
tion. This information is stored in a dedicated zidx field in the query. After
this, the request is passed to the clients’ C++ driver. The C++ driver is mod-
ified to recognize queries that contain Z-IDX key information injected by the
JavaScript shell. For inserts, a Z-IDX filter is built and populated with the con-
tained strings of every string array in the document. Subsequently, the string
arrays and the key information are removed and the command is passed on to
the server. For a search query, the C++ driver uses the key to compute trap-
doors for every search keyword. The trapdoors are inserted, the key is removed
and the query is passed on to the server. The MongoDB server is modified to
process the search queries. For the trapdoors of a search query, the server gener-
ates the corresponding codewords using the document id. These codewords are
then checked against the bloom filters of a document to test for a match. This
architecture and implementation makes searchable encryption available without
affecting non-encrypted use of the database, as regular MongoDB commands are
processed as expected.

5 Performance Evaluation

The use of encrypted search functionality introduces an overhead in computa-
tion, storage and data transmission. Since speed and throughout are critical
factors for databases, we present performance measurements of our approach
in this section. The figures allow to evaluate the practicability of searchable
encryption in databases for real-life scenarios.

To assess the performance impact of our approach, we ran insert and search
queries in encrypted and unencrypted settings under various parameters settings

180 C. Neuhaus et al.

(dictionary size, false positive rate) and analyzed the performance as well as the
memory footprint of the additional data structures of Z-IDX. To avoid synthetic
test data, we chose the publicly available Enron corpus – a collection of emails
which we use as documents. All benchmarks were run on a Intel Core i5-3470
machine with 8GB main memory, running Ubuntu 12.04 LTS.

5.1 Filter Blinding vs. Performance

The original specification of the Z-IDX scheme includes a step of blinding bits
to the filter data structures after the insertion of the codewords. In this step,
a number of random 1’s are added to the filter so that the density of 1’s is
approximately equal in all filter data structures. This noise insertion technique
prevents an attacker from drawing conclusions on the number of represented
keywords from a given index. It serves to fulfill the original IND-CKA security
guarantee of the scheme in which an attacker, given a Z-IDX index and two
documents, should not be able to deduce which document is encoded in the
index with a probability better than 1

2 .
In our implementation, we chose to omit the step of adding blinding bits to

the filters to investigate a tradeoff between performance and security. On the one
hand, the omission of the blinding step enables attackers to estimate the number
of keywords represented by a filter. This information could be used for statistical
inference attacks (see Sect. 6). However, statistical attacks are only possible using
background knowledge. On the other hand, the omission of blinding significantly
improves the efficiency of the scheme, as the less densely populated filters enable
higher compression rates and lead to fewer false negatives on search operations.

5.2 Memory Footprint of Z-IDX Filters

As the encrypted filters are added to every document, they add overhead to
communication and storage footprint. They are therefore a crucial factor that
influences the performance of a database using this scheme.

The size of these data structures is determined by the desired false positive
rate fp and the number of unique keywords to be represented by the filters n.
From the false positive rate fp, the number of hash functions r is determined
by calculating r = −log2(fp). From r, the number of bits m in the filter can
be determined by calculating m = nr/ln2. In practice, these data structures
can become quite large. This is especially unfavourable in settings with large
numbers n of distinct keywords and small document sizes, as the filter sizes can
easily exceed the size of the original documents.

To improve the efficiency of the scheme, data compression can be used on
the filters (as suggested by Goh). While filter compression decreases storage and
communication overhead, it also introduces additional steps of computation on
the client and server side: Upon document insertion, filters have to be compressed
and decompressed for every search operation. This represents a tradeoff between
data size and computational overhead.

A Practical Evaluation of Searchable Encryption for Data Archives 181

200 400 600 800

50
00

10
00

0
15

00
0

20
00

0

Number of Keywords

C
om

pr
es

se
d

fil
te

r
si

ze
 (

by
te

s)

Fig. 4. Relationship between number of document keywords and compressed filter size.

To investigate this issue, we first tested the effectiveness of compression
on indexes. In practice, these filters are bit array that contain mostly 0’s and
sparsely distributed 1’s (depending on the number of contained keywords). To
determine the achievable compression ratio, we used a set of 1000 documents
from the Enron corpus containing 127.5 keywords on average. Assuming a set
of 100000 distinct keywords and a false positive rate of 0.0001 % leads to an
uncompressed filter size of 252472 bytes. We implemented the compression of fil-
ters using the free zlib2 compression library. Using the zlib standard compression
strategy, the average compression ratio achieved is 0.02 with the given parame-
ters. Using a run-length encoding strategy that exploits the sparse property
of the filters, compression becomes even more effective with an average com-
pression ratio of 0.0154. This means that using compression, filter sizes can be
considerably reduced in size (here: to 1.54 % of their original size, average size
of compressed filters 3889 bytes).

Our benchmarking results show that using filter compression dramatically
speeds up database operations even over fast network connections (100 Mbit/s
speed). This means that the overhead for data compression is by far outweighed
by the advantage in network transmission speed due to smaller filters. Therefore,
we use RLE-based filter compression as a default in all subsequent measurements.

It can be observed that the size of compressed filters is closely correlated
with the number of represented keywords (see Fig. 4): Documents with few key-
words have small compressed filters while more keywords produce larger sizes.
This means that a trade-off of the Z-IDX scheme is mitigated: To accommo-
date large sets of distinct keywords without false-positives, large filter sizes are
required. These large filters take up of large amounts of memory – even for small

2 http://zlib.net/.

http://zlib.net/

182 C. Neuhaus et al.

documents with few or no keywords at all. However, using compression, filter
sizes can be generously chosen as compressed filters remain compact, depending
on the number of keywords in the document. In fact, using the settings above,
compressed filter sizes are 3389 bytes on average. When increasing the number
of unique keywords from 100000 to a million (tenfold), the average size is only
6648 bytes on average (only a twofold increase).

5.3 Query Performance

To assess the performance of the scheme, we evaluated insert and search perfor-
mance of our Z-IDX implementation embedded in MongoDB. To obtain realistic
results, we tested our setup under two different network profiles: The LAN pro-
file corresponds to the typical properties of a wired local network (2 ms ping,
100 Mbit/s), the WAN profile corresponds to the properties of a domestic inter-
net connection in Germany (20 ms ping, 10 Mbit/s). For reference, the same
benchmarks were also conducted with a Localhost profile, where the network
delays are essentially non-existent. The LAN and WAN profiles were generated
by using network link conditioning on the machines’ loopback network device,
using Linux’ tc command. All benchmarks were conducted using a false positive
rate of 0.001 and a maximum dictionary size of 10000.

Insert Query Performance. To assess the performance of insert queries, we
inserted a collection of 10000 documents from the Enron corpus in batches of
100. We ran every insert query 100 times and took the mean as our measurement
value. The results for these queries in the Localhost, LAN and WAN profiles for
encrypted and unencrypted operation are shown in Fig. 5.

Fig. 5. Benchmark: insert of 10000 documents.

A Practical Evaluation of Searchable Encryption for Data Archives 183

The longer duration of encrypted operation is explained by the additional
steps required on the client: Before submission of a document, a Z-IDX filter has
to be created using the document’s keywords and the document content has to
be encrypted. The Z-IDX filter introduces data which slightly increases the time
of data transmission. On the server, no additional steps have to be executed
on insert. Our experiments show that the performance penalty for encryption
in insert queries is indeed moderate: In the Localhost- and LAN-settings, the
insert time is about doubled compared to the unencrypted setting. In the WAN
setting, where network performance has a larger effect, the duration of encrypted
and unencrypted insert queries are nearly the same.

Search Query Performance. To determine the performance of search queries, we
issued a search query with a randomly chosen keyword on the same document
collection as used in the insert queries. We ran every search query 100 times and
took the mean as our measurement value. The results for these queries in the
Localhost, LAN and WAN profiles for encrypted and unencrypted operation are
shown in Fig. 6. Unencrypted search time is very small (0,13 ms in the Localhost
setting, 2,32 ms LAN, 20,37 ms WAN) when compared to encrypted operation
and mainly determined by the network latency. In contrast, encrypted searches
took around half a second (≈ 530 ms), with little variation depending on network
performance, as only little data had to be transmitted.

This discrepancy is caused by the fundamental properties of the Z-IDX
scheme: Searching in an unencrypted database is usually carried out using an
inverted index, where the matching documents for a given keyword can be looked
up with linear complexity (O(1)). In encrypted operation using the Z-IDX-
scheme, search complexity is linear in the number of documents in the collection

Fig. 6. Benchmark: search query over 10000 documents.

184 C. Neuhaus et al.

Fig. 7. Benchmark: search query over collections of different sizes (WAN setting).

(O(n), n = number of documents). Therefore, the duration of search operations
is expected to scale in proportion to the number of documents in the collection.
This behavior was confirmed by running search queries on collections of different
sizes in WAN setting. The results are presented in Fig. 7 show a clear depen-
dency between query time and size of the collection, where queries over smaller
collections are slightly less efficient due to communication overhead.

5.4 Implications for Practical Use

Our measurements have shown that the performance penalty for using the Z-
IDX searchable encryption scheme in a database is very unevenly distributed:
While the performance penalty for insert queries is almost negligible in under
realistic conditions (WAN profile), the penalty for search queries is tremendous
by comparison. At the same time, the query performance varies greatly depend-
ing on collection size (linear effort) and filter parameters: A search query on a
10000-documents-collection in our experiments took between 219 ms (fp = 0.01,
n = 1000) and 4612 ms (fp = 0.0001, n = 100000). It should be noted that these
figures were obtained using a single threaded implementation of Z-IDX. As the
search operations over a document collection of documents are embarrassingly
parallel, an almost ideal speedup can be expected for parallel implementations.

6 Security

The motivation for using searchable encryption schemes such as Z-IDX is to
protect the confidentiality of information that is stored on untrusted infrastruc-
tures (e.g. cloud providers). In this section, we give a qualitative evaluation of

A Practical Evaluation of Searchable Encryption for Data Archives 185

Fig. 8. Encrypted search on a remote system: abstract model.

the security implications when searchable encryption schemes are used to search
over encrypted data stored on a remote server. This security evaluation is gener-
ally applicable to searchable encryption schemes that correspond to the abstract
model given in Sect. 6 and therefore not specific to Goh’s Z-IDX scheme [1],
unless explicitly noted otherwise.

The security of computer systems constituted by the attributes of confiden-
tiality, integrity and availability (as defined in the ITSEC criteria [23], see also
[24]). As the purpose of searchable encryption is to protect the searched key-
words from being disclosed to unauthorized parties, we focus our evaluation on
the property of data confidentiality of search keywords.

Abstract System Model. For the security evaluation, we assume a setup as shown
in Fig. 8 (see also [25]). A server holds a set of n documents Doc1, . . . , Docn. It
also holds an encrypted data structure which contains a mapping for every key-
word w ∈ W to all documents containing w. To query the encrypted index, the
client generates a trapdoor Tw and sends it to the server over the network. Using
this trapdoor, the server can determine all documents that contain keyword w
and sends them back to the client over the network. The mapping between key-
words and trapdoors w �→ Tw is deterministic, i.e. under the same encryption
key there exists exactly one trapdoor Tw for every keyword w. These properties
apply to most symmetric searchable encryption schemes.

Attacker Model. Attacks to learn the plaintext of keywords and their associa-
tion with encrypted documents can generally be undertaken in any part of the
architecture. Attacks on the client are the most dangerous, as clients hold the
cryptographic key and handle unencrypted information. We assume authorized
users on these clients to be trustworthy. For the operator of the network link and
the server we assume a honest-but-curious attacker model (see e.g. [26]): These
operators will generally execute programs and transmit information correctly
and faithfully, but can record arbitrary information and perform additional cal-
culations on it. Under this adversarial model, data confidentiality is challenged
while integrity and availability are not affected.

186 C. Neuhaus et al.

Fig. 9. Attack-defense-tree: threats for confidentiality of keywords.

6.1 Threats to Keyword Confidentiality

To illustrate the threats to the confidentiality of keywords in the system we
use the ADTree model (Attack-Defense-Trees, see [27,28]), which build upon
the concept of attack trees [29]. Attack trees are used to model the threats
to a specific security property of a system and their logical interdependencies.
Individual threats are represented as leaves of the tree and are connected by
AND and OR operators to the root of the tree, which represents a specific
security property. The attack of the system that corresponds to a specific threat
is indicated in the model by assigning a boolean TRUE value of the node in the
tree. If a combination of attacks results in a propagation of a TRUE value to
the root node the security property is considered to be breached. By evaluating
the attack tree, sets of possible attacks can be derived. The ADTree model
extends attack trees by introducing and explicitly modeling countermeasures,
which can be employed to mitigate or prevent attacks. In Fig. 9, an ADTree
shows threats for keywords confidentiality in searchable encryption schemes and
according countermeasures. Attacks to learn keywords can be undertaken on the
client, on the network and the server which holds the encrypted index. In the
following sections, we discuss the relevance and implications of the shown threats
and their countermeasures.

6.2 Attacks on the Client

Attacks on the client are potentially severe as the client handles plaintext data
and holds the cryptographic key for the searchable encryption scheme. By obtain-
ing the key, an attacker can uncover document-keyword associations by generat-
ing valid queries and launching a dictionary attack against either the server or

A Practical Evaluation of Searchable Encryption for Data Archives 187

against intercepted trapdoors. Theft of data or keys cannot by authorized users
cannot be prevented. However, in our attacker model, we assume the authorized
users to be trustworthy. To protect the assets of the client systems against unau-
thorized users, different methods can be employed: Physical security measures
can prevent unauthorized users from getting physical access to client machines.
The security mechanisms of the clients operating system can ensure that only
authorized users can log onto the machines directly or via network. Finally, data
on the clients mass storage can be protected by hard disk encryption.

6.3 Network Data Sniffing

Interception of data exchanged by searchable encryption protocols could threaten
the confidentiality of keywords as statistical properties of the trapdoor-keywords-
associations can be exploited (for more detail, see Sect. 6.4). If general security
flaws of the underlying scheme become known, these could also be exploited.
Data sniffing on the network can however easily be prevented by encryption
of network traffic between client and server (e.g. by using Transport Layer
Security).

6.4 Attacks on the Server

In general, threats that originate from network data sniffing also exist on the
server, as the entire communication of the scheme is observable. However, as the
searchable encryption scheme has to be processed on the server (i.e. matching
of trapdoors to documents), an additional layer of encryption is not an option.
In addition, the server also has direct access to the encrypted index, which
could make attacks targeting this data structure very efficient. As the server
can also monitor the program execution, side-channel attacks are theoretically
possible (e.g. timing attacks). In the following, we discuss the implications of
these threats.

Attacks to the Encryption Scheme. The confidentiality of the keywords depends
on the trust in the chosen underlying searchable encryption scheme. In the first
place, it is desirable to use algorithms that are openly published and examined by
cryptographic experts. In general, searchable encryption schemes are an active
field of research, with many constructions from the recent past (see Sect. 2) that
need more evaluation before they can be considered mature.

The Z-IDX scheme by Goh is among the oldest searchable schemes with no
general attacks to the scheme published. The construction of the scheme is based
on keyed hash functions, which are well examined and proved cryptographic tools
(HMAC SHA-1 [21]). The scheme fulfills three security properties suggested by
[4]: It supports hidden queries as the generated trapdoors do not reveal the
keyword. Valid trapdoors cannot be generated without possession of the secret
key (controlled searching). Both properties are ensured by using a keyed hash
function. Finally, the scheme fulfills the property of query isolation which means

188 C. Neuhaus et al.

that the server learns nothing more than the set of matching documents about
a query.

The security properties of the scheme are formalized as the IND-CKA
(Semantic Security Against Adaptive Chosen Keyword Attack) property: An
adversary is given two documents D0 and D1 and an index which encodes the
keywords of one of these documents. If the adversary cannot determine which
documents keywords are encoded in the index with a probability significantly
better than 1

2 the index is considered IND-CKA-secure. To the best of our knowl-
edge, no attacks that break IND-CKA-security of the Z-IDX scheme have been
published to date. Our prototypical implementation of the Z-IDX scheme delib-
erately weakens this security guarantee by omitting the blinding of filters. The
implications of this are discussed below.

Statistical Inference. Attacks using statistical inference are a possible against
all searchable encryption schemes that follow the basic model outlined in this
section. The threat of these attack is not based on weaknesses in the crypto-
graphic constructions of searchable encryption schemes but is a direct conse-
quence of the basic characteristics of such schemes. Under the same secret key
Kpriv, a keyword w is always mapped to the same trapdoor Tw. This allows
the server to observe tuples (w, {Dw

1 , ...,Dw
m}), i.e. combinations of encrypted

queries and the set of matching documents, which leak statistical information:
The sever can learn the frequency of certain queries as they occur over time and
learn about the occurrence and frequency of distinct keywords in the document
collection. While statistical information does not directly reveal keywords, it can
be exploited to infer the semantics or plaintext of keyword using background
knowledge about the data exchanged in the system. When handling medical
data for example, very accurate assumptions about the prevalence of a specific
medical condition among a population can be made using public sources of infor-
mation. If this prevalence is expressed using a keyword and no other keyword in
the document set possesses the same frequency, it is easy to infer the meaning
of this keyword. While the given example might be trivial, statistical attack can
pose a serious threat to the confidentiality of keywords. We review two practical
attacks that have been published and discuss the implications of omitting filter
blinding.

Search Pattern Leakage in Searchable Encryption: Attacks andNewConstructions.
[30] propose an attack based on the frequency of search patterns. The salient fea-
ture of the approach is that the frequency fq at which a keyword q occurs is sampled
over time, resulting in a frequency vector Vq = {V 1

q , ..., V p
q } for a specific keyword.

Background knowledge for a dictionary of keywords D = {w1, ..., wm} is drawn
from external sources (the authors propose Google Trends) and represented as fre-
quency vectors V = {Vw1 , ..., Vwm

}. To infer the plaintext of a keyword, a dis-
tance measuring function Dist(V, Vwi

) is used to determine the vector ∈ V with
the smallest distance to Vq – the corresponding keyword is then assumed to be q.
The attack is amended by an active approach, where the background knowledge
is adapted to a specific scenario (e.g. healthcare) to improve accuracy. To test the

A Practical Evaluation of Searchable Encryption for Data Archives 189

accuracy of their attack, they use frequency vectors obtained from Google Trends
for the 52 weeks of the year 2011 and add varying levels of gaussian noise to simu-
late user queries. They show that under certain circumstances (e.g. keyword dic-
tionary size of 1000, limited level of noise) it is easy to guess the keyword with a
very high accuracy. They also present mitigation strategies, which are based on
inserting random keywords along with every query, but do not consider the actual
document matching on the server.

Access Pattern disclosure on Searchable Encryption: Ramification, Attack and
Mitigation. [25] propose a statistical attack which is based on the frequency at
which keywords appear in the document set. As background knowledge, infor-
mation about the probability of two keywords occurring in the same document
is assumed. This information can be obtained by scanning public document
sources for a dictionary keywords k1, ..., km. It is represented by a m×m matrix
M , where Mi,j contains the probability of keywords ki and kj occurring in the
same document. The attacker then tries to find an order of encrypted queries
q1, ..., qm whose results set produce another matrix which is similar to M . This
sequence that produces the matrix most similar to M is considered the result of
the attack and reveals keywords by aligning the vectors of queries and keywords
so that qx corresponds to mx. The problem can be formalized by expressing
the closeness between matrices as an arithmetic distance. The authors use sim-
ulated annealing to determine a keyword sequence that minimizes this distance.
The quality of the attack is the percentage of keywords that are guessed cor-
rectly. This percentage is improved if the background knowledge also includes a
set of known query-trapdoor associations – this is however not required. With
15 % known queries of 150 observed queries, their attack was able to infer close
to 100 % of a set of 500 keywords correctly. To counteract the presented attack,
they also suggest the insertion of noise to hide statistical properties of the query-
document associations. Encrypted index structures are considered (α, 0)-secure
if for every keyword there are α − 1 keywords that appear in the same set of
documents - limiting an attackers probability of correctly inferring a keyword to
1
α at best.

Omission of Filter Blinding. In Sect. 4.3, we presented a prototypical imple-
mentation of Z-IDX, which omits the step of filter blinding in favor of improved
performance (see also Sect. 5.1). This deviation from the specification of the Z-
IDX scheme enables inference attacks under conditions where the number of
keywords in a document allows to draw conclusions on the content of keywords
or documents. If such conclusions are possible using background knowledge in
the application scenario, the addition of blinding bits to the filters as described
in [1] can be used to effectively thwart this attack at the expense of performance.

6.5 Implications for Practical Use

The threat model in Sect. 6.1 shows that attacks on the confidentiality are pos-
sible in every part of the system. However, as shown in the previous sections,

190 C. Neuhaus et al.

attacks by unauthorized users on the client and the network can effectively miti-
gated by access control and encryption. The most relevant threat is the possibil-
ity of inferring keywords by exploiting statistical properties that can be observed
by monitoring queries. The threat posed by statistical inference attacks depends
strongly on the set of keywords and their distribution in the document set. Statis-
tical inference attacks are only a minor concern if the individual keywords exhibit
very similar statistical properties, e.g. serial numbers that are evenly distributed
across documents. However, attributes with statistical properties that could be
available as background knowledge (e.g. medical diagnoses) to an attacker need
to be treated with great caution and might require noise insertion.

7 Conclusion

In this paper, we investigated the practical usability of searchable encryption
schemes to provide search capability over encrypted data archives in the cloud.
As a practical example, we presented a prototypical implementation of the Z-IDX
scheme embedded in the document-oriented database MongoDB. Benchmarks
on this prototype revealed a that under realistic conditions, the performance
impact for encrypted queries is little for insert operations. Encrypted search
operations however are considerably slower due to the linear complexity of the
Z-IDX scheme. However, we also note that execution time can be vastly improved
by parallel execution of the search operation.

To evaluate the security aspects of searchable encrypted, we gave a qualitative
analysis of threats to keyword confidentiality as an attack-defense-tree model. We
found the most relevant threat to be attacks using statistical inference, which
exploits statistical properties of keywords that are leaked in most searchable
encryption schemes. Depending on the use case and the statistical properties of
keywords, noise insertion can be employed to counter such attacks. We present
different attacks from literature and their mitigation strategies.

Further research could investigate the performance more recent constructions
of searchable encryption schemes with constant search complexity (e.g. [16]) and
schemes that provide extended search capabilities, such as range queries (see e.g.
[13,17]).

References

1. Goh, E.-J., et al.: Secure indexes. IACR Cryptology ePrint Archive, 2003:216
(2003)

2. Bajaj, S., Sion, R.: TrustedDB: a trusted hardware based database with privacy
and data confidentiality. In: Proceedings of SIGMOD 2011 International Confer-
ence on Management of Data, pp. 205–216. ACM (2011)

3. Arasu, A., Blanas, S., Eguro, K., Joglekar, M., Kaushik, R., Kossmann, D., Rama-
murthy, R., Upadhyaya, P., Venkatesan, R.: Secure database-as-a-service with
cipherbase. In: Proceedings of SIGMOD 2013 International Conference on Man-
agement of Data, pp. 1033–1036. ACM (2013)

A Practical Evaluation of Searchable Encryption for Data Archives 191

4. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of the 2000 IEEE Symposium on Security and Privacy, S&P
2000, pp. 44–55. IEEE (2000)

5. Yang, Z., Zhong, S., Wright, R.N.: Privacy-preserving queries on encrypted data.
In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189,
pp. 479–495. Springer, Heidelberg (2006)

6. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: protect-
ing confidentiality with encrypted query processing. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, SOSP 2011, pp. 85–100.
ACM (2011)

7. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proceedings of SIGMOD 2004 International Conference on Man-
agement of Data, pp. 563–574. ACM (2004)

8. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Found. Secure Comput. 32(4), 169–178 (1978)

9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM
(2009)

10. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

11. Shmueli, E., Waisenberg, R., Elovici, Y., Gudes, E.: Designing secure indexes for
encrypted databases. In: Proceedings of the 19th Annual IFIP WG 11.3 Working
Conference on Data and Applications Security, DBSec 2005, pp. 54–68 (2005)

12. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In: Proceedings of the 13th International Conference on Very Large Data Bases,
VLDB 2004, pp. 720–731 (2004)

13. El Abbadi, A., Agrawal, D., Wang, S.: A comprehensive framework for secure query
processing on relational data in the cloud. In: Jonker, W., Petković, M. (eds.) SDM
2011. LNCS, vol. 6933, pp. 52–69. Springer, Heidelberg (2011)

14. Lauter, K., Kamara, S.: Cryptographic cloud storage. In: Sion, R., Curtmola, R.,
Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) RLCPS, WECSR,
and WLC 2010. LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010)

15. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: Proceedings of the 13th
ACM Conference on Computer and Communications Security, pp. 79–88. ACM
(2006)

16. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security, pp. 965–976. ACM (2012)

17. Ostrovsky, R., Di Crescenzo, G., Persiano, G., Boneh, D.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

18. Kiltz, E., et al.: Searchable encryption revisited: consistency properties, relation to
anonymous IBE, and extensions. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 205–222. Springer, Heidelberg (2005)

19. Byun, J.W., Rhee, H.S., Park, H.-A., Lee, D.-H.: Off-line keyword guessing attacks
on recent keyword search schemes over encrypted data. In: Jonker, W., Petković,
M. (eds.) SDM 2006. LNCS, vol. 4165, pp. 75–83. Springer, Heidelberg (2006)

20. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

192 C. Neuhaus et al.

21. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message
Authentication. RFC 2104 (Informational). Updated by RFC 6151 (1997)

22. Floratou, A., Teletia, N., DeWitt, D.J., Patel, J.M., Zhang, D.: Can the elephants
handle the NoSQL onslaught? Proc. VLDB Endow. 5, 1712–1723 (2012)

23. ITSEC: Information technology security evaluation criteria (ITSEC): Preliminary
harmonised criteria. Technical report, Commission of the European Communities
(1991)

24. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Secure Com-
put. 1(1), 11–33 (2004)

25. Islam, M., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: Network and Distributed Sys-
tem Security Symposium (NDSS 2012) (2012)

26. Pinkas, B., Smart, N.P., Lindell, Y.: Implementing two-party computation effi-
ciently with security against malicious adversaries. In: Ostrovsky, R., De Prisco,
R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg
(2008)

27. Kordy, B., Mauw, S., Radomirovic, S., Schweitzer, P.: Attack-defense trees. J. Logic
Comput. (2012)

28. Bagnato, A., Kordy, B., Meland, P.H., Schweitzer, P.: Attribute decoration of
attack-defense trees. Int. J. Secure Softw. Eng. (IJSSE) 3(2), 1–35 (2012)

29. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
30. Liu, C., Zhu, L., Wang, M., Tan, Y.: Search pattern leakage in searchable encryp-

tion: Attacks and new constructions. Cryptology ePrint Archive, Report 2013/163
(2013)

High Level Model Checker
Based Testing of Electronic Contracts

Ellis Solaiman1(B), Ioannis Sfyrakis1, and Carlos Molina-Jimenez2

1 School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
{ellis.solaiman,i.sfyrakis}@ncl.ac.uk

2 Computer Laboratory, University of Cambridge, Cambridge, UK
carlos.molina@cl.cam.ac.uk

Abstract. Within cloud and Internet-based collaborative settings, a
business contract (service agreement) is a specification that describes per-
missible interactions between partners. Specifically, a business contract
stipulates what operations the business partners have the rights, oblig-
ations or prohibitions to execute; it also specifies when the operations are
to be executed and in which order. The main purpose of an electronic con-
tract is to regulate (monitor and/or enforce) electronic service exchanges
between the contracted parties, making sure that participants adhere to
the service agreement in place. Because of the dynamic nature of Inter-
net and cloud-based relationships, the rapidity at which electronic con-
tracts are constructed, verified for correctness, tested, and deployed is an
extremely important factor. This paper describes a model checker based
framework for supporting automated testing and deployment of electronic
contracts. The central components of the framework are a contract mon-
itoring service called the Contract Compliance Checker (CCC), the SPIN
model checker coupledwithEPROMELA, a high-level language developed
specifically for modeling electronic contracts, and the LTL Manager ; a
graphical tool developed in order to aid with the specification of correct-
ness properties in Linear Temporal Logic (LTL). We describe how the LTL
Manager can used to create a repository of common contract related LTL
templates, which then can be easily selected and parameterized by the con-
tract designer. We also describe how SPIN can be used to automatically
generate execution sequences from an EPROMELA model of a contract,
and how such sequences can then be used to test the correctness of the
model equivalent electronic contract deployed to the CCC.

Keywords: Serviceagreement ·Electronic contract ·Servicemonitoring ·
Model checking ·Automated testing · Service oriented computing ·Cloud
computing

1 Introduction

The context of this paper is Internet and cloud-based interactions conducted
between two or more business partners. Such relationships are normally preceded

c© Springer International Publishing Switzerland 2016
M. Helfert et al. (Eds.): CLOSER 2015, CCIS 581, pp. 193–215, 2016.
DOI: 10.1007/978-3-319-29582-4 11

194 E. Solaiman et al.

by the negotiation and signing of business contracts also known as legal service
agreements (SA). Legal agreements, explicitly define the permissible actions of
the interacting parties, thus providing a legal basis for the resolution of any dis-
putes. A Legal agreement can also be used as a guide for developing an electronic
contract [1].

An electronic contract is an executable version of the service agreement,
and its main purpose is to regulate (monitor and/or enforce) electronic service
exchanges between the contracted parties, checking that business participants
adhere to the SA in place, and that performed actions comply with various
message timing and sequencing constraints. Electronic contracts are not confined
to the business domain, and can also be used for example to monitor/enforce
SAs between the components of distributed systems in the cloud and/or the
“Internet of Things”.

buyer seller

CCC

communication channel

monitoring channel

 biz events (S,TF,BF)

trusted third party
response:
CC | NCCelectronic

contract

Synchronizer outcomeoutcome

Fig. 1. The CCC deployed as a contract monitor.

Constructing an electronic contract that is correct (free from conflicts, and
which correctly represents the requirements of the original legal document), is
a challenging and time-consuming task. Cloud-based business relationships can
be both complex and of a highly dynamic nature [2]. Therefore, it is important
that the process of converting a legal document into an electronic contract that
is correct is automated. Previous work towards this goal has been extensive and
has covered problems such as electronic contract representation and modeling [3],
and contract verification [4,5]. Naturally, ensuring that a model of an electronic
contract is correct, does not guarantee that the electronic contract itself is also
correct. In this paper, we focus on the challenge of testing that an electronic
contract acts correctly at run-time, and that modifications and/or corrections
that need to be made to the rule base of the electronic contract can be applied
quickly. To this end, we develop a high-level model checker based framework to
support automatic electronic contract deployment and testing.

The central component of our framework is the contract compliance checker
(CCC) (Fig. 1) [6,7], which together with the deployed electronic contract is
our System Under Test (SUT). The CCC is an independent contract monitor-
ing service that when provided with an executable specification of a contract,

High Level Model Checker Based Testing of Electronic Contracts 195

can be deployed by the contracted parties or by a third party. The CCC is
able to observe and log relevant interaction events, which it processes to deter-
mine whether the actions of the business partners are consistent with respect to
the rights, obligations, and prohibitions declared in the original legal contract.
Namely, the CCC declares interaction events as either contract compliant (CC)
or non contract compliant (NCC). As can be seen in Fig. 1, business partners
use a communication channel for exchanging their business messages. In addi-
tion, they use a monitoring channel for notifying events of interest to the CCC.
Notably, the figure shows that the CCC can cope with exceptions and failures,
observing events that have been declared by the interacting parties as either S
(successful), TF (technical failure), or BF (business failure).

The ability of the CCC to correctly declare interaction events as (CC) or
(NCC) relies on an executable contract that has been specified correctly. Our
goal is to provide a framework that enables; rapid testing of a deployed exe-
cutable contract, and rapid update of the contract rules when testing detects
errors. To do so, one must be able to exhaustively supply the CCC with execution
sequences that it would be expected to observe during runtime. Our approach
is to resort to model checker based testing. Previous research [8] describes the
basic idea: construct a behavioral model of the SUT and validate the behavior
using a model checker. Such a validated model can then be used for generating
executable test cases for the SUT.

The model checking tool we use is SPIN [9], a tool originally designed for the
verification of communication protocols. SPIN’s input language, Promela, pro-
vides constructs for modeling communication concepts such as messages, chan-
nels, and basic data types that include bit, bye, arrays, etc. Using these basic
constructs alone for modeling electronic contracts, at a sufficiently high level of
abstraction and in any consistently standard fashion, is almost impossible. This
in turn makes the process of generating accurate execution sequences required
for testing the CCC difficult. Another difficulty is that specifying the contract
correctness requirements is not easy. The contract designer needs to master both
Promela, the input language of SPIN, and LTL (Linear Temporal Logic), the
language for expressing correctness properties [10]. It is widely acknowledged
that LTL is a powerful language for expressing correctness properties. Yet it has
proven to be hard to master for non–experts in temporal logic. For instance,
the LTL syntax traditionally accepted by SPIN is low level and based on the
basic temporal logic operators (!, [], <>, etc.), which results in LTL formula
that are not easy to read or write. In addition, the semantics of LTL formula are
very subtle; thus writing an LTL formula that captures the intended correctness
requirement within a Promela model is particularly challenging and error prone.

To address these challenges, we explore the development of a high level
modeling and deployment framework. A fundamental component of our testing
framework is EPROMELA, a high level language developed specifically for mod-
eling electronic contracts [5]. EPROMELA extends Promela with constructs for
expressing core electronic contract concepts contained in the CCC, thus enabling
the construction of a contract model at a level of abstraction that is equivalent to

196 E. Solaiman et al.

the actual electronic contract. In addition, we have developed the LTL Manager
[11], a graphical tool and a repository that can be populated by LTL experts
with LTL templates (LTL formula with abstract variables) of typical correctness
properties required for electronic contracts, together with their English language
descriptions. These LTL templates can then be selected and parameterized by
contract designers in order to produce LTLs that are specific to their require-
ments. The LTL properties are then mechanically included in the EPROMELA
models and presented to SPIN for verification.

The overall contribution of this paper is to describe how SPIN, EPROMELA,
and the LTL Manager can be instrumented with the aid of appropriate automa-
tion and message parsing tools, to automatically produce business events that
can accurately test the executable electronic contract deployed within the CCC
service.

The remainder of the paper is structured as follows: In Sect. 2 we describe
key electronic contracting concepts with the aid of a simple example. Section 3
is dedicated to presenting our model checker based testing framework and its
constituent tools. In Sect. 4 we present research work that is related to ours.
Conclusions and future directions are discussed in Sect. 5.

2 Background

In order to elaborate key electronic contracting concepts, we present a simple
scenario. Let us assume that Fig. 1 describes a relationship where two organi-
sations, a Buyer and a Seller (a store), agree to a business contract. Below are
some of its clauses:

1. The buyer can place a buy request with the store to buy an item.
2. The store is obliged to respond with either buy confirmation or buy rejec-

tion within 3 days of receiving the buy request.
(a) No response from the store within 3 days will be treated as a buy rejection.

3. The buyer can either pay or cancel the buy request within 7 days of receiving
a confirmation.
(a) No response from the buyer within 7 days will be treated as a cancellation.

The clauses of such a legal agreement should take into consideration all relevant
business operations (shown in bold in the contract text). A business contract
specifies a well defined list of business operations. A business operation is a
business activity which the participants are able to perform under certain condi-
tions. In the CCC, business operations are used to formally define the vocabulary
(alphabet) of the interaction. We use B= {bo1, . . . , bon} to represent all the valid
business operations in the contract. The buyer and seller are regarded as role
players interested in executing the operations is a shared fashion. The set of
valid role players is represented by RP= {rp1, . . . ,rpn}.

The execution of each business process generates an individual outcome event
which is passed to the synchronizer shown in Fig. 1 through the monitor channel.
The synchronizer integrates the pair of individual outcomes from each side into

High Level Model Checker Based Testing of Electronic Contracts 197

a single business event. This business event is sent to the CCC. As a monitor,
the responsibility of the CCC is to determine whether a given event presented
to it represents the notification of a contract compliant operation CC, or a none
contract compliant operation NCC. To be able to make this determination, the
CCC keeps track of the state of interaction as a Finite State Machine (FSM) with
states being determined by enabling and disabling the current rights, obligations
and prohibitions of the role players in force.

2.1 ROP Ontology

A contract distinguishes operations as Rights, Obligations, and Prohibitions (the
ROP set). A Right is an operation that a party is allowed to perform under
certain conditions, an Obligation is an operation that a party is expected to do
under certain conditions, and a Prohibition is an operation that a party is not
allowed to do under certain conditions.

We define an individual right ri, obligation oi or prohibition pi as a set of
operations where: ri ⊆ B, oi ⊆ B, and pi ⊆ B. For a particular role player
RP ; Rrp = {r1,. . . ,rn}; Orp = {o1,. . . ,on}; and Prp = {p1,. . . ,pn}, represent the
sets of rights, obligations, and prohibitions currently assigned to the role player
RP respectively. The sets of rights, obligations, and prohibitions of an RP are
represented as ROP rp.

2.2 Choreography of Interaction

To support our discussion, we will use a graphical representation of the con-
tract written in BPMN (Business Process Management Notation) choreography
language [12] (see Fig. 2). The figure involves five activities, each resulting in
a message (BuyReq, BuyRej, BuyConf, BuyPay, BuyCanc) being sent from a
sender (shown as a white label in each activity), to a receiver (shown as a shaded
label). These messages correspond to the five business operations (buy request,
buy reject, buy confirmation, buy payment, buy cancellation) shown in bold in
the English text of the contract. The diamonds in the figure are gateways. The
figure includes two exclusive fork gateways (G1 and G2) and a single exclusive
merge gateway (G3).

The choreography specification describes, from a global perspective, all per-
missible message sequences that can be exchanged between the partners, and is
used by the interacting parties for two purposes: (i) designing and implementing
their individual parts of the business process; and (ii) it is also very useful as a
guide for developing the electronic contract.

2.3 Electronic Contracts

The electronic contract designer is able to use the legal contract and choreogra-
phy in order to accurately identify and extract the ROP set attributed to the
business partners, and to specify the rules which operate on the ROP set [13].

198 E. Solaiman et al.

Store

Buyer

Store
 rej

BuyRej

Buyer

Buyer
 req

Store

BuyReq

Buyer

Store

Buyer
 pay

BuyPay

Buyer

Store

Buyer
 canc

Store

Buyer

Store
 conf

startEv
G1 endEvG2

G3
BuyCanc

BuyConf

Fig. 2. Correct choreography of contract example.

Rule implementation requires an appropriate specification language; contract
rules written for the CCC monitoring service are currently realized using the
Drools Rule Language [14].

An example of a rule that deals with receipt of a buy request event by the
CCC, written using Drools can be seen below. Line 5 checks that the buyRequest
operation is a right that the buyer is currently allowed to perform. If so then
buyRequest is declared by the CCC as contract compliant (line 13). This opera-
tion is also removed from the buyer’s ROP set (line 8), meaning that the buyer
no longer has a right to perform this operation. At lines 10 and 11, the seller is
given an obligation to perform one of 2 operations: buyConfirm, or buyReject.

1 rule "Buy Request Received"
2 //Verify type of event, originator, and responder
3 when
4 $e: Event(type=="BUYREQ", originator=="buyer",

responder=="store", status=="success")
5 eval(ropBuyer.matchesRights(buyRequest))
6 then
7 //Remove buyer’s right to place other Buy Requests
8 ropBuyer.removeRight(buyRequest, seller);
9 //Add seller’s obligation to either accept or reject order
10 BusinessOperation[] bos = {buyConfirm, buyReject};
11 ropSeller.addObligation("React To Buy Request", bos, buyer,

60,2);
12 System.out.println("* Buy Request Received rule triggered");
13 responder.setContractCompliant(true)
14 end

High Level Model Checker Based Testing of Electronic Contracts 199

Each of the activities declared in the choreography of Fig. 2 has a rule such as the
one shown above. Typically, for each activity in a choreography, each business
partner can have several rights, obligations, and prohibitions in force.

Once an electronic contract specification has been completed, it can be loaded
into the CCC for deployment. As operations are executed, and events are received
by the CCC; rights, obligations, and prohibitions are granted to and revoked as
specified by the rules. Therefore within the CCC, a right, obligation or prohibi-
tion can be in one of two states only: inactive or active.

Drools as a language for specifying electronic contracts is verbose, and not as
declarative and readable as would be ideal. A much more suitable tool is EROP a
language that we developed precisely for the specification of electronic contracts.
EROP (for Events, Rights, Obligations, and Prohibitions) was first introduced
in [6], and we have just completed a tool for automatically translating EROP
to Drools. The EROP to Drools Translator has been developed using Java, and
ANTLR [15]. The translator takes as input an EROP file and outputs a Drools
file containing the contract rules. An example of an EROP to Drools conversion is
shown in Fig. 3. A detailed description of the EROP language can be found in [6].

Fig. 3. EROP to Drools conversion.

2.4 Contract Compliance Within the CCC Monitor

The overall architecture of the CCC is described in detail in [11]. The CCC
processes each event to determine if it is contract compliant (CC) or none con-
tract compliant (NCC). A business event is received by the CCC as an XML
document that includes the names of the participants, the business operation,
and its outcome from the set: (Success, BizFail, TecFail):
<event>
<originator>buyer</originator>
<responder>seller</responder>
<type>BuyReq</type>
<status>success</status>

</event>

The event shown here is produced as a result of the implementation of a con-
versation synchronization protocol between the interacting parties. The protocol
guarantees mutually agreed conversation outcomes. It is the responsibility of the

200 E. Solaiman et al.

interacting partners to apply the protocol. A detailed discussed can be found
in [16]. The CCC inserts the response into an outcome queue, which can be
accessed by the contracted parties. The response is of the format:
<result>
<contractcompliant>true|false</contractcompliant>

</result>

The execution of a business operation (observed from the outcome event) is said
to be CC if it satisfies the following three conditions and is said to be NCC if
it does not:

(1) boi ∈ BO ; the business operation matches an operation within the set of
business operations expected by the CCC,

(2) boi � ROP rp; the business operation matches the ROP set of its role player
(meaning, the role player that performed the operation has a right/obligation/
prohibition to perform that particular operation). By “match”, we mean that
for avalidbusiness operation boi, andaparticular roleplayer’sROP set;ROPrp

where: Rrp = {r1,. . . ,rm}, Orp = {o1,. . . ,om}, Prp = {p1,. . . ,pm}, and m ≥ 1,
their relationship should be that: boi ∈ rj or boi ∈ oj or boi ∈ pj , where 1 ≤ j
≤ m.

(3) the business operation must also satisfy the constraints stipulated in the
contractual clauses. An example of a constraint is the seven day deadline in
clause 3 of the contract discussed earlier.

We also consider that the execution of a given sequence of operations is NCC if
it includes one or more operations that are flagged by the CCC asNCC. A sequence
of operations is also known as an execution sequence or execution trace and drives
the choreography from its initial state to a final state.

2.5 Exception Handling

The legal contract example and corresponding choreography of Fig. 2, deal with
successful outcome events only. However, a contract monitoring service such as
the CCC should also be able to observe outcome events that include exceptional
circumstances [17]. Therefore, following the ebXML standard [18], we assume
that at the end of a business conversation, each party independently declares an
execution outcome event from the set {Success(S), BizFail(BF), TecFail(TF)}
as shown in Fig. 1. Success events model successful execution outcomes. TecFail
models protocol related failures detected at the middleware level, such as a late,
or a syntactically incorrect message. BizFail models semantic errors in a message
detected at the business level, e.g., the credit card details extracted from the
received payment document are incorrect.

Adding exceptional outcome events to the CCC’s set of observable events,
naturally means that the CCC has to monitor a much larger number of execution
sequences. The task of generating these in order to test the CCC effectively is
extremely challenging, and strengthens the case for needing to automate the
testing process.

High Level Model Checker Based Testing of Electronic Contracts 201

3 Model Checker Based Testing Framework

To be able to claim that an electronic contract within the CCC is correct and
conflict free, we need to test that it can correctly identify contract compliant and
non-contract compliant executions of sequences and their constituent business
operations. To this end, one needs to be able produce sequences of operations
that are known to be contract compliant, and also produce sequences that include
both contract compliant and non contract compliant operations.The challenge
here is the production of such sequences.

Figure 4 shows the main elements of our testing framework. Squares with
smooth corners represent humans involved in the design process. Tools are rep-
resented by solid squares with sharp corners, and dashed squares represent data.
The framework has been updated with 2 new tools since our work in [19] with
the addition of the LTL Manager, and the EROP to Drools Translator.

Electronic contract models are constructed using EPROMELA, a model-
ing language we developed specifically for modeling electronic contracts [5].
EPROMELA is essentially a high-level tool that extends SPIN’s modeling lan-
guage Promela with constructs for expressing core electronic contract concepts
contained in the CCC. Correctness properties that an EPROMELA model is
expected to satisfy, can be expressed by the model designer using Linear Tem-
poral Logic (LTL), which is not an easy task. The LTL Manager is a tool we
have developed in order to help the contract designer with expressing correct-
ness properties using LTL. When provided with a model of the contract and
appropriate LTL properties, SPIN is able to verify the correctness of the model
with respect to those properties. With the aid of tools for message parsing and
automation, SPIN also can be instrumented to generate message sequences that
can be used to test the ability of the CCC to detect contract compliant and
non contract compliant message sequences, a process that we will describe next.
Model checker based sequence generation follows these steps:

1. The designer constructs an abstract model of the System Under Test (SUT)
using EPROMELA, and verifies that the model is correct in that it satisfies
the correctness properties of interest.

2. The verified abstract model is used for generating execution sequences. This
is done by presenting the verification tool with the verified abstract model,
together with a negated correctness requirement in LTL (a trap property), and
then challenging the verification tool to find and produce counter examples
that violate the LTL.

3. Each counter example contains an execution sequence that can be extracted
with the aid of a message parsing tool.

3.1 EPROMELA Interaction Model

An abstract view of EPROMELA components is shown in Fig. 5, which essen-
tially models the system depicted in Fig. 1. The Business Event Generator (BEG)

202 E. Solaiman et al.

natural
contract text

contract
designer

negated (trap)
properties in

LTL

model of
contractual
operations

contract
designer

SPIN model
checker

message
sequences

message
parsing tool

CCC

electronic
contract in

EROP

LTL
Manager

EROP to
Drools

Translator

Fig. 4. Model Checker based testing framework.

generates events that are simulations of events generated by the interacting par-
ties; for example a payment event placed by the buyer. The Contract Rules Man-
ager (CRM) together with the ROP sets and the ECA rules (rule base) represent
the CCC. The CRM is responsible for including rules as needed. The BEG and
CMR communicate by two uni-directional channels (BEG2R and R2BEG). The
contract rules are composed in a separate file. The ROP sets contain information
about the rights, obligations, and prohibitions currently in force. For a full descrip-
tion, see [5]. The rule base contains a rule for each business event representing the
outcome of an operation execution. So for a business operation such as “submit
purchase order” there will be a rule for the operation terminating successfully (S),
and optionally (depending on whether the contact has clauses dealing with failure
outcomes) a rule for the operation terminating in a technical failure (TF) and one
for the operation terminating in a business failure (BF).

The execution behavior of the interaction model shown in Fig. 5 is as fol-
lows: (1) BEG generates event bei and sends it through the BEG2R channel;
(2) CRM reads bei from the BEG2R channel; (3) CMR includes the contract
rule Ri corresponding to bei; (4) Ri checks bei against the ROP sets, and executes
the coded action if the associated conditions are satisfied; (5) Ri sends its deci-
sion about bei (either contract compliant or non–contract–compliant) through
the R2BEG channel; (6) BEG extracts the decision from the R2BEG channel
and resumes its event generation process.

3.2 Model Construction and Verification

Below is an example of a rule within of our EPROMELA contract model. The
rule deals with the BUYRREQ operation of Fig. 2. Each of the operations for

High Level Model Checker Based Testing of Electronic Contracts 203

Fig. 5. EPROMELA interaction model.

the choreography in Fig. 2 has a rule which updates the status of the ROP set
belonging the participants as they transition from state to state. Notice that we
include within the rule, print statements that produce XML events. These are
XML events that will eventually be extracted and used to automatically test the
electronic contract deployed in the CCC. The end of each execution sequence is
marked using a reset message.

1 RULE(BUYREQ)
2 {
3 WHEN::EVENT(BUYREQ,

IS_R(BUYREQ,BUYER),SC(BUYREQ))->{
4 SET_X(BUYREQ,BUYER);
5 atomic{
6 printf("<originator>buyer</originator>");
7 printf("<responder>store</responder>");
8 printf("<type>BUYREQ</type>");
9 printf("<status>success</status>");
10 }
11 SET_R(BUYREQ,0);
12 SET_O(BUYREJ,1);
13 SET_O(BUYCONF,1);
14 RD(BUYREQ,BUYER,CCR,CO);
15 }
16 END(BUYREQ);

Line 3 of the model deals with receiving a successful buy request event
SC(BUYREQ). IS R(BUYREQ,BUYER) is a guard that checks if the BUYER has
a right to perform the BUYREQ operation. If so, then SET X(BUYREQ,BUYER)
declares that this operation has been executed, and the buyer’s right to execute
BUYREQ is removed at line 11. The rule then sets an obligation to the Store

204 E. Solaiman et al.

to execute either BUYREJ or BUYCONF (lines 12–13). At line 6 we introduce
the print statements required for parsing the generated execution sequences. The
print statements produce XML events in the format expected by the CCC. Each
of the operations BUYREQ, BUYREJ, BUYCONF, BUYPAR, BUYCANC, has
a rule such as the one above.

When the entire EPROMELA model has been constructed, SPIN can be used
to verify that the model is free from any inconsistencies. Common correctness
properties such as absence of deadlocks and reachability of states, can easily be
checked using SPIN’s configuration options. Checking for contract specific correct-
ness properties however, requires the application of Linear Temporal Logic (LTL)
formula. Typical correctness properties of the electronic contracting domain are
those that express mutual exclusion of rights, obligations, and prohibitions; for
example the requirement that the execution of a given operation (such as making a
purchase order) is never simultaneously obliged and prohibited. Thanks to the con-
tract constructs offered by EPROMELA, this correctness requirement can be ele-
gantly and intuitively expressed in LTL as follows: []!(IS O(BUYREQ, BUYER)
&& IS P(BUYREQ, BUYER))where [] is the LTL always operator. ! is the uni-
versal not, IS O(BUYREQ, BUYER) returns true if the BUYREQ operation is cur-
rently obliged and IS P(BUYREQ, BUYER) returns true if the BUYREQ operation
is currently prohibited. Instructing SPIN to run through the EPROMELA model
using this LTL, will drive SPIN to find any examples that violate this property. If
such an example is found, then it is presented as a counter example to the designer,
who must then correct the model.

3.3 The LTL Manager

As discussed earlier, Linear Temporal Logic (LTL), which we use for specifying
contract correctness requirements, is not easy to master. In order to deal with
this challenge, we have developed the LTL manager, a graphical interface that
can be used by contract designers to include correctness properties within their
EPROMELA models. The LTL manager offers the capability of editing LTL
templates (LTL formula with abstract variables), and stores them in a database.
The database is a repository of typical contract LTL formula that can be popu-
lated by LTL experts. Once the LTL repository has been populated, a contract
designer can retrieve an LTL template of interest, parameterize, and include it
in an EPROMELA model. The SPIN model checker is invoked from the LTL
manager by the designer. It takes EPROMELA models augmented with LTL
correctness properties and verifies whether the LTLs are satisfied or violated.
Details of how to download the LTL Manager can be found in [19].

Using the tool (see Fig. 6): (a) the LTL expert specifies and adds to the tem-
plate repository, common LTL templates that are of interest to contract designers.
This needs to be done in natural language (Description box), and in LTL syntax
(Formula box). (b) the contract designer can then load the LTLs from the data-
base, select, and parameterize those templates of interest. As can be seen in Fig. 6,
the @V1@ @V2@ @V3@ @V4@ variables are LTL propositional symbols that can be
parameterized.The tool offers a drop–down list that has all six operations (BuyReq,

High Level Model Checker Based Testing of Electronic Contracts 205

Fig. 6. Using the LTL Manager to (a) create LTL templates and (b) parametrize them.

BuyRej, BuyConf, BuyPay, BuyCan) included in the choreography of Fig. 2. The
designer selects the desired parameters as shown in Fig. 6, and the LTL Manager
automatically creates the correct LTLs.After theLTLpattern has beenparameter-
ized in theprevious step, thedesigner cannowsimplyvalidate themodelbypressing
theAdd button, and then theValidate button on the next screen (not shown here).
The results of the validation are then displayed to the designer. In this case, both
LTLs are satisfied by the validation model; consequently, SPIN displays errors: 0.
If on the other hand, the designer adds an LTL property that cannot be satisfied by
the model; for example (<> BuyPay) (all execution paths must eventually result
in BuyPay to be executed), SPIN signals that the formula is violated, and displays
errors: 1. In addition, SPIN creates a trail file in the working folder that can be used
by the designer to trace the source of the error within the model.

3.4 Generating the Test Sequences

Once the contract model has been verified for required correctness properties,
it can be used as an oracle for producing sequences that can test the electronic
contract. Test sequence generation is very similar to verification in that we make
use of LTL properties. We can instruct SPIN to find undesirable examples of

206 E. Solaiman et al.

sequences that violate a desirable property. But we also need to be able to
instruct SPIN to find desirable sequences that violate a non-desirable property.
The latter is done by negating a desirable LTL property converting it into a trap
property.

As a very simple example, let us instruct SPIN to generate all sequences of
messages that end with a BUYREJECT operation. The LTL formula required for
this task is: !<>IS X(BUYREJ,STORE) where < > is the LTL eventually
operator. The formula states that the model will not eventually reach a
state where BUYREJ is executed. SPIN can now be instrumented to show all
sequences that do end with BUYREJ. From the command line, we apply the fol-
lowing steps (CorrectChore is the name if the file that contains the EPROMELA
model):

1. % spin -a CorrectChore is used for generating the verifier source code
in C.

2. % cc -o pan pan.c is used for compiling the verifier.
3. % ./pan -a -e -c100 instructs SPIN to produce all the counter examples

(trail files) that it can find, which violate the trap property. By default, SPIN
produces the first one it finds and stops. The -c100 parameter instructs SPIN
to generate the first 100 counter examples it finds. The number of counter
examples requested needs to be above the actual number of counter examples
that SPIN could possibly find. This number can be determine by the designer
using trial and error.

4. spin -tN -s -r -B CorrectChore converts the N th trail file into a
text file that includes the XML messages involved in the execution sequence.

Given the potentially large number of trail files that can be produced by SPIN, it
is advisable to mechanize the process. We use a simple shell script for this purpose.
The following text represents the contents of one of the trail files produced by the
Linux shell script. To ease readability, we have removed some irrelevant lines.

2: proc 0 (Buyer) line 35 "CorrectChore" Sent BuyReq,1
3: proc 1 (Store) line 71 "CorrectChore" Recv BuyReq,1

<originator>buyer</originator>
<responder>store</responder>
<type>BUYREQ</type>
<status>success</status>

5: proc 1 (Store) line 114 "CorrectChore" Sent BuyRej,1
6: proc 0 (Buyer) line 049 "CorrectChore" Recv BuyRej,1

<originator>store</originator>
<responder>buyer</responder>
<type>BUYREJ</type>
<status>success</status>

<originator>reset</originator>
<responder>reset</responder>
<type>reset</type>
<status>reset</status>

High Level Model Checker Based Testing of Electronic Contracts 207

The execution sequence shown above includes a BUYREQ message sent from
the buyer to the store, followed by BUYREJ sent by the store to the buyer.
The status element indicates the outcome of the execution of the operation.
The status in this example accounts only for successful execution outcomes (No
exceptional circumstances such as technical failures are assumed), consequently,
the content of this element is always success. The last message is the reset mes-
sage, which we artificially include to mark the end of the sequence. As can be
appreciated from this example, the files produced by SPIN and the shell script
need parsing to extract the XML tagged messages.

3.5 Sequence Parsing

Our parser is built using Python. It extracts all the XML tagged messages from
a given sequence and stores each message as an individual XML file. The parser
achieves this by creating a recursive grammar that describes the precise struc-
ture of the business events inside a sequence. As seen in the code segment below
in lines 2–5, we first define the XML tags we want to find.

1 #define grammar for sequence file
2 tagOriginator = pyp.Literal("<originator>") +

pyp.Word(pyp.alphas) + pyp.Literal("</originator>")
3 tagResponder = pyp.Literal("<responder>") +

pyp.Word(pyp.alphas) + pyp.Literal("</responder>")
4 tagType = pyp.Literal("<type>") + pyp.Word(pyp.alphas) +

pyp.Literal("</type>")
5 tagStatus = pyp.Literal("<status>") + pyp.Word(pyp.alphas) +

pyp.Literal("</status>")
6 lineString = tagOriginator | tagResponder | tagType |

tagStatus

The parser reads a file containing a message sequence, and searches for matches
against each line according to the following rule in line 6: If there is a line that
includes a tag definition of either the originator, responder, type, or status, then
the match is successful. If the parser finds a match, then it performs the following
actions: (i) the parser creates a new folder with the name of the sequence, (ii) it
extracts the XML part that is matched according to the above rule, (iii) a new
XML file is created that includes the extracted business event. Thus, the folder
ExeSeq1–xml for the sequence shown above will contain three XML files because
the sequences contain three messages, namely BUY REQ → BUY REJ → reset.

3.6 Testing the Electronic Contract

After loading and initializing the CCC with the rules that encode the electronic
contract, we can proceed with sending each of the execution sequences to the
BEvent queue. Responses are collected from the outcome queue (see Fig. 1). The
following lines show the results of testing the execution sequence BUY REQ →
BUY REJ → reset:

208 E. Solaiman et al.

1 filename: event1.xml
2 -Begin Request to CCC service-
3 BusinessEvent [originator=buyer, responder=store, type=BUYREQ,

status=success]
4 -End Request to CCC service-
5
6 -Begin Response from CCC service-
7 <result>
8 <contractCompliant>true</contractCompliant>
9 </result>
10-End Response from CCC service-
11
12 filename: event2.xml
13 -Begin Request to CCC service-
14 BusinessEvent [originator=store, responder=buyer,

type=BUYREJ, status=success]
15 -End Request to CCC service-
16
17 -Begin Response from CCC service-
18 <result>
19 <contractCompliant>true</contractCompliant>
20 </result>
21 -End Response from CCC service-
22
23 filename: event3.xml
24 -Begin Request to CCC service-
25 BusinessEvent [originator=reset, responder=reset, type=reset,

status=reset]
26 -End Request to CCC service-
27 -Begin Response from CCC service-
28 <result>
29 <contractCompliant>true</contractCompliant>
30 </result>
31 -End Response from CCC service-

The operations (BUYREQ and BUYREJ) included in the sequence, are declared
contract compliant by the CCC indicating that the contract rules have been coded
correctly with respect to the LTL property in Sect. 3.4. The first operation is sent
to the CCC in line 3, and its response <contractCompliant>true is shown at
line 8. Similarly,BUYREJ operation is sent to the CCC at line 14, and its response
<contractCompliant>true can be seen at line 19.

3.7 Testing None Compliant Events

A model that has been verified will by default generate test sequences with events
corresponding to the execution of contract compliant (CC) operations only. An
EPROMELA model can be tuned to generate sequences which include unknown
and none contract compliant (NCC) business events using the EPROMELA
Event Generator module mentioned under Sect. 3.1. Thus, we can alter the
EPROMELA model to follow any variation of the choreography shown in Fig. 2.
For example, the modified choreography of Fig. 7 does not correctly reflect the
original text contract.

High Level Model Checker Based Testing of Electronic Contracts 209

Buyer

Buyer
 req

Store

BuyReq

Store

Buyer

Store
 rej

BuyRej

Buyer

Store

Buyer
 pay

BuyPay

endEv

Buyer

StoreStore

Buyer

Store
 conf

startEv G3G2
G1

BuyCanc

BuyConf

Buyer
 canc

Fig. 7. Incorrect choreography of contract example.

The particularity of this diagram is that it produces CC sequences such as
BuyReq → BuyRej. In addition, it produces NCC sequences, for instance
it allows for cancellation after payment which is not stipulated in the orig-
inal contract. Consequently, the execution of BuyCanc within the sequence
BuyReq → BuyConf → BuyPay → BuyCanc should be declared NCC by the
CCC. The following text shows the results of the execution of the NCC sequence
discussed above. The first 2 events BUYREQ, BUYCONF, were declared CC by
the CCC as expected. To save space we only show the outcome of the 2 events
of relevance in this example (BUYPAY followed by BUYCANC):

1 filename: event3.xml
2 -Begin Request to CCC service-
3 BusinessEvent [originator=buyer, responder=store, type=BUYPAY,

status=success]
4 -End Request to CCC service-
5
6 -Begin Response from CCC service-
7 <result>
8 <contractCompliant> true </contractCompliant>
9 </result>
10 -End Response from CCC service-
11
12 filename: event4.xml
13 -Begin Request to CCC service-
14 BusinessEvent [originator=buyer, responder=store,

type=BUYCANC, status=success]
15 -End Request to CCC service-
16
17 -Begin Response from CCC service-
18 <result>
19 <contractCompliant> false </contractCompliant>
20 </result>
21 -End Response from CCC service-

210 E. Solaiman et al.

Store

Buyer

Store
 conf

BuyConf

Buyer

Store

Buyer
 pay

BuyPay

G1

Success

G2

Technical Failure

Business Failure

Success

Technical Failure

Business Failure

Fig. 8. Execution model with success and failures.

The process BUYPAY is CC (lines 3 and 8). The execution of BUYCANC
at line 14 and the corresponding response received at line 19 indicates that
the CCC has declared BUYCANC NCC. This is the desired behavior from the
CCC, as it has detected that this sequence of events is not consistent with the
contract.

3.8 Accounting for Exceptional Outcome Events

The contract example we have used so far assumes that the execution of oper-
ations always succeeds; it does not account for potential failures. More realistic
examples would include the execution of activities as shown in Fig. 8, which
account for successful and failed outcomes. As discussed in Sect. 2, and follow-
ing the ebXML standard [18], we would like to be able to detect two types of
failures; business failures, and technical failures. To this end, the EPROMELA
modeling language has been designed with the ability to deal with these 2
types of failures. As an example of an electronic contract that can handle
exceptional outcomes, we add the following clause to our original contract to
account for potential semantic errors (business failures) in the execution of any
operation:

4. Failure handling: if after 2 attempts, an operation is not performed correctly,
then the contractual interaction shall be declared terminated.

Below we show how an exception such as a business failure of the BUYREQ
operation can be intuitively and naturally modeled using EPROMELA. The rule
for BUYREQ described in Sect. 3.2 can be easily enhanced as follows:

High Level Model Checker Based Testing of Electronic Contracts 211

1 /*handle failure outcome event*/
2::EVENT(BUYREQ,IS_R(BUYREQ,BUYER),BF(BUYREQ))->{
3 atomic{
4 printf("<originator>buyer</originator>");
5 printf("<responder>store</responder>");
6 printf("<type>BUYREQ</type>");
7 printf("<status>bizfail</status>");
8 }
9 if /*1st notification of BF*/
10 ::(ReqFailBefore==NO)->ReqFailBefore=YES;
11 printf("First BUYREQ-BF");
12 RD(BUYREQ,BUYER,CCR,CO);
13 /*2nd notification of BF*/
14 ::(ReqFailBefore==YES)->abncoend=TRUE;
15 printf("Last BUYREQ-BF");
16 SET_R(BUYREQ,0);
17 atomic{
19 printf("<originator>reset</originator>");
20 printf("<responder>reset</responder>");
21 printf("<type>reset</type>");
22 printf("<status>reset</status>");
23 RD(BUYREQ,BUYER,NCCR,CND); /*abnormal contract end*/

The model can now also handle BUYREQ events that result in BF outcomes
(line 2). If a failed event is received, then the rule checks if a failure of this kind
has happened before. If not (line 10), then this first failure is registered, and
contract execution is allowed to continue (line 12). On the other hand, if this is
the second time BUYREQ has been received with a BF outcome then the rule
terminates contract interaction at line 23. The EPROMELA model includes rules
like the one described above for dealing with each of the 5 business events shown
in bold in our contract example. After the model has been verified using SPIN,
the electronic contract deployed to the CCC can be tested, in combination with
the testing framework described previously, using much more realistic execution
sequences that include exceptions. A detailed description of how exceptions are
handled in the CCC can be found in [17].

4 Related Work

Research work on the monitoring of cross-organizational interactions between
parties was pioneered by Minsky [20] with work on Law Governed Interaction
(LGI). The notion of rights, obligations, and prohibitions was introduced in [21].
A useful summary of various issues involved in contract management is provided
in [22].

Linear Temporal Logic (LTL) is a powerful tool for specifying correctness
properties in a model whether it is for verifying the correctness of the model, or
for the generation of test sequences. However, not all correctness properties can
be expressed using LTL; for example it is not possible to specify that a particular
property will hold for every 3rd or 4th state of the system. Such limitations are
discussed in [23], where extensions to LTL are suggested.

212 E. Solaiman et al.

Naturally, building a model of the SUT and describing the required LTL
properties relies heavily on the skills of the technical person who must also
be intimately familiar with the SUT. Also, it is difficult to ensure complete
coverage of all possible system behaviors during testing with manually specified
LTL properties. Therefore, it is desirable to be able to systematically create
complete test suites according to some test objective [24]. Research work in
[25] proposes to automate the task of specifying LTL properties by means of a
graphical language (DecSerFlow) that is then mapped into LTL formulas. Using
this language, the designer can specify a set of common or frequent correctness
requirements, as can be done using our LTL Manager.

The advantages and disadvantages of model checker based testing are dis-
cussed in [26] where the author provides a practical guide. Although model
checker based testing techniques have been studied widely in the software engi-
neering community [27–29], their use in the testing of a contract monitoring ser-
vice has received little attention. The principles of model checker based testing
of electronic contracts are investigated previously by us in [8], however contract
models in this work are built using Promela, the basic input language of SPIN.
Attempting to predict how a designer would use basic Promela to model a con-
tract in any standard manner is almost an impossible task, which makes devel-
oping tools for automating the testing process extremely difficult. An important
contribution of this paper is that we highlight the benefits of developing a tool
based framework that can leverage the capabilities of a domain specific modeling
language such as EPROMELA, which was developed specifically for modeling
electronic contracts.

5 Conclusion and Future Work

Cloud and Internet based interactions between business partners can be
extremely complex, and this is especially true when exceptional outcome events
from these interactions are taken into consideration. Reproducing such complex
exchanges in order to test the correct functionality of a service such as the Con-
tract Compliance Checker (CCC) is difficult and cannot be achieved manually.
We have presented a model checker based framework that includes tools to auto-
mate the testing process. By using the SPIN model checker in combination with
EPROMELA, a high level modeling language designed specifically for modeling
electronic contracts, we can build verified models that accurately resemble the
System Under Test (SUT) with relative ease. By using appropriate LTL formula
within an EPROMELA model, we can instrument SPIN to automatically pro-
duce contract compliant, and none contract compliant execution sequences that
are capable of exhaustively testing the correct operation of the CCC.

The LTL Manager presented in Sect. 3.3, enables the creation and description
of common contract related correctness requirements as LTL templates, which
are stored in an LTL repository. The choreography designer can use the LTL
manager to augment an EPROMELA model with LTL correctness properties
that result from the parameterization of the LTL templates. The EPROMELA

High Level Model Checker Based Testing of Electronic Contracts 213

model can then be presented to the SPIN model checker for verification and for
generating test sequences.

There are a number of future research directions which we are currently
exploring. We would like to enhance the CCC, which currently acts as a passive
monitor, with the capability to act as a contract enforcer. The aim of a contract
enforcement service would be to ensure that an operation is executed only if
it is contract compliant. Also an important item for future work is to conduct
experiments to determine how the presented testing framework performs as the
number of possible events increases.

An issue that requires further exploration, is the development of mechanisms
to aid with establishing conformance between electronic contracts and business
choreographies [13]. Additional research work is required to extend such mech-
anisms to business functions involving more than two parties [30].

In addition to the EROP to Drools translator presented in Sect. 2.3, we
would also like to create a translation tool that can produce an EPROMELA
model from an electronic contract specification written in EROP automatically.
This would reduce the risk of introducing unwanted errors into the contract
model during construction. We believe that this goal is achievable because of
the semantic similarities between EPROMELA and the electronic contracting
concepts within the CCC.

References

1. Molina-Jimenez, C., Shrivastava, S., Solaiman, E., Warne, J.: Contract representa-
tion for run-time monitoring and enforcement. In: 2003 IEEE International Con-
ference on E-Commerce (CEC 2003). IEEE (2003)

2. Molina-Jimenez, C., Shrivastava, S., Wheater, S.: An architecture for negotiation
and enforcement of resource usage policies. In: IEEE International Conference on
Service Oriented Computing and Applications (SOCA). IEEE (2011)

3. Strano, M., Molina-Jimenez, C., Shrivastava, S.: A rule-based notation to specify
executable electronic contracts. In: Bassiliades, N., Governatori, G., Paschke, A.
(eds.) RuleML 2008. LNCS, vol. 5321, pp. 81–88. Springer, Heidelberg (2008)

4. Solaiman, E., Molina-Jiménez, C., Shrivastav, S.: Model checking correctness prop-
erties of electronic contracts. In: Orlowska, M.E., Weerawarana, S., Papazoglou,
M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 303–318. Springer,
Heidelberg (2003)

5. Abdelsadiq, A., Molina-Jimenez, C., Shrivastava, S.: A high level model checking
tool for verifying service agreements. In: The 6th IEEE International Symposium
on Service-Oriented System Engineering (SOSE 2011). IEEE (2011)

6. Strano, M., Molina-Jimenez, C., Shrivastava, S.: Implementing a rule-based con-
tract compliance checker. In: Godart, C., Gronau, N., Sharma, S., Canals, G. (eds.)
I3E 2009. IFIP AICT, vol. 305, pp. 96–111. Springer, Heidelberg (2009)

7. Molina-Jimenez, C., Shrivastava, S., Strano, M.: A model for checking contractual
compliance of business interactions. IEEE Trans. Serv. Comput. 5(2), 276–289
(2012)

8. Abdelsadiq, A., Molina-Jimenez, C., Shrivastava, S.: On model checker based test-
ing of electronic contracting systems. In: IEEE International Conference on Com-
merce and Enterprise Computing (CEC 2010). IEEE (2010)

214 E. Solaiman et al.

9. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison
Wesley Professional, Boston (2003)

10. Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th Annual Sym-
posium on Foundations of Computer Science (FOCS 1977), pp. 46–57 (1977)

11. Solaiman, E., Sun, W., Molina-Jimenez, C.: A tool for the automatic verification
of bpmn choreographies. In: IEEE 12th International Conference on Services Com-
puting (SCC). IEEE (2015)

12. OMG: Documents associated with business process model and notation (bpmn)
version 2.0 (2011). http://www.omg.org/spec/BPMN/2.0/

13. Molina-Jimenez, C., Shrivastava, S.: Establishing conformance between contracts
and choreographies. In: 15th IEEE Conference on Business Informatics (CBI),
IEEE Computer Society, Vienna, Austria. IEEE (2013)

14. RedHat: Drools (2013). http://www.drools.org/
15. Parr, T.: The Definitive ANTLR 4 Reference, January 2013
16. Molina-Jimenez, C., Shrivastava, S., Cook, N.: Implementing business conversa-

tions with consistency guarantees using message-oriented middleware. In: IEEE
11th International Enterprise Computing Conference (EDOC 2007), pp. 51–62
(2007)

17. Molina-Jimenez, C., Shrivastava, S., Strano, M.: Exception handling in electronic
contracting. In: IEEE Conference on Commerce and Enterprise Computing (CEC).
IEEE, Vienna, Austria (2009)

18. OASIS: ebXML Business Process Specification Schema Technical Specifica-
tion v2.0.4. http://docs.oasis-open.org/ebxml-bp/2.0.4/OS/spec/ebxmlbp-v2.0.
4-Spec-os-en.pdf (2006)

19. Solaiman, E., Sfyrakis, I., Molina-Jimenez, C.: Dynamic testing and deployment
of a contract monitoring service. In: 5th International Conference on Cloud Com-
puting and Services Science. SCITEPRESS (2015)

20. Ungureanu, V., Minsky, N.H.: Establishing business rules for inter-enterprise elec-
tronic commerce. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 179–193.
Springer, Heidelberg (2000)

21. Ludwig, H., Stolze, M.: Simple obligation and right model (SORM) - for the run-
time management of electronic service contracts. In: Bussler, C.J., Fensel, D.,
Orlowska, M.E., Yang, J. (eds.) WES 2003. LNCS, vol. 3095, pp. 62–76. Springer,
Heidelberg (2004)

22. Hvitved, T.: A survey of formal languages for contracts. In: Fourth Workshop on
Formal Languages and Analysis of Contract-Oriented Software (FLACOS 2010)
(2010)

23. Galton, A.: Temporal Logics and Computer Science: an Overview. Academic Press,
Cambridge (1987). Chap. 1

24. Fraser, G., Wotawa, F., Ammann, P.: Testing with model checkers: a survey, pp.
215–261. Verification and Reliability, Software Testing (2009)

25. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: towards a truly declarative service
flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)

26. El-Far, I.K.: Enjoying the perks of model-based testing. In: Proceedings of the
Software Testing, Analysis, and Review Conference (STARWEST 2001) (2001)

27. Utting, M., Legeard, B.: Practical Model-Based Testing: a Tools Approach.
Morgan-Kaufmann, Burlington (2006)

28. Pezze, M., Young, M.: Software Testing and Analysis: Process. Wiley, Principles
and Techniques, New York (2008)

http://www.omg.org/spec/BPMN/2.0/
http://www.drools.org/
http://docs.oasis-open.org/ebxml-bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-os-en.pdf
http://docs.oasis-open.org/ebxml-bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-os-en.pdf

High Level Model Checker Based Testing of Electronic Contracts 215

29. Torsel, A.M.: A testing tool for web applications using a domain-specific modelling
language and the nusmv model checker. In: IEEE Sixth International Conference
on Software Testing, Verification and Validation (2013)

30. Shrivastava, S., Little, M.: Designing atomic business functions with distributed
control. In: 17th IEEE Conference on Business Informatics (CBI 2015). IEEE
(2015)

Streamlining APIfication by Generating APIs
for Diverse Executables Using Any2API

Johannes Wettinger(B), Uwe Breitenbücher, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart,
Universitätsstr. 38, Stuttgart, Germany

{wettinger,breitenbuecher,leymann}@iaas.uni-stuttgart.de

Abstract. For many of today’s systems, diverse application and man-
agement functionality is exposed by APIs to be used for integration
and orchestration purposes. One important use case is the implemen-
tation of fully automated deployment processes that are utilized to cre-
ate instances of Web applications or back-ends for mobile apps. Not
all functionality that needs to be integrated in this context is exposed
through APIs natively: such processes typically require a multitude of
other heterogeneous technologies such as scripting languages and deploy-
ment automation tooling. This makes it hard to seamlessly and efficiently
combine and integrate different kinds of building blocks such as scripts
and configuration definitions that are required. Therefore, in this paper,
we present a generic approach to automatically generate API implemen-
tations for arbitrary executables such as scripts and compiled programs,
which are not natively exposed as APIs. This APIfication enables the
uniform invocation of various heterogeneous building blocks, but aims
to avoid the costly and manual wrapping of existing executables. In
addition, we present the modular and extensible open-source framework
any2api that implements the previously introduced APIfication app-
roach. We evaluate the APIfication approach as well as the any2api
framework by measuring the overhead of generating and using API imple-
mentations. Moreover, a detailed case study is conducted to confirm the
technical feasibility of the presented approach.

Keywords: API · APIfication · Service · Web · REST · DevOps ·
Deployment · Cloud computing

1 Introduction

Many of today’s applications provide application programming interfaces (APIs)
[1] to be used for various purposes. This is especially the case for many Web appli-
cations as well as back-end systems and platforms for mobile apps. An API aims
to provide a well-defined and documented interface, which is exposed to access
and utilize application functionality in a programmatic manner. Technically,
APIs hide and abstract from implementation-specific details such as invocation
mechanisms and data models inherited from the underlying technology stack.
c© Springer International Publishing Switzerland 2016
M. Helfert et al. (Eds.): CLOSER 2015, CCIS 581, pp. 216–238, 2016.
DOI: 10.1007/978-3-319-29582-4 12

Streamlining APIfication by Generating APIs 217

This forms the foundation for integrating and orchestrating diverse applications
and application components, enabling the systematic development and reliable
operations of various kinds of distributed systems. APIs are also used to inte-
grate applications with business partners, suppliers, and customers [2]. Moreover,
devices are interconnected to enable the Web of things [3]. APIs are exposed and
utilized in different forms. Both (i) libraries that are bound to a particular pro-
gramming language and (ii) language-agnostic Web services such as Web-based
RESTful APIs [1,4] or WSDL/SOAP-based services [5] are widespread forms
of providing and using APIs. Many popular providers such as Twitter, GitHub,
Facebook, and Google offer such libraries1 and Web services2. In the context
of this paper, we consider a Web API as one particular kind of API, which
may be preferred in many environments because of its platform-independent
and language-agnostic characteristics. Therefore, the use cases, examples, and
implementations discussed in this paper often focus on Web APIs. However,
the concepts and methods are suitably generic to be applied to other kinds of
APIs, too.

The API directory ProgrammableWeb3 lists more than 12000 APIs and the
number of publicly available Web APIs is constantly growing4. Popular providers
such as Google, Facebook, and Twitter are serving billions of API calls per
day5. These statistics underpin the importance and relevance of APIs. Available
frameworks such as Hapi6 (Node.js) and Jersey7 (Java) as well as existing lit-
erature [1,4] provide holistic support, best practices, and templates for building
Web APIs. This is state of the art for building Web applications and back-
ends for mobile apps. Additionally, Web APIs as a platform-independent and
language-agnostic means for integration and orchestration purposes are heavily
utilized for automating the deployment and management of Cloud applications
[6,7], which leads to significant cost reductions and enables applications to scale:
Cloud providers offer management APIs that can be utilized programmatically
in a self-service manner to provision virtual servers, deploy applications using
platform services, or to configure scaling and network properties.

Such management APIs typically provide basic functionality only. Therefore,
they need to be used in conjunction with further configuration management sys-
tems to enable the deployment of non-trivial deployment processes: a huge num-
ber of reusable artifacts such as scripts (e.g., Chef cookbooks [8], Juju charms8,
Unix shell scripts) and templates like Docker container images [9] are provided
by open-source communities to be reused in conjunction with provider-supplied
service offerings. Typically, existing APIs can be orchestrated without too many

1 Google APIs Client Libraries: http://developers.google.com/api-client-library.
2 Google Compute Engine API: http://cloud.google.com/compute/docs/reference/

latest.
3 ProgrammableWeb: http://www.programmableweb.com.
4 ProgrammableWeb statistics: http://goo.gl/2eQ01o.
5 ProgrammableWeb calls per day: http://goo.gl/yhgyyW.
6 Hapi: http://hapijs.com.
7 Jersey: http://jersey.java.net.
8 Juju charms: https://manage.jujucharms.com/charms.

http://developers.google.com/api-client-library
http://cloud.google.com/compute/docs/reference/latest
http://cloud.google.com/compute/docs/reference/latest
http://www.programmableweb.com
http://goo.gl/2eQ01o
http://goo.gl/yhgyyW
http://hapijs.com
http://jersey.java.net
https://manage.jujucharms.com/charms

218 J. Wettinger et al.

obstacles due to well-known and common protocols such as HTTP. However, the
technical integration with diverse artifacts and heterogeneous management sys-
tems is an error-prone, time-consuming, and complex challenge [7]. Thus, it is of
utmost importance to handle the invocation of different artifacts, technologies,
and service providers in a technically uniform manner to focus on the orchestra-
tion level, neglecting lower-level technical differences when building, deploying,
and managing non-trivial systems.

Unfortunately, a significant amount of these individual artifacts are executa-
bles that cannot be utilized through an API without a central and monolithic
middleware component [7] such as a service bus that (a) maps generic API calls
into executable-specific invocations, (b) translates inputs and results of the invo-
cation, and (c) makes them available through an API endpoint. However, such a
monolithic middleware approach owns major drawbacks: (i) the individual arti-
facts are not packaged with their API to be utilized at runtime, so they are not
self-contained; (ii) in order to utilize the executables through an API, a mono-
lithic middleware component is inevitably required in addition to the individual
artifacts to be invoked which results in additional costs and maintenance effort;
(iii) in case a new kind of executable needs to be supported or an existing one
requires an update, the monolithic middleware has to be adapted, extended, and
redeployed accordingly with potential risks such as downtime, functional failures,
and unintended side effects. The major goal of our work is to overcome these
drawbacks by introducing an automated approach to generate API implementa-
tions (APIfication) that are packaged including the corresponding artifacts such
as the executable and all its dependencies in a portable manner. This approach
makes them truly self-contained without depending on a monolithic middleware.
The generated API implementations simplify the orchestration of different kinds
of artifacts and their integration with existing provider-hosted APIs. In this
context, we present the major contributions of our work:

– We present an automated APIfication method, respecting the requirements
we derived from a use case and motivating scenario in the field of Cloud
computing and deployment automation.

– We introduce an APIfication framework to implement the method we pre-
sented before and provide a prototype implementation to demonstrate the
feasibility.

– We validate the proposed APIfication approach using a prototype implemen-
tation and perform an evaluation to analyze the efficiency of our approach.

– We conduct a case study in the field of deployment automation and discuss
further use cases of the APIfication approach in other fields such as e-science.

– We outline and discuss further use cases to apply the presented APIfication
approach.

This paper is an extended and refined revision of our previously published
work entitled Any2API – Automated APIfication [10] at the 5th International
Conference on Cloud Computing and Services Science (CLOSER 2015). The
remainder of this paper is structured as follows: Sect. 2 describes the prob-
lem statement and outlines a use case and motivating scenario in the field of

Streamlining APIfication by Generating APIs 219

deployment automation. Based on the generic APIfication method presented in
Sect. 3, we propose and discuss an APIfication framework in Sect. 4. Our pro-
totype implementation any2api as well as its validation and evaluation are
discussed in Sect. 5. Moreover, we present a case study in that section. Section 6
outlines further use cases to apply our APIfication approach. Finally, Sects. 7
and 8 conclude the paper, including the discussion of related work and future
work.

2 Problem Statement and Use Case

As discussed in Sect. 1, APIs serve as a platform-independent and language-
agnostic means for integration and orchestration purposes. There are several
frameworks based on different programming languages and technology stacks
established to develop APIs, especially Web APIs. However, an individual API
still needs to be implemented manually using these development frameworks.
While this is state of the art for creating new applications such as Web applica-
tions or back-ends for mobile apps, for some use cases the individual development
of an API is not feasible or even impossible. This is due to scaling issues (e.g.,
creating APIs for a huge amount of individual executables) or missing expertise,
meaning the person, who needs to utilize certain functionality is not able to
develop a corresponding API. In the following we discuss an important use case
that requires API implementations to be generated in an automated manner.

2.1 Use Case: Deployment Automation

A major use case originates in the DevOps community [11], proposing the imple-
mentation of fully automated deployment processes to enable continuous deliv-
ery of software [12,13]. This is the foundation for rapidly putting changes, new
features, and bug fixes into production. Especially users and customers of Cloud-
based Web applications and mobile apps expect fast responses to their changing
and growing requirements. Thus, it is a competitive advantage to implement
automated processes to enable fast and frequent releases [11]. As an example,
Flickr performs more than 10 deployments per day9; HubSpot with 200 to 300
deployments per day goes even further10. This is impossible to achieve with-
out highly automated deployment processes. The constantly growing DevOps
community supports the implementation of automated processes by providing a
huge variety of individual approaches such as tools and artifacts to implement
holistic deployment automation. Reusable executables such as scripts, configura-
tion definitions, and templates are publicly available to be used for deployment
automation. Juju charms and Chef cookbooks are examples for these [8,14].
Such executables usually depend on certain tools. For instance, Chef cookbooks
require a Chef runtime, whereas Juju charms need a Juju environment. This

9 Flickr deployments per day: http://goo.gl/VEmVqE.
10 HubSpot deployments per day: http://goo.gl/4AQy1h.

http://goo.gl/VEmVqE
http://goo.gl/4AQy1h

220 J. Wettinger et al.

makes it challenging to reuse different kinds of heterogeneous artifacts in com-
bination with others. Especially when systems have to be deployed that consist
of various types of components, typically multiple tools have to be combined
because they focus on different kinds of middleware and application compo-
nents. Thus, there is a variety of solutions and orchestrating the best of them
requires to integrate the corresponding tools, e.g., by writing scripts that handle
the underlying lower-level invocations, parameter passing, etc. However, this is
a difficult, costly, and error-prone task as many of the executables cannot be
utilized through an API without relying on a central middleware component.
Consequently, all artifact- and tooling-specific details (invocation mechanism,
rendering input and output, etc.) have to be known and considered when inte-
grating and orchestrating different kinds of executables. We tackle these issues
with our work presented in this paper by generating APIs for individual executa-
bles. The generated APIs hide and abstract from artifact- and tooling-specific
details, thereby significantly simplifying the integration and orchestration of very
different kinds of artifacts.

Fig. 1. Deployment automation classification.

Figure 1 shows an initial classification of deployment automation approaches.
Executables are categorized in compiled and interpreted artifacts. Examples
for compiled executables are pre-built virtual machine snapshots and container

Streamlining APIfication by Generating APIs 221

images such as Amazon machine images (AMI)11 or Docker container images12.
In contrast to those, scripts and configuration definitions such as Chef cook-
books and Juju charms are interpreted at runtime. Beside executables, existing
APIs can be utilized in two flavors: (i) provider-hosted APIs are offered by
Cloud providers to provision virtual servers, storage, and other resources; (ii)
self-hosted APIs are offered, e.g., by open-source Cloud management platforms
such as OpenStack [15]. Our work focuses on transforming existing individual
executables into self-hosted APIs by generating corresponding API implemen-
tations. As a result, full deployment automation can be achieved by integrating
and orchestrating provider-hosted and self-hosted APIs without considering the
tooling- and artifact-specific details of different kinds of executables. Moreover,
this approach broadens the potential variety of tools and artifacts because their
implementation-specific differences are completely hidden by using the generated
API implementations.

Technically, the integration and orchestration of generated and existing APIs
can be implemented using arbitrary scripting languages such as JavaScript,
Ruby, or Python; alternatively, service composition languages such as BPMN
[16] or BPEL [17] may be used. For scripting languages, provider-independent
and provider-specific toolkits are available to implement deployment plans that
orchestrate and integrate different APIs. Examples are fog13 and Google’s
API libraries14. Furthermore, general-purpose libraries to interact with dif-
ferent kinds of Web APIs are available for all major scripting languages:
restler (JavaScript)15, node-soap (JavaScript)16, rest-client (Ruby)17, Savon
(Ruby)18, etc.

2.2 Motivating Scenario: Facebook App

Considering the deployment automation use case discussed before, this section
presents a comprehensive example as motivating scenario: the automated deploy-
ment of a Cloud-based Facebook application. The structure and parts of the
application are shown in Fig. 2. A canvas frame19 is used to create and embed
a corresponding application on the Facebook platform. The canvas URL points
to an externally hosted Web application that is run based on a PHP runtime
environment. It provides both the user interface and the underlying application
logic. The PHP runtime itself is provided by an Apache HTTP server in con-
junction with a PHP module. Both are deployed on a virtual machine, running
Ubuntu 14.04 as operating system, which itself runs in the Cloud, hosted on
11 Amazon Machine Images (AMI): http://goo.gl/S1Zx8Q.
12 Docker Hub Registry: https://registry.hub.docker.com.
13 fog: http://fog.io.
14 Google APIs Client Libraries: http://developers.google.com/api-client-library.
15 restler: https://github.com/danwrong/restler.
16 node-soap: https://github.com/vpulim/node-soap.
17 rest-client: https://github.com/rest-client/rest-client.
18 Savon: http://savonrb.com.
19 Facebook canvas frame: http://goo.gl/5guKas.

http://goo.gl/S1Zx8Q
https://registry.hub.docker.com
http://fog.io
http://developers.google.com/api-client-library
https://github.com/danwrong/restler
https://github.com/vpulim/node-soap
https://github.com/rest-client/rest-client
http://savonrb.com
http://goo.gl/5guKas

222 J. Wettinger et al.

Fig. 2. Facebook application stack.

Amazon’s public infrastructure (EC220). The scenario covers a typical setting
used to deploy and run Web-based social applications as it employs and combines
modern social media platforms such as Facebook as well as Cloud infrastructures
such as Amazon EC2. It could be further refined, e.g., by connecting the Web
application to a database that is provided by a database-as-a-service offering
hosted on a different Cloud infrastructure.

To provision the complete application stack in an automated manner, differ-
ent types of interfaces and invocation mechanisms have to be integrated. The
virtual machine with its operating system is acquired by using the HTTP/RPC
API provided by Amazon EC2. A Chef cookbook is executed on the virtual
machine through an SSH connection to install the middleware of the application
stack (Apache HTTP server). Furthermore, SSH is used to run custom Unix shell
scripts to install and configure the actual Web application. However, remotely
running executables such as Chef cookbooks and Unix shell scripts is not as
straightforward as calling a well-defined API endpoint: (i) an executable needs
to be placed on the virtual machine, e.g., using file transport protocols such as
FTP and SCP. Moreover, (ii) the executable may require a particular runtime

20 Amazon EC2: http://aws.amazon.com/ec2.

http://aws.amazon.com/ec2

Streamlining APIfication by Generating APIs 223

environment to be installed on the virtual machine such as a Chef runtime for
Chef cookbooks. An SSH connection can be used to drive the installation. After-
ward, (iii) the execution of the scripts needs to be parameterized, which may
be done by setting environment variables or storing configuration files. The final
challenge is (iv) retrieving the results of the invocation, e.g., by reading, pars-
ing, and potentially transforming the console output or files that were written
to disk. In comparison to a simple API call, these steps are more complex and
error-prone because lower-level implementation details such as different trans-
port protocols and invocation mechanisms have to be considered and combined
with each other. The overarching provisioning logic orchestrating all API calls as
well as the preparation and invocation of the executables could be implemented
by a script using a general-purpose scripting language such as Ruby or Python.
However, such a script would be polluted with lower-level implementation details
such as establishing SSH connections and placing files on the virtual machine.
Furthermore, service composition languages such as BPEL or BPMN cannot
be used without manually creating wrapping logic for the different executables
involved. This is due to their focus on Web service orchestration. Consequently,
the implementation details of the underlying APIs and executables directly influ-
ence which orchestration approaches can be used. This clearly contradicts with
the idea of loose coupling, i.e., selecting an orchestration approach and imple-
menting the orchestration logic without considering the implementation details
of the underlying, lower-level technologies.

To tackle these challenges we propose an automated approach to generate
APIs for arbitrary executables. The approach is based on the APIfication method
we present in Sect. 3. In the context of our motivating scenario discussed in this
section, the approach can be used to completely wrap the script invocation by
generating an API that hides the (i) placement, (ii) installation of required run-
time environments, (iii) parameterization and execution of the executable, as
well as (iv) transforming and returning the results. Consequently, the orches-
tration logic deals with API calls only, without getting polluted, error-prone,
or unnecessarily complex because of implementation details of the underlying
executables.

3 APIfication Method

The APIfication approach presented in this section is based on the assumption
that each executable has some metadata associated with it. These metadata
are either natively attached and/or they are explicitly specified and addition-
ally attached to the executable. Metadata indicate which input parameters are
expected, where results are put, which dependencies have to be resolved before
the invocation, etc. The main purpose of a generated API implementation is
to enable the invocation of the corresponding executable through a well-defined
interface, independent from the underlying technology stack. Furthermore, a
generated API implementation enables the invocation of the corresponding exe-
cutable not only locally in the same environment (e.g., same server), but enables

224 J. Wettinger et al.

the execution using remote access mechanisms such as SSH and PowerShell in
remote environments. This is to decouple the environment of an API implemen-
tation instance from the environment of the actual executable that is exposed
by the API. Distributed environments as they are, for instance, used in the field
of Cloud computing are thereby supported. An API call could be made from a
workstation (running a script that orchestrates multiple APIs) to an API imple-
mentation instance that is hosted on premises (e.g., a local server); the actual
executable (e.g., a Chef cookbook to install a middleware component) runs on a
Cloud infrastructure. However, one could also run all parts on a single machine,
e.g., a developer’s laptop.

Fig. 3. APIfication method.

Figure 3 shows an overview of the APIfication method, outlining the indi-
vidual steps and their ordering to generate API implementations in an auto-
mated manner. In the first step, the executable targeted for the APIfication
is selected. Then, the interface type (e.g., RESTful API) and the API imple-
mentation type (e.g., Node.js or Java) is selected (steps 2 and 3). The type of
interface including the communication protocol (HTTP, WebSocket, etc.) and
the communication paradigm (RPC, REST, etc.) can be chosen when generating
an API implementation. This choice may be driven by existing expertise, align-
ment with existing APIs, or personal preferences. Similarly motivated, the type
of the underlying implementation (Java, Node.js, etc.) for the generated API can
be chosen when generating an API implementation. A generated API should be
language-agnostic to allow the usage of arbitrary languages (scripting languages,
programming languages, service composition languages, etc.) to orchestrate and
integrate different APIs. Thus, Web APIs are the preferred and universal type
of APIs because they can be utilized in nearly any kind of language.

After the selection part, the executable including its metadata is scanned to
discover input and output parameters (step 4). If the scan did not discover all
parameters, the following (optional) step can be used to refine the input and out-
put parameters for the generated API (step 5). However, this is not required if
the metadata associated with the executable are sufficient as this is, e.g., the case
for many open-source deployment automation artifacts such as Chef cookbooks
and Juju charms. Consequently, the method can be applied to a huge amount

Streamlining APIfication by Generating APIs 225

Fig. 4. APIfication framework with technical examples.

and variety of such artifacts in an automated manner. Then, the API implemen-
tation is generated (step 6). To enable an API implementation to be hosted
in different environments, it must be packaged in a portable manner (step 7).
Thus, the implementation must be self-contained without depending on central
middleware components, which dynamically provide data format transforma-
tions, parameter mappings, etc. at runtime. All these and related functionality
are incorporated in the API implementation when it is generated at build time.
The portability aspect is key for automated deployment processes because they
need to run in very different environments (development, test, production, etc.).
These environments may be hosted on different infrastructures (developer lap-
top, test cloud, etc.), so portability of the generated API implementations is key
in this context. Technically, containerization technology [9,18] may be utilized
for this purpose: each API implementation gets packaged as a portable container
image that can be instantiated in different environments.

Later, the generated implementation may be refined or updated by going
back to the selection steps for the interface type and the API implementation
type. The APIfication method presented in this section addresses the challenges
we identified in Sect. 2, including the deployment automation use case and the
motivating scenario. However, the method itself is still abstract and can be
implemented in various ways. The following section presents a modular and
extensible framework to implement the APIfication method.

4 APIfication Framework

In order to implement the APIfication method introduced in Sect. 3, we present
a modular, plugin-based, and extensible framework in this chapter to support
the individual steps of the method. Figure 4 shows several artifacts organized in
multiple registries that are linked to the steps of the method, associated with

226 J. Wettinger et al.

Fig. 5. Invoker registry.

Fig. 6. Generator registry.

certain actions (check, use, create). When selecting an executable for its API-
fication, the available invokers are checked (action A) if there is at least one
invoker available that is capable of running the given type of executable (e.g., a
Chef cookbook). Figure 5 outlines the registry, in which the invokers are stored:
each invoker supports at least one executable type. For instance, the Cookbook
Invoker can be used to run Chef cookbooks. The generator registry (Fig. 6) is
checked (action B) when selecting the interface type and the API implementa-
tion type. As an example, a Chef cookbook may be selected in conjunction with
HTTP+REST as interface type and Node.js as implementation type. In this case all
checks would succeed because the Cookbook Invoker is available and the REST
API Generator can be used to generate an HTTP+REST interface; this is possible
because the chosen generator can deal with Node.js as implementation type.
Consequently, the generator uses the invoker to provide an API implementation
that can run the given Chef cookbook.

Next, the given executable with its metadata is analyzed by a corresponding
scanner (action C) from the scanner registry (Fig. 7) to create an API I/O
specification (action D). A scanner is a specialized module in the framework
that is able to scan executables of a certain type such as a Chef cookbook scanner
to scan cookbooks. Figure 8 shows an example for a specification (produced by
a scanner) for a MySQL cookbook: it contains the input and output parameter
names, their data types, and the mapping information to properly map between

Streamlining APIfication by Generating APIs 227

Fig. 7. Scanner registry.

Fig. 8. API I/O spec for MySQL cookbook.

API parameters to the executable parameters at runtime. The mode of a para-
meter indicates whether this parameter is used as input or it is used to return
some output of an invocation. Optionally, a default value can be associated with a
parameter, which is used in case no value is defined at runtime for the correspond-
ing parameter. In case the data type is object, a schema definition, e.g., XML
schema [19] or JSON schema [20] can be attached to the parameter. This is to
specify the expected data structure for values (objects) of a particular parameter
in more detail. The mapping of parameters specifies the target for input parame-
ters and the source for output parameters at runtime. To refer to Fig. 8: the API
parameter version is mapped to the Chef attribute mysql/version, whereas the
console output of the executable (STDOUT) is mapped to the API parameter logs.
Optionally, the specification can be refined manually in the following step, which
is not required if the executable’s metadata is sufficient. The invoker config
parameter (mapped to the environment variable INVOKER CONFIG) is a special
one, provided by the framework; it cannot be modified or deleted during the
(optional) manual refinement step. The parameter is used to configure the under-
lying invoker itself when using the generated API to run the executable. This
is, for instance, needed to support remote access mechanisms, enabling the exe-
cution in remote environments. As an example the invoker config parameter
can hold the following JSON object to use SSH to run the executable remotely:

{

"remote_access": "ssh",

"remote_host": "173.194.44.88",

"ssh_user": "ubuntu",

"ssh_key": "-----BEGIN RSA PRIVATE KEY ..."

}

228 J. Wettinger et al.

Fig. 9. Generated API implementation package.

This sample configuration (given at runtime and transparently forwarded to
the invoker) triggers the invocation of the underlying executable on the machine
associated with the given IP address (remote host) through SSH. Beside the
special invoker config parameter, the API I/O specification tells the corre-
sponding generator how to create a proper API implementation (action E).
A generator is a specialized module that performs the actual work to generate
an API implementation. One part of the generation process is to put the cor-
responding invoker into the generated API implementation. The invoker is pro-
vided by the invoker registry to run the given executable (action F). Finally, the
API implementation is packaged with the executable in a self-contained manner
(action G). With this, the APIfication procedure for the given executable is
finished, so the generated and packaged API implementation can be tested and
used (action H). Figure 9 outlines the structure of a generated and packaged
API implementation: the invoker (e.g., the cookbook invoker) is retrieved from
the invoker registry to invoke the selected executable such as the MySQL cook-
book at runtime. The API endpoint is specified by the API I/O specification,
which itself is generated by a scanner module provided by the framework. A
generator module uses the specification to generate the implementation of the
API endpoint. Finally, all parts are packaged in a self-contained manner, e.g.,
in a Docker container image. The following Sect. 5 presents the validation and
evaluation of the APIfication method and framework we discussed in Sect. 3 and
this section, based on a prototype implementation we provide.

5 Validation and Evaluation

In order to evaluate our APIfication method and framework, we developed
any2api21 as a prototype implementation. The following Sect. 5.1 presents and
discusses the implementation. In addition, the generated API implementations

21 any2api: http://any2api.org.

http://any2api.org

Streamlining APIfication by Generating APIs 229

include simple tests to validate the correctness of the generated implementation
(Sect. 5.2). In order to evaluate our framework and the any2api implementa-
tion, we performed experiments to measure the overhead both at build time and
runtime (Sect. 5.3). Finally, Sect. 5.4 presents a comprehensive case study in the
field of deployment automation.

5.1 Any2API Implementation

any2api is a modular and extensible implementation of the APIfication frame-
work presented in Sect. 4. Technically, it is based on Node.js, so most parts of
it are implemented in JavaScript. Therefore, we use the Node Package Man-
ager (NPM)22 and the associated NPM registry to manage and publish Node.js
modules. However, this does not imply that all parts of the framework have to
be implemented in JavaScript. As an example, invoker modules expose several
scripts that can (but do not have to) be implemented in JavaScript. Technically,
these are specified as NPM scripts23 in the package.json file of a module:

"scripts": {

"prepare-executable": "node ./prep-exec.js",

"prepare-runtime": "sh ./prep-runtime.sh",

"start": "java -jar ./invoke.jar",

...

}

Such a script can then be called using the npm run command, e.g., to trigger
an invocation of an executable that is packaged with a generated API implemen-
tation: npm run start. This command is executed by the generated API imple-
mentation, which itself can be of an arbitrary implementation type such as a JAR
file (Java) or a Node.js module (JavaScript). Moreover, the API implementation
needs to set predefined environment variables before running the script such
as PARAMETERS to parameterize the invocation accordingly. These environment
variables contain JSON objects that are parsed and processed by the invoker.
As an example, the input parameters for invoking a MySQL cookbook may be
rendered as follows:

{

"version": "5.1",

"port": 3306,

...

}

The prepare-executable script is triggered at build time, i.e., when gener-
ating an API implementation to prepare the packaged executable. Such prepara-
tions may include resolving all dependencies of a particular executable to package

22 NPM: https://www.npmjs.org.
23 NPM scripts: http://docs.npmjs.com/misc/scripts.

https://www.npmjs.org
http://docs.npmjs.com/misc/scripts

230 J. Wettinger et al.

the executable in a truly self-contained manner. At runtime (i.e., when an invo-
cation of the executable is triggered) the prepare-executable script is executed
before the start script to install prerequisites required for the invoker to run
such as a Java runtime environment.

Generators and scanners are implemented as Node.js modules, too. Each
generator module exposes a generate function to produce an API implementa-
tion based on the given API I/O specification. Each scanner module exposes a
scan function, which analyzes the given executable to generate an API I/O spec-
ification. This specification (after optional, manual refinement) can then be used
in conjunction with a generator to produce an API implementation. In addition,
we implemented the any2api-core24 module, which provides simple registries
as discussed in Sect. 4 for scanner modules, generator modules, and invoker mod-
ules. To actually use and interact with the framework, the any2api-cli25 mod-
ule provides a command-line interface (CLI) to scan executables as well as to
generate packaged API implementations:

any2api -o ./mysql_spec scan ./mysql_cookbook

any2api -o ./api_impl gen ./mysql_spec

The first command scans an existing Chef cookbook, generating an API I/O
specification. Based on this specification, the second command generates a corre-
sponding API implementation. By default, a Node.js-based API implementation
exposing a RESTful interface is generated. A Dockerfile26 (build plan to create
a self-contained and portable container image) is included in each generated API
implementation. Consequently, Docker can be used to create API implementa-
tion packages. Moreover, public and private Docker registries27 can be utilized
to store, manage, and retrieve potentially different versions of pre-built API
implementations. Following this approach, a huge variety of existing tools that
are part of the Docker ecosystem can be used to manage instances of generated
API implementations. As an example, CoreOS28 may be utilized to host API
implementations in a managed cluster of Docker containers.

Currently, two scanner modules are implemented for analyzing Chef cook-
books and Juju charms. The Chef invoker module enables the invocation of Chef
cookbooks, both in local and remote environments using SSH transparently.
Using the REST generator module, Node.js-based RESTful API implementa-
tions can be generated. Further modules are currently being developed such
as a Juju invoker, a Docker invoker, a Docker scanner, as well as alternative
generators to support different type of interfaces (SOAP/WSDL, JSON-RPC,
XML-RPC, etc.) and alternative implementation types (Java, Ruby, etc.).

24 any2api-core: https://github.com/any2api/any2api-core.
25 any2api-cli: https://github.com/any2api/any2api-cli.
26 Dockerfile reference: http://docs.docker.com/reference/builder.
27 Docker registry: http://github.com/docker/docker-registry.
28 CoreOS: https://coreos.com.

https://github.com/any2api/any2api-core
https://github.com/any2api/any2api-cli
http://docs.docker.com/reference/builder
http://github.com/docker/docker-registry
https://coreos.com

Streamlining APIfication by Generating APIs 231

5.2 Tests

The previous Sect. 5.1 presented any2api, the prototype implementation of our
APIfication framework discussed in Sect. 4. In order to validate the correctness
of the generated API implementations, each of them includes a test script. By
running the test script (using the command npm run test), an API call is made
to the generated API implementation, triggering the invocation of the packaged
executable with its default parameters. This is a simple, but auto-generated
‘smoke test’ to validate that the generated API implementations works. We
generated an API implementation for a selection of the most downloaded Chef
cookbooks29, covering the automated installation and configuration of very com-
mon and widely used middleware components, including mysql, apache2, java,
nginx, zabbix, glassfish, postgresql, and php. As an example, apache2 and
php are required for the automated deployment of the Facebook application
we outlined in the motivating scenario (Sect. 2.2). We documented the required
commands in a test script30 that we executed on a Ubuntu 14.04 server sys-
tem (64-bit) for each cookbook to generate and test the corresponding Node.js-
based RESTful API implementation. All API implementations are generated
fully automatically without any manual refinement. Of course, additional test
cases with different parameter settings can be implemented manually to perform
further validation of a generated API implementation.

5.3 Measurements

In order to evaluate the efficiency of our approach compared to the plain usage
of the corresponding executable, we measured the overhead of the APIfication.
Therefore, we selected some of the most downloaded Chef cookbooks, which we
were using for our tests before (Sect. 5.2). First, we measured the overall duration
it takes to scan the executable (Chef cookbook) and to generate a correspond-
ing API implementation (Node.js-based RESTful API). Second, we check the
additional size of the generated API implementation without the corresponding
executable. This is to estimate the disk space that is additionally required at run-
time when using an instance of an API implementation. Third, we measured the
execution duration and memory usage for running the corresponding executable
both with and without using the generated API implementation. The evaluation
was run on a clean virtual machine (4 virtual CPUs clocked at 2.8 GHz, 64-bit,
4 GB of memory) on top of the VirtualBox hypervisor, running a minimalist
Linux system including Docker. The processing and invocation of a particular
Chef cookbook was done in a clean Docker-based Ubuntu 14.04 container, with
exactly one container running on the virtual machine at a time. We did all mea-
surements at container level to completely focus on the workload that is linked
to the executable and the API implementation.

Table 1 shows the results of our evaluation. The measured average duration
to scan and generate an API implementation is in the range from 7 to 90 s. This
29 Most downloaded cookbooks: http://goo.gl/8xZUCT.
30 Test script: http://goo.gl/g847Ws.

http://goo.gl/8xZUCT
http://goo.gl/g847Ws

232 J. Wettinger et al.

Table 1. Measurements regarding generated API implementations for Chef cookbooks.

Avg. duration to scan 13s 14s 7s 25s 90s 17s 16s 29s

and generate API impl.

Add. size of generated 25M 25M 25M 25M 25M 25M 25M 25M

API implementation

Avg. execution duration 54s 48s 84s 45s 47s 153s 60s 123s

with API impl.

Avg. execution duration 54s 39s 82s 39s 42s 140s 59s 110s

without API impl.

Max. memory usage 556M 471M 507M 461M 429M 674M 510M 614M

with API impl.

Max. memory usage 343M 258M 402M 270M 212M 456M 310M 426M

without API impl.

duration is the overhead at build time, including the retrieval of the executable
and all its dependencies. The additional size of the generated API implementa-
tion leads to slightly more disk space usage at runtime. Moreover, there is a minor
overhead in terms of execution duration and memory consumption at runtime.
In most of today’s environments this overhead should be acceptable, considering
the significant simplification of using the generated APIs compared to the plain
executables. In addition, when using the plain executables directly, much of the
complexity hidden by the generated API implementation has to be covered at
the orchestration level. So, the overall consumption of resources may be the same
or even worse, depending on the selected means for orchestration. Furthermore,
instances of API implementations can be reused to run an executable multiple
times and potentially in different remote environments. Through this reuse, the
overhead can be quickly compensated in large-scale environments.

5.4 Deployment Automation Case Study

We used the presented APIfication approach to ease implementing and gener-
ating workflows for the deployment of Cloud applications based on the Open-
TOSCA ecosystem [21,22]. This ecosystem is based on the TOSCA standard [23],
which enables describing Cloud applications and their management in a portable
fashion. To define management tasks imperatively, e.g., to migrate application
components, the ecosystem employs management plans based on the workflow
language BPEL [17]. Therefore, the orchestration of management scripts, APIs,
and other executables is a major challenge. The presented APIfication approach
eases developing management workflows significantly as it reduces the required
effort and complexity of integrating different technologies. Using our approach,
modeling management workflows requires the orchestration of APIs only, which
is much more straightforward compared to the former integration of various het-
erogeneous technologies. Combined with the generated APIs for Chef cookbooks

Streamlining APIfication by Generating APIs 233

as discussed in Sect. 5.3, the integration of both the ecosystem and our API-
fication approach provides a powerful means to enable a fast development of
management workflows for Cloud applications.

6 Further Use Cases

Beside the deployment automation use case (Sect. 2) we were focusing so far, we
identified further use cases to apply our APIfication approach presented in this
paper. These use cases are outlined and described in the following sections.

6.1 Cyberinfrastructure and e-Science

In the cyberinfrastructure and e-Science community [24], scientific applications
are utilized, orchestrated, and run in Grid and Cloud environments to perform
complex and CPU-intensive calculations such as scientific simulations and other
experiments. These applications are implemented in arbitrary programming or
scripting languages; they are usually run as executables directly. Consequently,
they cannot be directly utilized through APIs. Existing works focus on the usage
of scientific applications through Web APIs [25,26] to ease their integration
and orchestration for more sophisticated experiments, where multiple scientific
applications are involved. As an example, Opal [27] is a framework for wrapping
scientific applications, so they can be used through a Web API, abstracting from
the application-specific details and differences such as invocation mechanisms
and parameter passing. We tackle these challenges with our work by generating
API implementations and packaging them together with the actual scientific
application, i.e., the executable. This eases the integration and orchestration of
different scientific application through Web APIs, without having to create API
wrappers manually from scratch. As a result, running complex experiments that
involve several scientific applications becomes easier.

6.2 Treat API Endpoints as Executables

In the previously described use cases of deployment automation (Sect. 2) and
e-science (Sect. 6.1), we implicitly assumed an executable to be an individual file
or a collection of files (scripts, compiled executables, scientific applications, etc.).
However, existing API endpoints as they are, e.g., exposed by provider-hosted
Cloud APIs and social media APIs (Facebook31, Twitter32, etc.) can be consid-
ered as executables, too. This is motivated by the need for wrapping existing
API endpoints to make them available through different communication proto-
cols (e.g., wrap WebSocket by HTTP) or communication paradigms (e.g., wrap
RPC by REST). As an example, Twitter provides the users/show endpoint33

31 Facebook Graph API: http://goo.gl/HKGpZG.
32 Twitter REST API: https://dev.twitter.com/rest.
33 Twitter users/show API endpoint: http://goo.gl/dmsJ22.

http://goo.gl/HKGpZG
https://dev.twitter.com/rest
http://goo.gl/dmsJ22

234 J. Wettinger et al.

to retrieve a variety of information about a particular Twitter user. If this API
endpoint needs to be utilized in a deployment workflow implemented in BPEL,
a wrapper has to be implemented to make the endpoint accessible through a
WSDL/SOAP-based interface [7]. By treating API endpoints as executables,
API implementations could potentially be generated for existing endpoints to
make them accessible through different protocols and communication paradigms,
without relying on central middleware components such as a service bus.

6.3 API Libraries

So far, we were focusing on APIs, which expose functionality through network-
based endpoints. Prominent examples are various types of Web APIs (SOAP,
JSON-RPC, REST, etc.) as well as messaging APIs. Other kinds of APIs expose
functionality through ‘native’ libraries and modules, which can be used imme-
diately in the context of a certain technology stack or programming language.
Examples are Java libraries packaged as JAR files, Node.js modules shipped as
NPM packages, and Python modules. On the one hand, such APIs are typically
not language-agnostic in contrast to endpoint-based APIs; on the other hand,
they enable a much easier integration and usage within the context of a partic-
ular programming language or technology stack. As an example, a Java method
that is offered by a Java-based API library can be directly invoked instead of
using a general-purpose HTTP client library to interact with a RESTful Web
API. Endpoint APIs and API libraries can also be used complementary: API
libraries can effectively wrap endpoint APIs to ease the usage and integration
of their functionality in various contexts. Therefore, API libraries add an addi-
tional layer of abstraction to seamlessly integrate with the programming model
of the corresponding language or stack.

6.4 Microservice Architectures

With microservices [28] becoming increasingly popular as an architecture para-
digm, the APIfication approach we present in this paper can be used to build
systems that follow this paradigm. The basic idea of this emerging paradigm is
to develop highly specialized and scoped components, which are independently
maintained and deployable; they expose functionality as microservices (APIs)
that make up a complex system by combining and integrating them. This is in
contrast to building monolithic systems that are typically hard to scale, change,
and maintain in the long term. To ease the development of certain microservices,
the core functionality (e.g., business logic) can be initially implemented as exe-
cutables, without dealing with API implementations to make the functionality
available to other components. Then, the APIfication approach can be utilized
to generate API implementations, which are independently deployable entities
in the sense of microservices. This enables clear separation of concerns when
developing and maintaining microservices.

Streamlining APIfication by Generating APIs 235

7 Related Work

As discussed in Sects. 1 and 2, using and creating APIs is of utmost importance
today [2]. Consequently, a huge variety of approaches is available to simplify
the creation and development of APIs. Beside API development frameworks to
create API implementations manually (e.g., Hapi34 and LoopBack35), there are
solutions to semi-automatically create Web APIs. As an example, API specifi-
cations defined using the RESTful API Modeling Language (RAML)36 can be
utilized to generate an API implementation skeleton based on Jersey37, a Java
framework to develop RESTful APIs [1,4]. These generated skeletons have to be
refined by adding application-specific logic. Consequently, such approaches can
be immediately used to develop generator modules for our APIfication frame-
work: the generator produces a skeleton, which is then automatically refined by
adding the logic to call a corresponding invoker to run the selected executable.
Moreover, solutions such as Kimono38 and Import.io39 can be used to generate
Web APIs for existing Web sites. These approaches provide interactive ways
to extract content from HTML pages (e.g., using CSS selectors) to make them
available in more machine-readable formats such as JSON. Thus, such Web page-
centric approaches focus on extracting and re-formatting content, whereas our
approach tackles the issue of managing the invocation of arbitrary executables.
In contrast to service providers such as Kimono, our approach aims to generate
self-contained, portable, and packaged API implementations that can be hosted
anywhere, so they do not depend on specific provider offerings.

RPC frameworks such as Apache Thrift40 and Google’s Protocol Buffers41

aim to ease the integration of application logic and executables that are
implemented based on different technology stacks. For efficiency reasons, they
typically do not rely on Web APIs but use lower-level TCP connection-based pro-
tocols. Such RPC frameworks can be perfectly combined with our APIfication
approach by implementing generator modules. In this case, a module generates
an API implementation, e.g., exposing a Thrift interface instead of an HTTP-
based RESTful interface. Some of these frameworks offer support to generate
code skeletons based on interface descriptions. This functionality can be reused
to ease the implementation of a corresponding generator module. However, by
sticking to such non-standard communication protocols there are limitations on
the orchestration level, meaning the same framework has to be used instead of
interacting with a standards-based interface such as HTTP/REST. This is a
trade-off between efficiency and interoperability that needs to be made individu-
ally based on concrete use cases. Since our framework supports both approaches,
34 Hapi: http://hapijs.com.
35 LoopBack: http://loopback.io.
36 RAML: http://raml.org.
37 RAML to JAX-RS (Jersey): http://goo.gl/E39jun.
38 Kimono: https://www.kimonolabs.com.
39 Import.io: https://import.io.
40 Apache Thrift: http://thrift.apache.org.
41 Protocol Buffers: http://developers.google.com/protocol-buffers.

http://hapijs.com
http://loopback.io
http://raml.org
http://goo.gl/E39jun
https://www.kimonolabs.com
https://import.io
http://thrift.apache.org
http://developers.google.com/protocol-buffers

236 J. Wettinger et al.

different API implementations (e.g., Thrift-based and HTTP/REST-based) can
be generated and exchanged for a particular executable as needed. In the field
of Web APIs, approaches such as websockify42 and websocketd43 can be used to
expose the functionality of executables through the standards-based WebSocket
protocol [29]. Corresponding generator modules can be implemented to reuse
these approaches in the context of our APIfication framework.

8 Conclusion

The automated APIfication approach, which eases the integration and orches-
tration of diverse executables represents the core contribution of this paper. In
order to justify the need for such an approach, we systematically derived rele-
vant requirements from the deployment automation use case and the motivating
scenario. A generic APIfication method was presented in conjunction with a cor-
responding framework to fulfill the identified requirements. These two building
blocks (method and framework) eventually allow to automatically generate API
implementations. To confirm the practical feasibility of the presented method
and framework, we developed any2api as a modular, extensible, and open-
source implementation of the framework. Moreover, we validated the correctness
of generated API implementations using simple but auto-generated test scripts
(‘smoke tests’) that invoke the packaged executable with its default parameters.
In terms of quantitative evaluation of the APIfication approach, we analyzed the
efficiency of our approach by conducting comprehensive measurements. These
measurements show a small overhead when following the APIfication approach,
which is acceptable for most environments, considering the significant simplifi-
cation and convenience, which the presented approach provides. In addition, we
did a case study in the field of deployment automation to confirm the actual
applicability of our approach in practice. Finally, we outlined additional use
cases in different fields to apply the proposed APIfication approach.

In ongoing and future work, we aim to extend the APIfication framework to
support an additional but optional step to refine the parameter mapping, e.g.,
aggregating, splitting, or transforming parameter values. We intend to enable
this feature by allowing the definition of JavaScript functions that are executed
in a sandboxed environment at runtime. Furthermore, we plan to extend and
refine the any2api implementation. Existing scanners, generators, and invokers
will be refined, and additional ones will be implemented. As an example, such a
refinement may include authentication and authorization mechanisms for gener-
ated API implementations. The currently implemented generators can be used
to create API implementations that expose Web APIs such as HTTP/REST. In
future, we plan to implement generators in conjunction with alternative pack-
aging formats to generate API libraries that can be directly used in conjunction
with different programming and scripting languages such as Java and Python.

42 websockify: https://github.com/kanaka/websockify.
43 websocketd: https://github.com/joewalnes/websocketd.

https://github.com/kanaka/websockify
https://github.com/joewalnes/websocketd

Streamlining APIfication by Generating APIs 237

Finally, to improve the user experience of the framework, a graphical user inter-
face as well as a RESTful API are planned to be implemented. These are meant
to be used as an alternative to the command-line interface in order to interact
with the framework.

Acknowledgement. This work was partially funded by the BMWi project CloudCy-
cle (01MD11023) and the DFG project SitOPT (610872).

References

1. Richardson, L., Amundsen, M., Ruby, S.: RESTful Web APIs. O’Reilly Media Inc.,
Sebastopol (2013)

2. Rudrakshi, C., Varshney, A., Yadla, B., Kanneganti, R., Somalwar, K.: API-
fication - core building block of the digital enterprise. Technical report, HCL Tech-
nologies (2014)

3. Guinard, D., Trifa, V., Wilde, E.: A resource oriented architecture for the web of
things. In: Internet of Things (IOT), 2010. IEEE (2010)

4. Masse, M.: REST API Design Rulebook. O’Reilly Media Inc., Sebastopol (2011)
5. W3C: SOAP Specification, Version 1.2 (2007)
6. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. National Institute

of Standards and Technology (2011)
7. Wettinger, J., Binz, T., Breitenbücher, U., Kopp, O., Leymann, F., Zimmermann,

M.: Unified invocation of scripts and services for provisioning, deployment, and
management of cloud applications based on TOSCA. In: Proceedings of the 4th
International Conference on Cloud Computing and Services Science. SciTePress
(2014)

8. Nelson-Smith, S.: Test-Driven Infrastructure with Chef. O’Reilly Media Inc.,
Sebastopol (2013)

9. Turnbull, J.: The Docker Book. Lulu.com (2014)
10. Wettinger, J., Breitenbücher, U., Leymann, F.: Any2API - Automated APIfica-

tion. In: Proceedings of the 5th International Conference on Cloud Computing
and Services Science. SciTePress (2015)

11. Hüttermann, M.: DevOps for Developers. Apress, Berkeley (2012)
12. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through

Build, Test, and Deployment Automation. Addison-Wesley Professional, Boston
(2010)

13. Wettinger, J., Breitenbücher, U., Leymann, F.: Standards-based DevOps automa-
tion and integration using TOSCA. In: Proceedings of the 7th International Con-
ference on Utility and Cloud Computing (UCC) (2014)

14. Sabharwal, N., Wadhwa, M.: Automation through Chef Opscode: A Hands-on App-
roach to Chef. Apress, Berkeley (2014)

15. Pepple, K.: Deploying OpenStack. O’Reilly Media, Sebastopol (2011)
16. OMG: Business Process Model and Notation (BPMN) Version 2.0 (2011)
17. OASIS: Web Services Business Process Execution Language (BPEL) Version 2.0

(2007)
18. Scheepers, M.J.: Virtualization and Containerization of Application Infrastructure:

A Comparison (2014)
19. World Wide Web Consortium (W3C): XML Schema (2012)

238 J. Wettinger et al.

20. Internet Engineering Task Force: JSON Schema (2013)
21. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A.,

Wagner, S.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp.
692–695. Springer, Heidelberg (2013)

22. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – a modeling tool
for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X.
(eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013)

23. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated
deployment and management of cloud applications. In: Bouguettaya, A., Sheng,
Q.Z., Daniel, F. (eds.) Advanced Web Services, pp. 527–549. Springer, New York
(2014)

24. Yang, X., Wang, L., Jie, W.: Guide to e-Science. Springer, London (2011)
25. Afanasiev, A., Sukhoroslov, O., Voloshinov, V.: MathCloud: publication and reuse

of scientific applications as RESTful web services. In: Malyshkin, V. (ed.) PaCT
2013. LNCS, vol. 7979, pp. 394–408. Springer, Heidelberg (2013)

26. Sukhoroslov, O., Afanasiev, A.: Everest: a cloud platform for computational web
services. In: Proceedings of the 4th International Conference on Cloud Computing
and Services Science. SciTePress (2014)

27. Krishnan, S., Clementi, L., Ren, J., Papadopoulos, P., Li, W.: Design and evalu-
ation of Opal2: a toolkit for scientific software as a service. In: World Conference
on Services I. IEEE (2009)

28. Newman, S.: Building Microservices. O’Reilly Media, Sebastopol (2015)
29. IETF: The WebSocket Protocol (2011)

Hybrid TOSCA Provisioning Plans: Integrating
Declarative and Imperative Cloud Application

Provisioning Technologies

Uwe Breitenbücher1(B), Tobias Binz1, Oliver Kopp2, Kálmán Képes1,
Frank Leymann1, and Johannes Wettinger1

1 Institute of Architecture of Application Systems, University of Stuttgart,
Stuttgart, Germany

{breitenbuecher,binz,kepes,leymann,wettinger}@informatik.uni-stuttgart.de
2 Institute for Parallel and Distributed Systems, University of Stuttgart,

Stuttgart, Germany
kopp@informatik.uni-stuttgart.de

Abstract. The efficient provisioning of complex applications is one of
the most challenging issues in Cloud Computing. Therefore, various pro-
visioning and configuration management technologies have been devel-
oped that can be categorized as follows: imperative approaches enable a
precise specification of the low-level tasks to be executed whereas declar-
ative approaches focus on describing the desired goals and constraints.
Since complex applications employ a plethora of heterogeneous compo-
nents that must be wired and configured, typically multiple of these
technologies have to be integrated to automate the entire provisioning
process. In a former work, we presented a workflow modelling concept
that enables the seamless integration of imperative and declarative tech-
nologies. This paper is an extension of that work to integrate the mod-
elling concept with the Cloud standard TOSCA. In particular, we show
how Hybrid Provisioning Plans can be created that retrieve all required
information about the desired provisioning directly from the correspond-
ing TOSCA model. We validate the practical feasibility of the concept
by extending the OpenTOSCA runtime environment and the workflow
language BPEL.

Keywords: Cloud application provisioning · TOSCA · Hybrid plans ·
Automation · Declarative modelling · Imperative modelling · Integration

1 Introduction

With the growing adoption of Cloud Computing in enterprises, the rapid and reli-
able provisioning of Cloud applications becomes an increasingly important issue.
Consequently, strategic aspects such as time to market, high availability, mobile
computing, and continuous delivery mainly dominate strategic IT development,
provisioning, and maintenance. Especially the increasing number of available

c© Springer International Publishing Switzerland 2016
M. Helfert et al. (Eds.): CLOSER 2015, CCIS 581, pp. 239–262, 2016.
DOI: 10.1007/978-3-319-29582-4 13

240 U. Breitenbücher et al.

services offered by Cloud providers, e. g., Amazon and Google, provide power-
ful Cloud properties such as automatic elasticity, self-service, and pay-per-use
features that are provided entirely by the autonomous management systems of
Cloud environments [23]. Due to this trend, more and more business applications
are outsourced to the Cloud [2]. As a result, Cloud-based applications become
(i) increasingly complex and (ii) employ a plethora of heterogeneous software,
middleware, and XaaS components offered by different providers including non-
trivial dependencies among each other. Unfortunately, automating the provi-
sioning of such applications becomes a serious management challenge: different
kinds of Cloud offerings (IaaS, PaaS, SaaS, etc.) must be provisioned and com-
plex configurations are required to setup and wire the involved components. This
typically requires the combination of multiple management technologies, espe-
cially if the application components are distributed across multiple Clouds [9].
However, combining (i) proprietary APIs, (ii) non-standardized configuration
management tools, and (iii) different virtualization technologies in a single auto-
mated provisioning process is a complex modelling and integration challenge
using traditional approaches such as workflows. This complexity results from the
different management paradigms that have to be integrated: there are declara-
tive technologies, such as Chef [26,31] or Puppet [33], which only describe the
desired state of application components without specifying the actual tasks that
have to be executed to reach this state. Imperative technologies, e. g., scripts or
workflows, explicitly specify each step to be executed in detail. While there are
approaches for orchestrating imperative technologies homogeneously [19], com-
bining different declarative and imperative technologies requires implementing
huge amounts of wrapper code as the two flavors are hardly interoperable with
each other.

In this paper, which is an extended version of our former work [10] that we
have presented at the 5th International Conference on Cloud Computing and Ser-
vices Science (CLOSER), we tackle these issues. The paper presents a workflow
modelling concept to integrate declarative and imperative management technolo-
gies seamlessly. We introduce the concept of Declarative Provisioning Activities
that enables modelling declarative goals directly in an imperative workflow model.
Using this modelling concept, developers are able to create Hybrid Provisioning
Plans, which specify not only imperative statements but declarative statements as
well—without polluting the workflow model with technical integration logic. The
new contribution of this extended version of the original paper [10] is an exten-
sion of the modelling concept to support the Cloud standard TOSCA [28,29]: We
show how executable Hybrid Provisioning Plans can be linked with TOSCA mod-
els to retrieve all required information about the desired provisioning. The tech-
nical feasibility of the approach is validated by a prototypical implementation,
which is integrated with the standards-based Cloud management ecosystem Open-
TOSCA [5,7,20] and the workflow language BPEL [27]. We evaluate the approach
by several criteria and discuss its limitations.

Hybrid TOSCA Provisioning Plans 241

The remainder is structured as follows. For a better comprehension, we repeat
the original contributions of our previous work [10] in Sects. 2, 3, and 4: Sect. 2
presents an analysis of declarative and imperative provisioning technologies and
discusses combination concepts. Sections 3 and 4 present the original modelling
approach. In Sect. 5, we present the new contribution of this extended version
that integrates the Cloud standard TOSCA. The extended validation is pre-
sented in Sects. 6 and 7 presents the original evaluation. Section 8 concludes the
paper and gives an outlook on future work.

2 State of the Art Analysis

In this section, we conduct a state of the art analysis of declarative and impera-
tive provisioning approaches and existing technologies including a critical eval-
uation. Afterwards, we discuss related work that attempts to combine the two
flavors.

2.1 The Declarative Flavor

Declarative approaches can be used to describe the provisioning of an application
by modelling its desired goal state, which is enforced by a declarative provisioning
system. They typically employ domain-specific languages (DSLs) [14] to describe
goals in a declarative way, i. e., only the what is described without providing any
details about the technical how. For example, a declarative specification may
describe that a Webserver has to be installed on a virtual machine, but with-
out specifying the technical tasks that have to be performed to reach this goal.
The main strength of declarative approaches is that the technical provisioning
logic, i. e., the technical tasks to be performed, is inferred automatically by the
provisioning system, which eases modelling provisionings as the technical execu-
tion details are hidden [16]. One of the most prominent examples of declarative
provisioning description languages is Amazon CloudFormation1. This JSON-
based language enables to describe the desired application deployment using
Amazon’s Cloud services including their configuration in a declarative model,
which is consumed to fully automatically setup the application. In contrast to
provider-specific languages, which quickly lead to vendor lock-in, also provider-
independent configuration management technologies have been developed, e. g.,
Puppet [33].

Due to the automatic inference of provisioning logic, declarative systems
have to understand the declared statements. This restricts declarative pro-
visioning capabilities to standard component types and predefined semantics
that are known by the runtime [11]. Thus, individual customizations for the
provisioning of complex application structures cannot be realized arbitrarily

1 http://aws.amazon.com/cloudformation/.

http://aws.amazon.com/cloudformation/

242 U. Breitenbücher et al.

and have to comply with the general, overall provisioning logic. As a conse-
quence, the declarative approach is rather suited for applications that consist
of common components and configurations, but is limited in terms of deploying
big, complex business applications that require specific configurations with non-
trivial component dependencies. Even mechanisms to integrate script executions,
API calls, or service invocations at certain points in their deployment lifecycle,
as supported by many declarative approaches, do often not provide the required
flexibility as the overall logic cannot be changed arbitrarily. As the integration
of other technologies is often not supported natively, models get polluted by glue
and wrapper code, which results in complex models including low-level techni-
cal integration details [36]. Nevertheless, the declarative flavor is very important
due to (i) native support by Cloud providers, (ii) huge communities providing
reusable artifacts and (iii) the simplicity of specifying application deployments.

2.2 The Imperative Flavor

In contrast to the declarative flavor, the imperative provisioning approach
enables developers to specify each technical detail about the provisioning execu-
tion by creating an explicit process model that can be executed fully automat-
ically by a runtime. Imperative models define (i) the control flow of activities,
(ii) the data flow between them, as well as (iii) all technical details required to
execute these activities. Thus, compared to declarative approaches, they describe
not only what has to be done, but also how the provisioning tasks have to be
executed. Imperative processes are typically implemented using (i) program-
ming languages such as Java, (ii) scripting languages, e. g., Bash or Python, and
(iii) workflow languages such as BPEL [27] or BPMN [30]. However, program-
ming and scripting languages are not suited to orchestrate other provisioning
technologies as they are not able to provide the robust and reliable execution
features that are supported by the workflow technology [16,24]. Since general-
purpose workflow languages do not natively support modeling features for appli-
cation provisioning, we developed bpmn4tosca [19], which is a BPMN extension
that supports API calls, script-executions, and service invocations based on the
TOSCA standard [29] (a standard to describe Cloud applications). This language
can be used to seamlessly integrate such tasks as it provides a separate activ-
ity type for each of them. However, bpmn4tosca lacks support for the direct
integration of declarative provisioning technologies, which need to be wrapped
for their invocation. Thus, similar to general-purpose technologies, seamlessly
integrating domain-specific technologies in one process model is not possible. To
wrap management technologies, we presented a management bus that provides a
unified API for the invocation of arbitrary technologies [36]. However, invoking
the bus obfuscates the actual technical statements, which impedes maintaining
and understanding models.

Hybrid TOSCA Provisioning Plans 243

Imperative approaches are suited to model complex provisionings that
employ a plethora of heterogeneous components, especially for multi-cloud appli-
cations [32]. As they provide full control over the tasks to be executed, imperative
models are able to automate exactly the manual steps that would be executed
by a human administrator who provisions the application manually. Thus, while
declarative approaches are rather suited for standard provisionings, imperative
approaches enable developers to define arbitrary provisioning logic. The main
drawback of the imperative approaches results from the huge amount of state-
ments that must be specified since the runtime infers no logic by itself. Con-
sequently, manual process authoring is a labor-intensive, time-consuming, and
error-prone task that requires a lot of low-level, technical expertise in different
fields [9,11]: heterogeneous services need to be orchestrated (e. g., SOAP-based
and RESTful provider APIs), low-level tools must be integrated, and, especially,
declarative technologies must be wrapped. As currently no technology supports
the seamless integration of both flavors, their orchestration results in large, pol-
luted, technically complex processes that require multiple different wrappers
to support the various invocation mechanisms and protocols [36]. These wrap-
pers decrease the transparency as only simplified interfaces are exposed to the
orchestrating process while the technical details, which are in many cases of
vital importance to avoid errors when modelling multiple steps that depend on
each other, are abstracted completely. In addition, wrappers significantly impede
maintaining process models as not simply the orchestration process has to be
adapted, but often wrapper code needs to be modified and built again, too.

2.3 Combination Approaches

Since non-trivial Cloud applications get more and more distributed across mul-
tiple different Cloud providers2 [34] and employ various Cloud services on differ-
ent conceptual levels (IaaS, PaaS, SaaS, etc.) possibly offered by heterogeneous
providers, multiple of these approaches have to be combined and integrated to
achieve a fully automated end-to-end deployment and management process for
non-trivial applications. Therefore, in this section, we present related work that
attempts to combine both flavors. There are several general purpose concepts
that attempt to bridge the gap between imperative provisioning logic and declar-
ative models which generate provisioning workflows by analyzing the declara-
tive specifications [6,11–13,16,18,22,25]. These approaches are able to interpret
declarative specifications modelled using a domain-specific modelling language
for generating provisioning plans, which can be executed fully automatically. The
advantage of these approaches is the full control over the executed provisioning
steps as the resulting workflows can be adapted and configured arbitrarily. How-
ever, the complexity, lack of transparency, and the polluted control and data
flows of the resulting workflows are still problems that impede extending the

2 Reasons for using multiple Cloud providers are differences in pricing, quality of ser-
vice, offered service types, and features or when building hybrid Cloud applications
that combine private and public Clouds [9,34].

244 U. Breitenbücher et al.

plans if customization is required. Thus, the approach we present in this paper
may be applied to these technologies for improving the quality of the gener-
ated processes. Andrzejak et al. [1] sketch an approach to specify declarative
goals in a workflow section, which are automatically transformed into a partial
order of activities to reach these goals by a planner. However, they do not sup-
port directly integrating domain-specific languages of declarative management
technologies into the workflow model. Thus, to integrate other technologies, also
wrappers are required. As a result, to ensure the correct operation and to ease the
creation of complex provisioning processes for non-trivial applications, a hybrid
modelling approach is required to seamlessly integrate both kinds of technologies.

3 A Hybrid Modelling Concept

In this section, we present an approach that enables integrating declarative and
imperative provisioning models seamlessly into the control and data flow of an
imperative workflow model. In Sect. 3.1, we introduce the abstract concept of
the approach in a technology-independent manner and define an internal data
handling concepts in Sect. 3.2. In Sect. 4, we apply the approach to the workflow
language BPEL in order to show how the concept can be realized using a concrete
standardized workflow language.

3.1 Declarative Provisioning Activities

The general modelling approach is shown in Fig. 1 and based on extending stan-
dardized, imperative workflow languages such as BPMN or BPEL by the concept
of Declarative Provisioning Activities. These activities enable to specify declar-
ative provisioning goals directly in the control flow of a workflow model that
describes the tasks to provision a certain application. To present the conceptual
contribution independently from a concrete workflow language, we first intro-
duce the general concept in an abstract way and show its applicability to the
standardized workflow language BPEL afterwards. Therefore, in this section, we
distinguish only between (i) Imperative Provisioning Activities and (ii) Declara-
tive Provisioning Activities that abstract from concrete realizations of provision-
ing tasks in different workflow languages. Of course, other control and data flow
constructs, such as events and gateways, are also required to model executable
provisioning workflows. However, these constructs are language-specific and do
not influence the presented modelling concept in general.

An Imperative Provisioning Activity (IPA) describes a technically detailed exe-
cution of a provisioning task as a sequence of one or more imperative statements.
This can be, for example, a script implemented in Python or a simple HTTP-
POST request that specifies a URL and data to be sent. Thus, the term is an

Hybrid TOSCA Provisioning Plans 245

Fig. 1. Concept of the hybrid modelling approach.

abstraction of several existing imperative approaches such as scripts and programs
that implement a workflow activity or the invocation of an API etc. The modeling
and execution of such Imperative Provisioning Activities is supported natively by
many workflow languages through general-purpose concepts or by domain-specific
extensions, respectively. For example, BPMN natively supports the execution of
script tasks [30], the BPEL extension bpel4rest [15] enables sending arbitrary
HTTP requests, and bpmn4tosca natively supports orchestrating provisioning
operations based on the TOSCA-standard—especially the execution of configura-
tion scripts on a target VM [5,36]. This enables orchestrating arbitrary imperative
provisioning tasks using workflows that describe the technical details required for
the automated provisioning of complex applications.

In contrast to this, we introduce the new concept of Declarative Provision-
ing Activities (DPA) in this paper that enables specifying desired provisioning
goals in a declarative manner. A DPA consists of a set of declarative statements
that describe what has to be achieved, e. g., a desired configuration of a certain
application component, but without specifying any technical details about how
to achieve the declared goals. Similar to other activity constructs of workflow
languages, Declarative Provisioning Activities are modelled directly in the con-
trol and data flow of the process model the same way as IPAs. This enables
combining Imperative and Declarative Provisioning Activities intuitively while
preserving a clear understanding about the overall flow. The operational seman-
tics of Declarative Provisioning Activities are defined as follows: if the control
flow reaches the activity, the declarative statements, i. e., the modelled goals,
are enforced by the runtime that executes the workflow. The activity is executed
until all goals are achieved and all affected application components are in the
desired state specified by the DPA. Then, the activity completes and the con-
trol flow continues following the links to the next activities. Process models that
contain both provisioning activity types are called Hybrid Provisioning Plans.

246 U. Breitenbücher et al.

Fig. 2. Simplified example of a Hybrid Provisioning Plan that (i) instantiates a virtual
machine, (ii) installs a database, and (iii) installs a Webserver on the virtual machine.

Figure 2 shows an example of a Hybrid Provisioning Plan that contains two
Imperative Provisioning Activities and one Declarative Provisioning Activity,
which (i) instantiate a virtual machine, (ii) install a MySQL-database, and
(iii) install a Webserver on the virtual machine. The first IPA is an HTTP request
to an API of a Cloud provider or an infrastructure virtualization technology that
triggers the instantiation of the virtual machine. The activity specifies the request
including all required configuration parameters and invokes the API correspond-
ingly. After waiting for the successful instantiation, the IP-address and SSH cre-
dentials of the VM, which can be polled at the API, are stored in two variables
of the workflow model: “IP-Address” and “Credentials”. As these are standard
tasks, we omit details in the figure for reasons of space.

The second IPA installs a MySQL database on the VM: the shown activity
uses a low-level Bash script that imperatively specifies statements to be executed
to install the database and to import a referenced SQL-file, which is uploaded to
the VM by a previous IPA (omitted in the figure). To copy and execute this script
on the VM, the process variables that contain the IP-Address and SSH creden-
tials of the target VM are used by the IPA to access the virtual machine via SSH
and to execute the imperatively specified statements. To model the installation
and configuration of the Apache Webserver on the virtual machine, the DSL
of the configuration management technology Chef [31] is used to declaratively
specify the configuration of the desired installation. Consequently, a Declarative
Provisioning Activity is used that specifies the desired goals by declaratively
describing the state and configuration of the Webserver that has to be enforced
when executing the activity. Similarly to the second script-based IPA, the activ-
ity references the same process variables to access the virtual machine.

This example shows that the direct integration of declarative and impera-
tive languages and technologies in one orchestration process provides a powerful
modelling approach as the corresponding imperative programming or scripting-
languages, respectively, as well as the domain-specific languages of declarative
approaches can be used seamlessly in one process model. Therefore, there is no
need to write complex integration code or to invoke services wrapping these tech-
nologies that pollute the process model. Thus, the approach enables using the

Hybrid TOSCA Provisioning Plans 247

right technology for the right task while ensuring full-control over their orches-
tration without polluting the workflow model.

3.2 Internal Data Handling

Both types of activities exchange data within the workflow. Therefore, we define
three concepts including their operational semantics that enable describing the
internal data flow between provisioning activities in a Hybrid Provisioning Plan:
(i) input parameters, (ii) output parameters, and (iii) content injection. Again,
we abstract from data storage concepts and constructs of workflow languages by
simply referring to “process variables” and show in the next section how these
concepts can be realized using the standardized workflow language BPEL.

As shown in Fig. 2, the imperative script-activity and the declarative Chef-
activity reference process variables (“IP-Address” and “Credentials”) that are
assigned to a “TargetVM” and a “Credentials” attribute of the activities. These
attributes represent predefined, activity-specific input parameters of the activity
implementation. When the control flow reaches the activity, the runtime copies
the content of the referenced process variables “by value” and takes them as
input parameters for invoking the activity’s implementation.

To exchange data between DPAs and IPAs, both may specify output para-
meters that contain the results of their execution. Each output parameter is
represented as a pair of (i) activity-internal data reference and (ii) process vari-
able. An activity-internal data reference is a reference to a data container in the
language of the activity. For example, an environment variable of a script. When
the execution of the statements is finished, the referenced data is copied by the
activity implementation to the specified process variables “by value”.

Content injection enables using process variables directly in the declarative
or imperative language of a provisioning activity. These serve as placeholders
that are replaced by the current content of the referenced variable when the
execution of the activity starts. For example, a script may use the variable “IP-
Address” to write the IP-address of the virtual machine into a set of firewall rules
to enable accessing the Webserver from the outside, i. e., by external clients.

4 Realization Using BPEL

In this section, we prove that the presented approach is practically feasible by
applying the hybrid modelling concept to the workflow standard BPEL. We
(i) show how Imperative Provisioning Activities can be realized using exist-
ing constructs and extensions of BPEL and how (ii) Declarative Provisioning
Activities can be modelled and executed using BPEL extension activities [27].
The result of this section is a standards-based, hybrid provisioning modelling
language that supports the direct integration of imperative and declarative
languages.

248 U. Breitenbücher et al.

1 <extensionActivity>
2 <REST:POST ResponseVar="VMCreationResponse"
3 URL="https://ec2.amazonaws.com/
4 ?Action=RunInstances
5 &ImageId=ami-31814f58
6 &InstanceType=m1.small&..." />
7 </extensionActivity>
8 ...
9 <extensionActivity>

10 <DPA:Chef TargetVM="$bpelvar[IP-Address]"
11 Credentials="$bpelvar[Credentials]">
12

13 package 'apache_httpd' do
14 http_port $bpelvar[HTTPPort]
15 https_port 8081
16 ...
17 ensure 'installed'
18 end
19 ...
20 </DPA:Chef>
21 </extensionActivity>

Listing 1.1. Simplified snippet of a BPEL model that employs an HTTP-Request as
IPA and a DPA that declares Chef statements.

In general, we realize DPAs by applying the BPEL concept of extension
activities that enables implementing custom activity types using programming
languages such as Java [21]. BPEL workflow runtimes support registering mul-
tiple different types of extension activities including their implementations. If
the control flow of a workflow reaches an extension activity-element, its imple-
mentation is executed by the workflow engine and the whole XML-content of
the extension activity-element in the BPEL model is passed to the implemen-
tation of the extension activity as input. Thus, the concept enables modelling
arbitrary XML-definitions which are parsed and interpreted by the extension
activity implementation. To select the right implementation, the element name
of the extension activity-element’s first child serves as lookup key for the work-
flow engine. Hence, we can realize arbitrary types of DPAs by implementing
small programs that are executed when the control flow reaches one of these
activities.

We show how IPAs and DPAs can be realized using extension activities by con-
ducting an example. A modeller, e. g., developers or operations personnel [17],
manually models a Hybrid Provisioning Plan that consists of Declarative as
well as Imperative Provisioning Activities where suitable. The XML shown in
Listing 1.1 is an excerpt of a BPEL model that instantiates a virtual machine on the
Cloud-offering Amazon EC2 and installs an Apache Webserver on it. The instanti-
ation of the VM is modelled as activity that sends an HTTP-POST request to the

Hybrid TOSCA Provisioning Plans 249

management API of Amazon3 (lines 1–7). We employ here the bpel4rest exten-
sion activity approach [15], which supports specifying output parameters: the
Amazon API synchronously returns the instance ID of the virtual machine in the
HTTP response. As the provisioning of a virtual machine takes some time, the ID
can be used to poll the status of the VM instantiation. Therefore, we store the
response in a process variable called “VMCreationResponse” (line 2). The imple-
mentation of the extension activity reads this mapping and writes the content of
the HTTP response as value to the VMCreationResponse variable. This variable
can be used by other activities to monitor the current VM status and to retrieve
the IP-address of the running virtualmachinewhen the instantiation finished using
similar API calls (omitted in Listing 1.1).

After the virtual machine is provisioned, a Chef-DPA installs the Webserver
on it (lines 9–21). This Declarative Provisioning Activity specifies the attributes
used in our previous example with identical semantics. Similar to the HTTP
extension activity, the extension activity implementation of the Chef-DPA reads
its XML fragment, extracts the relevant information, and enforces the declared
goals by accessing the virtual machine using SSH, installing a Chef agent, and
sending the declarative statements to this agent that enforces them. In this
example, the input parameter concept is used to specify the target VM on which
the Webserver has to be installed and to specify the credentials to access the
virtual machine (lines 10 & 11). The referenced BPEL variables of the workflow
model are replaced by the extension activity implementation for execution. In
addition, also the content injection concept is used: in line 14, a BPEL variable
is specified as configuration for the HTTP-port of the Webserver. Thus, when
executing the Declarative Provisioning Activity, its implementation retrieves the
value of the “HTTPPort” workflow variable and replaces the placeholder before
enforcing the declared configuration—similarly to input parameters.

5 Accessing External Data Based on TOSCA

In this section, we extend our previous work [10] by a concept that systemat-
ically enables accessing required data from an external source, i. e., data that
is not produced by activities within the workflow. In particular, we show how
information about the application to be provisioned can be retrieved in a stan-
dardized manner by employing the Topology and Orchestration Specification for
Cloud Applications (TOSCA) [28,29]. Before we present the new contribution of
this paper, we first explain the main concepts of TOSCA in the next subsection.

5.1 An Overview of TOSCA

TOSCA is an OASIS standard that enables modelling Cloud applications and
their management processes in a portable way. In this section, we describe the

3 http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API RunInstances.
html.

http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RunInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RunInstances.html

250 U. Breitenbücher et al.

Fig. 3. TOSCA concept: Topology Template (left) and plans (right) (adapted from [3]).

important concepts of TOSCA required to understand the presented approach.
For details, we refer interested readers to the TOSCA Specification [29] and the
TOSCA Primer [28]. A compact overview of TOSCA is given by Binz et al. [3,4].

TOSCA defines a language for modelling (i) the application’s structure in
the form of a Topology Template and (ii) management processes in the form of
executable plans. Figure 3 shows an overview. A Topology Template is a graph
consisting of nodes, which represent the application’s components, and edges,
which describe their relationships. For example, PHP applications, databases,
and SQL-connections. Components are modelled as Node Templates, relation-
ships as Relationship Templates. Node as well as Relationship Templates are
typed by Node Types and Relationship Types. The open type system enables
defining arbitrary types of components and relations. Therefore, TOSCA can
be used to model deployments on any infrastructure and platform service. The
Topology Template, Node and Relationship Types, and other TOSCA elements
are contained in a Service Template, which also specifies a unique identifier for
the application.

Figure 4 shows a simplified TOSCA Service Template of a Webshop applica-
tion. We use this topology model in the following to explain the presented app-
roach. The model is rendered using Vino4TOSCA [8]4: Node Templates are
depicted as rounded rectangles, Relationship Templates as arrows. Node and Rela-
tionship Types are enclosed by parentheses. The application consists of a Web-
based frontend implemented in PHP, which is hosted on an Apache Webserver.
The Webserver employs the PHP module to run the frontend component. This
is described directly by the Node Template’s type. Of course, the PHP module
could be modelled as separate component, too. The Webserver is hosted on a vir-
tual machine that runs on Amazon’s public Cloud offering EC2. On the same VM,

4 Vino4TOSCA is supported, for example, by the TOSCA modelling tool Winery [20].

Hybrid TOSCA Provisioning Plans 251

Fig. 4. Simplified TOSCA Topology Template of a Webshop application.

a MySQL database management system and a corresponding database are hosted
that contains the Webshop’s data. The frontend and the database are linked by
an Relationship Template of type “SQLConnection”. To provision this applica-
tion, artifacts implementing the business logic are required, e. g., the PHP files
of the Webshop’s frontend and the database schema. In TOSCA, these artifacts
are modelled asDeployment Artifacts, which typically consist of meta information
and an URL that references the respective file. In addition, Node and Relation-
ship Types may specify management operations that are implemented by Imple-
mentation Artifacts, for example, a Node Type “ApachePHPServer” provides an
operation to deploy PHP applications.

Management plans describe management processes in the form of executable
workflow models. These workflows invoke and orchestrate the management oper-
ations provided by Node and Relationship Templates to implement a more
sophisticated management functionality, e. g., to model the provisioning of the
Webshop application or to describe how the application can be automatically
scaled. To describe these workflows, TOSCA supports using arbitrary lan-
guages, for example, the standardized workflow modelling languages BPEL [27]
or BPMN [30]. Beside complex management plans that are typically authored
by hand, provisioning plans can be automatically generated based on the topol-
ogy model [11]. Moreover, TOSCA standardizes a package format called Cloud
Service Archive (CSAR), which contains all required models and files, i. e., the
Service Template, all plans, as well as the required artifacts, e. g., application
files or installation scripts.

252 U. Breitenbücher et al.

5.2 Referencing Properties in Hybrid TOSCA Provisioning Plans

Both kinds of types, Node Types and Relationship Types, specify properties for
the corresponding templates that have to be considered by the runtime when
deploying the application, e. g., a Node Template of type “ApachePHPServer”
specifies the property “HTTPPort”, which has to be used for accessing the Web-
server via HTTP. After deploying the application, the properties defined by types
describe runtime information or the current state of the respective component or
relationship, respectively, e. g., the IP-address of the virtual machine the Web-
server is deployed on or the current workload of the Webserver. Thus, these
properties are (i) read when initially deploying a new component or establishing
a new relationship to configure this step, (ii) required to retrieve information
about already provisioned entities, and (iii) used to update information about
entities, e. g., when a management task changes the HTTP port of the Webserver
on runtime, the corresponding property should be updated in the instance model.

Properties of Node and Relationship Templates can be retrieved by an API
provided by the employed TOSCA runtime, e. g., OpenTOSCA [5] provides an
REST-API to access properties of Node and Relationship Templates. This API
does not distinguish between the original values specified in the TOSCA Service
Template and the current runtime values and just returns the current value of
the property. Therefore, in general, properties can be accessed by plans to get
the current information about an entity. Thus, based on the topology model,
information about the components and relations can be used to dynamically
configure the provisioning plan. For example, instead of specifying port numbers
directly in the plan, retrieving this information from the corresponding property
of the Webserver Node Template would enable creating flexible plans. However,
writing and reading properties using native constructs of the workflow language
requires additional activities that pollute the workflow model. Therefore, we
extend the concepts of internal data handling introduced in Sect. 3.2 by a con-
cept to directly access these properties. To enable this in a structured manner,
we allow referencing properties of Node and Relationship Templates for input
parameters, output parameters, and content injection. Such a property reference
is a triple consisting of (i) the identifier of the Service Template, (ii) the iden-
tifier of the Node or Relationship Template, and (iii) the name of the property
that has to be accessed, e. g., (Webshop,Webserver,IP-Address). As the TOSCA
standard allows defining type hierarchies, the triple refers to the property that
results after applying all inheritance rules specified by the standard [29]. For
example, the value of the “HTTP-Port” property of an “ApachePHPServer”
Node Type overrides the property with the same name of its super Node Type
“Webserver”.

5.3 Illustration of the Concept

Figure 5 illustrates the concept to access properties contained in TOSCA mod-
els as described in the previous paragraph. On the left, an excerpt of a Hybrid

Hybrid TOSCA Provisioning Plans 253

Provisioning Plan is shown, which contains a Declarative Provisioning Activ-
ity. On the right, an excerpt of the TOSCA Service Template is depicted that
describes the PHP stack of the Webshop application introduced in Sect. 5.1. The
Declarative Provisioning Activity on the left employs the concept of specifying
TOSCA properties to reference external data. For example, the desired HTTP-
and HTTPS-Ports of the Webserver are retrieved from the topology model and
used to inject the respective content directly into the declarative statements as
illustrated by the arrows. This information is typically specified during design
time and, therefore, static. In addition, to install the Webserver on the virtual
machine, dynamic runtime information is required, such as the IP-address of the
virtual machine and its credentials. Therefore, the input variable of the Declar-
ative Provisioning Activity references this property of the virtual machine Node
Template in the Service Template. When executing this DPA, for example, the
value of the IP-address has been set by a previous activity in the provisioning
plan that instantiated the virtual machine. Thus, this information is dynamic
and represents current runtime information of the respective template. As a
result, the shown Declarative Provisioning Activity illustrates the benefits of
combining the internal data handling concept presented in the original paper
and the external data handling concept introduced in this extended version.

Fig. 5. Illustration of the extended data handling concept: Declarative Provisioning
Activity (left) and the PHP stack of the Webshop’s TOSCA Topology Template (right).

254 U. Breitenbücher et al.

5.4 Extending BPEL by TOSCA Property References

In this section, we extend our BPEL realization presented in Sect. 4 by the
introduced concept to reference TOSCA properties. We define the BPEL syntax
to reference TOSCA properties similarly to the internal data handling concept:
in addition to bpelvar, we introduce a new keyword named TOSCAProperty
that expects one value that points to the desired property. We encode the triple
consisting of Service Template identifier, Node Template identifier, and property
name as concatenation separated by dots. The operational semantics are defined
as follows: the extension activity’s implementation is responsible for replacing the
placeholder, i. e., reading and writing the referenced properties of the respective
template by accessing the API provided by the employed TOSCA runtime.

1 <extensionActivity>

2 <DPA:Chef TargetVM="$TOSCAProperty[Webshop.VM.IP-Address]"
3 Credentials="$TOSCAProperty[Webshop.VM.Credentials]">
4 package 'apache_httpd' do

5 http_port $TOSCAProperty[Webshop.Webserver.HTTPPort]
6 https_port $TOSCAProperty[Webshop.Webserver.HTTPSPort]
7 ...

8 ensure 'installed'
9 end

10 ...

11 </DPA:Chef>

12 </extensionActivity>

Listing 1.2. Simplified BPEL model of a DPA that references TOSCA properties.

Listing 1.2 gives an example. The shown Declarative Provisioning Activity
originates from the example shown in Listing 1.1 between lines 9 and 21. We
exchanged the internal data reference by an external reference to the Web-
server of the Webshop, in particular to its HTTP- and HTTPS properties: the
TOSCAProperty keyword is used to specify the Service Template, the Node
Template, and the desired property, in this case “Webshop”, “Webserver”, and
“HTTPPort”. When the control flow reaches this DPA, the extension activ-
ity accesses the API of the runtime to read the values specified for the refer-
enced property and replaces the placeholder by this value. Similarly, we reference
TOSCA properties of the virtual machine to specify the input parameters (lines 2
and 3). This concept enables specifying the configuration of a Hybrid Provision-
ing Plan directly in the respective topology by using a standardized metamodel.
Thus, if this kind of information has to be adjusted for other deployments, not
the plan has to be adapted but simply the TOSCA model. This separation of
concerns enables avoiding complex data flows within a provisioning workflow
that have to be modelled every time output data of former activities has to be
used as input for other activities. As a result, if the provisioning plan has to be

Hybrid TOSCA Provisioning Plans 255

adapted, applying this external data reference concept significantly eases main-
tenance tasks because the coupling of activities is significantly reduced regarding
the data flow.

6 Standards-Based Prototype

To prove the technical feasibility of the presented approach, we implemented
a prototype based on the two standards TOSCA and BPEL. We applied the
presented concept to an open-source Cloud application management ecosystem,
which consists of the modelling tool Winery [20], the OpenTOSCA runtime
environment [5], and the self-service portal Vinothek [7]. As explained in Sect. 5,
TOSCA enables describing the application structure including all required arti-
facts in the form of a CSAR. These archives can be modelled using Winery. A
CSAR is consumed by the OpenTOSCA runtime, which deploys the manage-
ment workflows contained therein. Therefore, the runtime employs a workflow
engine (WSO2 BPS)5 to execute BPEL workflows. Using the self-service portal
Vinothek, their execution can be triggered by a simple graphical user interface.

Fig. 6. Prototypical implementation based on the OpenTOSCA runtime.

Figure 6 shows a simplified architecture of the OpenTOSCA runtime envi-
ronment including our prototypical extension of the hybrid modelling concept
including the concepts for external data handling introduced in this paper. The
CSAR Importer is responsible for consuming CSARs and processing the con-
tained data, e. g., by storing the models and all associated files in local data-
bases. The Control then triggers the local deployment of all management plans
so that they can be invoked by the Vinothek to provision a new application
instance or to manage a running instance. The concept presented in this paper

5 http://wso2.com/products/.

http://wso2.com/products/

256 U. Breitenbücher et al.

is realized by implementing extension activity-plugins for the workflow engine.
The HTTP-extension activity, for example, can be used in BPEL workflows to
invoke management APIs of providers to instantiate or manage virtual machines.
As described in the previous sections, DPAs can then use process variables to
access these virtual machines in order to install or configure software etc. To
implement these extension activities, e. g., the Chef-DPA, we delegate executing
the declaratively described goals to a component called Artifact Manager. This
plugin-based manager is able to execute various configuration management tech-
nologies such as Chef and imperative scripts, e. g., Bash scripts [35,36]. Thus,
implementing IPAs and DPAs is eased by invoking this manager. Of course, arbi-
trary technologies can be integrated without using the artifact manager, too.

To realize the external data handling concept, we use the Data Management
component, which provides access to databases that store (i) all models and
(ii) artifacts of deployed CSARs as well as (iii) runtime information about
deployed application instances. The component provides a REST-based API,
which can be used by the implementation of DPAs and IPAs, i. e., exten-
sion activities, to retrieve information from the models or to write information
back if the provisioning activity updates property values, respectively. For mod-
elling Hybrid TOSCA Provisioning Plans, we employ the modelling tool BPEL
Designer6. Since the prototype extension is based on TOSCA and BPEL, it pro-
vides an end-to-end, standards-based Cloud application management platform
that enables integrating various provisioning, configuration, and management
technologies.

7 Evaluation

In this section, we evaluate the presented approach by comparing it with the
plain declarative and imperative management flavors. For the comparison, we
reuse the management feature criteria for comparing service-centric and script-
centric management technologies [9] and additionally add criteria that are
derived from the features of each flavor discussed in Sect. 2. As a result, the crite-
ria represent requirements that must be fulfilled to fully automatically provision
the kind of complex composite Cloud applications described in the introduction
(cf. Sect. 1). An “x” in Table 1 denotes that the corresponding approach fully
supports the criterion. An “x” in parentheses denotes partial support.

Full control means that the provisioning may be customized arbitrarily by
the workflow modeller in each technical detail. As declarative approaches infer
the details about the execution by themselves, the general provisioning logic
cannot be changed easily. In contrast to this, imperative approaches explicitly
model each step to be performed and can be, therefore, customized arbitrarily.
Because the hybrid approach supports both, it fulfills this criterion completely.

Complex deployments denotes that real, non-trivial business applications that
employ various heterogeneous components and services can be deployed using

6 https://eclipse.org/bpel/.

https://eclipse.org/bpel/

Hybrid TOSCA Provisioning Plans 257

a technology of the flavor. Declarative approaches reach their limits at a cer-
tain point of required customizability: as the provisioning logic is inferred by
a general-purpose provisioning system, only known declarative statements can
be understood and processed (cf. Sect. 2). Thus, if a very specific, arbitrarily
customized application structure or configuration has to be deployed, declara-
tive approaches are often not able to fulfill these rare and very special require-
ments completely. The integration of low-level execution code such as scripts
partially solves this problem. In contrast to this, based on the full control crite-
rion, in general arbitrary complex provisionings can be described using impera-
tive approaches such as scripts or workflows. However, the technical complexity
of the resulting processes hard to manage and to maintain since the integra-
tion of technologies, as explained in Sect. 2, leads to a lot of glue and wrapper
code, which results in many lines of process implementation code. Thus, plain
imperative approaches are not ideal for handling such cases completely and are,
therefore, only partially suited. Our integration approach solves these issues as
the optimal technology can be chosen without polluting plans.

Table 1. Criteria evaluation.

Feature Declarative Imperative Integrated approach

Full control x x

Complex deployments (x) (x) x

Hybrid and multi-cloud applications (x) x x

Seamless integration x

Component wiring (x) x x

XaaS integration (x) x x

Full automation x x x

Straightforwardness x x

Extensibility (x) x x

Flexibility (x) (x)

The hybrid and multi-Cloud applications criteria evaluate the support for
applications that are either hosted on (i) a combination of private and public
Cloud services or (ii) Cloud services offered by different providers. Since many
declarative approaches, such as Amazon CloudFormation, employ proprietary,
non-standardized domain-specific languages, many of these technologies are not
able to provision a distributed application as described above. General purpose
technologies such as TOSCA [29] allow to provision hybrid as well as multi-Cloud
applications, for example, by using the TOSCA plan generator [11]. However,
if multiple providers are involved, typically their proprietary languages have to
be used as the declarative general-purpose technologies are not able to support
all individual technical features. Based on the criteria full control and complex
deployments, the imperative as well as the proposed approach fulfill this criterion.

258 U. Breitenbücher et al.

Seamless integration evaluates the capability to employ arbitrary manage-
ment technologies without (i) polluting the model or (ii) leading to abstracted
wrapper calls (cf. Sect. 2). As extensively discussed in the previous sections,
neither declarative nor imperative approaches natively support all required inte-
gration concepts. In contrast, the presented approach fulfills this criterion due to
the introduced concepts of Imperative and Declarative Provisioning Activities.

The component wiring criterion means that multiple application components
can be wired. Declarative approaches support this partially as unknown com-
ponents or complex wiring tasks cannot be described in a fully customizable
manner. The imperative as well as the integrated approach solve this issue as
any task to wire such components can be orchestrated arbitrarily.

XaaS integration means the ability to orchestrate various kinds of Cloud
services that represent application components. Generic declarative approaches
support this only partially as complex configuration tasks are hard to model.
Proprietary approaches, such as Amazon CloudFormation, are bound to a cer-
tain provider and, therefore, require glue code to integrate other services. The
imperative and the presented approach fully support this requirement following
the argumentation of component wiring.

The full automation criterion is fulfilled by all kinds of approaches, as all of
them enable a fully automated provisioning of the described applications.

Straightforwardness evaluates whether describing the provisioning of an
application can be done in an efficient manner requiring appropriate effort. The
declarative approaches are typically easy to learn, as technical complexity is
shifted to the provisioning systems and only the desired goals have to be speci-
fied. Imperative approaches, such as scripts or workflows, quickly become huge
and complex due to the directly visible low-level details about the control flow
and the data flow. In addition, in many cases, trivial steps have to be modelled
explicitly. The presented integration approach fulfills this criterion completely
as the optimal technology can be selected for a certain provisioning task. Even
a single DPA may be modelled that declares all provisioning goals.

The extensibility criterion means the ability to involve other management
technologies. Declarative approaches allow this by using glue code at cer-
tain points in the inferred logic. Due to the full control criterion, imperative
approaches are able to include arbitrary implementations at any point in the
process. Thus, the presented hybrid approach supports this feature.

The declarative approaches do not support flexibility due to the full control
criterion. However, also using imperative approaches are limited in terms of
flexibility: if a complex application leads to a huge provisioning process, adapting
this process is a challenging task. Therefore, imperative as well as the presented
approach fulfill this criterion only partially. To tackle these issues, we conduct
research on modelling situation-aware processes to increase the flexibility.

To summarize the evaluation, the presented approach profits from all bene-
fits of the two provisioning flavors while solving drawbacks by the strengths of
each other. Whereas complex application provisionings can be modelled in a flex-
ible manner preserving the full control over the provisioning, standard tasks can

Hybrid TOSCA Provisioning Plans 259

be modelled easily using declarative specifications in a straightforward manner.
Even distributed application structures, for example, hybrid and multi-Cloud
applications can be provisioned using the integrated approach described in this
paper. One of the most important criteria, the seamless integration of provision-
ing technologies, is solved by the concept of Declarative Provisioning Activities
while imperative technologies are typically integrated already in existing lan-
guages. Thus, while the resulting process models are implemented in a standards-
compliant manner, intuitive provisioning modelling helps developing and
maintaining Hybrid Provisioning Plans—even for complex applications.

7.1 Limitations

In this section, we discuss the limitations of the presented approach. A drawback
is the tight coupling of Hybrid Provisioning Plans to the structure of the appli-
cation to be provisioned. Imperative orchestrations to provision the components
of a certain application structure are sensitive to structural changes: different
combinations of components lead to different workflow models that must be
created and maintained separately [6,12,13]. Thus, as the concept of Hybrid
Provisioning Plans is based on imperatively orchestrating the two kinds of pro-
visioning activities, this applies also for the approach presented in this paper.
As a result, Hybrid Provisioning Plans for new applications often have to be cre-
ated from scratch while maintaining existing processes results in complex and
time-consuming adaptations [11]. The concept presented in this paper extension
decreases this coupling as configuration properties, such as desired ports, can
be retrieved from the TOSCA model. Thus, if such kind information must be
changed, only the Service Template has to be adapted not the workflow model.
To reduce the coupling further, we plan to combine the approach in this paper
with our previous work on generic management process fragments [6,9].

8 Conclusion

In this paper, we presented a hybrid provisioning modelling concept that enables
the seamless integration of imperative and declarative provisioning models and
the corresponding technologies. The introduced concepts of Declarative Provi-
sioning Activities and Hybrid Provisioning Plans enable intuitive provisioning
modelling without handling technical integration issues regarding different pro-
visioning and configuration management technologies. Thus, the modelling con-
cept avoids polluting the control and data flow of the overall workflow model. To
prove the technical feasibility of the approach, we extended our original work by
an integration with the Cloud standard TOSCA and implemented a prototype
that extends the OpenTOSCA runtime environment based on the standardized
workflow language BPEL. Our evaluation shows that the presented approach
enables benefiting from the strengths of both flavors: declarative models can be
used to specify desired goals and constraints without providing technical exe-
cution logic whereas imperative models enable modelling complex cross-cutting

260 U. Breitenbücher et al.

configuration and wiring tasks on a very low technical level. Thereby, Hybrid
TOSCA Provisioning Plans can be created that employ the right technology for
the right job. In future work, we plan to employ the concept also for application
management. In addition, we are working on an abstraction layer for Declarative
Provisioning Activities that enables declaratively specifying high-level tasks to
be executed without the need to understand the low-level technical details.

Acknowledgements. This work was partially funded by the projects SitOPT
(Research Grant 610872, DFG) and NEMAR (Research Grant 03ET40188, BMWi).

References

1. Andrzejak, A., Hermann, U., Sahai, A.: Feedbackflow - an adaptive workflow gen-
erator for systems management. In: ICAC 2005, pp. 335–336, June 2005

2. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: Migration of enterprise appli-
cations to the cloud. It - Inf. Technol. Spec. Issue Architect. Web Appl. 56(3),
106–111 (2014)

3. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated
deployment and management of cloud applications. In: Bouguettaya, A., Sheng,
Q.Z., Daniel, F. (eds.) Advanced Web Services, pp. 527–549. Springer, Heidelberg
(2014)

4. Binz, T., Breiter, G., Leymann, F., Spatzier, T.: Portable cloud services using
TOSCA. IEEE Internet Comput. 16(03), 80–85 (2012)

5. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A.,
Wagner, S.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp.
692–695. Springer, Heidelberg (2013)

6. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Pattern-based runtime
management of composite cloud applications. In: CLOSER 2013, pp. 475–482.
SciTePress, May 2013

7. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Vinothek - a self-service portal
for TOSCA. In: ZEUS 2014. CEUR Workshop Proceedings, vol. 1140, pp. 69–72.
CEUR-WS.org, March 2014

8. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Schumm, D.: Vino4TOSCA:
a visual notation for application topologies based on TOSCA. In: Meersman, R.,
Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha,
A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 416–
424. Springer, Heidelberg (2012)

9. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Wettinger, J.: Integrated
cloud application provisioning: interconnecting service-centric and script-centric
management technologies. In: Meersman, R., Panetto, H., Dillon, T., Eder, J.,
Bellahsene, Z., Ritter, N., Leenheer, P., Dou, D. (eds.) ODBASE 2013. LNCS, vol.
8185, pp. 130–148. Springer, Heidelberg (2013)

10. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Wettinger, J.: A modelling
concept to integrate declarative and imperative cloud application provisioning tech-
nologies. In: CLOSER 2015. SciTePress (2015)

11. Breitenbücher, U., et al.: Combining declarative and imperative cloud application
provisioning based on TOSCA. In: IC2E 2014, pp. 87–96. IEEE, March 2014

Hybrid TOSCA Provisioning Plans 261

12. Eilam, T., Elder, M., Konstantinou, A., Snible, E.: Pattern-based composite appli-
cation deployment. In: IM 2011, pp. 217–224. IEEE, May 2011

13. El Maghraoui, K., Meghranjani, A., Eilam, T., Kalantar, M., Konstantinou, A.V.:
Model driven provisioning: bridging the gap between declarative object models and
procedural provisioning tools. In: Steen, M., Henning, M. (eds.) Middleware 2006.
LNCS, vol. 4290, pp. 404–423. Springer, Heidelberg (2006)

14. Günther, S., Haupt, M., Splieth, M.: Utilizing internal domain-specific languages
for deployment and maintenance of IT infrastructures. Very Large Business Appli-
cations Lab Magdeburg, Otto von Guericke University Magdeburg, Technical
report (2010)

15. Haupt, F., Fischer, M., Karastoyanova, D., Leymann, F., Vukojevic-Haupt, K.:
Service composition for REST. In: EDOC 2014. IEEE, September 2014

16. Herry, H., Anderson, P., Wickler, G.: Automated planning for configuration
changes. In: LISA 2011. USENIX (2011)

17. Hüttermann, M.: DevOps for Developers. Apress, New York (2012)
18. Keller, A., Hellerstein, J.L., Wolf, J.L., Wu, K.L., Krishnan, V.: The CHAMPS

system: change management with planning and scheduling. In: Network Operations
and Management Symposium, pp. 395–408, April 2004

19. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: BPMN4TOSCA: a domain-
specific language to model management plans for composite applications. In:
Mendling, J., Weidlich, M. (eds.) BPMN 2012. LNBIP, vol. 125, pp. 38–52.
Springer, Heidelberg (2012)

20. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – a modeling tool
for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X.
(eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013)

21. Kopp, O.: A classification of BPEL extensions. J. Syst. Integr. 2(4), 2–28 (2011)
22. Levanti, K., Ranganathan, A.: Planning-based configuration and management of

distributed systems. In: IM 2009, pp. 65–72, June 2009
23. Leymann, F.: Cloud computing: the next revolution in IT. In: Proceedings of the

52th Photogrammetric Week, pp. 3–12, September 2009
24. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice

Hall PTR, Upper Saddle River (2000)
25. Mietzner, R.: A method and implementation to define and provision variable com-

posite applications, and its usage in cloud computing. Dissertation, University of
Stuttgart, Germany, August 2010

26. Nelson-Smith, S.: Test-Driven Infrastructure with Chef. O’Reilly Media, Inc.,
Sebastopol (2013)

27. OASIS: Web Services Business Process Execution Language (WS-BPEL) Version
2.0. OASIS, April 2007

28. OASIS: Topology and Orchestration Specification for Cloud Applications Primer
Version 1.0. OASIS, January 2013

29. OASIS: Topology and Orchestration Specification for Cloud Applications Version
1.0, May 2013

30. OMG: Business Process Model and Notation (BPMN), Version 2.0, January 2011
31. Opscode, Inc.: Chef official site (2015). http://www.opscode.com/chef
32. Petcu, D.: Consuming resources and services from multiple clouds. J. Grid Comput.

12(2), 321–345 (2014)
33. Puppet Labs, Inc.: Puppet official site (2015). http://puppetlabs.com/puppet/

what-is-puppet

http://www.opscode.com/chef
http://puppetlabs.com/puppet/what-is-puppet
http://puppetlabs.com/puppet/what-is-puppet

262 U. Breitenbücher et al.

34. Smit, M., Shtern, M., Simmons, B., Litoiu, M.: Partitioning applications for hybrid
and federated clouds. In: Proceedings of the 2012 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON 2012, pp. 27–41. IBM
Corp. (2012)

35. Wettinger, J., Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: Streamlining
cloud management automation by unifying the invocation of scripts and services
based on TOSCA. Int. J. Organ. Collective Intell. (IJOCI) 4(2), 45–63 (2014)

36. Wettinger, J., et al.: Unified invocation of scripts and services for provisioning,
deployment, and management of cloud applications based on TOSCA. In: CLOSER
2014, pp. 559–568. SciTePress, April 2014

An Analysis of Power Consumption in Mobile
Cloud Computing

Abdelmounaam Rezgui1(B) and Zaki Malik2

1 Department of Computer Science and Engineering, New Mexico Tech,
Socorro, NM, USA
rezgui@cs.nmt.edu

http://www.cs.nmt.edu/∼rezgui
2 Department of Computer Science, Wayne State University, Detroit, MI, USA

zaki@wayne.edu

http://www.cs.wayne.edu/∼zaki

Abstract. With the rapid proliferation of mobile devices, mobile cloud
computing is emerging as an increasingly omnipresent paradigm enabling
users to use battery-powered mobile devices to access a wide range of
compute-intensive applications hosted on the clouds. Often, the assump-
tion is that mobile devices consume less power when they access an
application run on the cloud than when the application is run on the
device itself. This, however, is increasingly questionable with the signifi-
cant recent progress in improving power efficiency of mobile devices (e.g.,
using ultra low power GPUs). This paper aims at analyzing and compar-
ing the benefits of these two alternatives using mobile cloud gaming as an
example. Our evaluation shows that, despite the recent advances towards
reducing power consumption in mobile devices, mobile cloud computing
remains the best of the two alternatives in a wide range of scenarios.

Keywords: Mobile cloud gaming · GPUs · NICs · Power consumption ·
Visualization as a Service (VaaS) · Offloading

1 Introduction

Mobile devices (mobile phones, tablets, and ultra mobile PCs) are driving a phe-
nomenal market shift. A Gartner report (Table 1) predicts that, by 2017, device
shipments will reach more than 2.9 billion units, out of which 90 % will be mobile
devices [18]. The growth is particularly strong in mobile phones. A June 2015
Ericsson report indicates that the total number of mobile subscriptions world-
wide in Q1 2015 was 7.2 billion, 40 % of which are associated with smartphones.
The report also predicts that, by 2016, the number of smartphone subscriptions
will surpass those of basic phones, and the number of smartphones will reach 6.1
billion by 2020 [4]. This growth is accompanied by an equally phenomenal boom
in mobile applications. According to the research firm MarketsandMarkets, the
total global mobile applications market is expected to be worth $25 billion by
2015 (up from about $6.8 billion in 2010) [17]. A 2012 study by the Application
c© Springer International Publishing Switzerland 2016
M. Helfert et al. (Eds.): CLOSER 2015, CCIS 581, pp. 263–278, 2016.
DOI: 10.1007/978-3-319-29582-4 14

264 A. Rezgui and Z. Malik

Table 1. Worldwide device shipments by segment (thousands of units) [18].

Device type 2012 2013 2014 2017

PC (Desk-based and notebook) 341,263 315,229 302,315 271,612

Ultramobile 9,822 23,592 38,687 96,350

Tablet 116,113 197,202 265,731 467,951

Mobile phone 1,746,176 1,875,774 1,949,722 2,128,871

Total 2,213,373 2,411,796 2,556,455 2,964,783

Developers Alliance found that 62 % of the U. S. online population owned app-
capable devices and that 74 % of those device owners use mobile applications.
A March 2015 ReportLinker study estimated that there were more than 3.17
million applications available on various app stores [25].

As the rendering capabilities of mobile devices improves, mobile applications
are becoming increasingly graphics-intensive. This requires intensive computa-
tions that quickly drain the device’s battery. Several solutions are being devel-
oped to reduce power consumption in graphics-intensive mobile applications.
Some solutions are to be used at development time while others are to be used
when the application is running. The former focus on tools that help devel-
opers estimate power consumption at development time. For example, in [30],
the authors present SPOT (System Power Optimization Tool), which is a model-
driven tool that automates power consumption emulation code generation. In [7],
the authors use program analysis during development time to estimate mobile
application energy consumption. The latter type of solutions focus on reducing
power consumption of hardware components such as the GPU or NIC at run-
time. Examples include the racing to sleep technique (that sends data at the
highest possible rate), wide channels, and multiple RF chains [6].

A third alternative is application offloading, the process of running compute-
intensive tasks on servers (often in the cloud) and delivering the results of these
computations to mobile devices through their wireless interfaces. However, these
wireless interfaces also may consume substantial amounts of power when receiv-
ing large amounts of data as is typical in many modern, interactive, graphics-
intensive mobile applications. It is therefore important to understand the power
consumption implications of the two alternatives: running the graphics-intensive
application on the cloud or on the mobile device itself.

In this paper, we use mobile cloud gaming as an example to analyze and
compare these two alternatives in terms of power consumption. We show through
actual hardware specifications that, despite the recent introduction of ultra low
power GPUs for mobile devices, it remains far more power efficient to offload
graphics-intensive tasks to cloud servers. To make our discussion concrete, we
focus on two cases of mobile devices: (i) notebooks and (ii) smartphones. In
both cases, we only consider gaming using the device’s WiFi interface (not its
cellular interface.) The reason for this is that the high latency and high cost make

An Analysis of Power Consumption in Mobile Cloud Computing 265

mobile cloud gaming using cellular networks (UMTS, LTE, etc.) an impractical
alternative for most consumers. We will elaborate on this in Sect. 4.

1.1 Paper Organization

This paper is organized as follows. We first discuss some current approaches that
aim at reducing power consumption in mobile cloud computing. In Sect. 3, we
give an overview of mobile cloud gaming. In Sect. 4, we contrast cellular-based
and WiFi-based mobile cloud gaming from the perspectives of power consump-
tion, throughput, latency, and cost. In Sects. 5 and 6, we present power con-
sumption trends in modern mobile GPUs and 802.11 network cards. In Sect. 7,
we quantitatively evaluate and compare power consumption of a gaming session
in the two previously mentioned scenarios in the context of notebooks. We repeat
the same analysis for smartphones in Sect. 8. We summarize the conclusions from
our study in Sect. 9.

2 Current Approaches for Power Saving in Mobile
Cloud Computing

Research approaches for reducing power consumption in mobile cloud computing
environments have focused on one (or both) of the two following directions:
(i) adding hardware/software layers in the vicinity of the mobile devices, e.g.,
cloudlets and (ii) context-aware offloading.

2.1 Cloudlets

The term “cloudlet” was first introduced by M. Satyanarayanan and his team at
Carnegie Mellon University [1]. A cloudlet “represents the middle tier of a 3-tier
hierarchy: mobile device — cloudlet — cloud” [27]. It serves as a “data center in
a box” with the goal of bringing the cloud closer to the mobile device. Several
researchers have used the idea of cloudlets to develop offloading approaches. A
promising direction is to offload compute-intensive processing to the cloudlet
instead of offloading to the cloud. An example of work that used the idea of
cloudlets is [16] where the authors propose an architecture for mobile cloud
computing that includes a middle layer composed of cloudlets between mobile
devices and the cloud infrastructure. Cloudlets are deployed next to IEEE 802.11
access points and are used as a “service point” that improves the performance
of mobile cloud services accessed by nearby mobile devices. The authors also
propose an offloading algorithm that decides whether or not to offload. The algo-
rithm takes into consideration the energy consumption for task execution and
the network status while satisfying constraints related to task response time. To
further improve performance, the authors introduce a data caching mechanism
deployed at cloudlets.

266 A. Rezgui and Z. Malik

2.2 Context-Aware Offloading

In this approach, the current “context” of the mobile device is taken into account
when making decision as to whether or not to offload to the clouds. The term
“context” may mean different things. For example, in [32], the authors consider a
mobile cloud computing architecture with multiple resources (e.g., mobile ad-hoc
network, cloudlet, and public clouds.) They propose a context-aware offloading
system that takes into account these resources to provide code offloading deci-
sions that help in selecting the wireless medium and the potential cloud resources
to be used as the offloading location based on the device’s context. In [3], the
authors present an algorithm called MAO (Mobile Application’s Offloading) trig-
gered by a “context” that consists of the current CPU load and state of charge
(SoC) of the battery. The algorithm also differentiates between interactive and
delay tolerant mobile applications. When the algorithm cannot satisfy a user’s
quality of experience (QoE) and/or energy efficiency requirements, it rejects the
job.

In [14], the authors consider the case of multiple tasks that dynamically
arrive at the nodes of a mobile ad hoc network-based cloud computing envi-
ronment. They propose a set of online and batch scheduling heuristics that
aim at improving performance and reducing energy consumption by offload-
ing compute-intensive applications. Their experimental evaluation focused on
both user-centric and system-centric metrics such as the average makespan, the
average waiting time, the average slowdown and the average utilization.

3 Mobile Cloud Gaming

Mobile cloud computing (MCC) is the process of offloading compute-intensive
tasks from mobile devices to cloud servers [28,29]. The purpose is often to save
power on the mobile device and/or access servers with much higher computing
power. A prime example of MCC is mobile cloud gaming which is the process
of providing video games on-demand to consumers through the use of cloud
technologies. One benefit is that the cloud, instead of the user’s device, carries
out most of the computations necessary to play the game, e.g., complex graphical
calculations. This is obviously a tremendous advantage in case the player uses a
battery-powered, mobile device. Even when power is not a critical issue for the
user’s device, cloud gaming still provides other cloud services, e.g., storage. Cloud
gaming enables power savings also on the cloud itself as it makes it possible
that several players simultaneously share cloud GPUs. For example, Nvidia’s
VGX Hypervisor manages GPU resources to allow multiple users to share GPU
hardware while improving user density and the utilization of GPU cycles [22].
To illustrate, a single cloud gaming-capable Nvidia VGX K2 unit requires 38 W
per cloud user [24], whereas a comparable single-user Nvidia GTX 690 consumer
unit requires 300 W to operate [23]. In this case, cloud gaming can reduce the
overall graphics-related power consumption by 87 %.

An Analysis of Power Consumption in Mobile Cloud Computing 267

4 Cellular-Based vs. WiFi-Based Mobile Cloud Gaming

Mobile cloud gaming may be achieved using cellular connections or WiFi connec-
tions. While both options are technically possible and relatively comparable in
terms of power consumption, the WiFi option seems much more attractive when
we consider throughput, latency and cost. In this section, we present results
from recent studies analyzing power consumption, throughput, latency, and cost
in both scenarios:

4.1 Power Consumption and Throughput

In [2], the authors analyze power consumption of smartphones. In particular,
they studied power consumption of the two main networking components of the
device: WiFi and GPRS (provided by the GSM subsystem). The test consisted
of downloading a simple file via HTTP using wget. The files contained random
data, and were 15 MiB for WiFi, and 50 KiB for GPRS. While the test was not a
gaming session, it still gave valuable insights. The experiments showed that WiFi
achieved a throughput of 660.1±36.8 KiB/s, and GPRS 3.8±1.0 KiB/s. However,
they both show comparable power consumption far exceeding the contribution
of the RAM and CPU (Fig. 1). The experiments also showed that, with the
increase in throughput possible using WiFi, CPU and RAM power consumption
also increases reflecting the increase in the cost of processing data with a higher
throughput.

Fig. 1. Power consumption of WiFi and GSM modems, CPU, and RAM [2].

4.2 Latency

In the context of mobile cloud gaming, latency refers to the timespan between a
user’s action and the corresponding reaction [12], e.g., time between the action
of pressing a button and seeing a character in the game move as a result of

268 A. Rezgui and Z. Malik

that action. High latency is a real challenge in mobile cloud gaming. Wireless
connections (WiFi and cellular) and even wired residential end host round trip
times (RTTs) can exceed 100 ms [13]. To many gamers, this is the point when a
game’s responsiveness becomes unacceptable. A recent effort to reduce latency
in mobile cloud gaming is Outatime, a speculative execution system for mobile
cloud gaming that is able to mask up to 250 ms of network latency [13]. It
produces speculative rendered frames of future possible outcomes, delivering
them to the client one entire RTT ahead of time.

While latency is an issue in both cellular-based and WiFi-based mobile gam-
ing, WiFi connections typically have much less latency than cellular connec-
tions [12].

4.3 Cost

Cost is also a major factor in favor of WiFi-based mobile cloud gaming. For
example, in [12], the authors give an analytical assessment that shows that the
cost (from cellular data transfer) of a gaming session of one hour would be about
2.36 Euros without including the likely additional usage fee to be paid to the
cloud gaming provider.

As we may conclude from the previous discussion, WiFi-based mobile cloud
gaming is currently more practical than cellular-based mobile cloud gaming. We,
therefore, limit our discussion to this option in the remainder of this paper.

5 Power Consumption Trends in Modern Mobile GPUs

It is currently generally true that GPUs offering a good rendering capability
consume much power for operation and cooling. To illustrate the current power
consumption trends of mobile GPUs, we list in Table 2 some modern notebook
GPUs and their respective power consumptions. The table suggests that play-
ing a game on a notebook equipped with one of the listed GPUs may not be a
viable option. For example, the Dell Precision M6700 mobile workstation (which
Dell touted as the “world’s most powerful 17.3” mobile workstation”) is equipped
with the Nvidia Quadro K5000M GPU. The configuration can pull 98W of power
when running on battery under a heavy CPU or GPU load. This means that it
would be possible to drain the system battery in about an hour [20]. Even with
this limited ability to support long running, compute-intensive applications, this
configuration costs more than $2K. Better battery life may be possible but with
much more expensive configurations. Efforts are underway to develop mobile
devices with power efficient computing components (e.g., multicore CPUs and
ultra low power GPUs) and batteries that can run compute-intensive applica-
tions (e.g., games and other graphics-intensive applications) for many hours. For
example, Nvidia is introducing Tegra 4, a mobile GeForce GPU with up to 72
custom cores, a quad-core ARM Cortex-A15 processor with a fifth Companion
Core that further improves performance and battery life. According to Nvidia,
a battery of a capacity of 38 watt-hours would be sufficient to operate a Tegra

An Analysis of Power Consumption in Mobile Cloud Computing 269

Table 2. Energy consumption of some modern notebook GPUs.

GPU card Power consumption (Watts)

NVIDIA GeForce GTX 680M SLI 2 × 100

AMD Radeon HD 7970M Crossfire 2 × 100

NVIDIA GeForce GTX 680MX 122

NVIDIA GeForce GTX 675M SLI 2 × 100

GeForce GTX 680M 100

Quadro K5000M 100

AMD Radeon HD 7970M 100

4 mobile device running a gaming application between 5 and 10 h. This corre-
sponds to a power consumption (for the entire device) of 4 to 8 W [9]. However,
it is expected that mobile devices with these high-end configurations will remain
beyond the reach of average users for the foreseeable future.

6 Power Consumption Trends in Modern Notebook NICs

The original 1997 release of the IEEE 802.11 standard operated in the 2.4 GHz
frequency band and provided a data bit rate of 1 to 2 Mb/s. The standard release
approved in February 2014 (known as 802.11ad) operates in the 2.4/5/60 GHz
frequency bands and provides a data bit rate of up to 6.75 Gbit/s. While higher
bit rates often translate into higher power consumption, this is less true in recent
ultra-low power 802.11 standards. For example, today’s fastest 3 antenna 802.11n
device can achieve 450 Mbps. A single antenna 802.11ac device can achieve a sim-
ilar bit rate with similar power consumption. This means that a typical tablet
with single antenna 802.11n 150 Mbps WiFi can now support 450 Mbps with
802.11ac without any increase in power consumption or decrease in battery
life [19].

7 Graphics-Intensive Applications: GPUs vs. NICs

To assess the benefits of using a mobile GPU versus offloading to the cloud, we
consider gaming as it is a typical example of graphics-intensive mobile applica-
tions. Specifically, we consider four modern games that rely heavily on GPUs.
We compare two scenarios in terms of power consumption. In the first scenario,
the game is run entirely on the mobile device and uses only its GPU. In the
second scenario, we consider an execution where the game is run on a cloud
server and the mobile device only receives and renders sequences of frames pro-
duced by the server. We analytically evaluate power consumption in these two
scenarios and show that, with modern wireless technology, offloading is a far
better alternative to running graphics-intensive applications using the device’s
GPU. To make the comparison even more in favor of the GPU-based alternative,

270 A. Rezgui and Z. Malik

Table 3. Average frame rate of some combinations of GPU cards, games, and resolu-
tions.

GPU card GRID autosport Watch dogs Titanfall Thief

L|M|H|U L|M|H|U L|M|H|U L|M|H|U
GeForce GTX 770M (75W) 199.6|130.3|92.6|46.5 80.7|66.1|27.7|19.8 60|60|59.3|48.3 57.1|51.3|46.8|26.6
GeForce GTX 860M (60W) 192.15|109.65|88|47.2 71.2|60.7|27.7|18.9 60|60|59.5|42.4 60.5|52.7|44|23.95
GeForce GTX 850M (40–45W) 166.65|99.33|68.3|34.7 61.8|52.3|20.75|14.7 60|59.7|53.25|34.3 46.45|39.6|36.65|18.2
GeForce GTX 765M (50–75W) 191.9|130.7|74.1|34.8 81.3|56.9|21.1| 60|59.7|54.3|35.6 58.2|43.1|37|19.1

we ignore the power consumption of the device’s disk. We assume that, when
a graphics-intensive application is run on a mobile device, most of the power
is consumed by the device’s GPU. This is becoming increasingly true with the
wide availability of mobile devices with solid-state disk drives.

To compare power consumption in the two scenarios, we first present a simple
model that captures the interactions between the player and the gaming appli-
cation. We will assume that, during a given gaming session of duration t, the
player takes an action after every r seconds on average. We call r the reactivity
of the player. To respond to the player’s action, the application generates a video
stream of length v seconds.1 So, during the entire session, the application gener-
ates t/r video sequences whose length is v seconds each. In total, the application
generates tv/r seconds of video during the given gaming session.

7.1 Scenario 1: Gaming Using the Mobile Device’s GPU

To assess the power consumed by a notebook’s GPU in a gaming session, we used
the benchmark presented in [21]. The benchmark has a large number of notebook
GPUs and a number of popular games. For each combination of game and GPU
card, the benchmark gives the average number of frames per second (fps) that
the GPU card achieves with four different resolution levels: Low (L), Medium
(M), High (H), and Ultra (U). The benchmark considers that a frame rate of
25 fps is sufficient for fluent gaming. For the purpose of this study, we considered
four GPU cards and four 2014 games, namely GRID Autosport, Watch Dogs,
Titanfall, and Thief. Table 3 gives the frame rates obtained in the given combi-
nations2. The resolutions in the table are as follows: Low (1024 × 768), Medium
(1366 × 768), High (1920 × 1080 for the first two games and 1366 × 768 for the
last two games), and Ultra (1920 × 1080). Table 3 also gives power consumption
for the four GPU cards.

As an example, consider a mobile device equipped with a GPU of type Nvidia
GeForce GTX 850M. As shown in Table 3, this GPU card will consume between
40 and 45 W in one hour. We will show that offloading to the cloud (Scenario 2)
brings an order of magnitude reduction in terms of the power consumed by the
mobile device.
1 This is to simplify our discussion. In practice, the application likely generates two

video sequences of different lengths in response to two different actions.
2 The missing value in the last row corresponds to a test that could not be run because

the GPU card could not support a sufficiently acceptable frame rate.

An Analysis of Power Consumption in Mobile Cloud Computing 271

7.2 Scenario 2: Mobile Cloud Gaming

We now evaluate the required data bit rate that the NIC card of a notebook
would have to support to achieve the same game fluency (i.e., 25 fps) for one
of the four GPU cards of Table 3. As an example, consider again the Nvidia
GeForce GTX 850M (which is the best of the four GPUs in terms of power
consumption.) For the game GRID Autosport and for low resolution, the Nvidia
GeForce GTX 850M is able to support 166.65 fps which is: 166.65 × 1024 ×
768 × 8 = 1048471142.4 bits/s (assuming a color depth of 8 bits/pixel). Thus
the NIC card would have to operate at a bit rate of about 1.05 Gb/s. A similar
computation for the Ultra high resolution level gives us a bit rate of: 34.7 ×
1920 × 1080 × 8 = 575631360 bits/s. Thus, to support the same gaming fluency
at the Ultra-high resolution level, the NIC would have to operate at 575 Mb/s.
Note that the required bit rate at the Ultra-high resolution level is almost half
of that of the required bit rate at the low resolution level because the GPU
supports a lower frame rate at the Ultra-high resolution level. To support these
bit rates, the mobile device’s NIC would have to be 802.11ad compliant. The
802.11ad standard is able to support bit rates up to 6.77 Gbit/s.

To evaluate the power consumed by the device’s wireless networking card
during the considered gaming session, we will assume a model of a wireless
networking card that consumes ρtx watts when in transmit mode and ρrx watts
when in receive mode. With single-antenna 802.11 devices, the devices cannot
send and receive simultaneously. This normally implies that one has also to
take into account the cost of frequently switching the device’s radio between
the transmit and the receive mode. However, this is changing as mobile devices
are now increasingly being equipped with MIMO (multiple-input and multiple-
output) technology enabling the use of multiple antennas at both the transmitter
and receiver. In fact, Mobile Experts predicts that the use of MIMO technology
will reach 500 million PCs, tablets, and smartphones by 2016 [15]. As a result, we
will only take into account power consumption due to transmission, reception,
and idling. We will note the power consumption of the radio during idling by
ρid.

Let μt and μr be the transmission and reception rates respectively. Let l be
the length of the packet sent to the application when the player takes an action.
The time needed to transmit this packet is then: l/μt. Let t be the length of the
entire gaming session (in seconds). During the time t, the device transmits t/r
times where r is the player’s reactivity (defined earlier). The total time during
which the device transmits is therefore:

tl

rμt
secs. (1)

The corresponding power consumption during the period of time t is:

Ptx =
ρtxtl

rμt
(2)

To evaluate the power consumed by the device’s receiver, recall that our
model assumes that, to respond to each player’s action, the application generates

272 A. Rezgui and Z. Malik

Table 4. Power consumption for the Intel Dual Band Wireless-AC 7260 802.11ac, 2 × 2
Wi-Fi Adapter [8].

Mode Power (mWatts)

Transmit 2000

Receive 1600

Idle (WLAN associated) 250

Idle (WLAN unassociated) 100

Radio off 75

a video stream of length v seconds. The devices spends v/μr seconds to receive
each of these video streams. Since we have t/r of these video streams during
the considered time period of length t, the device’s NIC receives video streams
during:

tv

rμr
secs. (3)

Let Prx be the power that the device’s NIC consumes to receive the t/r video
sequences. Prx can be given by:

Prx =
ρrxtv

rμr
(4)

The device’s NIC is in the idle mode when it is not transmitting and not
receiving. This occurs during:

t − tl

rμt
− tv

rμr
secs. (5)

The power consumed by the device’s NIC while idling is therefore:

Pid = ρidt(1 − l

rμt
− v

rμr
) (6)

Let PNIC(t) be the power consumed by the wireless NIC during the t-second
gaming session. PNIC(t) is then:

PNIC(t) = Ptx + Prx + Pid

=
ρtxtl

rμt
+

ρrxtv

rμr
+ ρidt(1 − l

rμt
− v

rμr
)

In practice, one must consider values for ρrx that accommodate high recep-
tion rates (for high definition gaming) and values for ρtx that correspond to low
transmission rates since the user’s actions usually translate into short packets.

To illustrate, we consider the case of an HP EliteBook Folio 1040 G1 Note-
book PC. This notebook is equipped with the Intel Dual Band Wireless-AC
7260 802.11ac Wi-Fi Adapter whose power consumption is given in Table 4 [8].

An Analysis of Power Consumption in Mobile Cloud Computing 273

Assume that the NIC card is 80 % of the time in reception mode, 10 % of the
time in transmit mode, and is idle (but associated) 10 % of the time. If we apply
our power model to this WiFi adapter, power consumption in one hour would
be (approximately):

PNIC(t) = Ptx + Prx + Pidle

= 0.1 × 2000 + 0.8 × 1600 + 0.1 × 250
= 1505 mW

assuming the highest Rx and Tx power levels.
Considering the example of a notebook equipped with a GPU of type Nvidia

GeForce GTX 850M (Sect. 7.1), we can estimate that, in one hour, the GPU
card will consume about between 0.8 × 40W and 0.8 × 45W, i.e., between 32 W
and 36 W, assuming a GPU utilization of 80 % similar to our assumption of the
NIC card being in the Rx mode 80 % of the time.

From the results obtained in the two scenarios, it is clear that using the
wireless networking interface in a gaming session consumes much less power
than using a modern GPU card installed on the same device. Specifically, the
power consumed using the wireless card would be around (1505/34000) × 100,
i.e., around 4.42 % of the power consumed by the on-device GPU.

8 Mobile Cloud Gaming Using Smartphones

We now compare power consumption between GPU-based gaming and cloud-
based gaming on smartphones.

8.1 Power Consumption of GPU-Based Gaming on Smartphones

In [10], the authors measured power consumption of a Qualcomm Adreno 320
GPU in a Google Nexus 4 smartphone. They used two games in their tests:
Angry Birds (2D game) and Droid Invaders (3D game). The authors report
results for a gaming session that lasted 560 s for Angry Birds and 505 s for Droid
Invaders. Throughout the two gaming sessions, power consumption remained
approximately at around 1750 mW for Angry Birds and at around 2000 mW for
Droid Invaders. We will use the average of these two numbers (1875 mW) as an
estimate of the average power consumption of both 2D and 3D games.

8.2 Power Consumption of Cloud-Based Gaming on Smartphones

To compare power consumption of cloud-based gaming with GPU-based gaming,
we first need to evaluate the NIC bit rate that would be necessary to provide a
gaming experience comparable to the one achieved through GPU-based gaming.
For this, we used results from the GFXBench 3.0 benchmark, a cross-platform
OpenGL ES 3 benchmark designed for measuring graphics performance, ren-
der quality and power consumption on several types of devices including smart-
phones. In particular, the benchmark has battery and stability tests that measure

274 A. Rezgui and Z. Malik

Table 5. Frame rates for the Adreno 320 GPU on a Google Nexus 4 and on a Samsung
Galaxy S4 using the Manhattan benchmark [5].

Smartphone model GPU Resolution Frame rate

Google Nexus 4 (LG E960) Adreno 320 1196 × 768 9.2

Google Nexus 5 Adreno 330 1794 × 1080 10.1

Samsung GT-I9507 Galaxy S4 Adreno 320 1920 × 1080 5.4

Samsung GT-I9515 Galaxy S4 Value Edition Adreno 320 1920 × 1080 5.1

Samsung Galaxy S4 Active (GT-I9295,
SGH-I537)

Adreno 320 1920 × 1080 5.1

Samsung Galaxy S4 (GT-I9505, GT-I9508,
SC-04E, SCH-I545, SCH-R970,
SGH-I337, SGH-M919, SPH-L720)

Adreno 320 1920 × 1080 5.1

the devices battery life and performance stability by logging frames-per-second
(fps) performance and expected battery running time while running sustained
game-like animations [5]. We focused on results for the Adreno 320 GPU on a
Google Nexus 4, which is the same configuration used in the GPU-based scenario
of the previous section.

Table 5 shows the frame rate for several tests using the Manhattan benchmark
[5]. Row 1 of the table shows that the Adreno 320 GPU on a Google Nexus
4 achieved a frame rate of 9.2 fps. Considering this frame rate and the given
resolution (1196 × 768), the NIC bit rate that would be necessary to achieve a
similar gaming experience can be derived as: 9.2 × 1196 × 768 × 24 (bits/pixel)
= 202810982.4 bps≈ 203 Mbps.

We now turn to evaluating the power needed on the NIC to sustain this bit
rate. For this, we use the results from [26] where the authors experiment with
a variety of smartphones supporting different subsets of 802.11n/ac features.
In particular, the authors measured throughput and power consumption in a
Galaxy S4 using different configurations. Based on their findings for the Galaxy
S4 used in the experiment, only 802.11ac offers Rx throughput levels sufficient
for the considered gaming bit rate (of 203 Mbps).

Figure 2 (reproduced from [26]) shows that the best Rx throughput with
802.11ac was about 250 Mbps. Power consumption in this case was about
1100 mW.

The authors did not provide measurements for the throughput and power
consumption in transmit mode with 802.11ac. They, however, measured through-
put and power consumption in transmit mode with 802.11n. Figure 3 shows their
results. In particular, the results show that it is possible to achieve a Tx through-
pout of more than 40 Mbps with as little power as 800 mW. Note that, in a
cloud-based gaming session, a Tx throughout of 40 Mbps is typically sufficient.
The authors also measured power consumption of the Galaxy S4 when it is in
non-communication modes, i.e., power saving mode (PSM) or idle. Their results
(Table 6) show that the highest 802.11ac power consumption in PSM was 31 mW

An Analysis of Power Consumption in Mobile Cloud Computing 275

Fig. 2. 802.11ac throughput and power comparison for Galaxy S4 and Galaxy S5 with
a channel width of 20/40/80 MHz and FA on [26].

Fig. 3. ComparisonofdifferentCPUGovernors/Frequencies forGalaxyS4(802.11n) [26].

Table 6. Power consumption (in mW) in non-communicating modes [26].

Configuration PSM Idle

802.11n, 20 MHz, SS 24 ± 16 398 ± 7

802.11n, 40 MHz, SS 25 ± 5 413 ± 2

802.11ac, 20 MHz, SS 22 ± 9 374 ± 7

802.11ac, 40 MHz, SS 20 ± 9 425 ± 3

802.11ac, 80 MHz, SS 19 ± 10 529 ± 11

276 A. Rezgui and Z. Malik

and that the highest 802.11ac power consumption when idle was 540 mW. The
relatively high idle mode power consumption of larger channel widths (80 MHz)
has also been observed by other studies (e.g., [31]).

Based on all the previous results from [26] and assuming that, in a cloud-
based gaming session, the device’s 802.11 adapter spends 80 % of the time receiv-
ing, 10 % of the time transmitting, and 10 % of the time idle, the total power
consumed in one hour by the 802.11 adapter would be:

PNIC(t) = Ptx + Prx + Pidle

= 0.1 × 800 + 0.8 × 1100 + 0.1 × 540
= 1014 mW

Comparing power consumption in the two scenarios: using GPU-based gam-
ing (which is 1875 mW as derived in Sect. 8.1 and cloud-based gaming (which is
1014 mW as derived in this section), we conclude that, in the considered smart-
phone configuration, cloud-based gaming can potentially result into a power
saving of about 46 %.

9 Conclusion

Reducing power consumption in mobile devices is crucial. Mobile cloud comput-
ing is one alternative that has been increasingly used to reduce power consump-
tion on mobile devices. While offloading is generally accepted to be effective, little
research has been conducted to quantify the exact difference in terms of power
consumption between scenarios where mobile devices access applications run on
the clouds and scenarios where those same applications are run on the mobile
devices themselves. In this paper, we used mobile cloud gaming as a case study
to analyze and compare power consumption in the two scenarios. Our study
shows that substantial savings in power consumption may be achieved when
graphics-intensive applications are run on the clouds instead of mobile devices.
We call the computing model that enables mobile devices to access advanced
cloud-based visualization capabilities Visualization-as-a-Service (VaaS). Based
on our analysis, we posit that VaaS is a viable computing model despite the
recent advances in terms of low power hardware for mobile devices.

In a survey of computation offloading for mobile systems [11], the authors
predict that “mobile computing speeds will not grow as fast as the growth in
data and the computational requirements of applications.” As a result, offloading
will remain a natural solution to the problem of improving performance while
reducing energy consumption of mobile devices. We concur with this prediction
and believe that more work is needed in the area of mobile cloud computing
both in terms of new architectures and in terms of new offloading techniques.

An Analysis of Power Consumption in Mobile Cloud Computing 277

References

1. Elijah: Cloudlet-based Mobile Computing. http://elijah.cs.cmu.edu
2. Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In: Pro-

ceedings of the 2010 USENIX Conference on USENIX Annual Technical Confer-
ence, USENIXATC 2010, pp. 21–21. USENIX Association, Berkeley (2010). http://
dl.acm.org/citation.cfm?id=1855840.1855861

3. Ellouze, A., Gagnaire, M., Haddad, A.: A mobile application offloading algorithm
for mobile cloud computing. In: 2015 3rd IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering (MobileCloud), pp. 34–40, March
2015

4. Ericsson: Ericsson mobility report: on the pulse of the networked society. Technical
report, Ericsson, June 2015

5. GFXBench: Gfxbench 3.0 directx (2015). http://www.gfxbench.com
6. Halperin, D., Greenstein, B., Sheth, A., Wetherall, D.: Demystifying 802.11n power

consumption. In: Proceedings of the International Conference on Power-Aware
Computing and Systems. HotPower, Vancouver (2010)

7. Hao, S., Li, D., Halfond, W.G.J., Govindan, R.: Estimating mobile application
energy consumption using program analysis. In: Proceedings of the the Interna-
tional Conference on Software Engineering (ICSE), San Francisco, California, May
2013

8. Hewlett Packard: HP EliteBook Folio 1040 G1 Notebook PC. Technical report
(2013)

9. Hruska, J.: Nvidia’s Tegra 4 Demystified: 28nm, 72-core GPU, Integrated LTE,
and Questionable Power Consumption (2013). http://www.extremetech.com

10. Kim, Y.G., Kim, M., et al.: A novel GPU power model for accurate smartphone
power breakdown. ETRI J. 37(1), 157–164 (2015)

11. Kumar, K., Liu, J., Lu, Y.H., Bhargava, B.: A survey of computation offloading
for mobile systems. Mob. Netw. Appl. 18(1), 129–140 (2013)

12. Lampe, U., Hans, R., Steinmetz, R.: Will mobile cloud gaming work? findings on
latency, energy, and cost. In: Proceedings of the 2013 IEEE Second International
Conference on Mobile Services, MS 2013, pp. 103–104. IEEE Computer Society,
Washington (2013). http://dx.doi.org/10.1109/MS.2013.21

13. Lee, K., Chu, D., Cuervo, E., Kopf, J., Grizan, S., Wolman, A., Flinn, J.: DeLorean:
using speculation to enable low-latency continuous interaction for mobile cloud
gaming. Technical report, Microsoft Research, August 2014

14. Li, B., Pei, Y., Wu, H., Shen, B.: Heuristics to allocate high-performance cloudlets
for computation offloading in mobile ad hoc clouds. J. Supercomput. 71(8), 3009–
3036 (2015)

15. Madden, J.: MIMO adoption in mobile communications forecast: devices by oper-
ating system and user type, worldwide, 2010–2017, 1Q13 Update. Technical report,
Mobile Experts, June 2011

16. Magurawalage, C.M.S., Yang, K., Hu, L., Zhang, J.: Energy-efficient and network-
aware offloading algorithm for mobile cloud computing. Comput. Netw. 74, 22–33
(2014)

17. MarketsandMarkets: World Mobile Applications Market - Advanced Technologies,
Global Forecast (2010–2015). Technical report, MarketsandMarkets (2010)

18. Milanesi, C., Tay, L., Cozza, R., Atwal, R., Nguyen, T.H., Tsai, T., Zimmermann,
A., Lu, C.K.: Forecast: devices by operating system and user type, worldwide,
2010–2017, 1Q13 Update. Technical report, Gartner, 28 March 2013

http://elijah.cs.cmu.edu
http://dl.acm.org/citation.cfm?id=1855840.1855861
http://dl.acm.org/citation.cfm?id=1855840.1855861
http://www.gfxbench.com
http://www.extremetech.com
http://dx.doi.org/10.1109/MS.2013.21

278 A. Rezgui and Z. Malik

19. Netgear: Next Generation Gigabit WiFi - 802.11ac. Technical report (2012)
20. Notebook Review: Dell Precision M6700 Owner’s Review (2015). http://forum.

notebookreview.com/dell-latitude-vostro-precision/679326-dell-precision-m6700-
owners-review.html

21. NoteBookCheck: Computer Games on Laptop Graphic Cards (2014). http://www.
notebookcheck.net/Computer-Games-on-Laptop-Graphic-Cards.13849.0.html

22. Nvidia: Building Cloud Gaming Servers (2015). http://www.nvidia.com/object/
cloud-gaming-benefits.html

23. Nvidia: GeForce GTX 690 Specifications (2015). http://www.geforce.com/
hardware/desktop-gpus/geforce-gtx-690/specifications

24. Nvidia: Grid GPUs (2015). http://www.nvidia.com/object/grid-boards.html
25. ReportLinker: Global Mobile Application Market 2015–2019. Technical report,

ReportLinker, March 2015
26. Saha, S.K., Deshpande, P., Inamdar, P.P., Sheshadri, R.K., Koutsonikolas, D.:

Power-throughput tradeoffs of 802.11n/ac in smartphones. In: Proceedings of the
34th IEEE International Conference on Computer Communications (INFOCOM),
Hong Long, Spain, 26 April–1 May 2015

27. Satyanarayanan, M., Chen, Z., Ha, K., Hu, W., Richter, W., Pillai, P.: Cloudlets: at
the leading edge of mobile-cloud convergence. In: 2014 6th International Conference
on Mobile Computing, Applications and Services (MobiCASE), pp. 1–9, November
2014

28. Shiraz, M., Gani, A., Khokhar, R., Buyya, R.: A review on distributed application
processing frameworks in smart mobile devices for mobile cloud computing. IEEE
Commun. Surv. Tutorials 15(3), 1294–1313 (2013)

29. Soliman, O., Rezgui, A., Soliman, H., Manea, N.: Mobile cloud gaming:
issues and challenges. In: Daniel, F., Papadopoulos, G.A., Thiran, P. (eds.)
MobiWIS 2013. LNCS, vol. 8093, pp. 121–128. Springer, Heidelberg (2013).
http://dx.doi.org/10.1007/978-3-642-40276-0 10

30. Thompson, C., Schmidt, D.C., Turner, H.A., White, J.: Analyzing mobile
application software power consumption via model-driven engineering. In:
Benavente-Peces, C., Filipe, J. (eds.) PECCS, pp. 101–113. SciTePress (2011)

31. Zeng, Y., Pathak, P.H., Mohapatra, P.: A first look at 802.11ac in action: energy
efficiency and interference characterization. In: Proceedings of the 13th IFIP Inter-
national Conferences on Networking, Trondheim, Norway, 2–4 June 2014

32. Zhou, B., Dastjerdi, A.V., Calheiros, R.N., Srirama, S.N., Buyya, R.: A context
sensitive offloading scheme for mobile cloud computing service. In: 2015 IEEE 8th
International Conference on Cloud Computing (CLOUD), pp. 869–876, June 2015

http://forum.notebookreview.com/dell-latitude-vostro-precision/679326-dell-precision-m6700-owners-review.html
http://forum.notebookreview.com/dell-latitude-vostro-precision/679326-dell-precision-m6700-owners-review.html
http://forum.notebookreview.com/dell-latitude-vostro-precision/679326-dell-precision-m6700-owners-review.html
http://www.notebookcheck.net/Computer-Games-on-Laptop-Graphic-Cards.13849.0.html
http://www.notebookcheck.net/Computer-Games-on-Laptop-Graphic-Cards.13849.0.html
http://www.nvidia.com/object/cloud-gaming-benefits.html
http://www.nvidia.com/object/cloud-gaming-benefits.html
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-690/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-690/specifications
http://www.nvidia.com/object/grid-boards.html
http://dx.doi.org/10.1007/978-3-642-40276-0_10

Using Satellite Execution to Reduce Latency
for Mobile/Cloud Applications

Robert Pettersen(B), Steffen Viken Valv̊ag, Åge Kvalnes, and Dag Johansen

Department of Computer Science, University of Tromsø,
The Arctic University of Norway, Tromsø, Norway

{robert,steffenv,aage,dag}@cs.uit.no
http://www.cs.uit.no

Abstract. We demonstrate a practical way to reduce latency for mobile
.NET applications that interact with cloud services, without disrupt-
ing application architectures. We provide a programming abstraction
for location-independent code, which has the potential to execute either
locally or at a satellite execution environment in the cloud, where other
cloud services can be accessed with low latency. This maintains a simple
deployment model, but gives applications the option to offload latency-
sensitive code to the cloud. Services like cloud databases can still be
accessed programmatically, but with less concern for the aggregated
latency of consecutively-issued requests. Our evaluation shows that this
approach can significantly improve the response time for applications
that execute dependent database queries, and that the required cloud-
side resources are modest.

Keywords: Mobile · Cloud · Performance · Latency · Satellite execu-
tion · Code offloading · Cloud databases

1 Introduction

Use of cloud-provided services is integral to the operation of modern distributed
and mobile applications. For example, cloud databases simplify application logic
by serving as highly available repositories for critical state. For improved scalabil-
ity and availability these databases are commonly NoSQL, with limited support
for tabular relations and transactions and with a more relaxed consistency model
than a conventional relational database. Queries are issued through a program-
matic interface, rather than a domain-specific, high-level query language.

This promotes a usage pattern where multiple, consecutively-issued queries
implement a single logical transaction. For example, an atomic update can be
implemented as a read of the old value, followed by a conditional write of the new
value, with the predicate that the old value remains unchanged. Or a collection of
related records can be retrieved in multiple steps, by manually following foreign
key references, rather than using higher-level features like joins and subqueries.

c© Springer International Publishing Switzerland 2016
M. Helfert et al. (Eds.): CLOSER 2015, CCIS 581, pp. 279–298, 2016.
DOI: 10.1007/978-3-319-29582-4 15

280 R. Pettersen et al.

When the database is hosted in the cloud, issuing a sequence of depen-
dent queries entails multiple round-trips of communication, and network latency
becomes an important concern. For example, we have measured a latency of
50 ms–350 ms for accessing the Amazon DynamoDB [1] cloud database from a
mobile device [2], whereas a study covering 260 global vantage points reports an
average round-trip time (rtt) of 74 ms for accessing Amazon ec2 instances [3].
Issuing a sequence of queries to the cloud can result in unwanted delays that are
perceptible by users.

One way to alleviate this problem is to move the execution of queries to a
middle tier that is closer to the cloud database. If the entire sequence of queries
can be moved as a unit, this can eliminate many round-trips between the client
and the cloud, substituting them with shorter round-trips between the middle
tier and the database. If an application experiences high latency, or needs to
issue a long sequence of database queries, the queries can be offloaded to the
cloud and executed in close proximity to the database service.

Middle
Tier

Cloud
Services

Client

(a) Baseline; client communicating directly with cloud services.

Middle
Tier

Cloud
Services

Client

(b) With satellite execution.

Single middle tier interaction

Multiple cloud service interactions

Fig. 1. How satellite execution is applied to eliminate extraneous round-trips of com-
munication between a client and the cloud—by moving code to a middle tier close to
cloud services—reducing overall latency.

Using Satellite Execution to Reduce Latency for Mobile/Cloud Applications 281

In this paper, we refine and generalize this idea, to reduce latency for any
mobile/cloud application that issues a sequence of dependent requests to the
cloud. By moving the code that accesses cloud services to a middle tier, posi-
tioned in close proximity to the cloud, the code can execute in an environment
with lower latency. We refer to this concept as satellite execution, and illustrate
it in Fig. 1. Figure 1(a) shows the baseline scenario, where a client must send
multiple requests over a high latency mobile network to the cloud in order to
complete a task. These can be replaced with a single round-trip as in Fig. 1(b),
where code is moved to the middle tier before multiple requests with intracloud
latency are issued to the cloud service.

By implementing general-purpose offloading of code, and not just special-
izing on relaying of database queries, we preserve the programmatic style of
database access, and its associated advantages. For example, offloaded code can
perform computations, transformations, cryptographic operations, and any other
manipulations of parameters and intermediate results that may be required
when performing a sequence of queries. The increased flexibility also widens
the applicability of satellite execution as a general concept.

To illustrate the benefits of our approach, we quantify latency savings when
cloud database queries are executed from the middle tier rather than at the
client-side device. We also examine communication traces of popular phone appli-
cations to determine the practicality of our approach, to see if real applications
exhibit access patterns that are conducive to latency savings through satellite
execution.

We implement satellite execution in a system called Dapper, which signifi-
cantly extends and integrates the functionality of two previous systems: Rusta
[4] and Jovaku [2]. Rusta is a platform for developing cloud applications that can
utilize client-side storage and processing capacity, while the Jovaku system pro-
vides a distributed infrastructure for caching of cloud database values through
the ubiquitous dns service.

A goal with Rusta was to express computations in a location-independent
way, allowing for opportune execution in the cloud or at client-side devices.
This was accomplished by expressing computations in the Scala programming
language and using built-in closure features to create transferable execution con-
texts. In Dapper we take a similar approach, but target the .net platform, so
that code in any of the .net languages can be made transferable. Jovaku’s archi-
tecture includes a cloud-side relay-node that bridges the dns protocol with the
database api. Dapper extends this component to include a middle-tier platform
for hosting and safely executing offloaded code.

The rest of this paper is structured as follows. Section 2 elaborates on
the background and context of our work, motivating our general approach.
Section 3 describes the design and implementation of Dapper, and its program-
ming abstractions for satellite execution. Section 4 contains a performance evalu-
ation that focuses on the cloud database use-case, with measurements of typical
reductions in latency, and the maximum query processing throughput that can be
achieved in various configurations. Section 5 discusses related work, and Sect. 6
concludes.

282 R. Pettersen et al.

2 Background

The desire to reduce latency for mobile/cloud applications tends to encourage
a split application architecture, where parts of the application logic executes on
the device, and other parts execute in the cloud. Higher-level operations such as
submitting a comment or generating a news feed are delegated as a whole to the
cloud, to avoid multiple round-trips of communication.

The split between frontend and backend also has a tangential benefit: it
allows a variety of frontends, often tailored for different devices, to access the
same backend service. For example, an on-line chess service will typically offer
both a web-based frontend, as well as clients for various mobile devices and
platforms. Users should be able to switch seamlessly between client devices, e.g.
moving from their laptop to their phone, so the state of on-going games must
be maintained by the backend. This requires frequent communication with the
cloud to retrieve and update application state.

Many frameworks and platforms aim to ease the development of mobile appli-
cations that are factored into separate backend and frontend components. One
example is Parse [5], which provides a backend-as-a-service solution that offers
backend cloud storage, as well as the ability to deploy application modules
that execute in the cloud, close to the data. One common downside of these
approaches is that the device-specific and cloud-specific parts of the application
are deployed independently, through different channels. This increases the risk of
breakage, when old versions deployed on devices interact with the newest version
deployed in the cloud.

We approach the problem differently; rather than explicitly deploying parts
of applications in the cloud, we empower applications to offload latency-sensitive
code on demand, in a dynamic manner. Offloaded code will execute in close prox-
imity to the backend storage service, where latency is low. Thus, we address the
main motivating concern—improving application responsiveness as experienced
by users—without dictating a static deployment model for applications.

A key idea underlying this work is to move computations closer to the data
that they touch, which is a well-known technique that finds diverse applica-
tions. When processing streams of data, the demand for network bandwidth
can be reduced by filtering streams closer to the source, pushing computations
upstream. When processing stored data, similar gains can be made by scheduling
computations to execute locally on the storage nodes, using functional program-
ming models like MapReduce [6] for location independence.

Our experience from mobile agents [7–9] and MapReduce-style distributed
data processing have inspired some key aspects of this work. As in Cogset [10],
we promote a functional programming model using the visitor pattern, where
latency-sensitive code has the ability to visit the backend storage service as
desired. In this case, a visitor also resembles a mobile agent; although restricted
to moves back and forth between a client device and the cloud, it retains the
defining ability to carry state.

Using Satellite Execution to Reduce Latency for Mobile/Cloud Applications 283

3 Dapper

Instead of statically partitioning mobile/cloud applications into client-side and
cloud-side components, satellite execution enables individual objects to move
dynamically between the client and the cloud. The decision to deploy an object
for satellite execution is taken at run-time. Deployment to the cloud involves
moving an object’s code (i.e., its class) and its current state. Incurred state
changes while executing remotely are included when the object is moved back
to the client. Objects can move repeatedly between the client and the cloud, for
example in response to changes in application environment or state.

Jovaku’s application-transparent interfacing with cloud databases through
dns was in part made possible by a cloud-side relay-node. The relay-node bridges
the dns infrastructure with the underlying cloud database service by turning dns
requests into database queries. The relay-node was placed in close proximity to
the cloud database service to avoid extra latency when performing the trans-
lations. Since we have similar requirements for the middle tier in our satellite
execution concept, integrating this functionality into Dapper was an intuitive
solution. To realize the satellite execution concept, we therefore extended the
relay-node with capabilities for hosting and executing offloaded .net code. Two
main components were identified as necessities for this extension:

An Execution Environment: that is capable of hosting multiple securely
isolated sandboxes. Each of these sandboxes must be capable of loading and
executing code on behalf of clients, without interfering with each other, or
compromising the integrity of the surrounding execution environment.

A Message Processor: that will receive and process messages sent from
clients and demultiplex and pass messages on to the execution environment.
There are several feasible approaches to implementing an efficient message
processor. The Windows Communication Foundation (WCF) offers one con-
venient framework, but we decided to use an asynchronous socket-based
server with a customized communication protocol, because this gave slightly
better throughput.

An overview of the extended architecture with the new components can be seen
in Fig. 2. The Name Server is a bind [11] server with a custom dlz [12] driver
that resolves dns queries by accessing a cloud database service. As noted, this
functionality stems from the original Jovaku system and complements the satel-
lite execution capabilities of Dapper.

In addition to these new relay-node components, we saw the need to create
a programming abstraction for execution of offloaded code. To this end, we
defined the IMobileFunction interface, seen in Code Listing 1, which clients use
to specify offloadable code. Implementations of this interface are called mobile
functions, as they can be serialized and moved for remote execution on a relay-
node. The entry point of a mobile function is its Execute method, which may
be invoked asynchronously using .net’s task-based asynchronous pattern.

Mobile functions contain user-defined code, and are black boxes to Dapper.
Being implemented in C# or another .net language, they enjoy the expressive

284 R. Pettersen et al.

Cloud Services

Sandbox
#1

Sandbox
#2

Sandbox
#3

· · · Sandbox
#N

DLZ
Driver

Execution Environment
Name

Server

Message Processor

Relay Node

Fig. 2. An overview of the extended architecture where the message processor and
execution environment have been integrated into the relay-node. The execution envi-
ronment is capable of hosting multiple isolated sandboxes for loading and executing
offloaded client code.

Code Listing 1. Interface to be implemented by mobile functions.

public interface IMobileFunction

{

Task Execute(IContext ctx);

}

Code Listing 2. Interface for accessing cloud-side resources from a mobile function.

public interface IContext

{

Task<object> Get(string key);

Task<List<object>> GetMany(string key);

Task<bool> Put(string key, object value);

}

power of a general-purpose programming language. However, this power must be
checked in order to provide a reasonable balance between flexibility and safety.
Dapper will only invoke mobile functions from sandboxes that are intended
to isolate the environment from unwanted side effects, restricting the mobile

Using Satellite Execution to Reduce Latency for Mobile/Cloud Applications 285

Code Listing 3. Interface for requesting remote execution of a mobile function.

public interface IDapper

{

Task<object> ExecuteAt(IMobileFunction function,

Uri location = null);

}

function’s capabilities for actions like file and network i/o. To compensate, Dap-
per will let mobile functions access safe implementations of selected operations
through the IContext interface, shown in Code Listing 2. These operations can
involve i/o, but they are implemented by Dapper, with rigorous validation of
arguments to minimize the potential for abuse.

Since we have selected cloud database services as a use case to focus on, our
IContext interface provides basic key/value operations that can be supported
by any common NoSQL database. When applying satellite execution in other

Code Listing 4. Creating a new application domain, with minimal permissions and
a set of trusted assemblies.

private Sandbox CreateSandbox(string name)

{

var pSet = new PermissionSet(PermissionState.None);

pSet.AddPermission(new SecurityPermission(Execution));

var fullTrustAssemblies = new Assembly[]

{

typeof(Sandbox).Assembly,

typeof(SecureContext).Assembly,

typeof(Amazon.DynamoDBClient).Assembly,

};

var newAppDomain = AppDomain.CreateDomain(name, pSet,

fullTrustAssemblies);

var instance = Activator.CreateInstanceFrom(newAppDomain,

typeof(Sandbox).Assembly.ManifestModule.FullyQualifiedName,

typeof(Sandbox).FullName);

return (Sandbox)instance.Unwrap();

}

286 R. Pettersen et al.

contexts, the interface would be extended correspondingly, to expose the relevant
cloud service functionality.

The indirection created by the IContext interface also serves to separate
application logic from the particulars of the cloud services that are accessed,
and adds flexibility to deployments. For example, an application can be tested
and run as a fully client-side process by providing a context object that binds
to a local database.

3.1 Implementation

Our current implementation targets Amazon’s DynamoDB, which is a popular
NoSQL cloud database service. The relay-node is manifested as an instance in
the ec2 computing cluster, where DynamoDB can be accessed with very low net-
work latency. In addition to the bind process that serves dns traffic, a separate
server process—written in C#—implements the message processor and execu-
tion environment. Incoming messages either contain serialized mobile functions
that should be deserialized and executed, or .net assemblies that contain the
compiled code for mobile functions. Received assemblies are cached by Dapper.
Deserialization of a mobile function can fail, if its assembly is missing. In that
case, the client is asked to first send the missing assembly, before retrying. This
will be a rare event in practical use, because mobile functions can be parame-
terized, reusing the same code across many instances, and because one assembly
can contain the code for multiple mobile functions.

From the client application’s perspective, mobile functions are regular objects
that may, upon request, be executed remotely. The ExecuteAt method in Code
Listing 3 implements this abstraction by sending the object, in a serialized state,
to a relay-node, where the object is deserialized and its Execute method is
invoked. When the Execute method completes, the object is again serialized
and moved back to the client. As such, mobile functions can simply store any
relevant results of their cloud service interactions internally, and clients will be
able to observe the corresponding state changes when ExecuteAt has completed.

In the relay-node, we sandbox the execution of mobile functions using .net
application domains [13], which provide an isolation boundary for security, reli-
ability, and versioning, and for loading assemblies. Application domains are typ-
ically created by runtime hosts—which are responsible for bootstrapping the
common language runtime before an application is run—but a process can cre-
ate any number of application domains within the process to further separate
and isolate execution of code. Dapper creates a new application domain for each
mobile function assembly.

Each of these application domains is configured with a minimal set of per-
missions that will ensure that execution of code cannot compromise or access
code or data running in other domains. The minimal set will also ensure that the
code received from clients cannot do potentially malicious operations like access-
ing the file system, or participating in bot-nets that deplete network resources.
Code Listing 4 shows the code to instantiate new application domains. Aside from
the minimal permission set, which only includes the most basic Execution ability,

Using Satellite Execution to Reduce Latency for Mobile/Cloud Applications 287

CodeListing 5.The IContext implementation used in the isolated application domains.

class SecureContext : IContext

{

private Amazon.DynamoDBClient _client;

[SocketPermission(Assert, Unrestricted = true)]

[ReflectionPermission(Assert, Unrestricted = true)]

[WebPermission(Assert, Unrestricted = true)]

public Task<string> Get(string key) { ... }

[SocketPermission(Assert, Unrestricted = true)]

[ReflectionPermission(Assert, Unrestricted = true)]

[WebPermission(Assert, Unrestricted = true)]

public async Task<List<string>> GetMany(string key) { ... }

[SocketPermission(Assert, Unrestricted = true)]

[ReflectionPermission(Assert, Unrestricted = true)]

[WebPermission(Assert, Unrestricted = true)]

public Task<bool> Put(string key, object value) { ... }

}

the code specifies a list of assemblies containing code that will be fully trusted by
the sandbox. This includes Dapper’s own assemblies, and the official DynamoDB
api from Amazon.

When mobile functions execute, they can use the IContext interface to access
cloud services. Dapper implements this interface in the SecureContext class
shown in Code Listing 5. The various database operations that can be performed
are implemented using Amazon’s api, which requires certain additional permis-
sions to work correctly. Socket and web permissions are needed to create sockets
and sending web requests, and the api uses reflection to access protected meth-
ods in the .net library, to add custom headers to web requests. Since the assembly
that implements SecureContext is fully trusted, these permissions can be elevated
selectively by marking the relevant methods with special security attributes. So the
only way for a mobile function to access the network, for example, is through one
of the methods of the IContext interface.

The CreateSandbox method returns a proxy object that can be used to
communicate with the new application domain. Calls to the proxy object are
implicitly converted into remote cross-domain calls. The Sandbox class in Code
Listing 6 implements the internal execution environment of a sandbox, with meth-
ods to inject serialized assemblies andmobile functions into the sandbox.The sand-
box will load the assemblies and put them into the AssemblyCache indexed on the
full name of the assembly. The full name includes versioning information, so differ-
ent versions of an assembly can be loaded at the same time, without issue.

288 R. Pettersen et al.

Code Listing 6. The sandbox, isolating loading of untrusted assemblies, and execution
of code.

class Sandbox : MarshalByRefObject

{

private IContext Context;

private Dictionary<string, Assembly> AssemblyCache;

private Assembly AssemblyResolve(

object sender, ResolveEventArgs args) { ... }

public bool AddAssembly(byte[] rawBytes) { ... }

public byte[] ExecuteFunction(byte[] obj) { ... }

[SecurityPermission(Assert, Flags = SerializationFormatter)]

private IMobileFunction DeserializeFunction(byte[] data) { ... }

[SecurityPermission(Assert, Flags = SerializationFormatter)]

private byte[] SerializeFunction(object graph) { ... }

}

Upon receiving serialized objects through the ExecuteFunction method, the
sandbox will attempt to deserialize the byte array using the private method
DeserializeFunction. This method is marked with a SecurityPermission
attribute to allow deserialization of objects. We have restricted this permission to
specific methods instead of allowing it for all client code, as the private data mem-
bers of an object can potentially be retrieved by serializing it.

The sandbox also registers as a handler for the AssemblyResolve event,
which is triggered whenever a new assembly must be resolved. Notably, this
may happen during deserialization of mobile functions. The ResolveEventArgs
will then contain the full name of the type that is being deserialized, and the
sandbox can make lookups in the assembly cache to find the correct assembly. If
the sandbox is unable to resolve the assembly required to deserialize the object,
an exception will be thrown to the governing satellite execution environment,
which in turn will inform the client of the missing assembly.

When an object has been deserialized successfully, the sandbox will typecast
it to IMobileFunction and invoke its Execute method. When the Execute
method completes, the mobile function is again serialized into a byte array,
using SerializeFunction, and passed back to the client.

Code Listing 7 shows an example of a mobile function that implements a
bag-of-queries abstraction. Database queries are added to the bag by invoking
AddQuery; the queries are aggregated in the queryList field. The Execute

Using Satellite Execution to Reduce Latency for Mobile/Cloud Applications 289

Code Listing 7. Implementation of a bag-of-queries abstraction as a mobile function
that can execute remotely in the cloud via satellite execution.

[Serializable]

public class QueryBag : IMobileFunction

{

private List<string> _responseList;

private List<string> _queryList;

public async Task Execute(IContext ctx)

{

foreach (var query in _queryList)

{

var queryResponse = await ctx.GetMany(query);

if (_responseList == null)

_responseList = new List<string>();

_responseList.AddRange(queryResponse);

}

}

public void AddQuery(string query)

{

if (_queryList == null)

_queryList = new List<string>();

_queryList.Add(query);

}

public List<string> GetResponses()

{

return _responseList;

}

}

method issues the aggregated queries via the context object and stores results
in the responseList field. After executing the mobile function, the client can
observe the results of the queries by invoking GetResponses.

A potential optimization for the bag-of-queries example would be to reset
the list of queries to null once it is no longer needed. This would reduce the
amount of serialized data to return from the relay-node to the client. In gen-
eral, mobile functions are free to implement their own serialization mechanisms
via the ISerializable interface, but they can always fall back to the default
serialization protocol, for convenience.

290 R. Pettersen et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

3

4

5

request 1

reply 1

request 2

reply 2

Time (sec)

SS
L
pa
ck
et
s
se
nt
/r
ec
ei
ve
d

sent received

Fig. 3. Example communication pattern between mobile device and cloud assumed to
be of a request/reply type.

4 Evaluation

Dapper runs on a variety of Microsoft Windows platforms, including phone,
store, and desktop. We used two different client-side platforms in our experi-
ments: (1) a phone with 2 GB memory and a quad-core QualComm Snapdragon
800 2.2 GHz cpu and (2) a desktop machine with 64 GB memory and a quad-
core Intel Xeon E5-1620 3.7 GHz cpu. The phone ran Windows Phone 8.1 and
communicated over 4 G, whereas the desktop machine ran Windows 10 and was
connected to a lan.

The relay-node was hosted on two types of Amazon ec2 instances. The first
type was t1.micro, equipped with 613 MB memory and a single-core 64-bit vcpu
operating at 1.85 GHz. The second type was t2.medium, equipped with 4 GB
memory and a dual-core vcpu operating at 2.50 GHz. Both types of instances
were running Microsoft Windows Server 2012 R2. We used Amazon’s DynamoDB
as the cloud-side database, instantiated in the same availability zone as our relay-
node.

Using Satellite Execution to Reduce Latency for Mobile/Cloud Applications 291

Table 1. Summary of cloud interactions during phone application startup.

Application # request/reply # connections

Social networking 1 1

2 1

Instant messaging 1 4

2 3

7 1

Short messaging 1 7

2 3

4 1

6 1

Picture exchange 1 1

2 2

We first report on a black-box examination of the cloud communication pat-
terns of some popular mobile applications. Here we sought to discover patterns
consistent with sequences of dependent requests, with the motivation that satel-
lite execution could be used in place of such interactions. We configured our
phone platform to communicate through an access point instrumented to cap-
ture all ingress and egress network packets. We then inspected the encrypted
TCP streams and dissected them into SSL packets, looking for what appeared
as consecutive request/reply cloud interactions without intervening user actions.
The particular pattern we looked for is exemplified in Fig. 3, which shows two
interactions assumed to be of a request/reply type.

Our findings for cloud interactions during startup of four popular applica-
tions are summarized in Table 1. We observed that the applications communicate
over a number of separate network connections, ranging from 2 for the social net-
working application to 12 for the short messaging application. Most of these con-
nections are to different services within the same cloud, but some are external,
typically in support of content distribution such as Akamai [14]. The number of
assumed request/reply interactions varied across applications and connections,
with the instant- and short messaging applications respectively having as many
as 7 and 6 consecutive interactions. These findings suggest satellite execution
could be effective if applied in these popular applications.

We continue with an experiment that quantifies latency when a client issues
cloud database queries directly and when using satellite execution. For this
we used the bag-of-queries implementation outlined in Code Listing 7 to issue
queries to the cloud database. Latency when the bag contained between 1 and 5
queries is shown in Fig. 4. Results are averaged over 1000 runs, for both phone
and desktop, with the relay-node hosted on a t1.micro instance. As shown, there
are significant latency savings when the bag contains more than one query. This
is because latency between the relay-node and the database is low, and the

292 R. Pettersen et al.

round-trip latency between the client and the cloud—approximately 64 ms for
desktop and 105 ms for phone—overshadows the low cost of serializing and trans-
ferring the query bag.

The DynamoDB library uses the http 100-continue feature when interacting
with the cloud database. Use of this feature adds a communication round-trip to
database interaction, needlessly inflating latency [2]. We therefore used platform
interfaces to disable this http feature on desktop. Similar interfaces do not
exist on Windows Phone, however. The results in Fig. 4 consequently include
one additional round-trip latency for phone, compared to desktop. To better
convey the latency difference between phone and desktop, the figure also includes
results where one round-trip latency has been subtracted from phone. Even
after this normalization, phone has significantly higher latency than desktop,
demonstrating the relative importance of our satellite execution technique for
the mobile platform.

1 2 3 4 5
0

200

400

600

800

1,000

1,200

Number of queries

L
at
en
cy

(m
s)

desktop
desktop with satellite execution
phone
phone (normalized)
phone with satellite execution

Fig. 4. Observed latency when executing a varying number of cloud database queries
with and without satellite execution. Error bars show standard deviation.

The data on popular applications in Table 1 only indicates that latency sav-
ings are possible; determining the degree to which the interaction could exploit

Using Satellite Execution to Reduce Latency for Mobile/Cloud Applications 293

satellite execution would require access to application source code. To approxi-
mate the savings that could be experienced in a deployed application we recon-
struct a scenario where a friend connection is established in the MSRBook, a
social networking application based on Deuteronomy [15]. The addition of a
friend in this network involves friend and news feed updates for both concerned
parties, for a total of 4 queries. Equivalent queries were placed in our bag-of-
queries and we ran the friend-add action 1000 times on both the desktop and
the mobile platform, with and without satellite execution. Figure 5 illustrates
latency savings. Savings due to satellite execution are pronounced; on desktop
latency drops from around 265 ms to approximately 100 ms, while it drops on
mobile from around 450 ms to approximately 125 ms.

260 265 270 275 280 285
0

10

20

30

40

50

Latency (ms)

%
of

re
qu

es
ts

(a) Desktop: adding a friend.

80 85 90 95 100
0

10

20

30

40

Latency (ms)

%
of

re
qu

es
ts

(b) Desktop: adding a friend, with satellite
execution.

420 440 460 480
0

5

10

15

20

Latency (ms)

%
of

re
qu

es
ts

(c) Mobile: adding a friend.

100 120 140 160
0

5

10

15

20

25

Latency (ms)

%
of

re
qu

es
ts

(d) Mobile: adding a friend, with satellite ex-
ecution.

Fig. 5. Latencies when adding a friend to a social network, with and without satellite
execution.

On a mobile device such as a smartphone, a person uses around 24 different
applications every month [16]. Even the modest resource allocations available to

294 R. Pettersen et al.

5 15 25 35 45 55 65 75 85 95

100

150

200

250

300

350

400

450

Number of clients

L
at
en
cy

(m
s)

t1.micro t2.medium

Fig. 6. Latency per bag-of-queries when increasing the number of clients that concur-
rently submit mobile functions to a relay-node.

the Amazon t1.micro instance used in our experiments are likely to be ample for a
relay-node dedicated to a single mobile device. But if the relay-node functionality
was a service offered by the cloud database provider, in a fashion similar to the
Parse application module service [5], the relay-node would likely be shared among
many mobile devices and its capacity would be a potential issue. We therefore
last consider an experiment where the relay-node serves an increasing number
of clients.

In the experiment, we configured each client to repeatedly submit mobile
functions to the relay-node, in a closed loop. Each mobile function was a bag of
4 queries. We then increased the number of clients, ensuring high contention
for relay-node resources, in an attempt to reveal the capacity for executing
mobile functions. We repeated the experiment both for t1.micro and t2.medium
instances. Results are shown in Figs. 6 and 7. We observe that the t1.micro
instance is capable of completing around 250 bags per second before throughput
levels off. As the number of clients continues to increase, each of them observes
higher latency, as illustrated in Fig. 6. The t2.medium instance peaks at around
700 bags per second. In Fig. 7, we see a close correlation between throughput
and cpu consumption for both instance types. This indicates that cpu is the
likely bottleneck that causes throughput to peak.

The experiment does not expose any scalability issues in our relay-node
implementation, with regards to concurrently serving an increasing number of
clients. Throughput levels off and remains stable after it peaks. A single relay-
node can thus be shared among multiple mobile devices, and also across different
applications.

Using Satellite Execution to Reduce Latency for Mobile/Cloud Applications 295

5 15 25 35 45 55 65 75 85 95
0

20

40

60

80

100

Number of clients

C
PU

co
ns
um

pt
io
n
(%

)

t1.micro t2.medium

5 15 25 35 45 55 65 75 85 95

100

200

300

400

500

600

700

Number of clients

B
ag
s
pe
r
se
co
nd

t1.micro t2.medium

Fig. 7. cpu consumption and throughput at a relay-node when increasing the number
of concurrent clients that submit mobile functions.

5 Related Work

The complexity of developing and deploying applications that span a variety of
mobile devices, personal computers, and cloud services, has been recognized as
a new challenge. Users expect applications and their state to follow them across
devices, and to realize this functionality, one or more cloud service must usually
be involved in the background. Sapphire [17] is a recent and comprehensive sys-
tem that approaches this problem by making deployment more configurable and
customizable, separating the deployment logic from the application logic. The
aim is to allow deployment decisions to be changed, without major associated
code changes. Applications are factored into collections of location-independent
objects, communicating through remote procedure calls. Fabric [18] is another

296 R. Pettersen et al.

distributed system that aims to securely share objects among heterogeneous
network nodes, and supports both data-shipping and function-shipping styles of
execution.

Like these systems, Dapper provides a location-independent programming
abstraction, but preserves a monolithic application structure, which allows the
application to be installed in its entirety on a single device through a regular
distribution channel like an app store. Code is then transferred on demand from
the device to the cloud, as objects move to the cloud to enjoy low-latency exe-
cution. The decision to visit the cloud or stay on the local device can be made
dynamically, at run time.

With Dapper, we introduce relay-nodes in the cloud as an architectural tier
between the cloud and mobile devices. Similar middle tiers have been proposed
for example with Cloudlets [19], and are implemented in code-offloading systems
like COMET [20], MAUI [21], and CloneCloud [22]. However, the goal of these
systems is often to augment mobile devices with additional computing power, or
to conserve energy [23], so the added tier may be located close to the devices,
on local server machines, or wherever cheap computing power is available. In
contrast, our motivation is not to offload work, but to reduce the latency of
accessing cloud services, and thus the new tier sits as close to the cloud services
as possible.

Concretely, Dapper reduces latency by eliminating extraneous round-trips of
communication to the cloud. An alternative way to achieve that is by having
cloud databases support more expressive query languages, so that more sophis-
ticated transactions can be submitted as a single operation. Indeed, relational
databases with full SQL support are part of the offerings of major cloud providers
like Amazon. However, the ability to access the database via a general-purpose
programming language remains appealing for its generality and flexibility. This
is a lesson learned from programming models like MapReduce [6], Oivos [24],
and Cogset [10], where data is accessed programmatically through user-defined
visitor functions that can integrate easily with legacy code and libraries. The
programming model in Dapper follows a similar philosophy, with the difference
that user-defined functions are visiting a database in the cloud rather than a
partition of data in a cluster.

6 Conclusion

This work focuses on the general issue of latency as a concern for applications
that interact with the cloud, and looks specifically at scenarios where multiple
consecutive queries are issued to a database in the cloud. Intuitively, latency can
be reduced by shortening communication distances, so our idea is to move the
location where queries are issued closer to the database. Since cloud databases
commonly have programmatic interfaces, we implement a general mechanism for
code-offloading to support this pattern.

Having a relay-node in the cloud, located in close proximity to the database
service, has already proven to be a useful technique for caching, and beneficial

Using Satellite Execution to Reduce Latency for Mobile/Cloud Applications 297

for read-mostly database workloads [2]. Here, we extend the relay-node with
functionality for satellite execution, allowing code that has moved temporarily
from a mobile device to execute in an environment with low-latency access to
cloud services. This gives benefits for additional workloads, which may include
database updates.

The key characteristic that a workload must exhibit to benefit from our
approach is dependencies between requests. For example, if the results from one
database query are used to shape the next query, there is a dependency between
the two. If there is no need for user interaction in-between requests, a whole
sequence of dependent requests can be offloaded to the cloud. By eliminating
extraneous round-trips of communication, this improves response times.

To estimate the potential for improvement in real applications, our evaluation
examines the communication patterns of some popular applications through a
black-box technique. This has yielded some indications that dependent requests
occur in practice, since sequences of up to 7 requests were observed back-to-back
over the same connection on startup. Looking at a concrete implementation of a
social networking application from [15], we found specific examples. For example,
a friend request results in 4 dependent database queries; when offloaded to the
cloud from a phone, the completion time of a friend request dropped from 450 ms
to approximately 125 ms.

Our implementation handles the practicalities of transferring assemblies of
.net code, serializing and deserializing objects, and sandboxing code that exe-
cutes on the relay-node. Our evaluation gives some data points on performance:
a single Amazon t1.micro instance can serve hundreds of queries per second. One
such instance can thus easily handle load imposed by a large number of appli-
cations. So, we can dramatically reduce latency without disrupting application
architectures and with minimal requirements for resources in the cloud.

Acknowledgements. This work is part of the Information Access Disruptions (iAD)
project, supported in part by the Research Council of Norway through the National
Center for Research-based Innovation program. We thank our iAD colleagues for valu-
able feedback.

References

1. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. SIGOPS Oper. Syst. Rev. 41, 205–220 (2007)

2. Pettersen, R., Valv̊ag, S. V., Kvalnes, A., Johansen, D.: Jovaku: globally distributed
caching for cloud database services using DNS. In: IEEE International Conference
on Mobile Cloud Computing, Services, and Engineering, pp. 127–135 (2014)

3. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: comparing public cloud
providers. In: ACM SIGCOMM, pp. 1–14 (2010)

4. Valv̊ag, S.V., Johansen, D., Kvalnes, A.: Position paper: elastic processing and
storage at the edge of the cloud. In: Proceedings of the 2013 International Workshop
on Hot Topics in Cloud Services, HotTopiCS 2013, pp. 43–50. ACM, New York
(2013)

298 R. Pettersen et al.

5. Parse (2015). http://www.parse.com
6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.

In: Proceedings of the 6th Symposium on Operating Systems Design and Imple-
mentation, OSDI 2004, pp. 137–150. USENIX Association (2004)

7. Johansen, D., Lauvset, K.J., van Renesse, R., Schneider, F.B., Sudmann, N.P.,
Jacobsen, K.: A TACOMA retrospective. Softw. - Pract. Exp. 32, 605–619 (2001)

8. Johansen, D., Marzullo, K., Lauvset, K. J.: An approach towards an agent com-
puting environment. In: ICDCS 1999 Workshop on Middleware (1999)

9. Johansen, D.: Mobile agents: right concept, wrong approach. In: In 5th IEEE Inter-
national Conference on Mobile Data Management (MDM 2004), pp. 300–301. IEEE
Computer Society (2004)

10. Valv̊ag, S.V., Johansen, D., Kvalnes, A.: Cogset: a high performance MapReduce
engine. Concurr. Comput.: Pract. Exp. 25, 2–23 (2013)

11. (ISC Bind). https://www.isc.org/downloads/bind/
12. (Bind DLZ). http://bind-dlz.sourceforge.net/
13. Application Domains (2015). http://msdn.microsoft.com/en-us/library/cxk374d9

%28v=vs.90%29.aspx
14. Nygren, E., Sitaraman, R.K., Sun, J.: The Akamai network: A platform for high-

performance internet applications. SIGOPS Oper. Syst. Rev. 44, 2–19 (2010)
15. Levandoski, J.J., Lomet, D.B., Mokbel, M.F., Zhao, K.: Deuteronomy: transaction

support for cloud data. In: CIDR, pp. 123–133 (2011)
16. Nielsen (2014). http://www.nielsen.com/us/en/insights/news/2014/smartphones-

so-many-apps–so-much-time.html
17. Zhang, I., Szekeres, A., Aken, D.V., Ackerman, I., Gribble, S.D., Krishnamurthy,

A., Levy, H.M.: Customizable and extensible deployment for mobile/cloud appli-
cations. In: 11th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 2014), Broomfield, CO, pp. 97–112. USENIX Association (2014)

18. Liu, J., George, M.D., Vikram, K., Qi, X., Waye, L., Myers, A.C.: Fabric: A
platform for secure distributed computation and storage. In: Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP 2009,
pp. 321–334. ACM, New York (2009)

19. Satyanarayanan, M.: Cloudlets: at the leading edge of cloud-mobile convergence.
In: Proceedings of the 9th International ACM SIGSOFT Conference on Quality of
Software Architectures, pp. 1–2. ACM (2013)

20. Gordon, M.S., Jamshidi, D.A., Mahlke, S., Mao, Z.M., Chen, X.: Comet: code
offload by migrating execution transparently. In: Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation, OSDI 2012, pp.
93–106. USENIX Association, Berkeley (2012)

21. Cuervo, E., Balasubramanian, A., Cho, D.K., Wolman, A., Saroiu, S., Chandra, R.,
Bahl, P.: Maui: making smartphones last longer with code offload. In: Proceedings
of the 8th International Conference on Mobile Systems, Applications, and Services,
MobiSys 2010, pp. 49–62. ACM, New York (2010)

22. Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execu-
tion between mobile device and cloud. In: Proceedings of the 6th Conference on
Computer Systems, EuroSys 2011, pp. 301–314. ACM, New York (2011)

23. Tilevich, E., Kwon, Y.W.: Cloud-based execution to improve mobile application
energy efficiency. Computer 47, 75–77 (2014)

24. Valv̊ag, S.V., Johansen, D.: Oivos: simple and efficient distributed data processing.
In: Proceedings of the 10th IEEE International Conference on High Performance
Computing and Communications, HPCC 2008, pp. 113–122. IEEE Computer
Society (2008)

http://www.parse.com
https://www.isc.org/downloads/bind/
http://bind-dlz.sourceforge.net/
http://msdn.microsoft.com/en-us/library/cxk374d9%28v=vs.90%29.aspx
http://msdn.microsoft.com/en-us/library/cxk374d9%28v=vs.90%29.aspx
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps--so-much-time.html
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps--so-much-time.html

Author Index

Andrikopoulos, Vasilios 153
Angulo, Julio 38

Barbhuiya, Sakil 135
Binz, Tobias 239
Bittencourt, Luiz F. 3
Breitenbücher, Uwe 216, 239

Cruzes, Daniela S. 38

Feinbube, Frank 171
Fischer-Hübner, Simone 38
Fortes, Renata 115

Gómez Sáez, Santiago 153

Hadji, Makhlouf 15
Hahn, Michael 153
Hasham, Khawar 74

Jaatun, Martin Gilje 38
Janusz, Daniel 171
Johansen, Dag 279

Karastoyanova, Dimka 153
Képes, Kálmán 239
Kilpatrick, Peter 135
Kopp, Oliver 239
Kvalnes, Åge 279

Leymann, Frank 153, 216, 239
Liang, Yongzheng 58
Lucrédio, Daniel 115

Malik, Zaki 263
McClatchey, Richard 74
Molina-Jimenez, Carlos 193
Moreira, Ana 115
Munir, Kamran 74

Neuhaus, Christian 171
Nikolopoulos, Dimitrios S. 135
Nogueira, Elias 115

Papazachos, Zafeirios 135
Petri, Ioan 3
Pettersen, Robert 279
Polze, Andreas 171
Pulls, Tobias 95

Rana, Omer 3
Reich, Christoph 95
Rezgui, Abdelmounaam 263
Rübsamen, Thomas 95

Sfyrakis, Ioannis 193
Shamdasani, Jetendr 74
Skouradaki, Marigianna 153
Solaiman, Ellis 193

Valvåg, Steffen Viken 279
Vukojevic-Haupt, Karolina 153

Wettinger, Johannes 216, 239

	Preface
	Organization
	Contents
	Invited Paper
	Cloud Computing at the Edges
	1 Introduction and Overview
	2 Related Approaches
	3 Common Themes
	3.1 Architecture and Deployment
	3.2 Virtualisation
	3.3 Data Migration and Management

	4 Business Models
	5 Application Scenarios
	6 Conclusion
	References

	Papers
	Scalable and Cost-Efficient Algorithms for Reliable and Distributed Cloud Storage
	1 Introduction
	1.1 Paper Contributions and Structure

	2 Related Work
	3 System Model
	3.1 Data Placement Cost Minimization: B-Matching Formulation
	3.2 Data Placement and Network Latency Minimization: Commodity Flow Modeling
	3.3 Data Replication Algorithm
	3.4 Data Chunk Splitting

	4 Numerical Results
	4.1 Simulation Environment
	4.2 Performance Evaluation

	5 Summary and Future Work
	References

	Accountability Through Transparency for Cloud Customers
	1 Introduction
	2 Related Work
	3 Method
	4 Results
	5 Transparency Tools
	5.1 The Data Track Tool
	5.2 Visualizing Data Disclosures
	5.3 User Evaluations of the Data Track's UI

	6 Discussion
	7 Conclusions
	A List of Requirements from Transparency Interviews
	A.1 What is Possible to do with the Data
	A.2 Conformance to Data Agreement
	A.3 Data Handling
	A.4 Value Chain
	A.5 Multi-tenant Services
	A.6 Protection of the Data
	A.7 Decisions
	A.8 Correction of the Data

	References

	Towards a Standardized Quality Assessment Framework for OCCI-Controlled Cloud Infrastructures
	Abstract
	1 Introduction
	2 Toward a Standardized Cloud Quality Assessment Framework
	2.1 NIST CC Program
	2.2 ETSI CSC

	3 ETSI NFV, SDN and the Cloud
	4 OCCI
	5 OCCI-Related Effort
	5.1 OCCI Technical Versatility
	5.2 OCCI in Large Infrastructures

	6 TTCN-3
	7 TTCN-3 Related Effort
	7.1 TTCN-3 Development
	7.2 TTCN-3 in the ETSI TC MTS

	8 TTCN-3 and OCCI
	8.1 TTCN-3 and OCCI Mapping
	8.2 TTCN-3 and ``Bonfire OCCI''

	9 Summary and Future Work
	Acknowledgements
	References

	Re-provisioning of Cloud-Based Execution Infrastructure Using the Cloud-Aware Provenance to Facilitate Scientific Workflow Execution Reproducibility
	1 Introduction
	2 Related Work
	3 Requirements for Workflow Reproducibility on Cloud
	4 ReCAP: Workflow Reproducibility Using Cloud-Aware Provenance
	4.1 Cloud Usage Scenarios
	4.2 Static Mapping Approach
	4.3 Eager Mapping Approach
	4.4 Workflow Reproducibility Using ReCAP
	4.5 Workflow Output Comparison

	5 Results and Discussion
	6 Conclusion and Future Direction
	References

	Security and Privacy Preservation of Evidence in Cloud Accountability Audits
	1 Introduction
	2 Related Work
	3 Insynd
	4 Audit Agent System
	4.1 Privacy and Accountability Cloud Audit System Actors
	4.2 Architectural Components Audit Agent System

	5 Audit Evidence Storage Requirements
	5.1 Requirements of Digital Evidence
	5.2 Privacy Requirements

	6 Secure Evidence Storage Architecture
	6.1 Architecture
	6.2 Identity Management and Key Distribution

	7 Evaluation
	7.1 Scenario
	7.2 Implementation
	7.3 Threat Model
	7.4 Requirements Evaluation
	7.5 Scalability

	8 Conclusion and Future Work
	References

	Using Model-Driven Development to Support Portable PaaS Applications
	1 Introduction
	2 Background
	2.1 The Lock-in Problem
	2.2 Types of Portability
	2.3 Model-Driven Engineering (MDE)
	2.4 A Model-Driven Approach for Cloud PaaS Portability

	3 Persistence in PaaS
	3.1 Google App Engine
	3.2 Windows Azure
	3.3 Difficulties in Conciliating both Persistence Models

	4 Supporting Multiple Persistence Models Using MDE
	4.1 Generating Persistence Code for GAE
	4.2 Generating Persistence Code for Azure

	5 Evaluation
	5.1 Planning
	5.2 Execution
	5.3 Data Analysis
	5.4 Threats to Validity

	6 Related Work
	7 Concluding Remarks and Future Work
	References

	LS-ADT: Lightweight and Scalable Anomaly Detection for Cloud Datacentres
	1 Introduction
	2 Background and Related Work
	2.1 Anomaly Detection Challenges
	2.2 Console Log Based Anomaly Detection
	2.3 System Metric Based Anomaly Detection

	3 LADT Architecture
	3.1 Metrics Data Monitoring
	3.2 Metrics Data Analysis

	4 LADT Hypothesis and Algorithm
	4.1 LFD: The Baseline Method
	4.2 LADT Hypothesis
	4.3 LADT Algorithm
	4.4 Console Log Analysis

	5 Experimental Evaluation
	5.1 Experimental Set-Up
	5.2 Results and Discussion
	5.3 Textual Log Analysis
	5.4 LADT Overhead
	5.5 Further Analysis

	6 Conclusion and Future Work
	References

	Performance and Cost Trade-Off in IaaS Environments: A Scientific Workflow Simulation Environment Case Study
	1 Introduction
	2 Motivation and Problem Statement
	3 The OPAL Simulation Environment
	4 Experiments
	4.1 Methodology
	4.2 Setup
	4.3 Evaluation Results
	4.4 Discussion

	5 Related Works
	6 Conclusion and Future Work
	References

	A Practical Evaluation of Searchable Encryption for Data Archives in the Cloud
	1 Introduction
	2 Related Work
	3 The Z-IDX Scheme
	3.1 Bloom Filters
	3.2 Gohs Secure Indexes

	4 Searchable Encryption in MongoDB
	4.1 Selection of a Database System
	4.2 Extended MongoDB Commands
	4.3 Architecture and Implementation

	5 Performance Evaluation
	5.1 Filter Blinding vs. Performance
	5.2 Memory Footprint of Z-IDX Filters
	5.3 Query Performance
	5.4 Implications for Practical Use

	6 Security
	6.1 Threats to Keyword Confidentiality
	6.2 Attacks on the Client
	6.3 Network Data Sniffing
	6.4 Attacks on the Server
	6.5 Implications for Practical Use

	7 Conclusion
	References

	High Level Model Checker Based Testing of Electronic Contracts
	1 Introduction
	2 Background
	2.1 ROP Ontology
	2.2 Choreography of Interaction
	2.3 Electronic Contracts
	2.4 Contract Compliance Within the CCC Monitor
	2.5 Exception Handling

	3 Model Checker Based Testing Framework
	3.1 EPROMELA Interaction Model
	3.2 Model Construction and Verification
	3.3 The LTL Manager
	3.4 Generating the Test Sequences
	3.5 Sequence Parsing
	3.6 Testing the Electronic Contract
	3.7 Testing None Compliant Events
	3.8 Accounting for Exceptional Outcome Events

	4 Related Work
	5 Conclusion and Future Work
	References

	Streamlining APIfication by Generating APIs for Diverse Executables Using Any2API
	1 Introduction
	2 Problem Statement and Use Case
	2.1 Use Case: Deployment Automation
	2.2 Motivating Scenario: Facebook App

	3 APIfication Method
	4 APIfication Framework
	5 Validation and Evaluation
	5.1 Any2API Implementation
	5.2 Tests
	5.3 Measurements
	5.4 Deployment Automation Case Study

	6 Further Use Cases
	6.1 Cyberinfrastructure and e-Science
	6.2 Treat API Endpoints as Executables
	6.3 API Libraries
	6.4 Microservice Architectures

	7 Related Work
	8 Conclusion
	References

	Hybrid TOSCA Provisioning Plans: Integrating Declarative and Imperative Cloud Application Provisioning Technologies
	1 Introduction
	2 State of the Art Analysis
	2.1 The Declarative Flavor
	2.2 The Imperative Flavor
	2.3 Combination Approaches

	3 A Hybrid Modelling Concept
	3.1 Declarative Provisioning Activities
	3.2 Internal Data Handling

	4 Realization Using BPEL
	5 Accessing External Data Based on TOSCA
	5.1 An Overview of TOSCA
	5.2 Referencing Properties in Hybrid TOSCA Provisioning Plans
	5.3 Illustration of the Concept
	5.4 Extending BPEL by TOSCA Property References

	6 Standards-Based Prototype
	7 Evaluation
	7.1 Limitations

	8 Conclusion
	References

	An Analysis of Power Consumption in Mobile Cloud Computing
	1 Introduction
	1.1 Paper Organization

	2 Current Approaches for Power Saving in Mobile Cloud Computing
	2.1 Cloudlets
	2.2 Context-Aware Offloading

	3 Mobile Cloud Gaming
	4 Cellular-Based vs. WiFi-Based Mobile Cloud Gaming
	4.1 Power Consumption and Throughput
	4.2 Latency
	4.3 Cost

	5 Power Consumption Trends in Modern Mobile GPUs
	6 Power Consumption Trends in Modern Notebook NICs
	7 Graphics-Intensive Applications: GPUs vs. NICs
	7.1 Scenario 1: Gaming Using the Mobile Device's GPU
	7.2 Scenario 2: Mobile Cloud Gaming

	8 Mobile Cloud Gaming Using Smartphones
	8.1 Power Consumption of GPU-Based Gaming on Smartphones
	8.2 Power Consumption of Cloud-Based Gaming on Smartphones

	9 Conclusion
	References

	Using Satellite Execution to Reduce Latency for Mobile/Cloud Applications
	1 Introduction
	2 Background
	3 Dapper
	3.1 Implementation

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Author Index

